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ABSTRACT 

This thesis describes an investigation into the use of a novel intelligent force control 

scheme that was developed to control the contact force between a mechanical 

manipulator's end-effector and a range of non-rigid contact environments. The scheme 

uses a Radial Basis Function (RBF) neural network to model idealised reaction to a range 

of environments, each with differing degrees of rigidity. 

During the development of the intelligent force control scheme's neural network, factors 

that may affect network performance were investigated, including aspects relating to 

network topology selection and RBF centre placement. Results presented show that a 

single RBF network was capable of modelling idealised reaction to a range of non-rigid 

environments to a high degree of accuracy. 

Once trained, the RBF network was incorporated into a single degree of freedom 

mechanical manipulator simulation that was developed in the Advanced Continuous 

Simulation Language and the control system's ability to apply forces to a range of non- 

rigid environments was investigated by simulation. Results presented demonstrate that 

satisfactory contact was achievable with a range of non-rigid environments without a 

priori knowledge of the contact environment's mechanical properties. The intelligent force 

control scheme's suitability for force application to varying environments was also 

investigated. 
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Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Robots are most commonly used to increase productivity and improve product quality 

in manufacturing environments where they perform tasks such as paint spraying, spot 

welding, and component placement. When performing such tasks, a robot is used as a 

positioning device where it is commanded to either move its end-effector (and most 

frequently tooling attached to the end-effector) to desired points within the robot 

workspace or to the follow a desired trajectory. In order that these ̀positioning' tasks 

can be performed, the robot programmer must supply the robot control system with 

task oriented positioning data (i. e. positions, velocity profiles, etc. ) and the robot is 

controlled using a positional control scheme. 

Many `real world' tasks require that a robot system applies a desired force to an 

object or surface. Examples of these `contact' tasks are object handling, cutting, 

grinding, and drilling. Although positional control schemes are appropriate for non- 

contact tasks, they are unsuitable for contact tasks and dedicated force control 

strategies are required if robots are to have a force control capability. Research in the 

area of robotic force control has been particularly active over the past two decades 

but despite the high level of research activity, there remains a need for fast acting, 

stable, and widely applicable force control methodologies. 



Introduction 

Robot force control is a multifaceted problem that requires the creation of each of the 

following items: a task description, the definition of force-motion relations, a task 

execution strategy, command logic, control, and stability analysis [Whitney, 1987]. 

However a wide range of non-trivial problems still exist and many robot researchers 

regard force control to be one of the most sophisticated and challenging problems in 

robot control [Pei, 1992]. 

Most of the work in robot force control to date has been directed towards contact 

with rigid objects [Hopcroft et al., 1991] and numerous problems remain unsolved in 

the rigid manipulator/rigid environment force control problem. However, ̀ real world' 

contact environments can be either compliant or rigid, and if robots are to perform 

`real tasks in real environments' (e. g. street cleaning, refuse collecting, etc. ) then they 

must be endowed with the capability of autonomously controlling interaction with 

both types of environment (and the transitions between the two). 

At the outset of this project, robot contact with non-rigid environments was poor 

[Wada et al., 1993] and this shortfall ultimately limits the range of tasks that robots 

can perform.. The research presented in this thesis attempts to partially address this 

shortfall by investigating the use of a novel force control methodology that was 

developed to control the contact force between a rigid end-effector and a range of 

non-rigid environments. The control scheme uses an Artificial Neural Network 

(ANN) to model `idealised reaction' (a concept that is explained in Chapter 4) to a 

range of environments, each with differing degrees of rigidity. 

2 
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1.2 PROBLEMS ASSOCIATED WITH ROBOT FORCE CONTROL FOR 

CONTACT WITH NON-RIGID ENVIRONMENTS 

Control of the contact force between a robot and non-rigid environments is made 

difficult by several factors, including: 

" high levels of uncertainty in the contact environment's mechanical properties (i. e. 

spring constant of the contact material, frictional components, etc. ). 

" non-linear contact characteristics. 

" for some tasks, variance in the degree of contact environment rigidity. 

Non-rigid environments deform upon contact and the mechanical properties of the 

environment are generally unknown prior to contact occurring. Many `real' non-rigid 

environments have non-linear contact characteristics that tend towards positional 

saturation [Caldwell and Gosney, 1993], and these characteristics may vary with 

environmental conditions (i. e. humidity, flexing, etc. ). Additionally, considerable 

variance in the contact environments mechanical properties may be experienced 

during tasks that require a robot to track a non-rigid surface while simultaneously 

applying a force to the surface. 

The mechanical properties of the contact environment have been shown to have a 

significant effect on the contact quality and, in some instances, force control system 

stability [Fukuda and Kitamura, 1986]. Thus, for robotic contact tasks, the 

environmental model should be central to the development of any force control 

scheme [Lewis et al., 1993] and it is essential that forces are applied to the 

environment with consideration, of the environment's mechanical properties. 

3 
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However, the development of a widely representative contact model and a mechanism 

that can accurately estimate the model parameters in `real time' is a non-trivial task, 

and the most frequently adopted contact models are linear in their parameters and 

time-invariant. Investigations into contact model parameter estimation have been 

reported [Venkataraman et al., 1992; Fukuda et al., 1987] and some of the significant 

studies are presented in Chapter 2. 

1.3 THE ROLE OF INTELLIGENCE DURING HUMAN FORCE 

APPLICATION 

At present, human perception and cognition far exceeds the capabilities of our most 

developed ̀intelligent' robot systems. Humans mundanely perform a wide range of 

tasks that are far beyond the abilities of our most advanced robot systems, and these 

tasks are autonomously performed in diverse, unpredictable, and varying 

environments [Annaswamy and Seto, 1993]. Nature has evolved human intelligence 

over many thousands of years and a facility of `real intelligence' (as opposed to 

artificial intelligence which, by comparison, is in its infancy) allows humans to adapt 

their behaviour to new task domains based on previous experience. Artificial 

intelligence is not so well developed and this shortfall leaves considerable scope for 

future development. 

Humans (and many animals) have excellent manipulation and force application skills, 

which are acquired by learning through repeated interaction with objects of differing 

rigidity, shape, and orientation. The mechanism by which human ̀ motor skills' are 

acquired is not fully understood, but the acquisition of such skills has been attributed 

4 
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to the formation and strengthening of neuronal connections within the brain 

[Patterson, 1996]. These connections are believed to be `formed' in response to the 

human experiencing his environment (input stimulus). 

It is worth noting that several aspects of human anatomy play a significant role in our 

excellent force application skills, namely excellent force sensing capabilities and 

advantageous mechanical characteristics such as compliance in key areas of the body 

(e. g. fingertips, feet, etc. ) [Annaswamy and Seto, 1993]. At present, the mechanical 

characteristics, sensing capabilities, and most significantly ̀ intelligence' of our most 

advanced robots fall short of those of the human capability, and the accumulation of 

these shortfalls has limited the range of tasks that robots can perform. Advances in 

the areas of robot vision, mechanical design, and machine intelligence are required if 

robots are to perform tasks in wider domains. 

Intelligence (or at least behaviour acquired through learning) plays an important role 

in the human force application capability and facets of human intelligence that are 

evident during force application are an ability to: 

i. recognise when and where contact occurs. 

ü. make the distinction between rigid and compliant environments and adjust 

behavior patterns accordingly when interacting with environments of differing 

rigidity. 

iii. recognise constraint, both rotational and translational. 

iv. simultaneously apply forces in some directions while moving in others (profile 

tracking with force application). 

5 
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v. perform contact tasks without a priori knowledge of the degree of contact 

environment rigidity. 

1.4 MOTIVATION FOR AN INTELLIGENT APPROACH TO FORCE 

CONTROL 

A widely applicable force control strategy must be capable of performing tasks in 

challenging environments where the manipulator is faced with uncertainties and 

variations in its environment [Raibert and Craig, 1981]. Thus a force application 

robot must be capable of sensing variance in the contact environment and it must 

react to it in a safe and efficient manner. 

Facets of human intelligence that are evident during human force application were 

outlined in section 1.3 and it is clear that without this intelligence, many tasks would 

be beyond the human capability. Thus strategies that incorporate aspects of human 

`intelligence' into force control methodologies have potential for expanding the range 

of tasks that a robot can perform and the range of environments in which they can be 

performed. An approach of learning via experience and adaptation to new 

environments based on this experience is not only akin to the human force application 

learning mechanism but it is also characteristic of Artificial Neural Network (ANN) 

learning and generalisation. 

6 
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1.5 PROJECT DESCRIPTION 

1.5.1 INVESTIGATION APPROACH 

The force control scheme investigated attempts to mimic the human force application 

learning mechanism and uses a connectionist model (an Artificial Neural Network) to 

`learn' idealised reaction to a range of non-rigid environments. This was to be 

achieved by `training' a neural network with data that specified ideal responses to 

several non-rigid environments. Once trained, the ANN was tested for its ability to 

perform accurate estimations with environments that were represented in the network 

training data set and ̀ unseen' environments. The trained ANN was then incorporated 

into a force control strategy and the control scheme's ability to apply forces to a 

range of non-rigid environments was investigated by simulation. 

1.5.2 RESEARCH OBJECTIVES 

The research objectives were to: 

1. investigate factors that may influence an ANNs ability to accurately model 

`idealised reaction' to a single non-rigid environment. 

2. investigate the effect of noise on network performance. 

3. develop a force control strategy that utilises the ANNs knowledge of `idealised 

reaction' to a single environment so that a position controlled mechanical 

manipulator may be endowed with an ability to apply a desired force to the 

environment. 

4. investigate, by simulation, the force control scheme's ability to apply forces to a 

range of non-rigid environments, each with differing degrees of rigidity. A force 

application range of 1N to 15N was investigated. 

7 
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5. extend the ANN's knowledge by investigating the use of a single neural network 

to accurately model idealised reaction to a range of environments. 

6. incorporate the `multi-environment trained network' into the force control scheme 

and investigate, by simulation, the scheme's ability to acquire and maintain a 

specified contact with a wide range of non-rigid environments. Again, a force 

application range of IN to 15N was investigated. 

7. to investigate, by simulation, the intelligent force control system's ability to 

maintain contact with the environment when the degree of environmental rigidity is 

varied. 

Control of contact with rigid environments was not within the scope of this 

investigation. 

1.6 ORIGINALITY OF THE RESEARCH 

The originality of the work lies in three areas, namely: 

" the method by which the intelligent force control scheme applies forces to its 

environment. The control scheme applies forces to a range of non-rigid 

environments using a novel force control methodology. 

" the use of a novel data extraction technique that was used to generate neural 

network training data. 

" the use of a novel network training/selection procedure. 

8 
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1.7 THESIS OUTLINE 

This thesis is organised into eight chapters. Following this introductory chapter, 

Chapter 2 presents an overview of force control methodologies and contact models 

that are frequently used to represent non-rigid contact environments. Several previous 

studies of contact model parameter identification are presented. 

Chapter 3 describes ANN principles that were considered relevant to the development 

of the intelligent force control scheme's ANN. The network topologies and training 

algorithms/methodologies investigated are also described. 

Chapter 4 presents the development of the intelligent force control scheme and a 

single degree of freedom mechanical manipulator simulation that was implemented in 

the Advanced Continuous Simulation Language (ACSL). A novel data extraction 

technique that was used to extract ANN training data from a parameterised contact 

model is also presented. 

Chapter 5 introduces an investigation into the use of a Radial Basis Function (RBF) 

network to model idealised reaction to a single non-rigid environment. Training 

methodologies that were used to obtain a network topology that was capable of 

performing a single environment input-output mapping to a high degree of accuracy 

are presented. Two RBF centre placement/optimisation methodologies were 

considered, random placement of the RBF centres and k-means clustering. Once 

trained, the RBF network was incorporated into the ACSL simulation developed in 

9 
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Chapter 4 and the intelligent force control scheme's ability to apply forces to a range 

of non-rigid environments was investigated by simulation. 

Chapter 6 extends the `single environment' investigation to present an investigation 

into the use of an RBF network to model idealised reaction to a range of non-rigid 

environments, each with differing degrees of rigidity. Once trained, the RBF network 

was incorporated into the ACSL simulation developed in Chapter 4 and the intelligent 

force control schemes ability to apply forces to a range of environments was again 

investigated by simulation. The network's ability to perform accurate estimations with 

data extracted from a range of real environments was also investigated. 

Chapter 7 presents an investigation into the intelligent force control system's ability to 

apply forces to varying environments. Conclusions obtained from the research and 

suggestions for further work are presented in Chapter 8. 

Appendix A lists the contact model parameters that were used for the simulated non- 

rigid environments. Appendix B provides a list of parameters used for the ACSL 

simulation while Appendix C shows hardness profiles for simulated environments that 

were used to test network performance with unseen environments. Appendix D 

shows hardness profiles for the experimentally measured environments. Appendix E 

summarises the papers that were produced through this research. 

10 



Overview of Force Control Methodologies and Contact Models 

CHAPTER 2 

OVERVIEW OF FORCE CONTROL METHODOLOGIES 

AND CONTACT MODELS 

2.1 INTRODUCTION 

A considerable amount of research has been directed towards controlling the 

interaction force between a robot and its environment. Numerous force control 

strategies of varying complexity have been proposed and force control 

implementations with practical robot systems have been reported (albeit in controlled 

environments). However, force control applications in real environments (i. e. 

uncontrolled, uncertain, and varying environments) have been noticeably scarce, and 

robot force control has not yet reached real world requirements. 

The complexity of the force control problem and the diversity of its potential 

applications has resulted in an abundance of research publications and, as such, this 

overview presents work that is regarded by the author as posing most relevance to the 

development of the work outlined in this thesis. This overview should not be taken to 

be a complete and comprehensive review of robotic force control techniques. 

However, several ̀traditional' force control methodologies (i. e. early studies that laid 

foundations for robot force control research) have been included. The strengths and 

weaknesses of the control methodologies are highlighted where possible. 

11 



Overview of Force Control Methodologies and Contact Models 

The intelligent control scheme was developed using a mathematical model that 

represented contact between a robot end-effector and it's contact environment. As 

such, a -review of frequently adopted contact models is also presented. The 

environmental model has been shown to be central to any force control scheme 

[Lewis et al., 1993] and the limitations of the contact models are highlighted. 

Methods for contact environment parameter identification are also presented. 

2.2 ROBOT FORCE CONTROL 

2.2.1 TRADITIONAL FORCE CONTROL METHODOLOGIES 

The most notable of the early attempts to simultaneously control robot force and 

motion was the work by Paul and Shimano [ 1976] and Whitney [ 1977]. 

The control scheme proposed by Paul and Shimano was centred around the switching 

of certain robot joints to force control in response to Cartesian demands while the 

other joints remained under positional control. The joint based control scheme 

suffered from severe coupling problems and the transient switching between control 

states (i. e. position to force and vice versa) made the control strategy impractical for 

all but the simplest of applications. 

Whitney presented his resolved motion rate control scheme that allowed a force 

control outer loop to be added to a velocity controlled inner loop (termed resolved 

rate force control). The technique was significant in that force demand could be 

specified in Cartesian co-ordinates. 

12 
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Mason [1981] formalised the general manipulation task by proposing the use of a task 

aligned co-ordinate system (commonly known as the 'C' or local' co-ordinate system). 

The control scheme used the 'C co-ordinate system to switch the appropriate degrees 

of freedom in and out of compliant control in response to forces sensed at the point of 

contact. 

After the formalisation by Mason, two distinct trends in decoupled force control were 

proposed: namely hybrid position/force control and impedance control. It is worth 

noting that the vast majority of the `new' force control methodologies extend the 

underlying principles of these force control methodologies, and intelligent and/or 

extended adaptations of both strategies are regularly published. 

2.2.2 HYBRID POSITION/FORCE CONTROL 

Hybrid position/force control (also known as 'hybrid control') was first proposed by 

Raibert and Craig [1981] but has its origins based in the early work by Mason. Hybrid 

control utilised a compliance selection matrix to switch local Cartesian co-ordinate 

axes to force or position control depending on the task. The control scheme uses 

separate position and force control loops and has been developed from a conceptual 

force control strategy to a practically feasible scheme (albeit under controlled 

conditions! ). 

Hybrid control has been proposed for a wide range of force control applications 

including: a multiple manipulation problem [West and Asada, 1992], door opening 

[Pujas et al., 1993], and biped foot/floor control [Tsai and Orin, 1986]. 

13 
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However, hybrid control schemes have been reported to exhibit problems in mode 

switching [Mayeda and Ikeda, 1993] and force control stability [Steven, 1989]. 

2.2.3 IMPEDANCE CONTROL 

Impedance control was first proposed by Hogan [1985]. The technique differed from 

previous schemes in that it did not require the specification of the end-effector force, 

but instead used the relationship between the end-effector position and force (known 

as the 'impedance' or mechanical stiffness). However, the control scheme was 

practically difficult to implement since it required complete knowledge of the robot 

dynamic model. 

Impedance control has been proposed for applications as diverse as force application 

using dextrous space manipulators [Colbaugh et al., 1992] and force tracking [Lasky 

and Hsai, 1991]. 

Kazerooni, et al. [1986] proposed a robust impedance controller which was achieved 

by choosing state feedback and force feedforward gains. Anderson and Spong [1988] 

proposed a hybrid impedance control scheme that combined an impedance controller 

with a hybrid position/force controller. 

The main limitation of impedance control for compliant motion is that the 

manipulator-environment contact force is controlled indirectly by an appropriate 

choice of position trajectory [Seraji et al., 1993]. However, in practical situations, the 

environmental parameters (i. e. stiffness and exact location of the contact surface) 

cannot be accurately specified, and as a result, impedance based force control schemes 
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exhibit poor force tracking characteristics [Jankowski and ElMaraghy, 1992]. 

Impedance control and hybrid control principles are highly significant in that their 

control structure is at the heart of the vast majority of intelligent and adaptive force 

control methodologies. 

2.2.4 POSITION BASED FORCE CONTROL 

A position based force control scheme was proposed by Maples and Becker [1986]. 

The control scheme used a position controlled manipulator (the vast majority of 

industrial robots, as supplied by the robot manufacturer, are position controlled 

devices) which took its positional demands from an outer force controlled loop. A 

compliant force sensor was added to the robot end-effector and the measured force 

was used to generate a force error. A model of the force sensor was used to convert 

the force error into an increment in the positional demand, and this was then passed to 

the positional control loop. The force control scheme was implemented on an Adept 

One robot and the resulting force response was stable but oscillatory. However, 

position based force control has been shown to be very sensitive to compliance in the 

manipulator/contact environment [Elosegui et al., 1990]. 

2.2.5 INTELLIGENT FORCE CONTROL 

There have been several attempts at controlling robotic interaction using artificial 

intelligence (Al) based control schemes. Two main Al methodologies have been 

employed, namely Artificial Neural Network (ANN) and Fuzzy Logic based force 

controllers. 
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Fukuda et al. [1990] proposed a Neural Servo Control scheme that had time delay 

elements in the networks first hidden layer node (two hidden layers were used) so that 

the network could learn the dynamics of the robot and the contact object. A 'fuzzy 

turbo', which is based on fuzzy set theory, was used to avoid stagnation during 

training. The proposed scheme used the 'hybrid' control structure proposed by Raibert 

and Craig [1981] with PID control applied to the position control loops and PI 

control applied to the force control loops. The ANN was used to decrease the error 

between the output of the hybrid controller and the torque measured at the point of 

contact. Simulation results applied to a two dimensional robot manipulator showed 

that the system could acquire and maintain a specified contact with the environment. 

Tokita et al. [1991 ] proposed an ANN based 'hybrid' force control scheme that used a 

neural network to adjust the PID controller gains depending on the contact object 

type (i. e. soft or hard) and manipulator orientation. Simulation and experimental 

results were presented for a two degree of freedom mechanical manipulator. Results 

presented show that stable force control with both 'soft' and 'hard' objects was 

achieved using this control strategy. 

Yabuta et al. [1990] proposed an ANN based control scheme that used a neural 

network to directly control a single degree of freedom force control servomechanism. 

Experimental results presented show that the system can acquire a specified contact, 

although stability problems were highlighted. 
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Pei [1992] proposed an alternative direct ANN force control strategy based on two 

cascading neural networks. Simulation results for a two link robot show that the 

force control scheme could acquire and maintain a desired contact with the 

environment. 

Hollinger et al. [1993] developed a fuzzy logic controller that was used for the `hard 

contact' problem. The control scheme was implemented on a MERLIN 6540 robot 

and the robustness of the controller was demonstrated by commanding the robot to 

follow a spiral trajectory on a table top while maintaining a four pound contact force. 

The force response was stable but oscillatory. 

Dote et al. [1990] used a fuzzy force controller to control the grasping force of a 

manipulator hand. The control scheme was tested in its ability to apply forces to four 

objects of differing rigidity: a steel ball, a tennis ball, a sponge ball, and a soft tennis 

ball. The results presented show that the control scheme could acquire a desired 

contact with each of the objects. 

2.3 CONTACT MODELLING 

2.3.1 THE NON-RIGID CONTACT MODEL 

Compliant (non-rigid) contact occurs when a robot end-effector (or, most frequently, 

tooling attached to the end effector) comes into contact with a surface/object that 

deforms upon contact (generally assumed to be local elastic deformation) and/or the 

compliances in the robot/force sensor/tooling have not been completely absorbed. 
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When in the compliant contact phase, the end-effector is not constrained in the 

direction of the sensed force, and can therefore move further into the contact surface, 

thereby increasing the contact force. 

Whitney [1987] reported that the control of robots in contact with an environment 

requires at least the management of compliances rather than inertias. However, the 

task of compliance modelling and management is non-trivial since compliance modes 

may exist in the robot structure (some robots are designed to have mechanical 

flexibility [Surdhar et al., 1996]), force sensor [Volpe and Khosla, 1994], tooling, 

and/or the contact environment itself. Each of the compliance modes may have non- 

linear and time-variant characteristics and the presence of several compliance modes 

thus makes accurate modelling of the total `system' compliances a non-trivial task. 

A contact model that is frequently used to represent contact with compliant 

environments is based on the spring damper equation: 

F=k1Xenv+k2x cnv (2. i) 

where F is the contact force, kl is the contact environment spring coefficient, k2 is the 

contact environment damping coefficient, x,,,, is the depth into the environment, and 

x m� is the end-effector velocity through the environment. 

The contact model shown in equation 2.1 is frequently used to represent not only 

compliance modes in the contact environment, but also compliance modes that may 

exist in the robot structure and force sensor [Sinha et al., 1993]. This is illustrated in 

figure 2.1 which shows compliance modes in the contact environment, force sensor 
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exist in the robot structure and force sensor [Sinha et al., 1993]. This is illustrated in 

figure 2.1 which shows compliance modes in the contact environment, force sensor 

and a lumped mass/spring/damper robot model. 

X, X_ 

F 

Figure 2.1 Compliance modes in the robot structure, force sensor, and contact 
environment. KR, Ks, KE are spring coefficients of the robot, force sensor, and contact 
environment respectively. BR, BS, BE are damping coefficients of the robot, force 
sensor, and contact environment respectively. MR and Ms are the respective masses of 
the robot link and the force sensor. Xl and X2 are the respective displacements of the 
robot end-effector and force sensor that resulted from contact with the environment. 

Volpe and Khosla [1994] proposed a fourth order model that considered compliance 

modes in the robot arm, force sensor, and contact environment. The `plant' model 

was validated experimentally and showed that the under `controlled' conditions, the 

model parameters could be determined to a reasonable degree of accuracy. However, 

it is worth noting that for practical contact tasks it is difficult to estimate the contact 

model parameters in real time [Mayeda and Ikeda., 1993]. 
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Forces generated by contact actually include impact dynamics, inertial forces, 

frictional forces, and reaction forces which are normally modelled as elastic 

deformation. However, at low speeds typical of robot contact, the dynamics are 

usually ignored and frictional forces are assumed to be proportional to elastically 

induced normal forces [Whitney, 1987]. Thus the contact model in equation 2.1 is 

frequently reduced to the linear spring contact model shown in equation 2.2. 

F= klx,.,, (2.2) 

where F is the contact force, kl is the contact environment spring coefficient, and x,.,, 

is the depth into the contact environment. 

2.3.2 PRACTICAL LIMITATIONS OF NON-RIGID CONTACT MODELS 

Hardness profiles of non-rigid contact materials [Caldwell and Gosney, 1993] have 

illustrated that many practical non-rigid materials have non-linear contact 

characteristics that tend towards positional saturation as the depth into the material 

increases (spring hardening in the contact environment). This is illustrated by the 

hardness profile shown in figure 2.2, where a tendency towards positional saturation 

can be seen to occur at a depth of Dsat. At this point, the contact phase changes from 

compliant contact to rigid contact and the robot cannot move further into the contact 

environment. Control of contact in the rigid contact phase is beyond the scope of this 

work. 
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Figure 2.2 Hardness profile for a single non-rigid environment 

It is worth noting that the contact environment's mechanical properties may vary not 

only with material type, but other factors such as material thickness, flexing, 

temperature, and humidity can significantly affect the contact environment's 

mechanical characteristics. Thus, many ̀ real' contact environments have not only non- 

linear characteristics, but, depending on the contact task and the environmental 

conditions in which the task is to be performed, they may also have time-varying 

properties [Guglielmo and Sadegh, 1994]. In light of these considerations, the fixed 

parameter linear contact model is unrepresentative of contact with many material 

types, since contact non-linearity, positional saturation, and variance in the contact 

characteristics are not represented in the model 

2.3.3 ENVIRONMENTAL PARAMETER IDENTIFICATION 

An and Hollerbach [1987] recognised the possibility of explicitly identifying the 

environment stiffness for tuning a force controller. Fukuda and Kitamura [1986] used 

a continuous time model reference adaptive system to identify object dynamics, but 

21 



Overview of Force Control Methodologies and Contact Models 

only considered a fixed linear model for a one degree of freedom prismatic 

mechanism. Yabuta and Yamada [1990] applied discrete time model reference 

adaptive control to the force control of a fixed linear single degree of freedom 

manipulator model and utilised identification of the object stiffness [Carelli et al., 

1990]. 

Lu and Goldberg [1995] proposed an impedance controller that estimated the stiffness 

parameter of a linear model of the contact environment. However, they reported that 

it was difficult to obtain exact environmental parameters and that the environment 

should be known as precisely as possible to reduce force error. 

Venkataraman et al. [1992] addressed the problem of identifying uncertain 

environments by extending the contact model shown in equation 2.1 to include 

characteristics of environmental spring hardening and shock absorption. The work 

was targeted at controlling the contact force during rock coring and assumed that the 

dynamics of the contact environment had a fixed nonlinear structure. The form of the 

environmental model adopted was: 

F=k1x,. � °+ k2 x cav" (2.3) 

where F is the contact force, kl is the contact environment spring coefficient, k2 is the 

contact environment damping coefficient, x,.,, is the depth into the environment, i,. ' 

is the end-effector velocity through the environment and a and b were exponents that 

were included to represent spring hardening and shock absorption effects respectively. 

Compliance modes in the robot structure and tooling were not considered. The 

control scheme used a neural network to estimate the contact parameters in real time 

with a reasonable degree of success. 
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Compliance modes in the robot structure and tooling were not considered. The 

control scheme used a neural network to estimate the contact parameters in real time 

with a reasonable degree of success. 

2.4 SUMMARY 

Although there has been a significant amount of research activity in the area of robot 

force control, there still remains a need for fast, stable, robust, and widely applicable 

force control algorithms. A large proportion of `new' and `intelligent' force control 

strategies are based around either hybrid control or impedance control structures, 

with each scheme having their own inherent limitations. 

Conventional hybrid control schemes suffer from a range of problems, in particular 

the switching of position and force control modes [Mayeda and Ikeda, 1993]. 

Impedance control schemes have practical limitations in that the manipulator- 

environment contact force can only be controlled indirectly by an appropriate choice 

of reference position trajectory, which is difficult to specify owing to uncertainty in 

the contact environment model form parameters. Position based control schemes have 

been shown to be highly sensitive to unmodelled compliance in the manipulator and/or 

contact environment. 

Intelligent force control schemes generally extend traditional force control 

methodologies and the integration of `intelligence' into traditional force control 

structures shows potential for producing practically useful force control 

methodologies. 
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Characteristics and limitations of frequently adopted contact models that are used to 

represent contact with non-rigid environments were presented and previous 

investigations of contact model parameter identification were highlighted. 
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CHAPTER 3 

ARTIFICIAL NEURAL NETWORKS 

3.1 INTRODUCTION 

This chapter introduces the main characteristics of ANNs including the network 

architectures and training methodologies that were considered during the 

development of the intelligent force control scheme's ANN. The main emphasis of 

this chapter is the presentation of the structure, characteristics, and parameters of the 

Radial Basis Function network, the network architecture that was used to incorporate 

knowledge of idealised reaction into the force control scheme. Two methods of RBF 

centre placement/optimisation are introduced, namely random placement of the RBF 

centres and k-means clustering. 

3.2 ARTIFICIAL NEURAL NETWORKS 

ANNs were developed in an attempt to reproduce the learning capability and 

adaptability of the human brain, and they have been successfully used for a variety of 

applications including speech recognition [Christodoulou et al., 1996; ], financial 

forecasting [Dutta and Shekhar, 1988; Malliaris and Salchenberger, 1994] and 

process modelling and control [Doherty et al., 1997; Zamarreno and Vega, 1996]. 
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The human brain has been shown to comprise a highly interconnected array of 

processing units called `neurons' (approximately 1010 neurons). Biological neurons 

receive inputs from sensory cells and a single neuron may be connected to as many as 

tens of thousands of other neurons [Patterson, 1996]. The neuron is said to `fire' if 

the input stimulus is sufficient to overcome the neurons threshold. Although not fully 

understood, human learning and memory has been attributed to the formation and 

strengthening of connections between the neurons, and these connections are formed 

based on input stimulus. 

Information in neural networks is not stored explicitly as in traditional computing 

techniques, but instead the input/output (I/O) relationship of the training data set is 

stored in interconnection weights that exist between the networks nodes. The 

network acquires knowledge of the 110 mapping via training, whereby the network 

training data is presented to the network for several complete iterations of the training 

data set. Network weights are adjusted by an optimisation algorithm that attempts to 

minimise the sum of the squared network prediction errors over the complete training 

data set. Several ANN architectures have been proposed, including: 

" Multi-Layer Perceptron [Rumelhart et al., 1986] 

" Radial Basis Function network [Broomhead and Lowe, 1988; Moody and Darken, 

1989] 

" Recurrent Network [Kodogiannis, 1994] 

9 Kohonen Network [Kohonen, 1990] 
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3.3 THE MULTI-LAYER PERCEPTRON 

Limitations in the usefulness of the single neuron model proposed by McCulloch and 

Pitts [1943] were realised with the publication of `Perceptrons' (a term given to a 

logical thresholding neuron) [Minsky and Papert, 1969]. However, such limitations 

were overcome with the development of the backpropagation algorithm [Rumelhart 

et al., 1986] which allowed neurons to be interconnected to form arrays or networks. 

The backpropagation algorithm allowed a `neural network' to be trained to model 

complex I/O mappings. 

The Multi-Layer Perceptron (MLP) trained using the backpropagation algorithm is 

one of the most frequently used neural network architectures. The feedforward 

structure of the MLP network is illustrated in figure 3.1, which shows an MLP 

architecture that comprises a single hidden layer. 
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Figure 3.1. Multi-Layer Perceptron.   passive unit " active processing unit. 
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As its name suggests, the MLP comprises several layers of neural processing units 

which are highly interconnected to form a network. The input neurons are passive and 

do not perform any processing on the inputs (i. e. they pass information directly to the 

hidden neurons via connection weights). The hidden layer neurons pass information to 

the next layer via a second set of connection weights. Both the hidden layer and 

output layer neurons are active and they process information through non-linear 

activation functions. Although the MLP is a widely used network architecture, MLPs 

trained using the backpropagation algorithm have several shortcomings, namely: 

"a slowness to converge. The non-linear to-and-fro nature of the backpropagation 

algorithm results in long training times. 

"a tendency to get stuck in local minima. With the NLP network, there is no 

guarantee that the global minimum will be reached. 

3.4 THE RADIAL BASIS FUNCTION NETWORK 

3.4.1 NETWORK STRUCTURE 

The Radial Basis Function (RBF)-network is an alternative network architecture that 

has been widely used for applications such as face recognition [Howell and Buxton, 

1996] and automated vehicle control [Gorinevsky et al., 1994]. Although defined as a 

`neural network', the RBF network does not utilise the neuronal processing units 

defined by the McCulloch/Pitts neuron model. Instead, the RBF `nodes' perform a 

`euclidean measure' between the network input vector and a parameter that is known 

as the nodes ̀centre'. Additionally, the RBF architecture differs from the MLP in that 
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it comprises a single layer of non-linearities and a linear output layer. The RBF 

network structure is illustrated in figure 3.2. 
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Figure 3.2 The Radial Basis Function network 

The function of the input layer is to distribute the inputs unaltered to the hidden layer. 

Weights on links between the input layer and the hidden layer are set to unity and 

these weights are not updated during network training. The hidden layer comprises an 

array of nodes each of which contains a centre parameter vector. Each node 

calculates the Euclidean distance between the nodes centre vector and the network 

input vector and the result is passed through a non-linear activation function. The 

network outputs are computed as the weighted sum of the hidden layer node outputs. 

The input-output processing performed by the RBF network for the jth output node 

is expressed mathematically by equation 3.1. 

(3.1) +"'i; oi(IX-c, 11) 
i=1 

Non - Linear Functions 

Weights 

OUTPUT I 

29 



Artificial Neural Networks 

where x is the input vector, ci and 4i(*) are the centre vector and output of the ith 

hidden node respectively, wlj is the weight connecting the ith hidden node to the jth 

output node, nh is the number of hidden layer nodes, II*II denotes the Euclidean norm, 

and ßj is a bias parameter for thejth output node. 

3.4.2 RBF ACTIVATION FUNCTIONS 

Several non-linear activation functions have been proposed for use in RBF networks, 

including: 

" the Gaussian Function 

2 

q(z) = exp ZP (3.2) 

" the Thin Plate Spline 

q$(z) = Z' log(z) (3.3) 

" the Multi-Quadratic Function 

cb(z)=(z2+P )V2 (3.4) 

9 the Inverse Multi-Quadratic 

O(z) =12 �2 
(3.5) 

(z2+p ) 

where O(z) is the non linear function output, z is the function input, and p is a 

parameter called the width. 
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Several algorithms for selecting appropriate values for the RBF centre width have 

been proposed including the p-nearest neighbour algorithm [Leonard and Kramer, 

1991 1 and genetic algorithms [Kuo and Melsheimer, 1994]. However it has been 

reported that for non-linear function approximation the choice of basis function is not 

crucial to the performance of an RBF network [Chen et al., 1990]. 

The network output layer is linear in its parameters with regard to the network 

weights thus, for a given set of hidden node centre parameters, the output layer 

weights can be computed using established linear regression algorithms. A recursive 

least squares algorithm [Ljung and Soderstrom, 1983] is frequently used for 

computing the weights during network training. Methods for partitioning the network 

training vectors to ensure that the network training data set is well conditioned (and 

therefore numerically robust) include LU factorisation [Bierman, G., 1977] and UD 

factorisation [Niu and Fisher, 1991 ]. 

3.4.3 RBF CENTRE PLACEMENT 

A factor that can significantly influence RBF network performance is the placement of 

the hidden layer node centres. Researchers have reported that the RBF centres should 

sample the network input domain [Moody and Darken, 1989] but, at present, a 

method for initialising RBF centres that guarantees optimum centre placements does 

not exist. 
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Several algorithms for RBF centre placement have been proposed, including Random 

Placement [Broomhead and Lowe, 1988] and K-means Clustering [Chen and Billings, 

1992; Hofland et al., 1992], two centre placement methodologies that were 

investigated during the development of the intelligent force control scheme's ANN. 

Alternative centre placement algorithms that have been proposed include: 

" Orthogonal Forward Regression [Chen et al., 1992] 

" Stepwise Regression [Pottmann and Seborg, 1992] 

" Mean-Tracking Clustering [Warwick et al., 1995] 

" K-medeoids clustering [Kaufman and Rousseeuw, 1990] 

9 Branch and Bound [Eikens and Karim, 1994]. 

3.4.3.1 RANDOM PLACEMENT OF THE RBF CENTRES 

The nature of the error surface that the optimisation algorithm searches during 

network training is dependent on the placement of the RBF centres. Random 

placement of the RBF centres involves the random placement of centres within the 

training data set input domain. However, RBF networks that have centre 

initialisations bounded by the input domain may not yield networks with optimum 

performance. Additionally, the use of a single centre randomisation is unlikely to 

produce an optimum centre placement. 

32 



Artificial Neural Networks 

3.4.3.2 K-MEANS CLUSTERING 

One popular approach to determining the network centres is to use a learning method 

where the RBF centres are initialised to random points within the network training 

data set input domain and a clustering algorithm, such as k-means clustering, is then 

applied to place the centres in more optimal positions [Moody and Darken, 1989]. 

The k-means clustering algorithm partitions the input data set into k clusters and 

yields k cluster centres by minimizing the total squared error incurred in representing 

the data set by the k cluster centres. The method of using a recursive version of the k- 

means clustering algorithm is presented below: 

" Initialise Centres to Random Values within the Data Set 

5(O), 1 <J < nh (3.6) 

Following the initialisation step, the following computational steps are performed at 

each sample t: 

" Compute Distances and find Minimum Distance 

di(t)= IIx(t) -cj(t-1)II, 1 <j<nh (3.7) 

kds: =arg[min{dd(t). 1 <j< nb}] (3.8) 
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" Update Centres and Re-Calculate the k"' distance 

c. 7(t)=c, (t-1), 1 <j<nhandj k (3.9) 

CA(t)=ck(t-1)+a, (t)(x(t) -ck(t-1)) (3. I ) 

dk(t)=IIX(t) -ck(t)II (3.11) 

where nh is the number of hidden layer nodes and the learning rate a, is : 

ap(t) = ßa,: (t-1) (3.12) 

and ß is the decay rate. 

Figure 3.3 illustrates the k-means clustering algorithm redistributing the centres in an 

attempt to find more optimal centre positions. The centres are moved towards the 

input data space by minimising the sum of distances squared from each data point to 

the nearest centre. 
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Figure 3.3. Redistribution of the RBF centres using the K-means Clustering 
algorithm.   Input data points   Initial centres placement   Final Centre position 
after k-means clustering. 
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It should be noted however that the k-means clustering does not guarantee that the 

final centre positions are optimally placed. Additionally, the fmal placement of the 

centres is dependent on the centre initialisation. 

3.5 NETWORK TOPOLOGY SELECTION 

Selecting a network topology to perform a particular UO mapping requires choices to 

be made regarding: 

" the number of network inputs and outputs. 

" the number of hidden layers. 

" the number of nodes used in each hidden layer. 

" the type of activation function. 

The number of inputs and outputs used in a network are dependent on the desired I/O 

mapping and the 110 structure of the intelligent force control scheme's ANN is 

introduced in Chapter 4. 

Although networks with more than one hidden layer have been reported, it has been 

shown that networks that comprise a single hidden layer can sufficiently approximate 

most functions to a high level of precision provided that the hidden layer nodes 

contain non-linear activation functions [Hornick et al., 1989; Cybenko, 1989] and an 

adequate number of hidden layer nodes are used. 
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A factor that can significantly influence RBF network performance is the number of 

nodes included in the network's hidden layer. If too few hidden nodes are used, then a 

network's ability to model a non-linear mapping between the input and output 

variables may be limited. Whereas, the use of too many hidden neurons can result in 

over parameterisation of the network, which can result in the learning of the process 

noise characteristics and consequently poor generalisation properties are exhibited. At 

present, empirical methods for selecting an optimum number of hidden layer nodes to 

perform a particular input-output mapping do not exist. 

3.6 DURATION OF NETWORK TRAINING 

Training a neural network to perform an UO mapping involves the presentation of the 

complete training data set to the network for several epochs. An optimisation 

algorithm adjusts the network weights in an attempt to map the data set inputs to the 

corresponding data set outputs, for the complete data set. Updating of the weights is 

performed after each epoch by the optimisation algorithm. 

If the neural network experiences too few passes of the training data set, the network 

will not acquire suitable knowledge of the data sets I/O mapping. As a result, 

estimations with the training data set will be poor. However, if the neural network 

experiences too many passes of the training data set, network estimations will be 

accurate with the training data set but poor with data not used to train the network 

[Evans, 1994]. Figure 3.4 illustrates the effect of overtraining on the network output 

Mean Square Error (MSE). 
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Figure 3.4 Illustration of ANN overtraining   Training data set   Test data set 

Initially a large MSE is found since the network has not experienced enough passes of 

the training data set and therefore has insufficient knowledge of the training data I/O 

mapping. With further training, the MSE obtained with the training data set can be 

seen to decrease (although the decrease is minimal after a certain number of training 

epochs). However, network estimations with `unseen' data can be seen to deteriorate 

(as characterised by an increase in MSE). Network `overtraining' occurs because the 

weights have been adjusted such that the network has `over-fitted' the training data 

set and the network has `memorised' the specific data vectors in the training data set. 

A `correctly' trained network does not store knowledge of individual data vectors, 

but instead learns the overall I/O relationship of the training data set. Generalisation 

to unseen data sets is of paramount importance since a network must be capable of 

performing accurate estimations with data not represented in the network training 

data set. 

37 



Artificial Neural Networks 

3.7 ARTIFICIAL NEURAL NETWORK CHARACTERISTICS 

Several characteristics make ANNs attractive tools for performing the intelligent 

force control schemes 110 mapping, namely: 

i. an ability to model complex non-linearities using representative input-output 

data. 

Ia parallel processing architecture that allows for fast, real time operation (in 

hardware). This factor is highly significant since practical force control 

strategies must be capable of sensing and reacting to the contact environment in 

`real time'. 

iii. an ability to operate in noisy environments. 

iv. the ability to generalise to unseen inputs within the network training data range. 

v. the ability to learn by example. 

3.7.1 ARTIFICIAL NEURAL NETWORK MODELLING OF NOW 

STATIONARY SIGNALS 

Although ANNs have several characteristics that make them desirable for modelling 

poorly defined and/or non-linear systems, it has been difficult to apply them to 

nonstationary (i. e. time-varying) signals. 

Neural adaptation to time-varying domains requires an additional mechanism to 

enable the ANN to model systems with inherent time-varying characteristics [Levin, 

1993]. This generally requires that the ANN learning process is kept active 

throughout the control operation [Takahashi, 1993]. However, an approach of `on- 

line learning' is not feasible for the intelligent force control scheme since: 
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" for many practical force application tasks, the speed of the variation in the contact 

environments mechanical properties does not allow for the network weights to be 

updated in real time. 

9 on-line network training results in a ̀ forgetting' of previous knowledge when new 

knowledge is attained by the network. The non-cyclic nature of most force 

application tasks and the non-predictable nature of `real world' environments 

requires that the force control scheme's ANN has `metaknowledge' of contact 

with a range of environments with differing degrees of rigidity. The network can 

then instantaneously draw upon this knowledge when contact with the 

environment is sensed. 

An investigation of the storage of knowledge of idealised reaction to a range of non- 

rigid environments is presented in Chapter 6. 

3.8 SUMMARY 

The network architectures that were considered during the development of the 

intelligent force control scheme were introduced. The emphasis of this chapter was 

the presentation of the structure, parameters, and characteristics of the Radial Basis 

Function network, the network architecture that was used for the intelligent force 

control scheme. 

Factors that were considered in the choice of network architecture were presented. 

Methods of initialising the RBF centres were introduced, namely random placement 

of the RBF centres and k-means clustering. 
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The main characteristics of ANNs were highlighted, several of which made ANNs 

ideal `tools' for incorporating knowledge of idealised reaction with a range of 

environments into the intelligent force control scheme. The suitability of ANNs for 

modelling non-stationary signals was also discussed. 
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CHAPTER 4 

INTELLIGENT FORCE CONTROL SCHEME AND 
SIMULATION DEVELOPMENT 

4.1 INTRODUCTION 

This chapter introduces the development of the intelligent force control scheme. 

Included is the definition of the ANN input/output structure (i. e. the selection of the 

ANN inputs and outputs) and the ANN training/test data generation methodology. 

The latter required the use of a contact model to describe the `behaviour' of the 

contact environment during contact. The ANN training/test data sets were generated 

from the parameterised contact model using a novel data extraction technique. 

Methodologies that were used for training the intelligent force control scheme's ANN 

are introduced. 

A simulation of a single degree of freedom (DOF) position controlled mechanical 

manipulator is developed along with the method by which the `trained' ANN was 

incorporated into the position based control scheme. The simulation was developed in 

the Advanced Continuous Simulation Language (ACSL) so that the force control 

system's ability to apply forces to a range of non-rigid environments could be 

investigated. 
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4.2 INTELLIGENT FORCE CONTROL SCHEME DEVELOPMENT 

4.2.1 CONTROL SCHEME OBJECTIVES 

The intelligent force control scheme objectives were to: 

1. apply forces to a range of non-rigid environments, each with differing degrees of 

rigidity. This was to be achieved without a priori knowledge of the contact 

environment's mechanical properties. A force application range of 1 to 15N was 

chosen for the investigation. Contact with rigid environments was not within the 

scope of the investigation. 

2. maintain performance when noise was superimposed onto the force and depth 

measurements. 

3. maintain a desired contact with a range of non-rigid environments when the degree 

of environmental rigidity changes. 

4.2.2 FORCE CONTROL SCHEME RATIONALE 

In the case of contact with non-rigid environments, it is possible to control the 

contact force by regulating the end-effectors position [Zhou, 1991]. Movement into a 

non-rigid environment results in an increase in the contact force and conversely 

movement out of the environment results in a decrease in the contact force. However, 

the degree of movement required to achieve a required force is dependent on the 

environments mechanical properties, which have been shown to have a significant 

effect on the quality of the force control. The mechanical properties of `real' contact 

environments have non-linear and, for certain tasks, time-varying characteristics 

which are difficult to accurately model. Additionally, the contact characteristics are 

unknown prior to contact. 
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The intelligent force control scheme uses an Artificial Neural Network (ANN) to vary 

the position of the robot end-effector relative to the contact surface such that the 

contact force is as required. The ANN's role in the intelligent force control scheme is 

illustrated in figure 4.1. 

1. ANN receives 
force demand E ANN N 

E 
F 
F 
E 
C 

2. ANN senses 
the environment 

3. ANN Adjusts 
the end effector 
position to achieve 
the desired force 

Direction of ANN 
controlled motion 

CONTACT ENVIRONMENT 

Figure 4.1 Role of the ANN in the intelligent force control scheme 

To achieve its goal, the ANN must be capable of learning `idealised reaction' to a 

range of environments. This is further explained in section 4.3.2. 

4.2.3 DEFINING THE ANN INPUT/ OUTPUT STRUCTURE 

In order that the ANN could be trained, it was necessary to define the network 

input/output (I/O) structure. Initially, several candidate ANN inputs were considered 

based on physical quantities that can be practically measured (or derived from such 

measurements) at the point of contact. The quantities that were considered were: 
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" contact force 

" contact torque 

" displacement (depth) into the contact material 

" velocity through the material 

The ANN input-output structure that was adopted is shown in Figure 4.2. The ANN 

comprises three inputs (force setpoint, sensed force, and depth into the environment) 

and a single output (increment in positional demand). 

FORCE r ---- SETPOINT Lýý, 

SENSED 
FORCE E7Jý, -"- i 
DEPTH 

ARTIFICIAL 
NEURAL 

NETWORK 

CHANGE 
'-- IN 

POSITION 

Figure 4.2 Intelligent force control scheme's ANN input/output structure 

Practically, the contact force could be measured directly by a force/torque sensor 

attached to the robot end-effector. An alternative method of force sensing is the 

monitoring of motor currents which has been shown to be inaccurate and dependent 

on robot loading and configuration [Luk, 19911. Thus the directly measured contact 

force can be used as an ANN input. 
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Depth measurements can be obtained by using a backward difference between the 

present position into the environment and the point at which the contact was 

originally sensed. These positions can be calculated relative to the robots reference 

frame using a task aligned reference frame. The backward difference between these 

two stored values would give an absolute measurement of the depth at a given 

instant. This is illustrated by figure 4.3 which shows contact at two discrete points in 

time. 

Task Aligned 
Reference Frame 

Ziask 

Robot Reference 
Frame 

Z 
ref 

Contact first sensed at 
point. Zero depth refer 
point = xo 

X 
ref 

At time t seconds after Y 
ref 

contact occurred 

Contact environment 

Figure 4.3 Depth measurement using backward difference 

It should be noted that the development of `real time' depth measurement techniques 

was not within the scope of this work. 
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4.3 NETWORK TRAINING DATA GENERATION 

4.3.1 DATA GENERATION METHODOLGY OVERVIEW 

The ANN training data sets were generated using a novel 3 stage data extraction 

procedure which is illustrated in figure 4.4. 

SELECT CONTACT MODEL 

SELECT CONTACT MODEL PARAMETERS 

EXTRACT DATA FROM MODEL 

Figure 4.4 ANN training data extraction procedure 

The first stage required that a contact model was selected. The task of contact model 

selection was undertaken with consideration of the limitations of the most frequently 

adopted contact models that was presented in Chapter 2. The data that was used to 

train the ANN was generated from the parametensed contact model using a novel 

data extraction technique which is described in section 4.3. 

4.3.1.1 CONTACT MODEL SELECTION 

The contact model that was initially considered to model compliance in the contact 

environment was based on the non-linear contact model proposed by Venkataraman 

et al., [1992]: 
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F=klxat�° +k2zCnb (4.1) 

where F is the contact force, kl is the contact environment spring coefficient, k2 is the 

contact environment damping coefficient, xm� is the depth into the material, z .� is the 

velocity through the environment, and a and b are exponents used to represent spring 

hardening in the contact environment and shock absorption respectively. 

It was decided to reduce the contact model shown in equation 4.1 to generate static 

contact data by setting the damping coefficient (i. e. k2) equal to zero. The static 

investigation can be justified by the fact that during the execution of contact tasks, 

end-effector velocities are significantly lower than for unconstrained motion 

[Whitney, 1987] and, as such, the dynamic components of the contact model will be 

small in relation to the static model components. 

The effects of spring hardening in the contact environment were modelled as being 

proportional to the square of the depth into the environment. Separate coefficients 

were used for the spring and spring hardening model components. Hence, the non- 

linear contact model structure that was adopted for the intelligent force control 

scheme investigation was: 

F=klx,,, � + k3x,,, �2 (4.2) 
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where F is the contact force, kl is the contact environment spring coefficient, k3 is 

the contact environment spring hardening coefficient, and x,,, is the depth into the 

environment. 

4.3.1.2 GENERATING SIMULATED ENVIRONMENTS 

Simulated contact environments were generated to represent a range of non-rigid 

environments, each with differing degrees of rigidity. Twelve simulated environments 

were generated in total by varying the contact model coefficients (i. e. the values of k, 

and k3) in equation 4.2. Six of the simulated environments were to be used as the 

source of data used to train the ANN and the remaining six data sets were to be used 

as the source of data. used to test the network estimations with `unseen' 

environments. The twelve sets of simulated contact environment parameters are 

tabulated in Appendix A. 

4.3.1.3 DATA EXTRACTION 

Once a contact model form and parameters were selected, it was possible to extract 

the ANN training data from the parameterised contact model. The data extraction 

technique involved calculating the change in position, Spos, that would make the 

sensed force equal to the force setpoint, for a range of force setpoints and sensed 

forces. The force application range was chosen to be between IN and 15N. However, 

data for contact up to 20N was included to ensure that ̀ bounded' estimations were 

obtained should the force control system ̀overshoot' the upper limit of the force 

application range (i. e. >15N). 
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The data extraction technique is illustrated in figure 4.5 which shows the hardness 

profile for a single non-rigid environment. 

Sensed Force(N) 

15N 

5N 

Depth(mm) 

1-effector 

Figure 4.5 Data extraction from a hardness profile 

In the example shown, the desired contact force (i. e. the force setpoint) is 15N 

which, for this environment, would occur at a depth of 3mm into the environment. 

The sensed force after the initial impact is 5N which, for this environment, would 

occur at a depth of 2mm into the environment. Thus the robot end-effector must be 

moved 1 mm further into the contact environment to make the desired contact. The 

idealised positional increment (which is also referred to as ̀ idealised reaction'), Spos, 

was tabulated for a force setpoint/sensing range of 1N to 20N, with both ranges being 

incremented in IN steps. Thus the form of the ANN training data sets is illustrated in 

figure 4.6. 
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FORCE 
SETPOINT(N) 

SENSED 
FORCE(N) 

DEPTH(mm) CHANGE IN 
POSITION(mm) 

1 1 0.75 0 
2 1 0.75 1.75 
3 1 0.75 2.22 

20 20 5.92 0 

Figure 4.6 Illustration of ANN training data set 

Two data sets were extracted from each of the simulated environments: a network 

training data set and a test data set that comprised data extracted at random from the 

parameterised contact model, across the force application range. Since the data 

extraction procedure was a laborious task a computer program was developed, using 

the Pascal programming language, to extract the ANN training/test data from the 

parameterised contact model. Twelve ANN training data sets and twelve test data 

sets were generated in total. 

4.3.2 NATURE OF THE ANN INPUT-OUTPUT MAPPING 

Although the ANN maps 3 input variables (2 force quantities and one positional 

quantity) to a single output (a positional quantity), the ANN output can be 

considered as being a function of two distinct input pairings. By considering the ANN 

input-output structure, the increment in the end-effector position (i. e. the ANNs 

output) can be seen to be a function of : 

" the magnitude and direction of the force error. This is characterised by the 

difference between the input pair: sensed force and force setpoint. 
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0 the contact environment rigidity. This is characterised by the non-linear 

relationship between the input pair: sensed force and depth into the environment. 

Thus the knowledge contained in the training data set that is extracted from a 

particular environment comprises knowledge of `idealised reaction' to the 

environment, across the force application range represented in the training data set. 

This knowledge is stored in the network weights when the ANN is trained. 

4.4 ARTIFICIAL NEURAL NETWORK DESIGN 

4.4.1 ANN ARCHITECTURE SELECTION 

Once the ANN I/O structure had been defined, it was necessary to decide upon the 

network type. The Multi-Layer Perceptron (MLP) trained using the back-propagation 

algorithm was initially considered, but the MLP is notoriously slow to converge and it 

does not always converge to a global minimum. The Radial Basis Function (RBF) 

network is an alternative network architecture and the RBF's main characteristics 

were introduced in Chapter 3. The RBF network is fast to converge with training 

times a fraction of those required to train a similarly sized MLP. This can be 

attributed to the fact that the RBF output layer is a set of linear combiners that uses a 

linear regression algorithm, a factor which guarantees fast convergence that always 

reaches the global minimum. Additionally, the RBF network has been shown to have 

excellent non-linear input-output mapping capabilities and as such, the RBF network 

was used throughout the investigation. 

51 



Intelligent Force Control Scheme and Simulation Development 

4.4.2 RBF ACTIVATION FUNCTION SELECTION 

Once the network type had been decided, it was necessary to select the non-linear 

activation function to be used in the RBF hidden layer nodes. Several non-linear 

functions have been proposed (e. g. Gaussian, multi-quadratic, etc. ) and all but one 

(the thin plate spline) contain an additional parameter known as the 'width'. Chen and 

Billings [1992] reported that the type of non-linear function is not critical, and as 

such, the thin plate spline was chosen since it eliminates the need to specify the width 

parameter. The thin plate spline activation function can be mathematically expressed 

as: 

O(z) = z21og(z) 

where 0 is the output of the non-linear function and z is the function input. 

4.4.3 ANN TRAINING ENVIRONMENT 

(5.3) 

The RBF network training and testing was performed using a software package that 

was specifically developed for the investigation. The package was developed in the 

Pascal programming language and allowed for the following options to be specified 

for network training: 

" selection of the network topology. 

9 the number of training epochs. 

" the spread of the RBF centre initialisation as a multiple of the training data set 

input domain. 

" the inclusion of a network bias node. 

52 



Intelligent Force Control Scheme and Simulation Development 

9 choice of random or sequential selection of the network training data vectors. 

" choice of ANN training methodology. 

The training methodologies that were implemented in the software were random 

placement of the RBF centres and k-means clustering. 

4.4.3.1 REPEATED RANDOM PLACEMENT 

In an attempt to find suitable centre placements, a repeated random centre placement 

methodology was employed since preliminary experiments showed that a single 

random centre placement did not produce networks with adequate performance. The 

repeated random placement training/testing/selection procedure adopted is illustrated 

in figure 4.7. 

The steps involved in implementing the procedure are: 

1. define the network topology. 

2. initialise the RBF centres to sample the training data set input domain. 

3. train the network. This involved the presentation of the network training data to 

the network for several complete iterations of the training data set. The network 

weights were updated after each iteration. 

4. test the network with two data sets: the network training data set and a test data 

set. 

5. re-initialise the RBF centres and repeat the training procedure for 500 centre 

randomisations. 
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6. retain 2 networks (out of the 500 networks trained), the network that had the 

smallest Mean Square Error (MSE) with the training data set and the network that 

had the smallest MSE for the test data set. 

Randomise Centres 

Calculate Network Weights I 
Using RLS Algorithm 

Test Network II Test Network 
Training Data Test Data 

Store Results Store Results 
TrainNet TestNet 

Y MSE MSE Y 
rainNet BTrainNe TestNet < BTestNe 

NN 
Save Net Save Net 

BTrainNet BTestNet 

Loop iteration =Loop Iteration +1 

p Itera 
less than 

Y 

Finish 

Figure 4.7 Repeated random placement training/selection procedure 
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4.4.3.2 K-MEANS CLUSTERING 

An alternative centre placement/optimisation technique was considered during the 

investigation into the training of the intelligent force control scheme's ANN. The k- 

means clustering algorithm introduced in Chapter 3 was investigated. The k-means 

clustering algorithm attempts to redistribute the RBF centres so that they are suitably 

placed around the training data set input vectors. However, the use of k-means 

clustering does not guarantee optimum centre placements and the final centre 

positions are dependent on the RBF centre initialisation. As such, the repeated 

random placement training/selection procedure described in the previous section was 

repeated, but k-means clustering was performed prior to network training. 

4.5 SIMULATION DEVELOPMENT 

4.5.1 FORCE CONTROL SCHEME ARCHITECTURE 

Once the ANN was developed it was incorporated into a positioning control scheme. 

The addition of the ANN would give the positioning device an autonomous force 

control capability. Figure 4.8 illustrates the ANN's integration into a positional 

control scheme. The scheme comprises an inner position control loop with an 

`intelligent' positional adjustment loop. Translational motion is controlled in a single 

degree of freedom. The ANN senses the environment and selects an appropriate 

increment in the end-effector position to achieve a desired force. The `intelligent' 

outer loop increments the positional setpoint Xp, by the amount Spos (the ANN 

output) in response to depth and force measurements taken at the point of contact 

(two of the ANN inputs). The force demand (the force setpoint) was also a network 

input. 
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Figure 4.8 Single degree of freedom neuro-force control scheme 

4.5.2 FIRST PRINCIPLE MODEL OF THE SINGLE DEGREE OF 

FREEDOM MANIPULATOR 

A simulation of a single degree of freedom (DOF) mechanical manipulator was 

developed in the Advanced Continuous Simulation Language (ACSL) so that the 

intelligent force control scheme's ability to apply forces to a range of non-rigid 

environments could be investigated. The use of a simple mechanical testbed (in 

preference to a complex multi-DOF robot model) allowed the control scheme's force 

application mechanism to be investigated without the need to consider: 

" interaction within a robot structure that would result from forces generated by the 

contact. 

" compliance modes in the robot structure. 

" methods for establishing and partitioning the task aligned reference frame into 

orthogonal force and position controlled degrees of freedom. 

CRITICALLY DAMPED 
POSITION SERVO LOOP 

+i ºº CONTROLLER º ACTUATOR 
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The single DOF positioning device that was modelled is similar to the device used by 

Yabuta and Yamada [1990] to test the capabilities of their neuro-force control 

scheme. A block diagram of the single DOF device is shown in figure 4.9. 
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Pinion Gear 

Figure 4.9 Single DOF position controlled mechanical testbed 

The device shown is a single DOF servo controlled mechanical manipulator that 

comprises a rack and pinion which is coupled to a DC motor via a reduction gearbox. 

Torque supplied by the motor causes the pinion gear to rotate and this results in 

translation of the rack. The motor may be fitted with a shaft encoder to provide 

positional feedback and a force/torque sensor may be rigidly coupled to the end- 

effector so that the contact force between the end-effector and the environment could 

be measured directly. 
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A first principle model of the servo controlled manipulator was implemented in the 

Advanced Continuous Simulation Language (ACSL). The positioning control system 

was based on a position controller model proposed by Luh [1983] and the block 

diagram of the system is illustrated in figure 4.10. 
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Figure 4.10 Position control loop 

The first principle model of the positioning system shown in figure 4.10 is described 

by the equations: 

e(s)=X�t-X�. (4.3) 

V(s) = Kp e (4.4) 

I(s) =Vs -K s0�, (4.5) 
Ls+R 

Tm = KB I(s) (4.6) 

Tm (Js2+Bs)Om (4.7) 

OL= nem 
(4.8) 

Xa�t= mOL (4.9) 

i 
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X, t is the positional setpoint, Xo�t is the measured position, e is the error signal, V is 

the controller output, Kp is the controller proportional gain, KB is the current amplifier 

gain, L is the motor armature inductance, R is the motor armature resistance, T. is 

the motor torque acting at the motor side, J is the effective system inertia at the motor 

shaft, B is the effective system friction at the motor shaft, Am, is the motor shaft 

position, 6Lis the load shaft position, K,, is the tacho-feedback gain, n is the reduction 

gear ratio, m is a rotational motion to translational motion conversion factor, and s is 

the Laplacian operator. 

The system's effective inertia J, referred to the motor shaft is expressed as: 

J=Jm+n2JL (4.10) 

where J. is the motor inertia and, n is the gearbox ratio (n<1) and JL is the combined 

inertia of the manipulator link and inertial loading that results from the contact. 

The intelligent force control scheme was developed to make non-excessive contact 

with the environment (an upper force application bound of 15N was adopted) and, as 

such, changes in the systems effective inertia as a result of inertial loading will be 

negligible. Thus inertial loading resulting from contact with the environment was not 

considered. Effects of motor inductance and motor back EMF were also not 

considered. 
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The controller comprised a proportional gain and velocity feedback was chosen for 

system damping in preference to a controller derivative term. The positioning 

system's model parameters are listed in Appendix B. The controller's proportional 

gain, K, and the tacho-feedback gain KK were manually tuned such that a critically 

damped unit step response was obtained. Figure 4.11 shows the positioning system's 

transient response to a unit step input. 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 

Figure 4.11 Position controlled manipulator transient response 

The critically damped response shown has a settling time of 0.28 seconds (within 5% 

of the steady state value) and zero offset. The result was produced with a controller 

proportional gain of 160 and a tacho-feedback gain of 0.02. 

The trained RBF network was incorporated into the ACSL simulation by adding 

Fortran subroutines to the ACSL code. 
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4.6 ROBOT CONTROL STATES 

For many force control tasks, a robot needs to frequently make and break contact 

with the environment and the robot system must be capable of managing two states - 

free motion and contact (and transitions between the two) [Xu et at.. 1995]. 

However, the contact state can be further subdivided into a compliant control phase 

and a rigid contact phase. This is illustrated in figure 4.12 which shows the three 

robot control states. 

UNCONSTRAINED 

Jr 
COMPLIANT CONTACT 

Jr 
RIGID CONTACT 

Figure 4.12 Robot control states 

Prior to contact, a robot end-effector is unconstrained, and can therefore be 

controlled using a positional control scheme. When contact does occur, the contact 

can be described as being either compliant or rigid, with each contact phase having 

distinctly different dynamic characteristics. 

Rigid contact occurs when a robot end effector is in contact with a rigid material (i. e. 

steel, hardwood, etc. ) and compliances in the robot/force sensor have been 

completely absorbed. Rigid contact can also occur with non-rigid contact 
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environments if the compliance in the environment is completely absorbed. In the 

rigid contact phase, the end-effector is totally constrained in the direction of the 

sensed force, and cannot move further into the contact surface. 

Compliant contact occurs when the contact surface/object deforms upon contact 

(generally assumed to be local elastic deformation) and/or compliance's in the 

robot/force sensor have not been completely absorbed. When in the compliant contact 

phase, the end-effector is not constrained in the direction of the sensed force, and can 

therefore move further into the material, thereby increasing the contact force. 

4.7 COMMAND LOGIC 

In addition to the servo model control equations presented in section 4.5.2, the 

simulation required command logic to represent transitions between the contact state 

and the free motion state (and vice versa). The command logic that was used to 

model the contact state transitions comprised an if-then statement which monitored 

the force sensor reading. A reading that was below the force sensor threshold placed 

the control system in the free motion control state. When in this state, the system 

behaves as a positional control scheme and a switch placed on the ANN output was 

opened, thereby setting the ANN output to zero. When contact was sensed (i. e. when 

the force sensor reading was greater than a threshold) the switch placed on the ANN 

output was closed and the intelligent force control scheme was activated. This 

methodology was proposed and practically adopted by Hyde and Cutkosky [1993]. 
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Problems of `jumps' in the actuator input as a result of switching between states 

were highlighted but the use of a low level command filter was recommended for 

smoothing out the transients. Thus the force control scheme operation can be 

summarised as follows: 

" prior to contact, the end-effector is moving in free space and the neural network 

output is set to zero (i. e. the ANN is inactive). 

" when the end-effector makes contact with a surface, a non-zero contact force is 

sensed and the neural network is activated. For contact with non-rigid 

environments, the end-effector is now in contact but it is not constrained in the 

direction of the sensed force, and as such it is free to move further into the 

environment. When contact is sensed, the positional setpoint is set equal to the 

present sensed position and position of the end-effector is autonomously adjusted 

by the network output such that the desired force is applied to the environment. 

4.8 SUMMARY 

This chapter presented the reasoning behind the development of the intelligent force 

control scheme. The ANN input/output structure and the novel ANN training/test 

data generation procedure were also introduced. The contact model that was used to 

represent interaction with compliant environments was described and the method by 

which the ANN training data was extracted from the parameterised contact model 

was introduced. Methodologies that were used for training the intelligent force 

control scheme's ANN were also highlighted. 
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An ACSL simulation model of a single DOF servo controlled mechanical manipulator 

was developed from first principles and the method by which the trained ANN was 

incorporated into the positional control scheme was described. The main features of 

the RBF network training package that was developed for training and testing the 

intelligent force control scheme's ANN were presented. The need to include 

command logic within the simulation model was also highlighted. 
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CHAPTER 5 

CONTACT WITH 
ENVIRONMENT 

5.1 INTRODUCTION 

A SINGLE NON-RIGID 

This chapter describes an investigation of the use of the intelligent force control 

scheme developed in Chapter 4 to apply forces to a single non-rigid environment. The 

control scheme uses an Artificial Neural Network (ANN) to increment the position of 

a mechanical manipulator's end-effector relative to its contact environment such that 

a desired force is applied to the environment. The positional increments made by the 

ANN were based on depth and force measurements taken at the point of contact, and 

the ANN can be said to issue a correct action (by issuing a command that will adjust 

the end-effector's position) in response to the sensed environment. 

The ANN architecture that was investigated was the Radial Basis Function (RBF) 

network and RBF training methodologies that were adopted for the investigation are 

presented. Once trained, model selection and validation tests (Mean Square Error 

tests and, in some instances, Akaikes Final Prediction Error tests) were used to give 

empirical measures of network performance. The ANN model was then tested for its 

ability to perform accurate estimations across a force application range of IN to 15N 

with noise free data and data that had noise added to the force and depth 

measurements. 
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The investigation was centered around the development of an ANN model that could 

accurately perform a ̀ single environment' input-output mapping. Several factors were 

considered when developing the ANN including the selection of a suitable network 

topology and training methodologies. The effects that the following training 

considerations had on network performance were investigated during the 

development of the intelligent force control scheme's ANN: 

" RBF centre placement. 

" RBF centre spread. 

" the use of k-means clustering. 

" the number of training epochs. 

" the use of a network bias node. 

9 the number of hidden layer nodes. 

Once trained, the ANN model was incorporated into a simulation of a single degree 

of freedom (DOF) mechanical manipulator that was developed in the Advanced 

Continuous Simulation Language (ACSL), as described in Chapter 4. The addition of 

the ANN allowed a manipulator that could previously perform only positioning tasks 

to autonomously apply forces to its environment. The intelligent force control 

scheme's ability to apply forces to the environment was investigated by simulation. 

Contact with several environments, each with differing degrees of rigidity, was 

investigated. The effect of noise on control system performance was also investigated. 
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5.2 NETWORK TRAINING DATA GENERATION FOR CONTACT WITH A 

SINGLE NON-RIGID ENVIRONMENT 

5.2.1 MODELLING THE NON-RIGID ENVIRONMENT 

Initially, contact with a single simulated environment was investigated and a contact 

model and contact model parameters were required to represent the environment. The 

contact model that was adopted was introduced in Chapter 4 and is shown in 

equation 5.1. 

F=klx + k3xcnv a (5.1) 

where F is the contact force, kl is the contact environment spring constant, k3 is the 

contact environment spring hardening coefficient, x,.,. is the depth into the 

environment, and a is an exponent included to represent spring hardening in the 

contact environment. 

The model represents a single compliance mode in the contact environment. 

Compliance modes within the robot/force sensor were not considered (i. e. the robot 

and sensor were assumed to be rigid). The model parameters that were chosen to 

represent the environment under investigation are shown in table 5.1. 

kl (N/m) k3 (kN/m2) a 

Environment 1 100 100 2 

Table 5.1 Model parameters for environment 1 
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The contact model shown in equation 5.1 was parameterised with the model 

parameters shown in table 5.1 and the force experienced at different depths into the 

environment was tabulated. Additional simulated environments were generated by 

varying the contact model parameters so that the repeatability of the ANN training 

methodologies could be tested and validated with environments that had differing 

degrees of rigidity. 

Twelve simulated environments were generated for the investigation. Six 

environments were used as training environments and the remaining six environments 

were used as validation environments. The contact model parameters that were used 

to generate the twelve data sets are shown in Appendix A. The characteristics of the 

simulated hardness profiles (a plot of the contact force at different depths into the 

environment) produced were similar to practically measured hardness profiles 

reported by Caldwell and Gosney [1993]. 

Hardness profiles for the simulated environment under investigation (environment 1) 

and a second simulated environment (environment 2) are shown in figure 5.1. The 

contact model parameters for environment 2, which can be seen to be more rigid than 

environment 1, are shown in Appendix A. Results of tests with networks trained to 

respond to environment 2 have been included to illustrate the repeatability of the 

training methodologies with a different non-rigid environment. Although results are 

presented for contact with two environments, the training methodologies were 

investigated with each of the six training environments. 
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Figure 5.1 Simulated hardness profiles   Environment 1  Environment 2 

5.2.2 EXTRACTING NEURAL NETWORK TRAINING DATA FROM THE 

PARAMETERISED CONTACT MODEL 

In order that an ANN could be trained, it was necessary to generate representative 

network training data. Additional data sets were required so that the ANN's 

performance could be tested and validated with unseen data that was not in the 

training data set. The RBF network architecture investigated is a feedforward 

network trained using supervised learning, and as such the training data set must 

comprise a target output vector for each input vector. 

The ANN training data was extracted from the parameterised contact model using the 

novel data extraction procedure introduced in Chapter 4. Although the force 

application ranges upper limit was 15N, the training data set comprised data for 

contact up to 20N. The additional data was included to ensure that a bounded ANN 
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output was obtained should the control system overshoot the force application ranges 

upper limit. A test data set that comprised data extracted at random from the 

parameterised contact model was also generated for each of the environments for 

contact up to 20N. Thus a total of 12 training data sets and 12 test data sets were 

generated. 

5.3 RADIAL BASIS FUNCTION TRAINING 

5.3.1 NETWORK TRAINING USING RANDOM CENTRE PLACEMENT 

A factor that can significantly influence an RBF networks estimating performance is 

the placement of the hidden layer node centres [Dacosta et al., 1997]. Researchers 

have reported that the RBF centres should sample the network training data set input 

domain [Moody and Darken, 1989] but at present, there is no clear method of 

optimally placing the RBF centres. As such, the effect of placing the hidden layer 

node centres was investigated. Several RBF centre placement/optimisation techniques 

have been proposed, including random placement and k-means clustering, two 

techniques that were investigated during the development of the intelligent force 

control scheme's ANN. 

Initially, an RBF network with six hidden layer nodes was used. The network 

topology thus comprised 3 input nodes, 6 hidden layer nodes, and a single output 

node. A bias node was included in the network. Node centres were randomly placed 

within the training data set input domain and an RBF network was trained using 2 

iterations of the training data set extracted from environment 1. Two networks were 

retained: 

70 



Contact with a Single Non-Rigid Environment 

" the network that yielded the lowest Mean Square Error (MSE) when tested with 

the training data set. 

" the network that yielded the lowest MSE when tested with the test data set. 

RBF centre vectors were then randomly placed over the training data set input 

domain for 10 centre iterations and for each iteration the network was tested with the 

original training data set and the test data set extracted from environment 1. Again, 

the two best networks were retained. The network training/selection procedure was 

then repeated for 500 centre randomisations. The training procedure was repeated 

with data extracted from other simulated environments so that the experiments 

repeatability could be assessed. Network performance was assessed by considering 

the Mean Square Error (MSE) between the network estimations and the target 

outputs (also known as the 'loss function ). The loss function is expressed as: 

mse =1 [Y(t) 
- Y(t)j2 (5.2) 

N ý_, 

where y(t) is the target output, y^ (t) is the network estimation, and N is number of 

data vectors in the test data set. 

Figure 5.2 shows the loss functions obtained for tests with networks that gave the 

best performance with the test data set extracted from environment 1. Results of tests 

with networks trained and tested with data extracted from environment 2 have been 

included for comparison. 
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Figure 5.2 Loss functions for networks trained using differing numbers of centre 
randomisations.   Results for networks trained with data extracted from 
environment 1.   Results for networks trained with data extracted from environment 
2. 

Figure 5.2 shows that network performance was poor when a single random centre 

placement was used. However, performance was found to improve considerably 

(characterised by a decrease in the loss function) when a repeated random placement 

methodology was adopted with a large number of centre randomisations. A lower 

loss function was obtained for the same network topology with environment 2 which 

may be an indication that the input-output mapping for environment 2 is less complex 

than that of environment 1. Loss function results for tests with networks trained with 

data extracted from the remaining simulated environments were found to be in 

accordance with the results presented for environment 1. Thus the performance of 

networks trained to perform a `single environment' input-output mapping was found 

to be dependent on the placement of the RBF centres. 
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Characteristics of the positioning of the RBF centres that may have affected network 

performance were investigated. Figure 5.3 shows the RBF centre placements for two 

networks that were trained using random placement: 

"a network that performed accurate estimations with environment 1. 

"a network that gave poor estimations with environment 1. 

The intelligent force control scheme's ANN comprises 3 input variables (force 

setpoint, sensed force and depth into the environment) and a single output. The 

dimensions of each RBF centre vector are the same as the network training data set 

input domain and it is thus difficult to illustrate the centre positions in three 

dimensional space. As such, results are presented in two dimensions with the third 

dimension variable (force setpoint) kept constant. The network topology comprised 6 

hidden layer nodes and thus 6 RBF centres. 
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Figure 5.3 RBF centre placements for accurate and poor estimating networks. 
fTraining data points.   Centre positions for networks that gave poor estimations. 
" Centre positions for networks that gave accurate estimations. 
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Figure 5.3 illustrates that centre placement characteristics that may lead to a 

degradation in network performance are: 

" centres placed in close proximity to other RBF centres. 

" centres placed in close proximity to the training data points. 

9 centres placements that are not distributed about the complete training data range. 

However, these characteristics may only be valid for RBF networks that comprise 

thin plate spline activation functions. Figure 5.4 shows the RBF centre positions for 

networks that gave accurate and poor estimations with environment 2. 
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Figure 5.4 RBF centre placements for accurate and poor estimating networks. 
fTraining data points. " Centre positions for networks that gave accurate 
estimations.   Centre positions for networks that gave poor estimations. 

The result illustrates that networks capable of performing accurate estimations with 

data extracted from environment 2 had the same centre placement characteristics as 

networks that performed well with environment 1. The RBF centres were not in close 
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proximity to the training data points or other RBF centres. Additionally, the centres 

were distributed about the complete training data range. 

5.3.2 NETWORK TRAINING USING K-MEANS CLUSTERING 

Although repeated random placement of the RBF centres was found to yield 

networks that were capable of accurately performing a single environment input- 

output mapping, the use of a centre optimisation algorithm was investigated. One 

popular approach to RBF network centre optimisation is the k-means clustering 

algorithm which was introduced in Chapter 3. Implementing the algorithm requires 

that the RBF centres are randomly placed within the input domain and the k-means 

clustering algorithm is then used to redistribute the centres to more `optimal' 

positions prior to network training [Moody and Darken, 1989]. However, it should 

be noted that although the k-means clustering algorithm is frequently used for basis 

function centre optimisation, it does not guarantee that the centres are placed to give 

optimum network performance. 

Initially, an RBF network with six hidden layer nodes was used and a bias node was 

included in the network. Node centres were randomly placed within the training data 

set input domain and an RBF network was trained using 2 iterations of the training 

data set extracted from environment 1. The network training procedure adopted 

during the random placement investigation was repeated, but the k-means clustering 

algorithm was used to redistribute the RBF centres prior to network training. 
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Figure 5.5 shows the loss functions for networks trained using k-means clustering 

with various numbers of centre randomisations. The results presented are for tests 

with networks that gave the best performance with the test data sets extracted from 

environments 1 and 2. 
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Figure 5.5 Loss functions for variation in number of centre randomisations using k- 
means clustering.   Results for networks trained with data extracted from 
environment 1.   Results for networks trained and tested with data extracted from 
environment 2. Networks comprised 6 hidden layer nodes. 

Figure 5.5 shows that network performance was poor when the k-means clustering 

algorithm was used with a single centre randomisation. However, performance 

improved considerably (characterised by a decrease in the loss function) when the 

repeated random centre placement training procedure were used with several hundred 

centre randomisations. Thus the performance of the k-means clustering optimisation 

was found to be dependent on the initial centre placements. 
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Figure 5.6 shows the k-means clustering algorithm redistributing RBF centres which 

were initialised over twice the training data set input domain. The network comprised 

6 hidden layer nodes and was trained using data extracted from environment 1. 
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Figure 5.6 RBF centre placements for a k-means clustering trained network that 
performed accurate estimations. " Training data points " Initial centre positions   
Centre positions after k-means clustering. 

The result shows that the k-means clustering algorithm repositioned the centres to 

locations closer to the training data points. The characteristics of the redistributed 

centre positions were similar to the characteristics described for random placement 

trained networks with good estimating performance. 

Figure 5.7 shows a comparison of the best random placement trained networks and 

the best k-means clustering trained networks. The loss function results presented are 

for network testing with the test data extracted from environment 1. 
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Figure 5.7 Loss functions for networks trained using random placement and k-means 
clustering   Results for networks trained using random placement.   Results for 
networks trained using k-means clustering. Networks comprised 6 hidden layer 
nodes. 

Figure 5.7 shows that the performance of networks trained using k-means clustering 

was inferior to networks with the same topology trained using random placement. 

Results of tests with other simulated environments were found to be in accordance 

with the results presented for environment 1. Thus k-means clustering was found to 

be detrimental to network performance for single environment trained networks. 

The deterioration in performance found with the use of the k-means clustering 

algorithm may be attributed to the clustering algorithm moving the centres towards 

the training data points. Centres placed in close proximity to the training data points 

was highlighted as a possible contributing factor that may lead to a deterioration in 

the performance of networks that comprise thin plate spline activation functions. 

78 

11 10 10 500 500 



Contact with a Single Non-Rigid Environment 

5.3.3 VARIATION IN RBF CENTRE SPREAD 

The effect of varying the spread of the RBF centre placement was investigated. The 

RBF centre ̀ spread' refers to the domain within which the RBF centre nodes are 

initialised, expressed as a multiple of the training data set input domain. Thus a centre 

spread of 2 states that the RBF centres may be initialised within a vector space that 

has twice the magnitude of the training data set input domain. 

Node centres were randomly placed within the training data set input domain and a 

bias node was included in the network. RBF networks with six hidden layer nodes 

were used throughout the investigation. The repeated random placement training 

procedure was used with 2 iterations of the training data set (extracted from 

environment 1) for 500 centre randomisations. The training procedure was then 

repeated with the RBF centres being placed within higher multiples of the input 

domain. Network performance was assessed by considering the loss function between 

the network estimation and the target output, for the complete test data set. 

Figure 5.8 shows the loss functions for networks trained using centre spreads that 

were multiples of the training data set input domain. Loss function results for 

networks trained with data extracted from environment 2 have been included to 

illustrate the experiments repeatability. 
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Figure 5.8 Loss functions for networks trained using random placement with various 
centre spreads. Centre spreads expressed as multiples of the training data set input 
domain.   Results for networks trained using data extracted from environment 1.   
Results for networks trained using data extracted from environment 2. 

Figure 5.8 shows network performance to be dependent on the centre spread. The 

performance of networks trained with centres placed within the input domain was 

inferior to the performance of networks that had centres randomised within wider 

domains. However, performance was found to deteriorate when the centres were 

placed beyond twice the input domain. Results of tests performed on networks 

trained with data extracted from other environments were found to be in accordance 

with the results presented for environment 1. 

The result may again be explained by considering the aforementioned centre 

placement characteristics that were found to yield networks that performed well. 

Centre randomisations within wider domains reduces the probability of centres being 

placed in close proximity to the training data points and other RBF centres. The 

deterioration in network performance when centres were randomised within domains 
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higher than twice the training data set input domain suggests that the centres can be 

too dispersed. However the findings may only be valid for RBF networks that 

comprise thin plate spline activation functions. 

5.3.4 VARIATION IN RBF CENTRE SPREAD WITH K-MEANS 

CLUSTERING 

The use of k-means clustering with centres placed within the network training data set 

input domain was found to have a detrimental effect on network performance. 

However, increasing the RBF centre spread to twice the training data set input 

domain was found to improve the performance of random placement trained 

networks. As such, the effect of varying the spread of the RBF centre placement with 

k-means clustering optimisation was investigated. 

A network topology that comprised 6 hidden layer nodes was used and a bias node 

was included in the network. RBF centres were randomly placed over the training 

data set input domain and the networks were trained using two epochs of the training 

data set for 500 centre randomisations. K -means, clustering was used to redistribute 

the RBF centres prior to network training. The network was tested with the original 

training data set and a test data set and the two best performing networks were 

retained. The training procedure was then repeated with the RBF centres placed over 

higher multiples of the input domain. 

Figure 5.9 shows the loss functions for networks trained using k-means clustering 

with centre placed within multiples of training data set input domain. 
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Figure 5.9 Loss functions for networks trained using k-means clustering with various 
centre spreads. Centre spreads expressed as multiples of the training data set input 
domain.   Results for networks trained using data extracted from environment 1.   
Results for networks trained using data extracted from environment 2. 

The results show network performance of k-means clustering trained networks to be 

dependent on the RBF centre spread. Performance was found to improve when the 

centres were placed within domains that were higher multiples of the input domain. 

However performance deteriorated when centre spreads greater than 5 times the 

training data set input domain were used. Results of tests with networks trained with 

data extracted from other environments were found to be in accordance with the 

results presented for environment 1. 

5.3.5 VARIATION IN THE NUMBER OF TRAINING EPOCHS 

Training a neural network requires that the training data set is presented to the 

network for at least one complete pass of the data set (an epoch). During the training 

phase, the ANN weights are adjusted in an attempt to map the input data to the 
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corresponding output data. However, if a neural network is trained for too long, the 

ANN will learn the specific training data vectors and not the underlying input-output 

characteristics of the training data set. Although an overtrained network will give 

excellent estimations with the training data set, when required to estimate with data 

not used to train the network (i. e. test data), estimations can be poor [Evans, 1994]. 

As such, the effect of varying the number of training -epochs was investigated. 

A network topology that comprised 6 hidden layer nodes was used and a bias node 

was included in the network. Node centres were randomly placed over twice the 

training data set input domain and an RBF network was trained using 1 iteration of 

the training data set. This was repeated for 500 centre iterations and for each iteration 

the network was tested with the original training data set and the test data set 

extracted from environment 1. Two networks were retained, the network that had the 

smallest Mean Squared Error (MSE) with the training data set and the network that 

had the smallest MSE with the test data set. The training procedure was then repeated 

for increased numbers of training epochs. 

Figure 5.10 shows the loss functions obtained for tests with networks trained using 

different numbers of training epochs. The results presented are for tests with 

networks that gave the lowest loss functions with the test data set extracted from 

environment 1. These networks ensure that overtraining does not occur since they 

give accurate estimations with unseen data. Results for networks trained with data 

extracted from environment 2 are presented for comparison. 
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Figure 5.10 Loss functions for networks trained using random placement with 
varying numbers of training epochs.   Results for networks trained using data 
extracted from environment 1.   Results for networks trained using data extracted 
from environment 2. Networks comprised 6 hidden layer nodes. 

Figure 5.10 illustrates that the performance of networks trained using a single pass of 

the training data set was found to be inferior to networks that were trained using 2 

epochs of the training data set. However, performance was found to deteriorate when 

more than two training epochs were used to train the network, which is an indication 

that overtraining has occurred. Results with the other simulated environments were 

found to be in accordance with the results presented for environment 1. 

5.3.6 THE EFFECT OF A BIAS NODE 

The effect of including a bias node in the network topology was investigated. A 

network topology that comprised 6 hidden layer nodes was used and a bias node was 

included in the network. RBF centres were randomly placed over twice the training 

data set input domain and networks were trained using two epochs of the training 

84 

1234512345 



Contact with a Single Non-Rigid Environment 

data set for 500 centre randomisations. The network was tested with the original 

training data set and a test data set and the best performing networks were retained. 

The bias node was then removed from the network and the network training 

procedure was repeated. 

Figure 5.11 shows the loss functions for networks topologies with and without a bias 

node. The results presented are for tests with networks that gave the lowest loss 

functions with the test data set extracted from environment 1. The result illustrates 

that the inclusion of a bias node improved network performance. Results with the 

other simulated environments were found to be in accordance with results presented 

for environment 1. 
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Figure 5.11 Loss functions for networks with and without bias nodes.   Results for 
networks trained using data extracted from environment 1.   Results for networks 
trained using data extracted from environment 2. Networks comprised 6 hidden layer 
nodes. 
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5.3.7 VARIATION IN THE NUMBER OF HIDDEN LAYER NODES 

The number of hidden layer nodes included in a neural network can significantly affect 

the networks estimating performance. Too few hidden layer nodes limits the networks 

ability to model the required input-output mapping. Whereas, too many hidden layer 

nodes can result in over parameterisation of the network, which can result in poor 

generalisation properties being exhibited. As such, the effect of varying the number of 

hidden layer nodes was investigated. 

The network topology required to perform a particular non-linear mapping is 

governed by the complexity of the input-output mapping. Empirical methods for 

selecting an `optimum' number of hidden layer nodes do not exist and as such the 

number of hidden layer nodes required to perform the single environment I/O 

mapping was determined by trial and error. Several network topologies were 

considered during the investigation. 

Initially, a single node was used in the networks hidden layer and a bias node was 

included in the network. ANNs were trained using 2 epochs of the training data set 

and the repeated random placement training procedure was used for 500 centre 

randomisations. The number of hidden layer nodes was then increased and the 

training procedure was repeated for each network configuration. 

Network performance was assessed by considering the MSE between the network 

prediction and the target output and Akaikes Final Prediction Error (AFPE) [Akaike, 

1974] was used as a additional performance measure. AFPE is expressed 

mathematically by equation 5.3: 
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_ 
N+Nwj AFPE - 

ýN 
-Nw JLF (5.3) 

where N,,, is the number of adjustable model parameters (i. e. the network weights), N 

is the number of test data vectors, and LF is the loss function. 

AFPE penalises over-parameterised models and is thus a useful measure of parsimony 

(i. e. network performance vs. network size). This is a significant factor for robotic 

applications, since minimising network size allows for faster real time processing. 

Although AFPE tests are a useful aid to model selection and validation, the test 

should be used with care since AFPE tests has been shown to overestimate the true 

parameter vector [Leontaritis and Billings, 1987]. 

Figure 5.12 shows the loss functions for various network topologies that gave the 

best performance with the test data set extracted from environment 1. The results 

show that network performance improved (characterised by a decrease in the loss 

function) as the number of hidden layer nodes was increased. However, the 

improvement in network performance was found to be minimal when more than 6 

hidden layer nodes were used. Figure 5.13 shows AFPE for the same networks. The 

AFPE results show that the network topology that performed best relative to its size 

with data extracted from environment 1 comprised 6 hidden layer nodes. Figures 5.14 

and 5.15 show loss function and AFPE results for networks trained with data 

extracted from environment 2 respectively. 
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Figure 5.12 Loss functions for networks with various topologies. Results for 

networks trained using data extracted from environment 1. Networks trained using 
random placement. 
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Figure 5.13 AFPE for networks with various network topologies. Results for 

networks trained using data extracted from environment 1. Networks trained using 
random placement. Number of test data vectors = 45. 
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Figure 5.14 Loss functions for networks with various topologies. Results for 
networks trained using data extracted from environment 2. Networks trained using 
random placement. 
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Figure 5.15 AFPE for networks with various network topologies. Results for 
networks trained using data extracted from environment 2. Networks trained using 
random placement. Number of test data vectors = 45. 
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Figure 5.14 shows that the performance of networks trained to respond to 

environment 2 improved with increasing numbers of hidden layer nodes. However, 

the improvement in network performance was found to be minimal when more than 5 

hidden layer nodes were used. AFPE results for the same networks (figure 5.15) 

show that the network topology that performed best relative to its size, with data 

extracted from environment 2, comprised 5 hidden layer nodes. 

Table 5.2 shows the number of hidden layer nodes required to perform the single 

environment input-output mapping with each of the six training environments 

investigated (based on the results of AFPE tests). The networks were trained using 

random placement of the RBF centres and a centre spread of 2. 

Environment 1 2 3 4 5 6 

Number of Nodes 6 5 6 5 5 5 

Loss Function 0.0169 0.008 0.011 0.004 0.004 0.0059 

Table 5.2 Hidden layer nodes required to perform single environment input-output 
mappings with the 6 training environments. Networks trained using random 
placement of the RBF centres. Centre spread=2. 

Table 5.3 shows the number of hidden layer nodes required to perform the single 

environment input-output mapping with each of the six training environments for k- 

means clustering trained networks that were trained using with a centre spread of 5. 
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Environment 1 2 3 4 5 6 

Number of Nodes 6 5 5 6 6 5 

Loss Function 0.017 0.008 0.007 0.01 0.006 0.012 

Table 5.3 Hidden layer nodes required to perform single environment input-output 

mappings with the 6 training environments. Networks trained using k-means 

clustering. Centre spread = S. 

5.4 EFFECT OF NOISE ON NETWORK PERFORMANCE 

5.4.1 REPRESENTING NOISE EFFECTS 

The effect of measurement noise on network performance was investigated. The 

effect on noise present on the force and depth measurements was investigated in 

isolation. Further testing with the noise signals acting simultaneously was then 

considered. Two networks were tested: 

. the best performing network trained using random placement. The network 

comprised 6 hidden layer nodes and was trained with an RBF centre spread of 2 

times the training data set input domain. 

" the best performing network trained using k-means clustering. The network 

comprised 6 hidden layer nodes and was trained using a centre spread of 5 times 

the training data set input domain. 

The effects of noise were simulated by adding white Gaussian noise to the measured 

variable. The signal to noise ratio (SNR) was calculated using equation 5.4: 

SNR=20logioa dBs 
On 

(5.4) 
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where as and a� are the standard deviation of the measured variable and the noise 

respectively. 

The standard deviation of the noise signal was chosen so that a SNR of 20dBs was 

obtained. 

5.4.2 EFFECT OF DEPTH MEASUREMENT ERROR ON NETWORK 

PERFORMANCE 

Errors in the depth measurement were simulated by superimposing noise onto the 

depth measurements in the test data sets. Figure 5.16 shows loss functions obtained 

when the two best networks were tested with test data extracted from environment 1. 
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Figure 5.16 Loss functions for networks trained using random placement and k- 

means clustering.   Network trained using random placement.   Network trained 
using k-means clustering. Networks tested with noise free data and data that had 

noise added to the depth measurement. 
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The performance of the k-means clustering trained network can be seen to be inferior 

to the random placement trained network with noise free data. However, although 

estimations in the presence of noise added to the depth measurement were 

satisfactory, the network that was trained using random placement had a higher 

degree of noise immunity. Tests with networks trained with data extracted from other 

simulated environments were in accordance with the results presented for 

environment 1. 

5.4.3 EFFECT OF FORCE SENSOR NOISE ON NETWORK 

PERFORMANCE 

Errors in the force measurement and force sensor noise were simulated by 

superimposing the aforementioned noise onto the force measurements in the test data 

sets. Figure 5.17 shows loss functions obtained when the two networks were tested 

with test data extracted from environment 1. 
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Figure 5.17 Loss Functions for networks trained using random placement and k- 
means clustering.   Network trained using random placement.   Network trained 
using k-means clustering. Networks tested with noise free data and data that had 
noise superimposed onto the force measurement. 
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Figure 5.17 shows that network performance remained satisfactory in the presence of 

force sensor noise. However, the network that was trained using random placement 

had a higher degree of noise immunity to noisy force measurements. Tests with 

networks trained using data extracted from the other simulated environments 

confirmed the repeatability of the result. Thus the random placement trained network 

was found to yield better estimations than the k-means clustering trained network 

with each of the noise sources acting in isolation. 

5.4.4 COMBINED EFFECT OF FORCE SENSOR NOISE AND DEPTH 

MEASUREMENT ERROR ON NETWORK PERFORMANCE 

Figure 5.18 shows the loss functions obtained when the two networks were tested 

with test data (extracted from environment 1) that had noise added to the force and 

depth measurements. 
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Figure 5.18 Loss functions for networks trained using random placement and k- 
means clustering.   Network trained using random placement.   Network trained 
using k-means clustering. Networks tested with noise free data and data that 
comprised noise added to the force and depth measurements. 
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Figure 5.18 shows that network estimations in the presence of noise added to the 

force and depth measurements were satisfactory. Additionally, the results of the noise 

tests show that the random placement trained network was found to yield better 

estimations than the k-means clustering trained network in the presence of noise. 

Tests with networks trained using data extracted from other environments confirmed 

the repeatability of the result. Thus the random placement trained network that 

comprised 6 hidden layer nodes was the best performing network for environment 1. 

The network included a bias node and had an RBF centre spread of 2. 

5.5 NETWORK VALIDATION 

The best random placement trained network for environment 1 was tested for its 

ability to perform accurate estimations across the required force application range (1 

to 15N). The test excitation signals that were chosen to evaluate network 

performance were: 

9 random amplitude signals simultaneously applied to each of the network inputs. 

"a random amplitude signals simultaneously applied to each of the network inputs 

with noise superimposed onto the force and depth measurements. 

"a series of step inputs applied across the force application range. 

"a series of step inputs applied across the force application range with noise 

superimposed onto the force and depth measurements. 

Figure 5.19 shows the estimations obtained when the best random placement trained 

network was tested with a random amplitude signals applied to the network inputs. 
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Figure 5.19 Estimations when random placement trained network was tested with a 
random amplitude signal.   Target output.   Network estimation. 

Figure 5.19 illustrates that estimations were accurate when the network was tested 

with the random amplitude signals. Figure 5.20 shows estimations obtained when the 

best random placement trained network was tested with random amplitude signals 

that had noise superimposed onto the force and depth measurements. 
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Figure 5.20 Estimations when random placement trained network was tested with a 
noisy random amplitude signal.   Target output.   Network estimation. 
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Figure 5.20 shows that noise added to the force and depth measurements did not 

significantly degrade network performance. Figures 5.21 shows networks estimations 

when the network was tested with a series of unit step changes in force demand that 

were applied across the force application range. The result presented was for contact 

with environment 1. 

12 

E 10 

C $ O 

N 
O s 

c 
O 
of 
C 

U 2 

0 

Figure 5.21 Noise free estimations across the force application range.   Target 

output.   Network estimation. 

The result shows that estimations were accurate across the force application range 

with noise free data. Figures 5.22 shows networks estimations when the network was 

presented with a series of step changes in force demand for contact with environment 

I with noise superimposed onto the force and depth measurements. The result 

illustrates that noise added to the force and depth measurements did not significantly 

degrade network performance and estimations remained accurate across the force 

application range. 
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Figure 5.22 Network estimations in the presence of noise on the force and depth 

measurements.   Target output.   Network estimation. 

5.6 SINGLE DEGREE OF FREEDOM FORCE CONTROL SIMULATION 

The intelligent force control system architecture that comprised the ANN was 

introduced in Chapter 4 and the control system block diagram was illustrated in figure 

4.8. The random placement trained network that comprised 6 hidden layer nodes was 

loaded into the single degree of freedom (DOF) manipulator ACSL simulation and 

the intelligent force control scheme's ability to apply forces to environment 1 was 

investigated by simulation. The control scheme applies forces without knowledge of 

the environments position, as such a requirement would limit the force control 

scheme's 'real world' applicability. When a non-zero force setpoint is commanded, 

the end-effector is moved towards the environment and when contact is sensed, the 

ANN is activated. The end-effector is then positioned within the environment by the 

ANN output. Figure 5.23 shows the transient response obtained when the force 

control scheme was commanded to apply a ION force to environment 1. 
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Figure 5.23 Transient response for contact with environment 1. Effects of noise 
were not considered.   Force setpoint   Sensed force. Impact with environment 
occurred at t=0.1 sec. KP 160, Kv=0.02 

The control system can be seen to recover from the initial impact (occurring at t=0. I 

sec) and the response was stable. A settling time of 0.6 seconds was measured for the 

system to settle within 5% of its steady state value. A small steady state offset (the 

steady state contact force was 10.14N) was evident which can be attributed to non- 

ideal network estimations which resulted in non-ideal steady state positioning of the 

end-effector within the environment. This in turn resulted in a non-ideal steady state 

force being applied to the environment. Although the position control loop was 

critically damped, a slight overshoot was found with force application. As such, the 

system damping was increased by setting the tacho-feedback gain to 0.03. The 

increase in tacho-feedback gain critically damped the force response. 
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5.6.1 EFFECT OF NOISE ON CONTROL SYSTEM PERFORMANCE 

The effect of noise on control system performance was investigated. Tests performed on 

the intelligent force control scheme's ANN showed that network performance was not 

significantly degraded by noise added to the force and depth measurements. Figure 5.24 

shows the critically damped transient response when the control scheme was commanded 

to apply a ION force to environment 1 with noise superimposed onto the force and depth 

measurements. Impact control via proximity sensing was not considered. 
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Figure 5.24 Transient response for contact with environment 1. Result generated 
with noise added to the force and depth measurements.   Force setpoint   Sensed 
force. Impact with environment occurred at t=0.1 sec. KP-- 160, Kv=0.03 

Figure 5.24 illustrates the intelligent force control scheme's ability to acquire and 

maintain a specified contact with its environment in the presence of noise. 

Perturbations about the setpoint resulted from the presence of the noise signal. 

Although masked by the noise, a slight offset was measured. 
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5.6.2 STEP TESTS 

Step tests were performed so that the control schemes force application capability could 

be assessed across the entire force application range (IN to 15N). The control system was 

commanded to apply a IN force to environment 1 and the force demand was increased in 

IN steps at 5 second intervals. 

Figure 5.25 shows the results of the step tests for contact with environment 1 with noise 

added to the force and depth measurements. The result shows that the intelligent force 

control scheme was capable of tracking the force demand across the entire force 

application range. Small offsets that resulted from non-ideal network estimation were 

evident in several operating regions. Small perturbations about the setpoint resulted 

from the presence of the noise. 
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Figure 5.25 Transient response for step tests with environment 1. Result was 
generated with noise added to the force and depth measurements   Force setpoint   
Sensed force. Impact with environment occurred at t=0.1 sec. K1, -- 160, Kv=0.03 
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5.6.3 CONTACT WITH ENVIRONMENTS WITH DIFFERING DEGREES OF 

RIGIDITY 

The intelligent force control scheme was tested for its ability to apply forces to 

environments with differing degrees of rigidity. The control scheme must be capable 

of applying forces to a wide range of environments when the degree of environmental 

rigidity is not known a priori. The best random placement trained network that was 

trained with data extracted from environment 1 was loaded into the ACSL simulation 

and the force control scheme was commanded to apply a ION force to environment 2. 

Environment 2 was more rigid than environment 1. The resulting transient response is 

shown in figure 5.26. 
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Figure 5.26 Transient response for contact with environment 2. Result was generated 
with noise added to the force and depth measurements.   Force setpoint.   Sensed 
force. Impact with environment occurred at t=0.1 sec. KP-- 160, K, =0.03. 

Figure 5.26 shows that the transient response obtained was stable but oscillatory and 

a large steady state offset was evident. In this instance the applied force was greater 
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than the ION force demand. Further network testing with environments that were 

more rigid than environment 2 showed that the offset increased as the environment 

became more rigid (results not presented). The large force error can be attributed to 

the fact that the control system's ANN does not have knowledge of contact with an 

environment as rigid as environment 2 and it is attempting to extrapolate on its 

knowledge of idealised reaction to environment 1. 

Figure 5.27 shows the transient response when the control system was commanded to 

apply a force of 10 N to environment 10, an environment that was more compliant 

than environment 1. Contact model parameters for environment 10 are shown in 

Appendix A and the environment's hardness profile is shown in Appendix C. 
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Figure 5.27 Transient response for contact with environment 10. Result was 
generated with noise was added to the force and depth measurements.   Force 
setpoint.   Sensed force. Impact with environment occurred at t=0.1 sec. KP 160, 
K, =0.03. 
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Figure 5.27 shows that the transient response for contact with environment 10 was 

stable, but a significant steady state offset was again evident. In this instance the 

steady state contact force was less than the force demand. Tests with environments 

that were more compliant than environment 10 showed that the offset increased as 

the contact environment became more compliant. 

After several tests with a range of simulated non-rigid environments with differing 

degrees of rigidity, it was concluded that networks trained using data extracted from 

a single environment did not have the ability to perform accurate estimations with 

environments that have compliance modes that were different to the `training' 

environment. 

5.7 SUMMARY 

The intelligent force control scheme's ANN was developed by investigating several 

factors that may influence network performance. Results presented show that: 

9 the inclusion of a bias node in the network topology was beneficial to network 

performance. 

" the number of hidden layer nodes influenced network performance. 

" the number of training epochs affected network performance. 

" the initial centre placement influenced network performance. Networks trained 

using a single RBF centre placement gave poor estimations. As such a repeated 

random placement training methodology was adopted for several hundred centre 

randomisation. 
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" the spread of the RBF centre initialisations significantly affected network 

performance. 

" the use of a k-means clustering algorithm to redistribute the RBF centres to more 

`optimal' positions prior to network training was found to have a detrimental 

affect on network performance. However, performance was found to improve 

when k-means clustering was used with centre spreads that were higher multiples 

of the training data set input domain. 

An investigation of the effect on network performance found that network 

performance was not significantly degraded by the presence of noise added to the 

force and depth measurements. Network testing with random amplitude signals and 

step tests showed that estimations were accurate with noise free data and with data 

that has noise superimposed onto the force and depth measurements. Additionally, 

results presented showed that networks trained using random placement were found 

to have a higher degree of noise immunity than networks trained using k-means 

clustering. The repeatability of the results was validated with several environments, 

each with differing degrees of rigidity. 

Simulation results presented show that the ANN based force control system was 

capable of recovering from an impact with the environment without a priori 

specification of the contact environment position. A stable force response with slight 

offset was obtained when the control system made contact with the network `training' 

environment. The offset was a result of non-ideal network estimations. When the 

environmental rigidity varied from that of the training environment, the transient 
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response was stable but significant steady state force errors were evident. The 

magnitude of the force errors were found to be directly proportional to the degree of 

variance in the contact environment rigidity from that of the training environment. 

Thus the single environment trained networks did not have the ability to perform 

accurate estimations with environments that had compliance modes that were 

different to the ̀ training' environment. 

106 



Contact with a Range of Non-Rigid Environments 

CHAPTER 6 

CONTACT WITH A RANGE OF NON-RIGID 
ENVIRONMENTS 

6.1 INTRODUCTION 

The investigation into contact with a single non-rigid environment presented in 

Chapter 5 showed that a `correctly trained' RBF network was capable of performing 

a single environment input-output mapping to a high degree of accuracy. However, 

networks trained with data extracted from a single non-rigid environment were found 

to be incapable of accurately responding to environments with differing degrees of 

rigidity. 

This chapter describes an investigation that extends the work presented in Chapter 5 

so that interaction with a range of non-rigid environments is possible. The 

investigation was centered around the training of RBF networks with a data set that 

comprised data extracted from several non-rigid environments. Once trained, the RBF 

network was tested for its ability to perform accurate estimations across a force 

application range of IN to 15N, with a range of environments with differing degrees 

of rigidity. The effect of noise on network performance was investigated. 

Two network training methodologies were investigated during the development of 

the intelligent force control schemes ANN, namely: 
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" repeated random placement of the RBF centres. 

" k-means clustering with centre randomisations within higher multiples of the 

network training data set input domain. 

Once trained, the ANN model was incorporated into the single degree of freedom 

manipulator simulation developed in Chapter 4 and the `intelligent' force control 

systems ability to apply forces to the a range of non-rigid environments, each with 

differing compliance modes was investigated by simulation. The effect on network 

performance of noise added to the force and depth measurements was also 

investigated. 

The network training objective was the development of a single RBF network that 

was capable of: 

" accurately responding to environments represented in the network training data 

set. 

" accurately responding to environments that were not represented in the network 

training data set. 

" performing accurate estimations in the presence of noise added to the force and 

depth measurements. 

6.2 NETWORK TRAINING STRATEGY FOR CONTACT WITH A RANGE 

OF ENVIRONMENTS 

In an attempt to overcome the limitations of `single environment' trained networks, a 

new network training strategy was required that allowed for contact with a range of 
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non-rigid environments. The network training strategy that was investigated was the 

use of a single RBF network to model `idealised reaction' to a range of environments. 

The development of the `multi-environment' network required networks to be trained 

with a data set that comprised data extracted from several non-rigid environments. 

The network development phases are illustrated in figure 6.1, which shows the 

combining of the `single environment' training data sets prior to network training and 

testing. 

Combine Daf Set Frain Network Test 
ANN 

all 
Environments 

V 

Training 
Data Set 

for 
Environment 

n 

Figure 6.1 Development phases for multi-environment network training 

6.3 NETWORK TRAINING DATA GENERATION 

Contact with a fixed number of non-rigid environments was initially investigated. Six 

simulated environments, each with differing compliance modes, were chosen for the 

investigation. Training data sets for the six environments were generated using the 
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data extraction technique adopted during the single environment investigation 

presented in Chapter 5. The contact model that was adopted for the investigation was 

introduced in equation 5.1 and model parameters for the simulated environments are 

shown in table 6.1. Hardness profiles for the six simulated environments are shown in 

figure 6.2. 
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Environment 2 100 500 2 

Environment 3 100 300 2 

Environment 4 0 1000 2 
Environment 5 200 200 2 

Environment 6 0 2000 2 

Table 6.1 Model parameters for simulated environments 
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Figure 6.2 Hardness profiles for simulated environments 
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Network training data that was used to train `multi-environment' networks was 

generated by combining `single environment' data sets. The multi-environment 

training data set thus comprised knowledge of `idealised reaction' to each 

environment ̀represented' in the multi-environment training data set. The training of 

neural networks with combined data sets has been used for a range of applications, 

including a neural based character recognition system [Fincher and Wade, 1990] and 

a neural based software sensor used for estimating biomass and residual glucose 

concentration in a fermentation process [Dacosta et al., 1997]. 

6.4 NETWORK TRAINING FOR CONTACT WITH A RANGE OF NOW 

RIGID ENVIRONMENTS 

6.4.1 TRAINING USING RANDOM PLACEMENT OF THE RBF CENTRES 

Initially a single RBF network was trained to respond to the least and most rigid of 

the six simulated environments investigated (environments 1 and 6 respectively). 

Training data sets that were extracted from environments 1 and 6 were combined to 

form a new `multi-environment' training data set. Data sets extracted from the other 

simulated environments were used to test the networks ability to perform accurate 

estimations with environments that had intermediate compliance modes (i. e. 

compliance modes between those of environments 1 and 6). 

Results from the single environment investigation presented in Chapter 5 showed that 

the number of hidden layer nodes used in an RBF network significantly influenced 

network performance. The number of hidden layer nodes required to perform a non- 

linear input/output mapping is governed by the complexity of the input/output 
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mapping and empirical methods for determining an ̀ optimum' number of hidden layer 

nodes do not exist. As such, a trial and error approach to finding a suitable network 

topology for multi-environment I/O mapping was adopted. Network training using 

random placement of the RBF centres was initially investigated. 

A single node was used in the network's hidden layer and the network was trained 

using two epochs of the training data set. RBF centre vectors were randomly placed 

over twice the input domain for 500 centre iterations, and for each iteration the 

network was tested with the original training data set and a set of test data. The latter 

comprised data extracted at random from the two environments under investigation 

for contact up to 20N. Two networks were retained, the network that yielded the 

lowest loss function (i. e. MSE) when tested with the training data set and the network 

that yielded the lowest loss function when tested with the test data set. The latter 

comprised data extracted at random from environments 1 and 6. The number of 

hidden layer nodes was then increased and the training/selection procedure was 

repeated for each network configuration. Network performance was assessed by 

considering the MSE between the network estimation and the target output and 

Akaikes Final Prediction Error (AFPE) was used as a measure of network parsimony. 

Figure 6.3 shows the loss functions for tests with networks that gave the best 

performance with the multi-environment test data set. Loss functions for tests with 

single environment trained networks, trained and tested using data extracted from 

environment 1, have been included for comparison. 
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Figure 6.3 Comparison between single environment trained networks and multi- 
environment trained networks.   Results of tests with multi-environment trained 
network: Test data extracted from environments 1 and 6.   Results of tests with 
single environment trained network: Test data extracted from environment 1. 

Figure 6.3 illustrates that network topologies that could accurately perform single 

environment I/O mappings were unable to perform multi-environment I/O mappings 

to the same degree of accuracy. However, the performance of the multi-environment 

trained network improved when the number of hidden layer nodes was increased and 

as such, the use of larger networks to model the multi-environment I/O mapping was 

investigated. 

Figure 6.4 shows the results of tests with random placement trained networks, each 

comprised differing numbers of hidden layer nodes, that were trained with the `multi- 

environment' data set. The test data set comprised data extracted at random from 

environments 1 and 6, across the force application range. 
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Figure 6.4 Loss functions for networks trained using random placement with data 
extracted from environments 1 and 6. 

Figure 6.4 illustrates that network performance improved as the number of hidden 

layer nodes was increased. However, the increase in performance was found to be 

minimal for networks that comprised more than 70 hidden layer nodes. Akaikes Final 

Prediction Error (AFPE) was used as a measure of network parsimony. Figure 6.5 

shows AFPE for the same networks. 
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Figure 6.5 AFPE for networks trained using random placement. 
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The AFPE result shows that the network that comprised 70 hidden layer nodes 

performed well relative to its size. Figure 6.6 shows the networks estimations when 

tested with data extracted from environment 1, the least rigid of the environments 

investigated. 
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Figure 6.6 Network estimations for contact with environment 1.   Target Output   
Network estimation. Network trained with data set that comprised data extracted 
from environments 1 and 6. 

Figure 6.6 shows that estimations with environment 1 were accurate across the force 

application range. The result was generated without consideration of the effect of 

noise added to the force and depth measurements. However, an investigation into the 

effects of noise on network performance is presented in section 6.5. Figure 6.7 shows 

the network estimations when tested with data extracted from environment 6, the 

most rigid of the environments investigated. 
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Figure 6.7 Network estimations for contact with environment 6.   Target output   
Network estimation. Network trained with data set that comprised data extracted 
from environments 1 and 6. 

Figure 6.7 illustrates the multi-environment trained networks ability to perform 

accurate estimations with environment 6 across the required force application range. 

Thus accurate estimations with both the most and least rigid environments 

investigated were realised with a single RBF network. The results are significant in 

that the network maintained the distinction between the two environments and the 

network training algorithm did not perform a `best fit' through the two data sets (i. e. 

an averaging of the two data sets). Should the latter have occurred, loss function 

results of greater magnitude would have been obtained when the network was tested 

with each of the environments and the use of a single ANN to perform multiple input- 

output mappings would not be feasible. 
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The network's ability to accurately respond to environments that had intermediate 

compliance modes was investigated and the multi-environment trained network was 

tested with data extracted from the remaining non-rigid environments. Figure 6.9 

shows the loss functions obtained when the network was tested with data sets 

extracted from each of the environments. 
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Figure 6.8 Loss functions for network testing with each of the environments. 
Network trained using random placement with data extracted from environments 1 
and 6. Network comprised 70 hidden layer nodes. 

The result illustrates that although estimations with environments represented in the 

multi-environment training data set were accurate, estimations with non-represented 

environments were poor. Thus networks that were trained using random placement 

with data extracted from the most and least rigid environments did not have the ability 

to perform accurate estimations with environments that had intermediate compliance 

modes. 
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Possible explanations for the poor performance are: 

" the repeated random placement training/selection methodology produces networks 

that can only perform accurate estimations with environments represented in the 

network training data set. 

" RBF networks are not capable of interpolating between compliance modes. 

" RBF networks are capable of interpolating between compliance modes but the 

network required more knowledge of idealised reaction to intermediate 

environments. 

6.4.2 NETWORK TRAINING USING K-MEANS CLUSTERING WITH 

VARIATION IN RBF CENTRE SPREAD 

Results from the single environment investigation presented in Chapter 5 showed that 

k-means clustering was found to be detrimental to network performance. However, 

performance was found to improve significantly when the domain of the RBF centre 

initialisation was increased above the training data set input domain. Thus the effect 

of using k-means clustering with centre spreads that were higher multiples of the 

input domain was investigated. 

The network training/selection methodology that was adopted for the previous 

investigation was again adopted, but k-means clustering of the RBF centres was 

performed prior to network training. Figure 6.9 shows loss functions for tests with k- 

means clustering trained networks that were trained using a range of centre spreads. 
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Figure 6.9 Loss functions for k-means clustering trained networks with various 
centre spreads. Networks tested with a data set that comprised data extracted from 
environments 1 and 6. 

Figure 6.9 shows that network performance improved with increasing centre spread. 

However, the increase in performance above a centre spread of three times the input 

domain was minimal. Table 6.2 shows the loss functions obtained when k-means 

clustering trained network, that was trained using a centre spread of 5, was tested 

with data extracted from each of the simulated environments. 

Test Environment 1 2 3 4 5 6 

Loss Function 0.005 38 76.9 9.18 12.6 0.003 

Table 6.2 Loss functions for k-means clustering trained network when tested with 
each of the environments. Network trained using a centre spread = 5. 
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The results illustrate that although estimations with environments represented in the 

training data set were accurate, estimations with non-represented environments were 

poor. Thus networks trained using data extracted from environments I and 6 (the 

least and most rigid environments investigated respectively) were unable to perform 

accurate estimations with environments that had intermediate compliance modes. This 

was evident with networks trained using random placement and k-means clustering. 

6.4.3 IMPROVING NETWORK ESTIMATIONS WITH INTERMEDIATE 

ENVIRONMENTS 

In an attempt to improve estimations with intermediate environments, knowledge of 

idealised reaction to an environment that had an intermediate compliance mode was 

incorporated into the multi-environment training data set. The single environment 

data set that was extracted from environment 3 was combined with the multi- 

environment training data set that already comprised data from environments 1 and 6. 

Environment 3 was chosen since it had a compliance mode that was approximately 

midway between the compliance modes of environments 1 and 6. Hardness profiles 

for environments 1,3, and 6 were illustrated in figure 6.2. 

Networks were trained with the new multi-environment training data set using the 

repeated random placement training/selection procedure described in Chapter 4. 

Figure 6.10 shows the loss functions obtained when networks with various topologies 

were tested with a test data set that comprised data extracted at random from the 

three represented environments. 
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Figure 6.10 Loss functions for various network topologies trained/tested using data 
extracted from environments 1,3, and 6. 

Figure 6.10 shows that network performance improved as the number of hidden layer 

nodes was increased but performance gains were minimal for network topologies that 

comprised more than 120 hidden layer nodes. Figure 6.11 shows AFPE results for the 

same networks. 
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Figure 6.11 AFPE for various network topologies trained/tested using data extracted 
from environments 1,3, and 6. 
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The AFPE result shows that networks that comprised between 100 and 120 hidden 

layer nodes performed well relative to their size. Figure 6.12 shows the loss functions 

obtained when the random placement trained network that comprised 120 hidden 

layer nodes was tested with data extracted from each of the simulated environments. 
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Figure 6.12 Loss functions for random placement trained network when tested with 
each of the environments. Network trained with data extracted from environments 1,3 
and 6. 

Table 6.3 shows the loss functions obtained for random placement trained networks 

that were trained using data extracted from environments 1 and 6, and environments 

1,3, and 6, when tested with each of the simulated environments. Both networks 

comprised 120 hidden layer nodes. 

Represented 
Environments Test Environment 

1 2 3 4 5 6 

1,6 0.0096 4.66 14.79 12.3 3.6 0.004 

1,3,6 0.007 0.774 0.0061 0.83 0.95 0.0058 

Table 6.3 Loss functions for multi-environment trained networks when tested with 
each of the environments. 
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The results presented in figure 6.12 and table 6.3 show that the addition of data 

extracted from environment 3 significantly improved network estimations with 

environments that had intermediate compliance modes. Estimations with 

environments 1 and 6 remained accurate. The result is significant in that a single RBF 

network not only maintained the distinction between the three training environments, 

but estimations with environments that were not represented in the network training 

data set (i. e. environments 2,4, and 5) improved considerably. 

Table 6.4 shows the loss functions obtained for k-means clustering trained networks 

when tested with data extracted from each of the environments. The networks 

comprised 120 hidden layer nodes and were trained using centres spreads that were 

higher multiples of the training data set input domain. The network training data set 

comprised data generated from environments 1,3, and 6. 

Test Environment Centre Spread 

x1 x2 x3 x4 x5 

Environment 1 0.57 0.122 0.039 0.032 0.004 

Environment 2 0.65 0.778 2.67 2.11 4.48 

Environment 3 0.08 0.044 0.02 0.021 0.004 
Environment 4 0.039 0.56 3.09 2.38 6.27 

Environment 5 0.126 0.456 2.31 3.44 3.98 
Environment 6 0.32-- l 0.071 0.025 0.0136 0.003 

Table 6.4 Loss functions for k-means clustering trained networks, trained using 
various centre spreads, when tested with each of the environments. Centre spreads 
expressed as multiples of the training data set input domain. Represented 
environments: 1,3, and 6. 
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The results illustrate that estimations with environments represented in the network 

training data set generally improved with increasing centre spread but network 

performance with non-represented environments was found to degrade with 

increasing centre spread. Additionally, the performance of networks trained using k- 

means clustering were found to be inferior to similarly sized networks trained using 

random placement when tested with intermediate environments. 

6.4.4 FURTHER NETWORK TRAINING 

In an attempt to further improve estimations with intermediate environments, the six 

data sets were combined to form a new training data set and the training/selection 

methodologies adopted during the previous investigations were repeated with the 

data set. Figure 6.13 shows the loss functions obtained when the resulting networks 

were tested with a data set that comprised data extracted at random from each of the 

environments across the force application range. 
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Figure 6.13 Loss function for random placement trained networks with various 
topologies that were trained and tested with data extracted from each of the 
environments. 
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Figure 6.13 shows that network performance improved with increasing numbers of 

hidden layer nodes but minimal performance gains were realised with network 

topologies that comprised more than 120 hidden layer nodes. Figure 6.14 shows 

AFPE results for the tests with the same networks. 
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Figure 6.14 AFPE for random placement trained networks with various topologies 
trained and tested with a multi-environment data set that comprised data extracted 
from each of the environments. 

The AFPE result shows that the network that comprised 120 hidden layer nodes 

performed well relative to its size. Figure 6.15 shows loss functions results obtained 

when the same network was tested with the test data set that comprised data 

extracted at random from each of the six environments. 
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Figure 6.15 Loss functions for network testing with data extracted from each of the 
environments. Number of hidden layer nodes =120. 

Figure 6.15 illustrates that accurate estimations were obtained with each of the 

simulated environments. Table 6.5 shows loss functions for tests with k-means 

clustering trained networks trained using the multi-environment data set and tested 

with data extracted from each of the six environments. The networks comprised 120 

hidden layer nodes and were trained using centres spreads that were multiples of the 

training data set input domain. 

Test Environment Centre Spread 
x1 x2 x3 x4 x5 

Environment 1 0.33 0.066 0.012 0.0068 0.05' 
Environment 2 0.047 0.018 0.011 0.0065 0.0043 
Environment 3 0.069 0.028 0.0098 0.0074 0.0064 
Environment 4 0.1 0.013 0.016 0.0043 0.0023 

Environment 5 0.16 0.058 0.021 0.0071 0.0031 
Environment 6 0.25 0.025 0.01 0.055 0.006 

Table 6.5 Loss functions for k-means clustering trained networks with various centre 
spreads. Centre spreads expressed as multiples of the training data set input domain. 
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The results illustrate that network performance improved with increasing centre 

spread and networks trained using a centre spread of 5 performed well. Figure 6. I6 

shows a comparison of the loss functions obtained when the best random placement 

trained network and the best k-means clustering trained network were tested with 

data extracted from each of the environments. The random placement trained network 

comprised 120 hidden layer nodes and was trained using a centre spread of 2. The k- 

means clustering trained network comprised 120 hidden layer nodes and was trained 

using a centre spread of 5. 

0.007 

0.006 

= 0.005 
0 

C 0.004 

LL 
U) 0.003 
N 
0 
J 0.002 

0.001 

0 

Test Environment 

Figure 6.16 Loss functions for network testing with data extracted from each of the 
environments.   Random placement trained network.   K-means clustering trained 
network. 

Figure 6.16 shows that the performance of the best k-means clustering trained 

network was similar to the performance of the best random placement trained and 

both networks performed well with each of the simulated environments. 
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6.5 EFFECT OF NOISE ON NETWORK PERFORMANCE 

The effect on network performance of noise added to the force and depth 

measurements was investigated. Two networks were considered during the noise 

tests: 

9 the best performing multi-environment trained network that was trained using 

random placement. The network comprised 120 hidden layer nodes and was 

trained using an RBF centre spread of 2 times the training data set input domain. 

. the best performing multi-environment trained network that was trained using k- 

means clustering. The network comprised 120 hidden layer nodes and was trained 

using a centre spread of 5 times the training data set input domain. 

Noise was simulated by superimposing Gaussian noise onto the investigated measured 

variable. The noise signal model adopted was shown in equation 5.4 and the noise 

signal was chosen so that a signal to noise ratio of 20dB was obtained. 

6.5.1 EFFECT OF DEPTH MEASUREMENT ERROR ON NETWORK 

PERFORMANCE 

Errors in the depth measurement were simulated by superimposing noise onto the 

depth measurements in the test data sets. Table 6.6 shows the loss functions obtained 

when the best random placement trained network was tested with noise free data and 

data that had noise superimposed onto the depth measurements. 

f 
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Test Environment 1 2 3 4 5 6 

Noise Free 0.007 0.003 0.058 0.002 0.003 0.005 

with Noise 0.021 0.007 0.016 0.006 0.004 0.004 

Table 6.6 Loss functions for random placement trained network when tested with 
noise free data and data that had noise superimposed onto the depth measurement. 

Although the presence of the noise on the depth measurement degraded performance, 

estimations remained satisfactory with data extracted from each of the environments. 

Table 6.7 shows the loss functions obtained for the same tests with the best k-means 

clustering trained network. 

Test Environment 1 2 3 4 5 6 

Noise Free 0.005 0.004 0.006 0.002 0.003 0.006 

with Noise 0.038 0.006 0.016 0.016 0.005 0.007 

Table 6.7 Loss functions for networks trained using k-means clustering when tested 
with noise free contact data and data that had noise superimposed onto the depth 
measurement. 

The results presented in table 6.7 show that the performance of the k-means 

clustering trained network was degraded by the presence of noise on the depth 

measurement but estimations with each of the six environments were satisfactory. The 

performance of the k-means clustering trained network can be seen to be similar to 

the performance of the random placement trained network. Neither of the networks 

were particularly sensitive to noise added to the depth measurements. 
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6.5.2 EFFECT OF FORCE SENSOR NOISE ON NETWORK 

PERFORMANCE 

Force measurement error/sensor noise was simulated by superimposing noise onto the 

force measurements in the test data sets. Table 6.8 shows a comparison of the loss 

functions obtained when the random placement trained network was tested with noise 

free data and data that had noise superimposed onto the force measurements. 

Test Environment 1 2 3 4 5 6 

Noise Free 0.007 0.003 0.005 0.002 0.003 0.005 

with Noise 0.032 0.008 0.011 0.004 0.005 0.007 

Table 6.8 Loss functions for random placement trained networks when tested with 
noise free data and data that had noise superimposed onto the force measurement. 

The results presented in table 6.8 show that although network performance was 

degraded by the presence of noise added to the force measurements, estimations with 

each of the environments were satisfactory. Table 6.9 shows the loss functions 

obtained for the same tests with the best k-means clustering trained network. 

Test Environment 1 2 3 4 5 6 

Noise Free 0.005 0.004 0.006 0.002 0.003 0.006 

with Noise 0.039 0.007 0.01 0.004 0.007 0.006 

Table 6.9 Loss functions for networks trained using k-means clustering when tested 
with noise free contact data and data that had noise superimposed onto the force 
measurement. 

The results illustrate that estimations were satisfactory in the presence of noise added 

to the force measurements. Additionally, the performance of the k-means clustering 
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trained network was again found to be similar to the performance of the random 

placement trained network. Neither network was sensitive to noise present on the 

force measurements. 

6.5.3 COMBINED EFFECT OF FORCE SENSOR NOISE AND DEPTH 

MEASUREMENT ERROR ON NETWORK PERFORMANCE 

The effect on network performance of the simultaneous action of noise added to the 

force and depth measurements was investigated. Table 6.10 shows the loss functions 

obtained when the random placement trained network was tested with data extracted 

from each of the environments. The results shown are for estimations with noise free 

data and data that had noise superimposed onto the force and depth measurements. 

Test Environment 1 2 3 4 5 6 

Noise Free 0.007 0.003 0.005 0.002 0.003 0.005 

with Noise 0.037 0.011 0.017 0.006 0.005 0.006 

Table 6.10 Loss functions for random placement trained networks when tested with 
noise free data and data that had noise superimposed onto the force and depth 
measurements. 

The result illustrates that estimations were satisfactory with each of the environments 

in the presence of the added noise. Table 6.11 shows the loss functions obtained when 

the best k-means clustering trained network was tested with data extracted from each 

of the environments. The results presented are for estimations with noise free data 

and data that had noise superimposed onto the force and depth measurements. 
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Test Environment 1 2 3 4 5 6 

Noise Free 0.0056 0.0041 0.0064 0.0023 0.0031 0.006 

with Noise 0.069 0.0073 0.01 0.0046 0.0071 0.0062 

Table 6.11 Loss functions for networks trained using k-means clustering when tested 
with data extracted from each of the environments. Network tested with noise free 
data and data that had noise superimposed onto the force and depth measurements. 

The results presented in table 6.11 show that network performance was satisfactory in 

the presence of noise on the force and depth measurements and estimations with each 

of the environments were accurate. Thus the two networks tested were found to have 

similar estimating performance and degrees of noise immunity. 

6.6 SINGLE DOF FORCE CONTROL SIMULATION 

6.6.1 SIMULATED CONTACT WITH REPRESENTED ENVIRONMENTS 

Contact with environments represented in the network training data set was 

investigated by simulation. The 120 hidden layer node random placement trained 

network was incorporated into the single degree of freedom manipulator ACSL 

simulation and the intelligent force control scheme's force application capability was 

investigated by simulation. Figures 6.17 to 6.19 show the simulated transient 

responses obtained when the intelligent force control scheme was commanded to 

apply a ION force to environments 1,3, and 6 respectively. Environments 1 and 6 

were the least and most rigid of the simulated environments respectively. The results 

were generated without consideration of noise present on the force and depth 

measurements. The position of the contact surface was not specified to the control 

system prior to contact (i. e. the scheme autonomously applies forces when contact is 

sensed) and impact control via proximity sensing was not considered. 
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Figure 6.17 Transient response for contact with environment l: Impact at t=0.1 
sec.   Force setpoint.   Applied force. 

12 

10 

8 
z 

4s 
L 0 LL a 

2 

01I+{ 
012345 

Time(s) 

Figure 6.18 Transient response for contact with environment 3: Impact at t=0.1 
sec.   Force setpoint.   Applied force. 
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Figure 6.19 Transient response for contact with environment 6: Impact at t=0.1 
sec.   Force setpoint.   Applied force. 
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The transient responses show that the intelligent force control system was 

capable of applying the specified force to each of the environments. The overshoot 

experienced for contact with environment 6 (the most rigid environment investigated) 

resulted from the impact with the environment.. The transient responses were stable 

but slight offsets were measured which resulted from non-ideal network estimation. 

Non-ideal estimation results in non-ideal positioning of the end-effector within the 

environment which in turn results in a non-ideal force being applied to the 

environment. Table 6.12 shows the steady state forces applied to each of the three 

environments. 

Environment I Environment 3 Environment 6 

Steady State Force(N) 10.03 10.08 10.04 

Table 6.12. Steady state forces applied to represented environments. Force 
setpoint=1ON. Number of hidden layer nodes=120. Network trained using random 
placement. 

6.6.2 NETWORK TESTING ACROSS THE FORCE APPLICATION RANGE 

The intelligent force control scheme was tested with a 'series of unit step inputs applied to 

the ANNs ̀ force setpoint' input so that the control schemes force application capability 

could be assessed across the entire force application range (1N to 15N), with each of the 

environments. The control scheme was commanded to apply a IN force to environment 

1( the least rigid of the training environments) and the force demand was increased in 1N 

steps at 5 second intervals. Figure 6.20 shows the resulting transient response which 

was generated with noise superimposed onto the force and depth measurements. 
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Figure 6.20 Transient response for contact with environment 1 across the force 

application range. Contact at t=0. I sec.   Force setpoint.   Applied force. SNR=20 
dBs. 

Figure 6.20 shows that the intelligent force control system recovered from the impact 

with the environment that occurred at t=0.1 seconds and the control system tracked 

the force demand but slight steady state offsets, which resulted from non-ideal 

network estimations, were measured at several operating points. Small fluctuations 

about the setpoint resulted from the presence of noise added to the force and depth 

measurements. 

Figures 6.21 to 6.24 show the transient responses when the intelligent force control 

scheme was commanded to apply the same series of steps in force demand to 

environments 2,3,4, and 5 respectively. The results show that the force control system 

tracked the force demand but offsets that resulted from non-ideal network estimations 

were again measured. 
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Figure 6.21 Step tests for contact with environment 2. Contact at t=0. I sec.   Force 
setpoint.   Applied force. SNR=20 dBs. 
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Figure 6.22 Step tests for contact with environment 3. Contact at t=0.1 sec.   Force 
setpoint.   Applied force. SNR=20 dBs. 
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Figure 6.23 Step tests for contact with environment 4. Contact at t=0.1 sec.   Force 

setpoint.   Applied force. SNR=20 dBs. 
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Figure 6.24 Step tests for contact with environment 5. Contact at t=0.1 sec.   Force 

setpoint.   Applied force. SNR=20 dBs. 
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Figure 6.25 shows the resulting transient response for the same tests with 

environment 6, the most rigid of the environments investigated. The results were 

generated with noise superimposed onto the force and depth measurements. 
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Figure 6.25 Transient responses for contact with environment 6. Contact at t=O. l 

sec.   Force setpoint.   Applied Force. SNR=20 dBs. 

The transient response shows that the intelligent force control scheme recovered from 

the initial impact with the environment but an overshoot resulted from the impact. 

The force control system tracked the force demand but significant offsets were 

measured at several operating points which resulted from non-ideal network 

estimations. For contact with near rigid environments, small errors in end-effector 

positioning within the contact environment can result in significant force errors. 
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6.6.3 CONTACT WITH NON-REPRESENTED ENVIRONMENTS 

Contact with environments that were not represented in the network training data set 

was investigated by simulation. The intelligent force control scheme's ANN does not 

have knowledge of idealised reaction to non-represented environments and must 

therefore extrapolate on knowledge acquired during training when estimating with 

such environments. Contact model parameters for the non-represented environments 

are shown in table 6.13 and hardness profiles for the environments are shown in 

Appendix C. 

kl(N/m) k3(kN/m2) a 
Environment 7 300 500 2 

Environment 8 500 500 2 

Environment 9* 0 3000 2 

Environment 10* 0 50 2 

Environment 11 * 1000 0 2 

Environment 12 2000 0 2 

Table 6.13 Model parameters for non-represented environments. * indicates that the 
environment's data set comprises data that was outside the network training data set 
range. 

6.6.3.1 CONTACT WITH NON-REPRESENTED ENVIRONMENTS WITH 

INTERMEDIATE COMPLIANCE MODES 

Contact with non-represented environments that had intermediate compliance modes 

(i. e. compliance modes between those of environments 1 and 6) was investigated by 

simulation. Figures 6.26 and 6.27 show the transient responses obtained when the 

aforementioned step tests were performed with environments 7 and 8 respectively. 
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Figure 6.26 Step tests for contact with environment 7. Contact at t=0. I sec.   Force 
setpoint.   Applied force. SNR=20 dBs. 
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Figure 6.27 Step tests for contact with environment 8. Contact at t=0. I sec.   Force 
setpoint.   Applied force. SNR=20 dBs. 
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The transient responses show that the intelligent force control system recovered from 

the impact with the environments. The control system tracked the force demand but 

slight steady state offsets were measured in several operating regions. The offsets 

resulted from non-ideal network estimations. 

6.6.3.2 CONTACT WITH NEAR RIGID ENVIRONMENTS 

Contact with a near rigid environment was investigated by simulation. Figure 6.28 

shows the transient response obtained when the aforementioned step tests were used 

to test contact with environment 9, an environment that was more rigid than 

environment 6 (the most rigid environment represented in the network training data 

set). 
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Figure 6.28 Step tests for contact with environment 9. Contact at t=0. I sec.   Force 
setpoint.   Applied force. SNR=20 dBs. 
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The transient response presented in figure 6.28 shows that the force control system 

recovered from the initial impact with the environment but an overshoot resulted from 

the impact. Environment 9 was a near rigid environment and, as such, impact between 

the rigid end-effector and environment 9 resulted in contact that was greater than the 

force demand. The control system was incapable of achieving satisfactory contact 

with the environment for contact above 3N (although contact at 11N was acceptable). 

The poor results may be attributed to two factors, namely: 

" the RBF network has not experienced contact with an environment as rigid as 

environment 9, and is therefore extrapolating beyond its knowledge. 

" environment 9 is a near rigid environment that tends towards positional saturation 

with minimal penetration into the environment. Thus small changes in the end- 

effector position within the environment can lead to significant changes in the 

contact force. As such, small errors in the network estimation resulted in 

significant steady state force errors. 

6.6.3.3 CONTACT WITH `SOFT' ENVIRONMENTS 

Contact with soft environments (i. e. very compliant environments) was investigated 

by simulation. Figure 6.29 shows the transient response obtained when the 

aforementioned step tests were performed with environment 10, an environment that 

was significantly more compliant than environment 1 (the least rigid environment 

represented in the network training data set). 
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Figure 6.29 Step tests for contact with environment 10. Contact at t=0. I sec.   
Force setpoint.   Applied force. SNR=20 dBs. 

Figure 6.29 shows that the intelligent force control scheme was capable of achieving 

satisfactory contact with environment 10 for contact up to 3N, but performance 

deteriorated considerably thereafter. The RBF network has not experienced contact 

with an environment as compliant as environment 10, and it is therefore extrapolating 

beyond its knowledge. The hardness profile for environment 10 (shown in Appendix 

C) shows significant deviation from the hardness profile for environment 1 (the least 

rigid of the training environments) for contact above 3N. 

6.6.3.4 CONTACT WITH LINEAR ENVIRONMENTS 

Contact with environments that had linear contact characteristics was investigated by 

simulation. Figure 6.30 shows the transient response obtained when the intelligent 

force control scheme experienced contact with a linear environment (environment 
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Figure 6.30 Step tests for contact with environment 11. Contact at t=0. I sec.   
Force setpoint.   Applied force. SNR=20 dBs. 

Figure 6.30 shows that the intelligent force control system recovered from the initial 

impact with the environment but an overshoot resulted from the impact. The control 

system tracked the force demand for contact up to ION, thereafter performance 

deteriorated. The hardness profile for environment 11 (see Appendix C) shows that 

contact with the environment up to 9N was within the training data range. However, 

the control scheme's ANN did not have knowledge of contact with the environment 

above 9N and was thus required to extrapolate on its knowledge. Further tests 

showed that the offset increased as the force demand moved the end-effector further 

into the environment and thus away from the network's training data range. 

Figure 6.31 shows the transient response when the intelligent force control scheme 

experienced contact with environment 12, a linear environment that was bounded by 

the training data set. 
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Figure 6.31 Step tests for contact with environment 12. Contact at t=0. I sec.   
Force setpoint.   Applied force. SNR=20 dBs. 

The result shows that the intelligent force control system recovered from the initial 

impact with the environment but an overshoot resulted from the impact. The control 

system tracked the force demand across the force application range but offsets were 

measured at several operating points. 

6.7 ANN ESTIMATION WITH DATA EXTRACTED FROM REAL 

ENVIRONMENTS 

The simulated environments that were used to train and test the `multi-environment' 

trained network were generated from a parameterised contact model, the form of 

which was not vaned throughout the investigation. Although the contact model 

yielded environments that were similar to practically measured environments 

[Caldwell and Gosney, 19931, it is unlikely that all environments will adhere to the 
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model form, and degradation in network performance may result with such 

environments. 

The multi-environment trained network that was trained using data extracted from 

`simulated environments' was tested for its ability to perform accurate estimations 

with data that was extracted from a range of `real' environments. 

6.7.1 PROFILING THE ENVIRONMENTS 

Several `real' environments were considered during the investigation. A brief 

description of the physical characteristics of each of the environments is presented in 

table 6.15. 

Name Description 
Environment 13 carpet tile: thickness = 6mm 
Environment 14 plastic container 
Environment 15 sponge: thickness = 18 mm 
Environment 16 sponge: thickness = 18 mm (wet) 
Environment 17 human hand (relaxed) 
Environment 18 human hand (tense) 

Table 6.15 Description of real environments investigated. 

Environment 13 was a 6mm thick carpet tile and environment 14 was an empty plastic 

container. Environment 15 was an 18mm thick piece of sponge and environment 16 

was the same piece of sponge that was soaked in water. Environments 17 and 18 

were generated from contact with a human hand under relaxed and tensed conditions. 

Hardness profiles for each of the environments were measured using the apparatus 

illustrated in figure 6.32. 
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Figure 6.32 Apparatus for measuring contact environment parameters. 

The measurement apparatus shown in figure 6.32 comprised a leadscrew mounted to 

a rigid support base. A force/torque sensor was rigidly coupled to the end of the 

leadscrew to provide contact force measurements and a depth gauge micrometer was 

used to provide measurements of the depth into the environment. Rotation of the 

leadscrew results in translation of end-effector which, during contact, results in 

variation of the contact force. 

A hardness profile was generated for each of the environments investigated. This was 

achieved by bringing the end-effector into contact with the environment until a 

contact force of IN was sensed. The end-effector was stopped and the depth into the 

environment was measured using the depth gauge micrometer. The sensed force and 

corresponding depth measurement were recorded. The end-effector was then moved 

further into the environment and the measurement procedure was repeated at IN 

intervals, for contact up to 20N. Similar approaches to environmental ̀profiling' have 

been reported and the shape of the profiles produced are similar to 'practically 
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measured' profiles reported by Caldwell and Gosney 119931. Hardness profiles for 

each of the environments are shown in Appendix D. 

6.7.2 TESTING THE MULTI-ENVIRONMENT TRAINED NETWORK WITH 

DATA EXTRACTED FROM REAL ENVIRONMENTS 

A test data set was generated for each of the environments using the data extraction 

procedure described in Chapter 4. The data sets produced were used to test the multi- 

environment trained network's ability to perform estimations with data extracted from 

a range of `real' environments. The network that was investigated was the same 

network used for the previous investigations. The random placement trained network 

comprised 120 hidden layer nodes and was trained using a centre spread of 2. Figure 

6.33 shows the loss functions obtained when the multi-environment trained network 

was tested with data extracted from each of the `real' environments. 
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Figure 6.33 Loss functions for network estimations with each of' the 'real' 
environments. 
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Figure 6.33 shows that estimations were satisfactory with each of the environments. 

However, estimations with the real environments were not as accurate as estimations 

with simulated environments that had intermediate compliance modes. This is 

illustrated by table 6.16 which shows a comparison of the loss functions obtained 

when the network was tested with the data extracted from the simulated training 

environments and data extracted from the real environments. 

Test Environment Loss Function 
1 0.007 
2 0.0032 
3 0.0058 
4 0.0021 
5 0.0033 

6 0.0053 
13 0.097 
14 0.072 

15 0.013 
16 0.086 
17 0.063 
18 0.074 

Table 6.16 Loss functions obtained for network testing with data extracted from 
network training environments and real environments. 

6.8 SUMMARY 

This chapter described an investigation into the use of a single RBF network to model 

idealised reaction to a range of simulated non-rigid environments, each with differing 

degrees of rigidity. The feasibility of using a single RBF network to achieve this 

objective was demonstrated. 
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Data sets that comprised data extracted from several environments were combined to 

form a multi-environment training data set. Networks trained with the `multi- 

environment' data set performed accurate estimations with environments that were 

represented in the network training data set. Accurate estimations were also achieved 

with a range of non-represented environments that had intermediate compliance 

modes. 

The effect of noise on network performance was investigated and results presented 

demonstrated that noise added to the force and depth measurements did not 

significantly deteriorate performance. 

The intelligent force control scheme's ability to apply forces to a range of simulated 

non-rigid environments was investigated by simulation. Results presented show that 

the neural based force control scheme was capable of applying forces to the majority 

of the environments investigated, across a force application range of IN to 15N. 

However offsets were measured, which resulted from non-ideal network estimation. 

The intelligent force control scheme's ability to apply forces to environments that 

were more/less rigid than the environments used to train the control system's ANN 

was investigated by simulation. Results presented show that the control scheme's 

force application capability deteriorated as the degree of environmental rigidity varied 

from that of the most/least rigid environments represented in the network training 

data set. 
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ANN estimation with data that was extracted from a range of `real' environments was 

investigated. Results presented show that network estimations with each of the 

environments were satisfactory. However, estimations with the `real' environments 

were not as accurate as estimations with simulated environments that had 

intermediate compliance modes. 
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CHAPTER 7 

CONTACT WITH VARYING ENVIRONMENTS 

7.1 INTRODUCTION 

This chapter describes an investigation into the use of the intelligent force control 

scheme for applying forces to a surface that had varying rigidity. One practical 

application where a robot system may be required to apply forces to such a surface is 

profile tracking with simultaneous force application where a robot applies a specified 

force normal to the contact surface while simultaneously moving tangentially across 

the surface [Lange and Hirzinger, 1992]. The multi-environment trained network that 

was developed in Chapter 6 was tested for its ability to apply forces to a varying 

environment. 

7.2 INTELLIGENT FORCE CONTROL WITH VARYING ENVIRONMENTS 

Force application to environments with varying rigidity requires the force control 

system to maintain a specified contact with the environment when the degree of 

environmental rigidity changes. A practically useful force control scheme must be 

capable of sensing and reacting to changes in the degree of environmental rigidity in 

real time. 
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The intelligent force control scheme adjusts the position of the end-eflec; tor relative to 

the contact environment in a single degree of freedom such that a specified förce is 

applied to the environment. The scheme may be employed to control the contact 

force for tasks that require profile tracking with simultaneous force application. This 

is illustrated in figure 7.1 which shows intelligent force control system controlled 

motion along the Z, k axis and position controlled motion along the X,,, k axis (which 

is orthogonal to the Zak axis) to move the end-effector across the environment. 

End-ct%ctor 

Contact environment with 
varying rigidity 

Task aligned co- 
ordinate frame 

Figure 7.1 Illustration of profile tracking with simultaneous force application. 

Methods for partitioning the task aligned coordinate frame into force controlled and 

position controlled axes have been proposed (Mason, 1981; McKerrow, 1991), 

however, methods for partitioning the task aligned coordinate frame were not the 

focus of this investigation and it was assumed that the force and position controlled 

axes could be determined. Additionally, the development of methods for specifying 

positional trajectories to traverse the surface was not within the scope of this work. 
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7.3 CONTACT WITH REPRESENTED ENVIRONMENTS 

The multi-environment trained network that was developed in Chapter ( was tested 

for its ability to acquire and maintain a specified contact with an surface that 

comprised several environments, each with differing degrees of rigidity. The network 

comprised 120 hidden layer nodes and was trained using a centre spread of 2. 

Initially, contact with environments that were represented in the network training data 

set was investigated. The aforementioned network was loaded into the ACSL 

simulation and the control system was commanded to apply aIN force to 

environment 1. The degree of environmental rigidity was then varied at 5 second 

intervals. Figure 7.2 shows transient responses generated from an event based 

simulation that illustrates the intelligent force control system's ability to apply forces 

to an environment where the degree of environmental rigidity was varied. The result 

was for light contact with the environment (i. e. contact at 1 N) in the presence of 

noise added to the force and depth measurements. 
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Figure 7.2 Transient response for event based simulation. Force setpoint- I N. 
Contact at t=0. I sec.   Force setpoint.   Applied force. SNR = 20 dBs. 
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The event based simulation result shows the following contact sequence: 

i. at t=0.1 seconds, the end-effector impacts environment 1. The force control 

system recovered from the impact and the transient response was stable, however 

a slight offset was measured. Small perturbations about the setpoint resulted from 

noise superimposed onto the force and depth measurements. 

ü, at t=5 seconds, contact with environment 2 was experienced, an environment that 

was significantly more rigid than environment 1. The intelligent force control 

system can be seen to recover from `hardening' in the environment but a 

perturbation (an overshoot) resulted from the environment instantaneously 

becoming more rigid. The magnitude of the overshoot was found to be directly 

proportional to the degree of variance in environmental rigidity. 

iii. at t= 10 seconds, contact with environment 3 was experienced, an environment 

that was more compliant than environment 2. A perturbation resulted from the 

environment becoming more compliant (an undershoot), the magnitude of which 

was found to be directly proportional to the degree of variance in the 

environmental rigidity. The intelligent force control scheme can be seen to recover 

from `softening' in the contact environment but a slight offset was again measured. 

iv. at t= 15 seconds, contact with environment 4 was experienced, an environment 

that was more rigid than environment 3. Again, a perturbation (an overshoot) 

resulted from the environment becoming more rigid. The magnitude of the 

perturbation was significantly lower than the previous `hardening' result since a 

lesser degree of environmental variance was experienced. The intelligent force 

control scheme can again be seen to recover from `hardening' in the contact 

environment. 
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v. at t= 20 seconds, contact with environment 5 was experienced, an environment 

that was more compliant than environment 4. The intelligent force control scheme 

can be seen to recover from `softening' in the contact environment. 

vi. at t= 25 seconds, contact with environment 6 was experienced, an environment 

that was significantly more rigid than environment 5. The intelligent force control 

scheme can be seen to recover from significant ̀ hardening' in the environment. A 

large perturbation (an overshoot) resulted as the environment become significantly 

more rigid. 

The results presented represents significant parameter variance in the contact 

environment. Minor parameter variance did not significantly disturb the control 

system. Figure 7.3 shows results of the same contact sequence when the force control 

scheme was commanded to apply a 7.5N force to environment 1. 
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Figure 7.3 Transient response for event based simulation. Contact at t=0. I sec.   
Force setpoint.   Applied force. SNR = 20 dBs. 
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Figure 7.3 illustrates that the magnitude of the perturbations that resulted from 

variance in the environmental rigidity was greater than the result obtained for contact 

at IN. The perturbation that occurred at t=25 seconds resulted from a significant 

change in environmental rigidity and the force applied to the environment reached 

78.2N, far beyond the force application range. Although the intelligent force control 

scheme's ANN does not have knowledge of contact of this magnitude, the ANN has 

responded by reducing the contact force. Contact with the environment was 

momentarily lost at t=25.1 seconds but regained at t=25.3 seconds. The force control 

scheme recovered from the disturbance and the transient response was stable but a 

slight steady state offset was measured. Further testing showed that the magnitude of 

the perturbations increased for contact above 7.5N (results not presented). It should 

be noted however that environment 6 was a near rigid environment and penetration 

into the environment to the depth experienced in the simulation would not be 

achievable practically. 

7.4 CONTACT WITH NON-REPRESENTED ENVIRONMENTS 

Contact with the environments that were not represented in the network training data 

set was investigated. The network was loaded into the ACSL simulation developed in 

Chapter 4 and the control system was commanded to apply a 7.5N force to 

environment 1. The degree of environmental rigidity was then varied at 5 second 

intervals. Figure 7.4 shows the transient response generated from an event based 

simulation that illustrates the intelligent force control systems ability to apply forces 

to an environment that comprised the non-represented environments. 
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Figure 7.4 Transient response for event based simulation. Contact at t=0. I sec.   
Force setpoint.   Applied force. 

The event based simulation result shows the following contact sequence: 

i. at t=0.1 seconds, the end effector impacts with environment 7. The system 

recovered from the initial impact and the response was stable but a slight offset 

was measured. 

H. at t=5 seconds, contact with environment 8 was experienced, an environment that 

was slightly more rigid than environment 7. The intelligent force control scheme 

can be seen to recover from slight `hardening' in the environment. A small 

perturbation (an overshoot) resulted from the environment becoming more rigid. 

iii. at t= 10 seconds, contact with environment 9 was experienced, an environment 

that was significantly more rigid than environment 8 (and more rigid than 

environment 6, the most rigid of the network training environments). A large 

perturbation resulted from the significant change in environmental rigidity. The 
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force control system recovered from the disturbance but a slight offset was 

measured. 

iv. at t= 15 seconds, contact with environment 10 was experienced, an environment 

that was more compliant than environment 9 and environment 1 (the least rigid 

environment represented in the network training data set). A perturbation (an 

undershoot) resulted from the environment becoming more compliant which in 

turn resulted in momentary loss of contact with the environment. A large steady 

state force error was also evident which was also found during the step tests 

performed on environment 10 (see figure 6.29). 

v. at t= 20 seconds, contact with environment 11 was experienced, an environment 

that was more rigid than environment 10. The intelligent force control scheme can 

be seen to recover from `hardening' in the contact environment. 

vi. at t=25 seconds, contact with environment 12 was experienced, an environment 

that was significantly more rigid than environment 11. 

The transient response results presented represent significant parameter variance in 

the contact environment. Minor degrees of parameter variance did not significantly 

disturb the control system. 

7.5 SUMMARY 

The use of the intelligent force control scheme's ability to apply forces to a varying 

environment was demonstrated. The scheme was tested with a range of simulated 

environments and satisfactory contact was made with environments that were 
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represented in the multi-environment training data set. However, slight offsets were 

measured, which resulted from non-ideal network estimations. 

Simulation results presented show that perturbations resulted from variance in the 

degree of environmental rigidity, the magnitude of which were proportional to the 

degree of variance. Large ̀ swings' in environmental rigidity resulted in excessive 

contact or loss of contact with the environment. However, in most instances, the 

desired contact was re-established. 

It should be noted however that results presented for contact with near rigid 

environments were not practically achievable, since such environments cannot be 

penetrated to the extent experienced in the simulation. The results were included to 

illustrate the effects of significant environmental variance. 
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CHAPTER 8 

CONCLUSIONS AND FURTHER WORK 

8.1 INTRODUCTION 

The main requirement of a widely applicable force control scheme is an ability to 

apply forces to a range of environments without a priori knowledge of the contact 

environments mechanical properties. Humans perform contact tasks with a wide 

range of objects to a high degree of accuracy in diverse and challenging environments, 

and intelligence plays a major role in the human force control capability. However, 

attempts at endowing machines, with levels of intelligence that allow for complete 

autonomy in real world environments have only been partially successful, and to date 

robots are not been successfully integrated into the majority of real world 

environments. 

This study was centered around the development of an Artificial Neural Network 

(ANN) model that was capable of allowing interaction with a range of non-rigid 

environments. Once developed, the ANN was integrated into a simulation of a single 

DOF positional controlled mechanical manipulator, and the addition of the ANN 

endowed the manipulator with a force control capability. The force control scheme's 

ability to apply forces to a range of non-rigid environments was investigated by 

simulation. 
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8.2 SINGLE ENVIRONMENT INVESTIGATION 

Initially, contact with a single non-rigid environment was investigated and several 

ANN training considerations that may influence network performance were 

considered. Radial Basis Function (RBF) networks that comprised thin plate spline 

activation functions were used throughout the investigation. One factors that was 

found to be significant was the placement of the RBF centres. 

Two methods for placing the RBF centres were considered: random placement and k- 

means clustering used in conjunction with random placement. Both methods were 

found to yield networks capable of performing single environment input-output 

mappings to a high degree of accuracy. However, network performance was found to 

be dependent on the spread of the RBF centre placement, and the performance of 

random placement trained networks and k-means clustering trained networks were 

found to be optimum when the centres were placed over higher multiples of the 

network training data set input domain. 

Once trained, the effect on network performance of noise added to the force and 

depth measurements was investigated. The effect of each of the noise components 

was investigated in isolation and then the simultaneous action of the noise signals was 

investigated. Results presented showed that network performance was not 

significantly degraded by the presence of the noise. A signal to noise ratio of 20dBs 

was used to test the networks. 
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The single environment trained networks were validated by applying random 

amplitude signals to the network inputs. Further validation was performed by 

applying a series of unit step changes in force demand across a force application range 

of IN to 15N. Network estimations were found to be satisfactory with each of the 

tests with both noise free data and data that had noise superimposed onto the force 

and depth measurements. 

The validated network was incorporated into a single degree of freedom mechanical 

manipulator simulation that was developed in the Advanced Continuous Control 

Language. The inclusion of the network endowed the manipulator with an 

autonomous force control capability. The quality of the force control was investigated 

by simulation and contact with the environment that was used to extract the network 

training data set was found to be accurate across the force application range. 

However, when presented with data extracted from environments that had degrees of 

rigidity that were different to the `training' environment, estimations were poor. 

Steady state offsets were measured, the magnitude of which was found to be directly 

proportional to the degree of environmental variance from the rigidity of the training 

environment. Thus the intelligent force control scheme that comprised a single 

environment trained network had a very limited force control capability. 

8.3 MULTI-ENVIRONMENT INVESTIGATION 

A method for overcoming the limitations of the single environment trained network 

was investigated. A single RBF network was trained using a data set that comprised 

several ̀single environment' data sets. Once trained with the multi-environment data 

163 



Conclusions and Further Work 

set, the RBF network was tested for its ability to perform accurate estimations with 

environments represented in the training data set. Results presented in Chapter 6 

show that networks trained with a data set that only comprised data extracted from 

environments that had upper and lower limits of the compliance modes investigated 

did not have an ability to perform accurate estimations with environments that had 

intermediate compliance modes. The inclusion in the network training data set of data 

extracted from a several ̀ intermediate' environments was found to vastly improve 

network estimations with intermediate environments. Thus the network required 

knowledge of idealised reaction to a wide range of non-rigid environments. 

The effect of noise on the performance of multi-environment trained networks was 

investigated. Results presented show that the networks were not sensitive to noise 

superimposed onto the force and depth measurements. 

The multi-environment trained network was incorporated into the ACSL simulation 

and the intelligent force control scheme was tested for its ability to perform 

estimations with a range of environments. Initially contact with environments that 

were represented in the network training data set was investigated by simulation. 

Results presented show that contact with represented environments was accurate in 

the presence of noise superimposed onto the force and depth measurements. 

However, slight offsets were measured which resulted from non-ideal network 

estimations. 
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Contact with non-represented environments that had compliance modes within the 

bounds of the training data set environments were also found to be accurate. Several 

simulated environments were considered during the investigation. 

8.4 ANN ESTIMATION WITH REAL ENVIRONMENTS 

ANN estimation with data extracted from real environments was investigated. 

Hardness profiles for a range of real environments were measured. Data was 

generated from several environments (eg. Sponge, plastic, human hand, etc. ) and the 

multi-environment trained network that was developed in Chapter 6 was tested for its 

ability to perform estimations with data extracted from the real environments. 

Although estimations with the environments were not as accurate as estimations with 

the simulated environments, estimations were satisfactory. 

8.5 CONTACT WITH VARYING ENVIRONMENTS 

The intelligent force control scheme's ability to apply forces to a varying environment 

was investigated. Results presented show that the scheme recovered from 

disturbances arising from variations in environmental rigidity. Perturbations were 

experienced which were found to be proportional to the degree of environmental 

variance. However, the control scheme was found to be capable of recovering from 

hardening and softening of the environment. 
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8.6 RECOMENDATIONS FOR FURTHER WORK 

8.6.1 FURTHER ANN DEVELOPMENT 

The ANNs developed during the investigation were trained with data that was 

extracted from a static contact model, the use of which can be justified by the fact 

that end-effector velocities during contact are significantly lower than for free motion. 

[Whitney, 1987]. However, some environments may have a significant viscous 

components which may deteriorate the performance of static data trained networks. 

Thus one possible area for further development is the use of dynamically trained 

networks for inclusion in the intelligent force control scheme. 

Additional areas for further ANN development may be: 

" the use of alternative activation functions in the RBF hidden layer nodes (e. g. 

Gaussian functions, multi-quadratic functions, etc. ). 

" consider other network architectures (i. e. multi-layer perceptron, recurrent 

network, etc. ). 

" consider alternative RBF centre placement/optimisation techniques. Several such 

techniques were highlighted in Chapter 3. 

8.6.2 FURTHER CONTROL SYSTEM DEVELOPMENT 

The intelligent force control scheme's force control capability was investigated by 

simulation and on-line application of the techniques should be investigated. However, 

the control scheme is based around sub millimeter positioning of an end-effector 

within the contact environment and practical implementation would require a high 

resolution positioning device. The technology is beyond the positioning capabilities of 
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the vast majority of present robot systems. Additionally accurate real-time depth 

measurement techniques are required. Application to a multi-axis robot system would 

also require partitioning of a task aligned coordinate frame into orthogonal position 

and force controlled axes. 

Expansion of the control scheme to include interaction with rigid environments was 

beyond the scope of this investigation. However, the development would be essential 

if the control scheme was to be useful in a wide range of environments. 

8.7 CONCLUDING REMARKS 

The force control scheme presented in this dissertation has been defined as being 

`intelligent', a term that is incorrectly used in many published works. The scheme 

should be regarded as an intelligent system since the control scheme's ANN has 

learned, via training, to respond to a wide range of environments of differing degrees 

of rigidity. Additionally, and more significantly, the control system's ANN has the 

ability to suitably respond to environments that it has not experienced, which requires 

the ANN to adapt to a new problem domains armed only with knowledge acquired 

during training. 
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Appendix A 

APPENDIX A 

CONTACT MODEL PARAMETERS 

SIMULATED TRAINING ENVIRONMENTS 

kl(N/m) k3(kN/m2) 

Environment 1 100 100 

Environment 2 100 500 

Environment 3 100 300 

Environment 4 0 1000 

Environment 5 200 200 

Environment 6 0 2000 

SIMULATED TEST ENVIRONMENTS 

kl(N/m) k3(kN/m) 
Environment 7 300 500 

Environment 8 500 500 

Environment 9 0 3000 

Environment 10 0 50 

Environment 11 1000 0 

Environment 12 2000 0 
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APPENDIX B 

ACSL SIMULATION MODEL PARAMETERS 

Effective system inertia 

Effective system friction 

Gear ratio 

Motor Armature Resistance 

Current amplifier gain 

Rotational motion to translational motion gain 

J=0.001 kgm2 

B=0.00 1 Nm per rad sec 1 

n=0.01 

Ra =1 ohm 

Ka =1 

m=0.1 
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APPENDIX C 

HARDNESS PROFILES FOR SIMULATED 
ENVIRONMENTS 
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Hardness profiles for.   Environment 7 and   Environment 8. Extremities of 
training data range (hardness profiles for environments I and 6) also shown. 
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Hardness profiles for:   Environment 11 and   Environment 12. Extremities of 
training data range (hardness profiles for environments I and 6) also shown. 
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APPENDIX D 

HARDNESS PROFILES FOR REAL 
ENVIRONMENTS 
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Hardness profiles for:   Environment 13 and   Environment 14. Extremities of 
training data range (hardness profiles for environments 1 and 6) also shown. 
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Hardness profiles for:   Environment 15 and   Environment 16. Extremities of 
training data range (hardness profiles for environments 1 and 6) also shown. 
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APPENDIX E 

PUBLICATIONS PRODUCED 

Kordich, C., Montgomery, P., Williams, D., Jenkinson, I. (1996). A neuro-force 

controller for robotic contact with non-rigid environments, Int. Workshop on 
Advanced Robotics and Intelligent Machines, Salford, Manchester, UK, pp. 

Kordich, C., Dacosta, P., Montgomery, P., Williams, D. (1996). An intelligent force 

control scheme for robotic contact with non-rigid environments, Proc. Int. Conf. on 
Engineering Applications of Neural Netxorks, London, England, pp. 197-200. 
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