
Run-time Re-configurable DSP Parallel Processing
System Using Dynamic FPGAs

Ciaron William Murphy

A thesis submitted in partial fulfilment of the
requirements of the Liverpool John Moores University

For degree of Doctor of Philosophy

June 2002

Abstract

Run-time Re-configurable DSP Parallel Processing System
Using Dynamic FPGAs

Ph. D. Thesis Ciaron William Murphy 13th June 2002

This thesis describes the inclusion of dynamic coprocessor and routing-hub capabilities
within an existing TIM-40 standard Texas Instruments TMS320C40 parallel processing
environment. This work was conducted both to develop dynamic hardware applications
and assess the potential benefits of this technology within an existing high performance
architecture.

To integrate dynamic hardware within the TMS320C40 multiprocessor environment, a
custom designed run-time reconfigurable hardware development environment was
designed and constructed (XC6200DS). This system used a Xilinx XC6200 family
FPGA as the dynamic hardware resource. Custom XC620ODS development software
tools (XC6200ADS) were also developed, enabling temporal and spatial examinations
of sequential XC6200 designs, to generate configuration data, govern XC620ODS
housekeeping functions, and facilitate XC6200 FPGA run-time hardware verification.

A new BinDCT algorithm was used to develop novel XC6200 FPGA based dynamic
TMS320C40 DSP coprocessor applications. Dynamic BinDCT operation increased
operand throughputs from 9260 to 18520 BinDCT one-dimensional transform
operations per second. This was accomplished through dynamically swapping the
BinDCT hardware configuration depending on the frequency content of each transforms
input data. Results obtained indicated that compared to static XC6200 configurations,
dynamic BinDCT operation also improved system accuracy in approximating true DCT
operation.

Using the XC6200DS, a TMS320C40 communication channel routing-hub was
developed. Data paths configured within the routing-hub were updated during run-time
improving processing node connectivity. This novel concept was furthered by spatially
partitioning processing and routing resources (Roberts Cross Edge Detector) within the
hub. This allowed the creation of a new system topology that provided additional
processing hardware or node bandwidth as depicted by system operation through
reusing existing hardware.

Novel dynamic hardware applications and multiprocessor operating concepts have been
explored by this research. Through continual improvements in run-time reconfigurable
hardware technologies, the potential benefits demonstrated can be fully exploited.

Acknowledgements

I would like to express my appreciation to my principal research coordinator Dr. David

Harvey for his guidance, support and enthusiasm throughout the research project and in

preparation of this thesis.

I would like to express my gratitude to my secondary research coordinator Dr. Laurence

Nicolson as well as Prof. Bill Mullarkey for their time, guidance and wisdom provided
throughout the project.

Many thanks to the CEORG members, especially the past and present residents of
Laboratory 523 for the friendly working atmosphere experienced and comradeship

encountered through the joys and woes of postgraduate research.

I would also like to acknowledge the support provide by my family and friends

throughout my studies.

Finally, I wish to thank the EDAM centre for providing funding to conduct this work

and the Royal Academy of Engineering for awarding travel grants to present my work.

Contents

Symbols v

Chapter 1 Introduction 1

Chapter 2 Reconfigurable Computing Technology

2.1 Configurable Computing Introduction 7

2.2 Evolution of Reconfigurable Computing 10
2.2.1. The First Notion 10
2.2.2 FPGA Technology Review 11
2.2.3 First Generation Machines 16
2.2.4 Second Generation Machines 17
2.2.5 Virtual Hardware 18
2.2.6 Dynamic FPGA Technology 20
2.2.7 Third Generation Machines 22
2.2.8 Commercial Machines 23

2.3 Configuration Mechanism Performance 24
2.3.1 Compile-Time Reconfiguration 24
2.3.2 Run-Time Reconfiguration 27

2.4 Architecture Classification 30

2.5 Configurable Computing Applications 32
2.5.1 Application Specific Architecture 33
2.5.2 Prototype Environments 33
2.5.3 Reconfigurable Logic Coprocessors 35
2.5.4 Reconfigurable Supercomputers 35
2.5.5 Configurable Instruction-Set Architectures 36

2.6 Summary 37

Chapter 3 Dynamic Hardware Development System

3.1 Overview 40

3.2 TMS320C40 Parallel Processor 41
3.2.1 TIM-40 TMS320C40 Processing Node 41
3.2.2 Tim-40 Motherboard 43
3.3.2 TMS320C40 Application Development 44

i

a

3.3 XC6200 FPGA Development System 46
3.3.1 Host Computer Interface 48
3.3.2 XC620ODS Hardware-Bridge 49
3.3.3 FastMAPTm Interface Controller 52
3.3.4 XC6200ADS Development Software 54
3.3.5 XC6200 FPGA Hardware Development Cycle 56

3.4 XC620ODS Configuration Topologies 57
3.4.1 Dynamic Prototype Environment 58
3.4.2 TMS320C40 Dynamic Coprocessor 59
3.4.3 TMS320C40 Routing Hub 60
3.4.4 Self-Configuration RTR Hardware 62

3.5 Summary 64

Chapter 4 XC6200 FPGA Hardware Investigation

4.1 XC6200 Design Verification 66

4.2 XC6200 Hardware Implementation 71
4.2.1 Addition Unit 71
4.2.2 Subtraction Unit 74
4.2.3 Division Unit 75
4.2.4 Multiplication Unit 79
4.2.5 Multiply Accumulate Unit 82
4.2.6 Ram Memory Structures 83
4.2.7 Run-Time Reconfiguration 86

4.3 Summary 90

Chapter 5 The Dynamic BinDCT Algorithm

5.1 The Discrete Cosine Transform 92
5.1.1 Transform Computation Methods 93
5.1.2 Chen's Fast DCT 95

5.2 The BinDCT 96

5.3 Dynamic BinDCT Investigation 103
5.3.1 Transform Characteristics 104
5.3.2 BinDCT Compression 107
5.3.3 Two-Dimensional Dynamic BinDCT Operation 112

5.4 Summary 116

ii

Chapter 6 Dynamic XC6264 BinDCT Coprocessor

6.1 Design Overview 118
6.1.1 TMS320C40 Coprocessor Management 120
6.1.2 Dynamic Configuration 121

6.2 XC6264 BinDCT Construction 121
6.2.1 BinDCT-C1: Stage One 124
6.2.2 BinDCT-C1: Stage Two 126
6.2.3 BinDCT-C1: Stage Three 128
6.2.4 BinDCT-C1: Stage Four 128
6.2.5 XC6264 BinDCT Hardware Characteristics 129

6.3 BinDCT Static Coprocessor Integration 131

6.4 Dynamic Coprocessor Development 135
6.4.1 Dynamic Coprocessor Control Mechanism 135
6.4.2 BinDCT Integration 137

6.5 XC6264 BinDCT Transform Characteristics 139
6.5.1 One-Dimensional XC6264 BinDCT Operation 139
6.6.2 Two Dimensional XC6264 BinDCT Operation 144

6.6 Summary 147

Chapter 7 XC6264 Dynamic Routing Hub

7.1 System Overview 149
7.1.1 Communication Port Interface 149
7.1.2 Transfer Management 151

7.2 Comport Transfer Mechanisms 152
7.2.1 FIFO Control Unit 152
7.2.2 Self-Arbitration Unit 153
7.2.3 Transfer Protocol Analysis 154

7.3 Static Routing Hub Development 156
7.3.1 Hub Construction 156
7.3.2 Hub Operating Characteristics 158

7.4 Dynamic Hub Topology 161
7.4.1 Configuration Mechanisms 161
7.4.2 Implementation Strategies 162

111

7.5 Routing-Hub Processing Elements 166
7.5.1 Roberts Cross Edge Detector 167
7.5.2 Roberts Operator Hardware Implementation 169
7.5.3 Roberts Operator Routing-Hub Integration 172

7.6 Summary 176

Chapter 8 Conclusions 178

Chapter 9 Recommendations for Future Research
9.1 Configurable Logic Technology 183
9.2 XC620ODS Operation 186
9.3 Application Development 187

References 189

Appendix
I Prof

I-1
1-2
I-3
I-V

; rammable Logic Device Technologies
Metal Fuse Technology I
Anti-Fuse Technology II
Floating-Gate Transistors III
SRAM V

II Configurable Computer Architecture
II-1 Transmogrifier-2 I
II-2 Morphosys i
II-3 Splash-2 V
II-4 DISC VII

III TMS320C40 and XC66200 Component Architectures
III-1 TMS320C40 DSP I
III-2 XC6200 FPGA IV

IV XC620ODS Hardware
N-1 Host Interface I
IV-2 FastMAP' Interface II
N-3 Hardware-bridge VI
IV-4 Self-Configuration Controller IX
IV-5 XC620ODS Signal Connectors XV

V Published Work and Awards

VI XC6264 CLC Design Footprints

VII Development System Images

iv

Symbols

ADDC Add integer with carry
ADDI Add integer
ADDI3 Add integer, 3 Operands
ALU Arithmetic Logic Unit
ANN Artificial Neural Network
ARAUs Auxiliary Register Arithmetic Units
ASA Applications Specific Architecture
ASIC Application Specific Integrated Circuit
C40 TMS320C40
CISA Custom Instruction-Set Architecture
CLB Configurable Logic Block
CLC Configurable Logic Cell
CORDIC Co-Ordinate Rotation Digital Computer
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
CTR Compile Time Reconfiguration
DCT Discrete Cosine Transform
DISC Dynamic Instruction-Set Computer
DMA Direct Memory Access
DPC Dynamically Programmable Cache
DPGA Dynamic Programmable Gate Array
DRAM Dynamic RAM
DSP Digital Signal Processor
EDIF Electronic Design Interchange Forma
EDRAM Enhanced DRAM
EEPROM Electrically Erasable Programmable Read Only Memory
EFPPA Embedded Field Programmable Processor Array
EPROM Erasable Programmable Read Only Memory
F+V Fixed Plus Variable
FBinDCT-C1 Forward BinDCT operation using Configuration C1
FBinDCT-C9 Forward BinDCT operation using Configuration C9
FDC Flip-flop Device with Clear
FDCP Flip-flop Device with Clear Preset
FDCT; Fast Discrete Cosine Algorithm
FDCT;; Forward DCT
FFT Fast Fourier Transform
FIFO First In First Out Register
FIPSOC Field Programmable System On a Chip
FPAA Field Programmable Analogue Array
FPGA Field Programmable Gate Array
FPID Field Programmable Interconnection Device
FSM Finite State Machine

V

FU Functional Unit
G 109
Gbytes 109 Bytes
GMICR Global Memory Interface Control Register
GUI Graphical User Interface
HDL Hardware Description Language
1/0 Input / Output
IC Integrated Circuit
IDC Internal Device Connector
IDROM IDentity ROM
IOB Input /Output Block
IRL Internet Reconfigurable Logic
ISA Industry Standard Architecture
ISP In-System Programming
JPEG Joint Photographic Experts Group
JTAG Joint Test Action Group
k 103
kbytes 103 Bytes
kbytes/sec 103 Bytes per Second
LHS Linear Hardware Space
LSH Logical Shift
LUT Look Up Table
M 106
Mbytes 106 Bytes
Mbytes/sec 106 Bytes per Second
MAC Multiply ACcumulate
MATRIX Multiple Alu Architecture with Reconfigurable Interconnect eXperiment
MIMD Multiple Instruction Multiple Data
MSB Most Significant Bit
MSE Mean Square Error
MOPS Millions of Operations per Second
MPYI Multiply Integer
MPYI3 Multiply Integer, 3 Operands
msec 10-3 Seconds
N+ Negative doped semiconductor material
nsec 10"9 Seconds
ops/sec One-dimensional transform operations per second
PAL Programmable Array Logic
PAU Port Arbitration Unit
PC Personal Computer
PCB Printed Circuit Board
PCI Peripheral Component Interface
PE Processing Element
PIA Programmable Interconnect Architecture
PLD Programmable Logic Device
PRISM Processor Reconfiguration through Instruction-Set Metamorphous

vi

PROM Programmable Read Only Memory
RACE Reconfigurable and Adaptive Computing Environment
RBinDCT-C1 Reverse BinDCT operation using Configuration Cl
RBinDCT-C9 Reverse BinDCT operation using Configuration C9
RC Reconfigurable Cell
RDCT Reverse Discrete Cosine Transform
RISC Reduced Instruction-Set Computer
RLC Reconfigurable Logic Coprocessor
ROM Read Only Memory
RPM Rapid Prototype for Multiprocessors
RPFD Read-Only Protected Flip-flop Device
RPTS Repeat Single
RPU Reconfigurable Processing Unit
RS Reconfigurable Supercomputer
RTR Run Time Reconfiguration
SIMD Single Instruction Multiple Data
SRAM Static Random Access Memory
SUBC Subtract Integer Conditionally
SUBI Subtract Integer
TM-2 Transmogifer-2 Prototype Environment
XC620ODS XC6200 Development System
XC6200ADS XC6200 Application Development Software
µsec 10"6 Seconds

vi'

Chapter 1: Introduction

Chapter 1

Introduction

The growth in complexity and application of image processing algorithms has been

reflected by demand for ever-greater computing power. The development of more

powerful processor architectures to satisfy this requirement itself encourages further

application diversity. This repetitive cycle has been dependant upon the continual

advancement of semiconductor technologies and construction of dedicated processing

architectures. Existing general-purpose computing solutions whilst rapidly advancing

still do not exhibit the necessary processing power required for many applications.

High-powered computing architectures have traditionally been constructed using two

fabrication methods. The first method requires the development of Application-Specific

Integrated Circuits (ASICs) to implement whole or part of the target algorithm directly

in hardware. This process incurred high devolvement costs but generated the most

efficient implementation, particularly for volume production, since the architecture was

designed to accelerate a specific task.

The second construction method used multiple commercial instruction-set based

processors operating concurrently. Within such architectures, individual processors

typically communicated using fixed interconnection topologies. In comparison to ASIC

construction, this method resulted in less efficient implementation of the application,

but with reduced development costs.

Though both construction techniques provided high performance computing compared

to general-purpose processing platforms, the flexibility and versatility of system

operation was impeded through the construction methods used. Application diversity of

the system was compromised to achieve high operand throughput. The computation of

non-target algorithms was therefore inefficient, if at all feasible.

1

Chanter 1: Introduction

To merge the versatility of a general purpose processing architecture with the high

performance of an application specific hardware, processor hardware must adapt and

accelerate each specific task. In existing fixed processing topologies, the ability to

optimise the architecture for each different application was restricted by the hardwired

nature of the processing and routing resources. If these components were reconfigured
for each application, the mapping efficiency, hence operand throughput would increase.

Through the development of programmable logic technology, the concept of high

performance multipurpose computing architectures has been realised. Such architectures

contain high performance processing resources within a common architecture that can
be adapted to accelerate different algorithmic structures.

Construction of custom computing machines using this technique has revealed new

operation taxonomies that can achieve ever more efficient hardware implementations.

Efficient hardware design increases system throughput whilst reducing power

consumption.

Many image-processing applications contain both primary and secondary processing

operations. Within existing high performance computing architectures, the

configuration of internal resources are fixed during the computation to accelerate the

primary function. In applications where multiple functions occur, system throughput

would be degraded by inefficient hardware implementations of the secondary functions.

One solution to this problem has been the continual development of larger

semiconductors, with logic capacities that enable all functions within an application to
be implemented efficiently. Eventually limitations within present-day semiconductor
fabrication techniques will be reached restricting the development of higher capacity
devices.

A different approach to increasing efficiency has been to examine the operating cycle of

an application and partition the resultant hardware design into time independent

2

Chapter 1: Introduction

segments. This concept is known as temporal partitioning. Each temporal partition

equates to a portion of the overall system operation accelerated through efficient
hardware implementation.

To compute an application individual temporal partitions are activated as demanded by

operational flow. Each successive partition reuses hardware resources that implemented

the previous active partition. This concept of reusing logic within sequential temporal

functions is known as spatial partitioning, and provides a hardware efficient approach

to implementing high-performance computing architectures.

The realisation of the full performance benefits that this technology can provide is not

yet apparent. Technological advances in programmable logic technology must occur

prior to acceptance of temporal and spatial design implementation techniques within

industrial applications. This interest however will only be generated through academia
developing applications in which performance benefits occur through dynamic

implementation. This is a symbiotic relationship since for the technology to mature
industrial acceptance is required.

The technological contribution made through the research presented in this thesis has

been the integration of dynamic hardware components within existing high performance

multiprocessor topologies. This has been conducted to determine how the operation of

each technology can be advanced, and to develop dynamic hardware applications.

The outcome of this work has been the development of dynamic coprocessor functions

and communication routing hub topologies within a multiprocessor environment. A

novel implementation of the BinDCT algorithm has also been developed. To conduct

this work an industry standard (TIM-40) DSP MIMD parallel processing architecture
has been upgraded, in conjunction with the development of a custom designed dynamic

hardware prototype environment (XC6200DS) and associated software tools

(XC6200ADS).

3

Chapter 1: Introduction

From the onset of the investigation, it was apparent that the operating characteristics of

the dynamic semiconductor technology available (Xilinx XC6200 FPGA family) were

inferior compared to existing hardwired technologies. The development of hardware

throughout the project has therefore addressed dynamic implementation techniques,

issues and operating concepts, rather than obtaining raw throughput. Newer emerging

devices, naturally faster and with more computing power are however not yet run-time

reconfigurable. This makes the Xilinx XC6200 family unique, and allowed real

hardware to be investigated whilst researching dynamically reconfigurable

architectures.

The thesis presented consists of nine chapters including this chapter, the Introduction.

To provide a knowledge base on which to digest the concepts explored within this

project, Chapter-2 introduces the concept, history and development of configurable

technology. The evolution of adaptive machine topologies and operating characteristics

are then introduced, with examples given. Prominent examples of each classification are

described, with more detail provided in Appendix-II. Chapter-2 concludes by describing

the present status of configurable logic technology, its limitations and future research

directions.

To investigate merging dynamic hardware within a parallel processing environment, a

XC6200 FPGA Development System (XC6200DS) was designed and constructed since

no suitable tool was commercially available. To manage XC620ODS operation, perform

in-circuit hardware verification and dynamic configuration data generation, a suite of

custom software tools known as XC6200 Application Development Software

(XC6200ADS) was constructed.

Chapter-3 describes the operation, construction, integration and configuration of both

the XC620ODS and TIM-40 systems. The aim of this chapter has been to provide the

reader within an insight into the function of XC6200ADS hardware development tools

and XC620ODS configuration modes used during the development of the dynamic

hardware applications presented later. Operational summaries of key components are

4

Chapter 1: Introduction

given with detailed explanations included within Appendix-III. Development cycles for

both the parallel processing and dynamic hardware environments are explained.

Prior to the construction of complex hardware structures, the operating and performance

characteristics of the XC620ODS had to be evaluated. This task is presented in Chapter-

4 and details the implementation of fundamental processing hardware within the

XC6200 FPGA. The suitability of each function for XC6200 hardware implementation

was assessed, including design techniques for temporal and spatial partitioning. The

implementation strategies devised in Chapter-4 were then applied during the

development of dynamic hardware applications within Chapter-6 and Chapter-7.

The development of a dynamic coprocessor configuration (Chapter-3) enabled the

construction of a novel method of Discreet Cosine Transform (DCT) computation using

the BinDCT algorithm. Chapter-5 describes the operation of this algorithm with respect

to the implementation of a traditional DCT and Chen's Fast DCT (FDCT) algorithm.
The chapter describes experiments conducted to determine the suitability of the

BinDCT for dynamic operation and how system operation was enhanced using run-time

reconfiguration for one and two-dimensional BinDCT transforms. Presented within
Chapter-5 are dynamic BinDCT software simulated results, which are compared against
XC6200 FPGA generated dynamic BinDCT hardware results in Chapter-6.

XC6200 FPGA implementations of dynamic BinDCT TMS320C40 DSP coprocessors

are described in Chapter-6. This discussion describes the initial static hardware

implementation methods used, incorporation of BinDCT hardware within the

XC620ODS coprocessor configuration, and the inclusion of a custom dynamic

configuration mechanism known as the self-configuration controller (described in

Section-3.4.4). Hardware results presented demonstrate the advantages temporally

partitioned hardware, reconfigured using dynamic configuration can provide.

The insertion of dynamic hardware within the TIM-40 communication topology has

permitted the investigation of a multiple-purpose routing hub. Chapter-7 describes how

5

Chapter 1: Introduction

the throughput of an existing multiprocessor architecture can be improved through

incorporation of this technology. This concept is further expanded on by combining the

computation of simple functions within the transfer of operands between system nodes.

Within Chapter-7, the implementation of a Roberts Cross Edge Detector is described, as

well as the construction and operation of the routing hub.

A summary of the content and specific conclusions for each task has been provided

within each chapter. Resulting conclusions for the research presented are described in

Chapter-8. Topics covered include the status of configurable technology and the

contributions to the research field this project has made. These contributions include

novel application development, and integration of dynamic hardware within

multiprocessor architectures.

From these conclusions, recommendations for further work have been determined.

These are described in Chapter-9. Improvements to the XC620ODS and XC6200ADS

are suggested as well as addressing dynamic hardware and in-circuit verification

strategies. Ideas for the integration of configurable hardware within commercial

products are also discussed.

6

Chapter 2: Reconfigurable Computing Technology

Chapter 2

Reconfigurable Computing Technology

Introduction

The aim of this chapter is to provide a sound knowledge base of reconfigurable

computing techniques, architecture classification, and applications. Section-2.1

introduces the basic concept of configurable computing, and details the advantages

gained. Section-2.2 builds on this with an example of the first configurable computing

system devised, and explains how configurable computing architectures evolved

through advances made in semiconductor technology.

Section-2.3 describes in detail the configuration mechanisms and performance issues of

existing configurable architectures. Section-2.4 discusses the classification of

configurable machine architecture and related taxonomies, with Section-2.5 describing

systems applications and operational characteristics of each type. Detailed overviews of

prominent architectures discussed are included in Appendix-II. Section-2.6 reviews

current research trends and the present status of the technology.

2.1 Configurable Computing Introduction

By their very nature image digital signal-processing algorithms are computationally
intensive. To achieve high operand throughput, inherent concurrent operations within a

task must be fully exploited. Until recently, high performance image-processing

applications could only be achieved through using dedicated custom computing

hardware known as application-specific architectures (ASAs), designed specifically to

accelerate and compute a given task. ASAs effectively mimic the structure of an

algorithm within hardware. This enables an ASA implementation to exhibit greater

throughput and efficiency when compared to a general-purpose processing architecture.

Traditionally, ASAs have been constructed using either application-specific integrated

circuits (ASICs) that implemented the whole or part of the target algorithm directly in

7

Chapter 2: Reconfieurable Comnutin2 Technolo

hardware [1], or by use of multiple specialised instruction-set based processors,

communicating via a fixed interconnection topology [2]. Though such implementations

provide high-performance solutions, the versatility of the system application was
limited when computing an algorithm of different structure, if at all feasible.

Application-specific architectures also suffered from high development costs compared

to commercial processing engines, since the architecture and composite components

were normally designed from scratch and constructed in small quantities. Historically

however, these were the only solution for many high-performance applications.

Image-processing functions can be classified as being local or global type operations.

Local operations consist of a large number of simple highly concurrent calculations

such as binary thresholds, which are most suited for computation using an array of fine-

grain processing elements (PEs). Global operations consist of fewer but more complex

functions, exhibiting less inherent concurrent operations. Typically these operators

consist of trigonometric mathematical functions, computed using CORDIC (Co-

Ordinate Rotation Digital Computer) [3] [4] based processing architectures. Within

CORDIC calculations, functions such as multiply and accumulates (MACs) occur.

Local operators are normally used for image pre-processing, whereas global functions

are used for extracting embedded information. Most image-processing applications

normally consist of both types of operation. To merge ASA performance with the

system flexibility of a general-purpose computing architecture, optimisation of the

processing architecture for each application was required. The adaptation of a

processing architecture during run-time, to accelerate each phase within an application,
is the key concept within reconfigurable computing. This is illustrated in Figure 2.1.

As computer applications continue to grow in complexity, the requirement for more

powerful processing architectures is ever present. This demand has been realised
through the development of processor architecture technology, and through advances in

semiconductor fabrication techniques that have enabled clock frequencies to increase.

Traditional processing architectures function using a fixed instruction-set, with the

8

Chapter 2: Reconfigurable Computing Technology

instructions providing limited concurrent execution. The efficiency with which such

architectures can utilise parallel operations occurring within an application is therefore

restricted. By increasing the clock frequency, the throughput of the architecture can be

improved but not the efficiency by which concurrent functions are exploited.
Alternative methods to achieve this are, inclusion of additional concurrent processing
hardware within the architecture, or through reorganising existing resources.

For efficient exploitation of parallelism within multiple tasks, a processing architecture

must be optimised through reconfiguration on demand. This area of processor

architecture research is relatively new, therefore both the hardware architectures, and

software development tools are still in their infancy, and require much more

investigation to stimulate further development.

Next phase of Next phase of
Application Application

Pre-processing of Extract detail Processes image
Image

6"
from image detail

Reconfigure Reconfigure

PE PE Architecture Architecture

MAC MAC
PE PE PE

Figure 2.1 Basis of Reconfigurable Computing

9

Chapter 2: Reconfigurable Computing Technology

2.2 Evolution Of Reconfigurable Computing

The ability to reorganize the structure of a processing architecture improves the task

diversity and operating characteristics of the system. The development of such operating
techniques however has been hindered through the unavailability of suitable
implementation fabrics. These limitations have imposed operating constraints upon such

architectures. The evolution of both configurable computing concepts and

programmable semiconductor technologies are therefore linked and continue to

influence each other.

2.2.1 The First Notion

G. Esterin of the University of California at Los Angeles proposed the first notion of

this idea in 1959 [5]. Esterin's concept was of a fixed plus-variable (F+V) computing

architecture that would provide high performance and application diversity. Figure 2.2

shows a block diagram of the F+V architecture. The design consisted of a fixed general-

purpose central processor unit (CPU) known as the F-Unit, tightly coupled to a

coprocessor (V-Unit) configured for each application. A supervisory control unit

governed interaction between the two units.

Esterin intended the V-Unit to be configured during system operation using electro-

mechanical relays, which selected and activated circuit cards comprising application

specific processing hardware. These circuit cards could also be manually replaced

whilst the processor was inactive. Functions such as vector arithmetic and hyperbolic

operations could be performed within this unit.

The limitations of early electronic technologies made it difficult to implement such

architectures. The concept of configurable computing technology has therefore only

become practically viable during the last fifteen years, through the introduction and
development of in-circuit programmable logic devices (PLDs), primarily Field

Programmable Gate Arrays (FPGAs). The subsequent technological development of

these devices and that of configurable computing techniques have influenced each other.

10

Chapter 2: Reconfigurable Computing Technology

Central L:: ý Local ý External I
Processor Memory Memory& 1/O F-Unit

Supervisory 11 Control &
Control Unit F+V Unit

Y

Interface

Special Local External
Purpose 14 Memory Memory & 1/0 V-Unit

Structures

Figure 2.2 Esterin's Fixed Plus Variable Computing Architecture

2.2.2 FPGA Technology Review

An FPGA is a silicon chip in which the user determines the function. In 1986 Xilinx

introduced the first FPGA (XC2000 family). FPGAs were developed because existing

programmable logic called complex programmable logic devices (CPLDs) could not

support the ever-increasing demand for greater on-chip logic capacity.

The fundamental problem within CPLD architectures was that the ratio of sequential

logic resources (flip-flops) compared to combinatorial logic (logic gates) was small and

insufficient for many tasks. With a typical CPLD such as the Vantis MACH 111 [6], this

ratio was one flip-flop to twelve product terms (two-input Boolean expression). This

limitation can be accredited to the underlying architecture of a CPLD, in which logic

functions were configured within multiple programmable array logic (PAL) units,

interconnected via a programmable interconnect architecture (PIA). The relation of

these components within a typical CPLD (MACH111) is shown in Figure 2.3. The

MACH111 consists of two PALs interconnected using a PIA. A MACH 111 PAL

consists of sixteen macro-cells, each cell containing a programmable AND, fixed OR

array matrix, and one flip-flop. Limited sequential logic resources within CPLD

11

Chapter 2: Reconfigurable Computing Technology

architectures therefore hindered the migration to fabricating complex processing

architectures within programmable devices.

.. 52 x 70 Input Programmable
Enlarged Macrocell AND, fixed OR Logic Array

Flip-flop

IO C
Exter
Pins

Switch Matrix
(PIA)

Figure 2.3 Simplified MACHI 11 CPLD Architecture

)Cell

The basic outline architecture of an FPGA is shown in Figure 2.4. The architecture

consists of an array of configurable logic blocks (CLBs), a programmable

interconnection matrix, and input/output blocks (IOBs) connected to external pins on the

chip carrier. Instead of using PALs, FPGA logic is implemented within CLBs. A basic

CLB implements combinatorial logic using multiplexers and look-up tables (LUTs), and

contains one or more flip-flop devices to implement sequential logic elements.

In Figure 2.4 the inputs to the CLB are noted as A, B, C, and Clock, with the output
labelled F. The gate capacity of a CLB is normally less than that of a CPLD PAL. For

example a CLB could implement up to three four-variable Boolean expressions [9]

compared to the PALs twelve product terms [6]. Designs implemented upon an FPGA

must be partitioned into a far greater number of logic elements than that implemented

upon a CPLD. FPGAs therefore require and indeed have far greater routing resources
than that of CPLDs.

12

PAL Structures Each
Containing 16 Macrocells

Chapter 2: Reconfigurable Computing Technology

Figure 2.4 Simple FPGA Architecture and Components

Traditional FPGA architecture can be divided into three main categories based upon the

granularity of the CLB and the complexity of the internal routing structure. They are

known as Sea-of-Gates, Row, and Symmetrical type architectures. CLB granularity was

a measure of the logic capacity configured within a device. Typical fine grain CLBs

implemented two-variable Boolean expressions and contained single flip-flops. In

comparison coarse grain CLBs typically implemented two four-variable expressions and

contained two flip-flops.

Sea-of-gate FPGA architectures consist of fine-grain CLBs interconnected via an

extensive local routing structure. If the CLB granularity is fine, a design has to be

partitioned into a greater number of simple logic blocks. This means that neighbouring

CLBs rely upon extensive local signal routing to share product results.

Row architectures consist of coarser CLBs, possessing local and global routing

resources. With a coarse-grain FPGA, the design is partitioned into fewer but more

complex logic blocks. CLBs would not require extensive local signal routing since the

number of product terms shared by neighbouring CLBs would be reduced. Instead they

require dedicated longer chip-wide routing resources to share product functions.

Symmetrical arrays have the coarsest CLB granularity and contain extensive chip-wide

routing resources. Within the FPGA architectures a trade-off exists between local

13

Interconnection Matrix

Chapter 2: Reconfigurable Computing Technology

routing capacity and CLB granularity.

Symmetrical arrays provide the best medium for implementing general-purpose designs,

whereas sea-of-gates and row architectures are more suited for the implementation of

DSP applications requiring large numbers of simple concurrent operations. Examples of

a sea of gate, row and symmetrical array type FPGAs are listed in [8], [9] and [7]

respectively.

FPGAs have also been classified as hierarchical PLD types [10]. It is the opinion of the

author however, that devices of this category are CPLD hierarchical architectures

incorporating aspects of FPGA technology.

Traditionally FPGAs functioned using static random accesses memory (SRAM)

programmable technology, whereas existing CPLDs incorporated floating-gate

technologies similar to that used in erasable programmable read only memory

(EPROM) and electrically EPROM (EEPROM) technology. SRAM has the advantage

over floating-gate technologies in that configuration times are reduced from seconds to

milliseconds. Data written to the FPGAs configuration SRAM determines the

configuration of the CLBs, IOBs, and programmable interconnection network. A

disadvantage of SRAM technology is that it is volatile and upon power-up, SRAM

based FPGAs must download configuration data from a external source (typically a

PROM).

FPGAs have also been developed using one-time programmable non-volatile

programmable technologies. The Act3-PCI FPGA [9] family manufactured by Actel is

an example of such a device, and incorporates anti-fuse instead of SRAM programming

technology. A comparison of PLD configuration technologies is detailed in Appendix-1.

The design process used in the development of an FPGA application is shown in Figure

2.5. The first stage of the process (1) requires generating the design entity using

hardware description languages (HDL) such as VHDL and Verilog, or by using

14

Chapter 2: Reconfigurable Computing Technology

schematic entry tools such as View Draw. The function of the design can be simulated

and verified using software design tools, which enables the development cycle of the

hardware to be conducted within software. The use of such tools allows errors be

detected and corrected (2) before programming a PROM. Once the design has been

proved correct the FPGAs configuration data can then be generated (3). This is then

programmed within a PROM (4) from which the FPGA downloads its configuration

data upon system power-up (5). The function of the FPGA can then be tested and

verified in-circuit using the FPGAs JTAG [79] interface (6) (if applicable).

(2)

1ý1
Design Simulation Generate FPGA Configuration
Entry And Configuration PROM
Tools Verification Data

(5)

---j

In Circuit Testing FPGA
And
Validation

Figure 2.5 FPGA Application Development Cycle

Until recently the concept of user-programmable ICs has been restricted to the domain

of synchronous digital logic. Motorola have developed a programmable analogue device

known as a field programmable analogue array (FPAA) [11], whilst I-Cube have

developed programmable switches known as field programmable interconnect devices

(FPIDs) [12]. These devices utilise SRAM programming technology and exhibit similar

configuration characteristics to traditional FPGAs.

Academic research groups have also developed FPGA type architectures for use in

asynchronous digital logic applications. An example of an asynchronous FPGA is

Montage [13]. Work has also been conducted to investigate the use of optical

configuration mechanisms in FPGAs, rather than SRAM to reduce configuration delays

[14]. The Virtual Wires project [15], has also addressed the issue of limited 1013

15

Chapter 2: Reconfigurable Computing Technology

bandwidth caused by inadequate chip carrier pin resources through multiplexing

multiple signals upon each pin.

2.2.1 First Generation Machines (circa 1987-1993)

FPGAs were initially developed for use as reusable prototype devices to reduce

development costs of digital hardware. Through continual improvements in FPGA

technology, it became evident that larger capacity FPGAs (e. g. Xilinx XC3000 family

1987, logic capacity 1000-6000 gates) [16]) could be used as alternatives to hardwired

ICs within the final design. First generation configurable computers reflected this

concept, and can be considered as ASAs implemented within programmable logic rather

than hardwired semiconductor technology.

Enable-1 [17], DECPeRLE-l [18] and Ganglion [19] are first generation configurable

computers. Enable-I's architecture was fixed and optimised to perform a specific

pattern recognition task, whereas Ganglion was designed to implement an artificial

neural network (ANN) connection classifier. Although Ganglion was design as an ASA,

components within the architecture could be reconfigured to implement specific

weights, bias values and scaling parameters rather than use generic values for each

application.

DECPeRLE-1 can also be considered first generation architecture, although not for the

same reasons as Ganglion or Enable++. DECPeRLE-1 design was more generalised

than an ASA and allowed greater adaptation of system architecture, hence facilitated

broader application diversity. Applications including cryptography, stereovision, and

neural networks highlighted the potential benefits configurable computing could offer.

16

Chapter 2: Reconfigurable Computing Technology

2.2.4 Second Generation Machines (circa 1993-1996)

As FPGA technology developed, the capacity, structure and performance of devices

improved enabling the concept of configurable computing to evolve. For example the

Xilinx XC4000XL [9] and Altera Flex 10K [10] series had gate capacities of up to

180,000 and 250,000 gates respectively. Through the development and evaluation of

first generation architectures, coupled with the enhanced FPGAs architecture, four

distinct types of configurable architectures began to emerge. These were Prototype

Environments, Configurable Supercomputers, Configurable Coprocessors, and

Configurable Instruction-Set architectures.

During system prototyping, a single FPGA could only support a limited volume of

logic. By coupling multiple FPGAs together more complex designs could be

implemented. To facilitate prototyping, such architectures were designed for flexibility

and not high performance. Examples of this type of architecture were Transmogrifier-1

[20] and Springbok [21]. Transmogrifier-1 could be used to directly implement ASIC

logic designs of up to 40,000 gates. Springbok however used configurable logic to

provide signal routing between hardwired ICs implementing the prototype design. A

further example was the Rapid Prototype engine for Multiprocessors (RPM) [22],

designed specifically to emulate MIMD processor architectures.

Configurable supercomputers emerged that provided the high performance of an ASA,

with the versatility of a general-purpose architecture. This was possible through the

sheer scale of their configurable resources (typically hundreds of thousands of gates).

The most prominent examples of such architectures were the Virtual Computer [23] and

Splash-2 [24]. Both machines could be configured and optimised for different tasks,

therefore exploiting the concurrent properties of each algorithm implemented.

Traditional instruction-set architectures also incorporated reconfigurable hardware

through using FPGA based coprocessors. Examples of such architectures were Garp

[25] and Harp [26]. Garp consisting of a processor and configurable array tightly

17

Chapter 2: Reconfigurable Computing Technology

coupled upon a custom silicon die, whereas Harp consisted of a Transputer and

commercial FPGA. In both architectures, application computation was partitioned

between the two processing resources. The coprocessor performed instructions

implemented inefficiently or not present within the main processor. This feature allowed

optimization of a common architecture to accelerate different applications.

A different concept developed instruction-set architectures, where only the instructions

actually used during the computation were configured. Early examples of this type of

architecture were PRISM [27] and the Nano Processor [28]. Both devices functioned

using fixed processing-core skeletons upon which optimal instruction-sets were

configured.

2.2.5 Virtual Hardware

The development of FPGA technology was continuous, however the limited logic

capacities of devices still restricted application development. Such limitations were

more apparent in coprocessor and configurable instruction-set architectures as they

contained far fewer reconfigurable logic resources, which restricted the number of

custom instructions implemented concurrently.

The serial nature of instruction-set micro-coded operation implied that a small portion

of the instruction-set would be active at any given moment. Logic resources

implementing inactive instructions could therefore be reconfigured with active

instructions. This feature provided virtual instruction-set capacity and virtual hardware

capabilities [29].

The operation of virtual hardware can be compared to virtual memory within modern

computers. Virtual memory implies that a computer possesses more memory than

physically present in the system. Swapping data from the hard-drive to the physical

memory only when required in the computation, and then transferring it back to hard-

drive when inactive achieves this. In virtual hardware, instead of data being transferred

18

Chapter 2: Reconfigurable Computing Technology

to and from memory, hardware configurations resident in a configuration store are

swapped to and from a device during system operation. Therefore the device appears to

exhibit greater hardware capacity than physically present. This idea is illustrated in

Figure 2.6. The principal of virtual hardware has also been labelled Multiple Context

Configuration [30] and Cache Logic [31].

Download
Configuration
Stream Phase 1
To FPGA

Configuration I
pp,

FPGA

Configuration 2
Download ('onIieuration
Stream to PP(. A

FPGA Resources
Re-used by Next
Configuration

1 Phase 2

FPGA

Reconfigure FPGA
Phase `n'

I Configuration `n' I
Download Configuration Stream to I PGA FPGA

ýý>-
I

Configuration Store Operational Phases of Single FPGA

Figure 2.6 Concept of Virtual Hardware

To incorporate virtual hardware an FPGA's configuration must be updated concurrent

to system operation. This was impractical with existing FPGAs such as Xilinx XC4000

family configured prior to start-up, therefore a new generation of FPGA devices both

custom and commercial were developed. These new FPGA architectures reflected the

change in FPGA applications from implementing static hardware, to use in configurable

computing applications.

19

Chapter 2: Reconfigurable Computing Technology

2.2.5 Dynamic FPGA Technology

Within traditional FPGA architectures the design emphasis placed upon the

configuration mechanism was to minimise the number of chip-carrier pins used during

the configuration process. In early FPGAs, configuration data was downloaded in a

serial fashion, with later devices incorporated parallel interfaces. With both types of

interface however, FPGA internal configuration memory was accessed in a shift-register

type fashion. Therefore FPGA CLBs had to be configured together in one operation,

and could not be individually configured. This configuration processes was device

dependant and took in the region of 20-40msec.

In applications where the FPGAs configuration remained static, the configuration delay

would only occur once on power-up. In applications where virtual hardware techniques

were used, any increase in speed gained through using reconfiguration was eradicated

due to the configuration delay. This figure could be several orders of magnitude greater

than the operational clock frequency of the device (typically in the region of 20MHz to

80MHz, giving cycle times of 50nsec tol2.5nsec).

To develop virtual hardware technology, more suitable semiconductors were required.

The device configuration delay had to be reduced, and the granularity of the

configurable logic cells structure improved. Since none were commercial available,

academic research groups began to develop their own configurable computing

architectures such as Matrix [33] and the DPGA (Dynamically Programmable Gate

Array) [34].

Matrix (Multiple ALU Architecture with Reconfigurable Interconnect eXperiment)

addressed the problem of inefficient CLBs. Matrix contained coarse-grained

configurable units that could implement high-level operations such as multiplication,

rather than simple Boolean expressions. The DPGA architecture primarily addressed the

concept of virtual hardware. The DPGA could be reconfigured in one clock cycle

(9nsec) by switching between configurations stored in a four-deep multiple context

20

Chapter 2: Reconfigurable Computing Technology

configuration memory. Villasenor and Hutchings [35] however, indicated that the first

research into multiplexing FPGA configurations was actually conducted by Xilinx in

1991, but remained the intellectual property of Xilinx until publication in 1997 [36].

In 1995 Xilinx introduced the XC6200 family of FPGAs [32] (formally Algotronix

CAL series). These devices were designed specifically for use in configurable

computing applications, and incorporated partial and dynamic configuration. Partial

configuration enabled only specific areas of the FPGA to be configured. The advantage

of this technique was the volume of configuration data required to reconfigure the

FPGA was kept to a minimum. This reduced the configuration delay, which was

proportional to the volume of configuration data.

Dynamic configuration was the ability to partially configure an FPGA without halting

the operation of unaffected areas of the device. Within the XC6200 architecture partial

and dynamic configuration was made possible through a parallel interface known as the

FastMapTM illustrated in Figure 2.7. Configuration data was written during run-time

using the address and data-buses. The address was interpreted by the FastMap' M

interface as a pointer to the row and column location of a resource within the

Configurable Logic Cell (CLC) array; CLC was the term given to XC6200 equivalent of

traditional FPGA CLBs. The new configuration was then written from the data-bus to

the configuration memory. This architecture is discussed in greater detail in Appenclix-

III.

The XC6200 architecture provided a structure to implement virtual hardware. The

configuration mechanism employed was not ideal since the configuration delay was

proportional to the volume of configuration data (approximately 30nsec per CLC). In

comparison, the DPGA could be totally reconfigured in 9nsec by switching between

memory contexts.

Unlike the XC6200 the DPGA did not support partial configuration. The capacity of the

DPGAs context memory restricted the number of configurations to four [30]. In

21

Chapter 2: Reconfigurable Computing Technology

comparison the XC6200 could support an unlimited number of configurations using

partial configuration techniques. For the work presented in this thesis, XC6200 devices

have been used for the dynamically reconfigurable elements, as they were the only

suitable devices commercially available at the time.

('L(' Array

External
Interface
Buses

Past MAP
Interface

Figure 2.7 XC6200 FPGA FastMap"" Interface

Further prototype FPGAs developed were Atmel AT6000 family [31] and the National

Semiconductor CLAy FPGA series [37]. All three devices were intended to be

commercial products but only ever produced in small quantities, with restricted

availability.

This can be attributed to the reluctance by industry to implement run-time adaptive

architectures. Experiences gained through the development of the XC6200 architecture

however, have been reflected within Xilinx Virtex family of FPGAs [38], their current

flagship devices.

2.2.6 Third Generation Machines (circa 1996 present date)

The introduction of the XC6200 family as well as the Atmel and National

Semiconductor dynamic FPGAs fuelled further research into configurable computing

techniques. Primarily, these advances were based upon the incorporation of virtual

hardware within existing computing architectures. Examples of such architectures were

22

Chapter 2: Reconfigurable Computing Technology

Hades [39], Chimaera [40], Space-2 [41], DISC [42], and Morphosys [43].

Hades was an example of a dynamic coprocessor. This project involved coupling a

Xilinx XC6200 FPGA to a custom instruction-set processing architecture. A further

outcome of this project was the development of a suite of design tools for dynamic

applications [44]. Similarly, Morphosys and Chimaera reconfigurable functional units

were examples of merging a tightly coupled run-time configurable coprocessor with an

instruction-set processing architecture upon a common silicon die.

DISC (Dynamic Instruction Set Computer) was the successor to the Nano Processor,

and could now replace inactive instructions with active instructions during run-time,

therefore exhibiting a virtual instruction-set capacity. SPACE-2 was an example of an

ASA developed to analyse road-traffic patterns, and used dynamic configuration within

its operation to speed-up system throughput.

2.2.8 Commercial Machines

The transfer of configurable technology from academia to industry has recently become

apparent at system, programmable fabric, and development tool levels. At system level

Triscend developed the first instruction-set processor incorporating a user-defined

instruction-set, configured and optimised for each individual application [45]. Star

Bridge Systems have also developed a dynamic configurable processing architecture

called HAL-300GRWI [46]. When first introduced in 1998, for certain applications

HAL-300GRWI could exceed the performance of the most powerful computer at the

time, IBM's Pacific Blue.

Recently, the prospect of commercially available processor cores coupled to

reconfigurable logic has become apparent. Xilinx and IBM have announced that they

are working together to couple a PowerPC processor with a Virtex FPGA [47], whilst

Altera are integrating ARM and MIPS processor architectures within its FLEX family

of FPGAs. This new device will be known as Excalibur [48].

23

Chapter 2: Reconfigurable Computing Technology

Commercial reconfigurable application development software is also under

development. At Synopsys there is a project to determine the best method of including

reconfigurable logic within their existing design flow tools. Celoxica (formally

Embedded Solutions) have also developed software tools that can generate either

configuration data for an FPGA implementation or binary code for a microprocessor

using an initial HDL Handel-C design [61].

2.3 Configurable Computing Performance

Existing configurable computing architectures vary extensively. To evaluate and

classify configurable computing machines, the operational characteristics of the

programmable logic used, system configuration mechanics and granularity of

configuration used must be assessed.

Configurable computing architectures can be divided into two categories based upon

their configuration techniques. These categories are known as Compile-Time

Reconfiguration (CTR) and Run-Time Reconfiguration (RTR) [49].

2.3.1 Compile-Time Reconfiguration

Compile-time reconfiguration was the first configuration mechanism developed. The

name of this technique reflects the limitation caused through using first generation

FPGA devices in constructing dynamic systems. FPGAs of this era had to be configured

as a whole unit, independent of the proportion of the design requiring updating. This

limitation forced the processing architecture to appear fixed during system operation,

hence only supporting a single configuration (single context).

Initially this method of configuration did not introduce any performance limitations.

Early configurable computing machines were designed to provide high performance

processing platforms, optimised for different algorithmic structures on a task-by-task

basis. For each individual task, the system configuration would be determined and

downloaded prior to execution of the task. Since the configuration remained static

24

Chapter 2: Reconfigurable Computing Technology

during system run-time, the initial configuration delay encountered would not affect

overall system performance. This concept shown in Figure 2.8 was true for most early

configurable computer architectures.

Pt

FPGA FPGA

PROM PROM Td 0110101

System Initialisation (i) System Run-time (ii)

Figure 2.8 Simple CTR System Operation

Figure 2.8 illustrates how configuration data is downloaded (i) prior to system operation

(ii). The configuration is single context therefore this delay occurs once (Try. To

evaluate the performance of such systems, only the processing time (Pt) needs to be

considered. The configuration delay (T(I) can be disregarded as device power-up and

initialisation delay, which are commonplace within electronic systems.

The limited gate capacity of early FPGA technology depicted the complexity of

processing hardware developed. To construct larger designs, the required architecture

could be partitioned into multiple configurations (temporal partitioning). This required

analysing the design to determine at any given phase during system operation which

hardware resources were active, and which were inactive. By swapping inactive with

active logic, a design requiring a higher gate capacity than was physically present could

be implemented. To achieve this system operation would be suspended whilst new

configuration data was downloaded.

The CTR configuration mechanism constrained the functionality and ability of the

architecture to be adapted efficiently during system run-time. Configuration delays

incurred, therefore reduced any speed-up. This limitation was applicable to second-

generation configurable machines and is illustrated in Figure 2.9.

25

Chapter 2: Reconfigurable Computing Technology

Temporary
Operand
Store

/'t
Ts�

FPGA FPGA FPGA FPGA

01011 ooiio

C� Tcl C�
.1

17"1

PROM PROM

Configuration C,

Temporary
Operand
Store

Ts,

FPGA

Pt/

FPGA

Configuration C�+,

Figure 2.9 Multiple CTR System Operation

Figure 2.9 illustrates a multiple context temporally partitioned CTR design. Upon

power-up the first configuration (C,) was downloaded generating a configuration delay

(Td). This initial delay can be ignored and attributed to system initialisation. Process C�

takes time Pt� to complete. Before the next configuration can be downloaded,

data required by C�+, and present in the C, must be stored temporarily. This function

takes time Ts,,, and must be completed before the next configuration can be

downloaded.

When the FPGA is reconfigured, its content is overwritten hence intermediate data is

erased. The configuration delay incurred is still Td since the device must be configured

as a whole unit, independent upon the percentage of the architecture required updating.

Before system operation recommences, operand data stored locally must be retrieved

introducing a further delay of Ts,,. Configuration C'�+i commences, and is completed in

time Pt�+1. The cycle is then ready to be repeated. Ignoring the initial configuration
delay, the total processing time (Ptot) for 'ri' configurations can be determined using
Equation 2.1.

26

Chapter 2: Reconfigurable Computing Technology

n-I

Ptot =Pty + Pt� + Td +2 Ts�

Equation 2.1 CTR Processing Time

Considering the configuration delay (Td) would in the region of 20-40msec and both Ts�

and Pt� in µsec or nsec, overall system performance was severely limited. Advances in

custom and commercial FPGA technology based have helped to reduce this problem.

2.3.2 Run-Time Reconfiguration

Configurable computing architectures adaptable during system run-time are known as

Run-Time Reconfigurable (RTR) architectures. Within the configurable computing

research community, there is great debate concerning what actually constitutes a RTR

system. It has been argued that configuration overheads alone should determine whether

or not a system is RTR. Typically, such systems must therefore be reconfigured within a

couple of clock cycles at normal operating frequencies. This notion represents the ideal

characteristics for an RTR system.

It is also argued that the action of partially updating a design without halting the

remainder of the systems operation deems it to be RTR compatible. This is the opinion

of the author. Using this approach, RTR can be implemented using partial and dynamic

configuration. However system performance will be reduced through the configuration

delay generated using partial reconfiguration. This reduction in performance will only

be apparent if system throughput stalls whilst waiting for hardware currently being

reconfigured. Within the research community, the function of RTR has also been

referred to as multiple-context switching, adaptive logic and virtual hardware.

To perform RTR, the configuration data must be refreshed. Configuration data can

either be located in an externally memory or on-chip, as illustrated in Figures 2.10 and

2.11 respectively.

27

Chapter 2: Reconfigurable Computing Technology

Method-one (Figure 2.10) requires an external configuration store containing multiple

configurations (PROM). When requested by the system, a new configuration is

downloaded. The transfer of data introduces a configuration delay caused by the

interface bandwidth bottleneck between the reconfigurable device and PROM. The

configuration delay is a product of the configuration interface bandwidth and the

volume of configuration data. Removal of this bottleneck reduces the configuration

delay and increases system performance.

FPGA

1
Percentage of FPGA Possible Percentage of FPGA
Being Configured Active During Configuration

Cn

Trl�

PROM

100%

Required Volume of
Configuration Data

Figure 2.10 External Configuration Mechanism

t,,, ,

PROM

40%

Through using partial configuration the volume of configuration data is reduced.

Reconfiguration however, cannot occur in one concurrent operation since configuration

data is stored off-chip.

Using partial configuration, the configuration delay (T(I�) is proportional to the

percentage of the device being reconfigured. During this delay, unaffected regions of

the architecture can still function normally therefore exhibiting the architecture's RTR

capabilities.

28

Chapter 2: Reconfigurable Computing Technology

To calculate the performance of the architecture, the configuration delay between each

partial configuration update (Td�+r) needs to be compared against the current active

processing time (Pt�). The greater of the two delays (Tdp�) defines the overall delay of a

particular configuration (C�). Ignoring the initial configuration delay Td,, system

performance can be calculated using Equation 2.2.

M-1 Tdpn=Ptný1'tý >Td+, Prot = Pt. +1 Tdp.,, Td p. Td n+IiPtn <Td,, +i
0

Equation 2.2 RTR Processing Time

Method-two depicted in Figure 2.11 performs RTR through storing system
configurations within a local multiple-context configuration memory. During system
initialisation each context of the configuration memory was loaded with a different

configuration. This data was written in one concurrent operation during RTR, hence the

configuration delay minimised.

Configuration 01 Configuration 1

Pto ri Ph

00 ID-
D-

Td { Td

Context 0 Context 0

Context 1 Context 1

-r---- --- ---r? Configuration 2 Memory l

if

Td
I

Context 3 Context 3

Context 4 Context 4

Context 2II Context 2II Context 51I Context 5

I\ Ti t

Multiple Contexts Configurable
External
PROM FPGA Device Configuration Memory Logic Resource

Figure 2.11 Internal Multiple Context Configuration Mechanism

The depth of the context memory limits the number of RTR configurations. This

memory takes up large areas of the silicon chip therefore reducing the logic capacity of

29

Chapter 2: Reconfigurable Computing Technolo

the device.

This initialisation period (Ti) of multiple-context operation can be disregarded when

calculating system performance, unless configuration memory download occurs again
during run-time. This is only required if the total number of configurations required

exceeds the capacity of the on-chip configuration memory.

If a configuration does not reside in the local configuration memory, it must be written
from an external source. The total configuration delay would therefore be equal to the

combined delays of Td and Ti, effectively halting RTR. However excluding Ti, RTR is

achieved during normal operation since the configuration can be updated at system

clock speeds.

Selecting a memory context reconfigures the device in one concurrent operation. This

introduces a configuration delay (Td) that is constant for every context switch and far

less than the equivalent off-chip configuration store delay.

2.4 Architecture Classification

The classification of configurable processing architectures using traditional topologies

such as Flynn's [50] is inaccurate. In a reconfigurable architecture, the active

configuration may exhibit properties related to that of Flynn's machine classification.

This relationship however is only based upon the properties of the hardware

configuration downloaded, and does not actually describe the underlying architecture of

the system. Further inaccuracies are introduced due to the run-time adaptive nature of

the configurable computing architectures. Therefore to derive a general taxonomy that

encases configurable computing architectures, the type and application of architecture,

configuration mechanism, and granularity of configuration must be addressed.

Section-2.2 illustrated that configurable processing architectures could differ

considerably. To classify and compare the performance of configurable architectures

30

Chapter 2: Reconfigurable Computing Technology

Owas difficult due to differences in the configuration mechanism, granularity of

configuration and system resources.

The first taxonomy proposed by Guccione was based upon the logic capacity of the

configurable resources and the availability of local memory, and divided configurable

processing architectures into four major categories [51]. These were Application

Specific Architectures (ASA), Reconfigurable Logic Coprocessor (RLC), Custom

Instruction-Set Architectures (CISA), and Reconfigurable Super Computers (RS).

Within this taxonomy, the configurable resources are collectively known as the

Reconfigurable Processing Unit (RPU). The relationship between local memory and
RPU capacity is shown in Table 2.1.

No local memory Local memory
Small RPU CISA RLC

Large RPU ASA RS

Table 2.1 Guccione's Reconfigurable Computer Taxonomy

In this taxonomy, the names given to each category did reflect specific types of system.

Overall however, it was too generalised and did not take into account the configuration

mechanisms used nor the granularity of configuration. These characteristics, the RPU

logic capacity, and memory structure were essential to accurately classify architecture

types Classifications of real working systems are given in Section-2.5, according to

these criteria.

The difficulties encountered in constructing a suitable taxonomy were also highlighted

when trying to compare the relative performance of two different configurable

computing architectures. DeHon proposed a method for comparing the performances of

configurable architectures and instruction-set processors [52]. The basis of this method

was to determine whether an architecture achieved superior performance through the

use of RTR, or simply because the computation was implemented within greater logic

resources. DeHon compares two architectures by using three factors area, time, and

energy.

31

Chapter 2: Reconfigurable Computing Technology

An architectures area was determined through calculating the volume of configurable

logic, memory resources, and hardwired logic (if applicable) implementing the design.

To provide a comparison with other semiconductor technologies, the transistor sizing

parameter lambda (?) was considered. Lambda determines the size and separation of

transistors upon a silicon die, hence the area of silicon used by an application could be

determined.

The second factor (time) was determined by considering the duration of an application,

rather than comparison of device clock frequencies. Within different systems, the

amount of work conducted per clock cycle was not uniform. Using this analysis, the

operand throughput could also be used to calculate this factor.

The third factor considered the quantity of energy used to perform the computation.

This was a valid factor when the power consumption of a design needed to be assessed.

When determining the faster of two systems however, it was of minor relevance.

The characteristics of each type of computer listed in this taxonomy and others are

discussed in Section-2.5. The determination and interpretation of architecture

characteristics to be used in the development of a universal classification system for

reconfigurable computers is a highly debated topic within the research community, with

no clear answers so far commonly accepted.

2.5 Configurable Computing Applications

By analysing system operation and application, existing configurable computing

architectures can be divided into five dominant types. Using the taxonomy names

detailed in Section-2.4 as they describe each functional class best but with a refined

classification, these categories are:
(1) Application Specific Architectures

(2) Prototype Environments

(3) Reconfigurable Logic Coprocessor

32

Chapter 2: Reconfigurable Computing Technology

(4) Reconfigurable Supercomputers

(5) Custom Instruction-set Architectures

2.5.1 Application Specific Architectures

Most early configurable computers were designed to accelerate specific applications and

could be considered as traditional ASAs except the design had been implemented using

configurable logic rather than hardwire ICs. In later ASA's, the processing architecture

was designed to include reconfiguration within normal operation. This was to ensure

that if the structure of the target algorithm evolved during run-time (e. g. evolutionary

algorithms), the processing architecture could adapt and accommodate this.

It was possible to adapt ASAs to compute other functions, however system performance

would degrade as the interconnection of system components such as hardware

resources, local and shared memories were typically fixed and optimised to compute the

original application.

An example of an ASA was Ganglion [19]. Ganglion was developed at IBM's research
division, San Jose, USA in 1991. The aim of the project was to develop high

performance processor architectures with reduced development cycles, to implement

connection classifier artificial neural networks (ANNs).

2.5.2 Prototype Environments

Configurable architectures have been designed to facilitate the development of
hardwired ICs [20], multiprocessor and DSP architectures [22], RTR application
development and hardware-software co-design [53]. To facilitate wide ranging

applications such as these, three distinct type of prototype environment exist. These are

massive-scale CTR systems (millions of gates), small-scale CTR systems and small-

scale RTR systems (thousands of gates).

33

Chapter 2: Reconfigurable Computing Technology

2.5.2.1 Massive-Scale CTR Prototyping Environments

Within massive-scale CTR prototyping environments, multiple FPGA devices connect

together forming an array and interact through dedicated fixed routing resources or

FPIDs. Prototype systems of this type have limited or no local memory resources. A

prominent example of this type of architecture was Transmogrifier-2 (TM-2)

prototyping system [78], with an architectural description provided in Appendix-II. TM-

2 contained logic resources to implement designs with up to 1,000,000 gates.

2.5.2.2 Small-Scale CTR Prototyping Environments

The second types of prototype environment were small-scale CTR systems, typically

consisting of one to three FPGA devices coupled to a host microprocessor. In this type

of architecture, the FPGA and microprocessor accessed a shared memory resource.

During system operation, the microprocessor provided additional prototyping resources

through interaction with those configured upon the FPGA(s). The combined processing

resources were loosely coupled, since their interaction was redefined for each

application. Systems of this type were used for the partitioning of hardware-software

co-design. An example of this type of system was Harp [26].

2.5.2.3 Small Scale RTR Prototyping Environments

The third type of prototype environment was small-scale RTR systems. The architecture

and function of these systems can be considered similar to that of the small-scale CTR

systems, except that now RTR is used. An example was RACE (Reconfigurable and

Adaptive Computing Environment) developed at the University of Cincinnati [53],

supporting up to 52,000 logic gates.

Common to all system types, the configuration of each programmable device was

determined using development software that partitioned a design amongst the available

resources. Individual configurations were then downloaded to each device via the host

computer. The prototype hardware implemented could then be evaluated with software

techniques or by traditional hands-on approach (e. g. using an oscilloscope).

34

Chapter 2: Reconfigurable Computing Technology

2.5.3 Reconfigurable Logic Coprocessors

Configurable coprocessor architectures have been designed to accelerate applications by

combining the processing resources of an instruction-set based processor and a CTR or

RTR device. Partitioning the computational overheads upon two processing fabrics

increases the throughput of an application. This is achieved through implementing

portions of the process that can be executed faster on the configurable logic than on the

main processor.

Configurable coprocessors have been fabricated using custom and commercial devices,

with both possessing the same underlying architecture. The architecture of a typical

configurable coprocessor is similar to that of a small-scale prototype environment. Both

devices can access shared memory, but unlike the prototype environment, the

coprocessor system instruction-set and configurable hardware resource are tightly

coupled. Since the operation of the coprocessor is highly integrated with that of the

primary processor, a high bandwidth communication interface is required between

them.

The first example of this type of architecture was PRISM [27]. PRISM was an acronym

for `Processor Reconfiguration through Instruction-set Metamorphous' and was

developed in 1992. Other examples include GARP [25] and Morphosys [43], with the

Morphosys architecture being described in detail in Appendix-II.

2.5.4 Reconfigurable Supercomputers

Configurable supercomputers are massive-scale configurable architectures designed to

accelerate applications by exploiting concurrent properties of a task directly in

hardware. The underlying components of a reconfigurable supercomputer are similar to

that of massive-scale prototyping environments, with application implementation being

partitioned amongst a large number of interconnected FPGA devices (typically tens of
FPGAs).

35

Chapter 2: Reconfigurable Computing Technology

Within supercomputers a dedicated FPGA interconnection topology exists to minimise

communication bottlenecks. Typically FPGA devices can access shared global and

private local memory resources. Due to the sheer size of these architectures, complex

application development software is required to efficiently partition the design upon the

available resources. Prominent examples of configurable supercomputers were the

Virtual Computer [23] and Splash-2 [24]. Splash-2 system architecture and operation is

described in Appendix-Il.

2.5.5 Configurable Instruction-Set Architectures

Configurable instruction-set computing is the ability to reconfigure a hardware resource

with custom instructions during run-time, therefore exhibiting a virtual instruction-set.

Configurable instruction-set computers could be considered as configurable coprocessor

systems since both implement instructions within reusable hardware. However,

configurable instruction-set machines do not contain a primary processor, but instead

have only a skeleton architecture that is responsible for instigating the configuration of
instructions as demanded by program flow. Once instructions have been used, they are

removed and the hardware resources become available to implement new instructions,

typically using RTR techniques.

An early example of a configurable instruction-set processing architecture was the Nano

Processor developed 1994 [28]. The Nano Processor consisted of a fixed processing

core, and a custom instruction-set compiled for a given task. Evolutions of the Nano

processor were DISC and DISC-2 [42]. DISC and DISC-2 could configure instructions

as demanded by the core processor during run-time. DISC's operation is described in

detail in Appendix-II.

36

Chapter 2: Reconfigurable Computing Technology

2.6 Summary

The configurable computing systems described represent a cross section of the current

status of this technology. Configurable computing technology is constantly evolving

with development tools, reconfigurable media, system architecture, and application
development continually improving.

To develop more suitable configurable media, the granularity of configuration, speed of

configuration, and overall control structure governing virtual hardware instigation must

be addressed. The Kress Array project [54] is currently investigating the granularity of

reconfigurable structures and the methodologies by which they can be reconfigured.

This work has shown that coarse-grain CLBs implementing specific functions rather

than product terms are most suitable for configurable computing applications.

Research is also being conducted to develop optically reconfigurable FPGAs configured

using spatially modulated structured light [14] through an optical fibre interface. Since

light is being used, the configuration delay of the device is dependent primarily upon

the operational speed of the photo-electronic configuration cells. Compared to SRAM

RTR technologies, optical reconfiguration should reduce configuration delays through

the increase in configuration data transfer rate, and response times of photo-electronic

cells compared to SRAM. This technology however is still in its infancy and as of yet,

the author does not know of any functional device.

Developments in reconfigurable technology have provided a platform upon which the

integration of traditional processing architectures and configurable computing concepts

can evolve. An example of such is the Dynamically Programmable Cache (DPC)

project [55]. This aims to reduce configuration overheads through integrating

configurable hardware within the cache memory architecture of an instruction-set

processor. The cache appears to the processor during run-time as either dedicated cache

or a tightly coupled coprocessor.

37

Chapter 2: Reconfigurable Computing Technolo

A further example has been the development of a commercial FIPSOCTm (Field

Programmable System On a Chip) by SIDSA [56]. This architecture combines a low

power microprocessor core, dynamic programmable logic, and dedicated

communication interface together specifically for use in multiprocessor applications.

In most applications, configurable logic has been primarily used to implement

processing hardware. However, in the RENNS computer system, configurable logic has

been used to implement an interconnection topology optimised for each task [57].

Another example ARMEN [58] consisted of a MIMD architecture incorporating FPGAs

configured for each task to provide additional processing and inter-node routing

resource.

An aspect of the research work presented in this thesis advances this idea by

incorporating dynamic configurable media in a custom MIMD architecture. Similar to

ARMEN each MIMD processing node has a coprocessor, but distinct from previous

systems, each processing node can exploit virtual hardware capabilities. Within this

thesis, a dynamic routing hub is presented that can be configured during run-time with

additional processing resources, which is a novel concept.

Development tools and design verification methodologies also need to be improved. In

comparison to commercial software tools used in developing traditional FPGA

applications, configurable computing tools are very inefficient. It is inherent that

different configurable architectures may require unique operating software to govern

system operation. However, the strategies used to generate the system configuration

could be unified into a common design language.

Similar to the programming language JAVATm [59], a design could be described using a

common syntax and only differ by how logic is mapped upon a particular architecture.
Examples of such design languages are RUBY [60], Handel-C [61], and Lola [44].

Handel-C is the design language used to implement designs upon the Harp configurable

coprocessor, and Lola is used with the Trianus set of design tools developed for the

38

Chapter 2: Reconfigurable Computing Technolo

Hades dynamic configurable coprocessor.

A further emerging discipline is evolutionary electronics. Evolutionary electronics are

applications that use artificial evolution to generate hardware fulfilling a design

criterion [62]. The resultant design is generated through multiple cycles in which the

difference between the actual and the required output of the system are examined, and

the existing architecture then modified accordingly. Dynamic FPGAs are used as the

implementation media and utilise partial and dynamic configuration to update the

architecture through each evolution in the design cycle. An example of evolutionary

electronic hardware has been a design that could distinguish between two different

frequencies [63]. This was implemented using a Xilinx XC6200 FPGA.

A problem with existing evolutionary electronic technology is that although it may

implement a design very efficiently, how it actually functions can be difficult to

interpret. Factors such as signal propagation and routing delays can influence the

evolutionary cycle design and can vary between identical FPGAs. In traditional designs,

these problems are removed through the use of synchronous design techniques.

At the present moment in time, configurable computing technology is still in its infancy

and needs to mature before its incorporation into industry. FPGA vendors such as Xilinx

and Altera, and the research community as a whole recognise this, but to accelerate the

evolution of the new exciting computing concepts described, a `killer' application is

required. Such an application is sought to boost industrial interest in RTR technology,

there by fuelling greater interest and the provision of more resources for the on-going

development of reconfigurable computing technologies.

Within this thesis a novel application using RTR implementation has been developed.

Even though the applications implementation was constricted by the limitations of

existing dynamic FPGA technologies, resultant hardware has shown how dynamic

configuration can be used to increase the operand throughput, compression ratio, and

accuracy in approximating Discrete Cosine Transform (DCT) operation.

39

Chapter 3: Dynamic Hardware Development System

Chapter 3

Dynamic Hardware Development System

Introduction

The aim of this chapter is to describe the design and operation of the development

system used during the research program. The chapter introduces the system

components first, and then explains the construction of each, with combined system

configurations detailed at the end of the chapter. Descriptions of key semiconductor

devices used are provided here, with detailed explanations contained within Appendix-

III.

3.1 Overview

To provide a platform for the evaluation and inclusion of RTR within a multiple

processor environment a research and development system has been constructed. This

incorporated a commercial parallel processing architecture, dynamic hardware platform,

and software development tools.

The parallel processing architecture consisted of four TIM-40 standard TMS320C40

DSPs (Section-3.2), chosen since they facilitated the insertion of additional hardware

within the routing topology and memory address space. The dynamic hardware resource

consists of a custom designed XC6200 FPGA Development System (XC6200DS)

(Section-3.3).

To facilitate the development of RTR applications, software has been written

(XC6200ADS) that enabled XC620ODS hardware to be evaluated (Section-3.3.5). This

software also generated dynamic configuration data, and governed the transfer of

operands to and from the XC6200DS.

An operational system consisted of one TIM-40 motherboard with up to four

TMS320C40 processors installed, and up to three XC620ODS cards attached to it. To

40

Chapter 3: Dynamic Hardware Development System

implement a design upon the combined system architectures, the RTR hardware and
TIM-40 system were programmed independently. Depending upon the system

configuration, the XC620ODS could appear as a RTR coprocessor, routing hub,

prototype environment and self-configuration system (Section-3.4).

3.2 TMS320C40 Parallel Processor

The parallel processing system used was based upon the TIM-40 standard [64],

developed by Texas Instruments in conjunction with a consortium of DSP related

manufacturers. This standard enabled the development of multiple processor systems

through use of a modular format consisting of processor modules (Section-3.2.1),

peripherals and host motherboards (Section-3.2.2).

Processor modules were developed using the TMS320C40 [65] (C40 hereafter). This

was a 32-bit floating-point based DSP designed specifically for use in multiple

processor environments. Incorporated in C40 architecture were components dedicated to

facilitate inter-processor communication without degrading overall system performance.

These consisted of six high-speed communication ports used to implement inter-

processor routing topology, and two external memory interfaces known as the Global

and Local interfaces. More detailed information describing the C40 DSP is contained

within Appendix-111.

3.2.1 TIM-40 TMS320C40 Processing Node

Transtech Parallel Systems TDM411 type TIM-40 modules were the DSP modules

used. TDM411s consisted of a single C40 DSP with 4-Mbytes of Enhanced DRAM

technology (EDRAM) mapped within both the Global and Local memory interfaces.

Each 4-Mbytes was local to the C40 and accessed using signal strobeO of each interface.

Figure 3.1 illustrates the structure and position of system components upon the

TDM411.

41

Chapter 3: Dynamic Hardware Development System

The TDM411 itself did not constitute a fully functional system. Instead, it was

connected to a TIM-40 standard motherboard using the Primary and Secondary

connectors. Through these connections C40 resources such as memory interfaces and

communication port signals could be accessed, as well as providing system house

keeping functions and power supplies.

Secondary Connector

Local 4Mbytc Global 4Mbyte
EI)RAM TMS320C40 P. DRAM

IDROM
Local Buses Global Buses

('nm. Ports 0.3 (uni. Ports 1 . 2.45

Global Bus
_ Expansion Connector

Figure 3.1 Transtech Parallel Systems TDM411 Processor Module

The TDM41 I had a further connector known as the Global Bus Expansion connector. If

the TIM-40 motherboard supported this connector (optional), additional or shared

memory could be accessed using signal GSTROBEI of the Global interface. This

connector allowed peripherals direct access to the control, data and address-buses of the

Global interface.

In accordance with the TIM-40 standard, the TDM411 had an IDROM containing

information that detailed the organisation of the C40s memory space. Upon system

initialisation the content of the IDROM was downloaded to C40 configuration registers.

Further, JTAG in-circuit evaluation and debugging was supported [68].

42

Chapter 3: Dynamic Hardware Development System

3.2.2 TIM-40 Motherboard

To provide a host platform for the TDM411 modules, a Transtech Parallel Systems

TDMB412 TIM-40 motherboard was used. The TDMB412 was a full-length 16-bit PC

ISA based peripheral, which could host up to four individual TDM411 modules. The

role of the motherboard was not just to provide power and access to C40 signals, but

also provide an underlying processor interconnection topology, a Texas Instruments

XDS510 compatible JTAG interface, and an interface between the C40 system and host

computer. The structure of the TDMB412 motherboard is shown in Figure 3.2,

indicating the default data direction of each C40 communication channel. However,

C40 communication channels were bi-directional and could be reconfigured as either

uni-directional or bi-directional.

Communication Port Edge Connectors

4 12

OI I? I0
C40 DSP r

Slot 4I1

C40 Communication Channels

42
30

C40 DSP
Slot 31S

Hardwired Routing Topology

4242
30

C40 DSP C40 DSP
Slot 2 Slot I

3

CKII
HOST PC

Connector ISA Int.

Figure 3.2 Transtech Parallel Systems TDMB412 TIM-40 Motherboard

The construction of a multiple processing environment was simplified using this

modular approach. Although only four C40 modules could be implemented per

motherboard, individual motherboards could be linked together forming larger systems.

Two communication channels of each C40 could be accessed through connectors

situated on the edge of each motherboard. The four remaining channels of each C40

43

Chapter 3: Dynamic Hardware Development System

were connected between the other TDM411 positions. This interconnection topology

was hardwired within the fabric of the motherboard.

The C40 installed in slot-one on the motherboard was regarded as the JTAG root

processor, since it was the first processor encountered by the on-board JTAG debugger

daisy chain. When additional TDM411 modules were plugged into the motherboard,

they were inserted into this chain as slave devices. In a multiple motherboard systems,

only one root processor could exist in the JTAG chain. Root processors on subsequent

boards were therefore set to slave and the on-board JTAG controller disabled via

switches on all but the root motherboard.

To link applications running on both the host computer and TIM-40 system, a hardware

interface could be formed using communication channel three of the root processor.

Slave TDM411s therefore communicated with the host computer via the root processor.

Switches upon the TDMB412 permitted the base address location of this hardware to be

relocated in the host development computer, as well as disabling the interface itself.

3.2.3 TMS320C40 Application Development

The software development tools supplied with the TIM-40 system were called PaCE

[66]. The development process used throughout the project is shown in Figure 3.3.

Designs were entered using either assembly language (prog. asm) or a C40 C

programming language variant (prog. c), which were then compiled and checked for

errors using software tools asm30 and c130 respectively. The next stage of the process

was to link the compiled application with the hardware resources of the target system

using the 1nk30 software tool. The hardware resources of the target system were

described within a command file (prog. cmd), that allocated system memory areas used

by software structures, and determined the location and size of the heap and stack.

Once the design had been linked, resultant programs could be simulated, evaluated in

circuit, or executed normally. Tool sim4x was used to simulate the execution of a

44

Chapter 3: Dynamic Hardware Development System

program and allowed the contents of C40 registers to be viewed, communication

channels created, and single step execution of the program performed. To allow the

simulation to function correctly, a command file describing the address space

configuration of the TDM411 was required (siminit. cmd).

board. cfg

prog. c I prog. cmd II board. dat

enur4x

Debug

c130 [--ý Ink30 FF1 tops Working

sm30 Application

prog. asm I LJ sim4x LI siminit. cmd

Figure 3.3 TMS320C40 PaCE Development Cycle

The C40 JTAG port enabled run-time system evaluation. Elements forming the TIM-40

system architecture had to be given an identity in order to generate a JTAG chain file

(board. dat). This was performed using utility composer, which read an input file

describing the architecture (board. cfg). C40 programs could then be downloaded to the

system via the tops software tool. Next, the JTAG emulator emu4x was executed, which

took control of the C40 and placed it in single-step execution debug mode. Using this

software, internal registers and memory locations were accessed.

A further method used to evaluate and debug designs was the creation of custom test

programs to display memory and register contents upon the host PC. However, this was

only possible through the root processor of the motherboard.

The development procedure outlined was used to debug C40s individually. To develop

parallel processing applications, software for each C40 was developed independently,

with individual programs downloaded on-block to the system. Program downloads were

45

Chanter 3: Dynamic Hardware Development System

conducted using tops, which read a configuration file (prog. nd) indicating the

appropriate program to download to each C40.

TIM-40 utilities were also supplied that enable the configuration of the TIM-40 system

to be checked (tcheck), and JTAG chain related operations to be debugged (jtagrst,

xds_diag).

3.3 XC6200 FPGA Development System

The XC6200 FPGA Development System (XC6200DS) was developed to provide a

multiple purpose reconfigurable application development platform, and facilitate the

integration of RTR routing and processing resources within an existing parallel

processing system. The system was therefore designed for flexibility, and ease of use

rather than raw performance. This was reflected in the design and technology used

throughout its development. The components of the XC620ODS are shown in Figure

3.4. They integrate with the TIM-40 parallel processing system using external

connection leads and host PC address space.

Initially, a FATHOTs XC6200 based development system purchased from the Virtual

Computer Corporation [67] was intended to be used for RTR application development.

After conducting several experiments with this system it was determined that the

debugging tools, local memory and overall operation were generally unreliable.
Therefore the XC620ODS was designed.

Development platform operation required both hardware (XC6200DS) and software

components (XC6200ADS). Each hardware unit consisted of an ISA based PC card

containing a XC6200 family FPGA, related interfaces, and control logic. The XC6200

FPGA was used as the reconfigurable logic, with the control circuitry providing the

interface between the XC6200 and application development software upon the host PC

(XC6200ADS).

46

Chapter 3: Dynamic Hardware Development System

XC6200 FPGAs were chosen since they could be reconfigured using partial and
dynamic configuration capabilities. These were the only commercially available devices

able to do this, and to the author's knowledge, still are. This was made possible through

use of a novel hardware interface known as the FastMAP FM interface. The XC6200

family architecture is described in further detail in Appendix-III.

Nine 20-pin IDC connectors. Used
XC6200 FPGA
Der. to connect C40 communication Cl cleSection 3.3.4

channels.

Two 40-pin IDC connectors.
Used to connect C40 DSP
Global buses and external CI (' Ar,.
SRAM module.

Fast MAP Int.

Fast MAI' Krad/Write
Host Computer ISA Bus Interface Control Signals Data Address

Ftus ItI s

Host Data Hardware FastMAP
[ills Computer Bridge Interface

Development Controller
Software scrrion 3.3?

Section 3.3.3

Section 3.3.5
Address
Iius

ISA Interface
13iý Control Logic

section 3.3.1

Figure 3.4 Components of XC6200 Development System

To construct the XC6200DS, FPGA devices XC6216 and XC6264 were purchased.

Both possessed the same underlying architecture but had different logic capacities of

24,000 and 100,000 gates respectively [32]. Collectively, these devices are referred to as

XC6200 throughout the discussion.

The XC6200 interacts with the host computer using an 8-bit ISA port. The decision to

use an ISA rather than PCI specification interface was based upon the simplicity of the

47

Chanter 3: Dynamic Hardware Development S sy tem

interface, with the aim of reducing the development overheads. To fabricate the

XC620ODS ISA card, a custom PCB was developed using Zuken CadStar PCB

development tools. In total three identical PCBs were constructed which took

considerable time, and all successfully commissioned.

3.3.1 Host Computer Interface

Host computer development software controlled the operation of the XC6200 through

an ISA bus interface. Therefore the XC620ODS required hardware to determine when it

was being addressed and the type of operation occurring; Only A9 to AO out of the 20-

bit address-bus (A19-A0) were required. If the address written was in the range 32016 to

32F16. XC620ODS access occurred and signal DATAENA was generated. Signal AEN

was used to distinguish between host computer DMA (Direct Memory Access) and 1/0

operations. The XC620ODS ISA bus interface is shown in Figure 3.5.

A9-AO A3-AO
MACH111SP

low low ISA
IOR

°
Interface IOR
Control

Host ISA Unit
DATAENA

AEN Interface
E NA DI R

D7-DO 74LS245 D7-DO
Bi-directional

Tri-state buffer

XC6200
Hardware
Bridge

Figure 3.5 XC620ODS ISA Bus Interface

When addressed, ISA signals IOR and IOW (active low signals) determined whether a

XC620ODS read or write operation was occurring. The control unit generated the enable

(ENA) and direction (DIR) signal of the tri-state buffer accordingly. For both types of

operations data was latched on the trailing positive edge of IOR or IOW respectively as

shown in Figure 3.6. Control unit outputs IOW, IOR, and A3 AO are buffered versions

of ISA bus signals, and routed to the XC6200 hardware-bridge.

48

Chapter 3: Dynamic Hardware Development System

The ISA control unit was implemented within a Vantis MACH 111SP CPLD [6], chosen

since it could be re-programmed using In-System Programming (ISP) techniques. The

direction of the data-bus was controlled using a 74HC245 bi-directional tri-state buffer.

Hardware configured within the CPLD was constructed using Vantis HDL PALASM

(design is listed in Appendix-Iii) with software development tool MACHXL. The

control unit was initially tested using MACHXL simulation tools, and in-circuit using

custom software that could read and write data to different address locations within the
host PC.

Data Latched

ISA Write Cycle ISA Read Cycle

Figure 3.6 ISA Bus Interface Signals

3.3.2 XC620ODS Hardware-bridge

To achieve RTR, the XC6200 FPGA must be configured through its FastMAPTM

interface enabling partial and dynamic configuration techniques to occur. The

FastMAPTm interface consisted of a 32-bit data-bus and 18-bit address-bus.

Configuration data was written to the XC6200 in address and data pairs. The address-

bus width was fixed, but the data-bus could be 8,16 or 32-bits wide.

The XC620ODS hardware-bridge provided the mechanism by which read/write

operations issued by the host computer were instigated upon the XC6200 FPGA.

Effectively this hardware managed the operation of XC6200 FastMAPTM interface. A

block diagram of its architecture is shown in Figure 3.7.

49

Data Latched

Chanter 3: Dynamic Hardware Development System

The hardware-bridge register-set was accessed through the I/O address space of the ISA

bus interface. The content of these registers contained either configuration data, or

generated XC6200 related control signals, with all access performed at the ISA bus

clock frequency (8.33MHz).

To access XC6200 address space, an 18-bit address was first generated. This took three

ISA bus write operations (8-bit ISA interface), with data written to three separate

registers. The registers accessed were determined through decoding the value of address
bits A3 AO. The output of this decoder was only active when signal DATAENA

indicated the XC620ODS was being addressed. Signal IOW ensured that only valid data

was clocked into the registers.

Upon writing the third byte, all address bytes were latched into an external 18-bit

address register. The output of this register was connected directly to the address-bus of

the FastMAPTm interface. Depending upon the width of FastMAPTM data-bus one, two

or four data bytes were then written to registers within the hardware-bridge. A further

write to the hardware-bridge control register enabled the content of these registers to

appear on the FastMAPTm data-bus, as well as generating a XC6200 write cycle through

external state machine operation (XC6200 FastMAPTm Interface Controller).

An XC6200 read operation was similar except that once the address had been set, the

control register instigated a XC6200 read cycle and the content of the FastMAPTM data-

bus was then latched into hardware-bridge registers. For the host to access this 32-bit

data, four ISA read cycles were generated, each addressing a separate 8-bit register.

Signal IOR was used to ensure the validity of the data read by the ISA bus.

Through the control register other aspects of system operation can be governed. These

features include assigning FastMAPTm interface control to internal XC6200 logic, and

configuring the XC6200s primary clock source (Gclk). Dependant upon the particular

design an external crystal oscillator could be selected as Gclks source.

50

Chapter 3: Dynamic Hardware Development System

A17 AO
FastMAPTM
Address Bus

IOW ,
I OR 1 XC6200 Address

u,, a,, ,, o
Register

i D7-DO

A3-AO
ISA Bus
Interface DATAENA

FastMAPTm
Interface
Controller

XC6200
Hardware

Bridge
Register

Set

Address
Decoder

FastMAPTM
Data Bus

D31 -DO

XC6200
FastMAPTM
Interface

Figure 3.7 Block Diagram of XC6200 Hardware-Bridge

The XC6200 hardware-bridge was fabricated using a XC4005 FPGA [9] and three

74HC373 octal registers (address registers). External registers were required due to the

limited available XC4005 I/O pins. The architecture was designed using schematic

capture and VHDL design entry techniques within Xilinx Foundation development

tools. Using this software the functionality of the control logic as well as the external

latches and ISA interface hardware were simulated and assessed. After primary testing,

in-circuit operation was verified using custom software tools developed upon the host

PC.

During system development, configuration data was downloaded using a Xilinx

XChecker Cable. The XC620ODS board also provided the facility to change the source

of the XC4005 configuration from the Checker cable to a standard configuration

PROM. The resultant design is illustrated in Appendix-IV.

51

Chapter 3: Dynamic Hardware Development S, stem

3.3.3 FastMAPTM Interface Controller

Although the hardware-bridge instigated XC6200 memory access cycles, the

FastMAPTm interface controller generated XC6200 signals Gclk, CE and RW. This

hardware consisted of two state machines that generate the appropriate FastMAPTm

control signals depending upon the type of access required. Their function is shown in

Figure 3.8 with the basic XC6200 memory access cycles shown in Figure 3.9. Signal

Gclk was the XC6200s primary global clock and all memory access operations had to be

performed in synchronism with it. Therefore Gclk clocked the state machines.

S1/ READ si /WRITE

Si Initial State

READ I WRITE

S2 Delay One Clock Cycle I (S2) I(S2

READ
WRITE IIS S3 Generate XC6200 Control S3

Signals and Extend Cycle

/ READ
WRITE L-'S4

S4 Access Data Bus L---{ S4

ICE = S3 ICE = S3

data latch = S3 /R W= S3

(i) Read State Machine (ii) Write State Machine

Figure 3.8 FastMAPTM Interface Controller State Machines

Figure 3.8 shows the structure of both state machines. These machines are similar, but

have different input and output signals, with common output signals combined together.

The signal data-latch was used to indicate when data read from the XC6200

FastMAP' interface was valid, and could then be written to registers within the

hardware-bridge.

The remote implementation of FastMAPTm interface control logic from the hardware-

bridge was done to enable the XC6200 to function at higher clock frequencies than that

of the ISA bus clock. This allowed interaction between XC6200 memory accesses

52

Chapter 3: Dynamic Hardware Development System

performed at XC6200 clock (Gclk) and ISA bus frequencies; Through experimentation,

the maximum XC6200 flip-flop clock frequency was determined to be 88MHz. This

gave an order of magnitude improvement over the ISA bus interface speed of 8.33MHz.

State machine operation was controlled using signals READ and WRITE, which were

activated through the control register of the hardware-bridge. Using these signals
XC6200 memory access cycles could be extended to remove differences in clock
frequency between the XC6200 Gclk and ISA bus clock. To extend these cycles signal
CE must be held low for more than one clock cycle. This operation corresponds to S3 of
the state machines operation, as shown in Figure 3.9.

The FastMAPTm controller was implemented within a Vantis MACH 111SP CPLD. The

CPLD was programmed using PALASM, with the state machines described using net-
lists. Simulation was conducted within MACHXL development environment, with
further debugging performed in-circuit using custom software and traditional electronic

test equipment. The resultant PALASM design file is listed in Appendix-IV.

Active State
Si

.
S2

.
S3

.
S3 I S4 Si

Gclk Gclk

CE [Cycle Extended CE

RW RW

A17 AO A Valid A17-AO

D31-DO A Valid IA D31-DO

Data Latched

Active State

(i) XC6200 Extended Write Operation (ii) XC6200 Extended Read Operation

Figure 3.9 XC6200 FastMAPTM Interface Access Cycles

53

Data Latched

Chapter 3: Dynamic Hardware Development System

3.3.4 XC6200ADS Development Software

The XC6200 Application Development Software tools (XC6200ADS) were developed to

provide a platform for XC6200 CTR or RTR techniques, access of XC6200 address

space and RTR application development. The structure and function of these custom
tools is shown in Figure 3.10.

When the software was executed, its first task was to detect if a XC6200 FPGA was

present upon the XC6200DS, and then determine the device type through reading the

XC6200s Device Configuration register. During this operation the functionality of the

XC620ODS hardware components were verified. This was because before any XC6200

register accesses could occur, a string of fifteen bytes had to be first written correctly to

the XC6200s Identity registers. The XC6200 FPGA device type present also had to be

determined since the address locations of control registers differed in XC6200 family

members. Next, the user menu was displayed, which listed utilities to access XC6200

configuration registers, access user registers configured within the XC6200s CLC array,

execute user defined function macros, and download configuration data using both CTR

and RTR methods.

XC6200 configuration data was generated by XACT6000 software in the form of text

files (known as cal files because of their filename extensions), consisting of address and

data pairs. To program the XC6200 cal files were first parsed to remove text comments,

and then address and data pairs converted from word to byte formats. The resultant file

was then downloaded to the XC6200 using XC6200ADS functions. For both CTR and

RTR techniques CLC configuration delay was calculated to be 2.4µsec. However, this

value did not take into account host computer interrupt operations, and was measured to

be in the region of 225µsec to 374µsec.

To perform RTR configuration both the existing and new FPGA configuration cal files

were required. Initially both files had any XACT6000 text comments removed, and then

RTR reduction occurred. This was a novel process that reduced the volume of

54

Chapter 3: Dynamic Hardware Development System

configuration data required for RTR to a minimum. Essentially, the two files were

compared and only the differences between them downloaded to the XC6200 using

partial and dynamic configuration techniques. To aid debugging, all ISA bus operations

performed during configuration were written to a text file.

XACT6000
Cal Files

Read FPGA ID

User Menu

Parse RTR Parse CTR XC6200
Files Files Register

Access

Address and Data
Formation

Text XC6200
Output Memory
File Access

ISA I/O Routines

User Defined Bit-map
Functions Interface

Camera II Paint Box

Figure 3.10 Structure of XC6200ADS Software Tools

The contents of registers within the CLC array and XC6200 control registers could be

addressed and accessed. Using XC6200ADS functions XC6200 control registers could

be accessed directly by entering their respective address location within the XC6200s

memory map. Prior to accessing user registers configured within the CLC array,

XC6200 Mask and Map control registers values had to be set accordingly. This was

achieved through addressing the XC6200s Mask/Map control registers directly and

updating their contents.

55

Chapter 3: Dynamic Hardware Development System

Mask and map register contents were determined by the row position and width of user

configured CLC registers. Once configured, the column number where the user register

was located was then entered into the XC6200ADS. A practical example of this

mechanism is shown in Section-4.1.

The manual configuration of Mask and Map registers was time consuming. To speed up

these processes user macros could be defined within the program source code. Macros

were also constructed that enabled bit-map images to be downloaded to hardware within

the XC6200. Results could then be written back to the host and displayed using
Microsoft Windows Paint Box. Most images used were computer generated using Paint

Box, but real images could also been obtained using a web camera.

The software itself was written using Microsoft Visual C++ development environment.

For simplicity a text based and menu driven Graphical User Interface (GUI) was used,

since the software was an evolving tool and constantly updated to facilitate debugging

of new designs. A screen shot of the XC620ODS is shown in Appendix-VII.

3.3.5 XC6200 FPGA Hardware Development Cycle

The development process used to implement hardware within the XC6200 is shown in

Figure 3.11. Designs were constructed using the HDL VHDL. Initially, the VHDL code

was written to IEEE1164 standard to allow Xilinx Foundation simulation tools to be

used to debug the design. Once the design had been proved functional, XC6200 specific

VHDL attributes, including gate primitive libraries, placement and routing constraints

were inserted.

56

Chapter 3: Dynamic Hardware Development System

Initial H Xilinx Insert XC6200 VELAB EDIF
VHDL Foundation VHDL Attributes Net-list Extractor
Design Simulator

HH

XC6200 ADS Xilinx
Development XACT 6000
Software Tools Placement Tool

Figure 3.11 XC620ODS Hardware Development Cycle

Using software tool VELAB, an EDIF format net-list was generated, which was then

read by the Xilinx XACT6000 XC6200 placement tool. This software was used to map

and route the design (EDIF net-list) upon the XC6200 FPGA, and generate the cal

configuration file (containing XC6200 configuration data address/data pairs). The

XC6200 FPGA was then configured and evaluated in circuit using XC6200ADS user

macros.

3.4 XC620ODS Configuration Topologies

The XC620ODS was constructed to provide a platform for the development of RTR

applications, and insertion of such architectures within the routing and node structure of

existing parallel processing architectures. Component PCB positions, system operation,

and 1/0 resources of the XC620ODS were therefore designed with flexibility and

multiple functions in mind. These design parameters enabled the XC620ODS hardware

to operate in four modes. These were:
i. Dynamic Prototype Environment

ii. TMS320C40 Dynamic Coprocessor

iii. TMS320C40 Communication Channel Routing Hub

iv. Self-configurable RTR Hardware

A description of each mode is given in the following sections.

57

Chapter 3: Dynamic Hardware Development System

3.4.1 Dynamic Prototype Environment

The default XC620ODS configuration was a dynamic prototyping environment. In this

topology, the XC620ODS and C40 parallel processing architecture were not attached

and operated independently. This mode of operation facilitated XC6200 FPGA

hardware development since the FPGA could be configured and debugged using its

FastMAPTM interface. The system architecture is shown in Figure 3.12.

To assist in evaluating real-time performance of FPGA based processing hardware, a

SRAM memory module could be connected to the XC620ODS using either one of the

two I/O 40-pin IDC connectors. The memory module consisted of 256-kbytes of

SRAM, connected to the XC620ODS through IDC ribbon cable. All control signals

(RW, CE, and OE), address (A18-AO), and data-bus content (D7-DO) were controlled

and generated by hardware configured within the XC6200. Through registers

configured within the CLC array, the host computer could access the contents of this

memory.

256-kbytes SRAM

AIN -AO 1 D7 DO I R9'. ('E. OE

40-pin II)C Connector

'Ills -AO
1 D7 DO II RU'. ('F, OF.

V'6200 FP(iA
Host Computer
Development
Software ISA ßus ('L(' Array

Figure 3.12 Dynamic Prototype Environment

Through the interface, operands could be downloaded to the memory module, processed

by XC6200 hardware, results stored back in memory, and then uploaded upon request to

the host computer.

58

Chapter 3: Dynamic Hardware Development System

3.4.2 TMS320C40 Dynamic Coprocessor

The second XC620ODS configuration connected the XC620ODS to the Global bus

interface of a C40 DSP. In this topology the FPGA appeared as a loosely coupled

coprocessor to the C40. This is illustrated in Figure 3.13, with actual XC6264 footprints

contained within Appendix-VI. The memory map of the Global bus could be divided

into two regions accessible by signals GSTRBO and GSTRBI, with each region having

the ability to posses a separate memory configuration if required. The TIM-40 standard

dictated that signal GSTRBI and its related signals must be used to access external

peripherals. To configure this interface, the content of the Global Memory Interface

Control Register (GMICR) required updating.

The Global interface was flexible and can be configured for different memory

capacities, page sizes, and speed of operation. To perform XC6200 memory mapped

transfers, GSTRBI of the Global Interface occupied address range 8010000016 to

FFFFFFFF16. Memory access control was governed using signal RDYI generated by

hardware configured within the XC6200. This signal indicated when hardware within

the XC6200 had completed a memory access and was ready for the next. Only a subset

of this address space was actually required since the data-bus used was one byte wide,

and XC6200 address decoder limited to four bits (16 address locations).

The C40 controlled the operation of the XC6200 during run-time via the output of a

four-bit address decoder configured within the XC6200. The use of address decoder

outputs was application specific and could be used to enable 110 registers, generate

control signals, and indicate when XC6200 reconfiguration was required. RTR could be

conducted through either XC6200ADS or self-configuration controller operation

(Section- 3.4.4).

59

Chapter 3: Dynamic Hardware Development System

SRAM
,. "- .. a Memory 40-pin IDC Connector TDM411 Modul

Interface

A3 - AO A3-AO

D7-DO D7-DO
ISA Bus

XC6200 TMS320C40

FPGA
GSTRBI GSTRBI DSP

Host

Computer
RWl RWI

Development
RDyI RDYI

Software
CE! CE!

Figure 3.13 TMS320C40 RTR Coprocessor Configuration

The TIM-40 (C40) and XC6200 hardware interface was formed using either one of two

XC620ODS 40-pin IDC connectors. Depending on the application, the unused connector

could then be configured to support additional external memory. In their original forms,

TDM411 modules did not support IDC type connections. Forty-pin IDC connectors

were therefore attached to the modules and connections made to the appropriate C40

pins. It had originally been proposed to use the full width of the Global data-bus (32-

bit), but difficulties encountered during this conversion process prevented this.

Therefore 8-bit rather than 32-bit interfaces were used, which was perfectly good for

prototyping development. With Gclk set to 8MHz, a C40/XC6200 1/0 bandwidth of
2Mbytes/sec was obtainable (maximum 4.14Mbytes/sec, Gclk @16.57Mhz).

3.4.3 TMS320C40 Communication Channel Routing Hub

The third configuration of the XC620ODS facilitated the insertion of RTR hardware

within the routing topology of the C40 parallel processing system. This hardware

provided additional routing and processor resources as determined by the application.

The interconnection topology was formed using C40 DSP communication channels.
Each TDM411 C40 module possessed six communication channels. Four were used to

create a hardwired interconnection topology within the TDMB412 motherboard,

whereas the remaining two were brought out through connectors situated on the TIM-40

motherboard (using 20-pin IDC 2-mm pitch type connectors). Through external cabling

60

Chapter 3: Dynamic Hardware Development System

these channels could be attached to the XC6200, with each FPGA having nine of these

connectors situated around it. This distribution of 1/0 resources enabled efficient use of

the CLC array when configuring routing channels within the FPGA. A block diagram of

the XC6200 used as a routing-hub is shown in Figure 3.14.

To insert a routing-hub within the C40 communication topology, XC6200 FPGA

hardware was required to interact with C40 communication channel Port Arbitration

Units (PAU) Finite State Machines (FSM). XC6200 hardware was also required to

manage 32-bit data transfers occurring in four-byte blocks. To manage data transfer two

distinct XC6200 routing-hub control mechanisms were developed.

The first mechanism isolated the operation of the communication channel transfer

protocol from the remainder of the XC6200s configuration. The channel interface

consisted of a state-machine to govern the transfer and a FIFO to store four-byte data

blocks. Hardware within the XC6200 accessed and instigated data transfer between the

C40 and XC6200 via the FIFO.

The second mechanism used a self-arbitrating control unit. Data transfer occurred

directly between registers within a XC6200 design, and not through intermediate FIFO

buffers. The bytes constituting C40 communication channel words were transferred

individually, rather than in four byte blocks as in the first control mechanism; The

merits, comparisons, and detailed description of both communication control

mechanisms are described in Section-7.2.

The C40 communication channels are bi-directional. It was originally intended that the

data transfer direction could be reversed during run-time. Whilst implementing this

function, it became apparent that XC6200 operational speeds were not fast enough to

facilitate this function. During the directional transfer process, it was possible for both

the XC6200 and C40 to be driving the same signals. This limited the maximum system
flexibility, but was not a major problem since each C40 could exhibit bi-directional data

transfer through using two communication channels.

61

Chapter 3: Dynamic Hardware Development System

Host
Computer
Development

ISA
Software it

TSM320C40
DSP

TDM411 Modules

TSM320C40
DSP

XC6200
FPGA

"I'SM320C40
DSP

20 pin IDC
Connectors

TSM320C40
DSP

TMS320C40
f--- Communication

Channels

Figure 3.14 TMS320C40 Communication Channel Routing Hub

3.4.4 Self-Configurable RTR Hardware

The final XC620ODS mode of operation was self-configuration. In this mode, RTR was

instigated within the CLC array (not off-chip), and performed through the FastMAP !M

interface without intervention of the hardware-bridge. Configuration data was stored in

external memory connected using a modified 40-pin IDC XC620ODS I/O socket. Since

the original XC620ODS PCB required modification to support this, only one board

supported this configuration mode.

Upon power up, RTR configuration data for up to sixteen different configurations was

downloaded through the FastMAPIM interface. Using hardware configured within the

XC6200, this data was written to a 256-kbytes external configuration memory. The

address boundaries of individual configurations stored in memory were calculated, and

later used by the control logic to activate a particular configuration for RTR. The self-

62

Chapter 3: Dynamic Hardware Development System

configuration control mechanism was self-contained within the XC6200 configuration,

in which user logic determined the next active configuration. Reconfiguration of the

XC6200 was performed using partial and dynamic configuration.

The function of this operating mode is shown in Figure 3.15 and occurred in two

phases. The first required writing RTR configuration data to the external memory,

whilst the second configuration implemented the self-configuration control mechanism.

To switch between these two functions, XC6200ADS CTR was used to reconfigure

XC6200 hardware from implementing a FastMAP I M-based external memory interface

to the self-configuration controller.

SRAM SRAM
Configuration Configuration
Memory Memory

Host
Computer
Development
Software

40-pin IDC
Connector

Bus

Fast MAP XC6200
Interface FPGA

System Initialisation

CLC Array

Run-time Operation

Figure 3.15 Self-Configuration Mode

FastMAP'M bus conflicts between the hardware-bridge and the self-configuration

controller were prevented through the hardware-bridge control register. To read

XC6200 registers using the host PC, the hardware-bridge required control of the

FastMAP TM interface.

RTR configuration controlled by the host computer occurred at ISA bus operating

speeds. To increase the speed of configuration, the XC6200 global clock frequency

63

Chapter 3: Dynamic Hardware Development System

must be increased (Gclk). This could be accomplished only when self-configuration was

performed since ISA bus transfers were not required. Through the hardware-bridge

control register, the source of Gclk could be selected as either an external crystal

oscillator or the ISA bus clock. Using XACT6000 placement tools, the maximum
frequency of Gclk was calculated to be 6.99MHz. The maximum delay however related

to a non-critical signal and design operated normally at 8MHz. Configuration delay at

8MHz was calculated to be 1.8psec per CLC and measured using external apparatus at

1.88psec. Placement of the self-configuration control unit within a XC6264 FPGA is

shown within Appendix-VI, with a description of it internal operation provided in

Appendix-IV-4.

3.5 Summary

To investigate the inclusion of RTR technology within a DSP based MIMD processing

architecture, custom hardware and software components have been developed. This was

necessary as no suitable commercial configurable computing development systems

could be obtained.

As well as XC620ODS hardware construction, system development required the design

of C40 communication channel and Global busses interfaces, and respective C40

control software. These interfaces were implemented within the XC6200 FPGA using

existing CTR techniques. A self-configuration reconfiguration mechanism has also been

developed.

The philosophy reflected in the design and function of the system was for as simplistic

and flexible operation as possible, since the XC620ODS was designed for multiple

system configurations. This is apparent not only in hardware design, but also in the

development of software tools and the resultant XC620ODS application development

cycle.

64

Chanter 3: Dynamic Hardware Development System

Development of XC6200ADS tools has increased the versatility and suitability of the

XC620ODS to be used for dynamic hardware prototyping. XC6200ADS functions

permit real-time in-circuit probing of XC6200 FPGA designs, reduce the volume of

configuration data required for dynamic configuration, as well as providing the facility

for user defined macros. These have been configured to perform tasks such as analysing

data transfers within the XC620ODS routing-hub, and the transferral of operands from

the host PC to the XC620ODS and TIM-40 nodes.

From the project onset it was evident that the operational characteristics of RTR

semiconductors commercially available (XC6200 FPGA family) were limited. Both

logic gate capacity and operating frequency when compared to existing cutting edge

technologies were poor. Therefore the integration and implementation of RTR hardware

rather than trying to achieve raw processing power was the design goal.

The C40 MIMD system used to provide the multiprocessor environment was ideal since

it facilitated the inclusion of additional hardware within both its node and routing

topologies. Dynamic hardware has been inserted into the existing MIMD topology

through using existing C40 communication channel connections, and the creation of

custom sockets upon TIM-40 processor modules.

Development of the XC620ODS has provided the platform upon which RTR hardware

can be developed, evaluated, and included within both the processing and routing

topologies of high-performance parallel processing environments.

65

Chapter 4: XC6200 FPGA Hardware Investigation

Chapter 4

XC6200 FPGA Hardware Investigation

Introduction

This chapter describes the development of XC6200 FPGA hardware implementation

and in-circuit verification techniques. This work was conducted to generate design and

test procedures, and a knowledge base upon which further XC6200 based DSP RTR

coprocessor hardware and routing topologies could be constructed.

Section-4.1 describes XC6200 hardware verification techniques developed, with a

practical example demonstrated. Section-4.2 describes the development of both static

and dynamic hardware implementation methodologies. These were determined through

implementing fundamental processing hardware structures within the XC6200.

Section-4.3 details conclusions determined through implementing and evaluating

hardware within the XC6200 FPGA using the XC620ODS and XC6200ADS. These

conclusions provide the basis for operating procedures used in further XC6200 based

hardware development.

4.1 XC6200 Design Verification

To develop RTR hardware using the XC6200DS, system implementation and hardware

verification strategies have been developed. Using these techniques XC6200 hardware

developed throughout the research program was designed and developed initially using

the XC620ODS in its prototype environment configuration. This mode minimised

component placement restrictions within the XC6200 and facilitated the insertion of test

signals through interface connectors situated around the XD6200DS.

XC6200 FPGA designs were constructed using VHDL and initially evaluated using
Xilinx Foundation's VHDL Simulator. Once proved functional the design was mapped

onto the XC6200 architecture (using XACT6000) and analysed. The experiments

66

Chapter 4: XC6200 FPGA Hardware Investigation

conducted to develop placement techniques for this task are described in Section-4.2 of

this chapter. The current section details the development and evaluation of in-circuit test

procedures for hardware configured within the XC6200.

Within existing semiconductors technology, techniques such as JTAG (IEEE 1149.1

standard) [68] can be used to verify the operation and configuration of hardware. The

XC6200 family data sheet [32] stated that the FPGA was compatible with the JTAG

standard using library macrocells. However, these macros could not be obtained for

hardware developed using VHDL. To debug active XC6200 designs internal signals had

to be analysed through external pins or accessed through registers within the design via

the FastMAPTm interface.

The FastMAPTm interface allowed accesses to the XC6200 SRAM configuration

memory and user-defined registers within the CLC array. Register access was

determined through the contents of Map and Mask control registers within the XC6200.

Figure 4.1 shows a simplified diagram of a design being evaluated within the XC6264.

Included in Figure 4.1 are the relative row and column positions of the design within the

CLC array. These positions must be known to correctly configure the XC6200 control

registers.

The CLC design consists of three sections. These are a 4-bit RPFD register (column

10), the design under test (columns 11 and 12), and a 4-bit FDC register (column 13)

with open q outputs. RPFDs (Read-Only Protected Flip-flop Device) are XC6200

specific components that enable data to be written to logic configured within the CLC

array through the FastMAPTm interface. The function of an RPFD can be considered

similar to the standard FDC VHDL entity (D-Type Flip-flop Device with Clear) except

that the d input cannot be accessed via user logic but instead is tied internally to

FastMAPTm interface control logic.

67

Chapter 4: XC6200 FPGA Hardware Investigation

The XC6200 primary clock Gclk is used to clock RPFD and FDC registers accessed

through the FastMAPTm interface. A further constraint imposed was that for concurrent

access of register bits, CLCs forming the register had to be stacked vertically in the

appropriate bit positions.

Each input test stimulus was written to the design through an RPFD register, via the

FastMAPTm interface. Results generated by the design were first latched into an FDC

register, and then read using the FastMAP interface.

d31
r71 :

40 ,

0,

RPFD Register

Row 28

TR0v27

Row 26

Row 25

Row 24

- ---------- - -------- - ---- -- ---------------------------- -

1Q Row 23

Col. Col. Col. Col.
ii 10 11 12 13

; Row 22

Register Map3

(oPe)

Configured
CLC

Figure 4.1 XC6200 In-Circuit Hardware Verification Method

The first XC6200 control register group configured were the Mask registers (Mask-D,

Mask-1, Mask-2, and Mask-3). These registers did not select the actual register, but

instead mapped the content of internal buses (data-paths) upon the external FastMAPTM

data-bus. The address locations of Mask registers varied for different XC6200 family

members.

In the example shown in Figure 4.1, a 4-bit data-path was required between the external

data-bus and CLC array. This was because the RPFD and FDC registers were only 4-

68

r dO

External
Data bus

Chapter 4: XC6200 FPGA Hardware Investigation

bits wide. This data-path could be mapped onto any bits of the FastMAPTm data bus, but

for practicality the four least significant bits (d3-d0) were chosen.

Bit-0 of Mask-0 corresponded to bit dO of the FastMAP interface data-bus. Within the

Mask registers, bits allocated to form CLC data-paths connected to the FastMAPTm

data-bus were set to logic-zero. Mask register bits unused were set to logic-one. The

Mask register configuration required is shown in Figure 4.2.

Map Register Data Path

iiii iiii

J3
Mask3 FF16

1111 1111

IG Mask2 FF16

iiii iiii

Maskl FF16

9

1111 0000

MaskO F016

Figure 4.2 XC6200 Mask Register Configuration Mechanisms

The second group of XC6200 control registers configured were the Map registers. The

number and address location of these registers were again dependant upon XC6200

FPGA family member used. The XC6264 FPGA (128x128 CLC array) used in the

example had sixteen 8-bit Map registers (Map-15 - Map-0). The Map registers selected

the row of the CLC array to be accessed (8-bit x 16 registers = 128 rows). Individual

bits within each Map register corresponded to row positions within the XC6264. For

example Map-0, bit-0 accessed row-0.

To configure the Map registers correctly the row position of the RPFD and FDC

registers must be known. The example given in Figure 4.1 required register access on

rows 24 to 27 inclusive. CLC row position 24 corresponds to Map-3, bit-0, therefore the

lower nibble of register Map-3 was set to 00002. The remaining bits within the Map

registers were set to logic-one. The resulting content of the Map registers is listed in

Table 4.1.

69

Chapter 4: XC6200 FPGA Hardware Investigation

Once the control registers (Mask & Map) were configured, a data-path was established

and registers in the design could be accessed. To access a register, its column address

was written to the FastMAPTm interface address bus. The actual address location was

obtained by using the column identity as an offset within the XC6200 memory map.
Within XC6200ADS operation, the number of a column would be entered and the

appropriate address generated automatically.

Register Content Row Range Register Content Row Range

MapO FF16 0 to 7 Ma p8 FF16 64 to 71

Ma 1 FF16 8 to 15 Ma p9 FF16 72 to 79

Ma p2 FF16 16 to 23 Ma 10 FF16 80 to 87

Ma p3 F016 24 to 31 Ma 11 FF16 88 to 95
_

Ma p4 FF16 32 to 39 Ma 12 FF16 96 to 103
_

Ma p5 FF16 40 to 47 Ma 13 FF16 104 to 111
_

Ma p6 FF16 48 to 55 Ma 14 FF16 112 to 119

Ma 7 FF16 56 to 63 Ma 15 FF16 120 to 127

Table 4.1 XC6264 Map Register Contents

Test scripts compiled within the XC6200ADS were used to configure the Map and

Mask registers, store and display test results, and automate analysis of results. Such

features were useful when evaluating memory structures. Typically however, the

operation of a design could only be determined through user interpretation of the

results.

The hardware verification method constructed was nevertheless not ideal. However it

has been proved practical and reliable in use throughout the project.

70

Chapter 4: XC6200 FPGA Hardware Investigation

4.2 XC6200 Hardware Implementation

Prior to developing complex hardware, the XC6200 FPGAs operating characteristics

and component placement strategies were determined. Fundamental processing

operators were configured within the XC6200, which allowed the structure,

performance and implementation methods used to be assessed. Addition, subtraction,

division, multiplication units and memory structures were constructed, as well as simple

RTR configurations used to develop dynamic hardware strategies. These investigations

are detailed in Sections-4.2.1 to 4.2.7.

The FPGA used in these experiments was the XC6264. This was the largest XC6200

device with a specified gate capacity of 64000 to 100000 gates (128 x 128 CLC array)

[32]. Previous investigations by the author had concluded this figure was 16384 two

variable Boolean expressions combined with 16384 D-Type flip-flops.

To provide performance benchmarks for the VHDL designs, results generated using the

XC6264 were compared with those produced for general-purpose XC4013 FPGA. The

XC4013 FPGA (XC4000 family [9]) was chosen since its gate capacity of 10000 to

30000 (576 CLBs) was similar to that calculated for the XC6264. The XC4000 family

has a CLB logic capacity approximately three times greater than the XC6200 CLC but

is not run-time reconfigurable. To provide a comparison with C40 operation, the

number of instructions required to compute a similar function to the VHDL code within

the DSP was also assessed.

Experiments were conducted using the XC620ODS in the dynamic hardware prototype

environment mode of operation. Test stimuli were applied and analysed using

XACT6000 software and XC6200ADS test scripts as described in Section-4.1.

4.2.1 Addition Unit

Addition is a key operation in many processing tasks. The simplest method of adding
two bits together is to use a full-adder, were two inputs (a, b) and a carry-in (cin) are

71

Chapter 4: XC6200 FPGA Hardware Investigation

summed and a resultant sum (sum) and carry-out (cout) produced. To add two `n' bit

words together, ̀ n' full-adders connected in a ̀ daisy-chain' fashion can be used. In such

a design, the carry-in signal of the least significant full-adder is tied to logic-zero. The

`daisy-chain' method is slow as propagation delays occur within the carry chain.
Methods such as ̀ look-ahead' and ̀ fast carry' adders can reduce these delays [67].

a b cin cout sum
0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
1 1 0 1 0
0 0 1 0 1
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1

Q
b

Figure 4.3 XC6200 VHDL Full-adder Design and Truth Table

To achieve high operand throughput carry signal propagation delays must be kept to a

minimum. The full-adder architecture analysed was documented within a Xilinx tutorial

[82]. The VHDL design of this adder reflected the structure of the CLC array, and

therefore could be mapped efficiently within the XC6264. The design and truth table are

shown in Figure 4.3. The full-adder is a `fast carry' type as the carry output (cout) has

the same propagation delay as the sum output (sum).

Using the combinational logic full-adder design (Figure 4.3), unsigned adders of width
8,16, and 32-bits were configured within the XC6200 and the results generated

compared against XC4013 FPGA implementation. The results obtained are listed in

Table 4.2. Since a register-less full-adder implementation was used, the throughput of

72

Chapter 4: XC6200 FPGA Hardware Investigation

the design (operating frequency) was determined through cascaded signal propagation
delays.

XC6264 XC4013
Adder Width No. Of CLCs Max. Freq. (MHz) No. Of CLBs Max. Fre . MHz

8-bit 24 26.22 11 36.22
16-bit 48 15.847 23 20.68
32-bit 96 8.89 47 11.23

Table 4.2 XC6264/XC4013 VHDL Addition Unit

The addition-unit structure was designed for optimum mapping upon XC6264

architecture. To provide an additional performance benchmark, dedicated XC4013

based addition units were generated using Xilinx Foundation CORE module generator

software. The results shown in Table 4.3 were obtained using an unsigned registered

adder design. Unlike the register-less full adder design (Figure 4.3), operand throughput

was calculated by multiplying the operating frequency by the width (bit(s)) of the unit.

Adder Width No. Of CLBs Max. Freq. MHz
8-bit 6 89.67
16-bit 10 67.72
32-bit 18 48.28

Table 4.3 XC4013 CORE Generator Addition Unit

The efficiency in which a common VHDL design entity could be mapped within

different FPGA architecture varied. This factor related to software design tool issues,

which were proven by constructing addition-units optimised for both the XC6200 and

XC4000 FPGA architectures. The results generated concluded that within XC6200

VHDL designs, the structure and content of the design should reflect actual CLC

placement and routing of the design. Compared to traditional VHDL techniques this

implied XC6200 VHDL code appeared inefficient.

These results reinforced previous conclusions that programmable logic suffered from

low operating frequencies when compared to hardwired logic and microprocessor

73

Chanter 4: XC6200 FPGA Hardware Investigation

operation. In comparison the C40 DSP could implement one 32-bit addition using
instruction ADDC (Add integer with carry) in one cycle (50nsec @40MHz) [65].

The addition-unit constructed was a `bit-slice' type and it was predicted that as the bus

width increased the maximum operating frequency would decrease in a linear fashion.

Through analysis of the XC6200 results, it was evident that this assumption was
incorrect. It was determined that the operating frequency was much more dependant

upon the level of XC6200 routing hierarchy used than previously anticipated.

4.2.2 Subtraction Unit

Binary subtraction was similar to addition, and could be accomplished through

modification of the adder unit described in Section-4.2.1, as illustrated in Figure 4.4.

This design functioned by converting one operand into its twos-complement form and

then adding it to the other, hence performing the subtraction operation. This operation

took one clock cycle. Instead of cin and cout, subtraction units have borrow-in (bin) and
borrow-out (bout) signals. For subtraction the least significant bit bin signal must be

connected to logic-one.

(i) I
ý. _

(ii)

Full ý.... ",
Adder rnvt W

a
b

Figure 4.4 Modified Full-Adder (i) and Subtraction Unit (ii)

The subtraction-unit (unsigned) was configured for different bus widths, with the results

obtained detailed in Table 4.4 and XC4013 optimised version in Table 4.5. Operand

throughputs of results in Table 4.4 were equivalent to the operating frequency

(calculated using 1/max signal propagation delay) since the subtraction unit was a
register-less design. In comparison CORE generated designs (Table 4.5) were register

74

Chapter 4: XC6200 FPGA Hardware Investigation

based, therefore operand throughput was equivalent to the clock frequency multiplied
by the subtraction units width.

XC6264 XC4013
Sub. Width No. Of CLCs Max. Fre . MHz No. Of CLBs Max. Fre . MHz

8-bit 24 26.43 11 36.27
16-bit 48 15.92 23 20.68
32-bit 96 8.92 47 11.23

Table 4.4 XC6264/XC4013 VHDL Subtraction Unit

Sub. Width No. Of CLBs Max. Freq. (MHz)
8-bit 6 89.67
16-bit 10 62.72
32-bit 18 48.27

Table 4.5 XC4013 CORE Generator Subtraction Unit

Analysis of the results reinforced conclusions previously drawn in Section-4.2.1. Whilst

developing the subtraction unit, it was discovered that when defining a logic-one signal

within hardware, VHDL entity VCC should not be used. This was to minimise XC6200

routing as VCC required chip-wide routing resources. Instead, a logic-one would be

generated using an OR2B 1 gate with both inputs connected to a common local routed

signal. In comparison to the C40, the FPGA configured subtraction units were
inefficient. The C40 could execute integer subtraction instruction (SUBI) in one cycle

(50nsec @40MHz) [65].

4.2.3 Division Unit

Binary division can be accomplished using a `shift and subtract' approach similar to

long division of decimal numbers. The procedure shown in Equations 4.1 to 4.4 divides

a dividend of 10001111112 by a divisor of 110012. The basis of this procedure was to

count the number of times the divisor could be subtracted from the dividend until a

result of zero or negative value was obtained.

75

Chapter 4: XC6200 FPGA Hardware Investigation

The divisor of `n' bits wide was first subtracted from the `n' most significant bits of the

dividend. Since the result was negative a zero was entered into the quotient.

Quotient

f_-
0, since (11001-10001) <0

0

11001 1000111111

Equation 4.1

Because the result of the first subtraction was negative, the divisor was then subtracted

from the next six bits of the dividend. This produced a positive result (partial product)

of 0010102 thus a one was entered into the quotient (Equation 4.2).

01 4 1, since (11001 - 100011) =001010

11001 1000111111
11001

001010 f Partial Product

Equation 4.2

The next bit of the dividend was then included and added to the partial product as

depicted by Equation 4.3.

01
11001 1000111111

11001
00101011

Equation 4.3

The divisor was then subtracted from the partial product and produced a negative result.
Therefore a zero was entered into the quotient. This process was repeated the number of

times there were bits in the divisor, with the result stored in the quotient and the

remainder located in the partial product. This is shown in Equation 4.4.

76

Chapter 4: XC6200 FPGA Hardware Investigation

010111 Result

11001 1000111111
11001

00101011

11001

100101

11001
11001

11001

0

Remainder (partial product)

Equation 4.4

A XC6200 division unit was constructed with each stage of the process (Equations 4.1-

4.4) relating to a shift-register, subtraction-unit and control logic within the design. This

type of divider was known as a `restoring divider' [69] since the original value of the

partial product was restored when a subtraction operation generated a negative result.
The results obtained are listed in Table 4.6, where the dividend is twice the divisor (div)

width.

XC6264 XC4013
Div. Width No. Of CLCs Max. Fre . MHz No. Of CLBs Max. Fre . MHz

8-bit 167 3.87 53 6.13
16-bit 1104 1.99 240 1.19
32-bit 2081 1.24 N/A N/A

Table 4.6 XC6200/XC4013 VHDL Division Unit

The Xilinx CORE module generator supported binary division up to divisor widths of
24-bits. However, CORE and XC6264 VHDL designs with respective divisors greater

than 8-bit and 16-bits wide would not fit on to XC4013 FPGA architecture. Using the
CORE generator an 8-bit divider was fabricated, requiring 129 CLBs and having a

maximum frequency of 87.40 MHz.

77

Chapter 4: XC6200 FPGA Hardware Investigation

For all divider implementations listed, the operand throughput was determined by

multiplying the clock frequency by the number of cycles required to generate the result
(width of dividend).

The C40 computed a division using repeated (via RPTS instruction) subtractions

(SUBC instruction) and shifts (LSH instruction). The instruction SUBC was executed

within a loop until a flag was set. SUBC and the shift operation instruction LSH took

one cycle (50nsec @40MHz) to execute. The loop instruction RPTS took four cycles,

however the number of times RPTS was executed was dependant upon the division

calculation. In comparison to the XC6200 divider, the C40s operation still had greater

throughput since the operating clock frequency of the DSP was 40MHz, independent of

bus width.

The constructional techniques gained from developing this design proved beneficial.

Previous designs had been regular structured bit-slice designs without any major

supervisory state machines. Limitations within the XC6200s architecture, development

tools, and the testability and verification of hardware configured within the XC6200

were exposed.

VHDL component FDCP (Flip-flop Device with Clear Preset) could not be mapped

within a CLC. This component was present within the VHDL library supplied with

XACT6000 software, yet XACT6000 would reject the component when compiled. This

problem was overcome by creating a new entity formed using valid existing VHDL

components.

When XACT6000 software compiled designs, it was discovered that signals would

become inverted to simplify signal routing constraints. To prevent signal inversion from

occurring a buffer component was inserted into the signal path.

For the design to be routed successfully, all system components were positioned

manually within the CLC array using XC6200 specific VHDL attributes. The placement

78

Chapter 4: XC6200 FPGA Hardware Investigation

methodology used created a regular footprint and minimised routing resources reliance.
XACT6000s component placement strategy was to use the smallest area of CLC array

possible. Often the component positions chosen could not be fully routed, therefore it

was determined that manual placement of components using VHDL attributes would be

used within designs.

4.2.4 Multiplication Unit

Multiplication can be achieved using a `shift and add' approach, in which the

multiplicand is added to the product the number of times the value of the multiplier.

Supplied with the FATHOTs Development kit [67] were examples of multiplier designs

constructed in VHDL. The aim of this experiment however was to determine the

implementation and operation characteristics of such architecture, therefore a new `shift

and add' multiplier was designed and constructed.

Figure 4.5, illustrates the multiplier structure developed which was known as a ripple

carry array multiplier [69], since the operation was performed by off-setting the

product term in each stage by one bit with respect to the previous stage. Each row

within the design was created using cascaded full-adders.

Within Figure 4.5 inputs (a3 to a0) and (b3 to b0) correspond to the multiplier and

multiplicand respectively, and (p7 to p0) the partial product. For a registered full-adder

based implementation, the multipliers output was generated in n clock cycles. If non-

register based full-adders were used (shown in Figure 4.3), the output delay would be

equal to the maximum signal propagation delay within the design.

The design was verified using a VHDL simulator, but XC6200 placement proved

difficult. It was possible to implement an 8-bit multiplier but increasing the bus width

incurred signal routing conflicts. This situation reflected implementation issues

encountered previously. Instead, a multiplier example supplied with the FATHOTs kit

was used to generate performance benchmarks (Table 4.7). This design was similar, but

the distribution and placement of system components was more suited to generating a

79

Chapter 4: XC6200 FPGA Hardware Investigation

regular placement footprint for array rows. This simplified signal routing constraints.
The characteristics of the equivalent CORE generator multipliers are shown in Table

4.8. The XC4013 FPGA did not have sufficient CLB capacity to support implement 32-

bit designs.

Cell Structure

sum(n -1)

b(n)

Full
adder

cout(n)

a(n) out
sum(n;

Figure 4.5 Ripple Carry Array Multiplier

Ripple carry array multipliers can be used to calculate twos-complement products. An

alternative method is Booths algorithm [69] (Table 4.9), which differs in structure and

method of operation. The multiplier, multiplicand, and partial product in Table 4.9 are

known as (A), (B), and (P) respectively. This investigation was conducted to determine

which type of multiplier architecture was most suited for XC6200 implementation.

XC6264 XC4013
Mult. Width No. Of CLCs Max. Fre . MHz No. Of CLBs Max. Fre . MHz

8-bit 167 10.08 78 7.66
16-bit 1104 7.71 344 3.33
32-bit 2081 2.44 N/A N/A

Table 4.7 XC6264/XC4013 VHDL Ripple Carry Array Multiplier

80

Ripple Carry Array

Chapter 4: XC6200 FPGA Hardware Investigation

Multiplier Width No. Of CLBs Max. Freq. (MHz
8-bit 52 70.02
16-bit 208 32.68
32-bit N/A N/A

Table 4.8 XC4013 CORE Generator Multiplier

A A-1 Meaning Action Taken
0 0 Middle of string of 0's P=P+0
0 1 End of string of 1's P=P+B
1 0 Start of string of 1's P=P-B
1 1 Middle of string of 1's P=P+0

The initial value of [A -I] =0

Table 4.9 Booths Multiplication Algorithm

Booths algorithm utilised the property that a string of logic-ones in the multiplier

operand corresponded to several additions, which could be replaced by one subtraction

or one addition. Using Booths algorithm, pairs of bits in the multiplier operand were

examined against the properties listed within Table 4.9 and the respective operation

performed. This was a cyclic operation with the position of the multiplier bit used [A]

being right shifted by one bit each successive operation. The partial product became the
final product upon the last iteration of the loop.

To implement a `n' by `n' multiplication operation the processing hardware required

consisted of an n-bit register to store the multiplicand, and a (2n + 1) bit register to hold

the partial product. This register required a right shift function with sign extension. To

perform the addition and subtraction operations an n-bit Arithmetic Logic Unit (ALU)

was required. Governing overall operation was a control unit used to determine the

ALUs function.

The operational characteristics obtained are detailed in Table 4.10. The operand
throughput was calculated by multiplying this value by the number of cycles (n)

81

Chapter 4: XC6200 FPGA Hardware Investigation

required to calculate the product. The largest multiplier width evaluated would not fit

within the XC4013 FPGA, whilst no corresponding CORE generator module existed.

XC6264 XC4013
Mult. Width No. Of CLCs Max. Fre . MHz No. Of CLBs Max. Freq. (MHz)

8-bit 167 14.02 38 28.29
16-bit 1104 10.04 74 16.01
32-bit 2081 6.32 N/A N/A

Table 4.10 XC6264/XC4013 VHDL Booths Algorithm Multiplier

Complementing previous design tasks, the positioning and routing of system

components within the XC6200 CLC array proved time consuming and often resulted

inefficient in use of available CLC logic resources.

Comparing the two multiplication methods, the Booths algorithm implementation was

constructed using fewer CLCs than the ripple array, which was common for all bus

widths. The operating clock frequency of the Booths multiplier was greater than the

ripple array, however the operand throughput of the design was less through its cyclic

operation. In comparison the C40 could perform similar integer multiplications using

the MPYI instruction in one cycle (50nsec @40MHz) [65].

Through analysing the structures of the two multipliers it was concluded Booths

algorithm was more suited for a microprocessor than FPGA based implementation. This

was because of the irregular hardware design footprint and cyclic operation. This could

be performed more efficiently within a loop-orientated architecture.

4.2.5 Multiply Accumulate Unit

Multiply Accumulate (MAC) is a common operation within processing applications.
Individual C40 MACs took two clock cycles to compute using instructions MPYI and

ADDI. Instructions MPYI3 and ADDI3 could be processed concurrently within the

C40, however within an individual MAC operation this does not occur.

82

Chanter 4: XC6200 FPGA Hardware Investigation

A Ripple Array F= (A x B) +C

Multiplier - ---L
B Bit slice

Adder F
C

Figure 4.6 XC6264/XC4013 VHDL MAC Architecture

The structure of the XC6200 MAC shown in Figure 4.6 was fabricated using register-
less ripple array multiplier and bit-slice adder designs described previously. The results

obtained for XC6264 and XC4013 implementations of different MAC widths are shown

in Table 4.11. No MAC functions were available within the version of CORE generator

software used.

Once input operands were written, the MACs output was generated within one

operating cycle. The duration of this cycle was equal to the maximum signal

propagation delay path through the multiplier and adder. In comparison individual C40

MACs took two operating cycles. However, multiple C40 MAC operations could

overlap within the C40s instruction pipeline and execute concurrently in one cycle.

XC6264 XC4013
MAC Width No. Of CL Cs Max. Freq. (MHz No. Of CLBs Max. Freq. (MHz

8-bit 323 8.91 95 6.63
16-bit 1155 5.28 381 3.34
32-bit 3986 4.15 N/A N/A

Table 4.11 XC6264/XC4013 VHDL Multiply and Accumulate

4.2.6 RAM Memory Structures

Within processing architectures local memory was often required to store operands

temporally. This resource could either be discrete register or memory structure based.

The simplest memory structure was an asynchronous RAM [71]. This structure

(excluding the address decoder) is shown in Figure 4.7. A word was written to memory
by writing data to the input (Data in) and then toggling the appropriate write select

83

Chapter 4: XC6200 FPGA Hardware Investigation

signal (W[n]). This signal was connected to the clock inputs of all registers forming the

word, hence latched the word into the registers. To read a word from memory the

respective read signal was set (R[n]), which forced the row multiplexor to select the

register outputs. The word then appeared upon output (Data_out). FPGA RAM

implementation characteristics generated using this design of different word size and
depth are shown in Table 4.12.

Data_in[2] Data_in[l] Data_in[0]

Figure 4.7 XC6264/XC4013 VHDL Asynchronous RAM

Word Width bits
8 16 32

RAM Depth No. Of CLCs Access Time No. Of CLCs Access Time No. Of CLCs Access Time

8-words 128 41.81 nsec 256 41.81 nsec 512 41.81 nsec
16-words 256 77.32 nsec 512 77.32 nsec 1024 77.32 nsec
32-words 512 148.33 nsec 1024 148.33 nsec 2048 148.33 nsec

Table 4.12 XC6264 VHDL Asynchronous RAM

84

Data_out[2] Data-out[1] Data_out[O]

Chapter 4: XC6200 FPGA Hardware Investigation

Results generated indicated the memory access time increased as the number of words
in the RAM (depth) increased. Access times for RAMs of same word depth but different

word size were consistent. This statistic was caused through the multiplexers providing

word selection introducing cascaded gate delays. The propagation delays encountered in

each memory column (RAM depth) were far greater than those encountered in each row

(RAM word size). In similar RAM designs, use of tri-state gates would eradicate this

problem. Within the XC6200 tri-state gates could only be configured within IOBs.

Routing problems were also encountered since the clock signal of each register had to

be routed using standard local CLC routing rather than dedicated clock routes. This

increased propagation delays, hence reduced access times.

A second RAM architecture known as a synchronous RAM was constructed. Within

this design all registers were clocked by a global clock signal. With each clock pulse the

output of each register (q) would be routed back into its input (d) via a multiplexer. The

content of the register therefore appeared constant. Register contents were updated by

the multiplexer switching between the row outputs and RAM input data-bus. Memory

access times obtained were identical to those listed in Table 4.12 since the number of
CLCs used to implement each memory type were identical and routing structure similar.

There are further memory structures such as dual port ram and FIFOs, however through

implementing only asynchronous and synchronous RAM it was apparent that the

XC6200 was suited only for the configuration of small and simple memory structures.
ROM memory could also be generated using RPFD registers with the content written

via the FastMAPTm interface.

Xilinx Foundation CORE generator software was used to develop synchronous RAM

modules. From the results obtained it was apparent that coarse grain FPGA architectures

were most suited for implementing memory structures. Results obtained through these

experiments are shown in Table 4.13, and compare CORE generate RAM modules to
that of XC6264 VHDL designs (Figure 4.7) implemented within XC4013 architecture.

85

Chapter 4: XC6200 FPGA Hardware Investigation

These memory structures had a fixed depth of 32 words, since the CORE generator

supported a minimum RAM depth of 16 words.

The results highlighted the inefficient method by which RAM was constructed upon

FPGA architecture using discrete gates. In comparison the CORE generated RAM used

fewer CLBs and had faster access times. This was because the RAM structure was

fabricated directly within XC4013 FPGA CLB LUTs. XC4000 FPGA CLBs have two

four variable LUTs. Each can be configured as a 4-bit x 4-word RAM. This feature

cannot be replicated upon XC6200 FPGA architecture.

XC6200 Design CORE Generator
Ram Size No. Of CLCs Access Time No. Of CLBs Access Time

8-bits x 32-words 192 80.14 nsec 8 11.60 nsec
16-bits x 32-words 384 76.19 nsec 16 12.71 nsec

Table 4.13 XC4013 CORE Synchronous RAM

4.2.7 Run-Time Reconfiguration

XC6200 FPGAs could be reconfigured through the Fast MAPTm interface during run-

time. Configuration data required was generated through analysing sequential XC6200

configurations and performed within the XC6200ADS (Section-3.4.4). The volume of

configuration data generated, hence the configuration delay was proportional to the

difference between successive configurations. Therefore to minimise RTR delay

sequential configurations should have similar structures as possible.

Compared to the FATHOTs mechanism [67] the XC620ODS configuration methods

allowed more efficient use of CLC resources, hence reduced the volume of

configuration data required. Within the FATHOTs method individual CLCs designated

for reconfiguration (denoted using a VHDL attribute) could not be used to provide

additional signal routing. The configuration data generated also contained all possible

86

Chapter 4: XC6200 FPGA Hardware Investigation

CLC configurations. From this data only one configuration would be active at any one

time.

In comparison the XC6200ADS mechanism determined only the difference between the

present and next configuration of a CLC. If the CLCs configuration required updating,
four bytes of configuration data were generated (three XC6200 SRAM addresses, and

one data byte).

To achieve efficient RTR, the minimal volume of configuration data was required.

When designing RTR hardware the position and structure of components within each

active configuration was assessed and constructed to minimise differences between

them. This approach resulted in inefficient design layouts but acceptable, since the goal

of the project was to develop RTR hardware.

Neglecting the configuration delays, the conversion from static to dynamic hardware

configuration typically resulted in higher operating frequencies. This was because the

temporal partitions of the design contained fewer logic gates and signal routes, therefore

reduced signal propagation delays.

Figure 4.8 illustrates the conversion of a static subtraction-unit into a RTR version

through temporal partitioning. The original design was temporal partitioned using input

(a) as the temporal divisor input. The RTR implementation consists of two

configurations, with the difference between them relating to two CLC configurations.

When input (a) was at logic-zero, configuration (i) was active, otherwise configuration

(ii) was used.

To demonstrate this technique, an unsigned 8-bit wide subtraction unit was developed.

This unit had to subtract either 111100002 or 111100012 (input a) from input (b). Within

this design input (a) was hardwired within the design using the subtraction bit

configurations illustrated in Figure 4.8 (i) and (ii)).

87

Chapter 4: XC6200 FPGA Hardware Investigation

The resultant design consisted of two configurations that were swapped as required.
Within the first configuration, input (a) was set to 111100002, whilst the second

configurations value was set to 111100012.

, sum
bin

bout

Configuration (i)
Input a=0

b sum
bin

bout

Configuration (ii)
Input a=1

Figure 4.8 XC6200 Temporal Partitioned Subtraction Unit

To perform RTR configuration the XC6200ADS analysed both designs and generated

configuration data consisting of XC6200 FastMAP interface address and data pairs.

RTR configuration data generated is shown in Table 4.14 and 4.15; Omitted are

configuration mechanism and XC6200ADS specific control values. Using this data

RTR can commence either under control of the host computer (15.2µsec) or using the

self-configuration controller (1.54msec).

The configuration delays were measured using an external custom designed 24-bit

counter, having a timing resolution of 25nsec (@ 40MHz). This was attached to the

XC620ODS using flying leads. The counter functioned by using XC6200 FPGA

generated signals to enable/disable the clock signal of the counter. These signals were

activated/deactivated during the dynamic configuration processes. The delay incurred

was then read from the counter in binary (3 bytes), and converted to decimal. This value

was then multiplied by the timers clock frequency period (25nsec @40Mhz).

When measuring RTR timings generated through XC6200ADS, typically three

measurements were recorded using the counter, then the mean value calculated. This

processes was required due to hardware/software interrupt operation upon the host PC.

These interrupts could not be masked due to the nature of host PC operating software.

XC6200ADS XC6200 address/data-pair update delays excluding interrupt operation

where calculated to take 2.4µsec (5 ISA bus write cycles @8.33Mhz). In comparison

88

Chapter 4: XC6200 FPGA Hardware Investigation

self-configuration control timings measured were constant and similar to calculated

values, since host PC operation was not required during dynamic configuration
(measured at 1.88psec per CLC).

FastMAPTM Address FastMAPTM Data
2000716 0016

2000B
16

0016

0908F16 0716
00A8816 EE16

Table 4.14 XC6264 Configuration Data, RTR design (i) to (ii)

FastMAPTM Address FastMAPTM Data
2000716 0016

2000B
16

0016

0908F16 2316
00A8816 BE16

Table 4.15 XC6264 Configuration Data, RTR design (ii) to (i)

Independent upon which XC620ODS RTR mechanism was used four XC6264 address
locations were updated to switch between active configurations. Although one address-
data pair determined the function of each CLC, four addresses were required. This was
because the logic placement and mapping strategy used by XACT6000 software utilised

signal inversion inherent within the XC6200s routing structure. This was to aid logic

placement and could not be disabled within XACT6000.

Compared to fixed 8-bit subtraction (Section-4.2.2), the dynamic implementation

reduced the number of gates required from 24 to 16 and simplified the designs routing

structure. This resulted in a higher operating frequency of 31.2MHz when compared to

the static design of 26.43MHz (Table 4.4). However this increase in performance

excluded the reconfiguration time.

89

Chapter 4: XC6200 FPGA Hardware Investigation

4.3 Summary

The work presented in Chapter-4 determined the design implementation and hardware

verification procedures for use with the XC6200DS. This work was vital before

commencing development on more complex static and RTR processor and router

structures described in the proceeding chapters.

The outcome of this chapter has been the development of such techniques as well as

providing performance benchmarks to evaluate the system operation. Work conducted

determined three problem areas.

VHDL can be used to construct XC6200 hardware. Although the format of VHDL code

must comply with IEEE-1164 standard, for efficient placement XC6200 VHDL designs

must reflect the structure of the resultant XC6200 design. XC6200 VHDL code must

also be written at gate-level and not using `process' or conditional operators, with

exception of the `for' statement. This restriction implies XC6200 VHDL designs appear

structurally inefficient and time consuming to construct.

When constructing XC6200 designs using VHDL, additional components (primarily

buffer components) must be inserted to provide signal path guides between different

hierarchical levels within designs. This feature also limited signal inversion occurring
during component placement. To minimise the occurrence of such problems,

components were manually positioned within the XC6200 FPGAs CLC array using

XC62000 specific VHDL attributes.

To evaluate and debug hardware configured within the XC6200 external VO signals and
internal registers were configured within designs. This method of hardware verification

was functional and did not allow accurate analysis of signal timings. To minimise the

occurrence of timing hazards, hazard reduction techniques must be applied throughout

the design process.

90

Chapter 4: XC6200 FPGA Hardware Investigation

The conclusions determined through using the XC6200 FPGA family and XACT6000

software design tools reflected their status as non-commercial products. Through

commercially developing these products the performance of both components would
have improved dramatically. The XC6200 gate capacity and clock frequencies

obtainable were poor in comparison to similar FPGAs. The structure of the FastMAPTm

interface as well could be improved. Although the FastMAPTM interface has a 32-bit

data-bus, RTR could only be accomplished using 8-bit data. This interface however is

unique among FPGA architectures as it allows dynamic configuration to occur. This

was the primary reason why the XC6200 FPGA family was chosen for use in the

project.

91

Chanter 5: The Dynamic BinDCT Algorithm

Chapter 5

The Dynamic BinDCT Algorithm

Introduction

This chapter describes investigations conducted to determine if the throughput and

performance of the BinDCT algorithm could be improved through dynamic hardware

implementation. This algorithm is a new integer friendly multiplier-less approximation

of the DCT.

An overview of DCT operation is provided in Section-5.1, with the derivation of the

BinDCT algorithm from the DCT described in Section-5.2. Section-5.3 discusses

experiments conducted to determine the benefits gained from an RTR implementation,

whilst Section-5.4 provides a summary of the conclusions derived from this work.

5.1. The Discrete Cosine Transform

The Discrete Cosine Transform (DCT) has been used extensively in signal and image-

processing compression techniques. The DCT is related to the Fourier Transform but

differs since only real numbers are generated in the computation. Effectively the DCT

can be considered as the cosine operation within the Fourier Transform.

The DCT functions by converting a time-domain input sequence in to their respective

frequency components. This operation is known as a forward DCT with the frequency

composition dependant upon the length of input sequence and dynamic range of values.

The output generated by a forward DCT consists of a DC component that is the average

of the input sequence and AC coefficients dictating frequency content.

If the dynamic range of an input sequence is limited the frequency content of the DCT

(AC coefficients) is small. Using compression methods such as run-length coding [72],

AC coefficients at zero or near to zero can be quantisised compressed and represented

using fewer digits.

92

Chapter 5: The Dynamic BinDCT Algorithm

To reconstruct compressed data a reverse DCT is applied. The difference between the

original input sequence and output of the reverse DCT is minimal, as the smaller AC

coefficients quantisised do not contribute major frequency components.

5.1.1 Transform Computation Methods

The forward DCT algorithm is defined in Equation 5.1, with the reverse DCT defined in

Equation 5.2
N-1

Xc[k] = a[x]Z x[n] cos(r(2n + 1)k / 2N)
n=0

For k=0,1,. N-1

Equation 5.1 Forward DCT Algorithm
N-1

x[n] = a[k]Xc[k] cos(ir(2n + 1)k / 2N)
k=0

For n=0,1,. N-1

Equation 5.2 Reverse DCT Algorithm

Where:

a[k] = 1 -IN fork =0

a[k] = 2/N fork =1,2,.. N-1
N= 'Length of input data set

The forward transform of an input data set of length `N' and its respective reverse

operation can be calculated directly using Equations 5.1 and 5.2. For an input sequence

of eight samples calculated without simplification, the forward transform would take

320 multiplications, 128 additions, and 64 discrete division operations to compute.

Similar, the reverse transform would require 384 multiplications, 64 additions, and 64

division operations. These values were calculated using XC6200ADS software

functions implementing one-dimensional DCT transforms.

The DCT operates using a cosine function over a time period of 0 to 2n as a weight to

determine the amplitude of frequency components (AC coefficients) for each operand

within the input sequence. This operation is conducted upon the entire input data set as

93

Chapter 5: The Dynamic BinDCT Algorithm

the respective amplitudes of frequencies obtained are dependant upon the weighted
(over period of 2n) average of the DC coefficient.

Figure 5.1 illustrates the cosine function over a period of 0 to 21r. Coefficient weights in

the range of plus one to minus one are generated therefore can be of the same magnitude
but opposing signs. Using this property the number of calculation required to compute a
DCT can be reduced.

Amplitude

1.5

1 ---

0.5

0-

-0.5 --

-1

-1.5

t

Figure 5.1 Cosine Function Through Time Period 0 to 2t

Using Equations 5.1 and 5.2, for an operation of length `N' to reduce computation

overheads, function cos(7t(2n+1)k / 2N) can be calculated prior to system operation.

For a DCT of input sequence length (N = 8), these values are shown in Table 5.1.

Coefficients in Table 5.1 show that many identical but opposing weights (symmetrical)

are required to generate the DCT output. By formulating Table 5.1 as a matrix function

the symmetry of composite DCT operations can be exploited and number of

computations required reduced. Using this approach, Chen [73], developed a Fast

Discrete Cosine Algorithm (FDCT;) implementation that reduced computation

overheads by almost one sixth compared to Equation 5.1 and 5.2.

94

Chapter 5: The Dynamic BinDCT Algorithm

n O.. N-1
k O.. N-1 0 1 2 3 4 5 6 7

0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071
1 0.9808 0.8315 0.5556 0.1951 -0.1951 -0.556 -0.8315 -0.9808
2 0.9239 0.3827 -0.3827 -0.9239 -0.9239 -0.3827 0.3827 0.9239
3 0.8315 -0.1951 0.9808 -0.5556 0.5556 0.9808 0.1951 -0.8315
4 0.7071 -0.7071 -0.7071 0.7071 0.7071 -0.7071 -0.7071 0.7071
5 0.5556 -0.9808 0.1951 0.8315 -0.8315 -0.1951 0.9808 -0.5556
6 0.3827 -0.9239 0.9239 -0.3827 -0.3827 0.9239 -0.9239 0.3827
7 0.1951 -0.5556 0.8315 -0.9808 0.9808 -0.8315 0.5556 -0.1951

Table 5.1 Cosine Weights for Sample (n) of Input (N) at Frequency (k)

5.1.2 Chen's Fast DCT

Chen's FDCT implementation (Figure 5.2) resembled a Fast Fourier Transform (FFT)

flow diagram, and was formed using butterfly computations and plane rotations [73].

These features correspond to the summation and rotation of weighting coefficient signs

within Table 5.1. The mathematical functions represented by butterfly computations

shown in Figure 5.2 are explained in Figure 5.3.

For an input sequence of length (N = 8) Chen's DCT took 20 multiplications and 26

additions to compute. These computation overheads have been reduced further using

methods proposed by Hou [74] and Fieg [75], which reduce the number of

computations through scaling input values and further exploitation of symmetry and

redundancy within operations.

DCT algorithms such as these require calculation using floating-point multiplication

and addition units. Such units require extensive silicon footprints and have lower

operand throughput when compared to fixed-point implementations. Fixed-point

arithmetic units can be used, but at the expense of introducing rounding errors within

the result.

95

Chapter 5: The Dynamic BinDCT Algorithm

Ci/4

S

[1] -! 4 r r-N XI
-C n/4

[Z] C 3a/8 XI

S 3a/8

[3]

Y-

"T\ -S 3n/8 XI
C 3r/8

[4]

x X_

-C 7x/16 XI

-S 7a/16
7V4 [Sl C 3n/16 XI

-S n/4 S 3rz/16

[6] -S a/4 6 -S W16 XI

- C w/4 C 3x/16

Where: Ch = cos(n), Sn = sin(n)

Figure 5.2 Chen's Fast Forward DCT

4ý S 7al16

- C7UI6

A sin(m12) c
Where :C= Asin(zl2) +B

D=-B+A

-X p. BD

Figure 5.3 Butterfly Operation

5.2 The BinDCT Algorithm

41

2]

6]

1]

5]

3]

Tran and Liang [76] proposed a DCT mechanism more suited to fixed-point hardware

implementation. This method was known as the BinDCT, and calculated forward and

reverse transforms using a multiplier-less approximation of Chen's DCT. The basis of

BinDCT function was to replace all plane rotations (e. g. C 3n/8, -5 7E/4) by a series of

dyadic lifting-steps. Dyadic values are integer fix-point implementation friendly values

of format k/2m; Where k, m are integers.

96

Chapter 5: The Dynamic BinDCT Algorithm

The general butterfly structure and plane rotation within Figure 5.2 can be represented

using lifting-structures as shown in Figure 5.4. Lifting-structures are also known as

shears and ladder structures, and relate to the rotational operation of an inverse matrix.

X1
º kl

Yt

rll Yt X1

r12 u

X21
X2

Y2 X2 Y2

r22
ýlv

(i) General Butterfly (ii) Scaled Lifting Structure for (i)

X1
º cosa Y1

xi Cosa 1,1

sins tans -cosasina

sinn
X2

t
r-7----I X2 lo 10 cosa Y2 1/cosy Y2

(iii) Plane Rotation (iv) Scaled Lifting Structure for (iii)

Figure 5.4 BinDCT Lifting-Structures

Figure 5.4-i illustrates that a butterfly computation can be represented (Figure 5.4-ii)

using two lifting steps (p, u) and two scaling factors (kl, k2). Mathematically, the two

lifting-step operations can be considered as two individual multiplication (p, u) and

addition operations. The butterfly and lifting-step operations are shown in Equations 5.3

to 5.4.

Y1= rl 1X1 + r12X2
Y2 = r21X1+r22X2

Equation 5.3 DCT Butterfly Operation

97

Chapter 5: The Dynamic BinDCT Algorithm

Y1=kl(X1+pX2)

Y1=k1X1+klpX2

Y2 = k2(u(X1 + pX2) + X2)

Y2 = k2uX1 + k2(1 + pu)X2

Equation 5.4 Lifting Step Operation

The dyadic values of (p) and (u) are calculated using Equation 5.5. Examples of dyadic

values are listed in Table 5.2.

r12
rl1

rl 1r21

rl 1r22 - r21r12

Equation 5.5 Calculation of Dyadic Coefficients

The outputs of Figure 5.3-ii (Y1, Y2) are adjusted by two scaling factors (kl, k2) as

shown in Equation 5.6. Within the overall BinDCT structure, these individual scaling

factors are absorbed into one operation either in the first or last stage depending upon

whether a forward or reverse BinDCT calculation occurs.

kl=r11

k2 =
r11r22 - r21r12

rl 1

Equation 5.6 Calculation of Scaling Values

A Chen type plane rotation is shown in Figure 5.4-iii with the resultant scaled lifting

structure depicted in Figure 5.4-iv. The dyadic values and scaling factors within Figure

5.4-iv are calculated using substitution within Equations 5.4 and 5.5. This process is

shown in Equations 5.7 to 5.8 [76].

98

Chapter 5: The Dynamic BinDCT Algorithm

r12 cos(a)
_ tan(

rl l sin(a)
= a)

rl 1r21
u=

rl 1r22 - r21r12
- cos(a) sin(a)

(cos(a) cos(a)) - (-sin(a) sin(a))

_-
cos(a) sin(a)

cos(a)Z +sin(a)2

- cos(a) sin(a)
- _ -cos(a) sin(a) 1

Equation 5.7 Calculation of Dyadic Coefficients

k1= r11 cos(a)

k2 =
rl 1r22 - r21r12 (cos(a) cos(a)) - (- sin(a) sin(a))

rl l cos(a)

cos(a)2 +sin(a)2 1

cos(a) cos(a)

Equation 5.8 Calculation of Scaling Values

Using this substitution process (Equations 5.7-5.8) lifting structures for other plane

rotation butterfly weights can be calculated. To enable integer fix-point implementation,

BinDCT computations use dyadic values with limited fractional capability. This

limitation causes the results generated by butterfly operations to be truncated,

introducing a margin of error. To compensate for this effect, butterfly calculations

resulting in small magnitude outputs, have their scaling weights transposed using

trigonometric identities (Figure 5.5). This causes the output of the butterfly to be

rearranged, which causes the forward BinDCT transform output to be out of sequence

(Figure 5.6).

99

Chapter 5: The Dynamic BinDCT Algorithm

xi cosa Yi

sins

-sinn

X2 Y2
cosy

Xl -sina Y2

cosa

-cosa

X2 $m Yl

(i) Original Plane Rotation (ii) Transposed Plane Rotation

Where: cos2(a) > sin2(a), use original plane rotation (i)

cos2(a) < sin2(a), use transposed plane rotation (ii)

Figure 5.5 Transposition of Butterfly Operation

The use of dyadic coefficients (p, u) within the lifting structure enables a loss-less fixed-

point approximation of the DCT. The approximation is loss-less since a characteristic of

a lifting structure is that it can reconstruct an input from an output response without

error if identical coefficient values are used in both operations. To ensure loss-less

operations, the operand resolution of the hardware implementation must be at least that

of the dyadic coefficients used. Rounding errors will otherwise be introduced into

calculations, resulting in a reduction of BinDCT accuracy to approximating true DCT

operation.

The structure of forward and reverse BinDCTs are shown in Figures 5.6 and 5.7, with

the dyadic coefficients (u, p) determined for different accuracies in approximating DCT

operation listed in Table 5.2. For clarity, input and output scaling factors were excluded

from Figures 5.6 and 5.7 and are listed in Table 5.3. The raw output values generated by

the reverse BinDCT operation however, have a magnitude four times greater than the

actual value. This feature is caused through the summation of scaling factors.

Table 5.2 contains nine different configurations of dyadic lifting scheme coefficients
(C1-C9). These values were inserted into lifting structures as indicated by identities (Pt,)

and (U,,). Each configuration generated an approximation of the DCT algorithm, but

with varying degrees of accuracy. Configuration (Cl) was the most accurate, with (C9)

100

Chapter 5: The Dynamic BinDCT Algorithm

being the least accurate. All nine of these configurations could be used to provide loss-

less compression.
BinDCT Configurat ion C1- C9

Coefficients Cl C2 C3 C4 CS C6 C7 C8 C9
PI 0.40625 0.4375 0.40625 0.4375 0.375 0.5 0.5 1 0
Ul 0.34375 0.375 0.34375 0.375 0.375 0.375 0.5 0.5 0
P2 0.6875 0.625 0.6875 0.625 0.875 0.875 1 1 0
U2 0.48675 0.4375 0.48675 0.4375 0.5 0.5 0.5 0.5 0
P3 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875 0.25 0 0
U3 0.1875 0.1875 0.1875 0.1875 0.1875 0.25 0.25 0 0
P4 0.40625 0.40625 0.4375 0.4375 0.4375 0.4375 0.5 0 0
U4 0.6875 0.6875 0.6875 0.6875 0.6875 0.75 0.75 0.5 0
P5 0.40625 0.40625 0.375 0.375 0.375 0.375 0.5 0.5 0

Table 5.2 BinDCT Coefficient Configurations

LZ. 1

[31 7rx

/ ýK
P1

Ul

[4]

[5]

/ ý/V

_ýý _ný\ _ -(IN - _X
P3

--l er,

[61

mi -\M -
U4

S
P2

UZ

P4 P

U3
[7l

-: W

Figure 5.6 Forward BinDCT Flow Diagram

VJ "W

. 4VJ

: [4]

: [6]

: [2]

: [7]

: [5]

: [3]

: [1]

101

Chapter 5: The Dynamic BinDCT Algorithm

To compare the output of a forward BinDCT with that of the DCT algorithm, the results

of the BinDCT must be scaled by the factors shown in Table 5.3. If scaled transform

coefficients were then applied to the reverse BinDCT, they had to be re-adjusted
(scaled) prior to computation. If forward BinDCT outputs were not scaled, their results

could be applied directly to the reverse BinDCT. Regardless of whether result scaling

occurred, the output of the reverse BinDCT had to be divided by four.

xFo1

x

x

4
1/2

[6]
- /I N-

x 4-

1
rX

h 1

[2]
U1

P1

0 >

[7] -

[5]
P3

-

[3]
U2

üýr-

_ PS
U4

P4
7w

ý

U3

l>

Figure 5.7 Reverse BinDCT Flow Diagram

4x[O]

4x[1]

4x[2]

4x[3]

4x[4]

4x[5]

4x[6]

4x[7]

Tran's paper [76], detailed how the BinDCT could be implemented without using

multipliers, but instead using successive shifts and additions. This was possible since

dyadic coefficients could be represented using fixed-point binary notation. However,

work conducted previously in Section 4.2.4, determined that binary multiplication was

best performed on an FPGA through successive shifts and additions. It was concluded

therefore that the BinDCT was calculated using the shift and add method of distributed

multiplication.

Compared to existing floating-point based DCT implementations, the integer friendly

structure of the BinDCT appeared most suited for implementation within FPGA type

architectures. Furthermore, the complexity of the hardware configuration was dependant

102

Chapter 5: The Dynamic BinDCT Algorithm

upon the BinDCT configuration used, which itself was determined by the accuracy of
the DCT approximating required. Investigations conducted to determine the relationship

of this feature and DCT compression ratios are described next in Section-5.3.

Forward BinDCT
Applied to Output Scaling Factor

Reverse BinDCT
lied to Input Scaling Factor

X[O] sins/4 /2 X[O] 2/ sinic/4
X[4] sinic/4 X[41 1/ sinir/4
X[6] sin37t/8 /2 X[61 2/ sin3Tt/8
X[21 1/ 2sin3ic/8 X[2] 2sin37t/8
X[7] sin7ic/16 /2 X[7] 2/ sin77c/16
X[5] cos3ir/16 /2 X[5] 2/ cos3ir/16
X[3] 1/ 2cos3ir/16 X[31 2cos3n/16
X[l] 1/ 2sin7n/16 X[l] 2sin7ir/16

Table 5.3 BinDCT Scaling Factors

5.3 Dynamic BinDCT Investigation

The BinDCT implemented fixed-point multiplier-less approximations of DCT operation

through use of lifting ladder structures. These calculations were computed with varying
degrees of accuracy in approximating true DCT operation.

The operational characteristics of all BinDCT configurations were evaluated using five

input sequences as illustrated in Figure 5.8. These sequences were generated to reflect

the different frequency content and structure encountered within signal compression

operations. Each input applied contained eight operands in the range of 0 to 255 (8-bit).

Sequence-(i) represented a ramp function, (ii) a constant level, (iii) a Mexican hat

function, (iv) a step function, and (v) a spike function.

Results for forward and reverse DCT and BinDCT operations for these input sequences

were generated using custom software written in C++. The implementation of the

transforms within software reflected the structure of processing architecture required for

hardware implementation. Initially results were generated for all nine BinDCT

103

Chapter 5: The Dynamic BinDCT Algorithm

configurations but after preliminary analysis of the data work focussed upon

configurations Cl and C9.

This decision was based upon configuration Cl providing the most accurate

approximation of the DCT, whereas C9 required the least number of computations to

calculate, hence provided the simplest hardware implementation.

5.3.1 Transform Characteristics

The forward and reverse transforms of the five input sequences generated through the

software implementation of DCT and BinDCT configurations (Cl and C9) are listed in

Tables 5.4 to 5.8. The results contain the original input sequence, the transform outputs

(forward and reverse directions denoted by `F' and `R' respectively), and the calculated

Root Mean Square Error (RMSE) (Equation 5.9, [77]) for each transform configuration

and direction; For clarity, the results in the tables have be rounded to three and four

(RMSE) decimal places.

RMSE =1t (Xi
-T

)Z
m ; =1

Where: Xi = ith value of group m values
T= Target Value

Equation 5.9 Root Mean Square Error (RMSE)

n Input 10 to -1 FDCT RDCT FBinDCT-C1 RBinDCT-C1 FBinDCT-C9 RBinDCT-C9

0 31 404.819 31.000 404.819 31.000 404.819 31.000

1 63 -206.57 63.000 -206.920 63.000 -196.271 63.000

2 95 0.191 95.000 0.186 95.000 0.000 95.000

3 127 -21.453 127.000 -20.305 127.000 -37.885 127.000

4 159 -0.354 159.000 -0.354 159.000 -0.354 159.000

5 191 -5.938 191.000 -7.273 191.000 -53.214 191.000

6 224 -0.462 224.000 -0.462 224.000 -0.462 224.000

7 255 -1.345 255.000 -0.380 255.000 -31.385 255.000

RMSE N/A N/A 0.7206 0.0000 20.9569 0.0000

Table 5.4 Transform Outputs for Data Sequence-(i) Ramp Function

104

Chapter 5: The Dynamic BinDCT Algorithm

Val

Val

(i)

(iii)

Val

(ii)

Val
(v)

Val

08

Input Data Sequence (n =1 to 8)

Figure 5.8 BinDCT Input Sequence Characteristics

(iv)

n Input 0 to -1 FDCT RDCT FBinDCT-C1 RBinDCT-C1 FBinDCT-C9 RBinDCT-C9

0 255 721.249 255.000 721.249 255.000 721.249 255.000

1 255 0.000 255.000 0.000 255.000 0.000 255.000

2 255 0.000 255.000 0.000 255.000 0.000 255.000

3 255 0.000 255.000 0.000 255.000 0.000 255.000

4 255 0.000 255.000 0.000 255.000 0.000 255.000

5 255 0.000 255.000 0.000 255.000 0.000 255.000

6 255 0.000 255.000 0.000 255.000 0.000 255.000

7 255 0.000 255.000 0.000 255.000 0.000 255.000

RMSE N/A N/A 0.0000 0.0000 0.0000 0.0000

Table 5.5 Transform Outputs for Data Sequence-(ii) Constant Level

105

08
Input Data Sequence (n =1 to 8)

08

Input Data Sequence (n =1 to 8)

08

Input Data Sequence (n =I to 8)

08

Input Data Sequence (n =1 to 8)

Chapter 5: The Dynamic BinDCT Algorithm

n Input 0 to -1 FDCT RDCT FBinDCT-C1 RbinDCT-C1 FBinDCT-C9 RBinDCT-C9

0 255 540.937 255.000 540.937 255.000 540.937 255.000

1 85 0.000 85.000 0.000 85.000 0.000 85.000

2 170 -32.528 170.000 -31.626 170.000 0.000 170.000

3 255 0.000 255.000 0.000 255.000 0.000 255.000

4 255 180.312 255.000 180.312 255.000 180.312 255.000

5 170 0.000 170.000 0.000 170.000 0.000 170.000

6 85 78.530 85.000 78.530 85.000 78.530 85.000

7 255 0.000 255.000 0.000 255.000 0.000 255.000

RUSE N/A N/A 0.0102 0.0000 13.2260 0.0000

Table 5.6 Transform Outputs for Data Sequence-(iii) Mexican Hat

n Input 0 to -1 FDCT RDCT FBinDCT-Cl RBinDCT-Cl FBinDCT-C9 RBinDCT-C9

0 255 360.624 255.000 360.624 255.000 360.624 255.000

1 255 326.772 255.000 325.902 255.000 259.996 255.000

2 255 0.000 255.000 0.000 255.000 0.000 255.000

3 255 -114.747 255.000 -115.860 255.000 0.000 255.000

4 0 0.000 0.000 0.000 0.000 0.000 0.000

5 0 76.672 0.000 78.558 0.000 212.025 0.000

6 0 0.000 0.000 0.000 0.000 0.000 0.000

7 0 -64.999 0.000 -65.876 0.000 0.000 0.000

RMSE N/A N/A 0.8889 0 70.8618 0

Table 5.7 Transform Outputs for Data Sequence-(iv) Step Function

n Input 0 to -1 FDCT RDCT FBinDCT-C1 RBinDCT-C1 FBinDCT-C9 RBinDCT-C9

0 0 90.156 0.000 90.156 0.000 90.156 0.000

1 0 -24.874 0.000 -24.375 0.000 0.000 0.000

2 0 -117.795 0.000 -118.733 0.000 -138.005 0.000

3 0 70.835 0.000 71.880 0.000 0.000 0.000

4 255 90.156 255.000 90.156 255.000 90.156 255.000

5 0 -106.012 0.000 -106.012 0.000 -106.012 0.000

6 0 -48.792 0.000 -47.854 0.000 0.000 0.000

7 0 125.050 0.000 125.050 0.000 125.050 0.000

RINSE N/A N/A 0.6226 0.0000 32.4527 0.0000

Table 5.8 Transform Outputs for Data Sequence-(v) Spike Function

Tables 5.4 to 5.8 list the RMSE of BinDCT configurations C1 and C9 compared to true

DCT operation (FDCT;;, RDCT). Results indicated that RMSEs were dependant not

only upon the BinDCT configuration used, but also the frequency content of the input

sequence.

106

Chapter 5: The Dynamic BinDCT Algorithm

The forward transform of BinDCT configuration C9 generated the largest RMSE, with a

maximum error of 70.8618 determined (Table 5.7, sequence-iv). This high value was

attributed to the reduced accuracy of DCT approximation of FBinDCT-C9 compared to

FBinDCT-C1. In comparison transform FBinDCT-C1 largest RMSE was 0.8889 (Table

5.7), reflecting the increased accuracy of DCT approximation for FBinDCT-C1

compared to FBinDCT-C9.

The reverse transform RMSEs obtained for both configurations were zero, which was

attributed the operational characteristics of lifting ladder structures. With lifting ladder

operation, if identical coefficients were used within forward and reverse transforms, the

original data was reconstructed without loss.

5.3.2 BinDCT Compression

By representing data using its frequency components, spectral frequency redundancy

invisible in the time-domain can be extracted and used to compress the signal. Within

the frequency domain, frequency components at zero can be removed without

compromising the representation of information in the time-domain.

The compression ratio can be enhanced by quantisisation of the forward transform

coefficients, to increase the number at zero. Table 5.9 lists number of frequency

components generated at zero. These indicated that prior to quantisisation, overall
BinDCT-C9 achieved the greatest data redundancy.

To investigate the DCT coding-gain [76] of each configuration, the forward transform

coefficients generated were quantisised, with results generated listed in Tables 5.10 to

5.14. To provide comparisons, transforms were evaluated using the number of forward

transform coefficients at zero as benchmarks (n: N), RMSE compared to true DCT

operation, and maximum error of reconstructed data; Where `n' is the number of

coefficient(s) at zero, and `N' is the original input sequence length.

107

Chapter 5: The Dynamic BinDCT Algorithm

Ratio of Coefficients at Zero : Total Number of Coefficients
Input Sequence DCT BinDCT-C1 BinDCT-C9

i 0: 8 0: 8 1: 8
ii 7: 8 7: 8 7: 8
iii 4: 8 4: 8 5: 8

(iv) 3: 8 3: 8 5: 8
v 0: 8 0: 8 3: 8

Table 5.9 Inherent DCTBinDCT Compression

The RMSEs generated for both DCT and BinDCT configurations represents the error

obtained between the original and reconstructed data sequences. The maximum
BinDCT error was determined by comparing BinDCT reconstructed output data against

the original input.

Tables 5.10 to 5.14 indicate the ability of the DCT and BinDCT transforms to

reconstruct data using quantisised forward transform coefficients. In Table 5.14 the

maximum error (Max Error) of BinDCT-C9 is zero for three zero coefficients. This

value is attributed to the fact that BinDCT-C9 originally had a loss-less zero coefficient

ratio of 3: 8.

DCT BinDCT-C1 BinDCT-C9
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error

1 0.0675 0.088 0.0656 0.086 0.000 0.000
2 0.1420 0.213 0.1412 0.211 0.1250 0.125
3 0.2165 0.375 0.1950 0.398 0.2165 0.375
4 0.5222 0.784 0.2549 0.477 11.3158 16.125
5 2.1635 3.661 2.5540 3.993 15.8770 16.125
6 7.8874 10.825 7.7107 10.653 27.6420 48.125
7 73.4582 112.125 73.4582 112.125 73.4582 112.125

Table 5.10 Reconstructed Quantisised Data: Sequence-(i)

DCT BinDCT-C1 BinDCT-C9
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error

7 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.11 Reconstructed Quantisised Data: Sequence-(ii)

108

Chapter 5: The Dynamic BinDCT Algorithm

DCT BinDCT-C1 BinDCT-C9
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error

5 11.5004 15.026 11.1501 14.609 0.000 0.000
6 30.0520 42.500 30.0520 42.500 30.0520 42.500
7 70.4783 106.250 70.4783 106.250 70.4783 106.250

Table 5.12 Reconstructed Quantisised Data: Sequence-(iii)

DCT BinDCT-C1 BinDCT-C9
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error

4 22.9806 31.875 23.3158 32.403 0.000 0.000
5 35.5376 63.750 36.1132 64.419 0.000 0.000
6 53.9331 95.625 54.8250 97.534 90.1561 127.500
7 127.500 127.500 127.500 127.500 127.500 127.500

Table 5.13 Reconstructed Quantisised Data: Sequence-(iv)

DCT BinDCT-C1 BinDCT-C9
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error

1 8.7943 12.198 8.6091 11.953 0.000 0.000
2 19.3629 32.880 19.0259 32.437 0.000 0.000
3 31.6564 64.186 32.0217 64.718 0.000 0.000
5 55.0831 95.189 55.2939 95.438 45.0781 63.750
6 66.6256 139.262 66.4961 138.644 63.7500 127.500
7 78.5712 193.676 78.5231 193.491 78.0775 191.250

Table 5.14 Reconstructed Quantisised Data: Sequence-(v)

Results indicated that as the number of forward transform zero coefficients increased

the RMSE between original input and recovered output sequences increased.

Furthermore, BinDCT-C9 output degradation was greater compared to DCT and

BinDCT-C1 for each comparative quantisised step. This was attributed to the BinDCT-

C9 approximation of the DCT being less accurate than that of BinDCT-C I.

For high frequency content inputs (sequences-i & -iii) for a given accuracy, greater
forward transform coefficient redundancy was obtained using BinDCT-C1 compared to

BinDCT-C9. The RMSE indicated that although errors were introduced, the reverse

109

Chapter 5: The Dynamic BinDCT Algorithm

transform output still contained the characteristics features of the original input (lossy

compression). Compared to the BinDCT-C1, the BinDCT-C9 output for the same

number of coefficients at zero was distorted. This is illustrated in Figure 5.9 for

sequence-(i), with five forward transform coefficients set to zero. Figure 5.10 highlights

the errors measured between original input and reconstructed data for each transform.

For low frequency content input sequences (sequences-iv & -v), BinDCT-C9 generated

greater loss-less compression ratio than BinDCT-C1. This was true for the BinDCT-Cl

even when quantisisation was used to increase the compression ratio. For example for

both BinDCT and DCT configurations, Figure 5.11 represents sequence-v reconstructed

with three forward coefficients set to zero.

300

250

- 200

- 1 50 --- Original Input
Z

True DCT
ö

-- ' 100 ßinDC T-C 1

----- BinDC1'-C9
-

50 --- r---

0---. _---
12345G78

Reverse Transform Outputs

Figure 5.9 BinDCT Reverse Transform Output of Sequence-(i) (5 Zeros)

110

Chapter 5: The Dynamic BinDCT Algorithm

20

15 ",

10

5

0

5ý

-10

-15 ` ýI

-20
Reconstructed Data Error

True DCT ý

BinDCT-C1

------ BinDCT-C9 L

Figure 5.10 DCT and BinDCT Reconstructed Data Error Sequence-(i) (5 Zeros)

300

250

200

150

loo

O so

0

-so

-100
Reverse Transform Outputs

 Original Input

Q "true DCT

Q13inDCi'-Cl

Qut ilx`I-('')

mlu
Figure 5.11 BinDCT Reverse Transform Output of Sequence-(v) (3 Zeros)

From these experiments it was determined that to achieve high BinDCT compression

ratios, input sequences containing high frequency content should be compressed and

quantisised using BinDCT-C 1. Input sequences containing low frequency content

111

Chapter 5: The Dynamic BinDCT Algorithm

should instead use BinDCT-C9. Similar results could be obtained using BinDCT-C1 but

at the expense of using more complex processing architecture than actually required.

To implement these concepts, the frequency content of input sequence must be known.

In reality this does not occur, therefore to implement the most efficient BinDCT

operation in terms of compression and complexity of design, the processing architecture

must be able to switch between the BinDCT-C1 and BinDCT-C9 during run-time as
dictated by system operation.

5.3.3 Two-Dimensional Dynamic BinDCT Operation

Within image-processing applications, images can be compressed using two-

dimensional DCT transform operations, constructed using two individual one-
dimensional transforms (Equations 5.1 and 5.2). Through updating the BinDCT

configuration used for each two-dimensional transform during this process, the optimal

loss-less compression of the image can be obtained. This was a novel application that

has been developed by the author.

A two-dimensional DCT/BinDCT transform can be constructed using two independent

one-dimensional transforms. These are applied in a horizontal (row) and vertical

(column) fashion to block of pixels known as a tile. A tile can be of any size, but a

common size is 64 pixels (8x8), which equates to row and column sizes of 8 pixels each

as illustrated in Figure 5.12. This tile size was used during the investigation since one-

dimensional transforms of size (N=8) were used to compute the two-dimensional

transform. A typical image of size 512x512 pixels would contain 4096 8x8 pixel tile

operations.

To compress an image, a two-dimensional forward transform operation could be

applied. This was performed by first applying a one-dimension forward transform to

either each row or column (choice was dependant upon the user), with the resultant

112

Chapter 5: The Dynamic BinDCT Algorithm

coefficients generated replacing the original data within the tile. This is shown in Figure

5.12.

7
6

5
Rows 4

3
2

0

8x8 Pixel Tile

01234567
Columns

Row 0 is computed first, with the output forming
Row 0 in a new 8x8 coefficient block

->
One-dimensional Forward DCT Transform Output

Figure 5.12 One-Dimensional Forward Transform (Row)

A second one-dimensional transform was then applied to the each column using the

coefficient generated previous as the input as shown in Figure 5.13.

8x8 Coefficient Tile
167.23 -4.65 -2.23 0.77 -1.77 -0.3 2.86 0.47
166.88 -2.48 -3.35 -0.99 -2.83 2.25 2.94 -0.06
169.7 -3.3 -3.16 -4.31 0 -1.01 5.17 2.07
168.29 -1.05 3.17 3.13 1.41 -4.37 0.2 -0.55
162.64 -4.83 -2.6 -1.49 1.41 -0.56 1.09 1.54
159.45 -5.42 -4 -1.42 1.06 -0.61 0.53 4.39
163.7 -4.03 -5.03 -4.99 1.77 0.69 1.73 3.73
163.7 -4.03 -5.03 -4.99 1.77 0.69 1.73 3.73

V

467.25

-6.38
0.26
5.42 Column 0 is computed, with the output forming a
0.75 section of the two-dimensional DCT response

-2.84
-0.65
-0.94

One-dimensional Forward DCT Transform Output

Figure 5.13 One-Dimensional Forward Transform (Column)

113

Chapter 5: The Dynamic BinDCT Al oorithm

Completion of the forward two-dimensional DCT gives a row and column result as

shown in Figure 5.14

467.25 -10.53 -7.87 -5.05 1 -1.14 5.75 5.41

-6.38 -1.28 -2.86 -4.18 3.96 0.3 -2.23 4.02
0.26 -0.89 -3.87 -2.77 -1.71 3.32 1.34 0.98
5.42 2.49 1.06 -2.05 0.48 -0.72 1.65 -0.75
0.75 0.24 3.13 3.23 1 -2.07 -1.59 -1.75
-2.84 -0.84 -2.45 -1.29 -1.16 2.68 0.17 0.16

-0.65 -1.55 -0.91 -0.98 0.45 -1.1 1.09 1.89

-0.94 1.47 2.69 4.05 -0.5 -1.18 -2.14 -0.8

Figure 5.14 Resultant Two-Dimensional Transform

To reconstruct the original image, one-dimension reverse transforms are applied to the

coefficient tile, first upon each column then upon each row. Using two-dimension DCT

transforms, images can be compressed through removal of zero and small AC frequency

coefficients. Through removing only zero coefficients loss-less compression is

achieved. However, if coefficient values are quantisised, errors will be introduced

within the reconstructed image. The non-linear properties of the human eye in

distinguishing differences between colours and grey-scale gradients, causes the error

threshold to be dependent upon the source image.

To investigate dynamic two-dimensional BinDCT compression, the image processing

standard image `Lena' (Figure 5.15) was compressed using DCT, static, and dynamic

BinDCT transforms. This was conducted using functions within the XC6200ADS

software tools written by the author. The results obtained (Table 5.15) indicate the

number of zero coefficients obtained (coefficient < 0.5) through performing the

appropriate two-dimensional transform on Figure 5.15.

114

Chapter 5: The Dynamic BinDCT Algorithm

Figure 5.15 Lena Benchmark Image

a

A

True DCT BinDCT-C1 BinDCT-C9 Dynamic BinDCT
38899 38777 33359 40891

Table 5.15 Loss-less Compression of Lena Image

From Table 5.15 it was determined that 529 out of 4096 (13%) tile operations exhibited

greater inherent loss-less compression using configuration BinDCT-C9 than BinDCT-

C 1. To determine which BinDCT configuration generated the greatest compression for

each tile operation, XC6200ADS software functions were written to analyse the tiles

inherent coding gain for each BinDCT configuration. Each tile was then computed

using the BinDCT configuration that generated the greatest number of forward

transform zero coefficients. Using this information the distribution of BinDCT

configurations within the source image (Figure 5.15) was determined. This is shown in

Figure 5.16, with the corresponding BinDCT-C9 tile operation locations represented in

black and BinDCT-C 1 operations in white.

115

Chanter 5: The Dynamic BinDCT Algorithm

96 1
- 96

 = ; ýý
ýei

i ý n

 U'.. 1.. .
ý. 1

".
a we

"'ý

Z n "

 .

ti
' L " 1 ZU

1

 11 "ii,
1 >

" .. "1

 '1 .1a3 we ý. :
a. :. Y at

ý 308 1! " . r . 1
an ti

"ý
.'

ter"o r%U . , er
ý ýý 1
ý''ý

.

1
''. ' ý. "

ý
Fi .1.

1
k

 G7 ll

Figure 5.16 BinDCT Configuration Distribution

The source image was compressed by computing each tile using the appropriate

BinDCT configuration. This technique resulted in an additional 1992 forward transform

coefficients generated being at zero (Table 5.15,40891-38899).

To reconstruct the original image the forward BinDCT transform configuration used for

each pixel tile had to be known. This was required to allow coefficients to be

reconstructed using the correct reverse BinDCT transform. This information was

encoded within the compressed data using Run Length Coding techniques [72].

Through adapting the BinDCT configuration as required for each tile, the volume of

transform coefficients at zero increased when compared to static BinDCT and

traditional DCT implementations. The development of this technique provided the basis

for dynamic hardware implementation of the BinDCT algorithm.

5.4 Summary

This chapter has described developing an application were system throughput and

compression has been improved through dynamic hardware implementation. This

application is a recently develop integer-friendly approximation of the DCT called the

BinDCT.

116

Chapter 5: The Dynamic BinDCT Algorithm

To improve loss-less compression within an image, a dynamic two-dimensional

BinDCT algorithm application has been developed. Through actively swapping the

BinDCT configuration used to compute each 8x8 pixel tile, the compression ratio has

been increased. Swapping active BinDCT configurations improves operand throughput

since the computational complexity of BinDCT-C9 is approximately half that of

BinDCT-C 1.

To develop a hardware implementation of this application, dynamic hardware was

required to switch between different BinDCT configurations. The development and

operation of this architecture is described next in Chapter-6.

117

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

Chapter 6

Dynamic XC6264 BinDCT Coprocessor

Introduction

This chapter describes the construction of XC6264 based dynamic BinDCT hardware;

inserted within the TIM-40 architecture. XC6264 hardware appeared as RTR C40

memory mapped coprocessor peripherals.

The XC620ODS configuration mode used and C40 processor interface operation is

described in Section-6.1. Next the design and construction of the underlying XC6264

BinDCT architecture is described in Section-6.2. Section-6.3 details the implementation

of fixed BinDCT coprocessor operation, whilst Section-6.4 expands to RTR dynamic

operation.

Section-6.5 compares one and two-dimensional XC6264 BinDCT transform operations

against software results generated in Chapter-5. Conclusions derived from the work

present in this chapter are then presented in Section-6.6.

The CLC array floor plans of key XC6264 FPGA designs are detailed in Appendix-VI,

whilst overviews of both XC6200 and C40 DSP device architectures provided in

Appendix-III.

6.1 Design Overview

To interface dynamic FPGA and DSP processing hardware, both components must

interact at hardware and user software levels. This capability was made possible through

the development of the XC620ODS (Section-3.3) and upgrading existing C40 TIM-40

modules (Section-3.4.2).

The dynamic BinDCT coprocessor architectures developed were constructed through

combining both XC620ODS C40 coprocessor (Section-3.4.2) and self-configuration

118

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

(Section-3.4.3) modes of operation. The XC620ODS prototype environment mode

(Section-3.2.1) was also used during system development, enabling real-time XC6264
hardware debugging (Section-4.2).

The base architecture of the XC6264 dynamic coprocessor consisted of three sections as

shown in Figure 6.1. These were the self-configuration control mechanism, C40 Global

buses interface, and coprocessor function (represented by unused CLCs in Figure 6.1).

The BinDCT processor hardware developed was implemented within the coprocessor
function area (approximately 77% of XC6264 CLCs available).

The C40 and XC6264 interacted through a parallel interface formed using the C40s

Global buses interface and hardware configured within XC6264 CLC array. The

XC6264 interface consisted of control state machines, a four to sixteen-bit address
decoder (A]5-AO), and bi-directional data-bus (D7-DO). Addresses (A15-AO) were used

to control aspects of coprocessor operation including operand transfer and instigating

RTR. C40 programs could manage such functions through accessing A15-AO (XC6264

address space) mapped within the C40s Global bus address space.

XC6264 FPGA

r-- - -------
I I

XC6264
FastMAPTm
Interface

TMS320C40

Global Bus
Interface

External Configuration
Memory Store

Self-Configuration
Controller

XC6264 CLC Array

Done

Go RTR

Unused CLCs Available to Implement
Coprocessor Function

Al S-AO I 111 D7-DO

Global Bus Interface ýi"

iý,.
:.,..

_,
w

.:. i:.......
w.. ý..

_.....
ý
.:.

ý ý...:.... ýE. ý. ý
.
ýý

..
ý.. ý. h

1

Figure 6.1 XC6200 based Dynamic Coprocessor Topology

.. ý

...
"i
"'
ý''
'. '"

`3ýt

119

Chanter 6: Dynamic XC6264 BinDCT Coprocessor

6.1.1 TMS320C40 Coprocessor Management

To simplify design of the XC6264 Global buses interface, C40 control signal GSTRBI

was required to change state for each coprocessor (XC6264) access; GSTRBI indicated

that an address within a particular C40 memory page had been selected. When accessing

common memory page addresses, mechanisms within the C40s DMA forced GSTRBI

to a constant state. Prior to addressing the XC6264, a dummy address operation had to

occur to ensure that a different memory page would be activated (GSTRBI toggled).

Run-time management of the coprocessor was performed through software executed

upon the C40, written in a variant of the C language. Examples of program code used to

access the XC6264 coprocessor are shown in Program 6.1. XC6264 hardware timings

were also performed through utilising the C40s internal watchdog timers through

software macros.

Program Code (C40 C Comment/Action

#include <stdlib. h> C Library Declarations

#include <stdio. h>

int main(int argc, char *argv[]) Start of Program

volatile long *bfield ointer dum =volatile long*) Ox8000000f; Define dummy address

volatile long *bfield_pointer d0 = (volatile long*) Ox8fffff t) Define XC6200 Address A0

volatile long *bfieldpointer dl = (volatile long*) Ox8fffffil; Define XC6200 Address Al

volatile long *bfieldpointer d2 = (volatile long*) Ox8ffffff2; Define XC6200 Address A2

volatile long *bfieldpointer d3 = (volatile long*) Ox8fffff3; Define XC6200 Address A3

volatile long *bfield ointer df =volatile long*) Ox8fffffff; Define XC6200 Address Al S

volatile long *glob int con =volatile long*) 0x00100000; Define GMICR Address

volatile long glob int, data; Define Program Variables
*bfieldpointer dum = 0x00000007; Dummy Memory Access

XC6200 Write Cycle
*bfield pointer d2 = 0x23; 2316 Written to Address A2
*bfieldpointer dum = 0x00000000; Dummy Memory Access

XC6200 Read Cycle
data = *bfield pointer d8; Data Read From Address A8

return(0); End of Program
}

Program-6.1 C40 XC6200 Coprocessor Addressing

120

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

Within Program-6.1 pointers to XC6264 addresses Als-AO mapped within the C40s

Global bus address space were listed first, and defined as *bfield pointer dO to
*bfield pointer df. These pointers corresponded to C40 Global bus address locations

8 ffffff. 0 16 to 8 ffffffft 6.

Before data transfer occurred between the XC6264 and C40, XC6264 address space

within the C40 Global bus memory map had to be configured. This was achieved

through configuring the Global Memory Interface Control Register (GMICR). The

value written was dependent upon the Global bus interface configuration and
determined from the C40s data book [65]. The XC6264 coprocessor could then be

addressed, with each access routine including a preliminary dummy memory accesses to

ensure signal GSTRBI toggled during the actual coprocessor read/write operation.

6.1.2 XC6264 Dynamic Configuration

For dynamic RTR hardware operation to occur, the coprocessor (XC6264) had to be

reconfigured during run-time. This was achieved by instigating self-configuration

through the XC6264 address space. Once this occurred, the self-configuration controller

then updated the coprocessors function using RTR independent of C40/host computer

operation. Configuration data required for RTR was stored within and accessed from a

local XC6264 coupled configuration memory (Section-3.4.3).

Within the XC6264 self-configuration control unit, signal Go RTR (Figure 6.1)

initiated self-configuration, whilst Done indicated completion. The request, selection

and generation of the next active configuration could be determined within the

coprocessor function or by the C40 via A15-A 0.

6.2 XC6264 BinDCT Construction

To investigate dynamic BinDCT operation, the forward and reverse transforms of

configurations BinDCT-C1 and BinDCT-C9 were implemented (using VHDL) within

the user-function area of the XC620ODS dynamic coprocessor configuration (Figure

121

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

6.1). This task required developing hardware implementations of each BinDCT

configuration (Section-6.2) integrating the resultant processor architectures within the

skeleton coprocessor (Section-6.3), and incorporating RTR within design (Section-6.4)

and application (Section-6.5).

In total four BinDCT configurations were constructed. These were configurations

FBinDCT-C1, FBinDCT-C9, RBinDCT-C1 and RBinDCT-C9 (F and R denote forward

and reverse transforms respectively). The C40 interface and self-configuration control

mechanism were developed prior to construction of XC6264 BinDCT hardware.

The four XC6264 BinDCT coprocessors developed functioned as eight concurrent

twos-complement binary serial processing pipelines. System operands consisted of 20-

bit fixed-point data. Using this scheme decimal numbers in the range of +-0.031225 to

16383.98765 could be represented. The operation, control and operand transfer within

these pipelines was governed by the C40 through the XC6264s Global interface address

space.

Each transform structure was divided into four operational stages. Using these partitions

BinDCT transforms were developed in a modular fashion, allowing efficient replication

of common processing elements. Figures 6.2 and 6.3, illustrated the simplified structure

of C9 configurations compared to Cl (shown in Figures 5.6 and 5.7). Within C9 all

lifting ladder coefficients were set to zero, resulting in lifting-ladder computations being

reduced to simple addition or subtraction operations.

BinDCT coefficient scaling parameters were not included within the resultant XC6264

designs. It was envisaged to incorporate these parameters using CORDIC algorithms

[3]. Through the development of XC6264 based CORDIC hardware, it was concluded

that because of XC6264 signal routing limitations, CORDIC hardware was not suitable
for configuration within large XC6264 designs. This was because CORDIC

implementations required irregular XC6264 footprints, large volumes of CLCs, and

extensive local and chip-wide routing resources.

122

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

Figure 6.2 BinDCT C9 Forward Transform Flow Diagram

xroi .,.. mT

X

X

X

X

XI

XI

XI

4x[O]

4x[1]

4x[2]

4x[3]

4x[4]

4x[5]

4x[6]

4x[7]
1wII-W
I1
111

Stage 1 Stage 2 Stage 3 Stage 4

xX

[(]
_

[2]

JIN

[5]

[3] - -

- > K 1 [)
- - -

Figure 6.3 BinDCT C9 Reverse Transform Flow Diagram

123

Stage I Stage 2 Stage 3 Stage 4

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

Figures 5.6,5.7,6.2 and 6.3 illustrated how the construction of each BinDCT

configuration could be divided into four sections. It was therefore logical to develop and

implement each transform configuration in four stages. FBinDCT-C1 was the first

configuration developed. Each stage within this transform was constructed and verified

operational before commencing the next. This process is described in Section-6.2.1.

6.2.1 FBinDCT-C1: Stage-One

FBinDCT-C1 stage-one appeared similar to a general butterfly structure, and was

constructed using twos-complement serial binary addition and subtraction units.

Initially BinDCT hardware was constructed for maximum throughput using bit-slice

designs and parallel data paths. After placement and routing it became apparent that

using these methods BinDCT transform hardware would not fit within the XC6264

FPGA. Instead, serial based hardware implementations requiring less XC6264 CLCs

and routing resources, but with reduced operand throughput were developed.

Conversion of bit-slice to serial designs is illustrated in Figure 6.4.

Figure 6.4 XC6264 Serial Adder Bit

The serial adder devised consisted of one adder-bit and a register used to store the cout

output generated by the previous bits calculation. This value was then used as the

present cin input. Serial subtraction units were developed using similar methods.

Within the operation of FBinDCT-C1 stage-one individual serial butterfly operations

were processed concurrently. Within the resultant coprocessor designs, to govern

124

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

system operation, pipeline control signals would be generated by the C40 via the

XC6264 coprocessor interface. However during this stage of development, control

signal generation processes was performed using the FastMAPTm interface. Pipeline

control signal generation is described in Section-6.3.

FBinDCT-C1 stage-one construction required 52 CLCs, with a routing footprint of 3

CLCs wide by 20 CLCs high. The design could operate at a maximum frequency of
102.81 MHz, having a pipeline cycle length of 194.5nsec (20-bit data).

Within the pipeline architecture, this design required one pipeline cycle to compute.

When coupled to the other BinDCT stages, pipeline delays of individual stages

overlapped. The resultant design of the stage-one is shown in Figure 6.5.

X - ý Adder YO
o

X1
Adder Yl

x6 _ ý

x2
Adder 4 Y2 xs

X3
Adder 1'3

_ x4 ý

X3 - º Subtractor Y4
X4

X2
Subtractor YS x5

xi - º Subtractor Y6
X6

XO
Subtractor Y7 ý_ X ý

Figure 6.5 FBinDCT-C1 Stage One Architecture

125

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

6.2.2 FBinDCT-C1: Stage-Two

Stage-two of FBinDCT-C1 required construction of dyadic lifting-ladders. To compute

this function a serial dyadic shift operation was devised. This consisted of a shift

register, adder chain and control logic, as shown in Figure 6.6. This unit was common

for each dyadic value required, with the actual value configured dependant upon inputs

Ena_O to Ena_4.

Ins

Output

ng Adder

Figure 6.6 Serial Dyadic Shift Unit

To illustrate the operation of the serial dyadic shift unit, consider the following fixed-

point binary number 0000 0001.00002 scaled using dyadic values 0.5 to 0.34375.

Dyadic Value Scaled Output Value Shift Register Delay

0.5 0000 0000.100002 t+t

0.25 0000 0000.010002 t+2

0.125 0000 0000.001002 t+3

0.1875 0000 0000.001102 t+3 + t+4

0.34375 0000 0000.010112 t+2 + t+a + t+s

Table 6.1 Dyadic Number Representations

A binary number can be scaled by dyadic values of 0.5,0.25 and 0.125 by shifting the

input by one, two, and three places respectively to the right. With respect to Figure 6.7,

these operations relate to using output taps (t+i, t+2, t+3) of the shift register. For a dyadic

126

Shift Register

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

value such as 0.1875, multiple shift register output taps (t+3, t+4) are summed together

within the adder.

When using twos-complement data the sign-bit (MSB) must be included within each
dyadic shift operation. Since the design in Figure 6.6 operated using serial operands

each dyadic shift took two pipeline cycles to compute. Lifting-structures P4, P5 and U4

were constructed through coupling dyadic-shift units to addition (U4) or subtraction

units (P4, P5), as dictated by the flow diagram (Figure 5.4).

Within FBinDCT-C1 stage-two lifting structures P4, U4 and P5 connected in series,

allowing pipeline cycles of each lifting-structure operation to overlap. This feature

reduced the delay of stage-two to 3 pipeline cycles. Consequently, stage-two operands

unaffected by dyadic shift operations had to be delayed by 3 pipeline cycles to ensure

output data coherency. The resultant structure of stage-two is shown in Figure 6.7.

XO Delay Delay Delay
YO

XI Delay Delay Delay
Yl

X2 Delay Delay Delay
Y2

X3 Delay Delay Delay
Y3

X4 Delay Delay Delay
Y4

Figure 6.7 FBinDCT-C1 Stage Two Architecture

The implementation of this design required 648 CLCs (116 per lifting-structure, 20 per

pipeline delay) and a routing footprint of 18 CLCs wide by 56 CLCs high. The

maximum clock frequency of the design was calculated to be 8.38MHz. Using 20-bit

127

X7 Delay Delay Delay
Y7

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

data the initial output of stage-two required three pipeline cycles to compute (7.16psec).

Once the pipeline was full, a result would be generated every cycle (2.39µsec).

6.2.3 BinDCT-C1: Stage-Three

The implementation of FBinDCT-C 1 stage-three -required addition and subtraction

butterflies only, with no lifting-structures required. The fabrication of this stage was

similar to stage-one (Section-6.2.1) and constructed using replicated stage-one

component as shown in Figure 6.8. The XC6264 implementation properties obtained for

this stage were therefore identical to those obtained for stage-one.

6.2.4 BinDCT-C1: Stage-Four

Stage-four comprised four pairs of concurrent operating lifting-structures. Each lifting

structure was constructed using techniques described in Section-6.2.2. The flow diagram

of the resultant design was identical to the original FBinDCT-C1 flow diagram and has

therefore not been included. Through overlapping serial dyadic lifting steps, stage-four

required two pipeline cycles to compute when empty. Once full, a result could be

generated every pipeline cycle.

Stage-four was implemented within 928 CLCs, with a routing footprint of 48 CLCs

high by 38 CLCs wide. The maximum operating frequency of stage-four determined

was 8.8MHz. The initial output of stage-four took 4.54µsec to compute (two pipeline

cycles) after this results were generated every 2.27µsec (one pipeline cycle).

128

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

XO
X3 _ ý

Adder YO

- ý Adder Yt

X1
Subtractor Y2

.

Xo
X3 Subtractor Y3

Adder Y4 X5 _ ý

X4
Subtractor Y5

X6
ý_ X ý

Subtractor Y6

X6
Adder Y7 X 7

Figure 6.8 FBinDCT-C1 Stage Three Architecture

6.2.5 XC6264 BinDCT Hardware Characteristics

To verify the operation of each stage, operands and system control signals were applied

through the FastMAPTm interface. Additional hardware configured within each stage

converted operands from parallel to serial format and performed 110 transfer. Results

generated were then observed using XC6200ADS tools.

The three remaining BinDCT transforms were each constructed and evaluated using the

four-stage development concept presented. Through reuse and adaptation of hardware

modules developed previously, development overheads were reduced and differences

between transforms kept to a minimal, aiding RTR configuration data generation.

Within configurations FBinDCT-C9 and RBinDCT-C9, dyadic lifting structure
coefficients were set to zero. This reduced the hardware implementation of the

129

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

equivalent FBinDCT-C1 and RBinDCT-C1 stages to only addition, subtraction, and

units. This reduced the number of pipeline cycles required to generate each transform.

The XC6264 hardware characteristics of each BinDCT transform neglecting
FastMAPTM interface overheads, coprocessor interface, and self-configuration controller
delays are detailed in Tables 6.2-6.4. Results highlighted the reduction in hardware

overheads and performance benefits gained through using BinDCT configuration C9

instead of Cl.

Stage 1 Stage 2 Stage 3 Stage 4 Max. Frequency

FBinDCT-C1 102.81MHz 8.37MHz 102.81MHz 8.8MHz 8.37MHz

FBinDCT-C9 102.81MHz 20.08MHz 102.81MHz 8.57MHz 8.57MHz

RBinDCT-C1 8.8MHz 102.81MHz 8.43MHz 102.81MHz 8.43MHz

RBinDCT-C9 9.12MHz 102.81MHz 19.82MHz 102.81MHz 9.12MHz

Table 6.2 BinDCT Hardware Characteristics: Operating Frequency

Table 6.2 indicates the maximum clock frequency obtained for each stage within the

transforms and number of XC6264 CLCs required to implement each design. Identical

results were obtained for several different stages since common hardware components

were re-used for different transforms.

Stage 1 Stage 2 Stage 3 Stage 4 Total CLCs Used

FBinDCT-C1 52 648 52 928 1680

FBinDCT-C9 52 14 52 379 497

RBinDCT-C1 928 52 648 52 1680

RBinDCT-C9 379 52 14 52 497

Table 6.3 BinDCT Hardware Characteristics: XC6264 CLCs Required

The maximum operand throughput (pipeline full) of each transform is listed in Table

6.4. These values were determined using the maximum clock frequency of the design,

the pipeline cycle length (20-bit) and the number of pipeline cycles required to compute

the result. The results generated include operand throughputs calculated when the

pipeline was initially empty. Once the pipeline was full, a result was generated every

pipeline cycle. If adjacent pixel tiles were processed by the same BinDCT configuration

130

Chanter 6: Dynamic XC6264 BinDCT Coprocessor

(Cl or C9), the pipeline would remain full. Only when BinDCT configuration was

switched did the pipeline have to be refilled.

Number of Pipeline Cycle BinDCTThroughpu (At Max Frequency)

Pipeline Cycles Duration Pipeline Full Pipeline Empty

FBinDCT-C1 6 2.389 ec 418.58kBinDCT o s/sec 69.76kBinDCT o s/sec

FBinDCT-C9 3 2.333 sec 428.63kBinDCT o s/sec 142.88kBinDCT o s/sec

RBinDCT-C1 6 2.372 sec 421.56kBinDCT o s/sec 70.26kBinDCT o s/sec

RBinDCT-C9 3 2.192 ec 456.2OkBinDCT o s/sec 152.07kBinDCT o s/sec

Table 6.4 BinDCT Performance Characteristics

Comparisons between XC6264 BinDCT hardware operation and software BinDCT

simulation and true DCT operation are discussed within Section 6.4.

6.3 BinDCT Static Coprocessor Integration

Throughout the development phase of BinDCT processor hardware, operand transfers

and pipeline control signal generation were conducted via the FastMAPTm interface. To

integrate BinDCT configurations within C40 XC6264 coprocessors, operand transfer

and pipeline control had to be performed by the C40. This occurred by accessing

XC6264 coprocessor address space, located within the C40 Global bus memory map.

Operand transfer and initialisation of BinDCT pipeline cycles was governed by the C40

through accessing XC6264 memory mapped addresses. The interface itself consisted of

an address decoder, control logic, data paths, and operand registers as shown in Figure

6.9. To perform XC6264 BinDCT operations, components within the pipeline were first

reset to their initial conditions using signal C40 clr (A7). Operands were then applied to

the input of stage-one by writing data to XC6264 address A14 (Write input). The

pipeline was then clocked using signal C40 clk (A8), and the output of stage-four was

then read via A15 (Read output). This cycle of writing input operands, generating
C40_clk, and reading the output of stage-four was performed 20 times (20-bit system

operand, using twos complement fixed point representation) for each block of 8 input

coefficients.

131

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

To activate the dyadic scaling units, signal Ena shift (A9) was activated after `m'

C40 clks; Where m= number of operand bits - (system accuracy + 2). Since system

operands were 20-bit, having 5-bit accuracy (5000 0000 0000 0000.000002, where `S'

was the sign bit), `m' was calculated to be 13 (20-(5+2)). Upon the completion of the

pipeline cycle signal Ena_shift was reset, and the contents of serial adder/subtractor

carry/borrow registers cleared and re-initialised via signal Nextý_pipe (Al0). The global

C40 clr signal could not be used for this purpose otherwise intermediate pipeline

operands would be erased.

XC6264 FPGA

Go rtr
-

CLC Array
Al

AO Done
C40 clk AS

A7 C40 clr
A9 Ena shi BinDCT

Next `e Transform

D7-DO
A10 Configuration

A14 Write input

A15 Read output

TMS32C40 A3-AO Global
Buses Transform Operands

Interface

1 XC6264/C40 Global Buses Parallel Interface D7-ß

--- ---

Figure 6.9 XC6264 BinDCT Coprocessor Integration

Blocks of eight parallel operands were computed by XC6264 BinDCT hardware using

eight concurrent serial pipelines. Each of the eight individual operands were transferred

to/from the C40 in a serial fashion bit by bit, accounting for a byte value upon the

Global buses data-bus. All eight operands could therefore be transmitted in a concurrent

serial fashion using this method. The byte values transferred to/from the C40 therefore

related to the distributed serial implementation of eight operands. To transfer eight

operands with value range +-0.03125 to 16383.98765,20 C40 byte transfers were

required.

132

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

This concept is illustrated in Table 6.5, using a block of eight input bytes (original

input). The appropriate weighted value required for each input byte was determined by

converting the C40 byte values into their XC6264 weighted value equivalents. The

conversion of input coefficients (0.5,2.03125,0,0,4,5,2.25,0.125) to XC6264 weighted

values was performed by placing a `1' in the weighted values columns, constituting the

original input value (e. g. 2.03125 =2+0.03125 => 010000001). To generate the

required byte value to be transferred by the C40, the bit content of each value column

was converted to hexadecimal format. In Table 6.5 only 8 weighted values are used, for

true BinDCT operation 19 weighted values would be used (plus sign bit), generating 20

C40 bytes.

w
O
n
7G'
0

00

ii O
cD

n
(D

XC6264 Bit Weighted Value

Original Inut 4 2 1 0.5 0.25 0.125 0.0625 0.03125

0.5 0 0 0 1 0 0 0 0
2.03125 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0

5 1 0 1 0 0 0 0 0

2.25 0 1 0 0 1 0 0 0
0.125 0 0 0 0 0 1 0 0

Required C40
Output Value 0x30 0x42 0x20 0x01 0x40 0x80 0x0 0x02

Block of 8 Hexadecimal C40 Bytes (0-7)

Table 6.5 C40/XC6264 Weighted Operand Conversion

This conversion process was initially conducted within XC6264 BinDCT hardware.

However, it was later removed and incorporated within C40 operating software to aid

BinDCT application development. Combined within this operation were routines that

converted from C40 floating-point data to XC6264 two complements fixed point

operand notation and vice-versa. C40 software also provided BinDCT coefficient

scaling when comparing the operation of BinDCT transforms against true DCT

operation (Section-6.5).

133

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

The maximum operating frequencies calculated for each transform are shown in Table

6.6. In comparison to Table 6.2, the maximum frequencies of the transforms were

reduced. This feature was predicted since the XC6264 now contained greater logic

resources than previously (BinDCT transform, plus coprocessor interface), requiring

greater signal routing complexity.

Maximum Frequency

Forward BinDCT Cl 6.035MHz

Forward BinDCT C9 5.518MHz

Reverse BinDCT Cl 5.827MHz

Reverse BinDCT C9 4.759MHz

Table 6.6 Maximum BinDCT Coprocessor Operating Frequencies

The maximum operating frequency of the XC6264/C40 coprocessor interface was

calculated to be 16.58MHz using XACT6000, enabling a bandwidth of approximately

4.15Mbytes/sec. However, during normal operation this frequency was set to 8.0MHz

resulting in a bandwidth of 2.0Mbytes/sec.

BinDCT hardware was clocked using C40 clk (generated by A8) at a frequency of
1.11 MHz. This value related to two C40 memory accesses that addressed and wrote

data to A8 within the XC6264s address space (C40 clk = 1, C40 clk = 0). The XC6264

Global bus interface bandwidth limited the maximum frequency of C40 clk that could
be synthesized. Initially it was intended to use A8 directly as the clock frequency

(generating a frequency of approximately 2MHz), however during construction routing

limitations encountered within XC6264s C40 Global buses interface prevented this.

Results presented in Table 6.7 demonstrate the difference between the maximum and

normal operational coprocessor characteristics. These results were calculated assuming

that BinDCT pipelines were empty (result generated after n pipeline cycles; Where n is

the pipeline cycle length). Full pipeline throughput was calculated by multiplying the

pipeline operand throughput by the number of pipeline cycles (cycle length) shown in

Table 6.7. Using this procedure, operand throughputs (@1.11MHz) of 55.5kBinDCT

134

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

one-dimensional transform operations per second (ops/sec) were obtained for each
BinDCT configuration for full pipeline operation.

Maximum Frequency of Design Normal (1.11MHz) Operating Frequency

Cycle Length Operand Throughput Cycle Length Operand Throughput

FBinDCT-C1 6 50.29kBinDCT o s/sec 6 9.25kBinDCT ops/sec
FBinDCT-C9 3 91.52kBinDCT ops/sec 3 18.5kBinDCT ops/sec
RBinDCT-C1 6 48.56kBinDCT ops/sec 6 9.25kBinDCT ops/sec
RBinDCT-C9 3 79.32kBinDCT ops/sec 3 18.5kBinDCT ops/sec

Table 6.7 Maximum/Normal BinDCT Coprocessor Throughputs

6.4 Dynamic Coprocessor Development

To enable dynamic coprocessor operation, a self-configuration control mechanism was

inserted within the static coprocessors developed in Section-6.3. The resultant

configurations were then temporally and spatially examined using XC6200ADS tools.

The integration of the self-configuration controller occurred in two stages. The first

stage developed the control mechanism between the C40 parallel interface and the self-

configuration control unit. Once this had been proved functional, the BinDCT

transforms were then implemented using this mechanism. These stages are described in

Sections-6.4.1 and 6.4.2 respectively.

6.4.1 Dynamic Coprocessor Control Mechanism

The self-configuration controller interface consisted of three signals called Go rtr,
Done and Dsel. Go_rtr initiated the reconfiguration process, whilst Done indicated

when the process had finished. Dsel (16-bit bus) determined the next active

configuration downloaded from the configuration memory store.

For the XC620ODS to function as a dynamic coprocessor, self-configuration had to be

instigated either internally within the coprocessor function itself, or by the master

135

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

processor (C40). The XC6264s gate capacity remaining available after BinDCT and

coprocessor interface integration determined that the decision to conduct RTR would

occur within the C40. (Appendix-IV-4 describes the internal operation of the self-

configuration control mechanism).

To develop this concept, a simple RTR application was developed. The XC6264 was

configured with two temporally partitioned circuits generating two different clock

frequencies. RTR instigation was conducted through the C40 Global bus interface as

shown in Figure 6.10.

Signal Go_rtr was generated using XC6264 interface address Al. When a positive

signal transition occurred on Go rtr, RTR commenced. The resulting configuration

delay was dependant upon the level of differences between successive configurations.

To determine when this operation was complete, initially the status of Done was

monitored by the C40 using XC6264 address A0. Through experimentation it was

discovered that completion of RTR could also be determined by the C40, through

halting XC6264 Global interface control state machine operation using signal Done.

This concept proved more reliable than the previous configuration since As value could

be inadvertently updated during RTR.

The bit set (logic one) within Dsel (16-bit) determined the next hardware configuration

activated. Dsel bit values could be set via the C40 interface, but within this example

were hardwired within each XC6264 design. The value of Dsel is shown in Figure 6.10

for each active configuration. Effectively the address pointer to the next configuration is

stored within the current active configuration. This operation can be considered similar

to linked-list structures within programming languages.

To swap between each configuration required 224 bytes of configuration data (56

address/data pairs) to be downloaded. Using a self-configuration controller clock
frequency of 8MHz, this took approximately 107.8µsec to complete (measured

externally, using the custom designed timer).

136

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

C40 DSP

! Al, Go_rtr
Self-Configuration

XC6264 AO, Done Controller
Global XC6264
Busses Global
Interface Busses

Interface Dsel (16-bit)
Output Waveform

Configuration 1j Configuration 2
XC6264 FPGA Dsel ue 1000 0000 0000 0000 Dsel Value 0100 0000 0000 0000

_.. _........... __ý t : RTR

Figure 6.10 C40 Dynamic Coprocessor Operation

6.4.2 BinDCT Integration

To construct the dynamic coprocessor function each BinDCT configuration was

inserted within the outline dynamic coprocessor mechanism developed in Section-6.4.1

(Figure 6.10). In similar fashion the differences between each coprocessor configuration

were determined using XC6200ADS tools.

Temporal and spatial partitioning was performed between each transform configuration.

During this procedure the structures of each configuration pair were analysed and

differences between them determined. To minimise differences between successive

configurations, common components in each transform were located at identical CLC

positions within the XC6264 FPGA. The volumes of XC6264 CLC array address

locations required updating (XC6264 CLCs) and actual configuration data downloaded

(data bytes), with the resultant minimum configuration delay for each transform update

are shown in Table 6.8. The self-configuration controllers clock frequency was set to

8MHz, with configuration delays recorded using the custom designed external timer.

137

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

Configuration Number Configuration Data Volume Configuration Delay

Con Con t. (7 V +1 XC6264 CLCs
.

Data bytes External Timer

FBinDCT-C1 FBinDCT-C9 6413 25652 12.01msec

FBinDCT-C1 RBinDCT-C1 10781 43124 20.28msec

FBinDCT-C9 RBinDCT-C9 4373 17492 8.24msec
RBinDCT-C1 RBinDCT-C9 6746 26984 12.66msec

Table 6.8 Dynamic BinDCT Coprocessor Configuration Parameters

To evaluate dynamic switching capabilities, the clock frequencies of the C40 interface

and self-configuration control mechanism were set to a clock frequency of 8.0MHz. The

BinDCT pipeline was clocked at a frequency of approximately 1.11MHz. This signal

was generated within the XC6264s C40 Global busses interface, through the C40

accessing XC6264 address location A8 (located within C40s Global memory map).

Using XACT6000 software the maximum clock frequencies determined for each
transform are shown in Table 6.9. Table 6.9 lists the operand throughput (measured in

kBinDCT ops/sec) for both maximum and normal operating frequency conditions

(@1.11MHz). Operand throughputs were calculated for both full and empty pipeline

conditions. Results indicated that the dynamic BinDCT operation had a maximum

combined coprocessor operating frequency of 4.17MHz. However, during normal

operation, all BinDCT configurations were clocked at 1.11MHz using signal C40 clk,

as described in Section-6.3.

Maximum Frequency BinDCT 1.11MHz

Operating Pipeline Condition Pipeline Condition
Configuration Frequency Empty Full Empty Full

FBinDCT-C1 5.16MHz 43.00 257.79 9.25 55.5
FBinDCT-C9 5.3MHz 88.37 265.11 18.50 55.5
RBinDCT-C1 4.5MHz 37.54 225.27 9.25 55.5
RBinDCT-C9 4.17MHz 69.48 208.46 18.50 55.5

Table 6.9 BinDCT Dynamic Coprocessor Operating Frequency

138

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

6.5 XC6264 BinDCT Transform Characteristics

To evaluate the operational characteristics of XC6264 BinDCT hardware, transform

operations were performed using input sequences defined in Section-5.3.1. The output

responses recorded were then compared to results generated through software

simulations of BinDCT and true DCT operations. This task was conducted for both one

and two-dimensional transforms. The results recorded are presented in Section-6.5.1 and
Section-6.5.2 respectively.

6.5.1 One-Dimensional XC6264 BinDCT Operation

Through applying the input data sequences defined in Section-5.3.1, the operational

characteristic of XC6264 hardware transforms FBinDCT-C1, FBinDCT-C9, RBinDCT-

C1 and RBinDCT-C9 were analysed. Results recorded are shown in Tables 6.10 to 6.14.

Similarly to Chapter-5, the RMSE generated compared the difference between XC6264

BinDCT hardware and true DCT operations. Furthermore, BinDCT coefficient-scaling

factors (Table 5.3) omitted from the XC6264 hardware were performed within the C40

DSP primary processor.

n In ut 0 to -1 FDCT RDCT FBinDCT-C1 RBinDCT-C1 FBinDCT-C9 RBinDCT-C9
0 31 404.819 31 404.785 30.984 404.785 30.969

1 63 -206.57 63 -206.96 62.961 -98.391 62.992
2 95 0.191 95 0.203 94.984 0.541 95.000

3 127 -21.453 127 -20.276 126.969 -77.573 126.961
4 159 -0.354 159 -0.397 158.969 -0.397 158.961
5 191 -5.938 191 -7.236 191.000 0.402 190.984
6 224 -0.462 224 -0.462 224.023 -0.447 223.992
7 255 -1.345 255 -0.368 254.984 -62.295 255.015

XC6264 BinDCT/DCT RMSE 0.7228 0.0243 48.2278 0.0240

Table 6.10 XC6264 BinDCT Outputs for Data Sequence-(i) Ramp Function

139

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

n Input [0 to N-1 FDCT RDCT FBinDCTC1 RBinDCTC1 FBinDCTC9 RBinDCTC9
0 255 721.249 255 721.249 255.000 721.249 255.000
1 255 0.000 255 0.000 254.992 0.000 254.992
2 255 0.000 255 0.000 254.992 0.000 254.992
3 255 0.000 255 0.000 255.000 0.000 255.000
4 255 0.000 255 0.000 255.000 0.000 255.000
5 255 0.000 255 0.000 254.992 0.000 254.992
6 255 0.000 255 " 0.000 254.992 0.000 254.992
7 255 0.000 255 0.000 255.000 0.000 255.000

XC6264 BinDCT/DCT RMSE 0.0000 0.0057 0.0000 0.0057

Table 6.11 XC6264 BinDCT Outputs for Data Sequence-(ii) Constant Level

n In ut 0 to N-1 FDCT RDCT FBinDCTC1 RBinDCTC1 FBinDCTC9 RBinDCTC9

0 255 540.937 255 540.937 254.977 540.937 254.984
1 85 0.0000 85 0.000 84.984 0.000 85.000
2 170 -32.528 170 -31.625 170.015 -92.003 170.000

3 255 0.0000 255 0.000 255.008 0.000 255.000
4 255 180.312 255 180.312 255.008 180.312 255.000
5 170 0.0000 170 0.000 170.015 0.000 170.000
6 85 78.53 85 78.53 84.984 78.530 85.000
7 255 0.0000 255 0.000 254.977 0.000 254.984

XC6264 BinDCT/DCT RMSE 0.3193 0.0164 21.0276 0.0080

Table 6.12 XC6264 BinDCT Outputs for Data Sequence-(iii) Mexican Hat

n In ut 0 to N-1 FDCT RDCT FBinDCTC1 RBinDCTC1 FBinDCTC9 RBinDCTC9

0 255 360.624 255 360.624 255.000 360.624 255.000
1 255 326.772 255 325.887 254.969 259.996 254.992

2 255 0.0000 255 0.000 254.969 0.000 254.992
3 255 -114.747 255 -115.759 254.984 0.000 255.000
4 0 0.000 0 0.000 0.015 0.000 0.000
5 0 76.671 0 78.560 0.015 0.000 -0.008
6 0 0.0000 0 0.000 0.015 0.000 -0.008
7 0 -64.999 0 -65.865 0.000 0.000 0.000

XC6264 BinDCT/DCT RMSE 0.8750 0.0189 58.8740 0.0057

Table 6.13 XC6264 BinDCT Outputs for Data Sequence-(iv) Step Function

140

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

n In ut 0 to -1 FDCT RDCT FBinDCTC1 RBinDCTC1 FBinDCTC9 RBinDCTC9
0 0 90.156 0 90.156 0.000 90.156 -0.015
1 0 -24.874 0 -24.374 0.000 -129.998 -0.008
2 0 -117.795 0 -118.707 0.031 0.000 0.008
3 0 70.835 0 71.88 0.008 153.343 0.000
4 255 90.156 255 90.156 254.961 90.156 254.984
5 0 -106.012 0 -106.012 -0.015 -106.012 -0.008
6 0 -48.792 0 -47.854 -0.015 "-117.795 0.008
7 0 125.05 0 125.05 0.000 125.05 0.000

XC6264 BinDCT/DCT RMSE 0.6178 0.0194 67.5423 0.0096

Table 6.14 XC6264 BinDCT Outputs for Data Sequence-(v) Spike Function

Table 6.15 compares the software and hardware BinDCT RMSE values calculated with

respect to true DCT operation. Results indicated that XC6264 BinDCT hardware

generated results introduced greater errors when reconstructing original data compared

to BinDCT software simulations (Section-5.3.1). This error was expected since XC6264

BINDCT hardware was constructed using fixed-point binary twos-complement numbers
(operand resolution of 0.03125), and BinDCT software simulations performed on a PC

(operand resolution 1.2x10"38 [81]).

Differences in RMSEs calculated for FBinDCT-C9 operation were attributed to the

XC6264 designs used for FBinDCT-C9 and RBinDCT-C9. Within FBinDCT-C9s

XC6264 design, internal operands were scaled to simplify the design, with bit positions

adjusted within FBinDCT-C9, complemented during RBinDCT-C9s operation. This

feature is illustrated in Table 6.15 since RMSE error between software and hardware

RBinDCT-C9 configurations were minimal.

PC Software BinDCT RMSE XC6264 Implemented BinDCT RMSE
Se BinDCT-CI BinDCT-C1 BinDCT-C9 BinDCT-C9 BinDCT-C1 BinDCT-CI BinDCT-C9 BinDCT-C9

i 0.7206 0.0000 20.9569 0.0000 0.7228 0.0243 48.2278 0.0240
ii 0.0000 0.0000 0.0000 0.0000 0.0000 0.0057 0.0000 0.0057
iii 0.3189 0.0000 11.5004 0.0000 0.3193 0.0164 21.0276 0.0080
iv 0.8889 0.0000 70.8618 0.0000 0.8750 0.0189 58.8740 0.0057
V 0.6226 0.0000 32.4527 0.0000 0.6178 0.0194 67.5423 0.0096

Table 6.15 BinDCT Hardware/Software RMSE Comparison

141

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

As in Section-5.3.2, the XC6264 BinDCT coding-gain was assessed, with the results

generated shown in Tables 6.16 to 6.20. To provide performance benchmarks, the

ability of BinDCT configurations to reconstruct data using compressed transform

coefficients was assessed. Using true DCT compression as reference levels, (n: N, where
`n' is the number of DCT coefficient(s) at zero, `N' is the original input sequence

length), forward transform BinDCT coefficients were thresholded to obtain the same

number of zero coefficients as the DCT. Error between original and BinDCT

reconstructed compressed data was then compared to true DCT operation.

With respect to Tables 5.9-5.14 (Section-5.3.2) the XC6264 BinDCT-C1 hardware

results obtained (Tables 6.16-6.20) displayed minimal differences compared to those

obtained using software simulations. This was true when calculating the maximum
difference in magnitude between input and output sequences, and RMSE between

BinDCT transform and true DCT operation.

Results generated for BinDCT-C9 configuration were similar to those in Section-5.

Similarly to Table 6.15, differences in RMSEs calculated for FBinDCT-C9 operation

were attributed to the FBinDCT-C9 and RBinDCT-C9 XC6264 designs. Internal

operands were scaled to simplify their design and operation, with bit positions adjusted

within FBinDCT-C9, complemented during RBinDCT-C9s operation.

Within Tables 6.16-6.20, RMSE values of zero indicated that no difference occurred
between original and reconstructed data for given numbers of forward transform zero

coefficients.

142

Chanter 6: Dynamic XC6264 BinDCT Coprocessor

DCT BinDCT-C1 BinDCT-C9
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error

1 0.0676 0.0900 0.0733 0.1100 0.0000 0.0000
2 0.1421 0.2100 0.1458 0.2300 0.2176 0.3800
3 0.2165 0.3800 0.1918 0.3600 0.2800 0.6200
4 0.5224 0.7800 0.2516 0.5100 0.2800 0.3900
5 2.1636 3.6700 2.5539 4.0300 22.4524 31.6100
6 7.8873 10.8200 7.7110 10.8800 39.1932 63.8600
7 73.4582 112.1200 73.4582 0.0000 73.4582 112.1100

Table 6.16 Comparison of XC6264/True DCT Compression for Sequence-(i)

DCT BinDCT-C1 BinDCT-C9
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.17 Comparison of XC6264/True DCT Compression for Sequence-(ii)

DCT BinDCT-C1 BinDCT-C9
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error

5 11.5004 15.0300 11.1313 14.2900 30.6520 42.4900
6 30.0520 42.5000 30.0520 42.5000 30.0520 42.5000
7 70.4783 110.2400 70.4746 106.2400 70.4746 106.2400

Table 6.18 Comparison of XC6264/True DCT Compression for Sequence-(iii)

DCT BinDCT-C1 BinDCT-C9
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error

4 22.9806 31.8800 23.3163 32.4100 0.0000 0.0000
5 35.5370 63.7500 36.1147 64.4500 0.0000 0.0000
6 53.9331 95.6200 54.8274 97.5400 0.0000 0.0000
7 127.5000 127.5000 127.5000 127.5000 127.5000 127.5000

Table 6.19 Comparison of XC6264/True DCT Compression for Sequence-(iv)

143

Chanter 6: Dynamic XC6264 BinDCT Coprocessor

DCT BinDCT-C1 BinDCT-C9
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error

1 8.7943 12.2000 8.7943 11.9500 0.0000 0.0000
2 19.0348 32.8800 19.0348 32.4500 45.0780 63.7600
3 31.6564 64.1900 32.0313 64.7300 45.0780 63.7600
5 55.0832 95.4700 55.2994 95.4700 78.0742 127.4900
6 66.6257 139.2600 66.4937 138.6200 90.1532 127.4900
7 78.5712 193.6800 78.5172 193.4900 90.1532 191.2600

Table 6.20 Comparison of XC6264/True DCT Compression for Sequence-(v)

6.5.2 Two Dimensional XC6264 BinDCT Operation

Two-dimensional dynamic XC6264 BinDCT hardware configurations were developed,

and operated using techniques described in Section-5.5. The optimal BinDCT

configuration for each pixel tile (8x8 pixels) within the target image was determined

using XC620ODS software tools. This information was then encoded within the source

image.

The source image was then downloaded to the C40 DSP (coupled to the XC6264 co-

processor). The C40 then converted the pixel values first from floating-point to XC6264

fixed-point twos-complement binary representation, and then from 20-bit parallel to

serial notation. Depending upon the BinDCT configuration required, the C40 would (if

applicable) update the XC6264 BinDCT configuration using RTR. Dynamic

configuration updates used were FDinDCT-C1 to FBinDCT-C9, and RDinDCT-C1 to

RBinDCT-C9. The C40 then transferred input operands to the XC6264, generated

BinDCT pipeline control signals, and then read the resultant output.

When using XC6264 BinDCT hardware to perform two-dimensional transforms, after

each row or column operation (one-dimensional transform), intermediate results had to

be scaled and reordering due to the nature of dyadic lifting structures used within the

design. This aspect was a feature of the XC6264 BinDCT hardware implementation.

The initial target image use was the `Lena' benchmark (Figure 5.15), with BinDCT

configuration distribution calculated shown in Figure 5.16 (Section-5.5). XC6264 two-

144

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

dimensional BinDCT operation was assessed through performing a forward then reverse

two-dimensional transform and then comparing the difference (RMSE) between the

original and reconstructed images pixel values. For comparison identical static and
dynamic BinDCT operations were performed within the C40 DSP. Results generated

using ̀ Lena' are listed in Table 6.21.

Total Summed Pixel Errors Avera e Pixel Error RMSE
Configuration XC6264 TMS320C40 XC6264 TMS320C40 XC6264 TMS320C40

Static BinDCT-C1 10652.3 12.367 0.04063 4.72x10-5 0.01607 1.65x10-5
Static BinDCT-C9 10046.3 12.1144 0.03832 4.62x10-5 0.01517 1.61x10-5

Dynamic BinDCT 10530.7 12.3252 0.04017 4.70x10-5 0.15895 1.64x10-5

Table 6.21 Comparison of XC6264/TMS32C40 2D-BinDCT Operation

For both C40 and XC6264 operations RMSE values obtained indicated that

reconstructed data contained a degree of error compared to the original. However, using

static configuration BinDCT-C1 as an example, the summed pixel error obtained was

10652.3 per 262144 (512x512) pixels, producing an average error per pixel of 0.0406.

This tolerance would be acceptable within most image processing applications since

pixel values are rounded to the nearest whole number.

The RMSEs of XC6264 compared to C40 BinDCT operations were greater. This was

expected due to the maximum resolution of BinDCT coefficients being 0.03125. C40

computations used 40-bit floating-point representation, with a maximum resolution of

5.8x10"39 [65]. The difference in RMSE value for BinDCT-C1 and BinDCT-C9

configurations reflected the differences in approximation of true DCT operation.

For FPGA based dynamic BinDCT operations, RMSEs generated were less than the

equivalent fixed implementations. This factor was a by-product of choosing the

BinDCT configuration for each tile that generated the greatest inherent coding gain.
Through having greater frequency components at zero, errors introduced through the

rounding of intermediate coefficients (system resolution) were reduced.

145

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

To further demonstrate dynamic BinDCT operation, optical fringe patterns having

differing frequency contents and structure were examined. The resultant BinDCT

configurations generated and DC coding gain increases are shown in Figures 6.11 to

6.16. Comparing BinDCT distribution to the original image, BinDCT-C9 configurations

(black) are most common in areas of low frequency content, whilst BinDCT-C1 (white)
in areas of higher frequency contents.

Table 6.22 details BinDCT distribution information obtained through computing
Figures 6.11-6.16. Speed-up figures calculated demonstrate the percentage of 8x8 pixel

tile operations accelerated through using BinDCT-C9 hardware compared to BinDCT-

Cl implementations. Through using dynamic BinDCT operation, the percentage of

forward transform coefficients at zero (inherent coding gain) has been increased.

BinDCT Distribution Dynamic BinDCT Transform Zero Coefficients
Image Con i. Cl Con i. C9 Speed-up (%) True DCT Dynamic BinDCT

Pattern(i) 2253 1843 45% 12.08% 20.87%
Pattern(ii) 2416 1680 41.02% 61.6% 75.5%
Pattern(iii) 781 3315 80.93% 12.8% 27.3%

Table 6.22 BinDCT Configuration Distributions

:-r

-.

F.

I.
"L

: r-
Figure 6.11 Optical Fringe Pattern-(i) Figure 6.12 BinDCT Distribution

146

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

Figure 6.13 Optical Fringe Pattern-(ii)

Figure 6.15 Optical Fringe Pattern-(iii)

6.6 Summary

.
zopmýM

ocý Roh
2

. �i
ti ti

Figure 6.14 BinDCT Distribution

Figure 6.16 BinDCT Distribution

Chapter-6 has described the development and construction of XC6264-based dynamic

configurable BinDCT hardware, configured to appear as TMS320C40 memory mapped

coprocessors. Through creating dynamic coprocessor topologies, this has permitted the

C40 primary processor to exhibit virtual hardware characteristics. This work has

demonstrated the potential benefits of including dynamic hardware within traditional

fixed processing topologies.

147

Chapter 6: Dynamic XC6264 BinDCT Coprocessor

Results generated within Chapter-6 have demonstrated how BinDCT algorithm

operating characteristics have benefited from dynamic hardware implementation. The

inherent coding-gain was increased, whilst accuracy in reconstructing the original data

compared to fixed BinDCT configurations improved. This concept of dynamic BinDCT

implementation and system operation is a novel idea.

Hardware configuration statistics generated, proved the hypothesis that configuration

Cl had reduced throughput compared to C9. It was also evident that the implementation

of C9 required fewer logic resources than Cl. The innovation of RTR hardware for

configurations BinDCT-C1 and BinDCT-C9 has allowed not only more efficient

BinDCT processing, but shown that by dynamically switching between the two

BinDCTs based on the context of each 8x8 pixel data tile, a faster and more accurate

transform has been created.

The design methodology used throughout Chapter-6, was to simplify routing and

placement of BinDCT components within the XC6264 FPGA, at the expense of operand

throughput. However, increases in BinDCT compression and accuracy obtained through

dynamic compared to fixed operation would be present whatever the implementation

method used.

148

Chapter 7: XC6264 Dynamic Routing Hub

Chapter 7

XC6264 Dynamic Routing Hub

Introduction

This chapter details the insertion of a RTR routing-hub within the C40 MIMD

processing topology. The first section of the chapter (Section-7.1) explains how the

XC620ODS and C40 communication channels were integrated. Section-7.2 describes the

development and function of initial static routing topologies. The next section (Section-

7.3) expands upon the designs developed in Section-7.2 and develops the concept of

dynamic routing topologies. Section-7.4 then describes how processing hardware can be

configured within the routing-hub using RTR. A summary of conclusions derived

through undertaking this work is presented in Section-7.5.

7.1 System Overview

The C40 DSP contains six bi-directional communication ports that facilitate processor-

to-processor communication. To investigate the benefit of including dynamic hardware

within a multiprocessor environment, XC6200 based routing topologies have been

developed.

Using the XC620ODS routing-hub configuration mode (Section-3.4.3), up to nine C40

communication channels can be connected to the XC620ODS through external cabling.

Any eight of these channels could be active at any one time. Collectively, the

XC620ODS C40 channel hub interfaces were referred to as comports. Within this

configuration the identity of each comport (range 5 to 13 respectively) reflected the

PCB connector number assignments.

7.1.1 Communication Port Interface

C40 communication channels have a bandwidth of 20Mbytes/sec and can reverse their

transfer direction within four instruction cycles (200nsec @40MHz) [65]. This

149

Chapter 7: XC6264 Dynamic RoutinHub

operation occurs through the interaction of C40 communication channel Port

Arbitration Units (PAUs). To couple C40 channels to the XC6200DS, the PAU and

communication channel interfaces were initially synthesized within the XC6200 FPGA.

The XC6200 PAU implementation however could not complete direction transfers

within 100nsec. It was therefore decided that to prevent common signals from being

driven by both the C40 and XC6200 PAUs during bidirectional transfers,

communication channel direction would be fixed. This did not detract from the

communication strategies, as enough uni-directional ports were available for the

developed switching fabrics. The XC6200 PAU was therefore removed from the design,

however the respective C40 control signals (CREQ, CACK) could not be left open-

circuit and instead were tied to logic-one (Figure 7.2).

The data-bus of C40 communication channels was 8-bits wide. Data transfers occurred

using four-byte words, since the internal C40 architecture was 32-bits wide. A C40

word transfer operation therefore consisted of four individual byte cycles, which were

managed using signals CSTRB and CRDY. This control mechanism is shown in Figure

7.1, where CSTRB was generated by the interface transmitting data (CSTRB_TX), and

CRDY by the receiving unit (CRDY RX). The signal connections required between

interface receiver and transmitter comports to C40 communication channels are shown

in Figure 7.2.

Valid data at the receiving comport was determined using the negative-edge of signal

CRDY. For transmission, data had to be presented before the negative-edge of signal

CSTRB. These signals were generated through the interaction of C40 and XC6200

comport interface control state machines.

150

Chapter 7: XC6264 Dynamic Routing Hub

CSTRB TX

CRDY RX

Da gybe 1 Byte 2 Byte 3 Byte 4

RX Data Valid

Figure 7.1 Communication Channel Byte Transfer Protocol

Vcc
Receive Transmit
Comport Comport

CSTRB

CRDY

D7 IIII D7

Vcc

C40 i '\cI XC6200 II C40 ,I
XC6200

DO DO

(i) Data transfer from C40 to XC6200 (ii) Data transfer from XC6200 to C40

Figure 7.2 Communication Channel Signal Connections

7.1.2 Transfer Management

Port transfers within the XC6200 were initiated through discrete logic functions. Within

the C40 this task was governed by software programs constructed using a C40 variant

of the C programming language. The management of channel interfaces was invisible to

user-code, with data transfer controlled using a library of pre-complied C functions. The

formats of two common C functions are shown in Program 7.1.

151

Chapter 7: XC6264 Dynamic Routing Hub

out word datatx, 1);

rintf ("Data TX is %x \n", datatx ;
datarx = (int) in word 4;

rintf ("Data RX is %x \n", datarx ;

Program 7.1 C40 Communication Channel Functions

Function out word(m, n) was used to write data to a C40 communication port. The

function had two arguments. m was the 32-bit word to be written to channel n (range 1

to 6). Function in_word(n) received data from C40 communication channel n, and

returned the value read.

7.2 Comport Transfer Mechanisms

XC6200 comport designs consisted of state-machines and data-buses. The state-

machines generated and managed control signal handshaking with the C40, whilst

operand transfer occurred using the data-bus.

For the XC620ODS to appear as a transparent routing hub, data received from one C40

port had to be re-transmitted to another. To manage the transfer of data between each

XC6200 comport, two control methods know as FIFO Control and Self-Arbitration

were developed.

7.2.1 FIFO Control Unit

The structure of the FIFO Control mechanism developed is illustrated in Figure 7.3 and

contained comport interfaces, a four-byte deep FIFO, and control logic. Comport

connector interfaces consisted of signals D7-DO, CSTRB, and CRDY as shown

previously in Figure 7.2.

The receiving comport was activated using signal go_rx (generates er w). Individual

bytes within C40 32-bit word (four bytes) were then transferred, with each byte in turn

being latched into the FIFO upon the negative edge of CRDY RX (via clkJIfo) (Figures

7.1 and 7.3).

152

Chapter 7: XC6264 Dynamic RoutinHub

XC6200
Comport
Connector

go_rx

XC6200
Comport
Connector

Figure 7.3 XC6200 FIFO Control Comport Management

The receiving comport indicated when it had accepted four bytes (32-bit word) with

signal r w. Router control logic then instructed the transmitting comport via etw to

write the contents of the FIFO to the next C40. The contents of the FIFO were
incremented upon the transmission of each byte through signal CSTRB TX (via clkJIfo)
(Figures 7.1 and 7.3). Once the FIFOs contents were written signal t

_w
instructed the

control logic that the FIFO was ready to receive another four bytes from the receiving

comport.

The structure of FIFO control can be considered similar to C40 communication port

operation. Each C40 communication port transfers 32-bit words as four individual

bytes. To minimise communication bottlenecks, each C40 port had eight level 32-bit

wide FIFOs. For dedicated processor-to-processor communication links this provided a
buffer of 16 words. In contrast within the XC6200 FIFO control mechanism, the FIFO

was used to buffer 4 bytes (one 32-bit word) during transfer within the communication
hub, and not act as a buffer within the receiving and transmitting C40s. This was a very

efficient use of limited FPGA resources.

7.2.2 Self-Arbitration Unit

The structure of the self-arbitration mechanism is shown in Figure 7.4. This system

comprises both receiver and transmitter comports, with the FIFO replaced by a single

register clocked using CRDY RX. The function of the router control logic was replaced

153

Chapter 7: XC6264 Dynamic Routing

by a handshaking operation between the receiver and transmitter comports (signals

go_tx and q
__byte).

Effectively self-arbitration functioned by receiving and transmitting

each byte within a 32-bit word independently. This design was the minimum required,

with maximum efficiency in terms of hardware resources used.

go rx Data
T CRDY RX Latch

XC6200 ,, LIP D7 XC6200
Comport Receive Transmit ' Comport
Connector Comport Comport Connector

Figure 7.4 XC6200 Self-Arbitration Unit Comport Management

7.2.3 Transfer Protocol Analysis

The two protocols were evaluated through configuring identical routing topologies

within a XC6264 FPGA. The routing structure used was a direct connection between

comport-8 and comport-12 of the XC6200DS. These two comports were chosen since

they were located on opposite sides of the XC6264 FPGA, and would encounter the

greatest signal propagation delays inside the device. Timing and hardware

characteristics generated using XACT6000 upon a XC6264 FPGA for both protocols

are listed in Table7.1. These results compare the maximum signal delay when both

designs are routed using local (length-16) and global (chip-wide) routing resources;

Length-16 and chip-wide XC6200 FPGA routing resources are detailed in Appendix-Ill-

2). The number of CLCs required in implementing both state machine control and data

path components for both protocols are also listed.

154

Chapter 7: XC6264 Dynamic Routing Hub

Max Si nal Dela CLC Volume

Local Routin GlobalRouting State Machines Data Path

Self Arbitration 56.018nsec 58.947nsec 43 0

FIFO Control 56.02nsec 55.932nsec 94 24

Table 7.1 Transfer Protocol Hardware Characteristics

C40 software was written to verify the operation of routing topology as well as

generating benchmark results. Operand transfer delays were generated for FIFO control,

self-arbitration configurations, and for comparison direct C40 to C40 connections. The

results obtained are shown in Table 7.2, with a XC6264 clock frequency of 8MHz.

C40 Glue less Connection FIFO Control Unit Self-arbitration Unit

No. of Words Operand Transfer Delay Operand Transfer Delay Operand Transfer Delay

1 4.8 sec 9.6 sec 8.4 sec

10 3.09msec 3.14msec 3.12msec
262144 22.14sec 23.18sec 22.16sec

Table 7.2 Transfer Protocol TMS320C40 Timings

Operand transfer timings were generated using the C40s internal timer. These results
illustrate the difference in transfer delays introduced by the control mechanism within
the C40 MIMD. The transfer delays generated however also constituted additional C40

instructions delays and C40/host PC interrupts. These were required by the C40 to

access comport data, which was then written to external files for error checking

purposes. However no errors were detected between transmitted and received data sets.

Using XACT6000 software, the maximum throughput of the FIFO control method was
determined as 4.469Mbytes/sec (using global routing), whereas the self-arbitration unit

was 4.462Mbytes/sec (using local routing).

The results obtained showed that the bandwidth obtained for each transfer protocol was

similar. However, the simplicity and internal regulation of the self-arbitration was
deemed superior. This was evident through the self-arbitration method not requiring

additional control logic and FIFO buffers within the data path.

155

Chapter 7: XC6264 Dynamic Routing Hub

The FIFO protocol achieved highest bandwidths when chip-wide global XC6264

routing resources were used. Within XC6200 FPGAs these resources were limited,

therefore in complex designs local routing had to be used, incurring greater propagation
delays.

The self-arbitration method however was more suited to local than global routing
implementations. Because of this factor and not requiring a FIFO to be present between

each XC6200 comport route, the self-arbitration control mechanism was used within
XC6200 router designs.

7.3 Static Routing-Hub Development

To investigate the advantages gained by including adaptable routing resources within

the C40 MIMD architecture, XC620ODS hardware was developed that facilitated bi-

directional operand transfer between four C40 DSP nodes. These designs were

implemented within a single XC6264 FPGA.

7.3.1 Hub Construction

To develop router hardware compromises to channel bandwidth and node connectivity

were made to aid XC620ODS placement, design and routing of integral components.

Apart from low operating speeds, a disadvantaged of the XC6200 FPGA family was

that tri-state gates could not be configured within XC6200 CLCs, resulting in fixed

direction data buses. This limitation also forced the inefficient construction of crossbar

switches using multiplexers, which would cause multiple delays to routed data.

156

Chapter 7: XC6264 Dynamic Routing Hub

Comport II

Secondary
Cross-Bar Primary

XC620ODS Switches Cross-Bar
Comport Switcres
Connectors

-, ---------. -

Comport 13 Secondary Comport 10
Routing I

Comport 5 Resource Comport 9

8-bit Data buses

Comport 7 Comport 8

Figure 7.5 XC6264 Routing-hub Topology

The routing-hub topology developed is illustrated in Figure 7.5. The design was similar

to the Chordal Ring architecture [80] since two unidirectional data buses link together

four primary crossbar switches. Unlike traditional routing designs there existed a `user'

area were secondary routing resources and processing hardware could be configured.

Expanding this concept, the four primary switches and unidirectional buses were

considered as a base platform upon which further configurations could be developed.

Primary crossbar switches consisted of two XC620ODS comports (receive and transmit)

and three banks of multiplexers. These were used to implement the crossbar switch

illustrated in Figure 7.6, using a switch configuration table listed in Table 7.3. The data

transfer direction of both comports however were fixed.

The secondary crossbar switches (Figure 7.5) provided accesses to unused CLC

resources within the XC6264. Unused CLCs could be configured to appear as additional

157

Chapter 7: XC6264 Dynamic Routing Hub

routing resources (approximately 25% of XC6264 CLC array) within the topology or as

processing hardware. This concept was further developed in Section-7.4.

To Next Crossbar Switch

TXI4 1 RX2

Comport

DI
Connectors

RX1

0-- e--, 0

Sbit buses

i Crossbar
'f Switch

U
ICI YD*O.

-l
O LL

To Next Crossbar Switch

Figure 7.6

Table 7.3

Crossbar Switch Construction

Crossbar Control Signals Crossbar Output Busses
DO Dl D2 TXO TXI TX2

0 0 0 RX2 RX1 RX1
0 0 1 RX2 RX1 RX2
0 1 0 RX2 RXO RX1
0 1 1 RX2 RXO RX2

1 0 0 RXO RX1 RX1
1 0 1 RXO RX1 RX2
1 1 0 RXO RXO RX1
1 1 1 RXO RXO RX2

Where: RXO, RX1, & RX2 are Crossbar Input Busses

Crossbar Switch Configuration Table

7.3.1 Hub Operating Characteristics

The operation of the routing-hub was verified using custom designed C40 software.

Two C40s functioning in a MIMD configuration were used to transmit and receive data

158

Chanter 7: XC6264 Dynamic Routine Hub

through communication ports. Within this test procedure, different hub topologies were

configured and the operation analysed. During this operation, the configuration of the

routing-hub remained static during system operation, and reconfigured using CTR

methods (Section-2.3.1).

The performance characteristics of the routing-hub were assessed for throughput and

comport connectivity. During this process, the clock frequency of the design was set to

8MHz. The maximum signal propagation delay recorded was 275.21nsec. This value

related to signal delay encountered through circumnavigating the routing topology

(excluding secondary routing resources) resulting in individual channel bandwidths of

908.4kbytes/sec, and 7.26Mbytes/sec for the eight channels combined. When secondary

routing resources were configured, the maximum signal propagation delay of the design

increased to 389.92nsec, resulting in individual channel bandwidths of 641.16kbytes/sec

and 5.13Mbytes/sec combined.

Signal routing delays encountered were excessive when compared to the clock

frequency period (125nsec). Nevertheless the design still functioned correctly, since the

XC6264 component placement used ensured that the self-arbitration control signals

encountered similar routing delays to data buses.

This operating concept was not ideal for use in dynamic routing-hub development, and

the XC6264 clock frequency was reduced to 2MHz. In comparison, the maximum

operating frequencies obtained for each XC6264 comport was in the range of 35-

39MHz.

Within the routing-hub design, a receiver comport could broadcast data to all transmitter

comports. To perform this operation crossbar switches were configured accordingly and
the self-arbitration control signals of each comport combined.

Through configuration of the primary crossbar switches, bi-direction transfers between

adjacent comports could occur using two unidirectional data paths. For data transfer to

159

Chapter 7: XC6264 Dynamic Routing Hub

occur, self-arbitration unit handshaking signals go_tx and go_rx (Figure 7.5) belonging

to each comport forming the communication channel had to be connected together.

The individual bandwidth of comports operating at a clock frequency of 2MHz was

calculated as 500kbytes/sec. In comparison, the bandwidth of a C40 communication

channel was 20Mbytes/sec. Inserting the routing-hub within a C40 MIMD structure

substantially reduced operand throughput. This limitation was expected due to the

architecture of the XC6264 FPGA, and accepted, since the aim of the experiment was to

determine if such architectures were viable and if they improved the versatility of a

multiprocessing architecture.

The routing-hub was implemented within a XC6264 FPGA. The design consisted of

562 CLCs, but required a placement footprint covering the whole CLC array (128 by

128 CLCs) (see Appendix-VI for XC6264 layout). Within the design, 258 CLCs were

required to construct the primary and secondary switches. 128 CLCs formed guides for

routing data-bus signals between individual crossbar switches. Individual transmitter

and receiver comports required 20 and 24 CLCs respectively to implement. Comparing

the volume of CLCs used to form crossbar switches and router guides (386 CLCs), to

those actually implementing comport logic (176 CLCs), demonstrated how much the

XC6264 FPGA in this application was pushed to its limits. Confined within the

secondary routing resources approximately 4096 (25%) of XC6264 CLCs could be used

to implement either additional data-paths or processing hardware.

Using this routing hub, dynamic routing-hub configurations, including processor

functions were developed. These are detailed next in Sections-7.4 and 7.5 respectively.

160

Chapter 7: XC6264 Dynamic Routing Hub

7.4 Dynamic Routing Topology

The XC6200 routing-hub topology developed in Section-7.3 remained fixed during

system operation and was reconfigured using CTR for each application. During run-

time, this architecture incurred connectivity and operand bandwidth constraints

associated with fixed multiprocessor architectures. To reduce these limitations RTR

routing-hub strategies were investigated with the following solutions.

7.4.1 Configuration Mechanisms

RTR configuration can be performed within the XC620ODS using two methods. The

self-configuration mechanism downloaded configuration data automatically without

external intervention at a rate of 1.8psec (@8MHz) per XC6200 address/data pair. The

second mechanism requiring user intervention used XC6200ADS software functions,

with the average configuration delay measured at 258µsec per XC6200 address/data

pair (delay includes host PC interrupt operation).

For optimal performance dynamic configuration must occur without user intervention.

The self-configuration mechanism permitted this feature but could not be used within

the routing-hub due to its construction. This was because XC6264 comports and self-

configuration memory interfaces (external memory and C40) used the same XC6264

pin locations.

If the self-configuration mechanism was implemented, comport-11, comport-12, and

comport-13 could not be used. Similarly if the XC6200-C40 Global interface was

configured comport-7 and comport-8 were inaccessible. Three comport connectors

would therefore be available to implement the routing topology preventing bi-

directional transfer (requires four comports) between two C40 DSPs.

The decision was therefore taken to perform RTR through XC6200ADS interaction.

This implied adaptation of the routing topology could not be automated by the C40 (true

161

Chapter 7: XC6264 Dynamic Routing Hub

RTR), but increased operational diversity through the user being able to manually select
the next active configuration.

The concept of automating active routing topology determination within the hub,

through analyses of system bottlenecks was also assessed. It was concluded however,

that this work was beyond the scope of this project and would be recommended for

further investigation (Chapter-9).

7.4.2 Implementation Strategies

Dynamic routing topologies were configured within the XC6264 using two design

approaches defined as structured and non-structured. Structured router architectures as

the name suggest had defined skeleton architectures. An example of this type of

architecture was the routing topology developed in Section-7.3.

Non-structured routing topology was the term given to designs that did not contain

predefined data buses and crossbar switches. The routing of buses between system

components was defined instead by XACT6000 during compilation. This methodology

was used within the direct connection router designs developed in Section-7.1.1.

To compare the merits of structured and non-structured operation, RTR routing

topologies consisting of two configurations were developed. The routing topology

configurations devised are shown in Figure 7.7.

162

Chapter 7: XC6264 Dynamic Routing Hub

XC 62U0 Iuwting Hub

I lub Configuration One Comport 5 Comport 9

ý
,'

i ('401 ('402
RTR

Comport 7 Comport 12
ý`'I

% 'j s Comport " Comport 9
ý. R"I R1 C40 I ('40 2

Comport 7 Comport 12
Huh Configuration Two

Figure 7.7 Dynamic Routing-hub Configurations

Each configuration required four comport connections interconnecting two TIM-40

(C40) nodes. The two configurations could reside within the XC6264 using temporal

partitioning, performed through RTR. Configuration-one consisted of two data paths.

Within the first path, C40-1 transmits to C40-2 via Comport-5 and Comport-9 of the

routing hub, whilst the second path was formed by C40-2 transmitting to C40-1 using

Comport-12 and Comport-7.

The second XC6264 configuration consisted of two data paths, with C40-1 and C40-2

both using the routing-hub channels to transmit data from one local comport back to

another in closed loop fashion.

Using these configurations, both structured and non-structured routing implementations

were developed. Each implementation method was spatially and temporally analysed

using XC6200ADS tools. The operational characteristics of each configuration are

listed in Tables 7.2 and 7.3. These contain the maximum operating frequency, signal

propagation delay, channel bandwidths, volume of configuration data required to swap

between configuration-one and configuration-two (XC6200 address/data pairs), and

measured XC6200ADS configuration delay (using external timer). XC624 footprints for

each design are shown in Appendix-VI.

163

Chapter 7: XC6264 Dynamic Routing Hub

Frequency Signal Delay Bandwidth RTR Data Volume RTR Dela
Cone uration 1 3.519MHz 284.171nsec 879.7kb es/sec 136 50.59msec
Configuration 2 3.518MHz 284.260nsec 879.5kb es/sec 136 50.59msec

Table 7.4 Structured Routing Topology Performances

Frequency Signal Delay Bandwidth RTR Data Volume RTR Delay
Configuration 1 16.86MHz 59.313nsec 4.215Mb es/sec 588 174. lmsec
Configuration 2 16.794hz 59.544nsec 4.199Mb es/sec 588 174.1msec

Table 7.5 Non-Structured Routing Topology Performances

Operating frequencies listed in Table 7.4 indicated that the signal propagation delay

within the structured topology was almost constant for each configuration; Results

indicated a difference of 0.089nsec in maximum signal propagation delay between

configurations. The maximum signal propagation relates to the signal delay encountered
throughout one cycle of each unidirectional ring and is attributed to the XC6264 signal

routing topology.

Table 7.5 indicated that the communication bandwidth of non-structured designs was

far greater than that of structured design (Table 7.4). This was expected since
XACT6000 mapping of system components was not restricted (as in structured designs)

and therefore placement was optimised for speed; XC6264 footprints in Appendix-VI

highlight this feature.

With the structured architecture the data-bus paths used within configuration-one and
two can be considered equal to a half and a quarter distance respectively of the total ring

length. Using this approach, structured topology results were adjusted with the revised

maximum operand throughputs calculated for each structured configuration shown in

Table 7.6.

Mbytes/sec.

Structured Non-Structured
Configuration I Configuration 2 Configuration 1 Con t ration 2

1.759 3.518 4.215 4.199

Table 7.6 Adjusted Routing Topology Bandwidths

164

Chanter 7: XC6264 Dynamic Routing Hub

The analysis indicated that non-structured designs exhibited greater operand throughput

compared to structured designs. This difference in performance was predicted since

crossbar switches were absent within non-structure designs. The results also indicated

the volume of configuration data required for RTR of non-structured routing designs

was far greater than identical structured topologies. This reflected the vast differences

between individual non-structured configurations.

If sequential non-structured router configurations did not occupy common XC6264

resources, it was possible to implement multiple configurations within the XC6264. In

effect multiple individual configurations would be combined within one static

configuration, with the actual routing topology selection instead being performed

through updating the C40s operating software.

To verify dynamic re-configuration of each routing topology, two TIM-40 C40 nodes

executed test programs. Each C40 wrote different sequences of data to the routing hub.

The active configuration of the hub then determined which sequence each C40 node

would receive.

Within the TIM-40 motherboard architecture, a hardwired routing topology existed

between individual C40 positions (Section 3.2.2). Since only the JTAG root node (C40-

1) could communicate with the host PC, results recorded by C40-2 were transmitted to

C40-1 using this existing communication network. The combined results were then

displayed on the host computer.

Dynamic switching of each configuration was performed using XC6200ADS tools

controlled through user intervention. In conjunction with C40 test programs, the

dynamic switching capability of both design strategies was verified.

During this test procedure however, it was observed that positions of individual bytes

within the C40 communication channel packets would be incremented causing data

165

Chapter 7: XC6264 Dynamic Routing Hub

transfer errors. This was an infrequent feature, but occurred upon completion of

dynamic reconfiguration.

Byte position shifts were caused through the manual instigation of reconfiguration not

being in synchronism with the free-running C40 operation. If the C40 governed RTR

using the self-configuration control mechanism, byte shifts would not occur since RTR

completion and C40 communication channel operations would be sequenced.

Analysis of non-structured configurations, determined that the allocation, distribution of

routing resources and operand throughput was dependant upon the comport positions

used. Through developing further explorative hardware configurations, it was apparent

that routing constraints encountered when using non-structured data paths would

prevent the insertion of processing elements within a routing hub.

It was concluded that to develop routing-hub based processing elements a structured

design approach was desired. Fabricating a discrete routing topology using a non-

structured design would generate greater operand throughput, but at the expense of

incurring greater RTR delays.

7.5 Routing-Hub Processing Elements

The previous section investigated the merits of including dynamic routing resources

within MIMD DSP architectures. In comparison to the existing router hardware, the

operating characteristics of the XC6200 implementations were poor. This was attributed

to limitations within the XC6200 FPGA architecture and not the operating principles of

the design.

To further investigate this aspect of dynamic routing hubs, processing elements were

configured within hub data paths. These processing elements implemented simple fine-

grain local operations, computed inefficiently within the DSP architectures optimised to

accelerate coarse-grain operations. Coarse grain functions typically require floating-

166

Chapter 7: XC6264 Dynamic Routing Hub

point calculations unlike local operators that can be processed using fixed-point

notation.

Within digital image processing applications, the processing power associated with DSP

multiprocessor architectures was normally harnessed to extract information from within

an image [2]. Prior to performing this function, pre-processing of the image typically

occurred and included functions such as binary threshold and edge detection.

Upon commencing system operation, operands and images within a multiprocessor

environment must be distributed amongst system nodes via a routing topology. If local

fine-grain type pre-processing functions were performed during operand/image transfer,

computation overheads for each node would be reduced. Once pre-processing

operations had finished, unused hardware within the routing-hub could then be re-

adapted to increase communication bandwidth between system nodes. Within this

concept, the routing-hub itself could appear as an additional processing node, or as

shared memory, if routing-hub transfers were not required during phases of system

operation.

Through constructing the routing hub, it was apparent that logic resources available to

implement such processing elements would be limited. It was possible however to

develop a simple applications to demonstrate this concept. The primary operation

developed was the Roberts Cross Edge Detector. This algorithm is described next.

7.5.1 Roberts Cross Edge Detector

The Roberts Cross edge detector, as the name suggests is used to detect gradient

changes (edges) within images. This function operated using two convolution masks as

shown in Figure 7.8, with each mask scanned over the input image. The mask

coefficients appear similar to the Sobel operator and are rotated so that mask-one
determines gradient changes in the X-plane of the image, whilst mask-two the Y-plane.

167

Chapter 7: XC6264 Dynamic Routing Hub

Through combing the operation of the two masks, the contour information of the target

image can be extracted. This can be considered a local-type operation since each

calculation requires a pixel connectivity of four. Further only one addition and two

subtraction operations are required within the computation. The simplistic operation of

mask operation however makes the Robert Cross operator vulnerable to noise within the

image.

P1 P2

P3 P4

+1 0

0 -1

o +i

-i 0
Pixel Grid Positions Mask One X-Plane

Figure 7.8 Roberts Operator Mask Coefficients

Mask Two Y-Plane

The combined functions of both masks are shown in Equation 7.1.

GI = Gx2 + Gy2

Equation 7.1

Equation 7.1 can be approximated using Equation 7.2, with the operation re-written in

terms of the mask operations in Equation 7.3.

IGI = IGxI +I Gyl

Equation 7.2

IGI = IPI - P4I + IP2 - P31

Equation 7.3

To determine the presence of an edge, the resultant gradient is quantisised. If the

magnitude of gradient (G) is greater than the threshold an edge has been detected and a

black pixel is written to the output image in the corresponding grid position of mask

pixel P3.

In typical Roberts Cross applications, edge detection is the only function required. It is

168

Chapter 7: XC6264 Dynamic Routing Hub

also possible to determine the orientation of the edge within the output image. This

operation is shown in Equation 7.4.

=tan-'(cx) -(4 "r)

Equation 7.4

To determine the edges orientation, the base angle was taken as the direction of

maximum contrast running from left to right of the output image.

An example of the Robert Cross operation is shown in Figures 7.9 and 7.10. Figure 7.9

is the original image, whilst Figure 7.10 is the output image generated with an edge

threshold of 40. The original image was a 512x512 pixel 24-bit colour optical fringe

pattern, converted to 8-bit grey-scale using XC6200ADS tools. Within the output image

(Figure 7.10) 99,475 pixels (represented in black) were greater than the threshold value.

Figure 7.10 Roberts Operator Output

7.5.2 Roberts Operator Hardware Implementation

The Roberts Cross edge detector algorithm was implemented within a XC6264 FPGA

using a 9-bit twos-complement bit-slice design. The block diagram of this hardware is

shown in Figure 7.11. The design was constructed using arithmetic hardware developed

in Chapter-4.

169

Figure 7.9 Original Image

,.. �- -

Chapter 7: XC6264 Dynamic Routing Hub

The design has four inputs P1, P2, P3 and P4 relating to the pixel position in Figure 7.8,

and two outputs. Output Sum is the Roberts gradient (G) prior to quantisisation, with the

threshold value determine by the content of a register within the design. The detection

of an edge is indicated by signal Edge.

Twos

hi
Magnitude

Complement Converter Adder Output
Subtract Overflow

Twos ý-j Magnitude Output Complement Converter Threshold Subtract

Sum Edge

Figure 7.11 XC6264 Grey-scale Roberts Operator Hardware Implementation

The design functioned by first performing the subtractions operations within Equation

7.3. If the results generated by these operations were negative, they were then converted

back to a positive magnitude. The addition operation was then calculated with the

output magnitude limited to a value of 255 (8-bit grey-scale representation). Edge

detection was performed through subtracting this value (sum) from the threshold value.

If a negative result was generated an edge had been detected.

The complexity of the design could be reduced if monochrome (binary) input images

were used. Within such images, pixel values were represented using one-bit data.

Roberts operator hardware can therefore be simplified to three logic gates as shown in

Figure 7.12.

170

Chapter 7: XC6264 Dynamic Routing Hub

Figure 7.12 XC6264 Monochrome Roberts Operator Hardware Implementation

The implementation characteristics of each configuration are listed in Table 7.5. The

results indicated that the binary Roberts operator had greater throughput than the grey-

scale version. This was expected when considering the complexity of each operation.

Number of CLCs Maximum Frequency
Gra -scale 173 6.704MHz

Monochrome 3 62.697MHz

Table 7.7 XC6264 Grey-scale and Monochrome Operator Characteristics

To compare the output response of both grey-scale and binary Roberts operator

implementations, a common input image (Figure 7.9) was used. This image was

converted to binary before the monochrome operation commenced automatically within

the XC6200ADS; A hardware version of this operation was also developed during the

project.

The XC6264 output images obtained for an 8-bit grey-scale and monochrome Roberts

operators are shown in Figure 7.13 and Figure 7.14. The monochrome implementation

used a binary threshold of 130 prior to applying the Roberts operator, whilst the Grey-

scale version had an edge threshold of 40.

Inspection of the images revealed that the 8-bit operator generated superior edges

compared to the binary version. This deficit was expected and could be adjusted

through employing histogram shifting prior to converting from grey-scale to

monochrome image. Interpretation of the output generated however is dependant upon

human visual perception.

171

Chapter 7: XC6264 Dynamic Routing Hub

Figure 7.13 Grey-scale Output Figure 7.14 Monochrome Output

7.5.3 Roberts Operator Routing-Hub Integration

The implementation of the Roberts Cross operator within the routing-hub is shown in

Figure 7.15. Data was communicated and controlled through the secondary crossbar

switches enabling and disabling Roberts operator hardware as required. Input image

pixels were written through comport-12 in one C40 word. Within the Roberts operator

hardware a FIFO four-bytes deep was used to separate and apply each individual input

pixel (PI-P4) to the processing elements.

Edge detection was determined using comport-9. Within the Roberts hardware

implementation, signal Edge was represented by a single bit-value. Each bit within the

word read by the C40 was set to the Edge value.

The Roberts threshold level was written through comport-8, and could be updated

during system operation. One byte was required to implement this value but the method

of applying input pixels constrained this value to be written within the fourth byte of the

C40 word. This value could be controlled through observation of output signal Sum via

comport-7.

172

Chapter 7: XC6264 Dynamic RoutinHub

Data Paths
Configured Comport 12 Comport 11
In hub

Primary
Secondary Cross-Bar
Cross-Bar Switches
Switches /

v ----------- /-
Input Edge
Pixels Detection ,

Comport 13 Comport 10
Roberts Operator '° °°-~" Comport 5 Comport 9

i Threshold
, Sum Level ;

8-bit Data buses

Comport 7fI Comport 8

Figure 7.15 Router Hub Processing Element Configuration

To verify the operation of this topology, two TIM-40 nodes were attached. Similarly to

Section 7.4, the internal routing topology of the TIM-40 motherboard was used to

transfer test data between the secondary C40 and JTAG root nodes.

The primary node was connected to comport-12 (P1, P2, P3 & P4) and comport-9

(Edge), whilst the secondary node was connected to comport-7 (Sum) and comport-8

(Threshold). This topology allowed the threshold to be calculated and adapted during

system operation. The feature could also be accomplished through a temporally

partitioned version of the Roberts operator processing hardware.

Whilst evaluating the monochrome operator only one C40 node was required since no

threshold value was used nor sum generated. Input data was written through comport-12

(P1, P2, P3 & P4) and the result read from comport-9 (F).

173

Chapter 7: XC6264 Dynamic Routing Hub

The optimum hardware characteristics obtained for each edge detector configuration are

shown in Table 7.8. The volume of RTR configuration data generated (address/data

pairs) was determined using the skeleton router hub architecture (Figure 7.7) as the

configuration prior to the Roberts operator. Using XC6200ADS RTR, the configuration
delay was measured externally.

Roberts Cross Configuration Signal Delay RTR Data Volume Configuration Dela
Grey-scale Pixel Operator 303.24nsec 2951 1.1053sec

Binary Pixel Oerator 290.64nsec 1562 0.627sec

Table 7.8 XC6264 Dynamic Router/Processor Hub Hardware Characteristics

During testing however, the XC6264 clock frequency was set to 2MHz. Inserting the

grey-scale Roberts operator within the routing-hub actually increased operand

throughput by 183.24kbytes/sec to 824.4kbytes/sec compared to a channel capacity of

641.16kbytes/sec, calculated when using both primary and secondary routing resources
(Section-7.3.1). Prior to this experiment it was predicted that hub throughput would be

reduced since the XC6264 configuration would be of greater complexity. Contradictory

results however were obtained since hub secondary routing resource signal mappings

(Figure 7.5) generated by XACT6000, differed for each hardware configuration. This

further highlighted the limitations of XC6200 FPGA architecture and development

tools.

Basic mechanisms for automated threshold calculation using the value of Sum were

explored. If the value of Sum was small compared to the edge threshold then the kernel

pixels (P1-P4) were in a region of low variation (no edges). However, if the value of

sum was just less than the threshold, the active pixels were in a region of high frequency

content and the threshold value would then be adjusted to detect the edge.

Using XC6200ADS software tools this concept was demonstrated using image `lena'.

Figure 7.16 shows the output of a Roberts Cross operator with an edge threshold of 30.

Edge pixels were detected 23931 times within the input image. During the operation

however, it was discovered that the Sum values of 12998 additional kernel operations

174

Chapter 7: XC6264 Dynamic Routing Hub

were below the edge threshold by a deviation value of 8 or less. The deviation value

was chosen to be 8 through analyses of the Suer values generated. Exploring this

concept however was beyond the scope of the project and required further investigation.

The Roberts Cross edge detector output using a primary threshold value of 30 and

deviation value of 8 is shown in Figure 7.17. Figure 7.18 illustrates the output when

threshold values of 38 excluding threshold deviations are used. With a threshold value

of 30 and active deviation of 8,36929 kernel operations detected edge pixels. In

comparison a threshold value of 38 with no deviation detected 16398 edge pixels.

i

Figure 7.16

.-

ýý

I. \1 : Edge Threshold 30 with no Deviation

/

tIý , 1>

f

Figure 7.17

'#fi 7AAý..

....
ý'"fill 1

Edge Threshold 30 with Deviation of 8

175

Chapter 7: XC6264 Dynamic Routing Hub

4 //.
k

Figure 7.18 Edge Threshold 38 with no Deviation

7.6 Summary

I'
,'

4, i

This chapter has presented two methods by which dynamic hardware can be integrated

into an existing multiprocessor topology to enhance system operation. Through

inclusion of a dynamic routing-hub using dynamically and temporally partitioned

routing structures, inter-node bandwidth can be adapted during system operation to

speed-up operand transfer between nodes.

A dynamic hub has the potential to increases application diversity and system

throughput, by enabling the structure of the processing topology to be adapted for

optimal efficiently during each phase of an application. Through dynamic configuration

the routing-hub could appear as an additional processing node during periods of limited

operand transfer.

Expanding this idea further, a fine-grain pre-processing function (Roberts Cross) has

been inserted into data-channels within the routing huh, with the aim to overlap operand

transfer and computation overheads. This has increased system performance by offering

`front-end' fine grain processing and un-expectantly, increased data transfer rates.

The limited performance XC6200 based hardware developed to explore these concepts

has not resulted in any increase in C40 MIMD performance. However they have

176

Chapter 7: XC6264 Dynamic Routing Hub

demonstrated the potential performance gains obtained from these ideas, and have

ratified development strategies used.

177

Chapter 8: Conclusions

Chapter 8

Conclusions

The objective of the work presented in this thesis has been an investigation into the

integration of dynamic hardware resources within a DSP based multiprocessor

architecture. This has been accomplished through implementing RTR hardware within a

custom designed dynamic hardware development platform (XC6200DS). The outcome

of this work has resulted in the construction of custom dynamic hardware and software

tools, allowing the development of three novel aspects within configurable computing

technology. These concepts have addressed dynamic hardware application development

(BinDCT), dynamic coprocessor operation (self-configuration controller), and RTR

routing-hub integration within multiprocessor architectures (routing-hub, Roberts Cross

operators).

Limitations encountered within dynamic FPGA development tools have constricted the

progress of this work to focus primarily on developing efficient RTR design principles,

applications and dynamic operation, rather than increasing the raw operand throughput

of the original parallel processing architecture.

Through exploiting redundant properties within the BinDCT algorithm during run-time,

one and two-dimensional transform operations have been developed. Compared to static

XC6200 FPGA implementation, dynamic hardware operation has increased operand

throughput from 9.26 to 18.52 kBinDCT ops/sec per one-dimensional operation,

improved the inherent DC coding-gain, resulting in increased accuracy in

approximating true DCT operation.

Dynamic BinDCT operation was realised using a temporally partitioned C40 DSP

XC6200 fixed-point dynamic coprocessor application (Chapter-6). To perform this

operation a novel configuration controlled mechanism known as the self-configuration

controller was developed. This concept enabled RTR to be performed without user

178

Chapter 8: Conclusions

intervention, instead being instigated by the C40 DSP or XC6200 coprocessor function

itself.

Through adapting the XC6200 coprocessors configuration during run-time, the

throughput of two-dimensional BinDCT operations was increased by a factor of two for

8x8 pixel tiles possessing limited frequency contents. Increases in operand throughput

however were masked by the RTR delay incurred. This factor was XC6200 FPGA

specific and would decrease dramatically through improved dynamic semiconductor

technologies. The implementations of the BinDCT algorithm using temporally

portioned dynamic hardware were novel concepts.

The integration of dynamic coprocessors resources within the DSP multiprocessor

architecture demonstrated how operand throughput could be increased through using re-

usable application-specific hardware. The topology created provided each processing

node with a hardware resource that could be configured and optimised to accelerate

each computation during system operation. Using this technology each node exhibited

virtual hardware capabilities.

The insertion of a dynamic routing hub within the TIM-40 multiprocessor

communication topology has also revealed aspects of system operation that can be

accelerated through dynamic hardware implementation (Chapter-7). Prior to inserting

the routing hub, node operand transfer bandwidths were fixed during system operation.

Through incorporating dynamic hardware, inter-processor bandwidths could be adapted

during system operation and accelerate data transfers. Even with the limited bandwidth

restrictions imposed through using XC6200 FPGA based hardware, the routing hub

developed proved this aspect viable.

In constructing dynamic routing hardware, a trade-off between communication channel
bandwidth and RTR delay (configuration data volume) existed. Although this factor

appeared XC6200 FPGA specific, the development methodologies demonstrated during

routing-hub construction have contributed to combating and rectifying this problem.

179

Chapter 8: Conclusions

Incorporating elements within FPGA architectures such as predefined bus routes and

dedicated crossbar switches have been explored.

To investigate the ability of RTR system nodes to implement router and processing

resources concurrently, the XC6264 routing-hub possessed a secondary `user'

configurable area within its skeleton architecture. This was a novel concept within

parallel processor routing topologies. To expand this notation, local-type fine-grain

image processing operators were inserted within data-paths of the routing-hub. The aim

was to overlap computation and operand transfer overheads by performing simple

functions upon the data whilst in transit.

A Roberts Cross edge detector hardware implementation was developed to explore this

feature (Section-7.5). Although this hypothesis proved beneficial to system architecture,

the throughput obtained was again restricted by XC6200 FPGA hardware limitations.

Through inserting reconfigurable hardware within an existing fixed processing

topology, the potential benefits to system operation were demonstrated. The optimal

exploitation of these factors was not obtainable due to limitations imposed by the

dynamic media.

The XC6200 FPGAs and development tools purchased were supplied for research

purposes only. The effects of this restriction were visible through inefficient

development tools and poor hardware operating characterises when compared to current

FPGA architectures. The XC6200 FPGA family were used as the dynamic resources

since no other suitable RTR devices were commercially available.

If developed commercially, the XC6200 family would have matured with gate capacity,

operating frequency, dynamic configuration performance and quality of development

tools. However, no industry standard dynamic applications existed, therefore demand

for these semiconductors were low. It is hoped that application concepts demonstrated

within this thesis may address this issue.

180

Chanter 8: Conclusions

To exploit fully the benefits temporal partitioned hardware can offer, configuration

delays must be reduced. This can be accomplished through advancements in RTR

configuration mechanisms, and increases in reconfiguration granularity. The fine-grain

granularity of the XC6200 requires each logic gate to be configured independently,

generating large configuration files. If RTR could be performed on larger configuration

tiles such as ALU units rather than individual gates, the volume of configuration data

required would be reduced, hence configuration delay reduced.

Whilst constructing dynamic hardware, it became evident that in-circuit verification of

dynamic hardware configurations was non-existent. This limitation was apparent for

both functional testing and ensuring RTR had been successful. To address these

problems in-circuit hardware verification methods were developed using the XC6200

FastMAPTm interface (Section-4.1). Although they proved reliable in operation, these

methods were inadequate and poor compared to existing hardware design standards

such as IEEE JTAG Boundary Scan [79].

The design philosophy used whilst developing dynamic hardware was to minimise

differences between consecutive configurations. Although these techniques were

XC6200 FPGA specific, it was evident that hardware designed for minimal RTR update

was beneficial. RTR overheads and in-circuit hardware verification requirements would

be reduced, and the design would exhibit greater operational reliability since fewer

architectural changes occurred between successive configurations.

The aims of the project have been achieved, with three aspects of system operation

enhanced through dynamic hardware. The potential performance benefits gained

through using reconfigurable logic have been demonstrated. Before maximising these

goals however, advancements must be made within configurable device architectures,

software development tools, design strategies and in-circuit verification methods.

Progressions of these tasks has commenced within academia, and now starting to occur
in industry [46] [47] [48]. The potential performance benefits offered by this technology

181

Chapter 8: Conclusions

will be more apparent through further application development and semiconductor

fabrication technologies reaching the limits of Moores law. Achieving high operand-

throughputs would therefore show greater dependence upon efficient hardware

implementation, rather than increased clock frequencies.

Through the inclusion of dynamic hardware resources within a traditional instruction-

set parallel processing topology, the potential for increased application diversity and

greater processing capacity has been demonstrated. The goals have been reached

through exploitation of the concepts of virtual hardware and temporal application

development.

182

Chapter 9: Recommendations For Future Research

Chapter 9

Recommendations For Future Research

Introduction

To advance the development and facilitate the inclusion of dynamic hardware within

industrial applications, problem areas highlighted within Chapter-8 must be rectified.

The recommendations addressing these issues are divided in three categories. These are

dynamic hardware technologies (Section-9.1), XC620ODS operation (Section-9.2) and

dynamic hardware application development (Section-9.3).

9.1 Configurable Logic Technology

Whilst developing RTR hardware, it was evident that in-circuit test mechanisms for

dynamic hardware did not exist. Limited hardware verification was only possible

through using the XC6200 FPGA FastMAPTm interface. Improvements must be made to

this aspect of hardware development if dynamic configuration is to be accepted as an

industry standard.

Dynamic in-circuit verification must be present within a design to ensure that each run-

time configuration used functions correctly. This task must be accomplished during run-

time without inhibiting system throughput. To achieve this function, a multi-level real-

time in-circuit hardware verification method, similar to the JTAG chain operation is

proposed.

Within this concept hardware verification and operand throughput would occur

concurrently through the use of four-level stimuli within FPGA CLBs as illustrated in

Figure 9.1. The proposed FPGA architecture would consists of a dedicated on-chip CLB

hardware verification interface unit, coupled to a (on-chip/external) memory containing

specimen input and output test stimuli. The specimen results contained within the

memory would be generated using software development tools prior to system

183

Chapter 9: Recommendations For Future Research

operation. During system operation, input test stimuli would be read from memory

through the hardware verification interface and applied to the respective FPGA CLB.

Multi-level Signal Actual ('1-13 Logic A ('1, R
Conversion Units Function Inputs

E3

. _..
As lest

Stimm/i

A At Eis
CLß Ft tF CLß I

-
Multi-level

Inputs ß= ßt Output At

ý
Signals

Signal

elk Eat Levels

CI-13 1
Stirn

Fest
Stimuli: As. [3s Fs. Stimuli Response i

2 i Ft r
ro

Fs Stimuli Response
Internal FPGA ('113 1 lardware
Vcritication Interface F ('LB Output

s"'. tware System Waveforms
Stimuli Dcveloprncnt

Memory Environment

Figure 9.1 Run-Time Dynamic Hardware Verification Mechanisms

A As At
0 0 TO
0 1 TI
1 0 T2
I I T3

Where: TO-T3 correspond to signal levels in Figure 9.1

Table 9.1 Binary to Multiple Threshold Conversion Table

Through combing both the CLBs input data and test stimuli within a multi-level signal

conversion unit, a four-level signal response is generated as shown in Table 9.1, where

A is a CLB binary input, As the test stimuli, and Al is the resultant multi-threshold

signal. This response is then separated in to actual and test stimuli CLB outputs using a

complementary multi-level signal converter. The FPGAs hardware verification unit

would then compare the CLBs output test stimuli against pre-defined specimen results

(located within the stimuli memory). If errors were detected remedial action would be

taken including reloading defective CLBs or halting system operation and generating an

error signal. Stimuli responses generated could also be transferred to and evaluated by

184

Chapter 9: Recommendations For Future Research

software tools through the stimuli memory software development environment
interface.

To increase the performance of dynamic hardware configuration overheads must be

reduced. This can be accomplished through increasing the granularity of RTR

component tiles from single logic gate functions (XC6200) to ALU type operations,

hence reducing the volume of configuration data required for RTR. Dynamic

performance can also be improved through the development of more efficient

configuration mechanisms. The primary problem with existing FPGA configuration

interfaces is the limited bandwidth between on-chip configuration mechanisms and

external configuration stores.

The system throughput and component interfaces between temporally partitioned

hardware could also be improved, through incorporating self-timed design techniques

within dynamic FPGA operation. For these concepts to be realised further investigation

into the subject area is required.

Evolvable hardware has been toted as the solution for developing ever-more efficient

digital designs. Presently, evolvable hardware configurations are generated by

manipulation of FPGA configuration data sequences, updated through examining the

FPGAs output compared to the desired hardware function. Through each evolutionary

cycle, the FPGAs configuration stream is modified to adapt the FPGAs output to mimic

more closely the required function.

The function and mechanisms of FPGA hardware configurations used within the

evolutionary cycle do not follow any traditional synchronous digital design techniques.

Instead features such as FPGA signal propagation delays and silicon electro-magnetic

properties are utilised within the hardware's function and evolution. These factors

however are device dependant and can vary with temperature and operating frequency.

To address this issue, CLB configurations should be used as the evolutionary building

185

Chapter 9: Recommendations For Future Research

blocks, with updates of FPGA configuration performed using structured CLB

configurations. This is in contrast to the present method of randomly modifying FPGA

configuration bits, and then determining the effect this has had upon system output [63].

9.2 XC620ODS Operation

The XC620ODS was conceived as a multi-purpose development platform for RTR

hardware. The system hardware and software tools were designed for easy operation,

efficient construction and versatility, rather than raw performance.

To improve the XC6200ADS, the existing user interface should be replaced with a

Windows style menu GUI. The structure of the software also needs to be improved

since it has continually evolved throughout the project. Its operation has now reached a

standardised format, and therefore could be rewritten and optimised to improve

operational performance.

The XC620ODS hardware design could be improved by replacing the external self-

configuration RAM module (connected to XC620ODS using 40-pin IDC cable) with

onboard RAM. This would improve the reliability of the self-configuration operation

since the electrical noise encountered during configuration data transfer would be

reduced.

To increase the bandwidth between the FastMAPTm interface and host computer, the

XC620ODS should be redesigned as a PCI type peripheral or newer video interface

standard, having 32-bit instead of 8-bit internal architecture. Inclusion of an on-board
digital camera interface would also be beneficial to application development.

Further, modifications to the TIM-40 expansion port needs to be assessed. Although this

proved operational, a more suitable construction method is required.

186

Chapter 9: Recommendations For Future Research

9.3 Application Development

The XC6264 coprocessor implementation of the BinDCT has shown how RTR can be

used to improve the operand throughput, loss-less DC coding gain, and DCT

approximation accuracy, compared to static hardware configurations. Work however is

required to enhance the existing mechanisms used to determine the optimal BinDCT

configuration for each pixel kernel. The present mechanism functions by applying each

BinDCT configuration sequentially, and then calculating, which has generated the

greatest inherent DC coding gain. Although it proved reliable in operation, this

technique requires additional processing overheads that must be performed prior to

BinDCT dynamic operation. One solution to this problem is to examine the variation of

data within an input sequence block during computation, to determine if it has high or

low frequency contents.

Experiments conducted have only assessed BinDCT operation using configurations

BinDCT-C1 and BinDCT-C9. Further work is required to determine if including

configurations BinDCT-C2 to BinDCT-C8 enhances dynamic operation.

To explore further the benefits of implementing BinDCT hardware within real

applications such as JPEG compression, higher operand throughputs must be obtained.

This is possible through implementing BinDCT hardware using parallel bit-wise

implementation techniques instead of serial methods used within the XC6264 design.

Before this can occur however the logic capacity of dynamic FPGA technologies must

increase.

The concept of a multiprocessor dynamic routing hub can be advanced through

developing automated system configuration strategies. The optimal configuration of the

routing hub could be determined through analysing the bandwidth of data transfers and

system bottlenecks occurring within the multiprocessor topology. Further, the concept

of Roberts Cross edge detector threshold deviation should be explored in greater detail.

187

Chapter 9: Recommendations For Future Research

The final recommendation is to investigate the effects configurable logic could have on

product design and operation. Design life spans could benefit from using configurable
logic, and not just necessarily dynamic hardware.

Within electronic manufacturing, the lifespan of evolving commodity products such as

mobile phones is limited. Such product designs become obsolete as new developments

occur and consumers upgrade their hardware to be at the cutting-edge of technology. If

products such as these were developed using reconfigurable hardware, users could

upgrade to the latest protocols by downloading new configurations. This would help

improve the lifespan of designs.

A further product concept is that of a multi purpose base-unit that a consumer reuses to

perform multiple applications. Consumers would purchase each function as required,

which are stored locally within a non-volatile configuration memory. Dependant upon

the application required by the user, the appropriate hardware function would then be

configured within in the base-unit.

The two concepts outlined will expand on the techniques of remotely generating, then

downloading FPGA configuring data using the Internet known as Internet

Reconfigurable Logic (IRL), as practiced today by Xilinx [82].

188

References

References

[1] J. D. Mellot, M. Lewis, F. Taylor, P. Coffield, "ASAP -A 2D DFT VLSI Processor
and Architecture", Proceedings IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 3280-3283, Atlanta, U. S. A., 7`h-10`h May
1996.

[2] S. P. Kshirsagar, "High Speed Image-processing System Using Parallel DSPs",
Ph. D. Thesis, LJMU 1994.

[3] J. E. Volder, "The CORDIC Trigonometric Computing Technique", IRE
Transactions Electronic Computing, Vol. EC-8, pp. 330-3345,1959.

[4] J. S. Walther, "A Unified Algorithm for Elementary Functions", Proceedings
Spring Joint Computer Conference, pp. 379-385,1971.

[5] G. Estrin, "Organisation of Computer Systems: The Fixed-Plus Variable
Structure Computer", Proceedings Western Joint Computer Conference,
American Institute of Electrical Engineers, pp. 33-40,1 V. Y., U. S. A., 1960.

[6] "MACH111SP CPLD Data Sheet", Yantis Corporation, Publication Number
21120, Version B, 1997.

[7] "54SX FPGA Family Data Sheet", Actel Corporation, Version 3.0.1, May 2000.

[8] "ACTTm 3 FPGA Family Data Sheet", Actel Corporation, September 1997.

[9] "XC4000E, XC4000X FPGA Family Data Sheet", Xilinx, Version 1.6, May
1999.

[10] "FLEX 10K Embedded Programmable Logic Family Data Sheet", Altera,
Publication Number A-DS-F1OK, Version 4.02, May 2000.

[11] "MPAA020 FPAA Advanced Information", Motorola, Document Number
MPAA020, April 1997.

[12] "IQX FPID Family Data Sheet", I-Cube, Version 6.2, February 2001.

[13] S. Hauck, S. Burns, G. Borriello, B. Ebling, "An FPGA for Implementing
Asynchronous Circuits", IEEE Design and Test of Computers, Vol. 11, No. 3,
pp. 60-69,1994.

189

References

[14] M. Valsilko, D. Ait-Boudaoud, "Optically Reconfigurable FPGAs: Is This a
Future Trend ? ", Field Programmable Logic: Smart Apflications, New
Paradigms and Compilers, (FPL 96), Darmstadt, Germany, 23r -25`h September,
1996. Lecture Notes in Computer Science, Vol. 1142, pp. 270-279, Springer-
Verlag, 1996.

[15] J. Babb, R. Tessier, A. Argarwal, "Virtual Wires: Overcoming Pin Limitations in
FPGA Based Logic Emulators", IEEE Workshop on FPGAs for Custom
Computing Machines, pp. 142-151, Napa, California, April 1993.

[16] "XC3000 FPGA Family Data Sheet", Xilinx, Version 3.1, November 1998.

[17] H. Hogl, A. Kugel, J. Ludvig, R. Manner, K. Noffz, R, Zoz, "Enable++: A Second
Generation FPGA Processor", IEEE Symposium on FPGAs for Custom
Computing Machines, pp. 45-43, Los Alamitos, U. S. A., April 1995.

[18] J. E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Toutati, P. Boucard,
'Programmable Active Memories: Reconfigurable systems Come of Age", IEEE
Transactions on Very Large Scale Integration Systems, Vol. 4, No. 1, pp. 56-69,
March 1996.

[19] C. E. Cox, W. Ekkehard Blanz, "GANGLION -A Fast Field Programmable Gate
Array Implementation of a Connectionist Classifier", IEEE Journal of Solid
State Circuits, Vol. 27, No. 3, pp. 288-299, March 1992.

[20] D. Lewis, D. Galloway, D. Karchmer, D. J. Rose, P. Chow, J. Rose " The
Transmogrifier: The University of Toronto Field-Programmable System';
Technical Report CSRI-30, Computer System Research Institute, University of
Toronto, Toronto, Canada, June 1994.

[21] S. Hauck, G. Borriello, C. Ebeling, "Springbok: A Rapid Prototyping System for
Board Level Design", ACM/SIGDA 2nd International Workshop on FPGAs,
Berkley, U. S. A., 13 ̀h-1 `h-151h February 1994.

[22] L. Barroso, S. Iman, J. Jeong, K. Oner, K. Ramamurthy, M. Dubois, "RPM: A
Rapid Prototyping Engine for Multiprocessor Systems", IEEE Computer, pp. 26-
34, February 1995.

[23] S. Casselman, "Virtual Computing and the Virtual Computer", IEEE Workshop:
FPGAs for Custom Computing Machines, pp. 43-48, Napa U. S. A., P-7`" April
1993.

[24] P. M. Athanas, A. L. Abbot, "Real Rime Image Processing on a Custom
Computing Platform", IEEE Computer, pp. 16-24, February 1995, Vo1.8 No. 2.

190

References

[25] J. R. Hauser, J. Wawrzynek, "Garp: A MIPS Processor with a Reconfigurable Co-

processor", Proceedings. IEEE Symposium Field Programmable Custom
Computing Machines, (FCCM97), pp. 87-96, Napa Valley, U. S. A., 16`h-18'h
April 1997.

[26] I. Page, "Reconfigurable Processor Architectures", Key Note Address, Heathrow
PLD Conference, 1 S` April 1995, published in Microprocessors and
Microsystems Special Issue on Co-Design, May 1996, Pub. Elsevier Science.

[27] P. Athanas, H. Silverman, "Processor Reconfiguration Through Instruction Set
Metamorphosis", IEEE Computer, pp. 11-18, March 1993, Vol. 26, No. 3.

[28] M. Wirthlin, B. Hutchings, "The Nano Processor: a Low Resource
Reconfigurable Processor", IEEE Workshop on FPGAs for Custom Computing
Machines, pp. 23-30, Los Alamitos, U. S. A., 11 ̀h April 1994.

[29] S. Singh, P. Bellec, "Virtual Hardware for Graphics Applications Using FPGAs",
Field Programmable Custom Computing Machines, (FCCM94), pp. 49-58, Napa
Valley, U. S. A., April 1994.

[30] A. DeHon. "Dynamically programmable gate Arrays: A Step Towards Increased
Computational Density", Fourth Canadian Workshop of Field Programmable
Devices, (FPD 96), pp. 47-54, Toronto, Canada, 13`h-14` May 1996.

[31] "AT6000 Series Configuration Guide", Atmel Corporation, Version 0436C,
September 1999.

[32] "XC6200 FPGA Family Data Sheet", Xilinx, Version 1.10, April 1997.

[33] E. Mirsky, A. DeHon, "Matrix: A Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable Resources" Proceeding.
IEEE Symposium on FPGAs for Custom Computing Machines, pp. 157-166,
Napa Valley, U. S. A., 17`x'-19th April 1996.

[34] A. DeHon, M. Bolotski, T. F. Knigh, "Unifying FPGAs and SIMD Arrays,
International ACM/SIGDA Workshop on FPGAs (FPGA 94), pp. 1-10, Berkeley,
U. S. A., 13`h-1 S`h February 1994.

[35] J. Villasenor, B. Hutchings, "The Flexibility of Configurable Computing", IEEE
Signal Processing Magazine, pp. 68-84, Vol. 15, September 1998.

[36] S. Trimberger, D. Carberry, A. Johnson, J. Wong, "A Time Multiplexed FPGA",
Proceedings of IEEE Symposium on FPGA-Based Custom computing Machines,
(FCCM 97), pp. 34-40, Napa Valley, U. S. A., April 1997.

191

References

[37] CLAy Datasheet, National Semiconductor Corporation, Santa Clara California,
U. S. A., 1993.

[38] Virtex II FPGA Family Data Sheet, Xilinx, Publication Number DS03101, Ver.
1.5, April 2001.

[39] S. Ludwig, "The Design of a Co-processor Board Using Xilinx's XC6200 FPGA

-An Experience Report", Proceedings 6`h International Workshops on Field
Programmable Logic and Applications, Springler-Verlag, Darmstact, Germany,
23' -25`h September 1996.

[40] S, Hauck, T. W. Fry, M. M. Hoswler, J. P. Kao, "The Chimaera Reconfigurable
Functional Unit", IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM 97), pp. 87-96, Napa Valley, U. S. A., April 1994.

[41] B. K. Gunther, "Space 2 as a Reconfigurable Stream Processor", Australasian
Conference on Parallel and Real-Time Systems, pp. 286-297, Newcastle,
Australia, September 1997.

[42] M. J. Wirthlin, B. L. Hutchings, "DISC: The Dynamic Instruction Set Computer",
Proceedings of SPIE Conference: FPGAs for Fast Board Development and
Reconfigurable Computing, pp. 92-103, Philadelphia, U. S. A., 25`h-26`h October
1995.

[43] H. Singh, M. Lee, G. Lu, F. J. Kurdahi , N. Bagherzadeh, E. Chaves Filho,
"Morphosys: An Integrated Reconfigurable System for Data Parallel
Computation Intensive Applications", IEEE Transactions of Computers,
Vol. 49, No. 5, pp. 465-480, May 2000.

[44] S. Gehring, S. Ludwig, "The Trianus System and its Application to Custom
Computing", Proceedings 6`h International Workshops on Field Programmable
Logic and Applications, Springier-Verlag, Darmstact Germany, 23rd_25th
September 1996.

[45] "E5 Configurable System-on-Chip (SOC) Data Sheet", Triscend, Version 1.05,
February 2001.

[46] Star Bridge Systems Press release, http: //www. starbridgesystems. com, 5th
February 1999.

[47] "IBM and Xilinx Team to Create New Generation of Integrated Circuits",
IBM/Xilinx Joint Press Release", New York, U. S. A., July 25`h 2000,
http: //www. xilinx. com/prs_rls/ibmpartner. htm.

[48] "Excalibur Device Overview", Altera, Publication A-DS-EXCARM, Ver. 1.2,
February 2001.

192

References

[49] B. L. Hutchings, M. J. Wirthlin, "Implementation Approaches for Reconfigurable
Logic Applications", International Workshop on Field Programmable Logic and
Applications, pp. 419-428, Oxford, England, 29031" August 1995.

[50] M. J. Flynn, "Very High Speed Computing Systems", Proceedings of the IEEE,
Vol. 54, pp. 1901-1909, December 1966.

[51] S. A. Guccione, M. J. Gonzalez, "Classification and Performance of reconfigurable
Architectures", International Workshop on Field Programmable Logic and
Applications, pp. 439-448, Oxford, England, 29th-31 s' August 1995.

[52] A. DeHon, "Comparing Computing Machines", SPIE International Symposium
on Voice, Video, and Data Communications, Conference No. 3526:
`Configurable Computing: Technology and Applications', pp. 124-123, Boston,
U. S. A., 1S`-5`h November 1998.

[53] D. Smith, D. Bhatia, "RACE: Reconfigurable and Adaptive Computing
Environment", Lecture Notes in Computer Science, Vol. 1142, pp. 87-95,
Springer- Verlag, 1996.

[54] R. W. Hartenstein, M. Hertz, T. Hoffman, U. Nageldinger, "Using the Kress Array
for Reconfigurable Computing", SPIE International Symposium on Voice,
Video, and Data Communications, Conference No. 3526: `Configurable
Computing: Technology and Applications, Boston, U. S. A., 1s`-5`h November
1998.

[55] M. Nakkar, J. Harding, D, Schwartz, "Dynamically Programmable Cache", SPIE
International Symposium on Voice, Video, and Data Communications,
Conference No. 3526: `Configurable Computing: Technology and Applications',
Boston, U. S. A., I"-5h November 1998.

[56] "FIPSOCTm Data Sheet", SIDSA, San Francisco, U. S. A., 2001.

[57] G. Mykleburst, J. G. Solheim, " RENNs - Utilizing a Reconfigurable
Communication System' Joint Conference on Information Sciences (JCIS'94),
Duke University, U. S. A., November 1994.

[58] C. Beaumont, "Using FPGAs as Control Support in MIMD Executions", Field
Programmable Logic and Applications, Springer-Verlag, pp. 44 -53,1995.

[59] J. Gosling, H. McGilton, "The JAVATm Language Environment, A White Paper",
Sun Micro Systems, May 1996.

[60] L. Rossen, "Ruby Algebra"; Designing Correct Circuits, Workshops in
Computing, pp. 297-312, Oxford 1990, Pub. Springer-Verlag, 1990.

193

References

[61] I. Page, "Constructing Hardware-Software Systems From a Single Description",
Journal of VLSI Signal Processing Systems for Signal Image and Video
Technology, Vol. 12 No. 1, pp. 87-107, January 1996.

[62] A. Thompson, I. Harvey, P. Husbands, "The Natural Way to Evolve Hardware",
Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS
96), Vol. 4, pp. 3 7-40,1996.

[63] A. Thompson, "An Evolved Circuit, Intrinsic in Silicon, Entwined With
Physics", Proceedings International Conference on Evolvable Systems (ICES
96), Vol. 1259, pp. 390-405, Pub. Springer-Verlag, 1997.

[64] "TMS320C4X Module Specification Version 0.232", Texas Instruments, 1992.

[65] "TMS320C4X User's Guide", Texas Instruments, Publication Number 2564090-
9721, Rev. A, May 1991.

[66] "PaCE User's Manual", Transtech Parallel Systems, Publication Number
PAACM801,1998.

[67] J. Schewel, S. Casselman, "HOT User's Guide", Virtual Computer Corporation,
September 1997.

[68] "Introduction to JTAG Boundary Scan", Sun Microelectronics, White Paper,
January 1997.

[69] P. Pirsch, "Architectures for Digital Signal Processing", Pub. John Wiley and
Sons, ISBN. " 0471971456.

[70] IE. C. Ifeachor, B. W. Jervis "Digital Signal Processing", Pub. Addison-Wesley
ISBN. " 020154413.

[71] D. Van den Bout, "The Practical Xiliruc Designer Lab Book", Prentice Hall
ISBN. " 013021617.

[72] G. A. Baxes, "Digital Image Processing", Pub. Prentice Hall ISBN: 013214056.

[73] W. Chen, C. Harrison-Smith, S. C. Fralick, "A Fast Computational Algorithm for
the Discrete Cosine Transform", IEE Transactions on Communications, pp.
1004-1009, Vo1.25, No. 9, September 1977.

[74] H. S. Hou, "A Fast Recursive Algorithm for Computing the Discrete Cosine
Transform", IEEE Trans. Acoustics, Speech and Signal Processing, Vol. Assp-
035, pp. 1243-1245, December 1984.

194

References

[75] E. Fieg, S. Winograd, "On the Multiplicative Complexity of Discrete Cosine
Transform", IEEE Trans. Information Theory, Vo1.3, No. 2, pp. 1387-13941, July
1992.

[76] J. Liang, T. D. Tran, "Fast Multiplierless Approximations of the DCT with the
Lifting Scheme", IEEE Trans. on Signal Processing, Yo1.49 No 12, pp. 3032-
3054, December 2001.

[77] G. J. Battaglia, "Mean Square Error", AMP Journal of Technology, pp. 31-36,
Vo1.5, June 1996.

[78]]D. Lewis, D. Galloway, M. van Ierssel, D. J. Rose, P. Chow, " The
Transmogrifier-2: A One Million Gate Rapid Prototyping System",
ACM/SIGDA International Symposium. on FPGAs, FPGA-97, pp. 53-61,
Monterey, U. S. A., 9`h-11 ̀h February 1997.

[79] IEEE, "IEEE standard test access port and boundary-scan architecture'; IEEE
Std 1149.1-2001, IEEE Publication, 2001.

[80] B. W. Arden, H Lee, "Analysis of Chordal Ring Network". IEEE Transactions on
Computers pp. 291-295, Vo1.230, No. 4,1981.

[81] J. Liberty, "Teach Yourself C++", Pub. Sams Publishing, ISBN. " 0672310708

[82] "XC6200DS Tutorial 1", Xilinx, Version 1.2, August 1997.

[83] "Architecting Systems for Upgradability with IRL (Internet Reconfigurable
Logic)", Xilinx, Document Number XAPP412, Version 1.0, June 2001.

195

Appendix I: Programmable Logic Device Technologies

Appendix I

Programmable Logic Device Technologies

Introduction

Existing PLDs can be fabricated using one of four mainstream technologies. These are

Fuse, Anti-Fuse, Floating-Gate and SRAM. An overview and operational characteristics

of each are described in Sections I-1 to 1-4 respectively.

Appendix I-1 Metal Fuse Technology

Early PLD fabrication used fuse based programming technology. The fuse consisted of

a metal strip connecting two signal routes, and when configured would appear as either

a short or open circuit connection. Three typical fuse types are shown in Figure I. I. If a

fuse was programmed to be an open circuit, a current source larger than the normal

operating conditions had to be applied.

Bar Taper Notch

Figure I. 1 PLD Metal Fuse Technology

Within the PLD architecture control circuitry (Figure I. 2) was required to distinguish

between programming and normal operating modes (via Zener diodes), and providing

additional current (typically 50 -100 mA) to blow the metal fuses (using transistors).

Once a fuse had been made open circuit it could not be reverted back to a short circuit.

Fuse based PLDs were therefore one-time programmable devices. This technology was

non-volatile since the PLD retained its configuration after the supply voltage had been

removed.

I

Appendix I: Programmable Logic Device Technologies

K
N
C

Figure 1.2 PLD Configuration Control Circuit

Off

Appendix 1-2 Anti-Fuse Technology
Anti-fuse PLD technology exhibits similar operational characteristics to that of metal

fuse devices. The difference is that an anti-fuse appears open circuit until it has been

'blown', and then it becomes a short circuit. This is the reverse operation of a metal fuse.

Anti-fuse PLDs can be programmed only once and have a non-volatile configuration.

Figure 1.3 illustrates the programmed and non-programmed states of an anti-fuse. An

anti-fuse construction is similar to that of an MOS transistor, but with a dielectric

inserted between the poly-silicon and the N+ diffusion region. Before configuration, the

dielectric prevents current flow between the poly-silicon and the N+ diffusion region,

thus the anti-fuse has a high resistance (appears open circuit).

Upon application of a programming voltage larger than the normal operational voltage,

the dielectric melts, hence the anti-fuse has been `blown'. This allows current flow

II

Appendix I: Programmable Logic Device Technologies

between the poly-silicon and the N+ diffusion region to occur (appears as a short

circuit).

Field C

Poly-silicon Dielectric

Before 'Blowing' After 'Blowing'

Figure 1.3. PLD Anti Fuse Construction

Anti-fuse PLDs exhibited higher logic densities due to the smaller silicon footprint of

anti-fuses compared to metal fuses. This technology is still used in FPGAs and CPLDs

manufactured by vendors such as Actel and Quicklogic.

Appendix 1-3 Floating-Gate Transistors

Metal and anti-fuse technologies were limited by the fact that they could only be

programmed once. Further programming circuitry used up valuable silicon real-estate,

hence reduced the gate capacity.

Reusable PLDs became viable through the introduction of floating-gate technology.

Instead of using fuses, floating-gate technology incorporated transistors configured as

pass-switches. By increasing the transistors gate threshold voltage above the supply

voltage the operation of the transistor pass-switch could be disabled. This concept is

shown in Figure 1.4.

The application of a high potential between the gate and the drain regions of the

transistors prevents the formation of a conduction channel, hence the transistor appears

III

Substrate N+ Diffusion

Dielectric now
blown and anti fuse
appears short circuit

Appendix I: Programmable Logic Device Technologies

open circuit (non-conductive). This is because the threshold level of the gate terminal

has been increased to a value greater than the normal operating supply voltage

1St Gate Level
2nd Gate Level

Figure 1.4 Floating-Gate PLD Technology

N Routing Connections

X,

The additional gate charge can be removed through exposing the gate region to ultra-

violet light or using electrical methods. This provides a distinct advantage over previous

technologies since floating-gate devices can be programmed multiple times. These two

erasure methods are similar to that used in EPROM and EEPROM memory

technologies. Examples of EPROM and EEPROM PLDs are Altera MAX5000 and
Vantis MACH series respectively.

Appendix 1-4 Static Random Access Memory

This programming technology uses the content of a SRAM memory to control the

function of pass transistors (switches), multiplexers and memory LUTs. This concept is

shown in Figure 1.5.

N

Appendix I: Programmable Logic Device Technologies

LUT

Address Data

1234 XXXX

1235 XXXX

1236 XXXX Transistor Switch

1237 XXXX

1238 XXXX

1239 XXXX
Multiplexer

123A xxxx
......................... _.............. _.....

123B XXXX

Figure 1.5 SRAM PLD Technology

SRAM based PLDs are reconfigured by overwriting the contents of the configuration

memory. The advantage of SRAM PLDs is that they can be configured much quicker

than previous programming technologies. SRAM memory however is volatile and must

always be configured upon power-up. Normally configuration data is stored within an

external PROM.

A second disadvantage is that the implementation of SRAM requires large silicon real
footprints when compared to floating gate and anti fuse technology. An example of
SRAM based user programmable devices are the Xilinx XC4000 FPGA family.

V

Appendix II: Configurable Computer Architecture

Appendix II

Configurable Computer Architecture

Introduction

This section of the Appendix explains in greater detail the architecture and operation of

configurable computing machines discussed in Chapter-2.

Appendix 11-1 Transmogrifier-2

The Transmogrifier-2 (TM-2) [78] was a second generation multiple FPGA based rapid

prototyping system that could implement logic designs up to one-million logic gates in

complexity. The system was modular and consisted of between one to sixteen TM-2

circuit boards, interconnected via a back plane to a host computer. For each design,

prototype hardware was first manually partitioned upon the system and then

automatically configured.

The outline architecture of a TM-2 board is shown in Figure R. I. Each board consisted

of two Alters 10K50 FPGAs, dedicated local memory, hierarchical FPID based

interconnection network, clock generation circuitry and housekeeping functions.

Designs implemented upon the TM-2 system were partitioned and configured amongst

multiple FPGAs. Therefore a flexible and high bandwidth two-layer hierarchical

crossbar FPGA interconnection topology was formed using I-Cube IQ320 FPIDs. This

topology enabled FPGAs to share operands and memory resources upon each board,

and at system level.

The lowest level of crossbar hierarchy was at board level. This is illustrated in Figure

111.1, with the crossbar switch formed using FPID 1, FPID2 and FPID3. The top level of
this topology was at system level and formed through interconnecting FPID-4 of each
board in the system via the back plane connector.

I

Appendix II: Configurable Computer Architecture

Clock
Generation

House
Keeping
FPGA

I/O Connector
Debugging Bus

Figure 11.1 Transmogrifier-2 Board Architecture

The housekeeping FPGA upon each TM-2 board supervised the downloading of

configuration data to both FPIDs and FPGAs. It also detected short-circuits occurring

between devices through monitoring device supply currents. Short-circuits could occur

through errors introduced during the manual partitioning of designs, enabling multiple

signals to drive a single net. When short-circuits were detected, the housekeeping FPGA

disabled the output of the board and notified the host computer.

Back Plane Connector

Appendix II: Configurable Computer Architecture

The TM-2 architecture was primarily designed to develop hardware and enable real-

time debugging of prototype designs using a dedicated 32-bit bus. Through the action of

this bus and the interconnection topology, any signal within the system could be probed.

Connecting system devices within a JTAG chain also performed prototype debugging.

Since the JTAG chain used serial rather than parallel data transfers, JTAG bandwidth

was less than that of the TM-2 32-bit debugging bus.

Designs were implemented using HDLs or schematic design entry methods, but

manually partitioned amongst the systems FPGAs. The configuration of the hierarchical

crossbar switch topology was then determined automatically using custom software

tools. These tools also facilitated communication between the development computer

and hardware prototyped within the TM-2 system.

Appendix 11-2 Morphosys

Morphosys was a coprocessor architecture developed to investigate the effectiveness of

combining reconfigurable hardware with general-purpose processing architecture [43].

The system consists of an array of reconf: gurable cells (RC), processing core and

memory interface fabricated together upon a single silicon chip. The architecture of the

system is shown in Figure 11.2.

The core processor was a RISC type architecture called TinyRISC and used for general

purpose operations and managing the RC array. During system operation, additional

instructions were inserted into the core processor instruction-set to govern configuration

of the RC array.

The configurable logic array within Morphosys was implemented using custom

designed RCs. Compared to existing FPGA CLBs, the structure of an RC was coarser,

with each containing an ALU, multiplier and register file. The configuration of an RC

was determined using a word selected from a multiple-context configuration memory.

III

Appendix II: Configurable Computer Architecture

Using a global or a private context broadcast, the configuration of the whole array or

individual RCs could be updated during run-time.

W RC Array
00000000
00000000

Core RISC
00000000

Processor 00000000
011 011 001111

1 100000000
11 13 QQQQQQ
QQQQQQQQ

RC Array
Configuration

RC

System Bus

Single Silicon Chip
External Memory

Figure 11.2 Morphosys System architecture

Behavioural models for Morphosys were developed in both VHDL and C programming

languages. Applications for Morphosys written in C were simulated using a custom

designed simulation tool called MuLate. Designs implemented in the VHDL are

simulated using a VHDL model of Morphosys called MorphoSim within QuickVHDL

Simulation environment.

A Morphosys design consists of both instruction-set and configurable logic components.

To map designs onto the RC array a custom development tool called mView was

developed. The user inputted the function of each RC and the source and destination of

N

Appendix H: Configurable Computer Architecture

required operands. From this description the configuration of the RC array was

generated.

To combine multiple RC array configurations and sequence context switching, software

was developed that determined the most efficient sequence in which the context

switches should occur. This tools inserted specific instructions within the core processor
instruction-set to instigate context switches.

Currently, software is under construction that will allow system applications to be

described in C. This software will then automatically map and generate the RC array

configuration contexts and core processor instruction-set program. Applications mapped

on to Morphosys have included video compression, automatic target recognition, and

data encryption.

Appendix 11-3 Splash-2

Splash-2 was a prominent example of second-generation reconfigurable supercomputer

architecture [24]. Splash-2 was designed principally to compute high-performance

linear systolic applications. Through the flexibility of its architecture Splash-2 could be

reconfigured to perform other tasks. Splash-2 has been used to implement image-

processing functions such as Hough transforms, fast Fourier transforms and

morphological operations. The architecture of Splash-2 is shown in Figure 11.3.

A Splash-2 system consists of between one to fifteen Splash-2 array boards connected

in a daisy-chain fashion and interconnected to a host computer. Each array board

consists of 16 PEs and a crossbar switch controlled by a further PE. Each PE itself

consists of a Xilinx XC4000 series FPGA and locally coupled SRAM memory. The

crossbar switch enables inter-board PE communication and can be configured during

run-time via the control PE. For each application, the PEs configurations were
determined using development software located upon a host computer.

V

Appendix II: Configurable Computer Architecture

Splash-2 array boards are connected to the host computer using a shared bus and a

private bus, connecting the host to the last board in the chain. The shared bus was

known as the SIMD bus, and used to distribute input data to the array boards. Using the

private bus (Rbus) results were then passed back to the host. Each array board was

connected to its neighbours using a local bus network in a daisy-chain fashion.

Array Board I

Crossbar Switch

;:;

1t

------------------------------------ ---------------
Sun
Sparc Local buses Processing Elements
Ilost &"
Interface ------------------------------ -----------------

Array Board 15

Crossbar Switch

Rbusý

. ýýýý

ý

--

Figure 11.3 Splash-2 System Architecture

Although Splash-2 was designed to implement a specific type of application, the

flexibility of its architecture has enabled it to be used as a general purpose processing

architecture.

The Spash-2 development cycle begins with modelling the design using VHDL. The

design was then partitioned for placement amongst the available resources, which was a

vi

Appendix II: Configurable Computer Architecture

manual process. A design was first partitioned between individual array boards, and

then amongst individual PEs. Once completed, the configuration of the crossbar switch

PE was determined. Individual PE configurations were then described in VHDL, with

each being compiled, routed, and then downloaded separately to the appropriate PE. To

evaluate and debug the design, Splash-2's operating environment contained a dedicated

library of C programming language functions and interactive debugger tool called T2.

Appendix 11-4 DISC

DISC [42] (Dynamic Instruction-set Computer) was the successor to the Nano processor

[28] and designed to support run-time adaptation of its instruction-set. Figure 11.4

illustrates the outline of DISC's architecture and consists of a simple core processor,

linear hardware space (LHS), communication network, and external memory. DISC

was an 8-bit processing architecture with all instructions being configured as demanded

by the core processor within the linear hardware space. Instructions can accesses up to

32kbytes of external memory and interact with each other using the core processor

extended address, data and control buses.

I' P(iA

Communication
Network

Linear
Hardware
Space

Figure 11.4 DISC System Architecture

VII

Appendix II: Configurable Computer Architecture

The LHS can be considered as a two-dimensional grid of CLBs used to implement

active instructions. To provide an underlying structure for the run-time adaptation of

instructions, each instruction was configured in a horizontal chip-wide fashion.

Therefore multiple active instructions were stacked vertically. Instruction placement

was not restricted to any particular location, however they could not overlap.

Instructions no longer required were removed to free up hardware resources, whereas

instructions required on a regular basis were allowed to remain configured. This concept

was considered as instruction caching.

Instructions situated in the LHS were reconfigured during run-time using partial

configuration. Instructions to be configured were determined by the processor core in a

demand-driven manner as depicted by the application program. This program was

essentially source code indicating the order of instruction execution, and contained

configuration data to implement the instruction.

The instruction-set and underlying core architecture of DISC were developed using

commercial HDLs and software development tools situated upon a host computer.

Within this environment multiple instances of each instruction module were generated

since each instruction can be configured at a different location within the LHS.

Additions were made to the existing instruction-set by creating the hardware

implantation of a new instruction and then including its function within the DISC

development software and application compiler. DISC applications were constructed

using a variant of the C programming language.

The initial DISC system was constructed within a single National Semiconductor CLAy

FPGA, however, it was found that the logic resources available to implement custom

instructions were inadequate. To increase the capacity of the custom instruction-set

DISC2 was developed which partitioned the original DISC architecture upon three

CLAy FPGAs. Improvements to the development computer interface were also made.

DISC2 has been used implement image-processing functions such as low-pass filtering

and binary threshold operations.

Vm

Appendix III: TMS320C40 and XC66200 Component Architectures

Appendix III

TMS320C40 and XC66200 Component Architectures

Introduction

This section of the Appendix provides detailed explanations of key components used

within the TIM-40 multiprocessor topology and XC620ODS described in Chapter-3.

Appendix 111-1 TMS320C40 DSP

Texas Instruments introduced the TMS320C40 (C40 hereafter) in 1989 [65]. The C40

DSP was a floating-point based processor designed specifically for use in multiple

processor environments. Incorporated in the architecture were dedicated components

that facilitated inter-processor communication without degrading overall system

performance. The internal bus width of the C40 was 32-bit, and supported a memory

map of up to 4-Gwords (16-Gbytes), with all peripherals and sub-components accessed

through memory mapped 1/0. A simplified block diagram of this architecture is shown

in Figure III. 1. The key components are the Central Processing Unit (CPU), Direct

Memory Access (DMA) coprocessor, inter-processor communication ports and two

external memory interfaces (Local and Global).

The C40 CPU consists of a floating point/integer multiplier, 32-bit barrel shifter,

arithmetic logic unit (ALU), auxiliary register arithmetic units (ARAUs), thirty-two 32-

bit registers and system buses. The multiplier can perform a 32-bit integer or 40-bit

floating-point multiplication in one instruction cycle (50nsec @40MHz). The bus

topology of the C40 enabled the ALU to perform single cycle 32-bit integer or 40-bit

floating-point operations in parallel to the multiplier unit. This could only occur if

arithmetic units did not share operands. A 32-bit barrel shifter within the ALU could

also function concurrently to the multiplier.

The two ARAUs were used to generate the addresses of operands within the CPU when

using displacement based addressing modes such as index addressing. Each ARAU

I

Appendix III: TMS320C40 and XC66200 Component Architectures

could generate an address location in a single instruction cycle and function

concurrently to the ALU and multiplier.

External
Global
Interface

OirchiEi S), tcm \lcmory

r"

Cacho IZAM I ROM
External
Local
Interface

Memory interface
and System Buses

Multiplier Barrel Shifter

ALU

DMA
Coprocessor

F DMA Channel 0

DMA Channel 5

(bm Port 0

('uni Port 5

Timer 0

I inur I

Figure 111.1 TMS320C40 DSP Block Diagram

To reduce the CPUs burden of accessing operands from system memory the C40

included a DMA coprocessor. The DMA coprocessor operated in parallel to the CPU

and could access any address within the C40s memory map. The DMA consisted of six

channels with each able to initiate data transfers concurrently. Data transfer occurred

using a dedicated system of DMA controlled buses that appeared as a multiplexed

resource to the DMA communication channels. Contained within the DMA were

address counters, address generation units, and synchronisation control, which enabled

the DMA and CPU to function in parallel and transfer operands with minimal

performance overheads.

II

Appendix III: TMS320C40 and XC66200 Component Architectures

Fully exploiting the C40 architecture, the CPU could process eight operations per

instruction cycle (50nsec @40MHz), in conjunction with the DMAs three operations,

giving the C40 a total performance of 275-MOPs.

To facilitate the development of C40 based parallel processing architectures, the C40

possessed six high-speed communication ports that were used to implement inter-

processor routing topologies and two external memory interfaces known as the Global

and Local interfaces. These interfaces could be used to create shared and private

memory resources.

A communication port interface consisted of eight data and four control signals. Each

communication port was bi-directional and could transfer data at rates of up to 20-

Mbytes/sec. All respective control and data channels were mapped within the C40

address space, therefore transfer of operands between the ports and CPU was performed

by the DMA (using 32-bit operands).

Each communication channel had input and output FIFOs which were 32-bits wide and

eight levels deep. Since communication port data-buses were 8-bit, four consecutive

byte transfers had to occurred to transfer a single C40 word. FIFOs provided a buffer

for this operation, and in a single communication link, a combined buffer of 64 bytes

existed (16 C40 words), therefore minimising the introduction of communication

bottlenecks.

Connecting individual C40 communication channels together was a `glue-less'

procedure. The control of data transfer and the direction of the transfer for each

communication channels was governed through the interaction of remote Port

Arbitration Units (PAUs) using four control signals. The operation and interaction of

individual PAUs upon a C40 can be considered effectively to be that of a finite state

machine (FSM). During normal operation, this function was invisible to the user.

III

Appendix IIl: TMS320C40 and XC66200 Component Architectures

The Global and Local interfaces consisted of 32-bit data and 31-bit address buses and

were mapped within different regions of C40 address space. Through these interfaces,

single cycle operand transfer could occur from external memory to CPU (via DMA).

To provide a flexible external memory/ peripheral interface, Global and Local interfaces

could be configured independently. Within both interfaces two memory strobe signals

could be configured, to divide the memory space into two further subsets. Within each

subset, the memory page size, interface control signal operation, and transfer rates
(inclusion of read/write wait states) could be configured. This operation was conducted
by writing appropriate data to interface control registers.

Contained within the C40 architecture were dedicated RAM, ROM, cache memory, and

two peripheral timers that could be used to facilitate system performance benchmarking.

Appendix 111-2 XC6200 Architecture

Introduced by Xilinx in June 1995, the XC6200 FPGA family reflected the changing

role and application of FPGAs in electronic circuits from implementing simple

peripherals to processor-based hardware [32]. The XC6200 utilises SRAM based

programming technology and can be considered a second-generation sea-of-gates array

architecture. XC6200 devices could operate at up to 220MHz and had logic capacities

up to 100000 gates. The architecture also contained a novel interface to facilitate

processor integration known as the FastMAPTm interface. Through use of this interface,

partial and dynamic configuration could be accomplished.

The XC6200 programmable media consists of three types of units. These were

configurable logic cells (CLCs), input/output blocks (IOBs), and the routing resources;
CLC was another term used by Xilinx to represent CLBs.

The CLC of a XC6200 was very different from that of previous FPGA CLBs, such as

the XC4000 CLB. The XC6200 CLCs smaller granularity was a characteristic

N

Appendix HI: TMS320C40 and XC66200 Component Architectures

consequence of sea-of-gate type architecture. Therefore the CLC structure and local

routing resources were optimised to share logic resources with neighbouring CLCs.

The functional unit (FU) of the CLC consisted of five multiplexers and a D-type flip-

flop. A CLC could implement a two-variable Boolean expression, compared to the

XC4000 CLBs two four-variable expressions. Depending upon the expression and

external dependencies, a CLC could implement both a combinatorial and sequential
function. Through experience gained however, it was concluded that a CLC could on

average implement only one logic or register function at any one time.

The CLC routing resources of the XC6200 were formed using a hierarchical layered

routing topology formed upon blocks of 4x4 matrixes, with each level of this

hierarchical structure containing its own routing resources. The first level of hierarchy

consisted of a 4x4 matrix of CLCs (length-4 routes), with local interconnection routes

confined within the 4x4 CLC matrix. The next level of hierarchy consisted of a 4x4

matrix of the first hierarchy of cells (length-16 routes), which in effect formed an array

of a 16x16 CLCs. Depending upon the type of XC6200 device, hierarchy levels could

be three or four layers deep. The top layer of routing hierarchy supported chip-wide

routing resources known as global routes.

CLCs situated on the boundary edge of the highest hierarchy level were connected to

IOBs, which simplified the partitioning, placement and routing of a design in multiple

FPGA systems. XC6200 IOBs provided a means to route signals between CLCs and the

pins on the FPGAs chip carrier. IOBs were connected to every CLC on the boundary

edge of the CLC array. Not every IOB however was connected directly to an external
P pin, since there were more IOBs present than chip-carrier pins. Local IOB routing

resources however did ensure that every IOB could be connected to at least one pin.

XC6200 family programming technology was SRAM based and could be programmed

using a serial PROM like traditional FPGA applications. Unlike previous FPGAs, the

XC6200 supported a dedicated processor interface, which enabled XC6200 SRAM

V

Appendix III: TMS320C40 and XC66200 Component Architectures

control and configuration memory to appear within the memory map of a host

processor. Therefore the XC6200 appeared as a peripheral memory device, allowing its

configuration to be updated by writing new data to the appropriate address location.

This concept is shown in Figure IH. 2. Depending upon the XC6200 device used, the

interface could support up to 18-bit address and 32-bit data buses.

CLC Array

Interface
Buses

Data
Row
Address

Bus

D31-DO

Address
Bus Control

Registers Column
Address

A17-AO Fast MAP
Interface

Figure 111.2 XC6200 FastMAPTM interface

Within the FastMAPTm interface, routing switches and CLCs were allocated address
locations within the XC6200 configuration memory. Configuration data was transferred

to memory using the FastMAPTm 32-bit data bus. However, the bus width was flexible

and configuration data could be written in 8,16 or 32-bit formats.

The FastMAPTM interface allowed the XC6200 to support partial configuration and

dynamic configuration capability. This was because individual CLCs could be

reconfigured without having to suspend the operation of unaffected CLCs. Through this

interface, the content of CLC registers could be accessed. This provided a means to

transfer data between host and CLC array and access internal control registers. Dynamic

configuration could only be performed however using 8-bit FastMAPTM data bus

transfers.

VI

Appendix III: TMS320C40 and XC66200 Component Architectures

The XC6200 FPGA family never went into full production. The specifications of the

devices obtained to construct the XC6200 ADS are detailed in Table III. I. Through

experiments conducted however it became apparent that the gate capacities and

maximum operating frequency listed could not be replicated.

Device XC6216 XC6264
Typical gate count 16000-24000 64000-100000
Number of cells 4096 16384
Number of I/O blocks 256 512
lArray matrix size 64x64 128x128

Table 111.1 XC6200 FPGA Specifications

VII

Appendix IV: XC620ODS Hardware

Appendix IV

XC620ODS Hardware

Introduction

This section of the Appendix contains Vantis Machi 11 CPLD PALASM and Xilinx

XC4005 FPGA schematic designs used in the construction of the XC6200DS.

Appendix IV-1 ISA Bus Interface

TITLE isa_bus_int
PATTERN A
REVISION VER1
AUTHOR C. MURPHY
COMPANY CEORG
DATE 07/08/01

CHIP isa bus int MACH111

PIN 1S
PIN 17
PIN 16
PIN [2.. 9]
PIN [15. . 141
PIN [40. . 431
PIN 39
PIN 38
PIN 37
PIN 11
PIN 25
PIN 29

IOR
IOW
AEN
ADDIN[9.. 2]
ADD_IN[0.. 1]
ADDOUT [3.. 0]
DATA ENA
IOR_OUT
IOW_OUT
PC_CLK IN
PC_CLK OUT
TEST

_P

COMBINATORIAL INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL INPUT
COMBINATORIAL INPUT
COMBINATORIAL INPUT
COMBINATORIAL OUTPUT
COMBINATORIAL OUTPUT
COMBINATORIAL OUTPUT
COMBINATORIAL OUTPUT
COMBINATORIAL INPUT
COMBINATORIAL OUTPUT
COMBINATORIAL OUTPUT

NODE ?
NODE ?
NODE ?
NODE ?
NODE ?

EQUATIONS

reset = gnd;

ADD_NODE [3
.. 0]

ADD_IS_32X
NOT DMA
IOR_IOW
ND ENA

ADD_NODE [3.. 0]= ADD_IN [3.. 0]
ADD OUT [3.. 0]= ADD_NODE [3.. 0]

COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL

I

Appendix N: XC620ODS Hardware

; Define ISA Address Range Ox32X
IF (ADD_IN[9.. 4] = #H32) THEN

BEGIN

END
ELSE

BEGIN

END

NOT DMA
IOR IOW

NDENA
DATA_ENA

IOR_OUT
IOW OUT

ADD IS 32X = VCC

ADD IS 32X = GND

ADD_IS_32X * /AEN

IOR * IOW

/IOR_IOW * NOT_DMA
/N D ENA

IOR
IOW

PC CLK OUT = PC CLK IN

; Define test vectors
SIMULATION

TRACE_ON

FOR X: = 1 TO 20 DO
BEGIN

CLOCKF pc_clk_in
END

TRACE_OFF

II

Appendix IV: XC620ODS Hardware

Appendix IV-2 FastMAPTM Interface Controller

TITLE FastMAP Int. STATE MACHINE
PATTERN BOOLEAN NETLIST
REVISION 3..
AUTHOR CIARON MURPHY
COMPANY CEORG
DATE 13/03/01

CHIP Fast MAP MACH111

PIN 15 PC_CLK ; INPUT
PIN 16 XTAL_CLK ; INPUT
PIN 5 CLK_CON ; INPUT
PIN 17 CLOCK OUT ; OUTPUT

PIN 6 X6200_XC4005OE ; INPUT
PIN 11 CLOCK ; INPUT
PIN 7 RESET ; INPUT

PIN 8 GO READ ; INPUT
PIN 9 GO WRITE ; INPUT
PIN 18 SELF WRITE ; INPUT
PIN 24 XC4005_ENA ; INPUT
PIN 19 XC4005_A_LATCH ; INPUT
PIN 20 XC6200_A_LATCH ; INPUT
PIN 21 ADD LATCH COMBINATORIAL ; OUTPUT
PIN 25 XC4005_ena_ext ; INPUT
PIN 4 XC6200_RW COMBINATORIAL ; OUTPUT
PIN 2 XC6200_CE COMBINATORIAL ; OUTPUT
PIN 14 XC6200_OE COMBINATORIAL ; OUTPUT
PIN 3 DLATCH COMBINATORIAL ; OUTPUT

NODE ? Y1 REGISTERED
NODE ? Y2 REGISTERED
NODE ? X1 REGISTERED
NODE ? X2 REGISTERED

NODE ? CLK1 COMBINATORIAL
NODE ? CLK2 COMBINATORIAL
NODE ? SELF_WRITE_ENA COMBINATORIAL
NODE ? WRITE COMBINATORIAL

NODE ? ADD1
NODE ? ADD2

EQUATIONS

COMBINATORIAL
COMBINATORIAL

X2. RSTF = /RESET

X1. RSTF = /RESET
X2. CLKF = CLOCK
X1. CLKF = CLOCK

III

Appendix IV: XC620ODS Hardware

Y2. RSTF = /RESET
Y1. RSTF = /RESET
Y2. CLKF = CLOCK
Y1. CLKF = CLOCK

; Define clock selection mechanism

CLK1 = /CLK CON * XTAL_CLK
CLK2 = CLK CON * PC_CLK

CLOCK OUT = CLK1 + CLK2 ; CLOCK_OUT IS ACTUAL SIGNAL CLOCK, VIA HW
EXT.

; Define FastMAP Address bus latch
ADD1 = /XC4005_ENA * XC4005_A_LATCH
ADD2 =((/XC4005_ENA * /XC4005_ena_ext) + XC4005_ENA)*
XC6200_A LATCH

ADD LATCH = ADD1 + ADD2

; State equations for FastMAP Read Operation
Y1 := Y2
Y2 (/Y1 * Y2) + (/Y1 * GO READ) + (Y2 * GO READ)

; State equations for FastMAP Write Operation

SELF
_WRITE_ENA = SELF_WRITE * ((/XC4005_ENA * /XC4005_ena_ext) +

XC4005 ENA)

WRITE = SELF WRITE ENA + GO-WRITE

X1 (/X2 * X1) + (/X2 * WRITE) +(X1 * WRITE)
X2 (/X2 * X1) +(X1 * WRITE)

; COMBINED STATE MACHINE OUTPUTS

XC6200_RW = (/X1 * /X2) + (X1 * X2) + (/X1 * X2)
DLATCH = Y2
XC6200_CE = ((/Xi * /X2) + (X1 * X2) + (/X1 * X2)) * /Y2

XC6200 OE = X6200 XC4005 OE

; Define hardware test vectors
SIMULATION

TRACE_ON CLOCK

SETF /RESET

SETF RESET
CLOCKF CLOCK
CLOCKF CLOCK

SETF /XC4005_ENA

CLOCKF CLOCK
CLOCKF CLOCK

N

Appendix IV: XC620ODS Hardware

FOR X: = 1 TO 5 DO
BEGIN
CLOCKF CLOCK
END

SETF /GO-WRITE

FOR X: = 1 TO 5 DO
BEGIN
CLOCKF CLOCK

END
TRACE_OFF

V

BEST COPY

AVAILABLE

Variable print quality

Appendix IV: XC620ODS Hardware

Appendix IV-3 Hardware-Bridge

vi

Appendix IV: XC620ODS Hardware

2 yl

ÖW

Ö F
rv ý

dNQ

f
v

CN
Cö

UU
Ö

JJ
d O Ö Ö

mm
OÖOÖ

" 1

W

tl _ .. t__ E90ýo0

Q

0

Vj

JJ

2ý OO

fffo

(IR

z

VII

Appendix IV: XC620ODS Hardware

ýiö
öý 8

s

0w - 00 0

VIII

Appendix IV: XC620ODS Hardware

Appendix IV-4 Self-Configuration Controller

The self-configuration control mechanism allowed the XC620ODS to exhibit RTR

hardware capabilities. This was accomplished through partial dynamic configuration of

the XC6264 FPGA CLC array, without intervention from the host computer. The

resultant self-configuration controller consisted of an X6200DS external SRAM

memory module, and internal XC6264 CLC configured host SRAM interface and self-

configuration control mechanisms.

The processes of self-configuration occurred in two operating phases. First

XC6200ADS tools generated RTR configuration data, with the resultant outputs

describing the minimal differences between successive XC6264 configurations. This

information was compiled using XC6264 configuration memory address/data pairs.

XC6200ADS tools also determined the length (in bytes) of each RTR configuration data

block generated. This information was required by the XC6264 configured self-

configuration controller to determine the address boundaries of RTR configuration data

blocks situated within the XC620ODS external SRAM configuration memory. This task

was performed prior to dynamic operation, with result files generated stored on the host

PC for future use.

Before self-configuration could commence, RTR configuration data generated by the

XC6200ADS was written to the external SRAM configuration memory. Configuring the

XC6264 FPGA to function as an external XC620ODS SRAM host PC interface

facilitated this operation, enabling RTR configuration data download to occur, under

control of the XC6200ADS. Once this task was completed, the XC6264 was

reconfigured using X6200ADS CTR techniques to function as the self-configuration

controller. Configuration data address boundaries were then written to the self-

configuration controllers internal PROM (via FastMAPTM interface) This PROM and an

outline of the self-configuration control mechanism are shown in Figure IV-l.

Ix

Appendix IV: XC620ODS Hardware

Figure N-1 illustrates the self-configuration control mechanism, that consisted of a
16x18-bit PROM, loadable incremental binary counter, control unit, and 8-bit register
latches. These components were configured within the XC6264s CLC array.

Complementing the XC6264 design components, an external 262144bytes SRAM

module, three 74LS373 ICs (8-bit latches), and signal interfaces to XC620ODS

Hardware Bridge and FastMAPTM Interface controller were also required.

Configured Within

16xl8bit XC6264 CLC Array

PROM

{
17 Loadable 17

Up Binary SRAM

JOAO

Counter RAO b6 eS44

$ RD7
RDO load inc

----- --
8-bit

.,... _ _.
Latch

mum-sei Control Unit byte_a0
E na

done
8-bit

XC6264 go Ttr CLC Arra b t l
match

y
User Designs

y e-a Ena
dsel 1 5 , stop_rtr

0 8-bit
Latch

byte a2 _ Ena
address latch

xc4005_ena 8-bit
Latch

byte d0
_ Ena

'- --------- --------- -- ------------- --
self write

XC620ODS FastMAP'"'
Hardware Interface
Bridge Controller

External
XC620ODS
RAM Module

External
XC620ODS
Components

1
XC6200
Address
Latch

Jn"" (3 x 74373)

RPO

Ena

-XD7J X"17

XAO XDO

FastMAPTM FastMAPTM
Interface Interface
Data Bus Address Bus

Figure IV-1 Self-Configuration Controller Block Diagram

The format of configuration data generated by the XC6200ADS and stored in external
SRAM is shown in Figure IV-2. Since byte wide SRAM modules were used, each 18-

bit XC6264 address was stored using three SRAM bytes (byte a2, byte_al, and byte_a2

(bits 1: 0 only)). XC6264 FastMAPTM data was only 8-bits wide therefore only one byte

X

Appendix IV: XC620ODS Hardware

was required (byte_d0). Using this format, XC6264 configuration data address/data

pairs were stored in the external configuration SRAM module using sequential memory

locations. The self-configuration controller supported up to 16 different configurations,

with the next active configuration determined using signal dsel(15: 0) (for clarity only

three start addresses are shown in Figure IV-2).

000016

000116

000216

000316

000416

000516

000616

000716

000816

000916

000A16

000B16

000C16

000D16

000E16

000F16

0010)6

0011)6

0012)6

0013)6

Byte a2

Byte_al

Byte JO

0416

0016

0016

Byte_a2

Byte_al

Byte_aO

Byte_d0

Byte a2

Byte_al

Byte_aO

Byte_dO

Byte_a2

Byte_al

Byte_aO

Byte dO

0416

XC6264 PROM Start Address-1
Dsel(0000 0000 0000 0001)

stop_rtr
Sequence

XC6264 PROM Start Address-2
Dsel(0000 0000 0000 0010)

XC6264 Configuration
Data Stream
(3 XC6264 Address/Data Pairs

001416 0016

001516 0016

001616 Byte_a2 XC6264 PROM Start Address-3
Dsel(0000 0000 0000 0100)

Figure IV-2 Self-Configuration Configuration Data Format

XC6200ADS tools generated the start address of each active configuration (16 values

stored in PROM), with the end of each configuration block determined by the self-

configuration control mechanism reading an address value of 4000016 (stored in

byte a2, byte al, and byte a2). This action generated signal stop
_pr,

which indicated

XI

Appendix IV: XC620ODS Hardware

(via signal done) that the RTR update was complete. With respect to Figure IV-1 and

the self-configuration controller control unit FSM operational states (Sn) (Figure IV-3),

the internal operation of the self-configuration control mechanism is described next.

si
xc4005 ena =0

S2
done

load

S3
byte a2

S4 byte-R1

S5 byte aO

S6 byte d0

S7)I All State Machine Outputs
Are Shown in Bold type

S8

S9) self write

Figure IV-3 Self-Configuration Control Unit Finite State Machine

Prior to system operation RTR configuration data was written to external SRAM and
the starting addresses of each configuration written to the self-configuration controller
PROM. To enable the self-configuration control mechanism, XC6200ADS functions

XII

Annendix IV: XC620ODS Hardware

were used to activate signal xc4005_ena within the control register of the XC620ODS

Hardware Bridge (Si). Once enabled, the XC6264 could be dynamically reconfigured

through activating signal go_rtr (S2), with the next active configuration determined by

signal dsel(15: 0), with signal done indicating that RTR was commencing. Done, go_rtr,

and dsel provided the interface between the self-configuration controller mechanism and

user defined hardware configured within the XC6264 CLC array.

During (S2), the contents of the PROM at the address location selected by PROM_sel

(originates from dsel) were loaded into an incremental counter. The output of this

counter was used as external configuration SRAM address bus value. This counter was

incremented using signal inc after each SRAM memory access.

Four SRAM address locations were then read in succession (S3), (S4), (S5), and (S6),

with the contents of each location stored temporally in 8-bit latches. The active latch

enabled for each SRAM read operation (S3), (S4), (S5), and (S6), was determined

through control unit FSM operation.

If the stop_rtr address value was read (4000016 determined by comparator operation in

control unit), this indicated that RTR was completed, with signal done disenabled, and

the control unit FSM operation re-entering state (S2). If 4000016 was not detected,

address and data bytes read from SRAM were valid XC6264 RTR configuration data.

This data was then downloaded to XC6264 configuration memory using its FastMAPTm

interface.

This process required the XC6264s FastMAPTm address-bus to be first set up by

loading bytes byte_aO, byte_al, and byte_a2 into external latches (3x 74LS373s), using

signal address latch (S8). Byte_dO was then written to the FastMAPTM data-bus (S9),

with FastMAPTM interface control signals generated by the XC620ODS FastMAPTM

Interface Controller. This operation was performed through the control unit generating

signal self write. Controller FSM operation then resumed back to state (S3), with the

XE

Appendix IV: XC620ODS Hardware

cyclic operation of (S3) to (S9) repeated for the number of XC6264 address/data pairs

that required updating.

XIV

Appendix IV: XC620ODS Hardware

Appendix IV-5 XC620ODS Signal Connectors

XC62 0ODS SRAM Module
Signal Connector J14 XC6200 Pin No. IC! Pin IC2 Pin

DO 9 70 16 N/A
D1 10 71 17 N/A
D2 11 72 18 N/A
D3 12 73 19 N/A
D4 13 74 N/A 16
D5 14 76 N/A 17
D6 16 81 N/A 18
D7 15 77 N/A 19
AO 17 82 21 21

Al 19 87 22 22
A2 21 89 23 23
A3 20 88 24 24
A4 23 95 25 25
A5 22 94 26 26
A6 27 100 27 27
A7 29 105 1 1
A8 31 108 2 2
A9 32 109 3 3

A10 25 97 4 4
All 33 110 5 5
A12 26 99 6 6
A13 28 104 7 7
A14 35 115 8 8
A15 34 111 9 9
A16 37 116 10 10
A17 38 120 11 11
OE 6 66 13 13
CE 7 68 12 12

R/W 8 69 15 15
VCC 1,39 N/A 28 28
GND 2,40 N/A 14 14

Table IV-1 XC620ODS SRAM Memory Module Pin Description

xv

Appendix IV: XC620ODS Hardware

XC620ODS J1, J3
Pin No. Signal

1 TDI
2 VCC
3 GND
4 TDO
5 N/A
6 TCK
7 N/A
8 TNS
9 N/A
10 N/A

Table IV-2 XC620ODS Vantis MACHill ISP Socket

XC620OD S J5-J13
Pin No. Signal

1 N/A
2 DO
3 D1
4 D2
5 D3
6 GND
7 D4
8 D5

9 D6
10 D7
11 GND
12 CREQ
13 GND
14 CACK
15 GND
16 CSTRB
17 GND
18 CRDY
19 GND
20 N/A

Table IV-3 XC620ODS TIM-40 TMS320C40 Comport Socket

xv'

Appendix IV: XC620ODS Hardware

XC62 0ODS SRAM Module
Signal Connector J15 XC6200 Pin No. IC1 Pin IC2 Pin

DO 19 202 16 N/A
D1 24 208 17 N/A
D2 38 228 18 N/A
D3 25 209 19 N/A
D4 26 210 N/A 16
D5 27 213 N/A 17
D6 28 218 N/A 18
D7 37 220 N/A 19
AO 37 226 21 21
Al 7 187 22 22
A2 36 225 23 23
A3 34 223 24 24

A4 4 183 25 25
A5 3 181 26 26
A6 35 224 27 27
A7 33 221 1 1
A8 30 216 2 2
A9 28 214 3 3

AlO 29 215 4 4
All 22 206 5 5
A12 23 207 6 6
A13 20 203 7 7
A14 21 205 8 8
A15 17 198 9 9
A16 15 195 10 10
A17 13 193 11 11
OE 12 192 13 13
CE 11 191 12 12

R/W 10 190 15 15
VCC 1,39 N/A 28 28
GND 2,40 N/A 14 14

Table IV-4 XC620ODS Self-Configuration SRAM Memory Module

XVII

Appendix IV: XC620ODS Hardware

XC62 0ODS
Signal Connector J17 Connector J15

XC AD 0 1 19
XC AD 1 2 24
XCAD2 3 38
XC AD 3 4 25
XCAD4 5 26
XC AD 5 6 27
XC AD 6 7 28
XC AD 7 8 37
XCA8 9 37
XCA9 10 7
XCA 10 11 36

XC A 11 12 34
XCA 12 13 4
XC A 13 14 3
XCA14 15 35
XC A 15 16 33

XC A 16 17 30

XCA 17 18 28

Connection
Signal From To

add latch IC10, P 197 IC7, IC8, IC9, P 11

xc4005 ena IC14, P37 IC10, P184

xc6200 write IC10, P189 IC1, P18

Table IV-5 XC620ODS Self-Configuration Operation Mode Modifications

xvf

Appendix V: Published Work and Awards Presented

Appendix V

Published Work and Awards Presented

Appendix-V-1 Conference papers published

Conference SPIE International Symposium on Voice, Video, and Data
Communications, Conference No. 3526: `Configurable
Computing: Technology and Applications',

Venue Boston, Massachusetts, USA.
Date 1St-5th November 1998.
Title of paper A Low-Cost Reconfigurable DSP-based

Parallel Image-Processing computer.

Conference IEE Informatics Colloquium on Reconfigurable Systems.
Venue Glasgow, UK.
Date 10`h March 1999.
Title of paper Low-cost TMS320C40/XC6200 Based Reconfigurable Parallel

Image-Processing Architecture.

Conference TASTED International Conference Applied Informatics,
International Symposium on Parallel and Distributed Computing
and Networks.

Venue Innsbruck, Austria.
Date 18th-21st February 2002.
Title of paper Dynamic Configurable DSP Parallel Processing Architecture.

Photostat copies of these papers taken from the original conference proceedings are
located at the back of the thesis.

Appendix-V-2 Awards

Title Royal Academy of Engineering Travel grant
Award Fund Royal Academy of Engineering
Purpose To Present Paper at SPIE conference

Title Royal Academy of Engineering Travel grant
Award Fund Royal Academy of Engineering
Purpose To Present Paper at TASTED Conference

Appendix VI: XC6264 Design Footprints

Appendix VI

XC6264 Design Footprints

Figure VI-I FBinDCT-Cl XC6264 Footprint

Appendix VI: XC6264 Design Footprints

Figure VI-11 FBinDCT-C9 XC6264 Footprint

11

Appendix VI: XC6264 Design Footprints

Figure VI-1I1 RBinDCT-Cl XC6264 Footprint

III

Appendix VI: XC6264 Designs Footprints

Figure VI-IV RBinDCT-C9 XC6264 Footprint

IV

Appendix VI: XC6264 Design Footprints

11 . aaa as opa ai
Ino n90 an n0a ni

Iý414,4414--r ROM containing address Iý1ý ifýý1 44414 h

nounoar+
data stor

ý as

oa0

a a0

_ : ýýa aa a0
4r. c ... pan 0

ý ý ý
aaaa0

ý ý
11 ýý N ýý ý ° ! i- (+1-Il 1+ý Iý tYttºi#

' ,o ý a o0aao 00 ý ý c- (I .. ao0
Oa n

non

äa
u

a0. aao0
44 aaa aoo

aa a0
a0a aa a0

'pnaaa

C paaa a0
ýo ao 00
na aa o0

onnný, d OaoooO
. 050050

F-1 _ 4-. _- - - F al- - - i 0 0 oa an
_ o 0 0ooonll

n - - -- - _ OaaaoU
t: Qa aa sf

Oa aa
qa0 , nn
np

0ana n0
. ý[la aa n0

}t
:

'naaaa'

10aaoa

fr --7: -anona aa0

o 000 oa an
nooOnooa0

N1
- 1- ,., 11 11 -1 11 .. 00aaaago 11

,
.

7, U. '.
o a0 1 xternal n oils ao ail

- - ao0aana0 4 1, I Nn Configuration °n i°
ooo nfnnn no

Ram Interface °00 na ail . 0. aoo0
on aa on

uu u0u 11 ,., _ ., (lu aa ail
ao afo anc;; :, -, Do oa oil

'öö.
0. nn0 o" no

nna .0on.. O Oooa nO
:: snafaoao fl r ...: poaoo

as coo as aor::.: as ao
:. ̂ ýJnnnaýr, !, Qnaa. 0

cýýaODa

_
ý :: On aa ail

Control FSMs 111a a an 2nnn n0,

aoaa0

epa oaý:: aooa
" nos oo on ... E', a ooQ +

000 00 . Qa as o0, oa o0
: 000aacooaa00: 1 F, aaoa0

ana aa DOD aaaf[i assail an

n0a na n0a an a0n -
ýQa

as Oil,
_ . 0aoa000 aaapa:: paoao0

ar_r na noon aon, Lr 3nnoa0ý

8

es of configuration
cd in external RAM

coi
Qoý
0öi

ao
ao
Cal
oä

CCI
CDI
DCI
eai

0oi

Dsel bus
Interface

Qoi
Qo

i na
.0,

00!
Qo
0oi
aoi
0o
00

0oi
aoi

i 00

Da'
OO

oaI

O0I

0oi
ooi
ooi
00I
001

nni
0oi
0oi
Do
Doi
uuý

Qn

0oi
0oi
COP
Oäi
0oi

00

OO
0o

CIO
0öi
0oi
aoi
0oi
äoi

oai
0oi
oai

ý oc ---naýnooöývQ
I, 'ýý" ,.

ýýionoo(jon
d.

ý
. ý. r

Figure VI-V Self-Configuration Controller XC6264 Footprint

V

Appendix VI: XC6264 Design Footprints

Figure VI-VI Non Structured Routing XC6264 Footprint (Configuration-1)

VI

Appendix VI: XC6264 Design Footprints

Figure VI-VII Non Structured Routing XC6264 Footprint (Configuration-2)

VII

Appendix VI: XC6264 Design Footprints

Figure VI-VIII Structured Routing XC6264 Footprint (Configuration- I)

VIII

Appendix VI: XC6264 Design Footprints

Figure VI-IX Structured Routing XC6264 Footprint (Configuration-2)

IX

Appendix VI: XC6264 Design Footprints

Figure VI-X Roberts Cross Edge Detector Routing Hub XC6264 Footprint

X

Appendix VII: Development System Images

Appendix-VII

Development System Images

Figure VIII-1 X('6264 FPGA

Figure V111-2 Transtech TDM411 TMS320C40 DSP Module

Appendix VII: Development System Images

Figure VIII-2 TDM411 With XC620ODS Coprocessor Interface Connector

Figure VIII-3 TDMB412 Motherboard (No TDM4I Is Installed)

Appendix VII: Development System Images

Figure V111-4 'I'DNIB412 Motherboard (Two'1'DM4I Is Installed)

s_.

. ýý: ýýýiýjýj
-",
r

:, ýt

_ ýý

ý-
ýs: t

r
Figure V111-5 Unpopulated XC620ODS PCB (Side 1)

--- tww

Appendix VII: Development System Images

s__. ýýiýii: `
.,, .ý ý_

,.
t

i
ýý_ t

Figure VIII-5 Unpopulated XC620ODS PCB (Side 2)

Figure VIII-6 Populated XC6200DS P('ß

1i_

ý.
ýi

ýýzý "C

s

i-

IV

.....
ýy.

Appendix VII: Development System Images

Figure VIII-7 XC6200DS/TDMB412 Dynamic Coprocessor Configuration

V

Appendix VII: Development System Images

Figure VIII-8 XC6200DS/'I'DMB412 RTR Routing-Ilub Configuration

VI

Appendix VII: Development System Images

Figure VIII-9 Dynamic Coprocessor Host PC Integration

Figure V111-11 Ri'R Routing-Ilub Host P(' Integration

VII

Appendix VII: Development System Images

Figure VIII-12 External Dynamic Configuration Timer

Figure VIII-13 Screen Shot of XC6200ADS

VIII

SOME PARTS
EXCLUDED

UNDER
INSTRUCTION

FROM THE
UNIVERSITY

