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.................. .... ......... ........... ............... Abstract 
.................. . ............ ............. 

When bumblebees gather nectar, it is generally believed that foragers 
optimize the energy costs and gains of collecting nectar in a manner which 
maximizes fitness. The current study investigated the foraging behaviour of 
nectar gathering bumblebees and whether they maximized one of two 
currencies: 

1. Rate of net energy gain (RNEG), where RNEG = (energy gains - costs) 
,; me. 
2. Net energy efficiency (NEE), where NEE = (energy gains - costs) / costs. 

Bumblebees were trained to gather nectar from a non-depleting artificial 
flower patch at which energy gains could be accurately controlled and 
recorded. Energy gains were combined with time budgets and time / activity / 
laboratory (TAL) estimates of energy costs, enabling the NEE and RNEG of 
foraging bees to be estimated. Computer simulations of the optimum 
behaviour of the same bees when maximizing RNEG and NEE, were then 
compared to the observed behaviour of the bees. It was found that NEE and 
RNEG model predictions of behaviour differed significantly to the observed 
behaviour. It was, therefore, clear that the foragers did not maximize RNEG 
whilst gathering nectar. However, unlike the RNEG model, NEE model 
predictions of the bumblebees behaviour required accurate estimates of 
energy costs. As the data available for TAL estimates of energy costs were 
limited, based largely on studies of honeybee energetics, it was unclear 
whether TAIL estimated costs were reliable. As a result, it was possible that 
the variation between the observed foraging behaviour and NEE model 
predictions was due to errors in TAIL estimates of costs. 

To provide a more accurate measure of the bumblebees energy expenditure, 
a protocol was developed to enable the doubly labelled water technique to be 
applied to bumblebees. This resulted in alterations to the standard DLW 
analytical and methodological procedures. The developed protocol was 
validated by simultaneous DLW and infra-red open circuit C02 respirometry 
measures of the energy expenditure of 16 bumblebees during tethered flight, 
Comparison between DLW and respirometry estimates did not significantly 
differ from one another. Due to the low variation between DLW and infra-red 
calorimetry measures of energy expenditure, it was possible to use the DLW 
technique to measure the energy costs of bumblebees whilst foraging in a 
field situation. 

Results from field DLW measures of the bumblebees energy costs revealed 
significant errors in TAIL estimates. TAIL estimates were then removed from 
the NEE model and replaced by the costs required for the model to predict 
the observed behaviour of the bees. These costs were significantly different 
from DLW measured costs, thus showing that the bumblebees were not 
maximizing NEE whilst foraging for nectar. A significant correlation was, 
however, observed between the mass of foragers and volume of nectar 



collected. It is, therefore possible that bumblebees follow a simple nectar 
volume threshold rule, possibly in an attempt to maintain a constant water 
balance. 
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Chapter I 

Introduction 
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1.0.0 General Introduction 

Organisms evolve towards phenotypes best adapted to survive and 

reproduce within the ecosystem in which they are situated (Darwin, 1859). 

Selective pressures should, therefore, result in phenotypes which optimize 

their foraging behaviour in a manner which maximizes the probability of the 

individual successfully reproducing (Cody, 1974; Charnov, 1976; Lewontin 

1978; Maynard-Smith, 1978; McNeill, 1982; Pyke, 1984; McNamara & 

Houston, 1986; Stearns, 1986; Krebs & Davies, 1991; Owen-Smith, 1994). In 

other words: 

"Foraging behaviour has been shaped by natural selection, so that foraging 

cArategies which maximize fitness will exist in nature, and these foraging 

strategies will be optimal with respect to criteria that may be evaluated 

independently of a knowledge of the fitness of the animals" (Pyke, Pulliam & 

Charnov, 1977). 

The form in which optimal foraging behaviour may express itself is highly 

variable, depending largely on the life history of the species and the short 

term energy requirements of the individual or social group (Krebs, Stephen's 

& Sutherland, 1983). It is, however, possible to describe optimal foraging in 

terms of three major elements: 

1) The time taken to search for, collect and handle the food (time) 

2) The energy expended during searching for, and collecting food (energy 

costs). 

3) The energy gained from the food (energy gains). 
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Optimal foraging theory (OFT) would, therefore, suggest that an organism 

should employ a strategy in which the combination of time and costs results 

in the highest net gains to the individual or social group. 

This simplistic explanation of optimal foraging theory has, however, been 

criticized as inadequate (Heindrich, 1983; Hobbs, 1990; Ward, 1992) and 

even, "a complete waste of time" (Pierce & Ollason, 1987). In particular 

Pierce and Ollason highlighted 6 main areas' in the basic assumptions of 

OFT they considered invalidated its use. 

1. The inability to determine what natural selection maximizes 

Pierce and Ollason pointed out that many of the behavioural traits of an 

individual are inter-connected, with many organisms combining foraging with 

searching for a mate and predator avoidance etc. They argued that as 

different activities are not independent, natural selection will act on the 

-**, verall behaviour of the individual, resulting in no single activity being 

maximized. This was illustrated by Houston & McNamara's (1985) model of 

prey choice, in which forager's minimized their risk of starvation by selecting 

prey with minimal quality variation over prey with potentially greater gains, 

but also greater quality variability. In this case, the organism would forgo 

maximum gains in order to minimize the chances of starvation. This, 

however, does not necessarily infer that the organisms are not foraging in an 

optimal manner. Instead, the risk of starvation could be viewed as another 

selective pressure acting on OFT, possibly resulting in an animal considering 

starvation risk as a foraging cost (non-fuel cost), as much as energy 

expended by foragers when walking or flying (Seeley, 1986, Nonacs & Dill, 

Pierce and Ollason discussed eight areas of perceived inadequacy in OFT, however, the 
last two points are discussed within points 1 to 6. 
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1990). Therefore, if foraging costs included the non-fuel cost of starvation 

risk, collecting a low energy source food with a reduced starvation risk may in 

fact be optimal, irrespective of whether energy gains are maximized. Thus, 

although individual activities are not independent, the overall foraging 

behaviour can still be described as optimal. 

2. Variability in environmental conditions reduces the likelihood of 

optimal foraging behaviour evolving 

As environmental conditions are variable, Pierce and Ollason argued that an 

animal's behavioural foraging traits would have to continually change to 

remain optimal, making it unlikely that optimal foraging behaviour would 

evolve. However, many animals are mobile, and actively seek out particular 

environments (Krebs, 1985). As a result, even in a highly dynamic 

environment, it is possible for an animal to relocate to a niche which it has 

optimally evolved to exploit (Pyke, 1984). Also, similar foraging strategies 

have been reported in animals of unrelated lineage within the same 

environment (Stearns & Schmid-Hempel, 1987). As similar foraging 

behaviour has evolved independently, it would tend to indicate that this 

behaviour is adaptive, if not optimal (Stearns & Schmid-Hempel, 1987) 

I Optimal strategies may not occur in nature 

Pierce & Ollason also argued that even if natural selection did tend towards 

phenotypes which foraged in an optimal manner, optimal behaviour may not 

be realized due to three factors: 

i) Optimal strategies may not yet have evolved. 
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ii) Animals may have an imperfect knowledge of their foraging environment, 

thus, making it impossible to forage in an optimal manner. 

iii) The genetic variation of the animal may not occur in the direction 

necessary to permit evolution of optimal foraging behaviour. 

Although such arguments highlight reason why optimal foraging may not 

occur, they do not invalidate the use of OFT to investigate the behavioural 

traits of an animal. OFT may even be useful in identifying species which do 

not forage in an optimally manner and provide an explanation for why this is 

so (Stearns, 1987). A good example of this is the ideal free distribution (IFD) 

theory (Fretwell & Lucas, 1970). IFD is an optimal foraging model which 

predicts an equilibrium distribution of foragers among patchy recourses. The 

-, 'nodel makes two assumptions, i) the forager has perfect knowledge of the 

gains it will derive from collecting any given unit of food, and ii) foragers can 

move freely between patches (Harper, 1982; Abrahams; 1986). Providing 

that these assumptions hold true, the model predicts that at equilibrium, the 

ratio of the foragers between forage sites should equal the ratio of the 

resources between those sites, i. e. 

N, 
= 

R, 
N2 R2 (1) 

where N, and N2 equal the numbers of foragers at forage sites 1 and 2 

: eespectively, and R, and R2equal the amounts or rates of food availability at 

those sites. This distribution should, therefore, result in the foragers 

maximizing the food they receive (Pulliam & Carcaco, 1984). However, when 

this model was tested, large systematic deviations were observed from the 

predicted (Abrahams, 1986). These deviations were characterized by an 
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under-use of the more profitable foraging sites and an overuse of the less 

profitable foraging sites. As a result Gray and Kennedy (1994) investigated 

errors in the IFID model using a further perception limited model (PLM). Here 

it was assumed that the IFID model was correct, but the assumption that 

foragers had perfect knowledge of food gains was false. Using the 

augmented model, it was subsequently possible to successfully test the 

predictions of the IFID model on nectar foraging bumblebees (Dreisig, 1995). 

Therefore, when using an OFT model, it was possible to identify a limitation 

in an assumption (perfect knowledge), correct it, and use the corrected model 

to successfully re-test the models assumptions. Although it may not always 

be possible to correct errors in OFT models, it should be possible to identify 

these errors and reject the model. Thus, Pierce and Ollason's comments do 

not invalidate the basis of OFT. 

4. The existence of optimal strategies is untestable 

rlierce and Ollason asserted that a major limitation of OFT is the inability to 

identify a priori the function of a given foraging strategy by an animal. As a 

result, an apparently optimal behaviour of an animal may simply be a function 

of another strategy, for which the animal is not optimally adapted (Pierce & 

Ollason, 1987). It is possible that this situation may occur, however, the true 

function of a behavoural trait can be tested through a range of manipulative 

experiments combined with linear behavioural models (Belovsky, 1994). It 

should, therefore, normally be possible to determine the function of any given 

behavioural trait of an organism (Stearns & Schmid-Hempel, 1987). 
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5. Functional hypotheses are untestable 

As OFT models represent a simplification of nature (Cody, 1974), Pierce and 

Ollason suggested that reality is distorted as it is simplified. It was also 

argued that assumptions of the types and occurrence of food, and the range 

of possible behaviour by an animal, must be validated to enable OFT 

hypothesis to be tested. However, as many food types and behavioural traits 

do not have defined boundaries (McNeill, 1982), Pierce and Ollason argued 

that it is not possible to test basic assumptions relating to these elements 

within optimal foraging models. This could possibly result in OFT models 

which predict the correct foraging behaviour of an animal whilst the 

underlying assumptions regarding food types and range of behavioural traits 

are incorrect (Pierce & Ollason, 1987). If this assumption was true it would 

be impossible to test the overall validity of any optimal foraging models. 

Although it may be reasonable to assume that assumptions and 

simplifications result in errors in OFT model predictions, the degree of such 

errors have been testable in previous studies and invalid assumptions 

rejected or altered (Schmid-Hempel, Kacelnik & Houston, 1985; Stearns & 

Schmid-Hempel, 1987; Seeley, 1986). However, any study for which basic 

assumptions, such as energy expenditure, cannot be tested should be viewed 

critically. 

6. Optimal foraging models have not been tested 

Pierce and Ollason suggested that many OFT models test for optimal 

behaviour using experimental conditions which violate the model in question. 

In particular, Pierce and Ollason pointed to the general assumption that 

foragers optimize a single behavioural trait, when in fact observed behaviour 
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is being influenced by multiple parameters (e. g. Pulliam, 1974; Charnov, 

1976; Oaten, 1977). This may have been true of early OFT studies, however, 

more recently models have tended to consider numerous variables when 

attempting to predict foraging behaviour (e. g. Schmid-Hempel et al., 1985; 

Engen & Stenseth, 1986; Ydenberg & Houston, 1986). 

Pierce and Ollason also observed that most OFT studies seek agreement 

between observed foraging behaviour and OFT model predictions. This, they 

argued, is an incorrect approach, as hypothesis can only be disproved. 

Although it is reasonable to assume that a hypothesis can be rejected with 

more certainty than it can be confirmed (Popper, 1934), confirmation can still 

be of value (Stearns & Schmid-Hempel, 1987). It should also be noted that 

only after a number of independent confirmations is an OFT hypothesis 

generally excepted. Confirmation, can in certain circumstances, also be of 

benefit, as it is also possible to incorrectly reject a hypothesis e. g. it is 

possible that type I statistical errors will falsely reject 1 in 20 studies. 

Although OFT has many limitations, and must be applied and interpreted with 

caution, there is now a large body of literature in which significant 

relationships have been observed between linear OFT model predictions and 

observed foraging behaviour (Table 1.0.1). It would, therefore, appear 

reasonable to assume that despite limitations, OFT is still a valid approach of 

investigating the foraging rules and strategies employed by animals. 
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Table 1.0.1. A summary of available linear programming diet model (LP) results. The 
number of cases refers to the number of independent attempts to validate LID predictions. 
The e refers to the correlation coefficient reported in the study or computed from the data, 
where NA refers to an inability to compute the r2 from the published data. Comments on 
studies general findings are also presented. (Modified from Belovsky, 1994) 

atudy Species No. of 
Cases. 

Conclusion 

Belovsky 1981 A. alces 2 NA Energy maximizing 
Belovsky 1984a Microtus pennsylvanicus, 3 0.95 Energy maximizing 

Tragelaphus strepsiceros 
Belovsky 1984b Castor canadensis 1 NA Energy maximizing 
Belovsky 1986a Dissosteira carofina, Circottefix 19 0.83 Energy 

undulatus, Melanoplus sanguinipes maximizing, except 
M. temurrubrum, Microtus for during the rut 
pennsylvanicus, Spetmophilus when efficiency 
cblumbianus, Sylvilagus nutalli, time minimizing 
Marmota flaviventris, Antilocapra 
ameficana, Ovis canadensis, 
Odocoileus virginianus, 0. 
hemionus, Cervus canadensis, Bison 
bison 

Belovsky 1986b Data on mammalian herbivores from 28 0.86 Energy maximizing 
the literature 

Belovsky 1987a Human hunter-gathers (data where 5 0.99 Energy maximizing 
parameters are available from 
specific studies) (data combined 
from numerous studies) 

60 0.93 Energy maximizing 
Belovsky 1987b Microtus pennsylvanicus 6 0.76 Energy maximizing 
Belovsky 1987c Odocoileus virginianus I NA Energy maximizing 
Belovsky & Equuscaballus, Ovis aries, Bos 4 0.98 Energy maximizing 
Slade 1987 taurus 
Belovsky 1990 Molothrus ater 1 NA Energy maximizing 
Belovsky 1991 Rangifer tarandus 8 0.96 Energy maximizing 
Edwards 1993 Marrnota flaviventris 12 0.69 Energy maximizing 
Doucet & Castor canadensis 10 0.57 Energy maximizing 
Fryxell 1993 
Karasov 1985 Ammospennophilus leucerus 1 NA No result because 

of missing 
constraint 

Owen-Smith Tragelaphus strepsideros 3 0.99 Energy maximizing 
1993 
Ritchie 1988 Sperynophilus columbianus 132 0.94 Energy maximizing 
Ritchie & S. Columbianus 20 0.93 Energy maximizing 
Belovsky 1990 
Schmid- Apis mellifera 13 NA Energy efficiency 
Hempel et aL, 
1985 
Schmitz 1990 Odocoileus virginianus 6 0.99 Energy maximizing 
Spalinger 1980 0. hemionus 1 NA No result because 

of missing 
constraint 

Vulink & Drost Bos taurus 14 NA Energy maximizing 
1991 
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Ine group of organisms for which many of the problems encountered in 

optimal foraging studies do not apply are the eusocial Apoidea super family, 

in particular the honeybee's (Apini: Apis) and bumblebee's (Bombini: e. g. 

BombUS)2 
. 

Not only are honey and bumblebee's central place forager's 

(bound permanently to their hive), but the haploid / diploid nature of their life 

history (Figure 1.0.1) produces worker caste forager's which are infertile 

(Heinrich, 1979; Seeley, 1985; Winston, 1991). As the workers are infertile, 

they do not mate, and restrict their behaviour to hive duties or foraging tasks 

(Heinrich, 1979, Makela, Rowell, Sames & Wilson, 1993). Temporal 

polytheism also results in any non-foraging tasks, such as hive duties and 

colony defense, being performed by non-foraging caste workers (Heinrich, 

1979; Seeley, 1985; Winston, 1991). As a result, forager's perform only 

foraging tasks, making the collection of optimal foraging behaviour data 

particularly easy compared to data collection on organisms which combine 

foraging with mating or defensive behaviour (Dukas & Real, 1991). 

Testing linear foraging models, using observations of foraging behaviour, is 

also helped by the relatively simple food the forager's collect; consisting of 

nectar (sugar and water) for carbohydrates, and pollen for protein (Sladen, 

1912; Von Frisch, 1967). As polytheism restricts an individual forager to 

collecting only nectar or pollen, estimates of foraging gains may be easily 

observed. Bee's may also be trained to artificial flower patches (Von Frisch, 

1967), so that volume and sugar content of nectar collected during a foraging 

trip (gains) may be controlled (Schmid-Hempel et al., 1985; Seeley, 1986; 

Wolf & Shmid-Hempel, 1990). 

2 The term bumblebee refers to Bombus spp unless otherwise stated. Individual species of 
Bombus will be given were necessary. 
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Figure 1.0.1 Haploid / Diploid relationship between the production of 
workers, drones and queens from queen laid eggs (altered from Winston 
(1991)). 

Egg 

Fertilized 

Light 
feeding 

Worker 

Heavy 
Feeding & 
Royal Jelly 

Queen 

- A, 

Unfertilized 

v 

Drone 

When a queen lays an egg, she can produce offspring with two distinct 
genotypes: 1) Haploid (unfertilized) offspring with only one set of genes 
derived from the queen; these offspring will develop into males, otherwise 
referred to as drones. 2) Diploid (fertilized) offspring, with genes derived from 
both the queen and one of the drones with which the queen has mated. 
Diploid offspring are all female and may develop into either worker castes or 
subordinate queens. The factors determining whether workers or queens are 
produced is related to the cell size the egg is laid in, and the food the 
developing larvae are fed on (Winston, 1991). 
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Due to the relative ease with which the behaviour of honey and bumblebees 

can be observed and quantified, their optimal foraging strategies have been 

widely studied (e. g. Heinrich, 1976a; Pyke, 1978; Laverty, 1980; Pyke, 1980; 

Real, 1981; Heinrich, 1983; Willmer, 1983; Hodges, 1985; Schmid-Hempel et 

aL, 1985; Seeley, 1986; Willmer, 1986; Cartar & Dill, 1990a; Cartar & Dill, 

1990b; Wolf & Schmid-Hempel, 1990; Cartar, 1991; Greggers & Menzel, 

1993; Seeley, 1994; Willmer, Bataw, & Hughes, 1994; Dreisig, 1995). 

1.0.1 Intra-patch nectar foraging behaviour of honey and bumblebees 

Honey and bumblebees collect nectar from flowering plants. The foraging 

cycle involves the bee leaving the hive and flying to a nearby flower "patch", 

usually within a9 km radius of the hive (Seeley, 1985). Once at the patch, 

the bee lands on a suitable flower and searches for nectar. When located, 

the bee draws up the nectar, storing it in an enlarged section of the 

esophagus called the crop or honey stomach. Once the nectar has been 

collected, the bee flies to a subsequent flower and collects another "parcel" of 

nectar. This continues until : 

The bee's crop is full. 

No nectar remains in the patch. 

Some form of foraging strategy results in the bee leaving the patch before 

the crop is full. 

iv) The bee is disturbed. 

Once the forager has returned to the hive, the bee unloads the collected 

nectar and typically commences another foraging cycle. 
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It should, however, be pointed out that sugar content and volume of nectar 

produced by flowers within the patch are highly variable (Dukas & Real, 

1993a), even within plants of the same species located in the same area 

(Heinrich, 1979a; Pleasants & Zimmerman, 1979; Teuber & Barnes, 1979; 

Willmer, 1983; Zimmerman, 1981,1983; Willmer, 1986; Real & Rathcke, 

1988; Willmer, 1988; Creswell, 1990; Waser & Mitchel, 1990; Dukas & Real, 

1993a). Foraging bees would, therefore, benefit from the ability to identify 

and forage at nectar rich flowers. It appears that both honey and 

bumblebees have evolved (or co-evolved with flowering plants) a number of 

traits which enable them to do just this (e. g. Roberts, 1979; Corbet, Kerslake, 

Brown & Morland, 1984), including: 

1) Direct assessment. Where the forager lands on a flower, and uses her 

glossa to directly determine nectar content by probing the umbel (Pyke, 

1978). 

2) Visual stimuli. It has also been reported that foragers may be able to 

visually estimate the nectar content of a flower without the need to land and 

probe the umbel (Thorp, Briggs, Estes & Ericson, 1975; Kevan, 1976). The 

visual stimuli used by the forager appears to be the ultraviolet (UV) 

absorption patterns of some nectars (Thorpe et a/., 1975). As honey and 

bumblebees are capable of visualizing light at UV wavelengths (Weiss, 

Soraci & McCoy, 1943), it has been argued that a forager can estimate the 

quantity of nectar contained within a flower from the UV patterns on and 

within the umbel (Thorpe et al., 1975). 

3) Pheromone Marking. There is now growing evidence that bees can, to 

some degree, mark individual flowers with pheromones, indicating that they 

are either rewarding (Nunez, 1967; Ferguson & Free, 1979; Cameron 1981; 
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Marden, 1984; Giurfa & Nunez, 1992), or non rewarding (Frankie & Vinson, 

1977; Free & Williams, 1983; Wetherwax, 1986; Schmitt & Bertsch, 1990). 

As a result it may be possible for bees to avoid landing on non rewarding 

flowers and concentrate their foraging effort on more rewarding plants. 

4) Scent discrimination. It has also been suggested that bees can 

discriminate between nectar rich and nectar poor flowers by the scent of 

nectar (Heinrich, 1979a). In particular, odors released from volatile products 

of yeast metabolism within nectar (Crane, 1975; Williams, Hollands & 

Tucknott, 1981) may indicate nectar presence or absence. 

5) Age selection. Foragers may also be able to distinguish between flowers 

of different ages via traits such as petal quality and colour (Gori, 1983). A 

good example of age selection was reported by Willmer et aL (1994), who 

observed five species of Sombus spp foraging preferentially to younger 

Flowers of the raspberry plant (Rubus idaeus). 

Although their have been many suggestions as to how honey and 

bumblebees may select nectar rich flowers, it is unlikely that any one of the 

above strategies are used in isolation, instead it is more likely that bees use a 

range cues combined with past experience to determine which flowers will be 

the most profitable (Corbet et al., 1984). 

Although foragers may use some, or all, of the above stimuli to detect nectar 

rich flowers, bees also have to optimally allocate foraging time and effort 

within the patch to best maximize fitness. For this reason, bees appear to 

search for nectar in a systematic manner (Dreisig, 1995) tending to 

preferentially forage to larger flowers (Wilson & Price, 1977; Thomson, 

Maddison & Plowright, 1982; Bell, 1985; Andersson, 1988; Schmid-Hempel & 

14 



Speiser, 1988) and restrict their inter-flower flight distance and orientation 
(Dreisig, 1995). The distance which a bee flies, when traveling to a 

subsequent flower, appears largely dependent on the previous experience of 

the forager (Dukas & Real, 1993a). It has been observed that bees will 
decrease their inter-flower flight distance when previously encountered 

nectar rewards were high (Heinrich, 1979b; Dukas & Real, 1993a). Also 

when previously encountered nectar rewards were low, foragers generally 

increase inter-flower distances, "ignoring" many flowers in the process 
(Dreisig, 1995). It has also been reported that increased inter-flower flight 

distance is accompanied by an increase in the random probing of previously 

unvisted flowers by the forager (Heinrich, 1979b). Previous experience also 

seems to affect the direction in which the inter-flower flights occur. Bees tend 

to leave flowers in the same direction in which they arrive, if the encountered 

nectar rewards are low. However, if nectar rewards are high, bees tend to 

change orientation (Pyke, 1978; Heinrich, 1979b). The combined effect of 

decreasing inter-flower flight distance and alteration in flight direction results 

in restricting foraging to a small patch of nectar rich flowers. If the quality of 

this patch decreases, the resultant increase in inter-flower flight distance and 

flight direction consistency will result in the forager moving to alternative sites 

where nectar rewards may be higher (Heinrich, 1979b). As individual flowers 

in a patch vary greatly in their nectar content (as discussed previously), bees 

which alter inter-flower flight distances and direction based solely on the 

experience of the last flower visit would display highly variable and inefficient 

foraging behaviour (Dukas & Real, 1993a). As a result it would appear that 

bees are capable of integrating the experience of up to 3 previous flower 

visits when determining what the subsequent inter-flower flight distance and 

direction should be (Dukas & Real, 1993b). The ability of bees to integrate 

past experience from more than 3 flowers appears to be limited due to the 

inability of the bee to memorize more information (Heinrich, 1976a; Laverty, 
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1980; Woodward & Laverty, 1992, Greggers & Menzel, 1993; Dukas & Real, 

1993b). 

Also associated with limited memory is the bees ability to learn and memorize 

how to efficiently handle nectar once a flower has been located. Ideally, a 

bee would forage to the flowers within a patch which provided the richest 

source of nectar, irrespective of the plant's species or morphology. However, 

this does not appear to be the case, with bees restricting themselves to 

foraging at between 1 to 3 plant species only (Heinrich, 1976a; Laverty, 1980; 

Woodward & Laverty, 1992, Greggers & Menzel, 1993). This action appears 

to be largely due to the limited memory of honey and bumblebees, which 

restricts the ability of bees to memorize the skills necessary to handle nectar 

from large numbers of varying flower types efficiently (Dukas & Real, 1991; 

Dukas & Real, 1993a; Dukas & Real, 1993b; Greggers & Menzel, 1993). It 

nas also been suggested that the skills learnt when handling one species of 

flower may "interfere" with handling skills learnt from other species 

(Woodward & Laverty, 1992; Dukas, 1995) which again would result in honey 

and bumblebees limiting the number of flower species they could efficiently 

forage at. 

Also, it has been reported that honey and bumblebees often develop foraging 

"routes", or "traplines", repeatedly visiting the same flowers on every foraging 

cycle over periods ranging from a few hours to a few days (Corbet et al., 

1984; Dreisig, 1995). The foragers also tend to randomly sample previously 

unvisited flowers whilst flying along a trap line (Corbet et al., 1984). This 

nnables the bee to include newly encountered nectar rich flowers, and 

exclude previously encountered nectar poor flowers, in subsequent trap line 

foraging trips (Dreisig, 1995). The viability of trap line foraging does, 

however, depend on the ability of the flowers to produce sufficient nectar in- 
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between forager visits to make the foraging trip economically viable to the 

bee. This not only depends on the innate ability of the plant to synthesize 

nectar, but also on the ambient air temperature, humidity and age of plant 

(Willmer, 1986; 1988). Where conditions facilitate rapid synthesis of nectar, 

trap line foraging may be of benefit to a bee as foragers do not have to spend 

time searching for nectar rich flowers as these have been previously located. 

1.0.2 Differences in the foraging behaviour of honey and bumblebees 

Although the within patch foraging behaviour of honey and bumblebees is 

similar, there are a number of notable differences between the two genera. 

In particular, it has been reported that bumblebees tend to preferentially 

forage at flowers providing constant, and thus predictable, nectar rewards 

(Real, 1981, Wadington, Allen & Heinrich, 1981; Real, Ott & Silverfire, 1982; 

Real & Carco, 1986; Cartar & Dill, 1990a; Cartar, 1991) whilst honeybees 

forage at flowers irrespective of variability in nectar contents (Banschbach & 

Waddington, 1994). The preference, by bumblebees, for flowers which 

provide a constant supply of nectar has been describe as "risk sensitive" 

foraging (Cartar & Dill, 1990a; Cartar, 1991) and appears to be a strategy 

which reduces the probability of energy short fall whilst foraging (Houston & 

McNamara, 1985). Energy short fall may occur in a patch of nectar variable 

flowers, even if the total nectar content of all flowers in the patch is high. 

This is because a forager may only be able to gather nectar from a small 

percentage of the flowers in the patch and only encounter flowers with low 

nectar rewards. As a result, the energy obtained by collecting the nectar may 
be less then the energy expended through flight and handling costs. If, 

however, the forager could visit all flowers in the patch, variability in nectar 

content becomes irrelevant, as only total patch nectar content need be 

ionsidered (Banschbach & Waddington, 1994). As bumblebees have 
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relatively small colony populations, usually not exceeding 400 individuals 

(Heinrich, 1979a), the colony's foragers have a significantly lower probability 

of visiting every flower in a given patch than honeybee foragers, whose 

colony population may exceed 100,000 workers (Winston, 1991). The 

relatively large worker population of honeybee colonies, however, is likely to 

enable foragers to visit all flowers within a patch on a regular basis. As a 

result, honeybees are unlikely to experience short term energy deficits due to 

foraging at nectar variable flowers (Banshbach & Waddington, 1994), thus, 

explaining why bumblebees are risk sensitive foragers whilst honeybees are 

risk averse. 

The relatively large population size of honeybees may also explain other 

intra-patch differences in the foraging behaviour of honey and bumblebees. 

As in the case of risk sensitivity, large population sizes tend to reduce any 

deleterious effects of variability or "mistakes" whilst foraging Houston & 

MacNamara (1985) argued that the risk of a honeybee colony starving 

following a mistake by a forager is insignificant when compared to a 

bumblebee colony. In other words, honeybees do not need to be as efficient 

as bumblebees when foraging in order to maximize fitness. This may explain 

some of the difference in foraging behaviour observed by Willmer et al. 

(1994) when studying the behaviour of honey and bumblebees foraging at 

raspberry plants (R. idaeus), variations in behaviour included: 

1) Bumblebees made a higher percentage of visits to the flowers 

(approximately 60% of all visits). 

2) Bumblebees were able to more efficiently select and forage at younger 

flowers than honeybees. 
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3) Bumblebees visited more flowers per minute than honeybees. 

4) Bumblebee foragers were more frequently present in the morning during 

peak pollen clehiscence. 

In general, Willmer et aL (1994) found that bumblebees foraged more 

efficiently than honeybees, possibly reflecting the greater costs experienced 

by bumblebees of inefficient foraging behaviour. 

Another major difference between the two genera is the ability of honeybees 

to communicate with one another (Von Frisch, 1967). Unlike bumblebees, 

when honeybees return to the hive, kinetic, audio and trophallaxis 

communication are used by foragers to indicate the position and quality of 

potential flower patches (Seeley, 1985; Gould & Gould, 1988; Winston, 

1991). This has major implications when considering OFT, as a foraging 

honeybee may have prior knowledge of the potential costs and gains that 

may be encountered when collecting nectar from a flower patch it has not yet 

visited (Seeley, 1994). As a result, foraging honeybees can avoid patches of 

low quality, and concentrate their foraging effort in patches from which 

relatively high energy returns can be derived. Bumblebees, however, can 

only obtain information by visiting the patch (as discussed previously). 

There are also differences in the life history of the two genera, which may 

significantly affect the way they optimize their foraging behaviour (Figure 

-i. 0.2a & 1.0.2b). Unlike bumblebees, honeybees maintain a colony 
throughout the whole year, provisioning the hive with sufficient nectar and 

pollen to survive the winter. Bumblebee colonies, however, die at the end of 

each foraging season, with only fertilized queens surviving the winter through 

hibernation. As a result, it would appear reasonable to assume that the 
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Figure 1.0.2a Annual life cycle of a bumblebee colony 
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Diagram of a bumblebee colony cycle, from the queen emerging from 
hibernation (left) to new queens (lightly stippled) emerging from cocoons of 
the third brood (eggs at lower right), mating, and hibernating (right). Note 
progression of eggs of specific brood packets to become larvae, pupae, and 
adults, and the use of empty cocoons for honey or pollen (stippled) storage. 
The diagram indicates the production of two worker broods and one queen 
brood, the latter from three separate egg batches. (After Heinrich, 1979). 
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strategy which would confer the greatest fitness to a bumblebee colony would 

be to produce as many reproductives (drones and queens) as possible, thus 

maximizing the chances that the genes of the colony will be passed on to the 

next generation (Heinrich, 1979). Although honeybee colonies also produce 

reproductives, reproduction also occurs in conjunction with swarming 

(Seeley, 1985; Winston, 1991). Swarming occurs when a hive worker 

population reaches a sufficient size for the colony to divide, with one portion 

of the colony leaving the hive with a subordinate queen, swarming and 

establishing a new colony. The dominant queen and remainder of the 

workers stay in the original hive, and begin to build up the colony numbers 

again. It is, therefore, important that a colony's worker population increases 

rapidly, allowing the colony to swarm and reproduce as many times in one 

season as possible. The number of workers in a honeybee colony is also 

important during over-wintering, as larger colonies are better able to regulate 

hive temperature (Seeley, 1985). Larger colonies also have a readily 

available supply of workers, who can commence foraging immediately the 

weather conditions permit in the spring (Beauchamp, 1992). As a result, it is 

possible that number of workers is more important to a honeybee colony than 

is the number of reproductives. This in turn may have considerable 

implications when considering the optimal foraging strategies which the two 

genera may employ. 

There is one other difference between the two genera which is important 

when considered energy expenditure, the ability of bumblebees to continue 

foraging at low temperatures. Generally honeybees do not forage when 

ambient temperature drops below 150C (Seeley, 1985, Winston, 1991), 

although many bumblebee species have been regularly observed foraging at 

temperatures between 6 and 70C (large Queen's of B. vosnesenskY and B. 

edwardsis have also been reported flying at temperatures nearing OOC 
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(Heinrich, 1993)). Bumblebees can fly at low temperatures largely due to the 

ability of the bees to elevate their thoracic body temperature, via shivering 

thermogenesis, to levels necessary for flight (Heinrich, 1979a; 1993). 

Shivering thermogenesis is a process were the dorsal longitudinal muscles 

and dorso-ventral muscles are contracted. As the two sets of opposing 

muscles are contracted simultaneously, the contractions are tetanic, 

producing heat but little motion (Ikeda & Boettiger, 1965). The reduction in 

motion during the contractions results in a number of benefits: 

1. Noise levels are reduced, decreasing any interference in communication 

within the nest. 

2. Reducing vibration decreases any wing damage which may occur as a 

result. 
3. Reduction in vibration will also decrease the quantity of pollen lost from 

the bees body hair during heat production. 

It has, however, been demonstrated that honeybees are also capable of 

shivering thermogenesis (Bastian & Esch, 1970; Esch & Groller, 1991), but 

are still incapable of flying at temperatures as low as those observed in 

bumblebees. This would appear to be largely a function of the low surface 

area / body volume ratio of honeybees relative to the high ratio observed in 

bumblebees. As the efficiency of shivering thermogenesis to increase 

thoracic temperatures decreases with decreased surface area / body volume 

ratio (Heinrich, 1993), the energetic cost of thermoregulation in honeybees 

are greater than that for the larger bumblebees. As a result, flight (and hence 

foraging) for honeybees below temperatures of 150C may simply be 

energetically too expensive. 

23 



1.0.3. Optimal foraging behavior of honey and bumblebees 

When studying the optimal foraging behaviour of honey and bumblebees, 

foragers have been observed to regularly abandon flower patches and return 

to their hive prior to filling their crops, even when nectar remains in the flower 

patch (Schmid-Hempel et aL, 1985; Seeley, 1986; Carter & Dill, 1990a; Wolf 

& Schmid-Hempel, 1990). To explain this behaviour, it has been suggested 

that bees could be maximizing one of two currencies; i) the Rate of Net 

Energy Gain 3 (RNEG), where foragers maximize the rate of nectar delivery 

to the hive per unit time, and ii) Net Energy Efficiency (NEE) where foragers 

maximize their energetic gain per unit of energy expended whilst foraging. 

fhe rationale behind the RNEG currency was based on the belief that fitness 

of the forager was maximized by delivering the maximum energetic value of 

nectar to the hive in the shortest possible time (Pyke, 1978; 1980). As a 

result, bees maximizing RNEG would abandon a patch before filling their crop 

only if nectar gains decreased with time (Orian & Pearson, 1979). Initially, 

this approach appeared to fit well with the observed behaviour of foragers in 

the field (Heinrich, 1983; Pyke, 1984; Cheverton, Kacelink & Krebs, 1985; 

Harder & Real, 1987). However, as foraging experiments using artificial 

flowers were used to test RNEG models, discrepancies became apparent 

between observed behaviour and model predictions. In particular, it was 

widely reported that honeybees were regularly observed abandoning non- 
1epleting flower patches with only partially filled crops (Schmid-Hempel et aL, 
1985; Seeley, 1986; Wolf & Schmid-Hempel, 1990). As this phenomenon 

was counter to predictions from RNEG models, two possible conclusions 

could be drawn; i) there are constraints on optimal foraging behaviour which 

RNEG is also referred to as the Rate of Net Energy Intake (RNEI). 
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are not accounted for by energy gains and costs alone, or ii) honeybees do 

not maximize RNEG. 

Honeybee foragers depend heavily on information they can obtain about the 

cost and gains of foraging from any particular flower patch (Frisch, 1967). 

Because of this, Nunez (1982) suggested that partial crop loading observed 

in these species might be a result of a forager's need to acquire information 

on the potential net gains which could be acquired by foraging in an 

alternative flower patch. This in turn would permit foragers to concentrate 

their foraging effort in the most rewarding patches available. As such 

information can only be acquired by returning to the hive, and communicating 

with other workers which have foraged at alternative patches, Nunez argued 

that foragers may benefit from prematurely abandoning a patch in order to 

acquire this information. As this strategy would result in honeybees 

collecting partial crop loads, even in non-depleting flower patches, it could 

jxplain the discrepancy between the behaviour of the bees observed in the 

field and RNEG predictions. Honeybees, however, are unique amongst 

nectar foragers in their ability to communicate the location, costs and quality 

of a flower patch (Frisch, 1967, Gould & Gould, 1988). If, therefore, Nunez's 

explanation of partial crop loading in non-depleting patches is correct, other 

nectivorous organisms, without the ability to communicate similar information, 

should not display partial crop loading in non-depleting patches. This, 

however, is not the case, with partial crop loading also being reported by 

Wolf & Hainsworth (1977) when observing the behaviour of Hummingbirds 

foraging to artificial flowers containing ad libitum nectar. Nunez's information 

centered hypothesis is not necessarily, therefore, an adequate explanation of 

the variations between the observed behaviour of foraging honeybees and 

RNEG predictions. 
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Another explanation for partial crop loading came from work by DeBenedictis, 

Gill, Hainsworth, Pyke & Wolf (1978) on hummingbirds. They suggested that 

time may not be as important a variable in central place foraging as was 

previously thought. Instead, DeBenedictis et aL (1978) suggested that 

hummingbirds optimized their foraging behaviour by maximizing their Net 

Energy Efficiency (NEE)). A hummingbird following this strategy not only has 

to account for the cost of collecting the nectar, but also the added cost of 

ý, *ansporting the nectar. As the weight of collected nectar increases, so do 

the costs of transporting the nectar. The costs of collecting nectar will thus 

continue to increase with every flower visited, until a point is reached where 

the gains from collecting a further parcel of nectar would not improve the ratio 

of gains to costs derived from the foraging trip. When this point is reached, a 

hummingbird maximizing NEE will abandon the patch. Thus, maximizing 

NEE provides an alternative explanation for why some nectar foragers 

abandon non-depleting flower patches with partial crop loads. 

As hummingbirds and honeybees both forage for nectar, it was suggested 

that honeybees might also be maximizing NEE rather than RNEG (Schmid- 

Hempel et al., 1985). To determine the validity of this hypothesis, Schmid- 

Hempel et al. (1985) produced a mathematical model capable of predicting a 

honeybees foraging behaviour when maximizing NEE and RNEG. Schmid- 

Hempel et al. (1985) then trained honeybees to an artificial flower patch, 

where the quantity and energy content of nectar collected was controlled. 

The observed number of flower visits was then compared to model 

predictions for the same bee when maximizing NEE and RNEG. It was found 

that honeybees also appeared to maximize NEE, Subsequent foraging 

studies on honeybees have also found that NEE predictions of foraging 

behaviour closely match the behaviour of the bees observed in the field 

(Seeley, 1986; Wolf & Schmid-Hempel, 1990). 
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The evolutionary rationale behind honeybee foragers maximizing NEE is 

linked to two factors i) worker life span, and ii) colony population size. 

It has been shown that as energy expenditure in honeybees increases, so 

their life expectancy decreases (Neukirch, 1982; Schmid-Hempel & Wolf, 

1988). Foragers maximizing RNEG and returning to the hive with full crops 

(when foraging at a non-depleting flower patch), will experience greater flight 

costs than bees maximizing NEE, which only collect partial crop loads. As 

increased flight costs reduces life expectancy, a bee maximizing NEE will, on 

average, be able to complete more foraging cycles before dying than a bee 

maximizing RNEG. As a result, although a bee maximizing NEE may collect 

less nectar on each foraging cycle, the total quantity of nectar collected over 

the life time of the bee may be greater than a bee which maximizes RNEG 

(Shmid-Hempel et aL, 1985). This in turn would convey an increased fitness 

to the colony, as quantity, rather than rate, of nectar delivery is maximized. 

The size of the worker population of a colony is also linked to life expectancy, 

with increased longevity of workers increasing the population size of the 

colony (Beauchamp, 1992). As the population size of the colony is important 

with respect to the ability of the colony to swarm and survive the winter 

(discussed above), increased worker longevity and the resultant increase in 

population size would again confer an increased fitness on the colony. 

Although there is now strong theoretical and empirical support for the view 

that honeybees maximize NEE when foraging for nectar, evidence that 

bumblebees also maximize NEE is lacking. This is largely due to the failure 

of previous attempts to train bumblebees to forage from artificial flowers (Wolf 

pers. com. ). Because of this, it has not been possible to test theoretical 

predictions of foraging behaviour with the observed behaviour of bumblebees 
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in the field. This is important, as although it may appear reasonable to 

assume bumblebees optimize their foraging behaviour in the same manner 

as honeybees, differences in the behaviour and life histories of the two 

genera (as discussed previously) may result in their fitness being maximized 

by using different foraging strategies. 

The aim of this study was, therefore, to obtain accurate measurements of 

energy gains (using artificial flower patches) and costs (using the Doubly 

Labelled Water technique) of bumblebees foraging for nectar. Comparisons 

between observed foraging behaviour and NEE / RNEG model predictions 

could then be used to determine which, if either of the two currencies was 

maximized by nectar foraging bumblebees. 
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............ . ......... 

(..... napter 
.......... 

Do current optimal foraging models 
accurately predict the nectar 

foraging behaviour of bumblebees? 



2.0.0 Do bumblebees maximise Net Energy Efficiency, 

Rate of Net Energy Gain or another currency when 

foraging for nectar? 

Introduction 

To explain the foraging behaviour of bumblebees whilst collecting nectar, 

three factors must first be determined; i) the energy expenditure of the bee 

whilst foraging (0), ii) the energy gained by the bee from collected nectar (G), 

iii) and the time taken to collect the nectar and deliver it to the hive (T). 

When combined, the variables 0, G and T can be used to predict the optimum 

number of flower visits a bee should make during a foraging cycle in order to 

maximise NEE or RNEG. The predicted number of flower visits can then be 

compared with the observed number of flower visits, and the currency being 

maximised identified. 

To predict the volume of nectar a bee should collect when maximising NEE 

and RNEG, the maximum value of NEE and RNEG must be determine . is 

was done using the Schmid-Hempel et aL (1985) model (hereafter referred to 

as the SH model). 
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2.0.1 Calculating energy gains of a bee whilst foraging 

4. -: nergy gains of a bee over one foraging cycle can be calculated as: 

nCw (1) 

where n= the number of flowers visited, C= weight specific energetic value of 

nectar (assuming the energy value of sucrose equals 16.7 J mg") and w= the 

mass of nectar collected on each flower visit (mg). 

2.0.2 Estimating energy costs incurred by a bee whilst foraging 

Initially, the bee must fly from the hive to the flower patch. Assuming the 

unloaded metabolic rate of a flying bee is a,, (Watt), the cost of flying to the 

patch in ro seconds can be calculated as a,, ro. 

The bee then visits n flowers in the patch, collecting w mg of nectar from each 

flower visit, and taking h seconds to handle the nectar at each flower. Whilst 

the bee is collecting nectar on the flower, Schmid-Hempel et aL (1985) 

assumed that bees reduce their energy expenditure to resting or walking 

metabolic rates (ah (Watt)). After handling the nectar, the bee will take off 

*Ind fly to the next flower in the patch. As the bee has collected w mg of 

nectar, her body mass will also have increased by w mg. This increase in 
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body mass will result in the bee expending more energy whilst flying, thus 

incrementally increasing the energy cost of every subsequent flower visit. 

The increased costs of inter-flower flights can be calculated by the 

incremental increase in flying metabolic rate with load (a Watts), following 

each flower visit. If, therefore, a bee visits n flowers, with an inter-flower flight 

time of r seconds, the total energy expenditure of the bee whilst foraging in 

the flower patch (Cp) is calculated as: 

Cp = ao(n - I)r +a 
n(n - 1) 

+a, nh (2) 
2 

Total energy expenditure during the flight to the flower patch and back to the 

hive (C, ), can be calculated using equation 3: 

ao ro + (a. + a(Cwn)) ro (3) 

Once the bee has returned to the hive, it must deliver the nectar to the honey 

pots. Thus, if the bee spends To seconds in the hive, with a metabolic rate of 

a, (Watts), energy expenditure in the hive will equal Toar ' 

Total energy expenditure per foraging cycle (C), can, therefore, be estimated 

as: 

C= Cp + Cr+ Toa, (4) 
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Combining measurements of energy gains, and estimates of energy costs, 

allows NEE and RNEG to be calculated using: 

NEE =(G -0)/0 

and 

RNEG = (G -0)/ T 

Assuming it is possible to determine the times and distances flown by a bee 

during a foraging cycle, and estimate the bees metabolic rate, equations (5) 

and (6) can be used to predict the number of flowers a bee should visit in 

order to maximise NEE and RNEG. 

The aim of this experiment was, therefore, to train bumblebees to forage for 

nectar at two artificial flowers, recording their behaviour, and to compare the 

iumber of flowers the bees visited in these experiments with the number of 

flowers predicted by the two foraging models. 
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2.1.0 Materials& Methods 

2.1.1 Training bumblebees to artificial flower patches 

As the volume and sucrose concentration of nectar in natural flowers cannot 

be controlled or accurately quantified, foraging bumblebees were trained to 

artificial flowers (Figure 2.1.1). To provide stable environmental conditions, 

the artificial flowers were situated in a 150m x 150m Forshaw glasshouse. 

The internal temperature of the glasshouse was regulated at 22±(sd)l*C 

(unless otherwise stated, ± will hereafter refer to the standard deviation of a 

-nean), and a relative humidity of 65±2%. The glasshouse contained a 

mature crop of tomatoes (Lycopersicum esculentum), which provided an 

available source of pollen but no nectar (Wareing & Philips, 1986). 

Due to the difficulty in capturing and rearing wild bumblebee colonies, all 

experiments were performed on bees removed from artificial colonies of 

Bombus terrestris, purchased from Biobest Ltd, Kent. Bumblebee colonies 

were placed in the glasshouse one week prior to commencing the foraging 

experiment. This permitted time for the colony to settle following re-location 

of the hive. 

Temperature and humidity within the glasshouse was regulated by a Staern environ 
regulator system (Staem environ Ltd, Gwent, Wales). 
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Figure 2.1.1 
Design of artificial flower, to which B. terrestris were trained (Wolf & Shmid-Hempel, 1990). 
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The artificial flowers (Figure 2.1.1) were designed following Wolf & Schmid- 

Hempel (1990), and consisted of an RSTm 19 stepper motor, attached to a 

nectar reserve. When activated (via a remote control box), the stepper motor 

pumped a known volume of nectar from the nectar reserve to a star shaped 

blue corolla. To prevent the stepper motor from disturbing foraging bees, the 

unit was concealed within a1 M3 black plywood box, with the corolla fixed 

externally to the upper surface. The volume of nectar delivered could be 

altered from 1.2 pl to 0.6 pl. A sliding plastic cover was also attached over 

the flower surface, to enable the corolla to be covered or exposed. 

Bees were trained to forage from the corolla by placing the artificial flower 

within 5m of the hive entrance. Once bees began to feed from the corolla, 

the flower was gradually moved away from the hive, until the hive-flower 

patch distance equalled 20m. To simulate a non-depleting flower patch, bees 

were trained to fly repeatedly between two flowers situated 2m apart (Figure 

2.1.2. ). Only bees collecting nectar were used in the experiment, any bees 

collecting nectar and pollen were captured and not used in subsequent 

experiments. 

2.1.2. Changing the volume and sucrose concentration of nectar 

delivered on each flower visit 

Once a bee was trained to the flower patch, the volume of nectar delivered to 

each flower was set at 1.2 pl with a w/w sucrose concentration of 75% (giving 

36 



Figure 2.1.2 
Simulation of a non-depleting flower patch using 2 artificial flowers. 

To simulate a non-depleting flower patch, bees were trained to fly from the hive to flower 1. 
Once the bee had collected 1.2 / 0.6 micro-liters of nectar, the sliding paddle was used to cover 
the corolla. At the same time, the paddle on flower 2 was pulled back to expose the second 
corolla. The bee was then allowed to fly to flower 2 and collect a second parcel of nectar. This 
process was repeated until the bee abandoned the patch and returned to the hive. 
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an energy value of 10.2 J). The sucrose content of the nectar was set at 

75%, as it proved difficult to train bees to forage to artificial flowers delivering 

nectar with lower calorific values (pers obS)2. It should, however, be noted 

that natural flowers normally have nectar sucrose contents lower than 75%, 

although concentrations above this level have been reported (Table 2.1.1). 

Table 2.1.1. Reported nectar sucrose concentration and volume of nectar 
-=ountered by bumblebees when visiting flowers. 

Flower species Maximum Mean volume Source 
observed nectar of nectar 
sucrose contained in 
concentration % each flower 
(w/w) (PI) 

Robinia 85.6 0.57 Nicolson, 1990 
pseudoacacia 
Aconitum 83.3 0.39 Laverty, 1979 
columbianum 
Delphinium barbeyi 64.5 1.83 Laverty, 1979 
Rubus idaeus 59 not available Willmer et a/., 

1994 
Delphinium nelsoni 51.0 6.1 Hodges & Wolf 

1981 
Podalyria calyptrata 49.6 0.94 Nicolson, 1990 
Wisteria sinensis 39.7 1.4 Nicolson, 1990 
Mertensia cifiata 39.0 0.61 Laverty, 1979 
Oxytropis splendens 36.4 0.24 Laverty, 1979 
Agave schottii 29.1 7.5 Schaffer, Jensen, 

Hobbs, Gurevitch, 
Todd & Schaffer, 
1979 

2 It proved possible to train bees to artificial flowers with nectar contents as low as 20%, 
however, at low concentrations the flower handling and inter-flower behaviour of foraging 
bees proved highly variable. For this reason, concentrations of nectar within the artificial 
flowers were set between 50 and 75%, concentrations at which the variability in foraging 
behaviour of the bees was minimised (pers. obs). 
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Once trained to the artificial flowers, the bees were marked with queen 

labelling tags and then allowed to complete a further 6 foraging cycles. This 

provided the bees with sufficient time to learn the handling skills necessary to 

collect the nectar from the artificial corollas (Schmid-Hempel et al., 1985; 

Wolf & Schmid-Hempel, 1990). The assumption that the bees foraged in a 

stable manner was confirmed by statistically comparing the difference in 

number of flower visits (G-test), handling and inter-flower times (paired Mest) 

of the bees in the subsequent seventh and tenth foraging cycles. Any bee 

whose number of flower visits, handling or inter-flower times significantly 

differed between the seventh and tenth foraging cycle were rejected. 

During foraging cycles 7,8,9 and 10 the number of flowers visited, handling 

and inter-flower times were recorded using an IBM PC and data logger 

program (written in Microsoft Visual C++ @)3. Four different treatments of 

nectar sucrose concentration and volume were used in the experiment 

1.2 pl of 75% w/w sucrose concentration with a calorific value of 10.2 J (n 

= 10 bees), 

2.1.2 pl of 50% w/w sucrose concentration with a calorific value of 7.7 J (n = 

10 bees), 

3.0.6 pi of 75% w/w sucrose concentration with a calorific value of 5.1 J (n = 

6 bees), 

3 The number of flower visits, handling and inter-flower times were recorded by pressing a 
key on the computer key board, the times were determined via the internal clock of the 
computer. 
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4.0.6 gl of 50% w/w sucrose concentration with a calorific value of 3.85 J (n 

=6 bees). 

The foraging behaviour of 10 bees was recorded when collecting nectar 

under treatments I and 2, whilst the behaviour of 6 of the ten bees were also 

recorded when collecting nectar under treatments 3 and 4. As individual 

bee's were recorded foraging under more than one treatment of nectar 

volume and sucrose concentration, it was necessary to ensure that past 

experience did not significantly effect the bee's foraging behaviour. As a 

result, after the bees had foraged at the artificial flower's under treatments 1, 

2,3 and 4, the bees were permitted to completed a further 4 foraging cycles 

under treatment 1. It was, therefore, possible to compare the behaviour of 

the bees when foraging under treatment 1 when i) having had no previous 

foraging experience, and ii) after having previously foraged under treatments 

1,2,3 and 4. If past experience significantly altered the bees foraging 

behaviour, a significant difference would be expected in the recorded 

behaviour of the bees when foraging under treatment 1 with no prior foraging 

experience, and treatment 1 after having foraged under treatments 1,2,3 

and 4. For this reason, any bees whose number of flower visits, handling or 

inter-flower times differed significantly between initial and final nectar 

ýreatments were rejected. 
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2.1.3. Predicting optimum number of flower visits of a bee when 

maximising RNEG 

Although the SH model can be used to predict RNEG, problems are 

encountered when modelling a bees behaviour in non-depleting flower 

patches. This is because available gains do not diminish with time spent in 

Lhe patch, as a result, the SH model will predict an infinite number of flower 

visits. It was, therefore, assumed that bees maximizing RNEG would visit 

sufficient flowers to fill their crops prior to returning to the hive. The point at 

which a bees crop becomes full has been reported by Hiendrich as the mass 

of nectar equivalent to 90% of the bee's unloaded body mass, as has also 

been reported in B. terrestris by Cooper (1993). One possible source of error 

in this supposition, is the assumption that the costs of imbibing nectar do not 

increase as the volume of nectar within the crop increases. If handling costs 

do increase with crop load, the resultant increase in energy expenditure or 

time spent handling nectar, may result in the forager abandoning the patch 

prior collecting a maximum crop load. However, it has been shown that 

nectar uptake rates, in terms of time, are constant for nectar masses from 0 to 

90% of a bumblebee's unloaded body mass (Cooper, 1993). Although this 

may indicate that time taken to imbibe nectar does not increase with 

increased nectar crop content, it need not necessarily follow that energy 

costs of imbibing nectar are also constant. It is possible that as the crop fills, 

it becomes more difficult for the bee to draw up nectar and pump it into the 
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crop4. However, if a bee is more sensitive to time than energy costs, it may 

be willing to increase energy expenditure, whilst imbibing nectar, in order to 

maintain a constant uptake rate. Whether energy costs of handling do 

increase with increased crop load is unknown, as no work has to date been 

completed in this area. Also, as little work on crop and gut physiology has 

been carried out (Willmer, 1986), assumptions of crop load and costs of 

collecting nectar have to be made on the basis of limited information. As a 

result, it is possible that a bee maximizing RNEG will not always imbibe 

nectar with a mass equal to 90% of its unloaded body mass. However, as 

nectar loading rates in bumblebees remains constant, irrespective of crop 

load (Cooper, 1993), it was assumed that the maximum number of flower 

visits a bee could make during one foraging cycle equalled 90% of the bee's 

body mass divided by the mass of nectar collected on each flower visit. 

2.1.4. Prediction of the number of flower visits a bee should make when 

maximising Net Energy Efficiency 

In order to use the SH model to predict the number of flowers a bee should 

. 1isit when maximising NEE, the unloaded metabolic rate of flying bees, ao, 

was estimated using Cooper's (1993) measurements of energy expenditure. 

In wind tunnel experiments with bumblebees, Cooper found the correlation 

4 Nectar is drawn into the pharynx by the pýaryngeal pump, the nectar is subsiquently 
transported to the crop along the oesophagus by peristaltic movements (Chapman, 1975). 
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between mass-specific metabolic rate 
ýCO, (ml g*1 h") and body mass (mg) 

to be : 

ý C70, = 0.17. m 
0.83 (6) 

Although ao could be estimated directly from equation (6), it was not possible 

to use Coopers equation to predict a. This was because the Cooper (1993) 

equation is logarithmic, whilst the SH model is linear. It was, therefore, 

necessary to alter the Cp (equation 2) and Ct (equation 3) equations in the SH 

model to account for a logarithmic incremental metabolic rate. This was done 

by replacing the single value of a, used by Schmid-Hempel et aL (1985), with 

a . quation (7). The variable a was calculated by subtracting the metabolic rate 

of the bee before each flower visit from the metabolic rate of the bee following 

collection of w mg of nectar: 

((O. l 7mo 83) 
-(0.17(m- W)O 

83 )20.95) 

3600 

where m= body mass of bee (mg), 20.95 = the caloric equivalent of 1MI Of 02 

and 3600 = constant, converting Jh" to Watts (J s"). 

rhe metabolic rates of the bees whilst handling nectar on the flower (ah), and 

in the hive (a. ), were taken from Bastian & Esch's (1970) paper on pre-flight 
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activity in honeybees and Rothe & Nachtigall's (1989) estimates of the 

metabolic costs of walking honeybees. These costs were estimated as 

12.5% of the metabolic rate of the unloaded flying bee. It should be noted 

that these values were taken from honeybees and not bumblebees, this was 

necessary as no equivalent data has yet been published on the energy costs 

incurred by resting or walking B. terrestris. 

The values for inter-flower times (t), and the handling times (h) were taken as 

the mean recorded times of the individual bees. As the experiment was 

performed by only one person, it was not possible to record the flight times 

between the flower patch and the hive (Q and the hive times (T. ) during 

individual foraging cycles. Hive times and flight times (between the flower 

patch and the hive) were, therefore, estimated. Hive times were assumed to 

be 36 seconds, the mean times observed in 14 bees foraging to the artificial 

flower patch. Flight times from the flower patch to the hive were estimated as 

3.5 seconds, assuming a flight speed of 5.7 ms*l (taken from the mean speed 

of 6 observed bees flying to the artificial flower patch (5.7±1.2 MS*1))5. 

The predicted number of flowers was calculated as the number of flowers 

where NEE is at a maximum (all calculations were performed using an 

optimal foraging simulation program written in Microsoft visual C++, a copy of 

which can be found in appendix 1). 

5 The mass of nectar collected by foraging bees has no apparent affect on flight speeds 
(Cooper 1993). 
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2.2.0. Results 

The number of flower visits, handling and inter-flower times of all bees were 

found to be highly stable under all nectar treatments, as has been observed 

in similar honeybee studies (Schmid-Hempel et aL, 1985; Seeley 1986; Wolf 

& Schmid-Hempel, 1990). This was illustrated by the lowstandard deviation 

in mean number of flower visits per foraging cycle, which did not exceed ±1 .7 

fn = 32), for any bee, under any nectar treatment (Table 2.2.1 & 2-2.2). 

Similarly, the standard deviations of mean handling and inter-flower times 

were also low, ranging from ±0.0 to ±1 .9 (n = 32), and ±0.0 to ±6.9 (n = 32) 

respectively (Table 2.2.3). When comparing behavioural differences 

between bees, however, highly significant variations were observed in the 

mean number of flower visits and handling times under all nectar treatments 

(Table 2.2.4). Generally, larger bees collected a greater mass of nectar (r3o = 

29.0, p<0.001) (Figure 2.2.1) and took a shorter time to handle the nectar 

delivered (r3o = -0.51, p<0.05). 

- 45 



0E 
r, -- ( 1) 
4- b. - 0 r_ 

0 

M (D 

cm M (D 

to - 
> 

(D 
m '-. 

C) 

92. M 
u) > 

.- "t3 

U) 

0E 

0 ä 
.0 E (D 

i> 
0) (D 

CM ) (D 
(D 1. - 

c4 r_ 

(D 

F- > 

Lc) 

0 

=L 

C"! 
T- 

I . -0 LO 
P- 

4- 
0 

> cc L4 
>, 'd 

. ), a E 2) a) 4) IL) w 
C a= cu Z 
(D ou3: Em 

2 
E 
:3o 

r . 1.00 
CY) 

90 A 
CL) 

L 

iz w (D2 
c 4) O= M Lil 

CL (L) 513 r- 0 3: EZ 
CL) 0m 

*fi E 
we 0 
w 
Z*-5: ao 

-0 0 LA 
6- > 

M (U E J: c M0 0 r_ w 1-ý 

_. a iq :a > Cc (L) >%'u -ts LM 0) r. 
E 
xw Cc Z 

(L) oE Ix 
C 0.0 
tS E 3: 

UJ :30 r- E' z6 13: CL 0 40 

Q 
2 

-0 M r_ 
> %- -0 (D CU 

C CD r (D Cc UJ 

a. (U 0EZ 
c V. - (D 

E 
LU =0 a 
z C, 00 

-0 0 
.0 CL) 

Ja 
cc 

, j) u) E 
.000 0a= 

>, 2ý 12 
m CI) 

0 

C) 
C) 

V) v- v- CO 00 Ln mt v- CYS CO 
M V) Ct) OD f- 00 CV CDP Ce) OD 
C) fl- r- C) f- co r- (D C) 0) 

ý V- 

CY) 00 to 00 V- ()) V0 to 00 
C14 0) 0) C*4 0 co 0) C14 cl C14 
T- T- T- V- V- T- 

ýe M ch ee 1- e C» ý C» 
Ln m ci Ko ul CV) Ln m r2 V) 

r- co an r- r- lot r- W IV to 

0Q0 rl- Go (D 00 Ln co 
-+-l ý Ci il 

+1 +; #. 
if 

+1 C CD 

qqq ul q LQ cq C. ) C. ) Ln 
v) Ln Ln CC) ooq co 0 -q 

(D Ln c, 4 cc) om a) cD r- Ln 
V- CF) r- 0 cl) 0 "T - r- 0) 
co) C) 0) cl 0M CY) fn M C-4 

0) 00 Ln 00 ý 0) 14 (7) V') CK) 
N 0) 0) N0 00 ab CN fn N 

Ln w (D (D Ln (D T0 C14 

(C) Ln q1t (c) (D Ln CD Wlt CO) C14 

00 CD Lr) 0 CD Lf) Ln 0 W) Lr) 

CR LQ (I co Ln 00 m cn qm 
c') 4 "t cli a; cd 06 ui 

r4 0 r- 1- tn CO Ln r2 00 CO r«- 

0 
C, 4 V) .t u) co I- co 0) - 

46 



C 
Cu 

00 

L- L) 
0 (L) m U) Eo 

(D U) 

. r- "D 
"- r 
-13 CU 
c (L) 
cc E 

6 

ca 
Eli 

0 
U) 
C: 
0 

CY) 0 
S C) 
CY) 0) 
2 C: 
2 ? -% M > CL L- (D 

CD C 
= :3 

.T u) > 
U) L- 0 

(D E 
00 

4- 
0 (D 

-0-6 

.0 
Cc 

ot 
a) C 

F- o 
(D 

csi =) 

C4 cu 

04 L) 

cc 
CD 
:3 
U) 

SR 
0 
LO 

0 

(0 
d 

(a 

CD. 
0 

ts q 
a) r .2x LU 
aZ cc Z 

0- Ew 

(D 

'd E 
ui "D :3o V) 

r- Q-- 39 
W C3. oo5; 

p) CD m 
LL, 

EE 
cu a) «e mm UJ 

CL >Ez 

.2 E 
w 
Z CL 00 

0 Mn 
> 
-a) 

C13 0 
0) V) 

.0 :30r 
o E- =, 

a) 
:3 0) 

"a 
79 C o-I > L- -0 .- .I M (1) t4 - 

ts >%is 15 e (D r-. 
9 0 
x LLI 
MZ 

wo3: Ew 

E 
W 
Z 
W c2.0 0> 

4) m 
> 16- -V 

M (L) ' tý ý 

>%t -ö E 
< m UJ 

1. ca-) '0 EZ 

.00 CL) 
tE3: 

ui , :30 «o 
r q- - 

WE 
. 4- 14- .2 Z ao 0> 

"a 0 M) 
> 

u) E 
Ja 00 0c 

'a m cm 0 im E 

co 

47 

I, - cv) 0) CV) CM I, - r- (7) co v (D (7) 
cl qr CV) CII) cl) IV 

CO CO ý CY) lqt C» 
0 C, 4 CD Co c3) r4 

4- ý 1- 

0 Co c4 (D CY) Co 
tn Ln le CW) c1r) le 

eq LO 0 (D C14 

qq Wý CC! (q 
+1 +1 5i 5i ?I 
Ui OR (i Ui L'i Ui 

Go 00 0) LO (D 
(14 04 C14 CII) V) 

C: ) IM) Ln Mt CY) 00 
0 Ln v- Ln r- Lr) 
in co Ln e qr (o 

00 CO 1- (7) it (7) 
0) CV 0 CC) a) Cl% 

V- T- T- 

(0 CM (D 1-- v- m (V) Co m V) ri Co 

r- (0 r- Co (0 cm 
v- 1- 

CQ CC! OR (Q 
+1 

CO) U) tr) Ln Q Lr) 
1: 664 Lri C14 CN C14 CO) CV) 

r- tn Co tn ei 0 
CM cl v- N r- CO 
1- Ir- "- " 1- 9- 

v) an (0 r- CO CI) 



Table 2.2.3. Changes in handling and inter-flower times of B. terrestris due to 
-hanges in nectar volume and sucrose concentration (n = the number of 

foraging cycles from which a mean value was calculated). 

Volume and sucrose concentration (w/w) of delivered nectar 

1.2 ýtl, 75% 1.2 gl, 50% 

Bee ID Mean n Mean n Mean (±sd) n Mean n 
(±sd) (±sd) handling (±sd) 
handling inter- time (sec) inter- 
time (sec) flower flower 

time time 
(sec) (sec) 

1 9.3 ±0.5 52 3.0 ±0.0 51 5.8 ±1.0 52 3.3 ±11.0 51 
11.8 ±1.0 18 3.0 ±0.8 17 8.5 ±1.3 20 3.3 ±0.5 19 

3 15.5 ±1.9 17 5.0 ±0.0 16 10.3 ±1.3 20 4.0 ±1.1 19 
4 5.5 ±0.6 79 2.8 ±1.0 78 4.0 ±0.0 74 3.3 ±1.0 73 
5 7.6 ±0.2 38 2.9 ±0.4 37 8.5 ±1.0 40 2.9 ±0.0 39 
6 9.3 ±0.7 43 2.7 ±0.8 42 5.4 ±0.4 42 5.3 ±2.6 41 
7 6.7 ±0.2 57 2.7 ±0.3 56 6.2 ±0.3 57 2.8 ±0.4 56 
8 5.1 ±0.4 73 5.4 ±1.9 72 5.4 ±0.2 73 4.2 ±1.8 72 
9 4.7 ±0.3 73 6.3 ±3.1 72 4.8 ±0.5 81 6.5 ±3.9 80 
10 5.5 ±0.4 61 9.3 ±6.9 60 5.4 ±0.8 58 4.4 ±1.7 57 

mean 8.1 ± 3.5 4.3 ± 2.2 6.4 ± 2.0 4±1.2 

0.6 pl of 75% 0.6 pi of 50% 

3 9.3 ±0.5 33 5.0 ±2.0 32 5.8 ±1.5 34 2.5±0.6 33 
5 4.0 ±0.3 86 2.1 ±0.1 85 6.7 ±0.6 83 3.1 ±0.2 82 
6 7.6 ±0.3 82 4.8 ±1.8 81 8.0 ±0.7 81 3.5 ±0.5 80 
7 4.8 ±0.3 118 6.4 ±0.6 117 5.4 ±1.2 118 3.8 ±1.6 117 
8 4.4 ±0.5 136 6.5 ±5.6 135 4.8 ±0.2 142 4.3 ±1.9 141 
9 2.6 ±0.1 142 3.4 ±0.2 141 4.8 ±0.1 146 4.4 ±0.9 145 

mean 5.45 ± 2.5 4.7 ± 1.7 5.9 ± 1.2 3.6 ± 0.7 
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The relationship of body mass and nectar mass and handling times is 

described by equations 1 and 2 respectively: 

y=0.18x-11.1 (ý=0.49) 

where y= mean number of flower visits per foraging cycle, and x= starved 

body mass of bee (mg) 

14.9 - 0.06 x (ý = 0.26) (2) 

where y= mean handling time per foraging cycle (s). 

Despite the significant regression between body mass, mass of nectar 

collected and handling times, a number of bees of a similar mass displayed a 

high degree of variation in behaviour, resulting in the low observed ý. Good 

examples of this were bees 3 and 6, with bee 6 consistently visiting double 

the number of flowers visited by bee 3, despite having a body mass 9 mg 

lighter. Similarly, the handling times of bee 6 were on average 16.4±3.9% (n 

= 200) lower than bee 3. 

Unlike the number of flower visits and handling time, inter-flower times were 

: nsensitive to changes in both nectar volume and sucrose concentration 

(Table 2.2.4 ), with mean inter-flower times equalling 4.1±1.6 (n = 32) 

seconds. Only 3 bees significantly altered inter-flower times when nectar 
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Figure 2.2.1 

a) Relationship between body mass of bee and mass of nectar collected on each foraging 
cycle 
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concentration was reduced and 2 when nectar volume was halved (Table 

2.2.5). Two-way analysis of variance showed no significant difference in 

inter-flower times with changes in nectar concentration (171,123 = 2.41, ns) or 

nectar volume (171,123 =0.03, ns). 

2.2.1. Changes in foraging behaviour due to changes in nectar volume 

and sucrose concentration 

Altering the sucrose content of the nectar from 75% to 50% had little effect on 

the number of flower visits performed by each bee. Variation in n, following 

reduction in nectar sucrose content, ranged from -1.3 to +2.0, with a mean of 

0.2±0.8 (n = 32). Of the 10 bees observed, only one significantly altered the 

number of flower visits following reduction in nectar concentration (Table 

2.2.6. ). When combining the data from all bees, variation in flower visiting 

. ýehav*our was found to be non-significant (ANOVA; F,, 124"ý 0.03, ns6 ). This 

was also true of model predictions of n, with no significant change in NEE 

predictions (FI, 29= 5.49, ns) and RNEG predictions (FI, 29= 0, ns) following a 

reduction in nectar sucrose concentrations. When considering the calorific 

value of the nectar, similarly there was no significant difference between NEE 

predictions when nectar was changed from 75% to 50% (FI, 29 = 0.24, ns), 

although there was a significant difference between RNEG predictions (F1,29 

= 19.04, P<0.001). 

4 As there was a significant regression between body mass and number of flower visits 
(equation 1), n was corrected for body rrass of bee to enable inter bee comparisons of 
7oraging behaviour. 
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Table 2.2.5. Variation in the inter-flower times of B. terrestris when nectar 
w/W sucrose concentration was reduced form 75% to 50% and volume from 
1.2 gl to 0.6 gl. 

Bee 
ID 

1.2 pl of 75% vs 50% sucrose 
concentration nectar. 

0.6 pl of 75% vs 50% sucrose 
concentration nectar. 

paired West 
df F P df F P 

1 5 0.27 ns 
2 5 0.27 ns 
3 11 8.65 P<0.054 11 1.59 ns 
4 5 0.55 ns - - 
5 11 25.00 P<0.001,66 11 9.00 P<0.05' 
6 11 0.81 ns <0.001 ns 
7 11 7.84 P<0.05" 34.94 P<O. oc)l** 
8 11 0.2 ns 1.11 ns 
9 11 0.25 ns 5.27 ns 
10 5 1.91 ns - 

"-A significant difference in inter-flower times between different treatments of nectar 
volume and sucrose concentration. 
"=A highly significant difference in inter-flower times between different treatments of 
nectar volume and sucrose concentration. 
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When the amount of nectar delivered on each flower visit was halved, the 

mean number of flower visits approximately doubled, from 12.8±5.2 to 25±9.7 

(n = 12), with all bees foraging to significantly more flowers (FI. 124 =83.77, 

p<0.001*) (Table 2.2.6). Similarly, model estimates of n also increased, with 

highly significant differences in NEE (F,, 29= 41.01, p<0.001*) and RNEG (Fi, 

, q= 101.91, p<0.0014') predictions when nectar volume was changed from 1.2 

[d to 0.6 pl. NEE and RNEG model predictions of energy gains also changed 

significantly with changes in volume of nectar (171,29 "= 93.01, p =<0.001,171.29 

= 99.99, P<0.001 respectively). 

When foraging at flowers containing 1.2 pl of 75% sucrose concentration 

nectar, handling times were on average 8.1±3.5 (n = 10) seconds, compared 

to a mean of 6.4±2.0 (n = 10) seconds following reduction in nectar sucrose 

content. Of the 10 bees observed, 5 significantly decreased their handling 

times when sucrose concentration was reduced (Table 2.2.7). When the 

volume of nectar collected on each flower visit was halved to 0.6 [LI, mean 

handling times were reduced from 7.3±2.9 (n = 20) to 5.7±1.9 (n = 12) s, the 

change in handling times were significant for 5 of the 6 bees observed (Table 

2.2.7). Variations in handling times due to changes in nectar concentration 

were also reduced, with a mean time of 5.5+9.5 seconds at 75% sucrose 

concentration and 5.9±1.3 seconds at 50%. Two way analysis of variance 

showed there was no significant overall difference in handling times due to 
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Table 2.2.6. Analysis of variation in the number of flower visits made by B. teffestris when the sucrose 
concentration of nectar was altered from 75% to 50% wtw and volume from 1.2 gl to 0.6 ýLl- 

Bee ID 75% vs 50% w/w sucrose concentration 1.2 W vs 0.6 ýd of nectar. 
nectar. 

paired Mest 
df P df FP 

1 5 <0.001 ns 
2 5 3.0 ns 
3 11 0.4 ns 11 7.5 P<0.05" 
4 5 1.6 ns - - 
5 11 0.1 ns 11 709.8 P<0.00146 
6 11 0.9 ns 11 1303.7 P<0.001 64, 
7 11 <0.001 ns 11 2029.6 P<0.0014,4 
8 3.2 ns 11 1537.4 P<0.001 
9 30.9 P<0.00166 11 3847.7 P<0.001 
10 3.9 ns 

'-A significant difference in the number of flower visits between different treatments of nectar volume 
and sucrose concentration. 
4* =A highly significant difference in number of flower visits between different treatments of nectar 
volume and sucrose concentration. 

Table 2.2.7. Analysis of variation in the handling times of B. teffestris when nectar w/w sucrose 
concentration was reduced form 75% to 50% and volume from 1.2 ýLl to 0.6 ýd- 

Bee ID 75% vs 50% sucrose concentration nectar. 1.2 pi vs 0.6 ýd of nectar. 

paired West 
df df 

1 5 42.0 P<0.05, 
2 5 193.4 P<0.001" 
3 11 39.5 P<0.001 1 59.7 P<0.001 
4 5 27.0 P<0.05' 
5 11 26.7 P<0.001 11 0.2 ns 
6 11 0.3 ns 11 56.3 P<0.001 
7 11 3.0 ns 11 8.3 P<0.05* 
8 11 0.3 ns 11 75.0 P<0.001 
9 11 0.3 ns 11, 75.0 vo. 001,66 
10 5 0.1 ns - 

'-A significant difference in handling times between different treatments of nectar volume and 
sucrose concentration. 
64 =A highly significant difference in handling times between different treatments of nectar volume 
and sucrose concentration. 
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changes in nectar concentration (Fl, 124= 0.03, ns') or volume (FI, 124= 2.41, 

It should also be noted that inter-flower times were on average 4.1 seconds 

whilst hive patch times were only 3.5 seconds. As inter-flower distance 

equalled 2m whilst hive patch distance equalled 20m, it was surprising that 

inter-flower flight times were longer than hive patch times. This would, 

however, appear to be due to bees not flying directly between flowers 

combined with bees hovering over flowers after taking off and prior to 

landing. 

2.2.2. Variation between observed number of flower visits and those 

predicted by Net Energy Efficiency and Rate of Net Energy Gain models 

No bees were observed to fill their crops prior to abandoning the flower patch 

and returning to the hive, consequently, observed flower visits were 

consistently lower than those predicted by the RNEG model (Table 2.2.1 & 

2.2.2). The difference between observed n and RNEG predictions were 

highly significant for all bees under all nectar treatments (G32 = 3933, 

p<0.001)r, (Table 2.2.8), as were the differences between observed and 

4 As there was a significant regression between body mass and handling time (equation 2), 
handling times were corrected for body mass of bee to enable inter bee comparisons of 
foraging behaviour. 
BAs the degrees of freedom between observed and predicted number of flower visits 
equalled one, G values had to be used instead of F values in-order to enable statistical 
analysis. 
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predicted calorific content of collected nectar (G32 'ý 19596, p<0.001) (Table 

2.2.9). 

Differences between the observed number of flower visits and NEE 

predictions were lower than those between observed and RNEG predictions. 

Differences between observed n and NEE predictions ranged from +53% to 

-87%, with mean of -47±3% (n = 32). Except for bees 2 and 3, NEE 

predictions of number of flower visits underestimated n for all bees under all 

nectar treatments. Only 4 of the 10 bees observed were found to have no 

significant difference between observed n and NEE predictions under all 

treatments of nectar volume and sucrose concentration (Table 2.2.8). The 

overall difference in observed n and NEE predictions for all bees were highly 

significant under all treatments of nectar sucrose concentration and volume 

! G32 ": 187.2, p<0.001). 

It was possible that some of the variation between observed behaviour and 

that predicted by the SH model was due to errors in input parameters. To 

determine the sensitivity of the SH model to input variable errors, the mean 

input parameters of the model were incremented by 50% of the mean value 

observed in the current experiment (Table 2.2.10). The difference between 

the incremented value and the original observed mean value than provided a 

relative indication as to the sensitivity of the SH model to errors in each 

individual input variable. It was evident from this analysis that errors in inter- 

flower time recordings would produce the largest errors in NEE predicted 
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Table 2.2.8 Analysis of the difference in number of flower visits observed and those 
predicted by NEE and RNEG. 

1.2 0 of 75% w/w sucrose concentration 
Observed vs NEE Observed vs RNEG 

G -stat (df = 1) G-stat (df = 1) 

bee ID GpGp 

2.64 ns 109.92 P<0.001" 
2 0.03 ns 104.52 P<0.001"6 
3 0.01 ns 102.82 P<0.0016, 
4 7.74 P<0.01 a 88.88 P<0.001 6, 
5 0.80 ns 88.71 P<0.001 6, 
6 2.15 ns 69.51 P<0.00166 
7 3.46 ns 65.47 ro. 001,16 
8 9.88 P<0.01 6 94.62 P<0.001" 
9 12.16 P<0.00166 100.55 P<0.001 '16 
10 11.54 P<0.00116 100.87 P<0.001 46 

0.6 ýd of 75% w/w sucrose concentration 

3 0.10 ns 206.87 P<0.0014" 
5 0.81 ns 168.89 P<0.001 
6 6.92 P<0.01 4, 142.12 P<0.001 
7 6.96 P<0.001 128.30 P<0.001 
8 21.64 P<0.001 196.40 P<0.001 
9 12.15 P<0.00166 203.99 P<0.001 

1.2 Rl 50% w1w sucrose concentration 

1 1.83 ns 109.92 P<0.00166 
2 0.09 ns 102.14 P<0.001 
3 0.00 ns 99.25 P<0.001 
4 5.38 P<0.016 92.25 P<0.001 
5 0.53 ns 86.97 P<0.001 
6 3.02 ns 70.28 P<0.00166 
7 2.52 ns 65.47 P<0.0014,6 
8 6.48 P<0.014 94.62 P<0.001 4,6 
9 11.90 P<0.00166 94.99 P<0.001 64, 
10 3.63 ns 103.22 P<0.00164, 

0.6 ýd 50% w/w sucrose concentration 

3 0.95 ns 205.64 P<0.00166 
5 0.93 ns 171.39 P<0.0016" 
6 2.78 ns 142.91 P<0.001 " 
7 10.06 P<0.01 128.30 P<0.00166 
8 15.15 P<0.001 66 192.07 P<0.001,66 
9 12.97 V0.00141, 55.46 P<0.00166 

Significant difference between observed and predicted number of flower visits. 
= Highly significant difference between observed and predicted number of flower visits. 
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Table 2.2.9 Analysis of the difference between observed calorific value of collected nectar 
and the calorific value of nectar predicted if the bees were to maximize RNEG whilst 
foraging. 

bee ID Nectar volume observed calorific RNEG predicted Observed calorific 
and sucrose content of collected calorific content of content of nectar vs 
concentration nectar (J) collected nectar (J) RNEG predictions 

(G stat (df = 1)) 

1.24175% G p 

1 132.6 1316 1121.4 <0.0016 
2 45.9 995 1066.7 <0.001 , 
3 43.9 972 1046.8 <0.001' 
4 202.0 1306 902.8 <0.0014 
5 96.9 1030 901.5 <0.001 6 
6 110.2 903 707.8 <0.0011 
7 145.9 949 658.4 <0.001' 
b 186.7 1316 955.4 <0.001, 
9 186.7 1377 1024.1 <0.001' 
10 156.1 1295 1020.9 <0.001" 

1.2 ýtl 50% 

1 100.1 993 846.0 <0.0016 
2 38.5 751 786.8 <0.0014' 
3 38.5 731 761.1 <0.001 6 
4 142.5 986 708.6 <0.0014' 
5 77 778 667.7 <0.001' 
6 80.9 685 545.3 <0.001 
7 110.1 724 505.4 <0.001 
8 140.9 1001 729.7 <0.0011 
9 156.3 1039 729.9 <0.0011 
10 111.7 986 799.8 <0.001' 

0.6 gi 75% 

3 42.3 500 454.6 <0.0011 
5 109.7 653 429.2 <0.0011 
1 104.6 515 296.5 <0.0014, 
7 150.5 454 159.6 <0.001 
8 173.4 479 148.9 <0.001 
9 181.1 658 288.0 <0.001 

0.6ýtl 50% 

3 32.7 377 339.8 <0.0016 
5 80.1 493 330.9 <0.001 1, 
6 78.2 389 225.7 <0.0011 
7 113.6 343 120.7 <0.0014, 
8 136.7 362 105.6 <0.001* 
9 140.5 497 211.3 <0.001, 

4= Highly significant difference between the observed and predicted calorific value of 
collected nectar. 
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Table 2.2.10. Sensitivity analysis of the Shmid-Hempel model to errors within input 
parameters. Errors were calculated by observing the change in predicted NEE and 
oumber of flower visits when individual variables within the SH model were 
incremented by 50%. Variables were varied from the mean input values used in the 
current experiment. 

Predicted Predicted % Predicted Predicted % 
maximum maximum difference number of number of difference 
NEE NEE after flower flower visits 

incrementing visits after 
individual incrementing 
variables by individual 
50% variables by 

50% 

Body mass of bee 32 23 -28.1 19 21 9.5 
(mg) 

Unloaded metabolic 32 23 -28.1 19 21 9.5 
rate of bee (W) (a,, ) 

Metabolic rate of bee 32 32 0.0 19 22 13.6 
in hive (W) (a) 

Metabolic rate of bee 32 30 -6.3 19 19 0.0 
on flower (W) (ah) 

incremental metabolic 32 31 -3.1 19 16 -18.8 
rate of bee (W) (a) 

Time spent by bee in 32 32 0.0 19 22 13.6 
hive (s) (TO) 

One way travel time 32 31 -3.1 19 23 17.4 
to flower patch (s) (, to) 

Inter-flower flight time 32 23 -28.1 19 13 -46.2 
of bee (s) (. r) 

Time taken by bee to 32 32 0.0 19 22 13.6 
collect nectar at each 
individual flower (s) 
(h) 

Volume of nectar collected on each flower visit was set 0.6ýd and energetic content of 
uerived nectar S. I J. 
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number of flower visits, with a 50% increase resulting in a reduction of a C. 

50% in the predicted number of flower visits. Also, errors in estimates of 

incremental metabolic rates would result in a large reduction in predicted 

flower visiting behaviour. It should, however, be noted that such sensitivity 

analysis is limited, as the degree of sensitivity of the model to each input 

parameter is affected by the value of other variables being used for the same 

prediction. If, therefore, the experimental design (e. g. flight distance and 

inter-flower distance etc. ) were to be altered, the sensitivity of the model to 

errors in the input parameters may significantly change. 

2.3.0. Discussion 

Although individual bees foraged in a stable manner, inter-bee variations in 

handling times and number of flower visits were high. Much of this variation 

appeared to be due to differences in body mass, with larger bees visiting 

more flowers per foraging cycle and collecting the available nectar in a 

shorter period of time. Despite a significant regression between body mass, 

n and handling time, the size of bee did not explain all inter-bee variation in 

foraging behaviour. This was particularly true of bees 2 and 3 which 

displayed a low number of flower visits and high handling times relative to 

other bees with a similar body mass. The combination of high handling times 

and low numbers of flower visits may stem from what Heinrich (1 976a) 

described as "worker naivet6", with bees 2 and 3 having little foraging 

experience and poor handling skills Heinrich (1976a) noted that bees 
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, oraging to flowers which they had not previously encountered, displayed 

"errors" when attempting to collect nectar or pollen. Whilst studying 

B. vagans foraging to Aconitum, he observed experienced foragers (workers 

who had previously encountered Aconitum) rapidly visiting, probing and 

extract nectar from up to 150 flowers on each foraging cycle, with few errors. 

Subsequently, a second patch was exposed to inexperienced foragers, their 

behaviour was far more erratic, with bees being unable to locate the entrance 

to the flower, and probing for nectar amongst anthers, were no nectar was 

present (Figure 2.3.1). The inexperienced bees also abandoned the flower 

patch having visited fewer flowers than the experienced bees. 

During the current study, the only forage plant available to the bees was the 

pollen providing Lycopersicum esculentum, and as a result the bees had no 

experience in nectar foraging prior to being trained to the artificial flower 

patches, and could certainly be described as naive nectar foragers. Despite 

this, all bees were allowed 6 foraging cycles to "learn" how to handle the 

nectar in the artificial flowers, prior to their behaviour being recorded. As a 

result, all bees should have been equally efficient at collecting nectar, 

assuming that all bees had equal learning rates. In a separate experiment, 

however, Heinrich, Mudge & Deringis (1977) found large variations in the rate 

at which different bees were capable of learning handling techniques. 

B. terricola were trained to artificial flowers which varied in nectar rewards. To 

enable the bees to distinguish rewarding and less rewarding flowers, the two 

nectar treatments were placed in corollas of different colours (blue and 
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Figure 2.3.1 Foraging behavior of inexperienced and experienced Bornbus 
vagans workers at Aconiturn. q= entry or attempted entry at a point other 
than main flower entrance; -= probing for nectar among the anthers, where 
there is no nectar; P= collecting pollen from the anthers; and N= "correct" 
entry into the hood of the flower. (Whether or not nectar was collected could 
not be determined in most cases because the sepals are visually opaque. ) 
(after Heinrich, 1976a). 

Consecutive Flowers Visited 

Bee 123456789 10 11 12 13 14 15 16 17 18 
ID 

I 

The Inexpedenced Foragers 

1 . . . . . . N -N N 
2 ft ft - - N 
3 B 
4 B B B B 
5 -N -N -N -N -N -N 6 . . . . . lp lp lp lp I p -P -P -P -P 
7 B 
8 -N , 9 -N -N -N -N -N -N -N -N -N 10 -P -P B B -P 
:1 - -N N -N N N N -N 
12 -N -N -N - - -N 13 - 
14 . . . . . . . . . . . . 
15 - - 

The Experience Foragers 

A N N N N N N N N N N N N N N N N N 
B p p p p p p p p p p p p p p p p p 
c PN PN PN PN PN PN PN PN PN PN PN PN PN PN PN PN PN 

-* = further flowers were visited without any change in foraging behaviour. 
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white). The nectar rewards were altered and the subsequent number of 

flower visits observed. The effects were highly variable between different 

individuals, with some bees abandoning flowers with the lower nectar rewards 

'n preference for those with higher rewards. Other bees remained in the less 

rewarding flowers, apparently ignoring the richer and larger nectar content of 

other flowers. Even when flowers were emptied of all nectar, it took some 

bees up to 200 flower visits before learning which colour flowers contained 

nectar. 

Such variability in learning rates makes it possible that in the current study, a 

number of bees may not have been foraging optimally due to naivet6. This 

appears particularly likely for bees 2 and 3 whose long handling times 

indicated less efficient nectar collection compared to other bees. As naive 

bees have also been observed abandon to flower patches prematurely 

(Heinrich, 1976a), this may also explain why bees 2 and 3 visited fewer 

flowers than other bees with a similar body mass. 
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2.3.1 Effects of changes in nectar sucrose concentration and volume on 

foraging behaviour 

With respect to number of flower visits, all bees displayed no changes in 

behaviour when nectar sucrose concentration was reduced from 75% to 50%. 

This was also true of NEE and RNEG model predictions of number of flower 

visits, derived when calculating n using the observed flight, handling and hive 

times of each forager. This might suggest one of two possibilities 1) 

B. terrestfis are insensitive to changes in the calorific value of nectar, or, 2) 

the changes in 'calorific value of the nectar were insufficient to result in an 

observable changes in the foraging behaviour of the bees. As model 

predictions of flower visiting behaviour also indicated insensitivity to changes 

in nectar sucrose content, it was not possible to determine from the current 

experiment whether B. terrestris were insensitive to changes in calorific 

contert of the nectar. 

Changes in nectar volume, however, had a more obvious effect, with bees 

approximately doubling the number of flower visits performed per foraging 

cycle. This was similar to the pattern of RNEG estimates, with predictions of 

n doubling upon halving the nectar volume delivered. The number of flower 

visits of the bees following changes in nectar sucrose concentration and 

volume do not, therefore, contradict either the RNEG or NEE models. 
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2.3.2 Do bumblebees optimise Rate of Net Energy Gain whilst foraging 

When foraging on the artificial flowers, bees only filled st, 10% of their crop 

with nectar prior to abandoning the flower patch. No significant increase in 

nectar uptake rate with increased crop load was observed, as has also been 

reported in previous studies (Cooper, 1993). The relatively low crop content, 

combined with the constant nectar uptake rate would appear to indicate that 

the bees will have experienced little increase in handling costs with increased 

nectar load. Whether nectar uptake rates and handling costs, in the current 

study, would increase if the mean crop content were to exceed 10% is 

unclear. It was, however, unlikely that decreased uptake rate could account 

for a forager, maximizing RNEG, reducing optimum nectar loads by 90%. It 

should also be noted that when nectar sucrose concentration decreased, thus 

reducing nectar viscosity and increasing uptake rate, no significant changes 

in the mass of nectar collected by the bees was observed. Thus indicating 

that nectar uptake rate was not a limiting factor in the current experiment, and 

does not explain the differences between observed and RNEG predicted 

foraging behaviour. 

As the RNEG model predicts that bees will always fill their crops in a non- 

depleting patch, it would appear that none of the observed bees maximized 

their rate of net energy gain whilst foraging. Schmid-Hempel et al. (1985) 

also found that honeybees trained to artificial patches visited significantly 

fewer flowers than predicted by the RNEG model (t12 "2 8.54, p<0.001, n= 
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h2). Gross differences in observed n and RNEG estimates have also been 

reported elsewhere by Schmid-Hempel (1987) and Wolf & Schmid-Hempel 

(1990). As discussed previously, Nunez (1982) argued that such 

observations were a result of the bees prematurely abandoning a patch in 

order to obtain information about alternative foraging sites. This foraging 

strategy, however, could not have occurred in this study, primarily because 

bumblebees are unable to communicate the location of alternative forage 

sites to one another (Heinrich, 1979a). Even if the bees were able to obtain 

some form of information by prematurely returning to the hive (e. g. from the 

nectar or pollen reserves within the colony), it is unlikely that this could 

explain the large differences between observed n and RNEG predictions 

found in all bees under all nectar treatments. 

Due to the large differences between observed and predicted foraging 

behaviour, and similar findings in honeybee studies, it would appear highly 

unlikely that B. terrestris optimise RNEG when foraging for nectar 

2.3.3. Do bumblebees optimise, Net Energy Efficiency when foraging for 

nectar 

Although NEE predictions of n were far closer to the observed behaviour of 

the bees than RNEG estimates, the observed and predicted behaviours were 

still significantly different. These findings are contrary to those observed by 

Schmid-Hempel et al. (1985) who, when studying honeybees, found no 
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significant difference between observed n and n predicted by the efficiency 

model (pair wise; t12 = 0.43, p<0.1, n= 12). SimilarlY, bees have also been 

found to conform to the efficiency model by Kaclnik, Houston & Schmid- 

Hempel (1986); Schmid-Hempel (1986); Wolf & Schmid-Hempel (1990) and 

Cartar & Dill (1990a). Seeley (1986) also concluded that honeybees optimise 

NEE, despite finding a poor relationship between observed behaviour and 

behaviour predicted by the efficiency model. Seeley explained the difference 

between the observed and predicted behaviour by pointing out that many of 

the variables within, the efficiency model were based on estimates rather than 

empirical measurements. In particular, he noted that current remote 

calorimetric estimates of energetic costs are inadequate, and do not include 

non-fuel costs such as predator avoidance, wear and tear on the bee 

(depreciation costs), and costs of converting nectar to honey. To 

demonstrate this point, Seeley increased the estimated costs of each 

foraging trip by adding non-fuel costs of 10 to 15 J7, and re-calculated the 

predicted behaviour of the bees when maximising NEE. The results showed 

that if costs were increased, NEE predictions became closer to the observed 

behaviour, supporting the theory that costs were underestimated. Although it 

was not possible from the current experiment to determine whether variables 

within the SH model underestimated the bees foraging costs, it was, however, 

possible that a number of non-fuel costs were omitted from the 

7 Seeley does not describe how estimates of non-fuel cost were derived, but simPlY 
describes them as 'realistie. 
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model, Le.: i) Costs of predator avoidance, and ii) depreciation cost of 

decreased life span due to increased foraging effort. 

1. Costs of predator avoidance 

Overt predator avoidance strategies, such as aggressive posturing, 

spraying faeces at attackers and stinging, are easily observed and well 

documented (Cartar, 1991) (a summary of defensive behaviour in Bombus 

spp. can be found in Heinrich (1 979a)). As none of these behaviours was 

observed in the current study, it is clear they did not impinge on the bees 

energy budgets; however, the effect of more subtle strategies could not be 

determined. 

As bees begin foraging, they expose themselves to greater risks of 

predation and parasitism than are encountered whilst in the hive (Alford, 

1975). It would therefore be beneficial for a risk sensitive bee to increase 

hive times and decrease patch times. Likewise, a bee exposed on a flower 

is more likely to be parasitized or predated than a flying bee, thus making it 

beneficial for a forager to minimize time spent handling nectar. As a result, 

such strategies would be highly costly to a foraging bee. Whether 

bumblebees implement any of these strategies is unknown, as no work has 

been completed in this area, and there have been no reports of 

bumblebees altering their foraging behaviour due to predation risk. This 

may be due to the fact that bees depend totally on their overt deterrents 
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such as their sting and warning colouration. The effectiveness of the bees 

sting as a defensive measure is such that other species of insect, including 

many members of the hover fly family (Syrphidae) have evolved to mimic 

the bumblebees warning colouration (Wickler, 1968; Gilbert & Raven, 

1975). However, overt strategies would have little effect on parasitization, 

occurring largely when foragers visit flowers to collected nectar and pollen. 

The parasitized bee will than transmit the parasite to the colony when 

returning to the hive to unload any collected nectar or pollen (Shmid- 

Hempel, 1994). There is now good evidence to indicate that once 

parasitized, the behaviour of the bumblebee is significantly affected. In 

particular, Mueller and Schmid-Hempel (1993) reported that foragers 

parasitized with canopid flies did not return to the hive in the evening, 

spending the night in the field. This may have been a strategy to reduce 

the risk of parasitizing the whole colony, or may also be a result of 

decreased temperatures, experienced outside the hive, decreasing the 

reproduction rate of the parasites (Mueller & Schmid-Hempel, 1993). It 

has also been suggested that bumblebees alter their nectar and pollen 

foraging behaviour in order to reduce the chance of parasitization (Durrer 

& Schmid-Hempel, 1994). This may include different bumblebee colonies 

foraging to different floral types, even when they are located in the same 

area. This would then reduce the chances of a forager from one colony 

transmitting a parasite, via a flower, to a forager from another colony 

(Durrer & Schmid-Hempel, 1994). However, empirical evidence for such a 

strategy has yet to be observed. 
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It is, therefore, possible that bees do alter their behaviour in response to 

predator / parasite avoidance, thus incurring a none fuel cost whilst 

foraging. However, it is not possible from the current experiment to 

conclude if, and to what degree, the none fuel costs of predator avoidance 

affects the foraging strategy of bumblebees 

11. Depreciation costs of decreased life span due to increased foraging 

effort 

When bees begin foraging, they are not only exposed to increased risks of 

predation and parasitism, but also have to contend with increased wear 

and tear to their bodies and wings. This is most obvious in older foragers, 

who often lose their body hair, appearing bald (pers. obs. ), and displaying 

substantial fraying to their wings (Cartar, 1992). Although loss of body hair 

may not immediately appear important, it does result in decreased 

insulation, possibly resulting in increased costs of maintaining the thoracic 

temperature required for flight (Cartar, 1992). Of more importance is the 

loss of wing surface area due to fraying. As estimates of energetic costs of 

flight are dependent on a constant relationship between body mass and 

wing area (Cooper 1993), any damage which decreases wing area will 

result in increases in energetic costs of flight. This will result in 

underestimates of ao and a in the SH model. Although small errors in ao 

have a limited effect on efficiency model predictions of n, little change is 
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required in a before predictions of n are significantly altered. For example, 

if the estimated incremental metabolic rate of a 150 mg bumblebee is 

increased by only 0.0001 W, the number of flower visits predicted will 

increase by approximately 10%. 

Cartar (1992) also suggested that damage incurred to the wings and 

exoskeleton resulted in a further cost of decreased life span to the bee. To 

demonstrate his theory, he clipped the wings of 266 B. melanopygus and 

compared their life span to 266 non-clipped bees. He found that the life 

spans of clipped bees were significantly shorter than that of non-clipped 

bees. Cartar suggested that decreased life span was due to increased 

predation, with decreases in wing area reducing mobility, and thus the 

ability of the bee to escape predation. Similar studies in honeybees, 

however, suggest the situation is more complicated, with life span being 

directly linked to foraging effort (Neukirch, 1982; Schmid-Hempel & Wolf, 

1988). Neukirch (1982) suggested that the cause of decreased life span 

with increased foraging effort is due to a limited ability of bees to replenish 

glycogen stores in their flight muscles. Neukirch found that young bees 

were able to synthesise fresh glycogen by utilising excess UDP-glucose 

(Sacktor, 1970). However, as the work load of the bee increased, the 

ability of the bee to replenish glycogen decreased. Of particular 

importance to this study, Neukirch observed that as the ability of the bee to 

synthesise glycogen decreased, levels of ATP also decreased whilst 02 

consumption increased. This in turn suggests that the rate of energy 
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consumption of foragers may increase with increased number of foraging 

cycles. As estimates of ao and a are made from the body mass of the bee 

alone, they do not take into consideration increased 02 consumption due 

to the decreased ability of the bee to synthesise glycogen. This in turn will 

result in underestimates of energy consumption and poor predictions of n 

by the efficiency model. 

Not only is it likely that foraging costs have been omitted from the model, it is 

also possible that estimates of total energy costs (C) were inaccurate. This 

was due to two factors i) the use of honeybee data to predict the resting 

metabolic rates of bumblebees, and ii) limitations in Coopers equation 

relating mass to flying energy expenditure of a bumblebee. 

Although honey and bumblebees have a similar physiology, it was unclear 

whether it was possible to assume that the resting metabolic rate of a 

bumblebee is equal to that of a honeybee. In particular, when "resting", 

bumblebees regularly vibrate their thoracic muscles to generate heat in-order 

to control their body - temperature (Heinrich, 1979a, 1993). As heat 

generation in bumblebees is energetically costly (Heinrich, 1979a), the 

apparent metabolic resting costs of bumblebees may, therefore, be 

significantly higher than that of honeybees (Section 1.0.2). This turn would 

result in an underestimate of C by the SH model. 
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It was also possible that errors occurred in the SH model due to the use of 

Coopers (1993) equation, predicting flying metabolic costs of the bumblebees 

from mass of bee alone. This was due to the fact that mass was not the only 

variable affecting the bees flight costs, other factors such as aerodynamics 

and wing area were also likely to have been important. In particular, as bees 

gathered nectar, their body mass and resultant flight costs will have 

increased, however the surface area of the bees wings will have remained 

fixed. As a result flight costs will have increased exponentially with increases 

in body mass. It was, however, also possible that the low masses of nectar 

collected by the bees resulted in the increases in metabolic costs occurring 

on the linear portion of the exponential curve. This in turn would have limited 

my errors produced by Coopers equation. 

Due to the complex relationship between the physiology and behaviour of 

bumblebees, it was unsurprising that the model acted as a poor predictor of 

B-terrestris foraging behaviour (as was found to be the case in honeybees by 

Seeley (1986)). Manipulation of the costs incurred whilst foraging do, 

however, appear to greatly improve the accuracy of the model. It was, 

therefore, premature to assume that bumblebees did not maximise NEE, as it 

was not possible accurately to measure the energetic costs of foraging. 

Hence, to determine whether bumblebees were maximising NEE or another 

currency, accurate field measures of foraging bumblebee energy metabolism 

were required. Currently, the only possible way to do this is through the use 

of the Doubly Labelled Water (DLW) technique (Lifson & McClintock, 1966). 
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Development and application of a 
doubly labelled water protocol for 

bumblebees 



3.0.0 General introduction to the Doubly Labelled 

Water (DLW) Technique 

The Doubly Labelled Water (DLW) method is a non-invasive technique for 

measuring the rate Of C02 production (rC02), and thus energy expenditure, of 

free-ranging animals. The technique has been successfully applied to a 

large number of species, ranging from small insectivorous bats (Speakman & 

Racey, 1988. ) to large ruminants (Fancey, Blanchard, Holleman, Kokjer & 

White, 1986). Attempts to use the technique on arthropods have, however, 

proved less successful, with large errors in estimates of carbon dioxide 

production (Buscarlet, Proux & Gerster, 1978; King & Hadley, 1979; Cooper, 

1983). The reasons why the DLW technique has been less successful in 

arthropods than vertebrates are unclear, although the relatively small body 

size is likely to have been an important factor. It is also possible that the 

relatively high water turn-over rates in certain arthropods may have increased 

any effect isotopic fractionation may have had on the accuracey of the DLW 

technique. 

3.0.1. Fundamental principles of DLW measurementOf C02production 

The DLW technique uses heavy isotopes of hydrogen (Deuterium, D) and 

oxygen ("'0) as non-ioxic, non-radioactive labels of water (D2180)- When 

administered to an organism, D2180 behaves metabolically in the same 

76 



manner as H20, mixing freely with an animals body water pool (N). Given 

sufficient time, the hydrogen and oxygen isotopes will completely mix 

(equilibrate) with N, resulting in plasma enriched homogeneously with D2180- 

Also, due to an equilibrium exchange of oxygen, facilitated by the carbonic 

anhydrase catalyzed hydration of carbon dioxide, the 18 0 content of expired 

C02 is in equilibrium with the animals body water (Lifson & McClintock 1966). 

As the animal loses water through evaporative water loss (EWL), defecation 

and respiration, 180 and D isotopes are lost from the body water pool. This 

occurs in two ways: 

1.180 and D combine in the body water to form'; D2180, D2160 or H2180, the 

isotopes are then lost from the body water pool through EWL, excretion 

and defecation and respiration. 

2. The "0 isotopes also combine with carbon dioxide to form C1802, and, 

unlike D, can exit the animal's body during respiration. 

As H20leaves the animal's body, D and '80 isotopes are lost in the same 

proportion, therefore, although the overall abundance of D and "'0 within the 

animal decreases, the ratio between the two isotopes in the body water pool 

remains the same. However, when C02 is expired, "'0 originating from the 

bodies water pool is lost without any resultant decrease in D abundance. As 

a result, the abundance of the '80 isotope will decrease at a greater rate than 

1 Other rare water compounds may also be formed with 17 0 and 190. 
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the D isotopes, which are lost almost solely via H20. The difference in the 

apparent fractional turnover rates between the two isotopes can, therefore, 

be used to calculate the net rate Of C02 production (rC02) in an animal 

(Lifson & McClintock, 1966; Tatner & Bryant, 1989; Speakman & Racey, 

1988b)- 

3.0.2. Measurement and calculation of the rateOf C02 production in a 

free ranging animal 

Before rC02 can be calculated, the turnover rates of D and 180 must be 

measured. This is normally accomplished by extracting three body water 

samples from the subject, and analyzing their D and 180 isotopic composition 

in replicate. The first sample is taken prior to administering the DLW, and 

measures the background abundance of D and 180 within the animal's body 

water. Once the administered isotope has equilibrated with the animal's body 

water, a second sample is taken, which is referred to as the "initial" sample. 

A third sample is removed after time t, and is referred to as the "final" sample. 

Once the background abundance has been subtracted from the initial and 

final abundances, the rate of decrease in D and "'0 content between initial 

and final samples over time t, can be used to calculate the rate Of C02 
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production of the organism (rC02), using equation (1): 

rCO, = (N / 2) - 
(ko 

- 
kH) (1) 

where ko and kH = the apparent fractional turnover rates of "'0 and D 

respectively, and 2=a constant equating two atoms of oxygen in each 

moleculeOf C02with one atom in each molecule of water. N= body water 

content of the organism (moles). 

Although the basic DLW method is theoretically applicable to most 

organisms, the technique depends on a number of basic assumptions, which 

if violated may result in significant errors in rC02 measurement (Nagy, 1980). 

3.0.3. Basic assumptions of the doubly labelled water technique 

Assumption 1) Organisms have a constant body water content. 

It is highly unlikely that the body water content of an animal will remain 

constant over the period of an experiment (Speakman & Racey, 1988b). The 

errors created by fluctuations in N are, however, small (Nagy, 1980; 

Speakman & Racey, 1988b; Tatner & Bryant, 1989) and are unlikely to be 

significant unless changes in the body water pool are high (>100%) 

(Speakman & Racey, 1988b). 
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Assumption 2) RatesOf C02and water flux within an organism are constant. 

The technique assumes that the decline in D and "'0 (expressed as natural 

logarithms) is linear. This again is unrealistic, as most animals will have 

variable activity levels, and hence fluctuating levels Of C02 and metabolic 

water production. Changes in environmental conditions will also affect 

evaporative water loss and energy used in temperature regulation. As a 

. asult, the decline in isotope abundance in an animal's body water between 

initial and final samples will be non-linear (Speakman & Racey, 1988b)- 

However, using the two sample technique, the change in isotopic abundance 

between initial and final samples represents the meanC02 and water flux 

over the experimental period (Lifson & McClintock, 1966), creating negligible 

errors in rC02measurement (Speakman & Racey, 1988b). 
, 

Assumption 3) Administered Isotopes must label only the body water and 

C02 of the organism. 

It is possible that D and 180 isotopes may become incorporated into non- 

aqueous molecules by ionic diffusion and anabolic metabolism (Nagy, 1980). 

This may cause errors in rC02 if N is determined by D or 180 isotope dilution 

space, as incorporation of D2180 into non-aqueous compounds will result in 

an over estimate of body water content (Nagy, 1980; Nagy & Costa 1980; 

Schoeller, Ravussin, Schultz, Acheson, Baertshi & Jequier, 1986; Speakman 

& Racey, 1988b; Tatner & Bryant, 1989). However, if N is determined 

independently e. g. from body mass, this error will be minimized. 
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Assumption 4) D and '80 is lost from the organism's body only as C02 and 

H20. 

If D and "0 leave the body in forms other than C02 and H20, potentially 

gross errors may occur in rC02measurement. If, however, the isotopes are 

lost in the ratio of 2D to 1 18 0, DLW estimates of rC02will not be affected as 

the ratio between the two isotopes (used to calculate rC02) will remain the 

same (Lifson & McClintock, 1966; Tatner & Bryant, 1989). 

The main site of D2180 loss, other than C02 and H20, is through non- 

exchangeable H and 0 components of nitrogenous excretion (Nagy, 1930, 

Speakman & Racey, 1988, ). In particular, 180 appears to be incorporated 

into urea through the ornithine - arginine cycle (Speakman & Ra. -ey. 1988. ), 

resulting in over estimates of rC02. The degree of error created in final 

measurements Of C02 production is not clear, although errors in the DLW 

technique are lower in animals with low rates of urea synthesis eg birds 

insects and reptiles (Speakman & Racey, 1988. ). 
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Assumption 5) The D and '80 isotopic composition of exitingC02and H20 is 

in equilibrium with the isotopic abundance of the organism's body water. 

Due to the rapid reaction catalyzed by carbonic anhydrase, C02 and H20 Will 

be in isotopic equilibrium with N prior to exiting the body. However, as the 

water of the body changes phase from liquid to gas, the lighter isotopes, 1H, 

'60 and 170 
, escape more frequently from the water phase than the heavy 

isotopes, increasing the relative abundance of D and '80 in the liquid from 

which the gas has evolved. This process is called fractionation and occurs 

largely during transcutaneous evaporative water loss and expiration0f C02 

and H20. Un-corrected, fractionation may result in significant errors in rC02 

estimates (Lifson & McClintock, 1966; Haggarty, McGaw & Franklin, 1988; 

Haggarty, 1991). Lifson & McClintock (1966) attempted to minimize the effect 

of this error by adding a correction factor to equation (1). The value of the 

correction factor was determined simply by observing the rate of fractionation 

of tap water evaporating from a beaker at 250C. Although attempts have 

been made to model fractionation in more complex biological systems 

(Coward, Prentice, Murgatroyd, Davies, Cole, Sawyer, Goldberg, Halliday, & 

MacNamara, 1985; Schoeller et aL, 1986) no subsequent studies have been 

able significantly to increase the accuracy of Lifson and McClintock's (1966) 

correction factor (Speakman & Racey, 1988,, ). 
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Assumption 6) Environmental carbon dioxide and water does not enter the 

organism through skin or respiratory membranes. 

If C02 or H20 enters an animals body across skin or respiratory membranes, 

the apparent isotopic turnover rates of D and '80 will increase. 

Environmental H20 entering the bee's body should, however, have a limited 

effect on the accuracy of rC02 measurements, as the turnover rates of D and 

; 80 will be altered by the same amount, not effecting the ratio between the 

two isotopes (Lifson & McClintock, 1966; Nagy, 
. 
1980). Environmental C02 

entering the bee's body will, however, only increase the turnover rates of 1,30; 

thus increasing the rate of "0 fractional turnover relative to D, resulting in 

over estimates of rC02. The degree of error created by exogenous C02 iSt 

however, likely to be negligible in most circumstances (Speakman & Racey, 

1988b); although in situations where ambient air humidity is low (: 53.8 mg 

H20/L air) and C02 concentrations are high (a3.4%), gross errors of up +81 % 

in rC02 estimates may occur (Nagy, 1980). 

3.0.4. Application of the DLW technique to B. terrestris 

As the DLW technique was originally developed to measure the energy 

expenditure of vertebrates, it was not possible to transfer the methodology 

directly to invertebrates without modification. There were 5 main areas of the 

DLW technique which required alteration before the technique could be 

applied to B. terrestris: 
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1) Isotopic analysis of Bjerrestris plasma. 

One of the major problems in applying the DLW technique to bees, and 

invertebrates in general, is the need to remove relatively large volumes of 

plasma for isotopic analysis. Analysis of the D2180 abundance within 

vertebrates normally requires a minimum four 5 gi samples of plasma to be 

extracted from the animal2 (Tatner & Bryant, 1989). If this procedure were to 

be used in B. terrestris, 20gl of plasma would have to be removed from the 

bee. As the removal of 4pl of haemolymph has been found to alter the 

physiology of honeybees significantly (Maier, Fuchs, Pfeifer & Bounias, 

1990), the extraction of 20gl of plasma from B. terrestris will almost certainly 

detrimentally effect the bee's physiology and behaviOUr. As the mean water 

content of B. terrestris workers is only 105±57 pl (n = 32) (pers. obs. ), it was 

necessary to reduce the volumes of plasma required for isotopic analysis, 

preferably to volumes below 4gl (a mean of C. 4% of a bumblebees total body 

water volume). 

2) Administefing D2180 tO B. terreStriS- 

In vertebrates, D21'Ois normally administered by intraperitoneal injection, via 

disposable needles and syringes (Tatner & Bryant, 1989). This is not 

possible in B. terrestris for two reasons; i) bees do not have intraperitoneal 

2 These four samples exclude any extraction of plasma in order to determine background 
isotopic abundance. 
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cavities and ii) the wound created during injecting, with disposable needles, 

would be large relative to the body size of the bee, possibly damaging organs 

and causing bleeding. It was, therefore, necessary to develop a new protocol 

for injecting DLW directly into the bee's haemocoel, whilst minimizing the size 

of injection wound and preventing bleeding and damage to organs. 

3) Removal of plasma from B. terrestris for D and "'0 analysis. 

Plasma is normally withdrawn from vertebrates by puncturing a vein with a 

needle and drawing up the plasma into a syringe or micro-pipette (Tatner & 

Bryant, 1989). As bees have a low pressure, open circulatory system 

(Chapman, 1985), haemolymph must be extracted directly from the 

haemocoel. Although small volumes of plasma can be extracted using micro- 

pipettes, the tip of the pipettes rapidly become blocked with adipose tissue 

(pers. obs. ). This limits the volume of extractable plasma, making it 

impossible to perform standard D and 180 isotopic analysis. Thus, to permit 

full analysis of D and 180 abundance, new techniques had to be developed to 

extract adequate quantities of haemolymph. 

4) Estimation of time taken for administered isotope to equilibrate with 

B. terrestfis body water. 

Vhe time taken for administered isotope to equilibrate with an animal's body 

water is highly variable, and depends on a range of physiological and 

behavioural traits such as water conservation strategies and activity levels. 
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Equilibration is normally determined by the plateau enrichment method 

(Gales, 1989). This involves plasma samples being extracted sequentially 

from the organism at regular intervals following isotope administration. As 

the isotopes equilibrate with the animal's body water, so the abundance of 

the animal's body plasma will increase. Once the isotope has completely 

equilibrated, plasma abundances will stop increasing, having reached a 

plateau. The time at which extracted plasma samples plateau can then be 

taken as the equilibration time of the organism. As this technique again 

requires the removal of large volumes of plasma, it was not possible to use it 

on B. terrestris. As a result, the development of a new technique to determine 

the equilibration time of administered isotopes was required. 

5) Measurement of initial D2'80 isotopic composition of B. terrestris plasma. 

Following equilibration of administered isotopes, "initial" plasma samples are 

normally removed, which involves the extraction and analysis of four 5pl 

samples of plasma (Tatner & Bryant, 1989). As described in point 1, the 

removal of such large volumes of plasma is likely to be deleterious to the 

physiology and behaviour of the bee. Even if it is possible to reduce the 

volume of haemolymph required for isotopic analysis, the removal of four 

separate samples would involve repeatedly puncturing the bee's cuticle, 

greatly increasing the chance of harming the bee. It was, therefore, 

necessary to develop new techniques for determining initial isotopic plasma 

abundances of B. terrestris, without extracting large volumes of plasma or 

repeatedly puncturing the exoskeleton. 
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3.0.5. Validation of the DLW protocol for B. terrestris 

As the usual DLW protocol had to be altered before it could be used to 

measure B. terrestris energy expenditure, it was also necessary to validate the 

DLW estimates of rC02 with indirect calorimetry measurements. This was 

carried out to determine the accuracy of the developed DLW protocol, and 

detect any errors created by physiological or behavioral traits of bumblebees 

which violate the basic assumptions of the DLW technique. 
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3.1.0 General methodology for the analysis of 180 and 

D abundance of water samples 

! ntroduction 

Stable Isotope Ratio Analysis (SIRA) by mass spectrometry is now well 

established as the standard method for determining the abundance of '80 

and D isotopes in water samples (Wong & Klein, 1986). SIRA measurements 

can be performed on water samples in two ways; i) direct analysis of the 

sample as a liquid, or ii) analysis of the isotopic abundance of gases evolved 

from the water sample. Direct analysis of the liquid phase of water can be 

performed using mass spectrometers such as the Isogas Aqua Sira (VG Ltd, 

Cheshire). This technique is, however, restricted to analysis of liquids with 

an isotopic abundance near background levels, due to ther inability to 

measure accurately abundances above 1000 delta per mil 

(Speakman, Nagy, Masman, Mook, Poppitt, Strathearn & Racey 1990). As 

the DLW technique can require analysis of samples with isotopic abundances 

in excess of 5000 50/00 (pers. obs. ), direct isotopic analysis of enriched water 

samples was not possible. 

To measure accurately high D and "'0 abundances, gas Isotope Ratio Mass 

Spectrometry (gIRMS) is normally used (Speakman et aL, 1990, Wong, Klein, 

1 Per mil values refer to parts per 1000. 
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Parr & Clements, 1993). This involves converting water samples intoC02, for 

180 analysis, and hydrogen gas, for D analysis. There are currently several 

methods capable of evolving H andC02gas from water (Bigeleisen, Perlman 

& Prosser, 1952; Speakman et aL, 1990), but only four are in common use 

(Wong & Klein, 1986). These are; the production Of C02 by the equilibration 

(Wong, Lee & Klein, 1987a, b) and guanidine hydrochloride conversion 

techniques (GH) (Boyer, Graves, Suelter & Dempsey, 1961; Dugan, 

9orthwick., Harmon, Gagnier, Glahn, Kinsel, Macleod & Viglino, 1985; Wong 

et al., 1987b), and the production of H by the uranium reduction (Bigeleisen 

et al., 1952; Wong & Klein, 1986) and zinc reduction techniques (Coleman, 

Shepard, Dumham, Rouse & Moore, 1982; Florkowski, 1985; Kendall 

Coplen, 1985; Sudzuki, 1987; Wong, Lee & Klein, 1987a; Tanweer, Hut & 

Burgman, 1988). 

3.1.1. Analysis of "'0 abundance in water samples using the 

equilibration technique 

Equilibration is currently the most commonly used gIRMS method of 180 

analysis (Crowley, pers com. ). This technique requires water andC02 to be 

mixed at 250C in the following reaction: 

H2 Iso+CI602 
-> H2 �o + C"02 

(1) 
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4 . Aer an equilibration period (dependent on the size of sample and quality of 

analytical equipment) theC02 is removed, cryogenically purified and admitted 

to a mass spectrometer. 

The equilibration technique has one advantage over GH conversion; it does 

not destroy the sample or significantly alter its isotopic composition during 

analysis (Kishima & Sakai, 1980). It is, therefore, possible to use one sample 

for multiple analysis, not only determining the 180 isotopic abundance but 

also the D abundance. This is important when limited volumes of water are 

available for analysis, as in the case of B. terrestfis. However, even with the 

development of the Micro C02 Equilibration (MCE) technique (Kishima & 

2 
Sakai, 1980) it is still not possible to analyse samples of :! OgI in volume 

The technique is also time consuming, with equilibration of small samples 

taking between 48-72 hours (Speakman et aL, 1990). As a result the 

equilibration technique was not suitable for analysing the Bjerrestris body 

water samples. 

3.1.2. Analysis of 180 abundance in water samples using the guanidine 

hydrochloride (GH) conversion technique 

Unlike the equilibration technique, small sample analysis (samples of : 51ýd in 

volume) has been successfully carried out on water samples with the GH 

2 Kishima & Sakai (1980) report being able to analyse sample of between 4-5ýtl in volume 
using the MCE technique, they also suggest that it may be possible to analyse samples as 
small as 1gl in volume but have not validated this assumption. No other published work 
reports analysing samples below a volume of 10 ýLl using the equilibration technique. 
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conversion method. Using the GH method, Boyer et aL, 1961, reported 

reproducible results with samples as small as O. 1gl in volume (when 

analysing water samples with an isotopic equal to natural abundance). 

The repeatability of 180 isotopic analysis is reduced, however, in highly 

enriched samples and liquids vAth a high organic content, such as blood or 

milk, reducing the accuracy of the GH technique (Wong et aL, 1987a). As 

plasma samples taken from Blerrestfis will contain both enriched levels of 

'80 and organic matter, the use of the GH technique required further 

validation before it could be used in the present study. Despite the need for 

further validation, the GH conversion method was used to analyse the 180 

abundance of the bee's body water in preference to C02 equilibration, due to 

the technique's ability to analyse the isotopic abundance of small samples 

(samples with a volume of : 51 gl). 

3.1.3. Analysis of D abundance in water samples using the uranium 

reduction technique 

The most frequently used method for evolving Hydrogen gas from water is the 

uranium reduction technique (Wong & Klein, 1986). This involves admitting a 

water sample to an ultra high vacuum (UHV) preparation line; the sample is 

then vaporised and cryogenically moved through the vacuum system to a 

jranium furnace. Within the furnace, the water reacts to produce uranium 

oxide, thus liberating hydrogen gas from the sample. The evolved hydrogen 

is then collected by a topler pump or adsorbed to the surface of large 
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volumes of activated charcoal (Wong & Klein, 1986). The gas is then 

admitted to a mass spectrometer for glRMS analysis. 

Although the uranium reduction technique accurately measures background 

abundances of D in water samples, there are a number of limitations with this 

method when analysing small isotopically enriched samples. The major 

source of error in the uranium reduction technique is caused by isotopic 

memory within the uranium furnace. This is the effect of heavy isotopes from 

a water sample adsorbing to the surface of the uranium in the furnace. The 

trapped isotope is then released when the uranium is oxidised by a 

subsequent water sample. As a result, the evolved hydrogen from the 

subsequent samples becomes artificially enriched (Coleman et aL, 1982. 

Wong et aL, 1987a). Coleman et aL, 1982, reported that errors from the 

isotope memory effect increased as the volume of water sample decreased. 

Isotope memory will also increase as the isotopic abundance of the water 

sample increases (Crowley pers. com). This technique could, therefore, 

produce significant errors if used with small samples of isotopically enriched 

B. terrestris plasma. As a result the uranium reduction technique was not 

used to analyse the D abundance of B. terrestris body water. 
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3.1.4. Analysis of D abundance in water samples using the zinc 

reduction technique 

The use of zinc for the liberation of hydrogen gas from water samples can be 

performed in two ways: 

1. The zinc furnace technique. 

Zinc may be used in the same manner as uranium, by passing a water 

sample through a heated furnace containing zinc turnings. The heated 

zinc reacts with the water to produce zinc oxide, liberating the hydrogen 

component of the water (Wong & Men, 1986). This method may, 

however, also result in analytical error due to isotopic memory within the 

reactor, making it an inappropriate technique to analyse the D abundance 

of a bee's body water. 

2. The single sample technique. 

pI quantities of water may also be reacted with milligram quantities of zinc. 

Due to the small quantities of zinc required for the reduction reaction, it is 

possible to change the zinc and reaction vessel for each individual 

sample, thus preventing isotopic memory (Coleman et aL, 1982; 

Florkowski, 1985; Kendall & Coplen, 1985; Sudzuki, 1987; Wong et aL, 

1987a; Tanweer et aL, 1988). 
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As the isotopic memory effect could produce significant errors in small 

isotopically enriched samples, the zinc single sample technique was used to 

analyse the D abundance of the B. terrestris body water. 
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3.2.0 Design and construction of ultra high vacuum 

manifold 

To minimise contamination and fractionation of water samples, both 18 0 and 

D preparation were performed using a custom built ultra high vacuum 

manifold. 

The design of the UHV manifold had to take two factors into account: 

1. The ability of the UHV manifold to attain a pressure sufficiently low to 

prevent significant contamination and fractionation of the water samples. 

2. The ability of the UHV manifold to maintain this pressure during the period 

of analysis. 

The pressures at which "'0 and D water preparation were performed in 

previous isotopic analysis studies varied with the isotope being analysed and 

the volume of water sample being processed. In large sample water analysis 

(ý! 5gl) a pressure of : 5E-2 mb is required for GH preparation (Wong et ah, 

1987b), whilst zinc reduction analysis of water requires a pressure of : 5E-3 mb 

(Florkowski, 1985: Tanweer et aL, 1988). In small sample analysis (5541), 

however, contamination and fractionation can result in significant analytical 

errors at pressures as low as E-3 mb (pers. obs. ). For this reason the UHV 

manifold was designed to attain pressures of : 5E-5 mb, thus avoiding any 

significant contamination of water samples during analysis and preparation. 
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The general design of the UHV manifold was based on a system currently 

used at the Scottish Universities Research Reactor Centre (SURRC)3 . The 

SURRC system uses two UHV manifolds, one for '80 preparation and one for 

D preparation. The separate UHV manifolds were necessary due to the use 

of a uranium furnace attached to the D manifold. 

The SURRC UHV manifold was constructed of borosilicate glass, with joints 

in the glassware connected by greased Quick Fit @ sockets. The pumping 

system comprised a Mercury Vapour pump and an Edwards @ Stage 2 Rotary 

pump. This system could achieve a minimum pressure of 2.6 E-2 mb +-0.2, 

and could maintain this pressure for a period of 3.4 minutes ±0.5 (pers. 

obs. ). 

Although these pressures are adequate when analysing samples o ý: g in 

volume, sufficiently accurate analyses were not possible from small samples 

prepared on this system, due to high levels of contamination from mercury, 

vacuum grease and room air (pers. obs. ). The UHV manifold was, therefore, 

. 9-designed and built at Liverpool John Moores University to allow the 

preparation, and subsequent isotopic analysis, of small volumes of plasma 

extracted from B. terrestris. 

The design of the SURRC vacuum line is described by Tatner & Bryant (1989) 
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As in the SURRC line, the main tubing was made from borosilicate glass 

(Figure 3.2.1 & 3.2.2). All Quickfit @ joints were replaced with greaseless 

. tr% - TMij 

Cajon type "0" ring seals, thus preventing the need for vacuum grease 

and the contamination which it created in the SURRC line (pers. obs). 

Flexible vacuum tubing was placed at stress points to reduce any cracking 

within the borosilicate glass. 

The vacuum pumping system was also modified (Figure 3.2.2), substituting 

an Edwards Speedi-Vac @ vapour diffusion pump for the mercury diffusion 

pump used at the SURRC. High grade Santovac 5Tm diffusion pump oil was 

used in order to attain the lowest possible pressures, and to decrease back- 

flushing4 within the system. The latter was further reduced by placing a fore- 

line trap between the diffusion pump and the borosilicate vacuum line. The 

fore-line trap contained _- 200 gm of 23 micron activated aluminium balls. 

Vaporised diffusion pump oil passing through the fore-line trap was adsorbed 

on to the surface of the aluminium balls. The fore-line trap could be removed 

from the UHV preparation line, allowing the activated aluminium to be 

cleaneds or replaced. 

For the vapour diffusion pump to operate correctly, a "backing" vacuum was 

required. The backing vacuum removes any material which is condensed 

4. Back-flushing" is the process of vaporised diffusion pump oil being drawn into the UHV 
manifold due to fluctuations in internal pressure. Back-flushed diffusion pump oil will act as 
both a sample contaminant and a substance capable of adsorbing isotope, potentially 
creating fractionation of any water samples. 5 The aluminium balls where cleaned by heating at I 000c for 48 hours in a desiccating oven, 
this occurred approximately every 3 months. 
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within the diffusion pump oil. The backing vacuum was produced by an 

Edwards 2 Stage @ rotary pump, attached to the diffusion pump with copper 

tubing. A liquid nitrogen pre-line trap was placed between the rotary and 

diffusion pump to prevent rotary and diffusion pump oil from mixing, thus 

maintaining optimum pumping conditions. 

The rotary pump was also used to perform "roughing" of the UHV manifold, by 

isolating the diffusion pump from the line and then opening the line to the 

rotary pump (Figure 3.2.2). Roughing is the process of evacuating the 

manifold to a pressure of : 5E-0.5 mb. This is necessary as vapour diffusion 

pumps have a maximum operating pressure of : ýE-0-5 mb. At pressures 

greater than this, vaporised diffusion pump oil is "sucked" from the diffusion 

pump by the backing rotary pump, thus reducing the diffusion pump's ability 

to attain low pressures. 

Pressure within the borosilicate vacuum line was monitored using four 

Edwards E-5 mb Vacuum gauges, connected to an Edwards controller. 

With the above modifications, the UHV manifold was capable of attaining a 

pressure of :! gE-5 mb and maintaining this pressure for a period of C. 200 

minutes after valve V1 and V2 were sealed (Figure 3.2.1). 
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3.2.1. GH preparation and analysis of the "'0 isotopic content of 

water samples 

To determine the 180 isotopic composition of B. terrestris plasma, samples 

were converted from H20 to C02 for subsequent gIRMS analysis of 544 / 546 

ratios. Conversion of the samples was carried out using the GH method 

(Boyer et al., 1961; Kishima & Sakai, 1980; Dugan et al., 1985; Wong et al., 

1987b). 

Plasma samples were flame sealed in 5gl Vitrex micro-pipettes @ and placed 

in a stage 1 micro-pipette breaker (Figure 3.2.3). The stage I breaker was 

then attached to the UHV manifold via port 2s Cajon union (Figure 3.2.1). 

Port 1 was sealed with a glass stopper, whilst a 6mm internal diameter (ID) 

borosilicate tube containing 100 mg of BDH anhydrous GH was placed on 

port 3. Valve V2 was then opened and arm 2 of the manifold evacuated to a 

pressure of -5E-5 mb. Following evacuation, valve V2 was closed. The micro- 

pipette containing the plasma sample was then broken by the stage 1 

breaker, thus exposing the plasma to the UHV. The plasma sample was then 

frozen into the borosilicate tube, attached to port 3, by liquid nitrogen 

distillation6. 

6 Uquid nftrogen distillation is the process where liquids are evaporated within a vacuum. 
The liquid is then transported in its gaseous state and condensed back into a liquid by 
freezing with liquid nftrogen. 
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When the pressure had stabilised, valve V2 was re-opened to evacuate any 

non-condensable material7 from the UHV manifold. The borosilicate tube, 

containing the frozen plasma sample and GH, was then flame sealed using a 

Microflame @ Butane/Oxygen burner (the dewer of liquid N2 remained in 

place whilst the borosilicate tube was sealed). V2 remained open during 

sealing. 

The plasma sample and GH were then heated in a muffle furnace at a 

temperature of 2600C for a period of 10 hours, thus catalysing the reaction: 

NH2C: (NH)*NH2*HCL+2H, O "'O*c . 

2NH3 + C02 + NH4 o CL 

(2) 

Following reaction (2), the borosilicate tube was removed from the oven and 

allowed to cool to : 5700C. As cooling occurTed, the ammonia and C02 

combine to form ammonium carbamate by the reaction: 

>700C 

2 NH3 +C02 +NH4 CL 
<'-> NH4NHCO, +NH4 CL 

<700C 

(3) 

During vacuum preparation, gases are produced and liberated from the plasma samples 
and the chemical reagents reacted with the plasma. Some of these gases have no liquid 
phase or have a freezing point below -1970C, thus, they cannot be condensed by freezing 
with liquid nitrogen. In the process of liquid nitrogen distillation, the presence of these "non- 
condensable materials" prevents the internal pressure of the UHV manifold from returning to 
its initial pressure prior to the breaking of the S; il pipette. As the presence of such material 
can effect the accuracy of the mass spectrometer, they are removed from the sample by the 
vacuum pumping system of the UHV manifold. 
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TheC02was then extracted from the ammonium carbamate by reaction with 

Orthophosphoric Acid. This was achieved by placing the borosilicate tube 

containing the ammonium carbamate into a Stage 2 breaker (Figure 3.2.3b) 

containing 1 ml of 100% BDH analar Orthophosphoric acid. Prior to placing 

!, he borosilicate tube into the stage 2 breaker, the tube was scored with a 

glass cutter, thus facilitating the "cracking" of the tube. 

The stage 2 breaker was then placed on arm 2 of the UHV manifold via one 

of the ports Cajon unions. Empty ports were sealed with glass stoppers. 

Valve V2 was then opened and the UHV manifold and breakers evacuated to 

a pressure of : 5E-5 mb. Due to the hydrophilic nature of Orthophosphoric 

acid, significant quantities of water were normally present prior to 

evacuation". As a result, evacuation took around 12 hours to complete, and 

was normally performed over night. 

Following evacuation of arm 2, valve 131 on the stage 2 breaker was closed. 

The ammonium carbarnate was then exposed to the Orthophosphoric acid by 

bending the flexible tubing of the stage 2 breaker, thus fracturing the 

borosilicate tube. The stage 2 breaker was then removed from arm 2 of the 

UHV manifold and placed in a 900C oven for a period of 60 minutes, thus 

The Orthophosphoric acid was stored in a desiccating oven. 
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releasing theC02through the reaction: 

NH49 NH2* C02 +H2PO4 +NH4 * CL 900C 
:) 

C02 +(NH4)2 * P04 +NH4 * CL 

(4) 

The stage 2 breaker was then removed form the 900C oven and placed on 

Arm 1 of the UHV manifold, and aC02 collection bottle (Figure 3.2.3) placed 

on arm 2. All empty ports were sealed with glass stoppers. Valves VI to V5 

were then opened, and the line evacuated to a pressure of : 5E-5 mb. 

Before transferring the C02 sample in the stage 2 breaker into the C02 

collection bottle, the sample was cryogenically purified. This was done by 

passing the sample through a series of varying temperature cold traps. 

3.2.2. Cryogenic purificationOf C02 

, After the UHV manifold had been evacuated, Valves V2 and V3 were closed. 

Valve Bi on the stage 2 breaker was then opened allowing the C02 sample 

into arm 2. A dewer of liquid nitrogen was placed under cold trap C2 of the 

UHV manifold, thus freezing the C02 into C2. Once the gas sample had been 

frozen into C2, valve V4 was closed. The liquid nitrogen dewer was then 

replaced by a dewer containing acetone and dry ice, at a temperature of 

approximately -800C. This temperature allowed the frozen C02 Within C2 to 
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melt and vaporise, but retain any contaminants with a freezing point higher 

than -800C. 

A dewer containing an acetone/dry ice mix was also placed under cold trap 

C1, in order to trap any contaminants not frozen in C2. Valve VI was then 

closed and a dewer containing liquid nitrogen placed under the C02 

collection bottle on arm 1. Valve V3 was then opened and theC02 frozen 

into theC02 collection bottle. The Valve CB1 on the collection bottle was 

then closed, allowing the sample to be removed from the UHV manifold and 

placed on a mass spectrometer inlet manifold for glRMS analysis. 

J. 2.3. gIRMS analysisOf C02gas fo r 844 1846 rati os 

C02 gas samples were analysed on a VG SIRA 12 mass spectrometer at the 

Liverpool University Stable Isotope Laboratory. All samples were analysed 

following the standard protocol described in the VG users handbook. The 

results of analysis were expressed in delta (8) per mil defined as: 

849 0/ 
00 = 

(. P"SamPle 
_ 1)103 

Rws (5) 

where Rsample and Rws are the 180 / 160 ratios of the sample and working 

standard respectively. The Rws was normalised against two international 

standards, V-SMOW (Vienna-Standard Mean Ocean Water) and SLAP 
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(Standard Light Arctic Precipitation) according to Gonfiantini (1978), and any 

mass spectrometer offset corrected for by analysing to internal laboratory 

standards (Wong et. al., 1993). 

3.2.4. Zinc reduction and analysis of the Deuterium abundance of water 

samples 

It has been shown that the ability of zinc to reduce water samples without 

significantly altering the samples isotopic abundance, is dependent on i) low 

levels of contaminants within the zinc reagent (Coleman et al., 1982; 

Florkowski, 1935; Sudzuki, 1987) and ii) the grain size of the zinc shot 

(Florkowski, 1985; Kendall & Coplen, 1985). At present there are no 

commercially available sources of zinc of optimal size and contamination. It 

was, therefore, necessary to use an experimental zinc reagent developed by 

Indiana University Geological Department. The zinc was optimally 

contaminated with inter-metallic compounds9, and supplied as turnings rather 

than shot. 

To prevent contamination of the zinc, the reagent was stored under vacuum 

conditions at a pressure of <-2.0 E-2 mb. To react the zinc with water 

samples, 20 mg of zinc was used per I pl of sample water. The zinc was 

rapidly transferred from the vacuum container to a6 mm ID Vycor'O tube @. 

The exact nature of the inter-metallic compounds within the zinc reagent was not disclosed. 
'Vycor @ tubing was used in preference to borosilicate due to the ability of evolved 

hydrogen to react With the surface of borosilicate glass (Kendall & Coplen, 1985). 
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The Vycor @ tube was then attached via a Cajon union to port I of the UHV 

manifold (Figure 3.2.1). 

The water sample to be analysed was flame sealed into a 5jil Vitrex capillary 

tube and placed in a stage one capillary breaker (Figure 3.2.3a). The stage 

one breaker was attached via a Cajon union to port 2 of the UHV manifold. 

The manifold was then evacuated to a pressure of : 5E-5 mb. Following 

evacuation, the Vycor tubing containing the zinc was gently heated with a 

blow torch, thus removing any adventitious water from the surface of the zinc. 

Once the Vycor @ tube had cooled to room temperature, Valves V2 and V4 

were closed, and the capillary in the stage one breaker cracked open. The 

water sample was liquid nitrogen distilled into the bottom of the Vycor tube. 

Valve V2 was then opened to remove any non-condensable material from the 

manifold, following which the Vycor tube was flame sealed. 

The reduction process was then catalysed by placing the Vycor tube, 

zontaining the zinc reagent and water sample, into a 500"C muffle furnace for 

a period of 30 minutes. 

The Vycor @ tube was allowed to cool to room temperature and then placed 

in a stage 2 borosilicate tube breaker (Figure 3.2.3b) and placed on the inlet 

manifold of the mass spectrometer. The inlet manifold and stage 2 breaker 

were evacuated to a pressure of : 5E-5 mb. Once evacuated, valve B1 was 
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closed and the Vycor tube broken, releasing the gas into the stage 2 breaker. 

The gas sample could then be admitted to the mass spectrometer for gIRMS 

analysis. All analyses of hydrogen samples was completed within 30 minutes 

of the Vycor tube leaving the muffle furnace. This was to minimise any 

reaction between the surface of the Vycor tubing and the Hydrogen gas. 

3.2.5. gIRMS analysis of Hydrogen gas for HID ratios 

The H/D isotopic composition of the gas was analysed using a VG SIRA 602 

mass spectrometer at Liverpool John Moores University. The samples were 

admitted to the mass spectrometer by opening valve 131 on the stage 2 

breaker. The samples were then processed according to the VG users 

manual. The results were recorded using a PC and VG DACC card 

All results were expressed in D units defined as: 

&D, Voo = 
(Psample 

10 3 (6) 

in which the Rsample and Rws are the D ratios of the sample and laboratory 

standard respectively. These values were then corrected for H3* contribution 

to the ion beam of the mass spectrometer using the standard protocol 

described in the VG SIRA's users handbook. Also, 2 internal laboratory 
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two standards were run every morning in order to correct for any mass 

spectrometer offset (Wong et aL, 1993)" 

3.2.6. Calculation of D and "'0 PPM abundance from 6 ("1.. ) value 

For the calculation of rC02 the normalised 5(0/oo) values have to be expressed 

as parts per million (ppm). The per mil values were converted using equation 

(8) for 180 and equation (9) for D. 

'80 PPM = 2.0052 x normalised 8+ 2005.2 (8) 

D PPM = 0.15575 x normalised 5 (01. �) + 155.75 

where 2005.2 = the 180 abundance of V-SMOW and 155.75 = the D 

abundance of V-SMOW. 

11 Enrichment of standard I equalled 3437 pprn and 4521 ppm for standard 2. 
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3.3.0 Validation of the analysis of 180 and D abundance in 

small isotopically enriched water samples 

Introduction 

The DLW technique requires the measurement of the fractional turnover of 

D2'80 isotopes in an animal's body water pool (Section 3.0.2. ). This normally 

requires the extraction of gl quantities of plasma from the animal for isotopic 

analysis. However, as discussed previously (Section 3.0.4. ), this technique is 

not applicable to bumblebees due to the relatively small volume of their body 

water pool. As a result, in order to apply the DLW technique to bees, it was 

necessary to reduce the volume of plasma required in order to analyze the 

isotopic composition of the bees body water pool. As no previous attempts have 

been made to analyze the D2180 abundance of isotopically enriched water 

samples below 3 gl in volume (Kishima & Sakai, 1980, Dugan et aL, 1985, 

Florkowski, 1985, Kendall & Coplen, 1985, Sudzuki, 1987, Wong et al., 1987a, 

Tanweer et al., 1988); it was not clear how small sample volumes could be whilst 

still permitting accurate isotopic analysis. To determine how much plasma 

needed to be extracted from a bee, it was necessary to determine the minimum 
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volume of plasma required for accurate D and "'0 isotopic analysis. This was 

achieved using two approaches: 

1) The effect of sample volume on precision was investigated by using a series 

of enriched standards, all with the same isotopic composition, but ranging in 

volume from 0.1 to 10 pl. If the analytical technique, described in Section 

3.2.1 & 3.2.4, was capable of analyzing volumes of plasma : 93 gl, no 

significant differences should have been found between the standards of 

varying volume. 

2) Such comparisons will, however, only determine the reproducibility of the 

analytical procedure, and will not indicate the absolute accuracy of the 

technique. To determine the absolute accuracy of the analysis, 1 OgI samples 

of the same enriched standard were also analyzed by an independent 

laboratory. Comparisons between the independent analysis of the standard 

with analysis performed using the technique described in Section 3.2.1 & 

3.2.4, therefore, permitted the precision of the procedure to be determined. 

112 



3.3.1. Matedals and methods 

The DLW standard was prepared gravimetrically by diluting 1 ml of 20% atom 

excess 2 
18 (Europa Scientific, Crewe, England)i with 160 ml of distilled water. 

The standard was flame sealed into Vitrex @ micro-pipettes in volumes of 10,5, 

1,0.5, and 0.1 gl respectively. The 18 0 abundance of the standard was 

analyzed in replicate at Liverpool University using volumes of 10,5,1,0.5, and 

O. 1gl of standard, and the D abundance was analyzed in replicate at Liverpool 

JMU, using volumes of 10,5,2 and I gl of standard. The 180 and D analysis 

was performed as described in Section 3.2.1 & 3.2.4. Replicates of the standard 

were also analyzed at Groningen University stable isotope laboratory, Holland, 

at volumes of 10pl for both 180 and D analysis. The Groningen 180 abundance 

of the standards were analyzed using the GH reduction method (Section 3.2.1) 

and the D abundance using the uranium reduction technique (Section 3.1-3). 

The results were expressed as 8 (7. ) and normalized against V-SMOW and 

SLAP, as described in Sections 3.2.3 & 3.2.6. To enable comparison between 

previous inter-laboratory studies, the normalized 5 values were then 

converted to ppm (Section 3.2.3 & 3.2-6. ). 

120% atom excess refers to a water sample which contains a 20% percentage greater ratio of 
180 to '60 isotopes and 1H to D isotopes above levels observed in V-SMOW (Gonfiantini, 1978). 
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3.3.2. Results 

Little variation was observed in the isotopic abundances between the standards 

analyzed at Liverpool University and Liverpool JMU, irrespective of volume of 

standard analyzed (Table 3.3.1). The variation in abundance between samples 

of different volumes was found to be non-significant for both the 18 0 (Anova; F4, 

20 ý" 1.008, p=0.426, ) and D (F4.16 =1.21, p=0.343) isotopes. 

Similarly, there was little variation between the observed mean Liverpool 

University and Liverpool JMU analyzed abundances of the standards, and the 

abundances observed by independent analysis at Groningen University. The 

mean '80 and D abundances observed at Liverpool University and Liverpool 

JMU were 3110.3±15.5ppm (n = 25) and 506.4±17.3 ppm (n = 20) respectively. 

These results compared well with the independent analysis of the water 

standards performed at Groningen University, where an 18 0 abundance of 

3109.0-+ 34.5 (n= 3) ppm and aD abundance of 505.5± 0.9 (n = 3) ppm was 

observed (Table 3.3.1). The difference between the Groningen and Liverpool 

University / Liverpool JMU analysis was non-significant for both 180 (Gi = 

<0.001, ns) and D isotopes (GI = <0.002, ns). 
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Table 3.3.1 
Repeatability of isotopic analysis of different voluMes of enriched water 
standards. 

"30 isotopic abundance of water standard (PPM) 

Site of analysis Liverpool University Groningen 

volume of sample 10 ýLl 50 1 gi 0.5 ýLl 0.10 100 

n555553 
mean 3110 3112 3119 3102 3111 3109 
sd 9.5 15.0 15.0 10.9 14.4 34.5 
*% error 0.02 0.08 0.32 -0.23 0.07 - 

D isotopic abundance of water standard (PPM) 

Site of analysis Liverpool JMU Groningen 

volume of sample 10 W5W2WI ýd low 

n55553 
mean 502 507 504 514 506 
sd 17.0 14.4 12.5 29.9 8.8 
*% error -0.70 0.31 -0.33 1.61 

*% error of the Liverpool analysis was calculated as the % difference in the isotopic 
composition of the water standard analyzed at Liverpool from the isotopic composition of 
the water standard analyzed at Groningen. 
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3.3.4. Discussion 

Comparison of the 180 isotopic abundance of the standard showed no significant 

variation when analyzed using different volumes of sample. Thus, the analytical 

tE;,; hnique described in Section 3.2.1 resulted in observations of isotopic 

abundance which were repeatable in standards as small as O. 1pl in volume. 

Also, analysis of the 180 isotopic abundance of the standard showed no 

significant variation between abundances observed at Liverpool University 

stable isotope laboratory and Groningen. Assuming the 180 abundance reported 

by the Groningen University was correct, this confirms that the absolute le'O 

abundance observed in samples as small as O. Igl in volume were also reliable. 

The % error in the 18 0 analysis, at Liverpool University stable isotope laboratory, 

compared well to previous inter-laboratory studies, with a mean error in '80 

analysis of +0.05+-+0.4% (n = 25), compared to a mean error of -1 4--0.4%, 

reported by Speakman et aL (1990)". Data regarding analytical error during D 

analysis from previous inter-laboratory studies were not available 

As in the case of the "0 analysis, no significant variation was observed in the D 

isotopic abundance of the water standards analyzed using different volumes of 

11 Speakman et aL (1990) reported the accuracy of 180 interlaboratory analysis using enriched 
standards of 3,5 and 1 Oýd in volume. 
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sample, again indicating that it was possible to produce repeatable D isotopic 

analysis on water samples as small as 1 gl in volume. The lack of any significant 

variation between the D abundance of the water standards analyzed at 

Groningen University and the abundance observed at Liverpool JMU again 

indicated that the absolute values of observed D abundance were reliable for 

water samples as small as 1 ltl in volume. 

It was, therefore, clear that it was necessary to withdraw 0.1 ýLl of plasma from a 

bee for 18 0 analysis and 1pl of plasma for D analysis. Assuming the analysis 

wns performed in replicate (to reduce analytical error), this would mean a total of 

only 2.2gl of plasma would have to be extracted from the bee in order to 

determine the DPSO isotopic abundance of the bees body water pool. 
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3.4.0 General methodology for Administering isotope to 

bumblebees 

131ore it was possible to use the DLW technique to measure a bumblebee's 

energy expenditure, it was necessary to administer D2180isotopes into the body 

water pool of the bee. Two methods of administration were considered. 

1. Mixing isotopes with water and sugar, producing an isotopically enriched 

unectar", which could then be fed to the bee. After the bee had consumed the 

enriched nectar, isotopes within the sugar water could then pass through the 

crop membrane of the bee as the nectar was metabolized. 

2. Direct injection of the isotope into the haemocoel of the bee. 

3.4.1. Administering D2180 by feeding isotopically enriched nectar to 

bumblebees 

Although feeding isotopes to a bee may appear the less intrusive of the two 

techniques, there are a number of problems associated with this approach 

resulting from a bumblebee's behaviour and physiology. If a bumblebee were to 

be fed isotopically enriched sugar water, the imbibed nectar would be stored 

within the crop until it was either metabolized by the bee, or delivered to the hive 

(Heinrich, 1979). When delivering nectar to the hive, bumblebees contract their 
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crop and regurgitate the collected nectar into a honey pot, which would result in 

any isotopically enriched sugar water within the crop being lost from the bee. It 

was, therefore, not possible accurately to regulate the amount of isotope 

administered to the bees plasma using this technique. As isotopic enrichment of 

the bees plasma could not, therefore, be controlled, it would not have been 

possible to ensure that the bees plasma isotopic abundance were sufficiently 

high to enable gIRIVIS analysis. 

The speed at which nectar is transported across the crop membrane is variable 

depending on the energy requirements and water balance of individual bees 

(Bertsch, 1984). As a result, it was also not possible accurately to determine the 

time at which imbibed, isotopically enriched nectar had been fully transported 

from the crop to the bee's body water pool.. If DLW measurements of energy 

consumption were taken before the isotope had fully equilibrated with the bee's 

body water, significant errors could occur in rC02 estimates (Nagy, 1980; 

Fancey et aL, 1986; Speakman & Racey 1988b). For these reasons, the use of 

labeled nectar was rejected in favour of direct injection of isotope into the 

haemocoel. 

119 



3.4.2. Administering D2180 to bumblebees by direct injection of isotope 

into the haernocoel 

To enable direct injection of isotopes into bumblebees, the injection procedure 

had to be capable of: 

1. Administering the isotope into the bee without creating an injection wound 

large enough to significantly affect a bumblebee's physiology and behaviour, 

and minimizing isotope leakage. 

2. Injecting the isotope into the bee without damaging any of the internal organs 

of the bee, or puncturing the crop' . 

3.4.3. Production of Micro-Needles for injection 

To reduce any detrimental effects experienced by the bee following injection, the 

outside diameter (OD) of the needles used to puncture the bee's body and 

administer the isotope was minimized. Reduction in the size of injection needle 

reduced the size of the injection wound, thus minimizing bleeding of 

haemolymph and isotope leakage from the bee. Commercially available needles 

were too large for use in micro-injection (Fishel pers. com. ); however, using 

1 If a bee's crop is punctured during injection, imbibed nectar will leak from the crop into the 
haemolymph. Not only will this affect the physiology of the bee, but it could also result in 
significant errors in DLW rC02 estimates. 
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techniques developed for in-vitro fertilization (Fishel & Symonds, 1993) it was 

pnssible to manufacture needles vAth an approximate OD of only 4 nm. 

Injection needles were produced from borosilicate 5gl Vitrex @ micro-pipettes, 

(any pipette vAth an OD of :! ý 100 microns can be used (Fishel & Symonds, 

1993)). The tip of the needle was formed by heating the central 2 an portion of 

the micro-pipette vAth a platinum filament. Simultaneously, the micro-pipette 

was stretched, thus thinning the central portion. This process was performed 

using a Micro-pipette Puller @ (Research Instruments Ltd, Cornwall, UK). The 

heat of the filament and tension force of the pipette puller could be adjusted, 

enabling the degree of thinning of the micro-pipette to be accurately controlled. 

This made it possible to produce "pulled" pipettes with an OD of -a. 6 nm. 

The thinned section of the pipette was then cut using a Research Instruments 

Microforge @. This produced two needles, the tips of which had an OD equal to 

that of the thinned section of the pipette prior to cutting (; zý 6 nm). The OD of the 

micro-needle was further reduced using a Research Instruments Micro-Grinder 

@, this enabled a bevel of ; ý-, 2 nm to be placed on the tip of the micro-injection 
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needle. The approximate dimensions of the injection needle can be seen in 

Figure 3.4.1. 

Figure 3.4.1. 
The typical dimensions of a needle used to inject Isotopically enriched water into B. terrestris. 
(Dimensions are approximated, afthough electron microscopy has determined the typical 
standard error to be +/- 0.005 nm (Fishel pers. corn. )). 
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3.4.4. Use of micro-needles and micro-manipulator to inject bumblebees 

with D2 i8o 

Although micro-needles enabled control over the size of injection wound, they 

d-d not provide control over the volume of isotope injected, or the precise 

positioning of the needle needed during injection to avoid damage to internal 

organs. This was achieved using micro-manipulation techniques. The volume 

of D21130 isotope injected into the bee was controlled using a 2gl Hamilton @ 

micro-syringe and CheneyTm adapter. The micro-needles were slipped over the 

needle of the Hamilton syringe, and the connection between the two needles 

sealed using melted dental wax. Accurate positioning of the needle during 
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injection was achieved by attaching the Hamilton syringe to a Shufer micro- 

manipulator @. Bees were restrained and positioned during injection using a 

maneuverable injection stage (Figure 3.4.2). 

3.4.5 Injection procedure 

Before injection, bees were anaesthetized by cooling in a 50C refrigerator until 

torpid. Once torpid, the bee was removed from the refrigerator and placed on 

the rotating cork platform of the injection stage, restrained using entomology 

pins and positioned for injection. The micro-needle was then pushed dorsally 

through the inter-segmental membrane of the third and fourth segment of the 

bee's abdomen. The micro-manipulator was used to position the needle to a 

depth of 2 to 3 mm within the abdomen (Figure 3.4.3). The Hamilton syringe 

was then used to inject the isotope into the bee. 

The probability of damaging organs in the abdomen was reduced by only 

injecting bees with empty crops. This prevented a full crop from pushing the 

organs of the abdomen into the site of the injection. An empty crop was also 

more difficult to puncture accidentally with the micro-needle. 

Following injection the micro-needle was removed from the bee's abdomen and 

the injection wound sealed with melted dental wax. 
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Figure 3.4.2. 
Injection stage to restrain and manouver B. terrestris during injection of DLW 

Top View (a) 

Removable 

Screw to 
mtating 

plaffo 

Direction of movement 
permited by X, Y 

Microscope Stage 

fix removable 
latfbrrn 

Rotatable cork platform 
onto which the bee is 

attached. 

Side View (b) 

/ X, Y Microscope Stage 

restrained Plain of movemant of 
bee rotating cork platform 

the position 
c)rk plafform 

18omm 

124 



Figure 3.4.3. 

B. termstfis were injected dorsally through the intersegmental membrane of the third and fourth 
segment of the abdomen. The micro-needle was inserted to a depth of 2 to 3 mm using the 
micro-manipulator, and the isotope administered using a Hamilton syringe and cheney adaptor, 
to which the micro-needle was attached. 
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3.5.0 Method for extracting Plasma from bumblebees 

To analyze the isotopic composition of bumblebee plasma, haemolymph had to 

be extracted from the bee without significantly altering the ratio of light and 

heavy 0 and H isotopes, through processes such as fractionation (Haggarty, 

McGaw & Franklin, 1986; Schoeller et aL, 1986). This could be achieved in two 

ways. 

1. Plasma could be removed from the bee by puncturing the cuticle and drawing 

haemolymph into a micro-pipette. 

2. Plasma could be extracted by liquid nitrogen vacuum distillation (LNVD). 

3.5.1. Removal of plasma from a bumblebee's haemoceol using micro- 

pipettes 

N 

A-though haemolymph removal using micro-pipettes was possible, extraction of 

Plasma volumes > 241 was difficult (pers. obs. ). This was due to blocking of the 

pipette by organic matter within the bee's haemocoel. As 2pl of plasma was not 

sufficient for analysis of the isotopic abundance of the bee's body water pool 

(Section 3.3.0), it was necessary to develop a new extraction technique. 
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3.5.2. Removal of plasma from a bumblebee's haemoceol by Liquid 

Nitrogen Vacuum Distillation (LNVD) 

Extracting the entire haemolymph of the bee by liquid nitrogen vacuum 

distillation (LNVD) proved to be the most reliable way of extracting su cient y 

large quantities of body water for subsequent analysis. This meant, however, 

that the bee had to be killed before extraction could be undertaken. As a result, 

it was only possible to use the LNVD technique for obtaining haemolymph when 

the bee was not required for further experimentation e. g. for isotopic analysis of 

final samples'. 

Bees were killed by dissection through the petiole, and the thorax flame sealed 

into a soda glass test tube. Flame sealing of the thorax prevented any loss or 

addition of water to the thoracic haemolymph, thus preventing significant 

contamination and fractionation of the thoracic body water. To prevent dilution 

of the body water from nectar within the crop, the abdomen was not used for 

further isotopic analysis. It was, however, possible that some nectar will have 

remained within the gut of the thorax, resulting in the dilution of the thoracic 

1 For a description of initial and final isotopic analysis see Section 3.2.1 & 3.2.4. 
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body water of the bee. However, any resultant errors in DLW estimates are 

likely to have been minimal, this was due to two factors: 

1. The volume of the thoracic gut is relatively small, accounting for circa 3±1 %(n 

= 10) of the total volume of a B. terrestris thorax (pers. obs). Thus, any dilution of 

the thoracic body water pool from nectar within the gut will have been minimal. 

2. Even if the thoracic body water pool is diluted by nectar within the gut, 

significant errors in DLW estimates of energy expenditure will only be created if 

the ratios of the light and heavy 0 and D isotopes are altered. It was, therefore, 

unlikely that the dilution of the bee's body water pool by relatively small volumes 

of nectar will have resulted in significant errors final DLW estimates of energy 

expenditure. 

Once the thorax had been flame sealed into a test tube, it was placed in a 

specially designed "test tube breaker" with a steel ball bearing (Figure 3.5.1), 

w, iich was placed on arm 2 of the UHV manifold via a Cajon union. A 6mm ID 

borosilicate tube was attached to one of the ports adjacent to the breaker, and 

any empty ports on arm 1 and 2 were sealed with glass stoppers (Figure 3.5.2. ). 

Valves VII to V5 and B1 were opened, and the UHV manifold, breaker and 

borosilicate tube evacuated to a pressure of : 5E-5 Mb. 
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Figure 3.5.1. 

Breaker used to crack soda glass test tube into which B. terrestris was sealed, 
thus allowing liquid nitrogen distillation of plasma. To break the soda glass test 
tube, the breaker was first evacuated to a pressure of E-5 mb, valve B1 was then 
closed. Once sealed a magnet was used to drop the steel ball bearing onto 
the test tube, thus breaking the glass. 
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Once evacuated, valves VI and V2 were closed and the test tube containing the 

thorax of the bee broken with the ball bearing. This was achieved by raising and 

dropping the ball bearing onto the test tube using a magnet. 

The breaking of the test tube exposed the thorax to the low pressures within the 

manifold, which facilitated the evaporation of the body water from the thorax. 

This was collected in the liquid nitrogen cold traps C1 and C2, thus condensing 

and freezing the evaporated plasma. 

Non-condensable gases were removed by opening valve V1 until the pressure 

within the UHV manifold had returned to E-5 mb. 

Following recovery of the vacuum, valve BI was closed to prevent the bee's 

exoskeleton from re-absorbing / adsorbing any body water. Valve V1 was also 

closed and the dewers of liquid nitrogen removed from cold traps C1 and C2, 

thus allowing any frozen body water to melt. This was then LNV distilled into the 

bottom of the 6mm ID borosilicate tube (Figure 3.5.2. ) and valve V2 opened to 

remove any remaining non-condensable gases. Finally, the borosilicate tube 

containing the sample was flame sealed under liquid nitrogen using a Microfine 

@ hand held gas / oxygen torch. 

The borosilicate tube was allowed to cool, broken and the water sample drawn 

into 5 gl Vitrex @ micro-pipettes. Each pipette was flame sealed and stored for 

130 



cl) 
> 
cu 

-0 
(1) 

n 
D 

ýj- 

--o 

b, 

(D 

(N C-) 

Cl) 
0 
0 

0 

-C3 
T3 

T- 

E 
m 1. - C: 7) M 

H -= m 
iD E 

U. 0 

E 

vt 

131 

Lc) 

E 
(D ý 



subsequent preparation of oxygen and hydrogen gases for analysis (Section 

3.2.1 & 3.2.4). 
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3.6.0 Validation of the Liquid Nitrogen Vacuum Distillation 

method of plasma withdrawal form bumblebees 

Introduction 

During LNVD extraction of haemolymph, 'H, 16 0 and 
170 isotopes evaporate 

from the thorax at a higher rate than the less volatile D and 180 isotopes i. e. 

kinetic fractionation (Haggarty, 1991). At 370C the rate of kinetic fractionation 

between '80 and D isotopes with equilibrium water (11-12180) is 0.99 and 0.941 

respectively (Dansgaard, 1964, Schoeller et aL, 1986). 

Due to this fractionation, the ratio of 'H /D and 160 /170 /180 /190 isotopes in a 

bee's thoracic body water will change with time during LNVD extraction. If the 

isotopic composition of the extracted plasma is significantly different from the 

composition of the thoracic plasma prior to extraction, errors will result in final 

DLW estimates of rC02. This form of fractionation is only likely to result in 

significant changes in the isotopic abundance of extracted plasma if the plasma 

content of the thorax is not fully removed. Due to kinetic fractionation during 

extraction, any plasma remaining within the thorax would have an increased 

ratio of heavy to light hydrogen and oxygen isotopes, whilst the extracted plasma 

would have a reduced ratio of heavy to light isotopes. It was important, 
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therefore, to remove as much of the thoracic body water as possible, to minimize 

the effects of such fractionation'. 

T,. ) determine whether the LNVD process resulted in significant kinetic 

. fractionation of the plasma sample, the isotopic composition of haemolymph 

extracted by LNVD was compared to haemolymph samples taken using micro- 

pipettes (Weathers & Nagy, 1980; Cooper, 1983; Williams & Nagy, 1984; 

Masman & Klaussen, 1987; Speakman & Racey, 1988b; Brown, Perez-Mellado, 

Diego-Rasilla, Garcia, Naranjo & Speakman, 1992). 

Plasma extracted by micro-pipettes should undergo minimal evaporation, and so 

kinetic fractionation of body water removed in this manner should be 

insignificant. If, therefore, the isotopic abundance of the plasma extracted using 

the two techniques was significantly different, this would indicate that significant 

kinetic fractionation was occurring during LNVD extraction. 

3.6.1. Materials and methods 

Twenty female B. terrestris were injected with 1 pl of 20% atom excess D2 18o 

(Section 3.4.4), and placed in a dark 20 x 20 cm wooden box for 15 minutes to 

allow equilibration with the body water (Section 3.7.0. ). Full equilibration of the 

1 If the total body water content of the thorax could be extracted there would be no appreciable 
frL: ctionation. 
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D2180 was essential in order to prevent isotopic fractionation of the bee's plasma 

by equilibrium fractionation 2 (Haggarty et aL, 1988). Following equilibration, the 

bee was killed by dissection through the petiole. 

3.6.1 a. Pipette extraction of bumblebee plasma 

5gl Vitrex @ micro pipettes were used to pierce the inter-segmental membrane of 

the 4th and 5th segment of the bee's abdomen, and two 1 ýtl samples of 

abdominal body water were drawn into the pipette by capillary action. The 

pipettes were then removed and flame sealed. 

The body water from the thorax was LNVD extracted and sealed into micro- 

pipettes (Section 3.5.2. ). The "'0 and D abundance of both micro-pipette and 

LNVD extracted samples were analyzed as described in Section 3.2.1 & 3.2.4 

3.6.2. Results 

Xthoug '80 abundances vaded from 2237 ppm to 3635 ppm, and D 

abundances from 1053.28 pprn to 2271 ppm, there was little intra-bee variation 

in the isotopic composition of plasma extracted using the two methods. As 

2 Equilibrium fractionation occurs when poody mixed water is evaporated. As the isotopic 
composition of the water is not homogenous, isotopes will evaporate dependent on their position 
relative to the evaporative surface rather than their atomic mass (Haggarty et aL, 1988). 
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Table 3.6.1 The effect of fractionation on the isotopic abundance of B. teffestris 
plasma extracted by LNVD. (All data is based on pairs of replicates). 

Isotopic composition of 
pipette extracted plasma 

Bee ID "30 ppm 

Isotopic composition of 
LNVD extracted plasma 

180 PPM % difference in 
isotopic 
abundance of 
LNVD and 
pipette extracted 
plasma (Arsin 
transformed) 

1 3489 3494 0.2 
2 2237 2242 0.2 
3 3629 3635 0.2 
4 2791 2784 -0.2 
5 2964 2974 0.4 
6 2466 2469 0.1 
7 2834 2831 -0.1 
8 3255 3250 -0.2 
9 3542 3549 0.2 
10 2897 2906 0.3 

mean % 0.1% 
difference 

sd 0.2 

D ppm ppm 

11 2248 2271 1.0 
12 1053 1067 1.3 
13 1145 1132 -1.2 
14 1263 1276 1.0 
15 1127 1119 -0.8 
16 1278 1288 0.8 
17 1330 1324 -0.4 
18 1642 1664 1.3 
19 1476 1453 -1.6 
20 1083 1095 1.01 

mean% 0.3% 
difference 

sd 1.1 
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shown in Table 3.6.1, the mean error between the two methodologies was only 

0.1 ±0.2% for the '80 analysis and 0.3±11.1 % for the D analysis (paired Mest for 

"'0 and D respectively; t9 = -1.69, ns & t9 = -0.88, ns). 

3.6.3. Discussion 

Both methods of extraction provided close agreement, with variations between 

the two techniques falling vAthin 1 Standard deviation of the analytical error3. It 

was, therefore, likely that the majority of the variation between the isotopic 

abundance of plasma extracted using the two techniques was due to analytical 

errors rather than to kinetic fractionation. Given the close agreement of the two 

methods and the advantages of LNVD extraction, discussed previously, the 

latter was used routinely in subsequent experiments. 

3 The analytical errors (observed in Section 3.3.2) equaled +0.05%±0.4 for the "0 isotopic 
ar; alysis, and +0.22±1.01 for the D isotopic analysis. 
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3.7.0 Equilibration of injected D2 180 isotope with the 

body water pool of bumblebees 

Introduction 

. 
'ailure to allow sufficient time for isotope equilibration following 

administration will create errors in DLW estimates of energy expenditure 

(Nagy 1980). The errors result largely from an unbalanced loss of isotopes 

from the bee's body. For example, if injected isotope equilibrated only with 

the abdominal water of the bee, the DLW measurements will only reflect the 

isotopic turnover of the abdomen and not the thorax. There is, moreover, no 

ad hoc method of predicting equilibration time as this varies widely between 

organisms (Table 3.7.1). Equilibration times can range from as little as 45 

minutes (Utter & LeFebvre, 1973) to 24 hours (Gales, 1989), and there are no 

obvious physiological traits which determine body water / isotope mixing 

rates. 

Most equilibration times have in any case been determined by the "plateau 

enrichment" method (Gales, 1989), which is inappropriate for small organisms 

such as bumblebees (Section 3.0.4) 
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Table 3.7.1. The time taken for D2180 isotope to equilibrate with an animal's body water. 

Species Equilibration Source 
time (hours) 

Mammals 

Ruminants 

Humans 
Bats (Pipistrellus pipistrellus & 
Plecotus auritus) 
White Mice (MR) 

Marsupials 

Petauroides volan 

Reptiles 

Podarcis filfordi 

Aves 

7 Fancey et al., 1986, Nagy, 
1993 

4 Goran & PoehIman, 1994 
1.5 Speakman & Racey, 1988a 

1.5 Speakman, Racey & 
Burnett, 1991 

4 Nagy, Foley, Kaplan, 
Meddith & Minagawa, 1990 

3.5 Brown et aL, 1992 

Penguins (Eudyptula minor) 
Eurasian Kestrels (Falco 
tinnunculus) 
Starlings (Sturnus vulgaris) 
Phainopepla nitens 
Purple Martins (Progne subis) 

Arthropods 

Locust (Locusta migratoria 
migratotiodes) 
Scorpions (Hadrus arizonensis) 
Tenebrionid Beetle 
(Cryptoglossa verracosa) 
Tenebrionid Beetle (Eleodes 
armata) 

24 Gales, 1989 
3 Masman & Klassen, 1987 

1 Ricklefs & Williams, 1984 
1 Weathers & Nagy, 1980 

0.75 Utter & LeFebvre, 1973 

8 Buscarlet et al., 1978 

4 to 6 King & Hadley, 1979 
3 Cooper, 1983 

3 Cooper, 1983 
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Instead bumblebee equilibration time was estimated assuming bees had two 

water pools, the head / thorax and abdomen. As isotope was injected only 

into the abdomen (Section 3.4.4. ), equilibration was assumed to be complete 

when the plasma removed from any point within the haemocoel had the same 

isotopic composition. For practical purposes, therefore, bees were injected 

with D2180 and equilibration determined by comparing the isotopic 

composition of the abdomen (the injection site) with the head / thorax, at 

various time intervals after injection. When the isotopic abundance of these 

two pools were not significantly different, equilibration was taken to have 

occurred. 

3.7.1. Materials and Methods 

Forty five B. terrestris were removed from their colony and placed in a 20 x 20 

cm wooden box for 30 minutes. During this period the bees were starved, 

thus ensuring their crops were empty prior to injection (Wolf pers. com. ). 

This was important, as if nectar remained within the crop following dissection 

through the petiole, it would dilute the isotopes in the extracted plasma. 

After 30 minutes, the bees were removed from the box and injected with 141 

of D214b (Section 3.4.4. ). The injected bees were then placed in individual 20 

x 20 cm wooden boxes, and the D2180 allowed to mix with the body water for 

2,5,10,15,30,45 or 60 minutes respectively. Following mixing, the bee was 

iemoved from the box, killed and flame sealed into soda glass test tubes. 
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The body water was then extracted separately from both the thorax and 

abdomen (Section 3.5.2. ) and the isotopic content analysed in duplicate 

(Section 3.2.1 & 3.2.4. ). 

3.7.2. Results 

The difference in isotopic composition of the thoracic and abdominal body 

water varied with mixing time. The largest variation occurred at 2 and 5 

minutes, with consistently higher isotopic enrichment in the abdomen than the 

thorax (Table 3.7.2 & 3.7.3). At these times, the mean % difference in 

isotopic contents, was 61±10.7% (n = 7) for the "'0 isotope and 46.1±13.4% 

(n = 6) for the D isotope. These differences were significant for both 18 

(paired Mest; t6 = 3.82, p=0.009) and D isotopes (t5 =10.657, p<0.001). 

Variation in isotopic concentrations of the thoracic and abdominal body water 

were far lower for mixing times of 10,15,45 and 60 minutes. The mean 

difference between water pools was only -0.30±2.01% (n = 16) for the 180 

isotope and 0.7±1.21 % for the D isotope, the differences being non- 

significant for both 180 (tis = -0.54, ns) and D V14 = 1.80, ns) isotopes. 

3.7.3. Discussion 

Due to the significant differences observed in the thoracic and abdominal 

isotopic abundances, it was clear that equilibration of injected D2180 (with the 
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Table 3.7.2. Equilibration time of injected 180 with B. teffestris body water. 

Isotopic 
equilibration 
time 
(minutes) 

abdominal 
160 isotopic 
enrichment 
(ppm) 

thoracic "'0 
isotopic 
enrichment 
(ppm) 

% 
difference 
between 
mean 
abdominal 
and thoracic 
180 isotopic 
enrichment 

Paired Mest 

2 3164 875 72.3 't2 = 8-08, P= 0-01 
2 2517 1035 58.9 
2 2973 903 69.6 

5 9697 2843 70.7 6t3 = 2.68, p=0.04 
5 5595 3204 42.7 
5 3164 1209 61.8 
5 3306 1532 53.7 

10 4418 4427 -0.2 t2 = 0.75, ns 
10 5226 5140 1.6 
10 3657 3664 -0.2 

15 5694 5726 -0.6 t3 = 0.40, ns 
15 2973 2986 -o. 4 
15 3750 3750 0.0 
15 4068 3982 2.1 

30 3513 3503 0.3 t2 = -1.13, ns 
30 5241 5281 -0.8 
30 4575 4907 -7.2 

45 4608 4629 -0.4 t2 = -0.53, ns 
45 3459 3461 -0.1 
45 3657 3648 0.2 

60 4622 4583 0.8 t2 = 1.02, ns 
60 4357 4347 0.2 
60 3286 3294 -0.2 

ns non significant. 
4 Denotes a significant difference in 180 isotopic enrichment between thoracic and abdominal body 
water. 
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Table 3.7.3. Equilibration time of injected D with B. teffestris body water. 

Isotopic abdominal thoracic D % difference Paired Nest 
equilibration D isotopic isotopic between 
time enrichment enrichment mean 
(minutes) (ppm) (ppm) abdominal 

and thoracic 
D isotopic 
enrichment 

2 1894 875 53.8 ot2 = 5.60, p=0.03 
2 1466 655 55.3 
2 2030 1497 26.3 

5 1536 574. 62.6 at2 = 9.24, p=0.01 
5 2481 1524 38.6 
5 1684 1005 40.3 

10 1329 1348 -1.4 
t2 = -1.44, ns 

10 2505 2552 -1.9 
10 1793 1790 0.2 

15 2624 2661 -1.4 
t2 = -3.23, ns 

15 2308 2330 -1.0 
15 1213 1225 -0.9 

30 2306 2342 -1.6 t2 ns 
30 1081 1077 0.3 
30 1660 1668 -0.5 

45 1484 1470 0.9 t2 = -0.12, ns 
45 2594 2549 1.7 
45 2321 2393 -3.1 

60 1730 1757 -1.5 t2 = -1.86, ns 
60 1115 1114 0.0 
60 1840 1858 -0.9 

ns = Non-significant. 
'= Significant difference in D isotopic enrichment between thoracic and abdominal body water 
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bumblebees body water pool) had not occurred between 2 and 5 minutes 

following injection. After 10 minutes, the variation in D2180 iSOtOPiC 

composition of the two water pools was not significantly different; thus it was 

assumed that the injected D2180 had equilibrated with the bees body water. 

A 10 minute equilibration period was not dissimilar to that observed in 

previous honeybee studies. Crailsheim (1985) observed that '4C markers, 

when administered to honeybees, equilibrated with the body water pool within 

5 minutes. Crailsheim concluded that fast equilibration rates were driven by 

the high pulsation rates of the heart, a dorsal vessel which pumps 

., aemolymph from the abdomen to the head (Snodgrass, 1956). As Heinrich 

(1980) recorded heart rates of 200 - 450 beats / minute in honeybees. and 

350 - 600 beats / minute in bumblebees (Heinrich 1976b), the fast isotope 

equilibration times in bees were not surprising. 

The equilibration times observed in bumblebees were, however. considerably 

shorter than has been observed in other arthropod studies. whose 

equilibration times ranged from three to eight hours (Table 3.7.1. ). However, 

it should be noted that in previous arthropod studies, the method used to 

determine the time of isotope equilibration was not described in subsequent 

publications. If assumptions of equilibration times were predicted from 

previous vertebrate studies, it is possible that the true equilibration times of 

the arthropods may have been considerably shorter than reported. 
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3.8.0 Measurement of initial D2 180isotopic composition 

of a bumblebee's body water pool 

Introduction 

To enable DLW estimates of energy expenditure, the rate of 180 and D loss from 

an organism (isotopic turnover rate) must be determined (Section 3.0.2. ). 

Turnover rates are normally measured by isotopic analysis of an organisnYs 

plasma at two points in time, often referred to as "initial" and "final" samples 

(Tatner & Bryant, 1989). Although LNVD extraction permitted sufficient volumes 

of plasma to be obtained for final sample analysis, the destructive nature of this 

technique prevented its use in extracting body water for isotopic analysis of the 

initial sample. Also, as discussed previously (Section 3.0.4 & 3.3.0), it was not 

possible to extract sufficient plasma to determine initial sample isotopic 

abundance, owing to the relatively small body water pool of the bees. It was, 

therefore, necessary to explore alternative methods for determining the isotopic 

abundance of the bees initial body water pool. 
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Three possible techniques were considered: 

I. The single sample method of determining initial D2180 isotopic 

abundance of a bee's body water pool 

The single sample method predicts the initial isotopic abundance of an animal's 

body water pool from the predicted dilution space of an organism (Nagy, 1983; 

Webster & Weathers, 1989; Tiebout & Nagy, 1991). Providing the volume of the 

body water pool and quantity and abundance of administered isotope are known, 

the initial isotopic abundance of an animal can be calculated. Although the 

quantity and abundance of administered isotope may be determined 

gravimetrically, the volume of an animal's body water pool cannot directly be 

measured. As a result, the volume of an animal's body water pool is predicted 

from the dilution space observed in other individuals of the same species. The 

dilution space is estimated by administering the animals with known volumes and 

abundance of 180 isotopes. Following equilibration, a plasma sample is 

extracted and the '80 content of the body water pool determined. The dilution of 

the administered 180 isotope can then be used to calculate the volume of the 

animal's body water pool (Nagy, 1983). Although these organisms cannot be 

used in subsequent DLW experiments, least squares regression between the 

initial isotopic abundance and body mass can be used to predict initial isotopic 

ýýomposition in other organisms of the same species and of a similar body mass 

(Nagy, 1983; Webster & Weathers, 1989; Tiebout & Nagy, 1991). 
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As bumblebees maintain a constant body water volume and mass (Bertsch, 

1984), they would appear an ideal species for the single sample method. 

However, although this technique has been validated in small birds (Webster & 

Weathers, 1989) it was far from clear whether this methodology would be 

applicable to bumblebees. As a result it was first necessary to validate the single 

sample procedure prior to applying it to bees. 

2. The "urine" method of determining initial D2180 isotopic abundance of a 

bee's body water pool 

When administered D2 18 0 has equilibrated with an organism's body water pool, 

plasma removed from any part of the animal should have an equal abundance of 

D2180 isotopes. As a result, the isotopic composition of excreted urine should not 

significantly differ from that of an animal's body water pool from which the urine 

was excreted. As a result, the D2180 isotopic content of excreted urine has been 

used to measure initial isotopic abundances in humans (Schoeller et aL, 1986; 

Goran, Poehlman & Danforth, 1994) and ruminants (Fancey et al., 1986). As 

bumblebees can produce large volumes of urine (up to a third of their body water 

content per urination (pers. obs), it was theoretically possible to obtain sufficient 

urine to determine the initial isotopic abundance of the bee's body water pool. 

Furthermore, bees have been reported to urinate as a defensive measure 

(Winston 1991), thus making it possible to control the time of urination simply by 

agitating the bees (pers. obs. ). 
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As the effect of excretion on the isotopic composifion of a bee's urine was 

unknown, the use of urine to measure the D2180 abundance of a bee's body 

water pool had to be validated. This required a comparison to be made between 

the isotopic composition of the urine, and the body water of the bee from which 

the urine was excreted. If the D2180 abundances did not significantly differ, this 

would indicate that the isotopic abundance of urine could used to estimate the 

initial isotopic abundance of a bee's body water pool. 

3. Prediction of initial D isotopic composition from initial '80 abundance of 

a bee's body water pool 

Afthough it was not possible to remove sufficient plasma from bumblebees for 

both initial '80 and D isotopic analysis of initial isOtOPic abundance (Section 

3.3.0), it was possible to remove sufficient plasma for small sample analysis of 

the 180 isotope alone. A dilution series of D2180 could then be used to predict the 

initial D plasma composition from the observed initial 180 abundances. It was, 

however, unclear how accurate predictions of D abundance would be. To 

determine the accuracy of this technique it was, therefore, necessary to compare 

the abundances predicted by an 180 dilution series with D abundances 

determined by isotopic analysis of a bees body water pool. 

Although all three methods described above could potentially enable predictions 

of a bumblebee's initial body water isotopic abundances, the accuracy and 

viability of all procedures were unknown. As a result, it was necessary to 
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validate all three methodologies and compare their relative precision and viability 

,. 1 predicting initial D2"O abundances. 

3.8.1. Materials and methods 

1. The single sample method of determining initial D2"O isotopic 

abundance of a bee's body water pool 

45 female B. teffeshis were removed from a Biobest @ artificial hive and starved 

until their crops were empty (Section 3.4.4). The bees were then weighed using 

a5 point Sartorius @ top pan balance and injected with 1 ýtl of D2"'O (Section 

3.4.4. ). The injected bees were placed in a 10 x 10 cm wooden box for 15 

minutes. Following equilibration, the bees were killed and flame sealed into a 

soda glass test tubes. The bees thoracic plasma was then LNVD extracted and 

the D2 180 isotopic content analyzed (Section 3.2.1 & 3.2.4). The relationship 

between initial D21'30 content and body mass of the bees were determined by 

least squared regression analysis. 
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2. The "urine" method of determining initial D2130isotopic abundance of a 

bee's body water pool 

20 female B. terresttis were removed from a Biobest @ hive and starved until their 

crops were empty. The bees were then injected with 1 gl of D2"O (Section 3.4.4. ) 

and individually placed into soda glass test tubes. FollovAng equilibration 

(Section 3.7.0), the bees were agitated by gently flicking the sides of the tubes. 

The bees were agitated in order to stimulate them to urinate as a defensive 

measure (Winston, 1991). 

Follomfing urination, the bees were removed from the test tube and killed. The 

excreted urine was drawn into two Vitrex @ micro-pipettes by capillary action, and 

the pipettes flame sealed. The dissected abdomen and thorax were flame 

nealed into individual soda glass test tubes. The thoracic body water of the bees 

were then extracted, and the "0 abundance analyzed for bees 1 to 10, whilst the 

D abundance was analyzed for bees 11 to 20 (Section 3.2.1 & 3.2.4). The D2180 

isotopic abundance of the excreted urine was analyzed in the same manner as 

the extracted thoracic body water. 
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3. Prediction of initial D isotopic composition from initial "'0 abundance of 

a bee's body water pool 

To predict the initial D abundance of the bumblebees body water pools from the 

observed 180 abundance, a series of ten D2180 enriched standards were 

produced. The standards comprised of 1 gl D2180 diluted with 80,100,120,140, 

160,180,200,220,240 and 260 gl of distilled water respectively. Four 541 

samples were taken from each standard and flame sealed into four Vitrex @ 

micro-pipeftes. The D2180content of the 10 standards were then analyzed 

(Section 3.2.1 & 3.2.4), and the least squares regression between the obsL=rved 

"'0 and D content analyzed. The regression relationship between the '80 and D 

content of the standards was then used to predict the initial D content of 

B. terrestris from the observed initial 180 content. 

To validate this procedure, the observed initial D isotopic abundances of 20 

B. terreshis were compared to the D abundances predicted from observed initial 

'80 isotopic content. 

20 female B. terrestris were removed from a Biobest @ hive and starved until their 

crops were empty (Section 3.4.4. ). The bees were then injected with 1 ýd of D21150 

(Section 3.4.4. ) and placed in a 10 x 10 cm wooden box during equilibration 

(Section 3.7-0. ). A1 [tI plasma sample was then extracted from the bee using a 

micro-needle with a4 nm beveled point (Section 3.5.1. ). The micro-needle was 

used to puncture the inter-segmental membrane between the third and fourth 
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segment of the bees abdomen. A1 gl plasma sample was then drawn into the 

needle by capillary action and the needle flame sealed. The bee from which the 

plasma sample had been taken was then killed and flame sealed into a soda 

glass test tubes. The thoracic body water was LNVD extracted, following which 

the D isotopic abundance was analyzed (Section 3.2.4). The 180 isotopic content 

of the micro-needle plasma sample was analyzed as described in Section 3.2-1. 

The "50 abundance of the needle extracted plasma was then used to predict 

initial D abundance of the bees plasma. The accuracy of the prediction was 

determined by comparing the D content of the thoracic water with that predicted 

from the "'0 abundance. 

3.8.2. Results 

1. The single sample method of determining initial D21'O iSOtOPiC 

abundance of a bee's body water pool 

There was a good relationship between the body mass of B-terrestfis and 

observed initial body water pool isotopic abundances of the bees (Figure 3.8-1). 

The relationship between starved body mass and initial 180 abundance is 

described by equation 1, whilst the relationship between starved body mass and 
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Figure 3.8.1 Prediction of initial D2 18 0 abundance in the body water pool of Bleffestris, 
following injection and equilibration of 1ýd of 20% atom excess D2"30- 

a) Prediction of initial 180 istopic abundance of Blerrestris body water from starved body 
,, nass by least squared regression. 

b) Prediction of initial D isotopic abundance of B. terrestris body water from starved body 
mass by least squared regression. 
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initial D abundance is described by equation 2: 

Y= 507E-0,002x (r2 = 0.92) (1) 

where Y= initial 180 isotopic abundance and x= starved body mass. 

Y= 7710.9E'0*005' (r2= 0.91) 

where Y= initial D abundance. 

The regression between body weight and initial isotopic composition of the bees 

body water pool was highly significant for both the "'0 (171,26 ý 109.23, p <0.001) 

and D isotopes (FI. 23 = 231.22, p<0.001). It was, therefore, possible to use 

equations 1&2 to predict the initial D2180 abundance of the body water pools 

of the bees in the current study (Table 3.8.1). When comparing predicted 

body water isotopic abundances with abundances observed by isotopic 

analysis, there was a mean error -0.64±2.1 % (n = 27) for the 180 isotope and 

-0.12±3.7% (n = 24) for the D Isotope (Table 3.8.1. ). The maximum observed 

error was 4.7% for the 180 isotope and 8.9% for the D isotope. 

No significant differences were found between observed and predicted initial 

180 (paired Nest, t26 = -1.33, ns) and D isotopic abundances 023 = 0.02, ns) of 

the bees body water pools. 
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Table 3.8.1 A comparison. between the observed D2180 isotopic abundances of a 
bumblebee's body water pool when injected with I RI of 20% atom excess D2180, and the 
abundances predicted from the body masses of the bees. 

Bee ID observed predicted 160 % error 
initial "'0 isotopic between 
isotopic abundance of observed 
abundance of the bees body and 
the bees body water pools predicted 
water pools (Ppm) IbO 
(ppm) abundance 

observed initial predicted D % error 
D isotopic isotopic between 
abundance of abundance observed 
the bees body of the bees and 
water pool body water predicted D 
(ppm) pool (ppm) abundance 

1 3009 3079 -2.3 456.3 496.8 -8.9 
2 sl sl sl 599.6 606.4 -1.1 
3 2944 3003 -2.0 468.4 471.9 -0.7 
4 3060 3085 -0.8 501.6 498.8 0.6 
5 3155 3154 0.1 535.0 521.3 2.6 
6 3959 3774 4.7 sl sl sl 
7 3143 3164 -0.6 518.98 524.5 -1.1 
8 3092 3077 0.5 518.30 496.1 4.3 
9 3145 3288 -4.6 532.56 565.9 -6.2 
10 3212 3177 1.1 sl sl sl 
11 3431 3412 0.6 610.1 606.3 0.6 
12 3090 3127 -1.2 513.9 512.6 0.3 
13 3147 3277 -4.1 534.3 561.8 -5.2 
14 3448 3551 -3.0 617.5 652.4 -5.6 
15 3177 3190 -0.4 535.4 533.1 0.4 
16 3158 3190 -1.0 541.4 533.1 1.5 
17 3199 3149 1.6 525.1 519.8 1.0 
18 2949 3008 -2.0 sl sl sl 
19 3492 3483 0.3 642.6 629.8 2.0 
20 3292 3243 1.5 569.1 550.6 3.2 
21 3347 3230 3.5 596.3 546.5 8.4 
ý'2 3364 3467 -3.1 sl sl sl 
23 3219 3289 -2.2 559.4 565.6 -1.1 
24 3584 3620 -1.0 677.7 675.2 0.4 
25 3451 3414 1.1 615.3 606.9 1.4 
26 3330 3398 -2.1 589.7 601.8 -2.1 
27 3786 3793 -0.2 760.2 732.9 3.6 
28 3727 3774 -1.3 719.3 726.4 -1.0 

Sl =a plasma sample which was lost due to analytical error. 
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2. The "urine" method of determining initial D21'10isotopic abundance of a 

bee's body water pool 

During the experiment, it was not possible to accurately control the time at which 

bees excreted. For this reason, urination occurred over a range of times 

follovving injection, from 8.3 to 25.9 minutes. This created an error in bee 8, 

which urinated before the injected isotope had equilibrated with the bee's body 

water pool. This resulted in the excreted urine not reflecting the true isotopic 

abundance of the body water pool of the bee, with a 47% difference in 180 

abundance of thoracic water and urine. Bee 8 was, therefore, not used in 

subsequent analysis. 

.I.: xcreted urine had a similar D2 180 isotopic abundance to the thoracic body water 

of the bee from which it was excreted (Table 3.8.2). The mean difference 

between the isotopic composition of the urine and thoracic plasma was 

-0.44±1.4% (n = 9) for the '80 isotope and 0.1 9±1.4% (n = 10) for the D isotope. 

The maximum error which occurred, when using urine to estimate initial isotopic 

abundances of Blerrestris body water, was -4.0% for the 180 isotope and 

-1.87% for the D isotope. 

There was a highly significant relationship between the "'0 isotopic abundance 

of the udne and the isotopic abundance of the bees thoracic water (rg = 0.991, P 

<0.001), and this was also true for the D isotope (rio = 0.990, P <0.001). 
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Table 3.8.2. Variation in D2180 isotopic abundances between B. teffestris urine and extracted 
thoracic body water. 

Bee ID Time of 
urination 
following 
injection of 
B. teffestris 
with D2180 
(min) 

"'0 Isotopic 
abundance of 
excreted urine 
(ppm) 

"'0 isotopic sd 
abundance of 
thoracic body 
water at the time 
of urination (ppm) 

% difference 
between 
isotopic 
abundance of 
urine and 
thoracic body 
water 

1 18.2 2749 2747 -0.04 
2 16.5 3064 3059 -0.16 
3 23.3 3190 3181 -0.27 
4 15.4 2837 2850 0.43 

16.4 3235 3243 0.24 
6 14.2 2930 2817 -3.98 
7 16.4 2543 2542 -0.05 
816. 8.3 2144 4090 47.57 
9 15.3 3292 3280 -0.37 10 14.7 3410 3419 0.26 

Bee ID Time of D Isotopic D isotopic % difference 
urination abundance of abundance of between 
following urine (ppm) thoracic body isotopic 
injection of water at the time abundance of 
B. terrestiis of urination urine and 
with D2160 (ppm) thoracic body 
(min) water 

11 13.8 532 537 0.89 
12 13.0 510 519 1.87 
13 17.7 582 573 -1.67 14 13.7 553 548 -0.89 15 25.9 629 637 1.23 
16 18.3 475 467 -1.81 17 21.0 557 563 1.00 
18 11.6 521 527 1.10 
19 10.8 540 547 1.33 
20 14.9 650 643 -1.17 

" Result rejected due to insufficient time between injection of isotope and urination for 
equilibration to occur. 
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3. Prediction of initial D isotopic composition from initial "'0 abundance of 

a bee's body water pool 

There was a highly significant regression between 18 0 and D isotopic 

abundances of the diluted standards (fl. 9 = 2384.46, p<0.001) (Figure 3.8.2). 

Figure 3.8.2 The relationship between isotopic abundances of the "0 and D 

isotopes in a range of 20 % atom excess D2180 dilutions with distilled water. 
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The regression equation, derived from Figure 3.8.2, was then used to predict 

initial D abundances of B. terrestfis body water, from the observed initial 180 
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composition of the bees plasma (Table 3.8.3) The equation used was: 

Y=1.1 3x - 2074.7 (r 2=0.997) 

where Y= predicted D initial isotopic abundance and x= the observed "0 initial 

abundance of the bees body water pool. 

The predicted and observed initial D abundances of B. terresttis were similar, with 

a mean error of only -0.1 4±0.6% (n = 10) and a maximum error of -1.12% (Table 

There was a highly significant correlation between observed and 

predicted initial D abundances of the bees body water pools (rq = 0.999, p 

<0.001). 
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Table 3.8.3. The accuracy of predicting initial D isotopic abundance of 
bumblebees body water pool from the observed initial "'0 isotopic 
abundance. 

Bee ID Initial observed Initial observed initial D % error between 
"'0 isotopic D abundance of abundance observed and 
abundance of B. terrestris predicted from predicted initial D 
B. teffestris body thoracic body observed initial isotopic 
water pool (ppm). water pool "'0 abundance abundance 

(ppm) (ppm) 

1 3091 1410 1418 0.53 
2 3295 1660 1649 -0.68 
3 2600 857 864 0.82 
4 3490 1875 1869 -0.33 
5 2805 1102 1095 -0.67 
6 2315 540 542 0.41 
7 2767 1064 1052 -1.12 
8 2611 871 875 0.44 
9 3505 1897 1886 -0.56 
10 3482 1864 1860 -0.19 

3.8.3. Discussion 

1. The single sample method of determining initial D2 is 0 isotopic 

abundance of a bee's body water pool 

Regression analysis of the relationship between body mass and initial isotopic 

abundances of the bumblebees body ,. vater pool indicated a significant 

relationship between the two variables. Combined Wth the low mean errors 

: )etween predicted and observed initial D2180 abundances, it would appear 

reasonable to assume that initial isotopic abundance of a bees bodY water pool 

can be predicted from the bees body mass alone. This, however, does not take 
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into consideration the range of observed error around the mean. Although the 

maximum observed error in predictions of initial "'0 abundance (4.7%) remained 

within the 95% confidence limits of the data set, such an error would result in a 

55.4% over estimate in rC02for a typical bee'. Similarly, the maximum observed 

error in init aD abundances (8.9%) would result in under-estimates in rC02 Of UP 

to 54.9%. It was, therefore, clear that only small errors in estimates of initial 

isotopic abundances of the bees body water pool could lead to gross errors in 

final rC02 estimates of the bees energy expenditure. As the single sample 

method takes no empirical measurements of the isotopic abundance of the bees 

body water pool, it is particularly prone to errors which other techniques do not 

experience; these include: 

1. Fractionation of the D2"'O isotopes in the needle prior to injection. This 

will result in altering the regression relationship between the body mass and 

. nitial isotopic abundances of the bees body water pool; leading to under- 

estimates in initial isotopic abundances. 

2. Injecting inaccurate volumes of D2180into the bee. Injecting inaccurate 

volumes of isotope vvill again make regression analysis predictions of initial 

isotopic abundance unreliable. Due to the small volumes of isotope involved 

in the current study, it is highly likely that some errors in injection will have 

occurred. 

I The effect of errors in initial estimates of isotope abundance were calculated on an 
imaginary bee whose body mass, initial isotopic abundance and turnover rates equaled those 
predicted as mean values for B. teffestris. The initial 180 abundance was predicted as 
3802.572 pprn and the D abundance 2239.546, with a 50% 180 turnover rate and 30% D 
turnover rate. 
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As no empirical measure of the bees body water isotopic abundances were 

taken, it was not possible to determine whether inaccurate volumes of isotopes 

were administered during injection, or if any fractionation of the injectate had 

occurred. As a result, it would not be clear in a field situation which results were 

subject to significant errors and which were reliable, thus making the single 

sample technique far from ideal. 

162 



2. The "urine" method of determining initial D2"O isotopic abundance of a 

bee's body water pool 

The D2180 abundances of the bees urine were not significantly different to the 

abundance of the body water of the bee from which it was excreted. It was, 

therefore, possible to measure the initial isotopic abundance of B. teffeshis from 

excreted urine. However, despite being able to stimulate the bees to urinate, the 

time of excretion was impossible precisely to control. This lead to bees urinating 

before the injected isotopes had fully equilibrated with the body water pool of the 

bee, thus producing large errors in the measurement of initial isotopic 

abundances. Also, to stimulate excretion, it was necessary to agitate the bee 

producing a defensive response. Subsequent experiments, involving bees 

foraging to artificial flowers (Section 5.0.0), showed that once a defensive 

response had been induced in a foraging bee, generally the bee would abandon 

the patch and forage at an alternative site or return to the hive (pers. obs. ). As it 

was essential that bees continued to forage in a stable manner following 

extraction of an initial sample of body water, the urine technique was not 

appropriate for the current study. However, the urine technique may be of use in 

other studies where stable foraging behaviour is not a pre-requisite. 
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3. Prediction of initial D isotopic composition from initial 180 abundance of 

a bee's body water pool 

Prediction of initial D abundance from observed initial "0 content resulted in 

the lowest mean and maximum errors in estimates of initial D2180plasma 

abundances of the three techniques. 

Although the maximum observed error in D predictions (-1.12%) were larger 

than the error observed purely due to isotope analytical error (+0.22% 

(Section 3.3.2)), the mean observed error in predicting D abundances 

(-0.14%) was lower than that observed through analytical error alone. It is, 

therefore, possible that predicting D abundances from observed '80 

abundances, results in more accurate estimates of the isotopic content of a 

bee's body water pool than would direct isotopic analysis of the bee's plasma. 

However, this technique still has one major draw-back, it requires the inter- 

segmental membrane of the bee to be punctured and plasma removed. 

Although the size of the needle wound was minimal (--4-6 nm), and the 

Volume of plasma extracted was small (51gl), the effect on the bees 

behaviour and physiology was far from clear. It was, therefore, important that 

careful controls were used in any subsequent experiments, in order to 

observe any deleterious effects this technique may have had on the bees. 
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3.8.4. Conclusion 

Although all three methods can be used to predict initial D2180 abundances of 

a bumblebee's body water pool, prediction of initial D abundance from 

observed initial 180 abundances was the method subject to the least number 

of errors and resulted in the highest degree of precision. As a result, this 

technique was used in all subsequent DLW validation and field experiments. 
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. ...... ... 
....... ..... 

........... .. 
Chapter 4 

Validation of the bumblebee doubly 
labelled water protocol 



4.0.0 Open circuit respirometry validation of the DLW 

protocol for bumblebees 

Introduction 

DLW measurement of bumblebees energy expenditure required several 

Aerations to the protocol usually applied to large animals, these included: 

1. Analysis of 180 and D abundances of small plasma volumes (Section 

3.3.0). 

2. Injection of lal quantities of D2180, without affecting the bees physiology or 

behaviour (Section 3.4.4). 

3. Removal of gl quantities of plasmai for analysis of initial 180 abundances 

(Section 3.5.1). 

4. Prediction of initial D plasma abundance from initial 180 abundances 

(Section 3.8.1). 

Removal of sufficient plasma for final analysis of D2180 abundances 

(Section 3.5.2). 

Although these modifications individually resulted in insignificant errors in 

estimates of initial and final isotopic abundances, the compound effect of any 

inaccuracy was unknown. Also, due to the small body size, high metabolic 

rate, and rapid water turn-over in bumblebees (Bertsch, 1984), the extent to 
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which bees violated the 6 basic assumptions of the DLW technique (Section 

3.0.3) was also unknown. It was, therefore, essential that the developed 

protocol be validated. 

This was achieved by comparing DLW estimates of B. terrestlis C02 

production with simultaneous open circuit respirometry measurements. 

4.1.0. Materials and methods 

4.1.1. Open. circuit respirometry measurement of Blerrestris C02 

production 

An open flow respirometry system was simultaneously used with the DLW 

technique to measure Blerrestris rC02 (Figure 4.1.1). The experiment was 

carried out at Cambridge University insect flight group. The system collected 

expiredC02from the bee in an air tight perspex flight chamber (Figure 4.1.2), 

containing a rotating wire arm, onto which the bees were attached. The 

tethered bees could then fly along the path of rotation of the wire arm within 

the flight chamber. Tethered flying bees were used in preference to free 

walking or resting individuals, in order to increase the metabolic and water 

tum-over rates of the bees. This was necessary for two reasons: 

1. To decrease the time required for the bees to tum-over C. 50% of the 

administered 180 isotopes. 
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2. To ensure that the metabolic and water turn-over rates of the bees during 

the validation were as close as possible to those which would be experienced 

in a field situation. 

C02 free, dry air' was pumped through the flight chamber at a rate of 1L 

minute*', maintaining a steady air flow across the bee. Air pumped into the 

flight chamber escaped through port 2 at low resistance (Figure 4.1.2), thus 

limiting any difference between the internal air pressure of the flight chamber 

and ambient air pressure. Samples of the "exhaust" gas from port 2 were 

passed through an infra-red C02 gas analyzer (ADC 225 Mk3)2. C02 levels 

were monitored on a chart recorder and integrated graphically to obtain total 

C02 production. Temperature and pressure were recorded at the beginning 

ind end of the experiment, allowing all results to be adjusted for Standard 

Temperature and Pressure 3 (STP). 

The C02 analyzer was calibrated prior to placing the bee in the flight mill, and 

again when the bee was removed at the end of the experiment. To calibrate 

the analyzer, 50 ml of 8+-+o. 08 molar % C02 (BOC special gases) were 

injected into the flight chamber, at a flow rate of 4 ml min", by a motorized 

Harvard '33' pump. 

'The room air was first passed through a silica gel trap to remove atmospheric water and a 
soda lime trap to remove C02- 
2 The C02 analyzer was not affected by water vapour (ADC 225 users handbook), thus, it was 
not necessary to dry air leaving the flight mill. 3 Standard pressure was taken as 760 mm Hg and temperature as 2730K. 
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4.1.2. DLW estimates of B. terrestris C02production 

Female B. terrestfis were captured when leaving the artificial hive, thus 

ensuring the bees were foragers and capable of flying. The captured bees 

were weighed and restrained between nylon mesh and the plunger of a 

syringe and injected with I l. Ll of D2180(Section 3.4.4)4 . During equilibration, 

a queen marking tag was glued to the upper surface of the bee's thorax, and 

a small pin glued to the tag. When equilibration was complete, initial D2'80 

plasma abundance was determined by the removal of a 1gl plasma sample 

(plasma a) with a micro-needle (Section 3.5.1). The sample was flame sealed 

into the micro-needle and refrigerated at ý-_ 50C for later analysis. 

The needle wound was sealed with melted dental wax and the bee fed ad 

libitum 66 % w/W sugar water. The bee was then attached to the rotating arm 

of the flight mill (Figure 4.1.2) by the pin glued to the bee's thorax The flight 

mill was sealed and simultaneous DLW and indirect calonmetry 

i neasurementsOf C 02 production were taken. Bees were initially stimulated 

to fly by gently moving the rotating arm of the flight chamber with a magnet. 

As the metabolic rates of the flying tethered bees were lower than would have 

been expected during free flight, it was not possible to predict '80 turnover 

rates from flight time. Bees were, therefore, encouraged to fly for 4 to 7 

hours. 

4 Bees were restrained rather than anaesthetized, thus preventing any deleterious 
physiological effects that rapid cooling may cause (the method previously used to 
anaesthetize the bee (Section 3.4.2)). 
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During the flight experiment, the flight chamber was opened approximately 

every 2 hours, and the bee removed and fed ad libitum 66% w/w sugar water. 

During feeding, it was not possible to take direct calorimetry measurements of 

the bees C02 production. Energy expenditure over this time period was 

graphically interpolated fromC02production of the bee prior to removal and 

following replacement into the flight chamber. Exogenouse air entering the 

flight chamber during feeding was pumped out of the system after 18 

seconds. 

Although this procedure will have created errors inC02measurement, such 

estimates were only necessary for less than 2% of the total experimental 

time, and overall were unlikely to have significantly affected respirometry 

measurementsOf C02production. 

When the bee could no longer be stimulated to fly, she was removed from the 

flight chamber and killed. The thorax and abdomen were weighed and flame 

sealed into separate soda glass test tubes for subsequent plasma extraction 

and analysis. 
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4.1.3. Isotopic analysis of B. terrestris body water 

Initial isotopic abundances of body water were determined by "'0 small 

sample analysis of plasma a (Section 3.2.1). Initial D abundances were 

predicted from the initial 18 0 isotopic composition (Section 3.8.1). Final D218 

concentrations were measured from the isotopic content of the bees thoracic 

water. The thorax water was LNVD extracted (Section 3.3.2) and the D2180 

content analyzed as described in Section 3.2.1 & 3.2.4. The background 

isotopic composition of the bees were estimated from the D2180content of 

three unlabelled female B. terrestris from the same hive. Body water content 

was predicted from the starved mass of the bee, using equation (1) 

Y=0.755x - 7.1; r2 = 0.99; n= 40 (1) 

where Y= body water content (mg) and x= starved body weight (mg). 
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4.1.4. DLW calculation of energy expenditure 

DLW estimates of energy expenditure of B. terreshis were calculated using 

the Lusk (1928) equation (2): 

EE = 22.4 - rCO, . (3.815 + 1.232RQ) . 4.184 (2) 

where EE = energy expended (kJ h'), RQ = respiratory quotientS and rC02 = 

C02' production (mol C02 h*'). rC02 was calculated using the Lifson and 

McClintock (1966) equation (3): 

rCO, =N- 
(Ko 

- Kj: ý) - 0.0 1 5KD-N (3) 
2.08 

where N= body water content of the bee (mol), Ko = the apparent fractional 

turnover rate of '80 content of the bee and KI) = the apparent fractional 

turnover rate of the D content of the bee. KO was calculated using equation 
I 

(4): 

Ko - 
In(lo - BO) - In(Fo - BO) 

(4) 
t 

Where lo = initial 180 isotopic abundance of B. terrestris body water (ppm), Fo 

= final 180 isotopic abundance of B. terrestris body water (ppm), Bo = 

The RQ for B-teffestris was taken as 1 (Rothe & Nachtigall, 1989). 
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background "'0 isotopic abundance of Blerrestris body water (ppm), In = 

natural log, and t= time between initial and final samples (hr). 

KD was calculated using equation (5): 

KD - 
In(l. - Bff In(F. - Bff 

where IH 
'ý initial D isotopic abundance of body water (ppm), FH = final D 

isotopic abundance of body water (ppm), BH = background D isotopic 

abundance of body water (ppm), and In = natural log. 

4.2.0. Results 

It was possible to encourage bees to fly within the flight mill for an average of 

6.3±1.0 h, ranging from 4.5 h to 7.5 h (Table 4.2.1). This flight effort resulted 

in a mean "0 turnover rate of 53.5±11.97%, ranging from 33.2% to 74.6% 

(Table 4.2.1). The relationship between flight effort (time spent flying in the 

flight mill) and 180 isotope turnover was, as expected, highly significant (r14 

0.80, P<0.001). Similarly, a significant correlation was found between flight 

effort and D isotope turnover rates (r14 : --0.70, p<0.05). 

There was little difference in the DLW and calorimetry estimates of 

B. terrestrisC02 production (Figure 4.2.1 & Table 4.2.1). The DLW estimates 
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Figure 4.2.1. The relationship between estimates Of C02 production as 
measured using the DLW technique and open circuit respirometry. Best fit 
was calculated by reduced major axis regression and can be described as y 
3.12 + 0.90x (r2 = 0.88, n= 16). 
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had a mean arithmetic difference of +2.8±9.9% from direct calorimetric 

measurements (Table 4.2.1). The largest underestimate was -9.9% and the 

highest overestimate +25.1 %. However, 10 of the 16 bees had errors which 

fell within the range of -7% to +7%. In six cases the DLW technique 

underestimated of rC02, whilst there was no difference in estimates for one 

bee, and energy expenditure was overestimated for a further nine bees. The 

source of variation between DLW and direct calorimetry measurements of 

VC02 in different bees was not clear, with no significant correlations being 

observed between the variation and body mass of the bee (rl4 = -0.29, ns), 

turnover time (rl4= -0.29, ns), turnover rate of the D isotope (r, 4 = -0-42, ns), 

or turnover rate of the '80 isotope (rl4 = -0.46, ns). 

DLW estimatesOf C02 production were not significantly different. from direct 

,; alorimetry measurements when comparing the results from all bees (Paired 

Mest; tis = 0.84, ns). 

4.3-0. Discussion 

The degree of error observed between the two techniques compared 

favorably with similar validation studies on vertebrates (Table 4.3.1). The 

observed mean error of +2.8% was slightly higher than the mean error of - 

2.1% observed in 8 validation studies of 12 species of birds and reptiles, but 

was lower than the +3.1 % error reported in 26 studies of 9 species of 

mammals (as described in Speakman & Racey, 1988a). More importantly, the 
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Table 4.3.1. The accuracey of previous DLW measurments Of rC02 production compared to 
direct respirometry measurments. 

Species n Mean % error Range Source 
in DLW 
estimates 

Mammals 

Man (adults) 5 +5.9 -6.5 to + 14.1 Schoeller & Web, 1984 
(Homo sapien) 
Man (infants) 4 +8.0 -5.3 to +14.5 Roberts, Coward, Norhia, 

Schingenseipen & Lucas, 
1986. 

Rat (Raffus rattus) 8 +1.8 -2.2 to +10.1 McClintock & Lifson, 1958 
White mice 7 -4.0 -12.0 to +8.0 McClintock & Lifson, 1957 
Pocket Gopher 6 +3.7 -8.7 to +14.5 Gettinger, 1983 
(Thomomys bottae) 
Ground Squirrel 7 +0.8 -12.4 to +17.2 Karasov, 1981 
(Arnmospermophilus) 
Chipmunk 2 +4.5 +1.0 to +8.0 Little & Lifson, 1975 
(Tarnias) 
Perognathus 4 +8.5 -9.2 to +5.3 Mullen, 1970 
Bats 
Pipistrelle (Pipistrellus 9 +9.5 -14.3 to 28.6 Speakman & Racey, 
auritus) (n = 7) & Long 1988" 
eared bats (Plecotus 
auritus) (n = 2)) 
,, aribou 3 -1.4 -4.8 to +5.8 Fancey et a/., 1986 
(Rangifer t. granti) 
Reindeer 1 +1.1 - 
(Rangifer tarandus) 
Sheep (Ovis spp. ) 4 -14.6 Midwood, Haggarty, 

McGaw, Mollison, Milne & 
Duncan, 1994 

Birds 
Budgerigar 9 -0.04 -5.2 to +6.2 Buttermer et a/., 1986 
Garnbels quail 6 -6.0 -23.2 to + 15.5 Goldstein & Nagy, 1985 
(Callipepla) 
Pigeon 10 +4.0 -2.2 to +48.5 Lefebvre, 1964 
(Columba) 
Sparrow 13 -3.5 - 17.0 to +4.2 
Four species ' 
House martin 4 +3.4 -5.1 to + 14.0 Hails & Bryant, 1979 
(Defichon urbica) 
Sand Martin 2 +4.4 +2.4 to +6.4 Westerterp & Bryant, 

1984 
(Riparia riparia) 

Reptiles 
4 +3.2 -5.7 to + 18.6 Congdon, King & Nagy, 

1978. 
(Sceloporous sp. ) 
Tortoise(Gopherus) - +2.2 - Nagy, 1980 
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Table 4.3.1 continued 

Arthropods 
Scorpion 5 +36.5 +11.1 to King & Hadley, 1979 

+71.7 
(Hadrus arizonensis) 
Locust 9 -4.1 -60.3 to +31.9 Buscarlet et at., 1978 
(Locusta migratoria) 
Beetles (Eleodes sp. ) 4 +14.5 +12.7 to Cooper, 1983 

+74.2 
(Cfyptoglossa sp. ) 1 +25.9 
Bumble bee 16 +2.3 -9.9 to + 25.1 present study 
(Bombus teffestris) 

' Song sparrow (Melospiza melodia), white throated sparrow (Zonotrichia albicolis), house 
sparrow (Passer domesticus) and savannah sparrow (Passerculus sandwichensis). 
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error was 12.3% lower than the mean error observed in 3 sp"ecies of 

arthropods (Buscarlet et al., 1978; King & Hadley, 1979; Cooper, 1983). The 

range of error was also far lower for B. terrestris than any previous arthropods 

studies (Table 4.3.1). 

The tumover rates of D2180within B. terrestris were relatively high (Table 

4.2.1), although this did not seem significantly to affect the accuracy of the 

DLW estimates of the bees rC02. A compadson with studies of vertebrate 

species with similarly high metabolisms shows not only comparable precision 

(Table 4.3.1), but also a striking similarity between the regression equations 

of the different species (Table 4.3.2). 

Table 4.3.2. Least squares regression equations comparing DLW results (y) with 
respirometric or gravirmetric estimates of energy expenditure (x). n= sample size, 
regression. 

Species Equation r2 n Source 

Bats (2 species) y=3.45 + 0.87x 0.90 9 *Speakman & Racey 

(1 988a) 

Hummingbirds y=5.67 + 0.81x 0.83 6 Tiebout & Nagy 

(1991) 

bumblebees y=3.12 + 0.90x 0.88 16 Current Study 
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Overall, there have been 6 previous studies which have reported lower 

deviations between DLW and calorimetry estimates of rC02 than those 

observed in the current study (McClintock & Lifson, 1958; Nagy, 1980; 

Karasov, 1981; Buttemer, Hayworth, Weathers & Nagy, 1986; Fancey et al., 

1986; Masman & Klaassen, 1987). Despite this, the high level of accuracy in 

DLW predictions of calorimeter measurements of B. terrestfis rC02 were 

unexpected, given the poor results from previous attempts to apply the DLW` 

technique to invertebrates (Buscarlet et al., 1978; King & Hadley, 1979; 

Cooper, 1983). The high level of accuracy in the present study is most likely 

!o be due to two factors: 

1. An improved protocol for isotopic analysis of plasma. 

Due to an improved design of the vacuum manifold preparation line 

(Section 3.2.0), plasma samples were prepared and analyzed at pressures 

two orders of magnitude lower than had previously been attempted 

(Section 3.2.0). This greatly reduced sample contamination, halving the 

analytical error observed in previous inter-laboratory reports (Section 

3.3.0). Although analytical errors are not the only limiting factor in the 

DLW technique, potentially they can result in massive errors in final rC02 

estimates. Nagy (1980) demonstrated that errors in rC02 estimates were 

Particularly sensitive to analytical errors in lo and Fo, with the sensitivity to 

analytical errors increasing as water turnover decreases. Nagy showed 

that a1% error in 10 and FO, combined with a 50% water turnover rate, 
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would result in a 10% error in rC02 estimates, were as, if water turnover 

only equalled 10%, a1% analytical error in 10 and FO would result in a 70% 

error in final rC02estimates. 

As the mean 180 turnover rate of the bumblebees, in the current study, 

equalled 53.5±12.0% (n = 16), according to Nagy's calculations a1% 

analytical error in 180 isotopic abundance of Io and Fo would result in just 

under 10% errors in rC02 estimates. As Speakman et aL (1990) reported 

errors of -1.4±0.4% in inter-laboratory analysis of 180 abundance of 

enriched water standards, the precision of this analysis would again have 

resulted in a mean error of over 10% in the rC02 estimates in the current 

study. However the observed error of analytical technique described in 

Section 3.3.2, was only 0.05±0.4%. 

The effect of analytical error on rC02estimates is well illustrated by bee 6. 

Bee 6 had an 10 of 3802.6 ppm and an Fo of 3212.1 ppm. If, therefore, the 

analytical errors experienced by 10 and FO equaled -1.4% (as reported by 

Speakman et aL (1990)), the subsequent error in rC02 estimates would 

equal 3.2%. However, if 10 and FO analytical error is reduced to 0.05% (as 

observed in Section 3.3.2. ) the subsequent error in rC02 estimates is more 

than halved to 1.5%. As the current experiment used the same analytical 

procedure as was used in Section 3.3.2, it is reasonable to assume that 

the analytical error which occurred during 10 and FO analysis did not 

significantly differ from 0.05%. As a result, it is likely that analytical error in 

the current study is lower than has been experienced in previous DLW 
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studies. It is, therefore, likely that the high degree of precision in the 

current study is partly explained by improved isotope analytical procedure. 

2. The physiology and behaviour of bumblebees comply well to the six 

basic assumptions of the DLW method (Section 3.0.3): 

Assumption I& 2) RatesOf flUX Of C02production, water loss and bodY 

water pool are constant. 

Although the metabolic rates of the tethered bees were lower than would be 

expected during free flight (Cooper 1993), their rate Of C02 production 

remained relatively constant throughout the validation experiment. Thus, any 

errors in DLW estimates of rC02, due to fluxes inC02 production, will have 

been minimal. 

The flux rates in water loss and the body water pool of the bees could not be 

measured during the current experiment, so errors in rC02estimates from this 

source could not be determined. However, it has previously been reported 

that male Bducorum and B. terrestris maintain a constant water balance for 

periods of up to 24 hours (Bertsch 1984). Nicolson & Louw (1982) also found 

thaj due to metabolic water production, foraging carpenter bees (Xylocopa 

capitata) exhibited no signs of water stress, even in hot desiccating 

environments. Nicolson & Louw also observed a highly significant 

relationship between 02 consumption and evaporative water loss (r = 0.73, 
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with p<0.001). If a similar relationship also exists in bumblebees, the 

constantC02flux rates observed in the current experiment will also indicate a 

relatively constant02consumption rate and, therefore, a constant water flux. 

It is, thus, unlikely that the evaporative water loss or body water pool of the 

bees fluctuated significantly during the course of the validation experiment. 

Assumption 3) 180 and D are not incorporated into constituents other than 

C02and H20 

One of the possible sources of error in the DLW protocol occurs when 180 

and D isotopes label compounds other thanC02 and Water (Speakman & 

Racey, 1988b)- It is likely that this will occur most prevalently during anabolic 

metabolism, with isotopes being incorporated into fats and proteins as they 

are synthesized within an animal (Nagy, 1980). Although there is no direct 

evidence of non-aqueous assimilation of isotopes (Speakman pers com. ), 

previouse studies have shown consistent overestimates of body water pool 

size when predicted from isotope dilution space (Schoeller & Webb, 1984). 

This would tend to indicate that isotopes are being bound in none aqueous 

substances, thus increasing the apparent dilution of administered isotopes. 

However, unlike other validated species, bees greatly reduce anabolic 

metabolism when they reach the adult instar (Winston, 1991). The rate of 

tissue synthesis in adult bees is reflected by the cessation of protein 

consumption following the larval instars, with adult bees consuming a pure 

carbohydrate diet (Rothe & Nachtigall, 1989). As no protein is available for 
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tissue synthesis, it is likely that any anabolic metabolism in an adult bee will 

oe minimal, as will the incorporation. of "30 and D isotopes into non-aqueous 

compounds. This reduced assimilation of '80 and D labels during protein 

metabolism will thus reduce overestimates of the isotope dilution space 

(Nagy, 1980) and isotopic turnover rate of the bees (Speakman & Racey, 

1988b)- 

As bumblebees are one of the few DLW validated species to have an RQ of 

1, it is likely that the absence of significant anabolic metabolism is one of the 

reasons for the close correlation between DLW and open respirometry 

estimates of rC02- 

Assumption 4) '80 and D isotopes are lost from the organism only as C02 or 

H20 

Loss of 180 and D isotopes via routes other then C02 and H20 can occur 

without resulting in significant errors in rC02 estimates, providing both 

isotopes are lost in the same ratios (Tatner & Bryant, 1989). Concern has, 

however, been raised over the loss of 180 isotopes during the synthesis of 

urea (Nagy, 1980, Speakman & Racey, 1988, ). It has been suggested that 

'80 isotopes become irreversibly incorporated into urea during the ornithine - 

arginine synthesis cycle (McGilvery, 1970, Speakman & Racey, 1988a). As a 

result, the apparent fractional turnover rate of the "'0 isotope will increase 
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relative to D, thus altering the ratio between the two isotopes and creating 

errors in rC02estimates. 

The effect of 180 assimilation during urea synthesis in bumblebees is 

unknown. However, although small amounts of urea are synthesized in 

insects, the majority of nitrogenous waste is excreted in the form of uric acid 

(Chapman, 1985). Also, adult working caste bees have a protein free diet 

(Rothe & Nachitigall, 1989) and metabolize only small quantities of protein 

(Snodgrass 1956). The amount of nitrogenous Waste a bee has to void will, 

therefore, be minimal. As urea synthesis is directly linked to the quantity of 

nitrogenous waste excreted, the rate of urea synthesis in bees is also likely to 

have been negligible. Given that urea synthesis in bumblebees is minimal, 

the quantities of 18 0 assimilated into urea during the ornithine - arginine cycle 

will have been insignificant, and unlikely to have resulted in significant errors 

in DLW estimates of rC02- 

Assumption 5) H20 and C02 exiting the body are in isotopic equilibrium with 

the organisms body water 

AsC02 and H20 exit an organism, there is a possibility that isotopic kinetic 

and / or equilibrium fractionation will alter the fractional turn-over rates of the 

two isotopes (Haggarty et aL, 1988). If fractionation does occur in the exiting 
C02or H20, it may potentially result in significant errors in rC02 estimates of 

an organism (Nagy, 1980; Fancey et aL, 1986; Speakman & Racey, 1988b). 
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There are two possible routes of D2180 loss from a bee which may result in 

some form of kinetic or equilibrium fractionation: 

Fractionation during Evaporative Water Loss (EWL). 

Although EWL is one of the largest sources of H20 loss from flying bees 

(Nicolson & Louw, 1982), it is generally considered that similar forms of water 

loss in vertebrates result in negligible levels of body water fractionation 

(Haggarty et aL, 1988). This is due to the H20lost from the animal not being 

evaporated directly from the animal's body water pool. Instead, body water 

must first Pass from the body water pool to the outer surface of the skin. 

Once the water has past through the animal's epidermis, the water will begin 

to evaporate and undergo fractionation. However, as the fractionated water 

is normally unable to re-enter the animal's body (Haggarty et al., 1988), it will 

have no effect on the isotopic composition of the body water pool. This 

-ýssumption, however, may not hold true in bumblebees which can re-absorb 

small quantities of water through their cuticle and tracheal system by passive 

diffusion (Chapman, 1985). It was, however, not possible to determine 

whether bees did re-absorb fractionated water into the body water pool during 

the current experiment. As a result, the effect re-absorption of fractionated 

body water had on DLW estimates of the bees rC02 was unknown. However, 

as a close relationship was observed between respirometry and DLW 

estimates of energy expenditure, any errors resulting from isotope re- 

absorption will have been insignificant. 
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ii) Fractionation of the bees body water pool during urination 

As has been discussed in assumption 4, it is possible that the synthesis of 

. irea can lead to the fractionation of the "30 isotope in the bees body water. 

However, due to low levels of urea synthesis, it is unlikely that this would 

result in significant errors in DLW estimates in the rC02 of bumblebees. 

Evidence for the low levels of fractionation in a bee's body water can also be 

found in Section 3.8.2, where comparisons between the isotopic abundance 

of the body water and voided urine of ten bees found no significant 

difference. 

Assumption 6) No labelled or unlabelledC02enters the animal 

C02 is lost from the bee by diffusion from the body into the tracheae 

(Chapman, 1985). However, as the diffusion is passive, exogenousC02may 

also diffuse in the opposite direction through the tracheae into the bee, 

resulting in underestimates of rC02. Absorption of environmental C02 into 

the bee was, however, unlikely to have resulted in significant errors during 

the current experiment. This was due to the air in the flight chamber being 

"scrubbed" with soda lime in order to remove any exogenousC02. Also, to 

prevent the build of expiredC02within the flight chamber, fresh C02-free air 

was continually pumped through the system. As the air within the flight 

:, -hamber was completely replaced every 18 seconds, C02 levels did not 

exceed 200 ppm. As a result, it is highly unlikely that significant errors in 
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DLW estimates of rC02 will have resulted due to the absorption of exogenous 

C02- 

Looking at the six assumptions of the DLW method, it is clear that B. terrestfis 

are particularly well suited to this technique, with a constant water balance, 

low anabolic metabolism, low nitrogenous excretion, and an RQ of 1. The 

DLW protocol developed for B. terrestris resulted, therefore, in accurate rC02 

measurements, 
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5.0.0 Measurement of energy expenditure in free ranging 

B. terrestris: Do bumblebees maximize Net Energy 

Efficiency whilst foraging for nectar? 

Introduction 

Initial experiments indicated that current models of NEE resulted in poor 

predictions of B. terrestris behaviour whilst foraging for nectar (Section 2.3.1). 

The reason for the variation between the observed behaviour of the bees, 

and SH model predictions, could stem from two possible sources: 

1) Bumblebees do not maximize NEE whilst foraging for nectar, or 

2) Current model estimates of energy costs and gains are inaccurate 

Before it was possible to determine whether B. terrestfis maximize NEE or 

another currency, it was necessary to ensure that the inability of the SH 

model to predict foraging behaviour was not due to poor estimates of energy 

costs and gains incorporated within the model. 

5.0.1. Accuracy of estimated energy gains by a foraging bee 

As bumblebees can be trained to forage at artificial flower patches (Section 

2.1.1), it was possible to use artificial corollas, attached to nectar pumps in 
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order to regulate nectar flow within the patch. This in turn permitted the 

quantity and sugar concentration of each nectar parcel collected by a forager 

to be accurately controlled and recorded. As a result, the energy gains of a 

bee foraging at the artificial flower patch could be simply and accurately 

determined from the equation 1: 

G= nCw (1) 

Where n= the number of flowers visited, C= weight specific energetic value 

I nectar (16.7 J mg") and w= the mass of nectar collected on each flower 

visit (mg). 

5.0.2. Accuracy in estimates of energy expenditure of a bee whilst 

oraciina 

Although energy gains can be determined by empirical measurement of the 

quantity and sugar concentration of nectar collected, it has previously not 

been possible to measure the energy costs of foraging bees directly. 

Instead, energy expenditure has been estimated by Time I Activity / 

Laboratory (TAL) predictions (Section 2.0.2) (Schmid-Hempel et aL, 1985; 

Seeley, 1986; Wolf & Schmid-Hempel, 1990), the accuracy of which are 

questionable (Section 2.3.3). It was, therefore, possible that errors in TAIL 

estimates of energy costs were the source of the difference between the 

observed foraging behaviour of the bees and the behaviour predicted by the 
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SH model (Section 2.3.3). As a result, it was necessary to use the DLW 

technique to obtain direct empirical measures of the energy costs of foraging 

Slerrestris, thus removing any errors inherent in TAL estimates. Once 

reliable measurements of a foragers costs and gains were obtained, 

comparisons between observed and SH model predicted foraging behaviour 

could be used to determine whether Bjerrestris maximize NEE. 

5.1.0. Materials and methods 

At the beginning of May 1994, one artificial colony of B. terrestris (Biobest Ltd, 

Kent) was placed at the Wandlebury nature reserve, situated 3 miles south of 

Cambridge city centre. Initially, the colony was provided with ad libitum 

nectar and pollen, and left undisturbed for seven days, allowing the colony to 

settle following re-location of the hive. To encourage workers to commence 

foraging, no further nectar or pollen was provided after the initial seven day 

period. The colony was then left undisturbed for a further seven days before 

foraging experiments commenced, allowing workers time to orientate to the 

local surroundings. 

-5.1-1. Training bumblebees to forage to the artificial flower patch 

The DLW technique not only required the injection of foragers with heavy 

water isotopes, but also required the removal of haemolymph. As this was an 

invasive technique, it was necessary to determine whether stress or 
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physiological damage incurred during this procedure had a significant effect 

on the foragers subsequent behaviour. The nectar foraging behaviour of the 

bees was, therefore, recorded prior to the DLW treatment, permitting later 

comparisons to be made vAth behaviour following the DLW injection and 

plasma extraction procedure. 

Training commenced at approximately 10 am each morning and would 

typically take 30 minutes to perform. Initially, foraging workers were trained 

to tvv, o artificial flowers (Section 2.1.0), situated 2m apart from one-another, 

and 20m from the hive. The flowers were used to simulate a non-depleting 

flower patch (Section 2.1.0, Figure 2.1.2). The volume and sucrose 

concentration of nectar collected on each flower visit was varied between 

bees; from 50% to 70% w/w sugar content, delivered in quantities varying 

from 1.2 pl to 2.5 gl. The variation in quantity and sugar content of the nectar 

permitted the effect of nectar load and gains on the bees behaviour to be 

observed. 

Once trained to the flowers, the foraging behaviour of the bees was recorded 

using an Apple Macintosh Tm notepad and data logger program (written in 

Microsoft Basic @). The foraging variables recorded were; 1) the number of 

flower visits per foraging cycle, 2) time spent in hive (s), 3) time taken to fly to 

the artificial flower patch (s), 4) time taken to collect each parcel of nectar 

(handling time) (s), 5) the time taken to fly between flowers (inter-flower time) 

(s), and 6) time taken to fly back to the hive (s). 
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The foraging behaviour of the bees during 10 foraging cycles was recorded, 

with only the final four cycles being used for subsequent analysis. The first 

six cycles were permitted to provide the bees with sufficient time to learn how 

to handle the nectar within the corollas of the artificial flowers (Schmid- 

Hempel et al., 1985; Wolf & Schmid-Hempel, 1990). At the end of each 

foraging cycle, ambient temperature and humidity were recorded using an RS 

temperature and humidity gauge. 

5.1.2. DLW analysis of foraging costs 

On the eleventh foraging cycle, bees were captured prior to imbibing nectar, 

thus minimizing the risk of damage to the crop during isotope injection. The 

bees were then weighed, injected with 1 gl of 20% atom excess D2180 

(Section 3.4.4), and released. Once released, the bees were permitted to 

continue foraging for a further fifteen minutes, allowing the injected isotope to 

equilibrate with the bees body water pool (Section 3.7.0). The foragers were 

then recaptured, restrained, and a1 pl haemolymph sample extracted through 

the inter-cuticular membrane of the abdomen (Section 3.5.1). The bees were 

then released and permitted to forage to the artificial flowers, during which 

time their foraging behaviour was recorded. The bees were allowed to forage 

from the artificial flowers for a period of 4 hours, after which time they were 

recaptured, weighed, and dissected through the petiole. The thoraces of the 
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bees were immediately flame sealed into soda glass test tubes for 

subsequent isotopic analysis. 

Background D2180 isotopic abundances of the bees were estimated from the 

mean abundance observed following gIRMS analysis of haemolymph LNVD 

extracted from 2 non-injected bees, collected from the same colony (Section 

3.2.1 & 3.2.4). 

Initial 180 abundance was measured by gIRMS analysis of the initial 1 pl 

haemolymph samples, initial D abundance was predicted from the initial "30 

abundance (Section 3.8.1), whilst final D21'0 abundance was determined by 

qlRMS analysis of LNVD extracted thoracic plasma (Section 3.2.1 & 3.2.4). 

The results of the isotopic analysis were then used to calculate the rC02 of all 

bees, using the Lifson and McClintock (1966) equation (Equation 3, Section 

4.1.4). To allow comparison with SH model predictions, the DLW rC02 

measurements were converted to mean J of energy expended per foraging 

cycle per bee (CDLW)- 

5.1.3. Use of the SH model to compare observed and predicted foraging 

behaviour 

Observed foraging behaviour of labelled bees was compared with predictions 

from the SH model of the same bees when maximizing NEE. Model 

198 



predictions were derived by combining observed foraging times'with TAL 

estimated costs (CI), enabling the model to predict the optimum number of 

flowers a bee should visit, per foraging cycle, when maximizing NEE (Section 

2.1.4). The observed number of flowers visits were then compared with the 

number predicted from the model. 

5.1.4. Comparing DLW costs with the TAL costs predicted by the SH 

model, when predicted number of flower visits was altered to equal 

observed number of flower visits 

As observed and SH model predictions of the number of flower visits were not 

always the same, direct comparisons between CDLw and SH model TAL 

estimates were not possible. It was, therefore, necessary to derive TAL 

estimates for energy expenditure when the numbers of flower visits predicted 

by the SH model were altered to equal the observed numbers of flower visits. 

This was achieved using the SH model by incrementing the value of n from I 

to the observed number of flower visits. As the SH model then predicted the 

same number of flower visits as was observed in the field, the new TAL 

predicted costs (C2) could then be used for direct comparison with CDLW- 

These calculations were performed separately for each individual bee using 

the Optimum foraging simulation program (Appendix 1). 

1 Observed foraging times included, handling times, inter-flower times, hive times and flight 
times to the patch and from the hive. The values used in the calculations can found in a 
uatabase included in the optimal foraging simulation program (Appendix I). 
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5.1.5. Use of the SH model to determine whether the observed foraging 

behaviour of the bees conformed to bees maximizing Net Energy 

Efficiency 

Although comparisons betweenC2 andCDLw enabled inaccuracies in TAL 

estimates to be quantified, such analysis did not determine whether the 

foraging bees were maximizing NEE. It was, therefore, necessary to 

determine what the foraging costs of each individual bee would have to be in 

order for the observed behaviour of the foragers to conform to maximization 

of NEE (CA i. e. the valueOf C3which satisfied equation 1: 

Maximum NEE, -- 
(G-C3) 

C3 

where G= mean observed gains per foraging cycle. 

(1) 

C3 could then be compared to CDLw and, assuming the bees were maximizing 

NEE, observed and predicted costs should not significantly dIffer from one 

another. 

C3 WaScalculated using the optimal foraging simulation program (Appendix 

1), by incrementing the total costs per foraging cycle of the bee from zero to 

the value necessary for the SH model to predict the same number of flower 
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visits as was observed in the field 2. These calculations were carried out 

separately for each individual bee. 

5.2.0. Results 

The effect on the bees foraging behaviour of being injected and having a 

haemolymph sample removed appeared to have been minimal. Following 

injection, the individual bees altered the mean number of flowers visited by 

only -0.6±5.7 (n = 6), with a range of -1.5 to +14 flowers (Table 5.2.1). 

Although the mean change in number of flower visits following injection was 

low, the range in number of flower visits and standard deviation were high. 

'his was largely due to bee 5, which more than halved the number of flowers 

visited per foraging cycle following injection (from 26-8±1.9 (n = 4) to 

12.8±1.9(n = 4) (Table 5.2.1)). When bee 5 was removed from the 

I 
calculations, the mean change in number of flower visits decreased to - 

0.3±1.3 (n = 5), with a range of -1.5 to +1.8. The variation in number of 

flower visits prior to and following injection was non-significant in all bees 

except bee 5 (Table 5.2.2). Bee 5 also significantly altered handling and 

inter-flower times following injection (Table 5.2.2). As the DLW procedure 

significantly affected the foraging behaviour of the bee, bee 5 was not used in 

any subsequent analysis. 

2 C3 should not be confused with C2, where the predicted number of flower visits was 
incremented until it equalled the observed number of flower visits, unlike C3, where predicted 
costs were incremented until predicted number of flower visits equaled the observed number 
of flower visits. 
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When considering the foraging behaviour of all remaining bees, no significant 

difference was observed in mean number of flower visits prior to and 

following injection (paired Mest; t1q = 0.70, ns). Injection also had a minimal 

effect on the time taken by the foragers to collect nectar, with a mean change 

in handling times following injection of +1.5±1.2 seconds (n = 5). Only bees 5 

and 7 significantly altered handling times following injection (Table 5.2.2). 

When observing the variation in handling times for all bees, the change in 

time taken to collect nectar following injection, was not significant (tig = -1.93, 

ns). Inter-flower times were also unaffected following injection, with mean 

times changing by only -0.5±1.0 seconds. No bees, other than bee 5, were 

observed to significantly alter inter-flower times following injection (tiq = 0.99, 

ns) (Table 5.2.2). 

Ambient temperature recorded during the experiment- ranged from 24 to 41 

OC, with a mean of 36±8 OC, whilst humidity ranged from 31 to 43% with a 

mean of 34±4%. Variations in ambient temperature did not, however, appear 

alter the foraging behaviour of the bees. This was illustrated by bee 2, which 

was subject to the greatest temperature and humidity range of any forager 

(temperature ranged from 24 to 400C and humidity from 36 to 39%). Over 6 

foraging cycles, when mean temperature equalled 26±10C and humidity 

39±0.2%, bee 2 visited a mean of 12.6±1.2 flowers per cycle, with a mean 

handling time of 7.3±0.8 seconds and inter-flower time of 2.6±0.6 seconds. 

When temperature increased to a mean of 38±2 OC and humidity decreased 

to 36±0.4%, mean number of flower visits (over 6 cycles) did not significantly 
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vary from the number observed at the lower temperature and higher humidity 

(Paired Nest ts = <0.001, ns), this was also true for handling (t5= -0.54, ns) 

and inter-flower times (t5 'ý 1.46, ns). The low standard deviation in number 

of flower visits, handling and inter-flower times of all bees (Table 5.2.1), 

indicated little intra-bee variation in foraging behaviour over the period of the 

experiment (approximately 5 hours in duration), irrespective of temperature 

and humidity. This would tend to suggest that foraging behaviour of the bees 

was not significantly affected by ambient weather conditions in the current 

study. 

As in the previous field experiment (Section 2.0), there was no correlation 

between number of flower visits and nectar sucrose concentration (r3= - 0.07, 

ns). However, unlike the previous experiment, no correlation was observed 

between body mass of the bee and number of flower visits (r3= 0.34, ns). 

When foraging 'at the artificial flower patch, all bees were observed to visit 

significantly more flowers than predicted by the SH models. The mean 

underestimate of the SH model was 10.9±6.9 (n = 20) flower visits, with a 

range of -2.5 to -11.3 flowers. 

The SH model predictions of energy expenditure per foraging cycle (Cl) were 

consistently lower than CDLW in all bees except bee 2, although the difference 

between the two estimates was non-significant for all bees (Table 5.2.3). The 

source of the variation between C, and CDLW was, however, partially due to 
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the differences between predicted and observed number of flower visits 

(Table 5.2.4). This was because DLW estimates of energy expenditure 

reflected the costs* of visiting the observed number of flower visits per 

foraging cycle, whilst C, reflected the TAL estimated costs of foraging to the 

SH model predictions of optimum number of flower visits. As there was a 

significant difference between the observed and predicted number of flower 

visits (Table 5.2.4. ), it was not possible to compare directly C, and CDLW. As 

a result, the accuracy of TAL estimates was determined by comparing CDLw 

withC2 (Table 5.2.5. ). Although the differences betweenC2 andCDLWwere 

greater than those observed betweenCDLw and C, +5.9±5.2 J, ranging 

from +0.5 to +11.8), significant differences between C2 and CDLw estimates 

were only observed in bees 3 and 7 (Table 5.2.3. ). However, when 

comparing the variation in all bees, a significant difference betweenC2 and 

CoLw was observed (G5 ý 17.84, p<0.01). The cause of the variation between 

these- measurements was unclear, as there was no correlation between 

differences in estimates of costs and body mass (r3 = 0.45, ns) o, r number of 

flower visits (r3= 0.59, ns). 

To determine whether the bees were maximizing NEE, CDLW Was compared 
I 

withC3 (Table 5.2.5). C3 estimates of costs were consistently higher than 

DLW estimates for all bees, with a mean over-estimate of +36.6±66.6 J, 

ranging from +1.2 J to +80.7 J. Except for bee 2, C3 overestimates were 

significant for all bees (Table 5.2.3. ), with the combined differences between 

CDLw and C3 for all bees also being highly significant (Gs = 194.75, p<0.001). 
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Although there was a significant difference betweenC3andCDLW, significant 

relationships were observed between the costs and gains of the foraging 

cycle. In particular, a significant correlation was observed betweenCDLw and 

observed mean gains per foraging cycle (r3= 0.89, p<0.05) (Figure 5.2.1. ). A 

significant correlation was also observed betweenC2and the observed gains 

(r3 = 0.89, p<0.02) (Figure 5.2.1), although no significant correlations were 

observed between C, and observed gains (r3 = 0.49, ns) and C3 and 

observed gains (r3= 0.82, ns). It should, however, be noted that a significant 

correlation was observed between Cc)Lw and number of flower visits (r. 

0.988, p <0.05). As gains are linked to number of flower visits it was possible 

that any observed correlation between foraging costs and gains was simply 

due to the relationship between costs and number of flower visits, rather than 

an optimal foraging strategy by the bee. 

5.3.0. Discussion 

"Observation is likely to alter the properties and behaviour of the subject 

under study" (Capra, 1985). This statement is particularly true in the current 

experiment, where bees were not only passively observed whilst foraging, but 

also captured, restrained, injected with heavy water, and plasma samples 

removed from their haernocoel. However, even following this intrusive 

procedure, only bee 5 was observed to significantly alter her foraging 

behaviour during DLW measurements. It was, therefore, clear that DLW 
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Figure 5.2.1. Relationship between energy costs and gains of foraging bees 
over one foraging cycle. 
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estimates of energy expenditure can be obtained without significantly altering 

the behaviour of most B. terrestris. It should, however, be noted that future 

attempts to use the DLW protocol described in this study should also use 

careful controls in order to monitor any behavioural effects the procedure 

may have on the subjects. 

As observed in the previous field experiment (Section 2.0.0), the SH model 

proved a poor predictor of B. terrestris foraging behaviour, with model 

estimates of the number of flower visits again being significantly lower than 

field observations. It was possible that this discrepancy was due to errors in 

the TAL estimates of energy expelditure used in the model, resulting in 

model estimates not reflecting the costs incurred by the bee in the field. This 

hypothesis was supported when comparing (C2) and CDLW measurements of 

foraging costs. Overall, a significant difference between the two estimates 

of energy expenditure was found, with C2 estimates being consistently higher 

than CDLW measurements. Assuming the CDLW values are reliable, the 

difference between the two measures of energy expenditure indicate 

errors in TAL estimates of foraging costs. As SH model 

predictions of optimal number of flower visits depend on accurate estimates 

of foraging costs, the observed errors in TAL estimates will also have 

resulted in errors in model predictions of flower visiting behaviour. It was, 

therefore, possible that errors in cost estimates by the model were the source 

of the difference between observed and predicted foraging behaviour. As a 

result, TAL foraging costs were removed from the SH model, and replaced by 
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C3. If the foraging bees were maximizing NEE, therefore, C3costs should not 

:; e significantly different from the observedCDLW(assuming the Cc)Lw results 

were accurate). However, large differences between the two measures of 

energy expenditure were again found, withC3being significantly greater than 

CDLw measurements in all but one bee. As a result, four possible conclusions 

may be drawn: 

1. DLW field estimates of energy expenditure were inaccurate. 

2. The design of the field experiment caused the bees to forage in a sub 

optimal manner. 

3. C3 overestimates of energy expenditure were due to foraging costs which 

could not be quantified by the DLW technique, i. e. non-fuel costs. 

4. Blerrestris do not maximize NEE whilst foraging for nectar. 

5.3.1. 

Were DLW field estimates of energy expenditure reliable? 

IkIthough CDLw estimates proved accurate during laboratory validations 

(Section 4.2.0), it would be incorrect to assume that the precision of field and 

laboratory DLW estimates were equal. In particular, it is important to 

consider what effect different environmental and behavioural conditions had 
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on the accuracy of DLW measurements when using tethered bees in the 

laboratory or free flying foragers in the field. 

5.3.2. What effect did environmental conditions have on the accuracy of 

I IXW measurements of metabolic rates? 

During the validation experiment, bees were placed in a 2.51- volume flight 

chamber, through which H20 andC02 free air was passed. As a result, the 

bees absorbed minimal quantities of exogenous H20 and C02 during the 

validation experiment. As addition of exogenous H20 andC02 to the bees 

body water pool increases the apparent turnover rates of the D and 180 

isotopes, potentially, high levels of ambient C02 (ý: 3.4%), combined with low 

humidity (3.8 mg H20/1- air), could result in the apparent '80 turnover rates 

increasing relative to D, resulting in large errors in DLW estimates of rC02 

(errors of up to +81%) (Nagy, 1980; Tatner & Bryant, 1989) Due to the use 

of H20 and C02 free air during validation, errors in rC02 estimates due to low 

humidity and high carbon dioxide levels will have been minimal Similarly, it 

is unlikely that H20 and C02 levels encountered in the field will have 

approached the levels required to produce significant errors in rC02. This, 

however, may not have been the case during the time the bees were in the 

hive, where C02 levels may have been as high as 4.3% (Seeley, 1974). 

Despite highC02 levels, the humidity within the hive was also likely to have 

been high due to water evaporating from collected nectar in the honey pots. 

Nest ventilation by worker castes will have reduced the humidity, although it 
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is unlikely to have reached the levels described by Nagy (1980) (Wolf pers. 

com. ). The combined effect of high carbon dioxide and humidity on the 

apparent isotope turnover rates within the bees body water pool was unclear, 

depending largely on the rates at whichC02and H20 were absorbed by the 

bee. However, as C02concentrations were likely to have been higher in the 

bees haemolymph than in the hives atmosphere (Chapman, 1985), the C02 

gradient from the bee to hive will have limited the amount of carbon dioxide 

which the bees will have absorbed. The effect Of C02 absorption will also 

have been limited by the length of time the bee spent within the hive, 

accounting for only ; t20% of the total foraging time of all bees (pers. obs. ). 

Although the high humidity in the hive may have increased the apparent 

isotope turnover rates, it will not have altered the ratio between the 180 and D 

isotopes, having increased the fractional turnover rates of 180 and D 

isotopes equally. As a result, the effect of high humidity on the precision of 

DLW measurements will have been minimal. 

Although caution must be taken when extrapolating the DLW precision from 

tne validation experiment to the current field study, there is little evidence that 

differences in environmental conditions or behavioural traits of the bees 

significantly altered the accuracy of DLW rC02 measurements in the field 

experiments. It was, therefore, unlikely that errors in DLW measurements of 

energy expenditure can explain the inability of the SH model to predict the 

behaviour of B. terrestris. 
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53 .. F . .0. 

2) Was the foraging behaviour of the bees affected by the experimental 

design of the artificial flower patch? 

The experimental design resulted in three behavioural traits, which were 

counterintuitive to the behaviour that might by expected of a bumblebee 

foraging in a natural flower patch, These were: 

i) Bees foraged from only one flower type (the arti. ficial flowers). 

U) The bees were trained to revisit continually the same flowers during one 

foraging cycle. 

iii) The nectar volume and sugar content encountered by the bees, on each 

flower visit, remained constant with time and number of flower visits (non- 

depleting). 

1) Was the bees natural foraging behaviour affected by restricting the 

bees to forage from one floral type? 

Although it may appear reasonable to assume that bees would visit many 

floral types in one foraging cycle, such behaviour is rarely observed 3 in the 

field (Heinrich, 1979a). It is well documented that bumblebees display flower 

3 Bumblebees have been observed to visit numerous flower types, although this is generally 
restricted to naive foragers or as a result of competition (Heinrich, 1979a). 
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consistency when foraging, normally visiting only one or two floral types, 

even when more rewarding flowers are available (Darwin, 1859; Heinrich, 

1979a; Woodward & Laverty, 1992; Dukas & Real, 1993a; Laverty, 1993). 

The explanation for this behaviour appears to be linked to the bees poor 

ability to learn how to collect nectar from different floral types. As different 

flowers require different handling skills, the foragers limited memory restricts 

the number of floral types the bee is capable of leaming how to forage from 

(Laverty, 1980; Dukas & Real, 1993b). It has also been shown'that the 

handling skills learned from one flower type can also interfere with the skills 

learned from another flower type (Darwin's interference hypothesis) (Darwin, 

1859; Woodward & Laverty, 1992). 

As a flower constant forager will visit only a small number of floral types, the 

quantity and sugar content of the nectar encountered on each flower visit will 

be more predictable than when visiting multiple flower types. The handling 

costs incurred by the forager when visiting a small number of flower types will 

also be more constant. Thus, a forager is more likely to be able to "predict" 

foraging costs and gains when foraging in a flower constant manner. The 

ability of the forager to "predict" costs and gains is essential if the bee is to 

follow any energy-based rule of optimal foraging. It was, therefore, highly 

unlikely that the use of one floral type, in the current experiment, will have 

significantly affected the foraging behaviour of the bees. 
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1) Did training bees to visit the same flowers repeatedly during one 

foraging cycle effect the bees natural foraging behaviour ? 

Bees have been observed to revisit regularly rewarding flowers. Corbet, et 

aL, (1984) observed a modal revisit time for Bombus and Apis of only 3.25 

minutes. Similar observations of bumblebees revisiting flowers in field 

situations have also been reported by Heinrich, 1979a; Dukas & Real, 1993a 

and Dreisig, 1995. It is, therefore, unlikely that training bees to revisit flowers 

will have significantly affected their foraging behaviour. 

iii) Did providing bees with a non-depleting flower patch result in the 

bees altering their natural foraging behaviour ? 

A non-depleting flower patch can be simply defined as: a flower patch which 

will provide a constant supply of nectar, the sugar concentration and volume 

of which will not decrease over time or number of flower visits. Although a 

bee will not encounter a natural flower patch which provides a truly ad libitum 

supply of nectar, it is possible that a worker may forage from flower patches . 

which would, from the bees perspective, appear to conform to the above 

description. Such a situation would occur in a patch containing flowers of the 

same species, where the total nectar content exceeded the maximum quantity 

of nectar which could be collected by a forager over one cycle. As the 

flowers in the patch are of the same species, it is possible that nectar volume 

and sugar concentration would be similar on every flower visit. This would 
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mean that the forager would not encounter a decrease in nectar quality with 

each subsequent flower visit, providing the bee did not revisit flowers which 

it, or other bees had recently emptied. As this can be avoided by the 

foragers scent marking flowers containing no nectar (Cameron, 1981; Corbet 

et al., 1984; Bertsch, 1990), foraging bees would not encounter a decrease in 

gains, or increase in costs, with number of flower visits or time. It should, 

however, be noted that the volume and sugar concentration of nectar in 

natural flowers does vary with time of day and ambient temperature (Willmer, 

1988), as does the foraging behaviour of nectar feeding insects (Willmer, 

1983). Under the current experimental methodology, no variation in nectar 

sucrose volume or concentration occurred with changes in temperature, 

humidity or time of day. This may explain the apparent insensitivity of the 

bees foraging behaviour to changes in ambient weather conditions. This, 

however, does not detract from the fact that bees may regularly forage at 

flower patches which would, from the bees perspective, appear none 

depleting. It would, therefore, appear unlikely that a bees behaviour would 

adversely be affected by the similar conditions encountered in the current 

experiment. 

It is, thus, unlikely that there were any significant flaws in the current 

, )xperimental design which could explain the inability of the SH model to 

predict the observed behaviour of the bees. 
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5.3.4. 

3) Can the variation between Cc)Lw andC3be explained by the omission 

of non-fuel costs from the SH model of Net Energy Efficiency? 

When comparing C3 with DLW measurements of energy expenditure, C3 

consistently overestimated CDLW Costs- As there are costs involved in 

foraging which do not directly involve energy expenditure (non-fuel costs) 

(Seeley, 1986), these costs may affect the foraging decisions of the bee, but 

will not be measurable by the DLW technique. It is, therefore, possible that 

the bees in the current experiment were maximizing NEE whilst foraging, but 

non-fuel costs resulted inC3significantly overestimatingCDLW. 

As discussed in Section 2.3.3, there are two main sources of non-fuel costs; 

i) depreciation costs of decreased life span due to foraging effort, and i) the 

costs of predator avoidance. 

5.3.5. Do bumblebees include the non-fuel costs of decreased life span 

lue to foraging effort, when determining Net Energy Efficiency 

It has been shown that as the foraging effort of a bee increases, so the life 

expectancy of the bee decreases (Neukirch, 1982; Schmid-Hempel & Wolf, 

1988; Cartar, 1992). Beauchamp (1992) produced a model which indicated 

that longevity of worker caste honeybees directly affected the fitness of the 

bees colony. Beauchamp's model indicated that colonies whose workers 
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maximized their life span, had larger worker populations at the end of a 

foraging season than colonies whose workers maximized their work loads 

(thus decreasing their life span). A large worker population in honeybees is a 

distinct advantage, as it permits more efficient temperature regulation of the 

hive during the mrinter (Seeley, 1985), and also permits foraging to commence 

immediately when weather conditions improve in the spring (Beauchamp, 

1992). As a result, it is reasonable to assume that the non-fuel costs, to a 

foraging honeybee, resulting from decreased life span are high. 

Although it may be true that Beauchamp's (1992) assertion that maximizing 

worker longevity increases colony Finess in honeybees, the benefits of this 

strategy are less obvious for bumblebees. This is largely due to the 

differences in over-wintering strategies between the two species Unlike 

honeybees, bumblebee colonies survive for only one year, with all workers 

and drones dying at the end of every foraging season and only fertilized 

queens surviving the winter through hibernation (Heinrich. 1979a) As a 

result, a large colony worker population at the end of a foraging season 

would be of no obvious benefit to the fitness of a bumblebee colony. Instead, 

the fitness of the colony is based on two other factors; i) the number of 

fertilized queens surviving the winter and establishing new colonies in the 

spring, and ii) the number of drones which successfully mate with queens 

from other colonies. It is, therefore, logical to assume that a colony wishing 

to maximize fitness would attempt to maximize the number of reproductives 

reared. As the amount of nectar and pollen required to raise reproductive 
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queen larvae is over four times that required to raise a worker larva 4 (Allen, 

Cameron, McGinley & Heinrich, 1978), the number of foragers in the colony 

must also increase in order to supply the reproductive brood with sufficient 

nollen and nectar for growth. Unlike honeybees, however, it would be most 

beneficial for bumblebees colonies to maximize worker numbers immediately 

prior to and during reproductive rearing, with numbers of workers decreasing 

as the colony nears the end of its cycle. A pattern similar to this was found 

by Allen et aL (1978), when studying a colony of B. vosnesenskfi. Thenumber 

of worker castes was found to peak at the same time as numbers of 

reproductive larvae. Also, the number of workers decreased as reproductive 

larvae hatched, and subordinates qjeens were then observed to assist in 

collecting nectar, although no subordinates were observed tending the brood. 

This kind of activity would tend to suggest that colony population size of 

workers is important, but at an earlier stage in the life cycle of the colony than 

required in honeybees. 

As colony population size may be an important selective pressure, a high 

non-fuel cost may be incurred by foragers due to decreased longevity, 

resulting in limiting maximum colony worker numbers. However, foragers 

must expend energy in order to collect nectar and pollen to rear reproductive 

brood. The foragers must, therefore, optimize their behaviour to collect the 

maximum quantity of nectar and pollen whilst minimizing the costs of 

4 Allen et aL (1978) reported that to raise a queen larvae 430 mg pollen and 200 mg of sugar 
were required, where-as only 100 mg of pollen and 43 mg of nectar were required to rear a 
worker. 
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decreased life span. Cartar (1992) suggested that this would result in 

bumblebees adopting "a currency that maximizes the ratio of net benefits to 

costs", Le. NEE. Cartar's assertion may be correct, but as none of the current 

NEE models include the non-fuel costs of decreased life span, it is not 

possible to test this hypothesis on field observations of foraging behaviour. 

5.3.6. Do bumblebees include the non-fuel costs of predator avoidance 

when maximizing Net Energy Efficiency 

Predator5 avoidance is often cited as a major consideration in the foraging 

behaviour of organisms (Abrams, 1994). As discussed previously (Section 

2.3.3. ), this may also be true of bumblebees. However, it is far from clear 

what effect such sensitivity woUld have on the foraging behaviour of the bees 

in the current study. As the greatest risk of predation occurs when a forager 

leaves the hive, it would be reasonable to assume that a predator sensitive 

bee would maximize time spent in the hive whilst minimizing foraging time 

(Alford, 1975). The bee, however, must also balance the gains of decreased 

predator risk with the costs of decreased nectar and pollen inputs to the hive. 

For such a strategy to be effective a bee should optimize time spent, i) in the 

hive, and ii) foraging, in order to acquire the maximum net gains over the 

forager's lifetime. Such a strategy would necessitate that the forager had 

some method of estimating the risk of predation, allowing the bee to alter hive 

and foraging times appropriately. It is, however, unlikely that a bumblebee is 

The term predation, when used in the current context, also includes parasitization. 
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capable of acquiring sufficient information about predation risk in order to 

make any avoidance behaviour efficient (Alford, 1975). As a result, it may be 

more costly, in terms of nectar input to the hive, for a bee to decrease 

foraging effort than would be gained from a decreased risk of predation. 

There has also, to the best of my knowledge, been no published accounts of 

bumblebees altering their foraging behaviour as a result of predation risk. 

Anti-predatory strategies may also be counter productive, as is demonstrated 

by the reluctance of temperate honeybee and bumblebees to swarm and 

attack a predator en mass (Winston, 1991). This is because after a colony 

has swarmed, the hive is always abandoned (Seeley, 1985). For honeybees 

this will result in all collected nectar and pollen being lost, requiring new 

stores to be gathered prior to over-wintering. If the colony swarms close to 

the onset of winter, it is unlikely that sufficient stores can be collected prior to 

the end of the foraging season, resulting in the death of the colony (Winston, 

1991). Tropical bees, however, do not have the seasonal constraints 

imposed on temperate bees, greatly decreasing the probability of the colony 

dying following a swarm (Seeley, Seeley & Akratanakul, 1982). As a result, 

many tropical species of honeybee are significantly more aggressive than 

temperate bees, displaying a high propensity to swarming (Seeley, 1985). 

Unlike honeybees, a bumblebee colony is not capable of re-establishing a 

colony following swarming, thus a colony which has swarmed will always die 

(Heinrich, 1979a). If swarming occurs towards the end of a season it is 

Possible that sufficient reproductives will have been produced to ensure that 
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the genes of a colony will be carried onto the next generation. However, if 

reproductives have not been produced the colony, and its lineage, will die. 

It is, therefore, clear that predatory avoidance strategies may be so costly to 

a colony that they are rarely employed. However, more work is required in 

this area, and it is feasible that some non-fuel costs were incurred by 

foragers in the current study. It would be possible to include an arbitrary 

value of none fuel costs into the SH model, as was carried out by Seeley 

(1986), to increase the NEE predicted costs of the foragers, to equal DLW 

measurements. However, as this figure would be arbitrary and difficult to 

empirically test, any correlation between NEE model predictions and 

observed behaviour of the bees would be highly dubious (as discussed by 

Pierce & Ollason, 1987). 

However, as honeybees are also subject to the same non-fuel costs as 

bumblebees (Beachamp, 1992) any discrepancies between observed and 

predicted foraging behaviour, resulting from non-fuel costs in bumblebees, 

should also be observed in honeybees. This, however, is generally not the 

case, with Schmid-Hempel et aL (1985) and Wolf & Schmid-Hempel (1990) 

finding no significant difference between observed and predicted foraging 

behaviour of honeybees (using models which did not include non-fuel costs). 

It would, therefore, appear that there is little evidence to support the theory 

that non-fuel costs account for the difference between DLW and predicted 

estimates of energy expenditure. 
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5.3.7. 

4) Do B. terrestris maximize Net Energy Efficiency when foraging for 

nectar 

The significant difference between DLW and predicted estimates of foraging 

costs, combined with the lack of any obvious explanation for the variation, 

strongly indicates that B. terrestris do not maximize NEE when foraging for 

nectar. This was unexpected, due to reports of honeybees conforming well to 

NEE models (Schmid-Hempel et aL, 1985, Wolf & Schmid-Hempel, 1990), 

and similarity in physiology and behaviour between honey and bumblebees. 

There is, however, a number of important differences between honey and 

bumblebees, particularly the honeybees ability to communicate the location, 

quantity and energy content of nectar within a flower patch to one another 

(Frisch, 1967; Seeley, 1985, Gould & Gould, 1988, Winston, 1991). As a 

honeybee forager can obtain this information prior to leaving the hive, the 

forager will have some knowledge about the costs and gains it is likely to 

incur during a foraging cycle. This information could thus be used by the bee 

to help maximize its efficiency when in the patch. 

Unlike honeybees, bumblebees are unable to communicate patch information 

tooneanother. Individual foragers have instead to rely on past flower visiting 

experience and possibly pheromone marking to determine the energetic costs 

and gains they may experience when foraging in a patch (Section 1.0.1). 
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However, it is clear that bumblebees have a limited ability to memorize 

previous flower rewards and foraging costs (Heinrich, 1976a; Laverty, 1980; 

Woodward & Laverty, 1992, Greggers & Menzel, 1993; Dukas & Real, 

1993b). AJso, the sucrose content and volume of nectar within natural 

flowers is highly variable, even within plants of the same species (Heinrich, 

1979a; Pleasants & Zimmerman, 1979; Taubert & Barnes, 1979; Willmer, 

1983; Zimmerman, 1981,1983; Willmer, 1986; Real & Rathicke, 1988; 

Willmer, 1988; Creswell, 1990, Waser & Mitchel, 1990; Dukas & Real, 

1993a). As a result, a foraging bumblebee will derive only a limited amount 

of information about the energetic costs and gains of foraging at any given 

patch from previous experience alone. Even if flowers within a patch have 

been scent marked, this will only indicate whether a flower is potentially 

rewarding or unrewarding, again providing no detailed information on the 

costs and gains of foraging at that flower. Other visual or chemical cues, 

used by bumblebees to estimate the prospective rewards which may be 

gained from foraging at a flower (Section 1.0.1), provide no information about 

the costs a forager will incur during nectar collection. It is, therefore, clear 

'hat bumblebees have only a limited perception of the costs and gains they 

will encounter when gathering nectar in a natural flower patch. This would 

make it unlikely that bumblebees had sufficient information to determine 

when, or if, they had maximized NEE. Although this situation can, to a certain 

extent, be ameliorated by flower consistent foraging, the lack of any 

knowledge of total available nectar in a patch would still limit the information 

required by bumblebee foragers required to maximize NEE. It is, therefore, 
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difficult to understand how an optimal foraging currency, dependent on 

accurate knowledge of foraging costs and gains, could have evolved when 

bumblebees are not able to obtain the information necessary to maximize 

NEE. Instead, it would appear more likely that natural selection will have 

acted on simple foraging variables which bumblebees were capable of 

quantifying. 

5.3.8. If B. terrestris do not maximize Net Energy Efficiency, what 

currency, if any, do they use to optimize foraging behaviour 7 

Although it would appear that bumblebees do not maximize NEE, a significant 

correlation was observed between the body mass of the forager and the total 

volume of nectar collected per foraging cycle (r35 = 0.47, p-cO. 005)6 (Figure 

5.3.1). The relationship between body mass and volume of nectar collected 

is described in equation 1: 

Y=0.13x-3.2 (ý = 0.23) (1) 

A similar observation has also been reported by Shelly, Buchmann, 

Villalobos & O'Rouke, (1991) in the desert dwelling bumblebees B. 

pennsylvanicus sonorus, where a significant correlation between body mass 

and volume of nectar loads was observed (Spearman rank, P<0.05). It is, 

therefore, possible that such correlations indicate that bumblebees follow a 

6 The correlation analysis was carried out on the combined results obtained from the current 
experiment and the foraging experiment described in Section 2.0.0. 
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Figure 5.3.1. 

The relationship the body mass of B. terrestfis and the volume of nectar collected on 
each foraging cycle 
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simple volume threshold rule, collecting a given volume of nectar relative to 

their body mass, and abandoning the flower patch once this volume is 

reached. As a result, the bees do not have to make a cognitive decision as to 

when the patch should be abandoned, but can simply collect nectar until the 

nectar volume threshold has been reached, or no nectar remains within the 

patch. Such a strategy negates the need for the bees to obtain accurate 

information on the potential costs and gains of a given foraging strategy, an 

action which is likely to be impossible to B. terrestris. 

Although a volume threshold theory may appear plausible, two major factors 

have yet to be determined, i) why the bees choose to abandon the patch at a 

given threshold volume, and ii) what is the evolutionary advantage to 

B-terrestris of following this foraging rule. Both of these questions are 

beyond the scope of this study. However, there is one current theory which 

may account for the observed behaviour. 

5.3.9. Do B. terrestris limit the volume of nectar they collect in order to 

maintain a constant water balance? 

When foraging, bees not only have to consider energetic costs and gains, but 

also have to take into account other physiological constraints, such as water 

balance (Bertsch, 1984; Willmer, 1986; Willmer, 1988). To date, only 

Bertsch (1984) has attempted to directly measure the water turn-over rate of 

flying bumblebees. Bertsch found that metabolism of sugar during flight 
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resulted in the production of large amounts of metabolic water (0.6 mg of 

water per mg of unloaded bee per 24 hr period) in male B. lucorum. 

Excluding water derived from collected nectar (0.6 mg of water per mg of 50% 

w/w sugar water), Bertsch estimated that the high production of metabolic 

water resulted in foraging effort being curtailed due to excess water 

:: lroduction, rather than desiccation. It was calculated that in order to 

maintain a constant water balance, a forager would have to void its total body 

water content with every eight hours of flight. Observations by Bertsch, 

however, indicate that a foraging bee is only capable of expelling a maximum 

of 80% of its body water (through urination and evaporative water loss) over 

this period. This would, therefore, result in an overall increase in body water 

content of 20%, flooding the haemolymph and adversely affecting the 

foragers physiology. Thus, to maintain a constant water balance, a forager 

would have to limit flight effort in order to reduce the production of metabolic 

water. It is, therefore, possible that a volume threshold rule may be an 

attempt by a forager to limit work load, and hence metabolic water production, 

in order to maintain a constant water balance. 

However, Bertschs observations have yet to be repeated, and other work 

appears to contradict many of Bertschs findings. In particular, Willmer (1986) 

observed the occurrence of water stress in the xerophilic bee Chaficodoma 

Sicula whilst foraging for nectar. It was observed that the osmotic 

concentration of the bees haemolymph was greatly elevated when the forager 

arrived at a flower, suggesting excessive water loss by the bee whilst flying to 
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the patch. The osmotic concentration of haemolymph subsequently returned 

to normal after nectar within the flower had been imbibed. This would appear 

to suggest that water within the nectar was passing across the crop 

membrane, and entering the haemocoel, thus re-hydrating the forager 

'Willmer, 1986). Willmer also observed that C. sicula preferred to forage at 

flowers with more dilute nectar situated in areas of higher humidity. This 

would tend to suggest that far from producing excessive metabolic water, the 

foragers were under water stress, and selectively foraged to patches which 

minimized EWL and maximized water intake. It is, therefore, possible that 

water stress may act as a selective pressure in the co-evolution of flowers 

and specialist foragers (Willmer, 1988). This was demonstrated by Willmer 

(1988) when observing the foraging behaviour of two bees, Xylocopa 

suldatipes and X pubescens, at Calotropis procera (asclepiad). It was noted 

that C. procera varied nectar production throughout the day, producing more 

dilute nectar during periods when X pubescens was thermally incapable of 

foraging. The smaller X sulcatipes, however, was able to forage during this 

period, thus benefiting from the increased water content of the nectar. As 

increasing the water content of nectar is likely to be costly to C. procera, it 

would appear that this strategy is adaptive, and may stem from co-evolution 

with Xsulcatipes (Willmer, 1988). Conversely, the larger X pubescens 

displayed profligate urination and was observed tongue lashing, a behaviour 

normally performed in order to evaporate excess water from imbibed nectar 

(Bertsch, 1984; Willmer, 1986). Such behaviour would tend to indicate that 
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the large, none specialized X pubescens was suffering from excess water 

production (Willmer, 1988), as was found in male B. lucorum by Bertsch 

(1984). It would, therefore, appear likely that relatively large bees, foraging 

to none specialist flowers, are more likely to suffer from excess water 

production. Whether the foragers in the current study suffered from 

excessive water production is far from clear, as B. terrestris are relatively 

small in size compared to Xylocopa spp, but are not specialist foragers. It 

should, however, be noted that profligate urination was observed, normally 

immediately after imbibing nectar at the artificial flowers, as was tongue 

lashing. As similar behaviour observed in X pubescens, would tend to 

suggest excessive water production, the same may also be true of the 

B-terrestris during the current study. As a result, the limited volume intake of 

nectar may be a strategy to reduce flight work load, thus decreasing 

-metabolic water production, and to decrease the volume of water imbibed 

with the nectar. However, the evidence for this assumption is largely 

anecdotal and requires further investigation. 
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Conclusion. 

DLW measurements of energy expenditure in foraging bees show that the 

costs required for current models of NEE to predict observed foraging 

behaviour are significantly higher than those observed. As there is no 

obvious explanation for the variation between observed and predicted costs, 

I is highly likely that B. terrestris does not maximize NEE when foraging for 

nectar. Instead, a significant correlation between mass of the bee and 

volume of total nectar load per foraging cycle was observed. This may 

indicate that B. terrestris follow a simple volume threshold rule when foraging, 

abandoning a flower patch once a threshold volume of nectar has been 

collected. However, the rules which determine the threshold volume at which 

the forager abandons the patch, and the evolutionary advantage of following 

this rule are unclear. 

Future Work 

Although the current study has developed and validated a technique for 

measuring energy expenditure in free ranging B. terrestris, energy costs do 

not appear to be the main consideration of foraging bees. As observations 

were made of B. terrestris foraging at artificial flower patchs, containing a 

relatively high sucrose content nectar, and situated close to the hive, it would 

be useful to repeat the experiment under more realistic conditions. This may 

include increasing hive-patch distance and decreasing nectar sucrose 
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concentrations. Such experiments would help clarify if B. terrestris are 

universally insensitive to foraging cost or whether insensitive is displayed 

only when costs are low and gains are high (as in the current study). 

It would also be interesting to observe the affect on foraging behaviour of 

varying nectar rewards of a forager within one cycle e. g. changing nectar 

sucrose concentrations and volumes on subsequent flower visits. 

Of particular importance is the need for further validation of the DLW protocol 

.o enable its use in measuring the water turnover rate (water intake, 

metabolic water production and EVYL) of a foraging bee. As has previously 

been discussed, water balance may be a major factor in the observed 

foraging behaviour of B. terrestfis and many other species of bee It would, 

therefore, be of benefit to directly measure the water balance of a foraging 

bee, and use manipulative experiments to determine what effect walker deficit 

/ excess had on the foraging behaviour of B. terrestris. 
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