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Summary

Quantitative Structure-Activity Relationships (QSAR) attempt statistically to
relate the physico~chemical properties of a molecule to its biological activity.
A QSAR analysis was performed on the toxicities of upto 75 organic chemicals to
two aquatic species, Photobacterium phosphoreum (known as the Microtox test), and
the fathead minnow. To model the toxicities 49 physico-chemical and structural
parameters were produced including measures of hydrophobicity, molecular size and
electronic effects fram techniques such as computational chemistry and the use of
molecular connectivity indices. These were reduced to a statistically more
manageable number by cluster analysis, principal camponent analysis, factor
analysis, and canonical correlation analysis. The de-correlated data were then
used to form relationships with the toxicities. All the techniques were validated
using a testing set. Same good predictions of toxicity came fram regression
analysis of the original de-correlated variables. Although successful in
simplifying the camplex data matrix, principal component analysis, factor
analysis, and canonical camponent analysis were disappointing as predictors of
toxicity. The perfamance of each of the statistical techniques is discussed.

The inter-species relationships of toxicity between four cammonly utilised
aquatic endpoints, fathead minnow 96 hour IC-,, Microtox 5 minute BCg, m
48 hour ICoyr and Tetrahymena pyriformis 60 hour IG.., were investigated.
Good relationships was found between the fathead minnow both T. pyrifomis
and D. magna toxicities indicating that these species could be used to model fish
toxicity. The outliers fram individual relationships were assessed in order to
elucidate if any molecular features may be causing greater relative toxicity in
one species as campared to another. It is concluded that in addition to the
intrinsic differences between species, the greater length of the test time for
any species may result in increased bioaccumulation, metabolism, and
detoxification of certain chemical classes. The relationships involving fish
toxicity were moderately improved by the addition of a hydrophobic parameter.
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1.1. INTRCDUCTION

Toxicology, or the so—called 'study of poisons', can be traced back over 3500
years. The first evidence of knowledge of the potentially harmful effects of
chemicals was reported in 1500 BC by the ancient BEgyptians in the Evers Papyrus
(the earliest written medical records) as references to, and recipes for,
poisons. Through history since that time, the danger of chemicals introduced into
our enviromment has been noted. Arsenic, aconite, and opium are described by the
Hindu Vedas in 900BC; the ancient Greeks positively pramoted the research and
develomment of the antidotes of poisons; and the Romans first legislated against
poisoning in 82BC in an attempt to curb careless dispensing. During the 'Dark’
and 'Middle' Ages the study of toxins became an art. Stories of their wrongful
use, for personal gain, abound (Timbrell 1989).

Since such socio-econamic events as the industrial revolution in the nineteenth
century, the danger to man and his envirorment fram chenicalé has further
increased, and their study is of vital importance. Present day estimates suggest
that there are at least 70,000 man-made and natural chemicals in everyday use.
Between 500 and 1000 new chemicals are added to this list annually. They may
reach our enviromment as pollution fram a variety of sources, and if in
sufficient quantities will act as poisons. Toxins are found in our food, water,
air, and so0il, originating as drugs, food additives, industrial outputs,
agrochemicals, and even our camon household products, It is the danger of man's
exposure to these chemicals, their conceivable toxic or poisonous effect, that
the modern-day toxicologist is concerned with. Chronic and acute exposure to
chemicals can prove dangerous, so safe levels of exposure need to be determined
and gpplied for our well being.

The understanding and regulation of a chemical's toxic effect is thus essential,
and recent legalisation decrees statutory testing to obtain such information, In
the United States of America under Section 5 of the Toxic Substances Control Act
of 1977, the US. mvirmrental Protectim.PgencY (EPA) is responsible for
reviewing the potential hazard of new industrial chemicals to human health and to



the envirorment prior to production. Similarly, within the European Commumnity,
the testing, notification and classification of new chemicals are based on a set
of camprehensive and detailed directives. European Directive 79/831B/EEC, for
instance, dictates the obligatory notification of new chemicals.

Traditionally, obtaining accurate and meaningful information to camply with the
regulations requires the extensive use of animal tests, However, the cost ard
time involved of individual tests is prohibitive even for new chemicals, without
oonsideration of the vast number of commonly used existing chemicals for which no
toxioological data exist. Conservative estimates by the EPA put the cost of an
acute demmal toxicity test at $2500-$4500; $20000-$25000 for a 1l4-day inhalation
study; $300000-$400000 for a two-year dietary study; and up to $1500000 for a
two-year inhalation study. In addition public opinion, which is swinging away
fran the unnecessary use of animal experimentation and the suffering it may
cause, has reinforced the need to find reasonable alternatives. Research into
rapid, and cheap, alternatives has led to the investigation of techniques such as
tissue culture and, of increasing interest in envirommental toxicology,
Quantitative Structure-Activity Relationships (QSAR), as well as the
extrapolation of toxicity data from lower organisms to higher species.

The study of (SAR is based on the rationale that the effect of a chemical within
a biological system (eg. its toxic action) is solely dependent on its chemical
camposition. It has been successfully applied to the pharmaceutical and pesticide
industries for same years to optimise drug design studies. Its main features are
described below, as well as the historical aspects, and their application in
modern envirommental toxicology.

1.1.1. Quantitative Structure-Activity Relationships

A convenient sumary of a Quantitative Structure-Activity Relationship is that it
attempts statistically to relate the physico-chemical properties of a molecule to
its biological activity. Cbviously there are three camponents essential to this

statement - the three camponents needed to create a (BAR:



i) the biological data for a set of chemicals which is to be modelled;

ii) same physico-chemical descriptors of the chemicals;

iii) a statistical technique to relate the activity to the chemical
descriptors.

Each of these areas is discussed below in detail.

1.2 Biological Data Utilised in QSAR Analysis

The prediction and explanation of biological data is, of course, the crux of any
QSAR analysis. Before a strong model can be formed a reliable, high quality data
set of biological activities is required on which to base the relationship.
Indeed it is true to say that the model can only be as good as the original
biological data. Also it must be remembered that whereas chemical descriptors
can, in principle, be determined or expressed with good accuracy, the qualitative
and/or quantitative determination of biological activity is usually much less
accurate and precise.

The choice of biological activity is in itself important, The data, normally for
only one species, have to give a representation of the harm that a chemical will
inflict on a whole ecosystem, as it is impossible to simulate even the simplest
ecosystem for a toxicity test., There are many sources of biological data used in
QSAR analyses, ard these are extensively reviewed by Goldberg (1983). Devillers
ard Lipnick (1990) list 36 aguatic species that have been used in correlation
analysis. These span several different trophic levels in the aquatic enviromment,
from bacteria, blue-green algae, aguatic invertebrates, to a range of fish
species. The biological endpoint most cammonly utilised in environmental QSAR to
produce quantitative (as opposed to qualitative) predictions is the concentration
of a chemical that causes a specific biological effect. Especially popular and
useful is the concentration that produce a 50% biological effect (although 0%,
108, 90% and 100% have been used) eg. ICsg is the concentration that kills 50%
of the test species; BCg is the concentration that produces a 50% reduction in a

biological activity such as respiration in higher animals, or growth in lower



organisms, It may, however, be more appropriate for risk assessment in the
envirorment, to be able to produce a value that gives an indication of the lowest
concentration of a toxicant that will cause harm eqg. the minimum lethal dose, or
the highest concentration that produces no effect - the no observed effect
concentration.

Large data bases of toxicity values are available e.g. the Registry of Toxic
Effects of Chemical Substances (RTECS), however, their use as a source of
reliable data for QSAR purposes is notoriously difficult, as they tend only to
collate the highest toxicity value, and results that may not be strictly
camparable due to differences in methodology. All studies should be based on
reliable data, with consistent methodology behind them. Such data have been
provided by the U.S. E.PA. for fathead minnow 96 hour ICgy and by Schultz and

his co-workers for the 48 hour ECg to Tetrahymena pyriformis growth. Both these

can be oconsidered reliable as they have been measured at the same respective
laboratory. Other tests with high standardisation of procedure are the 48 hour

ICs of Daphnia magna and the 5 min ECgy to light production of Photobacterium

phosphoreun (cammercially known as the Microtox test).



1.3 physico-Chemical Descriptors Utilised in QSAR Analysis

Since the modern re-birth of QSAR in the early 1960's, physico-chemical
descriptors have been used to quantify three functions of a molecule:

i) its partitioning into a lipid biophase — hydrophobicity

ii) its size, shape, and/or symmetry - steric

iii) its reactivity and interactivity - electronic
The properties of a molecule which parameterise each of these attributes are
described below.
1.3.1. Hydrophobicity
The hydrophobicity of a campound is a very important factor in determining its

biological activity (Dearden 1985). The hydrophobicity (‘water-hating') of a
ocampound is the physical property of the molecule which governs its partitioning
into a non-aqueous solvent. An increase in hydrophobicity thus generally results
in an increase in transport of the xencbiotic into a lipid membrane, with a
subsequent increase in biological activity (whether it be harmful, such as the
inhibition of respiration or benefical such as an analgesic effect), this effect
ceases however when chemicals are too lipophilic (‘lipid-loving') to leave a
lipid membrane and transport is reduced. Chemical properties cammonly used as
estimates of hydrophobicity include the partition coefficient, retention values
fram chramatography, and water solubility. Possibly the most important of these
parameters is the partition coefficient, which may be simply defined as the

equilibrium constant for the following process (Martin, 1978):

[Druglwater =  [Drug]oil (1.1)
or
[Drug]oil
P= —m (1.2)
[Drug]water

where P is the partition coefficient, the square brackets indicate
oconcentration and the subscripts the phase

Early measurements of the partition coefficient used olive oil as the lipid phase

(Meyer 1899; Overton 1899). This has now been superseded by the use largely of n-



octanol, although other solvents e.g. cyclohexane, diethyl ether and benzene are
used. The measurement of partition coefficient has, however, been dogged by
inaccuracies and variations in reported values resulting from variations in such
factors as temperature, mutual phase saturation, pH, buffer type and
oconcentration, and many more. These are fully discussed and evaluated by Dearden
and Bresnen (1988), who recammend that partitioning should be carried out at
constant temperature using either a stirred flask method technique or the filter
probe,

Another cammonly utilised estimate for hydrophobicity is by reversed phase, high
performance liquid chramatography (RP-HPLC). Many studies studies have shown that
log P is well correlated to capacity factors (k) measured on a reversed phase C18
colum (Warne et al 1989).

Calculated estimates of log P are now cammonplace in drug evaluation and QSAR
studies., The first attempt in this direction was by Hansch et al (1962) who
defined the hydrophobic substituent constant pi for any substituent X:

P_i.x = log Pyy - log Py (1.3)

where log P is the octanol/water partition coefficient
Y is any appropriate parent structure

_pi values for a wide range of substituents have been tabulated by Hansch and Leo
(1979). The use of pi is, of course, restricted to congeneric series, since it is
a measure of substituent hydrophobicity.

A more general method to calculate log P was proposed by Nys and Rekker (1973).
This was based on assigning 'fragmental constants' f to a variety of structural
pieces, the calculated log P then being simply the sum of the f values
appropriate to the molecule in question plus any interaction factors F that might
be necessary to correct for intramolecular electronic, steric, or hydrogen-
bonding interactions between fragments, By 1979, Rekker and de Kort had refined
the fragment values by using a database of over 1000 log P measurements, They
further proposed that all the interaction factors could be treated as multiples

of 0.28 (the so-called ‘magic number').



Bansch and [eo (1979) developed the fragmental scheme by carefully defining what
constitues a fragment, and using a small basis set of carfully validated log P
measurements, derived a value for each fragment. This model has been camputerised
as the ClogP program in the MEDCHEM software. It proceeds using a
‘constructuralist approach', with hydrophobic constants being assigned to each
fragment of a given molecule. The sum of these, together with correction factors,
being used as an estimate of log P. Good correlations have been obtained for
estimates of log P fram MEDCHEM and measured values (Dearden, 1990), and the
algorithm is now considered as the 'industry standard and is widely used (Tute,
1990). (More information is given in section 2.21). In addition, the Rekker
method of log P estimation has been camputerised in the PrologP software
available fram Campudrug.
Other methods for calculating P have been proposed. Leahy (1986) parameterises
log P in terms of a linear solvation energy relationship (LSER)
log P = 5.14 V/100 - 0.29 u - 3.588 + 0.41 (1.4)
no statistics given
wvhere V is the intrinsic molar volume

u is the dipole mament

g 1is the hydrogen bond acoeptor basicity
Kamlet et al (1988) extended this approach by making it possible to estimate
values for V, u, and g. This means log P is truely predictable by this method
with high accuracy.
Using a similar approach Bodor et al (1989) have found a nonlinear regression
model gives a good estimate of log P. The model is based on 13 molecular
descriptors including measures of molecular surface, volume, weight, and MNDO

calculated charge densities,



1.3.2.pescriptors of Electronic Effects

Electronic parameters are important descriptors of a chemical's reactivity and
interactions with other molecules, which may control such phenamena as its
binding to receptor sites, and/or its metabolism, The first major step in the
development of electronic parameters took place in the 1930's, when Hammett
(1935) proposed the Hammett sigma constant, Gy, to assign numerical values for
the electronic effect of substitution on an aramatic ring. with benzoic acid as
the reference campound, this electronic parameter is defined by the equation:

o = log (Ky/Ky) (1.5)

where Ky and K, are the ionisation constants for the x-substituted and
unsubstituted benzoic acid,. respectively.

Positive values of 0" represent electron withdrawal by the substituent fram the
aramatic ring, and negative ¢~ values indicate electron release to the ring.
Taft (1956) extended Hammett's idea to aliphatic campounds. The effect of
substitution on the reaction rates of aliphatic campounds is characterised by the
parameter o= . This is defined as:

1 k k
c*=—— [log = - log= ] (1.6)

248 Kyp ke A

where ky is the rate constant for the hydrolysis of esters type X~CH,OO0R
ky is the rate constant for the parent molecule
B refers to hydrolysis under basic conditions
A refers to hydrolysis under acid conditions
In the latter part of the 1950's interest began to develope in quantitatively
separating the inductive (polar) part of the electronic effect of substituents

fram the resonance camponent. It had been presumed that it could be solved simply

as:
g=o7+ oi 1.7
where of and O represent the inductive and resonance camponents of the Hammett

constant.
Although it was hoped that a single of parameter would prove suitable for all
correlation work, it became clear that 'through resonance' greatly camplicates
the picture. Four different types of o can be considered (Dayal et al 1972;



Ehrenson et al 1973).

Swain and Lupton (1968) established another pair of substituent constants, F and
R, for field-inductive and resonance effects separately. A more statistical
approach was employed whereby they quantified the substituent effects in a
bicyclooctane system as a measure of F, and it was assumed that R=0 for p((}i3)3N+
on benzoic acid. F and R values were then calculated for 42 substituents and the
importance of resonance ($R) in various ¢  constants was evaluated.

Hansch and Leo (1979) have tabulated ¢, F, and R values for many substituents.
Measures of whole molecule reactivity have been utilsed in QSAR studies, Hermens
et al (1985b) found that the reaction rate oconstants of reactive organic halides
with 4-nitrobenzylpyridine (NBP) could be beneficial in describing their tendency
to react with nucleophiles, Dencer et al (1987) suggested an alternative test
with thiourea replacing NBP, for campounds exhibiting moderate or strorg
alkylating properties.

Electronic effects in a molecule are modelled by such properties as nolar
refractivity, pKa, dipole mament, NMR chemical shifts and a measure of hydrogen
bonding (Dearden 1990). These descriptors are traditionally experimentally
determined, and thus are of limited use in the modemm QSAR enviromment, However,
algorithms have been produced to calculate pKa (Hunter 1988; Gruber and Buss
1989), dipole moment fram molecular orbital programs (see section 1.5.2), ad
molar refractivity using the MEDCHEM software (see section 2.2.1.5).
Accampanying the increase of the use of molecular modelling and computational
chemistry software (see section 1.5) has been an increase in the number of |
electronic descriptors available for calculation. Molecular modelling is a very
useful, if under used, tool in envirommental science (Hauk and Schramm 1990). It
is now possible to obtain reliable calculated estimates of whole molecule
parameters such as HOMO (highest occupied molecular orbital) and IUMO (lowest
unoccupied molecular orbital) energies, and dipole mament. Also individual atamic
descriptors can be obtained, such as charge, frontier electron density, and
superdelocal isabilities. These are, of course, generally applicable only when



congeneric series of compounds are studied. .

1.3.3. Steric Descriptors used in QSAR

The size, shape, or bulk of the whole, or part of a molecule may be important in
determining its activity if, for instance, it may not fit into a receptor site.
The first generally successful numerical definition of steric effects in organic

rections was that of Taft (1952), who defined the steric constant Eg as

B = log ( :;;)A (L8)

where k refers to the rate constant for the acid hydrolysis (denoted by A) of
esters of type I:

X—CH,COOR
The size of X will affect attairment of the transition state II:
CH
X—CHZE «s.OR

[ —

HH
by water in the case of acid hydrolysis or by same other ligand in the processes
that are to be modelled by Eg.
Charton (1975) made a more direct approach to defining the steric hindrance of
the substituent in the expression:
r

vH

where v, is the Charton steric parameter for substituent X
Ly is the minimum van der Waals radius for substituent X
I,y 1is the van der Waals radius for hydrogen

Vy = Lyy - (L.9)

Another set of steric substituent parameters has been developed by Verloop et »al
(1976) ~ the so-called Sterimol parameters. They undertook a multiparameter
approach selecting 5 dimensions for each substituent and created a computer
program using van der Waals radii, standard bond angles and lengths, and
'reasonable' conformations to define the space requirments of a molecule. The
five dimensions define a box around the substituent and are labelled L, By, B,
By, and By, The length parameter is defined as the length of the substituent

10



along the axis of the bond between the first atam of the substitution and the
parent molecule. The four width parameters B;-B, are determined by the distance
at their maximum point perperdicular to this attachment bond axis and each other.
By is the smallest ard By is the largest width. Figure 1.1 shows a diagrammatic
representation of these parameters. It must noted however, that the use of
Sterimol parameters has almost exclusively been within pharmacuetical research.
Steric descriptors which describe the size or bulk of the whole molecule can
range from molecular weight and a simple count of carbon atams to camplex
canputer calculated estimates of the surface area of the molecule, Molecular
weight and the nunber of carbon atams have been used in QSAR studies; however,
with the increasing use of camputer technology to solve camplex problems more
sophisticated methods of calculating size are being produced. The algorithms
written to calculate estimates of molecular size can be split into two main
areas, those based on the topological content of a molecule, and those that use
standard estimates of 'space' for each atam and attempt to represent the molecule
by its atamic radii.

The most commonly utilised of all steric descriptors in environmental QSAR have
been the topological indices. A topological index is a numerical descriptor of
molecular size and is sensitive to features such as size, shape, symmetry and
heterogeneity of atamic envirorments in the molecule. Two types of topological
indices, connectivity and molecular camplexity, are cammonly used, although many
topological indices have been proposed as chemical descriptors in QSAR. Balaban
et al (1983) alone describes 27 such indices.

Of all the indices, molecular connectivities appear to be the most camonly
incorporated into QSAR. (The derivation, calculation and use of molecular
oconnectivities and Kappa indices are more fully described in section 2.2.2 and
Appendix 2.) First devised by Randic (1975), they were greatly extended by Kier
and Hall (1976). They encode the branching of a molecule and are calculated fram

a knowledge of atam connections within a molecule. Kier and Hall (1986)

11



Figure 1.1 Representation of Sterimol parameters as defined by Verloop et al

(1976) . (Figures taken fram Hansch and Leo, 1979)

i) Perpendicular cross-section of the substituent along the L axis
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ii) Vertical section viewed 'down' the L axis
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extensively review their work and give numerous examples of their application in
pharmaceutical and envirommental QSAR, as well as their ability to predict
chemical properties such as lipophilicity, molar refractivity, and Hamett
oonstants, Because no exact physical nature has, or can be, attached to their
value, use of molecular connectivities is still considered controversial and
under evaluation. Dearden et al (1988) however do suggest that they primarily
reflect the bulk properties of the molecule. Kier (1985, 1987) has also developed
the Kappa indices, fram the number of atamic fragments in a molecule, which are
thought to quantify an element of molecular shape or symmetry. Less camonly used
are the molecular camplexity indices, with Information Content (Basak and
Magnuson 1983), Structural Information Content, and Complementary Information
Content (Basak et al 1980) proving most popular and reliable as QSAR parameters.
The estimates of surface area and molecular volume are calculated fram an energy
minimised structure of the molecule in question. The 'accessible' surface is
calculated fram the van der Waals radius of each atam, and obtained by simulating
the rolling of a probe (of defined radius) over it. Thus to obtain a value for
the total surface area a probe radius 0.0 is used, and to measure how much of the
molecule would be open to a substrate of a given diameter (eg. a water molecule)
different probe radii can be used. Measures of accessible surface area are
thought to give a better representation of molecular bulk than simple surface
area calculations as they are more likely to take account of atamic overlap and
conformation (Dearden, 1990). It is also thought that the accessible surface area
of a molecule is important in determing it's hydrophobicity, eg. de Bruijn and
Hermens (1990) found a highly significant relationship between the log P for |
polychlorinated biphenyls and the solvent accessible surface area (SASA):

log P = 0.027 SASA - 7.12 (1.10)

n=18 $=0.12 r%=0.986 F=1116
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1.4. Statistical Techniques used in QSAR Analysis

It is the statistical technique that 'ties' together the physico-chemical and
biological data in a QSAR analysis. Careful application of statistical
methodology will reveal much more information fram the data than is initially
gpparent. A wide variety of techniques has been used to develope QSAR. The most
camonly used methods are described below.

1.4.1. Regression Analysis

The most popular technique in QSAR has been regression analysis. It has a number
of distinct advantages, being predictive and easy to understand, as well as being
able to highlight outliers fram a particular relationship, Disadvantages include
its need of quantitative biological data, the problem of chance correlations ard
oollinearity between the independent variables, and its reliance on continuous
parameters. A regression analysis depicting the linear relationship between X
(the dependent variable) and Y (the independent variable) has the general form:
X=aY+b>b (1.11)

where a is the slope of the regression line
b is the intercept

Historically it was Hansch and Fujita (1964) and Free and Wilson (1964) who
developed two different techniques for deriving QSARs, each essentially based on
regression analysis. The Hansch method has been particularly widely used.

In the early sixties Hansch et al (1963) postulated that biological response is a
linear function of one or more of three related main properties, hydrophobic,
electronic and steric, The influence of hydrophobicity is related to the
probability of a drug or toxicant reaching the site of action. The influence of
electronic and steric factors, as well as hydrophobicity, can be involved in the
xenobiotic reacting or interacting with the receptor. Electronic factors also can
influence the degree of ionisation of chemicals, and hence, the rate of uptake,
since generally only undissociated molecules can penetrate 1lipid membranes.
Usually the Hansch approach is applied to congeneric series of campounds. The
hydrophobic effect is characterised by the n-octanol/ water partition coefficient
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(expressed as log P), and electronic and steric effects can be modelled by, for
example, the Hamett ¢~ constant and the Taft steric constant respectively.
Hansch et al (1963) derived the following equation to describe the relation
between biological activity and physicochemical properties for a set of campourds
log 1/C=a (log P)2 + b (log P) + o + dEg + e 1.12)
where C represents the molar concentration that elicits a constant biological
response fram a given organism (e.g. ED50)

0" is an electronic tem

E; is a steric term
The constants can be derived by multiple linear regression.
The goodness of fit is expressed by statistical criteria such as the correlation
coefficient (r) and the standard error (s). Recently, however, it has became
accepted that the coefficient of determination adjusted for the number of degrees
of freedom of the equation (r2(adj)) should be used (Moulton 1988). This
indicates how much of the variance of the dependent variable is explained by the
independent variables. Also required is the F value, called the Fisher statistic,
which allows estimation of whether the obtained relationship is statistically
significant. In addition, in this study, all calculated regression equations are
given with the standard error of the coefficients of each variable shown in
parentheses,
The r2, s and F values are used as initial tests (before validation) to decide
whether the relationship is strong or weak. A strong relationship would be
expected to have a high r2 (preferably over 0.9), low s, and a highly significant
F value. It can then be concluded that such a QSAR has modelled the relationship
well, and with careful use it may provide useful predictions and information.
These suppositions must, of course, be supported by thorough validation of the
model. Weaker QSARS ie. those with a low r2, high s, and a less significant F
value have consequently been less successful in modelling the relationship and
their interpretion and use should be treated with more caution.
Present day Hansch-type QSAR employs stepwise and best-subsets regression
analysis to find the best equations to predict biological activity if many
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physico-chemical data are used.
1.4.2. Free-Wilson Technique

This method (Free and Wilson 1964) is based on the assumption that in a series
of related chemicals each particular substituent adds a oconstant contribution to
the biological activity (BA) of the molecule. Thus
f(RA) =Sa+Sb...+u (1.13)
where  u is the oontribution of a hypothetical parent campound to the
biological activity

Sa and S are the contributions added by groups A, B etc.
Each campourd yields an equation of the type shown above and the group
contributions are found by solving a set of multiple simultaneous equations
(Purcell et al 1973). The 'goodness of fit' or 'correlation' can be determined by
regression analysis as in other QSAR methods.
An advantage of the Free-Wilson approach is that physico-chemical or other
properties need not be determined; they are oontained within the additive group
oontributions. Predictions are limited to campournds camprising the parent
molecule and the substituents in the training set. The numerical values of the
group ocontribution will depend upon the method of expressing the biological
activity. Because specific physico-chemical properties are not ascribed to the
substituent groups, information on the mechanism of biological action is not
usually obtained by this approach.

1.4.3. Miltivariate Data Space and Statistical Analysis

The absorption of disciplines such as camputer chemistry into established QSAR
practice has led to a cammon scenario whereby there are many more physico-
chemcial (independent) data than biological (dependent) data. Such a data mat;ix
has been temmed 'over-square' (Hyde and Livingstone 1988), Fig 1.2 shows a
diagrammatic representation of a matrix. Several problems arise fram the
statistical manipulation of over-square matrices. There is a considerable
redundancy of information; i.e. many descriptors will represent the same
molecular feature, leading to collinearity within the data. A collinear data set

may lead to chance correlations, giving spurious results if used in techniques
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Fig. 1.2 Diagrammatic Representation of a Typical Multivariate QSAR

Data Matrix (Adapted fram Dunn 1988).

Campound Biological Activity Physico~Chemical
Descriptors
12..j..m 123..1i..p
1
2
3 Training
Set
k Yk,3 Xg,i
. Testing
Set
n

Table 1.1 Principal Multivariate Statistical Methods used in QSAR Analysis
(adapted fram Hyde and Livingstone 1988)

Supervised Learning

1. Multiple regression

2, Discriminant analysis

3. Linear learning eg. PLS, SIMCA

4, Canonical oorrelation

5. Adaptive least squares

Unsupervised Learning

6. Non-linear mapping

7. Principal camponents

8. Factor analysis

9, Cluster analysis a) on variables
b) on cases

c) k-nearest neighbour
10. Correspondence analysis
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such as stepwise regression analysis (Kikushi 1987). In an attempt to rectify
this problem there has been an increase in the use of multivariate statistical
methods (Livingstone 1989). The main techniques are summarised in Teble 1.1.
Methods can be split into two areas, supervised and unsupervised learning. The
supervised learning methods rely on biological activity to be present so that the
model may be formed. Unsupervised methods, however, do not need any form of class
membership to be assigned for a model to be created.

To appreciate the action of multivariate statistical methods, the data matrix
should be considered as a multi-dimensional entry into space. For n parameters
there are n dimensions, The data for the campounds are projected into the
hyperspace so that each one is represented by a discrete point, Same multivariate
techniques, broadly referred to as pattern recognition, eg. cluster analysis, k-
nearest neighbour, discriminant analysis, and SIMCA utilise these properties in
the hyperspace to enable a qualitative distinction to be made amongst the
canpounds  (Wold and Dunn 1983). This is especially beneficial when activity is
classified categorically, typical examples being active and non-active drugs,
carcinogenic and non—carcinogenic campounds etc. Thus for a campound with unknown
activity, its position in the hyperspace relative to campounds with known
activity, may mean that an estimation of its activity can be obtained.

Other multivariate techniques attempt to reduce collinearity in tha data without
significant loss in its information content. Cluster analysis on variables will
for instance place the physico-chemical data themselves in an n-dimensional
framework and form clusters of the data points, according to which is closest.
Thus an immediate reduction in data is achieved by simply discounting all but
one, or a few members of each cluster. (The full significance of this method is
discussed in section 4.2.1.)

Methods such as principal component analysis (PCA) and factor analysis (FR)
calculate new orthogonal variables fram the data, each accounting for a

particular feature of those data. Niemi (1990) lists three objectives for using
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these methods:
i) to explore and detect patterns among a set of variables, in association with
data reduction;
ii) confirmatory testing of the underlying 'structure' among a set of variables
and the relative factor loadings for the variables;
iii) to develop new variables to serve as new, simpler parameters in subsequent
analysis.
This is achieved, after the preparation of the data matrix, by the isolation and
extraction of the initial principal camponents (which includes the data reduction
phase), and in factor analysis additional calculations, such as rotation of the
factors in the n dimensional space, are undertaken to aid the interpretation of
simpler factors.
Canonical correlation analysis (OCA) seeks to form a relationship between two
data sets for which more than one variable exists in both sets. It can be seen as
an extension of miltiple regression analysis (where one of the two data sets
oontains only one variable), although same authors (eg. Lindeman et al, 1980)
have observed that it might be more appropriate to view multiple regression as a
special case of canonical correlation. It prooeeds by the formation of new
orthogonal variables (known as canonical variables) for both data sets, and a
maximisation of the correlation between the new variables, The interset
association between the canonical variables is termed the canonical correlation
ccefficient. This technique can be used in QSAR analysis when both the biological
ard descriptor data sets are multivariate, to elucidate more about the potency,
or mode of action of a chemical. For instance, Szydlo et al (1984) have assessed
the relationship between the knockdown activity and toxicity of a series of
pyrethroid insecticides.

1.4.4. statistical Validation of Models

It is essential to assess the validity of a statistical model so that its
predictive strength and robustness can be realised. The r2(adj), s, etc

statistics show how well the model fits the data, yet tell us little about how
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accuarate it is in predicting an unknown biological activity. In early
environmental QSAR there was little evidence of statistical validation being
carried out. However two separate methods, both of merit, are increasingly being
applied.

The first, and possibly more pertinent, method of validation is that of creating
two data sets within the data. The first is the 'training set' on which all the
quantitative modelling is based. The second is a 'test set' of data not included
in the model. The precision of the model can then be tested by calculating the
biological activity of the test set and comparison with the measured activity.
Tosato et al (1990) review the procedure for the creation of both data sets.
The second method of validation is referred to variously as cross-validation,
Jjackkinfe, bootstrapping, or simply leave-one-out. For a data set the model is
recalculated after one (or a group of) campourds has been left out, and is this
reapplied to that campourd (or group of campounds) to estimate the biological
activity. This is repeated until each one (or group) has been left out in turn.
The deviation fram the expected results can then be evaluated (Gray ard Schucany
1972).
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1.5. Camputer Chemistry and Molecular Graphics

In the 1980's a vast increase in the availability of camputing power has led to
the expansion in the use of camputer chemistry in the area of drug design.
Camputer chemistry is the quantitative modelling of chemical behaviour on a
camputer by the formalisms of theoretical chemistry. Allied with the growth in
molecular graphics it proves a valuble tool in the estimation of a molecule's
three dimensional properties (Hopfinger, 1985). It is also a remarkable asset for
the scientist as it allows calculations to be performed on campounds regardless
of whether or not they have been synthesised. As well, information is provided in
a fraction of the time, and cost, of that determined experimentally. The cambined
techniques of camputer chemistry, molecular graphics, together with the growth of
camputer technology has created a new area of investigation - loosly termed
Camputer Aided Drug Design (CADD) or Camputer Aided Molecular Design (CAMD). This
has yielded many publications and more recently its own journal - Journal of
Computer Aided Molecular Design.

The assessment of molecular structure through molecular design begins by entry of
the structure into a program either as a set of cartesian (XYZ) coordinates,
manual graphical entry of individual atams, substructures, or fragments using a
‘mouse' or bit-pad in an appropriate entry enviromment, or by a code eg. SMILES.
Calculations are then performed on the chemical structure in order to obtain its
theoretically most stable conformation i.e. that with the lowest electronic
energy. Methods of achieving this, the ‘minimisation' of the molecule, are
broadly split into two areas - the molecular mechanics and molceular orbital
approaches.

1.5.1.1. Molecular Mechanics

Molecular mechanics, or force field calculations are based on a simple classical-
mechanical model of molecular structure. The molecule is considered as a set of
balls (atams) held together by springs (the potential functions of the bond
lengths and angles) (White, 1977). The first step in the molecular mechanics

calculation is the determination of interatamic distances, bond angles, and
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torsional angles in the starting geametry. The values obatined are then used in
one of the many different potential function expressions to calculate an initial
steric energy (E). Steric energy is specific to its force field, and as such has
no physical meaning. It is approximated as the sum of the energy contributions
E=Es+Eb+Ew+Enb+....
where Eg is the energy of a bond being stretched or campressed
is the energy of bending bonds

E, is the torsional energy due to twisting about bonds

Ep is the energy of nonbonded interactions
Other intramolecular mechanisms affecting the energy, such as electrostatic
(coulambic) repulsions or hydrogen bonding may be added to the force field (Boyd
and Kipkowitz, 1982). |

1.5.1.2. Example of a Potential Energy Function - Bond Length

The principle of the potential energy function is best considered using the bond-
stretching term as an example. The potential at any interataomic distance r is
described by the Morse curve, with a maximum at r, (see Fig. 1.3). The expression
for a Morse curve is, however, complicated and requires too much danputer time to
solve, However, since the vast majority of molecules have bond lengths within a
limited area, symbolised by the shaded portion in Fig. 1.4, Hooke's Law gives a
good fit to the energy profile, expressed by

V = kt-r)%/2

where V is the potential energy
k 1is a constant

1.5.1.3. Geametry Optimisation

Once an initial energy has been obtained the process is continued with the aim of
revealing the minimum energy geametry. This is performed by optimisation
techniques, such as the Newton-Raphson method, which use analytically evaluated
derivatives of molecular energy. Such methods work by the 'finite difference'
method, Considering bond length as an example, its energy potential curve is
displayed in Fig. 1.4. The energy of the initial geametry is calculated, and then
recalculated after a slight change in the geametry. The energy difference §E is

22



Figure 1.3 The potential energy curve for stretching a chemical bond. The dashed

curve represents a simple Hooke's law potential-function.

(Taken from Clarke, 1985)

Energy —

1
o

Interatomic Distance ——3

Figure 1.4 Determination of atamic forces by the finite difference method.

(Taken fram Clarke, 1985)

Energy —

Slope = §E/br

Interatomic Distancy —=>

23



used to determine the gradient SE;/ gr. The distance from the minimum should be
proportional to the gradient, and the geametry is altered to obtain the next
structure which should be closer to the minimum,

1.5.2. Molecular Orbital (MD) Theory

Molecular Orbital (or quantum mechanics) theory represents the molecule as a set
of molecular orbitals to be oocupied by the electrons assigned. The orbitals with
the lowest energy are then sought. The cammonly used semiempirical theory
utilises the LCAO-SCF procedure, The LCAO (linear cambination of the atamic
orbitals) formalism describes every molecular orbital as a linear cambination of
the atamic orbitals using the following equation:
MO = X0 +XCo+XC3 ...+ XG

where MO is the molecular orbital

X, is the Ny atanic_: qrbital . ) o

C, is the n—' coefficient of atamic orbitals' eigenvector
The SCF, the self consistent field operation, allows for the interactions between
different electrons and orbitals. The ICAO equation produces the optimised bond
lengths, bond angles, dihedral angles, free valences, the electron populations,
atomic charges and all the other data of the electronic structure of a molecule
(Clarke, 1985).
There are many types of MO program (see Fig 1.5). The ab initio methods are
oonsidered to be most accurate; however, due to their camplicated nature and the
fact that they require a lot of CPU time, they are not normally performed.
Popular, however, are the neglect-of-overlap methods (QNDO and MNDO).

1.5.3. Camputer Chemistry in QSAR Analysis

The ability to calculate the active conformation of a molecule is a most valuable
tool for qualitative analysis eg the elucidation of receptor shape. For
quantitative analysis of molecules the calculation of wave functions fram MO
theory allows derivation of much information about the molecule. (An analysis is
camonly performed by using molecular mechanics to optimise geametry, and MO
theory to calculate charge distributions.) For instance, charge distributions can

be derived fram the square of the wave function at a point in space and
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Fig 1.5. Summary of the Various Approximate Molecular Orbital Methods

(adapted fram Richards 1983)

Hartree-Fock limit ab initio

Extended basis set ab initio

Minimum basis set ab initio InCrease /
! i
Neglect of Differential Overlap (MNDO) Accuracy
| ' -
Carplete Neglect of Differential Overlap (QNDO) Camputer
Time

Iterative extended Huckel Theory (IEHT)

Extended Huckel Theory (EHT)

integrated over a defined volume. Fram this basis values can be obtained for the
eigenvalue of the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO).

Other atomic descriptoprs of possible use in QSAR studies have been devised. The
oconcept of superdelocalisability was introduced by Fukui et al (1954). Denoting
the occupied molecular orbitals by 1, 2, we. M, and the unoccupied levels by
mrl, M2, ..., the superdelocalisability, S, is given for the three types qf
reaction by:

i) for an electrophilic reaction

5@ = 2 ) %’

=1
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ii) for a nucleophilic reaction

N 2

Crj

D S
/\j

J=ml

i1ii) for a radical reaction

m N
c2rj C2rj
Sr(R) = Z- — + Z RS
Ay -\
1 j=m+l
where Cry is the coefficient of the rt atamic orbital in the jth molecular
orbital
Aj is the coefficient in the orbital erergy, given by
Ej = o + Aj F

where of is the ionisation potential
§ is an enpirical energy parameter

Other features that can be calculated with a knowledge of the frontier electron
densities include dipole maments, maments of inertia, and the principal ellipsoid
axes of the molecule. In addition, estimates of the surface area can made fram
the 'optimum geometry'.

Parameters calculated fram computer chemistry have already been shown to be
valuable in envirormental QSAR (Dearden and Nicholson, 1987; Purdy, 1988). They
are divided into two types, descriptors of the whole molecule, and those of
individual atams in a molecule. Atamic descriptors, eg. charges,
superdelocalisabilities, are useful only when studying the effect of substitution
on a parent compound.

Camplete molecular modelling packages are now available which will find minimum
energy structures and autamatically calculate physicochemical descriptors fram a
simple input. Comercially available software such as Chem-X fram Chemical Design
Ltd, SYBIL fram Tripos, and CHARMm from Polygen are good examples. Furthermore, |
the pharmacuetical industry has developed its own software, tailoring it to their
needs, eg. COSMIC fram Smith-Kline and Beecham (Vinter, 1987), and Profiles fram

the Wellcame Corporation (Glen and Rose, 1987).
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1.6.1. Historical QSAR

The biological activity of a chemical relies ultimately on its chemical
structure. The use of Quantitative Structure-Activity Relationships (QSAR) in
envirormental toxicology is an attempt statistically to justify this fundamental
principle (Turner et al, 1987). The basis of all QSAR can be traced back over 125
years to studies conducted on the effects of the so-called 'marcotic' chemicals.
Cros (1863) determined the toxicity of methyl and amyl alcohols and found that
they exhibited similar effects of depression followed by death at higher doses,
regardless of the test species, or the route of administration. He also noted a
decrease in water solubility with the addition of methyl groups to a molecule. It
was, however, Crum-Brown ard Fraser (1868) who first proposed that
‘there can be no reasonable doubt but that a relation exists between

the physiologic action of a substance and its chemical camposition and

constitution'
They also put forward a mathematical concept, thus
BA = £(c)
where BA is the biological activity

¢ is the 'oonstitution' of the chemical

f is a constant
The most famous, and possibly most valuable, early breakthroughs, however, were
those of Overton (1899) and Meyer (1899). They independently proposed that the
toxicity of simple non—electrolyte organic campounds deperds on their ability to
partition fram water to a lipoid biophase site of action. They also suggested the
use of the olive 0il/ water partition coefficient as a model parameter. Hansch
and Dunn (1972) used the data of same the campounds tested by Overton to derive a

QSAR:
log 1/0) = 0.901 log P + 0.909 (1.14)
n=57 s=0.312 r=0.962 F not given

where C is the lowest concentration in moles/1 found to produce narcosis in
tadpoles

As already mentioned in Section 1.3.2. it was the work of Hammett in the 1930s
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and Taft in the 1950s who progressed the art of SAR. Undoubtedly, however, the
modern science of QSAR was founded by Corwin Hansch and his co-workers. Hansch et
al (1962) quantitatively related the herbicidal activity of phenoxyacetic acids
to Hammett substituent constants (67) and the octanol-water partition coefficient
(pi):

log 1/C = 4.08 pi - 2.14 piZ + 2,78 & + 3.3 (1.15)

=20

where C is the concentration inducing a 10% growth in Avena coleoptiles in 24
hours

These ideas have been constantly reviewed and developed, finding numerous
applications in the design of new pesticides and drugs. Since QSAR is used to
predict the beneficial effects of chemicals, it seemed logical that it can be
used to predict the harmful effects of chemicals. Hansch and Dun (1972) reported
linear QSAR equations, of good predictive power, containing solely the log P
parameter, for the 24 hour minimum lethal concentration of organic campounds to
carp, goldfish, goby, roach, and tench fish, based on the 1901 data of Cololian.
In 1974 Kopperman et al related the toxicity of a series of phenols to Daphnia
magna using free energy terms. In addition, Ljublina and Filov (1975) describe
early attempts to quantify toxicity, tﬁat were made in the USSR, These were
probably the first publications in what is now being termed environmental QSAR;
most of the work, however, has taken place in the 1980s. Research has since been
concentrated in three main areas, the prediction of acute toxicity to aquatic
species, the bioconcentration of chemicals in the envirorment, and to a lesser

extent, the biodegradation of chemicals in the enviromment.

1.6.2. Modern QSAR - The Importance of Hydrophobicity

The historical importance of hydrophobicity in QSAR has already been emphasised
by the work of Cros (1863), Meyer (1899), Overton (1899), and Hansch and Dunn
(1972). In 1981 Konemann continuing this avenue of thought, found that the
logarithm of the partition coefficient was an extremely good model of the acute

toxicity to the guppy of 50 non-reactive, non-ionised organic chemicals, acting

28



solely by a narcosis mechanism: (see Fig. 1.6)
log 1/ICsy = 0.871 log P - 4.87 (1.16)
=50 s=0.237 r=0.988 F not given
where ICgy is the molar concentration that causes 50% fish mortality

in the guppy

log P is the calculated (according to the Rekker (1977) method)

logarithm of the octancl/ water partition coefficient
Although outliers were found to this equation these were attributed to 'excess
toxicity' i.e. the chemicals were acting by a more specific mechanism Konsmann
ooncluded that the lethal effect was probably caused by membrane perturbation and
seemed to be a kind of minimum effect i.e. a hydrophobic substance was at least
as toxic as calculated fram the QSAR unless it was strongly metabolised. This
relationship ended however when chemicals had a 1og P greater than 6, due to
insufficient water solubility.
This relationship between hydrophobicity and the acute toxicity of non-reactive
chemicals has been seen many times elsewhere. For example, Veith et al (1983)
found an extremely good relationship with the 96 hour ICc; of 60 common narcotic

chemicals to the fathead minnow Pimephales pramelas:

log IC5y = - 0.94 log P + 0.94 log (0.000068P + 1) - 1.25 (1.17)
=60 s, r, and F not given in text
The toxicity of such unspecific toxicants has been described by other features of ‘
a chemical's partitioning, such as the capacity factor fram high performance
liquid chramatography (HPIC). Warne et al (1989) reports that capacity factors
obtained on C-18 stationary phases, are the best descriptors of the toxicity of
diverse organic compounds to a mixed marine bacterial culture, when campared with
six other stationary phases:
log ECgy = = 1.25 log k(C18) - 0.006 EP + 3.491 (1.18)
=17 s not given r2=0.987 F not given
where log ECz;  is the molar concentration causing a 50% decrease in growth
. after 16 hours in a culture of mixed marine bacteria
log k(C18) is the logarithm of the.capacity factor of the Cl18 stationary

phase for each chemical
BP is the boiling point
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Protic and Sabljic (1989) discovered a strong relationship between the toxicity
of eight classes of narcotic chemical to the fathead minnow and their zero order
valence molecular connectivity indices (PV0):

log 1/1Cg5 = 3.43 PVO - 0.68 (1.19)

n=l13 s=0.541 r (adj)=0.84 F=568

where ICgy is the logarithm of the 96 hour molar ICsy to the fathead minnow
Table 1.2 shows many more examples of partition coefficient having been used to
model nonspecific narcosis,

This phenamenon of the Iog P relationship has been termed "baseline toxicity" by
Lipnick ard Dunn (1983). They considered that narcosis or physical toxicity
resulted fram a simple, reversible, physicochemical process in which the
biological response is solely a function of the molar cellular concentration of
the toxicant.

1.6.3. Modelling Toxicity Mechanisms other than Narcosis

Many classes of chemical do not act solely as narcotic agents, i.e. they have a
much more specific toxicity mechanism. This may arise fram metabolism to a more
toxic product, or because they may react irreversibly with an enzyme. The net
result is that the chemical has a toxicity value greater than that predicted by a
baseline narcosis hydrophobicity model. Same mechanisms of toxic action are
described below.

1.6.3.1. Electrophile Toxicity Mechanism

Organic nonelectrolytes capable of reacting with sulphhydryl groups and other
nucleophilic moieties present in target biological macramolecules may be
classified in general as acting by an electrophile molecular mechanism (Lipnick
and Dunn, 1983). Electrophile toxicants such as epoxides, allyl and benzyl
chlorides, 2,4~dinitrofluorobenzene and chlorotriazine can undergo nucleophilic
substitution reaction. Others, including alpha- and beta- unsaturated aldehydes,
ketones, esters, sulphones, nitriles, and amides, can serve as Michael-type
acceptors (Lipnick, 1989).

Hermens et al (1985h) attempted to model the 14 day LCgy for the guppy of 15
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reactive organic halides (acting as electrophiles). The toxicity was only poorly
modelled by log P, with many toxicities considerably greater than predicted by
baseline narcosis: (See Fig 1.7)

log 1/ICgy = 0.474 log P - 1.98 (1.20)

n=15 111 r=0.41 F not given

However the QSAR was greatly improved by the addition of a new parameter (K), the
reaction rate constant of the chemicals with 4-(4-nitrobenzyl)pyridine (NBP).
This is well recognised as a parameter for chemical reactivity in nucleophillic
substitution reactions (Panthananickal et al, 1978):

log 1/ICsy = 0.224 log P - 1.32 log(2484 + K™) + 4.05 (L.21)

=15 s=0.39 r=0.956 F not given

Dencer (1988), one of Hermens's coworkers, has found many more such
relationships, and has proposed (Deneer et al, 1987) the use of thiourea reaction
rates as an alternative to NBP for moderate and strong alkylating agents.

Lipnick et al (1987) has termed toxicity greater than that predicted fram
baseline narcosis theory as 'excess toxicity' (To). This may be defined as the
ratio of predicted to observed toxicity. i..

LCxq (pred) '
T, = B (L.22)
ICg (obs)

Where ICcy (ered) is the predicted toxicity fram log P
ICcy(cbs)  is the observed toxicity

Chemicals with Te between 0.5-2 are considered to be acting by a narcosis
mechanism, but with Te greater than 2, same form of more specific toxicity
mechanism is likely.

1.6.3.2. Proelectrophile Toxicity Mechanism

Lipnick et al (1987) also proposed that for primary and secondary propargylic
alooochols, which have been found to exhibit excess toxicity, the excess toxicity
can be ascribed to a proelectrophile mechanism involving metabolism via the
enzyme alcohol dehydrogenase to the corresponding alpha- and beta-unsaturated
aldehydes and ketones which can act as Michael-type acceptor electrophilic
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toxicants.

When quantifying this an additional parameter is again required expressing the
tendency of campourds to be reduced. Deneer et al (1987a) related the toxicity to
fish of nitroaramatic campounds to hydrophobicity, the Hammett constant, and

their polarographic half-wave reduction potential E /2 The best equation

obtained was:
log 1/LC50 = 096 log P + 8.81 El /2 + 0.68 (1.23)
=20 s=0.18 r=0.964 F not given

1.6.3.3. Non-Polar Narcosis

Schultz and his co-workers have studied the effect of organic chemicals on the

growth of the ciliate protozoan Tetrahymena pyriformis, with respect to

investigating modes of toxic action (Schultz, 1988). As would be expected a
strong relationship is found between the toxic effects of simple narcotic

chemicals and the calculated log P fram the MEDCHEM software (Schultz et al

1990b) :
log 1/IGgy = 0.834 Clogp - 2.069 (1.24)
=30 %=0.952 $=0.324 F=551

where 1IGy, is the concentration causing 50% inhibition in growth of Tetrahymena
pyriformis after 48 hours

Other chemicals studied that were thought to be narootics were, however, more
toxic than estimated by this baseline narcosis model. These chemicals were
observed to be more polar and had a hydrogen donor moiety (Veith and Broderius,
1987). Such chemicals are thought to act by a 'polar narcosis' mechanism and
include para-, di- and tri- alkyl, and halogen-substituted phenols. Same phenolic
derivatives (namely 4-nitro, 4-hydroxy, 2-hydroxy, 4-amino, and 2-amino) are not
included because of their ability to form a Michael-type acceptor electrophile
(Roberts 1987). In addition, Schultz et al (1989) have shown that alkyl- and
halogen—substituted aniline derivatives can act by the polar narcosis method of
toxicity.

A good overall relationship has been obtained for toxicity towards T. pyriformis
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for 144 substitued phenols and anilines (Schultz et al, 1990b). It is suggested
that the sigma constant reflects the fact that sane of the phenols are partially
ionised at the pH of the T. pyriformis growth assay. Since unionised molecules
are better able to penetrate biological membranes than ionised species, this
affects relative toxicity:

log 1/1Gsy = 0.641 log P + 0.563 <0~ ~ 119 (1.25)

=144  s=0.240 r2=0.891 F=571

vhere 2o~ is the sum of the sigma constants of the substituents

1.6.3.4. Weak Acid Respiratory Uncouplers of Oxidative Phosphorylation

Veith and Broderius (1987) noted that same phenols were more toxic than predicted
by polar narcosis. They postulated that many of these chemicals were acting as
weak acid uncouplers of oxidative phosphorylation.
Respiratory uncouplers elicit their effect by abolishing the coupling of
substrate oxidation to ATP synthesis. 2,4-dinitrophenol is thought of as a
typical weak acid uncoupler, and other chemicals with a phenolic or anilinic
moiety and additional electron withdrawing substituents can act in this manner.
Such campounds include dinitro, tetra and pentahalogen-, phenylazo-, and
dihalogen—mononitro- substituted phenols and anilines (Schultz et al, 1990b).
Again a strong relationship is found for T. pyriformis toxicities:
log 1/1Ggy = 0.425 log P + 0.202 (1.26)
=26 $=0.176 r?=0.912 F=249
Purdy (1988) showed the utility of parameters fram camputational chemistry to
model nitrobenzenes suspected of acting as uncouplers of oxidative
phosphorylation to the fathead minnow:
log IC5y = = 0.291 log P + 0.569 Eppmo + 5-37 Cgq — 3.99 (1.27)
n=35 $=0.29 r2=0.89 F rot given
where ICgy is the 96 hour fathead minnow LCsy

?_S,im is the ONDO calculated LUMO energy

is the QNDO calculated lowest square of a nitro nitrogen P, eigen
vector for IDMO
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1.6.3.5. Other Toxicity Models using Hydrophobicity

An interesting feature of these QSAR analyses is that many campounds, although
not acting by a simple narcosis mechanism, can be well modelled by their
hydrophobicity alone. This phenamenon has also been found by Deneer et al (1988)
who found that the toxicity of aldehydes (thought to be chemically reactive in
vivo to the guppy was well modelled by log P:

log 1/1Cgy = 0.36(0.04) log P - 2.54 (1.28)

n=14 5=0.19 r=0.923 F not given

They also observed that at higher log P values the campourds increasingly tend to
act by a narcotic mechanigm. This is because as log P increases there is a
increasing tendency for accumulation in the lipid phase, thus becaming
unavailable for interactions that occur in the aqueous phases of the organism.
Cronin and Dearden (1990) also found that, with few exceptions, the toxicities of
17 different classes of organic chemical to the fathead minnow were well
correlated to the calculated log P, despite several toxicity mechanisms being
present.

1.6.4. Fish Acute Toxicity Syndrames (FATS)

Bradbury and his co-workers at the U.S. Envirommental Protection Agency have
taken a different approach to defining the mode of action of a toxicant using the
assessment of fish acute toxicity syrdrames (FAIS). FATS (Bradbury, 1988) are

distinct sets of rainbow trout (Salmo gairdneri) in vivo toxic responses that

correspord to specific modes of action. By measuring a number of respiratory-
cardiovascular variables, response sets associated with non-polar and polar |
narcotics, oxidative phosphorylation uncouplers, respiratory membrane irritants,
respiratory inhibitors, acetylcholinesterase inhibitors, and central nervous |
system seizure agents have been created. The large number of reponses collated,
such as oxygen consumption, ventilation, cough and heart frequency, has resulted
in a large qualitative and quantitative data matrix. The use of discriminant
function analysis has simplified this camplex data set as well as enabling the
best response variables for specific FATS to be determined,
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1.6.5. Computerised QSAR Prediction '

Cammercially, there is only one real camputerised toxicity prediction service
available, TOPKAT, marketed by Health Designs Incorporated (HDI). TOPKAT is based
on QSAR methodology (Enslein, 1988) and will (given a two dimensional structural
input) provide estimates for the probability of the campound being carcinogenic,
mutagenic, or teratogenic. Scores for eye and skin irritancy; and values for rat

oral IDgq, fathead minnow LCoqys and Daphnia magna ECSO are also provided. For the

prediction of continuous variables such as the rat oral IDgg, their approach can
be considered as Hansch-type QSAR analysis in which standard parameters (ClogPp,
molecular connectivities, atomic charges) are cambined with indicator variables
for substructures or fragments. With a discrete property, such as the presence or
absence of mutagenicity, discriminant analysis is applied.

another method of predicitng discrete toxic responses is the camputer autamated
structure evaluation (CASE) program devised by Klopman (1985). This selects
autamatically, substructural units that are most appropriate to discriminate
between active and inactive molecules. In this system, the fragments are formed
by breaking up the molecule into linear subunits consisting of three to twelve
non-hydrogen atams. Toxicity then can be assigned to specific fragments and
structure searching can be used in a predictive mode.

Other camputerised scoring systems based on QSAR have been proposed to help focus
attention on existing chemicals needing urgent hazard assessment (Weiss et al,
1988), and to assess the envirommental risk of new chemicals (Klein et al, 1988).

This software has not yet, unfortunately, been made cammercially available.

1.6.6. OSARs for the Prediction of Bioconcentration Factor (BCF)

In the study of the hazardous potential of xenobiotics to living organisms, the
bioconcentration (or bioaccumilation) of the campounds is of particular
importance. McCarty (1986) stressed the importance of bioconcentration as a
factor in the prediction of aquatic toxicity and suggested that bioconcentration

and toxicity kinetics are similar. The process of bioconcentration describes the
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uptake of chemicals both fram the ambient medium by direct contact and via food
ingestion such that the resulting concentrations in the organisms are larger than
those naturally occuring (Schuurmann and Klein, 1988). It is quantified as the
ratio of the oconcentration of the chemical in the whole fish (Cg) to that in
water at steady state (C) (Kenaga, 1972):
Ce

G

It is well established that bioconcentration of chemicals in aquatic organisms is

BF = (1.29)

dependent on the hydrophobicity of the molecule, and bioconcentration has been
well modelled by the partition coefficient (Metcalf et al, 1975). Examples of the
ocorrelation between hydrophobicity and bioconcentration are cammon. Neely et al
(1974) found the bioconcentration factor for 8 chlorinated organic chemicals
strongly log P dependent:

log BCF = 0.542 log P + 0.124 (1.30)

n=8 5=0.342 r=0.948 F not given

This model holds well for more complex organisms eg. the bioconcentration
potential of 8 organic chemicals in the adipose tissue of humans is well
correlated to log P (Geyer et al, 1987):

log BCF = 0.756(0.08) log P - 1.415 (1.31)

=8 s0.261 r=0.969 F not given

Also Kerler and Schonherr (1988) found that for 7 lipophilic chemicals the
bioconcentration in the cuticles of four plant species was well predicted by
their octanol/water partition ocoefficient.

Some modifications have been made to the basic log P model. Koch (1983) reports
the good correlation of the bioconcentration of 21 organic chemicals with first
order valence corrected molecular connectivity. Also Anliker et al (1988) have
found that the correlation is significantly improved with a (log P)2 and a steric
term (in this case the molecular weight (MW) was used) for 43 organic dyes:
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log BCF = 0.82(1.26) log P - 0.054(0.03) (log PB)?

- 0.0048(0.001) MW + 0.88 (1.32)
=42 s=1.01 r=0.65 F not given
Isnard and Lambert (1988) concluded that there is no significant advantage in
using log P instead of agueous solubilty. Schuurman and Klein (1988) found in a
study of 49 diverse chemicals that log P is perhaps "overrated" and suggested
solute accessible surface area and molar refractivity as better descriptors of

bioconcentration.

1.6.7. QSARs for the Prediction of Biodegradability

Biodegradation (metabolism by microorganisms) is one of the most important
processes determining the fate of organic chemicals in the envirorment
(Alexander, 1981). Biodegradability rates, therefore, play an important role in
the estimation of the envirommental fate and hazard of chemicals. Biodegradation
has been quantified by the calculation of psuedo first order, or second order,
reaction rate constants for the degradation process. However, because of the
difficulty in obtaining rate constants, the biological oxygen demand (BD) for a
sample of municipal sludge contaminated with the chemical has been utilised as a
measure of microbial breakdown.

Existing QSARs for the prediction of biodegradability are reviewed by Parsons and |
Govers (1990). They report the success of QSAR in helping to detemmine
mechanistic action. However, in general these apply only to restricted classes of
canpouds. For instance, Paris et al (1984) found the second order rate constant
of biodegradability (log k) for a series of alkyl esters of 2,4-D well
correlated to hydrophobicity:

log k, = 0.799(0.098) log P - 11.643 (1.33)

n=6 s not given r2=0.972 F not given |
Other descriptors model biodegradability well, including molecular connectivities

(Boethling, 1986), eg. for a series of phthalate esters:
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log ky = =372 % + 547 (1.34)

=12 5=25.5 r=0.969 F not given

_vhere % is second order path molecular comnectivity

Also Dearden and Nichoson (1987) report a very good correlation between the 5 day
biological oxygen demand (BOD) of 197 campounds fram 13 different classes and the

difference in modulus of atamic charge across one specific bond ([0] X"Y) in a

given chemical:
$ BOD = 1.015 x 103  [o] xoy * 1523 (1.35)
=197 5=3.822 r=0.991 F not given

The value of QSAR to predict biological rates of degradation has, however,
generally been limited to restricted ranges of chemical classes, and seems very
dependent on the biological system utilised. Many different descriptors have been
used to form relationships, varying fram macroscopic physical properties to
molecular structural parameters. For example, Pitter (1985) has found
correlations with the Hammett constant, and Paris (1983) found biodegradation to
be dependent on the substituent size of the phenols.

Reviewing the current literature, Govers and Parsons (1990) conclude that more
information on the mechanisms, and rate determining steps of biodegradation,
which can lead to a better founded choice of descriptors, and more biodegradation
rate data, are required to further develop QSARs in this field.
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1.7. Extrapolation of Toxicity Between Species

The extrapolation of animal toxicity data is a well established method to
determine the risk of many products (e.q. consumer goods, drugs) to man. It aims
to provide a safe upper concentration at which a chemical will cause no harm
(Clayson, 1988). With the increasing need for as much toxicological information
as possible, it was clearly appropriate to apply the approach to the field of
envirommental toxicology, where estimates are made in two major areas, The first
is the area of effluent toxicity testing and monitoring, where an indication can
be made as to the possible impact of a camplex of chemicals to different
organisms and ecosystems. The second is that of new chemical testing where there
is a requirement to assess its potential hazard (Wallace and Niemi, 1988).

The second of these areas is of interest in this study. Much effort is being put
into the extrapolation of biological activity in higher organisms fram that in
lower organisms (Tichy et al, 1985). These correlations of acute toxicities
between unrelated species provide a means for estimating acute health hazards in
species for which limited information exists. In addition, in oamparing the
relative sensitivity of species, this work has aided in the identification of the
most suitable test species.

A summary of the main published work performed on inter-species correlations in
envirommental toxicology is shown in Table 1.3. The majority of the work has
involved the prediction of quantitative values of toxicity, such as an ICsq4/
rather than attempts to find safe limits of chemicals as drug research tends to
do. These relationships are normally expressed in the form of regression
equations. .
Oorrelation between toxicity to agquatic species have been relatively successful,
although, as might be expected, there appears to be closer correlation between
more closely related taxa, IeBlanc (1984), in an extensive study of inter-species
correlations, found that when correlation indices derived fram the camparison of
sensitivity of a diverse group of aguatic organism to nonpesticide organic
campounds were averaged into three categories:
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i) closely related species (i.e. fish vs fish)

ii) more distantly related species (i.e. fish vs invertebrates)

iii) most distantly related species (i.e. fish vs algae)

the three averages were 0.82, 0.80, and 0.70 respectively.

There has, however, been same success in extrapolating fram microbial organisms
to higher taxa. Ribo and Kaiser (1983) concluded that the inhibition of light
emission fram photo-luminescent bacteria (the Microtox test) correlated well with
other toxicity data for chlorophenols. BEgn 1.36 shows the relationship between 30
minute Microtox ECg, and the ICg, for semichronic toxicity to the guppy ina 7 to
14 day static test:

Guppy log ICgy = 0,79 log ECgy + 0.41 (1.36)

=11 s not given r2=0.89 F not given

Also Rhlers et al (1988) found for 15 phenols, anilines and aliphatics, a good
correlation between golden orfe toxicity and the inhibition of the growth (IGgg)

of the yeast Saccharamyces cerevisae:

Fish log IDgg = 1.25 log IGgg =~ 1.90 (1.37)

n=15 s not given r=0.94 F not given

Extrapolations of data between lower organisms and mammals are notoriously
difficult (Tardiff and Rodricks, 1987), although same success has been achieved.
Janardan et al (1984) found for 44 priority pollutants the following relationship
between rat oral IDg; and bluegill 96 hour ICgg:

Rat oral log IDgy = L21 fish log ICg, + 0.539 (1.38)

n=44 s not given r=0.71 F not given

Of the authors listed in Table 1.3, only two have used regression techniques that
acoount for possible errors in both variables (normal regression analysis
accounts for errors in only the dependent variable). Janardan et al (1984)
utilised Model II regression analysis; also Suter and Rosen (1988) employed an
'errors-in-variables' method. It may be preferable to use such a method as the

tool to find inter-species correlations as it is certain that both sets of
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toxicity data will oontain errors.

Hodson (1985) found several correlations between rainbow trout oral and
interperitoneal IDg; data and mouse and rat oral and interperitoneal IDgy data
for same benzenes, phenols, and anilines:

Fish IPICg) = 1.00 Rat IPIDg; - L.69 (1.39)

n=16 s not given r=0,933 F not given

Extrapolation fram fish to rat toxicity has also been improved by the use of
first order molecular connectivity (Smissaert and Jansen, 1984; Tichy et al,
1985) .

The use of structural descriptors in interspecies correlations has been taken a
step further by Enslein et al (1987). They developed a structure-activity model

to predict rat oral IDgy values from Daphnia magna ICgy values and various

structural parameters including molecular connectivities and substructural keys.

With 147 diverse organic chemicals the ICgy Of D. magna and 12 structural
parameters explained approximately 75% of the variance of the rat oral IDgy.

1.7.1. Relative Sensitivity of Species to Organic Chemicals

Analysis of camparative toxicity data can also give an indication of the relative
'sensitivity’ of individual species to chemicals. A species is deemed to be more
sensitive to a chemical than is another species if a lower concentration of the
chemical produces a similar toxic response. Such species selectivity is, of
ocourse, an essential component in the design of many chemicals, eg. pesticides
have to be toxic to a particular species, yet should cause little harm to other
species. Furthermore, marked differences in the susceptibility of species are
commonly observed. Sloof et al (1983) report a factor of 9000 difference in the
susceptibility of 22 aguatic species to 15 organic chemicals,

Other workers have assessed and quantified the relative senstivity of species.
Holoambe et al (1987) reveal that the rainbow trout is the most susceptible of 12
species to 12 mixed organic chemicals and silver nitrate. Suter and Rosen (1988)
examined the sensitivity of 21 species of marine fishes and crustaceans, finding
that two shrimp species (Penaeus duorarum and Mysidopsis bahia) were on average
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the most sensitive. Overall, however, no species was consistently found to be the
most sensitive, This fact has led to the proposal that all new chemical testing
should employ multi-species testing in preference to single species testing

(Blanck, 1984; Cairns, 1988).
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1.8 Aims of the Project and Areas of Investigation

The need for research into chegp, rapid, and reliable methods for the
toxicological risk assessment of chemicals is crucial to help alleviate the
workload on regulatory agencies worldwide. The thrust of this project has been to
investigate two methods of achieving this goal, namely the use of (BAR, and the
extrapolation of toxicity data between species. For both, high quality, accurate
data are required for the biological activity that the chemicals exert and for
the physico-chemical descriptors of each campourd.

The Microtox test was chosen as a test system to investigate as it is a highly
standardised, and reproducible procedure to assess aquatic toxicities of
chemicals., The production of new toxicological data by this method camplements
other studies, as well as the regulatory data already available, It also has a
proven track record in QSAR studies, and as a species fram which data can be
extrapolated., These data were augmented by a literature review of campatible
toxicological methods.

The chemicals for analysis have to be very carefully chosen, especially in a QSAR
study, in order to gain as much information fram the data as possible. In
addition to the investigation of narcotic chemicals, a particular emphasis in
this study was put upon the modelling of those reactive organic compounds thought
to be acting by more specific toxicity mechanisms. Obvious examples, for which
limited toxicological information exists, are the nitriles, aldehydes, and the
amines,

Little has been done to extend the techniques of camputer chemistry and
multivariate statistical analysis, founded in phammaceutical and pesticide
research to envirommental toxicology. Use of molecular modelling can provide much
valuable information, especially about such characteristics as the electronic
configuration of reactive molecules; use of multivariate statistics can help to
resolve the salient features of large quantities of data. All parameters used in
the QSAR study were calculated, many of which had not been evaluated before in an
envirommental QSAR study. The use of calculated parameters has particular
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advantages, such as they are cheap, relatively reliable, and can be rapidly
produced for many campounds regardless of whether, or not, they have even been
synthesised.

The extrapolation of toxicity data between species has been studied in this work,
with a view to showing which species can give an accurate representation of the
effects of the chemicals on higher species. Also the chemicals were assessed in
an attempt to find which features, or chemical moieties, might induce a higher
relative toxic reponse in one species than another. This aids the determination
of the classes of chemicals for which the inter-species extrapolations can be

applied.
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2. METHODS

2.1. Determination of Biological Data

2.1.1. The Microtox Bioassay

A description of the background, theory, and application of the Microtox Bioassay
is given in Appendix 1.

2.1.1.1. Sumary of the Microtox System Principle of (peration

The Microtox System used the Microtox Model 2055 Toxicity Analyzer to measure the
light output of the Microtox reagent. The Microtox reagent contains the living

bioluminescent bacteria (Photobacterium phosphoreum) which have been grown under

optimal oconditions, harvested and then lyophilized (freeze-dried under vacuum).
The lyphilized bacteria are rehydrated with the Microtox reconstitution solution
to provide a ready-to-use cell suspension.

The Microtox Analyzer utilises a photanultiplier tube (PMI) to measure the light
output of the luminescent bacteria before and after they are challenged by a
sample of unknown toxicity. The Analyzer permits choice of test temperatures fram
10°C to 25°C under ambient conditions.

The Microtox System is normally employed for the determination of a dose response
curve, fram which the effective concentration (EC) of a sample causing the
specified effect is found. The basic procedure for this approach employs
duplicates of a non-toxic control (the reagent blank) and four serial dilutions
of the sample. The mean response of the duplicate reagent blanks is used to
nomnalise the duplicate reponses of the four test concentrations of samples when
the test results are reduced. This normalisation corrects the toxic response for
nomal drifts of light output with time and for small effects upon the light |
output arising fram the dilution with the sample.

2.1.1.2. Features of the Analyzer

In this section the reader is referred to Fig 2.L

Precooling Well

This incubator well is located behind the turret and is preset to 3 +1°C. It is

used to precool the reconstitution solution and hold the reconstituted bacteria.
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Figure 2.1 Diagrammatic representation of the
Microtox Model 2055 Toxicity Analyzer.

Turret Assembly

Precooling Well

Incubator
Well Block
Temperature
Set Dial Switches Controlling

Digital Panel D.P.M. Output

Meter (D.P.M.)

Photomultiplier Tube
Sensitivity Dials.
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The precooling well is situated inside the condenser which provides dry air for
purging the turret and incubator wells of moisture, The temperature of the well
and the condenser can be shown on the digital panel meter.

Incubator Well Block

The fifteen well incubator block is designed to maintain the cuvettes of reagent
and sample at the selected temperature (in this case 15°0) prior to testing. The
condenser provides dry air for purging the incubator wells. The most effective
dry air purging is achieved when the incubator wells are empty or full of
cuvettes.

Of the cuvettes in the fifteen wells, five are for the serial dilution of the
sample (including a blank to act as a control), the remaining ten allow duplicate
determination of the effect on light output of the sample.

Turret Assembly

The turret assembly is designed to accammodate one cuvette at a time for making a
light reading. It contains an inner shutter which determines when the
photomultiplier tube is exposed to the light fram the cuvette, The inner shutter
is only fully open when the turret is fully closed. The turret assembly contains
a temperature controlled well.

Digital Panel Meter

The digital panel meter may be switched to display the relative light output, the
high voltage level for the PMT, or the temperature of the precooling well, the
turret well, or the incubator wells.

2.1.1.3. Operating Procedure

The Microtox bicassay was performed on the 48 chemicals listed in Table 2.1.
There were many criteria for choice of the test chemicals, Most chemicals were
chosen for which no previous Microtox toxicity data were available (only seven
were repeats of published data). As well, it was felt important that there should
be analysis of chemical classes for which no information exists, such as the
aldehydes and nitriles, Also the compounds had to be considered as cammon
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Table 2.1. Chemicals used in the Microtox Bioassay

Chemical CAS no. Stated % Methanol
Purity Aded (if used)

3-pentanone 96-22-0 99%

5~-nonanone 502-56~7 98%
3-methy1-2-butanone 563-80—4 99%

3,3dimethyl -2-butanone 75-97-8 95¢
2—-ethoxyethyl acetate 111-15-9 99%

methyl acetate 79-20-9 993

propyl acetate 109-60-4

butyl acetate 123-86~4 99+

hexyl acetate 142-92-7 99%

ethyl hexanoate _ 123-66~0 9943

diethyl adipate 141-28-6

dibutyl adipate 105-99-7 96% 3
diethyl sebacate 110-40-7 95% 3
dimethyl malonate 108-59-8 97%

diethyl benzyl malonate 607-81-8 97% 3
chloroacetonitrile 107-14-2 98+%
malononitrile 109-77-3 99% 3
allyl cyanide 109-75-1

1,4-dicyancbutane 111-69-3 99%
1,6-dicyanohexane 629-40-3 99%

octyl cyanide 2243-27-8 98% 3
acetone 67-64-1 99%

toluene 108-88-3 99.5%
2-methoxyethylamine 109-85-3 9943

1, 2-diaminopropane 78-90~0 9943

butanal 123-72-8 99% 3
propylamine 107-10-8 98%
2-chloro-4-methylaniline 615-65-6 98% 2
octylamine 111-86-4 97%

hexanal 66~25-1 99%

heptylamine 111-68-2 99+%
4-fluoroaniline 371-40-4 99% 2
N,N-diethylaniline 91-66~7 99% 5
2-fluwrobenzaldehyde 446-52-6 99%
2-chloro-6-fluorobenzaldehyde  387-45-1 95% 3
5-bramosal icylaldelnyde 1761-61-1 99% 3
vanillin 121-33-5 99% 5
2,4~dichlorobenzaldehyde 874-42-0

4~chloro-3-nitrotoluene 89-60-1 2
1,2,4-trichlorobenzene 120-82-1 99+% 2
2-chloronitrobenzene 88-73-3 99+%
3-chloronitrobenzene 121-73-3 2
2—chloro—4~-nitrotoluene 121-86-8 98% 2
2-chloro-6—-nitrotoluene 83-42-1 98% 2
acrolein 107-02-8 97%

biphenyl 92-52-4 99% 5
1,3-dichloro-2-propanol 96-23-1 95%
3~-chlorotoluene 108-41-8

4-chloronitrobenzene 100-00-5 2

Unless otherwise stated in this thesis, all undesignated alkyl chains are 1-
(n-) substituted.
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pollutants, and it was advantageous that comparative fathead minnow toxicity data
were available,

All chemicals were supplied by Aldrich Chemical Co. Ltd, Gillingham, Dorset,

UK., except for 3-pentanone, toluene, and acetone supplied by BDH Co. Itd,
Poole, Dorset, UK. The freeze-dried bacterial reagent was obtained fram a local
representative of Beckman Inc. The measurements of toxicity were taken at the
Water Research Centre, Medmenham, Bucks, UK

Prior to administration the chemicals were diluted to form a stock solution using
pure de-ionised water, and adjusted to 2% NaCl (with 20% NaCl solution) in order
to prevent osmotic effects.

Increasing the Solubility of Chemicals

Due to their low solubility in water, 19 of the chemicals tested were prepared in
an initial solution (i.e. before dilution) containing upto 5% methanol; the
individual concentrations used are noted in Table 2.1. Solutions of 5-10%
methanol have been shown to have no toxicity to the bacteria, and are recammended
for use with campounds of low solubility (Ribo and Kaiser, 1987). Also results
fram this investigation show that 5% methanol has no effect on the relative light
production of the reagent.

Analyzer and Sample Preparation

The Microtox Analyzer was set to 15°C and allowed to equilibriate for at least
one hour. 1.0 ml of Microtox reconstitution solution (a specially purified water)
was placed in the cuvette in the precooling well. Quvettes were placed in the
incubation well block, and the Microtox Diluent (a specially purified water with
2% NaCl) added to the correct volume of the dilution factor. The osmotically |
adjusted primary dilution of the sample was then serially diluted in the
appropriate cuvettes in the incubation well block.

Reagent Preparation

The Microtox Reagent was reoconstituted. The precooled reconstitution solution was

added to the vial of reagent (kept in cold storage for as long as possible),
rapidly mixed, returned to the cuvette, and replaced in the precooling well as
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not to allow warming of the mixture. The reagent was mixed again by aspirating
and dispensing the contents of the cuvette with a 250 uL pipettor. 10 uL of
reconstituted reagent was added to cuvettes in the incubator well block without
sample present. All cuvettes were left for 15 minutes to stabilise.

Assay Procedure

The cuvettes containing the bacterial reagent were placed, in sequence, in the
turret assembly so that a reading for the relative light output could be recorded
on the digital panel meter. Inmediately after the last reading was taken, 500 uL
(or the necessary volume according to the dilution factor) of the appropriate
sample dilution (or blank) was added and mixed with the appropriate cuvette of
bacteria. This operation was undertaken in the same sequence, and at the same
time intervals (fifteen seconds) as the light output readings. Five and fifteen
minutes after the first sample had been added, the light output was again
recorded in the same sequence. This gives an indication of the effect (if any) of
the sample at each time,

Experimental Design

Each chemical was given a ‘preliminary test', using a large range of dilutions,
ed. a 10:1 dilution scheme, to establish a range of concentrations spanning the
ECgg of the toxicant. On this was based a more accurate investigation, using a
more specific range of concentrations (nomally a 2:1 or occasiocnally 5:1
dilution scheme), to establish an accurate ECgy of the campound.

The preliminary tests were performed at least twice, further repeats being
carried out if the results were over 25% divergent. The more accurate tests were
performed three or more times, with at least two different initial solutions used
in order that any errors in the preparation of the solution could be

identified.

2.1.1.4. Analysis of the Data

For each analysis ten data were produced. These were reduced to a express the

effective concentration at which there is a 50% decrease in the relative light
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intensity (ECgg). To account for the natural decay in the output of light fram
the bacteria (due to time etc.), the readings were nomalised using a 'blank
ratio' (BR), which is the ratio of actual reading for the control solutions

without toxicant at the start of the assay and at each time a recording is made:

I(0)t
BRe = 1(0)o

Wwhere I(0)o, I(0)t are the blank readings at time 0 and t.
The gamma function, the ratio of light lost due to the effect of the sample as
campared with the light remaining fram the blank can then be calculated and used

as a bioassay response parameter. Gamma is calculated by:

_ {BR . I(c)o) - I(ot
gamma - = IOt

Where I(0)y is the intensity of light measured for a cuvette containing sample
ooncentration ¢ after t minutes (c=0 indicates the blank).

When the gama function is plotted against the logarithm of the corresponding
concentration of the toxicant, the ECgq is found when gamma = 1.

A worked example is given below for the analysis of the 5 minute ECgy for a 10:1
dilution of N,N,—diethylaniline. The full results are given in Table 2.2.

Thus the blank ratio after 5 minutes is the mean of the duplicates:

For 1. BR

77/87=0.88

For 2. BR

101/114=0.88

The mean of the blank ratio is 0.88.

For the first duplicate of the 0.00089 ml/L concentration gamma is calculated by:
(0.88 . 126) - 75

gama = = 0.47
75

and so on for the other oconcentrations.,
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Table 2.2. Full Results of the Light Qutput of Bacteria when Subjected to

Different Concentrations of N,N-diethylaniline

Concentration of Light OQutput Gamma
NN-diethylaniline (fram the digital
panel meter)
Initial 5 minutes
Blank 1 87 77 -
2 114 101 -
0.00089 ml/L, 1 126 75 0.47
2 98 69 0.26
0.0089 ml/L 1 101 36 1.48
2 108 42 1.27
0.089 ml/L, 1 83 6 11
2 105 9 9
0.89 ml/L 1 103 4 22
2 114 4 24

The plot of gamma values against the logarithm of the concentration of N,N,-
diethylaniline is shown in Fig 2.2. The line is plotted through the mean of the
garma values and shows the HCgy where gamma = 1 to be at a concentration of 0.054

ml/L.
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Fig 2.2. Plot of the gamma function of light output for a 10:1 dilution of

N,N-diethylaniline

N.B. Both axes are in log units.
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0.0054m1/1
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Concentration of N,N-diethylaniline added to the Microtox solution (ml/1)
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2.1.2.1. Calculation of Fathead Minnow 96 hour ICs,

The problem of obtaining toxicity data of a reliable quality and quantity is
considerable (Cairns, 1988). However in a far-sighted move in the 1970's
admninistrators at the Office of Toxic Substances in the U.S. Envirormental
Protection Agency (E.P.A.) realised the need for a reproducible, accurate
toxicity data base. In 1979 the University of Wisconsin-Superior embarked on a
data generation effort to fulfill this major need in toxicology. The primary
toxicity endpoint selected was the 96 hour lethal concentration LCg for the

fathead minnow (Pimephales pramelas). The fathead minnow was chosen as the test

species due to its ease of culture, widespread oocurrence, rapid growth,
ecological importance, and mid-range in tolerance for freshwater organisms to
envirommental pollutants (Geiger et al, 1988). In total the toxicities of over
550 organic chemicals had been measured by 1988 when the project ceased. These
data are made freely available for research purposes, including QSAR studies such
as this,

A brief overview of the method is given below (for full methods the reader is
referred to Brooke et al, 1984; Geiger et al 1985, 1986, 1988). The acute
toxicity tests were conducted according to ASTM }reoameniations (ASTM, 1980).
Juvenile fathead minnows ranging in age fram 29 to 33 days were fed live brine
shrimp nauplii in excess until 24 hours prior to testing, ard were not fed during
the 96 hour exposure. Tests were perfommed with a continuous-flow diluter
exposure system, This comprised of four replicate glass exposure chanbers,
through which the relevant concentration of the toxicant was passed. (Benoit et
al 1982). Each toxicity test had five treatment levels and one control, twenty
fish being placed in each tank.

Lake Superior was the source of dilution water. The water was filtered through
sand and heated to 25+2°C for the tests. The water chemistry was analysed, and
the mean pH, dissolved oxygen, temperature, alkalinity, and hardness were
recorded. The compounds used in the study were obtained fram several chemicals

suppliers, and were normally of the purest available form, these purities were
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confirmed by gas chramatography.

All ICggs and 95% confidence limits were calculated using the average of the
analysed tank concentrations which were corrected for recovery, and by the
camputerised Trimmed Spearman—Karber method for estimating median lethal
oconcentration,

puring each test the fish were observed at 8, 24, 48, 72, and 96 hours for 98
parameters of abnomal behaviour and morphological changes. The behavioural data
were statistically examined and classified into possible modes of fish acute

toxicity syndrames - FATS (Drummond et al, 1986).

59



2.2 Calculation of physico-Chemical Data

2.2.1. Calculation of the Partition Coefficient and Molar Refractivity

2.2.1.1. Software

The suite of programs incoroprated into the MEDCHEM software has been pioneered
by Leo and his co-workers at the Pamona College, California, MEDCHEM has became,
in effect, the standard method for calculating the logarithm of the 1-
octanol/water partition coefficient and molar refractivity, being extensively
used in academia and the pharmaceutical industry worldwide.

MEDCHEM (ver 3.53) was run interactively on a Microcolour M2250 graphics terminal
(emulating a VI24l) supported by a VAX mainframe,

2.2.1.2. Calculation of the Logaritim of the Octanol /Water Partition

Coefficient (ClogP)

ClogP is calculated using the 'constructionalist approach' pioneered by Ieo et al
(1975). This starts with a set of 'fundamental fragments' whose values are summed
with appropiate weighting factors consisting of the number of times each fragment
occurs. Correction factors are added as necessary. This method can be described
by:
n
logp = E: alfl +

%

M=

i=1 j=1
where f; is the fragment constant for the ith ragment

aj is the number of occurances of the i“' fragment
c-

5 is the jth correction factor

The fundamental assumption of the 'constructionalist approach' is that
hydrophobicity is an additive-constitutive property of molecules, Thus the log P
value is equal to the summation of the hydrophobic contributions of each |
oonstitutive fragment. The MEDCHEM software contains fragment constant values,
and correction factors which it applies to each substructural fragment as
appropriate.

2.2.1.3. Input of a Structure

Structural input of campounds is very flexible, methods include a simple name, or
identification numbers such as CAS or Aldrich ID. However, when these are not
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available, or not found in the data base, a simple structural input is employed,
known as SMILES. SMILES (Simplified Molecular Input Line Entry System) is a
chemical notation system designed for modern chemical information processing
(Weininger et al, 1986). It encodes the molecule in the form of a simple
hydrogen— suppressed string. Each atam is represented by its atamic symbol. Other
symbols used include = for a double bond and # for a triple bond. Lower case
implies aramaticity, and branches are shown in parentheses. Cyclic structures are
represented by breaking a bond in each ring structure, The bonds can be numbered
in any order, designating ring opening (or ring closure) bonds by a digit
immediately following the atamic symbol at each ring closure. The molecule can be
written fram any starting point, meaning many differént but equally valid
descriptions of the same structure can exist, as long as the comnectivity of the
molecule is maintained. Unique coding is thus possible for many molecules,
including structural isamers. However until isametric SMILES is available, it
cannot differentiate between stereo (i.e. cis-trans and optical) isamers.

Two examples of SMILES notation are given below:

]
-C- 0 o)
1 l “ N f
-lc_. c|:_ C_a.l N o
Name: Isobutyric acid Nitrobenzene
SMILES: CO)C(=0)0 clcceecl (N(=0)=0)

After running the program, the output incorporates a graphical representation of
the chosen molecule; its name or SMILES ooding; a sumary of the information
contained in the THOR data base (if available); and calculated estimates of the
partition ooefficient and molar refractivity. THOR, ClogP, and CMR are described
below. If, however, the appropiate fragment constants are not found in the data
base, log P cannot be calculated.

A sample of output is shown in Table 2.3, which shows the constants applied to
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Table 2.3, Sample of MEDCHEM Output Demonstrating the Fragmental Constant

Approach for Isobutyric Acid

Nurber of Fragments and their Description Hydrophobic Fragment

Value

1 Carboxy group -1.110

3 Aliphatic isolating carbons 0.585

1 Non-halogen, polar group branch -0.220

7 Hydrogens on isolating carbons 1.589

2 Chains (bonds) -0.240
Total value for Clogp 0.604

each fragment, their sum being the estimate of the partition coefficient. The
first four fragments are self-explanatory, the fifth, referred to as "chains
(bords)” is a value for the number of bonds made by a non-ring carbon atom that
are not doubly, or triply-bonded to a heteroatam,

2.2.1.4. THOR (THesaurus Oriented Retreival)

Incorporated into the MEDCHEM software is the ability to access a large chemical
information database (THOR). THCR is a database specifically designed for
efficient storage and retrieval of chemical information based on a campound's
structure. When a compourd is 'inputted into the software the database is
searched for a match. If the compound is found, it is possible to view
information such as CAS number; local, cammon and trade names, and measures of
the partition coefficient (including those in solvents other than octanol). THOR
displays one of the measured log P values (that considered to be most accurate)
alongside the calculated value.

2.2.1.5 Calculation of Molar Refractivity

Molar Refractivity (MR) can be considered as the sum of either atam or bond

refractivities. It is calculated fram the Lorentz-Lorenz equation:
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MR = +
u2+2

u2-l MW
d

where u is the index of refraction

MW is the molecular weight

d is the density
Although the measurement of u and d is simple, they cannot, of course, be
obtained if the campound has not yet been synthesised, or is in short supply.
Hence there is a need for a calculated value of MR, Basically, fragment based
oonstants are applied to a structure, in the same manner as ClogP is calculated,
and the sum, together with correction factors for same bond types, is assumed to
be an estimate of molar refractivity.
The origin of this method was a linear regression analysis performed on a
'training set' of the molar refractivity (calculated fram the Iorentz-lorenz
equation) of 1400 campourds. The analysis investigated the effect of various
indicator variables (that characterise the structure) on molar refractivity, and
provided an estimate for the molar refractivity of each fragment (Medchem

Software Manual, 1987).
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2.2.2.1. Molecular Connectivities

Molecular connectivities and Kappa shape indices were calculated for the
campouds using the MOLOONNZ (ver 1.0) program running on a VAX mainframe. This
is an interactive program supplied by Hall Associates Consulting, Quincy, MA.

A brief overview of the calculation of molecular connectivities and Kappa indices
is given in this section. For a more camplete description of their calculation,
application, and nature see Apperdix 2.

2.2.2.2. Calculation of Molecular Connectivities

Molecular connectivities are calculated fram a knowledge of the atam connections
in a mlecule. Their calculation is explained briefly below, and in more detail
elsevhere (Kier and Ball, 1986). '
First order comnectivity (1X) is calculated thus
ly = z @ 45705
where d is the number of non-hydrogen bonds of atams i and j, when considered
across one bond
The sun of the function (d; dj)"o'5 is termed the first order molecular
comectivity. Higher orders are calculated across 2 bonds (for second order), 3
bornds (for third order) etc, Also considered are atams connectivities across
features such as clusters, and path/clusters.
A second class of molecular connectivity (termed valence corrected) is calculated
in a similar manner, except that the d (delta) value counts all bonds (eg. a
ocount of two for a double bond, three for a triple bond) made to atams other than

hydrogen.
2.2.2.3. Calculation of Kappa Indices

The Kappa indices attempt to parameterise the shape of a molecule, They are a
consideration of the number of atams in the molecule (3), and the number of paths
of length ane (3P) for first order, length two (%P) for second order, and length
three (3p) for third order in the hydrogen suppressed graph of the skeleton
structure. (Kier, 1985; 1987)
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Thus the Kappa values are given by

% = a@) / dp)?

x = @)@/ (p)?

X = a3m22/ 3p? A is even
¥ = @nE3?2/ Cp?2 A is odd

Kappa, (alpha) values encode a modification to account for non-hydrogen atams
other than Csp3. This involves recalculating A by the value @ ocbeing defined as
the ratio of covalent radii of atam x relative to Csp3, or

o = Ix/ £(Cpd)-1
The Kappa, values are recalculated using this term.

2.2.2.4. Input of a structure

A canpourd is entered into the MOLOONN2 program as coding written in an edit
file, known as the B (or bond file (later versions will use SMILES coding). The
ocoding is quite simple; each non-hydrogen atam is numbered, and the number of
hydrogens attached, its atamic symbol, and the identity numbers of other non-
hydrogen atams to which it is oconnected are listed. Two more lines of coding are
needed, the first line gives an identification number and title, the last line,
simply -1, terminates the input. The numbering can start at any atam in the
molecule, although experience has shown it is better to number the basic
structure first, followed by any branching or substitution. The program will
differentiate between structural isamers, however not between stereo isamers.
Two examples of B files are given in Table 2.4.

2.2.2.5 Output of Data

The results of the calculations are given in two forms, a listing file, and a
file for statistical analysis. The listing file gives full explanation of the
results. The file for statistical analysis is in a standard form, without text,
sumarising the results. With a small amount of manipulation, the statistical
analysis file can be entered straight into the statistical routine required, thus

eliminating tedious manual data entry, and errors that may occur fram it,
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Table 2.4. Examples of the B File for an Input into the MOLOONNZ Program

1. Iscbutyric acid

1, ISOCBUTYRICACID

1,3,C,2 (6 5
2,1,C'1’3'6 “C_
3,0,C,2,4,5 l ﬂ
4,1,0,3 1 12 |B 4
5,0,0,3 ~-G—¢—C—
6,3,C,2 I

-1

2. Nitrobenzene

|

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
o J
w
-

-
-

OCO-JAUEEWNHDEHN
OO0 IHIHI-H
CO0ZDDODDD
\l\lO\H?wNI—‘M

-

-
-
-

-
-
-

The non-hydrogen atams of each molecule are numbered according to the B file.
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2.2.3 Chemical Descriptors fram Computational Chemistry

2.2.3.1 Molecular Modelling Software

Molecular modelling and the calculation of chemical descriptors were performed
using the QOSMIC (QOmputational Structure Manipulation In Chemistry) camputer
package. QOSMIC (Vinter et al, 1987) is a camplete integrated framework of
molecular modelling and camputational chemistry software, It was originally
devised by Dr AJ. Vinter and his co-workers as the 'in~-house' modelling system
at the Wellcame Foundation in 1976. The program is being continually updated and
has benefitted fram the contributions of Drs A. Davies and M. Saunders of Smith,
Kline, and French Research Ltd. More recently it has been distributed, free of
charge, to academic institutions under a strict llcensmg agreement, the release
controlled by Dxr D. Jackson, Department of Phammacy, Nottingham University.
QOSMIC is a suite of programs that allows molecular modelling and analysis fram
first principles. After a chemical structure is inputted, its geametry can be
optimised using either molecular mechanics, or molecular orbital theory methods.
Various molecular orbital methods are available which also enable bartial atamic
charges etc. on the molecule to be calculated. As well, highly developed display
routines allow the molecule to be cbserved, and different steric and electronic
functions to be assessed.

Same of the software, such as the structure entry enviromment and graphics
display routines were specifically written for the system by the authors. Other
programs, such as the molecular orbital methods, are those supplied by the
Quantum Chemical Program Exchange (QCPE), Chemistry Department, Indiana
University, for a naminal charge, which have been adapted to interface with the
system.

2.2.3.2. Input of a Chemical Structure

QOSMIC was run on a Microcolour M2250 graphics terminal (emulating a TEX 4105)
supported by a VAX mainframe, Campounds were constructed graphically into the
DRAW envirorment of QOSMIC using a mouse. Aliphatic coampounds were entered as a

non-hydrogen skeleton structure. Aramatic campounds were created in a similar
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fashion; the benzene structure was taken fram the QOSMIC fragment library and
non-hydrogen substituents were added. The hydrogen—suppressed skeleton structures
were rouwghly minimised with a first derivative minimiser (utilising a Newton-
Raphsony Simplex method for 99 iterations or until the root mean square of the
energy oconverged within 1.00 cal/mole. Hydrogens were added to the skeleton and
the geametry of the campound was optimised more precisely by the MINO2 quasi
Newton-Raphson method (white, 1977). Partial atomic charges were calculated for
the canpounds by two methods. QDO (Camplete Neglect of Differential Overlap)
calculations were performed on the QNDO/2 routine written by Pople and Beveridge
(1970), which has been largely recoded to run faster. Standard settings of
charge, multiplicity and convergence criterion were chosen. MNDO (Marginal
Neglect of Differential Overlap) calculations of partial atamic charge were also
obtained fram the AMPAC routine (Dewar Research Group, 1986); MOPAC keywords 1SCF
and ENPART were employed. After having the partial atamic charges calculated, the
molecules were re-minimised using the MINO2 routine,

2.2.3.3. Calculation of Parameters

It is camon in the study of a hamologous series of campounds, such as is often
available in pharmmaceutical (De Benedetti, 1987) or pesticide research (Ford et
al, 1989), to observe and attempt to model the effect of different substituents
on the charges, superdelocalisabilities and other properties of the basic
structure. In this project, however, because of the diverse nature of the
chemicals it was not possible to utilise the individual atamic data. whole
molecule parameters were therefore obtained using the 'MO Options' routine in
QOSMIC that displays eigenvectors, dipoles, ard Huckel reactivity indices. These
parameters included HOMO (Highest Occupied Molecular Orbital) and LUMO (Iowest
Unoocupied Molecular Qrbital) energies and their difference (HOMO and LUMO are
thought to approximate the electron donating and accepting capabilities of the
molecule respectively); dipole moment; the total electronic energy of the
minimised molecule; and the polarisability calculated fram the sum of the self-
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atam polarisabilities.

The capability of obtaining the "theoretical optimm structure' of a molecule
gives an ideal opportunity to calculate various measures of the size, or bulk of
a campound. The accessible surface area of the molecule was obtained by the
method of Pearlman (1981). Here the atams of the molecule are considered as
intersecting spheres, and the area of the exposed surface is calculated. Overall
molecular volume and dimensions (BEdward, 1970) obtained included the van der
Waals volume, alternative molecular volume, collision diameter, and diameter of
closest approach. Finally Monte Carlo areas and volumes (Smith, 1986) were
computed, with a probe radius of 0.0. All these calculations were performed in

the 'Atom Manipulation' envirorment of COSMIC.
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2.3. Quantitative Structure-Activity Relationships for Fathead Minnow and

Microtox Toxicities

2.3.1. The Data Matrix

There are 49 descriptors for each chemical (see Table 2.5) including measures of
hydrophobicity - ClogP, size — molecular connectivities, Kappa values, and QOSMIC
steric values, ard electronic terms — HOMOs, LUMOs, Dipole Maments. However,
using this number of variables brings with it inherent problems for statistical
analysis, The dangers of using a relatively 'over-square' data matrix are well
chronicled (eg. Kikuchi, 1987), and include the possibility of chance
oorrelations. It is often possible to reduce the dimensionality and collinearity
of such a data set, without significant loss in the information content. The
approaches taken and their relative performance to achieve this are described
below.

Many (mainly multivariate) statistical methods are available for analysing such a
data matrix (see Section 1l.4.3), either by data reduction or preparation of new
uncorrelated variables. Livingstone (1989) identified the principal statistical
techniques employed for this purpose (see Table l.l). Due to software limitations
and the type of data available only cluster analysis on the variables, principal
carponent analysis, factor analysis, canonical correlation, and multiple linear
regression were attempted., Methods 2, 3, 6 and 10 in Table 1.1 are known as
pattern recognition techniques and are suited to determine 'categoric', as
opposed to linear, data. Also these require specialist software not yet available
at Liverpool Polytechnic,

2.3.1.1. Cluster Analysis

Cluster analysis on the variables is a good method of reducing their
dimensionality and collinearity, while helping to increase understanding of their
structure. Initially each variable is considered as a separate cluster, then the
two most similar variables are joined to form a cluster. The amalgamating process
continues in a stepwise fashion (joining variables or clusters of variables)

until a single cluster is formed that contains all the variables, The measure of
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Table 2.5. Sumtary of Chemical Descriptors used in QSAR Analysis and their

Abbreviations used in this Study

Steric

zero, first, second and third order path molecular connectivity (PS0O, PS1, PS2,
PS3)

third order cluster molecular comnectivity (CS3)

zero, first, second and third order valence-corrected path molecular comnectivity
(pV0, PV1, PV2, PV3)

third order valence~corrected cluster molecular connectivity (CV3)

difference between simple and valence path molecular connectivity for each of
zero, first, second and third orders (P(S-V)0, P(S-V)1, P(S-V)2, P(S-V)3)
difference between third order cluster simple and valence molecular connectivity
(C(S-)3)

sum of simple and valence path molecular connectivity for each of zero, first,
secord and third orders (P(S+V)0, P(S+V)1, P(S+V)2, P(S+V)3)

sum of third order cluster simple and valence molecular connectivity (C(S+V)3)
first, second and third order Kappa value (K1, K2, K3)

zero, first, second and third order Kappa alpha value (Ka0, Kal, Ka2, Ka3)
calculated molar refractivity (OMR)

Accessible Surface Area (ASA)

van de Waals volume (Wwol)

alternative molecular volume (ALtMV)

oollision diameter (CollDia)

closest approach (Closapp)

Monte Carlo area (Area)

Monte Carlo volure (Volune)

molecular weight (MW)

Electronic

QIO calculated dipole mament (Dipole)

QIO calculated total electronic energy (Energy)

QIO calculated IIMO (LIMO)

QDO calculated HOMO (HOMO)

difference in QDO calculated HOMO and LUMO (DiffH-L)
ONDO calculated whole molecule polarisability (Polariz)
MNDO calculated dipole mament (MDipole)

MNDO calculated total electronic energy (MEnergy)

MNDO calculated LUMO (MLUMO)

MNDO calculated HOMO (MHOMO)

difference in MNDO calculated HOMO and IUMO (MDiffH-L)
MNDO calculated whole molecule polarisability (MPolariz)

Bydrophobic
calculated logarithm of l-octanol/water partition coefficient (Clogp)

The letters in parentheses are the abbreviations by which the descriptors are
cammonly refered to throughout this thesis.

71



similarity is the absolute value of the correlation and the clusters were joined
using the minimum distance rule (single linkage). The analysis was run using
program P1M of the BMIP statistical software available at the University of
Manchester Regional Camputer Centre.

Cluster analysis was performed twice, with the data corresponding to both
toxicological endpoints, Clusters were formed and analysed at an arbitrarily
chosen similarity level of 90%. This level of similarity allows a great reduction
in the amount of data, yet will hopefully maintain sufficient information for
meaningful regression analysis to be applied. One of the variables fram each
cluster was then chosen to represent that cluster in a 'decorrelated’ data set.
The choice of the variable was based on experience of which was likely to be the
most reliable, ard useful, variable. The 'decorrelated’ data were then available
to be put into the stepwise regression analysis.

2.3.2. Stepwise Regression Analysis

Forward stepwise regression analysis was performed with the Microtox and fathead
minnow toxicities as dependent variables, and the decorrelated chemical
descriptors fram cluster analysis (see Tables 3.3 and 3.4) as independent
variables. The analysis was run using the MINTTAB statistical software (ver 7.1)
with a F~to-enter the equation for each variable of 4.0. Each analysis was
oconfirmmed using best-subsets regression analysis. Stepwise regression analysis
was also performed on the toxicities acoording to the classes to which they were
assigned (see Table 3.2). Again the decorrelated chemical descriptors were
utilised,
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2.3.3. Principal Camponent Analysis
When oollinearity is present in a data set such as that obtained in this study,

it is profitable to obtain a reduced number of new uncorrelated variables, that
ocontain as much of the original information as possible. Principal component
analysis and factor analysis are two methods of achieving this objective.
Principal camponent analysis (PCA) is often used to give a preliminary
understanding of the data set. The correlation matrix of the variables is reduced
mathematically to a unique set of eigenvalues, or principal camponents. These
have several important properties detailed below.
i) each eigenvalue is made up of a linear cambination of the original variables.
ii) these eigenvalues are orthogonal to each other in multidimensional space,
representing different dimensions in it, and thus are totally uncorrelated.
iii) there are as many eigenvalues of a matrix as there are rows and colums in
the matrix.
iv) the sum of all eigenvalues is equal to the sum of the diagonal elements of
the matrix. Since these are unity, the sum of the eigenvalues is equal to the
nunber of variables.
v) the eigenvalues will, however, give no information on which data are redundant
or irrelevant.
The importance of each eigenvalue is expressed as the fraction of the total
variance of which it explains. This is defined as

Eigenvalue;

ZEigenvaluwi_j

where FV; is the fraction of the variance explained by eigenvalue i

b Eigenvaluesi_j is the sum of all eigenvalues

The eigenvalues are created such that the first explains as much of the variance

FvV i=j =

as possible, the second the second largest amount of variance, etc. A general
'rule of thunb' is that a significant principal camponent will have an eigenvalue
of greater than one (Martin, 1978), since a principal camponent with an

eigenvalue of less than one 'explains' less variation in the original data than
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does one of the test scores (Manly, 1986).

The major drawback of using PCA in this context is, however, the loss in
descriptive power of each newly formed variable. As a cambination of all the
variables, it no longer represents a single feature of the molecule, as an
individual variable does. Instead information must be obtained fram the
'loadings' or eigenvectors of the original variables onto the principal
camponents, the relative size of which will give an indication of the properties
of that eigenvalue, Thus a principal camponent with large eigenvectors for steric
variables can be assumed to describe the size, or bulk, of the chemicals, and so
on.

Results fram these principal ocamponents (known as soores) for each chemical can
be utilised as new chemical descriptors in a number of ways. The soores are used
in multiple regression analysis, against scalar properties such as toxicity, or
if plotted against each other provide a basis for pattern recognition of
categoric data such as carcinogenicity.

2.3.3.1. Principal Camponent Analysis in the QSAR Study

Principal camponent analysis was performed using the program P4R in the BMDP
statistical software, This involved separate principal camponent analyses being
carried out on the 49 physico-chemical descriptors (summarised in Table 2.5)
associated with each of the fathead minnow and Microtox data sets. Best-subsets
regression analysis was then run for toxicities against the scores of the

principal components with an eigenvalue greater than one (on MINITAB ver 7.1).
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2.3.4. Factor Analysis

The basic rationale of factor analysis (FA) is similar to principal camponent
analysis in that it sets out to produce novel orthogonal variables (factors) fram
a highly oollinear data matrix, However, it differs fram principal camponent
analysis in same fundamental ways concerning the formation of the factors. Factor
analysis attempts to explain the co-variance between the variables themselves,
whereas principal camporent analysis explains the total variance of the data.
Also, unlike PCA, FA is based on a proper statistical model (see Manly (1986) for
full derivation) which assumes that the total variance of the data can be
acoounted for as the sum of the variance cammon to all variables and that unigue
to each variable. Thus factor analysis is concerned only with describing the
‘common' var iance.

FA conforms to the following criteria. The principal components are calculated
for the data matrix up to a specified level of significance. (In cammon with PCA
this is normally assumed to be an eigenvalue of greater than one). The
eigenvectors of the principal camponents are then transfommed into the
corresponding unrotated factor pattern by multiplying the vectors by the square
root of the corresponding eigenvalue. These factprs are then 'rotated to produce
a rotated factor matrix in which there are more high and low coefficients
(loadirgs). This process emphasises the degree of relationship between the
various factors and the original variables. Rotation of the factors is achieved
by many methods, broadly split into two classes. Gblique techniques relax the
factor axes, leading to correlated factors. More cammonly used, however, are
orthogonal techniques giving uncorrelated factors. The standard method is the
varimax method, an orthogonal technique, which rotates the factor axes until the
variance of the squared factor loadings is maximised. This occurs when each
variable has high loadings on one or a few factors as opposed to moderate
loadings on several. Thus a much clearer picture of which features each factor is
highlighting is obtained.
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2.3.4.1 Factor Analysis in the QSAR study

Factor analysis was performed on the physico-chemical descriptor data associated
with fathead minnow and Microtox toxicities using the BMDP statistical software

program 4M. The standard varimax rotation was applied, significant factors being
obtained with an eigenvalue greater than one. The scores for each factor for the
chemicals were entered into best subsets regression analysis, in the MINITAB ver

7.1 statistical software, against the relevant toxicity.
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2.3.5 Canonical Correlation Analysis

When considering a data set with more than one biological end-point (as is common
in many phamaceutical, pesticide and toxicity studies), it may be of value to
investigate the relationship for all the biological data available for a set of
compounds with respect to their corresponding descriptors, Multiple regression
analysis can cope only with one dependent variable, so canbnical correlation
analysis has been utilised to relate the effect of the biological activities to
their physico~-chemical descriptors. Canonical correlation considers both sets of
data and calculates linear, orthogonal, cambinations of each, with a maximum
ocorrelation between them. The linear cambinations of the data are known as
‘canonical variates', and the correlation between each variate as the 'canonical
correlation' (Harris, 1975). This process is similar to principal camponent
analysis except here a correlation is maximised instead of a variance. The
process of canonical correlation analysis is possibly best exemplified through
the data available in this study.

2.3.5.1 Canonical Correlation Analysis in the OSAR Study

Canonical correlation analysis was performed using the BMIP statistical software
program 6M. The first data set was the biological activities, comprising the
fathead minnow and Microtox toxicities. The second data set was the physico-
chemical descriptors of the chemials. In order to reduce the camplexity of this
large data matrix and thus increase the ease of understanding of the results, the
fathead minnow 'decorrelated data' were utilised, namely CS3, pV1, ClogP, P(S-

V)0, C(S-V)3, HOMO, MHOMO, LUMO, MIUMO and Mdipole.
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2.3.6 Validation of the QSAR Models

The quantitative structure-activity relationships formed in any study should be
tested in order to assess their robustness, and how useful they will be in the
elucidation of the toxicities of chemicals for which no data are available. The
approach used in this project is that of the testing set (see section 1.4.4)
whereby the toxicities of chemicals for which data exist (but were not included
in the original models) are calculated fram the QSARs. The models tested were
those formulated fram regression analysis, principal camponent analysis and
canonical correlation analysis for the toxicity of chemicals to the fathead
minnow and the Microtox test.,

2.3.6.]1 Biological Data

Toxicity data for the fathead minnow 96 hour ICgy, and Microtox 5 minute ECg,
were taken from the literature (Brooke et al, 1984; Geiger et al, 1985; 1986;
1988; Kaiser and Ribo, 1988). The chemicals chosen are listed in Tables 3.15 and
3.16. To test the validity of the regression analysis and the principal camponent
analysis, one chemical was taken for each species from each chemical class
analysed. For the canonical correlation analysis, chemicals were searched for
that had toxicity data for both species. No such data were, however, found for
the ketones, esters, and the nitriles, so four extra campounds for which both
data were available, were analysed in addition,

2.3.6.2 Calculation of Physico-Chemical Parameters

For each campound the 49 physico-chemical parameters listed in Table 2.5 were
calculated. This was performed according to the methods described in section 2.2.
2.3.6.3 Models Tested

Regression Analysis

For both species the toxicity was calculated initially fram the best equation for
all classes of chemical, and for the best equation (that camplies with the
Topliss and Qostello (1972) rule) for the chemical class to which it belonged.
The individual equations used are listed in Tables 3.15 and 3.16.

An estimate of the toxicity of a chemical was calculated simply by placing the
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appropriate parameter(s) for the chemical into the relevant equation and
calculating the toxicity.

Principal Carponent Analysis

The toxicities were calculated fram the best equation found fram the principal

camponents, For each chemical the value for the separate principal camponents was
obtained by finding the standarised value of each of the 49 parameters.
Standardisation of the data was performed in the original analysis, and must be
carried out in the validation process. Standardisation is achieved by:

Score - Mean
Standardised score =

Standard Deviation

where the mean and standard deviation are the statistics for the original
variable in the principal component analysis

The standardisation procedure eliminates the differing scale of variables, giving
all variables a mean of zero, and a standard deviation of one.

The standardised scores were multiplied by the loadings of the principal
camponent for each variable and summed to give the result for each principal
canponent. The values for the principal camponents were then put into the
regression equation.

NB. It was not possible to utilise the results of the regression analysis on the
factors, because the scores of the factors used in regression analysis had been
standardised, and so were incampatible with unstandardised scores calculated for
the testing set. (With principal camponent analysis unstandardised scores were
used for the regression analysis.) |

Carconical Correlation Analysis

Canonical correlation analysis (0CA) was used to extrapolate toxicity infomaﬁm
fram the relationship between the canonical variables for the best correlated
variate, found in this project to be to be the first variate (egn 4.7). tnlike
the other predictive methods OCA is based on the prediction of two or more
parameters, so one of these must be known for the equation to be solved.

Initially the right hand side of the equation is solved, in a similar manner to
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PCA. The variables were standardised, multiplied by the standardised coefficients
for the camonical variable, and sumed. The unknown toxicity was then found by
placing the standardised fathead minnow, or Microtox, toxicity value in the
equation to elucidate the other. (Unfortunately only four of the chemical classes
were represented by the available data). The relevant toxicity was then
standardised, multiplied by its loading and put into the equation so that it

could be solved in the conventional manner.
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2.4 Development of Inter-Species Relationships of Toxicity Between Four Aquatic

Species
Extrapolation of toxicity data between species is a potentially useful method of

assessing a chemical's hazard, as well as providing more toxicological
information about the likely effects of a pollutant in the envirorment (see
section 1.7). This part of the project investigates the inter-species
relationships of toxicity between four aguatic species,

2.4.1. Data Carmpilation for Interspecies Relationships

A data base was campiled of the toxicities of 218 organic chemicals to the four
cammonly utilised aquatic toxicological endpoints described below. With the
exception of 46 toxicities experimentally determined in the Microtox assay, all
data have been extracted fram the literature. NB. This data base camprised the
data used in the QSAR study (i.e that found in section 2.1) and has been expanded
to include any other relevant and camparable toxicity data.

The relationships between the toxicity data are examined, with more detailed
analysis of possible structural features or modes of toxic action that may be
pramoting greater toxic action to one species than to another.

2.4.1.1. Fathead Minnow Toxicity Data

These data were generated by the U.S. Envirommental Protection Agency Research
Laboratory, Duluth, in collaboration with the Center for Lake Superior
Envirommental Studies, University of Wisconsin-Superior, and are collated, with
full methods, (Brooke et al 1984; Geiger et al, 1985; 1986; 1988). The toxicity
data given are the 96 hour 50% lethality concentration for 30 to 35 day old
fathead minnows (Pimephales pramelas), detemined by using flowthrough diluter

systems at 25 +1°C. See section 2.1.2 for a more detailed description of the

method.

2.4.1.2. Tetrahymena pyriformis Toxicity Data

These data have been obtained fram the series of papers by Schultz and his
coworkers (Schultz 1983; schultz et al 1986; Moulton 1988; Cajina-Quezada 1988;
Baker et al 1988; Dawson et al 1988; Schultz et al 1989a; Schultz et al 1989b).
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The data are the 48 to 60 hour 50% inhibitory growth concentrations for the

ciliate Tetrahymena pyriformis. These are determined using static axenic cultures

of the ciliate maintained at 27 +1°C in 250ml Erlemmeyer flasks, which contain 50
ml of medium (camprising distilled water, with 20 g/1 proteose phosphate, 5 g/1
glucose, 1 g/1 yeast extract, 1 ml/1 of a 3% w/v solution of Fe EDTA, and
saturated NaCH to pH 7.35) innoculated with 0.25 ml of two day old log phase
culture (gpproximately 36,000 cells per ml). The ciliates were grown in the
culture, their population density measured spectrophotametrically as the optical
density at 540 rm after 48 hours of incubation. (Concentration of T. pyriformis
is directly proportional to the absorbance at 540 mm.) Each toxicant was assayed
at least in triplicate,

2.4.1.3. Toxicity Data for the Microtox Test

The majority of the data, 117 of 163, are taken fram a published campilation
(Kaiser and Ribo, 1988). The data used are in each case the concentration that
produces a 50% reduction in light output, fram the marine bacterium

Photobacterium phosphoreun after 5 minutes at 15 +0.1°C.

The remaining data were determined experimentally according to the procedure laid
down by the manufacturers (Beckman Instruments InC, 1982); again the
ooncentration causing 50% reduction in light concentration after 5 minutes at 15
+40.1°C was determined, See section 2.1.1. for full methods.

2.4.1.4. Toxicity Data for Daphnia magna
Many different toxicity data are available for Daphnia magna (eg. effective,

lethal, inhibition concentrations, no effect concentration, 24 and 48 hour, 21
day etc). In order to obtain same consistency in this study only the
oconcentration causing 50% lethality after 48 hours was used. However, even here
slightly different methods have been used by different workers, (Adema 1978;
Bobra et al 1983; Canton and Wegman 1983; Dill et al 1982; Eastmond et al 1984;
Gersich et al 1986; Hemmens et al 1984; IeBlanc 1980; LeBlanc 1984; Richter et al

1983; Sloof et al 1983; Thurston et al 1985). When more than one toxicity value
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was available for each chemical the arithmetic mean was taken.

A general test protocol is described by LeBlanc (1980) thus., The desired
concentrations of the chemical were added to 500 ml of distilled water in 2 litre
jars. The 500 ml volume of test solution was then divided into three 150 ml
aliquots in 250 ml beakers to provide triplicate exposures (the remaining 50 ml
being used to assess dissolved oxygen concentration and pH). Five Daphnids were
randomly placed in each 150 ml test solution. The solutions were maintained at 22
+1°C. Mortality data were collected after 48 hours for the range of
oconcentrations, enabling a ICg; to be calculated.

2.4.2.1. Initial Statistical Manipulation of the Data

Oonce campiled, all of the data were converted into negative the logarithm of the
millimolar concentration causing the described effects.
Initially regression analysis was performed on each 'pairing' of values, using
the least-squares regression procedure of the MINITAB statistical package (ver
7.1). The six ‘pairings' of data studied were:

i) Fathead Minnow vs Microtox

ii) Fathead Minnow vs D.

iii) Fathead Minnow vs T. pyriformis

iv) D. magna vs Microtox

v) D. magna vs T. pyriformis

vi) Microtox vs T. pyriformis
The chemicals were then sorted according to the presence of any of the 16
structural features listed in Table 2.6. These were considered to be all the
important functional groups in the data set and are very similar to those
proposed by Wallace and Niemi (1988) in a camparable study. The inter-species
correlations were then reanalysed for each structural feature in order to
investigate whether any feature led to a better correlation, This does of course
mean that chemicals will be found in more than one of the separate correlations

if more than one structural feature is present.
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Table 2.6 Structural Features Analysed in the Inter-Species Toxcity Data

The presence of the following structural features was identified and noted for

each chemical;

aramatic group ester linkage

halogen alcohol (including phenol)
aldehyde ketone

carboxylic acid amine (including aniline)
nitrile N-ring (such as pyridine etc.)
nitro group sulphur

phosphorus alkene bond

heterocycl ic group ether

2.4.3.1. Identification of Qutliers in the Inter-Species Relationships

Involving Fathead Minnow Toxicity

The prediction of fathead minnow toxicity fram another species was further
investigated, to identify outliers having a significant effect on the inter-
species relationships. Fram an analysis of the outliers it might, for instance,
be possible to suggest features of a molecule that induce a greater relative
toxic effect in one species as opposed to another. The outliers fram these
interspecies relationships were detemmined using the criterion that the predicted
toxicity of the fathead minnow was greater, or less than, 4 times the
experimentally measured fathead minnow toxicity ie. the result of the equation

Predicted fathead minnow toxicity
Observed fathead mimow toxicity

was obtained for scalar data (as opposed to log transformed), and if the result
was outside the limits of 0.25 to 4, the chemical was considered to be an
outlier. This was the level of error applied by Wallace and Neimi (1988) in a
similar study, and is, of course, purely arbitrary. The choice of 4 times the_
predicted value should also prevent any campounds appearing as outliers simply
because of experimental error.

2.4.3.2. Analysis of the Qutliers in the Inter-Species Relationships

The outliers fram the interspecies relationships were analysed according to which
structural features (listed in Table 2.6) they incorporated, in an attempt to

deduce if any structural features of a molecule increased their relative toxicity
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to one species as campared to another. The results are presented as a ratio:

nuamber of chemicals = number of chemicals | number of chemicals
with greater toxicity _ with similar relative , with greater toxicity
to species A toxicity to A and B to species B

calculated for all the chemicals in each relationship, and for the structural
features being considered. In order to quantify whether the structural features
are causing a significant increase in relative toxicity in one species, a one-way
chi-squared analysis was performed on the data. The ratio of the number of
chemicals with each of the relative toxicities for all the chemicals was
oonsidered to be the ‘expected' ratio, and this was campared with the 'cbserved'
(or experimental) ratio cbtained for each structural feature using the following
equation (Finney, 1980)

Y 5 (0-E)2

E

nunber observed

where O =
E = mumber expected

There are 2 degrees of freedam.

2.4.4.1. Identification of Outliers fram the Hydrophobicity and Toxicity

Relationship for Each Species

Modern understanding of er;viromental QSAR is that chemicals may react by several
modes of action (see secticn‘l.6.3). Chemicals acting solely by a narcosis
mechanism are well modelled by their hydrophobicity alone, unlike chemicals
acting by more specific modes of action. Thus, assuming that purely narcotic
chemicals are included in each relationship, a plot of toxicity versus
hydrophobicity gives an indication of which chemicals may be acting by a narcosis
mechanism, and which by a more specific mechanism

The toxicities of the chemicals to each of the aquatic species were plotted
against ClogP (as a measure of their hydrophcbicity). A line representing the
‘baseline toxicity' was then fitted to the graph, by eye, and chemicals more than
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one log unit of toxicity above this line were assumed to be acting by a toxicity
mechanism other than narcosis. The line representing baseline toxicity was
positioned under the data points with the minimum toxicity (see, for example, Fig
3.6) so that it accounted for all chemicals acting by narcosis, it was felt that
fitting the line by eye, would give a more accurate representation than fitting
the line using regression analysis. The value of one log unit of toxicity
prevents any campound being classified as an outlier due to experimental error,
or error in estimating the partition coefficient. The position of each chemical
on the graph was noted i.e. whether it is an outlier to the ClogP relationship
(thus likely to be acting by a specific toxicity mechanism) or not. The campounds
found to be outliers fram the ClogP relationship were further analysed in each of
the fathead minnow inter-species relationships. This information was used to
investigate if a compound acting by a more specific toxicity mechanism to one
species would make that species relatively more susceptible than another.

2.4.4.2. Analysis of the Outliers fram the Toxicity-Hydrophobicity Relationship

A chi-squared analysis was performed on those chemicals identified as outliers
fraom the toxicity-hydrophobicity (ClogP) relationship, These data were
transformed into ratios so that for each species in the fathead minnow
relationships, a two-way contingency table was created showing the number of
ClogP outliers that were found to be significantly more toxic to one species than
to another edg.

no. more toxic | no. nor—outlier | no. more toxic
to species A to species B

No. outliers fram
ClogP for Species A

No. outliers fram
Clogp for Species B

The two-way chi~squared test was performed using the MINITAB statistical software
(ver 7.1). This form of test not only indicates whether consideration of the

outliers fram the hydrophobicity relationship is worthwhile, but which of the
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Table 2.7 sumary of the Modes of Action Considered in Classifying

the outliers (Adapted fram Hermens, 1989)

1. Narcosis - unreactive ketones and esters; same chlorinated alkanes and
aramatic molecules; simple aloohols; sulphones; weak acids and bases; aliphatic

nitrogenous campourds,

2. Uncouplers of oxidative phosphorylation — phenols (especially chlorophenols);
dinitrophenols (especially 2,4 di-substituted); anilines and phenols with 2 or

more substituted nitro groups or 4 or more ring substituted halogens,

3. Campounds metabolised to reactive intermediates - anilines; nitro substituted

aramatics (especially dinitrobenzenes).

4, Compounds that may react with a nucleophile on a macramwlecule - alkyl halides

(especially the alkenes); epoxides; aldehydes; allylic and propargylic aloohols.

5. Polar Narcosis — Simple mono- and di- substituted phenols,

results are most significant.

2.4.5. Qualification of Outliers Acocording to their Modes of Action

various workers have established different modes of toxic action (see section
1.6.3), and these have been well reviewed by Hermens (1989). The outliers fram
the inter-species relationships were categorised according to their possible
specific mode of toxic action. This may give an indication of which modes of
action may cause greater relative toxic effects to one species as opposed to
another, The modes of action considered are sumarised in Table 2.7.

2.4.6.1. Improvement of Inter-Species Relationships Involving the Fathead

Minnow using Physico-Chemical Parareters

In an attempt further to improve the predictability of fathead minnow toxicity,
physicochemical parameters were calculated and included in a stepwise regression,

Data included were the indicator variables for the presence of 16 structural
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features of the molecules listed in Table 2.6; zero to third order path and
valence-corrected molecular connectivities (as described in section 2.2.2); and
ClogP (as described in section 2.21).

Each interspecies relationship involving fathead minnow toxicities was then re-
analysed using forward stepwise regression, with fathead minnow toxicity as the
dependent variable, and the other toxicity and the physico~chemical data as the
independent variables, In each case the toxicity used as the predictor was
'forced' into the equation as the first independent variable, and a normal
stepwise regression analysis followed.

The stepwise regression analysis was performed using the MINITAB statistical
software (ver 7.1), and the variables chosen confirmmed using best subsets
regression analysis again in the MINITAB package.

2.4.6. Identification of the Most 'Representative’ Test Species

The most representative test species is sought that will allow accurate
estimations of a chemicals' envirommental hazard. In an attempt to find this test
species, fram the four aquatic species already described, the essential criterion
is that the ideal species will predict the toxicity of another accurately, or at
least without significantly underestimating the risk, ie. it is better for a
toxicity prediction to show the hazard to be greater than it actually is, rather
than for it to be predicted as less.
In order to quantify the process the residuals fram the regression equations were
analysed. The residuals give an indication of how divergent the estimate of
toxicity is fram the measured value. The residual is defined as:

Residual = Measured Toxicity - Predicted Toxicity
Thus residuals with a positive value indicate deviation fram the regression
equation that predict toxicity less than the measured value, NB. In this case
the negative logarithm of molar toxicity is being considered. These positive
residuals were summed and mean per number of data points was calculated for each
species acting as the predictor. (The mean was taken because there are a
different number of chemicals used in each relationship,)
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3. RESULTS

3.1 Biological Activities

3.1.1 Experimentally Determined Microtox Data

The mean and the standard error of the 5 and 15 minute ECq experimentally
determined data for the Microtox bicassay are listed in Table 3.1. The data are
recorded as the negative logarithm of the millimolar concentration causing a 50%
reduction in light output fram the bacteria, as recammended by Kaiser and Ribo
(1988) .

The full results are listed in Appendix 3.

3.1.2. Other Biological Data

The whole biological data set used in the QSAR analysis is listed in Table 3.2
The Microtox data not experimentally obtained were taken fram a data campilation
by Kaiser and Ribo (1988). All fathead mimmow data were extracted fram the
literature (Brooke et al, 1984; Geiger et al, 1985; 1986; 1988). For the purposes
of oconsistency all data considered were the negative logarithm of the millimolar

oconcentration causing the required effect.
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Table 3.1 Mean and Standard Error of the Results of the Microtox Bioassay

Chemical 5 min log(l/ECg) 15 min log(l/ECgq)
mean S.E. mean S.E.
3-pentanone -1.32 0.033 -1.39 0.030
5~nonanone 0.75 0.024 0.61 0.023
3-methyl-2-butanone .11 0.020 0.03 0.023
3,3-dimethy1-2-butanone 1.52 0.061 1.47 0.066
2-ethoxyethyl acetate -0.93 0.032 -1.00 0.012
methyl acetate =221 0.033 -2.18 0.000
propyl acetate -0.49  0.013 -0.58 0.020
butyl acetate 0.06  0.034 -0.09 0.022
hexyl acetate 1.19 0.023 1.09 0.029
ethyl hexanoate 0.53 0.022 0.39 0.043
diethyl adipate 0.82 0.032 0.76 0.034
dibutyl adipate 1.94 0.076 1.94 0.090
diethyl sebacate 2.62 0.033 2.65 0.032
dimethyl malonate -1.85 0.032 -1.83 0.023
chloroacetonitrile ~0.99 0.010 -0.46 0.020
malononitrile -0.77 0.008 -0.36 0.003
allyl cyanide -1.60  0.029 -1.52 0.015
1,4-dicyancbutane -1.40 0.081 -1.49 0.095
1,6~dicyanohexane 0.93 0.010 0.84 0.006
octylcyanide 2.08 0.029 2.20 0.036
acetone -2.56 0.026 -2.54 0.025
toluene 0.61 0.082 0.54 0.080
2-methoxyethylamine 0.48 0.046 0.55 0.048
1, 2-diaminopropane 0.47 0.022 0.53 0.020
butanal =0.57 0.045 =0.41 0.026
propylamine 0.67 0.040 0.81 0.013
2-chloro-4-methylaniline 1.43 0.025 1.37 0.030
octylamine 0.65 0.009 0.68 0.012
hexanal 0.51 0.040 0.67 0.034
heptylamine 0.63 0.011 0.68 0.026
4~-fluoroaniline 0.13 0.067 0.095 0.062
N,N-diethylaniline 136  0.032 129 0.035
2-f1 urobenzaldehyde 0.81 0.026 0.80 0.023
2-chloro-6—-fluworobenzaldehyde 0.75 0.021 0.87 0.032
5-bramosal icylaldehyde 135 0.020 147 0.029
vanillin 0.42 0.020 0.36 0.054
2,4-dichlorobenzaldehyde 1.52 0.034 1.53 0.035
4~chloro-3-nitrotoluene 1.53 0.043 1.51 0.044
1,2,4-trichlorobenzene 2,04 0.044 1.97 0.023
2-chloronitrobenzene 1.58 0.029 1.56 0.027
3-chloronitrobenzene 1.17 0.030 1.15 0.027
2-chloro-4-nitrotoluene 1.71 0.041 1.65 0.020
2-chloro-6-nitrotoluene 2.38 0.012 2.33 0.012
acrolein 2.24 0.051 2.66 0.057
" biphenyl 1.70 0.067 1.68 0.074
1,3~dichloropropanol -L.16 0.057 -1 0.017
3-chlorotoluene 1.67 0.095 1.62 0.092
4-chloronitrobenzene 0.84 0.075 0.79 0.070
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Table 3.2 Chemicals and their Fathead Minnow and Microtox Toxicities used

in the QSAR Analysis

Chemical Microtox Fathead Minnow
5 nunmﬂﬁcso)_ Wl’og‘(mgo)
Ketones
3,3~dimethy1-2-butanone 1.52 » 0.06
3-methyl-2-butanone 0.11 -1.00
3-pentanone -1.32 -1.25
5~nonanone 0.75 0.66
acetone -2.56 -2.09
2-butanone -1.85 ~1.65
2-octanone 0.86 0.55
2-decanone 1.30 1.50
,4-pentandione -1.02 -0.02
S5-methy 1-2-hexanone -0.93 -0.14
4-methy1-2-pentanone 0.10 -0.72
6-methy1-5~heptene-2-one 0.86 0.17
cyclohexanone 0.72 -0.81
Esters
dimethyl malonate -1.85 1.03
2-ethoxyethylacetate -0.93 0.46
methyl acetate -2.21 -0.64
propyl acetate -0.49 0.23
butyl acetate 0.06 0.81
hexyl acetate 1.19 1.55
ethyl caproate 0.53 1.2
dibutyl adipate 1.94 1.85
diethyl sebacate 2.62 1.98
diethyl adiapte 0.82 1.05
ethyl acetate =177 -0.42
dJ.Rutyl succinate - 1.7
dlgthyl malonate - 1.02
diethyl chloramalonate - 231
diethyl benzyl malonate - 1.66
dibutyl fumarate - 2.51
Nitriles
1,4-dicyancbutane -1.40 -1.25
allyl cyanide -1.60 -0.43
chloroacetonitrile -0.99 1.75
1,6-dicyanchexane 0.93 -0.59
malononitrile -0.77 2,07
octyl cyanide 2.08 143
acetonitrile =271 -1.60
undecyl cyanide - 2.62
Aldetydes
2,4-dichlorobenzaldehyde 1.52 1.99
2-chloro~6-fluwrobenzal dehyde 0.75 1.23
2-fluorobenzaldehyde 0.81 1.96
5-bramosal icy laldehyde 1.35 219
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butanal =0.57 0.69

hexanal 0.51 0.85
vanillin 0.42 0.23
acrolein 2.24 3.46
Amines

2-methoxyethylamine 0.48 —0.84
1,2~diaminopropane 0.47 -1.13
propylamine 0.67 -0.72
2-chloro-4-methyl aniline 1.43 0.60
octylamine 0.65 1.40
heptylamine 0.63 0.72
4-fluoroaniline 0.13 0.82
N,N-diethylaniline 1.36 0.96

Substituted Benzenes

4-chloro-3-nitrotoluene 1.53 -
1,2,4-trichlorobenzene 2,04 -
2-chloronitrobenzene 1.58 -
3-chloronitrobenzene 117 0.92
2-chloro-4~nitrotoluene 1.71 -
2-chloro-6-nitrotoluene 2.38 -
3~chlorotoluene 1.67 -
4~chloronitrobenzene 0.84 -
toluene 0.61 0.41
biphenyl 1.70 -
Alocohols

1,3-dichloro-2-propanol -1.16 -
2-methyl-1-propanol -1.35 ~1.28
1-chloro-2-propanol - -0.41
2,2,2-trichloroethanol -1.08 =0.30
2,3-dibramopropanol -0.17 0.49
cyclahexanol -0.06 -0.85
2-methy1-2,4-pentanediol -1l.41 ~1.96
2-phenoxyethanol - -0.40
2-chloroethanol -2.22 0.17
3~chloro-1-propanol - -0.93
methanol -3.59 -2,94
ethanol -2.98 -2.49
propancl -2.47 -1.88
2-propanol =2.77 -2.24
butanol -1.49 -1.37
hexanol 0.40 0.02
octanol 1.32 0.98
nonanol - 1.40
decanol - 1.82
undecanol - 222
dodecanol - 2.27

Both toxicity values are the negative logarithm of the millimolar concentration
causing the described effect.
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3.2. Quantitative Structure-Activity Relationship Analysis of the Biological Data

3.2.1 Cluster Analysis on Physico-Chemical Variables

3.2.1.1. Cluster Analysis on Physico-Chemical Variables of Compourds for which

Microtox Toxicity Data are Available

The results of the analysis on the Microtox data are sumarised in Table 3.3 and
graphically expressed in Fig. 3.1. 14 clusters are produced at the 90% similarity
level. Over half (27 of 49) variables are found in the first cluster. These are
steric values, including the majority of the molecular connectivities, COSMIC
steric values, and molecular weight. Also included is the whole molecule
polarisability (since polarisability is proportional to molar refractivity, it
can be oonsidered as a steric term), and the electronic energy term fram QOSMIC.
Descriptors thought to represent size but which are not in this cluster are: the
closest approach; second and third order Kappa values (although Kier (1987)
suggests these encode the shape or symmetry rather than size); differences in
simple and valence corrected connectivities; and cluster connectivities (which
describe the branching of molecules). Hydrophobicity, in the form of ClogP, has
clustered by itself. The electronic terms calculated fram molecular modelling
have formed 5 clusters. The HOMOs ard IUMOs fram the different methods of
calculation (L0 and MNDO) are in different clusters, the IUMO, however, joining
with the difference between HOMO. The two dipole maments clustered together,

A set of random numbers was also included, and it is reassuring to note that
these are clustered significantly away fram the other variables.

3.2.1.2 Cluster Analysis on Physico-Chemical Variables of Campounds for which |

Fathead Minnow Toxicity Data are Available

The results, sumarised in Table 3.4 and Fig. 3.2, show that at the 90%
similarity level 10 significant clusters are formed. These are the same as for
the Microtox data, except that the large steric group also includes the second
ard third order Kappa values, closest approach, and one of the cluster molecular
comnectivities.

Again the randam numbers are not well clustered.
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Figure 3.1 Cluster analysis of the 49 variables
associated with the Microtox toxicity data.

Similarity

1007 907% 80% 70% 607% 50%

PSHO
P
Wvol
Alt MW
Area !
Volune
i
Polariz k
Mrolariz
R
Psl {
wl
-
,.V?

—— -

96



OW(IT psReTnoTed OONIW

OWITI poeTnoTed 0D

OWCH ps3ernorTed 0N

OWDH pegeTnoTed OIND
KA1ar3osuuco

TeTNOSTAW ISJSNTO soudTeA pue
aTdumrs 19p10 PITUI UT S0ULISIITA
AT AT308UUC0 JeTNOSTOM

yaed sousTea pue STdUTS

I9pIO 019z usaMISq SOURISIITA

dboTd

RTaT309UU00 TR TNOSTOW
Pe3091300 SOUSTRA 18P0 3ISITd

OWOH UsaMqaq

%0°06 4 SOUSIRTITP PUR CWTT PSIRTNOTED OO
OWCH USaM3q

%9°96 4 SOUBISIITP PUe OW(T PeFeTroTed 0D
T QWOH PS3eTNOTED OONW

T OWOH PS3RTNOTED OIND

ATATIOSUIUcO TRTNOSTAN IS3SNTO SoUSTeA
1 pue aTAUTS I9PIO PITYR SOUSISIITA

A1AT303UU00 TeTnoSTAM yed
$L°€6 ¥ aousTeA pue STAITS UT SSOURISIITA

T dbot1d

sonTeA OTI33s DINSOD ‘sonTea eddey

D ‘KrTIqestreTod ‘A3TATI0NMICO

TeTnoaToW ‘JO SUNS pue ‘sousTea % aTduns

%9°06 Z€ yed ‘Abiaue OTUOIODTD ‘M TOW

OW(II 8

OW(II °L

O °9

OWCH °S

ONTHONWIE °V

OIIS °t

JI9CHICNIAH °C

OHIS 1

aATIFUSSDIdY se
USsouP ATAeTIeA

Isn1d

Arxertuns ur JoquIN S3Ua3U0D

INSOTO

Jo wrtdtaosaq

©3e0 MOUUT Pested oU3 103 SoTqeTIeA Uo STSATeUV 133snT) A3 JO ATemns §°€ 370el

97



Ktat3osuuco
JeTNOSTOW IANSNTO I9PI0 PATYL "9

Jusupi 3TodTd peaeTnoTed OONKW $£°G6

NS AT} pue SSTITATIOSUUCO JernodTal
ouPpTeA pue STANTS I\SNTO ISPI0 PATYL

Juaupi 310d1d pajeTnoTEd ONW 3 OND

P,3U00 ¥°€ STCRL

98



Figure 3.2
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3.2.2. Stepwise Regression Analysis on Microtox Toxicities

The results of the correlation analysis of Microtox toxicity and decorrelated
chemical descriptors are shown below

3.2.2.1. All Classes

1og(1/ECsp)y = 0.805(0.081) Cloge - 1.13 3.1)
=71 5=0.972 r2 (adj)=0.581 F=98.1

where 1og(1/ECgp)y is the inverse logarithm of the millimolar concentration
causing a 50% reduction in light output in the Microtox

test
Clogp is the logarithm of the calculated partition coefficient
log(l/ECso)M = 0.631(0.090) ClogP + 0.495(0.14) HOMO + 5.69 (3.2)
n=71 $=0.889 r2 (ad§)=0.642 F=63.7

where HOMO is the ONDO calculated HOMO energy
log(l/ECso)M = 0.525(0.099) ClogP + 0.546(0.14) HOMO
+ 0.104(0.047) K2 + 6.07 (3.3)
n=71 5=0.874 r?(ad3)=0.661 F=46.6
vhere K2 is the second order Kappa value
These relationships were confirmed using best-subsets regression analysis.

3.2.2.2. Ketones

log(l/BCsp)y = 0.930(0.26) PV1 - 2.74 - (3.4)
=13 5=0.924 r? (adj)=0.489 F=12.5

where PV1 is the first order valence-corrected path molecular connectivity
log(L/ECs)y = 252(0.59) PV1 - 0.805(0.28) K2 ~ 4.17 (3.5)
n=13 5=0.719 r2 (adj)=0.690 F=14.4

3.2.2.3. Esters

1og(1/HCsg)y = 111(0.108) Clogp - 1.96 (3.6)
=11 5=0.470 r?(adj)=0.913 F=106
log(1/BCsp)y = 0.767(0.14) ClogP + 0.493(0.16) ClosApp - 4.00 (3.7)
=11 5=0.341 r(adj)=0.954 P=106

where ClosApp is the closest approach of another structure
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log(1/EC5g)m = 0.708(0.098) ClogP + 1.01(0.20) ClosApp

- 1.97(0.64) HOMO - 32.8

r=11 5=0.238 r2(adj)=0.978 F=148

3.2.2.4. Nitriles

log(l/BCgg)y = 1.060(0.24) PV1 - 2.96
=7 5=0.820 r2(adj)=0.749 F=18.9

NB. A significant two parameter equation was not found.
3.2.2.5. Aldehydes

1og(1/BCsp)y = — 0.599(0.32) MIUMO + 0.624

n=8 s=0.719 r? (adj)=0.270 F=3.6

where MIUMO is the MNDO calculated IUMO energy
1og(l/BCgy)y = - L68(0.37) MIDMO + 0.695(0.21) K3 - 1.89
n=8 =0.436 r? (adj)=0.731 F=10.5

where K3 is the third order Kappa value

3.2.2.5. Amines

10g(1/BCsg)y = 0.152(0.090) ClogP + 0.508
n=8 s=0.398 r2(adj)=0.208 F=2.8

log(1/ECsg)y = 0.169(0.091) ClogP - 0.0693(0.064) K3 + 0.771

=8 s=0.392 r2(adj)=0.229 F=2.0

3.2.2.6. Substituted Benzenes

log(1/BCsp)y = 0-768(0.32) PV1 - 0.928
=10 5=0.427 r? (adj)=0.348 F=5.8
3.2.2.7. Alcohols

log(1/BCsy)y = 1-30(0.12) BV1 - 4.29

rel4 $=0.443 r?(adj)=0.898 F=116

log(1/BCs)y = 0.956(0.093) PV1 + 0.485(0.092) Clogp - 3.81

n=14 $=0.247 r2 (adj)=0.968 F=200
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3.2.2.8. Stepwise Regression Analysis on Fathead Minnow Toxicities

The results are shown below

All Classes
1og(1/ICsp)py = 0.637(0.075) ClogP - 0.633 (3.18)
n=75 $=0.999 r2(adj)=0.486 F=71.0

where 1og(l/I.C50)F.M is the inverse logarithm of the milii.mlar concentration
causing 50% lethality in the fathead minnow

log(l/I_CSo)FM = 0.609(0.069) ClogP - 0.264(0.064) MIUMO - 0.224 (3.19)
n=75 5=0.905 r?(adj)=0.579 F=51.9
10g(1/ICg)py = 0-600(0.066) ClogP - 0.330(0.067) MIUMO
- 0.700(0.28) CS3 + 0.146 3.20)
=75 s=0.873 r2(adj)=0.608 F=39.3
where (CS3 is the third order simple cluster molecular connectivity
1og(1/ICsp) p = 0.560(0.066) ClogP — 0.278(0.067) MIUMO - 0.861(0.27) CS3
+ 0.221(0.83) MDipole - 0.350 (3.21)
=75 5=0.838 r2(adj)=0.639 F=33.8
Bquations 3,18 and 3,19 are confirmed by best-subsets regression analysis;
however, when three and four variables are considered, the following
relationships are revealed.
10g(1/ICs)p = 0.585(0.067) ClogP + 0.560(0.16) P(S-V)0
- 0.137(0.036) LUMO - 0.520 (3.22)
=75 0870 r (adj)=0.611 F=39.7
where P(S-V)0 is the difference between simple and valence-corrected zero order
path molecular connectivities
Mo is the ONDO calculated LUMO energy
10g(1/LCsp)pm = 0.571(0.064) ClogP + 0.688(0.16) P(S-V)0 -~ 0.169(0.036) LUMO

- 0.772(0.26) CS3 - 0.196 (3.23)
=75 $=0.826 r2 (adj)=0.649 F=35.2
3.2.2.9. Ketones
10g(1/ICsp)pm = 0.891(0.13) PV1 - 2.88 (3.24)
=13 5=0.464 r?(adj)=0.768 F=45.5
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1og(1/iCs) M = 1.02(0.091) PVl + 3.94(0.97) C(S-V)3 - 4.38 (3.25)
r=13 $=0.298 r2(adj)=0.912 F=63.1

where C(S-V)3 is the difference between simple and valence-corrected third
order cluster molecular connectivites

109(1/1C50) g = 1.05(0.061) PV1 + 2.99(0.70) C(S-V)3

+ 0.623(0.17) CS3 - 4.58 (3.26)
=13 5=0.201 r2 (adj)=0.960 F=97.6

3.2.2.10, Esters

1og(1/LCs)py = 0-555(0.098) ClogP - 0.0123 (3.27)
=16 5=0.518 r2 (adj)=0.672 F=31.8

10g(1/LC50)pM = 0.447(0.092) ClogP + 0.584(0.22) P(S-V)0 - 0.714 (3.28)
=16 s=0.435 r2(adj)=0.768 F=25.8

3.2.2.11. Nitriles

log(I/NCeql gy = 0.854(0.57) MDipole - 1.35 (3.29)
=8 s=1.511 r2(adj)=0.155 F=2.28

where MDipole is the MNDO calculated Dipole Mament

3.2.2.12. Aldehydes

log(1/ICsg)py = 0.920(0.63) MDipole - 0.97 (3.30)
=8 5=0.959 r?(adj)=0.140 F=2.14
log(1/iCs)gy = 1.01(0.60) MDipole - 0.109(0.084) LUMO - 111 (3.31)
n=8 5=0.909 r?(adj)=0.227 F=2.03

3.2.2.13. Amines

1log(1/ICsq)py = 0.545(0.082) ClogP - 0.560 (3.32)
=8 5=0.361 r? (ad3)=0.860 F=44.1
N.B. A significant two-parameter equation was not found.

3.2.2.14. Alcohols

109(1/ICsg)py = 0:933(0.098) PV1 - 3.06 (3.33)
=20 5=0.653 r2(adj)=0.825 F=90.7
10g(1/ICsq) pM = 0.915(0.082) PV1 - 1.41(0.48) C(S-V)3 - 2,94 (3.34)
=20 5=0.547 r2 (adj) =0.878 F=69.1
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3.2.3.1. Principal Camponent Analysis on Variables Associated with Microtox Data

Information concerning each principal camponent created by the principal
camponent analysis is summarised in Table 3.5. There are 5 significant principal
camponents with an eigenvalue greater than one. Between them, these 5 new
uncorrelated variables have explained nearly 93% of the total variance of the
original variables.,

When the soores fram the 5 principal camponents were put into best subsets

regression analysis, the following relationships were formed:

log(1/BCgq)y = 0.200(0.022) PC1 + 0.042 (3.38)
n=71 s=1.03  r2(adj)=0.530 F=79.8
log(1/ECsg)y = 0.200(0.021) PCl - 0.252(0.071) PC4 + 0.042 (3.39)
n=71 5=0.954  r2(adj)=0.597 F=52.8

1og(1/ECp)y = 0.200(0.020) BCl - 0.252(0.070) PC4

’ - 0.081(0.041) PC2 + 0.042 (3.40)
=71 s=0.934 r?(adj)=0.613 F=38.0
where POn is the score for the nth principal camponent
The loadings of the variables for each principal camponent are listed in Table
3.6.
3.2.3.2. Principal Component Analysis on Variables Associated with the Fathead

Minnow Toxicity Data

Details of the principal camponents formed by the principal component analysis
are summarised in Table 3.7. There are 5 significant principal camponents with an
eigenvalue greater than 1, explaining almost 94% of the total variance of the |
original variables.

Best subsets regression analysis on the scores fram the principal camponents
reveals the following relationships:

1log(1/1C50)py = 0.167(0.021) EC1 + 0.342 (3.41)
n=75 s=1.04  r2(adj)=0.444 F=60.1
log(1/ICs)pm = 0.167(0.020) PCl ~ 0.310(0.084) PC5 + 0.342 (3.42)
n=75 s=0.961 r2(adj)=0.525 F=42.0
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1og(1/ICsp)pm = 0.167(0.018) PC1 - 0.310(0.078) BCS

- 0.248(0.067) PC4 + 0.342 (3.43)
=75 s=0.885 r?(adj)=0.597 F=37.6

The variable loadings are listed in Table 3.8.
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Table 3.6 Eigenvectors (loadings) for the Significant Principal

Components of the Variables Associated with the Microtox Data.

Variable

MWT

PSO

PS1

PS2

PS3

Cs3

PVO0

PVl

PV2

PV3

cv3

KaOQ

Kl

K2

K3

KAl

Ka2

KA3
CLOGP
CMR
PS-V0
PS=-V1
PS-V2
PS-V3
CS=-V3
PS+V0
PS+V1
PS+V2
PS+V3
CS+V3
ASA
VWVOL
ALTMV
COLLDIA
CLOSAPP
AREA
VOLUME
DIPOLE
ENERGY
HOMO
LUMO
MDIPOLE
MENERGY
MHOMO
MLUMO
DIFH~-L
MDIFH-L
POLARIZ
MPOLARIZ

[e¥oXoloXoYolololofolololoRelolofaooYolofolol oo oofofolofojojofojoleoooho oo e R a)

OCOOOOOO

.1674
.1800
.1784
.1719
.1601
.0653
.1781
L1727
.1617
.1593
.0228
.1751
.1743
.1323
.0998
.1709
.1269
.0925
.1413
.1785
.0862
.0965
.1156
1121
.0864
.1807
.1788
.1734
.1658
.0482
.1687
.1764
.1764
.1759
.1475
.1744
.1781
.0674
.1629
.1091
.0464
.0724
.1728
.0638
.0714
.0696
.0832
.1730
.1710

Principal Components

2

.0484
.0038
.0079
.0953
.1280
.2070
.0403
.0863
.0028
.0128
.1573
.0103
.0773
.2301
.2565
.1018
.2490
.2643
.0391
.0132
.1159
.1667
.1760
.2042
.1462
.0210
. 0440
.0597
.0884
.1925
.1178
.0805
.0805
.0547
.1398
.0965
.0594
.1203
.0370
.1528
.2363
.1236
.0350
.1741
L2777
.2445
.2902
.0888
.0849
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-0

OO

3

-0.1020
0.0452
0.0757
0.0063
0.0648

-0.1986

-0.0729

-0.0713

=-0.2257

-0.1313

=-0.3757
0.0604
0.0417
0.0883

-0.0192

~-0.0155
0.0358

-0.0597

-0.0676

-0.0283
0.4003
0.3553
0.
0
0

-0
0

-0

-0

-0

=0

-0

-0

-0

-0

-0

-0
0
0

-0
0
0

-0
0
0

3029

.2414
.1963
.0101
.0096
.0908
.0083
.2897
.0118
.0176
.0177
.0408
.0203
.0284
.0348
.0638
.0502
.0945
.1990
.1556
.0347
.0203
.0088
.1965
.0024
.0181
.0442

4

.0297
.0359
.0454
.0629
.1256
.3568
.0007
.0619
.0301
.1631
.2757
.0047
.0679
.0185
.1519
.0828
.0135
.1539
.2061
.0715
.1341
.0145
.0799
.0498
.2451
.0189
.0537
.0513
.1448
.3339
.0027
.0088
.0088
.0228
.0741
.0115
.0197
.3294
.0188
.1799
L1377
.3118
.0780
.2805
.0504
.1673
.1646
.0353
.0413

OO0 OO0 OOOO

[e=NeRoRo o N

.0827
.1119
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Table 3.8 Eigenvectors (loadings) for the Significant Principal
Components of the Variables Associated with the Fathead

Minnow Data.

Variable Principal Components
1 2 3 4 5

MWT 0.1680 -0.0422 -0.0864 -0.0313 -0.1365
PSO 0.1770 -0.0156 0.0410 0.0283 -0.0021
PS1 0.1763 0.0000 0.0582 -0.0378 0.0040
PS2 0.1696 -0.0959 -0.0015 0.0675 0.0736
PS3 0.1618 -0.1057 0.0381 -0.1214 0.0416
CS3 0.0411 -0.2433 -0.1848 0.3937 0.1549
PVO 0.1762 0.0279 -0.0552 0.0153 -0.0122
PV1 0.1720 0.0803 -0.0621 -0.0328 -0.0040
PV2 0.1601 0.0284 -0.2163 0.0599 0.0578
PV3 0.1576 0.0486 -0.1552 -0.1391 -0.0106
cv3 0.0021 -0.1691 -0.3615 0.3411 0.0738
KAQ 0.1739 0.0085 0.0293 -0.0496 0.0135
K1l 0.1750 0.0327 0.0459 0.0521 -0.0360
K2 0.1513 0.1762 0.0717 -0.0308 -0.0895
K3 0.1289 0.1954 ~0.0102 0.1251 -0.0726
Kal 0.1736 0.0550 0.0058 0.0683 -0.0478
Ka2 0.1473 0.1970 0.0321 -0.0237 -0.0971
KA3 0.1226 0.2096 ~0.0458 0.1287 -0.0865
CLOGP 0.1448 0.0719 ~0.1128 -0.1603 0.0492
CMR 0.1758 0.0296 ~0.0382 -0.0443 0.0393
PS-V0 0.0905 -0.1676 0.3732 0.0618 0.0361
pPS-Vl1 0.0928 -0.2027 0.3306 -0.0301 0.0221
PS-V2 0.1046 -0.2208 0.2913 0.0469 0.0614
PS-V3 0.1049 -0.2284 0.2275 -0.0567 0.0809
Ccs-v3 0.0718 -0.1927 - 0.1994 0.2115 0.1729
PS+V0 0.1777 0.0048 -0.0041 0.0223 -0.0069
PS+Vl 0.1766 0.0372 0.0032 =0.0360 0.0004
PS+V2 0.1714 -0.0456 ~0.0943 0.0666 0.0693
PS+V3 0.1672 -0.0481 ~0.0381 -0.1339 0.0224
CsS+V3 0.0246 -0.2190 ~0.2755 0.3860 0.1236
ASA 0.1726 0.0780 ~0.0058 0.0172 0.0423
VWVOL 0.1751 0.0632 ~0.0165 0.0058 0.0262
ALTMV 0.1751 0.0632 =-0.0165 0.0058 0.0262
COLLDIA 0.1738 0.0455 ~0.0446 -0.0096 0.0596
CLOSAPP 0.1629 0.0932 0.0001 0.0369 0.0658
AREA 0.1746 0.0701 -0.0178 0.0223 0.0138
VOLUME 0.1762 0.0480 -0.0270 0.0004 0.0124
DIPOLE 0.0850 -0.1332 0.1149 0.2442 -0.3441
ENERGY -0.1633 0.0629 0.0323 0.0090 0.1574
HOMO 0.0967 -0.1681 ~0.1567 -0.1884 0.2837
LUMO -0.0203 0.2335 0.2415 0.2068 0.3873
MDIPOLE 0.0904 -0.1351 0.1854 0.2144 -0.3395
MENERGY -0.1707 0.0553 -0.0450 -0.0470 0.0765
MHOMO 0.0392 -0.1981 -0.0202 -0.2601 0.4334
MLUMO -0.0401 0.2955 0.0478 0.1416 0.2554
DIFH-L 0.0443 -0.2493 -0.2530 -0.2317 -0.2580
MDIFH-L 0.0488 -0.3169 -0.0457 -0.2287 0.0071
POLARIZ 0.1736 0.0678 0.0064 -0.0132 0.0720
MPOLARIZ 0.1723 0.0676 0.0241 -0.0156 0.0976
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3.2.4.1. Factor Analysis on Variables Associated with the Microtox Toxicity Data

Information concerning the factors calculated by the factor analysis is
sumarised in Table 3.9; in addition, the loadings for the factors on the
variables before and after varimax rotation are shown in Tables 3.10 and 3.11.
Table 3.11 in fact shows the sorted rotated factors; in an attempt to make
elucidation of the factors easier the loading factor matrix has been rearranged
so that the columns appear in decreasing order of variance explained by each
factor. The rows have been rearranged that so that for each successive factor,
loadings greater than 0.50 appear first. Also loadings less than 0.25 have been
replaced by zero. There are 5 significant factors, i.e. with an eigenvalue
greater than one, and these explained 92.8% of the data space (and, of course,
100% of the factor space).

when the standardised scores fram the 5 significant factors for each chemical

were put into best-subsets regression, the following QSARs were obtained:

109(1/ECep)y = 0.936(0.14) FACL + 0.042 (3.44)
n=T71 s=1.184 r?(adj)=0.379 =43,7
10g(1/BCsg)y = 0.936(0.12) FACL + 0.607(0.12) FAC3 + 0.042 (3.45)
ne=71 s=1.022 r?(adj)=0.538 F=41.7

log(1/BCgy)y = 0.936(0.12) FACL + 0.607(0.12) FAC3

+ 0317(0.12) FAC2 + 0.042 (3.46)
n=71 5=0.977 r(adj)=0.577 F=32.8
log(1/ECsg)y = 0.936(0.11) FACL + 0.607(0.11) FAC3 + 0.317(0.11) FAC2

- 0.294(0.11) FAC5 + 0.042 (3.47)
n=71 $=0.937 r2(adj)=0.611 F=28.5
where: FAOn is the soore for the nth rotated factor

3.2.4.2. Factor Analysis on Variables Associated with the Fathead Minnow

Toxicity Data

The results of the factor analysis on the fathead minnow data are summarised in
Table 3.12, and the unrotated and rotated loadings in Tables 3.13 and 3.14

respectively. There are 5 significant factors, explaining 93.7% of the variance
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of the data space,

After best subsets regression analysis on the toxicity and the standardised

factor scores, the following QSARS were revealed:
109(1/ICx)py = 0.881(0.13) EACL + 0.342
n=75 s=1.088 r2 (adj)=0.391 F=48.5
1og(1/IC50)pm = 0.881(0.11) FACL - 0.529(0.11) FAC3 + 0.342
n=75 $=0.917 r2 (ad)=0.530 F=42.8
1og(1/ICsp)pm = 0.881(0.11) FACL - 0.529(0.11) FRC3
- 0.285(0.11) FAC4 + 0.342
n=75 $=0.917 r2(adj)=0.567 F=33.3
log(1/1Csg)py = 0.881(0.10) FACL - 0.529(0.10) FAC3 ~ 0.285(0.10) FACA
+ 0.221(0.10) FAC2 + 0.342
n=75 $=0.895 r2 (adj)=0.588 F=27.3
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Table 3.10 Unrotated Factor Loadings for Variables Associated with

the Microtox data.

FACTOR FACTOR FACTOR FACTOR FACTOR
1 2 3 4 5

MWT 0.923 -0.131 -0.186 -0.047 -0.214
PSO 0.992 0.010 0.082 0.057 0.012
PS1 0.983 0.021 0.138 -0.072 0.001
PS2 0.947 -0.258 0.012 0.101 0.123
PS3 0.883 -0.346 0.118 -0.201 0.010
Cs3 0.360 -0.560 -0.362 0.570 0.306
PVO 0.982 0.109 -0.133 -0.001 -0.010
PVl 0.952 0.233 -0.130 -0.099 -0.025
pPV2 0.891 -0.008 -0.412 0.048 0.084
PV3 0.878 -0.035 -0.239 -0.261 -0.117
cv3 0.125 -0.425 -0.685 0.440 0.214
KAO 0.965 -0.028 0.110 -0.008 -0.058
K1 0.961 0.209 0.076 0.109 -0.023
K2 0.729 0.622 0.161 -0.030 -0.147
K3 0.550 0.694 -0.035 0.243 -0.043
KAl 0.942 0.275 -0.028 0.132 -0.043
KA2 0.700 0.673 0.065 -0.022 -0.167
KA3 0.510 0.715 -0.109 0.246 -0.069
CLOGP 0.779 -0.106 -0.123 -0.329 0.013
CMR 0.984 0.036 -0.052 -0.114 0.040
PS-V0 0.475 -0.314 0.730 0.214 0.079
PS-Vl1 0.532 -0.451 0.648 0.023 0.058
PS-V2 0.637 -0.476 0.552 0.128 0.124
PS-V3 0.618 -0.552 0.440 -0.080 0.135
Ccs-v3 0.476 -0.395 0.358 0.392 0.244
PS+V0 0.996 0.057 -0.018 0.030 0.002
PS+V1 0.986 0.119 0.017 -0.086 -0.011
PS+V2 0.956 -0.161 -0.166 0.082 0.111
PS+V3 0.914 -0.239 -0.015 -0.231 ~-0.038
CS+V3 0.266 -0.521 -0.528 0.533 0.276
ASA 0.930 0.319 -0.021 -0.004 0.084
VWVOL 0.972 0.218 -0.032 ~0.014 0.042
ALTMV 0.972 0.218 -0.032 -0.014 0.042
COLLDIA 0.969 0.148 -0.074 ~0.036 0.075
CLOSAPP 0.813 0.378 -0.037 0.118 0.084
AREA 0.961 0.261 -0.052 0.018 0.031
VOLUME 0.982 0.161 -0.063 -0.031 0.024
DIPOLE 0.371 -0.325 0.116 0.526 -0.484
ENERGY -0.898 0.100 0.091 -0.030 0.245
HOMO 0.601 -0.413 -0.172 -0.287 0.313
LUMO -0.256 0.639 0.363 0.220 0.512
MDIPOLE 0.399 -0.334 0.284 0.498 -0.473
MENERGY =0.952 0.095 -0.063 =0.125 0.108
MHOMO 0.351 -0.471 0.037 -0.448 0.465
MLUMO -0.39%4 0.751 0.016 0.081 0.328
DIFH-L 0.383 -0.661 -0.358 -0.267 -0.354
MDIFH-L 0.458 -0.785 0.004 -0.263 -0.042
POLARIZ 0.954 0.240 0.033 -0.056 0.113
MPOLARIZ 0.942 0.230 0.081 -0.066 0.153
Eigenvalue 30.378 7.312 3.323 2.553 1.880
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Table 3.11 Loadings for the Sorted Rotated Factors for the

Variables Associated with the Microtox data.

FACTOR
1

AREA 0.983
PV1l 0.976
ASA 0.974
VWVOL 0.974
ALTMV 0.974
Kal 0.964
VOLUME 0.964
POLARIZ 0.959
PVO 0.950
COLLDIA 0.949
Kl 0.943
PS+V1 0.943
MPOLARIZ 0.939
PS+V0 0.927
CMR 0.917
KAa2 0.899
K2 0.894
PSO 0.892
CLOSAPP 0.889
PS1 0.886
PV2 0.853
Kao0 0.852
PV3 0.820
PS+V2 0.818
MENERGY =-0.814
MWT 0.809
ENERGY -0.785
K3 0.774
KA3 0.755
PS2 0.750
PS+V3 0.743
CLOGP 0.690
PS3 0.654
PS-VO0 0.000
PS=-V2 0.316
PS-V1 0.000
PS-V3 0.288
Ccs~-Vv3 0.000
LUMO 0.000
DIFH-L 0.000
MLUMO 0.000
MDIFH-L 0.000
CS+V3 0.000
cs3 0.000
cv3 0.000
DIPOLE 0.000
MDIPOLE 0.000
MHOMO 0.000
HOMO 0.408

Eigenvalue 26.226

FACTOR

~J [ofoXeoXoXeXofoYeloYolfoefoloa¥olofoRololoNololol oo alolofoRaololofojlolololoRalejojooee}e oo

2

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.282
.258
.276
.288
.252
.000
.000
.393
.000
.401
.000
.397
.000
.303
.403
.000
.000
.000
.000
.488
.354
.000
.513
.917
.909
.902
.821
.743
.000
.000
.400
.482
.000
.285
.000
.358
.496
.394
.284

.056

FACTOR
3

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.253
.000
.000
.000
.000
.000
.272
.000
.469
.290
.269
.484
.413
.400
.390

[+)Y oo leloRolafofoRofofoYfoRoaloloRoYoloNeoRaYoaNolofolofoNooofaoofooloolofojojolojoojojojole o)

.496
.424
.484
.000
.000
.000
.351
.000
.933
.918
.789
.757
.000
.000
.000
.282
.253
.345
.432

.073
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.286"

FACTOR

w [efololoYolofoYololofofoRolelololeYololoRolofelaofooolooJolojoojoJolojojooojoofofoloooRol o)

4

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.293
.319
.000
.000
.000
.407

FACTOR

[eYeolololololoXoNoRelolaloololoofolaofolofololoRololeRe o)

[eNoNololelololoRololooololojojololo o]

N

5

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.259
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000.
.000
.000
.000
.689
.681
.674
.476
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Table 3.13 Unrotated Factor Loadings for the Variables

Associated with the Fathead Minnow data.

FACTOR FACTOR FACTOR FACTOR FACTOR
1 2 3 4 5

MWT 0.943 0.112 -0.156 -0.048 -0.180
PSO 0.994 0.041 0.074 0.044 -0.003
PS1 0.990 0.000 0.105 -0.058 0.005
PS2 0.952 0.254 -0.003 0.104 0.097
PS3 0.908 0.280 0.069 -0.187 0.055
Ccs3 0.231 0.645 -0.333 0.608 0.205
PVO 0.989 -0.074 -0.100 0.024 -0.016
PV1 0.966 -0.213 -0.112 -0.051 -0.005
PV2 0.899 -0.075 -0.390 0.092 0.076
PV3 0.885 -0.129 -0.280 -0.215 -0.014
Ccv3 0.012 0.448 -0.652 0.527 0.098
Ka0 0.976 -0.023 0.053 -0.077 0.018
K1l 0.983 -0.087 0.083 0.080 -0.048
K2 0.850 -0.467 0.129 -0.048 -0.118
K3 0.724 -0.518 -0.018 0.193 -0.096
Kal 0.975 -0.146 0.010 0.105 -0.063
KA2 0.827 -0.522 0.058 ~0.037 -0.128
KA3 0.688 -0.555 -0.083 0.199 ~0.114
CLOGP 0.813 -0.190 -0.203 -0.247 0.065
CMR 0.987 -0.078 -0.069 -0.068 0.052
PS-V0 0.508 0.444 0.673 0.095% 0.048
PS-V1 0.521 0.537 0.596 -0.047 0.029
PS-V2 0.587 0.585 0.525 0.072 0.081
PS-V3 0.589 0.605 0.410 -0.088 0.107
cs-v3 0.403 0.511 0.360 0.326 0.229
PS+VO0 0.998 -0.013 -0.007 0.034 -0.009
PS+V1 0.992 -0.099 0.006 -0.056 0.001
PS+V2 0.962 0.121 -0.170 0.103 0.092
PS+V3 0.939 0.128 -0.069 -0.207 0.030
Ccs+V3 0.138 0.580 -0.497 0.596 0.163
ASA 0.969 ~0.207 -0.011 0.026 0.056
VWVOL 0.983 -0.168 -0.030 0.009 0.035
ALTMV 0.983 -0.167 -0.030 0.009 0.035
COLLDIA 0.976 -0.121 -0.080 -0.015 0.07%
CLOSAPP 0.914 -0.247 0.000 0.057 0.087
AREA 0.980 -0.186 -0.032 0.034 0.018
VOLUME 0.989 -0.127 -0.049 0.001 0.016
DIPOLE 0.477 0.353 0.207 0.377 -0.455
ENERGY -0.917 -0.167 0.058 0.014 0.208
HOMO 0.543 0.445 -0.283 -0.291 0.375
LUMO -0.114 -0.619 0.436 0.319 0.512
MDIPOLE 0.507 0.358 0.334 0.331 -0.449
MENERGY -0.958 -0.146 -0.081 -0.073 0.101
MHOMO 0.220 0.525 -0.036 -0.401 0.573
MLUMO =-0.225 -0.783 0.086 0.219 0.338
DIFH-L 0.249 0.660 -0.456 -0.358 -0.341
MDIFH-L 0.274 0.840 -0.083 -0.353 0.009
POLARIZ 0.975 ~-0.180 0.011 =0.020 0.095
MPOLARIZ 0.967 -0.179 0.043 -0.024 0.129
Eigenvalue 31.512 7.020 3.253 2.382 1.747
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Table 3.14 Loadings for the Sorted Rotated Factors for the

Variables Associated with the Fathead Minnow data.

FACTOR FACTOR FACTOR FACTOR FACTOR
1 2 3 4 5

PV1 0.991 0.000 0.000 0.000 0.000
AREA 0.981 0.000 0.000 0.000 0.000
VWVOL 0.979 0.000 0.000 0.000 0.000
ALTMV 0.979 0.000 0.000 0.000 0.000
VOLUME 0.976 0.000 0.000 0.000 0.000
ASA 0.974 0.000 0.000 0.000 0.000
POLARIZ 0.969 0.000 0.000 0.000 0.000
PV0 0.966 0.000 0.000 0.000 0.000
COLLDIA 0.966 0.000 0.000 0.000 0.000
CMR 0.964 0.000 0.000 0.000 0.000
PS+Vl 0.962 0.000 0.000 0.000 0.000
MPOLARIZ 0.958 0.000 0.000 0.000 0.000
Kal 0.956 0.000 0.000 0.000 0.000
PS+V0 0.941 0.304 0.000 0.000 0.000
K1l 0.935 0.329 0.000 0.000 0.000
CLOSAPP 0.933 0.000 0.000 0.000 0.000
KA2 0.928 0.000 0.000 0.000 0.000
pPV2 0.925 0.000 0.000 0.317 0.000
K2 0.922 0.000 0.000 -0.264 0.000
PV3 0.919 0.000 0.000 0.000 0.000
Kao0 0.918 0.319 0.000 0.000 0.000
PS1 0.915 0.377 0.000 0.000 0.000
PSO 0.908 0.396 0.000 0.000 0.000
PS+V2 0.891 0.267 0.000 0.297 0.000
MWT 0.876 0.000 -0.356 0.000 0.000
CLOGP 0.860 0.000 0.000 0.000 0.000
PS+V3 0.859 0.284 -0.292 0.000 0.000
MENERGY -0.841 -0.450 0.000 0.000 0.000
K3 0.836 0.000 0.000 0.000 -0.270
KA3 0.823 0.000 0.000 0.000 -0.289
ENERGY -0.819 -0.327 0.347 - 0.000 0.000
PS2 0.815 0.464 0.000 0.265 0.000
PS3 0.762 0.468 -0.305 0.000 0.000
PS-V0 0.000 0.928 0.000 0.000 0.000
PS=-V2 0.290 0.923 0.000 0.000 0.000
PS-V1 0.000 0.905 0.000 0.000 0.000
PS-V3 0.308 0.826 -0.257 0.000 0.000
cs-v3 0.000 0.750 0.000 0.330 0.000
MDIPOLE 0.306 0.643 0.000 0.000 -0.478
DIPOLE 0.298 0.544 -0.257 0.000 -0.490
LUMO 0.000 0.000 0.962 0.000 0.000
DIFH-L 0.000 0.000 -0.937 0.000 0.000
MLUMO 0.000 -0.406 0.802 0.000 0.000 .
MDIFH-L 0.000 0.452 -0.717 0.000 0.410
CS+V3 0.000 0.000 0.000 0.967 0.000
Ccs3 0.000 0.310 0.000 0.931 0.000
cv3 0.000 0.000 0.000 0.921 0.000
MHOMO 0.000 0.308 0.000 0.000 0.809
HOMO 0.426 0.000 -0.367 0.000 0.620
Eigenvalue 28.539 7.238 4.352 3.502 2.283
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3.2.5.1. Canonical Correlation Analysis

62 oorresponding fathead minnow and Microtox data were obtained and utilised in
the analysis. Predictably the data are characterised by relatively high
collinearity as expressed by the squared multiple correlations (r?) of each
variable in both the first and second data sets with all other in its
ocorresponding data set, shown below. (Thus there is a correlation of 0.538
between the toxicities in the first data set; a correlation of (.429 between CS1
and all other members of the second data set and so on.)

Squared multiple correlation of each variable in the first and second sets

with all other variables in their corresponding sets

First Set
Variable r-squared

Microtox 0.538
Fathead Minnow 0.538

Second Set
csl 0.429
PVl 0.848
ClogpP 0.818
P(SW)0 0.646
Cc(s-v)3 0.688
HMO 0.853
MO 0.715
MDipole 0.413
MHIOMD 0.792
MLIMO 0.823

3.2.5.2. Significance of the Canonical Variates

The maximum nutber of canonical variates (the linear cambinations of the two
canonical variables describing the first and second data sets) produced by the
analysis is governed by the number of variables in the smaller of the two data
sets, The first data set has only two variables, thus only two canonical variates
can be calculated. Because same of the canonical correlations (the correlation
between the canonical variables of the variate) may be too small to be
statistically significant, Bartlett's Test is applied which indicates the number
of significant relationships that exist. The results summarised below show that

both the correlations of 0.837 for the first variate, and 0.507 for the second

118



variate, are significant at the 0.01% level.

Summary of statistics for canonical variates

No. Eigenvalue Canonical Bartlett's Test for Significance
Correlation Chi-square  Degrees of Freedam
1 0.701 0.837 104.3 20
2 0.507 0.712 38.5 , 9

The canonical correlation for each variate is simply, of course, the square root
of the eigenvalue. Also Bartlett's test indicates that both variates are
necessary to express the dependency between the two sets of variables, Both are
significant at the 0.005% level, (the 0.005% chi-squared values being 40.0 for 20
degrees of freedam, and 23.6 for 9 degrees of freedam). These variables are, by
their nature, uncorrelated.

3.2.5.3. Physical and Chemical Meaning of the Canonical variates

The ocoefficients and standardised coefficients for the first and second set of
canonical variables are shown below.

Ooefficients for canonical Standardised coefficients for
variablesof both variates canonical variables of both

variates

First Set

QWVRF1 ONVRF2 NVRF1 CNVRF2
Microtox 0.499 -0.869 0.732 -1.276
Fathead Minnow 0.246 1.068 0.330 1.433
Second Set

ANVRS1 QNVRS2 QNVRS1 QNVRS2
cs3 -0.277 -0.912 -0.114 -0.376
PVl 0.187 -0.375 0.244 -0.491
ClogP 0.305 0.349 0.410 0.469
P(S-V)0 0.547 0.497 0.313 0.284
C(s-V)3 -1.705 1.343 —0.373 0.293
HOMO 0.533 -0.601 0.504 -0.568
1IDMO =0.027 -0.209 -0.080 -0.611
MDipole 0.160 0.159 0.166 0.164
MHOMO ~0.067 -0.285 =0.070 ~0.296
MIDMO -0.001 -0.158 =0.002 -0.256

where ONVRF1l is the canonical variable of the first set in the first variate
ONVRF2 is the canonical variable of the first set in the second variate
ONVRS1  is the canonical variable of the secord set in the first variate
QNVRES2 1is the canonical variable of the second set in the second variate
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The standardised coefficients of the variates can be considered in a similar
manner to the loadings of a principle camponent analysis, in order to elucidate
the meaning of each variate, The first canonical variate is based on the sum of
the weighted Microtox and weighted fathead minnow toxicities (basically in a
ratio of 2:1). An increase in this variate is thus associated with an increase in
both toxicities. The second canonical variate, however, describes the difference
between the two toxicities (in roughly equal proportions) and an increase is
associated with increase in fathead minnow toxicity, yet a decrease in Microtox
toxicity.

There are relatively high canonical correlations between the first and second
sets of variables for the variates, The first variate shows a good correlation of
0.837 (see Fig 3.3). ONVRF1 acocounts for 94.9% of the variation of the Microtox
toxicity and 75.2% of the fathead minnow toxicity. For the second canonical
variate a correlation of 0.712 (see Fig 3.4) is obtained, with CNVRF2 explaining
only 5.]% of the variation in the Microtox toxicity and 24.8% of that for the
fathead minnow.
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3.2.6. Results of the Prediction of Toxicities fram the QSAR Models

The chemicals in the 'testing set' for the QSAR analysis, along with their
published toxicities, and those calculated by the various QSAR methods for the
Microtox test are listed in Table 3.15, and those for the fathead minnow toxicity

are listed in Table 3.16.
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3.3. Results of the Analysis of the Inter-Species Relationships of Aquatic

Toxicity
The inter-species relationships are described below, each relationship is then

individually discussed in section 4.3.1., and an overview of the whole analysis
given in section 4.3.2.

3.3.1.1. Inter-Species Relationship Between Fathead Minnow and Microtox

A total of 126 data pairings were obtained for the fathead minnow and Microtox
toxicity data, and a reasonable relationship was found (see Fig 3.5):
log(1/ICs) gy = 0.704(0.046) log(l/ECsg)y + 0.189 (3.52)
n=126 $=0.791 r2adj=0.651 F=233.8

where: 10g(1/ICrq) gy = Fathead minnow 96h 1og(1/ICs,)
log(1/BC5q)y = Microtox 5 min log(l/Elsp)

When the data were broken down according to structural features present, much

stronger relationships were observed in same cases:

alcohols:

1og(1/ICsp)pm = 0.834(0.059) log(l/BCgg)y + 0.010 (3.53)
n=39 5=0.658 r?adj=0.838 F=197.3

nitro compounds:

10g(1/IC50 py = 1.09(0.23) log(l/BCcy)y - 0.260 (3.58)
n=8 $=0.391 r%adi=0.755 F=22.5

esters:

10g(L/ICsq)pM = 0.702(0.12) log(l/ECggly + 0.698 (3.55)
=13 5=0.633 r2a3=0,749 F=36.8

alkenes:

log(l/tcso)m = 1.10(0.25) log(l/ECSO)M + 0.412 (3:56)
n=7 5=0.902 r2ad3=0.746 F=18.7

The variation the slopes fram (0.702 (esters) to 1.10 (alkenes)) and the
intercepts (-0.260 (nitro campounds) to 0.698 (esters)) of these four equations
indicate that different relationships occur when different chemical groups are

considered. These differences also hint at the differing susceptibilities of the
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species to toxicants.
Weaker, however, were the following relationships:
ethers:

109(1/ICsp) gy = 1.10(0.26) 1log(1/ECp)y -~ 0.238

=9 s=1.196 r2adj=0.675 F=17.6
al :

103(1/LC5p) gy = 0:887(0.19) 1log(1/ECgy)y + 0.694
=13 $=0.543 r2ad§=0.640 F=22.3
aliphatic compounds:

109(1/ICs)py = 0.671(0.70) 1og(1/ECsg)y + 0.143
=68 5=0.868 r2adj=0.576 F=91.9

halogenated campounds:

1og(1/ICsp)pm = 0.594(0.094) log(l/ECsg)y + 0.655
=38 s=0.731 r2adj=0.511 F=39.7
aramatic coampourds:

log(1/iCsg)gy = 0.718(0.099) log(l/ECsy)y + 0.214

n=58 5=0.699 r?ad§=0.475 F=52.6
ketones:

109(1/ICsy)py = 0-578(014) 10g(1/BCsg)y - 0.158
n=19 $=0.720 r2adj=0.458 F=16.2

nitrogen ring campounds:
log(1/iCsg)py = 0.329(0.16) log(l/ECsp)y + 0.299

=5 £=0.507 r2ad§=0.457 F=4.37
amines:

10g(1/iCsp)py = 0-498(0.13) log(l/EC5g)y + 0.191
=25 s=0.822 r2ad5=0.380 F=15.7
nitriles:

log(1/ICsp)pm = 0.380(0.30) log(l/ECgg)y + 0.389
=8 &=1.356 r2ad=0.073 P=L55
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3.3.1.2. Analysis of the Qutliers

The 'significant' (as defined in section 2.4.3.1) outliers fram the inter-species
relationship are listed in Table 3.17 and are divided into which species they are
relatively more toxic against. Of the 126 chemicals, 78 (62%) are classified as
not being significant outliers. Included in Table 3.17 are the possible modes of
toxic action of the outliers (that are not assumed to be simple narcotics), as
listed in Table 2.6.

3.3.1.3. Results of the Chi-Squared Analyis of the Outliers

The results of quantitative analysis into structural features causing greater
relative toxicity to one species are summarised in Table 3.18. The overall ratio
of all chemicals is 24 chemicals more toxic to the fathead minnow; 78 chemicals
not relatively more toxic to either species; and 24 chemicals more toxic to
Microtox (thus proportionally 19%:62%:19%). The chi-squared value shows that only
when the aldehyde moiety is considered can the null hypothesis that there is no
significant difference between the structural feature and the overall
relationship be rejected (the chi~squared value for 95% probability of rejecting
the null hypothesis, with 2 degrees of freedam, is 5.99). This suggests that the
aldehyde group may be responsible for increased toxicity to the fathead minnow.
However no other structural features are found to be significantly different from
the expected ratio.

3.3.1.4. Results of the Analysis of Outliers from the Toxicity-Hydrophobicity
Relationship

The outliers fram the fathead minnow toxicity-ClogP (see Fig 3.6) and Microtox—

ClogP (Fig 3.7) relationships (see section 2.4.4.1) are marked an Table 3.17. Of
those chemicals found to be relatively more toxic to the fathead minnow, more
(sixteen) are outliers to the fathead minnow-ClogP relationship, than to the
Microtox-ClogP relationship (ten). Conversely, of those chemicals relatively more
toxic in the Microtox test, more (twenty) are outliers to the Microtox-Clogp
relationship, than are outliers to the fathead minnow-Clogp relationship (three).

These results are quantified in Table 3.19 which shows a significant difference
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between the two sets of ClogP outliers (the chi-squared value of 12.2 is greater
than the 95% probability value to reject the null hypothesis of 5.99).

3.3.1.5. Improvement of the Inter-Species Relationship by Addition of Other

Paraneters
Following stepwise regression analysis with the physico~chemical data described
in section 24.6.1. (ClogP, molecular connectivities, and indicator variables),
Bquation 3.52 was moderately improved:
log(1/1Csg gy = 0.490(0.069) 1log(l/BCgp)y + 0.280(0.071) Clogp - 0.218 (3.66)
=126  s=0.748  r2adj=0.688  F=138
1og(1/ICsp)py = 0.451(0.066) log(1/ECgg)y + 0.319(0.067) ClogP

+ 0.867(0.21) I 34 - 0.358 (3.67)
=126 s=0.703 r2adj=0.724  F=110
where: I,14 is an indicator variable for the presence of an aldehyde group.
Bouations 3.66 and 3.67 were the only significant improvements to the
relationship that were obtained; the addition of more parameters did not improve
the correlation appreciably. These results were confirmed by best-subsets

regression analysis.
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Table 3.17 Classification of Campounds the Fathead Minnow and

Microtox Relationship

are ranked according to their relative toxicities; F and M after the
chemical indicate that it is an outlier in the toxicity-ClogP relationship for
fathead minnow and Microtox respectively; Modes indicate the possible modes of
toxic action of the outliers (narocosis is not shown), where 2 are uncouplers of
oxidative phosphorylation, 3 are compounds metabolised to reactive intermediates,
4 are campounds that may react with a nucleophilic group on a macramolecule, 5
are campounds acting by polar narcosis (see Table 2.7).

Chemical Ratio Calc/Gbs  ClogP Qutlier Mode

Chemicals More Toxic to Fathead Minnow

malononitrile 0.0038 F M
chloroacetonitrile 0.0056 F M
pemmethrin 0.0063

acrolein 0.02 F M 2
2-chloroethanol 0.030 F
2~-f1luorcbenzaldehyde 0.063 F M 4
2,3,5,6~tetrachloroaniline 0.08 2
S5~bramosal icylaldehyde 0.089 F 4
2~ethoxyethyl acetate 0.1 F

butanal 0.12 F M 4
sal icyladehyde 0.12 F M 4
a,a'-dichloro-p-xylene 0.12 F M
butylamine 0.12

4~chlorobenzal dehyde 0.15 F
4,6~dinitro~2-cresol 0.15 F M 3
pyridine 0.17 F
2,3,4,5-tetrachlorophenol 0.17 2
octylamine 0.18

2,4-dichlorobenzal dehyde 0.19 4
amobarbital 0.20

methyl acetate 0.21 F
diethylamine 0.22

4~dimethy 1amino~-3-methy1-2-butanone 0.22 F M
pentachlorophenol 0.22 2
ethyl hexanoate 0.23

ethanal 0.24 F M 4
Non-Qutliers

butyl acetate 0.26 F

dicofol 0.29

4~flwroaniline 0.29 F M
hexyl acetate 0.29

2~chloroaniline 0.31 F M
2~chloro~6-fluorobenzaldehyde 0.31

allyl cyanide 0.31 F
2,3-dibramopropanol 0.38 F M
2-chlorophenol 0.40

2-decanone 0.40

propyl acetate 0.41 F
2,4-pentanedione 0.41 F M
S-methy 1-2-hexanone 0.42

4-phenylazophenol 0.45 F M
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ethyl acetate
1,4-dinitrobenzene
hexanal

1-naphthol

dibutyl adipate
diethyl adipate
caffeine
2,2,2-trichloroethanol
trichloroethylene
2,4,6~trichlorophenol
diuron

butyl ether
1,1,1-trichloroethane
acetonitrile
2,3,4-trichloroaniline
tetrachloroethylene
heptylamine
2,4-dinitrophenol
2-nitrobenzaldehyde
2,4,6-tribramophenol
3—chloronitrobenzene
4~phenoxyphenol
toluene
4—amino~2-nitrophenol
malathion
2-allylphenol
1,1,2-trichloroethane
benzaldehyde
5-nonanone

diethyl sebacate
1,2-dichlorobenzene
2-phenylphenol

1,2-dichloroethane
2,4—-dichlorophenol
octyl cyanide
carbaryl
hexachloroethane
2-octanone

aniline

heptanol
naphthalene
propanol

butanol

2-proparol
4~nitrophenol
hexanol
1,4-dicyancbutane
pentachloroethane
acetone
3-pentanone
2-methy1-1-propanol
2-butanone
4-phenylpyridine
N,N-dimethylaniline

0.46
0.48

0.49
0.49
0.51
0.52
0.54

0.54
0.54
0.59
0.61
0.64
0.65
0.69
0.74
0.78
0.81
0.81

0.90
0.90
0.96
0.97
0.97
1.01
1.02
1.08
.1
111
1.13
1.13
1.19
1.25
1.5
1.29

1.39 4

1.39
1.54
1.54
1.55
1.70
1.74
1.74
1.75
1.95
1.97
2.05
2.14
2.22
243
2,70
2.82
2.85

2.95
3.02
3.2
3.34
3.“
3.54
3.89
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2-chloro-4-methylaniline

Chemicals More Toxic to Microtox

ethanol

a,a,a-trifluwro-3-tolunitrile

nitrobenzene

6-methy 1-5-heptene~2-one
3,4-dichloroaniline
4-chloroaniline

4-methy 1phenol
4-tert-butylphenol
methanol
4-methyl-2-pentanone
cyclohexanol

benzamide
2-methy1-2,4~pentanediol
bramacil
3,3-dimethy1-2-butanone
triethylene glycol
4-methoxyphenol
methy1-2-butanone
2-methoxyethylamine
propylamine
1,6~dicyanohexane
cyclahexanone
1,2-diaminopropane
2-(2-ethoxyethoxy) ethanol
4-ethylaniline

3.98

4.08
4.17
4.21
4.23
4.59
4.96
5.05
5.38
7.07
9.47
9.85
13.27
14.23
14.49
15.77
16.04
16.35
18.53
23.47
23.85
27.05
31.82
45.10
67.58
85.71
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Table 3.18 Results of the Chi-Squared Analysis on the Qutliers of the Fathead

Minnow and Microtox Relationship by Structural Features of the Chemicals

The table indicates the number of chemicals with each of the following structural
features and how many fall into each category. The expected ratio is calculated
fram the overall ratio.

More toxic Non-outlier More toxic Chi—squared

to fathead minnow to Microtox value

Overall relationship
24 78 24

Aranatic campounds
Observed 12 37 9
Expected 1 36 1 0.479
Esters
Observed 3 8 3
Expected 3 8 3 0.000
Halogenated campounds
Cbserved 11 23 4
Expected 7 24 7 3.60
Alocohols
(Observed 5 25 9
Expected 7.5 24 75 1.70
Aldelydes
Cbserved 8 5 0
Expected 25 8 2.5 15.7
Ketones
Qbserved 2 1 5
Expected 35 11 3.5 1.28
Amines
Cbserved 7 1 7
Expected 5 15 5 2.67
Nitriles
Observed 2 4 2
W 1.5 5 1-5 0.54
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Ethers

Cbserved 1
Expected 1.5

Ul o

1.5

1.87

Table 3.19 Chi-Squared Analysis of the Outliers fram the Toxicity-ClogP

Relatiorm_l:p_'

more toxic to non—

Fathead Minnow outliers
Fathead minnow- O: 16 20
ClogP Qutliers E: 10.9 18.5
Microtox- O: 10 24
ClogP Qutliers E: 15.1 25.5
Total 26 44
Chi-squared 2.383 0.130

1.721 0.094

where O: is the observed ratio

more toxic to
Microtox

3
9.6

20
13.4

23

4.578
3.307

39

54

93

12,2

E: is the expected ratio calculated by the chi-squared analysis
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3.3.2.1. Inter-Species Relationship between Fathead Minnow and Daphnia magna

A total of 46 data pairings were found for fathead minnow and D. magna, revealing
the following relationship (see Fig 3.8):

log(1/IC50) pq = 0.805(0.069) 1og(1/ICsgipy + 0.061 (3.68)
=46 s=0.675 r2adj=0.750 F=135.8

where: 10g(1/ICq)py is the log (1/(48 hour ICry)) to D. magna.

When the campounds were divided according to which structural features they

contain, same very good correlations were obtained:

aloohols:

;Log(l/mso)FM = 1.03(0.074) log(l/I_Cso)ml - 0.275 (3.69)
=17 5=0.415 r2ad$=0.923 F=193.2

alkenes:

109(1/ICsy) gy = 0.834(0.17) log(l/r.cso)DM + 0.327 (3.70)
=4 5=0.639 r2adi=0.886 F=24.2 |

halogenated campourds:

log(l/mso)m = 0.807(0.074) 1log(1/ICgyipy + 0.177 (3.71)
n=19 $=0.438 r2ad§=0.869 F=120.0

nitro compounds:

10g(1/AC50 gy = 1.47(0.37) 1og(1/ICsq)py - 0.854 (3.72)
re=4 5=0.367 r2ad§=0.830 F=15.6

aliphatic campounds: |

log(1/1Cs50)pm = 0.855(0.10) log(l/ICsgipy - 0-028 (3.73)
n=22 5=0.705 r2ad3=0.755 F=65.8

esters:

log(l/tCso)m = 0.654(0.22) 109(1/ICgy)py + 0089 (3,;/4)
ne4 5=1.065 r%adi=0.727 F=9.0

Again there is a cnsiderable variation in the slopes (1.47 (nitro campounds) to
0.654 (esters)) and the intercepts (0.327 (alkenes) to -0,854 (nitro canpourds)) ,
in the equations. The other, however less significant, relationship found was:
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aramatic compounds:
10g(1/IC50)p = 0.658(0.11) log(l/LCsp)py + 0.342 (3.75)
=24 5=0.640 r2adi=0.584 F=33.3

3.3.2.2. Analysis of the Outliers fram the Relationship

Of the 46 chemicals, 12 (26%) were found to be significant outliers as shown in
Table 3.20. With few outliers (seven relatively more toxic to the fathead minnow,
and five to D. magna) it is difficult to distinguish any pattern; however, there
are four compounds (three alkyl halides, and an aldehyde) that may act by
attacking mucleophilic sites, that are more toxic to fathead minnow.

3.3.2.3. Chi Squared Analysis of Outliers

Table 3.21 sumarises the results of the chi-squared analysis. Unfortunately, due
to the lack of data, only the three calculations shown could be performed. None
of these structural features shows a significant deviation fram the expected
ratio, although the analysis indicates that halogenated campounds are more toxic
to the fathead minnow, and none is more toxic to D. magna, whilst alcohols tend
to be more toxic to D. magna and not to the fathead minnow.

3.3.2.4. Amalysis of the Outliers fram the Toxicity-Hydrophobicity Relationship

The results of the chi-squared analysis of the outliers fram the fathead minnow
toxicity-ClogP (see Fig 3.6) and D. magna toxicity-ClogP (see Fig 3.9)
relationships are summarised in Table 3.22. Although the chi-squared analysis
shows there is no significant deviation fram the null hypothesis for the outliers
from the toxicity-ClogP relationships, four of the five chemicals more toxic than
expected to D. magna, are outliers fram the ClogP-D. magna toxicity relationship,
as opposed to only one of these outliers being an outlier to the fathead minnow
toxicity-ClogP relationship.

3.3.2.5. Inprovement of the Relationship using Additional Parameters

A significant improvement is obtained in the interspecies relationship when the
fol lowing parameters are included

1og(1/ICsq)pm = 0.598(0.076) log(1/ICsg)py + 0.298(0.070) Clogp - 0.445  (3.76)
=46 $=0.572 r2a3=0.820 F=103.6
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103(1/1Cq0)pm = 0.693(0.082) log(1/ICgp)py + 0.338(0.068) Clogp

- 0.166(0.068) 1PV - 0.104 (3.77)
=46 $=0.542 r2adj=0.839 F=78.9
where 1PV is the first order valence-corrected path molecular connectivity.
These results were confimed using best-subsets regression analysis. Byuations
3.76 and 3.77 show, yet again, the importance of hydrophobicity, probably in the
form of the chemicals' ability to be transported in the organism. Also obviously
important is the bulk of the molecule (modelled by the molecular connectivity
term) which again may be expressing same factor of its transport within the
different species. There is an acceptable correlation between ClogP and 1PV,
r=0.564.
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Table 3.20 Classification of Compounds in the Fathead Minnow and Daphnia

magna Relationship

Chemical Ratio Calc/Obs  Clogp Outlier* Mode*

Chemicals More Toxic to Fathead Minnow

acenaphthalene 0.03

acrolein 0.076 F D 4
pentachloroethane 0.1 4
1,1,1-trichloroethane 0.13 4
ethy lbenzene 0.17

pyridine 0.18 F
hexachloroethane 0.21 4
Non-Qutliers

pentachlorophenol 0.25

salicylaldehyde 0.25 F D
4,6-dinitro-2-cresol 0.27 F D
naphthalene 0.31

1,3-dichlorobenzene 0.46

1,3-dichloropropane 0.46

dibenzofuran 0.50

diethyl phthalate 0.53

heptanol 0.54

toluene 0.64

ethyl acetate 0.65 F
2,4,6~trichlorophenol 0.66

1,1,2,2-tetrachloroethane 0.67

tetrachloroethylene 0.70

1,2-dichloroethane 0.83

permethrin 0.87

trichloroethylene 0.98

1,2,4-trimethylbenzene 1.24

2,4-dinitrophenol 152 F D
2,4-dichlorophenol 1.53 D

acetore 158

4-nitrophenol 1.67 D
2-chlorcethanol 17 F D

phenol 1.96 D
1,2-dichlorobenzene 2,03

propanol 2.06

dichloramethane 2.08

2,2,2-trichloroethanol 2.30

2-chlorophenol 2.38 D
1,2-dichloropropane 2.45

2-methylpropanol 2.51

2,4-pentanedione 291 F D
nitrobenzene .77 D
Chemicals More Toxic to Daphnia magna

2,4~-dimethy1phenol 412 D 5
2-methy1-2,4-pentanediol 11.78 D

2- (2—-ethoxyethoxy) ethanol 14.79

malathion 56.58 F D
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aniline 90.74 D 3

* refer to Table 3.17 for full explanation

Table 3.21 Chi-Squared Analysis on the Outliers from the Fathead Minnow and

paphnia magna Relationship by Structural Features of the Chemicals

More toxic Non—outlier More toxic Chi-squared

to fathead minnow to D. magna value

Overall relationship
7 34 5

Aranatic compourds
Observed 3 19 2
Expected 3.5 18 2.5 0.226
Halogenated campounds
Cbserved 3 16 0
Expected 3 14 2 2.29
Aloohols
Observed 0 14 3
Expected 2.5 12.5 2 3.18

Table 3.22 Chi-Squared Analysis on the Outliers fram the Toxicity-Clogp
Relationship

More toxic to non-— More toxic to TOTAL

fathead minnow outliers D. magna
Fathead minnow- O: 2 6 1 9
ClogP Qutliers E: 1.1 6.0 1.9
Daphnia- O: 1 10 4 15
ClogP Qutliers E: 1.9 10.0 3.1
Total 3 16 5 24
Chi-squared 0.681 0.000 0.408

0.408 0.000 0.245 = 1.742
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3.3.3.1. Inter-Species Relationship Between Fathead Minnow and

Tetrahymena pyriformis

74 ocorresponding data were found for fathead minnow and T. pyriformis toxicity,

and these show a very strong relationship (see Fig 3.10):

log(1/1Cs) g = 0.990(0.056) log(l/IGgg)pp + 0.352

n=74

s=0.443

r2adj=0.807

F=307.2

(3.78)

where: 109(1/IGgp)pp is the log (1/48-60 hour IG;)) to the ciliate Tetrahymena

When the data were considered according to structural features, even better

pyriformis.

ocorrelations are achieved for same sub-sets:

ethers:

log(1/ICsg)pm = 1.13(0.099) log(l/IGsgrp + 0.263

n=7

ketones:

s=0.226

radj=0.956

F=130.3

10g(1/ICg0) py = 1.07(0.20) log(l/IGgg)yp = 0.162

n=4

s=0.230

r2adj=0.905

nitrogen ring compounds:

F=29.6

103(1/ICs0)pm = 1.03(0.12) 1log(l/IGsglpp + 0.372

=15

alocohols:

103(1/1Csq) gy = 0-949(0.082) 109(1/IGgypy + 0.425

=31

Other structural features that produced weaker correlations included the

s=0.363

5=0,405

radj=0.848

r2adj=0.816

halogenated campounds:

F=78.9

F=134.1

10g(1/ICsg)py = 0.981(0.13) log(l/IGeglpp + 0.333

=24

amines:

s=0.551

r2a3§=0.697

FEMOO

10g(1/ICep)py = 1.05(0.15) log(l/IGggipp + 0.153

=24

s=0.527

r2adj=0.689

F=51.9
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nitro compounds:
1og(1/iCsg)py = 0.860(0.191) 10g(1/IGsplqp + 0.350 (3.85)
n=19 5=0.462 r2adi=0.516 F=20.2

3.3.3.2. Analysis of the Outliers fram the Inter-Species Relationship

Of the 74 campourds present in the relationship only 11 (or 15%) were classified
as outliers. The outliers fram the inter-species relationship are listed in Table

3.23.
3.3.3.3. Chi-Squared Analysis on Structural Features of the Qutliers

The chi~squared analysis (summarised in Table 3.24) shows that none of the
structural features tested was significant at the 95% level. However, compounds
containing an amine group (in this case the anilines) were more prone than might
be expected to be outliers,

3.3.3.4. Analysis of the Outliers fram the Toxicity-Hydrophobicity Relationship

when outliers fram the fathead minnow toxicity-ClogP and T. pyriformis toxicity-
ClogP (see Fig 3.11) relationships were considered (see Table 3.25), although
again there is ro significant deviation fram the expected ratio, more outliers
fram the fathead minnow toxicity-ClogP relationship (than from T. pyriformis) are
relatively more toxic to fathead minnow, and conversely more outliers fram T.
pyriformis toxicity-ClogpP relationship are relatively more toxic to T.

3.3.3.5. Inmprovement of the Relationship using Additional Parameters

After stepwise regression analysis using the parameters described in section
2.4.6.1, a slight improvement is made in the relationship:

103(1/ICsp)py = 0.637(0.086) log(l/Ksg)p + 0.335(0.065 Clogp - 0.248 (3.86)

n=72 s=0.384  rladj=0.850  F=203
log(1/ICsp)pm = 0.591(0.087) log(l/IGsglpp + 0.280(0.069) Clogp

+ 0.149(0.074) 3PV - 0.322 (3.87)
n=72 5=0.376  rladj=0.857  F=142

where: 3PV is the third order valence corrected molecular connectivity.

Again ClogP is important, representing the transport of a chemical into the
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organism; however, it adds little to the value of the equation due to the already
strong correlation present. In addition, due to the very small increase in r2,
the third (bulk) parameter cannot be assumed to be making any significant
ocontribution to the relationship. These equations were confimmed using best-

subsets regression analysis.
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Table 3.23 Classification of the Campounds in the Fathead Minnow and

Tetrahymena pyrifomis Relationship

Chemical Ratio Calc/Cbs Clogp Outlier® Mode™

chamicals More Toxic to Fathead Minnow

2-chloroaniline 0.08 F
2,3,5,6~tetrachloroaniline 0.15 2
1,4-dinitrobenzene 0.19 F 2
pyridine 0.19 F
pentabramophenol 0.19 F 2
pentachloropyridine 0.21

Non-Outliers

2,4-dimethylphenol 0.29

4—ethylphenol 0.31
2-nitrobenzaldehyde 0.31 F
4-octylaniline 0.33

phenol 0.33

2,5-dinitrophenol 0.34 F T
4-nonylphenol 0.34

2-chlorophenol 0.38
4~f1uoronitrobenzene 0.38

1-naphthol 0.41

4-methylphenol 0.53

3-nitrotoluene 0.55
4~chloro~-3-methylphenol 0.55

2-allylphenol 0.55

pyrrole 0.57

4~pheny lazophenol 0.58 F
4-tert-pentyl phenol 0.59
2,3,4-trichloroaniline 0.60

4-tert-butylphenol 0.62
2-dimethylaminopyridine 0.66

1-benzylpyridinum 3-sulphonate 0.71

3-methoxyphenol 0.72

4-hexyloxyaniline 0.76

3-benzyloxyaniline 0.76

4-propy lphenol 0.77

pentachlorophenol 0.81
5-ethyl-2-methylpyridine 0.92

2,4-dinitroaniline 0.97 F T
2-phenylphenol 0.98
4,6-dinitro-2-cresol 1.02 F T
4-benzoylpyridine 1.03

4-phenylpyridine 1.06
4-bramopheny1-3-pyridylketone 113

2,4-dichlorophenol 113
2-amino~-5—-chlorcbenzonitrile 1.15
5-hydroxy=-2-nitrobenzaldehyde 1.19
2,4-dinitro-1-naphthol, sodium salt 12

4-picoline 1.26

4-phenoxyphenol 131

4-methoxyphenol 1.44
2-chloro~4-nitroaniline 1.46

methyl 4-nitrobenzoate 1.47 T
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4-ethylaniline
6-chloro-2-picoline
4-butylaniline
2,4-dinitrophenol
2,4,6-tribramophenol
1,2-bis(4-pyridy1l)ethane
4-acetamidophenol
4~ethoxy-2-nitroaniline
3-chloronitrobenzene
nitrobenzene
2,3,4,5tetrachlorophenol
6-chloro-2-pyridinol
2,4,6~trichlorophenol
2-nitrophenol
3,4-dichloroaniline
2-cyanopyridine
4-nitrobenzamide
4-toluidine
a,a,a-4-tetrafluoro-3-toluidine
2,6~pyridinedicarboxylic acid
4-amino-2-nitrophenol

Chemicals More Toxic to Tetrahymena

4~fluwroaniline
aniline
4-bramaniline
4~chloroaniline

4~-nitrophenol

1.50
1.58
1.66
1.69
1.71
1.72
1.80
1.81
1.86
1.88
1.92
1.94
1.94
2.22
241
2.57
2.71
2.97
3.00
3.36
393

4.22
5.61
9.38
12.31
19.07

* refer to Table 3.17 for full explanation
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Table 3.24 Chi-Squared Analysis on the Outliers fram the Fathead Minnow and

Tetrahymena pyriformis Relationship by the Structural Features of the Chemicals

More toxic

to fathead minnow

Overall relationship

63

29
26.5

16
19

15
14.5

16
15

Nom—outlier More toxic
to T. pyriformis

1
1.5

Chi-squared

value

3.95

1.64

4.81

1.19

0.41

Table 3.25 Chi-Squared Analysis on the Outliers from the Toxicity-Clogp

6
halogenated carmpounds
Observed 4
Expected 2
alcohols
Cbserved 1
Expected 2.5
amines
Observed 2
Expected 1.5
nitrogen ring campounds
Observed 2
Expected 1.5
nitro campounds
Cbserved 1
Expected 1.5

tionshi
More toxic to
fathead minmow

Fathead minnow- O: 4
ClogP Qutliers E: 1.9
Tetrahymena- O 0
Clogp Qutliers E: 2.1
Total 4
Chi~-squared 2.234

2.074

outliers

8
8.2

9
8.8

17

0.004
0.004
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3.3.4.1. Inter-Species Relationship Between Daphnia magna and Microtox

Overall 52 corresponding toxicity data were obtained for the D. magna and
Microtox tests, These gave the following relationship (see Fig 3.12):
1og(1/IC50)m = (.782(0.085) 1°g(l/EI:SO)M + 0,295 (3.88)
re52 5=0.891 r2adj=0.619 F=83.8

When the data were analysed according to the structural features they contain,

same extremely good relationships were observed:

esters:

109(1/ICsp)py = 1.53(0.073) log(1/ECs)y + 1.05 (3.89)
=4 5=0.252 r2adj=0.993 F=434.8

nitro compounds:

103(1/LCsp)pM = 1.43(0.383) log(l/ECsg)y - 0.386 (3.90)
=4 s=0.247 r2adj=0.812 F=14.0

alkenes:

10g(1/iCsgdpy = 1.71(0.37) 1log(1/ECsq)y - 0.492 (3.91)
n=6 $=0.892 r%adj=0.798 F=20.7

Other weaker relationships are fourd:

alcohols:
109(1/ICsp)pm = 0.801(0.096) log(l/ECgg)y + 0.405 (3.92)
n=21 $=0.649 r2adj=0.773 F=69.2

aliphatic campourds:

log(1/ICsglpm = 0.705(0.13) log(l/ECgg)y + 0.200 (3.93)
=22 $=0.942 r2adj=0.577 F=29.7

aramatic ocompounds:

log(1/ICsp)py = 0.832(0.17) log(l/ECsg)y + 0.286 (3.94)
=30 S0.872  rZa3=0.438 P=23.6

halogenated campounds:

log(1/1CsplpM = 0.609(0.15) log(l/BCgqn)y + 0.595 (3.95)
=24 5=0.959 radj=0.399 F=16.3
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amines:
109(1/ICsp)py = 0.620(1.04) log(l/ECsg)y + 0854 (3.96)
=4 s=1.347 r2adj=0.000 F=0.36

3.3.4.2. Analysis of the Outliers fraom the Inter-Species Relationship

Of the 52 data in the overall relationship, 20 (38%) were found to be significant
outliers. The outliers fram the inter-species relationships are listed in Table
3.26.

3.3.4.3. Chi-Sguared Analysis on Structural Features

The summary of the chi~squared analysis on the structural features present in the
molecules is shown in Table 3.27. It shows that there are only four groups with
enough data to enable the analysis to be performed; none of these chemical groups

appears significantly to affect the toxicity of the chemicals to either of the

species.
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Table 3.26 Classification of Campounds in the Daphnia magna and Microtox
Relationship

Chemical Ratio Calc/Obs Mode

Chemicals More Toxic to Daphnia magna

permethrin 0.0016
malathion 0.0065
aniline 0.012 3
2-chloroethanol 0.014
2,3,4,6~tetrachlorophenol 011 2
2-chlorophenol 0.13
2,4-pentanedione 0.15
acrolein 0.16 4
2,4-dichloroaniline 0.19 3
chloroform 0.24
Non—outliers

2,2,2-trichloroethanol 0.28
sal icyladehyde 0.45
2,4-dinitrophenol 0.47
4,6-dinitro-2-cresol 0.50
1,2-dichlorobenzene 0.51
4~chlorophenol 0.53
2—cresol 0.55
pentachlorophenol 0.59
trichloroethylene 0.65
phenol 0.80
2,4,6~trichlorophenol 0.86
biphenyl 0.90
2,4-dichlorophenol 0.93
ethyl acetate 1.18
ethylpropioate 1.19
tetrachloroethylene 1.27
nitrobenzene 1.37
2,4,5-trichlorophenol 1.47
pyridine 1.72
dibenzothiophene 1.83
diethanolamine 1.87
4-nitrophenol 2.00
toluene 2.16
2-methy1-2,4-pentanediol 2.34
1,2,3,5~-tetrachlorobenzene 2.35
1,4-dichlorobenzene 2.38
propanol 2.42
2-methylpropanol 2.60
chlorobenzene 2.75
1,2-dichloroethane 3.06
allyl amine 3.12
1,3-dichlorobenzene 3.46

More toxic to Microtox

styrene 4.36
acetone 5.28
heptanol 5.58
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naphthalene

hexachl oroethane
1,1,1-trichloroethane
2-(2-ethoxyethoxy) ethanol
1,2,4-trichlorobenzene
pentachloroethane
benzene

9.12

9.35

9.38
11.01
16.33
48.89 4
61.09

L -

* refer to Table 3.17 for full explanation

Table 3.27 Chi-Squared Analysis on the Qutliers fram the Daphnia magna and

Microtox Relationship by Structural Features of the Chemicals

More toxic
to fathead minnow

Overall relationship

10
Aranatic campounds
Qbserved 5
Expected 6
Halogenated campourds
Cbserved 6
Expected 4.5
Aloohols
Cbserved 3
Expected 4
Alkenes
Cbserved 2
Expected 1

Non—outlier More toxic

to Microtox

32 10
21 4
18 6
13 5
15 4.5
16 2
13 4

3 1

4 1
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3.3.5.1. Inter-Species Relationship Between Daphnia magna and

Tetrahymena pyriformis
17 data were found for the corresponding toxicities, and these gave only a weak

relationship (see Fig 3.13):

1og(1/ICsq)py = 0.577(0.17) 10g(1/IGsp)rp + 1.03 (3.97)
=17 s=0.699 r2adj=0.381 F=10.8

When the data were analysed according to the structural features they contain,

the following correlations were fourd:

halogenated campounds

1og(1/ICsp)pm = 0.441(0.19) log(l/IGsg)rp + 1-2 (3.98)
n=6 5=0.381 r2adj=0.462 F=5.3

aloohols:

10g(1/ICs0)py = 0.361(0.16) 10og(1/IGgplpp + 1-25 (3.99)
n=ll s=0.477 r2adj=0.275 F=4.8

nitro compounds:

10g(1/IC5o)py = 0.464(0.40) 10g(1/IGgplpp *+ 0.733 (3.100)
=4 520,537 r2adj=0.112 F=1.38

3.3.5.2. Analysis of the Outliers fram the Relationship

Of the data in the overall inter-species relationship, five (29%) are significant
outliers, and these are listed in Table 3.28. With such a small number it would
presunptuous to draw £imm conclusions fram the data concerning mode of action and

which structural features may be of importance.,
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Table 3.28 Classification of Campounds in the Daphnia magna and Tetrahymena

pyrifomis Relationship

Chemical Ratio Calc/Obs Mode
Chemicals More Toxic to Daphnia magna

3-methylaniline 0.061
aniline 0.10
2,4-dimethylphenol 0.18 5
Non-outliers

2-chlorophenol 0.32
pentachlorophenol 0.42
2,4-dichlorophenol 0.68
4-chlorophenol 0.71
acridine 0.88
phenol 0.98
2,4-dinitrophenol 1.02
4,6~dinitro-2-cresol 1.83
2,4,6~trichlorophencl 2.12
nitrobenzene 2.16
quinoline 2,33
2,4,5-trichlorophenol 2.39

Chemicals More Toxic to Tetrahymena

4-nitrophenol 11.23 3
pyridine 30.14

* refer to Table 3.17 for full explanation
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3.3.6.2. Inter-Species Relationship Between Microtox and Tetrahymena pyriformis

A total of 54 corresponding toxicity data were obtained giving the following
relationship (see Fig 3.14):

log(1/ECsg)y = 0.610(0.12) log(l/IGsg)pp + 1.07 (3.101)
n=54 5=0.746 r2adj=0.317 F=25.5

Bquation 3.101 was moderately improved by separating the ccmpounds into chemical

classes:

halogenated campourds:

log(1/BCsp)y = 0.710(0.15) log(l/IGsplp + 0.817 (3.102)
=23 $=0.518 r2adj=0.479 P=21.2

alcohols:

1og(1/BCsq)y = 0.454(0.13) 109(1/IGsglp + 1.28 (3.103)
=36 5=0.674 r2adj=0.244 F=12.3

amines:

10g(1/BCsg)y = 0.637(0.36) 10g(l/IGsplpp + 0.931 (3.104)
n=14 5=0.852 r2adj=0.140 F=3.1

nitro compounds:

log(1/BCsg)y = 0.524(0.37) 10g(1/IGsglrp + 0.752 (3.105)
r=8 5=0.602 r2adj=0.125 F=2.0

3.3.6.2. Analysis of the Outliers

Of the 54 data in the overall inter-species relationship, 17 (31%) were found to
be significant outliers, and these are listed in Table 3.29. |

There are enough data to analyse only three of the structural features (Table
3.30). None of these shows a significant deviation fram the expected results.
However, the higher chi-squared value for campourds containing halogens indicates
that these campounds may be less likely to be outliers,
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Table 3.29 Classification of the Campounds in the Microtox and Tetrahymena

pyriformis Relationship

Chemical Ratio Calc/Obs Mode

Chemicals More Toxic to Microtox

hydroquinone 0.0064
4-ethylaniline 0.020 3
4-tert-butylphenol 0.060 5
4-benzylphenol 0.088
aaa—-trifluoro-4—cresol 0.10

4~cyanophenol 0.14

4-hydroxybenzoic acid 0.16
1,4-dinitrobenzene 0.16 3
4-methylphenol 0.20 5
3,4-dichloroaniline 0.22 3
Non—outliers

4-methoxyphenol 0.28
4-hydroxyacetophenone 0.34

4-phenylpyridine 0.37
pentachlorophenol 0.40
4-phenylazophenol 0.47
4-hydroxypropiophenone 0.59
2,3,4-trichloroaniline 0.59
4~chloro-3,5-dimethylphenol 0.65
2,4~dichlorophenol 0.66

2-phenylphenol 0.66
2,3,5,6-tetrachloroaniline 0.68
2,3,4,5-tetrachlorophenol 0.77
4-hydroxybenzaldehyde 0.84

4~phenoxyphenol 0.88
2,3,4,5-tetrachloroaniline 0.90
2,4,6-tribramophenol 0.91
4-phenylazoaniline 1.09
2-nitrobenzaldehyde L15

2-chloroaniline 1.22

1-naphthol 1.33
2,4,5-trichlorophenol 1.35

4-phenylaniline 1.35

2-allylphenol 1.42

4~chlorophenol 1.66

3-chloroaniline 1.74
2,3-dichlorophenol 1.84

phenol 1.98

4-chloroaniline 2.03
4-hydroxybenzophenone 2.15
3,5-dichlorophenol 2.36

nitrobenzene 2.46
2,4-dinitrophenol 2.62
2,4,6~trichlorophenol 2.82
2,5-dichlorophenol 2.94
2,3,5,6-tetrachlorophenol 3.19
3~chloronitrobenzene 3.70

2—chlorophenol 3.79
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Chemicals More Toxic to Tetrahymena

4,6~dinitro-2-cresol 4,31
4-nitrophernol 8.13 3
4~amino—-2-nitrophenol 9.48 3
4-fluwroaniline 10.95 3
resorcinol 13.29
aniline 19.82 3
pyridine 74.16

* refer to Table 3.17 for full explanation

Table 3.30 Chi-Squared Analysis on the Outliers fram the Microtox and

Tetrahymena pyriformis Relationship by the Structural Features of the Chemicals

More toxic Non—outlier More toxic Chi-squared
to Microtox to T. pyriformis value
oOverall relationship
10 37 7

Halogenated campounds

CObserved 1 19 1

Aloohols

Observed 7 25 4

W 7 24 . 5 4. 5 0 - 06
Amines

Cbserved 2 9 3

Expected 2.5 9.5 2 0.63
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3.3.7. Results of the Investigation for the Most 'Representative' Test Species

The results in Table 3.31 indicate that the Tetrahymena assay has the lowest
average positive residual when predicitng the toxicity of the other species (as
described in section 2.4.6), of the four toxicity tests.

Table 3.31 The Sum of the Positive Residuals for the Regression BEquations

Involving the Aguatic Toxicity of the Following Species, the Number of Data

points, and the Average Positive Residual per Data Point

Species used to predict toxicity
Fathead Microtox Daphnia Tetrahymena

Minnow Tagna pyriformis

Minnow 126 46 74
Microtox 44.78 - 17.38 14.58

126 52 54
Egm_njg 11.74 16.57 - 4.21
magna 46 52 17
Tetrahymena 11.08 15.00 518 -
mlformls 74 54 17
TOTALS 67.60 69.34 34.07 31.43

246 232 115 145
AVERAGE 0.275 0.299 0.296 0.217

The first nutber is the sum of the positive residuals in each relationship, and
the second (lower) number is the number of data points,
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4. DISCUSSION

4.1.1. Evaluation of Experimentally Determined Microtox Data

After relatively little experience, producing toxicity data using the Microtox
analyser was found to be a rapid and simple task. The Microtox system was
sensitive to a range of toxicity values fram 21100 mg/1 (for acetone) to 0.62
mg/1 (for diethyl sebacate). The data were also reproducible when different stock
solutions and samples of bacteria were applied. The only modification of the
method needed was the application of methanol to aid the dissolution of less
soluble organic chemicals.

The 5 minute toxicity data are used throughout this study, although 15 minute
data were also measured. 5 and 15 minute ECgns fram this study were found to be
very well correlated. The relationship is shown in Fig 4.1 and expressed as:

5 min 103(l/BCgp)y = 1.00(0.016) 15 min 1og(l/ECg)y - 0.018 (4.1)
=48 $=0.140 r? (aj)=0.988 F=3792

The choice of 5 minute ECSO as the biological response in the QSAR (and
interspecies) studies was simply because many more published data were available
for this endpoint. There are, however, various advantages and disadvantages in
using longer test times (eg. 15 or 30 minutes) to find the BCgy. Same chemicals
need a longer test time to interact with the target organism (Ribo and Kaiser,
1987), so a short test time may lead to misleading results. As well a lengthening
of the test time may enable other toxic effects to take place, such as metabolism
of the chemical into a more reactive form. One study at least, though (Beckman
Inc, 1981), suggests that the toxic effect will have occured after 5 minutes for
most organic chemicals, and greater toxicity at longer test times is important
only for inorganic chemicals (eg. metal complexes, camonly found in sludge
samples, but not relevant in this study). Also the high correlation between the
toxicities at the two test times in this study indicates that the toxic action
has taken place after 5 minutes. A further disadvantage with longer exposure
times is the decay in quality, and thus, light output of the bacteria, which may

fewer 'runs' can be taken from one sample, thus possibly increasing the cost
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of the tests.

4.1.2. Camparison of Toxicity Data Cbtained in this Study with Published Data

Of the 48 chemicals tested, published Microtox data were found for seven. These
are sumarised in Table 4.1. An extremely good agreement between the published
toxicities of acetone and the four substituted benzenes and those obtained in
this work can be seen. The toxicity of toluene obtained here is slightly higher
than the published values (the value of -2.56 is very unusual, and should be
ignored). The largest difference in toxicities is for butanal. The cause of this
is open to conjecture, but it should be noted that the value obtained here was
the mean of four replicates (standard error 0.045), whereas Curtis et al (1982)
took only one measurement. In addition the value obtained in this study was well
fitted in the relationship with ClogP (egn 4.3), as would be expected, the value

of Curtis et al, however, gave only a poor fit.

Table 4.1 Camparison of Microtox Data Obtained in this work with Published

Data
Chemical log (1/ECsq) " Published Reference
fram this work BCgq
-2.58 Surowitz et al, 1987
=2.57 Curtis et al, 1982
=2.50 McFeters et al, 1985
-2.57 Hermens et al, 1985
Toluene 0.61 0.27 Charg et al, 1981
0.33 Surowitz et al, 1987
-2.56 McFeters et al, 1985
0.28 Samak & Noiseux, 1981
1,2,4-trichlorobenzene 2.04 1.89 Ribo & Kaiser, 1983
2-chloronitrabenzene 1.58 , 1.59 Kaiser & Ribo, 1985
3~-chloronitrobenzene 117 1.02 Kaiser & Ribo, 1985
4-chloronitrobenzene 0.84 0.88 Kaiser & Ribo, 1985
Butanal =0.57 0.64 Curtis et al, 1982
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4.2.1.1. Cluster Analysis on Variables

Cluster analysis has sucoeeded in reducing a highly correlated, ill-structured
data set of 49 variables into a more ordered form, containing only 14 variables
for the Microtox toxicities, and 10 variables for the fathead minnow. The
reduction in collinearity is shown in the correlation matrix for the Microtox
decorrelated data in Table 4.2. The highest correlation coefficient is now 0.861
(between the Kappa values), as opposed to 0.99 before data reduction (the data
matrix of all variables is not shown due to its size).

The level of 90% used to produce the clusters was arrived at in an arbitrary
manner. In this case it seems to have been successful, producing clusters
expressing significantly different features of the molecule. Also the resulting
number of variables fully satisfies the criterion that for stepwise regression
analysis there should be rno more variables than half the number of cases (Wold
and D, 1983). Whether the 908 level should be maintained in future studies is,
however, debatable, Livingstone and Rahr (1989) describe an automated system
(OOROP) that will allow a maximum correlation coefficient of only 0.7 between
variables. Without question, though, in this study the method has succeeded in
removing a large amount of redundant information.

There are considerable problems in obtaining the best 'representative' variable
for each cluster. In this study the choice was made on experience, biased by such -
factors as ease of calculaf.ion, understanding, and which variable was most likely
to describe the effect (e.g. size, electronic effect) of the cluster most
aoccurately. For instance, first order valence corrected path molecular
oconnectivity was chosen to represent the large steric cluster, because of its
general applicability as a steric parameter. It also models the toxicity of
alocohols to the fathead minnow very successfully (see section 3.2.2.14). Table
4.3 shows the relative success of using the other parameters from the steric
cluster in the prediction (by regression analysis) of the toxicity of alcohols.
The chosen variable is shown to be the most highly correlated to toxicity

(r2(aij)=0-325)r thus justifying the selection procedure. However, the majority
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Table 4.3 Sumary of Statistics for the Relationship of Alcohol Toxicity to

the Fathead Minnow, for all the Variables of the Largest Steric Cluster

variable  Intercept Slope s F r? (adj)
Mt -3.26 0.0258 0.922 36.6 0.652
PsO -3.64 0.599 0.887 41.6 0.681
Psl =3.13 0.845 0.842 47.4 0.710
PS2 -2.30 0.841 1..215 134 0.395
PS3 -2.16 1.46 0,927 36.0 0.648
PVO -3.59 0.650 0.730 69.1 0.782
PVl -3.06 0.933 0.653 90.7 0.825
PV2 -2.48 1.08 0.995 28.8 0.594
PV3 -1.94 1.53 0.860 44.7 0.697
Ka0 -2.25 0.330 0.835 48.6 0.715
Kl -3.30 0.440 0.808 53.0 0.732
K2 -2.20 0.394 0.750 64.4 0.769
K3 -2.23 0.368 0.861 4.6 0.697
Kal -3.45 0.461 0.734 68.0 0.780
Ka2 -2.30 0.411 0.677 83.2 0.812
Ka3 -2,28 0.374 0.837 48.2 0.713
P(S+V)0 -3.67 0.317 0.794 55.6 0.742
P(S+V)1 -3.15 0.452 0.731 68.8 0.781
P(StV)2 -2.50 0.501 1.09 21.3 0.516
P(S+V)3 -2.19 0.808 0.810 52.7 0.731
OR -3.34 0.982 0.741 66.5 0.775
ASA -3.21 0.0114 0.793 55.8 0.743
wwvol -3.39 0.0279 0.764 61.4 0.761
AltMA -3.39 0.0205 0.764 61.4 0.761
Collpia -9.16 1.52 0.770 60.3 0.757
ClosApp -4.05 0.836 0.885 41.2 0.679
Area =3.75 0.0248 0.741 66.4 0.775
Volume -3.55 0.0348 0.721 71.3 0.787
Enerqy -3.00 -0.000053 1.082 21.6 0.520
MEnergy -4.06 -0.000119 0.841 47.6 0.710
Polariz -2.90 0.0787 0.897 39.6 0.670
Mpolariz -2.67 0.0584 0.966 31.7 0.618

The abbreviations for the variables are taken fram Table 2.5. There are 20

observations for each relationship (i.e. n=20)
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of the coefficients of determination lie between 0.6 and 0.8, and the overall
range is fram 0.825 to 0.395 (for second order path molcular connectivity).
Clearly, therefore, the choice of best representative variable within a cluster
is crucial. It is also reasonable to suggest that the other QSARs obtained might
have been improved with the inclusion of different parameters into the original
stepwise regression analysis. Livingstone and Rahr (1989) recognise the
possibility of removing the 'wrong' parameter by cluster methods, but conclude
that it is an acceptable risk with a large number of starting variables. Another
check would be to record the correlation of the variables with biological
activity at each stage.

4.2.1.2. Description of Clusters

ne of the outstanding features of the analysis is the size of the first steric
cluster containing the majority of the molecular connectivities. Their high
collinearity is to be expected since they are all calculated in a similar
fashion. This does mean, of course, that caution should be observed if more than
one molecular comnectivity term is accepted into a multiple regression ecaution,
or if established QSARs employing molecular connectivities are to be utilised. It
is also interesting to note that molecular connectivities are highly correlated
with both molecular area and volume terms calculated fram molecular modelling.
whole molecule polarisability is also included in the steric cluster, thus this
measure of polarisability can be assumed to model a steric, and not electronic,
effect.

The remaining clusters formed are much smaller and describe other camponents of
molecular structure. Initially considering the variables associated with the
fathead minnow data, the second largest cluster camprises the differences between
simple and valence path molecular connectivities. The connectivities maybe
related to electronic effects, or merely a separate steric feature (a fuller
discussion of this group of parameters is ‘given in section 4.2.4.1). Other
molecular connectivities found to cluster apart fram the purely bulk parameters
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are the third order cluster values. These are thought to describe the 'branching'
of the non-hydrogen skeleton of the molecule. There are five clusters containing
calculated electronic parameters. The dipole moments of the molecule, calculated
from the MNDO and ONDO methods have clustered closely together. However, the MOMO
and IUMO energies fram the different methods (representing the electron donating
and accepting capabilities of the molecule) are clustered apart. This maybe due
to the differences in the accuracies of both methods - MNDO calculations are
presumed to be more accurate. The remaining cluster contains Clogp, the
descriptor of the hydrophobic element of the molecule,

Cluster analysis of the variables associated with the Microtox data gave a very
similar pattern in the grouping of the descriptors. There are however three extra
clusters formed, containing a total of five variables, (These variables were
found in the large steric cluster in the cluster analysis of the variables
associated with the fathead minnow data,) Four Kappa indices have clustered apart
fram the main steric cluster. This is probably a consequence of their describing
more distinct elements of the shape, or symmetry of the molecule, as opposed to
being pure bulk terms, The other descriptor clustered apart is the closest
approach which may be quantifying features of a molecule's surface area, or
overlap, that are less related to its bulk. The exact reasons for the differences
in the results of the cluster analyses between the two data sets are, however,
difficult to ascertain, but will be as a result of the intrinsic chemical

variability between the chemical structures present in each data set.
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4.,2.2. Analysis of QSAR Techniques

4.2.2.1. Prediction of Microtox Toxicity

The whole set of campounds is moderately modelled by hydrophobicity alone
(t?(adj)=0.581; egn 3.1). This relationship is slightly improved by the addition
of two more significant parameters, namely QNDO calculated HOMO energy and second
order Kappa value. Because of the low correlation and the decrease in stability
as additional parameters are included (expressed as a fall in the F-statistic) of
equations 3.1-3.3, caution should be employed if they are to be used for
predictive purposes.

More encouraging relationships are encountered for individual classes. Good
correlations are observed for the esters and the aloohols, equations 3.7 and 3.16
both being based on hydrophobicity and a steric term. The praminence of the
hydrophobic descriptor is to be expected as both classes are thought to act as
simple narcotic agents, and as such their toxicity should be well modelled by
hydrophobicity (Konemann, 1981). Also work such as that of Leegwater (1989) (see
Appendix 2) and Protic and Sabljic (1989) has proven the utility of steric temms,
such as molecular connectivities, to model narcotic toxicity.

The equations for the toxicities of each of the chemical classes with ClogP alone
are shown in Table 4.4 in order to show the relative toxic effect compared with
hydrophobicity. Campounds acting by a purely narcotic mechanism should have a
similar intercept (approximately minus two) and slope (approximately one) to that
reported by Hermens et al (1985) for 22 organic chemicals (including alcohols,
chlorinated alkanes, and chlorobenzene derivatives) thought to be acting as
simple narcotics in the Microtox test:

log(1/BCsqly = 0.995 log P - 2.4 (4.2)
n=22 s=0.53 r=0.952 F not given

N.B. This equation was obtained using toxicity data taken after 15 minutes. Such
data have been found to be easily camparable with 5 minute data (see section

4.1).
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Table 4.4 Summary of the Statistics of the Relationships of Microtox and Fathead

Minnow Toxicity with ClogP for each Chemical Class Considered

i) Microtox Toxicities

Class Intercept Slope n s F r<(adj)
Ketone -1.02 0.738 13 0.999 9] 0.403
Ester -1.96 1.113 11 0.470 106 0913 *
Nitrile -0.935 0.894 7 1.103 8.2 0.545
Aldehyde 0.733 0.079 8 0.904 0.1 0.000
Anine 0.508 0.152 8 0.398 2.8 0.208 *
Benzene subs  0.244 0.409 10 0.488 2.6 0.150
Aloohol =2.05 1.14 14 0.766 30.7 0.6%6
ii) Fathead Minnow Toxicities

Ketone -1.20 0.682 13 0.632 19.4 0.606
Ester -0.012 0.555 16 0.518 31.8 0.672 *
Nitrile 0.133 0.410 8 1.513 2.3 0.153
Aldehyde 174 -0.088 8 1112 0.1 0.000
Amine -0.560 0.545 8 0.361 44.1 0.860 *
Alcohol -1.44 0.789 20 0.735 67.8 0.779

* Indicates that the relationship with ClogP was the most significant one-
variable equation obtained

It is obvious that the relationships with ClogP for the esters and alcohols
reveal equations very similar to egn 4.2, and thus these campounds can be
oonsidered to act by a similar mechanism. Figure 4.2 shows all the campounds in
the data set plotted against ClogP, the fitted regression line of egn 4.2 giving
a good approximation of baseline toxicity, modelling well the toxicity of the
alcohols and esters. Fig 4.2 also suggests that the majority of the chemicals in
the other classes are acting by mechanisms other than simple narcosis, as they
occur above the fitted line of egn 4.2.

Ketones, which are thought to be narootics, are also moderately well related to a
steric term The relationship with hydrophobicity (see Table 4.4) gives only a
poor correlation however, and the intercept is one log unit above that expected
for a narootic relationship. Surprisingly, due to it's seemingly unreactive
nature, the most significant outlier is 3,3-dimethyl-2-butanone, and it can
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therefore be concluded that same of the ketones considered in this study act by a
more specific mechanism, at least in the Microtox test.

A moderately good correlation was found for the toxicity of the nitriles (egn
3.9). Again a steric parameter was found to be the best descriptor
(r2(adj)=0.749), the relationship with ClogP (see Table 4.4) being only poor. As
would be expected for reactive campounds such as the nitriles (nitriles are
known, for instance, to metabolise to cyanide (Tanii and Hashimoto, 1984)), the
poor relationship with hydrophopbicity suggests that other toxicity mechanisms
are also operating.

The amines and the aldehydes are very poorly modelled; indeed the F-statistic in
neither egn 3.10 nor egn 3.12 is significant at the 95% level (Pearson and
Hartley, 1972). It is difficult to draw conclusions about the mode of action of
the amines fram the relationship with hydrophobicity. It is likely, for instance,
that aliphatic amines will act as simple non-polar narcotics, whereas anilines
may act by polar narcosis.

when the toxicity- log P relationship is studied for the aldehydes, one obvious
outlier becames apparent, namely acrolein. This is known to have substantially
increased toxic effects because of its virtually unique property to act a Michael
acceptor (Lipnick et al, 1987). When acrolein is removed fram the data set a much
improved relationship is seen with ClogP:

log(1/BCsg)y = 0.725(0.13) ClogP - 0.831 (4.3)
n=7 §=0.287 r2 (adj)=0.826 F=29.5

This is consistent with the finding of Deneer et al (1988) that although
aldehydes may act by a mechanism other than narcosis (reacting with nucleophilic
entities by addition reactions), there is still a strong correlation of their
toxicity with hydrophobicity. The fact that the aldehydes are not acting by
narcosis is confirmed by the intercept of the regression line in eqn 4.3 being
oonsiderably above that of egn 4.2

NB. Bguations 3.11 for the aldehydes and 3.13 for the amines must be discarded

for predictive purposes as they contravene the Topliss and Costello rule (1972).
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This states that more than 1 variable to each 5 abservations in a regression
equation will create a significant risk of chance correlation, thus equations
with less than about 10 cbservations can strictly justify only one descriptor.
The last chemical class considered, the substituted benzenes, is very poorly
modelled. The relationship with ClogP is not significant, and this may be a
result of the substituted benzenes being a very heterogeneous group of campourds
(including, for instance, chloro, and nitro substituents, as well as toluene). As
such many different toxicity mechanisms will occur within the class. The
chlorobenzenes for instance, may act purely by narcosis, in contrast to the
nitro-substituted aramatics which may be metabolised to more reactive
intermediates. Different toxicity mechanisms will always give rise to problems in
the modelling of the data by QSAR mechanisms, and a poor relationship with
hydrophobicity.

4.2.2.2. Prediction of Fathead Minnow Toxicity

For all the classes of chemicals considered together (egns 3.18-3.23) there is
only a moderate relationship, mostly influenced by ClogP, and not suitable for
predictive purposes. Of interest, though, is the fact that best subsets
regression analysis has obtained the best equations containing 3 or 4 variables.,
There is an increase in the variance explained of 0.3% and 1.0% respectively, a
decrease in the standard error and a slight inCrease in the F-statistic for egns
3.22 and 3.23 fram best subsets regression analysis. The statistical gains may
therefore be considered negligible in this example, but it does perhaps suggest
that best subsets regression analysis should be used instead of stepwise
regression whenever possible. Experience with this technique has shown a
disadvantage of best subsets regression to be an increase in the amount of
camputer time needed to achieve a result.

Within individual chemical classes, good relationships were obtained for the
ketones (although egn 3.26 must be discarded according to the Topliss and
Oostello rule), amines and aloohols. Again the utility of the molecular
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connectivities as QBAR parameters is demonstrated, with good correlations with
ketone and alcohol toxicities, Table 4.4 reports the relationships of the
toxicities of each of the chemical classes with ClogP alone. The alcohols (and to
same extent the ketones) are the only classes apparently acting solely by
narcosis, having an intercept of approximately -1.5, and a slope of approximately
0.8 in the relationship with ClogP., This is similar to that reported by Cronin
and Dearden (1990) for the toxicity to the fathead minnow of 21 chlorinated
aliphatic and aramatic campounds thought to act as simple narcotics:

1og(1/1c50) ™= 0.829 ClogP - 1.48 (4.4)
n=21 50.207 r2(adj)=0.944 F not given

Fig 4.3 shows the toxicities of all the chemical classes plotted against ClogP.
The fitted regression line for egn 4.4 is a good model of baseline narcosis and a
good model of alcohol toxicity; exceptions to this are 2,3-dibramopropanol and 2-
chloroethanol. The reasons for these to appear as outliers are unclear, Purdy
(1987) reports that alcohols can be enzymatically oxidised to aldehydes, but
there is no explanation for oxidation not to occur for all alcohols, or why it
has occurred only for the two mentioned (especially when other chlorinated
aloohols are dbserved to act by a purely narcotic mechanism).

The good relationship between amine toxicity and ClogP (egn 3.32) indicates that
these chemicals are not acting by narcosis, but may well be acting by polar
narcosis. Byuation 3.32, for instance, resembles the relationship (egqn 4.5)
established by Veith and Broderius (1987) for polar narcosis in the fathead

minnow (i.e. a decrease in the slope, and in increase in intercept as campared to

egn 4.4):
log(]/LCSO) m= 0.65(0.07) log P - 0.71 (4.5)
=39 s not given rz(adj)=0.90 F not given

The esters are reasonably well modelled by a two parameter equation (egn 3.22),
and the poor relationship with hydrophobicity (eqn 3.27) indicates that more
specific toxicity mechanisms may be operating. Veith et al (1985) also found

esters to be more toxic than predicted by narcosis in the fathead minrow,
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suggesting that the more polar esters may act as polar narcotics. ,
The QGARs for the nitriles and aldehydes were very poor, particularly with
respect to ClogP. When the aldehydes were re-analysed with acrolein removed, only
a small improvement was found:

1og(1/IC5p)py = 0-658(0.25) Clogp - 0.0694 (4.6)
=7 $=0.535 r2 (adj)=0.499 F=7.0

This does not campare well with the relationship with hydrophobicity found for
Microtox and may be a result of the longer test time in the fish assay (96 hours
as campared with 5 minutes) allowing more specific toxic reactions to occur. As a
consequence of this camplex mode of toxic action, the toxicity of these campounds
in the fathead minnow may be more difficult to predict. The greater relative
effects of more reactive campounds are also found in the inter-species
relationship between fathead minnow and Microtox (see section 4.3.1.1), where
increased toxicity is observed especially with the fathead minnow. This
phencmenon seems more likely to occur with reactive chemical classes, such as the
aldehydes and nitriles, than those acting by non-polar, or polar, narcosis.
4.2.2.3. Conparison of QSARs for Microtox and Fathead Minnow

Hydrophobicity is the most important chemical descriptor when all the chemical
classes are considered together for both species. There was a better correlation
with the Microtox, than with the fathead minnow toxicity data. In both cases the
ClogP equations were also improved by the inclusion of calculated electronic
parameters. The end results were still, however, disappointing for the two
species, indicating that the campounds in both data sets were not acting by a
narootic mechanism alone. Indeed both egns 3.1 and 3.18 are significantly
different fram the baseline toxicity equations (egns 4.2 and 4.4) for each
species respectively.

The results show it is definitely more profitable to study a hamogenous data set
as opposed to a chemically heterogeneous ane. However, it was only for the
alcohols that good correlations were adbtained for both species. Generally, good
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relationships are observed for chemical classes that are believed to be
unreactive and thus to act by a simple narcotic mechanism; these were well
modelled by hydrophobicity (eg. egn 3.6), or by steric parameters (eg. egns
3.16 and 3.32). Same classes expected to act as simple narcotics were, however,
modelled only poorly in one or both of the species, Both for the ketones and
amines oconsidered in the data, good correlations were found for the fathead
minnow, yet not for the Microtox toxicities. Of these, it was postulated that the
amines were acting by polar narcosis (Schultz et al, 1990b), a better
relationship ooccurring with the fathead minnow data because the longer test time
has allowed the full toxic effect to occur more campletely (i.e. a state state
has not been achieved in the Microtox test). '

More reactive campounds such as the aldehydes and the nitriles were less well
modelled by any of the parameters used in this work, even though several
parameters could be considered to model reactivity.

Bn cbvious feature of the QSARs is the importance of hydrophobicity (Clogp) and
steric terms (predaminantly first order valence-corrected molecular
connectivity). The good fit of hydrophobicity to much of the toxicity data
confimms the supposition (see section 1.6.7) that the major factor in determining
a campounds toxicity is its transport to the active site. Thus for campounds with
a similar mode of toxic action, it is their partitioning behaviour (which governs
transport) which is the 'rate limiting step' of toxicity. Molecular
oconnectivities model the toxicity data well in several cases, however since they
do not parameterise hydrophobicity, they cannot strictly be related to a
molecule's transport, but same other steric effect that is important in toxicity.
The calculated electronic terms are found in the equations for the more reactive
chemical classes. This suggests that they are modelling same attribute of the
chemical reactivity eg. these electronic effects may be important in the
metabolism of the chemicals.

In this study the modelling of the toxicity of the aldehydes is an example of the

problems that can be associated with regression analysis for predictive purposes.
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Initially no satisfactory relationship was observed, but the removal of one
obvious outlier, not identified by stepwise regression analysis (except as an
unusual observation with a large residual), gave a remarkable improvement in the
result. This shows the value of a graphical, or other visual, representation of
the results.

NB. Unfortunately there were too few data to perform a camparative QSAR study on

the Daphnia magna (twelve values) and Tetrahymena pyriformis (three values)

toxicities.
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4.2.3.1. Principal Component Analysis

Principal camponent analysis has successfully reduced the data set of 49 highiy
collinear variables, into five significant new variables. These principal
carponents are fully orthogonal and account for most (92.7% for the Microtox data
and 93.7% for the fathead minnow) of the total variance of the original data.
Thus the bulk of the information content of the multi-dimensional data space has
been explained by the five principal camponents.

Predictably, the structure of the results of the principal component analysis is
similar for both the fathead minnow and Microtox data sets. The principal
camponents are rather ill-defined and it is difficult to establish if any
'‘chamical meaning' can be attached to them. The variables with the highest
loadings are summarised in Tables 3.5 and 3.7. The first principal component
appears to represent size or bulk. All the molecular connectivities (except for
the cluster values) and the QOSMIC steric terms have a very similar loading
(0.160 to 0.178), so the BC cannot be defined more precisely. The second
principal camponent accentuates the difference between HOMO and IUMO (i.e. the
electron donating and accepting capability of the molecule). Not only do the
difference in HOMO and IUMO energies (DiffH-L and MDiffH-1) variables have high
loading, but so do HOMO and LUMO energies themselves, with the loading for LUMO
being positive, and that for HOMO being negative. Also, for the Microtox data
only, there is an emphasis of the second and third order Kappa values which
describe the shape or symmetry of the molecule. Praminent in the third principal
camponent are the cluster and difference in simple and valence molecular
comnectivities, suggesting another steric element, In addition, for the fathead
minnow there are high loadings for MO and HOMO-IUMO difference. The fourth
principal camponent is daminated by cluster molecular connectivities, which
acoount for branching of the non-hydrogen skeleton of the molecule. This PC also
oontains (with lower loadings) dipole maments and HOMOs, The fifth principal
camponent ephasises electronic characteristics, especially the difference

between the dipole moment (with a high negative loading) and HOMO and LUMO
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energies (with high positive loading).

The results show that within the data, same variables, such as cluster molecular
ocomectivities, HOMO, IUMO, and dipole mament have a more significant role to
play in analysing the information content than have other variables. However, the
features that the analysis extracts from the data may not be relevant to a QSAR
study, because they may not describe the pertinent molecular features which are
important in explaining toxicity. This can be considered to be a general drawback
of such 'unsupervised learning' statistical methods. An example is that although
Clogp was found in each of principal components (with the highest relative score
in PC1) there is an absence of a truly hydrophobic principal camponent, which is,
of course, a very important factor in any QSAR study.

4.2.3.2. Principal Camponents in the QSAR Analysis

The results fram the QSAR analysis using the principal camponents are
disappointing. Of the five principal camponents only three are found to be
significantly correlated with the toxicities. For the Microtox study, toxicity in
the final equation (3.40) is positively correlated to the steric component (BCl),
yet negatively correlated to same measure of the branching (PC4) and an
electronic effect (PC2). The fathead minnow toxicity data (egn 3.43) are also
positively correlated to FC1, but again negatively correlated to branching (PC4)
and an electronic effect (PCS). The appearance of negative correlations is
samevhat of a surprise, and perhaps concern in the QSARs validity. It would
perhaps be expected that features such as the branching of the molecular
structure (i.e. basically a steric descriptor) are positively correlated with
toxicity due to its effect on the transport of a molecule, thus an increase in
branching will lead to an increase in toxicity. Qonversely, if steric hindrance
is a factor affecting, for instance, a specific toxicity mechanism, the size or
bulk, of the molecule may became a limiting factor in its toxicity. Fisher et al
(1987), for instance, observed that molecular weight was inversely related to the

nasal absorption of water-soluble campounds in the rat, and it was concluded that

185



whilst partitioning controls the major part of drug permeation across membranes,
the sieving of water-soluble molecules via aqueous shunts or possibly other
mechanisms should not be neglected. This may be one of the shortcamings of using
principal camponents when not only their meaning is very hard to determine, but
also that of the original variables. More proof of the lack of stability in the
QSARs is the reduction in the F-value of the equations when more variables are
added.

4,2.3.3. Significance of the Principal Components

A simple test for the significance of the principal camponents is a scree plot of
the eigenvalues against principal camponent number. Fig 4.4 shows that a plateau
is reached after the fifth principal camponent, confirming that the value of one

for testing the significance of the eigenvalue is applicable,
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4.2.4.1. Factor Analysis

In camon with principal camponent analysis there is close agreement between the
two sets of factors for both data sets, Factor analysis has succeeded in
eliminating ocollinearity by the calculation of 5 new factors that account for
most of the variance (92.7% for the Microtox data, and 93.6% for the fathead
minnow) .

The first factor is a general descriptor of size and bulk. Many parameters are
‘highl ighted (i.. have a high loading), including the classic steric
descriptors such as measures of area and volume, as well as the molecular
oonnectivities. The second factor is also concerned with molecular size, but a
much more specific attribute of the molecule, as described by the difference
between simple and valence corrected molecular connectivities, The exact meaning
of this factor is very difficult to determine. Kier and Hall (1986), for
instance, believe that it is related to electronic effects, however Dearden et al
(1988) found no correlation with electronic parameters, and only a poor
oorrelation with steric parameters. The third factor is a purely electronic
feature of the molecule, emphasising the IUMO energy, or the ability of the
molecule to accept electrons. The fourth factor is dominated by cluster molecular
oonnectivities which are known to encode the branching within the molecule.
Electron donation is represented by the fifth factor which is highly reliant on
the HOMO energy. Also, for the Microtox data, the dipole mament is important.
This may, of course, have an effect on the electron donating properties of a

molecule.
4.2.4.2. Using the Factors in QSAR Analysis

when the soores for the chemicals calculated fram the individual factors weré
considered in the QSAR analysis, only disappointing relationships are obtained.
For both toxicities significant equations were obtained with up to four factors
being used. The Microtox data were most correlated to the first, largely steric,
factor, followed by a positive correlation with the electron acceptance
descriptor factor 3. The addition of the second and fifth factors improved the
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equations slightly, but the overwhelming feature of the addition of more
variables into these equations was a reduction in their stability, indicated by
significant decreases in the F-value, Similarly the fathead minnow toxicities are
most correlated to factors 1 and 3, but in this case there is a negative
correlation between toxicity and factor 3. The reason for this negative
correlation is not apparent. Toxicity is also negatively correlated to branching
(factor 4), which may be due to the effect of size inhibiting transport across a
membrane (see section 4.2.3.2). Yet again there seems to be little overall
stability to these equations,

4.2.4.3. Principal Camponent Analysis vs Factor Analysis

The results fram both analyses are, as expected, closely related. Five
significant principal camponents and factors were obtained, accounting for
approximately 93% of the variance in the original data. Broadly speaking, the
informatian of these new variables describes two steric properties, the
intramolecular branching, and electron acceptance and donation capabilities of
the molecules. Principal camponent analysis gave more significance (i.e. a higher
eigenvalue) to electron acceptance than did factor analysis. Within the structure
of newly calculated variables the factor analysis has the distinct advantage that
through the rotation of the factor axes, considerable clarification of the
chemical meaning of each factor has been achieved. The difficulty in defining the
principal camponents, as well as a simple camparison of the unrotated and rotated
factor loadings confimms, this conclusion. On this subject, Harris (p223, 1975)
reports that because of the intrinsic loss of 'contact' between the original ard
new variables, principal component analysis is greatly preferable to féctor
analysis. However, it must be noted in this study that factor analysis has given
much more ‘discrete’ meanings to the variables, and thus has aided in their
elucidation.

Unfortunately neither set of parameters has performed particularly well in the
QSAR analysis. The equations obtained have poor predictive power (a maximum of
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61% of the variance explained) and lack stability. In both analyses, the steric
camponent of the data has been the best model, in the absence of a hydrophobic
descriptor. However, there are also negative correlations with the intra-

molecular branching that may be modelling the effect of steric hindrance in

membrane permeability.

4.2.5.1. Canonical Correlation Analysis

Canonical correlation analysis has successfully aided in the quantification and
understanding of the relationship between the two sets of variables. By the
production of two new sets of two orthogonal parameters, representing
toxicological and physico-chemical data space, much of the variation between the
data has been explained. Reasonable canonical correlations of 0.837 and 0.712
have been achieved.

There are strong correlations between the two toxicities and ONVRF1, (see Figs
4.5 and 4.6). ONVRF1 can be considered as a general expression of aguatic
toxicity (see Section 3.2.5.3), being a function (or the weighted sum) of both
biological activities. QNR2 is, however, expressing factors that may contribute
to differences in the relative toxicity of the campounds i.e. a negative
standardised coefficient for the Microtox data, and a positive value for the
fathead minnow data. The weighted difference in the toxicities will identify
campourds with a similar relative toxic effect (i.e. they will have a score for
QWVRF2 of approximately 0), yet those relatively more toxic to one species or
another will have a score significantly different fram 0 (higher scores for those
chemicals more toxic to fathead minnow, and lower scores for chemicals more toxic
to Microtox). Section 3.3.1 indicates the chemicals that are relatively more -
toxic to either fathead minnow or Microtox and these are listed in Table 3.17.
Figs 4.7 and 4.8 are bivariate plots of the two canonical variables for the first
(toxicity) and second (molecular descriptor) data sets respectively plotted
against each other. These are thought to represent the toxicological and phyico-
chemical ‘hyperspace' of the data. In addition the chemicals are scored according
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to the relative strength of their toxicity to the two species. Thus in Fig 4.7,
there is a clear association between the relative toxic effect and its score f.or
QWERF2. The boundaries of each area of the graph are not perperdicular to the x-
axis of the graph due to the slightly higher standardised coefficient of the
fathead minnow toxicity in the calculation of CONVRF2 (1.433) campared to the
Microtox (-1.276). Fig 4.7 can be thus considered as a graphical expression of
the difference in the relative toxicities. Fig 4.8 displays this effect less
clearly, due to the lack of predictive power of the descriptor ONVRS. However,
all campounds more toxic to the fathead minnow are on the right of the graph and
those more toxic to the Microtox on the left.

4.2.5.2. Physical and Chemical Meaning of the Canonical Variates

Analysis of the descriptors in the canonical variables for the second set gives
an indication of the molecular features that may influence the effects accounted
for by the first set. Thus analysis of CNVRS1 will show features leading to a
general toxicity estimate. The standardised coefficients for all the canonical
variables are shown in Section 3.2.5.3. The larger the cocefficient the more
influence the descriptor has on the resulting canonical variable, ONVRS]1 has high
coefficients for HOMO energy (0.504) and ClogP (0.410). This cambination of an
electronic and hydrophobic parameter for predicting aguatic toxicity has of
course been reported many times before. Steric descriptors PVl (0.244) ard P(S-
V)0 (0.13) are also positively associated with toxicity. Toxicity is, however,
negatively correlated with branching, as modelled by the molecular oonnectivities
C(s-V)3 (-0.373), and CS3 (-0.114). This is similar to the phenamenon observed in
the principal component and factor analyses, when toxicity was negatively
correlated with the principal camponent and factor encoding molecular branching.
Of the remaining electronic descriptors, only the calculated dipole mament is
marginally important (0.166), the other electronic descriptors being largely
insignificant.

ONVRS2 is attempting to describe the difference in the relative toxicological

effects. Thus a high positive value for QNVRS2 (indicating greater relative
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toxicity to fathead minnow) results fram chemicals with high values for those
descriptors with high positive coefficients. These are predaminantly ClogP
(0.469), P(S-V)0 (0.284), and C(S~V)3 (0.293). A slight oontribution fram dipole
moment (0.164) is also observed. Greater relative toxicity to Microtox is
expressed by the electron accepting and donating capabilities of a campound, LUMO
(-0.611), HOMO (-0.568), MHOMD (-0.296), MILUMO (-0.256). The effect of ONDO
calculated parameters was found to be about twice that of those calculated by the
MNDO method. Interestingly, two molecular connectivities are important PV1 (-
0.491), and CS3 (-0.376), and these indicate that there is a large steric
carponent in QNVRS2.

One has to be very careful drawing conclusions fram this evidence, not least
because only 50.7% of the variation of QNVRF2 is actually explained by CNVRS2.
However, it may be that relatively hydrophobic molecules with small electronic
effects (as measured by HOMO and LUMO) are more toxic to the fathead minnow,
whereas large molecules, with greater electronic effects will exhibit a greater
toxic response in the Microtox biocassay. A simple test of these theories is
analysis of the corresponding descriptors and chemical groups. Table 4.5 shows
the mean values of the QNDO and MNDO calculated HOMO and IUMD energies, and ClogP
for the data involved in the canonical correlation, considered by chemical class.
Chemical classes of interest are the aldehydes (thought to have relatively
greater toxicity to the fathead minnow - see section 4.3.1) and the ketones and
aloohols (to which the Microtox test species may be relatively more susceptible).
The mean of the IUMO energies is lower for the aldehydes (ONDO 1.110; MNDO -
0.425) than campared to that for the ketones (ONDO 3.958; MNDO 0.711), and the
alcohols (QNDO 4.97; MNDO 3.00). There is, however, a less clear separation of
the values for the HOMD energies but these do show that the aldehydes have
greater mean values (QNDO -12.718; MNDO -11.906) than the ketones (QNDO -12.607;
MNDO -12.516), and the alcohols (QNDO -14.210; MNDO ~13.524). Thus the ability of

the aldehydes to donate electrons may be an important factor in their increased
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Table 4.5 Arithmetic means for ClogP, HOMOs and LiM)s for the data used in

the canonical correlation analysis

Chemical Class Clogp HOMO LUMO MHOMO MLUMO
Ketone 1.224 -12.607 3.958 -12.516 0.711
rel3

Ester 1.757 ~13.289 4,723 ~13.120 1.302
=11

Nitrile 0.324 -14.514 4,859 ~14.465 1.230
n=7

Aldehyde 1.841 -12.718 1.110 ~11.906 -0.425
=8

Amine/Aniline 1.442 -12.816 5.700 ~11.671 2.330
=8

Benzene/Toluene 2.694 =12.960 2.250 -11.767 -0.850
=2 :

Alcohols 0.638 -14.210 4,970 -13.524 3.004
=13

All Classes 1.249 -13.332 4,210 -12.843 1.367
=62

toxicity to the fathead minnow, relative to the Microtox test, (acoording to the
canonical oorrelation analysis). Also the aldehydes in this study have a higher
mean ClogP than the ketones or alcohols as described by the analysis.

These results may also be explained by the bicaccumulation potential of a
chamical. The biocaccunulation (or bioconcentration) of chemicals is dependent on
factors such as time and directly related to hydrophobicity (see section 1.6.6).
Thus bicaccumulation will be much greater in the fathead minnow test due to the
longer testing time. In addition the mean ClogP for the aldehydes is higher than,
for instance, the alcohols, so it could be reasoned that overall the aldehydes ‘
will accumlate more than the alcohols. Both these facts mean that if toxicity is
dependent on the accumulation of the chemical, the toxic effect of chemical
classes such as the aldehydes will be more pronounced in the fathead minnow.
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4.2.5.3. prediction of Toxicity using Canonical Variates

The results of the canonical correlation analysis can also be used to predict; or
extrapolate, toxicity. For the first variate the following relationship exists:
QWRF1 = 0.837(0.071) QNWRS1 - 0.0001 4.7)
=62 $=0.552 r? (adj)=0.696 F=140

As already explained, the descriptors needed to calculate CNVRS] are very easily
obtained, Thus the equation can be solved for (NVRF1 if one of the toxicities is
known. Although only 70% of the variance is explained by equation 4.7, this is
approximately 6% more than was described by a camparative conventional QSAR
obtained fram multiple linear regression analysis (eg. egns 3.3 and 3.23). Also
due to the nature of this technique, i.e. the inclusion of contributions fram

many different parameters, the results are likely to be more stable than those

procured fram regression analysis.
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4.2.6. Validation of the Various QSAR Methods Using a Testing Set

4.2.6.1. Prediction of Microtox Toxicities

The results for the predicted values of Microtox toxicity are listed in Table
3.15. There are interesting variations of the results within the methods; the
results for the QSAR calculated fram all the classes give only reasonable
estimates of toxicity for all the chemicals, but none is a truely accurate, or
reliable, representation of the toxicity. There is no overall pattern to the
discrepancies in observed and calculated toxicity, and the QSAR used to calculate
the toxicities can be considered as a stable equation containing the classic QSAR
descriptors (hydrophobic, steric, and electronic). The reasons for the
disappointing predictive performance of the equation are therefore difficult to
elucidate.

when predictions of toxicity are considered fram the QSARs for individual
classes, good results are fourd for ethylpropionate and heptanol for which QSAR
models with high correlation coefficients were obtained. The toxicities of 4-
chlorobenzaldehyde and 2,3-dichloronitrobenzene are also well estimated, despite
the (SARs being very weak. Calculated values for chloroacetone, 4
chlorobenzonitrile, and butylamine are very poor, the last being the product of a
highly unstable, insignificant QSAR. The results fram such relationships must be
treated with extreme caution, and assumed to be spurious. It is obvious that the
strength, and quality of the relationship will dictate the accuracy of any
prediction made fram it.

Of the predictions fram the regression analysis on principal camponents only
those for chloroacetone and 2,3-dichloronitrobenzene have provided a reasonable
estimate of toxicity. The values for the other chemicals are significantly higher
than the experimentally determined values, as much as 3.5 log units in the case
of butylamine,

The canonical correlation analysis has given a reasonable prediction of the
toxicity of heptanol, ethanal, and aniline (although it must be noted that the

alocohols are also well predicted by regression analysis), The predictions for
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heptanol and ethanal may also be inproved if parameters describing the branching
of the carbon skeleton (i.e. the cluster molecular comnectivities) were not
included in the canonical variates. As heptanol and ethanal have a straight alkyl
chains, there is no branching and consequently the cluster molecular
oconnectivities are zero, which may affect the accuracy of the prediciton, Of the
other campourds tested, only poor estimates of toxicity are obtained. However,
the predictions for 4-chlorobenzaldehyde and butylamine were better than those
obtained fram principal camponent analysis.

4.2.6.2.Prediction of Fathead Minnow Toxicities

2gain an interesting variation in the estimates of toxicity is obtained fram the
different methods (the results are listed in Table 3.16). The QSAR calculated
fram all the chemical classes gives sawe very reasonable toxicity values, with
the exception of 2,4~-dihydroxymethylbenzoate which is very poorly predicted, and
unlike the results for the Microtox they are generally better than the results
obtained fram the QSARs for the separate classes, This is despite the correlation
for the Microtox relationship (r2adj=0.661) being slightly higher than that for
the fathead minnow (r2adj=0.649).

Good predictions of toxicity were found for 2-dodecanone and heptanol when the
OSERs based on the individual chemical classes were used. Yet again, both of
these relationships were very strong, allowing a good prediction of toxicity. A
good relationship was also found for the amines, but this only revealed
reasocnable estimates of the fathead minnow toxicity. The calculated values of
2,4~dihydroxymethy 1benzoate, acetonitrile, and 2-chlro-5-nitrobenzaldehyde were
all inaccurate, even though the equation for the esters was reasonable. The
relationships for the aldehydes and amines are weak and insignificant, and it is
no surprise that poor estimates are obtained.

All the predictions from the regression analysis on principal components were
very much higher than the true value. The reason for the repeated overestimation

of toxicity by this particular statistical method is difficult to ascertain, but
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may be a reflection of the fact that the principal camponents do not describe the
important molecular features that affect a chemical's toxic action, an example
being that no ane principal camponent is based solely on hydrophobicity.

A reasonable prediction of the toxicity of heptanol is achieved fram canonical
correlation analysis. The remaining results are very poor, and cannot even be
considered to be as accurate as (CA gave for the Microtox test, The same
arguments given for error in the Microtox value are equally valid here,

4.2.6.3. An Overview of the Validity of the QSAR Techniques

Error in the predicted values of toxicity may came fram a variety of sources, The
greatest error in any estimate of toxicity will came fram the statistical model
itself. It has already been observed that with a poor, or spurious, relationship,
there is little chance of obtaining an accurate toxicity value, whereas strong
relationships generally lead to better predictions, Other disparities in the data
may arise fram the possibility of significant error in the published toxicity
data. Kollig and Kitchen (1990), for instance, detail problems known to be
associated with published envirommental fate data, These include publishing data
without reference to quality, or reliability; citations fram publications which
have not been substantiated; or simply misquoting numbers or other mistakes in
the cammunication. However, with techniques as well standardised, and practised,
as the two tests used for the analyses, these factors should be reduced to a
minimmm. Also unlikely are errors in the molecular descriptors; these are all
calculated values so there can be no experimental errors, Same calculated
parameters are, however, known to give unrealistic values, eg. Bradshaw and
Taylor (1989) detail camplications in the structure of benzene derivatives that
the ClogP algoritim does not consider, and which may lead to errors; in addition,
during the molecular modelling process campounds dependent an conformation can be
in error, since the true minimum energy conformation may not be found. Also there
are unaccountable errors that may occur; with any data set involving manual entry
of data there is always a possibility of transcription errors occuring (although
every effort is made to keep these to a minimum); and molecular features that may
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cause a different toxic response. Thus care must be taken in the choice of
chemicals for which predictions are to be made.,

Of the models tested, the greatest success came with the use of those strong
relationships (ie. having high r?, significant F value etc) for the individual
chemical classes, and this probably reflects the likelihood of the chemicals all
acting by a similar mode of toxic action. The QSAR for the toxicity of all
classes of chemicals to the fathead minnow proved a reliable and accurate source
of toxicity prediction, in contrast to the QSAR of all classes for the Microtox
test which proved less reliable, The use of the validation technique has enabled
the utility of these two relationships to be put to the test, and although they
have similar statistical properties (ie. r2, F value etc. only the equation for
the fish toxicity has useful predictive power. Regression analyses of this kind
also proved much easier to use and to comprehend than did the regression on
principal camponents and canonical ocorrelation analysis, as well as providing
more accurate results. The results fram the QBARs based on PCA and CCA were
overall very disappointing, and the value of these models as predictive tools
must be seriously questioned. (Although not tested, it is probable that the same
problems inherent in the use of PCA would be similar for factor analysis). The
poor performance of these multivariate techniques that rely on the production of
new paraneters fram the original data may be due to the lack of definition of the
new parameters, which have been unable to describe molecular features useful in
the prediction of toxicity, and have so failed in their abjective to help
simplify and clarify the data. The other data reduction technique utilised,
cluster analysis on the variables, did however succeed in reducing the
dimensionality of the data matrix and by using the original variables has
maintained the more pertinent features of the data.

The validation technigues have emphasised that QBAR models must be carefully
oonsidered before they can be put into practical application. It is also

difficult to put limits on what may be considered as a good prediction of
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toxicity. In this study a good calculated value was considered to be within
approximately 0.5 log units above or below the dbserved value, This was an
arbitarily set level, there being few guidelines to suggest whether this is a
reasonable level of error to expect in a prediciton, if it is too optimistic, or

even not accurate enough to be acceptable.
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4.3 Inter-Species Relationships of Toxicity

A large data base of 218 camparative toxicity values has been cawpiled for four
varied, yet camonly utilised, aquatic species. N.B. This data base is a
separate, and much larger, data base fram that used in the QSAR analysis but does
contain same of the fathead minnow and Microtox toxicity values used to form the
QSARs. Individual relationships are initially discussed, followed by a broader
analysis of the methodology and results.

4.3.1.1. Relationship between Fathead Minnow and Microtox Toxicities

Only a fair relationship is found between the two toxicities (rzadj=0.651; eqn
3.52); see section 3.3.1 for the full results. 38 of the 1% chemicals in the
relationship have been identified as outliers (see Table 3.17), ie. they are

There is a trend for

significantly more toxic to one or other of the species.,
reactive chemicals to be more toxic to the fathead minnow: these include those
chemicals (notably the aldehydes) which can react with nucleophiles by an
addition reaction, and highly substituted phenols and anilines which may act as
uncouplers of axidative phosphorylation. More toxic to Microtox tend to be those
chemicals acting by polar narcosis, such as the mono-substituted phenols. Also
there are a larger number of simple ketones and alcohols (which are expected to
act as simple narootics) more toxic to Microtox as compared to those more toxic
to the fathead minnow. Thus it might be reasoned that the more reactive chemicals
seem to be more toxic to the fish than the bacteria, which may be as a result of
the difference in the length of time involved in the toxicity tests - the
bacteria being exposed for 5 minutes and the fish for 96 hours. The longer test
time for the fish is likely to allow chemicals to be metabolised into more toxic
forms, and may also allow greater biocaccumilation to occur in the fathead minnow
resulting in greater toxicity to the fathead minnow (see section 4.2.5.3 for a
more detailed explanation of this matter). In addition, campourds such as the
aloohols and ketones may be metabolised into less toxic campourds, and eliminated
fram the fathead minnow in a more efficient manner, meaning that the relative

effect of baseline toxicity on the two species is different. of the inter-species
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relationships for chemical classes believed to be acting as simple narcotics,
both the alcohols (egn 3.53) and the esters (egn 3.55) have slopes significantly
less than one, indicating that there is a different relative toxic effect.

There is little pattern in the spread of the nitriles and the aliphatic anmes
The nitriles, known to decampose to Cyanides, are found to be relatively more
toxic to both species, Malononitrile and chloroacetonitrile are the most
significant outliers more toxic to the fathead minnow. In contrast 1,6~
dicyanohexane is more toxic in the Microtox test, and other nitriles were not
found to be outliers. The reason for increased susceptibility of the fish in
comparison to the bacteria only in same cases is difficult to explain, but may be
the result of more specific reactions occurring at the active site, or the
individual ability of the nitriles to decampose to cyanides. Aliphatic amines are
also spread throughout the data, with a tendency to be outliers to either
species. For both the nitriles and amines, their unpredictability is
characterised by poor inter—species relationships of toxicity (eqns 3.64 and
3.65).

Also there is no consistency with the spread of the pesticides, e.g. permethrin,
an insecticide, is relatively toxic to the fathead minnow, but bramacil, a
herbicide, is more toxic to Microtox. However, other insecticides such as
malathion, diazinon and carbaryl were found to have similar relative toxicities.
This phenamenon may arise fram the very specific nature of pesticide action,
which may affect any one aguatic species dramatically more than another.

The chi-squared analysis of the effect of structural features on toxicity
oconfims that an aldehyde group leads to greater toxicity in the fathead minnow.
This reinforces the theory that such chemical classes are important in
understanding the toxic effects of the campounds on these species, None of the

other chemical features is significant at the 95% level,
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4.3.1.2. Relationship Between Fathead Minnow and Daphnia magna Toxicities

A good relationship between the two toxicities has been found (r2adj=0.750, see
section 3.3.2). Again reactive chemicals, such as the alkyl halides (known to
react in substitution reactions with nucleophiles), and acrolein, are more toxic
to the fathead minnow. However, of the chemicals more toxic to D, magna, there
are two simple aloohols, and several campourds that may act as unocouplers of
oxidative phosphorylation and polar narcosis. There is also a tendency for
chemicals containing an alcohol group to be more toxic to D. magna. Perhaps
surprisingly D. magna is camparatively least resistant to the toxic effect of
aniline (ie. it is the greatest outlier), whereas aniline is not an outlier in
the fathead minnow-Microtox correlation, and only a 'slightly' significant
outlier (ratio calulated/ observed toxicity = 5.61) in the fathead minnow-T.
pyriformis correlation. The reason for the invertebrate's increased
susceptibility to aniline is not krown,

Of the two pesticides in the data set, the predicted toxicity of permethrin is
close to the cbserved (whilst as a selective insecticide it might have been
considered to be relatively more hazardous to D, magna), whereas the toxicity of
another insecticide malathion is a significant outlier being more toxic to D.
magna. This again emphasises the problem of trying to predict the toxicity of
such chemicals, which probably act by very specific mechanisms. The pattern of
the outliers is harder to distinguish in this relationship, but again it seems
likely that the effect of a longer test time enables reactive chemicals to be
metabolised by the fish, whereas the effect of same simple narcotics is
relatively greater to D. magna.

The inter-species relationship is improved when certain chemical classes are
considered. Again a high correlation is obtained for the alcohols (egn 3.69) and
perhaps surprisingly considering their reactive nature (suggesting that they may
be acting by a similar mode of action), the alkenes (eqn 3.70).

The chi-squared analysis also indicates that halogens (eg. the alkyl halides)

are more toxic to the fathead minmow, and alocohols more toxic to D, magna, in
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agreement with the respective metabolism of these chemicals suggested above,
Although the chi-squared analysis is not significant at the 95% level, it does
show trends within the data.

4.3.1.3. Relationship Between Fathead Minnow and Tetrahymena pyriformis

Toxicities

A very good relationship is found between the toxicities of these two species
(r2adj=0.807, see section 3.3.3). This makes it difficult to establish any
pattern amongst the outliers, because there are so few (only 11 outliers out of a
total of 74 compourds) and nore of these has a significantly high or low ratio of
calculated/dbserved effect to make them important to the relationship. Also it
must be remembered that the T. pyriformis test has, so far, only been performed
on arcmatic campounds, thus the relative toxicity of such chemical classes as the
simple alcohols and ketones has yet to be assessed. Of the compounds relatively
more toxic to the fathead minnow, three at least (2,3,5,6~tetrachloroaniline,
1,4-dinitrobenzene, pentabramophenol) may be acting as uncouplers of oxidative
phosphorylation. However all the chemicals that are more toxic to T. pyriformis
(4~fluworoaniline, aniline, 4-bramaniline, 4-chloroaniline, 4-nitrophenol) may
well be metabolised to more reactive intermediates. This again is similar to the
trend cbserved whereby campourds acting as respiratory uncouplers exert a greater
relative effect on the fathead minnow.

Again an improvement can be made on the overall relationship by the consideration
of correlation within chemical classes such as the ethers, ketones, pyridines,
and alcohols. No structural features were statistically more prone to be
outliers, but although the chi-squared value (4.81) is not significant at the 95%
level, there seems to be a definite trend for anilines to be more toxic to both
specia.misislikelytobeaconsequemeoftheirbeirgmrecamonly

associated with specific toxic modes of action.
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4.3.1.4. Relationship Between Daphnia magna and Microtox Toxicities

A fair relationship is found (r2adj=0.619) for all 52 campounds in this data set
(see section 3.3.4). However there are 20 significant outliers. Of the chemicals
more toxic to D. magna the tetrachlorophenol may act as an uncoupler of oxidative
phosphorylation, the dichloroaniline may be metabolised to a more reactive form,
and acrolein will react with a nucleophile, but no overall pattern emerges fram
the modes of toxic action., Notably more toxic to Microtox are three alkyl halides
which may react with nucleophiles; it may be noted that it was these chemicals
that were relatively less toxic to D. magna in the relationship with the fathhead
minnow, which suggests that the invertebrate is less affected by these campounds.
Several narootics were more toxic to the Microtox, including alcohols and
substituted benzenes, It is surprising that an unreactive campound such as
benzene is relatively so much more toxic to Microtox than D. magna. Again no
clear pattern can be elucidated, Of interest, however, should be the two
pesticides present in the data (permethrin and malathion), both of which are
oconsiderably (620 and 150 times respectively) more toxic than expected to D.
magna. This suggests that D. magna is considerably more susceptible to their
specific modes of action, as would be expected in their role as selective
insecticides. In addition, in the fathead minnow-Microtox correlation, permethrin
was considerably more toxic to the fathead minnow, suggesting in this case
Microtox is less sensitive to permethrin than other organisms, This may also be a
factor of a longer test time enabling the pesticide to have a greater effect on
both D. magna. and the fathead minnow.

Excellent correlations are found when the esters, nitrogenous coumpouds, and
alkenes are considered. There are, however, relatively few data points, so these
equations should be treated with caution in case a chance correlation has
ooccured. Yet again though, a good correlation is obtained for the alcohols, for
which many more data were available,

The chi-squared analysis of structural features is disappointing, showing that
none of those features analysed was signifcantly more toxic to one species than
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the other. )

4.3.1.5. Relationship Between Daphnia magna and Tetrahymena pyriformis Toxicities

Only 17 corresponding toxicities have been obtained, revealing a poor
relationship (radj=0.381, see section 3.3.5). Due to the low number of data
points and the poor correlation, little relevant information can be gathered fram
this analysis. This relationship is not significantly improved by analysis of the
chemical classes present in the data set, even the alcohols giving a very
unstable relationship.

4.3.1.6. Relationship Between Microtox and Tetrahymena pyriformis Toxicities

For the two microbial species, i.e. the two most closely related species of the
four considered, a strong inter-species relationship might be expected. However,
only a poor correlation is obtained for the 54 campounds in the relationship
(2adj=0.317), with 12 significant outliers, (see section 3.3.5). Little pattern
can be associated with these outliers, which may reflect the overall poor state
of the correlation. Of the chemicals relatively more toxic to Microtox, three may
be metabolised to more reactive intermediates, and another two may be acting by
polar narcosis. Four of the chemicals relatively more toxic to T. pyriformis may
be may be metabolised to reactive intermediates, this is similar to the T.
pyriformis outliers found in the fathead minnow relationship, and may be a
consequence of the longer test time for the ciliate.

The inter-species relationship is not significiantly improved by the analysis of
separate chemical classes., The chi-squared analysis of structural features shows
a trend (though not found to be significant) for halogenated compounds to be less
likely to be more toxic to either species. This may be because only highly
halogenated campounds will act by the with a more specific mode of action and

thus became outliers,
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4.3.2. Inter-Species Relationships - An Overview

Of the six interspecies relationships studied, the best (and possibly most
interesting) were those involving the fathead minnow data, especially between the

fathead minnow and Tetrahymena pyriformis toxicities (rzadj=0.807; Bgn 3.78).

pephnia magna (r2adj=0.750; Egn 3.68) and Microtox (radj=0.651; Eon 3.52)

toxicities are also relatively well correlated to fathead minnow toxicity. More
disappointing however were the remaining three relationships concerning the
prediction of Daphnia magna toxicity fram Microtox toxicity (r2adj=o.619; BEan

3.88) and from T. pyriformis toxicity (r’adj=0.381; B 3.97), and Microtox
toxicities from T. pyriformis toxicities (r?adj=0.317; B 3.101). However, the
prime aim of this study was centred on the prediction of fish (fathead minnow)
toxicity fram a consideration of toxicities to other species.

The predictability of fathead minnow LCgy Can be seen as a particular achievement
considering the problems in the obtaining of biological data. Obtaining such data
is fraught with difficulties, as errors inherent in any experimental design will
affect the quality of the results. It is interesting to note that the best
relationship found, that between the fathead minnow and T. pyriformis, involves
data generated at only one laboratory, and by the same experimenters, for each
species. Thus any interlaboratory differences in methods or protocols that may
cause errors have been eliminated. It might be considered surprising therefore
that the D magna toxicity data are so well correlated to fish toxicity, when the
origins of the D. magna data are taken into account - they have been taken fram
twelve laboratories, each using slightly different protocols. The Microtox test
has however been well standardised so interlaboratory differences should be
diminished; however, this has not led to such good correlations. The overall
effect of the toxicity of a chemical may therefore be dependent on the length of
time of the individual toxicity test. Reactive chemicals, therefore, exert a
greater toxic effect after a longer time, whereas simple narcotics are unaffected
by the length of exposure. The fathead minnow test has the longest exposure
pericd (96 hours) and hence same of the chemicals will have a different toxic
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effect than after five minutes for the Microtox test; consequently a lower
correlation is found than for the other tests with increasing exposure time and
greater correlations respectively for D. magna (48 hours) and T. pyriformis (60
hours) .

The data used in the present study do not campare well with other recent studies
which have revealed samewhat better correlations eg. for the fathead minnow and
T. pyriformis toxicity relationship Schultz et al (1990) found for 11 simple
narcotic alcohols and ketones (it should be noted that these campounds are known
to act by a single simple mechanism):

log(1/iCsg)py = 1.265 109(1/TGgp)pp + 0.395 (4.8)
=11 $=0.200 r?=0.988 F=743

Cajina~Quezada (1988) observed for 11 nitro- and halogen- substituted phenols and

anilines:
10g(1/ICsqp) gy = 1.254 109(1/IGgg)rp * 0.133 (4.9)
r=11 5=0.290 £2=0.915 F=06.6

and Schultz et al (1989a) reported for 38 nitrogen containing aramatic compounds:

10g(1/ICspy = 1091 103(L/Tog)qp + 0.284 (4.10)

=38 5=0.319 r2=0.887 F=282

The slope (0.990) and intercept (0.352) of BN 3.78 are similar to those in Bogps
4.8~ 4.10 above, suggesting that although they are a wider range of chemical
classes a similar relationship is being modelled.

The relationship between fathead minnow and Microtox toxicities has also been
studied by Schultz et al (1990) who reported a good correlation for 11 simple
narcotic chemicals:

10g(1/ICsy gy = 0830 log(l/BCgy), + 0.004 (4.11)
=11 5=0.218 r?=0.986 F=622

and for 31 unspecified 'priority pollutants' Blum and Speece (1990) found:
10g(1/ICsp)py = 079 10g(1/ECsy)y + 0.60 - (4.12)
=31 s=0.46 r2=0.83 F not given
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Thus, again for simple narcotic toxicants the authors found a very good
correlation (Bgn 4.11), yet with a more diverse data source (Bgn 4.12) the
correlation is reduced. The intercept (0.189) and slope (0.704) in Egn 3.52 are
similar to those in Bgns 4.11 and 4.12. Thus, overall the equations are
describing the whole relationship, and the significant outliers can be
identified.

When the structural features of the campounds used in the present study are
analysed, sane improved relationships are observed campared to the overall
equations, Same of the chemical classes have enough corresponding data to allow
comparison between the individual inter-species relationships. The alcohols, for
instance, are of great interest as they provide very good correlations for the
prediction of fathead minnow toxicity fram all three species. The slopes of these
equations (0.834, 1.03, and 0.949 for Microtox, D. magna, and Tetrahymena
pyriformis respectively), are all similar within the boundaries of experimental
error, ie. 0.9 +0.1, which indicate a similar toxic effect is occurring in all
species. However, there are different intercepts 0.010, -0.275, and 0.425
respectively, which show that there are different sensitivities of the species to
these campounds. Factors affecting the slopes and intercepts of these regression
lines include the species-related differences in pharmacokinetics, such as
metabol ic transformation and the pharmacodynamics mediated at the level of
interaction of the xenobiotic, or its metabolite with the respective receptor
molecules (Wallace and Niemi, 1988). It is, unfortunately, very difficult to
qualify the inter-species relationships for the alcohols in terms of the mode of
toxic action, as campounds containing an -CH group may act by one of several
modes; eg. straight chain aliphatic molecules will act as simple narcotics,
phenols may act as polar narcotics or uncouplers of oxidative phosphorylation
depending on any substitution.

Much information is also available for nitrogenous campounds, a good relationship
being found between fathead minnow and D. magna toxicities, and between D. magna

and Microtox toxicities, However, other relationships for this chemical class
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were found to be poorer, which may be a result of the different modes of toxic
action that may occur with the various nitrogenous campourds; e.g. aliphatic
nitrogenous campounds can act as simple narcotics, highly nitro-substituted
aramatics can act as uncouplers of oxidative phosphorylation.

®ood inter-species correlations were obtained for the alkenes between fathead

minnow and both Microtox and D. magna toxcities, in addition to the Daphnia magna
and Microtox relationship., The alkenes have very specific modes of action,
reacting readily with nucleophile groups, so it may be considered surprising that
their toxicities are well correlated. There are, however, relatively few data in
these relationships (n=7, 4 and 6 respectively) so care must be taken in their
interpretation.

Less satisfactory, however, were the relationships involving amine toxicity; this
may be a result of amines having several specific modes of action (eg. being
metabolised to reactive intermediates, or acting as uncouplers) which may exert
different toxic effects on the separate species. In addition, of the six inter-
species relationships for halogenated campounds, only that for fathead minnow and
D. magna has a high correlation. The halogenated campounds are a very chemically
mixed group of campounds (sinple halogenated alkanes and benzenes acting as
narcotics, other alkyl halides may be metabolised to reactive intermediates,
highly halo-substituted aramatics acting as uncouplers etc), so much so that they
are probably not worth considering as a class in future studies.

In addition to the study of particular chemical classes, it would be useful to
investigate groups of campounds with similar modes of action. The problem is that
for many toxicants, modes of toxic action have yet to be determined, and the
boundaries between different modes of action can often became a 'grey area' until
more research is performed to clarify the situation, This would inevitably lead

to confusion in the definition of the different groups,
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4.3.2.1. Discussion of the Analysis of Outliers fram the Inter-Species
Relationships
There are many methods of analysing and quantifying the outliers fram a

regression equation, although the method used here is possibly one of the
simplest. Intrinsic in its definition is that the regression line is an accurate
representation of the actual relationship, and that there are likely to be
roughly the same number of significant outliers on either side of the line. The
outliers are defined as being outside a certain distance fram the line, in this
project being defined as a greater than fourfold difference between the observed
and predicted values of toxicity. The distance is obviously very important, and
the one chosen is the same as that used by Wallace and Niemi (1988). In addition
others studies of camparative toxicity have observed that predictions can be made
only with a certainty of an order-of-magnitude (i.e. 0.5 log units) (Janardan et
al, 1984; Suter and Rosen, 1988). Thus the limits used in this study (a total of
an eightfold scalar, or 0.9 log unit spread) seem reasonable as the limits of an
aoccurate prediction, and campounds falling outside these limits can be considered
as significant outliers. Qutliers have been found ranging fram 15% to 38% of the
total number of data-points in a correlation, and this number is obviously
related to the strength of the overall relationship. Thus this gives a rough
estimate of the probability of correct prediction (within the defined limits) of
a chemical's toxicity fram one species to another,

An outlier may be considered to to be a chemical that has a significantly higher
or lower susceptibility in one species as campared to the other. The variation in
toxicity between species may be attributable to the chosen species being
relatively insensitive to the action of a chemical rather than the other speices
being much more sensitive (Thurston et al, 1985). The analysis of the outliers
has given an indication of what may cause a chemical to be relatively more toxic
to one species in a relationship, Variations in modes of taxic action are well
recognised as causes of the differences in susceptibility of chemicals to

different species (Maki, 1979; Thurston et al, 1985). Examination of the possible
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modes of action of these chemicals shows that relatively more reactive chemicals
seem tO be more toxic to fathead minnow, and this may be the result of longer
exposure times, (There is, of course, the problem of determining the modes of
action of many of the campounds). Chemicals which react with nucleophiles by an
addition reaction in the fathead minnow and Microtox study are a good example.
Also the fathead minnow may be less susceptible to chemicals acting as polar
narcotics, and to same simple aloohols and ketones, (Possibly it has increased
ability to cope with these simple narcotics). These latter findings do not
however agree with those of Thurston et al (1985) who concluded that only
chemicals with specific modes of toxicity (other than narcotics) would cause
large inter-species variations of toxicity because of the individual
physiological processes and requirements in each species, Whilst this theory is
undoubtedly valid, it takes no account of the possibility that same species may
form a ‘resistance’ to same fomms of chemical attack.

The reasons for these differences in the susceptibility of chemicals to different
species are not easy to explain. In studies of the camparative susceptibilities
of different aquatic species, no one species has been found to be the most
susceptible overall (Suter and Rosen, 1988; Thurston et al, 1985). This may be
dwe to several factors, such as the effect of time and metabolism to more
specific toxicants (see section 4.3.1 for more details). The intrinsic diversity
between species is, of course, very great (eg. differences in their physiology
and biochemistry etc,) and it must also be remembered that species metabolic
responses may be a function of intra-species features such as age (or life-
stage), body weight and sex (Janardan et al, 1984). In addition, Wallace and
Niemi (1988) suggest that within the metabolism of a species, it may have adapted
a greater enzymic metabolism for the detoxification of certain chemicals. Other
more basic features of an organism could influence the relative toxicities; for
example Vaishnav and Korthals (1990) consider that with microbial cells a
chemical has first to move through the cell wall and often both capsule and cell
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wall before reaching the cell membrane or any other protoplasmic target site.
These additional barriers, capsule and cell wall, may offer same protection to
microorganisms against toxic chemicals. Similarly, although not relevant to the
species considered in this study, same microorganisms can rapidly produce
endospores resistant to many forms of chemical attack, and with a short life-
span, mutations in the genetic make-up of a microbe may occur to produce
resistance.

There seems little pattern to the pesticide toxicities and which species they are
more toxic against; perhaps, with specalised chemicals such as these, which
obviously have highly specialised toxic actions, it is better to not consider
extrapolating their biological activity. This is unfortunate, because it is such
chemicals as pesticides which are of great envirommental importance, having
caused many pollution incidents. Janardan et al (1984) also found pesticides to
be significant outliers fram regression analysis of inter-species relationships
of toxicity. An exanple is for organophosphate and carbamate pesticides
(including carbaryl, diazinon, and malathion in the data in this study) which
have been designed to be toxic by interacting with a specific protein, the
acetylcholinesterase (AChE) molecule. The in vitro inhibitory activity of these
campourds is krown to vary widely among these species (Wang and Murphy, 1982) ard
hence will cause differences in susceptibility. In addition Maki (1979) cbserved
that many pesticides are formulated for control of a particular target species,
while creating minimal effects on non-target species, Thus differences between
the susceptibility of species is only to be expected.

Overall, however, there are few clearly defined rules, because many chemicals
acting by these more reactive modes are classifed as non-outliers, and indeed
only one structural feature (aldehydes in the fathead minnow and Microtox
relationship), is shown to cause a significant deviation from the expected
nutbers, as classified by the chi-squared analysis. This may, of course, show
that the individual structural features are unimportant, or it may be the case

that the chi-squared test is too insensitive, or even inappropriate, to study
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this phenamenon. The chi-squared analysis did, however, indicate same interesting
trerds within the toxicity data, an example being the anilines being more prone
to be outliers in the fathead minnow and T. pyriformis relationship. An earlier
study of this kind (Wallace and Niemi, 1988), which did not utilise the chi-
squared test however, found specific chemical classes such as aldehydes and
esters caused greater toxicity to fish, whereas organophophorus insecticides were
more toxic to rodents, in a fish-to-rodent inter-species comparison. Therefore
the lack of structural features causing a significant increase (or decrease) in
toxicity may be due to how closely the species are associated, the differences
being marked in a fish-to-rodent camparison, as campared to camparisons between
aquatic species.

The results analysing the outliers fram the ClogP-toxicity graph show there is a
definite tendency for chemicals that are outliers in the ClogP relationship to be
more toxic to that organism in the interspecies relationship, This is especially
true for the toxicities in the fathead minnow and Microtox, and with T.
pyriformis relationships for which significant chi-squared analyses were
obtained, Yet again, however, this is not a hard and fast rule, as the majority
of the ClogP outliers are non—outliers fram the interspecies relationships. In
addition, outliers fram the ClogP correlation are more toxic than expected
(emphasising that they are operating by a specific mechanism), and so it should
be no surprise that they are relatively more toxic to the species concerned. It
should also be noted that the designation of a chemical as an outlier to the

ClogP relationship does not identfy by which mode of action the chemical may be

acting.
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4.3.3. Use of Additional Physico-Chemical Parameters to Improve Inter-Species
Relationships
Each of the inter-species relationships is improved by the addition of a physico-

chemical parameter. Hydrophobicity is best correlated of the variables in all of
the relationships as chosen by the stepwise regression routine (BEgqns 3.66, 3.76,
3.86) and explains an additional 3-7% of the variance in the toxicity data.
Obviously the toxicity data are well correlated to Clogp, and it may describe the
differing effect of transport of the xenobiotics in different species. In each
case another significant parameter is found. The inclusion of an indicator
variable for the aldehyde group in the fathead minnow and Microtox relationship
again emphasises the influence of this group. The parameters included in the
other relationships are molecular connectivities, which model the bulk of a
molecule, The negative correlation with first order molecular connectivity in the
fathead minnow-D. manga relationship may be due to the limiting effect of size of
a compound in passing through a membrane (this matter is discussed more fully in
section 4.2.3.2). In the fathead minnow-T. pyriformis correlation the improvement
in correlation by introducing the molecular connectivity is negligible and should
be ignored. These additional parameters do not, however, increase the
correlations greatly, and in each case there is a decline in the F statistic,
indicating a loss in the significance of the equatiaons,

4.3.4. The Most Representative Species

whether it is right to quantify a species as the 'most representative' of the
toxic effects of chemicals is extremely controversial (Cairns, 1986). Undoubtedly
though, if few toxicity data exist, and the resources are not available to

per form nulti-species testing, it is essential that more information can be
estimated in a cheap and reliable manner. The results show T. pyriformis to have
the lowest positive residuals per chemical, and so to fit the definition of the
most ‘representative species'. The toxicity test undoubtedly benefits fram a long
exposure time (60 hours); in addition it is cheaper than fish tests, and the
strict protocols enforced by the authors mean that it is well standardised
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(Schultz et al 1990b). However, yet again it must be noted that T. pyriformis
data are at present available only for aramatic campounds, and ideally same data
for aliphatic campounds should be investigated before T. pyriformis could be

confimed as the most representative species.
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Concluding Remarks

This study has demonstrated that it is possible, in modern (SAR, to produce a
large number of physico-chemical data - how much of this is relevant and useful
is open to conjecture. The data matrix has to be reduced, or condensed, before
statistically valid relationships can be formed; several different approaches to
this end were undertaken. Cluster analysis greatly reduced the number of
variables and the redundancy between them, while retaining their original
meaning. Principal camponent analysis, factor analysis, and canonical correlation
analysis all produced new, orthogmnal variables, the physico-chemical meaning of
which was more difficult to establish.

In the QBAR analysis itself, regression analysis on the de-correlated variables
performed much better than the use of principal camponents and the factors.
Validation of the techniques was proved essential, as despite good statistical
foundations many QSARsS gave only poor predictions of toxicity. In particular
those QBARs based on principal camponents and factors gave large amounts of error
in their predictions.

The most accurate predictions of fathead minnow toxicity were given fram the QSAR
regression equation for all chemical classes. In contrast, for the QSARs for the
Microtox data, regression analysis of separate chemical classes proved more
successful. It was no surprise that hydrophobicity and steric parameters were
important, especially when campounds with a similar mode of action were studied,
In future studies it would, perhaps, be more profitable to stidy chemicals with
similar modes of toxic action, as opposed tO the use of separate chemical
classes. The biggest disadvantage with this approach would be the correct
identification of each chemical's mode of toxic action,

Same good inter-species relationships of toxicity were observed, Statistically
the best were for the prediction of fathead minnow toxicities and in particular

the relationship with Tetrahymena pyrifommis toxicities (possibly because the T.

pyriformis data were the least heterogeneous). Better correlations were often

obtained when separate chemical classes, such as the alcohols, were studied.
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Again, it may be more beneficial if future studies of comparative toxicity were
based on chemicals with a similar mode of toxic action.

Same light has been shed on the outliers fram the inter-species relationships,
i.e. chemicals that exert a different relative toxic response in both species of
a relationship. Much of the variation must be attributed to the intrinsic inter-
species variability, affecting such basic factors as the individual's physiology
and metabolism. These species-specific features are impossible to quantify fully
without much more work. Another important factor is the duration of the test,

which will affect the amount of detoxification, metabolism, and bicaccumilation

of the toxicant.
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Apperdix 1. The Microtox Bioassay

The use of microbial organisms as test species for envirommental pollutants has
been widely investigated. Microbial tests have been widely used in toxicity
screening procedures due to several factors, such as similarity of camplex
biochemical functions with higher organisms, ease of handling, short exposure
time, and reproducibility of the results between laboratories. A variety of tests
have been studied, based on the measurement of different indicators of the
biological status of these organisms, Enzymatic activity, growth inhibition,
reproduction rate, oxygen demand, metabolic light and heat release, have all been
used as measures of the toxic effects of industrial wastes and single
contaminants (Ribo and Kaiser, 1987).

The measurement of the emission of light by luminescent bacteria has been used to
develop a sensitive test for the quick assessment of aquatic toxicity since the
first experiments in which the effect of air pollutants on such bacteria was
determined (Serat et al., 1965, 1969). Several strains of luminescent bacteria
and culture media were studied and evaluated, and a specific test for the rapid
assessment of the toxicity of aquatic samples using the light emitting bacterium
Photobacteriun phosphoreum was proposed by Bulich (1979). Bulich and coworkers

also developed a lyophilization (freeze drying) procedure to standardise the

bacterial culture. This system has been developed cammercially under the
tradename Microtox, by Beckman Instruments, Inc. (1982).

The P. phosphoreum light emission spectrum ranges fram 420 to 630 rm with an
intensity maximum at 490rm, i.e. in the visible region of the spectrum. Intensity
of the light output depends on several external factors including temperature,
pH, salinity, as well as the nature and concentration of the toxicant. In order
to minimise the variability between measurements, rigorous control of such
external factors is necessary.

As a marine bacterium, P. phosphoreum is naturally adapted to a marine
enviroment. The addition of NaCl to saline concentrations of 20 g/l is

recammended, although the bacterium will withstand a range fram 5 to 50 /1. The
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PH range for optimal physiological conditions is between 5 and 9; again the
recamended range is much narrower, fram 6.5-7, for test conditions. It will
survive a range of temperatures fram 10°C to 25°%C, with light output varying
appropriately. The temperature recammended and most cammonly used is 15°C.

Carpar isons with Other Tests

Research on the recently developed bicassay involved independent studies on its
sensitivity, accuracy and precision. Evaluation of the results obtained and
ocamparison with other biocassays have been peformed (Bulich, 1980; Dutka and Kwan,
1981; Qureshi et al., 1982; Ribo and Kaiser, 1983). Investigation centred on the
applicability of the photoluminescent bacterium bioassay to different areas where
quick toxicity tests were most needed, including monitoring of the toxicity of
water treatment plant effluents, industrial discharges and for use as a standard
toxicity indicator for single chemical campourds. The biocassay was found to
campare favourably with other tests in sensitivity and reproducibility, and good
ocorrelation with other bioassays has been found for several classes of cammon
oontaminants.,

The Microtox test has been campared with other microbial tests. The response of
light emitting bacteria to camon toxicants has been campared to the response

obtained using nonluminescent bacteria such as Spirillum volutans, Pseudamonas

fluorescens, Aerawnas hydrophila (Dutka and Kwan, 1981, 1982), Bacillus

subtilis, and Bacillus sp. (Ribo and Kaiser, 1983). Comparisons of the Microtox

toxicity with inhibition of respiratory activity of activated sludge, and
inhibition of activated sludge TIC dehydrogenase activity have also been reported
(Dutka and Kwan, 1981; Dutka and Kwan, 1984). More recently the Microtox test has
been compared with a new bacterial test, Polytox, a new cammercial preparation
produced by the Polybac Corporation, 1986, utilising a specialised blend of
bacterial cultures. Elnabarawy et al., (1988) found the Microtox system more
sensitive to both organic and inorganic chemicals than was the Polytox system,

Overall the Microtox test has been found to be rapid and simple, and to have
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equal or greater precision and/or sensitivity than traditional fish biocassays.
The Microtox test is also used for screening the ecotoxicological hazards of
contaminated sediments and effluents. Ross and Henebry (1989) report that
Microtox test results, along with three other microbial tests, agreed with
cammnity bicassays. True and Hayward (1990) found that the test had the
potential to estimate both the water-soluble and solvent-soluble campounds in
marine sediments,

The Use of Microtox Toxicity Data in QSAR Analysis

The Microtox bioassay has also been found very valuable in generating toxicity
data to be used for the assessment and prediction of the aguatic toxicity of
single chemicals through mathematical models using quantitative structure-
activity relationships (QSAR). Ribo and Kaiser (1984) showed that the Microtox
toxicity of chlorinated aramatic campounds could be explained and predicted using
physico-chemical properties of the campounds, primarily the octanol/water
partition coefficient, and other structural properties including the van der
Waals volume, molecular symmetry, and hydrophilic character. More recently,
Kamlet et al (1986) investigated the relationship of solute properties, expressed
in terms of solvatochramic parameters, to the Microtox toxicity of nonelectrolyte
organic chemicals, and found that the toxicity could be well predicted by a
generalised linear solvation energy relationship., Also Gough and Kaiser (1988)
discovered good correlations between the Microtox toxicity of 4-substituted
nitrobenzenes and anilines and calculated electronic properties, such as the
variation in the charge density at the oxygen atam of the nitro group. Ribo and
Rogers (1990) have proposed an mathematical algorithm for the assessment of
mixtures of chemicals.

Many interspecies relationships have been noted between Microtox toxicity and

that to other aquatic species (Ribo and Kaiser, 1983; Cronin and Dearden, 1988).
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Appendix 2. Molecular Connectivities

The most successful of all topological indices are the molecular connectivities,
They have found numerous applications in various areas of physics, chemistry,
biology and drug design, as well as the envirommental sciences. Their success can
be acoounted for primarily in two ways:

i) They are based on sound chemical, structural (topologic and geametric),

and mathamatical grounds,

ii) They were developed with the idea to parallel important physico-chemical
properties like boiling points, chramatographic retention times,
enthalpies of formation and total molecular surface area.

These topolagical indices originate fram the work of Randic (1975), it was
however, Kier and Hall (1976) who greatly extended his work and first applied the
term ‘molecular oconnectivity'.
Calculation
In the simplest form of the index, the structure of the molecule for which
information is required is expressed as a hydrogen suppressed graph. Each carbon
atom is designated by a number (delta, d) which is a count of the number of
adjacent (or formally bonded) carbon atams. The molecular skeleton is dissected
into all constituent bonds, each designated by the two carbon atams i and j
forming the bond. Using the Randic algorithm
(d4 dj)—o.s

a value for each bond can be calculated. The molecular index is simply the sum of
these bond values over the entire molecule, i,

Iy = Z(di dj)—o.s
It is axiomatic that a single index will not encode sufficient information about
molecular structure to approximate all its camplexity. Accordingly Kier and Hall
(1976) proposed a scheme whereby higher order dissection of the molecular
skeleton became the basis of additional extended indices.
For second order connectivity, the molecular skeleton is dissected into 'two

ocontiguous bond fragments, in whlch the delta values are maintained. Thus for
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isopentane the two-bond dissection is as follows:

1

The Randic algorithm is modified to
@ dj dk)—O.S
and thus the calculation of second order molecular connectivity is achieved by
% = )@ ay a0
The calculation of higher order indices is possible by dissection of any molecule
into the appropriate fragments. In addition to these so-called path fragments,
information can be derived by the dissection of a molecule into these other

features:

A A AL

a b c d
where a is path (2nd order)
b is cluster (3rd order)
¢ is path/cluster (4th order)
d is chain (5th order)
Obtaining the index for each of these features follows the same scheme as before.
In addition, a zero order molecular connectivity can be calculated if each atam
is considered as a fragment, thus the algorithm for each atam simply becames:
d—Oos
and zero order connectivity is given as (Kier and Hall, 1986)

% - 5 (@05

vValence-Correction

Kier and Hall (1976) put forward a new rationale so that more information

inherent in such features as unsaturated bonds could be formalised. This is
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performed by assigning the delta value as a count of each bond to an adjacent.,
atan. A double bond thus counts twice when adding up adjacent atams. The
hybridisation state of the carbon atams are therefore accounted for.
The modified delta value is referred to as valence delta (dV). the calculation
then proceeds as before with valence corrected delta replacing simple delta.
Valence delta can be expressed as:

@& =32V - n

where 2’ is the number of valence electrons
h is the number of hydrogen atams suppressed

Treatment of Heteroatams

Kier and Hall (1976) describe the treatment of heteroatams, which is based on the
explicit count of adjacent bonded atams (excluding hydrogen) plus a count of all
pi and lone pair electrons. However, when high row atoms are considered (eg. P,
S, C1, Br, and I) specific acocount must be taken of non-valence, or core,
electrons. These electrons play a strong and direct role in the size of atams,
and indirectly influence such properties as ionisation potential and electron
affinity. The valence delta value for all heteroatoms is thus

& = @-h/@z-2"-1
Namenclature
The Greek letter chi (symbolised as X) has been adopted (Kier and Hall, 1976) to
represent the index. Two superscripts and one subscript are used to specify the
particular index, The left hand superscript gives the order of the index. The
right hand superscript differentiates between valence and non-valence indices.
The right hand subscript specifies the subclass of index (ie. path, cluster,
path/cluster, or chain).
Physical Significance of Molecular Connectivity

As they stand, molecular connectivities tell us nothing of the physical
properties of a molecule. Much work has been performed to assign same physical
basis to them, and it is not surprising to find that the indices are well

ocorrelated with measures of bulk volume,
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For instance Murray (1977) found that the Taft steric constant (Eg) correlated
well with molecular connectivities for a series of alkyl esters:

Eg = - 0544 2X - 1.40 3x + 1.09 % + 0.403

=19 $=0.460 r?=0.924 F not given

Kier and Hall (1986) found the following relationship for the molar volume (MV)
of 37 alkanes of varying chain length:

M= 24.9 X% + 11.9 % - 2.84 % + 39.8

=37 s=1.17 r=0.99 F=86600

Kier and Hall (1986) also observed an excellent equation for molar refractivity
(MR) :

MR = 3.83 0 + 4.44 1x - 0.873 3% - 0.483 % - 0.456

=55 s=0.043 r=0.99 F=195000

In addition to these examples Kier and Hall (1986) also report many other
relationships of molecular connectivities with physical properties such as
polarisability, water solubility, chramatographic retention indices, and
thermodynamic properties including heats of atamisation and vapourisation.
Dearden et al (1988) extended the study of physical relevance by studying the
relationship of the 54 parameters listed by van de Waterbeemd and Testa (1987)
for 59 substituents of varying nature. The conclusion was again that path
oconnectivity temms, whether simple or valence, predaminantly model bulk volume,
including van der Waals volumes, parachor and molar refractivity.

Veith et al (1988) used molecular connectivities to explore the intrinsic
dimensionality of chemical structure space. For each of 19,972 chemicals 90
molecular connectivity indices were calculated. The whole data matrix was
subjected to principal camponent analysis. Eight significant principal camponents
were formed that explained 93.6% of the variation of the data. These principal
camponents were interpreted as encoding the size of molecules, and different

features of its branching.
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Application of Molecular Connectivities to QSAR Studies

Reports of the applicability of molecular connectivities as parameters for use in
QSAR studies abound (Kier and Hall 1976, 1986; Sabljic 1990). It is probably true
to say that the indices have been most extensively utilised in the field of
environmental QSAR. Same examples are given below.

Hall and Kier (1989) cbserved that third order valence path molecular
connectivity produces a good model for the ICg, of substituted phenols to the
fathead minnow:

log(1/1Csy) = 1.08 %Y + 2.52

r=25 s=0.35 r=0.903 F=101

Leegwater (1989) repeated some of the QSAR analysis of Konemann (1981) and
Hermens et al (1984b), revealing the following equations:

109(1/1Csq) = 1.15(0.07) 2XV - 4,25

=12 s=0.17 r=0,98 F=279

where 1og(1/ICg;) is the toxicity of chlorobenzene derivatives to the guppy
(fran Koneman, 1981)

10g(1/1C;) = 1.46(0.16) X" - 5.18

=17 s=0.33 r=0.92 F=79

where log(l/Lcso) is the toxicity of aniline derivatives to the guppy (fram
Hemmens et al, 1984b)

In both cases there is no significant loss in the goodness of fit of the
equations by using %Y in preference to log P.

In other areas of envirormental QSAR, Sabljic and Protic (1982) found good
ocorrelations for the bioconcentration factor (BCF) of chlorinated benzenes, PCBs,
and chlorinated diphenyl oxides in fish:

log BCF = 222 &V - 0.17 (&Y)2 - 2.32

=20 $=0.277 r2 (adj)=0.936 F=139

In a related area, strong relationships have been found for modelling soil
sorption of chemicals (Sabljic, 1989).
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Kappa Indices
The kappa (or molecular graph shape) index is a numerical index of molecular

shape derived fram the graph of the non-hydrogen molecular skeleton. It is
defined by Kier (1985, 1986a, 1986b) and calculated as follows. The count of the
atams A, and the number of paths of length one (p) in the hydrogen-suppressed
graph or skeleton structure are obtained. From the relationship of p to the
maximum and minimum values of p for that number of atams, a general expression is
derived (Kier, 1985):

k= a@-12/ (p?

where 1k is the first order kappa index

To acoount for hetercatams, or carbon atams other than Csp3, a modification of
each atam count in arriving at A is made by using 1 + o for each atam other than
Csp® (Kier, 1986b). The value of of is taken fram the ratios of covalent radii

(r) of atam X relative to Csp3, thus

ocx=rx/r

(csp?) ~ 1

The heteroatam weighted 1k index, 'k, iS then camputed, substituting the 1 +
value in suming up A and lp:

lkor_: @B+a) @+ec-1) / Bp+a)?

Counts of two and three contiguous bonds in a molecule lead to the formation of
second and third order indices.

The zero order kappa index, Ok, (Kier, 1987) is calculated fram the consideration
of each atam in isolation.

Physical Nature of Kappa Indices

The physical relevance of kappa values is poorly understood, and as yet they have
been little used in QSAR analysis. They were, of course, originally designed to
encode the shape of a molecule, and %k is thought to include an element of
molecular symmetry. More recently Kier (1989) has proposed their use to calculate
an index of molecular flexibility (®):

8 = Yk, . %, /A
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Appendix 3. Full Results of the Microtox Test

(The values given are the ml/1 (for liquids) and g/1 (for solids) concentrations
of the chemicals causing a 50% reduction of light output in the Microtox test)

Chemical Endpoint Replicates
3-pentanone 5 min 2.6, 2.1, 2.1

15 min 3.0, 2.5, 2.4
5-nonanone 5 min 0.027, 0.031, 0.033

15 min 0.039, 0.046, 0.041
3-methyl-2-butanone 5 min 0.08, 0.08, 0.09

15 min 0.10, 0.090, 0.11
3,3-dimethy1-2-butanone 5 min 0.003, 0.006, 0.0055, 0.0025,

0.0038, 0.031
15 min 0.0035, 0.0075, 0.0060, 0.0028,
0.0040, 0.0034

2-ethoxyethylacetate 5 min 1.3, 1.0, 1.2

15 min 1.4, 1.3, 1.4

15 min 12, 12, 12
propyl acetate 5 min 0.38, 0.35, 0.35

15 min 0.45, 0.47, 0.40
butyl acetate 5 min 0.13, 0.10, 0.09, 0.10

15 min 0.16, 0.13, 0.16, 0.14
hexyl acetate 5 min 0.0095, 0.011, 0.011

15 min 0.012, 0.015, 0.013
ethyl hexanoate 5 min 0.05, 0.041, 0.052, 0.050

15 min 0.09, 0.06, 0.059, 0.065
diethyl adipate 5 min 0.035, 0.027, 0.030

15 min 0.040, 0.030, 0.035
dibutyl adipate 5 min 0.0025, 0.0026, 0.0043

15 min 0.0024, 0.0026, 0.0047
diethyl sebacate 5 min 0.00058, 0.00062, 0.00075

15 min 0.00054, 0.00058, 0.00069
dimethyl malonate 5 min 7.0, 9.0, 8.5

15 min 7.0, 8.5, 7.5
diethyl benzyl malonate 5 min not toxic at saturation

15 min not toxic at saturation
chloroacetonitrile 5 min 0.60, 0.65, 0.60

15 min 0.18, 0.17, 0.20
malononitrile 5 min 0.40, 0.37, 0.39

15 min 0.15, 0.155, 0.15
allyl cyanide 5 min 3.5, 3.3, 2.8

15 min 2.7, 2.8, 2.5
1,4-dicyancbutane 5 min 3.0, 4.5, 1.8, 2.8

15 min 4.0, 6.0, 2.1, 3.0
1,6-dicyanchexane 5 min 0.017, 0.016, 0.017

15 min 0.020, 0.019, 0.019
octyl cyanide 5 min 0.0015, 0.00155, 0.0016, 0.0012

15 min 0.00088, 0.0013, 0.0012, 0.0011
acetone 5 min 21.5, 24.0, 26.5

15 min 20.5, 24.0, 25.0
toluene 5 min 0.032, 0.031, 0.018

15 min 0.038, 0.036, 0.021
2-methoxyethylamine 5 min 0.032, 0.035, 0.022, 0.028

15 min 0.026, 0.031, 0.018, 0.025
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1,2-diaminopropane
butanal

propy lamine
2-chloro—4-methylaniline
octylamine

hexanal

heptylamine
4-fluoroaniline
N,N-diethylaniline
2-fluorobenzaldehyde
2~chloro-6-fluorobenzaldehyde
5-bramosal icylaldehyde

vanillin

2,4-dichlorobenzaldehyde

4~chloro-3-nitrotoluene
1,2,4~trichlorobenzene
2-chloronitrobenzene
3~chloronitrobenzene
2~chloro-4~nitrotoluene
2-chloro-6-nitrotoluene

acrolein

biphenyl
1,3-dichloro~2-propancl
3~chlorotoluene

4~chloronitrobenzene

S min
15 min
5 min
15 min
5 min
15 min
5 min
15 min
5 min
15 min
5 min
15 min
5 min
15 min
5 min
15 min
5 min
15 min
5 min
15 min
5 min
15 min
5 min

15 min

5 min
15 min
5 min

15 min

5 min
15 min
5 min
15 min
5 min
15 min
5 min
15 min
5 min
15 min
5 min
15 min
5 min

15 min

15 min
5 min
15 min
5 min
15 min
5 min

15 min’
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0.032, 0.029, 0.028, 0.025
0.027, 0.026, 0.025, 0.022
0.36, 0.42, 0.29, 0.27
0.21, 0.27, 0.23, 0.20
0.021, 0.019, 0.014, 0.016
0.013, 0.012, 0.013
0.0046, 0.0041, 0.0054, 0.0044
0.0055, 0.0045, 0.0061, 0.0050
0.035, 0.038, 0.035, 0.038
0.033, 0.035, 0.032, 0.036
0.042, 0.040, 0.031
0.022, 0.028, 0.027
0.033, 0.035, 0.036
0.028, 0.030, 0.035
0.092, 0.089, 0.048, 0.060
0.095, 0.095, 0.052, 0.072
0.0080, 0.0063, 0.0064
0.0096, 0.0075, 0.0076
0.018, 0.018, 0.016, 0.014
0.017, 0.019, 0.016, 0.015
0.027, 0.025, 0.030, 0.031
0.019, 0.018, 0.024, 0.024
0.0098, 0.0084, 0.0095,
0.0082
0.0072, 0.0065, 0.0076,
0.0056
0.070, 0.060, 0.060
0.085, 0.060, 0.058
0.0050, 0.0066, 0.0052,
0.0046
0.0050, 0.0062, 0.0054,
0.0042
0.0043, 0.0043, 0.0032
0.0046, 0.0044, 0.0033
0.00092, 0.0012, 0.0013
0.0012, 0.0014, 0.0014
0.0046, 0.0037, 0.0041
0.0046, 0.0039, 0.0046
0.0115, 0.0115, 0.0092
0.012, 0.012, 0.010
0.0028, 0.0038, 0.0034
0.0038, 0.0042, 0.0036
0.00075, 0.00069, 0.00073
0.00083, 0.00078, 0.00076
0.00027, 0.00042, 0.00045,
0.00043
0.000105, 0.00016, 0.00017
0.00015
0.0030, 0.0024, 0.0041
0.0030, 0.0025, 0.0044
1.78, 1.30, 1.15
1.30, 1.30, 1.15
0.0022, 0.0019, 0.0039
0.0026, 0.0021, 0.0043
0.0235, 0.017, 0.0305
0.026, 0.019, 0.033



