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ABSTRACT 

This thesis describes generic technology for the formulation of dispersible tablets using 
wet granulation and conventional tableting. Tablet dispersion was measured using a 
disintegration tester with sieve apertures of2000, 1700, 1400, 1180 and 710J.lm. Testing 
was carried out in distilled water at 19-20°C to simulate dispersion in practice. The use 
of the super disintegrants sodium starch glycollate (Explotab™), croscarmellose sodium 
(Ac-Di-SoI™), crospovidone (Kollidon-CLTM) and polacrin potassium (Amberlite 
IRP88™) was investigated. 

Paracetamol was used as a model, high dose, poorly compressible drug with low 
aqueous solubility. The influence of granule size and intragranular disintegrant type on 
tablet properties, particularly dispersion, was investigated. When disintegration of 
tablets from granule sieve cuts was monitored through 710j.!m, intragranular 
disintegrant had a greater effect on tablet dispersion than granule size and compression 
force, but the relationship depended upon type. Where disintegrant efficiency was low, 
the influence of granule size was greater and disintegration times tended to increase 
with granule size. Ac-Di-Sol was superior to the other disintegrants and the non­
fractionated granulation gave adequate dispersion. Kollidon CL performed poorest. The 
efficiency of intragranu1ar Amberlite IRP88 was highly dependent on granule size and 
performance was highest in an unfractionated granulation of small particle size. 

Deaggregation down to 710J.lm was more dependent on the type of disintegrant used 
intragranularly than extragranularly. With Ac-Di-Sol, the rate of dispersion was not 
improved by the addition of extragranular disintegrant and in some cases was reduced. 
With intragranular Amberlite IRP88 it was only slightly increased. Greatest 
improvement in tablet dispersion with the addition of extragranular disintegrant, 
occurred in tablets containing intragranular Kollidon CL. The effectiveness of 
Amberlite IRP88, Ac-Di-Sol and Kollidon-CL as extragranular disintegrants was similar 
at low and intermediate compression forces. Amberlite IRP88 tended to be better at 
high compression forces, whereas Explotab was poor. 

Disintegrant poisoning of Ac-Di-Sol by dissolved and recrystallised paracetamol during 
the wet granulation process was investigated. Disintegrant was slurried with ethanol: 
water mixtures of different saturated paracetamol concentrations, to cause varying 
levels of drug to be drawn into the disintegrant during the hydration process and 
deposited on drying. "Poisoned" disintegrant was incorporated into a direct 
compression system and compared to untreated and solvent treated Ac-Di-So1. 
Disintegrant poisoning occurred due to solvent stress and deposition of paracetamo1. 
However, disintegrant efficiency of Ac-Di-Sol remained high. 

Na-p-aminosalicylate provided a very aqueous soluble, high dose model. Citric acid and 
Na-dihydrogen orthophosphate dihydrate were incorporated into the tablet to lower the 
microenvironmental pH at granule surfaces below drug pKa to suppress drug solubility 
and therefore the rate at which porosity and viscosity develop. In theory this should give 
better disintegrant function. Unfortunately, the addition of acid failed to lower pH 
sufficiently to convert a dissolving matrix into a dispersing tablet. In this highly aqueous 
soluble model, Amberlite IRP88 was a better disintegrant than Ac-Di-Sol, and omitting 
a binder increased dispersion, while still achieving mechanically acceptable tablets. 
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CHAPTER 1 



1. INTRODUCTION. 

1.1 The dispersible tablet as a dosage form. 

Solid medicinal preparations have been used since antiquity (Griffenhagen, 1980). The 

earliest reference to a dosage form resembling a tablet can be found in Arabic medical 

literature, in which drug particles were compressed between ebony rods, the force 

applied by a hammer. Details of the tableting process were first published in 1843 when 

Thomas Brockendon was granted a patent for "manufacturing pills and medicinal 

lozenges by causing materials when in a state of granulation, dust or powder, to be 

made into form and solidified by pressure in dies." 

In 1895, an editorial in the Pharmaceutical Journal predicted, "tablets have had their 

day and will pass away to make room for something else." After a century, tablets are 

still the most popular dosage form because they have significant advantages (Table 1.1). 

Table 1.1: Advantages of the tablet as a dosage form. 

Simple administration 

Accurate dosage 

Easy to transport in bulk 

Easy for the patient to carry 

Inexpensive to manufacture 

Uniform product 

More stable than liquid preparations. 

An alternative to the traditional swallow tablet is a special formulation, which will 

quickly disintegrate in water to fonn a suspension that can be drunk. It combines the 
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ease of swallowing and the potentially improved bioavailability of a liquid formulation 

(Kovacic et aI, 1989; Milovac et aI, 1990; Macia et aI, 1995), with the accurate dosing. 

stability and ease of transportation of a tablet. Active ingredients unstable in aqueous 

solution may be stable as a dispersible tablet (Milovac et aI, 1990). 

The dispersible tablet provides a utility dosage form, reducing the need for multiple 

formulations of the same drug. In the current world health economy, this reduces 

development costs significantly. Today the pharmaceutical industry operates in an 

environment where cost containment and optimisation of drug delivery must be 

considered along with efficacy and safety before a new drug product will be licensed 

(Morton, 1996). It is for this reason that the German Registration Authorities (BGA) has 

advocated the fonnulation of dispersible tablets. Germany is not alone, however. The 

trend towards the fonnulation of dispersible tablets is evident across Europe (Martin, 

1987). For example, all tablets marketed in the Netherlands must form an adequate 

dispersion when placed in water (Danish & Kottke, 1996). 
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1.2 Problems associated with conventional oral dosage forms. 

1.2.1 Solid oral dosage forms. 

The advantages offered by solid dosage forms mean that most drugs are initially 

marketed as a tablet or capsule. A liquid formulation is probably developed several 

years later. Marketing of a drug solely as a solid dosage form, results in the 

unavailability of a liquid for paediatric and geriatric use and others who have difficuln' 

in swallowing tablets, are unconscious or those fed via a nasogastric tube (Mistry et aI, 

1995). Furthermore, there are certain drugs where different dosage fonns are used to 

overcome local irritation of the gastro-intestinal tract after solid oral administration. 

Oesophageal ulceration can occur with potassium chloride (Evans & Roberts, 1976~ 

Collins et aI, 1979), doxycycline (Bokey & Hugh, 1975; Crowson et aI, 1976), 

theophylline (Stoller, 1985), and non-steroidal anti-inflammatory drugs (Wilkins et aI, 

1984; Shallcross et aI, 1990). 

The absence of a liquid formulation is a particular problem when large doses must be 

administered orally, resulting in a very large tablet or capsule, especially when doses 

are taken frequently and chronically. This may result in considerable physical and 

psychological discomfort for the patient. 

Problems in swallowing may only be detected in the oropharyngeal phase; the distal 

oesophagus has no somatic sensation. Consequently, patients are not aware of tablets or 

capsules lodged within the oesophagus and below the pharynx (Channer & Virgee, 

1986). Hard gelatin, when moistened, becomes sticky and firmly adheres to the 

oesophageal mucosa. It has been suggested that capsule formulations are thus more 
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prone to delayed oesophageal transit (Channer, 1990). Lodged solid dosage forms can 

cause obstruction, oesophageal ulceration, stricture, haematoma, and in some cases 

haemorrhage (Cumins, 1966; Pemberton, 1970; Runyon, 1986; Piccione et aI, 1987). 

The incidence of tablet retention in the oesophagus is increased considerably in patients 

with an enlarged left atrium in mitral stenosis (Howie & Strachan, 1975), hiatus hernia 

(Shallcross et aI, 1990) or when the patient is lying down (Howie & Strachan, 1975). 

Theoretically, tumours and motility disorders might also be expected to predispose to 

this problem. Patients with variceal sclerotherapy also have an increased risk of tablet­

induced oesophageal injury. These patients together with those with portal hypertension 

(Runyon, 1986) should avoid the use of solid dosage forms. The incidence of lodged 

tablets is a particular problem in the elderly, where oesophageal lesions are common 

(Danish & Kottke, 1996) and peristaltic activity may be impaired, delaying oesophageal 

transit (Robertson & Hardy, 1988). Dry mouth is also prevalent among older people and 

this may cause tablets to adhere to the oesophageal mucosa. 

Solid dosage forms also pose problems for children. In addition to swallowing 

difficulties, clinical studies and case reports suggest highly variable absorption patterns 

in neonates and infants (Heimann, 1980) and there have been reports of incomplete 

absorption (Gilman et aI, 1988). Therefore it is desirable to select a more readily 

bioavailable dosage form, such as a chewable tablet or liquid. It is standard practice in 

British hospitals for paediatric formulations, when not available commercially, to be 

extemporaneously prepared in the pharmacy (Mistry et aI, 1995). In addition to the 

extra work this creates, the lack of data available regarding the stability of products in 

suspension or solution may mean that storage conditions or shelf life may not provide 

optimal activity at the time of administration (Martin, 1987). Adult patients may recei\ e 
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treatment with an extemporaneously prepared liquid formulation or by nurses crushing 

tablets (Mistry et aI, 1995). The practice of nurses crushing tablets is undesirable and in 

contravention of the Control of Substances Hazardous to Health (C.O.S.H.H.) 

Regulations. The medication and persons carrying out the procedure may be 

contaminated, and loss of medication will result in under dosing. When a controlled 

release preparation is crushed, the rate at which the drug is released and absorbed into 

the bloodstream may be too high and cause overdosing. 

1.2.2 Liquid formulations. 

Where a liquid formulation is available, it is usually in the form of a solution or 

suspension. Suspensions and solutions are often less stable than tablets and have shorter 

shelf lives. Furthermore, many liquid formulations have high sugar content, rendering 

them unsuitable for diabetic patients. 

If a drug is poorly soluble in a pharmaceutically acceptable solvent, then formulation as 

a solution may not be possible and formulation as a suspension is usually required. In 

comparison to aqueous solutions, hydrolysis and oxidation is generally less and if the 

drug has an unpleasant taste, this will be less noticeable. However, suspensions are 

thermodynamically unstable systems and are usually much harder to formulate than a 

tablet or capsule. Aggregation of suspended particles, and sedimentation and impaction 

are a problem. The particle size of the drug is critical, and this may increase on storage 

because of Ostwald ripening (Higuchi, 1958). Temperature rises may cause the 

solubility of the drug to increase and on cooling crystallisation will occur (Ziller & 

Rupprecht, 1988). Ostwald ripening is a particular problem with slightly soluble drugs 

such as paracetaITIol. To reduce possible degradation of the drug, the prolonged contact 
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between the solid drug particles and the dispersion medium can be reduced by 

preparation of the suspension immediately prior to issue to the patient (Ball et at 1978). 

For example, ampicillin is provided as either the base or the trihydrate, reconstituted on 

demand. 

Preservatives must be added to solutions and suspensions to prevent the growth of 

microorganisms that may be present in the raw material and / or introduced into the 

product during use. This is expensive and creates problems. Where a tablet is dispersed 

immediately prior to use, a preservative is not required. 

Accurate measurement and administration of the prescribed dose of a liquid 

formulation is a problem, since most are not packaged in unit-doses. Patients suffering 

from poor eyesight, arthritis, or tremors from neurological disorders are particularly 

likely to experience difficulty measuring doses accurately (Danish & Kottke, 1996). 

The inconvenience of carrying liquid is associated with a risk that patient compliance 

will be reduced (Mendizabal & Alcobendas, 1996). 

Further difficulties are encountered if the medication is a suspension. Problems occur 

because a patient cannot see or disregards the words "Shake Well" on the label or is not 

able to exert the amount of agitation necessary to provide a uniform suspension. 

Uneven distribution, will result in under and overdosing. 
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1.3 Administration of solid oral dosage forms. 

1.3.1 To aid swallowing. 

Channer & Virgee (1986) showed that the shape and surface dimensions of tablets have 

a significant impact on transit time through the oesophagus. For psychological reasons, 

patients tend to find long, thin formulations such as oval tablets easier to swallow. 

Significantly reduced oesophageal transit times compared with round tablets of equal 

weight were demonstrated. Tablet surfaces with a high water adsorption capacity can 

also increase adherence to the oesophageal mucosa and increase transit times, 

especially if ingested with too little water. 

Table 1.2: Reducing the incidence of solid dosage form injury to the oesophagus. 

Tablets should be taken standing or sitting upright, followed by a drink> 75 ml. 

Tablets should be taken with a meal, not afterwards, as is often advised. 

Patients should not take medicines one hour before going to bed. 

Use liquid preparations where possible. 

In some instances, assisting with swallowing can relieve problems of taking oral solid 

dosage forms. Several authors (Runyon, 1986; Fink & Rohrmann, 1988; Robertson & 

Hardy, 1988) reporting the incidence of solid dosage form induced injury to the 

oesophagus have suggested methods to reduce the problem (Table l.2). Frequently, 

patients have difficulty with the tablet not leaving the mouth, or lodging in the 

oesophagus and not reaching the stomach. Putting the tablet or capsule on the tongue, 

then taking two successive gulps of water, swallowing the dose with the second 

swallow, often overcomes the physical barrier to swallowing created by the epiglottis, 

hyoid and larynx. 
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1.3.2 The dispersion of conventional solid oral dose tablets. 

Where a commercial liquid preparation is unavailable, the dispersion of conventional 

tablets in water immediately prior to administration has been proposed as a suitable 

alternative to the extemporaneous formulation of oral suspensions (Martin et aI, 1993; 

Mistry et aI, 1995). However, this is not suitable for many tablet preparations. Martin et 

al (1993) carried out a study to determine the proportion of 509 conventional tablets 

held in a hospital pharmacy stock that could be dispersed in water. Although testing was 

crude and judgements arbitrary, they attempted to mimic domestic conditions. They 

placed 20ml of tap water at (25 + 2°C) in a cup. A tablet was added and swirled for four 

revolutions at twenty second intervals. Timing ceased when the tablet completely 

dispersed, or after five minutes (a time period they felt was acceptable for patients to 

wait before taking the drug). Of 509 named products tested, only 258 (510/0) dispersed 

within five minutes and were considered dispersible. 

1.4 Approaches to formulating a solid dosage form which rapidly 

disintegrates. 

1.4.1 Effervescent tablets. 

Effervescent tablets depend on the reaction of bicarbonate or carbonate with an acid or 

other excipient with the capacity to evolve a gas after contact with water. The tablet 

rapidly disintegrates to produce a solution or suspension. However, production is 

expensive and demanding and requires manufacturing at low relative humidity (Sendall 

et aI, 1983). Many drugs are incompatible with bicarbonate and acids, which render 

them unsuitable. 
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Table 1.3: Patented dispersible tablet formulations. 

Active Dose in tablet Method of Patent N° Applicant Inventor(s) 
[mg] manufacture 

Aluminium hydroxide: 200 : 250 Wet granulation EP 0 003 589 (1979) The Wellcome Harden & Gayest 
Magnesium hydroxide Foundation Limited, 

London 

Trimethoprim : 80 : 400 Wet granulation GB 2 067 900 (1981) DDSA Solomon 
Sulphamethoxazole Pharmaceuticals, 

London. 

Oxazepam 15 and 50 Freeze drying GB 2 III 423 (1983) John Wyeth and Gregory & Peach 

Lorazepam 1,2,2.5,4 Brother Limited, 

'remazepam 10,20 Berkshire. 

Lormetazepam 1 
Frusemide 40 
Bendrofluazide 5 
Cyclopenthiazide 0.5 
Isosorbide dinitrate 2.5,5,10 

Indomethacin 25,50 
Prochlorpcrazinc maleate 50 

Cyclandclate 800 Wet granulation EP 0 181 650 (1986) Gist-Brocades N. V. Groenendaal & 
Sijbrands 

Naproxcn 500, 750 Wet granulation EP 0 255002 (1988) Alfa Fannaceutici Rotini & Marchi 
S.p.A, Bologna 
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Table 1.3 Continued. 

Active Dose in tablet Method of Patent N° Applicant Inventor( s) 
[mg] manufacture 

Cimetidine 800-1200 Wet granulation EP 0 347 767 (1989) LEK, Ljubljana Kovacic & others 

Dihydroergotoxin 4.5 Wet granulation EP 361 354 (1990) LEK, Ljubljana Milovac & others 

Diclofenac 46.5 Wet granulation EP 0 365 480 (1990) Ciba-Geigy, Basel Murphy & Mathews 

Chlorpheniramine Maleate 40 Freeze drying US 4 946 684 (1990) American Home Blank & others 
Products, New York 

Lamotrigine 100 Wet granulation WO 92 I 13527 (1992) The Wellcome Fielden 

Acyclovir 800 Foundation Limited, 
London 

Amoxycillin : Clavulanic acid 250 : 125 Dry granulation W092/19227(1992) Laboratorios Beecham Martin & Romero 
Madrid 

2' 3' -dideoxyinosine 150 Dry granulation EP 0 542 579 (1993) Bristol-Meyers Squibb Ullah & Agharkar 
Company, New York 

Paracctamol 325 Vacuum drying US 5 298261 (1994) Oregon, Albany Pebley & others 

Fluoxetine 20 Direct compression EP 0 693281 (1996) Lilly S.A, Madrid Mendizabal & 
Alcobendas 
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1.4.2 Lyophilisation. 

Lyophilisation (freeze drying) has been used to produce tablets with an open matrix 

which rapidly disintegrate in water or saliva. Examples of freeze-dried dispersible 

tablets are given in Table l.3. This type of dosage form is a matrix of a water soluble / 

dispersible material impregnated with a unit dose of drug. A suspension of drug and 

excipients is dosed by weight into pre-formed blisters before freeze-drying. Although 

this type of product has good stability and can be easily dispersed in aqueous solution, 

the porous "open matrix network" produced by the sublimation process renders the 

tablet very fragile (Kearney & Yarwood, 1993) and handling is severely compromised. 

Peelable blister packaging has been developed to allow removal of dosage units from 

the pack without damage, as it is not possible to push them through aluminium sealing 

foil typically used in blister packs without rupturing the product. 

The fragile nature of freeze dried products, along with expensive production costs and 

the specialised equipment required, has limited their widespread use (Pebley et aI, 

1994). Additionally, the formulation of very high dose actives is difficult. Referring to 

Zydis™ (R. P. Scherer), Yarwood & Virley (1990) reported that doses up to 125mg can 

be accommodated, but with higher doses it is more difficult to achieve dispersion. 

1.4.3 Vacuum drying. 

Vacuum drying has been used as an alternative method of removing liquid to produce a 

rapidly dispersing tablet (Pebley et aI, 1994). It is claimed to have a lower porosity. 

greater density and greater mechanical strength, while still disintegrating in normal 

amounts of saliva / aqueous solution. However, there is a possible explosive release of 
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liquid from the material being dried, which may disrupt the structure of the material. 

For this reason, the process has previously been considered unsuitable for commercial 

production of well-formed shapes such as dispersible tablets. However, in the process 

described by Pebley et al (1994), it is claimed that maintaining the temperature of the 

matrix during primary drying between the collapse temperature and the equilibrium 

freezing point, gave a satisfactory product. 

1.4.4 Wet compression. 

Rapidly disintegrating tablets have been developed using wet powders containing drugs. 

Drug and excipients are blended and the powder mixture is moistened with a solvent 

containing a binding agent. The wet mass is either moulded or compressed under low 

force and dried in ambient air or an oven. Bi et al (1999) describe the mechanism and 

optimisation of a wet compression method to produce rapidly disintegrating lactose 

tablets. Low compression force gives high porosity, and solid bridge formation, which 

occurs due to drug recrystallisation, confers tensile strength. 

1.4.5 Conventional tableting. 

Conventional tableting is the most widely used method of producing dispersible tablets. 

It is simple and the least dependent on the use of specialised equipment. A review of the 

literature has revealed little work relating to the research and development of 

dispersible tablets using conventional tableting technology. Patents describing processes 

for the manufacture of specific products are the main source of published material 

(Table 1.3). The aim of the present research is to develop generic technology for the 

formulation of dispersible tablets using conventional tableting. 

12 



1.5 Dispersible tablets using conventional technology. 

1.5.1 Standards. 

Dispersible tablets BP are "uncoated tablets that produce a uniform dispersion In 

water." They are characterised by: 

(i) High speed of disintegration in water «3 minutes when examined by the BP 

disintegration test for tablets and capsules, using water at 19-20°C). 

(ii) Dispersion of the particles below 710~m. 

1.5.2 Method of manufacture. 

The manufacturing process is critical to the design of a dispersible tablet formulation. 

The excipients used will depend to a large extent upon the process selected (Figure 1.1). 

This is influenced by the physicochemical properties of the drug and the dose (Table 

1.3). Dispersible tablets are very sensitive to moisture and their stability is 

compromised by granulation. Direct compression (DC) is therefore the preferred 

technique. The most significant advantage is that tablets normally disintegrate more 

rapidly than those made by wet granulation which reduces the effective surface and 

requires the addition of binding agents which slow the disintegration rate (Mendizabel 

& A1cobendas, 1996). Using lithium carbonate tablets, Healy (1976) showed that in the 

absence of binder, tablets deaggregated to essentially the original powder. 

Unfortunately, many drugs do not possess the necessary physical properties to be 

directly compressed. The maximum carrying capacity of a direct compression vehicle is 

limited to approximately 250/0 of a non-compressible drug (Wells & Langridge, 1981). 
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Drug 
Diluent 

Disintegrant 
Lubricant 

DRY GRANULATION WET GRANf1LATION DIRECT COMPRESSION 
(Slugging) I 

Mixing 

Mixing with 
lubricant 

Pre-compression 

Milling and screening 
of compacts (slugs) 

Sieving 

Mixing with 
disintegrant 

(Oronal) 

Mixing with 
lubricant 

Mixing 

Granulation with 
binder / liquid 

Screening of wet massed 
material 

I 

Drng 

Sieving 

Mixing with 
disintegrant 
(optional) 

Mixing with 
lubricant 

COMPRESSION 

Mixing 

Mixing with 
lubricant 

Figure 1.1: Tablet production by granulation and direct compression. 

14 



Doses greater than 100mg cannot be directly compressed because the \veight of the 

tablet is too large (Armstrong, 1986). Therefore, for high dose drugs with poor flow and 

compressibility, a granulation process is used. Wet granulation is the traditional and the 

most popular method of granulation. In wet granulation, the liquid plays a key role in 

the process. Granule growth is initiated by the formation of liquid bridges between 

primary particles (Rumpf, 1962). The moist mass is then wet screened to further 

consolidate granules, increase particle contact points and the surface area to facilitate 

drying (Banker & Anderson, 1986). A drying process removes the solvent and reduces 

granule moisture content to an optimum (Shotton & Rees, 1966). During drying 

interparticulate bonds result from the recrystallisation of the binding agent. Powdered 

materials which are soluble in the granulating fluid will also form solid bridges due to 

solute migration (Wells & Walker, 1983). The size of solute crystals, and therefore the 

strength of the solid bridges, will be influenced by the rate of drying of the granules; the 

slower the drying time, the larger the particle size. 

Dry granulation, or compression granulation, is useful where the dose is too high for 

direct compression and the drug is unstable when exposed to moisture or heat. For 

example, it has been employed in the manufacture of dispersible amoxycillin tablets 

(Martin & Romero, 1992). 

A review of the patent literature reveals that wet granulation is the most commonly used 

method for the manufacture of dispersible tablets (Table 1.3). This is logical since most 

drugs formulated into a dispersible tablet are high dose drugs where patients commonly 

experience difficulties swallowing large tablets. 
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1.5.3 The theory of wet granulation. 

Wet granulation produces size enlargement when small primary particles are aggregated 

to form larger, physically strong agglomerates where the original particles are 

identifiable. Bonds are formed between powder particles which adhere to form 

granules. The use of soluble adhesives, called binders, causes particle agglomeration 

and granules are influenced by binder type and its distribution within the aggregates 

(Seager et aI, 1979). Granulation may be divided into binding mechanisms (Rumpf, 

1958) and granule growth and formation (Newitt & Conway-Jones, 1958). 

1.5.3.1 Bonding mechanisms for agglomeration in wet massing. 

Rumpf (1958) identified five mechanisms responsible for agglomeration, and stated that 

more than one applied to any particular system. 

[a] Adhesion and cohesion caused by immobile liquid films. 

Sufficient moisture must produce a thin, immobile adsorption layer to contribute to the 

bonding of fine particles, by decreasing the distance between particles and increasing 

the interparticulate contact area. Thin, immobile films of highly viscous solutions of 

adhesives can form exceptionally strong bonds. 

[b] Interfacial forces and capillary pressure at mobile liqUid surfaces. 

When the liquid level on the surface increases beyond a thin film, mobile liquid forms 

bridges where capillary pressure and interfacial forces create strong bonds. This is 

reversible after drying. However, mobile liquid films are required to form solid bridges 

from binders dissolved in the granulating fluid. 

16 



[c] Solid bridges. 

Solid bridges form by the crystallisation of dissolved substances. A hardening binder is 

a common bonding mechanism in pharmaceutical wet granulations. Liquid \\i11 fonn 

bridges and the adhesive will harden or crystallise on drying to form solid bridges. 

Equally, the solvent may dissolve one of the powdered ingredients. When the granules 

are dried, crystallisation will take place and the dissolved substance then acts as a 

hardening binder. The size of the crystals produced in the bridge will be influenced by 

the rate of drying of the granules. Slower drying yields larger crystals (Wells & Walker, 

1983). 

[d] Attractive forces between solid particles. 

Electrostatic forces are of importance in causing powder cohesion and the formation of 

agglomerates during mixing. However, they do not contribute significantly to the final 

strength of the granule. 

[eJ Form-closed bonds or interlocking bonds. 

Fibres or particles can interlock or fold about each other resulting in "form-closed" 

bonds. Although mechanical interlocking of particles influences agglomerate strength, 

its contribution is generally considered small in comparison with other mechanisms. 

With increasing liquid addition, granulation moves from an immobile liquid to a mobile 

liquid film state. Newitt & Conway-Jones (1958) defined the theory of granulation in 

terms of three states, and Barlow (1968) added a fourth. These four states are termed: 

pendular, funicular, capillary and droplet (or suspension). 
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Pendular Funicular 

Capillary Droplet 

Figure 1.2: Binding mechanisms by liquid bridges. 

Each state represents a progressIve Increase in moisture content. At low moisture 

contents water fonns lens shaped rings at the points of contact of the particles. This is 

known as the pendular state. The particles are held together by surface tension at the 

solid-liquid-air interface and the hydrostatic pressure of the liquid bridge. As the 

moisture content increases, the rings coalesce to fonn a continuous network of 1 iquid 

interspersed with air; the funicular state. A further increase in water content gives the 

capillary state when all granule pore spaces are completely filled with liquid and 

concave menisci develop. The droplet state occurs when liquid completely surrounds 

the granule, resulting in an external phase consisting of liquid with an internal solid 

phase. 
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1.5.3.2 Mechanisms of granule formation. 

The proposed granulation mechanism can be divided into three stages (Barlow. 1968): 

[a J Nucleation. 

In nucleation, granule formation occurs when loose agglomerates or single particles are 

wetted by the binder solution and form small granules by pendular bridging. 

[b] Transition. 

Nuclei grow by two mechanisms: 

1. Single particles can be added to the nuclei by pendular bridges. 

II. Two or more nuclei may combine. 

The transition stage is characterised by the presence of a large number of small granules 

with a fairly wide size distribution. If the size distribution is not excessively large, this 

point represents a suitable end point for granules used in tablet and capsule 

manufacture, as relatively small granules will produce a uniform die fill. 

[c} Ball growth. 

Further granule growth results in large, spherical granules, and the mean particle size of 

the granulating system increases with time. If agitation is continued, granule 

coalescence will continue and produce an unusable over-massed system. This is 

ultimately dependent on the amount of liquid added and the material properties. Sastry 

& Fuerstenau (1973) studied particle growth during agglomeration and summarized 

four principal mechanisms of ball growth, shown in Figure 1.3. 
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Figure 1.3: Representation of granulation mechanisms. (after Augsburger & 

Vuppala, 1997). 

I. Layering: The powder mIx added to the granulation, adheres to existing 

granules to form a surface layer and increase granule size . 

• ••• • • + ••• 
•• 

II. Crushing and layering: Some granules break into fragments which adhere to 

other granules forming a layer of material over their surface. 

+ 

• • • ••• • 
•• 

III. Coalescence: Two or more granules join to form a larger granule. 

+ 

IV. Abrasion transfer: Abraded material from attrition of granules adheres to other 

granules, thereby increasing their size. 

+ 
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1.5.4 Dispersible tablet formulation. 

1.5.4.1 Drug. 

High dose drugs which are highly water soluble, poorly compressible and hygroscopic 

pose the greatest difficulty in a dispersible tablet fonnulation. Excipients must be 

carefully selected to produce a tablet matrix with high compressibility and low aqueous 

solubility and hygroscopicity. However, there is a limiting tablet size (= 750mg) and 

where the dose of drug is high, the mass of excipients which can be used to modify the 

physical properties of the tablet is severely restricted. 

1.5.4.2 Disintegrants. 

A disintegrant accelerates the rate at which a tablet breaks up in water. The current 

research will use so-called super disintegrants (Table 1.4), so-called because of high 

disintegrant efficiency attributed to their remarkable ability to absorb water and swell 

(Mitrevej & Hollenbeck, 1982). Many of these combine wicking and swelling action 

which allows a high and fast movement of water into the tablet structure at a low 

concentration. The mechanism of action of individual super disintegrants is discussed in 

Chapter 2. Super disintegrants can be used in smaller concentrations and therefore the 

negative effects on flow and compression, exhibited by most of the starches, are 

minimised. 

Different grade specifications for a super disintegrant will cause differences in 

disintegrant activity. Using calcium diphosphate tablets, Caramella et al (1990a). 

showed significant differences in the disintegrant force generated by Polyplasdone-XL 

and Kolhdon-CL. They attributed the difference to the different particle size of the two 
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commercial brands, since similar results were obtained when samples having the same 

particle size range were compared. 

Table 1.4: Super disintegrants. 

Super disintegrant 

Sodium Starch Glycollate 

Cross-linked polyvinylpyrrolidone, 

(Crospovidone) 

Cross-linked sodium carboxymethyl 

cellulose (Croscarmellose) 

Low substituted carboxymethyl cellulose 

Polacrin Potassium 

Commercial variants 

Primojel TM, Explotab TM 

Polyplasdone- XL TM, Kollidon-CL TM 

AC-Di-Sol™, CLD™ 

TM TM 

Nymcel-ZDIO ,Nymcel-ZD16 

Amberlite IRP88 TM 

It has been postulated that larger particle size grades of sodium starch glycollate may be 

more efficient disintegrants than finer grades (Rudnic et aI, 1980~ Rudnic et aI, 1982). 

Smallenbroek et al (1981) theorised that increased swelling pressure occurred in larger 

starch grains. Rudnic et al (1985) showed that relatively small changes in the cross-

linkage and degree of substitution of commercially available sodium starch glycollate, 

can cause substantial modification of disintegrant properties. Swelling of particles was 

shown to be inversely proportional to the degree of substitution. The more soluble super 

disintegrants should be avoided in dispersible tablet formulation because the formation 

ofa viscous layer retards water penetration (Van Kamp et al., 1983). 

The choice of disintegrant depends on the physicochemical properties of the base 

formulation. In hydrophobic and water-insoluble base formulations, the disintegrant is 

capable of developing maximum swelling force and capillarity. Highly hydrophilic and 

strongly swelling disintegrants are preferable (Graf et aI, 1981; Paronen et aI, 1985). In 

22 



hydrophilic and water soluble formulae, the disintegrant assists in drawing water inside 

the compact but is not always able to develop maximum swelling force. This suggests 

that limited swelling disintegrants should work as well, or even better than, strongly 

swelling materials (Graf et aI., 1981; Paronen et aI., 1985). 

Many workers support the idea that for a formulation there is a critical disintegrant 

concentration and below this concentration, disintegration is slow. At this critical 

concentration, disintegration time decreases, often dramatically. A critical amount of 

disintegrant corresponds to the setting up of a continuous hydrophilic network, which 

allows for fast movement of water throughout the tablet (Patel & Hopponen, 1966; 

Yuasa & Kanaya, 1986) and may therefore, correspond to a great increase in water 

uptake by the tablet (Ringard et aI, 1977). Above this concentration, the disintegration 

time may continue to decrease slowly, remain constant at its lowest value or increase 

(Rudnic et aI, 1981). The critical disintegrant concentration for a tablet formulation 

may be determined empirically. Alternatively, in idealised systems, a calculation 

method can be used (Ringard & Guyot-Hermann, 1988). 

In a wet granulation, disintegrants may be added either intragranularly (+ ), 

extragranularly (-) or both (+). There are many conflicting reports about the best mode 

of incorporation (Lowenthal, 1972). Shotton & Leonard (1976) studied the effect of 

intragranular and extragranular disintegrants on disintegration time and the particle size 

of disintegrated tablets. They showed that the extragranular formulations disintegrated 

much more rapidly than the intragranular ones, but the latter gave a much finer 

dispersion of particles. A combination offered the best compromise. Similarly_ 

Rubinstein & Bodey (1974) showed that 2%) intragranular and 12.5°0 extragranular 
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disintegrant produced the best overall performance in tablets of calcium 

orthophosphate. The effect of super disintegrant location on tablet dispersion is 

discussed in Chapter 4. 

1.5.4.3 Binder. 

The binder and solvent in wet granulation have a profound effect on the disintegration 

properties of the tablet. The aqueous solubility of the binder will affect tablet 

disintegration properties, and this is well documented. Holstius & Dekay (1952) 

evaluated the disintegration of tablets containing different binders and disintegrants, 

and found that binders were more important. 

Table 1.5: Water soluble binders. 

Binder 

Hydroxyethylcellulose 

Hydroxypropylmethylcellulose 

Methy Icellulose 

Polyvinylpyrrolidone 

Sucrose 

K wan et al (1957) found that the rate of solution of the binder in water could determine 

disintegration behaviour since the dissolution rates of the dry binder films were in the 

same order as tablet disintegration times. Healy (1976) studied the effect of binders on 

the deaggregation of lithium carbonate tablets. He concluded that deaggregation \vas 

governed by the solubility of the binder and was unrelated to tablet disintegration rates. 

This is supported by Wells (1980), who reported that water soluble binders yielded 

faster tablet deaggregation and disintegration than insoluble binders. 
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However, there are examples of water insoluble binders used successfully in water 

dispersible tablets found in patented literature. However, in a generic approach, it is 

logical to initially evaluate water soluble binders (Table 1.5) as these are less likely to 

cause long disintegration times. 

Binder solvent should be carefully selected, since this has a major influence on granule 

properties (Wells & Walker, 1983) and consequently tablet disintegration times. Using 

acetylsalicylic acid and PVP as a binder, Wells & Walker (1983) studied the influence 

of binder vehicle upon tablet properties. A range of ethanol : water mixtures provided 

binder vehicles in which the solubility of the drug widely differed. They demonstrated 

that high drug solubility produced tablets with poor disintegrating properties. This was 

attributed to solute migration and the formation of drug crystals in the solid bridges 

(secondary binding). To minimize secondary binding, a granulating fluid in which the 

drug and other excipients have low / no solubility should be chosen. 

1.5.4.4 Diluents. 

A diluent or filler facilitates the compression of a fonnulation and gives tablet strength 

and acceptable appearance. Diluents can be broadly categorised by their aqueous 

solubility and choice is dependent on the physico-chemistry of the drug; solubility, 

hygroscopicity, compression properties, instability and the method of manufacture. 

Diluents used in dispersible tablet formulations are listed in Table 1.6. 

Chowhan et al (1991) investigated the effect of tablet matrix solubility on the efficacy 

of sodium starch glycollate, crospovidone and croscarmellose sodium in wet granulated 

tablets. As aqueous solubility increased, super disintegrant efficacy \yas reduced 
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(Paronen et aI, 1985). When the tablet matrix is highly water soluble, porosity rapidly 

increases due to drug and excipient dissolution and there is space where super 

disintegrant particles swell without exerting pressure and disintegrating force is reduced 

(Ferrari et aI, 1995). Decreased water penetration into the tablet may result from 

disintegrant particles partially filling the voids inside the tablet and increased viscosity 

due to rapid dissolution of the tablet matrix (Graf et aI, 1982). These factors increase 

disintegration times. 

Super disintegrant efficacy is related to the overall solubility of the tablet matrix. The 

importance of diluent aqueous solubility depends upon overall concentration and the 

solubility of other components, namely the active. Sugars are often incorporated into 

dispersible tablet formulations to improve taste and compression properties. However, 

tablets containing large quantities of sugars do not disintegrate conventionally, but 

decrease in size by solution from the tablet surface and disintegration times may be long 

(Guyot-Hermann & Leblanc, 1985). 

Table 1.6: Diluents and fillers. 

Water insoluble 

Calcium carbonate 

Calcium phosphates 

Magnesium carbonate 

Microcrystalline cellulose 

Starch 

Partially soluble 

Pre-gelatinised starch 

Low-substituted hydroxy­

propyl cellulose -

Water soluble 

Dextrose 

Lactose 

Mannitol 

Sorbitol 

Sucrose 

Hygroscopicity should also be considered. The effectiveness of super disintegrants in 

wet granulated tablet formulations containing highly hygroscopic materials is 
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decreased, probably due to a reduction in disintegrant activity by the hygroscopic 

component(s) competing for locally available water (Johnson et aI, 1991). 

Microcrystalline cellulose (MCC) is a particularly useful diluent in dispersible tablet 

formulations. It has high compressibility (Mendell, 1972: Lamberson & Raynor, 1976), 

produces strong tablets of low friability (Khan & Rhodes, 1975a), and is synergistic 

with disintegrants because of capillary properties. 

Low-substituted hydroxypropyl cellulose (L-HPC) is also a useful diluent for rapidly 

disintegrating formulations. It is differentiated from classical HPCs by its low 

substitution and low aqueous solubility. In addition to facilitating compression, it also 

accelerates tablet disintegration due to high swelling capacity. Gissinger and Stamm 

(l980a) showed that the maximum swelling ofL-HPC was about 10 times that ofMCC. 

In addition to modifying compression properties, the diluent may also function to 

protect the drug. In a dispersible lamotrigine formulation (Fielden, 1992), calcium 

carbonate protects the drug from acid hydrolysis when dispersed in water. Similarly, 

calcium carbonate and magnesium hydroxide have been used to buffer acid-labile 

dideoxy purine nucleoside derivatives (Ullah & Agharkar, 1993). 

1.5.4.5 Lubricants. 

Stearic acid salts, such as magnesium stearate, are potentially unsuitable in dispersible 

tablet formulations because they are hydrophobic, and may form a scum giving an 

unpleasant appearance (Mendizabel & Alcobendas, 1996). Paradoxically, ho\\e\t~r. 

most commercial dispersible tablets are lubricated using magnesium stearate. A "halo" 

17 



of magnesium stearate will be visible when a dispersible tablet is soluble but tablet 

formulations usually disperse to yield a suspension rather than a solution. The 

magnesium stearate will be adsorbed onto other undissolved constituents and does not 

form a layer at the surface. 

Miller & York (1988) reviewed water soluble lubricants including sodium / magnesium 

lauryl sulphates and polyethylene glycols, which were much poorer lubricants than 

magnesium stearate with poor anti-adherent properties. Magnesium stearate is a 

relatively cheap, non-toxic material and therefore a logical first choice. However, it 

reduces the rate of water penetration into a tablet (Ganderton, 1969). Bolhuis et al 

(1982) studied the effect of magnesium stearate on insoluble tablet systems containing 

slightly and strongly swelling disintegrants. Although tablet swelling properties were 

hardly affected by magnesium stearate, in some cases disintegrant efficiency was. For a 

Table 1.7: Mechanism of action of strongly swelling disintegrants 

(after Bolhuis et ai, 1982). 

Water absorption of disintegrant particles at tablet surface. 

U 
Swelling of disintegrant particles 

U 
Breakup of tablet surface structure. 

U 
Water penetration into the opened tablet structure. 

U 

Chain reaction of absorption and disruption. 

u 
Disintegration 
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slightly swelling but hydrophilic disintegrant such as crospovidone, the penetration of 

water into the tablet is the controlling step in the process of disintegration, which 

consequently is strongly affected by the presence of hydrophobic lubricant. 

Conversely,with a strongly swelling disintegrant such as Ac-Di-Sol or Explotab, a chain 

reaction of disruption of the tablet structure (Table 1.7) is the dominant factor in the 

process of disintegration and is hardly affected by the presence of a h:ydrophobic 

lubricant. 

When disintegrant poisoning does preclude a hydrophobic lubricant, a water soluble 

one should be used. Sodium stearyl fumarate will provide a clear solution (Saleh et aL 

1984) and has been recommended as a good alternative to magnesium stearate (Suren, 

1971). Magnesium stearate forms a water insoluble hydrophobic film around particles. 

This film interferes with tablet binding, causing a reduction in crushing strength 

(particularly with increased mixing intensity) and decreases the wettability of particles, 

which can cause increased disintegration and dissolution times. Sodium stearyl 

fumarate does not form a water insoluble hydrophobic film around particles, and is 

claimed not to have the disadvantages of magnesium stearate in respect of tablet 

strength, disintegration and dissolution (Lindberg, 1972). 

1.5.4.6 Tablet coating. 

The BP (2000) defines a dispersible tablet as an '"uncoated tablet that produces a 

uniform dispersion in water." By definition, film coating has been considered by some 

to be inconsistent with the principle of a dispersible tablet (Groenendaal & Sijbrands, 

1986). It has been claimed, without supporting evidence, that a dispersibk tablet 

designed to be dispersed in water or directly swallowed, should preferably be film-
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coated to aid swallowing (Fielden, 1992). Film coats may become tacky when moist and 

cause tablets to adhere to moist surfaces, whereas uncoated tablets have little adhesivity 

(AI-Dujaili et aI, 1986). Disintegration generally reduces the risk of adhesion, but the 

possible "explosive" swelling of a rapidly disintegrating drug core from a film-coating 

of slowly dissolving material may increase the risk of retention in the oesophagus 

(Florence & Salole, 1990). Indeed, this problem was encountered with the early 

formulations of Cetiprin® (AI-Dujaili, 1985). 

Compression coating of dispersible tablets may function to protect drugs that are prone 

to sublimation and recrystallisation on exposure to the atmosphere. Groenendaal & 

Sijbrands (1986) outlined an invention for the formulation of compression-coated 

cyclandelate tablets dispersing within three minutes. The dispersible core is covered by 

a compression coating rendered quickly dispersible by the addition of suitable 

disintegrants (e.g. Explotab). 

1.5.4.7 Surfactants. 

Fraser & Ganderton (1971) and Caramella et al (1990b) showed that in rapidly 

disintegrating tablets, water penetration determined the rate of disintegration. If a liquid 

is penetrating into a capillary in a solid, this is determined by the adhesion tension (AT). 

AT = Y L I V Cos. e Equation (1.1) 

Where Y L I V is the surface tension between the penetrating liquid and its vapour, and e 

is the contact angle. As Y L I V is always positive, the spontaneity of the process will be 
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controlled by Cos. e. For penetration into capillaries under no applied pressure, AT 

must be positive. Reducing the value of e will increase the magnitude of AT, to a 

maximum when e = O. Since surfactants increase the rate of wetting of the solid by 

reducing the critical angle, water soluble surfactants such as sodium lauryl sulphate 

could be added to a dispersible tablet, especially if it contains a hydrophobic drug. 

1.5.4.8 Organoleptic properties. 

Many drug substances are unpalatable and unattractive in their natural state (York, 

1988). It is widely recognised that if a dosage form is unpalatable, patient compliance 

may be reduced, especially for long term treatment. Therefore, in dispersible tablet 

development, organoleptic properties are important and flavours and sweeteners may be 

added to modify and mask taste. A water insoluble derivative of the drug will have little 

or no taste and can be used as long as bioavailability remains unchanged. For example, 

it is better to disperse diclofenac as the free acid rather than the sodium salt because it 

has low solubility and is virtually tasteless (Murphy & Matthews, 1990). The dispersion 

produced by a tablet must have an acceptable mouth feel and this is related to the 

particle size and viscosity. Even where the microparticles are of a small size (0.3 to 

O.6mm), when swallowed they may be perceived as individual grains in the mouth and 

can be caught on the spaces between the teeth (Ventouras, 1988). Ventouras (1988) 

describes a novel water dispersible tablet which rapidly disintegrates in water to form a 

homogenous high viscosity suspension that can be swallowed. This is claimed to 

overcome the unpleasant mouth feel of individual particles. 
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Figure 1.4: Disintegration, deaggregation and dissolution in the breakdown of solid oral dosage forms 
(after Wagner 1969, Wells, 1980). 
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1.6 The process of tablet disintegration and deaggregation. 

Disintegration occurs when a tablet disrupts into fragments when brought into contact 

with fluid. This is followed by deaggregation, disintegration beyond the original granule 

size into the primary particles. Figure 1.4 relates tablet disintegration processes to drug 

dissolution (after Wagner, 1969; Wells, 1980) and shows the mutual dependence of 

disintegration and drug dissolution for a poorly soluble drug. Dissolution occurs most 

rapidly from primary particles since the available surface area is large, but to a limited 

extent from the intact tablet, and the aggregates generated during tablet disintegration 

(Wells, 1980). The degree to which each process contributes depends on the 

formulation. In an optimised dispersible tablet, size reduction to primary particles will 

proceed rapidly and mainly by deaggregation. In less efficient systems, granule size 

reduction may be more dependent on drug dissolution to yield a dispersion of particles 

below 710J..lm. The latter process is generally slower and is more likely to result in 

unacceptable dispersion times. 

Smoluchowski (1918) showed that deaggregation followed a first-order process and 

Aguiar et al (1967) developed the equation: 

Equation (1.2) 

where Ns is the number of particles when deaggregation is complete and N, the number 

at time 1. 

Berry & Ridout (1950) using alginic acid and potato starch as disinte!:,Tfants observed 

two distinct patterns of disintegration. Alginic acid gave particles smaller than the 

original granules, while starch produced tablets which broke down into several large 
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fragments which then disintegrated into small aggregates. 

Roland (1967) recognised three distinct processes: 

i) Macrogranules: granules or plates which sediment rapidly and are 

non-dispersible. 

ii) Microgranules: (a) agglomerates which break down to 

microgranules. 

(b) immediate breakdown to 

microgranules. 

iii) Colloidal suspension: breakdown to particles of the original 

powder blend. 

In a dispersible tablet, type (iii) is ideal, however iia) and iib) may also be satisfactory 

since they both yield Inicrogranules, which are freely dispersible. 

TM 

Using a Coulter Counter to measure surface area, Rubinstein & Bodey (1976) 

demonstrated with dibasic calcium phosphate tablets containing maize starch, that 

tablets with identical disintegration times through a 10 mesh screen may undergo 

different types of breakdown and yield different surface areas. They theorised two types 

of disintegration in tablets: 

Type A: Large fragments break do\\n to produce smaller fragments; these fragments III 



tum break down into finer fragments until, at the disintegration time, the largest 

aggregates just pass through the 10 mesh screen. 

Type B: Large fragments erode away so that their size gradually diminishes. The 

disintegration time is the time taken for the largest particles to erode and pass through 

the screen. 

Type A yielded a relatively large number of fragments, whereas type B produced a lot 

of fine material with relatively few large fragments. 

1.7 Disintegration mechanisms. 

1. 7.1 Capillary action. 

Although many different theories have been proposed relating to the mechanism of 

disintegration, the requirement for water uptake and penetration is a common factor. 

Some disintegrants act principally by capillary action. To draw water into the porous 

network of a tablet (called wicking) is essential (Khan & Rhodes, 1975b; Mitrevej & 

Hollenbeck, 1982). Some disintegrants, act principally by capillary action. Kornblum & 

Stoopak (1973) observed that cross-linked PVP rapidly takes up water even though 

there is little swelling. Rudnic et al (1983) showed that as the structure of sodium starch 

glycollate was modified to increase water uptake, disintegrant efficiency improved. 

Water moving forward into a capillary network may cause tablet disintegration either by 

air pressure, or by breaking bonds in contact with water (Guyot-Hermann, 1992). 

Cartilier et al (1987) rejected swelling as the principle mechanism of action of natin~ 

starches and proposed that disintegration occurs due to the elimination of interparticular 

cohesion forces when the tablet is placed in water. Hydrophi Iic, insoluble, granular 
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disintegrant particles create high capillary pressure within the tablet because of the 

formation of pores with hydrophilic walls and voids between particles. With 

conventional starches, porosity is not necessary if there is a continuous network of 

particles conducting water through the tablet by suction (Hess, 1978). This led to the 

theory of a critical disintegrant concentration to give a continuous hydrophilic network 

(Ringard & Guyot-Hermann, 1988). 

Many workers have studied the influence of tablet porosity on disintegration time and 

results are conflicting. Porosity cannot generally be correlated with disintegration time 

(Nogami et aI, 1967; Francois et aI, 1972) and depends upon compression pressure, the 

base material and disintegrant type. 

The interfacial characteristics of capillary walls is important. If hydrophilic, water can 

penetrate. The force with which this occurs may be theoretically quantified by the Jurin 

equation (Guyot-Hermann, 1992): 

Force of water penetration = 2y Cos. e / r Equation (1.3) 

where y is the surface tension of the penetrating liquid, e is the contact angle of the 

liquid on the pore walls and r is the radius of the pore which depends on the particle 

size and compression force. To increase capillary action, the value of e can be reduced 

by modifying the formulation. With a hydrophobic drug, the pore walls should be lined 

with a hydrophilic substance such as a disintegrant. Theoretically, a smaller pore \\ill 

increase the force. However, this depends on the hydrophilicity of the system, and must 

be continuous, otherwise water cannot penetrate into the whole tablet structure and 

disintegration will be slow (Nakai et aI, 1977). 
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Caramella et al (1990b) used multiple linear regressIOn analysis to relate water 

penetration and force development to disintegration at different solubility and 

hydrophi li city. Water penetration was shown to correlate with disintegration time for a 

given formula, and was shown to be independent of the type of disintegrant and base 

material. 

Ringard & Guyot-Hermann (1981) proposed a particle-particle repulsion theory of 

tablet disintegration based upon the observation that particles that do not swell may still 

disintegrate tablets. By altering the dielectric constants of the disintegrating media, they 

attempted to identify electrical repulsive forces and concluded that water is required for 

tablet disintegration. In the presence of water, there is a destruction of the cohesive 

forces between tablet particles followed by a particle-particle repulsion. Kanig & 

Rudnic (1984) criticised the reasoning of Ringard & Guyot-Hermann (1981) because 

they did not address the deformation phenomenon of starches, cited A vice1 as a non­

swellable excipient and did not take into consideration its wicking action. 

1. 7.2 Disintegrant swelling. 

It has often been assumed that tablet disintegration is based upon the swelling of 

disintegrant particles (Berry & Ridout, 1950). The idea is logical since for many years 

disintegrants were essentially starches and their derivatives. Logically, when 

disintegrant particles swell, they push away the surrounding particles which enclose 

them and cause disintegration of the tablet. Many workers agree with this idea (Patel & 

Hopponen, 1966: List & Muazzam, 1979a; Caramel1a et aI, 1984). When compression 

force is increased, disintegration time may decrease to a minimum (Colombo et aI, 

1980), which corresponds to a reduction in porosity, optimum for swelling force 
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development. 

However, tablet porosity may be greater than the expansion of starch granules (Ingram 

& Lowenthal, 1966) and when tablets containing carboxymethyl starches with different 

swelling capacities are compared, those which do not swell may function as efficiently 

as those that do (Guyot-Hermann & Ringard, 1981). 

In some materials there is a lack of correlation between the percentage swelling and 

maximum disintegrating force (Guyot-Hermann, 1992). A large volume expansion may 

not be required for effective disintegration if the disintegrant possesses enough swelling 

force. Using computer aided apparatus for the simultaneous measurements of water 

uptake and swelling force (Caramella et aI, 1988), Ferrari et al (1995) investigated the 

influence of porosity and solubility on the "force equivalent" (the force developed per 

milligram of water taken up) of sodium starch glycollate. The ability of the disintegrant 

to develop disintegrating force depended on the type of base material. Higher swelling 

efficiency was observed in water-insoluble materials. In a highly soluble matrix, 

porosity rapidly increases due to drug dissolution and disintegrating force is reduced 

because there is more space for disintegrant particles to swell without disrupting the 

Inatrix. In all formulations, an increase in the "force equivalent" was observed by 

increasing the compression force. The influence of compression force, however, was 

more pronounced in insoluble base materials because disintegrant swelling plays a 

major role in the disintegration process and becomes more effective as porosity 

decreases (Colombo et aI, 1984~ Caramella et aI, 1986). In water soluble bases, other 

Inechanisms (dissolving, disruption of hydrogen bonding etc.) make disintegrant 

swelling and the influence of tablet porosity less important (Ferrari et ai, 1995). For a 
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given formulation, the force equivalent tends to increase as mean pore diameter 

decreases. Some supporters of the swelling theory claim that there is a critical pore 

diameter. Using conventional starch Berry & Ridout (1950) claimed that if pore 

diameters are greater than the diameter of swollen disintegrant particles, no 

disintegration will take place, i.e. no pressure. However, in tablet disintegration, more 

than one mechanism occurs, and optimising conditions for one may compromise 

another. Porosity and mean pore diameter will affect both swelling and capillary action 

The rate of swelling will affect disintegration. Nogami et al (1969) developed a method 

to measure swelling and water uptake simultaneously. Using a refined apparatus, 

Gissinger and Stamm (1980a) found a positive correlation between the rate of swelling 

and disintegrant action. 

As the disintegrant particles swell there should be minimal accommodation by the 

tablet matrix. With slow swelling and force generation, the matrix may be able to adjust 

to the stress without loss of structural integrity. Rapid force development is less likely 

to result in matrix accommodation, but this will depend upon the elasticity and 

solubility. The rate of swelling of a disintegrant is related to the rate at which 

disintegrant force develops (Rudnic et aI, 1982): 

dF / dt = Sw dV / dt Equation (1.4) 

where dV / dt is the rate of swelling and Sw is a constant for any given matrix at a 

constant porosity. If the porosity is high, then dV / dt will be governed by the properties 

of the disintegrant, such as surface area or number of functional groups which can be 

hydrated. However, if the porosity is low, then the value of dV / dt may be more 

dependent on the rate at which \vater can reach the disintegrant (Rudnic et aI, 1982). 
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1.7.3 Deformation. 

Return to the original shape of compressed particles on exposure to moisture may 

contribute to the disintegration process. Although starch, cellulose powder and cellulose 

derivatives primarily exhibit elastic behaviour at higher pressures, some deformation of 

particles can be observed (Erdos & Bezegh, 1977; Fuchs, 1970; Hess, 1978). Lowenthal 

(1972) reported that deformed starch particles do not regain their original shape when 

wetted, although Erdos & Bezegh (1977) reported the opposite. Hess (1978), with the 

aid of photomicrographs, demonstrated that disintegrant particles which deformed 

during tablet compression were shown to return to their original shape when exposed to 

moisture. Fuhrer (1964) showed that the swelling ability of potato starch granules may 

be improved by deformation during compression. 

However, starch or cellulose particles may undergo permanent deformation on 

compression. Starch grains in carboxymethylstarches may be damaged at high pressure 

(Guyot-Hermann, 1992) with a consequential partial gelatinisation that may reduce 

water penetration and increase tablet disintegration times. Guyot-Hermann (1992) 

concluded that, if regeneration of the original shape of compressed particles on wetting 

contributed to the disintegration process, its effect is only likely to be secondary. Most 

studies have used starches and therefore the occurrence of this phenomenon in other 

disintegrants is uncertain. 

1. 7.4 Heat of wetting. 

Matsumaru (1959) was the first to propose that the heat of wetting of disinte!:,Tfant 

particles could be a mechanism of action. He observed that starch granules exhibit 
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slight exothermic properties when wetted, and theorised that the heat of absorption 

released would cause the expansion of air contained in the porous void spaces inside the 

tablets and cause disintegration due to over-pressure. However, List & Muazzam 

(1979b) found that exothermic reactions upon wetting did not occur for all disintegrants 

and when significant heat of wetting is generated there is not always a corresponding 

decrease in disintegration time. This does not describe the action of most modem 

disintegrating agents (Kanig & Rudnic, 1984). 

1.8 The measurement of tablet disintegration and deaggregation. 

The BP (1996) disintegration test determines the time taken for breakdown into 

particles that pass through an 8 mesh (2000J..lm) screen. This is less discriminating than 

earlier tests using a 10 mesh (1700J..lm) screen, which have been criticised for non­

characterisation of the undermesh material (Nair & Bhatia, 1957). Consequently tablets 

with similar disintegration times may have different deaggregation profiles (Sandell & 

Helmstein, 1971). It only measures the time to reach the endpoint of disintegration, and 

little or no information can be gathered about the kinetics of the process. Visual 

observation of the samples during the test is the only way to approximate the onset of 

various mechanistic events that occur before the endpoint of disintegration. 

Many workers have attempted to measure tablet deaggregation. The first attempt to 

measure particle size distribution was by Nogami et al (1959 a & b). They measured the 

size distribution of powders from their heats of solution. The thermal change j. T is a 

measure of the drug dissolved, M T / dt being proportional to the surface area of the 

tablet at time 1. The disintegration time was taken as the time to produce maximum 
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surface area and dA T / dt reaches a maximum. By plotting d2 d T / dt2 against t, the 

particle size distribution was derived from the slope of the curve. 

Sanders (1969) attached three sieves of aperture 0.81, 0.54, 0.27mm in series within a 

tube to the USP disintegration apparatus. The percentage by weight of particles retained 

on each mesh was determined by loss on drying. Sandell (1970) simplified this by 

resting the tablet on the top screen (0.1, 0.5, and 2.0mm) standing in a beaker of water. 

However, these early techniques were poorly sensitive and did not discriminate between 

narrow size distributions or take into account the dissolution process which is 

significant in the disintegration process (Wells, 1980). 

Van Ootegham et al (1969) quantified the SIze distribution produced by the 

disintegration of aspirin-starch tablets more accurately using a Coulter Counter
n 

... They 

attempted to suppress the dissolution process by using drug-saturated water. Longer 

disintegration times were observed in tablets compressed at higher pressure. The 

recovered particles were smaller due to fragmentation but deaggregation to the original 

particles did not occur because the small particles agglomerated and the large 

fragmented. However, higher starch concentrations increased deaggregation. Khan & 

Rhodes (1975d) used a Coulter Counter™ to study the effect of compression force on 

the disintegration of dicalcium phosphate dihydrate tablets. The particle size generated 

was smaller at low pressure where fragmentation predominated, whereas at higher 

forces recombination occurred. 

To investigate the effects of mode of disintegrant incorporation on the extent of tablet 

T'-I 

deaggregation, Shotton & Leonard (191'2) combined wet sieving with Coulter analysis. 
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Fine particles less than 90IJ.m were measured by Coulter Counter™ and wet sie\ ing \vas 

used to characterise the larger aggregates. Extragranular resulted in more rapid 

disintegration, whereas intragranular yielded a finer dispersion. An optimum was 

obtained by using intra- and extragranular together, so that the extragranular agent 

breaks up the tablet rapidly to the original granules and the intragranular agent reduces 

the original particles. Wells (1980) criticised the way they combined the two 

incompatible size distributions and did not take account of drug dissolution and the 

solubility of the PVP binder. 

Healey (1976) used a Coulter Counter™ to study the influence of binders on the 

de aggregation of lithium carbonate tablets. A tablet was placed in a USP basket 

containing a saturated solution of the drug and rotated at 100 rpm. The basket was 

removed periodically and a 13-point analysis was performed on the suspension using a 

280IJ.m orifice tube in drug saturated electrolyte. The mass of aggregates retained in the 

basket was determined by loss on drying. Tablets without a binder, deaggregated to the 

size of the original powder blend. Increasing concentration of soluble binders such as 

PVP slowed the rate of de aggre gati on. Insoluble binders e.g. starch resulted In 

disintegration to coarse aggregates that did not de aggregate further. The rate of 

deaggregation was dependent on the solubility of the binder and not the disintegration 

time. 

These techniques were not capable of monitoring changes in particle size during 

disintegration and subsequent dissolution. Wells & Rubinstein (1976) used a Model T;\ 

™ d Coulter Counter , capable of handling and processing data instantaneously an 

followed the simultaneous processes of tablet disintegration, deaggregation and 

43 



dissolution using generated surface area. Using digoxin 250mcg tablets they found a 

good correlation between the time to achieve maximum generated surface (T max) and 

the dissolution rate of the tablets. They concluded the rate of deaggregation was a 

primary variable in determining the dissolution rate of the tablets. No correlation was 

found between maximum surface area generated (SmaJ and the dissolution rate of the 

digoxin tablets. The drug to excipient ratio was very low (0.0025) and therefore Smax 

was almost totally determined by excipients. Conversely, using phenylbutazone tablets 

100mg BP with a high drug to excipient ratio, Rubinstein & Wells (1977) showed a 

correlation between tablet dissolution and Smax, which was largely determined by the 

drug. However, there was no correlation between Tmax and the dissolution rate, which 

they attributed to the sugar coating present on the tablets. 

Using paracetamol as a model drug, Nelson & Wang (1977) described a method of 

determining the time course of disintegration by numerical analysis of the experimental 

dissolution profile of a tablet and the dissolution characteristics of the primary drug 

particles in the tablet. However, the principles were demonstrated in an idealised 

system. Tablets were directly compressed from drug particles of uniform size to permit 

disintegration directly to primary particles. The method assumes that powder 

dissolution follows the Hixson-Crowell equation (Hixson & Crowell, 1931). The system 

may not be applicable to a granulated system where the primary particles are modified 

and have a In ore complex disintegration pattern. Also the system assumes that 

compressIon force does not alter primary particles, and therefore may only be 

applicable at low force. 

More recently, Timmermans et al (1995) monitored the disintegration kinetics of tablets 
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using a resultant-weight apparatus. Tablet disintegration is a process involving weight 

and / or volume variations with time, such as water penetration (weight increase), 

particle swelling (volume increase) and loss of tablet integrity (weight and volume 

increase). The apparatus used a force transmitter device to measure changes in force 

acting on the immersed tablet with time, shown to reflect changes in tablet weight and / 

or volume (Timmermans & Moes, 1990a & b~ 1991). Resultant-weight - time curves 

showed disintegration kinetics. The total disintegration time was defined as the duration 

of time from immersion to that corresponding to the intersection between the resultant­

weight curve and the zero baseline (where no solid is present). The method is 

potentially useful for tablets that do not have a homogeneous structure. For example, 

monitoring disintegration lag time in film-coated tablets and profiles of multi-layered 

tablets comprised of rate differing drug delivery formulations (e.g. instant and slow 

release). However, the authors suggested that for conventional fast disintegrating 

tablets, where the slope is steep and linear, the method offers no advantage to a 

conventional disintegration test. The resultant-weight apparatus does not penn it 

agitation during the test and therefore the results are not directly comparable to those 

using a vertically moving basket. 

The process of tablet disintegration and deaggregation has been largely ignored over the 

last two decades. Nowadays, tablet dissolution is more frequently used to assess 

conventional swallow tablet formulations. For a poorly soluble drug, dissolution 

indirectly measures the deaggregation rate and therefore deaggregation studies are not 

routinely carried out. However, the trend towards the formulation of dispersible tablets 

is evident across Europe (Martin, 1987). During development, there is a minimum 

requirement that deaggregation down to 710J,.lm is measured. The technique should be 
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simple to allow rapid routine testing without requiring complex equipment. 

Table 1.8: Mesh sizes used in disintegration testing. 

Mesh number Aperture size (JlID) 

(BS.410, 1986) 

8 2000 

10 1700 

12 1400 

14 1180 

22 710 

40 425 

Application 

BP (1990) Disintegration test 

BP (1973) Disintegration test 

Dispersible tablet BP (1990) 

Solution rate BP (1973) 

Wells (1996) proposed that the current BP disintegration apparatus could be modified 

and made more discriminating for development purposes by using six different mesh 

sizes instead of one (Table 1.8). Testing of dispersible tablets in the current research 

will use this method. By adjusting the pH of the immersion fluid to change aqueous 

solubility, tablets of high dispersion will be quickly identified. Wells (1996) proposed 

that this apparatus might be useful during the development of conventional swallow 

tablets. Dealing with the cause is always better than the effect. Slow tablet 

deaggregation may cause long dissolution times. A method which can quickly identify 

poor deaggregation, may save many hours of labour intensive dissolution 

measurements. By carrying out disintegration and dissolution tests in the same media, 

good correlation is likely (Wells, 1996). Lu et al (1965) found a good correlation 

between disintegration and dissolution times in simulated intestinal fluid (pH 6.5) 

where the pH is similar for both tests. 
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1.9 Aims and objectives. 

The main aim of this study was to develop generic technology for the formulation of 

dispersible tablets using wet granulation and conventional tableting. The project studied 

the formulation of two classes of drugs that are potentially difficult to formulate as 

dispersible tablets: high dose, poorly compressible drugs and high dose, highly soluble 

drugs. Paracetamol and Na-p-aminosalicylate were used as models of each class 

respectively. It was hoped that the work would generate general formulation guidelines 

that could be applied to formulating novel, high dose, poorly compressible or highly 

water soluble drugs in the future. Evaluation of the use of the super disintegrants 

sodium starch glycollate (Explotab), croscarmellose sodium (Ac-Di-Sol), crospovidone 

(Kollidon-CL) and polacrin potassium (Amberlite IRP88) in dispersible tablet 

formulations was considered important. 

A wet granulation process should allow the highest possible proportion of drug to be 

compressed. Using paracetamol, a drug with low aqueous solubility, work in Chapter 3 

aimed to determine the influence of granule size and intragranular disintegrant type on 

tablet properties, particularly dispersion characteristics. 

In patents relating to dispersible tablets, it is often claimed that dispersion can be 

optimised using disintegrants in combination, with a different type employed intra- and 

extragranularly. Usually, however, the reasoning behind specific choices is not gi\en. 

The work in Chapter 4 systematically studied disintegrant combinations in a general 

paracetamol formulation, with regard to rationalising disintegrant choice intra- and 

extragranularly and in combination. 
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Chapter 5 investigated the idea of "disintegrant poisoning" during the wet granulation 

process. The aim was to determine whether uptake of drug by disintegrant during wet 

granulation and recrystallisation at surfaces on drying, reduced subsequent disintegrant 

performance. 

In a highly soluble matrix, rapid drug dissolution creates a viscous barrier at the tablet 

surface, which retards water penetration (Graf et aI, 1992) and reduces disintegrant 

swelling force (Ferrari et aI, 1995), causing tablets to dissolve away slowly (Khan & 

Rhodes, 1973) rather than deaggregate. The objective of Chapter 6 was to make a tablet 

matrix containing a highly soluble drug disperse. 
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CHAPTER 2 



2. MATERIALS AND METHODS. 

2.1 Materials. 

2.1.1 Choice of drug: Paracetamol. 

Paracetamol is a widely used analgesic and antipyretic, typically at a dose of 500mg. 

Paracetamol (Figure 2.1) generally occurs as large monoclinic crystals, a form which is 

not easily deformed and resists compaction (Shangraw, 1989). Its poor compressibility_ 

results in weak and unacceptable tablets with a high tendency to cap (Krycer et aI, 

1982). This has been attributed to a low degree of plastic flow, high elasticity (Duberg 

& Nystrom, 1986), weak bonding between particles (Obiorah & Shotton, 1976) and a 

high brittle fracture propensity (Alderbom et aI, 1985) during compaction. 

It is soluble 1 :70 in water and 1:7 in ethanol at 25°C. Its melting point is 169-172°C. 

Paracetamol is very stable in aqueous solution and its maximum stability is in the pH 

range 5 to 7 (Koshy & Lach, 1961; Connors et aI, 1979). Instability of paracetamol is 

due to its hydrolysis which yields p-aminophenol and acetic acid. 

NHCOCH 3 

Figure 2.1: Paracetamol. 

Its poor compaction properties, high dose and low aqueous solubility make 

paracetamol a suitable drug for this study. The paracetamol was obtained from 

Rhone- Poulenc, Roussillison, France. 
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2.1.2 Excipients. 

2.1.2.1 Disintegrants. 

(a) Ac-Di-Sol. 

Ac-Di-Sol, Type SD-711 (croscarmellose sodium, USPNF), FMC Corporation, 

Philadelphia. 

HO OH , 
-:. 

-0-11111' 
>---O--~ ."'II~O-

HO OH 

n 

Figure 2.2: Carboxymethylcellulose sodium (structure shown with a degree of 

substitution of 1.0). 

Ac-Di-Sol is a polymer of carboxymethylcellulose sodium. It has a low degree of 

substitution, 0.63-0.85 (Caramella et aI, 1995), and a high degree ofintemal cross-

linking which make it practically insoluble in water. The sodium substitution 

confers hydrophilicity upon the material. 

Ac-Di-Sol is a white, hygroscopic powder which has a size distribution such that, 

not more than 20/0 is > 73.7).!m and not more than 10% > 44.5).!m. 

The cross-linking of the polymer allows the disintegrant to swell and absorb many 

times its weight in water without loosing individual fibre integnty It combines 
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rapid swelling (to 4-8 times its original volume) with wicking activity. Bhatia et al 

(1978) suggested that strong elastic relaxation of the cellulose fibres mav leave 

large pores in a tablet matrix, facilitating rapid water penetration and the rupture 

of hydrogen bonds. 

(b) Explotab. 

Expiotab (sodium starch glycollate BP, USPNF), Edward Mendell Co. Inc., 

Reigate, Surrey. 

OH 

-0-11111 ' '"111-0---1111''' "IIII~O-

HO OH HO 

n 

Figure 2.3: Sodium starch glycollate. 

Sodium starch glycollate is the sodium salt of a poly-a-glucopyranose in which 

some of the hydroxyl groups are in the form of the carboxymethyl ether. The 

molecular weight is typically 5 x 105 
- 10

6 
daltons. 

It may be characterised by the degree of substitution and cross-linking. Sodium 

starch glycollate is a white, free-flowing powder, consisting of oval or spherical 

granules. The average particle size of the brand Explotab is 42~m and all are less 

than 104~m. 
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Sodium starch glycollate is practically insoluble in water and sparingly soluble in 

ethanol (95%). At a concentration of 2% w/w it disperses in cold water and settles 

in the form of a highly hydrated layer. In water it swells up to 300 times its volume 

and disintegration occurs by rapid uptake of water followed by rapid and 

enormous swelling (Khan & Rhodes, 1975 b & c; Wan & Prasad, 1989). 

(c) Kollidon-CL. 

Kollidon-CL (cross-linked polyvivylpyrrolidone, USPNF), BASF pic., Cheadle, 

Cheshire. 

H H 
n 

Figure 2.4: Polyvinylpyrrolidone. 

Crospovidone is a synthetic cross-linked homopolymer ofN-vinyl-2-pyrrolidone. It 

has a molecular weight> 106 daltons. It is insoluble in water and most common 

organic solvents, but is highly hydrophilic. 

The polymer is a white, odourless, free-flowing hygroscopic powder. It is 

commercially available in different particle sizes. Kollidon-CL has a particle size 

distribution such that approximately 50% of particles are greater than 50J.lm and a 

maximum of 1 % greater than 250J.lm. 

Shangraw et al (1980) reported that because of its low bulk density (0.26grnr
l 
L 

crospovidone tends to distribute itself evenly in the tablet matrix, increasing 
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surface area and the number of sites for capillary action. Disintegrant activity is 

mainly due to its rapid capillary action and pronounced hydration capacity with 

secondary swelling activity (Korblum & Stoopak, 1973). Crospovidone swells 

only slightly in water (Bolhuis et aI, 1982). 

(d) Amberlite IRP88. 

Amberlite IRP88 (polacrin potassium, USPNF), Sigma, St. Louis, USA. 

C02K 

n 

Figure 2.5: Polacrin potassium. 

Amberlite IRP88, a weakly acidic cation-exchange resin, is a cross-linked polymer 

of methacrylic acid divinylbenzene, as the potassium salt. It is hydrophilic but 

insoluble in water and non-adhesive. 

Disintegrant properties are due to its swelling capacity in aqueous solutions. 

Gissinger & Stamm (l980a) showed that the rate at which pure samples of 

Amberlite IRP88 sucked in water was considerably less than Ac-Di-Sol, Explotab, 

or Polyplasdone XL. Amberlite IRP88 is able to develop a high swelling force 

despite a low swelling volume, and therefore, disintegrant activity is less 
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influenced by the availability of water than some other super disintegrants 

(Caramella et aI, 1989). 

2.1.2.2 Binder. 

PVP Kollidon 90 (polyvinylpyrrolidone, BP, USP), BASF pic., Cheadle, Cheshire. 

PVP K90 is a soluble grade of PVP, obtained by free radical polymerisation of 

vinylpyrrolidone in water or isopropanol, yielding a chain structure of 

polyvinylpyrrolidone (Figure 2.4). PVP K90 is soluble in a wide range of solvents~ 

this extends from extremely hydrophilic solvents, such as water, to hydrophobic 

liquids (Kollidon, technical information, 1992). PVP K90 has an approximate 

molecular weight of 106 daltons. 

2.1.2.3 Diluent. 

Avicel PHI01 (microcrystalline cellulose, BP, USPNF), FMC Corporation, 

Philadelphia. 

Microcrystalline cellulose is a purified, partially depolymerised form of a-cellulose. It 

has a molecular weight of 36000 daltons. It occurs as a white, tasteless, crystalline, 

hygroscopic powder. 

OH 

HO OH 

-0 o 0-

HO OH 

OH 
n (n = 220) 

Figure 2.6: Microcrystalline cellulose. 
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Microcrystalline cellulose is highly compressible (Lamberson & Raynor, 1976~ 

Mendell, 1972) and is often added to systems containing paracetamol to improve 

compaction properties (Malamataris et aI, 1984; Bangudu & Pilpel, 1985). It is 

commercially available in different particle size grades. Avicel PHI01 has a nominal 

mean particle size of 50/J.m and is commonly used in wet granulation processes. 

Avicel PHlOl is practically insoluble in water. It swells very slightly in water. Bolhuis 

et al (1982) showed a volume increase of 0.4cm3cm-3 in water at 20 ± 0.5 °C. It only 

acts as a disintegrant at high concentrations, but may be synergistic with disintegrants 

because of its excellent wicking activity (Mendes & Roy, 1979). 

2.1.2.4 Lubricant. 

Magnesium stearate BP, BDH Laboratory supplies, Poole, England. 

Magnesium stearate is a fine white powder of low bulk density, and is greasy to 

the touch. Its empirical formula is (C17H35C02hMg. It possesses good anti­

adherent and poor glidant properties in addition to lubricant action (York & 

Miller, 1988). Magnesium stearate is hydrophobic (Lerk et ai, 1976) and is 

practically insoluble in water. 

2.1.3 Solvents. 

Absolute ethanol, BDH Laboratory supplies, Poole, England. 

Methanol (Spectrosol®), BDH Laboratory supplies, Poole, England. 
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2.2 Methods. 

2.2.1 Tablet manufacture. 

2.2.1.1 General method of granulation. 

Paracetamol and Avicel PHIOI were weighed out on a top pan balance (Sartorius type 

B4IOO, Sartorius, Germany). Super disintegrants, PVP K90 and magnesium stearate 

were weighed on an analytical balance (Oertling, UK). 

Paracetamol, Avicel PHlOl and intragranular disintegrant (if included in the 

formulation) were dry mixed in a planetary mixer (Kenwood chef model KM 200, 

Kenwood Limited, Hampshire) on speed setting one for fifteen minutes. PVP K90 was 

dissolved in distilled water to give a binder concentration of 6.0 % w/v. To granulate, 

the binder was added slowly over five minutes through a glass funnel to control the flow 

rate. The resultant material was wet massed through the required sieve. Granules were 

tray dried in an oven (Philip Harris model DZS, Philip Harris Ltd, Shenstone) at 55°C 

for 16 hours. In addition to the temperature and the duration of the drying process, the 

moisture content and flow rate of the circulating air can affect granule strength 

(Sherwood, 1929) and therefore to standardise, the amount of granules tray-dried was 

kept within an approximate range of 600-900g. The residual granule moisture content 

was determined by loss on drying as described in section 2.2.1.3. Granules were stored 

in double polythene bags until use to prevent moisture loss / gain. 

If included, the appropriate quantity of 20/0 w/w extragranular disintegrant \\as mixed 

with the dried granules at 21 rpm for twenty minutes in a cube mixer (Ef\\l?ka type UG, 

N° 21276, Erweka Apparatus, G.m.b.H, Heusenstamm, Germany). To lubricate. 10'0 

56 



w/w of magnesium stearate was added to the granules and mixed in the cube mixer at 

21 rpm for five minutes. Granulations were stored in amber glass airtight jars until use. 

2.2.1.2 Granulation size analysis. 

Granule size analysis was carried out using wire sieves (Endecott Ltd., London) and a 

sieve shaker (Endecott model E.V.I.1, Endecott Ltd., London). The sizes were: 1400, 

1000, 850, 710, 500, 355, 250, 150, 75, 45 J..lm and a 100g sample was placed on the top 

sieve. The sieve shaker was operated for 10 minutes at a lTIoderate speed, a period of 

time which had been found adequate for complete separation of the granules. The mass 

of granules retained on each sieve was weighed (Precisa model 35100, Oerlikon, 

Zurich). Cumulative % oversize (by mass) was plotted against granule size on 

Logarithm x probability graph paper. Mean granule size was taken as that at 500/0 

cumulative weight oversize. The mean and standard deviation of each size distribution 

are the result of two determinations. 

2.2.1.3 Granulation loss on drying. 

Granule moisture content was detennined by loss on drying. Approximately 500mg 

samples were accurately weighed in glass weighing bottles and placed in an oven 

heated to 55°C (Memmert, Gennany). At regular intervals these were removed, their 

lids replaced and allowed to cool in a desicator containing silica before re-weighing. At 

constant weight the percentage loss on drying was calculated. Mean and standard 

deviations were calculated from the results of three detenninations. The loss on drying 

of tablets was not determined since this could not be accurately measured without 

crushing the tablets, a process which could result in moisture changes. 
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2.2.1.4 Tablet compression. 

Granulations were compressed on a Manesty F3 single punch tablet machine (Manes~' 

Machines Ltd, Liverpool). This was set to produce flat, bevelled-edged 12.5mm 

diameter tablets at the required weight and compression forces. A strain gauge and 

voltmeter (Apt Electronic Industries Ltd.) were connected to the tablet machine. This 

was calibrated to allow compaction force to be recorded on a chart recorder (Scientific 

& Medical products Ltd. model SE 120, Manchester). For all tablet batches 

compression speed was kept constant at 21 cycles per minute. The first 10 and last 10 

tablets of each batch were rejected to prevent weight variation due to initial flow 

resistance and insufficient weight of granulation to the hopper respectively. 

In preliminary work, problems with uncontrolled moisture sorption occurred in granules 

during tableting. Highly variable moisture contents made direct comparison of different 

dispersible tablet formulations impossible. The relative humidity of the tableting area 

monitored morning, midday and afternoon over a 3 week period, ranged from 38-650/0 

RH. Fisher & Shepky (1995) studied the effect of hygroscopic components on the 

sorption characteristics of tablets and reported that hygroscopic additives did not begin 

to have any marked effects on the sorption isotherms until the relative humidity reached 

62%. However this cannot be applied to all systems as the critical relative humidity, the 

relative humidity above which significant moisture sorption occurs, will differ 

according to the components. Therefore, in the present work a limit of 50% RH was set 

as the maximum relative humidity at which tableting was carried out. 
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2.2.2 Tablet evaluation. 

2.2.2.1 Tablet storage. 

After ejection tablets were stored in amber glass air tight containers. Testing was 

carried out 24 hours after ejection to allow for equilibration hardening and elastic 

recovery before measurement. 

2.2.2.2 Disintegration testing. 

All formulations were tested using the same disintegration test apparatus. Disintegration 

/ dispersion properties were measured using a Manesty Mk.4 disintegration tester 

(Manesty Machines Ltd, Liverpool). A 2.8cm diameter tube which is vertically raised 

and lowered 30 times a minute, 7.5cm through water. The apparatus was modified by 

attaching a different screen size to the base of each tube (2000, 1700, 1400, 1180 and 

710 J...lm) to allow better characterisation of the particle size distribution produced on 

tablet disintegration. 

600ml of disintegration media was used, a quantity such that the basket of the 

disintegration apparatus just broke the surface of the water on its upward motion. As in 

the BP test for dispersible tablets, distilled water at 19- 21°C was used. Plastic discs 

were not used; tablets did not float and in preliminary work plastic discs were observed 

to sometimes stick to tablets resulting in less consistent disintegration times. Their 

removal also improved the visibility of the end points. Moreover, the effect of 

magnesium stearate on tablet disintegration can be masked by the use of discs in the 

disintegration apparatus (Bolhuis et aI, 1981), therefore not giving a true indication of 

dispersion characteristics. The use of discs also reduces discrimination between good 

and bad formulations since the palpable residue on the mesh would not pass through 

59 



without applying pressure and thus violating the principle of fluid penetration and 

particle separation (Wells, 1996). The mean disintegration times and the relative 

standard deviations are the result of six individual tablets. 

Statistics were not performed on the disintegration test results. The current British 

Pharmacopoeia (2000) does not use statistical analysis to compare disintegration data. 

The interpretation of the meaning of differences requires consideration of the 

magnitude of disintegration times and their relative standard deviations and a degree of 

common sense needs to be applied. For example, in formulations containing 

intragranular Ac-Di-Sol which tended to disperse well within a minute and the results of 

six tablets were within 2 or 3 seconds of each other, then differences of approximately 

20 seconds between tablets can be considered meaningfully different. Conversely, in 

tablets where the magnitude of disintegration times and standard deviations of the six 

tablets tested is much greater, then obviously different limits apply. Na-p­

aminosalicylate tablets tended to take 8-10 minutes to disintegrate and the results of six 

tablets were within approximately 0.5 to 1 minute of each other. Clearly differences in 

disintegration times needed to be greater than a minute to be meaningful. 

2.2.2.3 Crushing strength. 

The diametrical crushing strength of tablets was measured using a Schleuniger Model 

6D tablet tester. The mean and relative standard deviation were calculated from 20 

determinations. 
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2.2.2.4 Friability. 

20 tablets were dusted and weighed (Wo) before rotation (25 rpm) for 4 minutes in a 

Roche friabilator (lEngelsmann A.G., Germany). Tablets were then dusted and re­

weighed (W) and the friability calculated as the % loss in weight. The friability (F) is 

given by equation 2.1. 

F % = (Wo - W) / WO x 100 Equation (2.1) 

2.2.2.5 Weight variation. 

20 tablets were weighed uSIng an analytical balance (Oertling, model W A205-

1AAZM13A-A, Oertling, UK). The mean and relative standard deviation was 

calculated. 

2.2.3 UV assay of paracetamoi. 

The assay of paracetamol content was carried out in methanolic Hel (O.OIN Hel) to 

ensure complete extraction of the drug. UV absorbances were measured on a diode 

array spectrophotometer (Hewlett Packard HP 8452A, Waldbrom, Germany). A 

wavelength scan was carried out on a lO.ug mrl Paracetamol solution. An absorbance 

maximum was observed at 250nm. The UV absorbances for solutions containing 

different concentrations of paracetamol (2.5 to 15,ug mrl) in methanolic Hel at 250nm 

were detennined (Figure 2.7). The best fit for the Beer's law plot of UV absorbance 

versus paracetamol concentration is given in Equation 2.2. Methanolic Hel was used as 

a blank. 
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Figure 2.7: Calibration curve of paracetamolln methanolic 
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(r = 0.9999) Equation 2.2 

where C is the concentration of par aceta mol in IJ.g mr) 
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CHAPTER 3 



3. INFLUENCE OF GRANULE SIZE ON THE PROPERTIES OF 

WET GRANULATED PARACETAMOL TABLETS. 

3.1 Introduction. 

A wet granulation process should use the minimum quantity of super disintegrant and 

allow the highest possible proportion of drug to be compressed. In preliminary work, 

with some intragranular disintegrants, a few large granules failed to disperse through a 

710)lm mesh which resulted in a gross distortion of the disintegration profile and 

therefore unacceptable dispersion. Although mean dispersion times for a dispersible 

tablet may be within accepted limits, high variability is unsatisfactory. 

Granule size has an important role in compression and physical properties, particularly 

disintegration and many workers have investigated the effect of granule size. Kassem et 

al (1972) using a lactose / starch / sodium alginate granulation found that as granule size 

decreased, the disintegration time increased and the coefficient of variation for 

disintegration time decreased. Decreasing granule size causes tablet weight to increase 

and weight variation to decrease because of better die fill and a decrease in the 

proportion of void spaces. The increase in die fill leads to an increase in compression 

and better bonding between the granules, which may cause an increase in hardness. 

Increased inteparticulate bonding makes particle separation in the disintegration process 

more difficult. A reduction in weight variation with decreasing granule size gives more 

uniform compression and a reduction in tablet to tablet variation in disintegration time. 

Femi-Oyewo & Adefesco (1993) studied the influence of granule size on paracetamol 

granule and tablet properties. Wet granulated paracetamol, lactose and maize starch 

using PVP in five granule size fractions (75-250)lm, 250-355)lm, 355-500)lm. 500-
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710J.lm and 710-1 000J.lm), gave disintegration times that decreased with increasing 

granule size up to the 355-500J.lm size fraction. This correlated with tablet hardness. 

which increased with decreasing granule size due to the increase in points of contact for 

bonding during compression. This reversed on increasing granule size beyond 500J.lm, 

but the results were not explained. The disintegration times of tablets of the different 

granule size fractions were generally lower than that of the unfractionated granules, 

which also corresponded to their hardness results. 

Femi-Oyewo & Adefesco (1993) also studied the variation in drug content uniformity of 

tablets with granule size. The paracetamol content increased as the granule size 

decreased to the 710-500J.lm size fraction, attributed to increased granule flow-rate and 

tablet weight. Further reductions in size produced lower drug contents, but with 

fluctuations. This was explained by several factors: reduced flow-rate as granule size 

was reduced below certain values, heterogeneous distribution of the drug, which may 

result at the compression stage, and the solubility of the drug (1.4280
/0 w/v). With such a 

solubility, more of the drug could be bound within larger granules by the binder 

solution since these contain more of the binder. This was confirmed by the fact that the , 

tablets of the larger granules (above 500J.lm) contained higher drug content than those 

of smaller granules. 

Marks & Sciarra (1968) studied the effect of granule size on the physical properties of 

tablets using starch as a disintegrant in a lactose / dicalcium phosphate dihydrate 

granulation. As granule size decreased, tablet weight increased and \veight variation 

decreased. With decreasing granule size there is better die fill because of the decrease 

in the proportion of voids resulting in closer packing of the granules. However, they did 
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not find a relationship between granule size, tablet hardness and disintegration time, 

attributed to the limitations of the disintegration apparatus. 

Leonard (1971) studied the influence of granule size on the disintegration time of wet 

granulated sulphadiazine : maize starch formulations. Three size fractions (1200-

1000J...lm, 850-710J...lm, 500-355 J...lm) were compared and individual tablets were 

externally lubricated to reduce the effect of magnesium stearate. The effect of granule 

size depends upon the disintegrant position. When the disintegrant was incorporated 

intragranularly, disintegration time decreased as granule size increased. The results 

agree with Forlano & Chavkin (1960) for tablets of lactose and sodium bicarbonate 

using intragranular cornstarch. Leonard (1971) attributed this to larger granule size 

increasing the pore and void spaces, thus increasing the rate of penetration by 

disintegrating medium. Results were not clear when the disintegrant was located 

extragranularly. Smaller granulations tended to produce more rapid disintegration i.e., a 

reversal of the effect found with intragranular starch. The size of the voids and pores 

determined disintegration time. Tablets compressed from smaller granules will have 

less void space than those from larger sizes and swelling of extragranular disintegrant 

will more quickly disrupt the matrix. Swelling force generation will be less at higher 

extragranular porosity. Leonard (1971) observed that the effect of granule size on the 

particle size distribution recovered after disintegration was influenced by disintegrant 

location. When extragranular, the particle size distribution decreased with granule size 

and a high proportion of the granules recovered did not deaggregate beyond the original 

granule size. Microscopic examination showed that the extragranular starch rapidly 

fractured intergranule bonds, but did not significantly disrupt individual granules. 

However, in fonnulations containing intragranular disintegrant, granule size had little 

effect on the particle size recovered. 
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The effect of granule size is dependent on the particular system and there is little \vork 

using super disintegrants. The present work studies the relationship in a wet granulated 

paracetamol formulation (Table 3.1) to determine the influence of disintegrant type. 

Tablet deaggregation has been measured down to 710J..lm, and the use of Explotab, Ac­

Di-Sol, Kollidon-CL and Amberlite IRP88 compared. 
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3.2 Materials and Methods. 

3.2.1 Materials. 

See Section 2.1. 

3.2.2 Methods. 

3.2.2.1 Granulation method. 

Paracetamol, a relatively water insoluble drug was chosen to highlight differences in 

disintegrant efficiency. With a very water soluble drug it is likely that any differences in 

the amount of completely or partially undisintegrated granules resulting from 

differences in disintegrant efficiency would be more difficult to detect due to their 

faster dissolution (Gordon & Chowhan, 1987). 

Granulations were made using Explotab, Ac-Di-Sol, Kollidon-CL and Amberlite IRP88 

as intragranular disintegrants in the general formula given in Table 3.1. When used at 

high concentration, differences in disintegrant efficiency can be masked (Rudnic et ai, 

1981). Therefore for comparison, a low level of 20/0 w/w disintegrant was used. The 

method of granulation is given in Section 2.2.1.1. Granules were wet massed through 

2000/-lm and dry sieved through 1400/-lm aperture sizes. Lubrication was carried out 

after separation of the granule fractions. 
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Table 3.1: Standard formulation. 

Component Mg / tablet 010 w/w 

Paracetamol 500.00 75.76 

Avicel PH101 127.00 19.24 

Intragranular disintegrant 13.20 2.00 

PVPK90 13.20 2.00 

Magnesium stearate 6.60 1.00 

Compression weight 660.00 100.00 

3.2.2.2 Granule size of the bulk granulation. 

See Section 2.2.1.2. 

3.2.2.3 Separation of the granules into different size fractions. 

Different granule size fractions were obtained by sieving using mesh wire sieves 

(Endecott Ltd., London) and a sieve shaker (Endecott Ltd., London). The following 

sieves were arranged in decreasing aperture size (f.lm): 1400, 1000, 710, 500, 250. The 

shaker was operated for 20 minutes and the resultant size fractions (1400-1 OOOf.lm, 

1000-710 f.lm, 710-500 f.lm, 500-250f.lm) stored in airtight amber glass bottles. Before 

fractionation, a quantity of each bulk granulation was removed as a control. 

3.2.2.4 Determination of granule fraction drug uniformity. 

The paracetamol content of the bulk granulation and granule size fractions were 

determined by UV assay as described in section 2.2.3. Dilutions were made to gl\e a 

paracetamol concentration of approximately 10f.lgmr
i
. 50mg of each sample \\as 

dissolved in 50ml of methanolic Hel and ultrasonicated (Sonicor instrument 

corporation, New York) for 30 seconds to ensure complete dispersion. 1.5ml of this 
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solution was pipetted into a 100ml volumetric flask and made up to volume \\ith 

methanolic Hel. The resultant solution was filtered through a 0.2/J.m cellulose acetate 

filter (Nalgene TM, BDH Laboratory supplies, Poole England), the first few ml discarded 

and the absorbance measured three times to give a mean value. Results were duplicated 

for each sample. The paracetamol content of the bulk granulation and each granule size 

fraction was determined and the content as a percentage of the unfractionated 

granulation calculated. To check for possible interference by the PVP K90 present in 

the granules, which is soluble in methanol, a lO.ug mrl solution of PVP K90 was 

scanned at 2S0nm. No interference occurred. 

3.2.2.5 Loss on drying of the granule size fractions. 

See Section 2.2.l.3. 

3.2.2.6 Compression. 

The method in Section 2.2.1.4 was used. Tablets containing intragranular Ac-Di-Sol 

were compressed first and forces of 7, 10, IS and 20 ± O.SkN were used. However, 

since SkN was found to give tablets of acceptable integrity in subsequent formulations, 

S rather than 7kN was used to widen the pressure range studied. 

3.2.2.7 Evaluation of tablets. 

See Section 2.2.2 
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3.3 Results and Discussion. 

3.3.1 Mean granule size of the unfractionated granulations. 

Sieve analysis showed that the size distribution and mean granule size of the bulk 

granulations was similar with each intragranular disintegrant (Table 3.2). 

Table 3.2: Mean granule size of the bulk granulations. 

Granulation 

Explotab 

Ac-Di-Sol 

Kollidon-CL 

Amberlite IRP88 

Mean granule size [J..lm] ± rsd 

550 ± 0.41 

560+0.41 

560 + 0.35 

550 + 0.38 

* where rsd = relative standard deviation. 

3.3.2 Effect of granule size on drug content. 

Table 3.3: The effect of granule size on drug content uniformity. 

Granule size fraction 
[Jlm] 

1400-1000 

1000-710 

710-500 

500-250 

Paracetamol content % + rsd 

[Bulk granule = 100%] 
Explotab Ac-Di-Sol 

98.22 + 0.57 

99.89 + 0.97 

98.99 + 1.26 

101.38 ± 1.10 

98.79 ± 0.14 

97.53 ± 1.19 

102.55 ± 1.52 

100.76 ± 0.86 

Absorbance readings for the assays of granulations containing Amberlite IRP88 and 

Kollidon-CL were erroneous and therefore values are omitted from Table 3.3. A slurry 

of each disintegrant in methanolic HCI was filtered and the absorbance at 250nm 

measured. Interference was shown to occur with both disintegrants. This would indicate 
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they contain components that are soluble in methanolic HCl which cause interference. 

Kollidon-CL forms reversible chemical complexes with a large number of drugs. 

particularly those with a phenol group including paracetamol in acidic media (Kollidon, 

technical information, 1992) and will also cause assay interference. 

For granulations containing Ac-Di-Sol and Explotab, the paracetamol content of the 

different granule fractions were similar (Table 3.3). Smaller size fractions had slightly 

higher paracetamol content, but practically the differences were small. Thus differences 

in tablet properties compressed from different granule size fractions cannot be 

attributed to drug content. The present results show that the material was well mixed 

and granulated and is supported by no capping in any of the formulations. Intragranular 

disintegrants were used at low concentration (20/0 w/w) and it is very unlikely they 

affected drug distribution and therefore the drug content of the granule fractions 

containing Amberlite IRP88 and Kollidon-CL were assumed to be similar to those of 

Ac-Di-Sol and Explotab. 

3.3.3 Granule loss on drying. 

After drying, the four bulk granulations had very similar residual moisture contents 

(Table 3.4). After fractionating, loss on drying of the smaller granule size fractions 

tended to be higher than for the larger fractions, due to the greater surface area for 

moisture loss occurring during fractionation. This highlights a potential problem in 

fractionating granulations. Although loss was not major in this case, the effect may be 

more pronounced in formulations of greater hygroscopicity. 
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Table 3.4: Granule loss on drying. 

Granule size 

[Jlm] 

Mean loss on drying + rsd [0/0 w /w J 

Granules before compression 

Explotab Ac-Di-Sol Kollidon-CL Amberlite 

IRP88 

Bulk granulation 1.49 + 5.37 1.44 + 8.33 1.13 ± 5.31 1.10 + 6.36 

1400-1000 1.40 + 8.57 1.47 ± 6.12 1.07 ± 7.48 1.00 ± 11.00 

1000-710 1.32 + 4.55 1.31 + 12.21 1.06 + 10.38 0.93 ± 8.60 

710-500 1.29 + 6.20 1.37 + 13.87 0.90 ± 7.78 0.80 ± 15.00 

500-250 1.19 + 8.40 1.30 + 3.85 0.92 ± 5.43 0.53 ± 16.98 

3.3.4 Tablet weight uniformity. 

Table 3.5 Effect of granule size on tablet weight uniformity. 

Granule size Explotab Ac-Di-Sol Kollidon-CL Amberlite 
fraction [J.1m] IRP88 

x rsd x rsd x rsd x rsd 
[mg] [mg] [mg] [mg] 

Bulk granulation 667 1.17 664 1.34 663 0.90 662 0.45 

1400-1000 655 0.93 658 0.59 655 1.22 665 0.45 

1000-710 656 0.91 664 0.45 668 0.90 672 0.59 

710-500 660 0.76 663 0.45 659 0.76 667 0.45 

500-250 657 0.30 661 0.30 669 0.75 662 0.61 

All weights fell within the range 660mg ± 5% (Table 3.5). In agreement with others 

(Kassem et aI, 1972; Femi-Oyewo & Adefeso, 1993), weight variation decreased as the 

granule size decreased due to better die fill and closer, more uniform packing. 

Tablet weight did not increase with granule size because die fill was adjusted for each 

granule fraction to give the correct mean tablet weight. This was necessary to avoid 
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increases in tablet crushing strength resulting from greater tablet \veights (Kassem et at, 

1972) which would complicate the interpretation of results. 

3.3.5 Tablet crushing strength. 

For all formulations and granule size fractions, tablet crushing strength increased with 

compaction force due to greater interparticulate bonding (Figures 3.1 - 3.4). 

Disintegration time and tablet crushing strength may be directly related (Femi-Oyewo & 

Adefeso, 1993). The increased interparticulate bonding makes particle separation in the 

deaggregation process more difficult. 

At the same compression force, granule size fractions containing intragranular Explotab 

and Ac-Di-Sol tend to produce tablets of slightly higher crushing strengths than those 

containing Kollidon-CL and Amberlite IRP88. These differences may be attributed to 

slightly higher residual granule moisture content on compaction (Table 3.4). Garr & 

Rubinstein (1992) studied the influence of moisture content on the consolidation and 

compaction properties of paracetamol. They found that increasing moisture content up 

to 6%) w/w progressively increased compact strength. They attributed this to the 

hydrodynamic lubrication effect of moisture, which increases force transmission from 

the upper to lower punch, facilitating greater powder consolidation. In addition, it is 

thought that the improved plastic deformation resulting from increased moisture content 

promotes interparticle contact and plasticisation of the binder (Wells et aI, 1982) and 

this is more likely. Crushing strength was generally unaffected by granule size, although 

occasionally it decreased with granule size. Magnesium stearate has a negati\'e 

influence on tablet crushing strength by weakening bonds between particles (Lewis & 

Shotton, 1964). Larger granule sizes have greater coverage. However, the negative 
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Figure 3.1: Effect of granule size fraction on the crushing 
strength of tablets containing 2°k intragranular Explotab. 
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Figure 3.3: Effect of granule size on the crushing 
strength of tablets containing 20/0 intragranular Kollidon. 
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effect of lubricant on tablet strength is strongly dependent on the degree of 

fragmentation during compaction (de Boer et aI, 1978). Materials which fragment 

during compaction show little or no reduction in tablet strength when lubricant is 

added, due to the creation of new, uncoated surfaces able to form bonds between 

particles (Bolhuis et aI, 1975). A paracetamol / Avicel / PVP granulation will undergo 

mainly elastic and plastic deformation on compaction. Fragmentation of granules is 

greater for larger granules, which explains the results. Additionally, the lower residual 

loss on drying of some of the smaller granule size fractions will cause a reduction in the 

hydrodynamic lubrication / plasticising effects of moisture, which leads to greater 

interparticulate bonding and tablet strength. 

3.3.6 Tablet disintegration. 

Disintegration times for tablets containing intragranular Ac-Di-Sol, Explotab, and 

Amberlite IRP88 are given in Tables 3.6, 3.7 and 3.8 respectively. Tablets containing 

intragranular Kollidon-CL took longer than 30 minutes to disintegrate at each mesh size 

and the data are not tabulated. The relationship between granule size and tablet 

disintegration and deaggregation is dependent on intragranular disintegrant type. 

Ac-Di-Sol caused rapid tablet dispersion, which is hardly affected by compaction force 

(Table 3.6). In tablets containing intragranular Ac-Di-Sol, the time taken for 

deaggregation down to a size of 1180/-lm is largely unaffected by granule size fraction. 

Monitoring dispersion to 710/-lm is more discriminating (Table 3.6, Figure 3.6). Longer 

disintegration times were observed with increasing granule size fraction. The bulk 

granulation had lower values than the larger size fractions, by reducing porosity to 

optimise swelling force generation. 
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Table 3.6: Effect of granule size / compression force on the disintegration of tablets 

containing 20/0 intragranular Ac-Di-Sol. 

Mesh Granule Disintegration time [Min I 
aperture SIze 

SIze [J.1m] 
[J.1m] 

7kN 10kN 15kN 20kN 
- - -
x rsd rsd rsd 

-

x x x rsd 

2000 Bulk 0.29 3.45 0.33 6.06 0.50 2.00 0.81 2.47 
1700 granulation 0.33 6.06 0.38 5.26 0.52 5.77 0.87 2.30 
1400 0.36 8.33 0.38 2.63 0.58 1.72 0.88 9.09 
1180 0.42 9.52 0.47 2.13 0.60 3.33 0.77 2.50 
710 0.69 5.80 0.48 4.17 0.67 13.43 0.81 4.94 

2000 1400-1000 0.30 3.33 0.38 7.89 0.59 5.08 0.74 5.41 

1700 0.45 8.89 0.44 6.82 0.62 4.84 0.74 4.05 

1400 0.49 4.08 0.48 6.25 0.65 6.15 0.78 5.13 

1180 0.52 3.85 0.52 5.77 0.67 10.45 0.79 3.80 

710 1.44 3.47 1.50 1l.33 1.54 46.10 1.63 36.20 

2000 1000-710 0.40 5.00 0.38 2.63 0.55 7.27 0.70 5.71 

1700 0.40 10.00 0.43 4.65 0.60 10.00 0.72 2.78 

1400 0.45 8.89 0.46 4.35 0.64 7.81 0.74 2.70 

1180 0.45 6.67 0.45 6.67 0.58 l.72 0.71 1.41 

710 0.94 4.26 0.99 28.28 0.94 9.57 1.20 5.00 

2000 710-500 0.31 12.90 0.33 6.06 0.51 7.84 0.60 3.33 

1700 0.39 7.69 0.43 4.65 0.51 3.92 0.62 4.84 

1400 0.47 4.26 0.51 7.84 0.56 3.57 0.64 6.25 

1180 0.42 4.76 0.55 5.45 0.57 3.51 0.66 3.03 

710 0.86 4.65 0.96 4.17 0.84 8.33 1.01 2.97 

2000 500-250 0.28 3.57 0.27 3.70 0.42 2.38 0.57 3.51 

1700 0.29 3.45 0.28 7.14 0.49 2.04 0.57 7.12 

1400 0.31 3.23 0.32 6.25 0.53 1.89 0.57 1.75 

1180 0.32 3.13 0.33 6.06 0.50 4.00 0.60 5.00 

710 0.40 5.00 0.36 8.33 0.57 1.75 0.64 3.13 

Disintegrant efficiency of Ac-Di-Sol is higher than Explotab and Amberlite IRP88 

because whereas the latter two mainly cause disintegration by swelling (Caramella et at, 

1989), Ac-Di-Sol combines high swelling activity with wicking properties. Wicking 

activity causes rapid penetration of water into the tablet (Gissinger & Stamm, 1980a) 
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and allows intragranular Ac-Di-Sol to function effectively III a tablet \\ithout 

extragranular disintegrant (Gordon et aI, 1990). 

Explotab functioned less efficiently than Ac-Di-Sol. Increasing granule SIze and 

compression force adversely affected the dispersion of tablets containing intragranular 

Explotab. Disintegration time increased with granule size when deaggregation was 

monitored through 2000lJ,m (Figure 3.8), 1700lJ,m (Figure 3.9), 1400lJ,m (Figure 3.10), 

1180lJ,m (Figure 3.11) and 710lJ,m (Figure 3.5) and the increase was greater as mesh 

aperture size decreased. Poorer disintegrant efficiency means that size reduction of 

granules is more dependent on dissolution and therefore larger granules tend to exhibit 

longer disintegration times. Greater covering of larger granules by magnesium stearate 

will reduce water penetration and will contribute to slower deaggregation. Porosity may 

be higher in tablets compressed from larger granule sizes. Ferrari et aI, (1995) observed 

an inverse relationship between tablet porosity and the disintegrating force generated by 

sodium starch glycollate. At higher intragranular porosity, the disintegrant particles 

have sufficient space to swell without disrupting granules and the disintegrating force is 

reduced. At very high intergranular porosity, the force generated intragranularly is less 

efficiently transmitted to cause disruption of the tablet. 

Generally, tablets made from the larger granules (1400-1000IJ,m) had a marbled surface, 

probably indicating higher intergranular porosity due to the lack of fine particles to fill 

intergranular spaces. When tested through the larger mesh sizes, tablets compressed 

from the bulk granulation exhibited quicker deaggregation than in some of those 

compressed from smaller size fractions (Figures 3.8, 3.9). This is due to o\erall 

reduction in tablet porosity because of fine material contained in the bulk granulation. 
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Table 3.7: Effect of granule size / compression force on the disintegration of tablets 

containing 20/0 intragranular Explotab. 

Mesh Granule Disintegration time [Min) 
aperture SIze 

SIze [f.lm] 
[f.lm] 

5kN 10kN 15kN 20kN 
- - -
x rsd rsd rsd 

-

x x x rsd 

2000 Bulk 1.21 3.31 1.31 12.21 1.83 3.83 2.40 1.25 
1700 granulation 1.23 4.07 1.42 16.20 2.03 2.96 2.96 0.34 
1400 1.62 20.99 1.73 4.62 2.89 2.77 3.92 0.51 
1180 3.27 17.13 2.19 4.11 3.02 7.95 4.00 49.5 
710 6.65 30.98 4.18 5.98 5.20 10.38 5.60 18.75 

2000 1400-1000 1.04 4.81 1.54 7.14 2.21 13.57 2.90 7.93 
I I 

1700 1.37 3.65 1.71 6.43 2.45 2.86 3.58 10.06 

1400 1.54 3.25 1.95 3.59 3.18 6.92 4.42 6.79 

1180 5.01 4.59 3.43 4.96 3.67 25.61 5.68 15.14 I! 
' I ' , 

710 6.79 24.45 5.03 17.30 6.25 5.60 6.89 12.19 
, 
I 

" 

2000 1000-710 0.94 5.32 1.38 4.35 2.05 4.88 2.89 6.57 

1700 1.07 4.67 1.39 13.67 2.44 0.82 3.16 2.53 

1400 1.44 45.83 1.56 5.13 2.59 8.88 3.50 2.29 

1180 2.30 53.48 2.39 0.84 2.46 12.20 4.15 11.33 

710 5.98 17.39 4.06 8.62 4.58 12.01 5.68 10.56 

2000 710-500 0.88 5.68 1.28 5.47 2.04 2.94 2.62 3.82 

1700 0.93 6.45 1.30 5.38 2.08 1.92 2.80 7.50 

1400 0.93 7.53 1.54 7.79 2.23 3.59 3.09 9.06 

1180 1.05 11.43 1.49 4.03 2.35 16.17 3.41 4.11 

710 1.69 18.34 2.44 5.33 3.00 7.33 3.80 5.53 

2000 500-250 0.78 14.10 1.17 8.55 1.49 3.36 1.85 6.49 

1700 0.68 19.12 1.22 4.10 1.54 3.90 1.98 7.58 

1400 0.92 30.43 1.34 6.72 1.66 0.60 2.16 6.02 

1180 1.19 32.77 1.31 7.63 1.74 19.54 2.49 7.23 

710 1.21 20.66 1.51 7.95 1.96 9.18 2.94 442 
---.-~ - --- --- -

This trend diminishes as the mesh aperture size decreases and deaggregation of 

individual granules is increasingly the rate-limiting step (Figures 3.6, 3.10, 3.11). In 

tablets compressed from all granule size fractions, the disintegration times remained the 

same or more usually increased with compaction force. It is probable that in tablets 

compressed at higher forces, greater disintegrating forces generated at lower porosity 
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are counterbalanced by increased intergranular bonding, gtVIng increased crushing 

strength. Additionally, reduced water penetration at lower tablet porosity also reduces 

disintegrant efficiency (Lerk et aI, 1979). Notable exceptions occur when disintegration 

down to sizes below 1180 and 710J.lm was measured in tablets compressed from the 

larger size fractions (l400-1000J.lm, 1000-710j.lm and the bulk granulation, Figures 3.6, 

3.11). The relationship between compression force and disintegration time exhibited a 

minimum. Increased disintegrating force generated at reduced porosity is greater than 

the effect of increased tablet crushing strength. 

The poor disintegrant efficiency of Amberlite IRP88, leads to longer disintegration 

times with increasing granule size fraction (Figures 3.7, 3.12 - 3.15). Dispersion times 

of tablets containing Amberlite IRP88 were longer than those containing Explotab. 

Gissinger & Stamm (1980a) evaluated these two disintegrants and reported greater 

wetability and swelling rate and volume for Explotab. This may account for the 

observed differences in dispersion rates. 

Monitoring deggregation down to 1180J.lm (Figures 3.12-3.15) shows that the tablets 

compressed from the bulk granulation disintegrate as rapidly as the 250-500j.lm size 

fraction. This indicates that Amberlite IRP88 is highly dependent on an optimum 

porosity for efficient swelling force generation. 

For the smaller granule sizes (250-500J.lm, 500-710J.lm, 710-1 OOOj.lm), dispersion time 

did not increase with compression force and in some cases decreased. In the 1000-

1400J.lm fraction and bulk granulation, a minimum was observed. Disintegrant action is 

mainly dependent on swelling force generation, which is higher at lower porosity. 
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Figure 3.5: Effect of granule size I compression force on the 
disintegration of tablets containing 2% intragranular Explotab 
through 710Jlm. 
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disintegration of tablets containing 2% intragranular Ac-Di­
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Figure 3.7: Effect of granule size I compression force on the disintegration 
of tablets containing 2% intragranular Amberlite IRP88 through 71 O~m. 

1400-1000 1000-710 710-500 500-250 Bulk granulation 

Granule size fraction [J.1m] 

1_5kN _10kN C15kN _20kN I 

Amberlite IRP88 is less influenced by water availability than Explotab because it is able 

to develop a high swelling force despite a low swelling volume (CarameUa et aI, 1989). 

Reduced water penetration due to lower porosity at higher compaction forces does not 

decrease disintegrant efficiency. 

The hydrophobic lubricant, magnesium stearate, probably accounts for the unusually 

long disintegration times observed for tablets containing intragranular Kollidon-CL and 

supports the findings of Bolhuis et aI, (1982). They studied the effect of magnesium 

stearate on insoluble tablet systems containing slightly and strongly swelling 

disintegrants. Although tablet swelling properties were hardly affected by the presence 

of magnesium stearate, in some cases disintegrant efficiency was. They concluded, for a 

slightly swelling but hydrophilic disintegrant such as crospovidone, the penetration of 
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Figure 3.8: Effect of granule size I compression force on the disintegration of tablets 
containing 2% intragranular Explotab through a screen aperture size of 2000J,1m. 
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Figure 3.9: Effect of granule size I compression force on the disitegration of tablets 
containing 2°A, intragranular Explotab through a screen aperture size of 1700Jlm. 
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Figure 3.10: Effect of granule size I compression force on the disintegration of tablets 
containing 2% intragranular Explotab through a screen aperture size of 1400J.1m. 
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Figure 3.11: Effect of granule size I compression force on the disintegration of tablets 
containing 2% intragranular Explotab through a screen aperture size of 1180J.1m. 
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water into the tablet is the controlling step in the process of disintegration and is 

consequently strongly affected by the presence of hydrophobic lubricant. The dispersion 

of tablets containing Kollidon-CL would be more rapid using a hydrophilic lubricant. 

Table 3.8: Effect of granule size / compression force on the disintegration of tablets 

containing 2% intragranular Amberlite IRP88. 

Mesh Granule Disintegration time rMin] 
aperture SIze 
[J.!m] [J.!m] 

5kN 10kN 15kN 20kN 
-

rsd 
-

rsd 
-

rsd 
-

rsd x x x x 

2000 Bulk 2.12 22.64 1.76 12.50 1.56 7.05 1.82 10.44 
1700 granulation 3.01 4.98 2.63 17.11 2.10 26.67 1.92 25.00 
1400 3.61 2l.88 3.60 2l.67 2.77 12.27 3.15 13.65 
1180 5.81 36.83 3.80 34.47 2.78 14.75 3.04 14.80 
710 9.56 23.12 9.17 31.41 5.70 8.42 6.53 34.61 

2000 1400-1000 4.61 3.47 4.52 17.04 4.77 16.14 4.55 12.75 

1700 5.98 27.76 6.35 18.74 5.88 20.58 4.95 16.77 

1400 6.90 19.28 7.60 10.26 6.74 9.94 7.37 12.48 

1180 8.67 33.45 7.79 39.41 8.63 26.54 10.37 20.93 

710 18.70 13.64 9.63 24.71 12.37 9.14 17.11 14.67 

2000 1000-710 4.47 13.65 3.65 14.79 4.18 32.06 4.46 l.35 

1700 5.66 49.82 5.86 20.48 5.11 24.07 4.73 20.72 

1400 6.52 11.81 6.30 10.00 6.63 4.37 5.33 18.76 

1180 11.76 10.63 5.73 37.17 6.41 28.08 5.23 22.94 

710 18.90 10.63 10.67 28.12 9.42 10.08 9.56 13.91 

2000 710-500 5.29 8.51 3.38 10.36 3.29 9.42 3.06 10.46 

1700 7.77 13.77 4.36 6.19 3.79 2.37 3.85 6.49 

1400 8.61 3.60 5.15 10.87 4.39 12.30 4.33 16.40 

1180 8.77 10.95 6.92 21.97 4.15 9.40 4.77 6.92 

710 12.94 8.73 10.69 26.94 7.37 23.47 5.75 5.57 

2000 500-250 2.94 21.43 1.81 7.73 2.27 11.01 1.81 9.39 

1700 3.44 27.62 2.14 1l.68 2.49 10.44 1.85 9.73 

1400 3.98 21.36 2.78 16.55 2.68 14.18 2.30 13.48 

1180 4.01 19.70 4.20 24.29 2.37 6.75 2.10 26.19 

710 5.21 14.78 4.40 22.73 3.51 7.41 3.42 643 
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Figure 3.12: Effect of granule size I compression force on the disintegration of tablets 
containing 2% intragranular Amberlite IRP88 through a screen aperture size of 
2000J.1m. 
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Figure 3.13: Effect of granule size I compression force on the disintegration of tablets 
containing 2% intragranular Amberlite IRP88 through a screen aperture size of 
1700J.1m. 
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Figure 3.14: Effect of granule size I compression force on the disintegration of tablets 
containing 2% intragranular Amberlite IRP88 through a screen aperture size of 
1400J.1m. 
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Figure 3.15: Effect of granule size I compression force on the disintegration of 
tablets containing 2°k intragranular Amberlite IRP88 through a screen aperture size 
of 1180J.1m. 
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3.3.7 Tablet friability. 

Table 3.9: Effect of granule size, intragranular disintegrant type and compression 

force on tablet friability. 

Intra- Compo Friability [% w/w] 
disintegrant Force [kN] 

Granule size fraction [J.lm] 
Bulk 1400-1000 1000-710 710-500 500-250 

granulation 
Ac-Di-Sol 7 1.41 0.86 0.67 1.19 2.32 

10 0.79 0.69 0.30 0.59 0.82 
15 OA6 0.75 0.29 0.39 0.52 
20 OA4 OA7 0.15 0.30 0.37 

Explotab 5 3.16 1.23 2.22 3A8 3.73 
10 lAO 0.73 0.87 1.43 1A5 
15 0.95 0.51 OA3 0.92 0.86 
20 0.54 0.38 0.95 0.92 0.67 

Amberlite 5 2.12 2.25 1.51 1.27 2.22 
IRP88 10 1.14 0.72 0.27 OA6 0.62 

15 0.58 OA4 0.26 0.30 0.33 
20 0.57 OA5 0.12 0.25 0.30 

Kollidon-CL 5 3.12 1.50 2.13 3.28 4.23 
10 1.37 1.00 0.72 1.45 1.73 
15 1.07 0.63 0.93 0.69 1.16 
20 0.90 0.24 0.32 0.67 0.99 

Resistance to abrasion or friability is an important consumer attribute. It indicates how 

the tablet will withstand the tumbling effect encountered during manufacture, 

packaging, transport and handling. There is no clear relationship between granule size 

fraction and tablet friability (Table 3.9). In all formulations friability decreased with 

increasing compression force, due to increased tablet crushing strength. However, 

friability does not appear to be simply a function of crushing strength. For example, 

tablets containing intragranular Amberlite IRP88 tended to have lower crushing strength 

than those containing intragranular Explotab and friabilities also tended to be lower. 

Tablet crushing strength, however, does not necessarily reflect granule strength (WeBs 
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& Walker, 1983) and this may explain the observed differences. It is possible that 

intragranular disintegrant type may influence granule structure, howeveL it is unlikely 

at very low concentrations, and no clear trends are apparent from the present results. 
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3.4 Conclusions. 

Many of the differences in disintegrant efficiency were not evident when disintegration 

times were monitored at 2000).lm (BP 1990). In a dispersible tablet formulation, where 

deaggregation to < 710).lm must occur, a much more discriminating test is required. 

The rate and variability of dispersion was greatly influenced by intragranular 

disintegrant type, which had a greater influence on dispersion than granule size, 

compression force or tablet crushing strength. Tablets containing Ac-Di-Sol 

disintegrated most rapidly with least variability. The dispersion characteristics of tablets 

containing intragranular Explotab / Amberlite IRP88 are less consistent. Used alone 

intragranularIy, disintegrant efficiency can be summarised as: 

Ac-Di-Sol > Explotab > Amberlite IRP88 > Kollidon-CL. 

The influence of compreSSIOn force on dispersion down to 710).lm varied with 

intragranular disintegrant type, and was least with intragranular Ac-Di-Sol. In tablets 

containing intragranular Explotab, using the smaller granule sizes, disintegration times 

increased with compression force. However, with larger sizes, a minimum corresponded 

to a reduction in porosity and an optimum for swelling force was observed. In tablets 

containing intragranular Amberlite IRP88, a minimum was observed in the 1000 - 1400 

fraction and the bulk granulation. However, in the smaller size fractions (250-500, 500-

710, 710-1000 ).lm) the dispersion times were unaffected or decreased with increasing 

compression force. 
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The disintegrant efficiency of Kollidon-CL was probably affected by the use of 

magnesIum stearate and comparison with a water soluble lubricant would be 

interesting. 

Fractionating the bulk granulation containing Amberlite IRP88 had a negative effect on 

the dispersion, presumably due to a dependency on porosity for efficient swelling force 

generation. 

The choice of intragranular disintegrant has a more profound effect on tablet dispersion 

characteristics than granule size. Where disintegrant efficiency is high, dispersion 

characteristics may be practically unaffected by changes in granule size. However, as it 

decreases, granule size becomes more important and disintegration time tends to 

increase with granule size because size reduction is increasingly dependent on drug 

dissolution. With the correct disintegrant choice, Ac-Di-Sol in this particular system, 

the whole granulation may be used successfully. 
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CHAPTER 4 



4. EFFECT OF SUPER DISINTEGRANT LOCATION ON THE 

DISPERSION OF WET GRANULATED PARACETAMOL 

TABLETS. 

4.1 Introduction. 

Super disintegrants such as croscarmellose sodium, sodium starch glycollate and 

crospovidone are routinely employed to improve tablet disintegration and increase the 

rate of drug dissolution (Shangraw et aI, 1980). Disintegrants in wet granulation 

processes are either added intragranularly, extragranularly or both (Figure 4.1). 

(A) Intragranular ( + ) (B) Extragranular ( -) (C) Intra + Extragranular (+) 

Figure 4.1: Distribution of disintegrant in wet granulated tablets. 

Shotton & Leonard (1976) compared the effectiveness of five conventional 

disintegrating agents in sulphadiazine tablets. Using a combination of wet sieving and 

the Coulter Counte/
M

, they size analysed the suspension resulting from tablets subjected 

to the BP disintegration test. More rapid disintegration occurred for extragranular rather 

than intragranular, which, however, gave a much finer dispersion. The optimum was 

obtained by using both intra- and extragranular. The extragranular agent breaks up the 

tablet rapidly to the original granules and the intragranular produces the original 

particles. Khan & Rhodes (1972a) and Maly et al (1968) found alginates and celluloses 

were more effective, when used extragranularly. Asker et al (1981), found the inclusion 
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of intra- and extragranular starch substantially decreased the disintegration time of 

prednisolone tablets. 

Many reports have compared the effects of super disintegrant location in wet granulated 

tablets, which can be incorporated either intragranularly (Kornblum & Stoopak, 1973; 

Gissinger & Stamm, 1980b) or extragranularly (Sakr et aI, 1975) or both (Bhatia et aI, 

1978). Bhatia et al (1978) used croscarmellose sodium (CLD) both intra- and 

extragranularly in a calcium sulphate granulation. However they incorporated 

disintegrant in different concentrations, so that no conclusions can be drawn. Where the 

effect of location has been evaluated, reports are conflicting. Most of the observed 

differences seem to be attributed to the physicochemical properties of the tablet matrix, 

the super disintegrant and the method of manufacture. 

Boymond et al (1982) compared the effect of sodium starch glycollate (Primojel) 

distributed either 5% intra- or extragranularly in phenacetin tablets. Tablets with 

extragranular disintegrant did not disintegrate at all in 30 minutes and showed slow 

drug dissolution. With a poorly soluble drug, disintegrant incorporation extragranularly 

results in a greater quantity of completely or partially dispersed granules, which reduce 

in size slowly, mainly by dissolution. Disintegration time depended largely on the size 

of the granules formed on tablet disintegration. With increasing granule size and 

decreasing solubility, granule deaggregation is increasingly the rate-limiting step to 

passage through a mesh. Faster disintegration is observed when the disintegrant is 

located intragranularly. Gordon et al (1990) demonstrated with a poorly soluble tablet 

base, that including croscarmellose intragranularly resulted in faster tablet dissolution 

than when the disintegrant was incorporated partially or completely extragranularly. 
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This can be explained by the increased surface area generated bv rapid granule 

deaggregation with intragranular disintegrant. 

For a poorly soluble drug, although intragranular incorporation results in faster 

disintegration times, a combination mode is often more efficient by produci ng a 

continuous hydrophilic network throughout the tablet matrix (Figure 4.1). The 

extragranular disintegrant facilitates rapid disintegration of the tablet and intragranular 

speeds deaggregation of the granules and drug dissolution. Intragranular disintegrants 

confined within the granules present a less wettable matrix. Miller et al (1980) reported 

that the disintegration of paracetamol tablets containing extragranular Ac-Di-Sol, was 

enhanced when part of the added disintegrant was incorporated intragranularly. More 

recently Khattab et al (1993a) studied the effect of super disintegrant distribution in 

paracetamol tablets produced using fluid-bed granulation rather than traditional wet 

granulation. The shortest disintegration times were achieved when croscarrnellose, 

sodiUlTI starch glycollate and crospovidone were incorporated in the combined mode 

(+). 

Khattab et al (1993b) investigated the effect of distributing (+) croscarrnellose in wet 

granulated paracetamol tablets. 25 : 75, intra: extra granular disintegrant was optimum 

for disintegration time, but they did not measure the differences in the particle size of 

the resultant dispersions. The optimum ratio of intra: extra granular disintegrant \\ ill 

depend on the system and the dispersion required. As the extent of tablet deaggregation 

required increases, the ratio of intra: extra granular disintegrant will increase. 

However, some workers have shown that the mode of incorporation has little etTcct on 

the disintegration time in a soluble tablet matri\:. whereas others, that e\:tragranularl~ is 
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more efficient. Khan & Rhodes (1973) and Sakr & Farrag (1975) observed only a small 

effect with Primojel on the disintegration and dissolution properties of tablets. prepared 

from a lactose granulation. Khan & Rooke (1976a) showed that sodium 

carboxymethylcellulose (Nymcel) and calcium carboxymethycellulose \vere more 

effective in lactose tablets when used extragranularly. For sulphaguanidine tablets, Sakr 

& Farrag (1975) reported that sodium starch glycollate (Primojel) was most effective 

when incorporated extragranularly, rather than intragranularly or both. In a freely 

soluble tablet matrix, water penetration throughout the tablet and disintegration into 

constituent granules is the rate-limiting step to tablet deaggregation. Undispersed 

granules, which are highly soluble, will dissolve very rapidly. Size reduction is therefore 

less dependent on the presence of intragranular disintegrant. 

In a highly soluble matrix, a hydrophilic network between the granules is needed to 

ensure that the tablet rapidly disintegrates. If disintegration does not occur rapidly, the 

soluble component will rapidly dissolve on the outer layer of the tablet matrix. The rate 

of fluid diffusion into successive layers will be retarded, particularly if highly 

concentrated or viscous solutions are formed (Graf et aI, 1982). The tablet may decrease 

in size by solution from the tablet surface (Guyot-Hermann & Leblanc, 1985) and 

because generated surface area is low, disintegration times will be long. 

The disintegrant employed in either mode should not agglutinate when \\ctted. Jaminet 

et al (1969) compared disintegration and dissolution properties of phenobarbitone 

tablets containing 50/0 disintegrant and lactose as filler. The freely water soluble, highly 

substituted sodium carboxymethylcellulose, Copage(", was found to lose its 

disintegration properties during granulation, being more effective when incorporated 
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extragranularly. It becomes viscous and hydrated and acts as a binder rather than a 

disintegrant during wet granulation, and therefore slows granule deaggregation. 

In patents relating to dispersible tablets, it is often stated advantageous to com bine the 

use of disintegrants and use a different type intra- and extragranularly (Murphy & 

Mathews, 1990; Fielden, 1992; Martin & Romero, 1992). Although many workers have 

studied the effect of the mode of incorporation of super disintegrants, this has been 

largely restricted to the use of a single type. There is a lack of work reporting the effect 

when different super disintegrants are combined. The work will systelnatically study the 

effect of extragranular disintegrant type on dispersible paracetamol tablets containing 

different intragranular disintegrants, using Explotab, Ac-Di-Sol, Kollidon-CL and 

Amberlite IRP88. 
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4.2 Materials and Methods. 

4.2.1 Materials. 

See Section 2.1. 

4.2.2: Methods. 

4.2.2.1 Granulation method. 

The different intra- and extragranular formulations used are given in Table 4.1. The 

general formulation used is given in Table 4.2. A control without any intra- / 

extragranular disintegrant was also included. 

Four batches of granules were made, each containing a different intragranular 

disintegrant, and split into five equal amounts. Four lots were mixed with extragranular 

disintegrant (according to Table 4.1) and one without, to act as a control. Granulations 

were made and lubricated according to the general method given in section 2.2.1.1. 

Granulated material was wet massed through a 1700/-lm sieve and dry sieved through 

lOOOJlm. 

4.2.2.2: Granulation loss on drying. 

Before mlxmg with extragranular disintegrant, granulation loss on drying \vas 

detennined according to the method in section 2.2.1.3. 

4.2.2.3: Compression. 

Granules were compressed at 5, 10, 15 and 20 ± 0.5kN (Section 2.21.4). Tabkts were 

compressed to a \veight of 660mg ± 5°'0. 
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4.2.2.4 Evaluation of tablets. 

See section 2.2.2. 

Table 4.1: Formulation plan. 

Formulation N° 

1 
2 
3 
4 
5 Control 
6 
7 
8 
9 
10 Control 
1 1 
12 
13 
14 
15 Control 
16 
17 
18 
19 

Intragranular 

Explotab 

Ac-Di-Sol 

Amberlite IRP88 

Kollidon-CL 

Extragranular 

Ac-Di-Sol 
Explotab 
Kollidon-CL 
Amberlite IRP88 
(without extragranular) 
Explotab 
Ac-Di-Sol 
Kollidon-CL 
Amberlite IRP88 
(without extragranular) 
Explotab 
Ac-Di-Sol 
Kollidon-CL 
Amberlite IRP88 
(without exlragranu/ar) 
Explotab 
Ac-Di-Sol 
Kollidon-CL 
Amberlite IRP88 
(without extragranular) 20 Control 

21 Control without intra- / extragranular disintegrant 

Table 4.2: Standard formulation. 

Component Mg / tablet 0/0 w/w 

ParacetaITIol 500.00 75.76 

Avicel PHI01 113.80 17.24* 

Intragranular disintegrant 13.20 2.00 

Extragranular 13.20 2.00 

PVPK90 13.20 2.00 

Magnesi urn stearate 6.60 1.00 

Compression weight 660.00 100.00 

* Control without intra- / extragranular disintegrant, containing 2124~o \V
/
", A \ (ceL 

control formulations without extragranular disintegrant containing 19.24°0 w. \\ A\'ic~l 
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4.3: Results and Discussion. 

4.3.1: Mean granule size of the bulk granulations. 

Table 4.3: Mean granule size of the bulk granulations. 

Granulation Mean granule size ± rsd [~m] 

Explotab 

Ac-Di-Sol 

Kollidon-CL 

Amberlite IRP88 

220 ± 1.02 

210±0.89 

200 ± 1.19 

230 ± 0.94 

The size distribution and mean granule size of the four bulk granulations was similar. 

4.3.2: Granulation loss on drying. 

To reduce effects on compaction due to moisture levels, residual loss on drying for all 

granulations was maintained within the range of 1.2 - 1.4 % w/w. 

4.3.3: Tablet crushing strength. 

Addition of 20/0 w/w extragranular disintegrant did not notably affect tablet crushing 

strength (Table 4.4). Control formulations had crushing strengths similar to those with 

extragranular disintegrant, regardless of type. Tablet crushing strength may decrease 

with increasing concentration of externally incorporated super disintegrant, especially 

starch derivatives (Sakr et aI, 1975) due to their poor compression properties. Starch 

exhibits elastic properties (Hess, 1978) and the grains when incorporated 

extragranularly do not fuse together. It is probable that the concentration of 

extragranular disintegrant used was low enough for compression properties not to be 

adversely affected. 
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For tablets compressed at the same compaction force, those containing intragranular 

Kollidon-CL tended to be stronger. CL-PVP has been shown to be directly compressible 

in pure form (Kornblum & Stoopack, 1973). This indicates good compression 

properties in a wet granulated system. 

Table 4.4: Effect of extragranular disintegrant type on tablet crushing 

strength. 

Intragranular disintegrant 

Compression Extra Explotab Ac-Di-So1 Kollidon- Amberlite 
granular CL 

Force [kN] Crushing strength (KP] 
- - - -
x x x x 

5 Explotab 3.99 4.13 4.32 4.33 
Ac-Di-Sol 4.08 4.25 4.81 3.57 
Kollidon-CL 4.18 4.17 4.13 3.88 
Amberlite 3.38 4.00 4.55 3.92 
Control 4.12 3.98 4.91 3.83 

10 Explotab 8.83 8.87 8.81 8.52 
Ac-Di-So1 8.53 8.99 10.18 9.37 
Kollidon-CL 8.82 9.00 8.67 9.26 
Amberlite 8.10 9.03 9.66 8.48 

Control 8.35 9.21 10.87 9.15 

15 Exp10tab 12.20 12.52 14.63 12.71 

Ac-Di-Sol 12.82 12.63 14.65 12.00 

Kollidon-CL 12.09 12.14 13.53 12.01 

Amberlite 12.50 12.35 13.64 13.14 

Control 12.15 12.59 14.38 13.40 

20 Explotab 14.66 15.11 15.91 14.14 

Ac-Di-Sol 14.53 15.00 16.12 15.07 

Kollidon-CL 14.47 15.24 15.31 14.91 

Amberlite 14.40 15.23 15.84 15.29 

Control 14.47 14.98 16.04 15.12 
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4.3.4: Tablet disintegration. 

The control formulation without any intra- or extragranular disintegrant not surprisingly 

had very poor intrinsic disintegrant activity and did not disperse. Tablets disintegrated 

into large aggregates that dissolved away very slowly. Tablets compressed at 5kN took 

longer than 10 minutes to disintegrate through all mesh sizes (1 OkN > 30 minutes and at 

15 and 20kN > 60 minutes). 

Extragranular disintegrant increases the rate of dispersion with intragranular Explotab 

(Table 4.5) to constituent granules through mesh sizes of 1180~m and below. Explotab 

does not have significant wicking activity and water penetration throughout the tablet 

matrix limits the rate of disintegration. Large reductions in disintegration time with 

extragranular disintegrant are observed at higher pressures, when water penetration into 

the tablet is limited. Quick breakdown into granules results in more rapid granule 

deaggregation to 710J.1m (Figure 4.2). 

The effect on disintegration of extragranular addition to tablets containing intragranular 

Explotab was consistent regardless of the type of extragranular disintegrant used. 

Notable exceptions were observed when Explotab and Amberlite IRP88 were used at 

high compression force. Under these conditions, extragranular Explotab caused 

noticeably less improvement of tablet dispersion. This disintegrant is dependent on 

swelling, which is limited when water penetration is reduced at high pressures. Starch 

grains in carboxymethyl starches may be damaged at high pressure (Guyot-Hermann, 

1992) with a consequent partial gelatinisation that may reduce \vater penetration. 

Conversely, the disintegrating force generated by Amberlite IRP88 is less dependent on 

water availability than the other disintegrants (Caramella et ai, 1989) and it therdore 

performed slightly better at high compression force. 
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Figure 4.2: Effect of extragranular disintegrant type I compression force on the 
disintegration of tablets containing intragranular Explotab through a screen aperture size 
of 710 Jlm. 
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Figure 4.3: Effect of extragranular disintegrant type I compression force on the 
disintegration of tablets containing intragranular Ac-Di-Sol through a screen aperture 
size of 71 OJlm. 
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Figure 4.4: Effect of extragranular disintegrant type I compression force on the 
disintegration of tablets containing intragranular Kollidon-CL through a screen aperture 
size of 71 O)lm. 
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Figure 4.5: Effect of extragranular disintegrant type I compression force on the 
disintegration of tablets containing intragranular Am berlite IRP88 through a screen 
aperture size of 710J.1m. 
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Table 4.5: Effect of extragranular disintegrant type on the disintegration of tablets 

containing intragranular Explotab. 

Mesh Extra- Disintegration time [Min] 
aperture granular 

SIze 
[J.!m] 

5kN 10kN 15kN 20kN 
-

rsd 
- -

rsd rsd 
-

x x x x rsd 

2000 Exp10tab 0.51 3.92 0.77 5.19 0.85 2.35 1.08 5.56 

1700 0.53 3.77 0.84 9.52 0.91 1.10 1.11 6.31 

1400 0.56 7.14 0.85 5.88 0.96 2.08 1.21 5.79 

1180 0.75 17.33 1.06 14.15 1.05 8.57 1.60 27.5 

710 4.73 2.96 3.61 12.30 3.07 27.69 4.83 19.58 

2000 Ac-Di-Sol 0.42 19.05 0.44 6.82 0.70 8.57 0.76 7.89 

1700 0.46 6.52 0.46 5.34 0.74 5.41 0.80 6.25 

1400 0.47 6.38 0.47 4.26 0.75 5.33 0.88 7.95 

1180 0.55 12.73 0.55 18.18 0.83 10.84 0.95 19.05 

710 3.38 24.26 3.12 15.06 3.36 46.13 4.05 15.31 

2000 Kollidon- 0.41 4.88 0.40 5.00 0.50 6.00 0.55 3.64 

1700 CL 0.43 4.65 0.42 9.52 0.51 5.88 0.60 8.33 

1400 0.48 8.33 0.45 1l.11 0.52 5.77 0.69 8.70 

1180 0.48 12.50 0.48 22.92 0.77 19.48 0.95 16.84 

710 3.10 24.52 2.31 30.30 3.16 16.14 3.90 20.51 

2000 Amberlite- 0.50 2.00 0.47 6.38 0.45 4.44 0.46 6.52 

1700 IRP88 0.52 l.92 0.53 7.55 0.48 4.17 0.49 6.12 

1400 0.52 3.85 0.58 17.24 0.49 2.04 0.58 7.69 

1180 0.57 10.53 0.66 18.18 0.63 15.87 0.67 25.37 

710 3.03 27.73 3.57 41.46 2.15 33.62 1.76 27.55 

2000 Control 0.98 4.42 1.00 5.56 1.23 9.87 1.74 6.08 

1700 0.93 3.95 1.01 6.58 1.29 5.68 1.51 24.56 

1400 1.00 3.79 1.23 12.36 1.33 12.54 1.62 40.69 

1180 1.12 24.36 1.50 28.95 1.61 20.15 1.72 39.52 

710 5.32 29.66 4.59 36.58 4.32 24.60 5.42 40.26 

In tablets containing intragranular Ac-Di-Sol, the presence of an extragranular 

disintegrant practically unaltered dispersion times (Table 4.6), even when this \\as 

measured down to 710J.!m (Figure 4.3). Ac-Di-Sol is very hydrophilic and easily wetted, 

with a zero contact angle (Gissinger & Stamm, 1980a). Intragranular Ac-Di-Sol rapidly 
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draws water into the granules. This rapidly penetrates the matrix via the hydrophilic 

capillary network produced by Avicel and Ac-Di-Sol. The addition of extragranular 
'-

disintegrant does not increase the rate of tablet deaggregation. The initial swelling of 

extragranular disintegrant particles may actually block pores and reduce the rate of 

water penetration into the tablet. This explains the slight decreases in the rates of 

dispersion with the use of some extragranular disintegrants. 

The greatest increase in the rate of dispersion with the addition of extragranular 

disintegrant is seen with intragranular Kollidon-CL (Table 4.7, Figure 4.4). Kollidon-CL 

functions most poorly in this system when used alone intragranularly. Its disintegrant 

action is reduced by hydrophobic lubricant (Bolhuis et aI, 1982). In the absence of 

extragranular disintegrant, a hydrophobic film may almost completely coat the granules 

during the mixing process. When extragranular disintegrant is incorporated, its 

adherence to the granules probably reduces this, and allows water to more easily 

penetrate the granules. The percentage coverage of the granules with magnesium 

stearate will also be less. 

Other factors may also contribute to the very poor disintegrant activity of Kollidon-CL 

when used alone intragranularly. The interaction between the lubricant and the 

disintegrant will be strongest when the disintegrant is incorporated extragranularly 

because there is direct contact. However, Kollidon-CL still performs efficiently when 

incorporated extragranularly. Disintegrant properties may be reduced by wet 

granulation. Recrystallisation of the drug inside the disintegrant fibers during the drying 

phase could reduce capillarity and swelling on rehydration. Extragranular Arnberlite 

IRP88 Ac-Di-Sol and Kollidon-CL in tablets containing intrabJfanular Kollidon-Cl , 

were equally effective. Explotab was less effective at high compression forces. 
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Table 4.6: Effect of extragranular disintegrant type on the disintegration of tablets 

containing intragranular Ac-Di-Sol. 

Mesh Extra- Disintegration time [Min] 
aperture granular 

SIze 
[J.lm] 

5kN 10kN 15kN 20kN 
-

rsd 
-

rsd 
- -

x x x rsd x rsd 

2000 Explotab 0.57 4.01 0.51 6.54 0.51 1.97 0.57 3.35 

1700 0.58 3.09 0.53 5.25 0.54 5.21 0.57 2.12 

1400 0.59 2.05 0.55 3.65 0.53 3.57 0.58 3.29 

1180 0.58 8.25 0.54 7.06 0.56 4.49 0.56 4.44 

710 0.74 1.63 0.73 18.22 0.61 5.44 0.69 11.50 

2000 Ac-Di-Sol 0.78 13.21 0.60 5.04 0.59 3.72 0.54 6.63 

1700 0.79 17.30 0.64 10.05 0.59 2.56 0.59 6.27 

1400 0.85 9.77 0.72 13.81 0.61 7.34 0.59 6.07 

1180 0.86 18.07 0.71 12.01 0.66 3.05 0.70 15.19 

710 0.92 13.52 0.84 13.48 0.68 1.77 0.74 15.20 

2000 Kollidon- 0.41 9.09 0.40 6.30 0.45 3.01 0.56 6.18 

1700 CL 0.44 5.19 0.41 7.02 0.47 7.05 0.57 4.01 

1400 0.47 7.10 0.46 2.63 0.46 6.64 0.57 9.02 

1180 0.50 8.40 0.42 11.27 0.50 5.32 0.60 12.17 

710 0.54 9.95 0.50 18.71 0.56 10.12 0.65 27.22 

2000 Amberlite- 0.42 3.36 0.40 7.69 0.42 5.54 0.38 7.20 

1700 IRP88 0.45 4.46 0.42 6.64 0.44 2.97 0.40 3.78 

1400 0.48 9.05 0.46 3.93 0.46 3.90 0.42 1.18 

1180 0.46 2.39 0.45 8.61 0.46 5.83 0.46 2.39 

710 0.49 4.08 0.63 30.06 0.49 4.90 0.64 22.57 

2000 Control 0.34 3.24 0.38 3.18 0.39 2.82 0.44 4.97 

1700 0.37 6.17 0.39 2.82 0.41 2.46 0.45 4.94 

1400 0.39 8.01 0.39 3.35 0.41 5.65 0.45 S.08 

1180 0.39 9.61 0.40 5.03 0.43 7.44 0.51 3.95 

710 0.46 9.09 0.48 3.37 0.46 5.93 0.75 11.38 
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Table 4.7: Effect of extragranular disintegrant type on the disintegration of tablets 

containing intragranular Kollidon-CL. 

Mesh Extra- Disintegration time [Min] 
aperture granular 

SIze 
[Jlm] 

5kN 10kN 15kN 20kN 
-

rsd 
- -

x x rsd rsd 
-

rsd x x 

2000 Explotab 0.33 3.33 0.49 3.69 0.93 5.19 1.10 5.44 

1700 0.34 3.24 0.48 10.97 0.96 4.15 1.15 4.77 

1400 0.36 5.07 0.51 2.92 1.00 4.60 1.18 4.68 

1180 0.39 3.12 0.54 12.17 1.01 3.36 1.38 22.22 

710 0.93 7.73 1.34 27.42 1.51 6.63 2.43 9.37 

2000 Ac-Di-Sol 0.28 1.82 0.31 5.77 0.50 2.98 0.67 3.87 

1700 0.29 4.21 0.29 7.53 0.51 2.16 0.68 3.41 

1400 0.30 7.46 0.30 4.95 0.51 4.90 0.68 1.47 

1180 0.30 8.05 0.32 1.55 0.49 6.69 0.70 2.56 

710 0.95 13.16 1.01 14.29 1.43 17.60 2.17 18.71 

2000 Kollidon- 0.44 5.29 0.43 1.17 0.61 13.60 0.71 8.29 

1700 CL 0.44 6.87 0.52 11.46 0.68 14.56 0.79 13.76 

1400 0.48 10.97 0.56 10.39 0.71 7.16 0.85 15.24 

1180 0.65 14.20 0.73 19.92 0.90 7.65 0.99 4.53 

710 1.27 27.35 1.82 20.52 2.03 17.17 2.46 16.08 

2000 Amberlite- 0.49 15.37 0.36 6.30 0.37 4.93 0.46 16.92 

1700 IRP88 0.50 12.60 0.39 3.85 0.41 3.16 0.52 8.43 

1400 0.54 8.01 0.43 2.81 0.44 2.50 0.57 8.45 

1180 0.56 5.21 0.49 2.03 0.51 3.65 0.63 6.54 

710 1.55 0.57 1.25 6.56 1.54 1.88 2.21 1192 

2000 Control 2.19 21.83 2.88 1l.62 3.24 6.38 5.21 3.25 

1700 2.22 9.05 3.18 13.98 3.99 4.58 5.81 14.59 

1400 2.51 8.10 3.67 8.65 4.13 4.26 6.39 9.41 

1180 3.03 7.91 4.54 3.97 4.28 6.33 8.52 13.75 

710 4.17 10.68 6.96 8.83 8.40 9.44 10.28 2.91 

Dispersion of tablets containing intragranular Amberlite IRP88 was only slightly 

improved by the addition of extragranular disintegrant (Table 4.8, Figure 4.5) and was 

more effective when used alone intragranularly than Explotab or Kollidon-CL 

Gissinger and Stamm (1980a) showed the rate at which pure samples of Amberlitc 
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Table 4.8: Effect of extragranular disintegrant type on the disintegration of tablets 

containing intragranular Amberlite IRP88. 

Mesh Extra- Disintegration time [Min] 
aperture granular 

SIze 
[~m] 

5kN 10kN 15kN 20kN 
-

rsd 
- -

x rsd rsd 
-

x x x rsd 

2000 Explotab 0.34 6.41 0.31 5.84 0.35 6.29 0.39 5.60 

1700 0.36 6.63 0.34 3.24 0.38 8.20 0.40 6.04 

1400 0.38 6.09 0.38 7.11 0.39 8.40 0.51 3 -, .)-

1180 0.38 5.03 0.59 14.19 0.58 15.35 0.66 16.86 

710 1.79 16.15 1.94 23.52 1.46 17.58 1.43 5.4.f 

2000 Ac-Di-Sol 0.51 4.87 0.51 3.56 0.51 1.97 0.59 2.56 

1700 0.52 3.67 0.52 4.40 0.50 5.46 0.60 4.85 

1400 0.53 5.14 0.52 4.25 0.50 2.98 0.62 1.95 

1180 0.48 10.17 0.47 12.92 0.49 4.52 0.56 5.23 

710 1.79 16.79 1.46 27.84 1.35 17.92 1.42 16.80 

2000 Kollidon- 0.37 9.26 0.35 7.37 0.34 10.68 0.41 3.63 

1700 CL 0.39 4.64 0.36 9.58 0.38 3.18 0.44 .f.07 

1400 0.38 4.96 0.36 6.67 0.39 11.45 0.51 3.16 

1180 0.44 5.29 0.42 6.67 0.48 6.32 0.56 3.20 

710 1.34 34.81 1.34 27.92 1.42 17.68 1.45 46.09 

2000 Amberlite- 0.33 10.54 0.34 3.58 0.33 9.64 0.34 11.40 

1700 IRP88 0.36 9.39 0.36 6.20 0.38 8.80 0.37 2.97 

1400 0.37 6.18 0.40 7.60 0.38 7.07 0.38 3.66 

1180 0.41 4.44 0.48 6.88 0.39 3.32 0.39 8.67 

710 1.59 17.64 1.64 8.56 1.36 31.39 1.39 30.58 

2000 Control 0.68 9.71 0.60 3.03 0.61 4.45 0.70 6.73 

1700 0.80 13.03 0.65 5.12 0.70 10.61 0.71 3.25 

1400 0.79 8.33 0.77 5.20 0.73 4.80 0.76 7.51 

1180 0.91 3.97 0.84 9.86 0.80 5.36 0.91 9.23 

710 2.44 15.43 2.14 22.59 1.78 23.67 1.54 17.56 

IRP88 drew in water was considerably less than Explotab or Polyplasdone XL. Its 

superior perfonnance in this system may be partially attributed to the hydrophobic 

lubricant. Since it generates a high disintegrating force despite a lo\\' swelling \ olurne, 

for reduced water availability, perfonnance is influenced less. Avicel PHI01 rnav 
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enhance the performance of intragranular disintegrants that possess less \\icking action. 

It exhibits swelling and wicking activity and may be synergistic vvith disintegrants. 

Ideally, the tablet matrix should not have any intrinsic disintegrant activity. Ho\ve\cr, 

the addition of Avicel was necessary to achieve satisfactory compressibility. 

For intragranular Amberlite IRP88, extragranular Explotab performed as effectively as 

the other disintegrants. Increased disintegration times at high compression force, \\ere 

not observed, compared with intragranular Kollidon-CL and Explotab. Differences are 

related to intragranular disintegrant. At the surface of the tablet this contributes to the 

action of the extragranular disintegrant. That disintegrant activity of Amberlite IRP88 is 

not reduced at high pressure may explain the observed differences. 
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4.3.5: Tablet friability. 

Tables 4.4 and 4.9 show that tablet friability is related to compression force and 

crushing strength and not extragranular disintegrant type. Intragranular Kollidon-CL at 

high compression forces produced stronger tablets, resulting in lower friabilities than 

other intragranular disintegrants. 

Table 4.9: Effect of intra-/ extragranular disintegrant type on tablet friability. 

Intragranular disintegrant 
Explotab Ac-Di-Sol Kollidon- Amberlite 

CL . 
Extra-compressIOn 

force [kN] granular 

5 Explotab 4.17 4.38 4.23 5.11 
Ac-Di-Sol 4.33 4.26 3.98 4.90 

Kollidon- CL 4.18 4.08 4.25 4.71 

Amberlite 3.38 4.69 4.30 4.86 

Control 4.12 4.11 3.85 5.02 

10 Explotab 1.80 2.00 1.93 2.38 

Ac-Di-Sol 2.26 1.68 1.38 2.10 

Kollidon- CL 2.26 1.94 l.67 1.91 

Amberlite 2.14 1.87 l.14 2.47 

Control 2.17 1.78 l.70 1.93 

15 Explotab 1.70 1.36 1.05 1.48 

Ac-Di-Sol 1.53 1.56 1.27 1.66 

Kollidon- CL 1.77 1.64 1.16 1.45 

Amberlite 1.72 1.51 1.14 1.42 

Control 1.74 1.45 0.88 1.29 

0.82 1 -, 
20 Explotab 1.20 1.05 .)-

Ac-Di-Sol 1.21 1.15 0.79 1.14 

Kollidon- CL 1.26 0.87 0.94 l.39 

Amberlite 1.15 1.21 1.00 116 

Control 1.20 0.99 0.77 131 
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4.4: Conclusions. 

The relative importance of the intragranular / extragranular disintegrant used in a 

dispersible tablet formulation depends upon the size of compressed granules. In the 

present system, deaggregation below 710Jlm is more dependent on the type of 

disintegrant used intragranularly than extragranularly. The addition of extragranular 

disintegrant at a level of 2%w/w does not adversely affect the mechanical properties of 

the tablets. 

When used alone intragranularly, the relative efficiencies of the disintegrants can be 

summarised as: Ac-Di-Sol > Amberlite IRP88 > Explotab > Kollidon-CL. 

Tablets containing intragranular Ac-Di-Sol disintegrated most rapidly to gIve a 

dispersion of 710Jlm or less. Dispersion rates were not improved by the addition of 

extragranular disintegrant, and in some cases were reduced. Similarly, the rate of 

dispersion of tablets containing intragranular Amberlite IRP88 was only slightly 

increased. The greatest improvement in tablet dispersion with the addition of 

extragranular disintegrant, occurred in tablets containing intragranular Kollidon-CL, 

followed by Explotab. 

Amberlite IRP88 Ac-Di-Sol and Kollidon-CL were equally effective as extragranular , 

disintegrants at low and intermediate compression forces. Amberlite IRP88 tended to be 

better at high compression forces, whereas, the use of extragranular Explotab should be 

avoided. 
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CHAPTERS 



5. EFFECT OF DRUG SOLUBILITY IN THE BI~DER 0:\ 

DISINTEGRANT EFFICIENCY. 

5.1 Introduction. 

Super disintegrants are highly efficient and effective at low levels (Rudnic et aI, 1981). 

Nevertheless, careful fonnulation and control of the manufacturing process are required 

to ensure that disintegration in the finished tablet is not adversely affected. 

As the aqueous solubility of a tablet matrix increases, super disintegrants function less 

efficiently (Paronen et aI, 1985; Chowhan et aI, 1991; Ferrari et aI, 1995). A similar 

effect has been shown to occur with increasing hygroscopicity attributed to competition 

for locally available water (Gordon & Chowhan, 1987). 

Gould & Tan (1985) investigated the effect of recompression after comminution and 

regranulation on disintegrant efficiency in wet massed tablets containing Explotab, Ac-

Di-Sol and Polyplasdone XL, intra- and extragranular. The formulation contained 

Avice1 PH101 (59%) and a highly soluble experimental compound (33%), wet massed 

with an aqueous PVP K90 binder. All disintegrant efficiencies, both intra and 

extragranular were reduced by tablet rework. Extragranularly, Polyplasdone XL and Ac-

Di-Sol showed greater decreases in disintegrant efficiency than Explotab. The~ 

postulated the sponge-like Polyplasdone XL and the fibrous Ac-Di-Sol were broken 

down by compression. This may have reduced subsequent capillary action. 

Additionally, the disintegrant activity of slightly swelling hydrophilic disintegrants. lik~ 

crospovidone, is adversely affected by hydrophobic lubricants (Bolhuis et aL 1982). 

118 



which is made worse by relubrication on rework. However
o 

strongly swelling 

disintegrants such as sodium starch glycollate are unaffected by magnesium stearate 

(Smallenbroek et aI, 1981; Proost et aI, 1983). The reduction in the efficiency of 

extragranular Explotab was attributed to grains splitting open on compression (Hess, 

1978) and impaired wetting. The rework efficiencies of all three disintegrant systems 

intragranularly were substantially reduced. All had rework efficiencies essentially the 

same as with no di sinte grant (the control). The substantial reduction in rework 

efficiency of Explotab when used intra- rather than extragranularly was attributed to the 

additional wetting and drying processes of rework. Explotab shows considerable 

structural changes on absorbing water, leading to pre-swelling and partial dissolution 

(Khan and Rhodes, 1975b), but is not reversible on drying, causing permanent 

modification to the disintegrant grains (Mitrevej & Hollenbeck, 1982). 

Gould & Tan (1985) also prepared stressed disintegrants by simulating two other 

components of the rework process: comminution and slurrying with water. The 

"stressed" disintegrants were incorporated extragranularly. After the slurrying process, 

the moisture stress in wet granulation decreased the efficiency of Ac-Di-Sol and 

Explotab, probably due to incomplete reversal of the structural changes on wetting and 

drying. Paradoxically, the disintegrant efficiency of Polyplasdone XL was significantly 

increased. However, the results were not explained. Possibly prior hydration favourably 

alters the structural arrangement of the polymer, enabling more rapid rehydration. 

Milling had a negligible effect on the disintegration efficiency of Explotab, slightly 

increased the disintegration efficiency of Ac-Di-Sol and significantly increas~d the 
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efficiency of Polyplasdone XL, but was not explained Milll'ng l'ncre .. -C: . ases Sw lace area 

and the number of sites for capillary action, which may explain the results for the 

wicking disintegrants. Explotab works largely by swelling, which is so great that a 

reduction in size will be expected to have little effect on swelling force generation 

Gould & Tan (1985) concluded that other factors in the rework process such as 

lubrication or compaction must be responsible for reducing the disintegrant efficiency 

of Polyplasdone XL. 

The present work concerns the effect of drug solubility in the binder solvent on super 

disintegrant efficiency and whether "disintegrant poisoning" occurs during the wet 

granulation process. During wet massing and drying, the drug and excipients that 

dissolve and then recrystallise, form solid interparticulate bridges as the binder vehicle 

is evaporated. Drug crystals may be deposited around disintegrant particles or inside if 

drug saturated binder is drawn in during wet massing. Wells & Walker (1983) studied 

the influence of drug solubility in the granulating fluid upon granule and tablet 

properties. They used a model system containing acetylsalicylic acid, 

polyvinylpyrrolidone as binder and Polyplasdone XL as a disintegrant. A range of 

ethanol : water mixtures was used as binder vehicles. Although disintegration was 

influenced by differences in granule properties, they showed that high drug solubility in 

the binder produced tablets with poor disintegration. Where the binder solvent volatility 

was low, so was drug solubility and this resulted in little solute deposition and the 

generation of relatively large crystals. Where volatility and drug solubility was high. 

they reported considerable solute deposition and the crystals produced were small. 

Secondary binding due to the recrystallisation of dissolved drug increases intragranuk 
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bonding and increases disintegration times. They also attributed increased disintegration 

times to fine crystals of acetylsalicylic acid blocking the tablet capillary network and 

deposition around the PVP-XL preventing penetration of fluid and impairing the 

swelling potential of the disintegrant. 

The present work will investigate the influence of drug solubility in the binder on the 

disintegrant efficiency of Ac-Di-Sol, using paracetamol as a model drug, PVP K90 as 

binder and ethanol: water mixtures as binder solvent. 
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5.2 Materials and Methods. 

5.2.1 Materials. 

See Section 2.1. 

5.2.2 Methods. 

5.2.2.1 Solubility of paracetamol in ethanol: water mixtures. 

The following ethanol: water mixtures were produced by appropriate dilution of 95°0 

ethanol (GPR grade, BDH) with purified water: 85: 15; 75:25; 50:50; 25:75. The 

saturated solubility of paracetamol in purified water and ethanol: water mixtures was 

determined at room temperature (22°C). A 200ml sample of each solution was placed in 

a stoppered glass flask. The solutions were saturated with paracetamol powder added in 

excess and shaken for 16 hours on a flask shaker (Grant Instruments Ltd, Cambridge) to 

reach equilibrium. Excess paracetamol was removed by centrifuging for 5 minutes at 

6000RPM using a Baird & Tatlock Autobench centrifuge Mark IV. Supernatant 

samples were collected, diluted appropriately with methanolic HCl and UV assayed 

according to Section 2.2.3. 

5.2.2.2 "Poisoning" of Ac-Di-Sol. 

To obtain samples of Ac-Di-Sol with different levels of paracetamo! contamination. In 

theory, slurrying Ac-Di-Sol in paracetamol solutions \\ith different saturated 

concentrations should result in varying levels of the drug being drawn into disintegrant 
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during the hydration process and deposited on drying. 

As an initial approach to "poisoning" the disintegrant, paracetamol saturated ethanol: 

water PVP K90 solutions were used. This is preferable to saturated ethanol : water 

solutions, since binder solution more closely represents the system in the wet 

granulation process. However, this method was found to be inappropriate for two 

reasons. The concentration of paracetamol in saturated ethanol : water PVP K90 

solutions could not be determined due to precipitation of the paracetamol after 

centrifugation or filtration and after slurrying the disintegrant it was not possible to 

separate it from the viscous PVP K90 solutions. 

Consequently paracetamol saturated ethanol : water solutions (Section 5.2.2.1) \\ere 

used to slurry the disintegrant. 100ml of each solution was stirred and 6g of Ac-Oi-Sol 

was added to give a homogeneous suspension. Experiments were carried out in 

duplicate. Beakers were double sealed with Parafilm TM, agitated for 15 minutes on a 

flask shaker, the suspension centrifuged and the supernatant discarded. The pellet of 

poisoned disintegrant was removed and filtered under vacuum using a Buchner filter 

and Whatman filter paper (N° 1) to remove excess saturated paracetamol solution. 

With increasing water concentration of the solvent, separation of the solvent from the 

disintegrant was more difficult, because the disintegrant gelled with water. The 95° u 

and 85%) ethanol solutions did not form a gel with Ac-Di-Sol and complete separation 

was possible. With solvents of higher water concentration complete separation was not 

possible. The recovered disintegrant was then spread out on a glass petri dish and dried. 

in a vacuum oven, at 50 ° C for 72 hours. 
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5.2.2.3 The extent of poisoning of Ac-Di-Sol with paracetamol. 

Dried samples of poisoned disintegrant were gently agitated in a pestle and mortar to 

deaggregate any aggregated particles to give a fine powder. Those suspended in 950/0 

and 85% v/v ethanol solutions yielded fine powders resembling untreated Ac-Di-Sol. 

However, the recovered disintegrant slurried in solutions with a higher water content 

formed hard "glassy" clumps which were difficult to grind to a powder. 

The residual solvent content was determined by loss on drying as described in Section 

2.2.1.3. Samples of poisoned disintegrant equivalent to I.OOg (adjusted for residual 

solvent content) were suspended in stoppered glass flasks containing 50ml of 95% 

ethanol in duplicate (determinations a and b). Suspensions were agitated on a flask 

shaker (Grant Instruments Ltd, Cambridge) for 24 hours to extract the paracetamol. 

Samples of the supernatant were taken and filtered through a O.2/J.m cellulose acetate 

filter (Nalgene™, BDH laboratory supplies, Poole, England). Resultant solutions were 

diluted appropriately with methanolic Hel and UV assayed according to the method 

described in section 2.2.3. Assuming full extraction of the paracetamol from the 

poisoned disintegrant, the percentage paracetamol content of the poisoned Ac-Di-Sol 

was calculated. 

5.2.2.4 The effect of Ac-Di-Sol poisoning on disintegrant efficiency. 

The aim of the study was to test the hypothesis that deposition of paracetamol onto 

surfaces of the Ac-Di-Sol particles on wet granulation reduces disintegrant efficlenc~ 

This was tested by incorporating the '"'"poisoned" disintegrant into a tablet system and 



testing disintegration properties. The sample from slurrying with paracetamol saturated 

85 : 15 ethanol: water was used. Disintegrant efficiency was evaluated in a formulation 

without other excipients with intrinsic disintegrant action, which would mask an\' 

change in disintegrant action. 

fa] Preparation of formulations. 

paracetamol powder was wet granulated with a 6% w/v solution of PVP K90 to give a 

directly compressible form, consisting of 98% paracetamol and 2% PVP K90 (dry 

weight). The granulated material was passed through a 2000/J.m sieve, dried for 2 hours 

at 50°C and then passed through a 1000J..lm sieve. This was dried for a further 2 hours, 

passed through a 500J..lm sieve and dried for a further 12 hours. Loss on drying was 

carried out using the method in Section 2.2.1.3. The granulated material was dried to a 

loss on drying of 1.63 + 0.05 % w/w. 

The directly compressible material used had the following general formulas: 

Table 5.1: Formula 5.1. General formula for formulations containing disintegrant. 

Component %w/w mg! tablet g 

Granulated paracetamol/ PVPK90 97 500 200 

Disintegrant 2 10.31 of.12 

Magnesium stearate 1 5.15 2.06 

Compression weight 515.46 206.18 
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Table 5.2: Formula 5.2. Control formulation. 

Component 0/0 w/w mg! tablet g 

Granulated paracetamol / PVPK90 99 500 200 

Magnesium stearate 1 5.05 2.02 

Compression weight 505.05 202.02 

The following four formulations were made: 

A: Control formulation. 

B: Formula 5.1 using untreated Ac-Di-Sol. 

C: Formula 5.1 using Ac-Di-Sol solvent treated Ac-Di-So1. Solvent treated Ac-Di-Sol 

was prepared by treating the disintegrant in the same process used to prepare the 

"poisoned" Ac-Di-Sol using an ethanol: water, 85 : 15 mixture. 

D: Formula 5.1 using "poisoned" disintegrant, slurried with paracetamol saturated 850,'0 

ethanol, determination 1, was used. To achieve a level of 2%> w/w Ac-Di-Sol, the 

weight added was adjusted to account for the paracetamol content. 

The appropriate quantity of 2% w/w extragranular disintegrant was mixed with the 

paracetamol granulation at 21 rpm for twenty minutes in a cube mixer (Erweka type 

UG, N° 21276, G.m.b.H, Heusenstamm, Germany). To lubricate, 1 % w/w magnesium 

stearate was added to the granules and mixed in the cube mixer at 21 rpm for fi\ c 

minutes. The compression mix was stored in amber glass airtight jars until use. 

Ib] Compression of formulations. 

The method in section 2.2.1.4 was used. Each formulation was compressed at 5, 10, 1" 
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and 20kN + O.5kN. Tablets were compressed to the target weight ± 5°0. 

[el Evaluation of tablets. 

Testing was carried out 24 hours after ejection. Tablet disintegration, crushing strength 

and weight variation were measured using the methods given in Section 2.2.2. 
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5.3 Results and Discussion. 

Table 5.3 shows the relationship between Ac-Di-Sol potsomng and paracetamol 

solubility in ethanol: water mixtures used to slurry the disintegrant. 

Maximum solubility occurred at 85% ethanol. Such maxima exist in many mixed 

solvent systems (Lordi et aI, 1964; Paruta & Irani, 1965) and are related to a specific 

dielectric requirement of the solute in the solvent (Paruta et aI, 1962). 

The amount of paracetamol taken up by disintegrant particles on slurrying with a 

saturated solution is dependent not only on the saturated drug concentration but also on 

the ability of the disintegrant to take up the solvent. Caramella et al (1989) studied the 

effect of disintegration medium on disintegration properties of directly compressed 

tablets containing 40/0 disintegrant. Experiments were carried out in model tablet 

formulations of dibasic calcium phosphate dihydrate and acetylsalicylic acid, 

hydrophilic and hydrophobic water insoluble substances, respectively. The 

disintegration properties of tablets containing Ac-Di-Sol in various ethanol : water 

Inixtures was studied. In dibasic calcium phosphate dihydrate and acetylsalicylic acid 

tablets a decrease in the water content of ethanol/water mixtures resulted in a , 

decrease in maximum disintegrating force and the time taken for force development. 

This caused a substantial increase in disintegration times, attributed to reduced swelling 

because of reduced water availability. 
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Table 5.3: Relationship between Ac-Di-Sol poisoning and paracetamol concentration of the ethanol: water mixture used to slurry the 

disintegrant. 

Ethanol: Water paracetamol Paracetamol content of the poisoned Ac-Di-Sol [% w/w] 

solubility [mgmrl] Determination la Determination 1 b Determination 2a Determination 2b 

rsd rsd - rsd - rsd rsd X X X X X 

95 : 5 14.62 0.68 14.62 0.68 15.15 2.11 13.34 2.25 13.69 1.10 

85 : 15 15.47 0.58 15.47 0.58 15.12 1.31 14.73 2.31 14.61 1.85 

75 : 25 18.72 1.60 18.72 1.60 17.76 1.52 16.75 1.19 16.88 0.71 

50: 50 31.00 0.98 31.00 0.98 32.34 1.86 30.33 1. 51 31.15 0.83 

25 : 75 70.16 1.23 70.16 1.23 71.23 1. 1 1 71.54 2.10 72.01 1.31 

o : 100 5.14 0.92 5.14 0.92 4.48 0.78 6.32 1.15 5.97 1.02 
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Ac-Di-Sol has a greater capacity for water uptake than ethanol. If the amount of drug 
..... 

deposited inside / around the disintegrant particles during the wet granulation process 

does influence subsequent efficiency, then clearly the capacity of the disintegrant to 

absorb the binder solvent is an important formulation factor. 

Gelling of the Ac-Di-Sol with solvent mixtures with water contents of 25°'0 or more 

gave values (Table 5.3) which are not true values for the "poisoning" of the disintegrant 

i.e. that adsorbed in and around the disintegrant particles. The high values represent 

incomplete separation from the saturated paracetamol solutions used to slurry the 

disintegrants. The very low values for 1000/0 water are due to incomplete extraction of 

paracetamol from the dried gelled material. The 850/0 and 950/0 ethanol solutions do not 

form a gel with Ac-Di-Sol and complete separation was possible. 

The results of disintegration testing are shown in Table 5.4. All tablets without 

disintegrant (formulation A) took longer than one hour to disintegrate. Comparing 

disintegration times for formulations Band C shows that the process of treating Ac-Oi-

Sol with solvent mixture and then drying does slightly reduce its disintegration 

properties. Gould & Tan (1985) reported that slurrying the disintegrant with water and 

drying reduced its efficiency, due to incomplete reversal of the structural changes 

brought about by the adsorption of moisture. However, Mitrevej & Hollenbeck ( 1981) 

reported that after absorbing water and drying, Ac-Di-Sol showed a complete reversal 

of swelling and that the dried material closely resembled the initial material. However. 

they did not investigate the effect on disintegrant etliciency. Solvent stress increases the 

aggregation of Ac-Di-Sol particles and will affect disintegrant dispersion If local 
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concentrations of the disintegrant are lowered, then the ability to fonn an efficient 

capillary network will be reduced. 

Comparing the disintegration of formulations C and D shows that paracetamol in and 

around the Ac-Di-Sol does slightly decrease disintegrant efficiency. When the 

disintegrant efficiency is reduced by slurrying with solvent or contamination \\ith 

paracetamol, increases in disintegration times tend to be greatest in tablets compressed 

at higher compaction forces and in deaggregation to smaller particle sizes. Reduction in 

disintegrant efficiency is more evident at high compaction forces, because tablet 

porosity and therefore water penetration into the tablet is reduced. Paracetamol 

adsorbed onto the surfaces of the disintegrant may limit the accessibility of water to the 

disintegrant surfaces and reduce its capillary and swelling properties. 

However, companng the disintegration times for tablets containing paracetamol 

"poisoned" disintegrant to those without disintegrant, shows that Ac-Oi-Sol retains 

significant disintegrant efficiency even after solvent stress and contamination with drug. 

Results in this system indicate that in terms of the formulation of a traditional swallow 

tablet, the effect of disintegrant poisoning on disintegrant efficiency is probably 

insignificant. However, in terms of dispersible tablet formulation, where tablets must 

deaggregate to give a dispersion of particles less than 71 O~m in less than three minutes. 

the effect is more important. 

The deposition of crystallised substances at disintegrant surfaces on disintegrant 

efficiency will be dependent on the system used. It is logical that the physicochemical 

nature of the drug or other substances which recrystallise at disinkgrant surfaces must 
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Table 5.4: Effect of poisoning Ac-Di-Sol with paracetamol on disintegration times. 

Disintegration time [Min] 

Mesh Jlm 2000 1700 1180 1400 710 

X rsd X rsd X rsd X rsd X rsd 

Formulation A All longer than 1 hour. 

Formulation B 

5kN 0.29 10.34 0.31 9.68 0.30 10.00 0.29 3.45 0.31 3.23 

10kN 0.32 3.13 0.34 5.88 0.33 9.09 0.31 9.68 0.33 9.09 

15kN 0.32 6.25 0.32 6.25 0.32 3.13 0.31 6.45 0.35 11.43 

20kN 0.56 3.57 0.57 l.75 0.58 1.72 0.56 3.57 0.58 1.72 

Formulation C 

5kN 0.29 13.79 0.32 13.79 0.30 10.00 0.31 9.68 0.51 21.57 

10kN 0.51 l.96 0.50 8.00 0.48 16.67 0.52 1.92 0.90 12.22 

15kN 0.75 2.67 0.78 5.13 0.79 6.33 0.91 5.49 1.17 6.84 

20kN 1.03 4.85 1.04 4.81 1.05 4.76 1.04 7.69 1.36 5.88 

Formulation D 

5kN 0.35 12.00 0.37 7.41 3.28 10.71 0.45 25.71 1.42 12.30 

IOk\l 0.57 3.51 0.61 8.20 0.58 8.62 0.71 29.58 1.88 19.15 

l"k'\, 1.24 1.6 I 1.39 7.19 1.26 6.35 1.34 4.48 2.61 32.18 

2()k'\, 1.64 1.27 1.77 10.73 1.72 10.73 1.72 5.81 2.21 18.10 
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influence the interaction with the disintegrant and any subsequent reduction in 

efficiency. Yen et al (1997) used differential scanning calorimetry to study the 

interaction between nifedipine and super disintegrants in a solvent deposition system. 

Disintegrant was mixed with a nifedipine / chloromethane solution and then dried. 

leaving small drug particles adsorbed on the surface of the disintegrant. Using 

differential scanning calorimetry they showed that Kollidon-CL had a much stronger 

interaction with nifedipine than Ac-Di-Sol or Explotab. Hydrophobic substances at 

disintegrant surfaces are likely to cause a greater reduction in the rate of hydration than 

hydrophilic ones. Capacity of the drug to adsorb onto surfaces of the disintegrant may 

also be an important factor. Solvent properties may also affect disintegrant poisoning. 

The solvent may affect the crystalline form, the strength of bonding between drug and 

excipient, and the orientation of the drug on the surface of the excipient (McGinity & 

Harris, 1980). 
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5.4 Conclusions. 

Disintegrant poisoning does occur during the wet granulation process. Both solvent 

stress (possibly resulting in irreversible structure change) and the uptake of paracetamo I 

by Ac-Di-Sol contribute to a reduction in disintegrant efficiency. However, the 

efficiency of Ac-Di-Sol remained high after poisoning, and the effect is not of practical 

importance unless rapid disintegration to give a very fine dispersion is required. 

The extent of disintegrant poisoning which occurs during wet granulation will be 

controlled by the solubility of the drug in the granulating solvent and the ability of the 

disintegrant to take up the solvent. Higher water content results in greater uptake by 

Ac-Di-Sol and gelling, causing irreversible structural changes that reduce disintegrant 

efficiency. Similarly, using a solvent which is taken up by the disintegrant, higher drug 

solubility will cause greater drug deposition around / inside disintegrant particles. 

To reduce the poisoning of Ac-Di-Sol during the wet granulation process, ideally the 

solvent should be one with a low aqueous content in which the drug is not soluble / very 

poorly soluble. 
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CHAPTER SIX 



6. THE FORMULATION OF A HIGHLY SOLUBLE DRlfG I~ A. 

DISPERSIBLE TABLET. 

6.1 Introduction. 

It is extremely difficult to formulate a highly soluble drug in a tablet to disintegrate and 

disperse. The main problem is that tablets containing high concentrations of water 

soluble drugs erode or dissolve away like a lozenge rather than disintegrate (Botzolakis 

& Augsburger, 1984). For example, Khan & Rhodes (1973) investigated the 

disintegration of tablets containing various disintegrants in formulations containing Na-

salicylate and lactose, which are both soluble. The disintegration of the tablets appeared 

to be independent of disintegrant included. They concluded that when a freely soluble 

drug is present in a soluble system, the disintegration time may approximate to the 

solution time instead. Prolonged disintegration times can cause gastrointestinal 

irritation e.g. potassium chloride tablets which dissolve away slowly (Sheth et aI, 1980). 

Deaggregation and disintegration are difficult to achieve due to decreased water 

penetration into a highly soluble tablet matrix. Initially, an increased penetration rate 

may be found because of pore widening by dissolution (Van Kamp et aI, 1986). 

Penetration, however, will slow down as rapid dissolution of the tablet matrix increases 

the viscosity of the penetrating liquid. As the outer layer of the tablet dissolves. a 

viscous barrier will form, retarding further water penetration. Decreased water 

penetration may also result from disintegrant particles partially filling the voids inside 

the tablet (Graf et aI, 1982). 
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Using Ca-p-aminosalicylate as a model drug, Nogami et al (1963) examined the 

influence of penetrating fluid viscosity. Increased viscosity using methy1cellulose -+00 

decreased penetration rate, and disintegration times increased. 

Unfortunately super disintegrants tend to function less efficiently in soluble tablet 

bases. The efficiency of disintegrant swelling has been defined as the capability to 

transform water taken up into disintegrating force, expressed as '"force equivalent" of a 

given amount of water (Caramella et aI, 1990b). Ferrari et al (1995) studied the effect of 

formula solubility and porosity on the '"force equivalent" of sodium starch glycollate. 

Simultaneous water uptake and force measurements were performed with the apparatus 

described by Caramella et al (1988). They demonstrated that the '"force equivalent" of 

the sodium starch glycollate was considerably lower in water soluble materials, e.g. 

lactose and mannitol, than in insoluble materials such as dica1cium phosphate 

dihydrate. A strongly swelling disintegrant cannot develop its greatest swelling force in 

a water-soluble formulation because of the rapid increase in tablet porosity due to rapid 

dissolution of the tablet Inatrix. Thus, limited swelling disintegrants should function as 

well (Graf et aI, 1981; Paronen et aI, 1985). 

Disintegrant efficacy is influenced by the overall solubility of the tablet matrix. If the 

drug content is low, then insoluble excipients such as dica1cium phosphate and 

microcrystalline cellulose can be used to create a tablet with low water solubility and 

super disintegrants function efficiently. For example, Bi et al (1996) produced a 10\\ 

dose (50mg) rapidly disintegrating ascorbic acid (high aqueous solubiltty) tablet using a 

matrix of microcrystalline cellulose and low-substituted hydroxypropylcellulose 

(4 : 1) incorporating the drug at 250/0 w/w. 
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However, when the dose is high, tablet size will limit the quantity of insoluble 

excipients. If an insoluble excipient is added, but the overall tablet solubility remains 

high, then the tablet may still dissolve away rather than disintegrate. Furthermore 

because the tablet is larger, it will take longer to dissolve away and disintegration time 

will be increased. Dissolution rate is a function of solubility (Ozturk et aI, 1988). 

The aIm of the current work is to formulate a water dispersible tablet of Na-p­

aminosalicylate, a highly soluble drug (soluble 1 in 2 of water), typically used in dosage 

units of 500mg. The initial approach incorporates acidic buffers to manipulate pH and 

suppress drug solubility and dissolution and therefore the rate at which porosity and 

viscosity develop. 

According to Nelson (1957, 1958), the pH of the diffusion layer surrounding a soluble 

acid or salt will be relatively independent of the bulk pH because of intrinsic buffering 

action. The solution rate of the acid or salt would be controlled by the pH of the 

diffusion layer rather than the bulk pH. According to Noyes & Whitney (1897) and 

Nelson (1957), the diffusion layer is saturated with dissolving solids, and therefore 

contains other substances besides the drug. The influence on the pH of the diffusion 

layer by other components such as diluents and buffers will depend upon their aqueous 

sol ubilities and their acidic or basic properties. 

Pharmaceutical additives have been included in formulations in order to modi t\ the 

microenvironmetal pH. Disodium hydrogen citrate and trisodium citrate ha\ c been 

claimed to provide a range of buffered pH environments in penicillin formulations 

(Dwight, 1972). The aim of buffered formulations is to proyide a diffusion around the 

dissolving particles to promote dissolution (Ley)' & Hayes. 1960~ Cotty d aL 1965). 
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Doherty & York (1989) used an internal buffer system of disodium hydrogen 

orthophosphate and citric acid in a frusemide-polyvinylpyrrolidone solid dispersion. 

This study attempts to create the reverse situation and suppress the aqueous solubility of 

Na-p-aminosalicylate at the diffusion layer. Reduced drug dissolution \\"ill reduce 

viscosity and promote better penetration throughout the tablet matrix. In theory, 

decreasing the dissolution rate of the Na-p-aminosalicylate should reduce the rate at 

which porosity develops within the tablet, therefore allowing greater disintegrant 

swelling force generation. 

The acidic buffer salt sodium dihydrogen orthophosphate and citric acid will be 

incorporated to lower the diffusion layer pH such that conversion to the free acid (pKa 

3.25), which is poorly water soluble (1 in 500 of water), is favoured. 
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6.2 The effect of acidic buffers on the disintegration properties of :\"a­

p-aminosalicylate tablets. 

6.2.1 Materials. 

6.2.1.1 Choice of drug: Na-p-aminosalicylate. 

Figure 6.1: The chemical structure of Na-p-aminosalicylate. 

4-aminosalicylic acid, sodium salt dihydrate (990/0), Aldrich chemical company. Na-p-

aminosalicylate is a white to cream coloured, practically odourless, crystalline powder, 

soluble 1 in 2 of water. 

Na-aminosalicylate was previously used in the treatment of tuberculosis. It is a good 

model drug because of high aqueous solubility and the poor aqueous solubility (1 In 

500) of the free acid, p-aminosalicylic acid. 

6.2.1.2 Buffers. 

Citric acid anhydrous, BOH Laboratory Supplies, Poole, England. Crystals are 

monoclinic. The anhydrous fonn of citric acid has a melting point of 1 ~~oC. At ~~oC, 

pK\ 3.128, pK2 4.761, pK3 6.396 (Merck Index, 1996). It has a solubility in \\liter at 
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Sodium dihydrogen orthophosphate dihydrate, BDH Laboratory SupplI~s. Poole, 

England. Orthophosphoric acid is a tribasic acid: pKaj 2.15: pKa: 7.09~ pKa-, 1232. It 

has a solubility in water at 20°C of 1 in 1. 

6.2.1.3 Disintegrant. 

See section 2.1. Ac-Di-Sol was chosen because it combines rapid swelling with wicking 

activity and its disintegrant efficiency remains high after wet granulation. 

6.2.1.4 Binder. 

See Section 2.1.2.2. 

6.2.1.5 Lubricant. 

See Section 2.1.2.4. 
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6.2.2 Methods. 

6.2.2.1 Granulation. 

Tablets were prepared by wet granulation. A formula containing 2°0 intra- / 2° ° 

extragranular Ac-Di-Sol without buffer salts was used as a control. This was modified 

to contain O.IM, 0.2M, 0.5M Na-dihydrogen orthophosphate dihydrate (MW 156.01) 

and 0.2M citric acid (MW 192.13) (Table 6.1). 

Na-p-aminosalicylate, intragranular disintegrant and buffer (if included) were mixed in 

a planetary mixer (Kenwood chef model KM 200, Kenwood Limited, Hampshire) on 

speed setting one for fifteen minutes. Before addition, buffers were finely powdered in a 

pestle and mortar, to facilitate even distribution. PVP K90 was dissolved in distilled 

water to give a binder concentration of 12.0 % w/v (= 2% w/w in the tablet). The binder 

was added slowly over five minutes through a glass funnel to control the flow rate. The 

resultant material was wet massed through 2000Jlm. Granules were tray dried in an 

oven (Philip Harris model DZS, Philip Harris Ltd, Shenstone) for 16 hours at 50° C and 

dry sieved through 1700J.lm. 

Extragranular disintegrant was mixed with the dried granules at 21 rpm for t\'venty 

minutes in a cube mixer (Erweka type UG, N° 21276. G.m.b.H, Heusenstamm, 

Germany). To lubricate, 1 % w/w of magnesium stearate was then added to the granules 

and mixed in the cube mixer at 21 rpm for five minutes. The compression mt\: was 

stored in amber glass airtight jars. 
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Table 6.1: Na-p-aminosalicylate SOOmg tablet formulations containing 2% intra- /2% extragranular Ac-Di-Sol and acidic buffers. 

Buffer 

no buffer (control) O.IM NaH2P04.2H20 O.2M NaH2P04.2H20 O.SM NaH2P04.2H20 O.2M Citric acid 

anhydrous 

Component mg I tablet % w/w mg I tablet 0/0 w/w mg I tablet % w/w mg I tablet % w/w mg Itablet % w/w 

Na-p-aminosalicylate 500.00 93.00 500.00 91.44 500.00 89.88 500.00 85.20 500.00 89.16 

Ac-Di-Sol * 
PVP K90 10.75 2.00 10.94 2.00 1l.13 2.00 1l.74 2.00 11.22 2.00 

Magnesi urn stearate 5.38 1.00 5.47 1.00 5.56 l.00 5.87 1.00 5.61 1.00 

NaH2P04.2H2O 8.53 1.56 17.36 3.12 45.77 7.80 

Citric acid anhydrous 21.53 3.84 

Compression weight 537.63 546.82 556.31 586.86 560.80 

* each/()rmu/ation contained 2% intra- / extragranular Ac-Di-Sol. 
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6.2.2.2 Compression . 

Granulations were compressed within 24 hours. Granules were compressed at 5, 10, 15 

& 20kN + 0.5kN (Section 2.2.1.4), using 12.5mm flat bevelled edge tooling. Tablets 

were compressed to the target weight + 5%. 

6.2.2.3 Disintegration testing. 

All tablets were tested in distilled water according to Section 2.2.2.2. The disintegration 

of the control formulations without buffers (Table 6.1) was also tested in O.lM sodium 

dihydrogen orthophosphate and 0 .1M citric acid. 

The pH of each disintegration fluid was measured using a pH meter (Phillips Model PW 

9421, Phillips, England). 

a) Distilled water (pH 5.73) 

b) O.lM sodium dihydrogen orthophosphate (pH 4.51) 

c) O.lM citric acid (pH 2.05) 

6.2.2.4 Tablet crushing strength. 

See Section 2.2.2.3. 

6.2.2.5 Tablet weight variation. 

See Section 2.2.2.5 . 
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6.2.2.6 Measurement of the saturated pH of tablets (pHsAT). 

The saturated pH of tablets was determined by measuring the pH of 4 tablets crushed 

and mixed with 5ml of distilled water. A Phillips pH meter, Model PW 9421 was used, 

Philips, England. This was calibrated with 3 buffer solutions of pH~ 4 + 0.02, 7 ± 0.02 

and 9 + 0.02 (BDH Laboratory supplies, Poole, England) at 20°C. 
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6.2.3 Results and Discussion. 

Buffers were added during the wet massing stage to create a continuous network at 

granule particle surfaces, to dissolve away and favour the formation of the free acid. 

Using paracetamol as a model drug and gelatin as a binder, Seager et al (1979) showed 

that granules prepared by wet massing and screening consisted of drug particles bound 

together by a sponge-like network of solid binder, elucidated by a solvent extraction 

technique. 

Both citric acid and sodium dihydrogen orthophosphate are highly water soluble. 

During wet granulation the acid buffer salt crystals will dissolve at the surface and react 

with Na-p-aminosalicylate, which produces the insoluble free acid. This should protect 

the buffer from further reaction during wet granulation. Assuming this model, 

recrystallised buffer / binder will be distributed as a matrix throughout the granule 

structure. 

Dissolving the buffers in the binder would have been a more ideal way to guarantee 

uniform distribution. However addition of the buffer salt to the binder solution at the 

required concentration caused precipitation of the PVP K90 binder solution. During 

granulation, acidic buffer dissolving in the binder solution may have caused some 

precipitation of the binder, but this was not visually apparent. The highly soluble Na-p­

aminosalicylate gives a basic solution on dissolving, raising the pH. 

The inclusion of citric acid and sodium dihydrogen orthophosphate in the tablet matrix 

failed to convert a dissolving matrix into a dispersing tablet (Table 6.2). Upon visual 
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observation, all tablet formulations dissolved away slowly without visible 

disintegration. Only after tablets had dissolved to a thin layer did they start to break up. 

Table 6.2: The effect of acid on the disintegration properties of Na-p-

aminosalicylate tablets in distilled water. 

Buffer 
Salt 

No buffer 

(control) 

O.lM 

NaH2P04.2H2O 

O.2M 

N aH2P04.2H2O 

Mesh 
aperture 
size [J..lm] 

2000 

1700 

Disintegration time [Min] 

5kN 10kN 15kN 20kN 

- - -
x rsd x rsd x rsd x rsd 

8.94 8.39 10.36 2.99 11.42 2.63 10.90 5.69 

8.77 3.65 10.16 1.77 11.06 1.72 10.22 0.39 

1400 8.66 9.58 10.15 1.67 10.90 3.12 10.51 4.95 

1180 8.42 4.87 9.94 5.53 9.94 1.91 9.90 3.74 

710 7.72 2.72 8.98 5.12 9.66 2.59 9.71 3.19 

2000 10.14 1.68 10.47 3.72 10.31 2.81 10.78 1.95 

1700 10.07 5.06 10.18 1.47 10.03 1.79 10.48 0.48 

1400 9.78 5.52 10.00 1.70 10.11 2.67 10.48 0.57 

1180 9.36 2.14 9.70 1.86 9.47 1.37 10.19 2.85 

710 8.53 5.39 9.39 7.45 9.35 2.14 9.47 1.37 

2000 8.94 3.80 9.78 2.15 9.86 8.52 10.48 1.62 

1700 8.45 4.38 9.33 7.07 10.06 2.68 10.20 l.76 

1400 8.45 4.50 9.33 3.11 10.11 3.36 9.96 0.40 

1180 8.00 4.38 8.64 3.94 9.34 3.21 9.64 2.07 

710 7.86 3.44 8.48 2.83 9.25 6.59 9.50 0.84 
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Table 6.2: Continued. 

Buffer 
Salt 

O.SM 

NaH2P04.2H2O 

O.2M 

Citric acid 

mesh 
aperture 
size [J.lm] 

2000 

1700 

1400 

1180 

710 

2000 

1700 

1400 

1180 

710 

Disintegration time [Min] 

5kN lOkN 15kN 20kN 

x rsd x rsd x rsd x rsd 

9.89 2.30 10.25 6.93 10.73 1.30 11.65 1.29 

9.28 4.42 10.25 5.85 10.36 0.87 10.90 2.29 

9.29 4.20 10.09 6.34 10.26 3.12 10.65 1.88 

8.78 4.56 9.38 5.44 9.80 1.94 10.38 2.31 

8.09 5.56 9.33 4.72 9.62 2.08 10.13 2.27 

8.40 1.07 9.40 4.04 9.70 4.12 10.79 1.30 

8.15 4.05 9.17 3.93 9.69 2.68 10.33 2.42 

8.27 2.90 8.99 1.56 9.72 2.37 10.39 2.69 

8.05 6.21 8.49 4.36 9.09 3.41 9.96 1.31 

7.50 5.07 8.17 3.79 8.60 2.56 9.54 2.20 

Since tablets dissolved away rather than de aggregating, there was little difference in 

measured disintegration times on different mesh sizes. The slightly decreased times 

observed on smaller mesh sizes may be attributed to increased turbulence and agitation 

of the tablets, causing them to dissolve more quickly. 

At lower compression forces, tablet disintegration times tended to be slightly less. This 

may be explained by greater porosity allowing easier water penetration and weaker 

intermolecular bonding in the tablet. However, disintegration times were high at all 
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compression forces used and at higher compression forces there was a general trend for 

disintegration time to be independent of compression force / tablet crushing strength. 

For all tablet formulations, tablet crushing strength increased with compression force 

(Table 6.3). Comparing the tablet formulations containing buffer salts to the control 

shows that their inclusion increased tablet crushing strengths at each compression force 

used. Since high acidity causes precipitation of PVP K90, the buffer salts may alter the 

way it behaves in situ during granulation. This may affect the way in which the binder 

recrystallises and its compression properties. 

Table 6.3: The effect of buffers in Na-p-aminosalicylate tablets containing 2% 

intra- / 2% extragranular Ac-Di-Sol on tablet crushing strength. 

Buffer salt Tablet crushing strength [kP] 

5kN 10kN 15kN 
-

x rsd X rsd X rsd 

No butTer (control) 3.28 28.35 9.98 5.57 15.68 7.46 

O.lM NaH2P04.2H2O 7.04 6.39 11.62 5.77 16.14 3.97 

O.2M NaH2P04.2H2O 4.82 7.88 11.02 5.54 18.36 4.68 

O.5M NaH2P04.2H2O 5.72 5.24 11.76 3.06 17.48 4.06 

O.2M Citric acid 5.02 8.61 12.60 5.08 17.74 6.02 

20kN 

x 

16.76 

18.26 

18.96 

19.97 

20.54 

rsd 

8.71 

5.42 

7.23 

3.56 

2.29 

On contact with water, the rapid solution of a highly soluble drug will increase water 

viscosity and cause a viscous film around the tablet. This is probably a more significant 

factor in limiting water penetration into the tablet, and therefore disintegration, than 

reduced porosity caused by higher compression forces. Ferrari et al (1995) reported that 

the influence of compression force on disintegrant efficiency and tablet disintegration 

was less in water-soluble tablet formulations than insoluble. In water insoluble 

formulations, disintegrant swelling plays the major role in the disintegration process 
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and becomes more effective as porosity decreases (Colombo et aI, 1984; Caramella et 

aI, 1986). They postulated that in water-soluble formulations, other mechanisms 

(dissolving, disruption of hydrogen bonding) that are responsible for disintegration are 

activated by water entry, thus making disintegrant swelling and the influence of tablet 

porosity less important. 

Table 6.4: The pHSAT of Na-p-aminosalicylate tablets containing 2%) intra-/ 2% 

extragranular Ac-Di-Sol and acidic buffers. 

Buffer inside the tablet pHSAT 

No buffer (control) 7.61 

O.IM NaH2P04.2H2O 6.70 

0.2M NaH2P04.2H2O 6.48 

0.5M NaH2P04.2H2O 6.14 

0.2M Citric acid 6.30 

The saturated pH was used as a method of approximating the saturated 

microenvironmental pH of the tablets. Serajuddin & larowski (1985) compared pH­

dissolution and pH- solubility data for salicylic acid and sodium salicylate using a pH 

stat apparatus to control bulk pH. When solubility at the pH of a saturated solution of 

the drug in the dissolution medium was used, the pH-dissolution and pH-solubility data 

correlated. This supports the concept that the pH of the diffusion layer resembles that of 

a saturated solution of the drug in the dissolution medium (Doherty & York, 1989) 

pHsAT values for the tablets (Table 6.4) indicate the inclusion of buffers did not lower 

the microenvironmental pH within and around the tablet matrix enough. Increasing the 

amount of sodium dihydrogen orthophosphate or using citric acid, which has greater 

acidity_ did not appreciably reduce the pH. The pKa ofp-aminosalicylic acid is 3.25 and 

149 



because the pHSAT of all buffered tablets was > 6, it can be assumed that the 

microenvironmental pH would not favour conversion to the free acid. 

During the wet granulation process some of the acidic buffer salt will have reacted with 

the Na-p-aminosalicylate. The reaction of the buffer at crystal surfaces may have 

formed an insoluble coating with p-aminosalicylic acid, which would prevent it from 

rapidly dissolving in the tablet to alter micro environmental pH. Alternatively, it is 

possible that not enough unchanged buffer salt remained unreacted. Adding the buffer 

extragranularly as well as intragranularly may have improved pH manipulation. 

Both the acidic buffer salts and the drug dissolved in the aqueous binder solution. A 

better choice of granulating agent may have been one in which the buffer but not the 

drug dissolved. 

It would have been interesting to monitor the change in diffusion layer pH with time. 

When the tablet is in contact with water, it is logical that the depletion of a highly 

soluble acidic buffer will reduce the time in which a lowered microenvironmental pH 

can be maintained around the drug particles. Thus there will be an optimal proportion 

of a particular buffer with the drug. In practice the amount of buffer that can be added 

to a tablet formulation may be limited by toxicology factors. 

The effect of the disintegration fluid on the disintegration of Na-p-aminosalicylate 

tablets is given in Table 6.5. Tablets tested in distilled water dissolved away slowly with 

no visible disintegration. On testing in O.lM sodium dihydrogen orthophosphate, tablets 

compressed at 5kN showed slight disintegration for a few seconds and then dissolved 

away slowly. All tablets compressed at higher forces dissolved away slov.'ly with no 
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visible disintegration. Disintegration times for tablets in distilled water and O.lM 

sodium dihydrogen orthophosphate dihydrate are the times measured for the tablets to 

dissolve to a small enough size to pass through the appropriate mesh size. 

All tablets tested in O.IM citric acid failed to disintegrate after one hour. However, in 

O.IM citric acid solution considerable de aggregation and disintegration of the tablets 

was seen to occur and this was greater at low compression. In the first few minutes of 

immersion macro deaggregation (Roland, 1967) took place. The extent of 

deaggregation was higher at lower compression forces, and these aggregates dissolved 

away very slowly. The pH of O.IM citric acid = 2.05, below the pKa. Disintegration 

occurred at this pH because the sodium salt at the tablet surface on immersion would be 

rapidly converted to the free acid, which is very poorly soluble (1 in 500). This would 

prevent a viscous barrier forming around the tablet and allow fluid penetration into the 

tablet. Greatly reduced drug dissolution and rate of porosity development at this pH 

would also favour disintegrant force generation on disintegrant swelling. However once 

the tablets deaggregated, granules changed slightly in appearance, as if coated. Further 

disintegration was probably prevented as a coating of free acid quickly formed at 

granule surfaces. Covering of the granules with a material of high water insolubility 

may have greatly limited water penetration into the granules. The salt of an acidic or 

basic drug can lead to precipitation of an insoluble layer on the surface of a dissolving 

tablet and this can hinder dissolution (Higuchi et aI, 1965). The disintegration behaviour 

in citric acid solution may be similar to that in-vivo in the acid conditions of the 

stomach, if the tablet is swallowed. 
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Table 6.5: The effect of immersion fluid pH on the disintegration of ~a-p-

aminosalicylate tablets containing 2% intra-/ 2% extragranular 

Ac-Di-Sol. 

Disintegration Mesh Disintegration time [Min] 

fluid aperture 5kN 10kN 15kN 20kN 

- - -
size [J..1m] x rsd x rsd x rsd x rsd 

Distilled water 2000 8.94 8.39 10.36 2.99 11.42 2.63 10.90 5.69 

(pH 5.73) 1700 8.77 3.65 10.16 l.77 11.06 l.72 10.22 0.39 

1400 8.66 9.58 10.15 l.67 10.90 3.12 10.51 4.95 

l180 8.42 4.87 9.94 5.53 9.94 l.91 9.90 3.74 

710 7.72 2.72 8.98 5.12 9.66 2.59 9.71 3.19 

O.lM NaH2P04.2H2O 2000 7.97 12.30 10.23 4.69 10.49 3.15 10.63 2.45 

(pH 4.51) 1700 7.72 12.56 9.58 5.01 10.45 3.25 10.62 2.64 

1400 7.68 19.04 9.43 3.61 10.59 0.94 10.73 3.82 

1180 7.62 1l.15 8.88 4.39 9.88 2.63 9.94 6.24 

710 6.71 18.48 8.73 3.32 9.73 3.70 9.54 3.98 

0.1 M Citric acid > 60 

(pH 2.05) 

t 
I 
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6.2.4 Conclusions. 

This method of buffer incorporation was not successful in achieving disintegration of 

Na-p-aminosalicylate tablets, attributed to an insufficient lowering of the pH. Testing 

tablets without buffer in O.lM citric acid showed that some disintegration could be 

achieved where the disintegration medium was below the drug pKa. However, this 

stopped after the first few minutes of testing. If a low enough microenvironmental pH 

could be achieved at tablet diffusion layers by a dissolving component, tablet 

disintegration may occur. Disintegration fluid penetration retarded by free acid 

formation around tablet aggregates should not, in theory, be a great problem when water 

is the disintegration medium. 
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6.3 The use of Amberlite IRP88 as a disintegrant in ~a-p­

aminosalicylate tablets with and without PVP K90 binder. 

6.3.1 Aims. 

To evaluate the use of Amberlite IRP88 as a disintegrant in Na-p-aminosalicylate 

tablets. The work will also study the effect of omitting the binder in the wet granulation 

process. 

6.3.2 Materials. 

See Section 6.2.1. 

6.3.3 Methods. 

6.3.3.1 Granulation. 

Tablets were prepared by wet granulation according to the formulations given in Table 

6.6 and the method of granulation described in Section 6.2.2.l. In formulations without 

PVP K90 binder, the granulation was carried out in a similar way but using the 

appropriate quantity of distilled water. 

6.3.3.2 Compression. 

See Section 6.2.2.2. 

6.3.3.3 Evaluation of tablets. 

See Section 2.2.2. 
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Table 6.6: Na-p-aminosalicylate 500mg tablet formulations containing Amberlite IRP88. 

Component 

N a-p-aminosalicylate 

Amberlite IRP88 * 
PVP K90 

Magnesium stearate 

Compression weight 

With binder 

2% intra- /20/0 extra 4 % intra- / 4% extra 

Amberlite IRP88 Amberlite IRP88 

mg / tablet %w/w mg / tablet %w/w 

500.00 93.00 500.00 89.00 

10.75 2.00 11.24 2.00 

5.38 1.00 5.62 1.00 

537.63 561.80 

*fahlefs contained either 2% or 4% intra / extragranular Amberlite IRP88. 
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Without binder 

2% intra- / 2% extra 4 % intra- / 4% extra 

Amberlite IRP88 Amberlite IRP88 

mg / tablet %w/w mg / tablet %w/w 

500.00 95.00 500.00 91.00 

5.26 1.00 5.49 1.00 

526.32 549.45 



6.3.4 Results and Discussion. 

Comparing the disintegration times of tablets containing 20/0 intra- / 2% extragranular 

Amberlite IRP88 with PVP K90 (Table 6.7) to those in Table 6.2 for 20/0 intra- / 2% 

extragranular Ac-Di-Sol, shows that Amberlite IRP88 is a more effective disintegrant. It 

is able to develop a high swelling force despite a low swelling volume (Caramella et aI, 

1989). It functions more efficiently than Ac-Di-Sol in this soluble tablet formulation 

where water availability is limited, due to increased viscosity and reduced penetration. 

Removing the PVP K90 binder improved disintegration properties. Disintegration times 

were decreased (Table 6.7) and visual observations showed that greater deaggregation 

and disintegration occurred, rather than tablets simply dissolving away. In the 

formulations with binder, tablets compressed at 5kN disintegrated into large aggregates 

that dissolved away. At higher forces, they dissolved away without any noticeable tablet 

deaggregation. However, in the formulations without binder, visible tablet 

disintegration and deaggregation was seen in all tablets, except those compressed at 

20kN, but this was greater at lower compression forces. Tablets compressed at 5kN 

disintegrated into small aggregates that dissolved. At 10 and 15kN, tablets disintegrated 

into large aggregates that dissolved away slowly. 

When water penetrates the tablet, dissolution of the drug / excipients at the pore walls 

will take place and results in the dissolution of binding agents during the penetration 

process, which increases penetrating fluid viscosity. In practice, a binder is usually 

needed to achieve acceptable mechanical properties. In a water dispersible tablet, care 

should be taken to select one with low aqueous viscosity. 
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Table 6.7: The effect of Amberlite IRP88 concentration and PVP 1(90 on the 

disintegration of Na-p-aminosalicylate tablets. 

Formulation 

2% intra / 2% extra 

Amberlite IRP88 

With PVPK90 

binder 

20/0 intra / 2% extra 

Am berlite IRP88 

Without PVP K90 

binder 

4 % intra / 4% extra 

Amberlite IRP88 

With PVP K90 

binder 

4 % intra / 4 % extra 

Am berlite IRP88 

Without PVP K90 

binder 

Mesh 

aperture 

size [!lm] 

2000 

1700 

1400 

1180 

710 

2000 

1700 

1400 

1180 

Disintegration time [Min) 

5kN 10kN 15kN 20kN 

X RSD X RSD X RSD X RSD 

3.16 27.53 7.81 3.46 7.20 7.08 7.81 2.43 

3.01 22.92 7.50 6.27 7.04 1.14 7.60 2.24 

3.45 6.67 6.78 7.23 7.22 4.02 7.60 1.71 

3.38 12.72 6.82 3.67 6.78 2.80 7.06 1.13 

3.52 21.88 6.69 4.04 6.65 1.95 6.99 0.29 

0.39 7.69 4.50 1.78 5.78 10.03 5.70 0.88 

0.50 6.00 4.55 5.49 5.55 10.99 5.56 3.06 

0.52 3.85 4.61 5.64 5.54 10.83 5.58 2.51 

0.68 19.12 4.38 9.82 5.06 12.45 5.06 5.34 

710 1.17 7.69 4.67 3.64 5.04 7.34 4.89 2.66 

2000 

1700 

1400 

1180 

1.97 28.43 6.12 6.54 6.94 4.90 7.11 4.78 

1.71 32.16 5.98 5.18 6.61 2.87 6.86 2.19 

2.12 26.42 6.00 7.00 6.70 0.75 6.86 1.46 

1.42 72.53 5.62 3.91 6.28 0.80 6.74 2.97 

710 1.92 44.27 5.73 3.84 6.42 3.43 6.64 0.75 

2000 

1700 

1400 

1180 

0.20 15.00 2.77 17.69 5.27 4.55 5.63 3.37 

0.33 3.03 2.59 15.44 5.38 8.18 5.56 2.34 

0.40 7.50 3.06 9.80 5.07 11.83 5.77 4.51 

0.51 21.57 2.92 26.37 5.13 6.04 5.04 7.74 

710 0.55 12.73 3.08 14.94 4.92 13.01 5.06 1.58 
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Figure 6.2: The effect of PVP K90 binder I Amberlite IRP88 
concentration on the friability of Na-p-aminosalicylate 
tablets. 

5kN 10kN 15kN 20kN 

Compression force [kN] 

• 2% intra I 20/0 extra - with binder 0 20/0 intra I 20/0 extra - without binder 

. 40/0 intra I 40/0 extra - with binder 040;0 intra I 40/0 extra - without binder 

The crushing strengths of tablets are given in Table 6.8. No binder reduces their 

strength. However, those without binder are mechanically strong. Highly soluble drugs 

are adhesive, and therefore tablets wet granulated with water may have acceptable 

mechanical properties. 

Figure 6.2 gives tablet friabilities. When tablets are compressed at low compression 

force, the friability of tablets without PVP K90 binder is much higher than those with. 

However, when compressed at 15kN and 20kN differences are negligible. 
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Table 6.8: The effect of PVP K90 and Amberlite 1RP88 concentration on the 

crushing strength of Na-p-aminosalicylate tablets. 

Formulation Tablet crushing strength [kP) 
5kN lOkN l5kN 20kN 

x rsd x rsd x rsd x rsd 
2 % intra / 2 % extra 4.64 12.72 9.18 6.86 14.08 2.49 14.86 3.77 
Amberlite IRP88 
With PVPK90 
binder 

2% intra / 2% extra 4.86 9.88 8.18 7.58 10.56 7.01 11.74 8.09 
Amberlite IRP88 
Without PVP K90 
binder 

4 % intra / 4% extra 4.66 6.01 8.90 4.83 12.06 2.90 12.80 4.77 
Amberlite IRP88 
With PVP K90 
binder 

4 % intra / 4 % extra 4.42 12.90 6.64 7.98 10.12 6.42 10.98 7.38 
Amberlite IRP88 
With out PVP K90 
binder 

Increasing the concentration of disintegrant from 4 to 8%, with or without PVP K90, 

tended to decrease disintegration times slightly. The greatest decrease was seen in 

tablets compressed at lower compression forces. For disintegrant force generation, 

absorption of water is necessary and water penetration into a highly soluble tablet is 

limited. Therefore, increasing disintegrant concentration beyond a certain level may 

have little if any effect because of lack of water for the disintegrant to function. For 

tablets at lower compression, water will initially penetrate more easily and therefore 

increased concentrations of disintegrant will be more effective. 

In Table 6.8 tablets both with and without PVP K90 binder. and at each compression 

force studied, increasing the concentration of Amberlite IRP88 from 4 to 80/0 reduces 
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the mechanical crushing strengths, attributed to the poor compression characteristics of 

the disintegrant (Khan & Rhodes, 1973). 

6.3.5 Conclusions. 

In conclusion, Amberlite IRP88 may be a good choice of disintegrant in soluble tablet 

formulation where water penetration is limited. Increasing disintegrant concentration 

may improve disintegration, however above a certain level may have little or no effect, 

and can produce mechanically poorer tablets. 

In a highly soluble tablet formulation where the drug dissolves to form a highly viscous 

solution, as with Na-p-aminosalicylate, it may be possible to omit the use of binder in 

the wet granulation process and still achieve mechanically acceptable tablets by using 

adequate compression. Potentially this will increase the extent and rate of tablet 

disintegration and deaggregation. 
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CHAPTER 7 



7. GENERAL DISCUSSION. 

The aim of this study has been to develop generic technology for the formulation of 

dispersible tablets using wet granulation and conventional tableting technology. The 

project used two model drugs that are potentially difficult to formulate as a dispersible 

tablet: 

I. A high dose, poorly compressible drug (Paracetamol). 

II. A high dose, freely aqueous soluble drug (Na-p-aminosalicylate). 

7.1 Formulation of a high dose, poorly compressible drug. 

7.1.1 Drug compaction properties. 

Before attempting the formulation of a high dose, poorly compressible drug, it is 

necessary to understand the compression characteristics to allow rational excipient 

choice. A compression profile can be obtained from compaction simulator studies 

(Akande, 1996). 

Tablet strength depends on the inherent ability of a powder to reduce in volume during 

compreSSIon and the amount of interparticulate attraction in the final compact 

(Milosovich, 1963). Pharmaceutical materials consolidate by one or more of the 

following mechanisms: particle rearrangement, elastic deformation, plastic deformation 

and particle fragmentation (De Boer et aI, 1978~ Duberg & Nystrom, 1986). Elastic 

deformation is detrimental to strong tablet formation since the individual crystals return 

to their original shape when the pressure IS released. Consequently a high elastic 

161 



component causes a high incidence of capping and lamination (Malamataris et aI, 1984). 

Plastic deformation produces greater compact densification and enormously increases 

the number of contact points and the area of contact between crystals (Milosovich, 

1963) resulting in enhanced bond formation and strong tablets (Duberg & Nysrom, 

1982). 

Paracetamol is a good model since its poor compression properties are well documented 

(Leigh et aI, 1967; Obiorah & Shotton, 1976; Krycer et aI, 1982; Alderborn et aI, 1985; 

Duberg & Nystrom, 1986). Fragmentation is the dominant mechanism during 

compaction of pure paracetamol powder (Garekani, 1996; Roberts & Rowe, 1985), with 

a high elastic deformation (Dub erg & Nystrom, 1986) resulting in weak and capped 

tablets (Krycer et aI, 1982). However, conflicting evidence has been reported (Doelker 

& Shotton, 1977) that paracetamol shows a degree of plastic flow and brittle behaviour 

(Humbert-Droz, 1983). 

Wet granulation, used in the present studies, improves the compressibility by increasing 

the plasticity of the material, which is usually attributed to the binder used (Milosovich, 

1963). Knowledge of the compression properties of potential binders alone and in 

combination with the drug will help to develop better formulations (Morton, 1996). 

Leigh et al (1967) showed that granulating paracetamol with 3% w/w PVP, gave a 

compression profile of a body with a constant yield stress, rather than behaviour of a 

Mohr's body with water alone, and tablets did not cap or laminate. Good compression 

was achieved in this study using 2% w/w PVP K90. Leigh et al (1967) did not specify 

the grade and in this study microcrystalline cellulose will have contributed to improved 

plasticity. 
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In addition to the ability to increase plastic flow and produce strong tablets \\ith low 

friability, binder disintegration properties need to be considered. Unfortunateh'. binders 

that confer superior mechanical properties often cause longer disintegration times and 

vice versa (Becker et aI, 1997) and the best compromise should be found. Becker et al 

(1997) demonstrated lower disintegration times in paracetamol tablets with Lycatab 

PGS ™ (a pre-gelatinised maize starch, with reduced soluble components) than with PVP 

TM 

or Cellulose HP-M 603 (hydroxypropylmethylcellulose). However mechanically 

acceptable tablets could not be produced. 

In this study microcrystalline cellulose (Avicel PH101 TM) at -200/0 w/w produced strong 

paracetamol tablets without capping. It consolidates predominantly by plastic flow 

(David & Augsburger, 1977; Roberts & Rowe, 1986) and permits rapid passage of 

water into tablets (Lamberson & Raynor, 1976) making it very useful for dispersible 

tablet formulations. Rosovsky (1995) prepared a dispersible paracetamol tablet by wet 

granulation containing 500/0 w/w paracetamol and 28% w/w microcrystalline cellulose. 

Watanabe et al (1995) used 9: 1 microcrystalline cellulose: low-substituted 

hydroxypropylcellulose in a directly compressed low dose dispersible tablet. 

The present work used a single punch tablet machine at a speed of 21 cycles per minute. 

However, for a commercial preparation, the influence of speed on formulation 

compression properties should be studied, as plastic flow may decrease with increased 

tableting speeds (Roberts & Rowe, 1985). 
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7.1.2 Effect of granule size and intragranular disintegrant type on the 

dispersion of a tablet matrix with low aqueous solubility. 

When designing a granulation process for a dispersible tablet formulation, the effect of 

granule size should be considered. Using paracetamol / Avicel / PVP as a model 

granulation with low aqueous solubility, the relationship between intragranular 

disintegrant type and tablet dispersion was investigated in Chapter 3. 

A variety of mesh sizes was more discriminating in comparing disintegrant efficiencies 

than the BP disintegration test, which uses a 2000J.1m screen. Whilst intragranular 

performance of some disintegrants tested at 2000J.1m was comparable, it widely differed 

at 710J.1m. Data using a 2000J.1m screen will not be representative of behaviour, when 

dispersion is required below 710J.1m. 

Intragranular disintegrant had a greater influence on dispersion to 710J.1m than granule 

size or compression force, though the relationship depended on disintegrant type. Where 

intragranular disintegrant function was poorer, tablet disintegration time increased with 

granule size because granule dispersion was less and size reduction by drug dissolution 

was more pronounced. 

Ac-Di-Sol was the best intragranular disintegrant, producing most rapid dispersion with 

least variability. Dispersion down to 710J.1m was achieved in less than two minutes with 

all granule sizes (including unfractionated granules) and compression forces. Gordon et 

al (1990) reported that the use of Ac-Di-Sol intragranularly in an insoluble matrix \vas 

capable of promoting tablet disintegration directly into primary particles. Disintegration 

times increased slightly with increasing compression force and increasing granule size 
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fraction, however, the increases were unimportant in terms of compliance with BP 

standards. With large granule sizes, high tablet porosity may decrease Ac-Di-Sol 

functioning due to poorer swelling force generation. This is supported by lower 

disintegration times with the bulk granulation than 1400-1000, 1000-710 and 710-

500J.lm size fractions. 

During the wet granulation process solvent stress (presumably causing detrimental 

irreversible structural change) and deposition of paracetamol on the Aci-Di-Sol, 

decrease its disintegrant efficiency (Chapter 5). Recrystallised paracetamol at 

disintegrant surfaces will restrict water penetration into the Ac-Di-Sol and crystals 

within the capillary network may impair wicking action. However, the disintegrant 

efficiency of Ac-Di-Sol remains high after wet granulation and this explains its high 

performance as an intragranular disintegrant. 

Using Ac-Di-Sol intragranularly, granule SIze can be adjusted to gIVe optimum 

compressibility and flow characteristics without detrimentally affecting tablet 

dispersion. Adequate dispersion, independent of compression force, allows the 

production of mechanically strong tablets with low friability. On scaling up a 

formulation, the granule size distribution will alter on a production scale and batch-to­

batch variation may occur. Ac-Di-Sol is less likely to produce unacceptable batch-to­

batch differences in dispersion to 71 OJ.lm, than intragranular disintegrants more affected 

by granule size. 

The performance of Explotab was poorer than Ac-Di-Sol. With intragranular Explotab, 

adequate dispersion to < 71 OJ.lID was only achieved within three minutes using the 710-

500J.lm and 250-500J.lm granule size fractions, and with these sieve cuts dispersion 
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times increased with compression force. Adequate times could only be achieved with 

the 710-500Jlm fraction at low compression force, where tablet strength was low and 

friability high. 

Granule size could be decreased to accommodate poorer disintegrant efficiency, and 

here reduced granule size increased weight uniformity in all formulations due to closer, 

more uniform die fill. This supports the findings of Kassem et al (1972) and Femi­

Oyewo & Adefesco (1993). However reduction below a certain size may be impractical 

because bridging reduces the flow rate (Marks & Sciarra, 1968). 

With larger granules containing intragranular Explotab (1400-1000, 1000-710Jlm) and 

the bulk granulation, a minimum was observed in the disintegration time with 

increasing compression force. This supports the findings of Ferrari et al (1995) that 

sodium starch glycollate requires an optimum porosity for good swelling force 

generation. Granule porosity was not measured, but may have been too high for good 

swelling force generation. If Explotab is used as an intragranular disintegrant, the 

granulation process should be designed to give optimum porosity. 

Ferrari et al (1995) demonstrated the high disintegrating efficiency of sodium starch 

glycollate in an insoluble directly compressed matrix. However, this study suggests it 

may not be the best choice of intragranular disintegrant for a wet granulated dispersible 

tablet formulation, possibly because the process can irreversibly and detrimentally alter 

its structure (Mitrevej & Hollenbeck, 1982~ Gould & Tan, 1985) and its adhesive 

behaviour when wetted (Guyot-Herman et aI, 1983) will oppose disintegrating forces. 
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The present study compared disintegrant efficiency at low concentration. In a 

formulation of low aqueous solubility, increasing the concentration of Explotab and 

using an extragranular disintegrant may improve the rate and extent of tablet 

de aggregation to meet BP dispersible tablet standards. Harden & Gayst (1979) describe 

a wet granulated, aluminium hydroxide (an insoluble base) dispersible antacid tablet. A 

successful formulation was achieved using intragranular Explotab at a concentration of 

6.80/0 w/w with extragranular Avice!' 

Tablet dispersion with intragranular Amberlite IRP88 was poorer than with 

intragranular Explotab; none of the tablets dispersed to 710J..lm within 3 minutes. The 

effect of granule size on its performance as an intragranular disintegrant was more 

pronounced than with the other disintegrants, with larger increases in disintegration 

times with granule size. The results suggest Amberlite IRP88 has the greatest 

dependence on an optimum low tablet porosity to function efficiently. This is supported 

by the shortest disintegration times in the 250-500J..lm size fraction and bulk granulation. 

A decrease in disintegration time with increasing compression force occurred at 200-

500J..lm, whereas in other tablets it tended to increase. In all granule size fractions and 

the whole granulation, the increase in tablet crushing strength with compression force 

was comparable, again supporting increased swelling force generation in the smallest 

size fraction. 

The mean granule size of the whole granulation was 550J..lm (rsd + 0.39J..lm). However, 

in the experiments looking at the effect of extragranular disintegrant (Chapter 4), a 

granulation of the same formulation with a mean size of 230J..lm (rsd + 0.94) was used. 

In the latter, the perfonnance of Amberlite IRP88 used alone intragranularly was greatly 

enhanced (and superior to Explotab), and all tablets showed acceptable dispersion to 
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710J,lm. This demonstrates that, with a suitably small granule size
o 

it may be used 

successfully in a dispersible tablet formulation. Where high compression forces are 

required and the use of Ac-Di-Sol is precluded, Amberlite IRP88 may be useful as an 

intragranular disintegrant. 

Explotab and Amberlite IRP88 cause disintegration predominantly by swelling and do 

not have high wicking ability to promote rapid penetration of water into the tablet. The 

capillary properties of microcrystalline cellulose (-20%) in the matrix may have 

encouraged water penetration into the tablet and in theory, used alone in a matrix 

without intrinsic wicking ability (eg dicaIcium phosphate) disintegration times may be 

longer. 

Kollidon-CL was the worst intragranular disintegrant, with all tablets taking longer than 

30 minutes to disintegrate. This result was surprising. The disintegrant combines 

swelling and wicking activity (Kornblum & Stoopak, 1973) and like Ac-Di-Sol, might 

be expected to perform better in a tablet without extragranular disintegrant than 

disintegrants without capillary action. With crospovidone, a slightly swelling 

hydrophilic disintegrant, water penetration is the rate determining step in disintegration 

(Bolhuis et aI, 1982), and the use of a hydrophobic lubricant such as magnesium 

stearate will significantly reduce this (Bolhius et aI, 1981). However, Kollidon-CL 

performed efficiently as an extragranular disintegrant (Chapter 4) in a formulation 

lubricated with magnesium stearate, and this suggests that reduction of disintegrant 

efficiency by the wet granulation process may be more important. Ullah & Agharkar, 

(1993) successfully used crospovidone (Polyplasdone-XL) as an intragranular 

disintegrant in a dry granulated dispersible tablet formulation lubricated with 

magnesium stearate. 
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Wells & Walker (1983) demonstrated increased disintegration times with crospovidone 

on increasing drug solubility in the binder solvent and suggested that the deposition of 

fine drug crystals inside and around the disintegrant particles may impair its capillary 

and swelling properties. Gould & Tan (1985) showed that slurrying the crospovidone 

with water did not decrease its disintegrant properties. This indicates it is "'poisoning" 

with deposited drug rather than the solvent stress of the wet granulation process that is 

detrimental, although the effect of individual solvents may differ. Paracetamol is 

relatively insoluble in the granulation solvent (water, 1 in 70). However, the complex 

formed with PVP increases solubility (BASF Technical Information, 1992). It is 

possible that paracetamol solution drawn into the disintegrant and deposited in and 

around during drying, impairs disintegrant efficiency. Paracetamol undergoes a sorption 

reaction with crospovidone due to their moderate binding tendency (Fromming et aI, 

1981) and this may have increased the amount adsorbed on and in the disintegrant. 

In general terms, the compression properties of a drug and the excipients used will 

influence the effect of granule size on tablet dispersion. The type of deformation and 

degree of granule fragmentation on compaction will be influential. Compaction has a 

significant influence on the particle size of the granules, either increasing their size by 

consolidation (Khan & Rhodes, 1975d) or decreasing by fragmentation (Nelson, 1955). 

This will influence tablet strength and deaggregation. 

Compression properties will determine the effect of hydrophobic lubricant (De Boer et 

aI, 1978). In this study granule size did not have a large effect on crushing strength, 

although larger granule size fractions tended to produce slightly stronger tablets. This is 

because granule fragmentation, which will have increased with granule size, allowed 

bonding between unlubricated surfaces. 
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There was no clear relationship between granule size and tablet friability. The influence 

of magnesium stearate on tablet crushing strength and the tendency for lower moisture 

content (reducing the plasticising effect [Garr, 1992]) in smaller size fractions 

complicated results. At the very low concentrations used, intragranular disintegrant type 

is unlikely to have had a major influence. 

The use of the whole granulation is desirable economically and the present study shows 

that it is advantageous in terms of optimising porosity to improve disintegrant 

performance and tablet dispersion and avoiding potential granule moisture loss by 

fractionation. When formulating a novel drug in a matrix of low aqueous solubility, Ac­

Di-Sol is probably the best first line choice of intragranular disintegrant. Its ability to 

function efficiently without an extragranular disintegrant is advantageous because it 

allows a shorter and more efficient manufacturing process. 

7.1.3 Effect of intra- and extragranular disintegrant on the dispersion of a 

tablet matrix with low aqueous solubility. 

Using paracetamol / Avicel / PVP as a model formulation with low aqueous solubility 

the performance of different intra- / extragranular disintegrant combinations was 

compared in Chapter 4. 

No super disintegrant in the matrix containing = 200/0 microcrystalline cellulose 

produced very poor deaggregation, with tablets compressed at higher forces (15, 20kN) 

having disintegration times >60 minutes. Mendell (1974) stated that in large quantities 

(> 200/0) microcrystalline cellulose functions as a disintegrant. However, disintegration 

properties have been shown to be greatly reduced by magnesium strearate (Bolhuis et aI, 

1982) and high pressure (Vadas et aI, 1984) and the current study supports this. The 
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intrinsic disintegration properties of the matrix will affect intra- and extragranular 

disintegrant performance. It is reasonable to assume that microcrystalline cellulose will 

enhance disintegrant performance, especially those lacking capillary action, but this 

may only be important if a water soluble lubricant is used. 

Tablet disintegration time is directly related to water penetration, and the relationship is 

independent of the base material solubility or type of disintegrant (Caramella et aI, 

1990b). The function of an extragranular disintegrant is to increase water penetration 

and speed up deaggregation. Added at a level of 2% w/w, this was demonstrated in all 

tablets except those containing intragranular Ac-Di-Sol. 

Tablets containing intragranular Ac-Di-Sol without extragranular disintegrant had 

virtually identical disintegration times through 2000, 1700, 1400 and 1180~m meshes. 

This can be attributed to high disintegrant efficiency at tablet / granule surfaces 

producing rapid water penetration and tablet deaggregation. Consequently, 

extragranular disintegrant did not reduce disintegration times. In fact, its addition 

caused slight increases, but differences of only tens of seconds are not practically 

important. If intragranular disintegrant can very rapidly draw in water at granule 

surfaces, then adding extragranular may reduce total penetration by narrowing or 

blocking intergranule pore space. Increases in disintegration times may potentially be 

greater with extragranular disintegrant concentrations. 

Intragranular Amberlite IRP88 alone caused rapid tablet deaggregation and the addition 

of extragranular disintegrant only resulted in very slight decreases in disintegration 

times. Although Amberlite IRP88 does not have a wicking action, it is able to generate a 

high swelling force with limited water availability (Caramella et aI, 1989). Water 
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absorption and swelling by disintegrant particles at the outside of the tablet will cause 

disintegration of the tablet surface structure, opening it for further water penetration 

causing a chain reaction (Bolhuis et aI, 1982). 

The performance of intragranular Kollidon-CL and Explotab was considerably poorer 

and increasing disintegration times with decreasing mesh size on testing through 2000, 

1700, 1400 and 1180J.lm shows tablet deaggregation to constituent granules is a rate­

limiting step to dispersion down to 710J.lm. The addition of extragranular disintegrant 

speeded up tablet de aggregation, shown by reduced disintegration times at each mesh 

size and lower differences between them. The greatest reductions were seen in tablets 

containing intragranular Kollidon-CL, which is logical since this had the poorest 

performance intragranularly. 

The performance of Kollidon-CL, Ac-Di-Sol and Amberlite IRP88 as extragranular 

disintegrants was similar, except the latter was superior in tablets compressed at high 

compression force. The disintegrant efficiency of Amberlite IRP88 increases with 

compressional pressure (Khan & Rooke, 1976b). 

Explotab was the poorest extragranular disintegrant, especially when used at high 

compression force. Explotab forms an adhesive jelly with high viscosity (Guyot­

Herman et ai, 1983), which will reduce water penetration and increase the forces 

maintaining tablet integrity. In theory this will be more problematic at higher 

extragranular concentrations and should be avoided. Ac-Di-Sol also gels in water. Used 

at a concentration of 2% w/w, its performance as an extragranular disintegrant was 

comparable to Kollidon-CL and Amberlite IRP88. However in theory its use may be 
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more problematic at higher concentrations. Non-adhesive extragranular disintegrants are 

preferable. 

In tablets without extragranular disintegrant, dispersion down to 710/J.m was 

considerably longer with intragranular Kollidon-CL than Explotab. However, after the 

addition of extragranular disintegrant, the situation reversed. This suggests that 

extragranular disintegrant not only contributes to tablet deaggregation but may aid 

granule dispersion. During the mixing process it is likely that some extragranular 

disintegrant will enter granule pores and function intragranularly. The extent to which 

this occurs will depend on granule structure. Increases in dispersion rate may depend on 

the intragranular disintegrant. The adhesive nature of intragranular Explotab may give 

limited dispersion, possibly explaining greater enhancement for intragranular Kollidon­

CL. 

The choice of intragranular disintegrant is the most important factor determining 

dispersion to 710/J.m, and with the correct choice, an extragranular disintegrant may not 

be needed. Where an extragranular disintegrant is used, the ratio to intragranular should 

be optimised and this will depend on the matrix and the dispersion required. 
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7.2 The formulation of a high dose, freely aqueous soluble drug as a 

dispersible tablet. 

7.2.1 Use of acidic buffers to aid tablet dispersion. 

The effect of acidic buffer on the disintegration of a tablet of a freely water-soluble, 

high dose drug was investigated in Chapter 6. Na-p-aminosalicylate / PVP / Ac-Di-Sol 

was used as a model. In a highly soluble matrix, rapid drug dissolution creates a viscous 

barrier at the tablet surface, which retards water penetration (Graf et aI, 1992) and 

reduces disintegrant swelling force (Ferrari et aI, 1995), causing tablets to dissolve away 

slowly (Khan & Rhodes, 1973). Lowering the microenvironmental pH at tablet surfaces 

below the drug pKa favours conversion to the poorly soluble free acid and therefore 

suppresses drug dissolution. Unfortunately, incorporating the acidic buffers sodium 

dihydrogen orthophosphate dihydrate (0.1, 0.2, 0.5M) and citric acid (0.2M) during wet 

granulation did not achieve this, with measured pHsAT values (the approximate diffusion 

layer pH) above 6.00 in all tablets. This explains why it did not convert a matrix taking 

~ 9-10 minutes to dissolve into a dispersing tablet with short disintegration times. With 

and without buffer, disintegration times at the lowest compression force (5kN) were 

slightly less (- 8-9 minutes), which may be attributed to increased porosity for water 

penetration and weaker interparticulate forces. However above this, the rate at which 

tablets dissolved was independent of compression force. The formation of a viscous 

barrier has greater influence retarding water penetration than reduction of pore size and 

porosity with increasing compression force. However, the relationship between 

compression force and dissolution of a highly soluble matrix is dependent on the type of 

disintegrant used (Khan & Rooke, 1976b) and therefore full compression studies will be 

required for each disintegrant evaluated in a new formulation. 
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Tablets without buffer exposed to disintegration fluid of O.lM citric acid (pH =1.04) 

gave macro deaggregation (Roland, 1967) for the first few minutes of immersion and 

then aggregates dissolved away slowly. Visible precipitation of an insoluble coating of 

free acid reduced water penetration, and this may have prevented further disintegration. 

This suggests that for a highly water soluble drug whose solubility is pH dependent, 

buffer incorporation may potentially cause a dissolving matrix to disperse if optimum 

pH conditions can be created. The pH of O.lM citric acid was considerably lower than 

the drug pKa. Creating a tablet diffusion layer pH nearer or slightly above the pKa may 

be better, because theoretically while still suppressing dissolution and viscosity 

formation, it will reduce the rate at which free acid is deposited on aggregates. If water 

penetration is not quickly reduced in this way, the extent of deaggregation may be 

increased. Repeating disintegration testing of unbuffered tablets over a narrow range of 

pH above and below the pKa would have been useful to confirm this. 

Assuming an optimum microenvironmental pH (balancing suppression of dissolution 

and rate of free acid formation) could be determined, the method of buffer incorporation 

into the tablet will be important. The use of an aqueous binder solution in this study will 

have caused reaction of the drug and buffer during the wet granulation process. A non­

aqueous granulation fluid in which drug and buffer are insoluble may be preferable, 

avoiding this reaction and resulting in more unchanged buffer in the finished tablet. 

Also insoluble free acid formation around buffer particles should not occur, allowing 

faster buffer dissolution in the tablet. Ideally, buffer aqueous solubility should be 

greater than the drug, so that when the tablet is immersed in water a favourable 

microenvironment pH is achieved before appreciable drug dissolution has occurred. For 

a drug with high aqueous solubility, the use of a non-aqueous granulation fluid is also 
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advantageous in terms of reducing secondary binding, which can increase disintegration 

times (Wells & Walker, 1983). 

7.2.2 Use of Amberlite IRP88 as a disintegrant in a highly soluble tablet matrix 

with and without PVP K90 binder. 

Comparing 2% intra- / extragranular Ac-Di-Sol and Amberlite IRP88 in a Na-p­

amino salicylate matrix, the latter had superior disintegrant efficiency. With Ac-Di-Sol 

all tablets with binder dissolved away slowly. However, similar tablets containing 

Amberlite IRP88 compressed at low compaction force (5kN) deaggregated and although 

those compressed at higher forces dissolved away slowly, disintegration times were - 3 

minutes lower than with Ac-Di-Sol. Amberlite IRP88 is able to develop high swelling 

force under conditions of limited water availability (Caramella et aI, 1989), and 

therefore may be more efficient in a water soluble matrix where water penetration is 

limited than disintegrants with greater water requirements. Also, Amberlite IRP88 is 

non-adhesive (Khan & Rhodes, 1973), whereas Ac-Di-Sol forms an adhesive gel in 

water (Chapter 5). Adhesive disintegrants in soluble wet granulation systems will 

increase disintegration times, especially at high concentration, (Fakouhi et aI, 1963; 

Billups & Cooper, 1964; Feinstein & Bartilucci, 1966) because the increased viscosity 

and adhesion opposes the positive forces of water penetration and particle swelling. 

This phenomenon may be more pronounced in a hydrophilic system (Fakouhi et aI, 

1963; Billups & Cooper, 1964; Feinstein & Bartilucci, 1966) where interparticulate 

adhesion is stronger than in a hydrophobic system (Khan & Rhodes, 1972b). 

Conversely, poor adhesion between disintegrants and other tablet components has been 

shown to increase their disintegration efficiency in a soluble system because wicking is 

enhanced (Khan & Rhodes, 1973). 
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In a tablet of low aqueous solubility, Ac-Di-Sol is a better intragranular disintegrant 

(Chapters 3 & 4) and its efficiency is high at relatively low concentration (2% w\v). In 

a highly soluble drug matrix, current findings support the use of a non-adhesiye 

disintegrant such as Amberlite IRP88. Kollidon-CL is non-adhesive and in theory may - . 

also be a suitable choice. However, the process of wet granulation may reduce its 

efficiency (Chapters 3 & 4). 

Increasing the concentration of Amberlite IRP88 from 2 % intra- / 2% extragranular to 

40/0 in each phase only caused a noteworthy reduction in disintegration times in tablets 

compressed at low compression force (SkN). At intermediate and high forces 

differences were negligible. Possibly limited water availability due to increased 

viscosity restricts the functioning of increased quantities of disintegrant. Initial water 

penetration will be greater in tablets compressed at low force due to higher porosity and 

this may account for greater enhancement of matrix de aggregation with increased 

disintegrant concentration. Unfortunately, tablets compressed at low compaction force 

may have unacceptably high friabilities. Additionally, increases in friability with 

increased disintegrant concentration, due to poor disintegrant compression properties, 

were greatest at low compression forces where enhanced disintegration occurs. 

Therefore, increasing the disintegrant concentration may not be the best way to increase 

the deaggregation and dispersion of a highly soluble matrix because to achieve this 

would result in mechanically unacceptable tablets. However, Amberlite IRP88 has poor 

compression characteristics (Khan & Rhodes, 1973) and in theory, a non-adhesive 

disintegrant with superior compression properties may produce better tablets at 10\\ 

compression force. Gissinger & Stamm (1980a) reported that high extragranular 

concentrations of crospovidone do not bring about negative effects on tablet mechanical 

properties. 
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Omitting the PVP K90 binder from the formulation and granulating with water gave 

greater enhancement of tablet de aggregation than increasing disintegrant concentration. 

It caused a dissolving matrix to disintegrate in all tablets except those compressed at 

very high compression force (20kN) and the size of the aggregates decreased with 

compression force. This may be attributed to weaker bonding within the tablet and 

reduced adhesion and viscosity. Although no binder resulted in lower crushing 

strengths, those tablets compressed at intermediate and high compression force (15 and 

20kN) had similar friability values to those with binder. 

Therefore when formulating a new highly soluble tablet it may be possible to omit the 

use of an adhesive binder. However, this will largely depend on the compression 

properties of the drug. Although a drug of high aqueous solubility may be self-adhesive 

in water and form an acceptable granulation, if this is poorly compressible, a binder may 

be necessary to improve compaction. Then the binder selected should have the lowest 

possible aqueous viscosity. 
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FUTURE WORK. 

1) The effect of intragranular disintegrant type on the dispersion of a sparingly 

soluble drug matrix using magnesium stearate as a lubricant has been studied. It 

is likely that the disintegrant efficiency of Kollidon-CL was reduced by the use 

of a water insoluble hydrophobic lubricant, and it would be worthwhile to 

compare a water soluble, hydrophilic lubricant e.g. Na-stearyl fumarate. 

Perfonnance rankings of the various disintegrants may change. 

2) The idea of reduced disintegrant perfonnance by drug deposition in and around 

Ac-Di-Sol during the wet granulation process was studied and '"poisoning" did 

not considerably affect disintegration times. The very poor perfonnance of 

intragranular Kollidon-CL suggests that "disintegrant poisoning" may be greater 

for Kollidon-CL and it would be interesting to investigate this. 

3) Investigating the effect of acidic buffer incorporation on the disintegration of 

Na-p-aminosalicylate tablets using a non-aqueous granulating solvent could 

provide more positive results. Dispersion may be more successful because buffer 

and drug will not react during the wet granulation process, which may increase 

the reduction of pHSAT by the buffer in the tablet on immersion in water. 

4) As an alternative approach to increasing the dispersion of a highly sol uble drug 

matrix, coating of the granulation may be effective. Micro-granules may be 

produced and coated with a non-adhesive material of intennediate water 

solubility before compression. If initial dissolution at granule and tablet surfaces 

can be reduced, then water may penetrate efficiently during this lag ti me and 
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allow extragranular disintegrant to function efficiently to disperse the matrix. 

Coating with a material of intermediate solubility should allow dispersed micro­

granules to dissolve away quite quickly. 

5) To investigate the effect of tablet shape on disintegration time, as this will alter 

the surface area in contact with the dispersion medium. 
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