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Abstract 

Run-time Re-configurable DSP Parallel Processing System 
Using Dynamic FPGAs 

Ph. D. Thesis Ciaron William Murphy 13th June 2002 

This thesis describes the inclusion of dynamic coprocessor and routing-hub capabilities 
within an existing TIM-40 standard Texas Instruments TMS320C40 parallel processing 
environment. This work was conducted both to develop dynamic hardware applications 
and assess the potential benefits of this technology within an existing high performance 
architecture. 

To integrate dynamic hardware within the TMS320C40 multiprocessor environment, a 
custom designed run-time reconfigurable hardware development environment was 
designed and constructed (XC6200DS). This system used a Xilinx XC6200 family 
FPGA as the dynamic hardware resource. Custom XC620ODS development software 
tools (XC6200ADS) were also developed, enabling temporal and spatial examinations 
of sequential XC6200 designs, to generate configuration data, govern XC620ODS 
housekeeping functions, and facilitate XC6200 FPGA run-time hardware verification. 

A new BinDCT algorithm was used to develop novel XC6200 FPGA based dynamic 
TMS320C40 DSP coprocessor applications. Dynamic BinDCT operation increased 
operand throughputs from 9260 to 18520 BinDCT one-dimensional transform 
operations per second. This was accomplished through dynamically swapping the 
BinDCT hardware configuration depending on the frequency content of each transforms 
input data. Results obtained indicated that compared to static XC6200 configurations, 
dynamic BinDCT operation also improved system accuracy in approximating true DCT 
operation. 

Using the XC6200DS, a TMS320C40 communication channel routing-hub was 
developed. Data paths configured within the routing-hub were updated during run-time 
improving processing node connectivity. This novel concept was furthered by spatially 
partitioning processing and routing resources (Roberts Cross Edge Detector) within the 
hub. This allowed the creation of a new system topology that provided additional 
processing hardware or node bandwidth as depicted by system operation through 
reusing existing hardware. 

Novel dynamic hardware applications and multiprocessor operating concepts have been 
explored by this research. Through continual improvements in run-time reconfigurable 
hardware technologies, the potential benefits demonstrated can be fully exploited. 
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Chapter 1: Introduction 

Chapter 1 

Introduction 

The growth in complexity and application of image processing algorithms has been 

reflected by demand for ever-greater computing power. The development of more 

powerful processor architectures to satisfy this requirement itself encourages further 

application diversity. This repetitive cycle has been dependant upon the continual 

advancement of semiconductor technologies and construction of dedicated processing 

architectures. Existing general-purpose computing solutions whilst rapidly advancing 

still do not exhibit the necessary processing power required for many applications. 

High-powered computing architectures have traditionally been constructed using two 

fabrication methods. The first method requires the development of Application-Specific 

Integrated Circuits (ASICs) to implement whole or part of the target algorithm directly 

in hardware. This process incurred high devolvement costs but generated the most 

efficient implementation, particularly for volume production, since the architecture was 

designed to accelerate a specific task. 

The second construction method used multiple commercial instruction-set based 

processors operating concurrently. Within such architectures, individual processors 

typically communicated using fixed interconnection topologies. In comparison to ASIC 

construction, this method resulted in less efficient implementation of the application, 

but with reduced development costs. 

Though both construction techniques provided high performance computing compared 

to general-purpose processing platforms, the flexibility and versatility of system 

operation was impeded through the construction methods used. Application diversity of 

the system was compromised to achieve high operand throughput. The computation of 

non-target algorithms was therefore inefficient, if at all feasible. 
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Chanter 1: Introduction 

To merge the versatility of a general purpose processing architecture with the high 

performance of an application specific hardware, processor hardware must adapt and 

accelerate each specific task. In existing fixed processing topologies, the ability to 

optimise the architecture for each different application was restricted by the hardwired 

nature of the processing and routing resources. If these components were reconfigured 
for each application, the mapping efficiency, hence operand throughput would increase. 

Through the development of programmable logic technology, the concept of high 

performance multipurpose computing architectures has been realised. Such architectures 

contain high performance processing resources within a common architecture that can 
be adapted to accelerate different algorithmic structures. 

Construction of custom computing machines using this technique has revealed new 

operation taxonomies that can achieve ever more efficient hardware implementations. 

Efficient hardware design increases system throughput whilst reducing power 

consumption. 

Many image-processing applications contain both primary and secondary processing 

operations. Within existing high performance computing architectures, the 

configuration of internal resources are fixed during the computation to accelerate the 

primary function. In applications where multiple functions occur, system throughput 

would be degraded by inefficient hardware implementations of the secondary functions. 

One solution to this problem has been the continual development of larger 

semiconductors, with logic capacities that enable all functions within an application to 
be implemented efficiently. Eventually limitations within present-day semiconductor 
fabrication techniques will be reached restricting the development of higher capacity 
devices. 

A different approach to increasing efficiency has been to examine the operating cycle of 

an application and partition the resultant hardware design into time independent 
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Chapter 1: Introduction 

segments. This concept is known as temporal partitioning. Each temporal partition 

equates to a portion of the overall system operation accelerated through efficient 
hardware implementation. 

To compute an application individual temporal partitions are activated as demanded by 

operational flow. Each successive partition reuses hardware resources that implemented 

the previous active partition. This concept of reusing logic within sequential temporal 

functions is known as spatial partitioning, and provides a hardware efficient approach 

to implementing high-performance computing architectures. 

The realisation of the full performance benefits that this technology can provide is not 

yet apparent. Technological advances in programmable logic technology must occur 

prior to acceptance of temporal and spatial design implementation techniques within 

industrial applications. This interest however will only be generated through academia 
developing applications in which performance benefits occur through dynamic 

implementation. This is a symbiotic relationship since for the technology to mature 
industrial acceptance is required. 

The technological contribution made through the research presented in this thesis has 

been the integration of dynamic hardware components within existing high performance 

multiprocessor topologies. This has been conducted to determine how the operation of 

each technology can be advanced, and to develop dynamic hardware applications. 

The outcome of this work has been the development of dynamic coprocessor functions 

and communication routing hub topologies within a multiprocessor environment. A 

novel implementation of the BinDCT algorithm has also been developed. To conduct 

this work an industry standard (TIM-40) DSP MIMD parallel processing architecture 
has been upgraded, in conjunction with the development of a custom designed dynamic 

hardware prototype environment (XC6200DS) and associated software tools 

(XC6200ADS). 
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Chapter 1: Introduction 

From the onset of the investigation, it was apparent that the operating characteristics of 

the dynamic semiconductor technology available (Xilinx XC6200 FPGA family) were 

inferior compared to existing hardwired technologies. The development of hardware 

throughout the project has therefore addressed dynamic implementation techniques, 

issues and operating concepts, rather than obtaining raw throughput. Newer emerging 

devices, naturally faster and with more computing power are however not yet run-time 

reconfigurable. This makes the Xilinx XC6200 family unique, and allowed real 

hardware to be investigated whilst researching dynamically reconfigurable 

architectures. 

The thesis presented consists of nine chapters including this chapter, the Introduction. 

To provide a knowledge base on which to digest the concepts explored within this 

project, Chapter-2 introduces the concept, history and development of configurable 

technology. The evolution of adaptive machine topologies and operating characteristics 

are then introduced, with examples given. Prominent examples of each classification are 

described, with more detail provided in Appendix-II. Chapter-2 concludes by describing 

the present status of configurable logic technology, its limitations and future research 

directions. 

To investigate merging dynamic hardware within a parallel processing environment, a 

XC6200 FPGA Development System (XC6200DS) was designed and constructed since 

no suitable tool was commercially available. To manage XC620ODS operation, perform 

in-circuit hardware verification and dynamic configuration data generation, a suite of 

custom software tools known as XC6200 Application Development Software 

(XC6200ADS) was constructed. 

Chapter-3 describes the operation, construction, integration and configuration of both 

the XC620ODS and TIM-40 systems. The aim of this chapter has been to provide the 

reader within an insight into the function of XC6200ADS hardware development tools 

and XC620ODS configuration modes used during the development of the dynamic 

hardware applications presented later. Operational summaries of key components are 
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Chapter 1: Introduction 

given with detailed explanations included within Appendix-III. Development cycles for 

both the parallel processing and dynamic hardware environments are explained. 

Prior to the construction of complex hardware structures, the operating and performance 

characteristics of the XC620ODS had to be evaluated. This task is presented in Chapter- 

4 and details the implementation of fundamental processing hardware within the 

XC6200 FPGA. The suitability of each function for XC6200 hardware implementation 

was assessed, including design techniques for temporal and spatial partitioning. The 

implementation strategies devised in Chapter-4 were then applied during the 

development of dynamic hardware applications within Chapter-6 and Chapter-7. 

The development of a dynamic coprocessor configuration (Chapter-3) enabled the 

construction of a novel method of Discreet Cosine Transform (DCT) computation using 

the BinDCT algorithm. Chapter-5 describes the operation of this algorithm with respect 

to the implementation of a traditional DCT and Chen's Fast DCT (FDCT) algorithm. 
The chapter describes experiments conducted to determine the suitability of the 

BinDCT for dynamic operation and how system operation was enhanced using run-time 

reconfiguration for one and two-dimensional BinDCT transforms. Presented within 
Chapter-5 are dynamic BinDCT software simulated results, which are compared against 
XC6200 FPGA generated dynamic BinDCT hardware results in Chapter-6. 

XC6200 FPGA implementations of dynamic BinDCT TMS320C40 DSP coprocessors 

are described in Chapter-6. This discussion describes the initial static hardware 

implementation methods used, incorporation of BinDCT hardware within the 

XC620ODS coprocessor configuration, and the inclusion of a custom dynamic 

configuration mechanism known as the self-configuration controller (described in 

Section-3.4.4). Hardware results presented demonstrate the advantages temporally 

partitioned hardware, reconfigured using dynamic configuration can provide. 

The insertion of dynamic hardware within the TIM-40 communication topology has 

permitted the investigation of a multiple-purpose routing hub. Chapter-7 describes how 
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Chapter 1: Introduction 

the throughput of an existing multiprocessor architecture can be improved through 

incorporation of this technology. This concept is further expanded on by combining the 

computation of simple functions within the transfer of operands between system nodes. 

Within Chapter-7, the implementation of a Roberts Cross Edge Detector is described, as 

well as the construction and operation of the routing hub. 

A summary of the content and specific conclusions for each task has been provided 

within each chapter. Resulting conclusions for the research presented are described in 

Chapter-8. Topics covered include the status of configurable technology and the 

contributions to the research field this project has made. These contributions include 

novel application development, and integration of dynamic hardware within 

multiprocessor architectures. 

From these conclusions, recommendations for further work have been determined. 

These are described in Chapter-9. Improvements to the XC620ODS and XC6200ADS 

are suggested as well as addressing dynamic hardware and in-circuit verification 

strategies. Ideas for the integration of configurable hardware within commercial 

products are also discussed. 
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Chapter 2 

Reconfigurable Computing Technology 

Introduction 

The aim of this chapter is to provide a sound knowledge base of reconfigurable 

computing techniques, architecture classification, and applications. Section-2.1 

introduces the basic concept of configurable computing, and details the advantages 

gained. Section-2.2 builds on this with an example of the first configurable computing 

system devised, and explains how configurable computing architectures evolved 

through advances made in semiconductor technology. 

Section-2.3 describes in detail the configuration mechanisms and performance issues of 

existing configurable architectures. Section-2.4 discusses the classification of 

configurable machine architecture and related taxonomies, with Section-2.5 describing 

systems applications and operational characteristics of each type. Detailed overviews of 

prominent architectures discussed are included in Appendix-II. Section-2.6 reviews 

current research trends and the present status of the technology. 

2.1 Configurable Computing Introduction 

By their very nature image digital signal-processing algorithms are computationally 
intensive. To achieve high operand throughput, inherent concurrent operations within a 

task must be fully exploited. Until recently, high performance image-processing 

applications could only be achieved through using dedicated custom computing 

hardware known as application-specific architectures (ASAs), designed specifically to 

accelerate and compute a given task. ASAs effectively mimic the structure of an 

algorithm within hardware. This enables an ASA implementation to exhibit greater 

throughput and efficiency when compared to a general-purpose processing architecture. 

Traditionally, ASAs have been constructed using either application-specific integrated 

circuits (ASICs) that implemented the whole or part of the target algorithm directly in 
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hardware [1], or by use of multiple specialised instruction-set based processors, 

communicating via a fixed interconnection topology [2]. Though such implementations 

provide high-performance solutions, the versatility of the system application was 
limited when computing an algorithm of different structure, if at all feasible. 

Application-specific architectures also suffered from high development costs compared 

to commercial processing engines, since the architecture and composite components 

were normally designed from scratch and constructed in small quantities. Historically 

however, these were the only solution for many high-performance applications. 

Image-processing functions can be classified as being local or global type operations. 

Local operations consist of a large number of simple highly concurrent calculations 

such as binary thresholds, which are most suited for computation using an array of fine- 

grain processing elements (PEs). Global operations consist of fewer but more complex 

functions, exhibiting less inherent concurrent operations. Typically these operators 

consist of trigonometric mathematical functions, computed using CORDIC (Co- 

Ordinate Rotation Digital Computer) [3] [4] based processing architectures. Within 

CORDIC calculations, functions such as multiply and accumulates (MACs) occur. 

Local operators are normally used for image pre-processing, whereas global functions 

are used for extracting embedded information. Most image-processing applications 

normally consist of both types of operation. To merge ASA performance with the 

system flexibility of a general-purpose computing architecture, optimisation of the 

processing architecture for each application was required. The adaptation of a 

processing architecture during run-time, to accelerate each phase within an application, 
is the key concept within reconfigurable computing. This is illustrated in Figure 2.1. 

As computer applications continue to grow in complexity, the requirement for more 

powerful processing architectures is ever present. This demand has been realised 
through the development of processor architecture technology, and through advances in 

semiconductor fabrication techniques that have enabled clock frequencies to increase. 

Traditional processing architectures function using a fixed instruction-set, with the 
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Chapter 2: Reconfigurable Computing Technology 

instructions providing limited concurrent execution. The efficiency with which such 

architectures can utilise parallel operations occurring within an application is therefore 

restricted. By increasing the clock frequency, the throughput of the architecture can be 

improved but not the efficiency by which concurrent functions are exploited. 
Alternative methods to achieve this are, inclusion of additional concurrent processing 
hardware within the architecture, or through reorganising existing resources. 

For efficient exploitation of parallelism within multiple tasks, a processing architecture 

must be optimised through reconfiguration on demand. This area of processor 

architecture research is relatively new, therefore both the hardware architectures, and 

software development tools are still in their infancy, and require much more 

investigation to stimulate further development. 

Next phase of Next phase of 
Application Application 

Pre-processing of Extract detail Processes image 
Image 

6" 
from image detail 

Reconfigure Reconfigure 

PE PE Architecture Architecture 

MAC MAC 
PE PE PE 

Figure 2.1 Basis of Reconfigurable Computing 
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2.2 Evolution Of Reconfigurable Computing 

The ability to reorganize the structure of a processing architecture improves the task 

diversity and operating characteristics of the system. The development of such operating 
techniques however has been hindered through the unavailability of suitable 
implementation fabrics. These limitations have imposed operating constraints upon such 

architectures. The evolution of both configurable computing concepts and 

programmable semiconductor technologies are therefore linked and continue to 

influence each other. 

2.2.1 The First Notion 

G. Esterin of the University of California at Los Angeles proposed the first notion of 

this idea in 1959 [5]. Esterin's concept was of a fixed plus-variable (F+V) computing 

architecture that would provide high performance and application diversity. Figure 2.2 

shows a block diagram of the F+V architecture. The design consisted of a fixed general- 

purpose central processor unit (CPU) known as the F-Unit, tightly coupled to a 

coprocessor (V-Unit) configured for each application. A supervisory control unit 

governed interaction between the two units. 

Esterin intended the V-Unit to be configured during system operation using electro- 

mechanical relays, which selected and activated circuit cards comprising application 

specific processing hardware. These circuit cards could also be manually replaced 

whilst the processor was inactive. Functions such as vector arithmetic and hyperbolic 

operations could be performed within this unit. 

The limitations of early electronic technologies made it difficult to implement such 

architectures. The concept of configurable computing technology has therefore only 

become practically viable during the last fifteen years, through the introduction and 
development of in-circuit programmable logic devices (PLDs), primarily Field 

Programmable Gate Arrays (FPGAs). The subsequent technological development of 

these devices and that of configurable computing techniques have influenced each other. 

10 



Chapter 2: Reconfigurable Computing Technology 

Central L:: ý Local ý External I 
Processor Memory Memory& 1/O F-Unit 

Supervisory 11 Control & 
Control Unit F+V Unit 

Y 

Interface 

Special Local External 
Purpose 14 Memory Memory & 1/0 V-Unit 

Structures 

Figure 2.2 Esterin's Fixed Plus Variable Computing Architecture 

2.2.2 FPGA Technology Review 

An FPGA is a silicon chip in which the user determines the function. In 1986 Xilinx 

introduced the first FPGA (XC2000 family). FPGAs were developed because existing 

programmable logic called complex programmable logic devices (CPLDs) could not 

support the ever-increasing demand for greater on-chip logic capacity. 

The fundamental problem within CPLD architectures was that the ratio of sequential 

logic resources (flip-flops) compared to combinatorial logic (logic gates) was small and 

insufficient for many tasks. With a typical CPLD such as the Vantis MACH 111 [6], this 

ratio was one flip-flop to twelve product terms (two-input Boolean expression). This 

limitation can be accredited to the underlying architecture of a CPLD, in which logic 

functions were configured within multiple programmable array logic (PAL) units, 

interconnected via a programmable interconnect architecture (PIA). The relation of 

these components within a typical CPLD (MACH111) is shown in Figure 2.3. The 

MACH111 consists of two PALs interconnected using a PIA. A MACH 111 PAL 

consists of sixteen macro-cells, each cell containing a programmable AND, fixed OR 

array matrix, and one flip-flop. Limited sequential logic resources within CPLD 
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architectures therefore hindered the migration to fabricating complex processing 

architectures within programmable devices. 

........................................................................................ 52 x 70 Input Programmable 
Enlarged Macrocell AND, fixed OR Logic Array 

Flip-flop 

IO C 
Exter 
Pins 

Switch Matrix 
(PIA) 

Figure 2.3 Simplified MACHI 11 CPLD Architecture 

)Cell 

The basic outline architecture of an FPGA is shown in Figure 2.4. The architecture 

consists of an array of configurable logic blocks (CLBs), a programmable 

interconnection matrix, and input/output blocks (IOBs) connected to external pins on the 

chip carrier. Instead of using PALs, FPGA logic is implemented within CLBs. A basic 

CLB implements combinatorial logic using multiplexers and look-up tables (LUTs), and 

contains one or more flip-flop devices to implement sequential logic elements. 

In Figure 2.4 the inputs to the CLB are noted as A, B, C, and Clock, with the output 
labelled F. The gate capacity of a CLB is normally less than that of a CPLD PAL. For 

example a CLB could implement up to three four-variable Boolean expressions [9] 

compared to the PALs twelve product terms [6]. Designs implemented upon an FPGA 

must be partitioned into a far greater number of logic elements than that implemented 

upon a CPLD. FPGAs therefore require and indeed have far greater routing resources 
than that of CPLDs. 

12 
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Chapter 2: Reconfigurable Computing Technology 

Figure 2.4 Simple FPGA Architecture and Components 

Traditional FPGA architecture can be divided into three main categories based upon the 

granularity of the CLB and the complexity of the internal routing structure. They are 

known as Sea-of-Gates, Row, and Symmetrical type architectures. CLB granularity was 

a measure of the logic capacity configured within a device. Typical fine grain CLBs 

implemented two-variable Boolean expressions and contained single flip-flops. In 

comparison coarse grain CLBs typically implemented two four-variable expressions and 

contained two flip-flops. 

Sea-of-gate FPGA architectures consist of fine-grain CLBs interconnected via an 

extensive local routing structure. If the CLB granularity is fine, a design has to be 

partitioned into a greater number of simple logic blocks. This means that neighbouring 

CLBs rely upon extensive local signal routing to share product results. 

Row architectures consist of coarser CLBs, possessing local and global routing 

resources. With a coarse-grain FPGA, the design is partitioned into fewer but more 

complex logic blocks. CLBs would not require extensive local signal routing since the 

number of product terms shared by neighbouring CLBs would be reduced. Instead they 

require dedicated longer chip-wide routing resources to share product functions. 

Symmetrical arrays have the coarsest CLB granularity and contain extensive chip-wide 

routing resources. Within the FPGA architectures a trade-off exists between local 
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routing capacity and CLB granularity. 

Symmetrical arrays provide the best medium for implementing general-purpose designs, 

whereas sea-of-gates and row architectures are more suited for the implementation of 

DSP applications requiring large numbers of simple concurrent operations. Examples of 

a sea of gate, row and symmetrical array type FPGAs are listed in [8], [9] and [7] 

respectively. 

FPGAs have also been classified as hierarchical PLD types [10]. It is the opinion of the 

author however, that devices of this category are CPLD hierarchical architectures 

incorporating aspects of FPGA technology. 

Traditionally FPGAs functioned using static random accesses memory (SRAM) 

programmable technology, whereas existing CPLDs incorporated floating-gate 

technologies similar to that used in erasable programmable read only memory 

(EPROM) and electrically EPROM (EEPROM) technology. SRAM has the advantage 

over floating-gate technologies in that configuration times are reduced from seconds to 

milliseconds. Data written to the FPGAs configuration SRAM determines the 

configuration of the CLBs, IOBs, and programmable interconnection network. A 

disadvantage of SRAM technology is that it is volatile and upon power-up, SRAM 

based FPGAs must download configuration data from a external source (typically a 

PROM). 

FPGAs have also been developed using one-time programmable non-volatile 

programmable technologies. The Act3-PCI FPGA [9] family manufactured by Actel is 

an example of such a device, and incorporates anti-fuse instead of SRAM programming 

technology. A comparison of PLD configuration technologies is detailed in Appendix-1. 

The design process used in the development of an FPGA application is shown in Figure 

2.5. The first stage of the process (1) requires generating the design entity using 

hardware description languages (HDL) such as VHDL and Verilog, or by using 
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schematic entry tools such as View Draw. The function of the design can be simulated 

and verified using software design tools, which enables the development cycle of the 

hardware to be conducted within software. The use of such tools allows errors be 

detected and corrected (2) before programming a PROM. Once the design has been 

proved correct the FPGAs configuration data can then be generated (3). This is then 

programmed within a PROM (4) from which the FPGA downloads its configuration 

data upon system power-up (5). The function of the FPGA can then be tested and 

verified in-circuit using the FPGAs JTAG [79] interface (6) (if applicable). 

(2) 

1ý1 
Design Simulation Generate FPGA Configuration 
Entry And Configuration PROM 
Tools Verification Data 

(5) 

---j 

In Circuit Testing FPGA 
And 
Validation 

Figure 2.5 FPGA Application Development Cycle 

Until recently the concept of user-programmable ICs has been restricted to the domain 

of synchronous digital logic. Motorola have developed a programmable analogue device 

known as a field programmable analogue array (FPAA) [ 11 ], whilst I-Cube have 

developed programmable switches known as field programmable interconnect devices 

(FPIDs) [12]. These devices utilise SRAM programming technology and exhibit similar 

configuration characteristics to traditional FPGAs. 

Academic research groups have also developed FPGA type architectures for use in 

asynchronous digital logic applications. An example of an asynchronous FPGA is 

Montage [13]. Work has also been conducted to investigate the use of optical 

configuration mechanisms in FPGAs, rather than SRAM to reduce configuration delays 

[14]. The Virtual Wires project [15], has also addressed the issue of limited 1013 
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bandwidth caused by inadequate chip carrier pin resources through multiplexing 

multiple signals upon each pin. 

2.2.1 First Generation Machines (circa 1987-1993) 

FPGAs were initially developed for use as reusable prototype devices to reduce 

development costs of digital hardware. Through continual improvements in FPGA 

technology, it became evident that larger capacity FPGAs (e. g. Xilinx XC3000 family 

1987, logic capacity 1000-6000 gates) [16]) could be used as alternatives to hardwired 

ICs within the final design. First generation configurable computers reflected this 

concept, and can be considered as ASAs implemented within programmable logic rather 

than hardwired semiconductor technology. 

Enable-1 [17], DECPeRLE-l [18] and Ganglion [19] are first generation configurable 

computers. Enable-I's architecture was fixed and optimised to perform a specific 

pattern recognition task, whereas Ganglion was designed to implement an artificial 

neural network (ANN) connection classifier. Although Ganglion was design as an ASA, 

components within the architecture could be reconfigured to implement specific 

weights, bias values and scaling parameters rather than use generic values for each 

application. 

DECPeRLE-1 can also be considered first generation architecture, although not for the 

same reasons as Ganglion or Enable++. DECPeRLE-1 design was more generalised 

than an ASA and allowed greater adaptation of system architecture, hence facilitated 

broader application diversity. Applications including cryptography, stereovision, and 

neural networks highlighted the potential benefits configurable computing could offer. 
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2.2.4 Second Generation Machines (circa 1993-1996) 

As FPGA technology developed, the capacity, structure and performance of devices 

improved enabling the concept of configurable computing to evolve. For example the 

Xilinx XC4000XL [9] and Altera Flex 10K [10] series had gate capacities of up to 

180,000 and 250,000 gates respectively. Through the development and evaluation of 

first generation architectures, coupled with the enhanced FPGAs architecture, four 

distinct types of configurable architectures began to emerge. These were Prototype 

Environments, Configurable Supercomputers, Configurable Coprocessors, and 

Configurable Instruction-Set architectures. 

During system prototyping, a single FPGA could only support a limited volume of 

logic. By coupling multiple FPGAs together more complex designs could be 

implemented. To facilitate prototyping, such architectures were designed for flexibility 

and not high performance. Examples of this type of architecture were Transmogrifier-1 

[20] and Springbok [21]. Transmogrifier-1 could be used to directly implement ASIC 

logic designs of up to 40,000 gates. Springbok however used configurable logic to 

provide signal routing between hardwired ICs implementing the prototype design. A 

further example was the Rapid Prototype engine for Multiprocessors (RPM) [22], 

designed specifically to emulate MIMD processor architectures. 

Configurable supercomputers emerged that provided the high performance of an ASA, 

with the versatility of a general-purpose architecture. This was possible through the 

sheer scale of their configurable resources (typically hundreds of thousands of gates). 

The most prominent examples of such architectures were the Virtual Computer [23] and 

Splash-2 [24]. Both machines could be configured and optimised for different tasks, 

therefore exploiting the concurrent properties of each algorithm implemented. 

Traditional instruction-set architectures also incorporated reconfigurable hardware 

through using FPGA based coprocessors. Examples of such architectures were Garp 

[25] and Harp [26]. Garp consisting of a processor and configurable array tightly 
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coupled upon a custom silicon die, whereas Harp consisted of a Transputer and 

commercial FPGA. In both architectures, application computation was partitioned 

between the two processing resources. The coprocessor performed instructions 

implemented inefficiently or not present within the main processor. This feature allowed 

optimization of a common architecture to accelerate different applications. 

A different concept developed instruction-set architectures, where only the instructions 

actually used during the computation were configured. Early examples of this type of 

architecture were PRISM [27] and the Nano Processor [28]. Both devices functioned 

using fixed processing-core skeletons upon which optimal instruction-sets were 

configured. 

2.2.5 Virtual Hardware 

The development of FPGA technology was continuous, however the limited logic 

capacities of devices still restricted application development. Such limitations were 

more apparent in coprocessor and configurable instruction-set architectures as they 

contained far fewer reconfigurable logic resources, which restricted the number of 

custom instructions implemented concurrently. 

The serial nature of instruction-set micro-coded operation implied that a small portion 

of the instruction-set would be active at any given moment. Logic resources 

implementing inactive instructions could therefore be reconfigured with active 

instructions. This feature provided virtual instruction-set capacity and virtual hardware 

capabilities [29]. 

The operation of virtual hardware can be compared to virtual memory within modern 

computers. Virtual memory implies that a computer possesses more memory than 

physically present in the system. Swapping data from the hard-drive to the physical 

memory only when required in the computation, and then transferring it back to hard- 

drive when inactive achieves this. In virtual hardware, instead of data being transferred 
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to and from memory, hardware configurations resident in a configuration store are 

swapped to and from a device during system operation. Therefore the device appears to 

exhibit greater hardware capacity than physically present. This idea is illustrated in 

Figure 2.6. The principal of virtual hardware has also been labelled Multiple Context 

Configuration [30] and Cache Logic [31 ]. 
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Figure 2.6 Concept of Virtual Hardware 

To incorporate virtual hardware an FPGA's configuration must be updated concurrent 

to system operation. This was impractical with existing FPGAs such as Xilinx XC4000 

family configured prior to start-up, therefore a new generation of FPGA devices both 

custom and commercial were developed. These new FPGA architectures reflected the 

change in FPGA applications from implementing static hardware, to use in configurable 

computing applications. 
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2.2.5 Dynamic FPGA Technology 

Within traditional FPGA architectures the design emphasis placed upon the 

configuration mechanism was to minimise the number of chip-carrier pins used during 

the configuration process. In early FPGAs, configuration data was downloaded in a 

serial fashion, with later devices incorporated parallel interfaces. With both types of 

interface however, FPGA internal configuration memory was accessed in a shift-register 

type fashion. Therefore FPGA CLBs had to be configured together in one operation, 

and could not be individually configured. This configuration processes was device 

dependant and took in the region of 20-40msec. 

In applications where the FPGAs configuration remained static, the configuration delay 

would only occur once on power-up. In applications where virtual hardware techniques 

were used, any increase in speed gained through using reconfiguration was eradicated 

due to the configuration delay. This figure could be several orders of magnitude greater 

than the operational clock frequency of the device (typically in the region of 20MHz to 

80MHz, giving cycle times of 50nsec tol2.5nsec). 

To develop virtual hardware technology, more suitable semiconductors were required. 

The device configuration delay had to be reduced, and the granularity of the 

configurable logic cells structure improved. Since none were commercial available, 

academic research groups began to develop their own configurable computing 

architectures such as Matrix [33] and the DPGA (Dynamically Programmable Gate 

Array) [34]. 

Matrix (Multiple ALU Architecture with Reconfigurable Interconnect eXperiment) 

addressed the problem of inefficient CLBs. Matrix contained coarse-grained 

configurable units that could implement high-level operations such as multiplication, 

rather than simple Boolean expressions. The DPGA architecture primarily addressed the 

concept of virtual hardware. The DPGA could be reconfigured in one clock cycle 

(9nsec) by switching between configurations stored in a four-deep multiple context 
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configuration memory. Villasenor and Hutchings [35] however, indicated that the first 

research into multiplexing FPGA configurations was actually conducted by Xilinx in 

1991, but remained the intellectual property of Xilinx until publication in 1997 [36]. 

In 1995 Xilinx introduced the XC6200 family of FPGAs [32] (formally Algotronix 

CAL series). These devices were designed specifically for use in configurable 

computing applications, and incorporated partial and dynamic configuration. Partial 

configuration enabled only specific areas of the FPGA to be configured. The advantage 

of this technique was the volume of configuration data required to reconfigure the 

FPGA was kept to a minimum. This reduced the configuration delay, which was 

proportional to the volume of configuration data. 

Dynamic configuration was the ability to partially configure an FPGA without halting 

the operation of unaffected areas of the device. Within the XC6200 architecture partial 

and dynamic configuration was made possible through a parallel interface known as the 

FastMapTM illustrated in Figure 2.7. Configuration data was written during run-time 

using the address and data-buses. The address was interpreted by the FastMap' M 

interface as a pointer to the row and column location of a resource within the 

Configurable Logic Cell (CLC) array; CLC was the term given to XC6200 equivalent of 

traditional FPGA CLBs. The new configuration was then written from the data-bus to 

the configuration memory. This architecture is discussed in greater detail in Appenclix- 

III. 

The XC6200 architecture provided a structure to implement virtual hardware. The 

configuration mechanism employed was not ideal since the configuration delay was 

proportional to the volume of configuration data (approximately 30nsec per CLC). In 

comparison, the DPGA could be totally reconfigured in 9nsec by switching between 

memory contexts. 

Unlike the XC6200 the DPGA did not support partial configuration. The capacity of the 

DPGAs context memory restricted the number of configurations to four [30]. In 
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comparison the XC6200 could support an unlimited number of configurations using 

partial configuration techniques. For the work presented in this thesis, XC6200 devices 

have been used for the dynamically reconfigurable elements, as they were the only 

suitable devices commercially available at the time. 

('L(' Array 

External 
Interface 
Buses 

Past MAP 
Interface 

Figure 2.7 XC6200 FPGA FastMap"" Interface 

Further prototype FPGAs developed were Atmel AT6000 family [31] and the National 

Semiconductor CLAy FPGA series [37]. All three devices were intended to be 

commercial products but only ever produced in small quantities, with restricted 

availability. 

This can be attributed to the reluctance by industry to implement run-time adaptive 

architectures. Experiences gained through the development of the XC6200 architecture 

however, have been reflected within Xilinx Virtex family of FPGAs [38], their current 

flagship devices. 

2.2.6 Third Generation Machines (circa 1996 present date) 

The introduction of the XC6200 family as well as the Atmel and National 

Semiconductor dynamic FPGAs fuelled further research into configurable computing 

techniques. Primarily, these advances were based upon the incorporation of virtual 

hardware within existing computing architectures. Examples of such architectures were 
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Hades [39], Chimaera [40], Space-2 [41], DISC [42], and Morphosys [43]. 

Hades was an example of a dynamic coprocessor. This project involved coupling a 

Xilinx XC6200 FPGA to a custom instruction-set processing architecture. A further 

outcome of this project was the development of a suite of design tools for dynamic 

applications [44]. Similarly, Morphosys and Chimaera reconfigurable functional units 

were examples of merging a tightly coupled run-time configurable coprocessor with an 

instruction-set processing architecture upon a common silicon die. 

DISC (Dynamic Instruction Set Computer) was the successor to the Nano Processor, 

and could now replace inactive instructions with active instructions during run-time, 

therefore exhibiting a virtual instruction-set capacity. SPACE-2 was an example of an 

ASA developed to analyse road-traffic patterns, and used dynamic configuration within 

its operation to speed-up system throughput. 

2.2.8 Commercial Machines 

The transfer of configurable technology from academia to industry has recently become 

apparent at system, programmable fabric, and development tool levels. At system level 

Triscend developed the first instruction-set processor incorporating a user-defined 

instruction-set, configured and optimised for each individual application [45]. Star 

Bridge Systems have also developed a dynamic configurable processing architecture 

called HAL-300GRWI [46]. When first introduced in 1998, for certain applications 

HAL-300GRWI could exceed the performance of the most powerful computer at the 

time, IBM's Pacific Blue. 

Recently, the prospect of commercially available processor cores coupled to 

reconfigurable logic has become apparent. Xilinx and IBM have announced that they 

are working together to couple a PowerPC processor with a Virtex FPGA [47], whilst 

Altera are integrating ARM and MIPS processor architectures within its FLEX family 

of FPGAs. This new device will be known as Excalibur [48]. 
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Commercial reconfigurable application development software is also under 

development. At Synopsys there is a project to determine the best method of including 

reconfigurable logic within their existing design flow tools. Celoxica (formally 

Embedded Solutions) have also developed software tools that can generate either 

configuration data for an FPGA implementation or binary code for a microprocessor 

using an initial HDL Handel-C design [61]. 

2.3 Configurable Computing Performance 

Existing configurable computing architectures vary extensively. To evaluate and 

classify configurable computing machines, the operational characteristics of the 

programmable logic used, system configuration mechanics and granularity of 

configuration used must be assessed. 

Configurable computing architectures can be divided into two categories based upon 

their configuration techniques. These categories are known as Compile-Time 

Reconfiguration (CTR) and Run-Time Reconfiguration (RTR) [49]. 

2.3.1 Compile-Time Reconfiguration 

Compile-time reconfiguration was the first configuration mechanism developed. The 

name of this technique reflects the limitation caused through using first generation 

FPGA devices in constructing dynamic systems. FPGAs of this era had to be configured 

as a whole unit, independent of the proportion of the design requiring updating. This 

limitation forced the processing architecture to appear fixed during system operation, 

hence only supporting a single configuration (single context). 

Initially this method of configuration did not introduce any performance limitations. 

Early configurable computing machines were designed to provide high performance 

processing platforms, optimised for different algorithmic structures on a task-by-task 

basis. For each individual task, the system configuration would be determined and 

downloaded prior to execution of the task. Since the configuration remained static 
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during system run-time, the initial configuration delay encountered would not affect 

overall system performance. This concept shown in Figure 2.8 was true for most early 

configurable computer architectures. 

Pt 

FPGA FPGA 

PROM PROM Td 0110101 

System Initialisation (i) System Run-time (ii) 

Figure 2.8 Simple CTR System Operation 

Figure 2.8 illustrates how configuration data is downloaded (i) prior to system operation 

(ii). The configuration is single context therefore this delay occurs once (Try. To 

evaluate the performance of such systems, only the processing time (Pt) needs to be 

considered. The configuration delay (T(I) can be disregarded as device power-up and 

initialisation delay, which are commonplace within electronic systems. 

The limited gate capacity of early FPGA technology depicted the complexity of 

processing hardware developed. To construct larger designs, the required architecture 

could be partitioned into multiple configurations (temporal partitioning). This required 

analysing the design to determine at any given phase during system operation which 

hardware resources were active, and which were inactive. By swapping inactive with 

active logic, a design requiring a higher gate capacity than was physically present could 

be implemented. To achieve this system operation would be suspended whilst new 

configuration data was downloaded. 

The CTR configuration mechanism constrained the functionality and ability of the 

architecture to be adapted efficiently during system run-time. Configuration delays 

incurred, therefore reduced any speed-up. This limitation was applicable to second- 

generation configurable machines and is illustrated in Figure 2.9. 
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Figure 2.9 Multiple CTR System Operation 

Figure 2.9 illustrates a multiple context temporally partitioned CTR design. Upon 

power-up the first configuration (C, ) was downloaded generating a configuration delay 

(Td). This initial delay can be ignored and attributed to system initialisation. Process C� 

takes time Pt� to complete. Before the next configuration can be downloaded, 

data required by C�+, and present in the C, must be stored temporarily. This function 

takes time Ts,,, and must be completed before the next configuration can be 

downloaded. 

When the FPGA is reconfigured, its content is overwritten hence intermediate data is 

erased. The configuration delay incurred is still Td since the device must be configured 

as a whole unit, independent upon the percentage of the architecture required updating. 

Before system operation recommences, operand data stored locally must be retrieved 

introducing a further delay of Ts,,. Configuration C'�+i commences, and is completed in 

time Pt�+1. The cycle is then ready to be repeated. Ignoring the initial configuration 
delay, the total processing time (Ptot) for 'ri' configurations can be determined using 
Equation 2.1. 
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n-I 

Ptot =Pty + Pt� + Td +2 Ts� 

Equation 2.1 CTR Processing Time 

Considering the configuration delay (Td) would in the region of 20-40msec and both Ts� 

and Pt� in µsec or nsec, overall system performance was severely limited. Advances in 

custom and commercial FPGA technology based have helped to reduce this problem. 

2.3.2 Run-Time Reconfiguration 

Configurable computing architectures adaptable during system run-time are known as 

Run-Time Reconfigurable (RTR) architectures. Within the configurable computing 

research community, there is great debate concerning what actually constitutes a RTR 

system. It has been argued that configuration overheads alone should determine whether 

or not a system is RTR. Typically, such systems must therefore be reconfigured within a 

couple of clock cycles at normal operating frequencies. This notion represents the ideal 

characteristics for an RTR system. 

It is also argued that the action of partially updating a design without halting the 

remainder of the systems operation deems it to be RTR compatible. This is the opinion 

of the author. Using this approach, RTR can be implemented using partial and dynamic 

configuration. However system performance will be reduced through the configuration 

delay generated using partial reconfiguration. This reduction in performance will only 

be apparent if system throughput stalls whilst waiting for hardware currently being 

reconfigured. Within the research community, the function of RTR has also been 

referred to as multiple-context switching, adaptive logic and virtual hardware. 

To perform RTR, the configuration data must be refreshed. Configuration data can 

either be located in an externally memory or on-chip, as illustrated in Figures 2.10 and 

2.11 respectively. 
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Method-one (Figure 2.10) requires an external configuration store containing multiple 

configurations (PROM). When requested by the system, a new configuration is 

downloaded. The transfer of data introduces a configuration delay caused by the 

interface bandwidth bottleneck between the reconfigurable device and PROM. The 

configuration delay is a product of the configuration interface bandwidth and the 

volume of configuration data. Removal of this bottleneck reduces the configuration 

delay and increases system performance. 

FPGA 

1 
Percentage of FPGA Possible Percentage of FPGA 
Being Configured Active During Configuration 

Cn 

Trl� 

PROM 

100% 

Required Volume of 
Configuration Data 

Figure 2.10 External Configuration Mechanism 
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Through using partial configuration the volume of configuration data is reduced. 

Reconfiguration however, cannot occur in one concurrent operation since configuration 

data is stored off-chip. 

Using partial configuration, the configuration delay (T(I�) is proportional to the 

percentage of the device being reconfigured. During this delay, unaffected regions of 

the architecture can still function normally therefore exhibiting the architecture's RTR 

capabilities. 
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To calculate the performance of the architecture, the configuration delay between each 

partial configuration update (Td�+r) needs to be compared against the current active 

processing time (Pt�). The greater of the two delays (Tdp�) defines the overall delay of a 

particular configuration (C�). Ignoring the initial configuration delay Td,, system 

performance can be calculated using Equation 2.2. 

M-1 Tdpn=Ptný1'tý >Td+, Prot = Pt. +1 Tdp.,, Td p. Td n+IiPtn <Td,, +i 
0 

Equation 2.2 RTR Processing Time 

Method-two depicted in Figure 2.11 performs RTR through storing system 
configurations within a local multiple-context configuration memory. During system 
initialisation each context of the configuration memory was loaded with a different 

configuration. This data was written in one concurrent operation during RTR, hence the 

configuration delay minimised. 
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Figure 2.11 Internal Multiple Context Configuration Mechanism 

The depth of the context memory limits the number of RTR configurations. This 

memory takes up large areas of the silicon chip therefore reducing the logic capacity of 
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the device. 

This initialisation period (Ti) of multiple-context operation can be disregarded when 

calculating system performance, unless configuration memory download occurs again 
during run-time. This is only required if the total number of configurations required 

exceeds the capacity of the on-chip configuration memory. 

If a configuration does not reside in the local configuration memory, it must be written 
from an external source. The total configuration delay would therefore be equal to the 

combined delays of Td and Ti, effectively halting RTR. However excluding Ti, RTR is 

achieved during normal operation since the configuration can be updated at system 

clock speeds. 

Selecting a memory context reconfigures the device in one concurrent operation. This 

introduces a configuration delay (Td) that is constant for every context switch and far 

less than the equivalent off-chip configuration store delay. 

2.4 Architecture Classification 

The classification of configurable processing architectures using traditional topologies 

such as Flynn's [50] is inaccurate. In a reconfigurable architecture, the active 

configuration may exhibit properties related to that of Flynn's machine classification. 

This relationship however is only based upon the properties of the hardware 

configuration downloaded, and does not actually describe the underlying architecture of 

the system. Further inaccuracies are introduced due to the run-time adaptive nature of 

the configurable computing architectures. Therefore to derive a general taxonomy that 

encases configurable computing architectures, the type and application of architecture, 

configuration mechanism, and granularity of configuration must be addressed. 

Section-2.2 illustrated that configurable processing architectures could differ 

considerably. To classify and compare the performance of configurable architectures 
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Owas difficult due to differences in the configuration mechanism, granularity of 

configuration and system resources. 

The first taxonomy proposed by Guccione was based upon the logic capacity of the 

configurable resources and the availability of local memory, and divided configurable 

processing architectures into four major categories [51]. These were Application 

Specific Architectures (ASA), Reconfigurable Logic Coprocessor (RLC), Custom 

Instruction-Set Architectures (CISA), and Reconfigurable Super Computers (RS). 

Within this taxonomy, the configurable resources are collectively known as the 

Reconfigurable Processing Unit (RPU). The relationship between local memory and 
RPU capacity is shown in Table 2.1. 

No local memory Local memory 
Small RPU CISA RLC 

Large RPU ASA RS 

Table 2.1 Guccione's Reconfigurable Computer Taxonomy 

In this taxonomy, the names given to each category did reflect specific types of system. 

Overall however, it was too generalised and did not take into account the configuration 

mechanisms used nor the granularity of configuration. These characteristics, the RPU 

logic capacity, and memory structure were essential to accurately classify architecture 

types Classifications of real working systems are given in Section-2.5, according to 

these criteria. 

The difficulties encountered in constructing a suitable taxonomy were also highlighted 

when trying to compare the relative performance of two different configurable 

computing architectures. DeHon proposed a method for comparing the performances of 

configurable architectures and instruction-set processors [52]. The basis of this method 

was to determine whether an architecture achieved superior performance through the 

use of RTR, or simply because the computation was implemented within greater logic 

resources. DeHon compares two architectures by using three factors area, time, and 

energy. 
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An architectures area was determined through calculating the volume of configurable 

logic, memory resources, and hardwired logic (if applicable) implementing the design. 

To provide a comparison with other semiconductor technologies, the transistor sizing 

parameter lambda (? ) was considered. Lambda determines the size and separation of 

transistors upon a silicon die, hence the area of silicon used by an application could be 

determined. 

The second factor (time) was determined by considering the duration of an application, 

rather than comparison of device clock frequencies. Within different systems, the 

amount of work conducted per clock cycle was not uniform. Using this analysis, the 

operand throughput could also be used to calculate this factor. 

The third factor considered the quantity of energy used to perform the computation. 

This was a valid factor when the power consumption of a design needed to be assessed. 

When determining the faster of two systems however, it was of minor relevance. 

The characteristics of each type of computer listed in this taxonomy and others are 

discussed in Section-2.5. The determination and interpretation of architecture 

characteristics to be used in the development of a universal classification system for 

reconfigurable computers is a highly debated topic within the research community, with 

no clear answers so far commonly accepted. 

2.5 Configurable Computing Applications 

By analysing system operation and application, existing configurable computing 

architectures can be divided into five dominant types. Using the taxonomy names 

detailed in Section-2.4 as they describe each functional class best but with a refined 

classification, these categories are: 
(1) Application Specific Architectures 

(2) Prototype Environments 

(3) Reconfigurable Logic Coprocessor 
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(4) Reconfigurable Supercomputers 

(5) Custom Instruction-set Architectures 

2.5.1 Application Specific Architectures 

Most early configurable computers were designed to accelerate specific applications and 

could be considered as traditional ASAs except the design had been implemented using 

configurable logic rather than hardwire ICs. In later ASA's, the processing architecture 

was designed to include reconfiguration within normal operation. This was to ensure 

that if the structure of the target algorithm evolved during run-time (e. g. evolutionary 

algorithms), the processing architecture could adapt and accommodate this. 

It was possible to adapt ASAs to compute other functions, however system performance 

would degrade as the interconnection of system components such as hardware 

resources, local and shared memories were typically fixed and optimised to compute the 

original application. 

An example of an ASA was Ganglion [19]. Ganglion was developed at IBM's research 
division, San Jose, USA in 1991. The aim of the project was to develop high 

performance processor architectures with reduced development cycles, to implement 

connection classifier artificial neural networks (ANNs). 

2.5.2 Prototype Environments 

Configurable architectures have been designed to facilitate the development of 
hardwired ICs [20], multiprocessor and DSP architectures [22], RTR application 
development and hardware-software co-design [53]. To facilitate wide ranging 

applications such as these, three distinct type of prototype environment exist. These are 

massive-scale CTR systems (millions of gates), small-scale CTR systems and small- 

scale RTR systems (thousands of gates). 
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2.5.2.1 Massive-Scale CTR Prototyping Environments 

Within massive-scale CTR prototyping environments, multiple FPGA devices connect 

together forming an array and interact through dedicated fixed routing resources or 

FPIDs. Prototype systems of this type have limited or no local memory resources. A 

prominent example of this type of architecture was Transmogrifier-2 (TM-2) 

prototyping system [78], with an architectural description provided in Appendix-II. TM- 

2 contained logic resources to implement designs with up to 1,000,000 gates. 

2.5.2.2 Small-Scale CTR Prototyping Environments 

The second types of prototype environment were small-scale CTR systems, typically 

consisting of one to three FPGA devices coupled to a host microprocessor. In this type 

of architecture, the FPGA and microprocessor accessed a shared memory resource. 

During system operation, the microprocessor provided additional prototyping resources 

through interaction with those configured upon the FPGA(s). The combined processing 

resources were loosely coupled, since their interaction was redefined for each 

application. Systems of this type were used for the partitioning of hardware-software 

co-design. An example of this type of system was Harp [26]. 

2.5.2.3 Small Scale RTR Prototyping Environments 

The third type of prototype environment was small-scale RTR systems. The architecture 

and function of these systems can be considered similar to that of the small-scale CTR 

systems, except that now RTR is used. An example was RACE (Reconfigurable and 

Adaptive Computing Environment) developed at the University of Cincinnati [53], 

supporting up to 52,000 logic gates. 

Common to all system types, the configuration of each programmable device was 

determined using development software that partitioned a design amongst the available 

resources. Individual configurations were then downloaded to each device via the host 

computer. The prototype hardware implemented could then be evaluated with software 

techniques or by traditional hands-on approach (e. g. using an oscilloscope). 
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2.5.3 Reconfigurable Logic Coprocessors 

Configurable coprocessor architectures have been designed to accelerate applications by 

combining the processing resources of an instruction-set based processor and a CTR or 

RTR device. Partitioning the computational overheads upon two processing fabrics 

increases the throughput of an application. This is achieved through implementing 

portions of the process that can be executed faster on the configurable logic than on the 

main processor. 

Configurable coprocessors have been fabricated using custom and commercial devices, 

with both possessing the same underlying architecture. The architecture of a typical 

configurable coprocessor is similar to that of a small-scale prototype environment. Both 

devices can access shared memory, but unlike the prototype environment, the 

coprocessor system instruction-set and configurable hardware resource are tightly 

coupled. Since the operation of the coprocessor is highly integrated with that of the 

primary processor, a high bandwidth communication interface is required between 

them. 

The first example of this type of architecture was PRISM [27]. PRISM was an acronym 

for `Processor Reconfiguration through Instruction-set Metamorphous' and was 

developed in 1992. Other examples include GARP [25] and Morphosys [43], with the 

Morphosys architecture being described in detail in Appendix-II. 

2.5.4 Reconfigurable Supercomputers 

Configurable supercomputers are massive-scale configurable architectures designed to 

accelerate applications by exploiting concurrent properties of a task directly in 

hardware. The underlying components of a reconfigurable supercomputer are similar to 

that of massive-scale prototyping environments, with application implementation being 

partitioned amongst a large number of interconnected FPGA devices (typically tens of 
FPGAs). 
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Within supercomputers a dedicated FPGA interconnection topology exists to minimise 

communication bottlenecks. Typically FPGA devices can access shared global and 

private local memory resources. Due to the sheer size of these architectures, complex 

application development software is required to efficiently partition the design upon the 

available resources. Prominent examples of configurable supercomputers were the 

Virtual Computer [23] and Splash-2 [24]. Splash-2 system architecture and operation is 

described in Appendix-Il. 

2.5.5 Configurable Instruction-Set Architectures 

Configurable instruction-set computing is the ability to reconfigure a hardware resource 

with custom instructions during run-time, therefore exhibiting a virtual instruction-set. 

Configurable instruction-set computers could be considered as configurable coprocessor 

systems since both implement instructions within reusable hardware. However, 

configurable instruction-set machines do not contain a primary processor, but instead 

have only a skeleton architecture that is responsible for instigating the configuration of 
instructions as demanded by program flow. Once instructions have been used, they are 

removed and the hardware resources become available to implement new instructions, 

typically using RTR techniques. 

An early example of a configurable instruction-set processing architecture was the Nano 

Processor developed 1994 [28]. The Nano Processor consisted of a fixed processing 

core, and a custom instruction-set compiled for a given task. Evolutions of the Nano 

processor were DISC and DISC-2 [42]. DISC and DISC-2 could configure instructions 

as demanded by the core processor during run-time. DISC's operation is described in 

detail in Appendix-II. 
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2.6 Summary 

The configurable computing systems described represent a cross section of the current 

status of this technology. Configurable computing technology is constantly evolving 

with development tools, reconfigurable media, system architecture, and application 
development continually improving. 

To develop more suitable configurable media, the granularity of configuration, speed of 

configuration, and overall control structure governing virtual hardware instigation must 

be addressed. The Kress Array project [54] is currently investigating the granularity of 

reconfigurable structures and the methodologies by which they can be reconfigured. 

This work has shown that coarse-grain CLBs implementing specific functions rather 

than product terms are most suitable for configurable computing applications. 

Research is also being conducted to develop optically reconfigurable FPGAs configured 

using spatially modulated structured light [14] through an optical fibre interface. Since 

light is being used, the configuration delay of the device is dependent primarily upon 

the operational speed of the photo-electronic configuration cells. Compared to SRAM 

RTR technologies, optical reconfiguration should reduce configuration delays through 

the increase in configuration data transfer rate, and response times of photo-electronic 

cells compared to SRAM. This technology however is still in its infancy and as of yet, 

the author does not know of any functional device. 

Developments in reconfigurable technology have provided a platform upon which the 

integration of traditional processing architectures and configurable computing concepts 

can evolve. An example of such is the Dynamically Programmable Cache (DPC) 

project [55]. This aims to reduce configuration overheads through integrating 

configurable hardware within the cache memory architecture of an instruction-set 

processor. The cache appears to the processor during run-time as either dedicated cache 

or a tightly coupled coprocessor. 
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A further example has been the development of a commercial FIPSOCTm (Field 

Programmable System On a Chip) by SIDSA [56]. This architecture combines a low 

power microprocessor core, dynamic programmable logic, and dedicated 

communication interface together specifically for use in multiprocessor applications. 

In most applications, configurable logic has been primarily used to implement 

processing hardware. However, in the RENNS computer system, configurable logic has 

been used to implement an interconnection topology optimised for each task [57]. 

Another example ARMEN [58] consisted of a MIMD architecture incorporating FPGAs 

configured for each task to provide additional processing and inter-node routing 

resource. 

An aspect of the research work presented in this thesis advances this idea by 

incorporating dynamic configurable media in a custom MIMD architecture. Similar to 

ARMEN each MIMD processing node has a coprocessor, but distinct from previous 

systems, each processing node can exploit virtual hardware capabilities. Within this 

thesis, a dynamic routing hub is presented that can be configured during run-time with 

additional processing resources, which is a novel concept. 

Development tools and design verification methodologies also need to be improved. In 

comparison to commercial software tools used in developing traditional FPGA 

applications, configurable computing tools are very inefficient. It is inherent that 

different configurable architectures may require unique operating software to govern 

system operation. However, the strategies used to generate the system configuration 

could be unified into a common design language. 

Similar to the programming language JAVATm [59], a design could be described using a 

common syntax and only differ by how logic is mapped upon a particular architecture. 
Examples of such design languages are RUBY [60], Handel-C [61], and Lola [44]. 

Handel-C is the design language used to implement designs upon the Harp configurable 

coprocessor, and Lola is used with the Trianus set of design tools developed for the 
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Hades dynamic configurable coprocessor. 

A further emerging discipline is evolutionary electronics. Evolutionary electronics are 

applications that use artificial evolution to generate hardware fulfilling a design 

criterion [62]. The resultant design is generated through multiple cycles in which the 

difference between the actual and the required output of the system are examined, and 

the existing architecture then modified accordingly. Dynamic FPGAs are used as the 

implementation media and utilise partial and dynamic configuration to update the 

architecture through each evolution in the design cycle. An example of evolutionary 

electronic hardware has been a design that could distinguish between two different 

frequencies [63]. This was implemented using a Xilinx XC6200 FPGA. 

A problem with existing evolutionary electronic technology is that although it may 

implement a design very efficiently, how it actually functions can be difficult to 

interpret. Factors such as signal propagation and routing delays can influence the 

evolutionary cycle design and can vary between identical FPGAs. In traditional designs, 

these problems are removed through the use of synchronous design techniques. 

At the present moment in time, configurable computing technology is still in its infancy 

and needs to mature before its incorporation into industry. FPGA vendors such as Xilinx 

and Altera, and the research community as a whole recognise this, but to accelerate the 

evolution of the new exciting computing concepts described, a `killer' application is 

required. Such an application is sought to boost industrial interest in RTR technology, 

there by fuelling greater interest and the provision of more resources for the on-going 

development of reconfigurable computing technologies. 

Within this thesis a novel application using RTR implementation has been developed. 

Even though the applications implementation was constricted by the limitations of 

existing dynamic FPGA technologies, resultant hardware has shown how dynamic 

configuration can be used to increase the operand throughput, compression ratio, and 

accuracy in approximating Discrete Cosine Transform (DCT) operation. 
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Chapter 3 

Dynamic Hardware Development System 

Introduction 

The aim of this chapter is to describe the design and operation of the development 

system used during the research program. The chapter introduces the system 

components first, and then explains the construction of each, with combined system 

configurations detailed at the end of the chapter. Descriptions of key semiconductor 

devices used are provided here, with detailed explanations contained within Appendix- 

III. 

3.1 Overview 

To provide a platform for the evaluation and inclusion of RTR within a multiple 

processor environment a research and development system has been constructed. This 

incorporated a commercial parallel processing architecture, dynamic hardware platform, 

and software development tools. 

The parallel processing architecture consisted of four TIM-40 standard TMS320C40 

DSPs (Section-3.2), chosen since they facilitated the insertion of additional hardware 

within the routing topology and memory address space. The dynamic hardware resource 

consists of a custom designed XC6200 FPGA Development System (XC6200DS) 

(Section-3.3). 

To facilitate the development of RTR applications, software has been written 

(XC6200ADS) that enabled XC620ODS hardware to be evaluated (Section-3.3.5). This 

software also generated dynamic configuration data, and governed the transfer of 

operands to and from the XC6200DS. 

An operational system consisted of one TIM-40 motherboard with up to four 

TMS320C40 processors installed, and up to three XC620ODS cards attached to it. To 
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implement a design upon the combined system architectures, the RTR hardware and 
TIM-40 system were programmed independently. Depending upon the system 

configuration, the XC620ODS could appear as a RTR coprocessor, routing hub, 

prototype environment and self-configuration system (Section-3.4). 

3.2 TMS320C40 Parallel Processor 

The parallel processing system used was based upon the TIM-40 standard [64], 

developed by Texas Instruments in conjunction with a consortium of DSP related 

manufacturers. This standard enabled the development of multiple processor systems 

through use of a modular format consisting of processor modules (Section-3.2.1), 

peripherals and host motherboards (Section-3.2.2). 

Processor modules were developed using the TMS320C40 [65] (C40 hereafter). This 

was a 32-bit floating-point based DSP designed specifically for use in multiple 

processor environments. Incorporated in C40 architecture were components dedicated to 

facilitate inter-processor communication without degrading overall system performance. 

These consisted of six high-speed communication ports used to implement inter- 

processor routing topology, and two external memory interfaces known as the Global 

and Local interfaces. More detailed information describing the C40 DSP is contained 

within Appendix-111. 

3.2.1 TIM-40 TMS320C40 Processing Node 

Transtech Parallel Systems TDM411 type TIM-40 modules were the DSP modules 

used. TDM411s consisted of a single C40 DSP with 4-Mbytes of Enhanced DRAM 

technology (EDRAM) mapped within both the Global and Local memory interfaces. 

Each 4-Mbytes was local to the C40 and accessed using signal strobeO of each interface. 

Figure 3.1 illustrates the structure and position of system components upon the 

TDM411. 
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The TDM411 itself did not constitute a fully functional system. Instead, it was 

connected to a TIM-40 standard motherboard using the Primary and Secondary 

connectors. Through these connections C40 resources such as memory interfaces and 

communication port signals could be accessed, as well as providing system house 

keeping functions and power supplies. 

Secondary Connector 

Local 4Mbytc Global 4Mbyte 
EI)RAM TMS320C40 P. DRAM 

IDROM 
Local Buses Global Buses 

('nm. Ports 0.3 (uni. Ports 1 . 2.45 

Global Bus 
_ Expansion Connector 

Figure 3.1 Transtech Parallel Systems TDM411 Processor Module 

The TDM41 I had a further connector known as the Global Bus Expansion connector. If 

the TIM-40 motherboard supported this connector (optional), additional or shared 

memory could be accessed using signal GSTROBEI of the Global interface. This 

connector allowed peripherals direct access to the control, data and address-buses of the 

Global interface. 

In accordance with the TIM-40 standard, the TDM411 had an IDROM containing 

information that detailed the organisation of the C40s memory space. Upon system 

initialisation the content of the IDROM was downloaded to C40 configuration registers. 

Further, JTAG in-circuit evaluation and debugging was supported [68]. 
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3.2.2 TIM-40 Motherboard 

To provide a host platform for the TDM411 modules, a Transtech Parallel Systems 

TDMB412 TIM-40 motherboard was used. The TDMB412 was a full-length 16-bit PC 

ISA based peripheral, which could host up to four individual TDM411 modules. The 

role of the motherboard was not just to provide power and access to C40 signals, but 

also provide an underlying processor interconnection topology, a Texas Instruments 

XDS510 compatible JTAG interface, and an interface between the C40 system and host 

computer. The structure of the TDMB412 motherboard is shown in Figure 3.2, 

indicating the default data direction of each C40 communication channel. However, 

C40 communication channels were bi-directional and could be reconfigured as either 

uni-directional or bi-directional. 

Communication Port Edge Connectors 

4 12 

OI I? I0 
C40 DSP r 

Slot 4I1 

C40 Communication Channels 

42 
30 

C40 DSP 
Slot 31S 

Hardwired Routing Topology 

4242 
30 

C40 DSP C40 DSP 
Slot 2 Slot I 

3 

CKII 
HOST PC 

Connector ISA Int. 

Figure 3.2 Transtech Parallel Systems TDMB412 TIM-40 Motherboard 

The construction of a multiple processing environment was simplified using this 

modular approach. Although only four C40 modules could be implemented per 

motherboard, individual motherboards could be linked together forming larger systems. 

Two communication channels of each C40 could be accessed through connectors 

situated on the edge of each motherboard. The four remaining channels of each C40 
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were connected between the other TDM411 positions. This interconnection topology 

was hardwired within the fabric of the motherboard. 

The C40 installed in slot-one on the motherboard was regarded as the JTAG root 

processor, since it was the first processor encountered by the on-board JTAG debugger 

daisy chain. When additional TDM411 modules were plugged into the motherboard, 

they were inserted into this chain as slave devices. In a multiple motherboard systems, 

only one root processor could exist in the JTAG chain. Root processors on subsequent 

boards were therefore set to slave and the on-board JTAG controller disabled via 

switches on all but the root motherboard. 

To link applications running on both the host computer and TIM-40 system, a hardware 

interface could be formed using communication channel three of the root processor. 

Slave TDM411s therefore communicated with the host computer via the root processor. 

Switches upon the TDMB412 permitted the base address location of this hardware to be 

relocated in the host development computer, as well as disabling the interface itself. 

3.2.3 TMS320C40 Application Development 

The software development tools supplied with the TIM-40 system were called PaCE 

[66]. The development process used throughout the project is shown in Figure 3.3. 

Designs were entered using either assembly language (prog. asm) or a C40 C 

programming language variant (prog. c), which were then compiled and checked for 

errors using software tools asm30 and c130 respectively. The next stage of the process 

was to link the compiled application with the hardware resources of the target system 

using the 1nk30 software tool. The hardware resources of the target system were 

described within a command file (prog. cmd), that allocated system memory areas used 

by software structures, and determined the location and size of the heap and stack. 

Once the design had been linked, resultant programs could be simulated, evaluated in 

circuit, or executed normally. Tool sim4x was used to simulate the execution of a 
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program and allowed the contents of C40 registers to be viewed, communication 

channels created, and single step execution of the program performed. To allow the 

simulation to function correctly, a command file describing the address space 

configuration of the TDM411 was required (siminit. cmd). 

board. cfg 

prog. c I prog. cmd II board. dat 

enur4x 

Debug 

c130 [--ý Ink30 FF1 tops Working 

sm30 Application 

prog. asm I LJ sim4x LI siminit. cmd 

Figure 3.3 TMS320C40 PaCE Development Cycle 

The C40 JTAG port enabled run-time system evaluation. Elements forming the TIM-40 

system architecture had to be given an identity in order to generate a JTAG chain file 

(board. dat). This was performed using utility composer, which read an input file 

describing the architecture (board. cfg). C40 programs could then be downloaded to the 

system via the tops software tool. Next, the JTAG emulator emu4x was executed, which 

took control of the C40 and placed it in single-step execution debug mode. Using this 

software, internal registers and memory locations were accessed. 

A further method used to evaluate and debug designs was the creation of custom test 

programs to display memory and register contents upon the host PC. However, this was 

only possible through the root processor of the motherboard. 

The development procedure outlined was used to debug C40s individually. To develop 

parallel processing applications, software for each C40 was developed independently, 

with individual programs downloaded on-block to the system. Program downloads were 
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conducted using tops, which read a configuration file (prog. nd) indicating the 

appropriate program to download to each C40. 

TIM-40 utilities were also supplied that enable the configuration of the TIM-40 system 

to be checked (tcheck), and JTAG chain related operations to be debugged (jtagrst, 

xds_diag). 

3.3 XC6200 FPGA Development System 

The XC6200 FPGA Development System (XC6200DS) was developed to provide a 

multiple purpose reconfigurable application development platform, and facilitate the 

integration of RTR routing and processing resources within an existing parallel 

processing system. The system was therefore designed for flexibility, and ease of use 

rather than raw performance. This was reflected in the design and technology used 

throughout its development. The components of the XC620ODS are shown in Figure 

3.4. They integrate with the TIM-40 parallel processing system using external 

connection leads and host PC address space. 

Initially, a FATHOTs XC6200 based development system purchased from the Virtual 

Computer Corporation [67] was intended to be used for RTR application development. 

After conducting several experiments with this system it was determined that the 

debugging tools, local memory and overall operation were generally unreliable. 
Therefore the XC620ODS was designed. 

Development platform operation required both hardware (XC6200DS) and software 

components (XC6200ADS). Each hardware unit consisted of an ISA based PC card 

containing a XC6200 family FPGA, related interfaces, and control logic. The XC6200 

FPGA was used as the reconfigurable logic, with the control circuitry providing the 

interface between the XC6200 and application development software upon the host PC 

(XC6200ADS). 
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XC6200 FPGAs were chosen since they could be reconfigured using partial and 
dynamic configuration capabilities. These were the only commercially available devices 

able to do this, and to the author's knowledge, still are. This was made possible through 

use of a novel hardware interface known as the FastMAP FM interface. The XC6200 

family architecture is described in further detail in Appendix-III. 

Nine 20-pin IDC connectors. Used 
XC6200 FPGA 
Der. to connect C40 communication Cl cleSection 3.3.4 

channels. 

Two 40-pin IDC connectors. 
Used to connect C40 DSP 
Global buses and external CI (' Ar,. 
SRAM module. 

Fast MAP Int. 

Fast MAI' Krad/Write 
Host Computer ISA Bus Interface Control Signals Data Address 

Ftus ItI s 

Host Data Hardware FastMAP 
[ills Computer Bridge Interface 

Development Controller 
Software scrrion 3.3? 

Section 3.3.3 

Section 3.3.5 
Address 
Iius 

ISA Interface 
13iý Control Logic 

section 3.3.1 

Figure 3.4 Components of XC6200 Development System 

To construct the XC6200DS, FPGA devices XC6216 and XC6264 were purchased. 

Both possessed the same underlying architecture but had different logic capacities of 

24,000 and 100,000 gates respectively [32]. Collectively, these devices are referred to as 

XC6200 throughout the discussion. 

The XC6200 interacts with the host computer using an 8-bit ISA port. The decision to 

use an ISA rather than PCI specification interface was based upon the simplicity of the 
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interface, with the aim of reducing the development overheads. To fabricate the 

XC620ODS ISA card, a custom PCB was developed using Zuken CadStar PCB 

development tools. In total three identical PCBs were constructed which took 

considerable time, and all successfully commissioned. 

3.3.1 Host Computer Interface 

Host computer development software controlled the operation of the XC6200 through 

an ISA bus interface. Therefore the XC620ODS required hardware to determine when it 

was being addressed and the type of operation occurring; Only A9 to AO out of the 20- 

bit address-bus (A19-A0) were required. If the address written was in the range 32016 to 

32F16. XC620ODS access occurred and signal DATAENA was generated. Signal AEN 

was used to distinguish between host computer DMA (Direct Memory Access) and 1/0 

operations. The XC620ODS ISA bus interface is shown in Figure 3.5. 

A9-AO A3-AO 
MACH111SP 

low low ISA 
IOR 

° 
Interface IOR 
Control 

Host ISA Unit 
DATAENA 

AEN Interface 
E NA DI R 

D7-DO 74LS245 D7-DO 
Bi-directional 

Tri-state buffer 

XC6200 
Hardware 
Bridge 

Figure 3.5 XC620ODS ISA Bus Interface 

When addressed, ISA signals IOR and IOW (active low signals) determined whether a 

XC620ODS read or write operation was occurring. The control unit generated the enable 

(ENA) and direction (DIR) signal of the tri-state buffer accordingly. For both types of 

operations data was latched on the trailing positive edge of IOR or IOW respectively as 

shown in Figure 3.6. Control unit outputs IOW, IOR, and A3 AO are buffered versions 

of ISA bus signals, and routed to the XC6200 hardware-bridge. 
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The ISA control unit was implemented within a Vantis MACH 111SP CPLD [6], chosen 

since it could be re-programmed using In-System Programming (ISP) techniques. The 

direction of the data-bus was controlled using a 74HC245 bi-directional tri-state buffer. 

Hardware configured within the CPLD was constructed using Vantis HDL PALASM 

(design is listed in Appendix-Iii) with software development tool MACHXL. The 

control unit was initially tested using MACHXL simulation tools, and in-circuit using 

custom software that could read and write data to different address locations within the 
host PC. 

Data Latched 

ISA Write Cycle ISA Read Cycle 

Figure 3.6 ISA Bus Interface Signals 

3.3.2 XC620ODS Hardware-bridge 

To achieve RTR, the XC6200 FPGA must be configured through its FastMAPTM 

interface enabling partial and dynamic configuration techniques to occur. The 

FastMAPTm interface consisted of a 32-bit data-bus and 18-bit address-bus. 

Configuration data was written to the XC6200 in address and data pairs. The address- 

bus width was fixed, but the data-bus could be 8,16 or 32-bits wide. 

The XC620ODS hardware-bridge provided the mechanism by which read/write 

operations issued by the host computer were instigated upon the XC6200 FPGA. 

Effectively this hardware managed the operation of XC6200 FastMAPTM interface. A 

block diagram of its architecture is shown in Figure 3.7. 
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The hardware-bridge register-set was accessed through the I/O address space of the ISA 

bus interface. The content of these registers contained either configuration data, or 

generated XC6200 related control signals, with all access performed at the ISA bus 

clock frequency (8.33MHz). 

To access XC6200 address space, an 18-bit address was first generated. This took three 

ISA bus write operations (8-bit ISA interface), with data written to three separate 

registers. The registers accessed were determined through decoding the value of address 
bits A3 AO. The output of this decoder was only active when signal DATAENA 

indicated the XC620ODS was being addressed. Signal IOW ensured that only valid data 

was clocked into the registers. 

Upon writing the third byte, all address bytes were latched into an external 18-bit 

address register. The output of this register was connected directly to the address-bus of 

the FastMAPTm interface. Depending upon the width of FastMAPTM data-bus one, two 

or four data bytes were then written to registers within the hardware-bridge. A further 

write to the hardware-bridge control register enabled the content of these registers to 

appear on the FastMAPTm data-bus, as well as generating a XC6200 write cycle through 

external state machine operation (XC6200 FastMAPTm Interface Controller). 

An XC6200 read operation was similar except that once the address had been set, the 

control register instigated a XC6200 read cycle and the content of the FastMAPTM data- 

bus was then latched into hardware-bridge registers. For the host to access this 32-bit 

data, four ISA read cycles were generated, each addressing a separate 8-bit register. 

Signal IOR was used to ensure the validity of the data read by the ISA bus. 

Through the control register other aspects of system operation can be governed. These 

features include assigning FastMAPTm interface control to internal XC6200 logic, and 

configuring the XC6200s primary clock source (Gclk). Dependant upon the particular 

design an external crystal oscillator could be selected as Gclks source. 
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Figure 3.7 Block Diagram of XC6200 Hardware-Bridge 

The XC6200 hardware-bridge was fabricated using a XC4005 FPGA [9] and three 

74HC373 octal registers (address registers). External registers were required due to the 

limited available XC4005 I/O pins. The architecture was designed using schematic 

capture and VHDL design entry techniques within Xilinx Foundation development 

tools. Using this software the functionality of the control logic as well as the external 

latches and ISA interface hardware were simulated and assessed. After primary testing, 

in-circuit operation was verified using custom software tools developed upon the host 

PC. 

During system development, configuration data was downloaded using a Xilinx 

XChecker Cable. The XC620ODS board also provided the facility to change the source 

of the XC4005 configuration from the Checker cable to a standard configuration 

PROM. The resultant design is illustrated in Appendix-IV. 
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3.3.3 FastMAPTM Interface Controller 

Although the hardware-bridge instigated XC6200 memory access cycles, the 

FastMAPTm interface controller generated XC6200 signals Gclk, CE and RW. This 

hardware consisted of two state machines that generate the appropriate FastMAPTm 

control signals depending upon the type of access required. Their function is shown in 

Figure 3.8 with the basic XC6200 memory access cycles shown in Figure 3.9. Signal 

Gclk was the XC6200s primary global clock and all memory access operations had to be 

performed in synchronism with it. Therefore Gclk clocked the state machines. 

S1/ READ si /WRITE 

Si Initial State 

READ I WRITE 

S2 Delay One Clock Cycle I (S2) I( S2 

READ 
WRITE IIS S3 Generate XC6200 Control S3 

Signals and Extend Cycle 

/ READ 
WRITE L-'S4 

S4 Access Data Bus L---{ S4 

ICE = S3 ICE = S3 

data latch = S3 /R W= S3 

(i) Read State Machine (ii) Write State Machine 

Figure 3.8 FastMAPTM Interface Controller State Machines 

Figure 3.8 shows the structure of both state machines. These machines are similar, but 

have different input and output signals, with common output signals combined together. 

The signal data-latch was used to indicate when data read from the XC6200 

FastMAP' interface was valid, and could then be written to registers within the 

hardware-bridge. 

The remote implementation of FastMAPTm interface control logic from the hardware- 

bridge was done to enable the XC6200 to function at higher clock frequencies than that 

of the ISA bus clock. This allowed interaction between XC6200 memory accesses 
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performed at XC6200 clock (Gclk) and ISA bus frequencies; Through experimentation, 

the maximum XC6200 flip-flop clock frequency was determined to be 88MHz. This 

gave an order of magnitude improvement over the ISA bus interface speed of 8.33MHz. 

State machine operation was controlled using signals READ and WRITE, which were 

activated through the control register of the hardware-bridge. Using these signals 
XC6200 memory access cycles could be extended to remove differences in clock 
frequency between the XC6200 Gclk and ISA bus clock. To extend these cycles signal 
CE must be held low for more than one clock cycle. This operation corresponds to S3 of 
the state machines operation, as shown in Figure 3.9. 

The FastMAPTm controller was implemented within a Vantis MACH 111SP CPLD. The 

CPLD was programmed using PALASM, with the state machines described using net- 
lists. Simulation was conducted within MACHXL development environment, with 
further debugging performed in-circuit using custom software and traditional electronic 

test equipment. The resultant PALASM design file is listed in Appendix-IV. 
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(i) XC6200 Extended Write Operation (ii) XC6200 Extended Read Operation 

Figure 3.9 XC6200 FastMAPTM Interface Access Cycles 
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3.3.4 XC6200ADS Development Software 

The XC6200 Application Development Software tools (XC6200ADS) were developed to 

provide a platform for XC6200 CTR or RTR techniques, access of XC6200 address 

space and RTR application development. The structure and function of these custom 
tools is shown in Figure 3.10. 

When the software was executed, its first task was to detect if a XC6200 FPGA was 

present upon the XC6200DS, and then determine the device type through reading the 

XC6200s Device Configuration register. During this operation the functionality of the 

XC620ODS hardware components were verified. This was because before any XC6200 

register accesses could occur, a string of fifteen bytes had to be first written correctly to 

the XC6200s Identity registers. The XC6200 FPGA device type present also had to be 

determined since the address locations of control registers differed in XC6200 family 

members. Next, the user menu was displayed, which listed utilities to access XC6200 

configuration registers, access user registers configured within the XC6200s CLC array, 

execute user defined function macros, and download configuration data using both CTR 

and RTR methods. 

XC6200 configuration data was generated by XACT6000 software in the form of text 

files (known as cal files because of their filename extensions), consisting of address and 

data pairs. To program the XC6200 cal files were first parsed to remove text comments, 

and then address and data pairs converted from word to byte formats. The resultant file 

was then downloaded to the XC6200 using XC6200ADS functions. For both CTR and 

RTR techniques CLC configuration delay was calculated to be 2.4µsec. However, this 

value did not take into account host computer interrupt operations, and was measured to 

be in the region of 225µsec to 374µsec. 

To perform RTR configuration both the existing and new FPGA configuration cal files 

were required. Initially both files had any XACT6000 text comments removed, and then 

RTR reduction occurred. This was a novel process that reduced the volume of 
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configuration data required for RTR to a minimum. Essentially, the two files were 

compared and only the differences between them downloaded to the XC6200 using 

partial and dynamic configuration techniques. To aid debugging, all ISA bus operations 

performed during configuration were written to a text file. 

XACT6000 
Cal Files 

Read FPGA ID 

User Menu 

Parse RTR Parse CTR XC6200 
Files Files Register 

Access 

Address and Data 
Formation 

Text XC6200 
Output Memory 
File Access 

ISA I/O Routines 

User Defined Bit-map 
Functions Interface 

Camera II Paint Box 

Figure 3.10 Structure of XC6200ADS Software Tools 

The contents of registers within the CLC array and XC6200 control registers could be 

addressed and accessed. Using XC6200ADS functions XC6200 control registers could 

be accessed directly by entering their respective address location within the XC6200s 

memory map. Prior to accessing user registers configured within the CLC array, 

XC6200 Mask and Map control registers values had to be set accordingly. This was 

achieved through addressing the XC6200s Mask/Map control registers directly and 

updating their contents. 
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Mask and map register contents were determined by the row position and width of user 

configured CLC registers. Once configured, the column number where the user register 

was located was then entered into the XC6200ADS. A practical example of this 

mechanism is shown in Section-4.1. 

The manual configuration of Mask and Map registers was time consuming. To speed up 

these processes user macros could be defined within the program source code. Macros 

were also constructed that enabled bit-map images to be downloaded to hardware within 

the XC6200. Results could then be written back to the host and displayed using 
Microsoft Windows Paint Box. Most images used were computer generated using Paint 

Box, but real images could also been obtained using a web camera. 

The software itself was written using Microsoft Visual C++ development environment. 

For simplicity a text based and menu driven Graphical User Interface (GUI) was used, 

since the software was an evolving tool and constantly updated to facilitate debugging 

of new designs. A screen shot of the XC620ODS is shown in Appendix-VII. 

3.3.5 XC6200 FPGA Hardware Development Cycle 

The development process used to implement hardware within the XC6200 is shown in 

Figure 3.11. Designs were constructed using the HDL VHDL. Initially, the VHDL code 

was written to IEEE1164 standard to allow Xilinx Foundation simulation tools to be 

used to debug the design. Once the design had been proved functional, XC6200 specific 

VHDL attributes, including gate primitive libraries, placement and routing constraints 

were inserted. 
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Figure 3.11 XC620ODS Hardware Development Cycle 

Using software tool VELAB, an EDIF format net-list was generated, which was then 

read by the Xilinx XACT6000 XC6200 placement tool. This software was used to map 

and route the design (EDIF net-list) upon the XC6200 FPGA, and generate the cal 

configuration file (containing XC6200 configuration data address/data pairs). The 

XC6200 FPGA was then configured and evaluated in circuit using XC6200ADS user 

macros. 

3.4 XC620ODS Configuration Topologies 

The XC620ODS was constructed to provide a platform for the development of RTR 

applications, and insertion of such architectures within the routing and node structure of 

existing parallel processing architectures. Component PCB positions, system operation, 

and 1/0 resources of the XC620ODS were therefore designed with flexibility and 

multiple functions in mind. These design parameters enabled the XC620ODS hardware 

to operate in four modes. These were: 
i. Dynamic Prototype Environment 

ii. TMS320C40 Dynamic Coprocessor 

iii. TMS320C40 Communication Channel Routing Hub 

iv. Self-configurable RTR Hardware 

A description of each mode is given in the following sections. 
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3.4.1 Dynamic Prototype Environment 

The default XC620ODS configuration was a dynamic prototyping environment. In this 

topology, the XC620ODS and C40 parallel processing architecture were not attached 

and operated independently. This mode of operation facilitated XC6200 FPGA 

hardware development since the FPGA could be configured and debugged using its 

FastMAPTM interface. The system architecture is shown in Figure 3.12. 

To assist in evaluating real-time performance of FPGA based processing hardware, a 

SRAM memory module could be connected to the XC620ODS using either one of the 

two I/O 40-pin IDC connectors. The memory module consisted of 256-kbytes of 

SRAM, connected to the XC620ODS through IDC ribbon cable. All control signals 

(RW, CE, and OE), address (A18-AO), and data-bus content (D7-DO) were controlled 

and generated by hardware configured within the XC6200. Through registers 

configured within the CLC array, the host computer could access the contents of this 

memory. 

256-kbytes SRAM 

AIN -AO 1 D7 DO I R9'. ('E. OE 

40-pin II)C Connector 

'Ills -AO 
1 D7 DO II RU'. ('F, OF. 

V'6200 FP(iA 
Host Computer 
Development 
Software ISA ßus ('L(' Array 

Figure 3.12 Dynamic Prototype Environment 

Through the interface, operands could be downloaded to the memory module, processed 

by XC6200 hardware, results stored back in memory, and then uploaded upon request to 

the host computer. 
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3.4.2 TMS320C40 Dynamic Coprocessor 

The second XC620ODS configuration connected the XC620ODS to the Global bus 

interface of a C40 DSP. In this topology the FPGA appeared as a loosely coupled 

coprocessor to the C40. This is illustrated in Figure 3.13, with actual XC6264 footprints 

contained within Appendix-VI. The memory map of the Global bus could be divided 

into two regions accessible by signals GSTRBO and GSTRBI, with each region having 

the ability to posses a separate memory configuration if required. The TIM-40 standard 

dictated that signal GSTRBI and its related signals must be used to access external 

peripherals. To configure this interface, the content of the Global Memory Interface 

Control Register (GMICR) required updating. 

The Global interface was flexible and can be configured for different memory 

capacities, page sizes, and speed of operation. To perform XC6200 memory mapped 

transfers, GSTRBI of the Global Interface occupied address range 8010000016 to 

FFFFFFFF16. Memory access control was governed using signal RDYI generated by 

hardware configured within the XC6200. This signal indicated when hardware within 

the XC6200 had completed a memory access and was ready for the next. Only a subset 

of this address space was actually required since the data-bus used was one byte wide, 

and XC6200 address decoder limited to four bits (16 address locations). 

The C40 controlled the operation of the XC6200 during run-time via the output of a 

four-bit address decoder configured within the XC6200. The use of address decoder 

outputs was application specific and could be used to enable 110 registers, generate 

control signals, and indicate when XC6200 reconfiguration was required. RTR could be 

conducted through either XC6200ADS or self-configuration controller operation 

(Section- 3.4.4). 
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Figure 3.13 TMS320C40 RTR Coprocessor Configuration 

The TIM-40 (C40) and XC6200 hardware interface was formed using either one of two 

XC620ODS 40-pin IDC connectors. Depending on the application, the unused connector 

could then be configured to support additional external memory. In their original forms, 

TDM411 modules did not support IDC type connections. Forty-pin IDC connectors 

were therefore attached to the modules and connections made to the appropriate C40 

pins. It had originally been proposed to use the full width of the Global data-bus (32- 

bit), but difficulties encountered during this conversion process prevented this. 

Therefore 8-bit rather than 32-bit interfaces were used, which was perfectly good for 

prototyping development. With Gclk set to 8MHz, a C40/XC6200 1/0 bandwidth of 
2Mbytes/sec was obtainable (maximum 4.14Mbytes/sec, Gclk @16.57Mhz). 

3.4.3 TMS320C40 Communication Channel Routing Hub 

The third configuration of the XC620ODS facilitated the insertion of RTR hardware 

within the routing topology of the C40 parallel processing system. This hardware 

provided additional routing and processor resources as determined by the application. 

The interconnection topology was formed using C40 DSP communication channels. 
Each TDM411 C40 module possessed six communication channels. Four were used to 

create a hardwired interconnection topology within the TDMB412 motherboard, 

whereas the remaining two were brought out through connectors situated on the TIM-40 

motherboard (using 20-pin IDC 2-mm pitch type connectors). Through external cabling 
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these channels could be attached to the XC6200, with each FPGA having nine of these 

connectors situated around it. This distribution of 1/0 resources enabled efficient use of 

the CLC array when configuring routing channels within the FPGA. A block diagram of 

the XC6200 used as a routing-hub is shown in Figure 3.14. 

To insert a routing-hub within the C40 communication topology, XC6200 FPGA 

hardware was required to interact with C40 communication channel Port Arbitration 

Units (PAU) Finite State Machines (FSM). XC6200 hardware was also required to 

manage 32-bit data transfers occurring in four-byte blocks. To manage data transfer two 

distinct XC6200 routing-hub control mechanisms were developed. 

The first mechanism isolated the operation of the communication channel transfer 

protocol from the remainder of the XC6200s configuration. The channel interface 

consisted of a state-machine to govern the transfer and a FIFO to store four-byte data 

blocks. Hardware within the XC6200 accessed and instigated data transfer between the 

C40 and XC6200 via the FIFO. 

The second mechanism used a self-arbitrating control unit. Data transfer occurred 

directly between registers within a XC6200 design, and not through intermediate FIFO 

buffers. The bytes constituting C40 communication channel words were transferred 

individually, rather than in four byte blocks as in the first control mechanism; The 

merits, comparisons, and detailed description of both communication control 

mechanisms are described in Section-7.2. 

The C40 communication channels are bi-directional. It was originally intended that the 

data transfer direction could be reversed during run-time. Whilst implementing this 

function, it became apparent that XC6200 operational speeds were not fast enough to 

facilitate this function. During the directional transfer process, it was possible for both 

the XC6200 and C40 to be driving the same signals. This limited the maximum system 
flexibility, but was not a major problem since each C40 could exhibit bi-directional data 

transfer through using two communication channels. 
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Figure 3.14 TMS320C40 Communication Channel Routing Hub 

3.4.4 Self-Configurable RTR Hardware 

The final XC620ODS mode of operation was self-configuration. In this mode, RTR was 

instigated within the CLC array (not off-chip), and performed through the FastMAP !M 

interface without intervention of the hardware-bridge. Configuration data was stored in 

external memory connected using a modified 40-pin IDC XC620ODS I/O socket. Since 

the original XC620ODS PCB required modification to support this, only one board 

supported this configuration mode. 

Upon power up, RTR configuration data for up to sixteen different configurations was 

downloaded through the FastMAPIM interface. Using hardware configured within the 

XC6200, this data was written to a 256-kbytes external configuration memory. The 

address boundaries of individual configurations stored in memory were calculated, and 

later used by the control logic to activate a particular configuration for RTR. The self- 
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configuration control mechanism was self-contained within the XC6200 configuration, 

in which user logic determined the next active configuration. Reconfiguration of the 

XC6200 was performed using partial and dynamic configuration. 

The function of this operating mode is shown in Figure 3.15 and occurred in two 

phases. The first required writing RTR configuration data to the external memory, 

whilst the second configuration implemented the self-configuration control mechanism. 

To switch between these two functions, XC6200ADS CTR was used to reconfigure 

XC6200 hardware from implementing a FastMAP I M-based external memory interface 

to the self-configuration controller. 
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Figure 3.15 Self-Configuration Mode 

FastMAP'M bus conflicts between the hardware-bridge and the self-configuration 

controller were prevented through the hardware-bridge control register. To read 

XC6200 registers using the host PC, the hardware-bridge required control of the 

FastMAP TM interface. 

RTR configuration controlled by the host computer occurred at ISA bus operating 

speeds. To increase the speed of configuration, the XC6200 global clock frequency 
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must be increased (Gclk). This could be accomplished only when self-configuration was 

performed since ISA bus transfers were not required. Through the hardware-bridge 

control register, the source of Gclk could be selected as either an external crystal 

oscillator or the ISA bus clock. Using XACT6000 placement tools, the maximum 
frequency of Gclk was calculated to be 6.99MHz. The maximum delay however related 

to a non-critical signal and design operated normally at 8MHz. Configuration delay at 

8MHz was calculated to be 1.8psec per CLC and measured using external apparatus at 

1.88psec. Placement of the self-configuration control unit within a XC6264 FPGA is 

shown within Appendix-VI, with a description of it internal operation provided in 

Appendix-IV-4. 

3.5 Summary 

To investigate the inclusion of RTR technology within a DSP based MIMD processing 

architecture, custom hardware and software components have been developed. This was 

necessary as no suitable commercial configurable computing development systems 

could be obtained. 

As well as XC620ODS hardware construction, system development required the design 

of C40 communication channel and Global busses interfaces, and respective C40 

control software. These interfaces were implemented within the XC6200 FPGA using 

existing CTR techniques. A self-configuration reconfiguration mechanism has also been 

developed. 

The philosophy reflected in the design and function of the system was for as simplistic 

and flexible operation as possible, since the XC620ODS was designed for multiple 

system configurations. This is apparent not only in hardware design, but also in the 

development of software tools and the resultant XC620ODS application development 

cycle. 
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Development of XC6200ADS tools has increased the versatility and suitability of the 

XC620ODS to be used for dynamic hardware prototyping. XC6200ADS functions 

permit real-time in-circuit probing of XC6200 FPGA designs, reduce the volume of 

configuration data required for dynamic configuration, as well as providing the facility 

for user defined macros. These have been configured to perform tasks such as analysing 

data transfers within the XC620ODS routing-hub, and the transferral of operands from 

the host PC to the XC620ODS and TIM-40 nodes. 

From the project onset it was evident that the operational characteristics of RTR 

semiconductors commercially available (XC6200 FPGA family) were limited. Both 

logic gate capacity and operating frequency when compared to existing cutting edge 

technologies were poor. Therefore the integration and implementation of RTR hardware 

rather than trying to achieve raw processing power was the design goal. 

The C40 MIMD system used to provide the multiprocessor environment was ideal since 

it facilitated the inclusion of additional hardware within both its node and routing 

topologies. Dynamic hardware has been inserted into the existing MIMD topology 

through using existing C40 communication channel connections, and the creation of 

custom sockets upon TIM-40 processor modules. 

Development of the XC620ODS has provided the platform upon which RTR hardware 

can be developed, evaluated, and included within both the processing and routing 

topologies of high-performance parallel processing environments. 
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Chapter 4 

XC6200 FPGA Hardware Investigation 

Introduction 

This chapter describes the development of XC6200 FPGA hardware implementation 

and in-circuit verification techniques. This work was conducted to generate design and 

test procedures, and a knowledge base upon which further XC6200 based DSP RTR 

coprocessor hardware and routing topologies could be constructed. 

Section-4.1 describes XC6200 hardware verification techniques developed, with a 

practical example demonstrated. Section-4.2 describes the development of both static 

and dynamic hardware implementation methodologies. These were determined through 

implementing fundamental processing hardware structures within the XC6200. 

Section-4.3 details conclusions determined through implementing and evaluating 

hardware within the XC6200 FPGA using the XC620ODS and XC6200ADS. These 

conclusions provide the basis for operating procedures used in further XC6200 based 

hardware development. 

4.1 XC6200 Design Verification 

To develop RTR hardware using the XC6200DS, system implementation and hardware 

verification strategies have been developed. Using these techniques XC6200 hardware 

developed throughout the research program was designed and developed initially using 

the XC620ODS in its prototype environment configuration. This mode minimised 

component placement restrictions within the XC6200 and facilitated the insertion of test 

signals through interface connectors situated around the XD6200DS. 

XC6200 FPGA designs were constructed using VHDL and initially evaluated using 
Xilinx Foundation's VHDL Simulator. Once proved functional the design was mapped 

onto the XC6200 architecture (using XACT6000) and analysed. The experiments 
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conducted to develop placement techniques for this task are described in Section-4.2 of 

this chapter. The current section details the development and evaluation of in-circuit test 

procedures for hardware configured within the XC6200. 

Within existing semiconductors technology, techniques such as JTAG (IEEE 1149.1 

standard) [68] can be used to verify the operation and configuration of hardware. The 

XC6200 family data sheet [32] stated that the FPGA was compatible with the JTAG 

standard using library macrocells. However, these macros could not be obtained for 

hardware developed using VHDL. To debug active XC6200 designs internal signals had 

to be analysed through external pins or accessed through registers within the design via 

the FastMAPTm interface. 

The FastMAPTm interface allowed accesses to the XC6200 SRAM configuration 

memory and user-defined registers within the CLC array. Register access was 

determined through the contents of Map and Mask control registers within the XC6200. 

Figure 4.1 shows a simplified diagram of a design being evaluated within the XC6264. 

Included in Figure 4.1 are the relative row and column positions of the design within the 

CLC array. These positions must be known to correctly configure the XC6200 control 

registers. 

The CLC design consists of three sections. These are a 4-bit RPFD register (column 

10), the design under test (columns 11 and 12), and a 4-bit FDC register (column 13) 

with open q outputs. RPFDs (Read-Only Protected Flip-flop Device) are XC6200 

specific components that enable data to be written to logic configured within the CLC 

array through the FastMAPTm interface. The function of an RPFD can be considered 

similar to the standard FDC VHDL entity (D-Type Flip-flop Device with Clear) except 

that the d input cannot be accessed via user logic but instead is tied internally to 

FastMAPTm interface control logic. 
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The XC6200 primary clock Gclk is used to clock RPFD and FDC registers accessed 

through the FastMAPTm interface. A further constraint imposed was that for concurrent 

access of register bits, CLCs forming the register had to be stacked vertically in the 

appropriate bit positions. 

Each input test stimulus was written to the design through an RPFD register, via the 

FastMAPTm interface. Results generated by the design were first latched into an FDC 

register, and then read using the FastMAP interface. 
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Figure 4.1 XC6200 In-Circuit Hardware Verification Method 

The first XC6200 control register group configured were the Mask registers (Mask-D, 

Mask-1, Mask-2, and Mask-3). These registers did not select the actual register, but 

instead mapped the content of internal buses (data-paths) upon the external FastMAPTM 

data-bus. The address locations of Mask registers varied for different XC6200 family 

members. 

In the example shown in Figure 4.1, a 4-bit data-path was required between the external 

data-bus and CLC array. This was because the RPFD and FDC registers were only 4- 
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bits wide. This data-path could be mapped onto any bits of the FastMAPTm data bus, but 

for practicality the four least significant bits (d3-d0) were chosen. 

Bit-0 of Mask-0 corresponded to bit dO of the FastMAP interface data-bus. Within the 

Mask registers, bits allocated to form CLC data-paths connected to the FastMAPTm 

data-bus were set to logic-zero. Mask register bits unused were set to logic-one. The 

Mask register configuration required is shown in Figure 4.2. 

Map Register Data Path 

iiii iiii 
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IG Mask2 FF16 
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Maskl FF16 

9 
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MaskO F016 

Figure 4.2 XC6200 Mask Register Configuration Mechanisms 

The second group of XC6200 control registers configured were the Map registers. The 

number and address location of these registers were again dependant upon XC6200 

FPGA family member used. The XC6264 FPGA (128x128 CLC array) used in the 

example had sixteen 8-bit Map registers (Map-15 - Map-0). The Map registers selected 

the row of the CLC array to be accessed (8-bit x 16 registers = 128 rows). Individual 

bits within each Map register corresponded to row positions within the XC6264. For 

example Map-0, bit-0 accessed row-0. 

To configure the Map registers correctly the row position of the RPFD and FDC 

registers must be known. The example given in Figure 4.1 required register access on 

rows 24 to 27 inclusive. CLC row position 24 corresponds to Map-3, bit-0, therefore the 

lower nibble of register Map-3 was set to 00002. The remaining bits within the Map 

registers were set to logic-one. The resulting content of the Map registers is listed in 

Table 4.1. 
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Once the control registers (Mask & Map) were configured, a data-path was established 

and registers in the design could be accessed. To access a register, its column address 

was written to the FastMAPTm interface address bus. The actual address location was 

obtained by using the column identity as an offset within the XC6200 memory map. 
Within XC6200ADS operation, the number of a column would be entered and the 

appropriate address generated automatically. 

Register Content Row Range Register Content Row Range 

MapO FF16 0 to 7 Ma p8 FF16 64 to 71 

Ma 1 FF16 8 to 15 Ma p9 FF16 72 to 79 

Ma p2 FF16 16 to 23 Ma 10 FF16 80 to 87 

Ma p3 F016 24 to 31 Ma 11 FF16 88 to 95 
_ 

Ma p4 FF16 32 to 39 Ma 12 FF16 96 to 103 
_ 

Ma p5 FF16 40 to 47 Ma 13 FF16 104 to 111 
_ 

Ma p6 FF16 48 to 55 Ma 14 FF16 112 to 119 

Ma 7 FF16 56 to 63 Ma 15 FF16 120 to 127 

Table 4.1 XC6264 Map Register Contents 

Test scripts compiled within the XC6200ADS were used to configure the Map and 

Mask registers, store and display test results, and automate analysis of results. Such 

features were useful when evaluating memory structures. Typically however, the 

operation of a design could only be determined through user interpretation of the 

results. 

The hardware verification method constructed was nevertheless not ideal. However it 

has been proved practical and reliable in use throughout the project. 
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4.2 XC6200 Hardware Implementation 

Prior to developing complex hardware, the XC6200 FPGAs operating characteristics 

and component placement strategies were determined. Fundamental processing 

operators were configured within the XC6200, which allowed the structure, 

performance and implementation methods used to be assessed. Addition, subtraction, 

division, multiplication units and memory structures were constructed, as well as simple 

RTR configurations used to develop dynamic hardware strategies. These investigations 

are detailed in Sections-4.2.1 to 4.2.7. 

The FPGA used in these experiments was the XC6264. This was the largest XC6200 

device with a specified gate capacity of 64000 to 100000 gates (128 x 128 CLC array) 

[32]. Previous investigations by the author had concluded this figure was 16384 two 

variable Boolean expressions combined with 16384 D-Type flip-flops. 

To provide performance benchmarks for the VHDL designs, results generated using the 

XC6264 were compared with those produced for general-purpose XC4013 FPGA. The 

XC4013 FPGA (XC4000 family [9]) was chosen since its gate capacity of 10000 to 

30000 (576 CLBs) was similar to that calculated for the XC6264. The XC4000 family 

has a CLB logic capacity approximately three times greater than the XC6200 CLC but 

is not run-time reconfigurable. To provide a comparison with C40 operation, the 

number of instructions required to compute a similar function to the VHDL code within 

the DSP was also assessed. 

Experiments were conducted using the XC620ODS in the dynamic hardware prototype 

environment mode of operation. Test stimuli were applied and analysed using 

XACT6000 software and XC6200ADS test scripts as described in Section-4.1. 

4.2.1 Addition Unit 

Addition is a key operation in many processing tasks. The simplest method of adding 
two bits together is to use a full-adder, were two inputs (a, b) and a carry-in (cin) are 
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summed and a resultant sum (sum) and carry-out (cout) produced. To add two `n' bit 

words together, ̀ n' full-adders connected in a ̀ daisy-chain' fashion can be used. In such 

a design, the carry-in signal of the least significant full-adder is tied to logic-zero. The 

`daisy-chain' method is slow as propagation delays occur within the carry chain. 
Methods such as ̀ look-ahead' and ̀ fast carry' adders can reduce these delays [67]. 

a b cin cout sum 
0 0 0 0 0 
1 0 0 0 1 
0 1 0 0 1 
1 1 0 1 0 
0 0 1 0 1 
1 0 1 1 0 
0 1 1 1 0 
1 1 1 1 1 

Q 
b 

Figure 4.3 XC6200 VHDL Full-adder Design and Truth Table 

To achieve high operand throughput carry signal propagation delays must be kept to a 

minimum. The full-adder architecture analysed was documented within a Xilinx tutorial 

[82]. The VHDL design of this adder reflected the structure of the CLC array, and 

therefore could be mapped efficiently within the XC6264. The design and truth table are 

shown in Figure 4.3. The full-adder is a `fast carry' type as the carry output (cout) has 

the same propagation delay as the sum output (sum). 

Using the combinational logic full-adder design (Figure 4.3), unsigned adders of width 
8,16, and 32-bits were configured within the XC6200 and the results generated 

compared against XC4013 FPGA implementation. The results obtained are listed in 

Table 4.2. Since a register-less full-adder implementation was used, the throughput of 
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the design (operating frequency) was determined through cascaded signal propagation 
delays. 

XC6264 XC4013 
Adder Width No. Of CLCs Max. Freq. (MHz) No. Of CLBs Max. Fre . MHz 

8-bit 24 26.22 11 36.22 
16-bit 48 15.847 23 20.68 
32-bit 96 8.89 47 11.23 

Table 4.2 XC6264/XC4013 VHDL Addition Unit 

The addition-unit structure was designed for optimum mapping upon XC6264 

architecture. To provide an additional performance benchmark, dedicated XC4013 

based addition units were generated using Xilinx Foundation CORE module generator 

software. The results shown in Table 4.3 were obtained using an unsigned registered 

adder design. Unlike the register-less full adder design (Figure 4.3), operand throughput 

was calculated by multiplying the operating frequency by the width (bit(s)) of the unit. 

Adder Width No. Of CLBs Max. Freq. MHz 
8-bit 6 89.67 
16-bit 10 67.72 
32-bit 18 48.28 

Table 4.3 XC4013 CORE Generator Addition Unit 

The efficiency in which a common VHDL design entity could be mapped within 

different FPGA architecture varied. This factor related to software design tool issues, 

which were proven by constructing addition-units optimised for both the XC6200 and 

XC4000 FPGA architectures. The results generated concluded that within XC6200 

VHDL designs, the structure and content of the design should reflect actual CLC 

placement and routing of the design. Compared to traditional VHDL techniques this 

implied XC6200 VHDL code appeared inefficient. 

These results reinforced previous conclusions that programmable logic suffered from 

low operating frequencies when compared to hardwired logic and microprocessor 

73 



Chanter 4: XC6200 FPGA Hardware Investigation 

operation. In comparison the C40 DSP could implement one 32-bit addition using 
instruction ADDC (Add integer with carry) in one cycle (50nsec @40MHz) [65]. 

The addition-unit constructed was a `bit-slice' type and it was predicted that as the bus 

width increased the maximum operating frequency would decrease in a linear fashion. 

Through analysis of the XC6200 results, it was evident that this assumption was 
incorrect. It was determined that the operating frequency was much more dependant 

upon the level of XC6200 routing hierarchy used than previously anticipated. 

4.2.2 Subtraction Unit 

Binary subtraction was similar to addition, and could be accomplished through 

modification of the adder unit described in Section-4.2.1, as illustrated in Figure 4.4. 

This design functioned by converting one operand into its twos-complement form and 

then adding it to the other, hence performing the subtraction operation. This operation 

took one clock cycle. Instead of cin and cout, subtraction units have borrow-in (bin) and 
borrow-out (bout) signals. For subtraction the least significant bit bin signal must be 

connected to logic-one. 

(i) I 
ý. _ 

(ii) 

Full ý.... " .............., 
Adder rnvt W 

a 
b 

Figure 4.4 Modified Full-Adder (i) and Subtraction Unit (ii) 

The subtraction-unit (unsigned) was configured for different bus widths, with the results 

obtained detailed in Table 4.4 and XC4013 optimised version in Table 4.5. Operand 

throughputs of results in Table 4.4 were equivalent to the operating frequency 

(calculated using 1/max signal propagation delay) since the subtraction unit was a 
register-less design. In comparison CORE generated designs (Table 4.5) were register 
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based, therefore operand throughput was equivalent to the clock frequency multiplied 
by the subtraction units width. 

XC6264 XC4013 
Sub. Width No. Of CLCs Max. Fre . MHz No. Of CLBs Max. Fre . MHz 

8-bit 24 26.43 11 36.27 
16-bit 48 15.92 23 20.68 
32-bit 96 8.92 47 11.23 

Table 4.4 XC6264/XC4013 VHDL Subtraction Unit 

Sub. Width No. Of CLBs Max. Freq. (MHz) 
8-bit 6 89.67 
16-bit 10 62.72 
32-bit 18 48.27 

Table 4.5 XC4013 CORE Generator Subtraction Unit 

Analysis of the results reinforced conclusions previously drawn in Section-4.2.1. Whilst 

developing the subtraction unit, it was discovered that when defining a logic-one signal 

within hardware, VHDL entity VCC should not be used. This was to minimise XC6200 

routing as VCC required chip-wide routing resources. Instead, a logic-one would be 

generated using an OR2B 1 gate with both inputs connected to a common local routed 

signal. In comparison to the C40, the FPGA configured subtraction units were 
inefficient. The C40 could execute integer subtraction instruction (SUBI) in one cycle 

(50nsec @40MHz) [65]. 

4.2.3 Division Unit 

Binary division can be accomplished using a `shift and subtract' approach similar to 

long division of decimal numbers. The procedure shown in Equations 4.1 to 4.4 divides 

a dividend of 10001111112 by a divisor of 110012. The basis of this procedure was to 

count the number of times the divisor could be subtracted from the dividend until a 

result of zero or negative value was obtained. 
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The divisor of `n' bits wide was first subtracted from the `n' most significant bits of the 

dividend. Since the result was negative a zero was entered into the quotient. 

Quotient 

f_- 
0, since (11001-10001) <0 

0 

11001 1000111111 

Equation 4.1 

Because the result of the first subtraction was negative, the divisor was then subtracted 

from the next six bits of the dividend. This produced a positive result (partial product) 

of 0010102 thus a one was entered into the quotient (Equation 4.2). 

01 4 1, since (11001 - 100011) =001010 

11001 1000111111 
11001 

001010 f Partial Product 

Equation 4.2 

The next bit of the dividend was then included and added to the partial product as 

depicted by Equation 4.3. 

01 
11001 1000111111 

11001 
00101011 

Equation 4.3 

The divisor was then subtracted from the partial product and produced a negative result. 
Therefore a zero was entered into the quotient. This process was repeated the number of 

times there were bits in the divisor, with the result stored in the quotient and the 

remainder located in the partial product. This is shown in Equation 4.4. 
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010111 Result 

11001 1000111111 
11001 

00101011 

11001 

100101 

11001 
11001 

11001 

0 

Remainder (partial product) 

Equation 4.4 

A XC6200 division unit was constructed with each stage of the process (Equations 4.1- 

4.4) relating to a shift-register, subtraction-unit and control logic within the design. This 

type of divider was known as a `restoring divider' [69] since the original value of the 

partial product was restored when a subtraction operation generated a negative result. 
The results obtained are listed in Table 4.6, where the dividend is twice the divisor (div) 

width. 

XC6264 XC4013 
Div. Width No. Of CLCs Max. Fre . MHz No. Of CLBs Max. Fre . MHz 

8-bit 167 3.87 53 6.13 
16-bit 1104 1.99 240 1.19 
32-bit 2081 1.24 N/A N/A 

Table 4.6 XC6200/XC4013 VHDL Division Unit 

The Xilinx CORE module generator supported binary division up to divisor widths of 
24-bits. However, CORE and XC6264 VHDL designs with respective divisors greater 

than 8-bit and 16-bits wide would not fit on to XC4013 FPGA architecture. Using the 
CORE generator an 8-bit divider was fabricated, requiring 129 CLBs and having a 

maximum frequency of 87.40 MHz. 
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For all divider implementations listed, the operand throughput was determined by 

multiplying the clock frequency by the number of cycles required to generate the result 
(width of dividend). 

The C40 computed a division using repeated (via RPTS instruction) subtractions 

(SUBC instruction) and shifts (LSH instruction). The instruction SUBC was executed 

within a loop until a flag was set. SUBC and the shift operation instruction LSH took 

one cycle (50nsec @40MHz) to execute. The loop instruction RPTS took four cycles, 

however the number of times RPTS was executed was dependant upon the division 

calculation. In comparison to the XC6200 divider, the C40s operation still had greater 

throughput since the operating clock frequency of the DSP was 40MHz, independent of 

bus width. 

The constructional techniques gained from developing this design proved beneficial. 

Previous designs had been regular structured bit-slice designs without any major 

supervisory state machines. Limitations within the XC6200s architecture, development 

tools, and the testability and verification of hardware configured within the XC6200 

were exposed. 

VHDL component FDCP (Flip-flop Device with Clear Preset) could not be mapped 

within a CLC. This component was present within the VHDL library supplied with 

XACT6000 software, yet XACT6000 would reject the component when compiled. This 

problem was overcome by creating a new entity formed using valid existing VHDL 

components. 

When XACT6000 software compiled designs, it was discovered that signals would 

become inverted to simplify signal routing constraints. To prevent signal inversion from 

occurring a buffer component was inserted into the signal path. 

For the design to be routed successfully, all system components were positioned 

manually within the CLC array using XC6200 specific VHDL attributes. The placement 
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methodology used created a regular footprint and minimised routing resources reliance. 
XACT6000s component placement strategy was to use the smallest area of CLC array 

possible. Often the component positions chosen could not be fully routed, therefore it 

was determined that manual placement of components using VHDL attributes would be 

used within designs. 

4.2.4 Multiplication Unit 

Multiplication can be achieved using a `shift and add' approach, in which the 

multiplicand is added to the product the number of times the value of the multiplier. 

Supplied with the FATHOTs Development kit [67] were examples of multiplier designs 

constructed in VHDL. The aim of this experiment however was to determine the 

implementation and operation characteristics of such architecture, therefore a new `shift 

and add' multiplier was designed and constructed. 

Figure 4.5, illustrates the multiplier structure developed which was known as a ripple 

carry array multiplier [69], since the operation was performed by off-setting the 

product term in each stage by one bit with respect to the previous stage. Each row 

within the design was created using cascaded full-adders. 

Within Figure 4.5 inputs (a3 to a0) and (b3 to b0) correspond to the multiplier and 

multiplicand respectively, and (p7 to p0) the partial product. For a registered full-adder 

based implementation, the multipliers output was generated in n clock cycles. If non- 

register based full-adders were used (shown in Figure 4.3), the output delay would be 

equal to the maximum signal propagation delay within the design. 

The design was verified using a VHDL simulator, but XC6200 placement proved 

difficult. It was possible to implement an 8-bit multiplier but increasing the bus width 

incurred signal routing conflicts. This situation reflected implementation issues 

encountered previously. Instead, a multiplier example supplied with the FATHOTs kit 

was used to generate performance benchmarks (Table 4.7). This design was similar, but 

the distribution and placement of system components was more suited to generating a 
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regular placement footprint for array rows. This simplified signal routing constraints. 
The characteristics of the equivalent CORE generator multipliers are shown in Table 

4.8. The XC4013 FPGA did not have sufficient CLB capacity to support implement 32- 

bit designs. 

Cell Structure 

sum(n -1) 

b(n) 

Full 
adder 

cout(n) 

a(n) out 
sum(n; 

Figure 4.5 Ripple Carry Array Multiplier 

Ripple carry array multipliers can be used to calculate twos-complement products. An 

alternative method is Booths algorithm [69] (Table 4.9), which differs in structure and 

method of operation. The multiplier, multiplicand, and partial product in Table 4.9 are 

known as (A), (B), and (P) respectively. This investigation was conducted to determine 

which type of multiplier architecture was most suited for XC6200 implementation. 

XC6264 XC4013 
Mult. Width No. Of CLCs Max. Fre . MHz No. Of CLBs Max. Fre . MHz 

8-bit 167 10.08 78 7.66 
16-bit 1104 7.71 344 3.33 
32-bit 2081 2.44 N/A N/A 

Table 4.7 XC6264/XC4013 VHDL Ripple Carry Array Multiplier 
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Multiplier Width No. Of CLBs Max. Freq. (MHz 
8-bit 52 70.02 
16-bit 208 32.68 
32-bit N/A N/A 

Table 4.8 XC4013 CORE Generator Multiplier 

A A-1 Meaning Action Taken 
0 0 Middle of string of 0's P=P+0 
0 1 End of string of 1's P=P+B 
1 0 Start of string of 1's P=P-B 
1 1 Middle of string of 1's P=P+0 

The initial value of [A -I] =0 

Table 4.9 Booths Multiplication Algorithm 

Booths algorithm utilised the property that a string of logic-ones in the multiplier 

operand corresponded to several additions, which could be replaced by one subtraction 

or one addition. Using Booths algorithm, pairs of bits in the multiplier operand were 

examined against the properties listed within Table 4.9 and the respective operation 

performed. This was a cyclic operation with the position of the multiplier bit used [A] 

being right shifted by one bit each successive operation. The partial product became the 
final product upon the last iteration of the loop. 

To implement a `n' by `n' multiplication operation the processing hardware required 

consisted of an n-bit register to store the multiplicand, and a (2n + 1) bit register to hold 

the partial product. This register required a right shift function with sign extension. To 

perform the addition and subtraction operations an n-bit Arithmetic Logic Unit (ALU) 

was required. Governing overall operation was a control unit used to determine the 

ALUs function. 

The operational characteristics obtained are detailed in Table 4.10. The operand 
throughput was calculated by multiplying this value by the number of cycles (n) 
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required to calculate the product. The largest multiplier width evaluated would not fit 

within the XC4013 FPGA, whilst no corresponding CORE generator module existed. 

XC6264 XC4013 
Mult. Width No. Of CLCs Max. Fre . MHz No. Of CLBs Max. Freq. (MHz) 

8-bit 167 14.02 38 28.29 
16-bit 1104 10.04 74 16.01 
32-bit 2081 6.32 N/A N/A 

Table 4.10 XC6264/XC4013 VHDL Booths Algorithm Multiplier 

Complementing previous design tasks, the positioning and routing of system 

components within the XC6200 CLC array proved time consuming and often resulted 

inefficient in use of available CLC logic resources. 

Comparing the two multiplication methods, the Booths algorithm implementation was 

constructed using fewer CLCs than the ripple array, which was common for all bus 

widths. The operating clock frequency of the Booths multiplier was greater than the 

ripple array, however the operand throughput of the design was less through its cyclic 

operation. In comparison the C40 could perform similar integer multiplications using 

the MPYI instruction in one cycle (50nsec @40MHz) [65]. 

Through analysing the structures of the two multipliers it was concluded Booths 

algorithm was more suited for a microprocessor than FPGA based implementation. This 

was because of the irregular hardware design footprint and cyclic operation. This could 

be performed more efficiently within a loop-orientated architecture. 

4.2.5 Multiply Accumulate Unit 

Multiply Accumulate (MAC) is a common operation within processing applications. 
Individual C40 MACs took two clock cycles to compute using instructions MPYI and 

ADDI. Instructions MPYI3 and ADDI3 could be processed concurrently within the 

C40, however within an individual MAC operation this does not occur. 
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A Ripple Array F= (A x B) +C 

Multiplier - ---L 
B Bit slice 

Adder F 
C 

Figure 4.6 XC6264/XC4013 VHDL MAC Architecture 

The structure of the XC6200 MAC shown in Figure 4.6 was fabricated using register- 
less ripple array multiplier and bit-slice adder designs described previously. The results 

obtained for XC6264 and XC4013 implementations of different MAC widths are shown 

in Table 4.11. No MAC functions were available within the version of CORE generator 

software used. 

Once input operands were written, the MACs output was generated within one 

operating cycle. The duration of this cycle was equal to the maximum signal 

propagation delay path through the multiplier and adder. In comparison individual C40 

MACs took two operating cycles. However, multiple C40 MAC operations could 

overlap within the C40s instruction pipeline and execute concurrently in one cycle. 

XC6264 XC4013 
MAC Width No. Of CL Cs Max. Freq. (MHz No. Of CLBs Max. Freq. (MHz 

8-bit 323 8.91 95 6.63 
16-bit 1155 5.28 381 3.34 
32-bit 3986 4.15 N/A N/A 

Table 4.11 XC6264/XC4013 VHDL Multiply and Accumulate 

4.2.6 RAM Memory Structures 

Within processing architectures local memory was often required to store operands 

temporally. This resource could either be discrete register or memory structure based. 

The simplest memory structure was an asynchronous RAM [71]. This structure 

(excluding the address decoder) is shown in Figure 4.7. A word was written to memory 
by writing data to the input (Data in) and then toggling the appropriate write select 
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signal (W[n]). This signal was connected to the clock inputs of all registers forming the 

word, hence latched the word into the registers. To read a word from memory the 

respective read signal was set (R[n]), which forced the row multiplexor to select the 

register outputs. The word then appeared upon output (Data_out). FPGA RAM 

implementation characteristics generated using this design of different word size and 
depth are shown in Table 4.12. 

Data_in[2] Data_in[l] Data_in[0] 

Figure 4.7 XC6264/XC4013 VHDL Asynchronous RAM 

Word Width bits 
8 16 32 

RAM Depth No. Of CLCs Access Time No. Of CLCs Access Time No. Of CLCs Access Time 

8-words 128 41.81 nsec 256 41.81 nsec 512 41.81 nsec 
16-words 256 77.32 nsec 512 77.32 nsec 1024 77.32 nsec 
32-words 512 148.33 nsec 1024 148.33 nsec 2048 148.33 nsec 

Table 4.12 XC6264 VHDL Asynchronous RAM 
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Results generated indicated the memory access time increased as the number of words 
in the RAM (depth) increased. Access times for RAMs of same word depth but different 

word size were consistent. This statistic was caused through the multiplexers providing 

word selection introducing cascaded gate delays. The propagation delays encountered in 

each memory column (RAM depth) were far greater than those encountered in each row 

(RAM word size). In similar RAM designs, use of tri-state gates would eradicate this 

problem. Within the XC6200 tri-state gates could only be configured within IOBs. 

Routing problems were also encountered since the clock signal of each register had to 

be routed using standard local CLC routing rather than dedicated clock routes. This 

increased propagation delays, hence reduced access times. 

A second RAM architecture known as a synchronous RAM was constructed. Within 

this design all registers were clocked by a global clock signal. With each clock pulse the 

output of each register (q) would be routed back into its input (d) via a multiplexer. The 

content of the register therefore appeared constant. Register contents were updated by 

the multiplexer switching between the row outputs and RAM input data-bus. Memory 

access times obtained were identical to those listed in Table 4.12 since the number of 
CLCs used to implement each memory type were identical and routing structure similar. 

There are further memory structures such as dual port ram and FIFOs, however through 

implementing only asynchronous and synchronous RAM it was apparent that the 

XC6200 was suited only for the configuration of small and simple memory structures. 
ROM memory could also be generated using RPFD registers with the content written 

via the FastMAPTm interface. 

Xilinx Foundation CORE generator software was used to develop synchronous RAM 

modules. From the results obtained it was apparent that coarse grain FPGA architectures 

were most suited for implementing memory structures. Results obtained through these 

experiments are shown in Table 4.13, and compare CORE generate RAM modules to 
that of XC6264 VHDL designs (Figure 4.7) implemented within XC4013 architecture. 
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These memory structures had a fixed depth of 32 words, since the CORE generator 

supported a minimum RAM depth of 16 words. 

The results highlighted the inefficient method by which RAM was constructed upon 

FPGA architecture using discrete gates. In comparison the CORE generated RAM used 

fewer CLBs and had faster access times. This was because the RAM structure was 

fabricated directly within XC4013 FPGA CLB LUTs. XC4000 FPGA CLBs have two 

four variable LUTs. Each can be configured as a 4-bit x 4-word RAM. This feature 

cannot be replicated upon XC6200 FPGA architecture. 

XC6200 Design CORE Generator 
Ram Size No. Of CLCs Access Time No. Of CLBs Access Time 

8-bits x 32-words 192 80.14 nsec 8 11.60 nsec 
16-bits x 32-words 384 76.19 nsec 16 12.71 nsec 

Table 4.13 XC4013 CORE Synchronous RAM 

4.2.7 Run-Time Reconfiguration 

XC6200 FPGAs could be reconfigured through the Fast MAPTm interface during run- 

time. Configuration data required was generated through analysing sequential XC6200 

configurations and performed within the XC6200ADS (Section-3.4.4). The volume of 

configuration data generated, hence the configuration delay was proportional to the 

difference between successive configurations. Therefore to minimise RTR delay 

sequential configurations should have similar structures as possible. 

Compared to the FATHOTs mechanism [67] the XC620ODS configuration methods 

allowed more efficient use of CLC resources, hence reduced the volume of 

configuration data required. Within the FATHOTs method individual CLCs designated 

for reconfiguration (denoted using a VHDL attribute) could not be used to provide 

additional signal routing. The configuration data generated also contained all possible 
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CLC configurations. From this data only one configuration would be active at any one 

time. 

In comparison the XC6200ADS mechanism determined only the difference between the 

present and next configuration of a CLC. If the CLCs configuration required updating, 
four bytes of configuration data were generated (three XC6200 SRAM addresses, and 

one data byte). 

To achieve efficient RTR, the minimal volume of configuration data was required. 

When designing RTR hardware the position and structure of components within each 

active configuration was assessed and constructed to minimise differences between 

them. This approach resulted in inefficient design layouts but acceptable, since the goal 

of the project was to develop RTR hardware. 

Neglecting the configuration delays, the conversion from static to dynamic hardware 

configuration typically resulted in higher operating frequencies. This was because the 

temporal partitions of the design contained fewer logic gates and signal routes, therefore 

reduced signal propagation delays. 

Figure 4.8 illustrates the conversion of a static subtraction-unit into a RTR version 

through temporal partitioning. The original design was temporal partitioned using input 

(a) as the temporal divisor input. The RTR implementation consists of two 

configurations, with the difference between them relating to two CLC configurations. 

When input (a) was at logic-zero, configuration (i) was active, otherwise configuration 

(ii) was used. 

To demonstrate this technique, an unsigned 8-bit wide subtraction unit was developed. 

This unit had to subtract either 111100002 or 111100012 (input a) from input (b). Within 

this design input (a) was hardwired within the design using the subtraction bit 

configurations illustrated in Figure 4.8 (i) and (ii)). 
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The resultant design consisted of two configurations that were swapped as required. 
Within the first configuration, input (a) was set to 111100002, whilst the second 

configurations value was set to 111100012. 

, sum 
bin 

bout 

Configuration (i) 
Input a=0 

b sum 
bin 

bout 

Configuration (ii) 
Input a=1 

Figure 4.8 XC6200 Temporal Partitioned Subtraction Unit 

To perform RTR configuration the XC6200ADS analysed both designs and generated 

configuration data consisting of XC6200 FastMAP interface address and data pairs. 

RTR configuration data generated is shown in Table 4.14 and 4.15; Omitted are 

configuration mechanism and XC6200ADS specific control values. Using this data 

RTR can commence either under control of the host computer (15.2µsec) or using the 

self-configuration controller (1.54msec). 

The configuration delays were measured using an external custom designed 24-bit 

counter, having a timing resolution of 25nsec (@ 40MHz). This was attached to the 

XC620ODS using flying leads. The counter functioned by using XC6200 FPGA 

generated signals to enable/disable the clock signal of the counter. These signals were 

activated/deactivated during the dynamic configuration processes. The delay incurred 

was then read from the counter in binary (3 bytes), and converted to decimal. This value 

was then multiplied by the timers clock frequency period (25nsec @40Mhz). 

When measuring RTR timings generated through XC6200ADS, typically three 

measurements were recorded using the counter, then the mean value calculated. This 

processes was required due to hardware/software interrupt operation upon the host PC. 

These interrupts could not be masked due to the nature of host PC operating software. 

XC6200ADS XC6200 address/data-pair update delays excluding interrupt operation 

where calculated to take 2.4µsec (5 ISA bus write cycles @8.33Mhz). In comparison 
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self-configuration control timings measured were constant and similar to calculated 

values, since host PC operation was not required during dynamic configuration 
(measured at 1.88psec per CLC). 

FastMAPTM Address FastMAPTM Data 
2000716 0016 

2000B 
16 

0016 

0908F16 0716 
00A8816 EE16 

Table 4.14 XC6264 Configuration Data, RTR design (i) to (ii) 

FastMAPTM Address FastMAPTM Data 
2000716 0016 

2000B 
16 

0016 

0908F16 2316 
00A8816 BE16 

Table 4.15 XC6264 Configuration Data, RTR design (ii) to (i) 

Independent upon which XC620ODS RTR mechanism was used four XC6264 address 
locations were updated to switch between active configurations. Although one address- 
data pair determined the function of each CLC, four addresses were required. This was 
because the logic placement and mapping strategy used by XACT6000 software utilised 

signal inversion inherent within the XC6200s routing structure. This was to aid logic 

placement and could not be disabled within XACT6000. 

Compared to fixed 8-bit subtraction (Section-4.2.2), the dynamic implementation 

reduced the number of gates required from 24 to 16 and simplified the designs routing 

structure. This resulted in a higher operating frequency of 31.2MHz when compared to 

the static design of 26.43MHz (Table 4.4). However this increase in performance 

excluded the reconfiguration time. 
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4.3 Summary 

The work presented in Chapter-4 determined the design implementation and hardware 

verification procedures for use with the XC6200DS. This work was vital before 

commencing development on more complex static and RTR processor and router 

structures described in the proceeding chapters. 

The outcome of this chapter has been the development of such techniques as well as 

providing performance benchmarks to evaluate the system operation. Work conducted 

determined three problem areas. 

VHDL can be used to construct XC6200 hardware. Although the format of VHDL code 

must comply with IEEE-1164 standard, for efficient placement XC6200 VHDL designs 

must reflect the structure of the resultant XC6200 design. XC6200 VHDL code must 

also be written at gate-level and not using `process' or conditional operators, with 

exception of the `for' statement. This restriction implies XC6200 VHDL designs appear 

structurally inefficient and time consuming to construct. 

When constructing XC6200 designs using VHDL, additional components (primarily 

buffer components) must be inserted to provide signal path guides between different 

hierarchical levels within designs. This feature also limited signal inversion occurring 
during component placement. To minimise the occurrence of such problems, 

components were manually positioned within the XC6200 FPGAs CLC array using 

XC62000 specific VHDL attributes. 

To evaluate and debug hardware configured within the XC6200 external VO signals and 
internal registers were configured within designs. This method of hardware verification 

was functional and did not allow accurate analysis of signal timings. To minimise the 

occurrence of timing hazards, hazard reduction techniques must be applied throughout 

the design process. 

90 



Chapter 4: XC6200 FPGA Hardware Investigation 

The conclusions determined through using the XC6200 FPGA family and XACT6000 

software design tools reflected their status as non-commercial products. Through 

commercially developing these products the performance of both components would 
have improved dramatically. The XC6200 gate capacity and clock frequencies 

obtainable were poor in comparison to similar FPGAs. The structure of the FastMAPTm 

interface as well could be improved. Although the FastMAPTM interface has a 32-bit 

data-bus, RTR could only be accomplished using 8-bit data. This interface however is 

unique among FPGA architectures as it allows dynamic configuration to occur. This 

was the primary reason why the XC6200 FPGA family was chosen for use in the 

project. 
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Chapter 5 

The Dynamic BinDCT Algorithm 

Introduction 

This chapter describes investigations conducted to determine if the throughput and 

performance of the BinDCT algorithm could be improved through dynamic hardware 

implementation. This algorithm is a new integer friendly multiplier-less approximation 

of the DCT. 

An overview of DCT operation is provided in Section-5.1, with the derivation of the 

BinDCT algorithm from the DCT described in Section-5.2. Section-5.3 discusses 

experiments conducted to determine the benefits gained from an RTR implementation, 

whilst Section-5.4 provides a summary of the conclusions derived from this work. 

5.1. The Discrete Cosine Transform 

The Discrete Cosine Transform (DCT) has been used extensively in signal and image- 

processing compression techniques. The DCT is related to the Fourier Transform but 

differs since only real numbers are generated in the computation. Effectively the DCT 

can be considered as the cosine operation within the Fourier Transform. 

The DCT functions by converting a time-domain input sequence in to their respective 

frequency components. This operation is known as a forward DCT with the frequency 

composition dependant upon the length of input sequence and dynamic range of values. 

The output generated by a forward DCT consists of a DC component that is the average 

of the input sequence and AC coefficients dictating frequency content. 

If the dynamic range of an input sequence is limited the frequency content of the DCT 

(AC coefficients) is small. Using compression methods such as run-length coding [72], 

AC coefficients at zero or near to zero can be quantisised compressed and represented 

using fewer digits. 
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To reconstruct compressed data a reverse DCT is applied. The difference between the 

original input sequence and output of the reverse DCT is minimal, as the smaller AC 

coefficients quantisised do not contribute major frequency components. 

5.1.1 Transform Computation Methods 

The forward DCT algorithm is defined in Equation 5.1, with the reverse DCT defined in 

Equation 5.2 
N-1 

Xc[k] = a[x]Z x[n] cos(r(2n + 1)k / 2N) 
n=0 

For k=0,1,. N-1 

Equation 5.1 Forward DCT Algorithm 
N-1 

x[n] = a[k]Xc[k] cos(ir(2n + 1)k / 2N) 
k=0 

For n=0,1,. N-1 

Equation 5.2 Reverse DCT Algorithm 

Where: 

a[k] = 1 -IN fork =0 

a[k] = 2/N fork =1,2,.. N-1 
N= 'Length of input data set 

The forward transform of an input data set of length `N' and its respective reverse 

operation can be calculated directly using Equations 5.1 and 5.2. For an input sequence 

of eight samples calculated without simplification, the forward transform would take 

320 multiplications, 128 additions, and 64 discrete division operations to compute. 

Similar, the reverse transform would require 384 multiplications, 64 additions, and 64 

division operations. These values were calculated using XC6200ADS software 

functions implementing one-dimensional DCT transforms. 

The DCT operates using a cosine function over a time period of 0 to 2n as a weight to 

determine the amplitude of frequency components (AC coefficients) for each operand 

within the input sequence. This operation is conducted upon the entire input data set as 
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the respective amplitudes of frequencies obtained are dependant upon the weighted 
(over period of 2n) average of the DC coefficient. 

Figure 5.1 illustrates the cosine function over a period of 0 to 21r. Coefficient weights in 

the range of plus one to minus one are generated therefore can be of the same magnitude 
but opposing signs. Using this property the number of calculation required to compute a 
DCT can be reduced. 

Amplitude 

1.5 

1 --- 

0.5 

0- 

-0.5 -- 

-1 

-1.5 

t 

Figure 5.1 Cosine Function Through Time Period 0 to 2t 

Using Equations 5.1 and 5.2, for an operation of length `N' to reduce computation 

overheads, function cos(7t( 2n+1)k / 2N) can be calculated prior to system operation. 

For a DCT of input sequence length (N = 8), these values are shown in Table 5.1. 

Coefficients in Table 5.1 show that many identical but opposing weights (symmetrical) 

are required to generate the DCT output. By formulating Table 5.1 as a matrix function 

the symmetry of composite DCT operations can be exploited and number of 

computations required reduced. Using this approach, Chen [73], developed a Fast 

Discrete Cosine Algorithm (FDCT; ) implementation that reduced computation 

overheads by almost one sixth compared to Equation 5.1 and 5.2. 
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n O.. N-1 
k O.. N-1 0 1 2 3 4 5 6 7 

0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 
1 0.9808 0.8315 0.5556 0.1951 -0.1951 -0.556 -0.8315 -0.9808 
2 0.9239 0.3827 -0.3827 -0.9239 -0.9239 -0.3827 0.3827 0.9239 
3 0.8315 -0.1951 0.9808 -0.5556 0.5556 0.9808 0.1951 -0.8315 
4 0.7071 -0.7071 -0.7071 0.7071 0.7071 -0.7071 -0.7071 0.7071 
5 0.5556 -0.9808 0.1951 0.8315 -0.8315 -0.1951 0.9808 -0.5556 
6 0.3827 -0.9239 0.9239 -0.3827 -0.3827 0.9239 -0.9239 0.3827 
7 0.1951 -0.5556 0.8315 -0.9808 0.9808 -0.8315 0.5556 -0.1951 

Table 5.1 Cosine Weights for Sample (n) of Input (N) at Frequency (k) 

5.1.2 Chen's Fast DCT 

Chen's FDCT implementation (Figure 5.2) resembled a Fast Fourier Transform (FFT) 

flow diagram, and was formed using butterfly computations and plane rotations [73]. 

These features correspond to the summation and rotation of weighting coefficient signs 

within Table 5.1. The mathematical functions represented by butterfly computations 

shown in Figure 5.2 are explained in Figure 5.3. 

For an input sequence of length (N = 8) Chen's DCT took 20 multiplications and 26 

additions to compute. These computation overheads have been reduced further using 

methods proposed by Hou [74] and Fieg [75], which reduce the number of 

computations through scaling input values and further exploitation of symmetry and 

redundancy within operations. 

DCT algorithms such as these require calculation using floating-point multiplication 

and addition units. Such units require extensive silicon footprints and have lower 

operand throughput when compared to fixed-point implementations. Fixed-point 

arithmetic units can be used, but at the expense of introducing rounding errors within 

the result. 
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Ci/4 

S 

[1] -! 4 r r-N XI 
-C n/4 

[Z] C 3a/8 XI 

S 3a/8 

[3] 

Y- 

"T\ -S 3n/8 XI 
C 3r/8 

[4] 

x X_ 

-C 7x/16 XI 

-S 7a/16 
7V4 [Sl C 3n/16 XI 

-S n/4 S 3rz/16 

[6] -S a/4 6 -S W16 XI 

- C w/4 C 3x/16 

Where: Ch = cos(n), Sn = sin(n) 

Figure 5.2 Chen's Fast Forward DCT 

4ý S 7al16 

- C7UI6 

A sin(m12) c 
Where :C= Asin(zl2) +B 

D=-B+A 

-X p. BD 

Figure 5.3 Butterfly Operation 

5.2 The BinDCT Algorithm 

41 

2] 

6] 

1] 

5] 

3] 

Tran and Liang [76] proposed a DCT mechanism more suited to fixed-point hardware 

implementation. This method was known as the BinDCT, and calculated forward and 

reverse transforms using a multiplier-less approximation of Chen's DCT. The basis of 

BinDCT function was to replace all plane rotations (e. g. C 3n/8, -5 7E/4) by a series of 

dyadic lifting-steps. Dyadic values are integer fix-point implementation friendly values 

of format k/2m; Where k, m are integers. 
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The general butterfly structure and plane rotation within Figure 5.2 can be represented 

using lifting-structures as shown in Figure 5.4. Lifting-structures are also known as 

shears and ladder structures, and relate to the rotational operation of an inverse matrix. 

X1 
º kl 

Yt 

rll Yt X1 

r12 u 

X21 
X2 

Y2 X2 Y2 

r22 
ýlv 

(i) General Butterfly (ii) Scaled Lifting Structure for (i) 

X1 
º cosa Y1 

xi Cosa 1,1 

sins tans -cosasina 

sinn 
X2 

t 
r-7----I X2 lo 10 cosa Y2 1/cosy Y2 

(iii) Plane Rotation (iv) Scaled Lifting Structure for (iii) 

Figure 5.4 BinDCT Lifting-Structures 

Figure 5.4-i illustrates that a butterfly computation can be represented (Figure 5.4-ii) 

using two lifting steps (p, u) and two scaling factors (kl, k2). Mathematically, the two 

lifting-step operations can be considered as two individual multiplication (p, u) and 

addition operations. The butterfly and lifting-step operations are shown in Equations 5.3 

to 5.4. 

Y1= rl 1X1 + r12X2 
Y2 = r21X1+r22X2 

Equation 5.3 DCT Butterfly Operation 
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Y1=kl(X1+pX2) 

Y1=k1X1+klpX2 

Y2 = k2(u(X1 + pX2) + X2) 

Y2 = k2uX1 + k2(1 + pu)X2 

Equation 5.4 Lifting Step Operation 

The dyadic values of (p) and (u) are calculated using Equation 5.5. Examples of dyadic 

values are listed in Table 5.2. 

r12 
rl1 

rl 1r21 

rl 1r22 - r21r12 

Equation 5.5 Calculation of Dyadic Coefficients 

The outputs of Figure 5.3-ii (Y1, Y2) are adjusted by two scaling factors (kl, k2) as 

shown in Equation 5.6. Within the overall BinDCT structure, these individual scaling 

factors are absorbed into one operation either in the first or last stage depending upon 

whether a forward or reverse BinDCT calculation occurs. 

kl=r11 

k2 = 
r11r22 - r21r12 

rl 1 

Equation 5.6 Calculation of Scaling Values 

A Chen type plane rotation is shown in Figure 5.4-iii with the resultant scaled lifting 

structure depicted in Figure 5.4-iv. The dyadic values and scaling factors within Figure 

5.4-iv are calculated using substitution within Equations 5.4 and 5.5. This process is 

shown in Equations 5.7 to 5.8 [76]. 
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r12 cos(a) 
_ tan( 

rl l sin(a) 
= a) 

rl 1r21 
u= 

rl 1r22 - r21r12 
- cos(a) sin(a) 

(cos(a) cos(a)) - (-sin(a) sin(a)) 

_- 
cos(a) sin(a) 

cos(a)Z +sin(a)2 

- cos(a) sin(a) 
- _ -cos(a) sin(a) 1 

Equation 5.7 Calculation of Dyadic Coefficients 

k1= r11 cos(a) 

k2 = 
rl 1r22 - r21r12 (cos(a) cos(a)) - (- sin(a) sin(a)) 

rl l cos(a) 

cos(a)2 +sin(a)2 1 

cos(a) cos(a) 

Equation 5.8 Calculation of Scaling Values 

Using this substitution process (Equations 5.7-5.8) lifting structures for other plane 

rotation butterfly weights can be calculated. To enable integer fix-point implementation, 

BinDCT computations use dyadic values with limited fractional capability. This 

limitation causes the results generated by butterfly operations to be truncated, 

introducing a margin of error. To compensate for this effect, butterfly calculations 

resulting in small magnitude outputs, have their scaling weights transposed using 

trigonometric identities (Figure 5.5). This causes the output of the butterfly to be 

rearranged, which causes the forward BinDCT transform output to be out of sequence 

(Figure 5.6). 
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xi cosa Yi 

sins 

-sinn 

X2 Y2 
cosy 

Xl -sina Y2 

cosa 

-cosa 

X2 $m Yl 

(i) Original Plane Rotation (ii) Transposed Plane Rotation 

Where: cos2(a) > sin2(a), use original plane rotation (i) 

cos2(a) < sin2(a), use transposed plane rotation (ii) 

Figure 5.5 Transposition of Butterfly Operation 

The use of dyadic coefficients (p, u) within the lifting structure enables a loss-less fixed- 

point approximation of the DCT. The approximation is loss-less since a characteristic of 

a lifting structure is that it can reconstruct an input from an output response without 

error if identical coefficient values are used in both operations. To ensure loss-less 

operations, the operand resolution of the hardware implementation must be at least that 

of the dyadic coefficients used. Rounding errors will otherwise be introduced into 

calculations, resulting in a reduction of BinDCT accuracy to approximating true DCT 

operation. 

The structure of forward and reverse BinDCTs are shown in Figures 5.6 and 5.7, with 

the dyadic coefficients (u, p) determined for different accuracies in approximating DCT 

operation listed in Table 5.2. For clarity, input and output scaling factors were excluded 

from Figures 5.6 and 5.7 and are listed in Table 5.3. The raw output values generated by 

the reverse BinDCT operation however, have a magnitude four times greater than the 

actual value. This feature is caused through the summation of scaling factors. 

Table 5.2 contains nine different configurations of dyadic lifting scheme coefficients 
(C1-C9). These values were inserted into lifting structures as indicated by identities (Pt, ) 

and (U,, ). Each configuration generated an approximation of the DCT algorithm, but 

with varying degrees of accuracy. Configuration (Cl) was the most accurate, with (C9) 
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being the least accurate. All nine of these configurations could be used to provide loss- 

less compression. 
BinDCT Configurat ion C1- C9 

Coefficients Cl C2 C3 C4 CS C6 C7 C8 C9 
PI 0.40625 0.4375 0.40625 0.4375 0.375 0.5 0.5 1 0 
Ul 0.34375 0.375 0.34375 0.375 0.375 0.375 0.5 0.5 0 
P2 0.6875 0.625 0.6875 0.625 0.875 0.875 1 1 0 
U2 0.48675 0.4375 0.48675 0.4375 0.5 0.5 0.5 0.5 0 
P3 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875 0.25 0 0 
U3 0.1875 0.1875 0.1875 0.1875 0.1875 0.25 0.25 0 0 
P4 0.40625 0.40625 0.4375 0.4375 0.4375 0.4375 0.5 0 0 
U4 0.6875 0.6875 0.6875 0.6875 0.6875 0.75 0.75 0.5 0 
P5 0.40625 0.40625 0.375 0.375 0.375 0.375 0.5 0.5 0 

Table 5.2 BinDCT Coefficient Configurations 
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Figure 5.6 Forward BinDCT Flow Diagram 
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To compare the output of a forward BinDCT with that of the DCT algorithm, the results 

of the BinDCT must be scaled by the factors shown in Table 5.3. If scaled transform 

coefficients were then applied to the reverse BinDCT, they had to be re-adjusted 
(scaled) prior to computation. If forward BinDCT outputs were not scaled, their results 

could be applied directly to the reverse BinDCT. Regardless of whether result scaling 

occurred, the output of the reverse BinDCT had to be divided by four. 
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Figure 5.7 Reverse BinDCT Flow Diagram 
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Tran's paper [76], detailed how the BinDCT could be implemented without using 

multipliers, but instead using successive shifts and additions. This was possible since 

dyadic coefficients could be represented using fixed-point binary notation. However, 

work conducted previously in Section 4.2.4, determined that binary multiplication was 

best performed on an FPGA through successive shifts and additions. It was concluded 

therefore that the BinDCT was calculated using the shift and add method of distributed 

multiplication. 

Compared to existing floating-point based DCT implementations, the integer friendly 

structure of the BinDCT appeared most suited for implementation within FPGA type 

architectures. Furthermore, the complexity of the hardware configuration was dependant 
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upon the BinDCT configuration used, which itself was determined by the accuracy of 
the DCT approximating required. Investigations conducted to determine the relationship 

of this feature and DCT compression ratios are described next in Section-5.3. 

Forward BinDCT 
Applied to Output Scaling Factor 

Reverse BinDCT 
lied to Input Scaling Factor 

X[O] sins/4 /2 X[O] 2/ sinic/4 
X[4] sinic/4 X[41 1/ sinir/4 
X[6] sin37t/8 /2 X[61 2/ sin3Tt/8 
X[21 1/ 2sin3ic/8 X[2] 2sin37t/8 
X[7] sin7ic/16 /2 X[7] 2/ sin77c/16 
X[5] cos3ir/16 /2 X[5] 2/ cos3ir/16 
X[3] 1/ 2cos3ir/16 X[31 2cos3n/16 
X[l] 1/ 2sin7n/16 X[l] 2sin7ir/16 

Table 5.3 BinDCT Scaling Factors 

5.3 Dynamic BinDCT Investigation 

The BinDCT implemented fixed-point multiplier-less approximations of DCT operation 

through use of lifting ladder structures. These calculations were computed with varying 
degrees of accuracy in approximating true DCT operation. 

The operational characteristics of all BinDCT configurations were evaluated using five 

input sequences as illustrated in Figure 5.8. These sequences were generated to reflect 

the different frequency content and structure encountered within signal compression 

operations. Each input applied contained eight operands in the range of 0 to 255 (8-bit). 

Sequence-(i) represented a ramp function, (ii) a constant level, (iii) a Mexican hat 

function, (iv) a step function, and (v) a spike function. 

Results for forward and reverse DCT and BinDCT operations for these input sequences 

were generated using custom software written in C++. The implementation of the 

transforms within software reflected the structure of processing architecture required for 

hardware implementation. Initially results were generated for all nine BinDCT 
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configurations but after preliminary analysis of the data work focussed upon 

configurations Cl and C9. 

This decision was based upon configuration Cl providing the most accurate 

approximation of the DCT, whereas C9 required the least number of computations to 

calculate, hence provided the simplest hardware implementation. 

5.3.1 Transform Characteristics 

The forward and reverse transforms of the five input sequences generated through the 

software implementation of DCT and BinDCT configurations (Cl and C9) are listed in 

Tables 5.4 to 5.8. The results contain the original input sequence, the transform outputs 

(forward and reverse directions denoted by `F' and `R' respectively), and the calculated 

Root Mean Square Error (RMSE) (Equation 5.9, [77]) for each transform configuration 

and direction; For clarity, the results in the tables have be rounded to three and four 

(RMSE) decimal places. 

RMSE =1t (Xi 
-T 

)Z 
m ; =1 

Where: Xi = ith value of group m values 
T= Target Value 

Equation 5.9 Root Mean Square Error (RMSE) 

n Input 10 to -1 FDCT RDCT FBinDCT-C1 RBinDCT-C1 FBinDCT-C9 RBinDCT-C9 

0 31 404.819 31.000 404.819 31.000 404.819 31.000 

1 63 -206.57 63.000 -206.920 63.000 -196.271 63.000 

2 95 0.191 95.000 0.186 95.000 0.000 95.000 

3 127 -21.453 127.000 -20.305 127.000 -37.885 127.000 

4 159 -0.354 159.000 -0.354 159.000 -0.354 159.000 

5 191 -5.938 191.000 -7.273 191.000 -53.214 191.000 

6 224 -0.462 224.000 -0.462 224.000 -0.462 224.000 

7 255 -1.345 255.000 -0.380 255.000 -31.385 255.000 

RMSE N/A N/A 0.7206 0.0000 20.9569 0.0000 

Table 5.4 Transform Outputs for Data Sequence-(i) Ramp Function 
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Input Data Sequence (n =1 to 8) 

Figure 5.8 BinDCT Input Sequence Characteristics 

(iv) 

n Input 0 to -1 FDCT RDCT FBinDCT-C1 RBinDCT-C1 FBinDCT-C9 RBinDCT-C9 

0 255 721.249 255.000 721.249 255.000 721.249 255.000 

1 255 0.000 255.000 0.000 255.000 0.000 255.000 

2 255 0.000 255.000 0.000 255.000 0.000 255.000 

3 255 0.000 255.000 0.000 255.000 0.000 255.000 

4 255 0.000 255.000 0.000 255.000 0.000 255.000 

5 255 0.000 255.000 0.000 255.000 0.000 255.000 

6 255 0.000 255.000 0.000 255.000 0.000 255.000 

7 255 0.000 255.000 0.000 255.000 0.000 255.000 

RMSE N/A N/A 0.0000 0.0000 0.0000 0.0000 

Table 5.5 Transform Outputs for Data Sequence-(ii) Constant Level 
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n Input 0 to -1 FDCT RDCT FBinDCT-C1 RbinDCT-C1 FBinDCT-C9 RBinDCT-C9 

0 255 540.937 255.000 540.937 255.000 540.937 255.000 

1 85 0.000 85.000 0.000 85.000 0.000 85.000 

2 170 -32.528 170.000 -31.626 170.000 0.000 170.000 

3 255 0.000 255.000 0.000 255.000 0.000 255.000 

4 255 180.312 255.000 180.312 255.000 180.312 255.000 

5 170 0.000 170.000 0.000 170.000 0.000 170.000 

6 85 78.530 85.000 78.530 85.000 78.530 85.000 

7 255 0.000 255.000 0.000 255.000 0.000 255.000 

RUSE N/A N/A 0.0102 0.0000 13.2260 0.0000 

Table 5.6 Transform Outputs for Data Sequence-(iii) Mexican Hat 

n Input 0 to -1 FDCT RDCT FBinDCT-Cl RBinDCT-Cl FBinDCT-C9 RBinDCT-C9 

0 255 360.624 255.000 360.624 255.000 360.624 255.000 

1 255 326.772 255.000 325.902 255.000 259.996 255.000 

2 255 0.000 255.000 0.000 255.000 0.000 255.000 

3 255 -114.747 255.000 -115.860 255.000 0.000 255.000 

4 0 0.000 0.000 0.000 0.000 0.000 0.000 

5 0 76.672 0.000 78.558 0.000 212.025 0.000 

6 0 0.000 0.000 0.000 0.000 0.000 0.000 

7 0 -64.999 0.000 -65.876 0.000 0.000 0.000 

RMSE N/A N/A 0.8889 0 70.8618 0 

Table 5.7 Transform Outputs for Data Sequence-(iv) Step Function 

n Input 0 to -1 FDCT RDCT FBinDCT-C1 RBinDCT-C1 FBinDCT-C9 RBinDCT-C9 

0 0 90.156 0.000 90.156 0.000 90.156 0.000 

1 0 -24.874 0.000 -24.375 0.000 0.000 0.000 

2 0 -117.795 0.000 -118.733 0.000 -138.005 0.000 

3 0 70.835 0.000 71.880 0.000 0.000 0.000 

4 255 90.156 255.000 90.156 255.000 90.156 255.000 

5 0 -106.012 0.000 -106.012 0.000 -106.012 0.000 

6 0 -48.792 0.000 -47.854 0.000 0.000 0.000 

7 0 125.050 0.000 125.050 0.000 125.050 0.000 

RINSE N/A N/A 0.6226 0.0000 32.4527 0.0000 

Table 5.8 Transform Outputs for Data Sequence-(v) Spike Function 

Tables 5.4 to 5.8 list the RMSE of BinDCT configurations C1 and C9 compared to true 

DCT operation (FDCT;;, RDCT). Results indicated that RMSEs were dependant not 

only upon the BinDCT configuration used, but also the frequency content of the input 

sequence. 
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The forward transform of BinDCT configuration C9 generated the largest RMSE, with a 

maximum error of 70.8618 determined (Table 5.7, sequence-iv). This high value was 

attributed to the reduced accuracy of DCT approximation of FBinDCT-C9 compared to 

FBinDCT-C1. In comparison transform FBinDCT-C1 largest RMSE was 0.8889 (Table 

5.7), reflecting the increased accuracy of DCT approximation for FBinDCT-C1 

compared to FBinDCT-C9. 

The reverse transform RMSEs obtained for both configurations were zero, which was 

attributed the operational characteristics of lifting ladder structures. With lifting ladder 

operation, if identical coefficients were used within forward and reverse transforms, the 

original data was reconstructed without loss. 

5.3.2 BinDCT Compression 

By representing data using its frequency components, spectral frequency redundancy 

invisible in the time-domain can be extracted and used to compress the signal. Within 

the frequency domain, frequency components at zero can be removed without 

compromising the representation of information in the time-domain. 

The compression ratio can be enhanced by quantisisation of the forward transform 

coefficients, to increase the number at zero. Table 5.9 lists number of frequency 

components generated at zero. These indicated that prior to quantisisation, overall 
BinDCT-C9 achieved the greatest data redundancy. 

To investigate the DCT coding-gain [76] of each configuration, the forward transform 

coefficients generated were quantisised, with results generated listed in Tables 5.10 to 

5.14. To provide comparisons, transforms were evaluated using the number of forward 

transform coefficients at zero as benchmarks (n: N), RMSE compared to true DCT 

operation, and maximum error of reconstructed data; Where `n' is the number of 

coefficient(s) at zero, and `N' is the original input sequence length. 
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Ratio of Coefficients at Zero : Total Number of Coefficients 
Input Sequence DCT BinDCT-C1 BinDCT-C9 

i 0: 8 0: 8 1: 8 
ii 7: 8 7: 8 7: 8 
iii 4: 8 4: 8 5: 8 

(iv) 3: 8 3: 8 5: 8 
v 0: 8 0: 8 3: 8 

Table 5.9 Inherent DCTBinDCT Compression 

The RMSEs generated for both DCT and BinDCT configurations represents the error 

obtained between the original and reconstructed data sequences. The maximum 
BinDCT error was determined by comparing BinDCT reconstructed output data against 

the original input. 

Tables 5.10 to 5.14 indicate the ability of the DCT and BinDCT transforms to 

reconstruct data using quantisised forward transform coefficients. In Table 5.14 the 

maximum error (Max Error) of BinDCT-C9 is zero for three zero coefficients. This 

value is attributed to the fact that BinDCT-C9 originally had a loss-less zero coefficient 

ratio of 3: 8. 

DCT BinDCT-C1 BinDCT-C9 
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error 

1 0.0675 0.088 0.0656 0.086 0.000 0.000 
2 0.1420 0.213 0.1412 0.211 0.1250 0.125 
3 0.2165 0.375 0.1950 0.398 0.2165 0.375 
4 0.5222 0.784 0.2549 0.477 11.3158 16.125 
5 2.1635 3.661 2.5540 3.993 15.8770 16.125 
6 7.8874 10.825 7.7107 10.653 27.6420 48.125 
7 73.4582 112.125 73.4582 112.125 73.4582 112.125 

Table 5.10 Reconstructed Quantisised Data: Sequence-(i) 

DCT BinDCT-C1 BinDCT-C9 
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error 

7 0.000 0.000 0.000 0.000 0.000 0.000 

Table 5.11 Reconstructed Quantisised Data: Sequence-(ii) 
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DCT BinDCT-C1 BinDCT-C9 
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error 

5 11.5004 15.026 11.1501 14.609 0.000 0.000 
6 30.0520 42.500 30.0520 42.500 30.0520 42.500 
7 70.4783 106.250 70.4783 106.250 70.4783 106.250 

Table 5.12 Reconstructed Quantisised Data: Sequence-(iii) 

DCT BinDCT-C1 BinDCT-C9 
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error 

4 22.9806 31.875 23.3158 32.403 0.000 0.000 
5 35.5376 63.750 36.1132 64.419 0.000 0.000 
6 53.9331 95.625 54.8250 97.534 90.1561 127.500 
7 127.500 127.500 127.500 127.500 127.500 127.500 

Table 5.13 Reconstructed Quantisised Data: Sequence-(iv) 

DCT BinDCT-C1 BinDCT-C9 
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error 

1 8.7943 12.198 8.6091 11.953 0.000 0.000 
2 19.3629 32.880 19.0259 32.437 0.000 0.000 
3 31.6564 64.186 32.0217 64.718 0.000 0.000 
5 55.0831 95.189 55.2939 95.438 45.0781 63.750 
6 66.6256 139.262 66.4961 138.644 63.7500 127.500 
7 78.5712 193.676 78.5231 193.491 78.0775 191.250 

Table 5.14 Reconstructed Quantisised Data: Sequence-(v) 

Results indicated that as the number of forward transform zero coefficients increased 

the RMSE between original input and recovered output sequences increased. 

Furthermore, BinDCT-C9 output degradation was greater compared to DCT and 

BinDCT-C1 for each comparative quantisised step. This was attributed to the BinDCT- 

C9 approximation of the DCT being less accurate than that of BinDCT-C I. 

For high frequency content inputs (sequences-i & -iii) for a given accuracy, greater 
forward transform coefficient redundancy was obtained using BinDCT-C1 compared to 

BinDCT-C9. The RMSE indicated that although errors were introduced, the reverse 
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transform output still contained the characteristics features of the original input (lossy 

compression). Compared to the BinDCT-C1, the BinDCT-C9 output for the same 

number of coefficients at zero was distorted. This is illustrated in Figure 5.9 for 

sequence-(i), with five forward transform coefficients set to zero. Figure 5.10 highlights 

the errors measured between original input and reconstructed data for each transform. 

For low frequency content input sequences (sequences-iv & -v), BinDCT-C9 generated 

greater loss-less compression ratio than BinDCT-C1. This was true for the BinDCT-Cl 

even when quantisisation was used to increase the compression ratio. For example for 

both BinDCT and DCT configurations, Figure 5.11 represents sequence-v reconstructed 

with three forward coefficients set to zero. 
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Figure 5.9 BinDCT Reverse Transform Output of Sequence-(i) (5 Zeros) 
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Figure 5.11 BinDCT Reverse Transform Output of Sequence-(v) (3 Zeros) 

From these experiments it was determined that to achieve high BinDCT compression 

ratios, input sequences containing high frequency content should be compressed and 

quantisised using BinDCT-C 1. Input sequences containing low frequency content 
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should instead use BinDCT-C9. Similar results could be obtained using BinDCT-C1 but 

at the expense of using more complex processing architecture than actually required. 

To implement these concepts, the frequency content of input sequence must be known. 

In reality this does not occur, therefore to implement the most efficient BinDCT 

operation in terms of compression and complexity of design, the processing architecture 

must be able to switch between the BinDCT-C1 and BinDCT-C9 during run-time as 
dictated by system operation. 

5.3.3 Two-Dimensional Dynamic BinDCT Operation 

Within image-processing applications, images can be compressed using two- 

dimensional DCT transform operations, constructed using two individual one- 
dimensional transforms (Equations 5.1 and 5.2). Through updating the BinDCT 

configuration used for each two-dimensional transform during this process, the optimal 

loss-less compression of the image can be obtained. This was a novel application that 

has been developed by the author. 

A two-dimensional DCT/BinDCT transform can be constructed using two independent 

one-dimensional transforms. These are applied in a horizontal (row) and vertical 

(column) fashion to block of pixels known as a tile. A tile can be of any size, but a 

common size is 64 pixels (8x8), which equates to row and column sizes of 8 pixels each 

as illustrated in Figure 5.12. This tile size was used during the investigation since one- 

dimensional transforms of size (N=8) were used to compute the two-dimensional 

transform. A typical image of size 512x512 pixels would contain 4096 8x8 pixel tile 

operations. 

To compress an image, a two-dimensional forward transform operation could be 

applied. This was performed by first applying a one-dimension forward transform to 

either each row or column (choice was dependant upon the user), with the resultant 
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coefficients generated replacing the original data within the tile. This is shown in Figure 

5.12. 

7 
6 

5 
Rows 4 

3 
2 

0 

8x8 Pixel Tile 

01234567 
Columns 

Row 0 is computed first, with the output forming 
Row 0 in a new 8x8 coefficient block 

-> 
One-dimensional Forward DCT Transform Output 

Figure 5.12 One-Dimensional Forward Transform (Row) 

A second one-dimensional transform was then applied to the each column using the 

coefficient generated previous as the input as shown in Figure 5.13. 

8x8 Coefficient Tile 
167.23 -4.65 -2.23 0.77 -1.77 -0.3 2.86 0.47 
166.88 -2.48 -3.35 -0.99 -2.83 2.25 2.94 -0.06 
169.7 -3.3 -3.16 -4.31 0 -1.01 5.17 2.07 
168.29 -1.05 3.17 3.13 1.41 -4.37 0.2 -0.55 
162.64 -4.83 -2.6 -1.49 1.41 -0.56 1.09 1.54 
159.45 -5.42 -4 -1.42 1.06 -0.61 0.53 4.39 
163.7 -4.03 -5.03 -4.99 1.77 0.69 1.73 3.73 
163.7 -4.03 -5.03 -4.99 1.77 0.69 1.73 3.73 

V 

467.25 

-6.38 
0.26 
5.42 Column 0 is computed, with the output forming a 
0.75 section of the two-dimensional DCT response 

-2.84 
-0.65 
-0.94 

One-dimensional Forward DCT Transform Output 

Figure 5.13 One-Dimensional Forward Transform (Column) 
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Completion of the forward two-dimensional DCT gives a row and column result as 

shown in Figure 5.14 

467.25 -10.53 -7.87 -5.05 1 -1.14 5.75 5.41 

-6.38 -1.28 -2.86 -4.18 3.96 0.3 -2.23 4.02 
0.26 -0.89 -3.87 -2.77 -1.71 3.32 1.34 0.98 
5.42 2.49 1.06 -2.05 0.48 -0.72 1.65 -0.75 
0.75 0.24 3.13 3.23 1 -2.07 -1.59 -1.75 
-2.84 -0.84 -2.45 -1.29 -1.16 2.68 0.17 0.16 

-0.65 -1.55 -0.91 -0.98 0.45 -1.1 1.09 1.89 

-0.94 1.47 2.69 4.05 -0.5 -1.18 -2.14 -0.8 

Figure 5.14 Resultant Two-Dimensional Transform 

To reconstruct the original image, one-dimension reverse transforms are applied to the 

coefficient tile, first upon each column then upon each row. Using two-dimension DCT 

transforms, images can be compressed through removal of zero and small AC frequency 

coefficients. Through removing only zero coefficients loss-less compression is 

achieved. However, if coefficient values are quantisised, errors will be introduced 

within the reconstructed image. The non-linear properties of the human eye in 

distinguishing differences between colours and grey-scale gradients, causes the error 

threshold to be dependent upon the source image. 

To investigate dynamic two-dimensional BinDCT compression, the image processing 

standard image `Lena' (Figure 5.15) was compressed using DCT, static, and dynamic 

BinDCT transforms. This was conducted using functions within the XC6200ADS 

software tools written by the author. The results obtained (Table 5.15) indicate the 

number of zero coefficients obtained (coefficient < 0.5) through performing the 

appropriate two-dimensional transform on Figure 5.15. 
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Figure 5.15 Lena Benchmark Image 

a 

A 

True DCT BinDCT-C1 BinDCT-C9 Dynamic BinDCT 
38899 38777 33359 40891 

Table 5.15 Loss-less Compression of Lena Image 

From Table 5.15 it was determined that 529 out of 4096 (13%) tile operations exhibited 

greater inherent loss-less compression using configuration BinDCT-C9 than BinDCT- 

C 1. To determine which BinDCT configuration generated the greatest compression for 

each tile operation, XC6200ADS software functions were written to analyse the tiles 

inherent coding gain for each BinDCT configuration. Each tile was then computed 

using the BinDCT configuration that generated the greatest number of forward 

transform zero coefficients. Using this information the distribution of BinDCT 

configurations within the source image (Figure 5.15) was determined. This is shown in 

Figure 5.16, with the corresponding BinDCT-C9 tile operation locations represented in 

black and BinDCT-C 1 operations in white. 
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Figure 5.16 BinDCT Configuration Distribution 

The source image was compressed by computing each tile using the appropriate 

BinDCT configuration. This technique resulted in an additional 1992 forward transform 

coefficients generated being at zero (Table 5.15,40891-38899). 

To reconstruct the original image the forward BinDCT transform configuration used for 

each pixel tile had to be known. This was required to allow coefficients to be 

reconstructed using the correct reverse BinDCT transform. This information was 

encoded within the compressed data using Run Length Coding techniques [72]. 

Through adapting the BinDCT configuration as required for each tile, the volume of 

transform coefficients at zero increased when compared to static BinDCT and 

traditional DCT implementations. The development of this technique provided the basis 

for dynamic hardware implementation of the BinDCT algorithm. 

5.4 Summary 

This chapter has described developing an application were system throughput and 

compression has been improved through dynamic hardware implementation. This 

application is a recently develop integer-friendly approximation of the DCT called the 

BinDCT. 
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To improve loss-less compression within an image, a dynamic two-dimensional 

BinDCT algorithm application has been developed. Through actively swapping the 

BinDCT configuration used to compute each 8x8 pixel tile, the compression ratio has 

been increased. Swapping active BinDCT configurations improves operand throughput 

since the computational complexity of BinDCT-C9 is approximately half that of 

BinDCT-C 1. 

To develop a hardware implementation of this application, dynamic hardware was 

required to switch between different BinDCT configurations. The development and 

operation of this architecture is described next in Chapter-6. 
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Chapter 6 

Dynamic XC6264 BinDCT Coprocessor 

Introduction 

This chapter describes the construction of XC6264 based dynamic BinDCT hardware; 

inserted within the TIM-40 architecture. XC6264 hardware appeared as RTR C40 

memory mapped coprocessor peripherals. 

The XC620ODS configuration mode used and C40 processor interface operation is 

described in Section-6.1. Next the design and construction of the underlying XC6264 

BinDCT architecture is described in Section-6.2. Section-6.3 details the implementation 

of fixed BinDCT coprocessor operation, whilst Section-6.4 expands to RTR dynamic 

operation. 

Section-6.5 compares one and two-dimensional XC6264 BinDCT transform operations 

against software results generated in Chapter-5. Conclusions derived from the work 

present in this chapter are then presented in Section-6.6. 

The CLC array floor plans of key XC6264 FPGA designs are detailed in Appendix-VI, 

whilst overviews of both XC6200 and C40 DSP device architectures provided in 

Appendix-III. 

6.1 Design Overview 

To interface dynamic FPGA and DSP processing hardware, both components must 

interact at hardware and user software levels. This capability was made possible through 

the development of the XC620ODS (Section-3.3) and upgrading existing C40 TIM-40 

modules (Section-3.4.2). 

The dynamic BinDCT coprocessor architectures developed were constructed through 

combining both XC620ODS C40 coprocessor (Section-3.4.2) and self-configuration 
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(Section-3.4.3) modes of operation. The XC620ODS prototype environment mode 

(Section-3.2.1) was also used during system development, enabling real-time XC6264 
hardware debugging (Section-4.2). 

The base architecture of the XC6264 dynamic coprocessor consisted of three sections as 

shown in Figure 6.1. These were the self-configuration control mechanism, C40 Global 

buses interface, and coprocessor function (represented by unused CLCs in Figure 6.1). 

The BinDCT processor hardware developed was implemented within the coprocessor 
function area (approximately 77% of XC6264 CLCs available). 

The C40 and XC6264 interacted through a parallel interface formed using the C40s 

Global buses interface and hardware configured within XC6264 CLC array. The 

XC6264 interface consisted of control state machines, a four to sixteen-bit address 
decoder (A]5-AO), and bi-directional data-bus (D7-DO). Addresses (A15-AO) were used 

to control aspects of coprocessor operation including operand transfer and instigating 

RTR. C40 programs could manage such functions through accessing A15-AO (XC6264 

address space) mapped within the C40s Global bus address space. 
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Interface 
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Figure 6.1 XC6200 based Dynamic Coprocessor Topology 
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6.1.1 TMS320C40 Coprocessor Management 

To simplify design of the XC6264 Global buses interface, C40 control signal GSTRBI 

was required to change state for each coprocessor (XC6264) access; GSTRBI indicated 

that an address within a particular C40 memory page had been selected. When accessing 

common memory page addresses, mechanisms within the C40s DMA forced GSTRBI 

to a constant state. Prior to addressing the XC6264, a dummy address operation had to 

occur to ensure that a different memory page would be activated (GSTRBI toggled). 

Run-time management of the coprocessor was performed through software executed 

upon the C40, written in a variant of the C language. Examples of program code used to 

access the XC6264 coprocessor are shown in Program 6.1. XC6264 hardware timings 

were also performed through utilising the C40s internal watchdog timers through 

software macros. 

Program Code (C40 C Comment/Action 

#include <stdlib. h> C Library Declarations 

#include <stdio. h> 

int main( int argc, char *argv[]) Start of Program 

volatile long *bfield ointer dum =volatile long*) Ox8000000f; Define dummy address 

volatile long *bfield_pointer d0 = (volatile long*) Ox8fffff t) Define XC6200 Address A0 

volatile long *bfieldpointer dl = (volatile long*) Ox8fffffil; Define XC6200 Address Al 

volatile long *bfieldpointer d2 = (volatile long*) Ox8ffffff2; Define XC6200 Address A2 

volatile long *bfieldpointer d3 = (volatile long*) Ox8fffff3; Define XC6200 Address A3 

volatile long *bfield ointer df =volatile long*) Ox8fffffff; Define XC6200 Address Al S 

volatile long *glob int con =volatile long*) 0x00100000; Define GMICR Address 

volatile long glob int, data; Define Program Variables 
*bfieldpointer dum = 0x00000007; Dummy Memory Access 

XC6200 Write Cycle 
*bfield pointer d2 = 0x23; 2316 Written to Address A2 
*bfieldpointer dum = 0x00000000; Dummy Memory Access 

XC6200 Read Cycle 
data = *bfield pointer d8; Data Read From Address A8 

return(0); End of Program 
} 

Program-6.1 C40 XC6200 Coprocessor Addressing 
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Within Program-6.1 pointers to XC6264 addresses Als-AO mapped within the C40s 

Global bus address space were listed first, and defined as *bfield pointer dO to 
*bfield pointer df. These pointers corresponded to C40 Global bus address locations 

8 ffffff. 0 16 to 8 ffffffft 6. 

Before data transfer occurred between the XC6264 and C40, XC6264 address space 

within the C40 Global bus memory map had to be configured. This was achieved 

through configuring the Global Memory Interface Control Register (GMICR). The 

value written was dependent upon the Global bus interface configuration and 
determined from the C40s data book [65]. The XC6264 coprocessor could then be 

addressed, with each access routine including a preliminary dummy memory accesses to 

ensure signal GSTRBI toggled during the actual coprocessor read/write operation. 

6.1.2 XC6264 Dynamic Configuration 

For dynamic RTR hardware operation to occur, the coprocessor (XC6264) had to be 

reconfigured during run-time. This was achieved by instigating self-configuration 

through the XC6264 address space. Once this occurred, the self-configuration controller 

then updated the coprocessors function using RTR independent of C40/host computer 

operation. Configuration data required for RTR was stored within and accessed from a 

local XC6264 coupled configuration memory (Section-3.4.3). 

Within the XC6264 self-configuration control unit, signal Go RTR (Figure 6.1) 

initiated self-configuration, whilst Done indicated completion. The request, selection 

and generation of the next active configuration could be determined within the 

coprocessor function or by the C40 via A15-A 0. 

6.2 XC6264 BinDCT Construction 

To investigate dynamic BinDCT operation, the forward and reverse transforms of 

configurations BinDCT-C1 and BinDCT-C9 were implemented (using VHDL) within 

the user-function area of the XC620ODS dynamic coprocessor configuration (Figure 
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6.1). This task required developing hardware implementations of each BinDCT 

configuration (Section-6.2) integrating the resultant processor architectures within the 

skeleton coprocessor (Section-6.3), and incorporating RTR within design (Section-6.4) 

and application (Section-6.5). 

In total four BinDCT configurations were constructed. These were configurations 

FBinDCT-C1, FBinDCT-C9, RBinDCT-C1 and RBinDCT-C9 (F and R denote forward 

and reverse transforms respectively). The C40 interface and self-configuration control 

mechanism were developed prior to construction of XC6264 BinDCT hardware. 

The four XC6264 BinDCT coprocessors developed functioned as eight concurrent 

twos-complement binary serial processing pipelines. System operands consisted of 20- 

bit fixed-point data. Using this scheme decimal numbers in the range of +-0.031225 to 

16383.98765 could be represented. The operation, control and operand transfer within 

these pipelines was governed by the C40 through the XC6264s Global interface address 

space. 

Each transform structure was divided into four operational stages. Using these partitions 

BinDCT transforms were developed in a modular fashion, allowing efficient replication 

of common processing elements. Figures 6.2 and 6.3, illustrated the simplified structure 

of C9 configurations compared to Cl (shown in Figures 5.6 and 5.7). Within C9 all 

lifting ladder coefficients were set to zero, resulting in lifting-ladder computations being 

reduced to simple addition or subtraction operations. 

BinDCT coefficient scaling parameters were not included within the resultant XC6264 

designs. It was envisaged to incorporate these parameters using CORDIC algorithms 

[3]. Through the development of XC6264 based CORDIC hardware, it was concluded 

that because of XC6264 signal routing limitations, CORDIC hardware was not suitable 
for configuration within large XC6264 designs. This was because CORDIC 

implementations required irregular XC6264 footprints, large volumes of CLCs, and 

extensive local and chip-wide routing resources. 
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Figure 6.2 BinDCT C9 Forward Transform Flow Diagram 
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Figures 5.6,5.7,6.2 and 6.3 illustrated how the construction of each BinDCT 

configuration could be divided into four sections. It was therefore logical to develop and 

implement each transform configuration in four stages. FBinDCT-C1 was the first 

configuration developed. Each stage within this transform was constructed and verified 

operational before commencing the next. This process is described in Section-6.2.1. 

6.2.1 FBinDCT-C1: Stage-One 

FBinDCT-C1 stage-one appeared similar to a general butterfly structure, and was 

constructed using twos-complement serial binary addition and subtraction units. 

Initially BinDCT hardware was constructed for maximum throughput using bit-slice 

designs and parallel data paths. After placement and routing it became apparent that 

using these methods BinDCT transform hardware would not fit within the XC6264 

FPGA. Instead, serial based hardware implementations requiring less XC6264 CLCs 

and routing resources, but with reduced operand throughput were developed. 

Conversion of bit-slice to serial designs is illustrated in Figure 6.4. 

Figure 6.4 XC6264 Serial Adder Bit 

The serial adder devised consisted of one adder-bit and a register used to store the cout 

output generated by the previous bits calculation. This value was then used as the 

present cin input. Serial subtraction units were developed using similar methods. 

Within the operation of FBinDCT-C1 stage-one individual serial butterfly operations 

were processed concurrently. Within the resultant coprocessor designs, to govern 
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system operation, pipeline control signals would be generated by the C40 via the 

XC6264 coprocessor interface. However during this stage of development, control 

signal generation processes was performed using the FastMAPTm interface. Pipeline 

control signal generation is described in Section-6.3. 

FBinDCT-C1 stage-one construction required 52 CLCs, with a routing footprint of 3 

CLCs wide by 20 CLCs high. The design could operate at a maximum frequency of 
102.81 MHz, having a pipeline cycle length of 194.5nsec (20-bit data). 

Within the pipeline architecture, this design required one pipeline cycle to compute. 

When coupled to the other BinDCT stages, pipeline delays of individual stages 

overlapped. The resultant design of the stage-one is shown in Figure 6.5. 
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Figure 6.5 FBinDCT-C1 Stage One Architecture 
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6.2.2 FBinDCT-C1: Stage-Two 

Stage-two of FBinDCT-C1 required construction of dyadic lifting-ladders. To compute 

this function a serial dyadic shift operation was devised. This consisted of a shift 

register, adder chain and control logic, as shown in Figure 6.6. This unit was common 

for each dyadic value required, with the actual value configured dependant upon inputs 

Ena_O to Ena_4. 

Ins 

Output 

ng Adder 

Figure 6.6 Serial Dyadic Shift Unit 

To illustrate the operation of the serial dyadic shift unit, consider the following fixed- 

point binary number 0000 0001.00002 scaled using dyadic values 0.5 to 0.34375. 

Dyadic Value Scaled Output Value Shift Register Delay 

0.5 0000 0000.100002 t+t 

0.25 0000 0000.010002 t+2 

0.125 0000 0000.001002 t+3 

0.1875 0000 0000.001102 t+3 + t+4 

0.34375 0000 0000.010112 t+2 + t+a + t+s 

Table 6.1 Dyadic Number Representations 

A binary number can be scaled by dyadic values of 0.5,0.25 and 0.125 by shifting the 

input by one, two, and three places respectively to the right. With respect to Figure 6.7, 

these operations relate to using output taps (t+i, t+2, t+3) of the shift register. For a dyadic 
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value such as 0.1875, multiple shift register output taps (t+3, t+4) are summed together 

within the adder. 

When using twos-complement data the sign-bit (MSB) must be included within each 
dyadic shift operation. Since the design in Figure 6.6 operated using serial operands 

each dyadic shift took two pipeline cycles to compute. Lifting-structures P4, P5 and U4 

were constructed through coupling dyadic-shift units to addition (U4) or subtraction 

units (P4, P5), as dictated by the flow diagram (Figure 5.4). 

Within FBinDCT-C1 stage-two lifting structures P4, U4 and P5 connected in series, 

allowing pipeline cycles of each lifting-structure operation to overlap. This feature 

reduced the delay of stage-two to 3 pipeline cycles. Consequently, stage-two operands 

unaffected by dyadic shift operations had to be delayed by 3 pipeline cycles to ensure 

output data coherency. The resultant structure of stage-two is shown in Figure 6.7. 

XO Delay Delay Delay 
YO 

XI Delay Delay Delay 
Yl 

X2 Delay Delay Delay 
Y2 

X3 Delay Delay Delay 
Y3 

X4 Delay Delay Delay 
Y4 

Figure 6.7 FBinDCT-C1 Stage Two Architecture 

The implementation of this design required 648 CLCs (116 per lifting-structure, 20 per 

pipeline delay) and a routing footprint of 18 CLCs wide by 56 CLCs high. The 

maximum clock frequency of the design was calculated to be 8.38MHz. Using 20-bit 
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data the initial output of stage-two required three pipeline cycles to compute (7.16psec). 

Once the pipeline was full, a result would be generated every cycle (2.39µsec). 

6.2.3 BinDCT-C1: Stage-Three 

The implementation of FBinDCT-C 1 stage-three -required addition and subtraction 

butterflies only, with no lifting-structures required. The fabrication of this stage was 

similar to stage-one (Section-6.2.1) and constructed using replicated stage-one 

component as shown in Figure 6.8. The XC6264 implementation properties obtained for 

this stage were therefore identical to those obtained for stage-one. 

6.2.4 BinDCT-C1: Stage-Four 

Stage-four comprised four pairs of concurrent operating lifting-structures. Each lifting 

structure was constructed using techniques described in Section-6.2.2. The flow diagram 

of the resultant design was identical to the original FBinDCT-C1 flow diagram and has 

therefore not been included. Through overlapping serial dyadic lifting steps, stage-four 

required two pipeline cycles to compute when empty. Once full, a result could be 

generated every pipeline cycle. 

Stage-four was implemented within 928 CLCs, with a routing footprint of 48 CLCs 

high by 38 CLCs wide. The maximum operating frequency of stage-four determined 

was 8.8MHz. The initial output of stage-four took 4.54µsec to compute (two pipeline 

cycles) after this results were generated every 2.27µsec (one pipeline cycle). 
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Figure 6.8 FBinDCT-C1 Stage Three Architecture 

6.2.5 XC6264 BinDCT Hardware Characteristics 

To verify the operation of each stage, operands and system control signals were applied 

through the FastMAPTm interface. Additional hardware configured within each stage 

converted operands from parallel to serial format and performed 110 transfer. Results 

generated were then observed using XC6200ADS tools. 

The three remaining BinDCT transforms were each constructed and evaluated using the 

four-stage development concept presented. Through reuse and adaptation of hardware 

modules developed previously, development overheads were reduced and differences 

between transforms kept to a minimal, aiding RTR configuration data generation. 

Within configurations FBinDCT-C9 and RBinDCT-C9, dyadic lifting structure 
coefficients were set to zero. This reduced the hardware implementation of the 
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equivalent FBinDCT-C1 and RBinDCT-C1 stages to only addition, subtraction, and 

units. This reduced the number of pipeline cycles required to generate each transform. 

The XC6264 hardware characteristics of each BinDCT transform neglecting 
FastMAPTM interface overheads, coprocessor interface, and self-configuration controller 
delays are detailed in Tables 6.2-6.4. Results highlighted the reduction in hardware 

overheads and performance benefits gained through using BinDCT configuration C9 

instead of Cl. 

Stage 1 Stage 2 Stage 3 Stage 4 Max. Frequency 

FBinDCT-C1 102.81MHz 8.37MHz 102.81MHz 8.8MHz 8.37MHz 

FBinDCT-C9 102.81MHz 20.08MHz 102.81MHz 8.57MHz 8.57MHz 

RBinDCT-C1 8.8MHz 102.81MHz 8.43MHz 102.81MHz 8.43MHz 

RBinDCT-C9 9.12MHz 102.81MHz 19.82MHz 102.81MHz 9.12MHz 

Table 6.2 BinDCT Hardware Characteristics: Operating Frequency 

Table 6.2 indicates the maximum clock frequency obtained for each stage within the 

transforms and number of XC6264 CLCs required to implement each design. Identical 

results were obtained for several different stages since common hardware components 

were re-used for different transforms. 

Stage 1 Stage 2 Stage 3 Stage 4 Total CLCs Used 

FBinDCT-C1 52 648 52 928 1680 

FBinDCT-C9 52 14 52 379 497 

RBinDCT-C1 928 52 648 52 1680 

RBinDCT-C9 379 52 14 52 497 

Table 6.3 BinDCT Hardware Characteristics: XC6264 CLCs Required 

The maximum operand throughput (pipeline full) of each transform is listed in Table 

6.4. These values were determined using the maximum clock frequency of the design, 

the pipeline cycle length (20-bit) and the number of pipeline cycles required to compute 

the result. The results generated include operand throughputs calculated when the 

pipeline was initially empty. Once the pipeline was full, a result was generated every 

pipeline cycle. If adjacent pixel tiles were processed by the same BinDCT configuration 
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(Cl or C9), the pipeline would remain full. Only when BinDCT configuration was 

switched did the pipeline have to be refilled. 

Number of Pipeline Cycle BinDCTThroughpu (At Max Frequency) 

Pipeline Cycles Duration Pipeline Full Pipeline Empty 

FBinDCT-C1 6 2.389 ec 418.58kBinDCT o s/sec 69.76kBinDCT o s/sec 

FBinDCT-C9 3 2.333 sec 428.63kBinDCT o s/sec 142.88kBinDCT o s/sec 

RBinDCT-C1 6 2.372 sec 421.56kBinDCT o s/sec 70.26kBinDCT o s/sec 

RBinDCT-C9 3 2.192 ec 456.2OkBinDCT o s/sec 152.07kBinDCT o s/sec 

Table 6.4 BinDCT Performance Characteristics 

Comparisons between XC6264 BinDCT hardware operation and software BinDCT 

simulation and true DCT operation are discussed within Section 6.4. 

6.3 BinDCT Static Coprocessor Integration 

Throughout the development phase of BinDCT processor hardware, operand transfers 

and pipeline control signal generation were conducted via the FastMAPTm interface. To 

integrate BinDCT configurations within C40 XC6264 coprocessors, operand transfer 

and pipeline control had to be performed by the C40. This occurred by accessing 

XC6264 coprocessor address space, located within the C40 Global bus memory map. 

Operand transfer and initialisation of BinDCT pipeline cycles was governed by the C40 

through accessing XC6264 memory mapped addresses. The interface itself consisted of 

an address decoder, control logic, data paths, and operand registers as shown in Figure 

6.9. To perform XC6264 BinDCT operations, components within the pipeline were first 

reset to their initial conditions using signal C40 clr (A7). Operands were then applied to 

the input of stage-one by writing data to XC6264 address A14 (Write input). The 

pipeline was then clocked using signal C40 clk (A8), and the output of stage-four was 

then read via A15 (Read output). This cycle of writing input operands, generating 
C40_clk, and reading the output of stage-four was performed 20 times (20-bit system 

operand, using twos complement fixed point representation) for each block of 8 input 

coefficients. 
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To activate the dyadic scaling units, signal Ena shift (A9) was activated after `m' 

C40 clks; Where m= number of operand bits - (system accuracy + 2). Since system 

operands were 20-bit, having 5-bit accuracy (5000 0000 0000 0000.000002, where `S' 

was the sign bit), `m' was calculated to be 13 (20-(5+2)). Upon the completion of the 

pipeline cycle signal Ena_shift was reset, and the contents of serial adder/subtractor 

carry/borrow registers cleared and re-initialised via signal Nextý_pipe (Al0). The global 

C40 clr signal could not be used for this purpose otherwise intermediate pipeline 

operands would be erased. 

XC6264 FPGA 
--------------------------------------- 

Go rtr 
- 

CLC Array 
Al 

AO Done 
C40 clk AS 

A7 C40 clr 
A9 Ena shi BinDCT 

Next `e Transform 

D7-DO 
A10 Configuration 

A14 Write input 

A15 Read output 

TMS32C40 A3-AO Global 
Buses Transform Operands 

Interface 

1 XC6264/C40 Global Buses Parallel Interface D7-ß 

----------------------------------------- --- 

Figure 6.9 XC6264 BinDCT Coprocessor Integration 

Blocks of eight parallel operands were computed by XC6264 BinDCT hardware using 

eight concurrent serial pipelines. Each of the eight individual operands were transferred 

to/from the C40 in a serial fashion bit by bit, accounting for a byte value upon the 

Global buses data-bus. All eight operands could therefore be transmitted in a concurrent 

serial fashion using this method. The byte values transferred to/from the C40 therefore 

related to the distributed serial implementation of eight operands. To transfer eight 

operands with value range +-0.03125 to 16383.98765,20 C40 byte transfers were 

required. 
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This concept is illustrated in Table 6.5, using a block of eight input bytes (original 

input). The appropriate weighted value required for each input byte was determined by 

converting the C40 byte values into their XC6264 weighted value equivalents. The 

conversion of input coefficients (0.5,2.03125,0,0,4,5,2.25,0.125) to XC6264 weighted 

values was performed by placing a `1' in the weighted values columns, constituting the 

original input value (e. g. 2.03125 =2+0.03125 => 010000001). To generate the 

required byte value to be transferred by the C40, the bit content of each value column 

was converted to hexadecimal format. In Table 6.5 only 8 weighted values are used, for 

true BinDCT operation 19 weighted values would be used (plus sign bit), generating 20 

C40 bytes. 

w 
O 
n 
7G' 
0 

00 

ii O 
cD 

n 
(D 

XC6264 Bit Weighted Value 

Original Inut 4 2 1 0.5 0.25 0.125 0.0625 0.03125 

0.5 0 0 0 1 0 0 0 0 
2.03125 0 1 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

4 1 0 0 0 0 0 0 0 

5 1 0 1 0 0 0 0 0 

2.25 0 1 0 0 1 0 0 0 
0.125 0 0 0 0 0 1 0 0 

Required C40 
Output Value 0x30 0x42 0x20 0x01 0x40 0x80 0x0 0x02 

Block of 8 Hexadecimal C40 Bytes (0-7) 

Table 6.5 C40/XC6264 Weighted Operand Conversion 

This conversion process was initially conducted within XC6264 BinDCT hardware. 

However, it was later removed and incorporated within C40 operating software to aid 

BinDCT application development. Combined within this operation were routines that 

converted from C40 floating-point data to XC6264 two complements fixed point 

operand notation and vice-versa. C40 software also provided BinDCT coefficient 

scaling when comparing the operation of BinDCT transforms against true DCT 

operation (Section-6.5). 
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The maximum operating frequencies calculated for each transform are shown in Table 

6.6. In comparison to Table 6.2, the maximum frequencies of the transforms were 

reduced. This feature was predicted since the XC6264 now contained greater logic 

resources than previously (BinDCT transform, plus coprocessor interface), requiring 

greater signal routing complexity. 

Maximum Frequency 

Forward BinDCT Cl 6.035MHz 

Forward BinDCT C9 5.518MHz 

Reverse BinDCT Cl 5.827MHz 

Reverse BinDCT C9 4.759MHz 

Table 6.6 Maximum BinDCT Coprocessor Operating Frequencies 

The maximum operating frequency of the XC6264/C40 coprocessor interface was 

calculated to be 16.58MHz using XACT6000, enabling a bandwidth of approximately 

4.15Mbytes/sec. However, during normal operation this frequency was set to 8.0MHz 

resulting in a bandwidth of 2.0Mbytes/sec. 

BinDCT hardware was clocked using C40 clk (generated by A8) at a frequency of 
1.11 MHz. This value related to two C40 memory accesses that addressed and wrote 

data to A8 within the XC6264s address space (C40 clk = 1, C40 clk = 0). The XC6264 

Global bus interface bandwidth limited the maximum frequency of C40 clk that could 
be synthesized. Initially it was intended to use A8 directly as the clock frequency 

(generating a frequency of approximately 2MHz), however during construction routing 

limitations encountered within XC6264s C40 Global buses interface prevented this. 

Results presented in Table 6.7 demonstrate the difference between the maximum and 

normal operational coprocessor characteristics. These results were calculated assuming 

that BinDCT pipelines were empty (result generated after n pipeline cycles; Where n is 

the pipeline cycle length). Full pipeline throughput was calculated by multiplying the 

pipeline operand throughput by the number of pipeline cycles (cycle length) shown in 

Table 6.7. Using this procedure, operand throughputs (@1.11MHz) of 55.5kBinDCT 
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one-dimensional transform operations per second (ops/sec) were obtained for each 
BinDCT configuration for full pipeline operation. 

Maximum Frequency of Design Normal (1.11MHz) Operating Frequency 

Cycle Length Operand Throughput Cycle Length Operand Throughput 

FBinDCT-C1 6 50.29kBinDCT o s/sec 6 9.25kBinDCT ops/sec 
FBinDCT-C9 3 91.52kBinDCT ops/sec 3 18.5kBinDCT ops/sec 
RBinDCT-C1 6 48.56kBinDCT ops/sec 6 9.25kBinDCT ops/sec 
RBinDCT-C9 3 79.32kBinDCT ops/sec 3 18.5kBinDCT ops/sec 

Table 6.7 Maximum/Normal BinDCT Coprocessor Throughputs 

6.4 Dynamic Coprocessor Development 

To enable dynamic coprocessor operation, a self-configuration control mechanism was 

inserted within the static coprocessors developed in Section-6.3. The resultant 

configurations were then temporally and spatially examined using XC6200ADS tools. 

The integration of the self-configuration controller occurred in two stages. The first 

stage developed the control mechanism between the C40 parallel interface and the self- 

configuration control unit. Once this had been proved functional, the BinDCT 

transforms were then implemented using this mechanism. These stages are described in 

Sections-6.4.1 and 6.4.2 respectively. 

6.4.1 Dynamic Coprocessor Control Mechanism 

The self-configuration controller interface consisted of three signals called Go rtr, 
Done and Dsel. Go_rtr initiated the reconfiguration process, whilst Done indicated 

when the process had finished. Dsel (16-bit bus) determined the next active 

configuration downloaded from the configuration memory store. 

For the XC620ODS to function as a dynamic coprocessor, self-configuration had to be 

instigated either internally within the coprocessor function itself, or by the master 
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processor (C40). The XC6264s gate capacity remaining available after BinDCT and 

coprocessor interface integration determined that the decision to conduct RTR would 

occur within the C40. (Appendix-IV-4 describes the internal operation of the self- 

configuration control mechanism). 

To develop this concept, a simple RTR application was developed. The XC6264 was 

configured with two temporally partitioned circuits generating two different clock 

frequencies. RTR instigation was conducted through the C40 Global bus interface as 

shown in Figure 6.10. 

Signal Go_rtr was generated using XC6264 interface address Al. When a positive 

signal transition occurred on Go rtr, RTR commenced. The resulting configuration 

delay was dependant upon the level of differences between successive configurations. 

To determine when this operation was complete, initially the status of Done was 

monitored by the C40 using XC6264 address A0. Through experimentation it was 

discovered that completion of RTR could also be determined by the C40, through 

halting XC6264 Global interface control state machine operation using signal Done. 

This concept proved more reliable than the previous configuration since As value could 

be inadvertently updated during RTR. 

The bit set (logic one) within Dsel (16-bit) determined the next hardware configuration 

activated. Dsel bit values could be set via the C40 interface, but within this example 

were hardwired within each XC6264 design. The value of Dsel is shown in Figure 6.10 

for each active configuration. Effectively the address pointer to the next configuration is 

stored within the current active configuration. This operation can be considered similar 

to linked-list structures within programming languages. 

To swap between each configuration required 224 bytes of configuration data (56 

address/data pairs) to be downloaded. Using a self-configuration controller clock 
frequency of 8MHz, this took approximately 107.8µsec to complete (measured 

externally, using the custom designed timer). 
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Figure 6.10 C40 Dynamic Coprocessor Operation 

6.4.2 BinDCT Integration 

To construct the dynamic coprocessor function each BinDCT configuration was 

inserted within the outline dynamic coprocessor mechanism developed in Section-6.4.1 

(Figure 6.10). In similar fashion the differences between each coprocessor configuration 

were determined using XC6200ADS tools. 

Temporal and spatial partitioning was performed between each transform configuration. 

During this procedure the structures of each configuration pair were analysed and 

differences between them determined. To minimise differences between successive 

configurations, common components in each transform were located at identical CLC 

positions within the XC6264 FPGA. The volumes of XC6264 CLC array address 

locations required updating (XC6264 CLCs) and actual configuration data downloaded 

(data bytes), with the resultant minimum configuration delay for each transform update 

are shown in Table 6.8. The self-configuration controllers clock frequency was set to 

8MHz, with configuration delays recorded using the custom designed external timer. 
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Configuration Number Configuration Data Volume Configuration Delay 

Con Con t. (7 V +1 XC6264 CLCs 
. 

Data bytes External Timer 

FBinDCT-C1 FBinDCT-C9 6413 25652 12.01msec 

FBinDCT-C1 RBinDCT-C1 10781 43124 20.28msec 

FBinDCT-C9 RBinDCT-C9 4373 17492 8.24msec 
RBinDCT-C1 RBinDCT-C9 6746 26984 12.66msec 

Table 6.8 Dynamic BinDCT Coprocessor Configuration Parameters 

To evaluate dynamic switching capabilities, the clock frequencies of the C40 interface 

and self-configuration control mechanism were set to a clock frequency of 8.0MHz. The 

BinDCT pipeline was clocked at a frequency of approximately 1.11MHz. This signal 

was generated within the XC6264s C40 Global busses interface, through the C40 

accessing XC6264 address location A8 (located within C40s Global memory map). 

Using XACT6000 software the maximum clock frequencies determined for each 
transform are shown in Table 6.9. Table 6.9 lists the operand throughput (measured in 

kBinDCT ops/sec) for both maximum and normal operating frequency conditions 

(@1.11MHz). Operand throughputs were calculated for both full and empty pipeline 

conditions. Results indicated that the dynamic BinDCT operation had a maximum 

combined coprocessor operating frequency of 4.17MHz. However, during normal 

operation, all BinDCT configurations were clocked at 1.11MHz using signal C40 clk, 

as described in Section-6.3. 

Maximum Frequency BinDCT 1.11MHz 

Operating Pipeline Condition Pipeline Condition 
Configuration Frequency Empty Full Empty Full 

FBinDCT-C1 5.16MHz 43.00 257.79 9.25 55.5 
FBinDCT-C9 5.3MHz 88.37 265.11 18.50 55.5 
RBinDCT-C1 4.5MHz 37.54 225.27 9.25 55.5 
RBinDCT-C9 4.17MHz 69.48 208.46 18.50 55.5 

Table 6.9 BinDCT Dynamic Coprocessor Operating Frequency 
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6.5 XC6264 BinDCT Transform Characteristics 

To evaluate the operational characteristics of XC6264 BinDCT hardware, transform 

operations were performed using input sequences defined in Section-5.3.1. The output 

responses recorded were then compared to results generated through software 

simulations of BinDCT and true DCT operations. This task was conducted for both one 

and two-dimensional transforms. The results recorded are presented in Section-6.5.1 and 
Section-6.5.2 respectively. 

6.5.1 One-Dimensional XC6264 BinDCT Operation 

Through applying the input data sequences defined in Section-5.3.1, the operational 

characteristic of XC6264 hardware transforms FBinDCT-C1, FBinDCT-C9, RBinDCT- 

C1 and RBinDCT-C9 were analysed. Results recorded are shown in Tables 6.10 to 6.14. 

Similarly to Chapter-5, the RMSE generated compared the difference between XC6264 

BinDCT hardware and true DCT operations. Furthermore, BinDCT coefficient-scaling 

factors (Table 5.3) omitted from the XC6264 hardware were performed within the C40 

DSP primary processor. 

n In ut 0 to -1 FDCT RDCT FBinDCT-C1 RBinDCT-C1 FBinDCT-C9 RBinDCT-C9 
0 31 404.819 31 404.785 30.984 404.785 30.969 

1 63 -206.57 63 -206.96 62.961 -98.391 62.992 
2 95 0.191 95 0.203 94.984 0.541 95.000 

3 127 -21.453 127 -20.276 126.969 -77.573 126.961 
4 159 -0.354 159 -0.397 158.969 -0.397 158.961 
5 191 -5.938 191 -7.236 191.000 0.402 190.984 
6 224 -0.462 224 -0.462 224.023 -0.447 223.992 
7 255 -1.345 255 -0.368 254.984 -62.295 255.015 

XC6264 BinDCT/DCT RMSE 0.7228 0.0243 48.2278 0.0240 

Table 6.10 XC6264 BinDCT Outputs for Data Sequence-(i) Ramp Function 
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n Input [0 to N-1 FDCT RDCT FBinDCTC1 RBinDCTC1 FBinDCTC9 RBinDCTC9 
0 255 721.249 255 721.249 255.000 721.249 255.000 
1 255 0.000 255 0.000 254.992 0.000 254.992 
2 255 0.000 255 0.000 254.992 0.000 254.992 
3 255 0.000 255 0.000 255.000 0.000 255.000 
4 255 0.000 255 0.000 255.000 0.000 255.000 
5 255 0.000 255 0.000 254.992 0.000 254.992 
6 255 0.000 255 " 0.000 254.992 0.000 254.992 
7 255 0.000 255 0.000 255.000 0.000 255.000 

XC6264 BinDCT/DCT RMSE 0.0000 0.0057 0.0000 0.0057 

Table 6.11 XC6264 BinDCT Outputs for Data Sequence-(ii) Constant Level 

n In ut 0 to N-1 FDCT RDCT FBinDCTC1 RBinDCTC1 FBinDCTC9 RBinDCTC9 

0 255 540.937 255 540.937 254.977 540.937 254.984 
1 85 0.0000 85 0.000 84.984 0.000 85.000 
2 170 -32.528 170 -31.625 170.015 -92.003 170.000 

3 255 0.0000 255 0.000 255.008 0.000 255.000 
4 255 180.312 255 180.312 255.008 180.312 255.000 
5 170 0.0000 170 0.000 170.015 0.000 170.000 
6 85 78.53 85 78.53 84.984 78.530 85.000 
7 255 0.0000 255 0.000 254.977 0.000 254.984 

XC6264 BinDCT/DCT RMSE 0.3193 0.0164 21.0276 0.0080 

Table 6.12 XC6264 BinDCT Outputs for Data Sequence-(iii) Mexican Hat 

n In ut 0 to N-1 FDCT RDCT FBinDCTC1 RBinDCTC1 FBinDCTC9 RBinDCTC9 

0 255 360.624 255 360.624 255.000 360.624 255.000 
1 255 326.772 255 325.887 254.969 259.996 254.992 

2 255 0.0000 255 0.000 254.969 0.000 254.992 
3 255 -114.747 255 -115.759 254.984 0.000 255.000 
4 0 0.000 0 0.000 0.015 0.000 0.000 
5 0 76.671 0 78.560 0.015 0.000 -0.008 
6 0 0.0000 0 0.000 0.015 0.000 -0.008 
7 0 -64.999 0 -65.865 0.000 0.000 0.000 

XC6264 BinDCT/DCT RMSE 0.8750 0.0189 58.8740 0.0057 

Table 6.13 XC6264 BinDCT Outputs for Data Sequence-(iv) Step Function 
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n In ut 0 to -1 FDCT RDCT FBinDCTC1 RBinDCTC1 FBinDCTC9 RBinDCTC9 
0 0 90.156 0 90.156 0.000 90.156 -0.015 
1 0 -24.874 0 -24.374 0.000 -129.998 -0.008 
2 0 -117.795 0 -118.707 0.031 0.000 0.008 
3 0 70.835 0 71.88 0.008 153.343 0.000 
4 255 90.156 255 90.156 254.961 90.156 254.984 
5 0 -106.012 0 -106.012 -0.015 -106.012 -0.008 
6 0 -48.792 0 -47.854 -0.015 "-117.795 0.008 
7 0 125.05 0 125.05 0.000 125.05 0.000 

XC6264 BinDCT/DCT RMSE 0.6178 0.0194 67.5423 0.0096 

Table 6.14 XC6264 BinDCT Outputs for Data Sequence-(v) Spike Function 

Table 6.15 compares the software and hardware BinDCT RMSE values calculated with 

respect to true DCT operation. Results indicated that XC6264 BinDCT hardware 

generated results introduced greater errors when reconstructing original data compared 

to BinDCT software simulations (Section-5.3.1). This error was expected since XC6264 

BINDCT hardware was constructed using fixed-point binary twos-complement numbers 
(operand resolution of 0.03125), and BinDCT software simulations performed on a PC 

(operand resolution 1.2x10"38 [81]). 

Differences in RMSEs calculated for FBinDCT-C9 operation were attributed to the 

XC6264 designs used for FBinDCT-C9 and RBinDCT-C9. Within FBinDCT-C9s 

XC6264 design, internal operands were scaled to simplify the design, with bit positions 

adjusted within FBinDCT-C9, complemented during RBinDCT-C9s operation. This 

feature is illustrated in Table 6.15 since RMSE error between software and hardware 

RBinDCT-C9 configurations were minimal. 

PC Software BinDCT RMSE XC6264 Implemented BinDCT RMSE 
Se BinDCT-CI BinDCT-C1 BinDCT-C9 BinDCT-C9 BinDCT-C1 BinDCT-CI BinDCT-C9 BinDCT-C9 

i 0.7206 0.0000 20.9569 0.0000 0.7228 0.0243 48.2278 0.0240 
ii 0.0000 0.0000 0.0000 0.0000 0.0000 0.0057 0.0000 0.0057 
iii 0.3189 0.0000 11.5004 0.0000 0.3193 0.0164 21.0276 0.0080 
iv 0.8889 0.0000 70.8618 0.0000 0.8750 0.0189 58.8740 0.0057 
V 0.6226 0.0000 32.4527 0.0000 0.6178 0.0194 67.5423 0.0096 

Table 6.15 BinDCT Hardware/Software RMSE Comparison 
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As in Section-5.3.2, the XC6264 BinDCT coding-gain was assessed, with the results 

generated shown in Tables 6.16 to 6.20. To provide performance benchmarks, the 

ability of BinDCT configurations to reconstruct data using compressed transform 

coefficients was assessed. Using true DCT compression as reference levels, (n: N, where 
`n' is the number of DCT coefficient(s) at zero, `N' is the original input sequence 

length), forward transform BinDCT coefficients were thresholded to obtain the same 

number of zero coefficients as the DCT. Error between original and BinDCT 

reconstructed compressed data was then compared to true DCT operation. 

With respect to Tables 5.9-5.14 (Section-5.3.2) the XC6264 BinDCT-C1 hardware 

results obtained (Tables 6.16-6.20) displayed minimal differences compared to those 

obtained using software simulations. This was true when calculating the maximum 
difference in magnitude between input and output sequences, and RMSE between 

BinDCT transform and true DCT operation. 

Results generated for BinDCT-C9 configuration were similar to those in Section-5. 

Similarly to Table 6.15, differences in RMSEs calculated for FBinDCT-C9 operation 

were attributed to the FBinDCT-C9 and RBinDCT-C9 XC6264 designs. Internal 

operands were scaled to simplify their design and operation, with bit positions adjusted 

within FBinDCT-C9, complemented during RBinDCT-C9s operation. 

Within Tables 6.16-6.20, RMSE values of zero indicated that no difference occurred 
between original and reconstructed data for given numbers of forward transform zero 

coefficients. 
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DCT BinDCT-C1 BinDCT-C9 
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error 

1 0.0676 0.0900 0.0733 0.1100 0.0000 0.0000 
2 0.1421 0.2100 0.1458 0.2300 0.2176 0.3800 
3 0.2165 0.3800 0.1918 0.3600 0.2800 0.6200 
4 0.5224 0.7800 0.2516 0.5100 0.2800 0.3900 
5 2.1636 3.6700 2.5539 4.0300 22.4524 31.6100 
6 7.8873 10.8200 7.7110 10.8800 39.1932 63.8600 
7 73.4582 112.1200 73.4582 0.0000 73.4582 112.1100 

Table 6.16 Comparison of XC6264/True DCT Compression for Sequence-(i) 

DCT BinDCT-C1 BinDCT-C9 
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error 

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 6.17 Comparison of XC6264/True DCT Compression for Sequence-(ii) 

DCT BinDCT-C1 BinDCT-C9 
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error 

5 11.5004 15.0300 11.1313 14.2900 30.6520 42.4900 
6 30.0520 42.5000 30.0520 42.5000 30.0520 42.5000 
7 70.4783 110.2400 70.4746 106.2400 70.4746 106.2400 

Table 6.18 Comparison of XC6264/True DCT Compression for Sequence-(iii) 

DCT BinDCT-C1 BinDCT-C9 
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error 

4 22.9806 31.8800 23.3163 32.4100 0.0000 0.0000 
5 35.5370 63.7500 36.1147 64.4500 0.0000 0.0000 
6 53.9331 95.6200 54.8274 97.5400 0.0000 0.0000 
7 127.5000 127.5000 127.5000 127.5000 127.5000 127.5000 

Table 6.19 Comparison of XC6264/True DCT Compression for Sequence-(iv) 
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DCT BinDCT-C1 BinDCT-C9 
Zero Coefficients RMSE Max Error RMSE Max Error RMSE Max Error 

1 8.7943 12.2000 8.7943 11.9500 0.0000 0.0000 
2 19.0348 32.8800 19.0348 32.4500 45.0780 63.7600 
3 31.6564 64.1900 32.0313 64.7300 45.0780 63.7600 
5 55.0832 95.4700 55.2994 95.4700 78.0742 127.4900 
6 66.6257 139.2600 66.4937 138.6200 90.1532 127.4900 
7 78.5712 193.6800 78.5172 193.4900 90.1532 191.2600 

Table 6.20 Comparison of XC6264/True DCT Compression for Sequence-(v) 

6.5.2 Two Dimensional XC6264 BinDCT Operation 

Two-dimensional dynamic XC6264 BinDCT hardware configurations were developed, 

and operated using techniques described in Section-5.5. The optimal BinDCT 

configuration for each pixel tile (8x8 pixels) within the target image was determined 

using XC620ODS software tools. This information was then encoded within the source 

image. 

The source image was then downloaded to the C40 DSP (coupled to the XC6264 co- 

processor). The C40 then converted the pixel values first from floating-point to XC6264 

fixed-point twos-complement binary representation, and then from 20-bit parallel to 

serial notation. Depending upon the BinDCT configuration required, the C40 would (if 

applicable) update the XC6264 BinDCT configuration using RTR. Dynamic 

configuration updates used were FDinDCT-C1 to FBinDCT-C9, and RDinDCT-C1 to 

RBinDCT-C9. The C40 then transferred input operands to the XC6264, generated 

BinDCT pipeline control signals, and then read the resultant output. 

When using XC6264 BinDCT hardware to perform two-dimensional transforms, after 

each row or column operation (one-dimensional transform), intermediate results had to 

be scaled and reordering due to the nature of dyadic lifting structures used within the 

design. This aspect was a feature of the XC6264 BinDCT hardware implementation. 

The initial target image use was the `Lena' benchmark (Figure 5.15), with BinDCT 

configuration distribution calculated shown in Figure 5.16 (Section-5.5). XC6264 two- 
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dimensional BinDCT operation was assessed through performing a forward then reverse 

two-dimensional transform and then comparing the difference (RMSE) between the 

original and reconstructed images pixel values. For comparison identical static and 
dynamic BinDCT operations were performed within the C40 DSP. Results generated 

using ̀ Lena' are listed in Table 6.21. 

Total Summed Pixel Errors Avera e Pixel Error RMSE 
Configuration XC6264 TMS320C40 XC6264 TMS320C40 XC6264 TMS320C40 

Static BinDCT-C1 10652.3 12.367 0.04063 4.72x10-5 0.01607 1.65x10-5 
Static BinDCT-C9 10046.3 12.1144 0.03832 4.62x10-5 0.01517 1.61x10-5 

Dynamic BinDCT 10530.7 12.3252 0.04017 4.70x10-5 0.15895 1.64x10-5 

Table 6.21 Comparison of XC6264/TMS32C40 2D-BinDCT Operation 

For both C40 and XC6264 operations RMSE values obtained indicated that 

reconstructed data contained a degree of error compared to the original. However, using 

static configuration BinDCT-C1 as an example, the summed pixel error obtained was 

10652.3 per 262144 (512x512) pixels, producing an average error per pixel of 0.0406. 

This tolerance would be acceptable within most image processing applications since 

pixel values are rounded to the nearest whole number. 

The RMSEs of XC6264 compared to C40 BinDCT operations were greater. This was 

expected due to the maximum resolution of BinDCT coefficients being 0.03125. C40 

computations used 40-bit floating-point representation, with a maximum resolution of 

5.8x10"39 [65]. The difference in RMSE value for BinDCT-C1 and BinDCT-C9 

configurations reflected the differences in approximation of true DCT operation. 

For FPGA based dynamic BinDCT operations, RMSEs generated were less than the 

equivalent fixed implementations. This factor was a by-product of choosing the 

BinDCT configuration for each tile that generated the greatest inherent coding gain. 
Through having greater frequency components at zero, errors introduced through the 

rounding of intermediate coefficients (system resolution) were reduced. 
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To further demonstrate dynamic BinDCT operation, optical fringe patterns having 

differing frequency contents and structure were examined. The resultant BinDCT 

configurations generated and DC coding gain increases are shown in Figures 6.11 to 

6.16. Comparing BinDCT distribution to the original image, BinDCT-C9 configurations 

(black) are most common in areas of low frequency content, whilst BinDCT-C1 (white) 
in areas of higher frequency contents. 

Table 6.22 details BinDCT distribution information obtained through computing 
Figures 6.11-6.16. Speed-up figures calculated demonstrate the percentage of 8x8 pixel 

tile operations accelerated through using BinDCT-C9 hardware compared to BinDCT- 

Cl implementations. Through using dynamic BinDCT operation, the percentage of 

forward transform coefficients at zero (inherent coding gain) has been increased. 

BinDCT Distribution Dynamic BinDCT Transform Zero Coefficients 
Image Con i. Cl Con i. C9 Speed-up (%) True DCT Dynamic BinDCT 

Pattern(i) 2253 1843 45% 12.08% 20.87% 
Pattern(ii) 2416 1680 41.02% 61.6% 75.5% 
Pattern(iii) 781 3315 80.93% 12.8% 27.3% 

Table 6.22 BinDCT Configuration Distributions 
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Figure 6.11 Optical Fringe Pattern-(i) Figure 6.12 BinDCT Distribution 
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Figure 6.13 Optical Fringe Pattern-(ii) 

Figure 6.15 Optical Fringe Pattern-(iii) 

6.6 Summary 
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Figure 6.14 BinDCT Distribution 

Figure 6.16 BinDCT Distribution 

Chapter-6 has described the development and construction of XC6264-based dynamic 

configurable BinDCT hardware, configured to appear as TMS320C40 memory mapped 

coprocessors. Through creating dynamic coprocessor topologies, this has permitted the 

C40 primary processor to exhibit virtual hardware characteristics. This work has 

demonstrated the potential benefits of including dynamic hardware within traditional 

fixed processing topologies. 
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Results generated within Chapter-6 have demonstrated how BinDCT algorithm 

operating characteristics have benefited from dynamic hardware implementation. The 

inherent coding-gain was increased, whilst accuracy in reconstructing the original data 

compared to fixed BinDCT configurations improved. This concept of dynamic BinDCT 

implementation and system operation is a novel idea. 

Hardware configuration statistics generated, proved the hypothesis that configuration 

Cl had reduced throughput compared to C9. It was also evident that the implementation 

of C9 required fewer logic resources than Cl. The innovation of RTR hardware for 

configurations BinDCT-C1 and BinDCT-C9 has allowed not only more efficient 

BinDCT processing, but shown that by dynamically switching between the two 

BinDCTs based on the context of each 8x8 pixel data tile, a faster and more accurate 

transform has been created. 

The design methodology used throughout Chapter-6, was to simplify routing and 

placement of BinDCT components within the XC6264 FPGA, at the expense of operand 

throughput. However, increases in BinDCT compression and accuracy obtained through 

dynamic compared to fixed operation would be present whatever the implementation 

method used. 
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Chapter 7 

XC6264 Dynamic Routing Hub 

Introduction 

This chapter details the insertion of a RTR routing-hub within the C40 MIMD 

processing topology. The first section of the chapter (Section-7.1) explains how the 

XC620ODS and C40 communication channels were integrated. Section-7.2 describes the 

development and function of initial static routing topologies. The next section (Section- 

7.3) expands upon the designs developed in Section-7.2 and develops the concept of 

dynamic routing topologies. Section-7.4 then describes how processing hardware can be 

configured within the routing-hub using RTR. A summary of conclusions derived 

through undertaking this work is presented in Section-7.5. 

7.1 System Overview 

The C40 DSP contains six bi-directional communication ports that facilitate processor- 

to-processor communication. To investigate the benefit of including dynamic hardware 

within a multiprocessor environment, XC6200 based routing topologies have been 

developed. 

Using the XC620ODS routing-hub configuration mode (Section-3.4.3), up to nine C40 

communication channels can be connected to the XC620ODS through external cabling. 

Any eight of these channels could be active at any one time. Collectively, the 

XC620ODS C40 channel hub interfaces were referred to as comports. Within this 

configuration the identity of each comport (range 5 to 13 respectively) reflected the 

PCB connector number assignments. 

7.1.1 Communication Port Interface 

C40 communication channels have a bandwidth of 20Mbytes/sec and can reverse their 

transfer direction within four instruction cycles (200nsec @40MHz) [65]. This 
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operation occurs through the interaction of C40 communication channel Port 

Arbitration Units (PAUs). To couple C40 channels to the XC6200DS, the PAU and 

communication channel interfaces were initially synthesized within the XC6200 FPGA. 

The XC6200 PAU implementation however could not complete direction transfers 

within 100nsec. It was therefore decided that to prevent common signals from being 

driven by both the C40 and XC6200 PAUs during bidirectional transfers, 

communication channel direction would be fixed. This did not detract from the 

communication strategies, as enough uni-directional ports were available for the 

developed switching fabrics. The XC6200 PAU was therefore removed from the design, 

however the respective C40 control signals (CREQ, CACK) could not be left open- 

circuit and instead were tied to logic-one (Figure 7.2). 

The data-bus of C40 communication channels was 8-bits wide. Data transfers occurred 

using four-byte words, since the internal C40 architecture was 32-bits wide. A C40 

word transfer operation therefore consisted of four individual byte cycles, which were 

managed using signals CSTRB and CRDY. This control mechanism is shown in Figure 

7.1, where CSTRB was generated by the interface transmitting data (CSTRB_TX), and 

CRDY by the receiving unit (CRDY RX). The signal connections required between 

interface receiver and transmitter comports to C40 communication channels are shown 

in Figure 7.2. 

Valid data at the receiving comport was determined using the negative-edge of signal 

CRDY. For transmission, data had to be presented before the negative-edge of signal 

CSTRB. These signals were generated through the interaction of C40 and XC6200 

comport interface control state machines. 
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CSTRB TX 

CRDY RX 

Da gybe 1 Byte 2 Byte 3 Byte 4 
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Figure 7.1 Communication Channel Byte Transfer Protocol 
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(i) Data transfer from C40 to XC6200 (ii) Data transfer from XC6200 to C40 

Figure 7.2 Communication Channel Signal Connections 

7.1.2 Transfer Management 

Port transfers within the XC6200 were initiated through discrete logic functions. Within 

the C40 this task was governed by software programs constructed using a C40 variant 

of the C programming language. The management of channel interfaces was invisible to 

user-code, with data transfer controlled using a library of pre-complied C functions. The 

formats of two common C functions are shown in Program 7.1. 
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out word datatx, 1); 

rintf ("Data TX is %x \n", datatx ; 
datarx = (int) in word 4; 

rintf ("Data RX is %x \n", datarx ; 

Program 7.1 C40 Communication Channel Functions 

Function out word(m, n) was used to write data to a C40 communication port. The 

function had two arguments. m was the 32-bit word to be written to channel n (range 1 

to 6). Function in_word(n) received data from C40 communication channel n, and 

returned the value read. 

7.2 Comport Transfer Mechanisms 

XC6200 comport designs consisted of state-machines and data-buses. The state- 

machines generated and managed control signal handshaking with the C40, whilst 

operand transfer occurred using the data-bus. 

For the XC620ODS to appear as a transparent routing hub, data received from one C40 

port had to be re-transmitted to another. To manage the transfer of data between each 

XC6200 comport, two control methods know as FIFO Control and Self-Arbitration 

were developed. 

7.2.1 FIFO Control Unit 

The structure of the FIFO Control mechanism developed is illustrated in Figure 7.3 and 

contained comport interfaces, a four-byte deep FIFO, and control logic. Comport 

connector interfaces consisted of signals D7-DO, CSTRB, and CRDY as shown 

previously in Figure 7.2. 

The receiving comport was activated using signal go_rx (generates er w). Individual 

bytes within C40 32-bit word (four bytes) were then transferred, with each byte in turn 

being latched into the FIFO upon the negative edge of CRDY RX (via clkJIfo) (Figures 

7.1 and 7.3). 
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XC6200 
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Figure 7.3 XC6200 FIFO Control Comport Management 

The receiving comport indicated when it had accepted four bytes (32-bit word) with 

signal r w. Router control logic then instructed the transmitting comport via etw to 

write the contents of the FIFO to the next C40. The contents of the FIFO were 
incremented upon the transmission of each byte through signal CSTRB TX (via clkJIfo) 
(Figures 7.1 and 7.3). Once the FIFOs contents were written signal t 

_w 
instructed the 

control logic that the FIFO was ready to receive another four bytes from the receiving 

comport. 

The structure of FIFO control can be considered similar to C40 communication port 

operation. Each C40 communication port transfers 32-bit words as four individual 

bytes. To minimise communication bottlenecks, each C40 port had eight level 32-bit 

wide FIFOs. For dedicated processor-to-processor communication links this provided a 
buffer of 16 words. In contrast within the XC6200 FIFO control mechanism, the FIFO 

was used to buffer 4 bytes (one 32-bit word) during transfer within the communication 
hub, and not act as a buffer within the receiving and transmitting C40s. This was a very 

efficient use of limited FPGA resources. 

7.2.2 Self-Arbitration Unit 

The structure of the self-arbitration mechanism is shown in Figure 7.4. This system 

comprises both receiver and transmitter comports, with the FIFO replaced by a single 

register clocked using CRDY RX. The function of the router control logic was replaced 
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by a handshaking operation between the receiver and transmitter comports (signals 

go_tx and q 
__byte). 

Effectively self-arbitration functioned by receiving and transmitting 

each byte within a 32-bit word independently. This design was the minimum required, 

with maximum efficiency in terms of hardware resources used. 

go rx Data 
T CRDY RX Latch 

XC6200 ,, LIP D7 XC6200 
Comport Receive Transmit ' Comport 
Connector Comport Comport Connector 

Figure 7.4 XC6200 Self-Arbitration Unit Comport Management 

7.2.3 Transfer Protocol Analysis 

The two protocols were evaluated through configuring identical routing topologies 

within a XC6264 FPGA. The routing structure used was a direct connection between 

comport-8 and comport-12 of the XC6200DS. These two comports were chosen since 

they were located on opposite sides of the XC6264 FPGA, and would encounter the 

greatest signal propagation delays inside the device. Timing and hardware 

characteristics generated using XACT6000 upon a XC6264 FPGA for both protocols 

are listed in Table7.1. These results compare the maximum signal delay when both 

designs are routed using local (length-16) and global (chip-wide) routing resources; 

Length-16 and chip-wide XC6200 FPGA routing resources are detailed in Appendix-Ill- 

2). The number of CLCs required in implementing both state machine control and data 

path components for both protocols are also listed. 
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Max Si nal Dela CLC Volume 

Local Routin GlobalRouting State Machines Data Path 

Self Arbitration 56.018nsec 58.947nsec 43 0 

FIFO Control 56.02nsec 55.932nsec 94 24 

Table 7.1 Transfer Protocol Hardware Characteristics 

C40 software was written to verify the operation of routing topology as well as 

generating benchmark results. Operand transfer delays were generated for FIFO control, 

self-arbitration configurations, and for comparison direct C40 to C40 connections. The 

results obtained are shown in Table 7.2, with a XC6264 clock frequency of 8MHz. 

C40 Glue less Connection FIFO Control Unit Self-arbitration Unit 

No. of Words Operand Transfer Delay Operand Transfer Delay Operand Transfer Delay 

1 4.8 sec 9.6 sec 8.4 sec 

10 3.09msec 3.14msec 3.12msec 
262144 22.14sec 23.18sec 22.16sec 

Table 7.2 Transfer Protocol TMS320C40 Timings 

Operand transfer timings were generated using the C40s internal timer. These results 
illustrate the difference in transfer delays introduced by the control mechanism within 
the C40 MIMD. The transfer delays generated however also constituted additional C40 

instructions delays and C40/host PC interrupts. These were required by the C40 to 

access comport data, which was then written to external files for error checking 

purposes. However no errors were detected between transmitted and received data sets. 

Using XACT6000 software, the maximum throughput of the FIFO control method was 
determined as 4.469Mbytes/sec (using global routing), whereas the self-arbitration unit 

was 4.462Mbytes/sec (using local routing). 

The results obtained showed that the bandwidth obtained for each transfer protocol was 

similar. However, the simplicity and internal regulation of the self-arbitration was 
deemed superior. This was evident through the self-arbitration method not requiring 

additional control logic and FIFO buffers within the data path. 
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The FIFO protocol achieved highest bandwidths when chip-wide global XC6264 

routing resources were used. Within XC6200 FPGAs these resources were limited, 

therefore in complex designs local routing had to be used, incurring greater propagation 
delays. 

The self-arbitration method however was more suited to local than global routing 
implementations. Because of this factor and not requiring a FIFO to be present between 

each XC6200 comport route, the self-arbitration control mechanism was used within 
XC6200 router designs. 

7.3 Static Routing-Hub Development 

To investigate the advantages gained by including adaptable routing resources within 

the C40 MIMD architecture, XC620ODS hardware was developed that facilitated bi- 

directional operand transfer between four C40 DSP nodes. These designs were 

implemented within a single XC6264 FPGA. 

7.3.1 Hub Construction 

To develop router hardware compromises to channel bandwidth and node connectivity 

were made to aid XC620ODS placement, design and routing of integral components. 

Apart from low operating speeds, a disadvantaged of the XC6200 FPGA family was 

that tri-state gates could not be configured within XC6200 CLCs, resulting in fixed 

direction data buses. This limitation also forced the inefficient construction of crossbar 

switches using multiplexers, which would cause multiple delays to routed data. 
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Figure 7.5 XC6264 Routing-hub Topology 

The routing-hub topology developed is illustrated in Figure 7.5. The design was similar 

to the Chordal Ring architecture [80] since two unidirectional data buses link together 

four primary crossbar switches. Unlike traditional routing designs there existed a `user' 

area were secondary routing resources and processing hardware could be configured. 

Expanding this concept, the four primary switches and unidirectional buses were 

considered as a base platform upon which further configurations could be developed. 

Primary crossbar switches consisted of two XC620ODS comports (receive and transmit) 

and three banks of multiplexers. These were used to implement the crossbar switch 

illustrated in Figure 7.6, using a switch configuration table listed in Table 7.3. The data 

transfer direction of both comports however were fixed. 

The secondary crossbar switches (Figure 7.5) provided accesses to unused CLC 

resources within the XC6264. Unused CLCs could be configured to appear as additional 
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routing resources (approximately 25% of XC6264 CLC array) within the topology or as 

processing hardware. This concept was further developed in Section-7.4. 
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Figure 7.6 

Table 7.3 

Crossbar Switch Construction 

Crossbar Control Signals Crossbar Output Busses 
DO Dl D2 TXO TXI TX2 

0 0 0 RX2 RX1 RX1 
0 0 1 RX2 RX1 RX2 
0 1 0 RX2 RXO RX1 
0 1 1 RX2 RXO RX2 

1 0 0 RXO RX1 RX1 
1 0 1 RXO RX1 RX2 
1 1 0 RXO RXO RX1 
1 1 1 RXO RXO RX2 

Where: RXO, RX1, & RX2 are Crossbar Input Busses 

Crossbar Switch Configuration Table 

7.3.1 Hub Operating Characteristics 

The operation of the routing-hub was verified using custom designed C40 software. 

Two C40s functioning in a MIMD configuration were used to transmit and receive data 
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through communication ports. Within this test procedure, different hub topologies were 

configured and the operation analysed. During this operation, the configuration of the 

routing-hub remained static during system operation, and reconfigured using CTR 

methods (Section-2.3.1). 

The performance characteristics of the routing-hub were assessed for throughput and 

comport connectivity. During this process, the clock frequency of the design was set to 

8MHz. The maximum signal propagation delay recorded was 275.21nsec. This value 

related to signal delay encountered through circumnavigating the routing topology 

(excluding secondary routing resources) resulting in individual channel bandwidths of 

908.4kbytes/sec, and 7.26Mbytes/sec for the eight channels combined. When secondary 

routing resources were configured, the maximum signal propagation delay of the design 

increased to 389.92nsec, resulting in individual channel bandwidths of 641.16kbytes/sec 

and 5.13Mbytes/sec combined. 

Signal routing delays encountered were excessive when compared to the clock 

frequency period (125nsec). Nevertheless the design still functioned correctly, since the 

XC6264 component placement used ensured that the self-arbitration control signals 

encountered similar routing delays to data buses. 

This operating concept was not ideal for use in dynamic routing-hub development, and 

the XC6264 clock frequency was reduced to 2MHz. In comparison, the maximum 

operating frequencies obtained for each XC6264 comport was in the range of 35- 

39MHz. 

Within the routing-hub design, a receiver comport could broadcast data to all transmitter 

comports. To perform this operation crossbar switches were configured accordingly and 
the self-arbitration control signals of each comport combined. 

Through configuration of the primary crossbar switches, bi-direction transfers between 

adjacent comports could occur using two unidirectional data paths. For data transfer to 
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occur, self-arbitration unit handshaking signals go_tx and go_rx (Figure 7.5) belonging 

to each comport forming the communication channel had to be connected together. 

The individual bandwidth of comports operating at a clock frequency of 2MHz was 

calculated as 500kbytes/sec. In comparison, the bandwidth of a C40 communication 

channel was 20Mbytes/sec. Inserting the routing-hub within a C40 MIMD structure 

substantially reduced operand throughput. This limitation was expected due to the 

architecture of the XC6264 FPGA, and accepted, since the aim of the experiment was to 

determine if such architectures were viable and if they improved the versatility of a 

multiprocessing architecture. 

The routing-hub was implemented within a XC6264 FPGA. The design consisted of 

562 CLCs, but required a placement footprint covering the whole CLC array (128 by 

128 CLCs) (see Appendix-VI for XC6264 layout). Within the design, 258 CLCs were 

required to construct the primary and secondary switches. 128 CLCs formed guides for 

routing data-bus signals between individual crossbar switches. Individual transmitter 

and receiver comports required 20 and 24 CLCs respectively to implement. Comparing 

the volume of CLCs used to form crossbar switches and router guides (386 CLCs), to 

those actually implementing comport logic (176 CLCs), demonstrated how much the 

XC6264 FPGA in this application was pushed to its limits. Confined within the 

secondary routing resources approximately 4096 (25%) of XC6264 CLCs could be used 

to implement either additional data-paths or processing hardware. 

Using this routing hub, dynamic routing-hub configurations, including processor 

functions were developed. These are detailed next in Sections-7.4 and 7.5 respectively. 
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7.4 Dynamic Routing Topology 

The XC6200 routing-hub topology developed in Section-7.3 remained fixed during 

system operation and was reconfigured using CTR for each application. During run- 

time, this architecture incurred connectivity and operand bandwidth constraints 

associated with fixed multiprocessor architectures. To reduce these limitations RTR 

routing-hub strategies were investigated with the following solutions. 

7.4.1 Configuration Mechanisms 

RTR configuration can be performed within the XC620ODS using two methods. The 

self-configuration mechanism downloaded configuration data automatically without 

external intervention at a rate of 1.8psec (@8MHz) per XC6200 address/data pair. The 

second mechanism requiring user intervention used XC6200ADS software functions, 

with the average configuration delay measured at 258µsec per XC6200 address/data 

pair (delay includes host PC interrupt operation). 

For optimal performance dynamic configuration must occur without user intervention. 

The self-configuration mechanism permitted this feature but could not be used within 

the routing-hub due to its construction. This was because XC6264 comports and self- 

configuration memory interfaces (external memory and C40) used the same XC6264 

pin locations. 

If the self-configuration mechanism was implemented, comport-11, comport-12, and 

comport-13 could not be used. Similarly if the XC6200-C40 Global interface was 

configured comport-7 and comport-8 were inaccessible. Three comport connectors 

would therefore be available to implement the routing topology preventing bi- 

directional transfer (requires four comports) between two C40 DSPs. 

The decision was therefore taken to perform RTR through XC6200ADS interaction. 

This implied adaptation of the routing topology could not be automated by the C40 (true 
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RTR), but increased operational diversity through the user being able to manually select 
the next active configuration. 

The concept of automating active routing topology determination within the hub, 

through analyses of system bottlenecks was also assessed. It was concluded however, 

that this work was beyond the scope of this project and would be recommended for 

further investigation (Chapter-9). 

7.4.2 Implementation Strategies 

Dynamic routing topologies were configured within the XC6264 using two design 

approaches defined as structured and non-structured. Structured router architectures as 

the name suggest had defined skeleton architectures. An example of this type of 

architecture was the routing topology developed in Section-7.3. 

Non-structured routing topology was the term given to designs that did not contain 

predefined data buses and crossbar switches. The routing of buses between system 

components was defined instead by XACT6000 during compilation. This methodology 

was used within the direct connection router designs developed in Section-7.1.1. 

To compare the merits of structured and non-structured operation, RTR routing 

topologies consisting of two configurations were developed. The routing topology 

configurations devised are shown in Figure 7.7. 
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Figure 7.7 Dynamic Routing-hub Configurations 

Each configuration required four comport connections interconnecting two TIM-40 

(C40) nodes. The two configurations could reside within the XC6264 using temporal 

partitioning, performed through RTR. Configuration-one consisted of two data paths. 

Within the first path, C40-1 transmits to C40-2 via Comport-5 and Comport-9 of the 

routing hub, whilst the second path was formed by C40-2 transmitting to C40-1 using 

Comport-12 and Comport-7. 

The second XC6264 configuration consisted of two data paths, with C40-1 and C40-2 

both using the routing-hub channels to transmit data from one local comport back to 

another in closed loop fashion. 

Using these configurations, both structured and non-structured routing implementations 

were developed. Each implementation method was spatially and temporally analysed 

using XC6200ADS tools. The operational characteristics of each configuration are 

listed in Tables 7.2 and 7.3. These contain the maximum operating frequency, signal 

propagation delay, channel bandwidths, volume of configuration data required to swap 

between configuration-one and configuration-two (XC6200 address/data pairs), and 

measured XC6200ADS configuration delay (using external timer). XC624 footprints for 

each design are shown in Appendix-VI. 

163 



Chapter 7: XC6264 Dynamic Routing Hub 

Frequency Signal Delay Bandwidth RTR Data Volume RTR Dela 
Cone uration 1 3.519MHz 284.171nsec 879.7kb es/sec 136 50.59msec 
Configuration 2 3.518MHz 284.260nsec 879.5kb es/sec 136 50.59msec 

Table 7.4 Structured Routing Topology Performances 

Frequency Signal Delay Bandwidth RTR Data Volume RTR Delay 
Configuration 1 16.86MHz 59.313nsec 4.215Mb es/sec 588 174. lmsec 
Configuration 2 16.794hz 59.544nsec 4.199Mb es/sec 588 174.1msec 

Table 7.5 Non-Structured Routing Topology Performances 

Operating frequencies listed in Table 7.4 indicated that the signal propagation delay 

within the structured topology was almost constant for each configuration; Results 

indicated a difference of 0.089nsec in maximum signal propagation delay between 

configurations. The maximum signal propagation relates to the signal delay encountered 
throughout one cycle of each unidirectional ring and is attributed to the XC6264 signal 

routing topology. 

Table 7.5 indicated that the communication bandwidth of non-structured designs was 

far greater than that of structured design (Table 7.4). This was expected since 
XACT6000 mapping of system components was not restricted (as in structured designs) 

and therefore placement was optimised for speed; XC6264 footprints in Appendix-VI 

highlight this feature. 

With the structured architecture the data-bus paths used within configuration-one and 
two can be considered equal to a half and a quarter distance respectively of the total ring 

length. Using this approach, structured topology results were adjusted with the revised 

maximum operand throughputs calculated for each structured configuration shown in 

Table 7.6. 

Mbytes/sec. 

Structured Non-Structured 
Configuration I Configuration 2 Configuration 1 Con t ration 2 

1.759 3.518 4.215 4.199 

Table 7.6 Adjusted Routing Topology Bandwidths 
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The analysis indicated that non-structured designs exhibited greater operand throughput 

compared to structured designs. This difference in performance was predicted since 

crossbar switches were absent within non-structure designs. The results also indicated 

the volume of configuration data required for RTR of non-structured routing designs 

was far greater than identical structured topologies. This reflected the vast differences 

between individual non-structured configurations. 

If sequential non-structured router configurations did not occupy common XC6264 

resources, it was possible to implement multiple configurations within the XC6264. In 

effect multiple individual configurations would be combined within one static 

configuration, with the actual routing topology selection instead being performed 

through updating the C40s operating software. 

To verify dynamic re-configuration of each routing topology, two TIM-40 C40 nodes 

executed test programs. Each C40 wrote different sequences of data to the routing hub. 

The active configuration of the hub then determined which sequence each C40 node 

would receive. 

Within the TIM-40 motherboard architecture, a hardwired routing topology existed 

between individual C40 positions (Section 3.2.2). Since only the JTAG root node (C40- 

1) could communicate with the host PC, results recorded by C40-2 were transmitted to 

C40-1 using this existing communication network. The combined results were then 

displayed on the host computer. 

Dynamic switching of each configuration was performed using XC6200ADS tools 

controlled through user intervention. In conjunction with C40 test programs, the 

dynamic switching capability of both design strategies was verified. 

During this test procedure however, it was observed that positions of individual bytes 

within the C40 communication channel packets would be incremented causing data 
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transfer errors. This was an infrequent feature, but occurred upon completion of 

dynamic reconfiguration. 

Byte position shifts were caused through the manual instigation of reconfiguration not 

being in synchronism with the free-running C40 operation. If the C40 governed RTR 

using the self-configuration control mechanism, byte shifts would not occur since RTR 

completion and C40 communication channel operations would be sequenced. 

Analysis of non-structured configurations, determined that the allocation, distribution of 

routing resources and operand throughput was dependant upon the comport positions 

used. Through developing further explorative hardware configurations, it was apparent 

that routing constraints encountered when using non-structured data paths would 

prevent the insertion of processing elements within a routing hub. 

It was concluded that to develop routing-hub based processing elements a structured 

design approach was desired. Fabricating a discrete routing topology using a non- 

structured design would generate greater operand throughput, but at the expense of 

incurring greater RTR delays. 

7.5 Routing-Hub Processing Elements 

The previous section investigated the merits of including dynamic routing resources 

within MIMD DSP architectures. In comparison to the existing router hardware, the 

operating characteristics of the XC6200 implementations were poor. This was attributed 

to limitations within the XC6200 FPGA architecture and not the operating principles of 

the design. 

To further investigate this aspect of dynamic routing hubs, processing elements were 

configured within hub data paths. These processing elements implemented simple fine- 

grain local operations, computed inefficiently within the DSP architectures optimised to 

accelerate coarse-grain operations. Coarse grain functions typically require floating- 
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point calculations unlike local operators that can be processed using fixed-point 

notation. 

Within digital image processing applications, the processing power associated with DSP 

multiprocessor architectures was normally harnessed to extract information from within 

an image [2]. Prior to performing this function, pre-processing of the image typically 

occurred and included functions such as binary threshold and edge detection. 

Upon commencing system operation, operands and images within a multiprocessor 

environment must be distributed amongst system nodes via a routing topology. If local 

fine-grain type pre-processing functions were performed during operand/image transfer, 

computation overheads for each node would be reduced. Once pre-processing 

operations had finished, unused hardware within the routing-hub could then be re- 

adapted to increase communication bandwidth between system nodes. Within this 

concept, the routing-hub itself could appear as an additional processing node, or as 

shared memory, if routing-hub transfers were not required during phases of system 

operation. 

Through constructing the routing hub, it was apparent that logic resources available to 

implement such processing elements would be limited. It was possible however to 

develop a simple applications to demonstrate this concept. The primary operation 

developed was the Roberts Cross Edge Detector. This algorithm is described next. 

7.5.1 Roberts Cross Edge Detector 

The Roberts Cross edge detector, as the name suggests is used to detect gradient 

changes (edges) within images. This function operated using two convolution masks as 

shown in Figure 7.8, with each mask scanned over the input image. The mask 

coefficients appear similar to the Sobel operator and are rotated so that mask-one 
determines gradient changes in the X-plane of the image, whilst mask-two the Y-plane. 
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Through combing the operation of the two masks, the contour information of the target 

image can be extracted. This can be considered a local-type operation since each 

calculation requires a pixel connectivity of four. Further only one addition and two 

subtraction operations are required within the computation. The simplistic operation of 

mask operation however makes the Robert Cross operator vulnerable to noise within the 

image. 

P1 P2 

P3 P4 

+1 0 

0 -1 

o +i 

-i 0 
Pixel Grid Positions Mask One X-Plane 

Figure 7.8 Roberts Operator Mask Coefficients 

Mask Two Y-Plane 

The combined functions of both masks are shown in Equation 7.1. 

GI = Gx2 + Gy2 

Equation 7.1 

Equation 7.1 can be approximated using Equation 7.2, with the operation re-written in 

terms of the mask operations in Equation 7.3. 

IGI = IGxI +I Gyl 

Equation 7.2 

IGI = IPI - P4I + IP2 - P31 

Equation 7.3 

To determine the presence of an edge, the resultant gradient is quantisised. If the 

magnitude of gradient (G) is greater than the threshold an edge has been detected and a 

black pixel is written to the output image in the corresponding grid position of mask 

pixel P3. 

In typical Roberts Cross applications, edge detection is the only function required. It is 
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also possible to determine the orientation of the edge within the output image. This 

operation is shown in Equation 7.4. 

=tan-'(cx) -(4 "r ) 

Equation 7.4 

To determine the edges orientation, the base angle was taken as the direction of 

maximum contrast running from left to right of the output image. 

An example of the Robert Cross operation is shown in Figures 7.9 and 7.10. Figure 7.9 

is the original image, whilst Figure 7.10 is the output image generated with an edge 

threshold of 40. The original image was a 512x512 pixel 24-bit colour optical fringe 

pattern, converted to 8-bit grey-scale using XC6200ADS tools. Within the output image 

(Figure 7.10) 99,475 pixels (represented in black) were greater than the threshold value. 

Figure 7.10 Roberts Operator Output 

7.5.2 Roberts Operator Hardware Implementation 

The Roberts Cross edge detector algorithm was implemented within a XC6264 FPGA 

using a 9-bit twos-complement bit-slice design. The block diagram of this hardware is 

shown in Figure 7.11. The design was constructed using arithmetic hardware developed 

in Chapter-4. 
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The design has four inputs P1, P2, P3 and P4 relating to the pixel position in Figure 7.8, 

and two outputs. Output Sum is the Roberts gradient (G) prior to quantisisation, with the 

threshold value determine by the content of a register within the design. The detection 

of an edge is indicated by signal Edge. 

Twos 

hi 
Magnitude 

Complement Converter Adder Output 
Subtract Overflow 

Twos ý-j Magnitude Output Complement Converter Threshold Subtract 

Sum Edge 

Figure 7.11 XC6264 Grey-scale Roberts Operator Hardware Implementation 

The design functioned by first performing the subtractions operations within Equation 

7.3. If the results generated by these operations were negative, they were then converted 

back to a positive magnitude. The addition operation was then calculated with the 

output magnitude limited to a value of 255 (8-bit grey-scale representation). Edge 

detection was performed through subtracting this value (sum) from the threshold value. 

If a negative result was generated an edge had been detected. 

The complexity of the design could be reduced if monochrome (binary) input images 

were used. Within such images, pixel values were represented using one-bit data. 

Roberts operator hardware can therefore be simplified to three logic gates as shown in 

Figure 7.12. 
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Figure 7.12 XC6264 Monochrome Roberts Operator Hardware Implementation 

The implementation characteristics of each configuration are listed in Table 7.5. The 

results indicated that the binary Roberts operator had greater throughput than the grey- 

scale version. This was expected when considering the complexity of each operation. 

Number of CLCs Maximum Frequency 
Gra -scale 173 6.704MHz 

Monochrome 3 62.697MHz 

Table 7.7 XC6264 Grey-scale and Monochrome Operator Characteristics 

To compare the output response of both grey-scale and binary Roberts operator 

implementations, a common input image (Figure 7.9) was used. This image was 

converted to binary before the monochrome operation commenced automatically within 

the XC6200ADS; A hardware version of this operation was also developed during the 

project. 

The XC6264 output images obtained for an 8-bit grey-scale and monochrome Roberts 

operators are shown in Figure 7.13 and Figure 7.14. The monochrome implementation 

used a binary threshold of 130 prior to applying the Roberts operator, whilst the Grey- 

scale version had an edge threshold of 40. 

Inspection of the images revealed that the 8-bit operator generated superior edges 

compared to the binary version. This deficit was expected and could be adjusted 

through employing histogram shifting prior to converting from grey-scale to 

monochrome image. Interpretation of the output generated however is dependant upon 

human visual perception. 
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Figure 7.13 Grey-scale Output Figure 7.14 Monochrome Output 

7.5.3 Roberts Operator Routing-Hub Integration 

The implementation of the Roberts Cross operator within the routing-hub is shown in 

Figure 7.15. Data was communicated and controlled through the secondary crossbar 

switches enabling and disabling Roberts operator hardware as required. Input image 

pixels were written through comport-12 in one C40 word. Within the Roberts operator 

hardware a FIFO four-bytes deep was used to separate and apply each individual input 

pixel (PI-P4) to the processing elements. 

Edge detection was determined using comport-9. Within the Roberts hardware 

implementation, signal Edge was represented by a single bit-value. Each bit within the 

word read by the C40 was set to the Edge value. 

The Roberts threshold level was written through comport-8, and could be updated 

during system operation. One byte was required to implement this value but the method 

of applying input pixels constrained this value to be written within the fourth byte of the 

C40 word. This value could be controlled through observation of output signal Sum via 

comport-7. 
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Figure 7.15 Router Hub Processing Element Configuration 

To verify the operation of this topology, two TIM-40 nodes were attached. Similarly to 

Section 7.4, the internal routing topology of the TIM-40 motherboard was used to 

transfer test data between the secondary C40 and JTAG root nodes. 

The primary node was connected to comport-12 (P1, P2, P3 & P4) and comport-9 

(Edge), whilst the secondary node was connected to comport-7 (Sum) and comport-8 

(Threshold). This topology allowed the threshold to be calculated and adapted during 

system operation. The feature could also be accomplished through a temporally 

partitioned version of the Roberts operator processing hardware. 

Whilst evaluating the monochrome operator only one C40 node was required since no 

threshold value was used nor sum generated. Input data was written through comport-12 

(P1, P2, P3 & P4) and the result read from comport-9 (F). 
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The optimum hardware characteristics obtained for each edge detector configuration are 

shown in Table 7.8. The volume of RTR configuration data generated (address/data 

pairs) was determined using the skeleton router hub architecture (Figure 7.7) as the 

configuration prior to the Roberts operator. Using XC6200ADS RTR, the configuration 
delay was measured externally. 

Roberts Cross Configuration Signal Delay RTR Data Volume Configuration Dela 
Grey-scale Pixel Operator 303.24nsec 2951 1.1053sec 

Binary Pixel Oerator 290.64nsec 1562 0.627sec 

Table 7.8 XC6264 Dynamic Router/Processor Hub Hardware Characteristics 

During testing however, the XC6264 clock frequency was set to 2MHz. Inserting the 

grey-scale Roberts operator within the routing-hub actually increased operand 

throughput by 183.24kbytes/sec to 824.4kbytes/sec compared to a channel capacity of 

641.16kbytes/sec, calculated when using both primary and secondary routing resources 
(Section-7.3.1). Prior to this experiment it was predicted that hub throughput would be 

reduced since the XC6264 configuration would be of greater complexity. Contradictory 

results however were obtained since hub secondary routing resource signal mappings 

(Figure 7.5) generated by XACT6000, differed for each hardware configuration. This 

further highlighted the limitations of XC6200 FPGA architecture and development 

tools. 

Basic mechanisms for automated threshold calculation using the value of Sum were 

explored. If the value of Sum was small compared to the edge threshold then the kernel 

pixels (P1-P4) were in a region of low variation (no edges). However, if the value of 

sum was just less than the threshold, the active pixels were in a region of high frequency 

content and the threshold value would then be adjusted to detect the edge. 

Using XC6200ADS software tools this concept was demonstrated using image `lena'. 

Figure 7.16 shows the output of a Roberts Cross operator with an edge threshold of 30. 

Edge pixels were detected 23931 times within the input image. During the operation 

however, it was discovered that the Sum values of 12998 additional kernel operations 
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were below the edge threshold by a deviation value of 8 or less. The deviation value 

was chosen to be 8 through analyses of the Suer values generated. Exploring this 

concept however was beyond the scope of the project and required further investigation. 

The Roberts Cross edge detector output using a primary threshold value of 30 and 

deviation value of 8 is shown in Figure 7.17. Figure 7.18 illustrates the output when 

threshold values of 38 excluding threshold deviations are used. With a threshold value 

of 30 and active deviation of 8,36929 kernel operations detected edge pixels. In 

comparison a threshold value of 38 with no deviation detected 16398 edge pixels. 
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Figure 7.18 Edge Threshold 38 with no Deviation 

7.6 Summary 

I' 
,' 

4, i 

This chapter has presented two methods by which dynamic hardware can be integrated 

into an existing multiprocessor topology to enhance system operation. Through 

inclusion of a dynamic routing-hub using dynamically and temporally partitioned 

routing structures, inter-node bandwidth can be adapted during system operation to 

speed-up operand transfer between nodes. 

A dynamic hub has the potential to increases application diversity and system 

throughput, by enabling the structure of the processing topology to be adapted for 

optimal efficiently during each phase of an application. Through dynamic configuration 

the routing-hub could appear as an additional processing node during periods of limited 

operand transfer. 

Expanding this idea further, a fine-grain pre-processing function (Roberts Cross) has 

been inserted into data-channels within the routing huh, with the aim to overlap operand 

transfer and computation overheads. This has increased system performance by offering 

`front-end' fine grain processing and un-expectantly, increased data transfer rates. 

The limited performance XC6200 based hardware developed to explore these concepts 

has not resulted in any increase in C40 MIMD performance. However they have 

176 



Chapter 7: XC6264 Dynamic Routing Hub 

demonstrated the potential performance gains obtained from these ideas, and have 

ratified development strategies used. 
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Chapter 8 

Conclusions 

The objective of the work presented in this thesis has been an investigation into the 

integration of dynamic hardware resources within a DSP based multiprocessor 

architecture. This has been accomplished through implementing RTR hardware within a 

custom designed dynamic hardware development platform (XC6200DS). The outcome 

of this work has resulted in the construction of custom dynamic hardware and software 

tools, allowing the development of three novel aspects within configurable computing 

technology. These concepts have addressed dynamic hardware application development 

(BinDCT), dynamic coprocessor operation (self-configuration controller), and RTR 

routing-hub integration within multiprocessor architectures (routing-hub, Roberts Cross 

operators). 

Limitations encountered within dynamic FPGA development tools have constricted the 

progress of this work to focus primarily on developing efficient RTR design principles, 

applications and dynamic operation, rather than increasing the raw operand throughput 

of the original parallel processing architecture. 

Through exploiting redundant properties within the BinDCT algorithm during run-time, 

one and two-dimensional transform operations have been developed. Compared to static 

XC6200 FPGA implementation, dynamic hardware operation has increased operand 

throughput from 9.26 to 18.52 kBinDCT ops/sec per one-dimensional operation, 

improved the inherent DC coding-gain, resulting in increased accuracy in 

approximating true DCT operation. 

Dynamic BinDCT operation was realised using a temporally partitioned C40 DSP 

XC6200 fixed-point dynamic coprocessor application (Chapter-6). To perform this 

operation a novel configuration controlled mechanism known as the self-configuration 

controller was developed. This concept enabled RTR to be performed without user 
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intervention, instead being instigated by the C40 DSP or XC6200 coprocessor function 

itself. 

Through adapting the XC6200 coprocessors configuration during run-time, the 

throughput of two-dimensional BinDCT operations was increased by a factor of two for 

8x8 pixel tiles possessing limited frequency contents. Increases in operand throughput 

however were masked by the RTR delay incurred. This factor was XC6200 FPGA 

specific and would decrease dramatically through improved dynamic semiconductor 

technologies. The implementations of the BinDCT algorithm using temporally 

portioned dynamic hardware were novel concepts. 

The integration of dynamic coprocessors resources within the DSP multiprocessor 

architecture demonstrated how operand throughput could be increased through using re- 

usable application-specific hardware. The topology created provided each processing 

node with a hardware resource that could be configured and optimised to accelerate 

each computation during system operation. Using this technology each node exhibited 

virtual hardware capabilities. 

The insertion of a dynamic routing hub within the TIM-40 multiprocessor 

communication topology has also revealed aspects of system operation that can be 

accelerated through dynamic hardware implementation (Chapter-7). Prior to inserting 

the routing hub, node operand transfer bandwidths were fixed during system operation. 

Through incorporating dynamic hardware, inter-processor bandwidths could be adapted 

during system operation and accelerate data transfers. Even with the limited bandwidth 

restrictions imposed through using XC6200 FPGA based hardware, the routing hub 

developed proved this aspect viable. 

In constructing dynamic routing hardware, a trade-off between communication channel 
bandwidth and RTR delay (configuration data volume) existed. Although this factor 

appeared XC6200 FPGA specific, the development methodologies demonstrated during 

routing-hub construction have contributed to combating and rectifying this problem. 

179 



Chapter 8: Conclusions 

Incorporating elements within FPGA architectures such as predefined bus routes and 

dedicated crossbar switches have been explored. 

To investigate the ability of RTR system nodes to implement router and processing 

resources concurrently, the XC6264 routing-hub possessed a secondary `user' 

configurable area within its skeleton architecture. This was a novel concept within 

parallel processor routing topologies. To expand this notation, local-type fine-grain 

image processing operators were inserted within data-paths of the routing-hub. The aim 

was to overlap computation and operand transfer overheads by performing simple 

functions upon the data whilst in transit. 

A Roberts Cross edge detector hardware implementation was developed to explore this 

feature (Section-7.5). Although this hypothesis proved beneficial to system architecture, 

the throughput obtained was again restricted by XC6200 FPGA hardware limitations. 

Through inserting reconfigurable hardware within an existing fixed processing 

topology, the potential benefits to system operation were demonstrated. The optimal 

exploitation of these factors was not obtainable due to limitations imposed by the 

dynamic media. 

The XC6200 FPGAs and development tools purchased were supplied for research 

purposes only. The effects of this restriction were visible through inefficient 

development tools and poor hardware operating characterises when compared to current 

FPGA architectures. The XC6200 FPGA family were used as the dynamic resources 

since no other suitable RTR devices were commercially available. 

If developed commercially, the XC6200 family would have matured with gate capacity, 

operating frequency, dynamic configuration performance and quality of development 

tools. However, no industry standard dynamic applications existed, therefore demand 

for these semiconductors were low. It is hoped that application concepts demonstrated 

within this thesis may address this issue. 
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To exploit fully the benefits temporal partitioned hardware can offer, configuration 

delays must be reduced. This can be accomplished through advancements in RTR 

configuration mechanisms, and increases in reconfiguration granularity. The fine-grain 

granularity of the XC6200 requires each logic gate to be configured independently, 

generating large configuration files. If RTR could be performed on larger configuration 

tiles such as ALU units rather than individual gates, the volume of configuration data 

required would be reduced, hence configuration delay reduced. 

Whilst constructing dynamic hardware, it became evident that in-circuit verification of 

dynamic hardware configurations was non-existent. This limitation was apparent for 

both functional testing and ensuring RTR had been successful. To address these 

problems in-circuit hardware verification methods were developed using the XC6200 

FastMAPTm interface (Section-4.1). Although they proved reliable in operation, these 

methods were inadequate and poor compared to existing hardware design standards 

such as IEEE JTAG Boundary Scan [79]. 

The design philosophy used whilst developing dynamic hardware was to minimise 

differences between consecutive configurations. Although these techniques were 

XC6200 FPGA specific, it was evident that hardware designed for minimal RTR update 

was beneficial. RTR overheads and in-circuit hardware verification requirements would 

be reduced, and the design would exhibit greater operational reliability since fewer 

architectural changes occurred between successive configurations. 

The aims of the project have been achieved, with three aspects of system operation 

enhanced through dynamic hardware. The potential performance benefits gained 

through using reconfigurable logic have been demonstrated. Before maximising these 

goals however, advancements must be made within configurable device architectures, 

software development tools, design strategies and in-circuit verification methods. 

Progressions of these tasks has commenced within academia, and now starting to occur 
in industry [46] [47] [48]. The potential performance benefits offered by this technology 
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will be more apparent through further application development and semiconductor 

fabrication technologies reaching the limits of Moores law. Achieving high operand- 

throughputs would therefore show greater dependence upon efficient hardware 

implementation, rather than increased clock frequencies. 

Through the inclusion of dynamic hardware resources within a traditional instruction- 

set parallel processing topology, the potential for increased application diversity and 

greater processing capacity has been demonstrated. The goals have been reached 

through exploitation of the concepts of virtual hardware and temporal application 

development. 
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Chapter 9 

Recommendations For Future Research 

Introduction 

To advance the development and facilitate the inclusion of dynamic hardware within 

industrial applications, problem areas highlighted within Chapter-8 must be rectified. 

The recommendations addressing these issues are divided in three categories. These are 

dynamic hardware technologies (Section-9.1), XC620ODS operation (Section-9.2) and 

dynamic hardware application development (Section-9.3). 

9.1 Configurable Logic Technology 

Whilst developing RTR hardware, it was evident that in-circuit test mechanisms for 

dynamic hardware did not exist. Limited hardware verification was only possible 

through using the XC6200 FPGA FastMAPTm interface. Improvements must be made to 

this aspect of hardware development if dynamic configuration is to be accepted as an 

industry standard. 

Dynamic in-circuit verification must be present within a design to ensure that each run- 

time configuration used functions correctly. This task must be accomplished during run- 

time without inhibiting system throughput. To achieve this function, a multi-level real- 

time in-circuit hardware verification method, similar to the JTAG chain operation is 

proposed. 

Within this concept hardware verification and operand throughput would occur 

concurrently through the use of four-level stimuli within FPGA CLBs as illustrated in 

Figure 9.1. The proposed FPGA architecture would consists of a dedicated on-chip CLB 

hardware verification interface unit, coupled to a (on-chip/external) memory containing 

specimen input and output test stimuli. The specimen results contained within the 

memory would be generated using software development tools prior to system 
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operation. During system operation, input test stimuli would be read from memory 

through the hardware verification interface and applied to the respective FPGA CLB. 
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Where: TO-T3 correspond to signal levels in Figure 9.1 

Table 9.1 Binary to Multiple Threshold Conversion Table 

Through combing both the CLBs input data and test stimuli within a multi-level signal 

conversion unit, a four-level signal response is generated as shown in Table 9.1, where 

A is a CLB binary input, As the test stimuli, and Al is the resultant multi-threshold 

signal. This response is then separated in to actual and test stimuli CLB outputs using a 

complementary multi-level signal converter. The FPGAs hardware verification unit 

would then compare the CLBs output test stimuli against pre-defined specimen results 

(located within the stimuli memory). If errors were detected remedial action would be 

taken including reloading defective CLBs or halting system operation and generating an 

error signal. Stimuli responses generated could also be transferred to and evaluated by 
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software tools through the stimuli memory software development environment 
interface. 

To increase the performance of dynamic hardware configuration overheads must be 

reduced. This can be accomplished through increasing the granularity of RTR 

component tiles from single logic gate functions (XC6200) to ALU type operations, 

hence reducing the volume of configuration data required for RTR. Dynamic 

performance can also be improved through the development of more efficient 

configuration mechanisms. The primary problem with existing FPGA configuration 

interfaces is the limited bandwidth between on-chip configuration mechanisms and 

external configuration stores. 

The system throughput and component interfaces between temporally partitioned 

hardware could also be improved, through incorporating self-timed design techniques 

within dynamic FPGA operation. For these concepts to be realised further investigation 

into the subject area is required. 

Evolvable hardware has been toted as the solution for developing ever-more efficient 

digital designs. Presently, evolvable hardware configurations are generated by 

manipulation of FPGA configuration data sequences, updated through examining the 

FPGAs output compared to the desired hardware function. Through each evolutionary 

cycle, the FPGAs configuration stream is modified to adapt the FPGAs output to mimic 

more closely the required function. 

The function and mechanisms of FPGA hardware configurations used within the 

evolutionary cycle do not follow any traditional synchronous digital design techniques. 

Instead features such as FPGA signal propagation delays and silicon electro-magnetic 

properties are utilised within the hardware's function and evolution. These factors 

however are device dependant and can vary with temperature and operating frequency. 

To address this issue, CLB configurations should be used as the evolutionary building 
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blocks, with updates of FPGA configuration performed using structured CLB 

configurations. This is in contrast to the present method of randomly modifying FPGA 

configuration bits, and then determining the effect this has had upon system output [63]. 

9.2 XC620ODS Operation 

The XC620ODS was conceived as a multi-purpose development platform for RTR 

hardware. The system hardware and software tools were designed for easy operation, 

efficient construction and versatility, rather than raw performance. 

To improve the XC6200ADS, the existing user interface should be replaced with a 

Windows style menu GUI. The structure of the software also needs to be improved 

since it has continually evolved throughout the project. Its operation has now reached a 

standardised format, and therefore could be rewritten and optimised to improve 

operational performance. 

The XC620ODS hardware design could be improved by replacing the external self- 

configuration RAM module (connected to XC620ODS using 40-pin IDC cable) with 

onboard RAM. This would improve the reliability of the self-configuration operation 

since the electrical noise encountered during configuration data transfer would be 

reduced. 

To increase the bandwidth between the FastMAPTm interface and host computer, the 

XC620ODS should be redesigned as a PCI type peripheral or newer video interface 

standard, having 32-bit instead of 8-bit internal architecture. Inclusion of an on-board 
digital camera interface would also be beneficial to application development. 

Further, modifications to the TIM-40 expansion port needs to be assessed. Although this 

proved operational, a more suitable construction method is required. 

186 



Chapter 9: Recommendations For Future Research 

9.3 Application Development 

The XC6264 coprocessor implementation of the BinDCT has shown how RTR can be 

used to improve the operand throughput, loss-less DC coding gain, and DCT 

approximation accuracy, compared to static hardware configurations. Work however is 

required to enhance the existing mechanisms used to determine the optimal BinDCT 

configuration for each pixel kernel. The present mechanism functions by applying each 

BinDCT configuration sequentially, and then calculating, which has generated the 

greatest inherent DC coding gain. Although it proved reliable in operation, this 

technique requires additional processing overheads that must be performed prior to 

BinDCT dynamic operation. One solution to this problem is to examine the variation of 

data within an input sequence block during computation, to determine if it has high or 

low frequency contents. 

Experiments conducted have only assessed BinDCT operation using configurations 

BinDCT-C1 and BinDCT-C9. Further work is required to determine if including 

configurations BinDCT-C2 to BinDCT-C8 enhances dynamic operation. 

To explore further the benefits of implementing BinDCT hardware within real 

applications such as JPEG compression, higher operand throughputs must be obtained. 

This is possible through implementing BinDCT hardware using parallel bit-wise 

implementation techniques instead of serial methods used within the XC6264 design. 

Before this can occur however the logic capacity of dynamic FPGA technologies must 

increase. 

The concept of a multiprocessor dynamic routing hub can be advanced through 

developing automated system configuration strategies. The optimal configuration of the 

routing hub could be determined through analysing the bandwidth of data transfers and 

system bottlenecks occurring within the multiprocessor topology. Further, the concept 

of Roberts Cross edge detector threshold deviation should be explored in greater detail. 
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The final recommendation is to investigate the effects configurable logic could have on 

product design and operation. Design life spans could benefit from using configurable 
logic, and not just necessarily dynamic hardware. 

Within electronic manufacturing, the lifespan of evolving commodity products such as 

mobile phones is limited. Such product designs become obsolete as new developments 

occur and consumers upgrade their hardware to be at the cutting-edge of technology. If 

products such as these were developed using reconfigurable hardware, users could 

upgrade to the latest protocols by downloading new configurations. This would help 

improve the lifespan of designs. 

A further product concept is that of a multi purpose base-unit that a consumer reuses to 

perform multiple applications. Consumers would purchase each function as required, 

which are stored locally within a non-volatile configuration memory. Dependant upon 

the application required by the user, the appropriate hardware function would then be 

configured within in the base-unit. 

The two concepts outlined will expand on the techniques of remotely generating, then 

downloading FPGA configuring data using the Internet known as Internet 

Reconfigurable Logic (IRL), as practiced today by Xilinx [82]. 
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Appendix I: Programmable Logic Device Technologies 

Appendix I 

Programmable Logic Device Technologies 

Introduction 

Existing PLDs can be fabricated using one of four mainstream technologies. These are 

Fuse, Anti-Fuse, Floating-Gate and SRAM. An overview and operational characteristics 

of each are described in Sections I-1 to 1-4 respectively. 

Appendix I-1 Metal Fuse Technology 

Early PLD fabrication used fuse based programming technology. The fuse consisted of 

a metal strip connecting two signal routes, and when configured would appear as either 

a short or open circuit connection. Three typical fuse types are shown in Figure I. I. If a 

fuse was programmed to be an open circuit, a current source larger than the normal 

operating conditions had to be applied. 

Bar Taper Notch 

Figure I. 1 PLD Metal Fuse Technology 

Within the PLD architecture control circuitry (Figure I. 2) was required to distinguish 

between programming and normal operating modes (via Zener diodes), and providing 

additional current (typically 50 -100 mA) to blow the metal fuses (using transistors). 

Once a fuse had been made open circuit it could not be reverted back to a short circuit. 

Fuse based PLDs were therefore one-time programmable devices. This technology was 

non-volatile since the PLD retained its configuration after the supply voltage had been 

removed. 
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Figure 1.2 PLD Configuration Control Circuit 

Off 

Appendix 1-2 Anti-Fuse Technology 
Anti-fuse PLD technology exhibits similar operational characteristics to that of metal 

fuse devices. The difference is that an anti-fuse appears open circuit until it has been 

'blown', and then it becomes a short circuit. This is the reverse operation of a metal fuse. 

Anti-fuse PLDs can be programmed only once and have a non-volatile configuration. 

Figure 1.3 illustrates the programmed and non-programmed states of an anti-fuse. An 

anti-fuse construction is similar to that of an MOS transistor, but with a dielectric 

inserted between the poly-silicon and the N+ diffusion region. Before configuration, the 

dielectric prevents current flow between the poly-silicon and the N+ diffusion region, 

thus the anti-fuse has a high resistance (appears open circuit). 

Upon application of a programming voltage larger than the normal operational voltage, 

the dielectric melts, hence the anti-fuse has been `blown'. This allows current flow 
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between the poly-silicon and the N+ diffusion region to occur (appears as a short 

circuit). 

Field C 

Poly-silicon Dielectric 

Before 'Blowing' After 'Blowing' 

Figure 1.3. PLD Anti Fuse Construction 

Anti-fuse PLDs exhibited higher logic densities due to the smaller silicon footprint of 

anti-fuses compared to metal fuses. This technology is still used in FPGAs and CPLDs 

manufactured by vendors such as Actel and Quicklogic. 

Appendix 1-3 Floating-Gate Transistors 

Metal and anti-fuse technologies were limited by the fact that they could only be 

programmed once. Further programming circuitry used up valuable silicon real-estate, 

hence reduced the gate capacity. 

Reusable PLDs became viable through the introduction of floating-gate technology. 

Instead of using fuses, floating-gate technology incorporated transistors configured as 

pass-switches. By increasing the transistors gate threshold voltage above the supply 

voltage the operation of the transistor pass-switch could be disabled. This concept is 

shown in Figure 1.4. 

The application of a high potential between the gate and the drain regions of the 

transistors prevents the formation of a conduction channel, hence the transistor appears 
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open circuit (non-conductive). This is because the threshold level of the gate terminal 

has been increased to a value greater than the normal operating supply voltage 

1St Gate Level 
2nd Gate Level 

Figure 1.4 Floating-Gate PLD Technology 

N Routing Connections 

X, 

The additional gate charge can be removed through exposing the gate region to ultra- 

violet light or using electrical methods. This provides a distinct advantage over previous 

technologies since floating-gate devices can be programmed multiple times. These two 

erasure methods are similar to that used in EPROM and EEPROM memory 

technologies. Examples of EPROM and EEPROM PLDs are Altera MAX5000 and 
Vantis MACH series respectively. 

Appendix 1-4 Static Random Access Memory 

This programming technology uses the content of a SRAM memory to control the 

function of pass transistors (switches), multiplexers and memory LUTs. This concept is 

shown in Figure 1.5. 
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LUT 

Address Data 

1234 XXXX 

1235 XXXX 

1236 XXXX Transistor Switch 

1237 XXXX 

1238 XXXX 

1239 XXXX 
Multiplexer 

123A xxxx 
......................... _.............. ....... _..... 

123B XXXX 

Figure 1.5 SRAM PLD Technology 

SRAM based PLDs are reconfigured by overwriting the contents of the configuration 

memory. The advantage of SRAM PLDs is that they can be configured much quicker 

than previous programming technologies. SRAM memory however is volatile and must 

always be configured upon power-up. Normally configuration data is stored within an 

external PROM. 

A second disadvantage is that the implementation of SRAM requires large silicon real 
footprints when compared to floating gate and anti fuse technology. An example of 
SRAM based user programmable devices are the Xilinx XC4000 FPGA family. 
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Appendix II 

Configurable Computer Architecture 

Introduction 

This section of the Appendix explains in greater detail the architecture and operation of 

configurable computing machines discussed in Chapter-2. 

Appendix 11-1 Transmogrifier-2 

The Transmogrifier-2 (TM-2) [78] was a second generation multiple FPGA based rapid 

prototyping system that could implement logic designs up to one-million logic gates in 

complexity. The system was modular and consisted of between one to sixteen TM-2 

circuit boards, interconnected via a back plane to a host computer. For each design, 

prototype hardware was first manually partitioned upon the system and then 

automatically configured. 

The outline architecture of a TM-2 board is shown in Figure R. I. Each board consisted 

of two Alters 10K50 FPGAs, dedicated local memory, hierarchical FPID based 

interconnection network, clock generation circuitry and housekeeping functions. 

Designs implemented upon the TM-2 system were partitioned and configured amongst 

multiple FPGAs. Therefore a flexible and high bandwidth two-layer hierarchical 

crossbar FPGA interconnection topology was formed using I-Cube IQ320 FPIDs. This 

topology enabled FPGAs to share operands and memory resources upon each board, 

and at system level. 

The lowest level of crossbar hierarchy was at board level. This is illustrated in Figure 

111.1, with the crossbar switch formed using FPID 1, FPID2 and FPID3. The top level of 
this topology was at system level and formed through interconnecting FPID-4 of each 
board in the system via the back plane connector. 
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Clock 
Generation 

House 
Keeping 
FPGA 

I/O Connector 
Debugging Bus 

Figure 11.1 Transmogrifier-2 Board Architecture 

The housekeeping FPGA upon each TM-2 board supervised the downloading of 

configuration data to both FPIDs and FPGAs. It also detected short-circuits occurring 

between devices through monitoring device supply currents. Short-circuits could occur 

through errors introduced during the manual partitioning of designs, enabling multiple 

signals to drive a single net. When short-circuits were detected, the housekeeping FPGA 

disabled the output of the board and notified the host computer. 

Back Plane Connector 
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The TM-2 architecture was primarily designed to develop hardware and enable real- 

time debugging of prototype designs using a dedicated 32-bit bus. Through the action of 

this bus and the interconnection topology, any signal within the system could be probed. 

Connecting system devices within a JTAG chain also performed prototype debugging. 

Since the JTAG chain used serial rather than parallel data transfers, JTAG bandwidth 

was less than that of the TM-2 32-bit debugging bus. 

Designs were implemented using HDLs or schematic design entry methods, but 

manually partitioned amongst the systems FPGAs. The configuration of the hierarchical 

crossbar switch topology was then determined automatically using custom software 

tools. These tools also facilitated communication between the development computer 

and hardware prototyped within the TM-2 system. 

Appendix 11-2 Morphosys 

Morphosys was a coprocessor architecture developed to investigate the effectiveness of 

combining reconfigurable hardware with general-purpose processing architecture [43]. 

The system consists of an array of reconf: gurable cells (RC), processing core and 

memory interface fabricated together upon a single silicon chip. The architecture of the 

system is shown in Figure 11.2. 

The core processor was a RISC type architecture called TinyRISC and used for general 

purpose operations and managing the RC array. During system operation, additional 

instructions were inserted into the core processor instruction-set to govern configuration 

of the RC array. 

The configurable logic array within Morphosys was implemented using custom 

designed RCs. Compared to existing FPGA CLBs, the structure of an RC was coarser, 

with each containing an ALU, multiplier and register file. The configuration of an RC 

was determined using a word selected from a multiple-context configuration memory. 
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Using a global or a private context broadcast, the configuration of the whole array or 

individual RCs could be updated during run-time. 

W RC Array 
00000000 
00000000 

Core RISC 
00000000 

Processor 00000000 
011 011 001111 

1 100000000 
11 13 QQQQQQ 
QQQQQQQQ 

RC Array 
Configuration 

RC 

System Bus 

Single Silicon Chip 
External Memory 

Figure 11.2 Morphosys System architecture 

Behavioural models for Morphosys were developed in both VHDL and C programming 

languages. Applications for Morphosys written in C were simulated using a custom 

designed simulation tool called MuLate. Designs implemented in the VHDL are 

simulated using a VHDL model of Morphosys called MorphoSim within QuickVHDL 

Simulation environment. 

A Morphosys design consists of both instruction-set and configurable logic components. 

To map designs onto the RC array a custom development tool called mView was 

developed. The user inputted the function of each RC and the source and destination of 
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required operands. From this description the configuration of the RC array was 

generated. 

To combine multiple RC array configurations and sequence context switching, software 

was developed that determined the most efficient sequence in which the context 

switches should occur. This tools inserted specific instructions within the core processor 
instruction-set to instigate context switches. 

Currently, software is under construction that will allow system applications to be 

described in C. This software will then automatically map and generate the RC array 

configuration contexts and core processor instruction-set program. Applications mapped 

on to Morphosys have included video compression, automatic target recognition, and 

data encryption. 

Appendix 11-3 Splash-2 

Splash-2 was a prominent example of second-generation reconfigurable supercomputer 

architecture [24]. Splash-2 was designed principally to compute high-performance 

linear systolic applications. Through the flexibility of its architecture Splash-2 could be 

reconfigured to perform other tasks. Splash-2 has been used to implement image- 

processing functions such as Hough transforms, fast Fourier transforms and 

morphological operations. The architecture of Splash-2 is shown in Figure 11.3. 

A Splash-2 system consists of between one to fifteen Splash-2 array boards connected 

in a daisy-chain fashion and interconnected to a host computer. Each array board 

consists of 16 PEs and a crossbar switch controlled by a further PE. Each PE itself 

consists of a Xilinx XC4000 series FPGA and locally coupled SRAM memory. The 

crossbar switch enables inter-board PE communication and can be configured during 

run-time via the control PE. For each application, the PEs configurations were 
determined using development software located upon a host computer. 
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Splash-2 array boards are connected to the host computer using a shared bus and a 

private bus, connecting the host to the last board in the chain. The shared bus was 

known as the SIMD bus, and used to distribute input data to the array boards. Using the 

private bus (Rbus) results were then passed back to the host. Each array board was 

connected to its neighbours using a local bus network in a daisy-chain fashion. 

--------------------------------------------------- 
Array Board I 

Crossbar Switch 

;:; 

1t 

------------------------------------ --------------- 
Sun 
Sparc Local buses Processing Elements 
Ilost &" 
Interface ------------------------------ ----------------- 

Array Board 15 

Crossbar Switch 

Rbusý 

. ýýýý 

ý 

---------------------------------------------------- 

Figure 11.3 Splash-2 System Architecture 

Although Splash-2 was designed to implement a specific type of application, the 

flexibility of its architecture has enabled it to be used as a general purpose processing 

architecture. 

The Spash-2 development cycle begins with modelling the design using VHDL. The 

design was then partitioned for placement amongst the available resources, which was a 
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manual process. A design was first partitioned between individual array boards, and 

then amongst individual PEs. Once completed, the configuration of the crossbar switch 

PE was determined. Individual PE configurations were then described in VHDL, with 

each being compiled, routed, and then downloaded separately to the appropriate PE. To 

evaluate and debug the design, Splash-2's operating environment contained a dedicated 

library of C programming language functions and interactive debugger tool called T2. 

Appendix 11-4 DISC 

DISC [42] (Dynamic Instruction-set Computer) was the successor to the Nano processor 

[28] and designed to support run-time adaptation of its instruction-set. Figure 11.4 

illustrates the outline of DISC's architecture and consists of a simple core processor, 

linear hardware space (LHS), communication network, and external memory. DISC 

was an 8-bit processing architecture with all instructions being configured as demanded 

by the core processor within the linear hardware space. Instructions can accesses up to 

32kbytes of external memory and interact with each other using the core processor 

extended address, data and control buses. 

I' P(iA 

Communication 
Network 

Linear 
Hardware 
Space 

Figure 11.4 DISC System Architecture 
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The LHS can be considered as a two-dimensional grid of CLBs used to implement 

active instructions. To provide an underlying structure for the run-time adaptation of 

instructions, each instruction was configured in a horizontal chip-wide fashion. 

Therefore multiple active instructions were stacked vertically. Instruction placement 

was not restricted to any particular location, however they could not overlap. 

Instructions no longer required were removed to free up hardware resources, whereas 

instructions required on a regular basis were allowed to remain configured. This concept 

was considered as instruction caching. 

Instructions situated in the LHS were reconfigured during run-time using partial 

configuration. Instructions to be configured were determined by the processor core in a 

demand-driven manner as depicted by the application program. This program was 

essentially source code indicating the order of instruction execution, and contained 

configuration data to implement the instruction. 

The instruction-set and underlying core architecture of DISC were developed using 

commercial HDLs and software development tools situated upon a host computer. 

Within this environment multiple instances of each instruction module were generated 

since each instruction can be configured at a different location within the LHS. 

Additions were made to the existing instruction-set by creating the hardware 

implantation of a new instruction and then including its function within the DISC 

development software and application compiler. DISC applications were constructed 

using a variant of the C programming language. 

The initial DISC system was constructed within a single National Semiconductor CLAy 

FPGA, however, it was found that the logic resources available to implement custom 

instructions were inadequate. To increase the capacity of the custom instruction-set 

DISC2 was developed which partitioned the original DISC architecture upon three 

CLAy FPGAs. Improvements to the development computer interface were also made. 

DISC2 has been used implement image-processing functions such as low-pass filtering 

and binary threshold operations. 
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Appendix III 

TMS320C40 and XC66200 Component Architectures 

Introduction 

This section of the Appendix provides detailed explanations of key components used 

within the TIM-40 multiprocessor topology and XC620ODS described in Chapter-3. 

Appendix 111-1 TMS320C40 DSP 

Texas Instruments introduced the TMS320C40 (C40 hereafter) in 1989 [65]. The C40 

DSP was a floating-point based processor designed specifically for use in multiple 

processor environments. Incorporated in the architecture were dedicated components 

that facilitated inter-processor communication without degrading overall system 

performance. The internal bus width of the C40 was 32-bit, and supported a memory 

map of up to 4-Gwords (16-Gbytes), with all peripherals and sub-components accessed 

through memory mapped 1/0. A simplified block diagram of this architecture is shown 

in Figure III. 1. The key components are the Central Processing Unit (CPU), Direct 

Memory Access (DMA) coprocessor, inter-processor communication ports and two 

external memory interfaces (Local and Global). 

The C40 CPU consists of a floating point/integer multiplier, 32-bit barrel shifter, 

arithmetic logic unit (ALU), auxiliary register arithmetic units (ARAUs), thirty-two 32- 

bit registers and system buses. The multiplier can perform a 32-bit integer or 40-bit 

floating-point multiplication in one instruction cycle (50nsec @40MHz). The bus 

topology of the C40 enabled the ALU to perform single cycle 32-bit integer or 40-bit 

floating-point operations in parallel to the multiplier unit. This could only occur if 

arithmetic units did not share operands. A 32-bit barrel shifter within the ALU could 

also function concurrently to the multiplier. 

The two ARAUs were used to generate the addresses of operands within the CPU when 

using displacement based addressing modes such as index addressing. Each ARAU 
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could generate an address location in a single instruction cycle and function 

concurrently to the ALU and multiplier. 

External 
Global 
Interface 

OirchiEi S), tcm \lcmory 

r" 

Cacho IZAM I ROM 
External 
Local 
Interface 

Memory interface 
and System Buses 

Multiplier Barrel Shifter 

ALU 

DMA 
Coprocessor 

F DMA Channel 0 

DMA Channel 5 

(bm Port 0 

('uni Port 5 

Timer 0 

I inur I 

Figure 111.1 TMS320C40 DSP Block Diagram 

To reduce the CPUs burden of accessing operands from system memory the C40 

included a DMA coprocessor. The DMA coprocessor operated in parallel to the CPU 

and could access any address within the C40s memory map. The DMA consisted of six 

channels with each able to initiate data transfers concurrently. Data transfer occurred 

using a dedicated system of DMA controlled buses that appeared as a multiplexed 

resource to the DMA communication channels. Contained within the DMA were 

address counters, address generation units, and synchronisation control, which enabled 

the DMA and CPU to function in parallel and transfer operands with minimal 

performance overheads. 
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Fully exploiting the C40 architecture, the CPU could process eight operations per 

instruction cycle (50nsec @40MHz), in conjunction with the DMAs three operations, 

giving the C40 a total performance of 275-MOPs. 

To facilitate the development of C40 based parallel processing architectures, the C40 

possessed six high-speed communication ports that were used to implement inter- 

processor routing topologies and two external memory interfaces known as the Global 

and Local interfaces. These interfaces could be used to create shared and private 

memory resources. 

A communication port interface consisted of eight data and four control signals. Each 

communication port was bi-directional and could transfer data at rates of up to 20- 

Mbytes/sec. All respective control and data channels were mapped within the C40 

address space, therefore transfer of operands between the ports and CPU was performed 

by the DMA (using 32-bit operands). 

Each communication channel had input and output FIFOs which were 32-bits wide and 

eight levels deep. Since communication port data-buses were 8-bit, four consecutive 

byte transfers had to occurred to transfer a single C40 word. FIFOs provided a buffer 

for this operation, and in a single communication link, a combined buffer of 64 bytes 

existed (16 C40 words), therefore minimising the introduction of communication 

bottlenecks. 

Connecting individual C40 communication channels together was a `glue-less' 

procedure. The control of data transfer and the direction of the transfer for each 

communication channels was governed through the interaction of remote Port 

Arbitration Units (PAUs) using four control signals. The operation and interaction of 

individual PAUs upon a C40 can be considered effectively to be that of a finite state 

machine (FSM). During normal operation, this function was invisible to the user. 
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The Global and Local interfaces consisted of 32-bit data and 31-bit address buses and 

were mapped within different regions of C40 address space. Through these interfaces, 

single cycle operand transfer could occur from external memory to CPU (via DMA). 

To provide a flexible external memory/ peripheral interface, Global and Local interfaces 

could be configured independently. Within both interfaces two memory strobe signals 

could be configured, to divide the memory space into two further subsets. Within each 

subset, the memory page size, interface control signal operation, and transfer rates 
(inclusion of read/write wait states) could be configured. This operation was conducted 
by writing appropriate data to interface control registers. 

Contained within the C40 architecture were dedicated RAM, ROM, cache memory, and 

two peripheral timers that could be used to facilitate system performance benchmarking. 

Appendix 111-2 XC6200 Architecture 

Introduced by Xilinx in June 1995, the XC6200 FPGA family reflected the changing 

role and application of FPGAs in electronic circuits from implementing simple 

peripherals to processor-based hardware [32]. The XC6200 utilises SRAM based 

programming technology and can be considered a second-generation sea-of-gates array 

architecture. XC6200 devices could operate at up to 220MHz and had logic capacities 

up to 100000 gates. The architecture also contained a novel interface to facilitate 

processor integration known as the FastMAPTm interface. Through use of this interface, 

partial and dynamic configuration could be accomplished. 

The XC6200 programmable media consists of three types of units. These were 

configurable logic cells (CLCs), input/output blocks (IOBs), and the routing resources; 
CLC was another term used by Xilinx to represent CLBs. 

The CLC of a XC6200 was very different from that of previous FPGA CLBs, such as 

the XC4000 CLB. The XC6200 CLCs smaller granularity was a characteristic 
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consequence of sea-of-gate type architecture. Therefore the CLC structure and local 

routing resources were optimised to share logic resources with neighbouring CLCs. 

The functional unit (FU) of the CLC consisted of five multiplexers and a D-type flip- 

flop. A CLC could implement a two-variable Boolean expression, compared to the 

XC4000 CLBs two four-variable expressions. Depending upon the expression and 

external dependencies, a CLC could implement both a combinatorial and sequential 
function. Through experience gained however, it was concluded that a CLC could on 

average implement only one logic or register function at any one time. 

The CLC routing resources of the XC6200 were formed using a hierarchical layered 

routing topology formed upon blocks of 4x4 matrixes, with each level of this 

hierarchical structure containing its own routing resources. The first level of hierarchy 

consisted of a 4x4 matrix of CLCs (length-4 routes), with local interconnection routes 

confined within the 4x4 CLC matrix. The next level of hierarchy consisted of a 4x4 

matrix of the first hierarchy of cells (length-16 routes), which in effect formed an array 

of a 16x16 CLCs. Depending upon the type of XC6200 device, hierarchy levels could 

be three or four layers deep. The top layer of routing hierarchy supported chip-wide 

routing resources known as global routes. 

CLCs situated on the boundary edge of the highest hierarchy level were connected to 

IOBs, which simplified the partitioning, placement and routing of a design in multiple 

FPGA systems. XC6200 IOBs provided a means to route signals between CLCs and the 

pins on the FPGAs chip carrier. IOBs were connected to every CLC on the boundary 

edge of the CLC array. Not every IOB however was connected directly to an external 
P pin, since there were more IOBs present than chip-carrier pins. Local IOB routing 

resources however did ensure that every IOB could be connected to at least one pin. 

XC6200 family programming technology was SRAM based and could be programmed 

using a serial PROM like traditional FPGA applications. Unlike previous FPGAs, the 

XC6200 supported a dedicated processor interface, which enabled XC6200 SRAM 
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control and configuration memory to appear within the memory map of a host 

processor. Therefore the XC6200 appeared as a peripheral memory device, allowing its 

configuration to be updated by writing new data to the appropriate address location. 

This concept is shown in Figure IH. 2. Depending upon the XC6200 device used, the 

interface could support up to 18-bit address and 32-bit data buses. 

CLC Array 

Interface 
Buses 

Data 
Row 
Address 

Bus 

D31-DO 

Address 
Bus Control 

Registers Column 
Address 

A17-AO Fast MAP 
Interface 

Figure 111.2 XC6200 FastMAPTM interface 

Within the FastMAPTm interface, routing switches and CLCs were allocated address 
locations within the XC6200 configuration memory. Configuration data was transferred 

to memory using the FastMAPTm 32-bit data bus. However, the bus width was flexible 

and configuration data could be written in 8,16 or 32-bit formats. 

The FastMAPTM interface allowed the XC6200 to support partial configuration and 

dynamic configuration capability. This was because individual CLCs could be 

reconfigured without having to suspend the operation of unaffected CLCs. Through this 

interface, the content of CLC registers could be accessed. This provided a means to 

transfer data between host and CLC array and access internal control registers. Dynamic 

configuration could only be performed however using 8-bit FastMAPTM data bus 

transfers. 
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The XC6200 FPGA family never went into full production. The specifications of the 

devices obtained to construct the XC6200 ADS are detailed in Table III. I. Through 

experiments conducted however it became apparent that the gate capacities and 

maximum operating frequency listed could not be replicated. 

Device XC6216 XC6264 
Typical gate count 16000-24000 64000-100000 
Number of cells 4096 16384 
Number of I/O blocks 256 512 
lArray matrix size 64x64 128x128 

Table 111.1 XC6200 FPGA Specifications 
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Appendix IV 

XC620ODS Hardware 

Introduction 

This section of the Appendix contains Vantis Machi 11 CPLD PALASM and Xilinx 

XC4005 FPGA schematic designs used in the construction of the XC6200DS. 

Appendix IV-1 ISA Bus Interface 

TITLE isa_bus_int 
PATTERN A 
REVISION VER1 
AUTHOR C. MURPHY 
COMPANY CEORG 
DATE 07/08/01 

CHIP isa bus int MACH111 

PIN 1S 
PIN 17 
PIN 16 
PIN [2.. 9] 
PIN [15. . 141 
PIN [40. . 431 
PIN 39 
PIN 38 
PIN 37 
PIN 11 
PIN 25 
PIN 29 

IOR 
IOW 
AEN 
ADDIN[9.. 2] 
ADD_IN[0.. 1] 
ADDOUT [3.. 0] 
DATA ENA 
IOR_OUT 
IOW_OUT 
PC_CLK IN 
PC_CLK OUT 
TEST 

_P 

COMBINATORIAL INPUT 
COMBINATORIAL ; INPUT 
COMBINATORIAL INPUT 
COMBINATORIAL INPUT 
COMBINATORIAL INPUT 
COMBINATORIAL OUTPUT 
COMBINATORIAL OUTPUT 
COMBINATORIAL OUTPUT 
COMBINATORIAL OUTPUT 
COMBINATORIAL INPUT 
COMBINATORIAL OUTPUT 
COMBINATORIAL OUTPUT 

NODE ? 
NODE ? 
NODE ? 
NODE ? 
NODE ? 

EQUATIONS 

reset = gnd; 

ADD_NODE [3 
.. 0] 

ADD_IS_32X 
NOT DMA 
IOR_IOW 
ND ENA 

ADD_NODE [3.. 0]= ADD_IN [3.. 0] 
ADD OUT [3.. 0]= ADD_NODE [3.. 0] 

COMBINATORIAL 
COMBINATORIAL 
COMBINATORIAL 
COMBINATORIAL 
COMBINATORIAL 
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; Define ISA Address Range Ox32X 
IF (ADD_IN[9.. 4] = #H32) THEN 

BEGIN 

END 
ELSE 

BEGIN 

END 

NOT DMA 
IOR IOW 

NDENA 
DATA_ENA 

IOR_OUT 
IOW OUT 

ADD IS 32X = VCC 

ADD IS 32X = GND 

ADD_IS_32X * /AEN 

IOR * IOW 

/IOR_IOW * NOT_DMA 
/N D ENA 

IOR 
IOW 

PC CLK OUT = PC CLK IN 

; Define test vectors 
SIMULATION 

TRACE_ON 

FOR X: = 1 TO 20 DO 
BEGIN 

CLOCKF pc_clk_in 
END 

TRACE_OFF 
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Appendix IV-2 FastMAPTM Interface Controller 

TITLE FastMAP Int. STATE MACHINE 
PATTERN BOOLEAN NETLIST 
REVISION 3.. 
AUTHOR CIARON MURPHY 
COMPANY CEORG 
DATE 13/03/01 

CHIP Fast MAP MACH111 

PIN 15 PC_CLK ; INPUT 
PIN 16 XTAL_CLK ; INPUT 
PIN 5 CLK_CON ; INPUT 
PIN 17 CLOCK OUT ; OUTPUT 

PIN 6 X6200_XC4005OE ; INPUT 
PIN 11 CLOCK ; INPUT 
PIN 7 RESET ; INPUT 

PIN 8 GO READ ; INPUT 
PIN 9 GO WRITE ; INPUT 
PIN 18 SELF WRITE ; INPUT 
PIN 24 XC4005_ENA ; INPUT 
PIN 19 XC4005_A_LATCH ; INPUT 
PIN 20 XC6200_A_LATCH ; INPUT 
PIN 21 ADD LATCH COMBINATORIAL ; OUTPUT 
PIN 25 XC4005_ena_ext ; INPUT 
PIN 4 XC6200_RW COMBINATORIAL ; OUTPUT 
PIN 2 XC6200_CE COMBINATORIAL ; OUTPUT 
PIN 14 XC6200_OE COMBINATORIAL ; OUTPUT 
PIN 3 DLATCH COMBINATORIAL ; OUTPUT 

NODE ? Y1 REGISTERED 
NODE ? Y2 REGISTERED 
NODE ? X1 REGISTERED 
NODE ? X2 REGISTERED 

NODE ? CLK1 COMBINATORIAL 
NODE ? CLK2 COMBINATORIAL 
NODE ? SELF_WRITE_ENA COMBINATORIAL 
NODE ? WRITE COMBINATORIAL 

NODE ? ADD1 
NODE ? ADD2 

EQUATIONS 

COMBINATORIAL 
COMBINATORIAL 

X2. RSTF = /RESET 

X1. RSTF = /RESET 
X2. CLKF = CLOCK 
X1. CLKF = CLOCK 
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Y2. RSTF = /RESET 
Y1. RSTF = /RESET 
Y2. CLKF = CLOCK 
Y1. CLKF = CLOCK 

; Define clock selection mechanism 

CLK1 = /CLK CON * XTAL_CLK 
CLK2 = CLK CON * PC_CLK 

CLOCK OUT = CLK1 + CLK2 ; CLOCK_OUT IS ACTUAL SIGNAL CLOCK, VIA HW 
EXT. 

; Define FastMAP Address bus latch 
ADD1 = /XC4005_ENA * XC4005_A_LATCH 
ADD2 =( (/XC4005_ENA * /XC4005_ena_ext) + XC4005_ENA )* 
XC6200_A LATCH 

ADD LATCH = ADD1 + ADD2 

; State equations for FastMAP Read Operation 
Y1 := Y2 
Y2 (/Y1 * Y2) + (/Y1 * GO READ) + (Y2 * GO READ) 

; State equations for FastMAP Write Operation 

SELF 
_WRITE_ENA = SELF_WRITE * ((/XC4005_ENA * /XC4005_ena_ext) + 

XC4005 ENA) 

WRITE = SELF WRITE ENA + GO-WRITE 

X1 (/X2 * X1) + (/X2 * WRITE) +( X1 * WRITE) 
X2 (/X2 * X1) +( X1 * WRITE) 

; COMBINED STATE MACHINE OUTPUTS 

XC6200_RW = (/X1 * /X2) + (X1 * X2) + (/X1 * X2) 
DLATCH = Y2 
XC6200_CE = ((/Xi * /X2) + (X1 * X2) + (/X1 * X2)) * /Y2 

XC6200 OE = X6200 XC4005 OE 

; Define hardware test vectors 
SIMULATION 

TRACE_ON CLOCK 

SETF /RESET 

SETF RESET 
CLOCKF CLOCK 
CLOCKF CLOCK 

SETF /XC4005_ENA 

CLOCKF CLOCK 
CLOCKF CLOCK 
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FOR X: = 1 TO 5 DO 
BEGIN 
CLOCKF CLOCK 
END 

SETF /GO-WRITE 

FOR X: = 1 TO 5 DO 
BEGIN 
CLOCKF CLOCK 

END 
TRACE_OFF 
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Appendix IV-3 Hardware-Bridge 
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Appendix IV-4 Self-Configuration Controller 

The self-configuration control mechanism allowed the XC620ODS to exhibit RTR 

hardware capabilities. This was accomplished through partial dynamic configuration of 

the XC6264 FPGA CLC array, without intervention from the host computer. The 

resultant self-configuration controller consisted of an X6200DS external SRAM 

memory module, and internal XC6264 CLC configured host SRAM interface and self- 

configuration control mechanisms. 

The processes of self-configuration occurred in two operating phases. First 

XC6200ADS tools generated RTR configuration data, with the resultant outputs 

describing the minimal differences between successive XC6264 configurations. This 

information was compiled using XC6264 configuration memory address/data pairs. 

XC6200ADS tools also determined the length (in bytes) of each RTR configuration data 

block generated. This information was required by the XC6264 configured self- 

configuration controller to determine the address boundaries of RTR configuration data 

blocks situated within the XC620ODS external SRAM configuration memory. This task 

was performed prior to dynamic operation, with result files generated stored on the host 

PC for future use. 

Before self-configuration could commence, RTR configuration data generated by the 

XC6200ADS was written to the external SRAM configuration memory. Configuring the 

XC6264 FPGA to function as an external XC620ODS SRAM host PC interface 

facilitated this operation, enabling RTR configuration data download to occur, under 

control of the XC6200ADS. Once this task was completed, the XC6264 was 

reconfigured using X6200ADS CTR techniques to function as the self-configuration 

controller. Configuration data address boundaries were then written to the self- 

configuration controllers internal PROM (via FastMAPTM interface) This PROM and an 

outline of the self-configuration control mechanism are shown in Figure IV-l. 
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Figure N-1 illustrates the self-configuration control mechanism, that consisted of a 
16x18-bit PROM, loadable incremental binary counter, control unit, and 8-bit register 
latches. These components were configured within the XC6264s CLC array. 

Complementing the XC6264 design components, an external 262144bytes SRAM 

module, three 74LS373 ICs (8-bit latches), and signal interfaces to XC620ODS 

Hardware Bridge and FastMAPTM Interface controller were also required. 

Configured Within 

16xl8bit XC6264 CLC Array 

PROM 

{ 
17 Loadable 17 

Up Binary SRAM 

JOAO 

Counter RAO b6 eS44 

$ RD7 
RDO load inc 

----- -- 
8-bit 

.,... _ _. 
Latch 

mum-sei Control Unit byte_a0 
E na 

done 
8-bit 

XC6264 go Ttr CLC Arra b t l 
match 

y 
User Designs 

y e-a Ena 
dsel 1 5 , stop_rtr 

0 8-bit 
Latch 

byte a2 _ Ena 
address latch 

xc4005_ena 8-bit 
Latch 

byte d0 
_ Ena 

'- --------- --------- -- ------------- -- 
self write 

XC620ODS FastMAP'"' 
Hardware Interface 
Bridge Controller 

External 
XC620ODS 
RAM Module 

External 
XC620ODS 
Components 

1 
XC6200 
Address 
Latch 

Jn"" (3 x 74373) 

RPO 

Ena 

-XD7J X"17 

XAO XDO 

FastMAPTM FastMAPTM 
Interface Interface 
Data Bus Address Bus 

Figure IV-1 Self-Configuration Controller Block Diagram 

The format of configuration data generated by the XC6200ADS and stored in external 
SRAM is shown in Figure IV-2. Since byte wide SRAM modules were used, each 18- 

bit XC6264 address was stored using three SRAM bytes (byte a2, byte_al, and byte_a2 

(bits 1: 0 only)). XC6264 FastMAPTM data was only 8-bits wide therefore only one byte 
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was required (byte_d0). Using this format, XC6264 configuration data address/data 

pairs were stored in the external configuration SRAM module using sequential memory 

locations. The self-configuration controller supported up to 16 different configurations, 

with the next active configuration determined using signal dsel(15: 0) (for clarity only 

three start addresses are shown in Figure IV-2). 

000016 

000116 

000216 

000316 

000416 

000516 

000616 

000716 

000816 

000916 

000A16 

000B16 

000C16 

000D16 

000E16 

000F16 

0010)6 

0011)6 

0012)6 

0013)6 

Byte a2 

Byte_al 

Byte JO 

0416 

0016 

0016 

Byte_a2 

Byte_al 

Byte_aO 

Byte_d0 

Byte a2 

Byte_al 

Byte_aO 

Byte_dO 

Byte_a2 

Byte_al 

Byte_aO 

Byte dO 

0416 

XC6264 PROM Start Address-1 
Dsel(0000 0000 0000 0001) 

stop_rtr 
Sequence 

XC6264 PROM Start Address-2 
Dsel(0000 0000 0000 0010) 

XC6264 Configuration 
Data Stream 
(3 XC6264 Address/Data Pairs 

001416 0016 

001516 0016 

001616 Byte_a2 XC6264 PROM Start Address-3 
Dsel(0000 0000 0000 0100) 

Figure IV-2 Self-Configuration Configuration Data Format 

XC6200ADS tools generated the start address of each active configuration (16 values 

stored in PROM), with the end of each configuration block determined by the self- 

configuration control mechanism reading an address value of 4000016 (stored in 

byte a2, byte al, and byte a2). This action generated signal stop 
_pr, 

which indicated 
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(via signal done) that the RTR update was complete. With respect to Figure IV-1 and 

the self-configuration controller control unit FSM operational states (Sn) (Figure IV-3), 

the internal operation of the self-configuration control mechanism is described next. 

si 
xc4005 ena =0 

S2 
done 

load 

S3 
byte a2 

S4 byte-R1 

S5 byte aO 

S6 byte d0 

S7 )I All State Machine Outputs 
Are Shown in Bold type 

S8 

S9 ) self write 

Figure IV-3 Self-Configuration Control Unit Finite State Machine 

Prior to system operation RTR configuration data was written to external SRAM and 
the starting addresses of each configuration written to the self-configuration controller 
PROM. To enable the self-configuration control mechanism, XC6200ADS functions 
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were used to activate signal xc4005_ena within the control register of the XC620ODS 

Hardware Bridge (Si). Once enabled, the XC6264 could be dynamically reconfigured 

through activating signal go_rtr (S2), with the next active configuration determined by 

signal dsel(15: 0), with signal done indicating that RTR was commencing. Done, go_rtr, 

and dsel provided the interface between the self-configuration controller mechanism and 

user defined hardware configured within the XC6264 CLC array. 

During (S2), the contents of the PROM at the address location selected by PROM_sel 

(originates from dsel) were loaded into an incremental counter. The output of this 

counter was used as external configuration SRAM address bus value. This counter was 

incremented using signal inc after each SRAM memory access. 

Four SRAM address locations were then read in succession (S3), (S4), (S5), and (S6), 

with the contents of each location stored temporally in 8-bit latches. The active latch 

enabled for each SRAM read operation (S3), (S4), (S5), and (S6), was determined 

through control unit FSM operation. 

If the stop_rtr address value was read (4000016 determined by comparator operation in 

control unit), this indicated that RTR was completed, with signal done disenabled, and 

the control unit FSM operation re-entering state (S2). If 4000016 was not detected, 

address and data bytes read from SRAM were valid XC6264 RTR configuration data. 

This data was then downloaded to XC6264 configuration memory using its FastMAPTm 

interface. 

This process required the XC6264s FastMAPTm address-bus to be first set up by 

loading bytes byte_aO, byte_al, and byte_a2 into external latches (3x 74LS373s), using 

signal address latch (S8). Byte_dO was then written to the FastMAPTM data-bus (S9), 

with FastMAPTM interface control signals generated by the XC620ODS FastMAPTM 

Interface Controller. This operation was performed through the control unit generating 

signal self write. Controller FSM operation then resumed back to state (S3), with the 
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cyclic operation of (S3) to (S9) repeated for the number of XC6264 address/data pairs 

that required updating. 
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Appendix IV-5 XC620ODS Signal Connectors 

XC62 0ODS SRAM Module 
Signal Connector J14 XC6200 Pin No. IC! Pin IC2 Pin 

DO 9 70 16 N/A 
D1 10 71 17 N/A 
D2 11 72 18 N/A 
D3 12 73 19 N/A 
D4 13 74 N/A 16 
D5 14 76 N/A 17 
D6 16 81 N/A 18 
D7 15 77 N/A 19 
AO 17 82 21 21 

Al 19 87 22 22 
A2 21 89 23 23 
A3 20 88 24 24 
A4 23 95 25 25 
A5 22 94 26 26 
A6 27 100 27 27 
A7 29 105 1 1 
A8 31 108 2 2 
A9 32 109 3 3 

A10 25 97 4 4 
All 33 110 5 5 
A12 26 99 6 6 
A13 28 104 7 7 
A14 35 115 8 8 
A15 34 111 9 9 
A16 37 116 10 10 
A17 38 120 11 11 
OE 6 66 13 13 
CE 7 68 12 12 

R/W 8 69 15 15 
VCC 1,39 N/A 28 28 
GND 2,40 N/A 14 14 

Table IV-1 XC620ODS SRAM Memory Module Pin Description 
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XC620ODS J1, J3 
Pin No. Signal 

1 TDI 
2 VCC 
3 GND 
4 TDO 
5 N/A 
6 TCK 
7 N/A 
8 TNS 
9 N/A 
10 N/A 

Table IV-2 XC620ODS Vantis MACHill ISP Socket 

XC620OD S J5-J13 
Pin No. Signal 

1 N/A 
2 DO 
3 D1 
4 D2 
5 D3 
6 GND 
7 D4 
8 D5 

9 D6 
10 D7 
11 GND 
12 CREQ 
13 GND 
14 CACK 
15 GND 
16 CSTRB 
17 GND 
18 CRDY 
19 GND 
20 N/A 

Table IV-3 XC620ODS TIM-40 TMS320C40 Comport Socket 
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XC62 0ODS SRAM Module 
Signal Connector J15 XC6200 Pin No. IC1 Pin IC2 Pin 

DO 19 202 16 N/A 
D1 24 208 17 N/A 
D2 38 228 18 N/A 
D3 25 209 19 N/A 
D4 26 210 N/A 16 
D5 27 213 N/A 17 
D6 28 218 N/A 18 
D7 37 220 N/A 19 
AO 37 226 21 21 
Al 7 187 22 22 
A2 36 225 23 23 
A3 34 223 24 24 

A4 4 183 25 25 
A5 3 181 26 26 
A6 35 224 27 27 
A7 33 221 1 1 
A8 30 216 2 2 
A9 28 214 3 3 

AlO 29 215 4 4 
All 22 206 5 5 
A12 23 207 6 6 
A13 20 203 7 7 
A14 21 205 8 8 
A15 17 198 9 9 
A16 15 195 10 10 
A17 13 193 11 11 
OE 12 192 13 13 
CE 11 191 12 12 

R/W 10 190 15 15 
VCC 1,39 N/A 28 28 
GND 2,40 N/A 14 14 

Table IV-4 XC620ODS Self-Configuration SRAM Memory Module 
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XC62 0ODS 
Signal Connector J17 Connector J15 

XC AD 0 1 19 
XC AD 1 2 24 
XCAD2 3 38 
XC AD 3 4 25 
XCAD4 5 26 
XC AD 5 6 27 
XC AD 6 7 28 
XC AD 7 8 37 
XCA8 9 37 
XCA9 10 7 
XCA 10 11 36 

XC A 11 12 34 
XCA 12 13 4 
XC A 13 14 3 
XCA14 15 35 
XC A 15 16 33 

XC A 16 17 30 

XCA 17 18 28 

Connection 
Signal From To 

add latch IC10, P 197 IC7, IC8, IC9, P 11 

xc4005 ena IC14, P37 IC10, P184 

xc6200 write IC10, P189 IC1, P18 

Table IV-5 XC620ODS Self-Configuration Operation Mode Modifications 

xvf 



Appendix V: Published Work and Awards Presented 

Appendix V 

Published Work and Awards Presented 

Appendix-V-1 Conference papers published 

Conference SPIE International Symposium on Voice, Video, and Data 
Communications, Conference No. 3526: `Configurable 
Computing: Technology and Applications', 

Venue Boston, Massachusetts, USA. 
Date 1St-5th November 1998. 
Title of paper A Low-Cost Reconfigurable DSP-based 

Parallel Image-Processing computer. 

Conference IEE Informatics Colloquium on Reconfigurable Systems. 
Venue Glasgow, UK. 
Date 10`h March 1999. 
Title of paper Low-cost TMS320C40/XC6200 Based Reconfigurable Parallel 

Image-Processing Architecture. 

Conference TASTED International Conference Applied Informatics, 
International Symposium on Parallel and Distributed Computing 
and Networks. 

Venue Innsbruck, Austria. 
Date 18th-21st February 2002. 
Title of paper Dynamic Configurable DSP Parallel Processing Architecture. 

Photostat copies of these papers taken from the original conference proceedings are 
located at the back of the thesis. 

Appendix-V-2 Awards 

Title Royal Academy of Engineering Travel grant 
Award Fund Royal Academy of Engineering 
Purpose To Present Paper at SPIE conference 

Title Royal Academy of Engineering Travel grant 
Award Fund Royal Academy of Engineering 
Purpose To Present Paper at TASTED Conference 
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Appendix VI 

XC6264 Design Footprints 

Figure VI-I FBinDCT-Cl XC6264 Footprint 
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Figure VI-11 FBinDCT-C9 XC6264 Footprint 
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Figure VI-1I1 RBinDCT-Cl XC6264 Footprint 
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Figure VI-IV RBinDCT-C9 XC6264 Footprint 
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Figure VI-V Self-Configuration Controller XC6264 Footprint 
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Figure VI-VI Non Structured Routing XC6264 Footprint (Configuration-1) 
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Figure VI-VII Non Structured Routing XC6264 Footprint (Configuration-2) 
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Figure VI-VIII Structured Routing XC6264 Footprint (Configuration- I) 
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Figure VI-IX Structured Routing XC6264 Footprint (Configuration-2) 
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Figure VI-X Roberts Cross Edge Detector Routing Hub XC6264 Footprint 
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Appendix-VII 

Development System Images 

Figure VIII-1 X('6264 FPGA 

Figure V111-2 Transtech TDM411 TMS320C40 DSP Module 
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Figure VIII-2 TDM411 With XC620ODS Coprocessor Interface Connector 

Figure VIII-3 TDMB412 Motherboard ( No TDM4I Is Installed) 
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Figure V111-4 'I'DNIB412 Motherboard (Two'1'DM4I Is Installed) 

s_. 

. ýý: ýýýiýjýj 
-", 
r 

:, ýt 

_ ýý 

ý- 
ýs: t 

r 
Figure V111-5 Unpopulated XC620ODS PCB (Side 1) 

--- tww 



Appendix VII: Development System Images 

s__. ýýiýii: ` 
.,, .ý ý_ 

,. 
t 

i 
ýý_ t 

Figure VIII-5 Unpopulated XC620ODS PCB (Side 2) 

Figure VIII-6 Populated XC6200DS P('ß 
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Figure VIII-7 XC6200DS/TDMB412 Dynamic Coprocessor Configuration 
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Figure VIII-8 XC6200DS/'I'DMB412 RTR Routing-Ilub Configuration 
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Figure VIII-9 Dynamic Coprocessor Host PC Integration 

Figure V111-11 Ri'R Routing-Ilub Host P(' Integration 
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Figure VIII-12 External Dynamic Configuration Timer 

Figure VIII-13 Screen Shot of XC6200ADS 
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