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ABSTRACT

This thesis describes an investigation into the use of a novel intelligent force control
scheme that was developed to control the contact force between a mechanical
manipulator’s end-effector and a range of non-rigid contact environments. The scheme
uses a Radial Basis Function (RBF) neural network to model idealised reaction to a range

of environments, each with differing degrees of rigidity.

During the development of the intelligent force control scheme’s neural network, factors
that may affect network performance were investigated, including aspects relating to
network topology selection and RBF centre placement. Results presented show that a

single RBF network was capable of modelling idealised reaction to a range of non-rigid

environments to a high degree of accuracy.

Once tramed, the RBF network was incorporated into a single degree of freedom
mechanical manipulator simulation that was developed in the Advanced Contmuous
Simulation Language and the control system’s ability to apply forces to a range of non-
rigid environments was investigated by simulation. Results presented demonstrate that
satisfactory contact was achievable with a range of non-rigid environments without a
priori knowledge of the contact environment’s mechanical properties. The intelligent force
control scheme’s suitability for force application to varying environments was also

ivestigated.
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Introduction

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Robots are most commonly used to increase productivity and improve product quality
in manufacturing environments where they perform tasks such as paint spraying, spot
welding, and component placement. When performing such tasks, a robot is used as a
positioning device where it is commanded to either move its end-effector (and most
frequently tooling attached to the end-effector) to desired points within the robot

workspace or to the follow a desired trajectory. In order that these ‘positioning’ tasks
can be performed, the robot programmer must supply the robot control system with
task oriented positioning data (i.e. positions, velocity profiles, etc.) and the robot is

controlled using a positional control scheme.

Many °‘real world’ tasks require that a robot system applies a desired force to an

object or surface. Examples of these ‘contact’ tasks are object handling, cutting,
grinding, and drilling. Although positional céntrol schemes are appropriate for non-
contact tasks, they are unsuitable for contact tasks and dedicated force control
strategles are required if robots are to have a force control capability. Research m the
area of robotic force control has been particularly active over the past two decades
but despite the high level of research activity, there remains a need for fast acting,

stable, and widely applicable force control methodologies.
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Robot force control 1s a multifaceted problem that requires the creation of each of the
followmg items: a task description, the definition of force-motion relations, a task
execution strategy, command logic, control, and stability analysis [Whitney, 1987].

However a wide range of non-trivial problems still exist and many robot researchers

regard force control to be one of the most sophisticated and challenging problems in

robot control [Pei1, 1992].

Most of the work 1n robot force control to date has been directed towards contact
with rigid objects [Hopcroft e al., 1991] and numerous problems remain unsolved in
the ngid manipulator/rigid environment force control problem. However, ‘real world’
contact environments can be either compliant or rigid, and if robots are to perform
‘real tasks in real environments’ (e.g. street cleaning, refuse collecting, etc.) then they
must be endowed with the capability of autonomously controlling interaction with

both types of environment (and the transitions between the two).

At the outset of this project, robot contact with non-rigid environments was poor

[Wada et al., 1993] and this shortfall ultimately limits the range of tasks that robots

can perform. The research presented in this thesis attempts to partially address this
shortfall by mvestigating the use of a novel force control methodology that was
developed to control the contact force between a rigid end-effector and a range of
non-rigid environments. The control scheme uses an Artificial Neural Network
(ANN) to model ‘idealised reaction’ (a concept that is explained in Chapter 4) to a

range of environments, each with differing degrees of rigidity.
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1.2 PROBLEMS ASSOCIATED WITH ROBOT FORCE CONTROL FOR
CONTACT WITH NON-RIGID ENVIRONMENTS

Control of the contact force between a robot and non-rigid environments is made

difficult by several factors, including:

o high levels of uncertainty in the contact environment’s mechanical properties (1.e.

spring constant of the contact material, frictional components, etc.).

e non-linear contact characteristics.

o for some tasks, variance in the degree of contact environment rigidity.

Non-ngid environments deform upon contact and the mechanical properties of the
environment are generally unknown prior to contact occurring. Many ‘real’ non-rigid

environments have non-linear contact characteristics that tend towards positional
saturation [Caldwell and Gosney, 1993], and these characteristics may vary with
environmental conditions (i.e. humidity, flexing, etc.). Additionally, considerable

variance in the contact environments mechanical properties may be experienced

during tasks that require a robot to track a non-rigid surface while simultaneously

applying a force to the surface.

The mechanical properties of the contact environment have been shown to have a
significant effect on the contact quality and, in some instances, force control system
stability [Fukuda and Kitamura, 1986]. Thus, for robotic contact tasks, the
environmental model should be central to the development of any force control
scheme [Lewis ef al., 1993] and it is essential that forces are applied to the

environment with consideration of the environment’s mechanical properties.
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However, the development of a widely representative contact model and a mechanism

that can accurately estimate the model parameters in ‘real time’ is a non-trivial task,
and the most frequently adopted contact models are linear in their parameters and

time-mvariant. Investigations into contact model parameter estimation have been

reported [Venkataraman et al., 1992; Fukuda et al., 1987] and some of the significant

studies are presented in Chapter 2.

1.3 THE ROLE OF INTELLIGENCE DURING HUMAN FORCE
APPLICATION

At present, human perception and cognition far exceeds the capabilities of our most
developed ‘mtelligent’ robot systems. Humans mundanely perform a wide range of
tasks that are far beyond the abilities of our most advanced robot systems, and these
tasks are autonomously performed in diverse, unpredictable, and varymng
environments [Annaswamy and Seto, 1993]. Nature has evolved human intelligence
over many thousands of years and a facility of ‘real intelligence’ (as opposed to
artificial mtelhgence which, by comparison, is in its infancy) allows humans to adapt
therr behaviour to new task domains based on previous experience. Artificial

intelligence 1s not so well developed and this shortfall leaves considerable scope for

future development.

Humans (and many animals) have excellent manipulation and force application skills,
which are acquired by learning through repeated interaction with objects of differing
rigidity, shape, and orientation. The mechanism by which human ‘motor skills’ are

acquired 1s not fully understood, but the acquisition of such skills has been attributed
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to the formation and strengthening of neuronal connections within the brain

[Patterson, 1996]. These connections are believed to be ‘formed’ in response to the

human experiencing his environment (input stimulus).

It is worth noting that several aspects of human anatomy play a significant role m our
excellent force application skills, namely excellent force sensing capabilities and
advantageous mechanical characteristics such as compliance in key areas of the body
(e.g. fingertips, feet, etc.) [Annaswamy and Seto, 1993]. At present, the mechanical
characteristics, sensing capabilities, and most significantly ‘intelligence’ of our most
advanced robots fall short of those of the human capability, and the accumulation of
these shortfalls has limited the range of tasks that robots can perform. Advances n

the areas of robot vision, mechanical design, and machine intelligence are required if

robots are to perform tasks in wider domains.

Intelligence (or at least behaviour acquired through learning) plays an important role
in the human force application capability and fa;:ets of human intelligence that are
evident during force application are an ability to:

1. recognise when and where contact occurs.

1. make the distinction between rigid and compliant environments and adjust
behavior patterns accordingly when interacting with environments of differing
rigidity.

1.  recognise constraint, both rotational and translational.

1v. simultaneously apply forces in some directions while moving in others (profile

tracking with force application).
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' perform contact tasks without a priori knowledge of the degree of contact

environment nigidity.

1.4 MOTIVATION FOR AN INTELLIGENT APPROACH TO FORCE

CONTROL

A widely applicable force control strategy must be capable of performing tasks mn
challenging environments where the manipulator is faced with uncertamties and

variations in its environment [Raibert and Craig, 1981]. Thus a force application
robot must be capable of sensing variance in the contact environment and 1t must

react to it in a safe and efficient manner.

Facets of human intelligence that are evident during human force application were
outlined in section 1.3 and it is clear that without this intelligence, many tasks would
be beyond the human capability. Thus strategies that incorporate aspects of human
‘intelligence’ into force control methodologies have potential for expanding the rangé
of tasks that a robot can perform and the range of environments in which they can be

performed. An approach of learning via experience and adaptation to new

environments based on this experience is not only akin to the human force application

learning mechanism but it is also characteristic of Artificial Neural Network (ANN)

learning and generalisation.
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1.5 PROJECT DESCRIPTION

1.5.1 _INVESTIGATION APPROACH

The force control scheme mvestigated attempts to mimic the human force application
learning mechanism and uses a connectionist model (an Artificial Neural Network) to
‘learn’ 1dealised reaction to a range of non-rigid environments. This was to be

achieved by ‘training’ a neural network with data that specified ideal responses to

several non-rigid environments. Once trained, the ANN was tested for its ability to

perform accurate estimations with environments that were represented in the network
training data set and ‘unseen’ environments. The trained ANN was then incorporated
into a force control strategy and the control scheme’s ability to apply forces to a

range of non-rigid environments was investigated by simulation.

1.5.2 RESEARCH OBJECTIVES

The research objectives were to:

1. investigate factors that may influence an ANNs ability to accurately model
‘idealised reaction’ to a single non-rigid environment.

2. mvestigate the effect of noise on network performance.

3. develop a force control strategy that utilises the ANNs knowledge of ‘idealised
reaction’ to a single environment so that a position controlled mechanical
manipulator may be endowed with an ability to apply a destred force to the
environment.

4. mvestigate, by simulation, the force control scheme’s ability to apply forces to a

range of non-rigid environments, each with differing degrees of rigidity. A force

application range of 1N to 15N was investigated.
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>. extend the ANN’s knowledge by investigating the use of a single neural network

to accurately model idealised reaction to a range of environments.
6. mcorporate the ‘multi-environment trained network’ into the force control scheme
and mvestigate, by simulation, the scheme’s ability to acquire and maintamn a

specified contact with a wide range of non-rigid environments. Again, a force

application range of 1N to 15N was investigated.
7. to mvestigate, by simulation, the intelligent force control system’s ability to

mamtam contact with the environment when the degree of environmental rigidity is

varied.

Control of contact with rigid environments was not within the scope of this

investigation.

1.6 ORIGINALITY OF THE RESEARCH
The onginality of the work lies in three areas, namely:

e the method by which the intelligent force control scheme applies forces to its
environment. The control scheme applies forces to a range of non-rigid

environments using a novel force control methodology.

e the use of a novel data extraction technique that was used to generate neural

network training data.

e the use of a novel network training/selection procedure.
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1.7 THESIS OUTLINE

This thesis is organised into eight chapters. Following this introductory chapter,
Chapter 2 presents an overview of force control methodologies and contact models
that are frequently used to represent non-rigid contact environments. Several previous

studies of contact model parameter identification are presented.

Chapter 3 describes ANN principles that were considered relevant to the development

of the mtelligent force control scheme’s ANN. The network topologies and training

algorithms/methodologies investigated are also described.

Chapter 4 presents the development of the intelligent force control scheme and a

single degree of freedom mechanical manipulator simulation that was implemented in
the Advanced Continuous Simulation Language (ACSL). A novel data extraction

techmque that was used to extract ANN training data from a parameterised contact

model 1s also presented.

Chapter 5 mtroduces an investigation into the use of a Radial Basis Function (RBF)

network to model idealised reaction to a single non-rigid environment. Training
methodologies that were used to obtain a network topology that was capable of
performing a single environment input-output mapping to a high degree of accuracy
are presented. Two RBF centre placement/optimisation methodologies were
considered, random placement of the RBF centres and k-means clustering. Once

trained, the RBF network was incorporated into the ACSL simulation developed in
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Chapter 4 and the intelligent force control scheme’s ability to apply forces to a range

of non-rigid environments was investigated by simulation.

Chapter 6 extends the ‘single environment’ investigation to present an investigation

into the use of an RBF network to model idealised reaction to a range of non-rigid

environments, each with differing degrees of rigidity. Once trained, the RBF network

was incorporated into the ACSL simulation developed in Chapter 4 and the mtelligent

force control schemes ability to apply forces to a range of environments was agaim
investigated by simulation. The network’s ability to perform accurate estimations with

data extracted from a range of real environments was also mvestigated.

Chapter 7 presents an investigation into the intelligent force control system’s ablity to

apply forces to varying environments. Conclusions obtained from the research and

suggestions for further work are presented in Chapter 8.

Appendix A lists the contact model parameters that were used for the simulated non-

rigid environments. Appendix B provides a list of parameters used for the ACSL

simulation while Appendix C shows hardness profiles for simulated environments that
were used to test network performance with unseen environments. Appendix D
shows hardness profiles for the experimentally measured environments. Appendix E

summarises the papers that were produced through this research.
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CHAPTER 2

OVERVIEW OF FORCE CONTROL METHODOLOGIES
AND CONTACT MODELS

2.1 _INTRODUCTION

A considerable amount of research has been directed towards controlling the

interaction force between a robot and its environment. Numerous force control
strategies of varying complexity have been proposed and force control
implementations with practical robot systems have been reported (albeit in controlled

environments). However, force control applications in real environments (1.e.

uncontrolled, uncertain, and varying environments) have been noticeably scarce, and

robot force control has not yet reached real world requirements.

The complexity of the force control problem and the diversity of its potential
applications has resulted in an abundance of research publications and, as such, this
overview presents work that is regarded by the author as posing most relevance to the
development of the work outlined in this thesis. This overview should not be taken to
be a complete and comprehensive review of robotic force control techmiques.
However, several ‘traditional’ force control methodologies (i.e. early studies that laid

foundations for robot force control research) have been included. The strengths and

weaknesses of the control methodologies are highlighted where possible.

11
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The intelligent control scheme was developed using a mathematical model that
represented contact between a robot end-effector and it’s contact environment. As
such, a review of frequently adopted contact models is also presented. The
environmental model has been shown to be central to any force control scheme

[Lewis et al., 1993] and the limitations of the contact models are highlighted.

Methods for contact environment parameter identification are also presented.

2.2 ROBOT FORCE CONTROL
2.2.1 TRADITIONAL FORCE CONTROL METHODOLOGIES

The most notable of the early attempts to simultaneously control robot force and

motion was the work by Paul and Shimano [1976] and Whitney [1977].

The control scheme proposed by Paul and Shimano was centred around the switching
of certain robot joints to force control in response to Cartesian demands while the
other joints remained under positional control. The joint based control scheme
suffered from severe coupling problems and the transient switching between control

states (1.e. position to force and vice versa) made the control strategy impractical for

all but the stmplest of applications.

Whitney presented his resolved motion rate control scheme that allowed a force
control outer loop to be added to a velocity controlled inner loop (termed resolved

rate force control). The technique was significant in that force demand could be

specified in Cartesian co-ordinates.

12
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Mason [1981] formalised the general manipulation task by proposing the use of a task
aligned co-ordinate system (commonly known as the 'C' or 'local' co-ordinate system).
The control scheme used the 'C' co-ordinate system to switch the approprate degrees

of freedom in and out of compliant control in response to forces sensed at the point of

contact.

After the formalisation by Mason, two distinct trends in decoupled force control were

proposed: namely hybrid position/force control and impedance control. It 1s worth

noting that the vast majority of the ‘new’ force control methodologies extend the

underlying principles of these force control methodologies, and intelligent and/or

extended adaptations of both strategies are regularly published.

2.2.2 HYBRID POSITION/FORCE CONTROL

Hybrid position/force control (also known as 'hybrid control’) was first proposed by
Raibert and Craig [1981] but has its origins based in the early work by Mason. Hybrid
control utilised a compliance selection matrix to switch local Cartesian co-ordinate
axes to force or position control depending on the task. The control scheme uses
separate position and force control loops and has been developed from a conceptual

force control strategy to a practically feasible scheme (albeit under controlled

conditions!).

Hybrid control has been proposed for a wide range of force control applications

including: a multiple manipulation problem [West and Asada, 1992], door opening

[Pujas et al., 1993], and biped foot/floor control [Tsai and Orin, 1986].

13
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However, hybrid control schemes have been reported to exhibit problems in mode

switching [Mayeda and Ikeda, 1993] and force control stability [Steven, 1989].

2.2.3 IMPEDANCE CONTROL

Impedance control was first proposed by Hogan [1985]. The technique differed from
previous schemes in that it did not require the specification of the end-effector force,
but instead used the relationship between the end-effector position and force (known

as the ‘impedance’ or mechanical stiffness). However, the control scheme was

practically difficult to implement since it required complete knowledge of the robot

dynamic model.

Impedance control has been proposed for applications as diverse as force application

using dextrous space manipulators [Colbaugh et al., 1992] and force tracking [Lasky

and Hsai, 1991].

Kazerooni, et al. [1986] proposed a robust impedance controller which was achieved

by choosing state feedback and force feedforward gains. Anderson and Spong [1988]

proposed a hybrid impedance control scheme that combined an impedance controller

with a hybrid position/force controller.

The main limitation of impedance control for compliant motion is that the
manipulator-environment contact force is controlled indirectly by an appropriate
choice of position trajectory [Seraiji ef al., 1993]. However, in practical situations, the

environmental parameters (i.e. stiffness and exact location of the contact surface)

cannot be accurately specified, and as a result, impedance based force control schemes

14
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exhibit poor force tracking characteristics [Jankowski and EIMaraghy, 1992].

Impedance control and hybrid control principles are highly significant in that their

control structure 1s at the heart of the vast majority of intelligent and adaptive force

control methodologies.

2.2.4 POSITION BASED FORCE CONTROL

A position based force control scheme was proposed by Maples and Becker [1986].
The control scheme used a position controlled manipulator (the vast majority of
industrial robots, as supplied by the robot manufacturer, are position controlled
devices) which took its positional demands from an outer force controlled loop. A

compliant force sensor was added to the robot end-effector and the measured force
was used to generate a force error. A model of the force sensor was used to convert
the force error into an increment in the positional demand, and this was then passed to
the positional control loop. The force control scheme was implemented on an Adept

One robot and the resulting force response was stable but oscillatory. However,

position based force control has been shown to be very sensitive to compliance in the

mantpulator/contact environment [Elosegui ef al., 1990].

2.2.5 INTELLIGENT FORCE CONTROL

There have been several attempts at controlling robotic interaction using artificial
mtelligence (AI) based control schemes. Two main Al methodologies have been

employed, namely Artificial Neural Network (ANN) and Fuzzy Logic based force

controllers.
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Fukuda et al. [1990] proposed a Neural Servo Control scheme that had time delay
clements in the networks first hidden layer node (two hidden layers were used) so that
the network could learn the dynamics of the robot and the contact object. A 'fuzzy
turbo', which is based on fuzzy set theory, was used to avoid stagnation during
training. The proposed scheme used the "hybrid' control structure proposed by Raibert
and Craig [1981] with PID control applied to the position control loops and PI
control applied to the force control loops. The ANN was used to decrease the error

between the output of the hybrid controller and the torque measured at the point of
contact. Simulation results applied to a two dimensional robot manipulator showed

that the system could acquire and maintain a specified contact with the environment.

Tokita et al. [1991] proposed an ANN based 'hybrid' force control scheme that used a
neural network to adjust the PID controller gains depending on the contact object
type (i.e. soft or hard) and manipulator orientation. Simulation and experimental
results were presented for a two degree of freedom mechanical manipulator. Results

presented show that stable force control with both 'soft' and ‘hard' objects was

achieved using this control strategy.

Yabuta et al. [1990] proposed an ANN based control scheme that used a neural
network to directly control a single degree of freedom force control servomechamsm.

Experimental results presented show that the system can acquire a specified contact,

although stability problems were highlighted.
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Pe1 [1992] proposed an alternative direct ANN force control strategy based on two
cascading neural networks. Simulation results for a two link robot show that the

force control scheme could acquire and maintain a desired contact with the

environment.

Hollinger et al. [1993] developed a fuzzy logic controller that was used for the ‘hard

contact’ problem. The control scheme was implemented on a MERLIN 6540 robot
and the robustness of the controller was demonstrated by commanding the robot to

follow a spiral trajectory on a table top while maintaining a four pound contact force.

The force response was stable but oscillatory.

Dote et al. [1990] used a fuzzy force controller to control the grasping force of a
manipulator hand. The control scheme was tested in its ability to apply forces to four
objects of differing rigidity: a steel ball, a tennis ball, a sponge ball, and a soft tennis
ball. The results presented show that the control scheme could acquire a desired

contact with each of the objects.

2.3 CONTACT MODELLING

2.3.1 THE NON-RIGID CONTACT MODEL

Compliant (non-rigid) contact occurs when a robot end-effector (or, most frequently,
tooling attached to the end effector) comes into contact with a surface/object that

deforms upon contact (generally assumed to be local elastic deformation) and/or the

compliances in the robot/force sensor/tooling have not been completely absorbed.

17
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When in the compliant contact phase, the end-effector is not constrained in the

direction of the sensed force, and can therefore move further into the contact surface,

thereby increasing the contact force.

Whitney [1987] reported that the control of robots in contact with an environment

requires at least the management of compliances rather than inertias. However, the

task of compliance modelling and management is non-trivial since compliance modes

may exist i the robot structure (some robots are designed to have mechanical

flexibility [Surdhar et al., 1996]), force sensor [Volpe and Khosla, 1994], tooling,
and/or the contact environment itself. Each of the compliance modes may have non-
linear and time-variant characteristics and the presence of several compliance modes

thus makes accurate modelling of the total ‘system’ compliances a non-trivial task.

A contact model that is frequently used to represent contact with compliant

environments 15 based on the spring damper equation:

F=k1X emr+ k2 X env (2'1)

where F 1s the contact force, k; is the contact environment spring coefficient, k; is the
contact environment damping coefficient, X ay is the depth into the environment, and

X v is the end-effector velocity through the environment.

The contact model shown in equation 2.1 is frequently used to represent not only

compliance modes in the contact environment, but also compliance modes that may

exist in the robot structure and force sensor [Sinha et al., 1993]. This is illustrated m

figure 2.1 which shows compliance modes in the contact environment, force sensor

18
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exist in the robot structure and force sensor [Sinha et al., 1993]. This is illustrated in

figure 2.1 which shows compliance modes in the contact environment, force sensor

and a lumped mass/spring/damper robot model.

ROBOT FORCE NON-RIGID
SENSOR CONTACT
ENVIRONMENT

Figure 2.1 Compliance modes in the robot structure, force sensor, and contact
environment. Ky, Ks, Kg are spring coefficients of the robot, force sensor, and contact
environment respectively. Br, Bs, Bg are damping coefficients of the robot, force
sensor, and contact environment respectively. Mg and Ms are the respective masses of
the robot link and the force sensor. X; and X, are the respective displacements of the
robot end-effector and force sensor that resulted from contact with the environment.

Volpe and Khosla [1994] proposed a fourth order model that considered comphiance
modes in the robot arm, force sensor, and contact environment. The ‘plant’ model

was validated experimentally and showed that the under ‘controlled’ conditions, the
model parameters could be determined to a reasonable degree of accuracy. However,

it 1 worth noting that for practical contact tasks it is difficult to estimate the contact

model parameters 1n real time [Mayeda and Ikeda., 1993].
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Forces generated by contact actually include impact dynamics, inertial forces,
frictional forces, and reaction forces which are normally modelled as elastic
deformation. However, at low speeds typical of robot contact, the dynamics are
usually ignored and frictional forces are assumed to be proportional to elastically

induced normal forces [Whitney, 1987]. Thus the contact model in equation 2.1 1s

frequently reduced to the linear spring contact model shown in equation 2.2.

F= klxm | (22)

where F 1s the contact force, k; is the contact environment spring coefficient, and Xy

is the depth into the contact environment.

2.3.2 PRACTICAL LIMITATIONS OF NON-RIGID CONTACT MODELS

Hardness profiles of non-rigid contact materials [Caldwell and Gosney, 1993] have
illustrated that many practical non-rigid materials have non-linear contact
characteristics that tend towards positional saturation as the depth int9 the material
increases (spring hardening in the contact environment). This is illustrated by the
hardness profile shown in figure 2.2, where a tendency towards positional saturation
can be seen to occur at a depth of Dsat. At this point, the contact phase changes from
compliant contact to rigid contact and the robot cannot move further mto the contact

environment. Control of contact in the rigid contact phase is beyond the scope of this

work.
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Figure 2.2 Hardness profile for a single non-rigid environment

It 1s worth noting that the contact environment’s mechanical properties may vary not
only with material type, but other factors such as material thickness, flexing,
temperature, and humudity can significantly affect the contact environment’s

mechanical characteristics. Thus, many ‘real’ contact environments have not only non-
linear characteristics, but, depending on the contact task and the environmental

conditions in which the task is to be performed, they may also have time-varymng

properties [Guglielmo and Sadegh, 1994]. In light of these considerations, the fixed

parameter linear contact model is unrepresentative of contact with many material

types, since contact non-linearity, positional saturation, and variance in the contact

characteristics are not represented in the model.

2.3.3 ENVIRONMENTAL PARAMETER IDENTIFICATION

An and Hollerbach [1987] recognised the possibility of explicitly identifying the
environment stiffness for tuning a force controller. Fukuda and Kitamura [1986] used

a continuous time model reference adaptive system to identify object dynamics, but
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only considered a fixed linear model for a one degree of freedom prismatic
mechanism. Yabuta and Yamada [1990] applied discrete time model reference

adaptive control to the force control of a fixed linear single degree of freedom

manipulator model and utilised identification of the object stiffness [Carell et al,

1990].

Lu and Goldberg [1995] proposed an impedance controller that estimated the stiffness
parameter of a linear model of the contact environment. However, they reported that

it was difficult to obtain exact environmental parameters and that the environment

should be known as precisely as possible to reduce force error.

Venkataraman et al. [1992] addressed the problem of identifying uncertan
environments by extending the contact model shown in equation 2.1 to include
characteristics of environmental spring hardening and shock absorption. The work
was targeted at controlling the contact force during rock coring and assumed that the

dynamics of the contact environment had a fixed nonlinear structure. The form of the

environmental model adopted was:

F=k1va * 4 kz X mvb | (23)

where F is the contact force, k; is the contact environment spring coefficient, k; is the

contact environment damping coefficient, Xy is the depth into the environment, X ey
is the end-effector velocity through the environment and a and b were exponents that
were included to represent spring hardening and shock absorption effects respectively.
Compliance modes in the robot structure and tooling were not considered. The

control scheme used a neural network to estimate the contact parameters in real time

with a reasonable degree of success.
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Complianée modes in the robot structure and tooling were not considered. The

control scheme used a neural network to estimate the contact parameters in real time

with a reasonable degree of success.

2.4 SUMMARY

Although there has been a significant amount of research activity in the area of robot
force control, there still remams a need for fast, stable, robust, and widely applicable
force control algorithms. A large proportion of ‘new’ and ‘intelligent’ force control
strategies are based around either hybrid control or impedance control structures,

with each scheme having their own inherent limitations.

Conventional hybrid control schemes suffer from a range of problems, in particular
the switching of position and force control modes [Mayeda and Ikeda, 1993].
Impedance control schemes have practical limitations in that the manipulator-
environment contact force can only be controlled indirectly by an appropriate choice

of reference position trajectory, which is difficult to specify owing to uncertainty in

the contact environment model form parameters. Position based control schemes have

been shown to be highly sensitive to unmodelled compliance in the manipulator and/or

contact environment.

Inteligent force control schemes generally extend traditional force control
methodologies and the integration of ‘intelligence’ into traditional force control

structures shows potential for producing practically useful force control

methodologies.
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Characteristics and limitations of frequently adopted contact models that are used to
represent contact with non-rigid environments were presented and previous

investigations of contact model parameter identification were highlighted.
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CHAPTER 3

ARTIFICIAL NEURAL NETWORKS

3.1 INTRODUCTION

This chapter introduces the main characteristics of ANNs including the network

architectures and traming methodologies that were considered during the
development of the intelligent force control scheme’s ANN. The main emphasis of

this chapter is the presentation of the structure, characteristics, and parameters of the

Radial Basis Function network, the network architecture that was used to incorporate
knowledge of idealised reaction into the force control scheme. Two methods of RBF

centre placement/optimisation are introduced, namely random placement of the RBF

centres and k-means clustering.

3.2 ARTIFICIAL NEURAL NETWORKS

ANNs were developed in an attempt to reproduce the learning capability and
adaptability of the human brain, and they have been successfully used for a variety of
applications including speech recognition [Christodoulou et al, 1996;], financial
forecasting [Dutta and Shekhar, 1988; Malliaris and Salchenberger, 1994] and

process modelling and control [Doherty et al., 1997; Zamarreno and Vega, 1996].
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The human brain has been shown to comprise a highly interconnected array of
processing units called ‘neurons’ (approximately 10'° neurons). Biological neurons
receive mputs from sensory cells and a single neuron may be connected to as many as
tens of thousands of other neurons [Patterson, 1996]. The neuron is said to ‘fire’ if
the mput stimulus is sufficient to overcome the neurons threshold. Although not fully

understood, human learning and memory has been attributed to the formation and

strengthening of connections between the neurons, and these connections are formed

based on mput stimulus.

Information in neural networks is not stored explicitly as in traditional computing
techniques, but instead the input/output (I/O) relationship of the training data set is
stored in interconnection weights that exist between the networks nodes. The
network acquires knowledge of the I/O mapping via training, whereby the network

training data 1s presented to the network for several complete iterations of the tramning
data set. Network weights are adjusted by an optimisation algorithm that attempts to

minimise the sum of the squared network prediction errors over the complete training

data set. Several ANN architectures have been proposed, including:

e Multi-Layer Perceptron [Rumelhart et al., 1986]

e Radial Basis Function network [Broomhead and Lowe, 1988; Moody and Darken,
1989]

¢ Recurrent Network [Kodogiannis, 1994]
e Kohonen Network [Kohonen, 1990]
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3.3 THE MULTI-LAYER PERCEPTRON

Limitations in the usefulness of the single neuron model proposed by McCulloch and
Pitts [1943] were realised with the publication of ‘Perceptrons’ (a term given to a
logical thresholding neuron) [Minsky and Papert, 1969]. However, such limitations
were overcome with the development of the backpropagation algorithm [Rumelhart
et al., 1986] which allowed neurons to be interconnected to form arrays or networks.

The backpropagation algorithm allowed a ‘neural network’ to be tramed to model

complex [/O mappings.

The Multi-Layer Perceptron (MLP) trained using the backpropagation algorithm 1s
one of the most frequently used neural network architectures. The feedforward
structure of the MLP network 1s illustrated in figure 3.1, which shows an MLP

architecture that comprises a single hidden layer.

Input Layer =~ Hidden Layer

Output Layer

Figure 3.1. Multi-Layer Perceptron. M passive unit ® active processing unit.
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As its name suggests, the MLP comprises several layers of neural processing units
which are highly interconnected to form a network. The input neurons are passive and
do not perform any processing on the inputs (i.e. they pass information directly to the
hidden neurons via connection weights). The hidden layer neurons pass information to
the next layer via a second set of connection weights. Both the hidden layer and
output layer neurons are active and they process information through non-linear

activation functions. Although the MLP is a widely used network architecture, MLPs

trained using the backpropagation algorithm have several shortcomings, namely:

e a slowness to converge. The non-linear to-and-fro nature of the backpropagation

algorithm results in long training times.

¢ a tendency to get stuck in local minima. With the MLP network, there is no

guarantee that the global mmimum will be reached.

3.4 THE RADIAL BASIS FUNCTION NETWORK

3.4.1 NETWORK STRUCTURE

The Radial Basis Function (RBF) network is an alternative network architecture that

has been widely used for applications such as face recognition [Howell and Buxton,
1996] and automated vehicle control [Gorinevsky et al.,1994]. Although defined as a
‘neural network’, the RBF network does not utilise the neuronal processing units

defined by the McCulloch/Pitts neuron model. Instead, the RBF ‘nodes’ perform a

‘euchidean measure’ between the network input vector and a parameter that is known

as the nodes ‘centre’. Additionally, the RBF architecture differs from the MLP in that
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it comprises a single layer of non-linearities and a linear output layer. The RBF

network structure 1s illustrated 1n figure 3.2.

Basis Function Centres Non - Linear Functions

Weights

OUTPUT |

OUTPUT 2

OUTPUT m

Input Layer Hidden Layer Output Layer

Figure 3.2 The Radial Basis Function network

The function of the mput layer 1s to distribute the inputs unaltered to the hidden layer.
Weights on links between the mput layer and the hidden layer are set to umty and

these weights are not updated during network training. The hidden layer comprises an
array of nodes each of which contains a centre parameter vector. Each node

calculates the Euclidean distance between the nodes centre vector and the network

mput vector and the result 1s passed through a non-linear activation function. The

network outputs are computed as the weighted sum of the hidden layer node outputs.

The mput-output processing performed by the RBF network for the jth output node

1s expressed mathematically by equation 3.1.

v, =B, + 2w (lx—c)) 3.1
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where x is the input vector, c; and ¢;(*) are the centre vector and output of the ith
hidden node respectively, wj; is the weight connecting the ith hidden node to the jth

output node, n, is the number of hidden layer nodes, ||*|| denotes the Euclidean norm,

and J; 1s a bias parameter for the jth output node.

3.4.2 RBF ACTIVATION FUNCTIONS

Several non-linear activation functions have been proposed for use in RBF networks,

including:

¢ the Gaussian Function

#(z) = exp(%z] (3.2)

o the Thin Plate Spline

é(z) = z* log(z) (3.3)

¢ the Multi-Quadratic Function

H2)=(Z"+p )" (34)
o the Inverse Multi-Quadratic

1

— (3.5)
(z2+p%)

p(z) =

where ¢(z) 1s the non linear function output, z is the function input, and p is a

parameter called the width.
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Several algorithms for selecting appropriate values for the RBF centre width have
been proposed including the p-nearest neighbour algorithm [Leonard and Kramer,
1991] and genetic algorithms [Kuo and Melsheimer, 1994]. However it has been

reported that for non-linear function approximation the choice of basis function 1s not

crucial to the performance of an RBF network [Chen et al., 1990].

The network output layer i1s linear in its parameters with regard to the network
weights thus, for a given set of hidden node centre parameters, the output layer
weights can be computed using established linear regression algorithms. A recursive
least squares algorithm [Ljung and Soderstrom, 1983] is frequently used for
computing the weights during network training. Methods for partitioning the network

traming vectors to ensure that the network training data set is well conditioned (and

therefore numerically robust) include LU factorisation [Bierman, G., 1977] and UD

factorisation [Niu and Fisher, 1991].

3.4.3 RBF CENTRE PLACEMENT

A factor that can significantly influence RBF network performance is the placement of

the hidden layer node centres. Researchers have reported that the RBF centres should
sample the network mput domain [Moody and Darken, 1989] but, at present, a

method for mnitiahsing RBF centres that guarantees optimum centre placements does

not exist.
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Several algorithms for RBF centre placement have been proposed, including Random
Placement [Broomhead and Lowe, 1988] and K-means Clustering [Chen and Billings,
1992, Hofland et al.,, 1992], two centre placement methodologies that were
mvestigated during the development of the intelligent force control scheme’s ANN.

Alternative centre placement algorithms that have been proposed include:

¢ Orthogonal Forward Regression [Chen et al., 1992]
o Stepwise Regression [Pottmann and Seborg, 1992]
¢ Mean-Tracking Clustering [Warwick ef al., 1995]

¢ K-medeoids clustering [Kaufman and Rousseeuw, 1990]

e Branch and Bound [Eikens and Karim, 1994].

3.4.3.1 RANDOM PLACEMENT OF THE RBF CENTRES
The nature of the error surface that the optimisation algorithm searches during

network traming 1s dependent on the placement of the RBF centres. Random

placement of the RBF centres mvolves the random placement of centres within the
training data set input domain. However, RBF networks that have centre
initialisations bounded by the input domain may not yield networks with optimum

performance. Additionally, the use of a single centre randomisation is unlikely to

produce an optimum centre placement.
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3.4.3.2 K-MEANS CLUSTERING

One popular approach to determining the network centres is to use a learning method

where the RBF centres are initialised to random points within the network training
data set mput domain and a clustering algorithm, such as k-means clustering, is then
applied to place the centres in more optimal positions [Moody and Darken, 1989].
The k-means clustering algonthm partitions the input data set into k clusters and

yields k cluster centres by minimizing the total squared error incurred in representing
the data set by the k cluster centres. The method of using a recursive version of the k-

means clustering algorithm is presented below:

¢ Initialise Centres to Random Values within the Data Set

ci(0), 1<j<mny (3.6)

Following the mitialisation step, the following computational steps are performed at

each sample t:

¢ Compute Distances and find Minimum Distance
d;(®)=11x(t) —c,(t-DI, 1 <j<m (3.7)

kas=arg[min{d;(®),1 <j <mn,}] (3.8)
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» Update Centres and Re-Calculate the k" distance

c,(t)=c,(t-1),1 <)<myand)#Kk (3.9)
ci(t)=c (- 1)+a[.(t)(x(t) - (t—=1)) (3.10)
di(t)=]x(t) —ci(1)] (3.11)

where ny 1s the number of hidden layer nodes and the learning rate o 15 :
(1) = Pote(t-1) (3.12)

and [ 1s the decay rate.

Figure 3.3 1llustrates the k-means clustering algorithm redistributing the centres in an
attempt to find more optimal centre positions. The centres are moved towards the

mput data space by mmimising the sum of distances squared from each data pomnt to

the nearest centre.

Input Vanable 2
B

Input Vanable 1

Figure 3.3. Redistribution of the RBF centres using the K-means Clustering

algorithm. M Input data points M Initial centres placement M Final Centre position
after k-means clustering.
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It should be noted however that the k-means clustering does not guarantee that the

final centre positions are optimally placed. Additionally, the final placement of the

centres 1s dependent on the centre initialisation.

3.9 NETWORK TOPOLOGY SELEC1;ION

Selecting a network topology to perform a particular I/O mapping requires choices to
be made regarding:

e the number of network inputs and outputs.

¢ the number of hidden layers.

e the number of nodes used in each hidden layer.

e the type of activation function.

The number of mnputs and outputs used in a network are dependent on the desired I/O

mapping and the /O structure of the intelligent force control scheme’s ANN is

introduced in Chapter 4.

Although networks with more than one hidden layer have been reported, 1t has been

shown that networks that comprise a single hidden layer can sufficiently approximate
most functions to a high level of precision provided that the hidden layer nodes
contain non-linear activation functions [Hornick et al., 1989; Cybenko, 1989] and an

adequate number of hidden layer nodes are used.
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A factor that can significantly influence RBF network performance is the number of
nodes included in the network’s hidden layer. If too few hidden nodes are used, then a

network’s ability to model a non-linear mapping between the input and output
variables may be limited. Whereas, the use of too many hidden neurons can result m
over parameterisation of the network, which can result in the learning of the process
noise characteristics and consequently poor generalisation properties are exhibited. At

present, empirical methods for selecting an optimum number of hidden layer nodes to

perform a particular input-output mapping do not exist.

3.6 DURATION OF NETWORK TRAINING

Traming a neural network to perform an I/O mapping involves the presentation of the
complete traming data set to the network for several epochs. An optimisation
algonthm adjusts the network weights in an attempt to map the data set inputs to the
corresponding data set outputs, for the complete data set. Updating of the weights is

performed after each epoch by the optimisation algorithm.

If the neural network experiences too few passes of the training data set, the network

will not acquire suitable knowledge of the data sets I/O mapping. As a result,

estimations with the training data set will be poor. However, if the neural network
experiences too many passes of the training data set, network estimations will be
accurate with the tramning data set but poor with data not used to train the network

[Evans, 1994]. Figure 3.4 illustrates the effect of overtraining on the network output

Mean Square Error (MSE).
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MSE | | Overtraining
Region

Number of Training Epochs

Figure 3.4 Illustration of ANN overtraining M Training data set M Test data set

Initially a large MSE 1s found since the network has not experienced enough passes ot
the traiming data set and therefore has insufficient knowledge of the training data 1/O
mapping. With further training, the MSE obtained with the tramning data set can be
seen to decrease (although the decrease 1s mimnimal after a certain number of tramning
epochs). However, network estimations with ‘unseen’ data can be seen to deteriorate
(as characterised by an increase in MSE). Network ‘overtraining’ occurs because the

weights have been adjusted such that the network has ‘over-fitted’ the training data

set and the network has ‘memorised’ the specific data vectors in the training data set.
A ‘correctly’ tramned network does not store knowledge of individual data vectors,
but nstead learns the overall I/O relationship of the training data set. Generalisation
to unseen data sets 1s of paramount importance since a network must be capable of

performmng accurate estimations with data not represented in the network tramning

data set.
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3.7 ARTIFICIAL NEURAL NETWORK CHARACTERISTICS

Several characteristics make ANNs attractive tools for performing the intelligent

force control schemes I/0 mapping, namely:

1. an ability to model complex non-linearities using representative input-output
data.
1i. a parallel processing architecture that allows for fast, real time operation (in

hardware). This factor is highly significant since practical force control
strategies must be capablé of sensing and reacting to the contact environment in
‘real time”’.

11. an ability to operate in noisy environments.

1v. the ability to generalise to unseen inputs within the network training data range.

v. the ability to learn by example.

3.7.1 ARTIFICIAL NEURAL NETWORK MODELLING OF NON-

STATIONARY SIGNALS

Although ANNSs have several characteristics that make them desirable for modelling

poorly defined and/or non-linear systems, 1t has been difficult to apply them to

nonstationary (1.e. time-varying) signals.

Neural adaptation to time-varying domains requires an additional mechanism to
enable the ANN to model systems with inherent time-varying characteristics [Levin,
1993]. This generally requires that the ANN learning process is kept active
throughout the control operation [Takahashi, 1993]. However, an approach of ‘on-

line learning” is not feasible for the intelligent force control scheme since:
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e for many practical force application tasks, the speed of the variation in the contact

environments mechanical properties does not allow for the network weights to be

updated 1n real time.

* on-line network training results in a ‘forgetting’ of previous knowledge when new
knowledge 1s attained by the network. The non-cyclic nature of most force
application tasks and the non-predictable nature of ‘real world’ environments

requires that the force control scheme’s ANN has ‘metaknowledge’ of contact
with a range of environments with differing degrees of rigidity. The network can

then mstantaneously draw upon this knowledge when contact with the

environment is sensed.

An mvestigation of the storage of knowledge of idealised reaction to a range of non-

nigid environments is presented in Chapter 6.

3.8 SUMMARY

The network architectures that were considered during the development of the
mtelligent force control scheme were introduced. The emphasis of this chapter was

the presentation of the structure, parameters, and characteristics of the Radial Basis

Function network, the network architecture that was used for the intelligent force

control scheme.

Factors that were considered in the choice of network architecture were presented.

Methods of initialising the RBF centres were introduced, namely random placement

of the RBF centres and k-means clustering.
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The main characteristics of ANNs were highlighted, several of which made ANNs
ideal ‘tools’ for incorporating knowledge of idealised reaction with a range of
environments into the intelligent force control scheme. The suitability of ANNs for

modelling non-stationary signals was also discussed.
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CHAPTER 4

INTELLIGENT FORCE CONTROL SCHEME AND
SIMULATION DEVELOPMENT

4.1 INTRODUCTION

This chapter introduces the development of the intelligent force control scheme.
Included 1s the definition of the ANN input/output structure (i.e. the selection of the

ANN i1nputs and outputs) and the ANN training/test data generation methodology.
The latter required the use of a contact model to describe the ‘behaviour’ of the

contact environment during contact. The ANN training/test data sets were generated

from the parameterised contact model using a novel data extraction technique.
Methodologies that were used for training the intelligent force control scheme’s ANN

are mtroduced.

A simulation of a single degree of freedom (DOF) position controlled mechanical

manipulator 1s developed along with the method by which the ‘trained’” ANN was
incorporated imnto the position based control scheme. The simulation was developed in

the Advanced Continuous Simulation Language (ACSL) so that the force control

system’s ability to apply forces to a range of non-rigid environments could be

investigated.
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4.2 INTELLIGENT FORCE CONTROL SCHEME DEVELOPMENT

4.2.1 CONTROL SCHEME OBJECTIVES

The intelligent force control scheme objectives were to:

1. apply forces to a range of non-rigid environments, each with differing degrees of
ngidity. This was to be achieved without a priori knowledge of the contact
environment’s mechanical properties. A force application range of 1 to 15N was

chosen for the investigation. Contact with rigid environments was not within the

scope of the mvestigation.

2. mamntain performance when noise was superimposed onto the force and depth

measurements.

3. mamtam a desired contact with a range of non-rigid environments when the degree

of environmental rigidity changes.

4.2.2 FORCE CONTROL SCHEME RATIONALE

In the case of contact with non-rigid environments, it is possible to control the
contact force by regulating the end-effectors position [Zhou, 1991]. Movement into a
non-rigid environment results in an increase in the contact force and conversely
movement out of the environment results in a decrease in the contact force. However,
the degree of movement required to achieve a required force is dependent on the
environments mechanical properties, which have been shown to have a significant
effect on the quality of the force control. The mechanical properties of ‘real’ contact
environments have non-linear and, for certain tasks, time-varying characteristics

which are difficult to accurately model. Additionally, the contact characteristics are

unknown prior to contact.
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The mtelligent force control scheme uses an Artificial Neural Network (ANN) to vary
the position of the robot end-effector relative to the contact surface such that the

contact force 1s as required. The ANN’s role in the intelligent force control scheme 1s

illustrated n figure 4.1.

3. ANN Adjusts
the end eftector
position to achieve
the desired force

1. ANN receives

force demand
B e 0

Direction of ANN
controlled motion

2. ANN senses
the environment

CONTACT ENVIRONMENT

Figure 4.1 Role of the ANN 1n the mntelligent force control scheme

To achieve its goal, the ANN must be capable of learning ‘idealised reaction’ to a

range of environments. This 1s further explained in section 4.3.2.

4.2.3 DEFINING THE ANN INPUT/ OUTPUT STRUCTURE

In order that the ANN could be tramed, it was necessary to define the network

mput/output (I/O) structure. Initially, several candidate ANN inputs were considered

based on physical quantities that can be practically measured (or derived from such

measurements) at the pomt of contact. The quantities that were considered were:
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® contact force

® contact torque

¢ displacement (depth) into the contact material

® velocity through the matenial

The ANN mput-output structure that was adopted is shown in Figure 4.2. The ANN

comprises three mputs (force setpoint, sensed force, and depth into the environment)

and a single output (increment in positional demand).

FORCE
SETPOINT >
SENSED > i, SN
FORCE " POSITION
DEPTH gy
]/

Figure 4.2 Intelligent force control scheme’s ANN input/output structure

Practically, the contact force could be measured directly by a force/torque sensor
attached to the robot end-effector. An alternative method of force sensing is the
monitoring of motor currents which has been shown to be inaccurate and dependent

on robot loading and configuration [Luk, 1991]. Thus the directly measured contact

force can be used as an ANN input.
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Depth measurements can be obtained by using a backward difference between the
present position into the environment and the point at which the contact was
originally sensed. These positions can be calculated relative to the robots reference
frame usmg a task aligned reference frame. The backward difference between these
two stored values would give an absolute measurement of the depth at a given

mstant. This 1s illustrated by figure 4.3 which shows contact at two discrete points in

time.
Task Aligned
Reference Frame
Z‘lank
Robot Retference
Frame
A Contact first sensed at this . Xtaﬂk

poimnt. Zero depth reference —
pomt=x, = . =

kS Ytaak

X ref

At time t seconds after -
contact occurred ~ A

X0 E‘—’E Xenv
Contact environment |
Depth at time t

—Xenv=X0

Figure 4.3 Depth measurement using backward difference

[t should be noted that the development of ‘real time’ depth measurement techniques

was not within the scope of this work.
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4.3 NETWORK TRAINING DATA GENERATION
4.3.1 DATA GENERATION METHODOLGY OVERVIEW

The ANN trammng data sets were generated using a novel 3 stage data extraction

procedure which 1s 1llustrated in figure 4.4.

Figure 4.4 ANN training data extraction procedure

The first stage required that a contact model was selected. The task of contact model
selection was undertaken with consideration of the limitations of the most frequently

adopted contact models that was presented in Chapter 2. The data that was used to
tram the ANN was generated from the parameterised contact model using a novel

data extraction technique which 1s described in section 4.3.

4.3.1.1 CONTACT MODEL SELECTION

The contact model that was imitially considered to model compliance in the contact

environment was based on the non-linear contact model proposed by Venkataraman

et al., [1992]:
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=klxaw - k2 X cmrb (4-1)

where F 1s the contact force, k; is the contact environment spring coefficient, k; 1s the
contact environment damping coefficient, X« is the depth into the material, X ey 15 the
velocity through the environment, and a and b are exponents used to represent spring

hardening in the contact environment and shock absorption respectively.

It was decided to reduce the contact model shown in equation 4.1 to generate static

contact data by setting the damping coefficient (i.e. k;) equal to zero. The static

investigation can be justified by the fact that during the execution of contact tasks,
end-effector velocities are significantly lower than for unconstrained motion

[Whitney, 1987] and, as such, the dynamic components of the contact model will be

small 1n relation to the static model components.

The effects of spring hardening in the contact environment were modelled as being
proportional to the square of the depth into the environment. Separate coefficients
were used for the spring and spring hardening model components. Hence, the non-

linear contact model structure that was adopted for the intelligent force control

scheme investigation was:

F=k1xm + k3xmv2 (42)
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where F is the contact force, k; is the contact environment spring coefficient, kj 1s

the contact environment spring hardening coefficient, and X, is the depth mto the

environment.

4.3.1.2 GENERATING SIMULATED ENVIRONMENTS

Simulated contact environments were generated to represent a range of non-rigid

environments, each with differing degrees of rigidity. Twelve simulated environments
were generated 1n total by varying the contact model coefficients (i.e. the values of k;
and ki) m equation 4.2. Six of the simulated environments were to be used as the
source of data used to train the ANN and the remaining six data sets were to be used
as thé source of data. used to test the network estimations with ‘unseen’

environments. The twelve sets of simulated contact environment parameters are

tabulated in Appendix A.

4.3.1.3 DATA EXTRACTION

Once a contact model form and parameters were selected, it was possible to extract
the ANN training data from the parameterised contact model. The data extraction
technique mvolved calculating the change in position, dpos, that would make the
sensed force equal to the force setpoint, for a range of force setpoints and sensed
forces. The force application range was chosen to be between 1N and 15N. However,
data for contact up to 20N was included to ensure that ‘bounded’ estimations were

obtained should the force control system ‘overshoot’ the upper limit of the force

application range (i.e. >15N).
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The data extraction technique 1s illustrated in figure 4.5 which shows the hardness

profile for a single non-rigid environment.

Sensed Force(N)

End-effector

Depth(mm)

Figure 4.5 Data extraction from a hardness profile

In the example shown, the desired contact force (i.e. the force setpoint) is 15N
which, for this environment, would occur at a depth of 3mm into the environment.

The sensed force after the mitial impact 1s SN which, for this environment, would
occur at a depth of 2mm into the environment. Thus the robot end-effector must be

moved 1 mm further nto the contact environment to make the desired contact. The
idealised positional increment (which is also referred to as ‘idealised reaction’), dpos,

was tabulated for a force setpoimt/sensing range of IN to 20N, with both ranges being

incremented m 1IN steps. Thus the form of the ANN training data sets is illustrated in

figure 4.6.
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Figure 4.6 Illustration of ANN training data set

Two data sets were extracted from each of the simulated environments: a network
traming data set and a test data set that comprised data extracted at random from the

parameterised contact model, across the force application range. Since the data

extraction procedure was a laborious task a computer program was developed, using

the Pascal programming language, to extract the ANN training/test data from the

parameterised contact model. Twelve ANN traming data sets and twelve test data

sets were generated in total.

4.3.2 NATURE OF THE ANN INPUT-OUTPUT MAPPING

Although the ANN maps 3 imnput variables (2 force quantities and one positional
quantity) to a single output (a positional quantity), the ANN output can be
considered as being a function of two distinct input pairings. By considering the ANN

input-output 