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Summary 

A fully dynamic two dimensional bioengineering model of the human 

lower limbs has been produced and has been solved for the activity 

of running using an inverse dynamics approach. The model includes 

all the major contributory muscles and muscle groups in the lower 

limbs including the soleus and the tibialis anterior. The actions 

of all the muscles have been verified by coordinated 

electromyographic experimentation. 

The analysis method of model production, data collection and data 

processing has been carried out using standard biomechanical 

practices, techniques and equipment and this allows comparison with 

other studies in similar fields. This equipment and technique, 

based around a Kistler force platform, a Locam high speed 

cinematographic camera, a magnetorestrictive digitising tablet and 

individually tailored bone models displays results reliable to 

within + 3% per subject. This produces results for ground reaction 

forces, joint moments, limb angles, muscular tensions and joint 

reactions. 

For a basic running speed of 4.47 m s-1 results indicate maximum 

joint moments of 150 Nm, 189 Nm and 214 Nm occur in the hip, knee 

and ankle respectively. Maximum mean peak muscle forces of 15.0 BW 

and 10.7 BW occur in the quadricep and tricep surea muscle group 

accordingly. The hamstring and shin groups display more modest 

values of 2.8 BW and 0.5 BW respectively. Muscular loading rates of 

116 kN s-1 are recorded in the tricep surea group and 292 kN S-1 in 

the quadriceps which compares favourably with values expressed by 

Komi et al. (1985) who used a strain gauge implant into the human 
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body. Maximum joint reactions occur in the knee at 21.3 BW for the 

compressive component and 2.4 BW for the shear component. 

Variations in these values were noted with changes in running style 

and speed. Rear foot strikers exhibit longer foot contact time 

(p > 0.05) and reduced loading rates when compared to front foot 

strikers. Increases in speed from 3.38 m s-1 to 4.47 m s-1 and to 

5.36 m s-1 do not result in significant increases in compressive 

elements of the force sYstem but significant increases in the shear 

force elements are noted (p > 0.05). 

It is concluded from these findings that front foot strikers may be 

more susceptible to injury than rear foot strikers. Also it is 

hypothesised that it is not necessarily the high force values that 

result in athletic injury but rapid changes in training routine that 

result in the shear components of the lower limbs being 

overloaded. With this in mind, the design of running shoes 

maximising on grip rather than impact force protection is 

recommended. 

Recommendations for further work include verification of the model 

via comparisons with known works in other activities, walking, 

squatting and weightlifting and investigations into the use of 

digital cameras to reduce analysis time. 
I 
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1. INTRODUCTION 

1.1 Introduction 

Athletics, as reported by the popular athletic journals, both as a 

spectator and participatory sport is enjoying a boom period. This 

is exhibited firstly by the trends in marathon running where in the 

period 1979-1984 the number of available UK marathons grew from 21 

to 136. This popularity in marathon running appears to be waning 

with fewer entries except for the larger 'peoples' events such as 

the Great North Run, the London marathon and the New York Marathon 

which was officially the largest 26.2 mile event in 1987 with 21,141 

athletes completing the distance (Athletes Weekly Nov. 26th 1987). 

Although marathon events and entrants are seeing a fall in numbers 

other distances are experiencing an upturn with the total number of 

events over all distances up by 30% in the six month period March- 

August 1988 when compared to the same period in 1987. It is now 

estimated that 6% of the British Adult population run or jog for 

fitness; this is over 2J million athletes and the most popular 

racing distances now appear to be 10 km and 10 mile events. 

Worldwide there is now estimated to be 42 million active athletes 

with 46% of these involved in road or cross country running. 

Both competitive and recreational runners are commonly indulging in 

high mileage training; 70 km per week (44 miles/week) being the 

average'figure for a range of club runners although 27% of these 

runners interviewed for Running Magazine (1988 March) were reported 

to be completing more than 96 km per week (60 miles per week). 

The cyclical nature of running and hence the repetitive impacting of 
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the foot on the ground (foot strike) exposes the human body, 

especially the lower limbs, to the possibility of injury. These 

injuries usually manifest themselves as 'overuse' injuries such as a 

stress fracture of the tibia where the repeated loading caused by 

foot strike continually stresses the tibia until the area of maximum 

stress fails under a fatigue syndrome. The possibilities of these 

injuries can be elevated by such factors as footwear, terrain 

(hills, cambered roads, mud or sand), asymmetrical or dysfunctional 

aspects of the muscles or bones of the lower limbs (flat feet or 

pigeon toed) or commonly the kinematics of the joints such as 

excessive pronation: Here, the calcaneus is rapidly transferred 

from an inverted position to an over everted position causing muscle 

imbalances throughout the lower leg which can lead to knee injuries 

such as chondramalacia patella (Clarke, et al. 1983b). 

Conversely acute injuries such as muscle 'pulls', the tearing of 

muscle fibres, may occur during faster running due to the intensity 

of the activity indulged in. This intensity, created by the 

elevated speeds, is present from the need for the muscles in the 

lower limbs to contract in a shorter time and over a greater range; 

as speed increases, foot contact time or stance phase decreases and 

stride length increases. Foot/ground reaction forces are also 

higher due to a greater change in the body's kinetic and potential 

energy states, i. e. the body decelerates to foot strike then 

accelerates from the push off, or toe off, in both the vertical and 

horizontal direction (Mann, et al., 1980 and Agre, 1985). 

Hence the implications for the occurrence of either an overuse or 

acute injury in the muscles and joints of the human body are that 
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they can be influenced by such simple parameters as speed of gait, 

style, footwear and surfaces. Any poor combination of parameters 

can greatly elevate the possibility of contracting an injury and a 

study of running habits reported that during 1987 10% of the British 

public attempted either competitive or recreational running. Of 

these 4.4 million athletes only 2.5 million have continued to run 

regularly with the predominent cause for dropping out of the sport 

being injury (Running Magazine, 1987). 

Of the injuries sustained most occur within the lower limbs, the 

knee joint being the most commonly injured area. All the major leg 

muscle groups cross the knee and it is one of the three major load 

bearing joints in the body (Paul, 1967). It is also complex in its 

geometry and articulation being a junction of four bones; femur, 

fibula, tibia and patella with complex three dimensional motion 

stabilised by four major ligaments at the end of its defined 

ranges. Around the knee joint muscular injury can occur to such 

groups as the hamstrings or quadriceps although the most commonly 

injured muscle group is the tricep surea or foot plantar flexion 

mechanism. Why this one particular muscle/muscle group is more 

prone to injury than other equally large muscle groups is unknown. 

Direct measurement of tension developed in individual muscles is not 

possible in living athletes and consequently non invasive techniques 

need to be developed. 

Joint replacement developments have enabled force transducers to be 

implanted into living subjects but the life of these measuring 

devices and their calibration and/or validity is open to question. 

They are also not ideally suitable for use in sporting activities - 
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not withstanding the average age of the artificial joint's 

recipient. 

Stress fractures are one form of bone injury occurring in athletes, 

less common are such injuries as Osgood Schlatter's Disease where a 

portion of bone is pulled away at the corresponding muscle (or 

tendon) insertion (Klafs & Arnheim, 1973). Again, stress and strain 

values cannot normally be obtained invasively. 

For all the above mentioned factors cadaveric tests do provide data 

on, for example, ultimate tensile strength, bending stresses and 

strains to induce failure and strain related fatigue failure. These 

however do not tell us what is going on within the human body during 

a sporting activity and at present the only evasive technique open 

to researchers is via mathematical models. These models based upon 

sound anatomical characteristics enable the'force system present in 

the muscles, joints and bones to be identified and evaluated. This 

technique of bio-engineering has become popular in analysis of all 

forms of human a'ctivity from chewing to skiing. 

Simple bio-engineering models have been developed and used by such 

investigators as Smith (1975) who produced a below the knee model 

for the analysis of gymnastic activities. This simple model only 

contained three muscle groups and thus allowed quick if somewhat 

over simplified analysis to be performed. Seireg and Arvikar (1975) 

however developed a biomechanical model including all 31 lower limb 

muscles (single leg). As only a limited number of basic equations 

of motion exist for a unique solution a mainframe computer is needed 

to evaluate all possible solutions and a mathematical algorithm 

required to select the optimum result. 
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This optimum result may be based upon assumptions of gross human 

physiological measures. This might be the total work done by the 

muscles and although the model is comprehensive in its inclusion of 

all the lower limb muscles the results are still only estimates. 

This method classified as optimisation does not lend itself to 

sporting analyses where amongst other things a more rapid turn 
01 

around of results is required and most sports biomechanics - 

laboratories cannot repeat the results due to inadequate computing 

power. 

A compromise biomechanical model must, therefore, be sought that 

enables relatively quick analyses to be performed without 

oversimplifying the human body. Thus, a biomechanýcal model is 

needed that sufficiently represents the human lower'limbs, the 

muscles employed in running and the joint articulations present, and 

is simple enough in its use that its analysis method is both quick 

and repeatable, across biomechanics laboratories. This will thus 

involve using standard biomechanical techniques and equipment such 

as cine film, video, force platforms etc. 

1.2 Aims & Objectives of this Study 

The overall aim of this study is to develop an understanding of 

muscle and joint forces present in the human lower limbs during 

running. This may enable relationships between forces present, 

athletic activity and injuries occurring to athletes to be developed 

and possible preventative measures to be suggested. These aims will 

be fulfilled via the following objectives: - 

1. To produce a biomechanical model to estimate the muscle and 

joint forces present during athletic activities. 
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To develop an analysis method, based on standard biomechanical 

laboratory equipment, that produces repeatable, accurate and 

meaningful muscle and joint force data. 

3. To evaluate external performance parameters such as speed, 

footwear and surfaces and running style to assess risk factors 

associated with such athletic activities or conditions. 

4. To enable recommendations to be made, based upon point 3 above, 

as how to minimise the likelihood of injury to certain 

populations of athletes. 

5. To establish a data base of kinematic, kinetic and 

anthropometric data for future use in areas such as computer 

simulation. 

Henceforth this project is a bioengineering investiqation into 

muscle and joint forces acting in the human leg during running. 

Primary concern will be given to those areas that are most 

frequently injured namely the knee joint and surrounding anatomy. 

This data should be beneficial to the athlete, coach and medical or 

health care services and as such should be presented in a clear and 

easily interpretable manner. 
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2. REVIEW OF LITERATURE 

2.1 Introduction 

Before a detailed investigation can be undertaken into muscle and 

joint forces acting in the human lower limbs during running and 

their relationship to athletic injury, an understanding of the 

individual elements needs to be developed. what follows is a review 

of selective literature relating to the elements of injury in sport 

and athletics in particular; the effects of footwear and running 

style on the kinetics of the lower limbs; assessment of human forces 

with regard to data collection, transfer and analysis and a review 

of the few papers devoted to biomechanical assessment of muscle and 

joint forces in the lower limbs. 

2.2 Injury 

For the average middle and long distance athlete, typical training 

routines involve running 70 km per week (44 miles per week) which 

could consist of, approximately 80,000 impacts of the foot on the 

ground (foot strike). As suggested in the introduction, these 

repeated impacts can result in 'overuse' injuries or assist in the 

development of 'acute' injuries and in general Krissoff et al. 

(1979) report that 66% of all runners encounter injury each year. 

For a non contact/non impact sport running can be seen to have a 

high incidence of general sports injury when compared to other more 

explosive or complex sports. Table 2.2.1 shows how in two out of 

three studies of injuries encountered in various sports, running 

(the speed or level of achievement is not specified) has the highest 

rate; 61% and 69% from studies by Lloyd-Smith et al. (1985) and 

7I 



TABLE 2.2.1 Sports/Activity Leading to Injury 

Investigator Activity") % STortsmen or (2) 
Ath etes Injured 

I 

Lloyd-Smith et al., 1985(3) Running 61 
Fitness Class 8 
Racquet Sport 7 

Matheson et al., 1987 Running 33 km 69 
Fitness Class 8 
Racquet Sport 5 
Basketball 4 

Kajula et al., 1986(4) Soccer 21 
Running 13 
Volleyball 12 
Orienteering 8 

Nicholl & Williams, 1983 Marathon Runners 18 
I Marathon Runners 4 

Watson et al., 1987 Sprinting 46 
Distance Running 17 
Other Track & Field 17 

James et al., 1978 Running 78 km 60 

Valmassey via Newell et 
al., 1984 Running 96 km 50 

Maughan et al., 1983 Running 54 km 58 

Koplan via Powell et al., Running 0-31 km 29 
1986 go 32-47 km 38 

10 48-63 km 46 
of 64+ km 57 

Taunton et al., 1ý82 Running 15-29 km 22 
so 30-49 km 33 
so 5 0-7 0 km 35 
so 70+ km 10 

Blair et al., 1987 Running 1-32 km 19 
H 33-64 km 29 
$1 65+ km 38 

(1) = Running distance per week 

(2) = All injuries included 

(3) = Hip injuries only 

(4) = Knee injuries only 

a 



Matheson et al. (1987) respectively. For a primarily two 

dimensional, non impact, 'healthy' pastime this is obviously both 

large and concerning. The other sports represented in the studies 

all involve impacts, contacts, three dimensional action or explosive 

actions. 

A comparative study of running habits also indicates that as runninq 

distances completed each week increases so the likelihood of injury 

increases. Table 2.2.1 shows that as running distance increases in 

excess of 48 km per week (30 miles per week) then the risk of 

incurring an injury is on average greater than 40% and for weekly 

totals in excess of 64 km per week approximately 50% of all athletes 

can expect to contract an injury. These details are further 

supported by the study of Nicholl & Williams (1983) who found that 

18% of marathon runners encountered injury during their race whilst 

only 4% of those athletes completing a corresponding half-marathon 

reported injury. 

Hence whilst it may be hypothesised that the more running undertaken 

the greater the athletes fitness becomes, the repeated impacting at 

foot strike is responsible for rendering the athlete liable to an 

overuse injury. 

Maughan & Miller (1983) reported that 30% of the athletes entered 

for a marathon had incurred some form of injury during their 

preparation. 94% of these injuries occurred in the lower limbs and 

32% affected the knee joint. Nichol & Williams (1983), found that 

running a marathon caused injury to 23% of the competitors with 50% 

of these involving the lower limbs. This trend is repeated 

throughout the literature and chondramalacia patella, a swelling 
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around the knee cap from retropatellar grating or rubbing is 

responsible for the greatest number of individual injuries. Fiegel 

et al. (1980) describees the knee as "the most vunerable joint in 

the runners body" with its complex 'Screw home' three dimensional 

motion of glide (translation antereo-postereo), rotation (flexion- 

extension) and twist (inversion-eversion). The location of the most 

common injuries sustained during running are collated in Table 2.2.2 

with the knee joint averaging 30% of all injuries reported here and 

between 30% and 50% in studies by Grana (1985), Kajula (1986) and 

Newell et al. (1984). As can be seen the second most injured areas 

of the athletes frame is the lower leg with shin injuries - tibealis 

anterior compartment dysfunction (shin splints) and stress fractures 

and achilles tendon disorders - functional equinus (tight tricep 

surea) and tendonitis accounting for on average 8% of all running 

injuries each. 

It is also interesting to note that despite the popularity of the 

sport and the increase in awareness of injury, its causes, 

preventions and cures the relationship between incidence and site of 

injury has not changed since 1978 as shown in Table 2.2.3. Here the 

data in Table 2.2.3 has been subdivided into pre and post 1982, the 

start of the athletic boom in this country, (excluding Krissoff 

et al., 1979) and shows that whilst there has been a slight decrease 

in the occurrence of injury in the knee, the Achilles tendon and the 

shin area it cannot be seen as a significant fall. 
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TABLE 2.2.2 Summary of Major Injury Sites in Athletes 

Major Injury SiteM 

Investigators N umber of Athletes Achilles Knee Shin 
Tendon 

Blair et al., 1987 438 31 11 11 

Clement et al., 1981 1650 42 8 11 

Clough et al., 1987 502 26 5 2 

Eggold, 1981 146 39 8 5 

James et al., 1978 180 29 11 13 

Krissoff et al , 1979 not stated 25 is 15 

Lysholm et al., 1987 60 13 8 13 

Maughan et al., 1983 497 32 11 6 

Orava et al., 1979 1311 is 9 9 

Pagliano et al., 1980 1077 30 6 4 

Watson et al., 1987 257 20 2 20 

Total Athletes") 6118 

Average") 30 8 8 

(1) Excludes Krissoff et al., Data 

TABLE 2.2.3 Major Injuries Expressed as Pre & Post 1982, The 

Beginning of The British Runninq Boom 

Major Injury Site 

Date") Number of Athletes Knee Achilles Tendon Shin 

Pre 1982 4364 31.1 7.9 8.6 

Post 1982 1754 27.7 7.8 8.4 

See References in Table 2.2.2 

James et al. (1978) identified the reasons behind these injuries and 

classified them into three main areas as traininq errors, anatomical 

factors and shoes and surfaces. Training errors account for 60% of 

all injuries, a figure substantiated by other studies (as summarised 
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in Table 2.2.4). These traininq errors normally manifest themselves 

as either overuse injuries caused by excessive mileage or sudden 

changes in normal routines, or acute injuries caused by intensive 

actions such as sprinting or hill running for example. 

Any rapid change in training regime can result in different muscle 

groups or actions being called upon which might not otherwise be 

commonly utilised by the athlete. Different surfaces require 

different running actions, road running in the wet, grass, mud or 

gravel running may all strain those muscles, ligaments and tendons 

not normally'called upon. 

TABLE 2.2.4 Major Cause of Athletic Injury - Training Errors 

Investigators Percentage of Injuries Caused 
I 

By Training Errors 

I 

Clement et al., 1980 50% 

James et al., 1978 60% 

Krissof et al., 1979 60% 

Orava et al., 1979 22% 

An increase in speed can only usually be accommodated with an 

increased range of motion and cadance (Mann et al., 1986). Thus 

muscles are stretched beyond their familiar working range. This can 

also occur due to a change in footwear. Racing shoes, and spiked 

running shoes, built for lightness, offer less protection (heel 

lift) in the rear foot area by minimising or eliminating midsole 

cushioning. This results in a stretching and invariably a strain, 

of the Achilles tendon. 

Hill running is specifically incorporated Into training programs to 

'overload' the lower limb muscles by working against gravity. if 
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done in a sensible and progressive manner it is an effective and 

common training regime. If not undertaken carefully the 'overload' 

cannot be accommodated by the muscles, joints, ligaments and tendons 

and injury occurs. Downhill running is equally hazardous as 

continuous breaking may be required putting greater emphasis on the 

anti-gravity muscles such as the quadriceps muscle group. The 

anterior shin group may also be overworked during hill runninq, both 

down and up as the action of foot dorsi-flexion is greatly 

exaggerated. 

A more in-depth study of the causes of running injuries shows that 

these causes are not as simple as summarised above with eight major 

catagories identified and presented in Table 2.2.5. Whilst these 

data are varied in both their findings and presentation the 

underlying trend shows that excessive mileage, shoe design and 

functional anatomy are primarily the cause of a great number of 

disorders. Excessive mileage has already been highlighted as a 

prime cause and athletic and running shoe design has become an 

exacting science and will be discussed later in Section 2.3. 

Functional anatomy disorders however are even more diverse and 

complex and can be hereditary in nature or caused by previous 

injuries (over compensation) or from neuro-muscular dysfunction. 

Some of the most common of these disorders are collated in Table 

2.2.5 and can commonly be termed bow leqged (tibeal valgus), piqeon 

toed/knock kneed (tibeal varum), flat feet (pes planus), hiqh arched 

feet (pes cavus) and pronated feet (subtalar varus) (Debrunner, 

1982). 
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TABLE 2.2.5 Causes Identified for Runninq Injuries 
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Number of Athletes NIS 329 204 NIS 60 320 180 NIS NIS 12 

Item Cause 

1 Rapid changes in training 46% NIS 25% 

2 Excessive Mileage (General NIS 40% NIS 72% 7 29% 
overuse) 

3 Intensive workouts 32% NIS NIS 

4 Hill training 27% NIS 15% 

5 Shoe design NIS 23% NIS 48% 20% 

6 Race Related Training 22% 

7 Changes in surfaces 20% NIS 

8 Functional Anatomy NIS 
2 

29% 511% 8NIS 

a tibeal varum 63% 20% NIS 10% 
b rear foot varum 74% 58% 12% 
C forefoot varum 77% 17% 
d tricep surea inflexibility 20% 
e leg length discrepancies 31% NIS 
f rearfoot valgus NIS 
g genu varum 40% NIS 
h cavus foot 20% 15% 

9 jBiochemical status F4/S 1 1 1 1 1 1 1 INIS INIS 

NOTES: NIS = Non Specified 
1= Study of Achilles Tendon 
2= Includes (a) to (d) inclusive 
3= Study of Hip Injuries 
4= Shoe & Surface Interface 
5= Includes (d), M& (9) 
6= Study of Stress Fractures 
7= 60% overall training errors; Items 1-4 in table 
8= Includes (a), (b), (f) & (9) 
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TABLE 2.2.6 Common Cures to Athletic Injuries 

Investigator Activity Injury Prevention/Cures 

Clement et al., 1984 Running Achilles Anti Pronation Shoes & ortho- 
tics. Flexibility and 
strengthening regimes. 

Clement, 1974 is Shin Splints Greater shoe cushioning 
(less hardness) 

Grana, 1985 is Knee Non change in routine/ 
intensity 

Newell et al., 1984 Is Knee Orthotics 

Subotnik, 1985 It Foot Greater fitness 

Smart et al., 1980 of Achilles Shoes, well fitting. 
Orthotics 
Avoiding training errors 
Flexibility & strengthen- 
inq reqimes 

Taunton, 1979 so All Flexibility regimes 
Correct footwear 
Orthotics 
Medication") 
Correct training reqimes 

Viitaslou et al., it Shin Splints Shoes, correct sole 
1983 hardness 

James et al., 1978 All Orthotics 
Reduced mileage 
Shoe change/modification 
Medication") 
Surgery 

Dressendorfer, 1983 All Reduced mileage 
Medication") 

Taunton et al., 1982 Plantar Correct training schedules 
Fasciitis Correct training surfaces 

Increase flexibility/ 
strength 
Correct shoes 
Orthotics 

Taunton et al., 1987 81 Knee Medication")/rest 
Orthotics/correct shoes 
Strengthening/flexibility 
Physiotherapy 

TTl-)= Anti-inflammatory drugs and steroidal compounds for exmaple. 
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James et al. (1978) and Clement et al. (1980) reported that the 

three most common modes of treatment for injuries were rest, 

complete or partial; footwear modification and physiotherapy 

(including surgery). These can be expanded upon by scrutinising 

Table 2.2.6 which shows a wide variety of corrective measures can be 

and are being applied to athletic disorders. These varied 

preventions and cures show that there are no definitive treatments 

for specific injuries and that most injuries can be treated and/or 

prevented by careful training regimes and sportswear. As surgery 

and physiotherapy can be expensive and extensive in time lost to the 

sport, prevention has to be the primary aim of all athletes involved 

in "high mileage" training. 

As outlined in Section 1,4.4 million athletes in Great 

Britain ran in 1987. If this figure is related to the 66% injury 

rate proposed by Krissoff et al. (1979) then 2.9 million athletes 

will have incurred an injury during that 12 month period. This is 

obviously a large and alarming figure when consideration is given to 

the passive nature of the sport compared to other more explosive 

sports. In addition when the popularity of long distance running is 

compared to the increasing likelihood of injury with increasing 

mileage the effect on an otherwise healthy population can be viewed 

with concern. 

These injuries, commonly occurring within the lower limbs and 

majoring around the knee joint can be seen to be caused by a 

multitude of reasons but have been categorised as training errors, 

anatomical factors and the foot/ground interface. Cures and 

treatments are equally diverse but correct training regimes are 

clearly shown as being an adequate form of preventative measure. 
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Thus it is this prevention via an understanding of injury that 

should be the aim of all athletes. 

- 2.3 Factors Affecting Injury: Footwear & Running Style 

Footwear modification, either by complete change of shoe or with the 

use of an orthosis, can alter various parameters of human gait cycle 

such as pressure patterns underneath the foot, foot/ground reaction 

forces, kinematic patterns of heel strike i. e. the control of 

excessive rearfoot movement, specifically eversion of the 

calcaneous, termed pronation. All these have been shown to be 

specifically beneficial in the treatment of running injuries (James 

et al., 1978; Clement et al., 1980; Scranton et al., 1982) as for 

instance the occurrence of chondromalacia patella has been 

correlated with excessive pronation. (Clarke et al., 1983b). 

With this in mind the running shoe manufacturers have produced a 

wide range of running shoes with technological features to help 

reduce injury and optimise performance. The number of specialist 

running shoe companies has also proliferated and Running Magazine- 

(No. 85, May 1988) report that there are 22 major shoe companies 

producing 213 different shoe models (spiked running shoes are 

excluded from this summary). 

A summary of some of the major shoe companies selling in Great 

Britain illustrates the variety of technological features 

incorporated into running shoes. The Nike company had been 

incorporating pressurised gas for cushioning into some of their 

shoes midsoles, either full length or just in the heel wedge. 

Encapsulated in polyurethene (PU) this pressurised gas eventually 

escaped and has now been superceded by the use of Freon, an inert 

gas with larger molecules that are unable to escape through the 
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urethene skin. The use of these "Air-Soles" has been claimed to 

retain 98 percent of its cushioning capability after 800 km (500 

miles) of usage. This compares favourably with conventional 

materials such as ethylene vinyl acetate (EVA) or blown rubber 

compounds which have been shown to lose between 67% and 70% of their 

initial cushioning properties over 800 km of usage (Harrison et al., 

1984 and Cook et al., 1985). 

An alternative to "Air-Soles" has been the development by Asics 

Tiger with the "Gel" system in which a viscous silicon based gel is 

injected into pads in an EVA midsole unit. These pads, positioned 

under the heel and forefoot act like visco-elastic materials in 

absorbing shock but are substantially lighter than traditional 

materials. 

Turntec have incorporated the best of both the above two systems, 

the lightness of the Freon based system and the increased cushioning 

of the silicon gel system to produce a brand named Z02 cushioning 

agent. This combination of silicon rubber and air, placed inside 
I 

the sockliner at the heel is aimed at reducing impact forces only. 

Reebok have developed an 'energy return system' based upon open 

ended Hytrel plastic tubes laid laterally across the middle at the 

rearfoot surrounded by compression moulded EVA. As the foot strikes 

the ground the tubes compress momentarily before springing back to 

their original shape. 

The New Balance Encapsulation system combines the lightness of EVA 

with the durability and stability of PU. EVA, as shown by Harrison 

et al. (1984), can lose its cushioning properties quickly but the 

plastic resin of PU is an excellent shock absorber and does not lose 
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incompatible compounds have hence been combined to produce a full 

length midsole material - an advantage to all styles of runners not 

just heel strikers or forefoot strikers. 

All of the above features, aimed at reducinq impact forces, are 

incorporated into the midsole. Avia however have used the outsole 

in their design of the Cantilever Sole which "flares" out on impact 

to absorb shock and increase stability. This being an extension of 

the Nike Waffle - Centre of Pressure outsole which provides small 

deformable studs all over the outsole. 

Increasing cushioning is not always beneficial as a softer sole 

system can result in excessive pronation/supination which as stated 

above has been linked with knee injury (Clarke et al., 1983b). 

Hence combining cushioning with rear foot and/or total foot motion 

control has become a primary aim of all major running shoe 

manufacturers. This has been achieved with the use of varus or 

valgus wedges which when inserted into the shoe places the rear foot 

in an inverted or everted position prior to footstrike so as to 

control over pronation or over supination accordinqly, also, within 

the running shoe a heel wedge is included to provide heel lift, or 

height variation between the fore- and rear-foot reqions and to 

provide a heel flare to stabilise the rearfoot on foot strike, flare 

being the angle made between the heel and the qround when viewed 

posteriorly. *This has also been shown to influence the amount of 

pronation, propulsion force and power developed during foot stance 

(Clark et al., 1983a). 

Split density or composite outsoles and midsoles are also used in 

which softer material is provided over the impacting regions of the 
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outsole but harder, more stable material is utilised over the 

remaining areas to produce the stability and performance response 

characteristics required by the athlete (Nigg, 1986 and Dickinson et 

al., 1985). See Plate 2.1. 

The effects of these technological features on various kinematic 

parameters can be seen from various studies carried out over the 

last few years and specifically studies on the effects of foot 

ground reaction forces as measured by force platforms. These 

external forces are those that are usually responsible for the acute 

stresses placed on the body that leads to injury. Maximum 

foot/ground reaction forces here are in the region of three times 

the body's weight PBW) (Cavanagh et al., 1980a) but are dependant 

upon running speed, footwear and foot strike characteristics. Table 

2.3.1 summarises the findings of various investigations and 

indicates that the use of footwear, speed or dynamics of activity 

can influence the magnitude of foot/ground reaction forces. 

The material used in the construction of athletic footwear has also 

been analysed both in vivo and in the laboratory. Studies by Clarke 

et al. (1983a) show that maximum foot/ground reaction forces can 

vary by 8% when comparing an "Air-sole" shoe with an EVA soled shoe 

with a Shore A hardness value of 45 (regarded as a hard sole - 

normal range: 25 = soft, 35 = medium, 45 = hard). A three percent 

variation was found between EVA hardnesses. Not only does the peak 

impact force alter with material used but the time at which it 

occurs with foot stance also varies, this peak being reached later 

with softer soled shoes (Clarke et al., 1983a; Nigg, 1986) thus 

reducing muscular loading rates. However no significant differences 

were found between conditions for overall support or contact time 
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TABLE 2.3.1 CO"MParlson of Foot/Grouna Reaction Forces in Various 

Activities 

Speed and/or Max. Foot/Ground 
Other Reaction F rces 

Investigators Activity Characteristic ? in Body We ght 
Values and Units 
Conditions 

Alexander et al., 1975 Walking 1.8m. s-1 N/D(4) 1.5 

Running 3.9m. s-1 N/D(4) 2.9 

Jumping Standing Tak ff y'? 1.3 
N/D 

Landing From 0.81m. N/D(4) 

Burdett, 4.5m. s-ýl N/D(A) - ------- 

Cavanagh et al., 1980a Running 4.5m. s-1 FFSM 2.7 

Running 4.5m. s-1 RFS(2) 2.8 

Cavanagh et al., 1980b walking Slow-Barefoot 900(5) 

Walking Slow-Shod 1600 (5) 

Jumping Vertica'l-Baref oot 1400(5) 

Clarke et al., 1982 Running 2.7m. s-1 RFS(2) 
(2) 2.8 

N/D 

Clarke et al., 1983a Running 4.5m. s Soft Sole 2.7 

. Running 4.5m. s Hard Sole 

Draganich et al., 1980 
....... .. 

Walking Normal Speed- 0.9 
Barefoot 

-Elftman, 1939-. - Walking N/S(. 3)-Barefoot 1.3 

Frederick et al., 1981 Running 3.4m. s-1 2.0 

Running 3.8m. s-1 Barefoot 2.3 

.......... Running '4. ýM. S"l RFS(2). 

Nigg et al. , . 1981 Running 5.5m. s-1 _RFS . 3.6(6). 
N/D 

Simon et al., 1981 Walking N/S(3) Barefoot 1.3 

........ Wa . liin4 N/S(3) Shod 

Smith, 1975 _ _. .. Landing From 1.0m N/D(4). -4.0 

(1) FFS = Front foot striker - First contact of foot with ground 
(2) RFS = Rear so of is It so is of 
(. 3) NIS = Speed not specified 
(4) N/D = Footwear not declared 
(5) Values of force expressed as body weight/foot contact area. 
(6) Values calculated for a 70 kg body weight. 
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possibly indicating that the human body had to work harder to 

maintain a constant velocity. 

As mentioned earlier a softer shoe, whilst reducinq impact forces, 

increases the amount of pronation present in the musculo-skeletal 

system and this has been correlated to injury. Clarke et al. 

(1983b) found that by varying the heel lift and heel flare rearfoot 

motion could be controlled and that hard soled shoes (Shore A 

hardness 45) provided the 'best' anti pronation results. Nigg and 

Morlock (1987) extended Clarke's work and suggested the use of a 

negative heel flare to reduce initial rearfoot motion and possibly 

reduce the likelihood of anterior medial compartment syndrome (shin 

splints). 

The use of orthotics (soft, semi flexible or rigid) or inserts 

within existing shoes can reduce impact forces (Subotnik, 1983) and 

the angle of pronation from 11 degrees, when wearing a running shoe, 

to 7 degrees for the same shoe with an orthotic inserted (Bates et 

al., 1979). This use of an inserted device has been shown by Eggold 

(1981) and James et al. (1978) to be effective in the treatment of 

, overuse' injuries - 40% and 78% of patients claimed 100% relief 

with their use respectively. 

Not only can mechanics of the lower extremities be affected by 

footwear modification but physiological body measures such as the 

condition of the red blood cells responsible for oxygen 

transportation to the muscles, haemoglobin and haematocrit, can also 

be influenced. Softer soled running shoes reduce the deterioration 

of these physiological measures and as such they are more efficient 

in minimising the acute stresses placed on the various components of 
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the lower extremities in endurance running (Falsetti et al., 

1983). Taunton (1979) has also noted elevated uric acid levels as a 

gout-like state during endurance training in the development of 

tendonitis of the achilles. The use of softer soled shoes may help 

in limiting the increased turnover of tissue protein and red cells 

that lead to an increase in the purine pool in the blood, a 

forerunner of uric acid and hence lactic acid production (Smith et 

al., 1983). 

Hence with a bewildering range of shoes available, a range of 

technological features "needed" to optimise performance and a wide 

fluctuation of price to be considered, choosing a running shoe can 

be a difficult process. Bates et al. (1980) tried to identify a 

"best" shoe but failed due to the complex nature of each athletes 

feet being anatomically and functionally different. With this in 

mind a number of attempts have been made to help the athlete choose 

his/her most suitable running shoe (Cavanagh, 1980 & 1987; Nigg, 

1986). Appendix 1 gives one example of this advice. 

Not only is the running shoe market complex but the running styles 

of athletes, as in any human kinematic activity, are widespread and 

a number of studies have tried to categorise the running action 

according to certain performance characteristics. Cavanagh and 

Lafortune (1980) in assessing ground reaction forces in distance 

running identified, from the subjects centre of pressure patterns 

under the shoe sole during the running action, groups of runners who 

could be classified as rear-foot, mid-foot or front-foot strikers 

i. e. depending upon where first contact was made with the ground. 

Of these three categories two are commonly cited: rear-foot from the 

above and fore-foot meaning any foot strike pattern not resembling a 
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rear-foot case. Kerr et al. (1983) studied two races of 10 km and 

marathon duration and found that 80% of the participants were heel 

or rear foot strikers (the remainder classified as mid-foot 

strikers). The study also showed that as speed of gait increased 

then so did the percentage of mid-foot strikers. 

The above two studies refer to distance running and recreational 

runners but little has been written about establishing categories 

for such groups as recreation runners, joggers, distance runners, 

experienced athletes, elite runners, sprinters etc. A running speed 

of 4.47 m. s-1 (6 minutes per mile) seems to becoming the norm for 

biomechanical evaluation of distance runners (Cavanagh & Lafortune, 

1980; Frederick et al., 1981; Clarke et al., 1983a; Burdett, 1982, 

Harrison et al., 1986 & 1987). However, in the study of rear foot 

kinematics a slower speed of around 3.8 m. s-1 (7 minutes per mile) 

appears to becoming standard (Clarke et al., 1983b; Bates et al., 

1980; Nigg & Morlock, 1987). 

Other categories are less well defined and in some scientific 

studies running speeds are not recorded thus making verification 

difficult. The precise guidelines for jogging, running and 

sprinting need establishing as do the groups of joggers, 

recreational runners, distance runners and elite ahtletes. It may 

be suggested that distance runners are those who on average complete 

approximately 60 km per week or more and compete regularly for an 

athletic club over distances in excess of 1500 m (1 mile). Elite 

athletes may'be considered as those who have competed for or at 

National level at their chosen event and are not just highly 

experienced due to running longevity. 
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The final category used in assessing athletes is, as mentioned 

above, their rear foot motion pattern i. e. pronation or 

supination. Here depending upon the amount of eversion of the 

calcaneus, a subject can be said to overpronate, or if excessive 

inversion or very little subtalar motion occurs. If the athlete 

contacts the ground first with the medial aspect of the foot then 

transfers his centre of pressure profile to the lateral aspect, he 

can be said to be a supinator (Cavanagh, 1980 & 1982; Nigg, 1986). 

These categories are often linked to anatomical dysfunctions such as 

pes planus (flat feet) for over pronation and pes cavus (rigid - 

high arched foot) for excessive supination (Nigg, 1986). Procedures 

for identifying or classifying arch indexes are now common (Cavanagh 

& Rodgers, 1987). 

As suggested earlier, the load on the musculo-skeletal system is 

'provided' by the foot/ground reaction forces and these have been 

shown to be dependant upon a number of factors. Shoe and orthotic 

design, running speed and style have all been seen to alter the 

forces presenteA to the human lower limbs. Hence in any 

experimental design these parameters must be controlled and a data 

base of information built up based on a standard shoe (and surface), 

speed and style (where this should include classification of 

experienced and non experienced athletes and illimination of any 

effects of fatigue). If a two dimensional study is to be performed 

then third dimension classifications can be ignored. 

I Once this data base of results has been established the effects of 

footwear, speed, style, experience, fatigue, sex etc., can be 

examined by varying them systematically and observing their 

influence on the musculo-skeletal kinetic system. Then the 

identification of possible causes of injury may be made. 
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2.4 Techniques for the Assessment of Human Kinetics 

In the assessment of the musculo-skeletal system the standard data 

collection equipment consists of an optical recording device and a 

force recording medium. From these two basic processes the majority 

of biomechanical analysis can be performed. 

optical systems available to the researcher include high speed 

cinematography, optoelectronic movement systems, television based 

video systems and specific digital cameras. 

High speed cinematography is the most commonly used by 

investigators, usually 16 mm but with 8 mm ('Super 81) becoming 

increasingly more viable due to its smaller size and the development 

of higher speed cameras. Smith (1975), Seedhom & Terayama (1976), 

Ariel (1974) and Burdett (1982) used cinematographic techniques with 

frequencies of between 60 and 100 Hz. 

The use of cinematographic equipment allows joint positions to be 

marked directly-onto the skin, which can lead to errors of between 

50 and 100% (Smith, 1975) in the calculation of muscle and joint 

forces from incorrect moment arms. Conversely joint coordinates can 

be omitted and bone models reproduced from either individual 

radiographs (Seedhom & Terayama, 1976) or cadavers (Burdett, 

1982). The position of the joint centres and muscular lines of 

action can then more subjectively be established. Even if the joint 

centre is obscured by another limb its position can easily be 

established with the aid of a bone model. Other advantages of 

cinematographic techniques over corresponding optical systems are 

resolution, cost and unrestrictive subject movement. However the 

required analysis method, digitising, along with the time taken to 
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develop the film makes this a time consuming, labour intensive 

method. 

Optoelectric movement systems (for example, Selspot, CODA3) and some 

television-video systems (VICON) use light sensitive receiving 

cameras and as such early systems could not be used in daylight but 

they do have the advantages of on line processing of data. Subjects 

also wear emitters or reflectors and this can restrict movement. 

They normally operate at a maximum of 50 Hz which may be too slow 

for dynamic sporting activities (Nissel & Mizrahi, 1988). 

Resolution may be ;E3 mm and processing time can be reduced to three 

hours. However set up times as large as six hours may be necessary 

per subject whilst costs are relatively high in comparison to other 

systems (Winter et al., 1972; Dainty & Norman, 1987; Grieve et al., 

1975; Plagenhoeff, 1971). 

Digital cameras, linked to microcomputers, have the advantage of 

being cheap ($300 at 1987 prices) and portable. However the frame 

rates are extremely low at 13 to 35 Hz and resolution poor at 

between 5 and 10 mm. They do, however, provide results within 20 s 

of an activity being completed (Vaughan et al., 1987). 

Overall, although data processing time for cinematographic 

techniques is long, resolution, subject invasion, technological 

familiarity and cost make it a highly popular optical recording 

device. 

Force recording devices are usually based on a force platform (or 

pressure platform) although the use of smaller transducer elements 

such as strain gauges have been used. Komi et al. (1987) report on 

the implant of a strain gauge into the human tricep surea (achilles) 
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tendon to measure muscle forces. More commonly accelerometers are 

mounted onto external aspects of the human limbs in order to record 

accelerations from which the corresponding displacement, velocity 

and inertial force data can be extrapolated. To improve the 

response characteristics Light et al. (1980) attached these directly 

to the tibia (Pezzack, 1977; Dainty & Norman, 1987; Winter, 1979). 

The need to attach accelerometers to bone to reduce interference or 

'noise' created by skin movements makes the use of this technique 

difficult to justify to a large number of athletic volunteers. The 

attachment of wires to the subjects' limbs also restricts movement 

and should kinematic data be required further obstructions such as 

goniometers are needed. Force platforms offer none of these 

drawbacks and can be located under a walkway or running track out of 

sight of the subject. Thus the use of force platforms has 

proliferated and the majority of bioengineering studies involving 

gait analysis, or similar actions, have utilised the equipment. 

Smith (1975) - drop jumps, Burdett (1982) - ankle joint biomechanics 

in running, Ariel (1974) - weightlifting, Seedhom. & Terayama (1976) 

- sitting to standing and Wissel & Mizrahi (1988) - step jumps all 

used force platforms in their studies. 

Angular data can also be obtained via electrogoniometry or 

potentiometry either two dimensionally or three dimensionally. 

Traditional measurement devices have tended to be bulky and as such 

somewhat restrictive. Their use in sports biomechanics has seen 

limited use (Chao, 1980; Peat et al., 1976; Dainty & Norman, 1987; 

Winter, 1979). Nicol (1987) however has produced a flexible 

electrogoniometer which allows general unrestrictive movements thus 

being suitable for sports studies. 
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As suggested if high speed cine film has been used the data analysis 

is usually carried out with the aid of a digitising tablet linked 

directly to a computer and storage device. Commercially available 

digitisers vary in size and accuracy and/or resolution from for 

example, Grafpad II with a resolution of 0.7 mm and working area of 

250 mm x 200 mm to a TDS HR 48 digitiser of 1.2 mx0.9 m working 

area and resolution of 0.025 mm. Both these devices operate on a 

magnetorestrictive principle in comparison to a sonic digitiser such 

as the Grafpen GP6 which by design permits back projection (Kerwin, 

1988). Front projection offers greatest flexibility of 

magnification and configuration (front or overhead) and 

magnetorestrictive devices are well suited to this. They also can 

be easier to use in comparison to the sonic versions where 

obstructions to the data collecting microphones need to be avoided. 

Whilst using high speed film projected onto a digitiser a number of 

investigators have found the use of tailored bone models, cardboard 

cut outs of the subjects skeleton obtained from radiographs, to be 

particularly beneficial in the identification of muscle attachments, 

and hence lines of action (Seedhom & Terayama, 1976; Harrison, 

1982). Burdett (1982) however used data from five cadavers, 

positioned in 10* intervals, to obtain averaqe moment arm values in 

the study into ankle joint biomechanics. Ariel (1974) viewed 50 

radiographs to establish standard knee joint and muscle moment arms 

in a weightlifting investigation. These two methods overcome the 

need to mark joint centres on the subject's limbs, inherently 

inaccurate due to skin movements, but the use of standardised or 

scaled data introduces errors and uncertainties. The use of 

individual bone models from each subject's own radiographs has been 
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shown by Harrison (1982) to reduce knee joint force estimates by 

40%. 

Muscular activity can be identified by the use of electromyographic 

(EMG) techniques. Two common forms exist, surface electrodes and 

wire implanted electrodes. The implanted electrodes offer greater 

I analysis power as they are smaller and hence can be used on the 

smaller muscles or used to reduce interference caused by other 

nearby muscles (Basmajian, 1978). Ethically, however, the 

implantation of these electrodes is open to question. Surface 

electrodes are commonly used to record the actions of the large 

superficial muscles (groups) such as gastrocnemius. Guidelines for 

standardisation of EMG testing routines and procedures are available 

in Dainty & Norman (1987). 

A number of investigators have tried to correlate the level of 

activity recorded by the EMG signal with the force developed in the 

individual muscle but this cannot be substantiated (Jorge & Hull, 

1986; Hof, 1987). This level of activity, produced after 

integrating the output signal, is useful for observing the role of 

the muscle in the gait cycle. For instance Elliott et al. (1979a) 

showed that the major muscle groups in the leg increased their 

activity by up to 46% for a speed increment of 1m s-1 and these 

results correlate well with similar studies by van der Straaten et 

al. (1975); Sutherland (1966); Cappozzo et al. (1976) and the 

University of California (1953). Actual muscle force developed is 

not however a function of the level of activity and is difficult to 

determine, direct measurement is not possible and hence mathematical 

or mechanical modelling of muscle is needed. 
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From the recorded literature, equipment and techniques for the 

assessment of human kinetics are numerous. In the study of sports 

biomechanics however the range of available experimental tools is 

more limited. Higher frequency optical recording systems are needed 

and at present this can only be achieved with cinematographic 

equipment. This however also provides the greatest resolution, 

familiarity and non-invasiveness to subjects. Similar non-invasive 

force recording devices provide high frequency, high resolution and 

familiarity. Force platforms also provide an ideal partnership with 

cinematographic film. 

Data analysis can also be greatly assisted and accuracy improved 

frontal projection onto a magnetorestrictive digitising tablet 

combined with individual bone models. 

Finally, the modelling, data collection, processing and analysis can 

all be verified by the simple use of EMG with surface electrodes. 

2.5 Loads in the Human Lower Limbs 

Modelling of the mechanics of muscle is difficult due to the 

numerous ways they can function, this could be by concentric 

contraction (muscle shortening), eccentric contraction (muscle 

lengthening), isotonic (contraction under constant load), isokinetic 

(constant velocity) or isometric (constant length) as suggested by 

Elftman (1966). Muscle structure also alters the mechanics of 

muscle with pennate muscles, which attach over a skewed angle, 

'pulling' indirectly between origin and insertion (Alexander and 

Vernon, 1975). muscle strength, force and power are all dependant 

upon the speed of its contraction, for instance maximum power is 

obtained at 30% of maximum isometric strength, this strength being 
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reported by Haxton (1944), in terms of maximum stress, to be 380 

KPa, in the tricep surea, and by Alexander and Vernon (1975) to be 

350 KPa, for the quadricep muscle group. Maximum force, like power, 

is obtained at submaximal muscle velocity. Morrison (1969) noted 

that maximum force was obtained at a muscle velocity of 0.15 

m s-1 when compared to other velocities of 0.375 m s-1 and 

0.5 m s-1. Morrison hence produced length tension curves which 

subsequently used by Grieve et al. (1978); Abbott and Wilkie (1979); 

and Elliott et al. (1979b). These length tension curves however are 

not a function of the contractile characteristics of muscle 

mentioned earlier. The ultimate tensile strength (UTS) of muscle 

has also been found to be dependant upon the level of activity 

within it, passive muscle failing at lower force values when 

compared to stimulated muscle (Garrett et al., 1987). This UTS for 

striated muscle has been quoted as between 10 and 22 MPa. Tendons 

are also time or speed related as their ultimate tensile strength 

can vary from 34.6-147 MPa depending on rate of loading (Abrahams, 

1967; Cronkite, 1936; Walker et al., 1964; Yamade et al., 1970). 

The recruitment of individual muscles within a group is also not a 

directly determinable aspect of the mechanics of muscle with 'shunt' 

and 'spurt' muscles being recruited depending upon the level of 

activation within the group (Jackson et al., 1977). The use of 

springs and dashpots to mechanically model the muscles has also been 

heavily studied and is being constantly revised (Baildon et al., 

1983; Hill, 1938). 

The mechanics of muscle is hence a complex problem. Direct 

measurement of force within muscles is not possible, only activity 

and level of activity can be readily measured. Contractile 
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mechanisms take various forms and are complicated by their speed and 

structure, or attachment modes, for each muscle. Activity of each 

of the muscles within a group is also difficult to quantify. 

Bone and cartilage mechanics is equally complex. The critical 

limits quoted in the literature for features such as UTS generally 

do not qualify whether static, dynamic or quasistatic conditions 

were employed. Thus with bone and cartilage again having time 

dependancy characteristics dynamic impacts may appear to exceed 

'known' biological limits (Nigg, 1986), both cortical and cancellous 

bone increases in strength and stiffness by over 50% with an 

increased rate. of loading (Frankal & Nordin, 1980; Currey, 1975; 

McElhaney, 1966). 

Considering bone on its own may also create misleading conclusions 

being drawn. The UTS of long bone and compact bone are quoted in 

the region of 100 MPa and 150 MPa respectively, (Nigg, 1986; Frankel 

& Nordin, 1980), however this does not consider the role of the 

cartilage in damping out any loading and spreading the contact area 

(Frankel & Nordin, 1980). Bone rarely fails in tension in sporting 

events, however, and the ultimate compressive strength of cortical 

(long) bone can be 50% greater (Reilly & Burstein, 1975). 

Cartilage, the covering on the articulating surface of the bones 

provides the functional connections between the bones, within a 

synovial joint, and allows relative movement with minimal friction 

whilst dispersing the joint load over a larger area than would be 

otherwise available. The most important features of cartilage are 

the mechanical properties of collagen which constitutes 60% of 

cartilage. This material has a tensile stiffness in the region of 
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103 MPa and a UTS of between approximately 50 & 70 MPa (Kempson, 

1973 in Frankel & Nordin, 1980) but is also rate dependant due to 

its low permeability to the proteoglycan gel present in the 

cartilage. Thus during rapid loading or. impact there is 

insufficient time for the gel to be exuded and the cartilage 

structure sets almost elastically. For slow loading rates the 

proteoglycan gel has time to be exuded and a viscoelastic behaviour 

is exhibited (Frankel & Nordin, 1980). 

The complex and exacting nature of the human body means that direct 

representation of an individual or group of structures cannot take 

place. Biomechanical modelling of the human body is hence needed to 

understand forces in the muscles and joints in locomotion. This 

biomechanical modelling must simplify the actions of the muscles, 

joints, and surrounding tissue, while adherinq to the basic 

functional aspects of the human body outline above. 

However, the main limitation of modelling biomechanically is that 

the many muscles and even muscle groups acting about each joint 

outnumber the limbs degrees of freedom hence making the system 

statically indeterminate. For example Seireg et al. (1975) 

identified 31 'important' muscles of the lower extremities (Table 

2.5.1), and when added to three components of joint reactions at 

each of 3 joints this gives a total of 40 unknowns for a full three 

dimensional analysis. 

This does not include the roles of the ligaments in the lower limbs 

as studied by Moeinzadeh et al. (1983), Blacharski et al. (1975) and 

Crowninshield et al. (1976). For a three segment model, with a full 

six degrees of freedom per segment, only 18 equations can be 

produced ý hence the indeterminacy of the model. 
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TABLE 2.5.1 imp; ýiiýiýt Muscles of the Lower Extremities_ 

Muscle No. muscle name 
Joint") 
Crossed 

1 Gracilis H, K 

2 Adductor longus H 

3 Adductor magnus(adductor part) H 

4 Adductor magnus(extensor part) H 

5 Adductor brevis H 

6 Semitendinosus H, K 

7 Semimembranosus H, K 

a Biceps femoris (long head) H, K 

9 Rectus femoris H, K 

10 Sartorius H, K 

11 Tensor fasciae latae H, K 

12 Gluteus maximus H 

13 Iliacus H 

14 Gluteus medius H 

15 Gluteus minimus H 

16 Biceps femoris (short head) K 

17 Vastus medialis K 

18 Vastus intermedius K 

19 Vastus lateralis K 

20 Gastrocnemius (medial head) K, A 

21 Gastrocnemius (lateral head) K, A 

22 Soleus A 

23 Tibialis anterior A 

24 Tibialis posterior A 

25 Extensor digitorum longus A 

26 Extensor hallucis longus A 

27 Flexor digitorum longus A 

28 Flexor hallucis longus A 

29 Peroneus longus A 

30 Peroneus brevis A 

31 Peroneus tertius A 

From Seireg & Arvikar (1975) 

1) H=Hip 

K=Knee 

A=Ankle 
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The indeterminacy can be increased if anatomical constraints are 

imposed such as condylar loading limitations (Minns, 1981), 

variations in friction/contact characteristics in joints with 

changes in leg angle (Ellis et al., 1980), stress distribution and 

transfer through bones (Chand et al., 1976) and the tangential path 

of some of the muscles (Jensen & Davy, 1975). Hence alternative 

solution routes are necessary and these involve mathematical 

optimisation which incorporate into the model additional assumptions 

to resolve the indeterminacy and uniquely apportion segment 

resultant forces to the anatomical structures. 

Two basic techniques exist in linear optimisation algorithms or non- 

linear or inverse-non linear formulation. Non linear techniques 

have the advantage of "allowing more active muscles into the 

solution (i. e. predicting synergism) without the formulation of 

additional constraints" (Pederson et al., 1987). To overcome 

indeterminacy both processes utilise additional equations based upon 

physiological observations such as maximum permissible muscle 

stress, work done or joint force, these are termed objective 

functions and the results obtained are usually confirmed with 

electromyographic justification (Crowninshield et al. 1978). 

Seireg & Arvikar (1973 & 1975) set out their five objective 

functions used in a linear programming gait analysis of the lower 

limbs as consisting of: 

(a) Minimising the total muscle force, (b) minimising the work done 

by each muscle from the product of its force and change in length, 

(c) minimising-the total vertical joint reactions, (d) minimising 

the total joint moments and (e) apportioning force in each muscle by 

its cross sectional area. In a similar study, Patriarro et al. 
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(1981) used a thermodynamic objective function for the mechanico- 

chemical power minimisation of muscular energy output and the 

physiological stress limit of each muscle expressed as force divided 

by cross sectional area. An et al. (1984) and Bean et al. (1988) 

both used a double linear programming technique with two objective 

functions of minimisation of the total muscular intensity expressed 

as a function of muscle stress and minimisation of the total joint 

forces. The minimisation of total muscular effort, expressed as a 

proportion of muscle size, was used by Penrod et al. (1974) in an 

analysis of the wrist. In simpler analyses Hardt (1978); Chao et 

al. (1973 & 1976); Nissan (1981) and Barbenel (1983) used the 

minimisation of the total muscle forces as their objective 

function. All the above studies used linear programming. 

Non linear programming has been used by Crowninshield et al. (1978); 

Crowninshield & Brand (1981); Dul et al. (1984a & b); Pederson et 

al. (1987). Here, in order to give more solutions additional 

constraints are introduced and Crowninshield & Brand (1981) utilised 

the phenomnenon that muscle contraction endurance time relates 

inversely to contraction force raised to a power. They developed a 

numerical criterion for maximum endurance of musculoskeletal 

function. Dul et al. used a non linear muscle fatigue criterion 

involving muscle fibre type as well as muscle size and moment arm. 

Pederson et al. (1987) used both linear and non-linear techniques 

and their non-linear objective functions were expressed as (a) 

minimisation of the sum of muscle forces; (b) minimisation of the 

sum of muscle forces cubed; (c) minimisation of the sum of muscle 

stresses cubed and (d) relaxation of the equality constraints for 

non linear minimisation of the sum of muscle stresses cubed. 
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All the above methods of linear and/or non-linear analysis give 

widely differing results due to the inherently different problem 

formulation and models and differing gait input data and hence 

direct comparison is not always possible. The majority of the 

studies utilise stress limits of individual muscles which have been 

shown to be strain rate dependant (Yamada, 1970; Abrahams, 1967; 

Walker et al., 1964). This also means that cross sectional area 

data is needed for all muscles in the model (change of lengths of 

each muscle is also required in the study by Seireg & Arvikar 

(1973)). Obtaining this data for a number of subjects and the 

muscles involved is not experimentally feasible for large numbers of 

living subjects (neither is obtaining muscle length changes). EMG 

verification is also required and this provides its own problems 

especially for the deep muscles which will need a needle electrode 

technique to elicit results - an ethically questionable practice. 

For the non-linear techniques binomial expansions with empirically 

derived constants and powers are often 'tailored' to produce an 

algorithm. The complexity and inherently non-linearity of the human 

neuromusculo-skeletal system makes the production of reliable and 

efficient algorithms a considerable problem. As this involves an 

extremely laborious and expensive task and needs an expert team of 

system scientists, numerical mathematicians, highly experienced 

programmers and a mainframe computer, it is unlikely to become a 

common approach to solving sports biomechanics problems (Hatze, 

1983). 

other alternative solutions have included a mechanical model 

produced by Dostal & Andrews (1981) consisting of 27 elastic strings 

representing muscles and a Kelvin model of 2 sets of springs and 
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dashpots supporting one mass to represent the lower limbs of the 

human body (Siegler et al., 1982). 

If a non-simplistic study into the action of the muscles, and 

joints, of the lower limbs is required, common techniques are not 

available. Rigid analysis requires complex mathematics which often 

lose sight of the purely anatomical limitations of the human body. 

The results are only estimations, and the degree of estimation must 

be countered by the complexity of the analysis. Producing 

mechanical models is extending the boundaries of biomechanics into 

robotics, which is beyond the scope of this study. 

The assessment of forces within the sporting domain hence needs to 

utilise standard biomechanical equipment to enable repeatability to 

be achieved. This will more often consist of a force recording 

device such as a force platform and an optical recording device as 

in high speed cinematography. Evaluation of internal or human 

forces, however, has been shown not to be such a simple case and the 

complex nature of muscle, tendon, ligament, bone and other tissue 

make modelling a complicated matter. Whilst sophisticated data 

collection and evaluation equipment and validation procedures such 

as EMG can improve accuracy and repeatability, simplification of the 

human musculo-skeletal system must also take place. This 

simplification must permit biomechanical modelling to be performed 

for a mathematical model based upon sound anatomical reasoning to be 

produced. 

In an attempt to gain an insight into items such as muscle and joint 

forces, muscle and bone loading rates and joint moments many 

investigators have tried to represent the human lower limbs in a 

simplified way. This biomechanical modelling has been based upon 
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the understanding of the kinematics of the segments of the lower 

limbs during locomotion, for instance joint rotations and contact 

points (Nissan, 1980). The human gait cycle is primarily two 

dimensional and it is from this aspect that the majority of 

kinematic investigations have specialised upon (Sammarco et al., 

1973; Morrison, 1970; Mann et al., 1980; Frankel, 1971). 

once the kinematic guidelines are established biomechanical 

modelling may be undertaken. Whitsett (1963) and Hanavan (1964) 

replaced the bones of the human body by geometrically simple 

'segments'. Paul (1967) gathered all the muscles into their major 

groups depending upon function and proposed that all the muscles 

within that group acted synchronously between a general origin and 

insertion. The pull or tension developed by a muscle group being 

independent of speed, contractile mode or structure. 

These and various other simplifications have been used in a number 

of investigations to estimate muscle and joint forces in human 

activity. Most have relied on simplifying the biomechanical model 

to perform a Newtonian analysis on the lower limbs. This involves 

considering the joints as having non complex articulating surfaces 

withý negligible frictional forces (transverse loads being absorbed 

by the ligaments). Antagonistic muscle actions are also overlooked 

with one major muscle group contributing all the force. 

Analysis of muscle and joint forces in the lower limbs of the human 

is common in sedate activities such as walking, and has been 

extended to include studies into rising from a chair and from a deep 

squat. The stresses imposed upon the musculo-skeletal system in 

these activities are well established (Table 2.5.2). However, 

dynamic activities have been subjected to less scrutiny, with only a 
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TABLE 2.5.2 Muscle and Joint Force Summary 

Muscle Force In Joint Reac tions(" 

Area of Body Weight Units In Body We iqht Units 
Investigators Activity 

Study Calf Ham Quad Ankle Knee Hip P-P 

Ariel, 1974 Knee Squatting 
(2) 8.9 

Bishop, 1977 Knee Squatting 16.0 16.0 6.0 

Bresler at al., 1950 Hip Walking 2.5 

Burdett, 1982 Ankle Running - 4.5 in a- 10.0 13.3 

Crowninshield at al., 
1982 Hip walking 4.3 

Dahlkvist at al-, 
1982 Knee Squatting 1.4 2.2 6.9 5.6 7.6 

Ellis at al., 1979 Knee Rise from Sit 3.0 2.4 3.3 3.1 2.5 

Ellis at al., 1985 Knee Rise from Sit - 3.6 3.2 - 3.2 3.4 

Harrington, 1976 Knee walking 3.5 

Inman, 1947 Hip walking 2.6 

Morrison, 1968 Knee Walk-, na 1.5 2.0 1.1 3.0 

Morrison, *1969 Knee walking - Level 2.0 2.4 1.1 3.4 

Walkinq - Upstairs 0.6 1.4 3.4 4.3 

Walking - Downstairs 1.2 0.7 3.0 3.8 

Walking Up Ramp 2.6 1.9 1.3 4.0 

Walking - Down Ramo - 1.5 3.3 4.0 

Paul, 1967 Joints walking 3.4 3.9 

Paul, 1974 Kr; ee Walking - Level 2.8 0.6 

walking - Fast 4.3 1.5 

walking - Upstairs 4.4 1.8 

Walkinq - Downstairs 4.9 2.9 

Walking - Up Ramp 3.7 1.6 

walking - Down 4.4 2.6 

Proctor at al., 1982 Ankle walking 2.5 3.9 

Rohle at al., 1984 Kips walking 1.4 3.4 3.2 4.5 6.1 1.1 

Seedhom at al-, 1976 Knee Rise from Sit 0.5 1.5 1.2 2.5 2.4 

Smith, 1975 Lower 
Limbs I Matra Drop Lending 6.1 16.5 7.4 24.4 

Williams at al-, 1968 Rip 1-Leq St"ing 6.0 

Capozzo, 1983a Trunk walking Interseqmental Pelvic Force 0.9 

Capozzo, 1983b Trunk Running Vertebral Column Lumbar Force 5.4 

(1) Joint reactions are the direct compressive forces. P-F = Patella- I 

Femoral reaction. 

(2) With 200 kg weight. 
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few studies reported in the literature. Smith (1975) studied aIm 

drop jump while Ariel (1974) evaluated deep knee bends during weight 

lifting. Burdett (1982) analysed the ankle during running, but used 

cadavers to obtain average dimensions of the joint. The emphasis of 

the majority of these studies has been upon an identification of 

joint reactions and their relevance in prosthetic design and 

rehabilitation. 

From the summary of results of various investigations (Table 2.5.2) 

it can be seen that in the dynamic activities of running and jumping 

(Smith, 1975; Burdett, 1982) muscle and joint forces are 

considerably higher than in the more sedate activities. Knee-joint 

reactions of 24.4 times the subjects body weight were recorded, 

compared to an average 3.6 BW reported in walking. Ankle-joint 

reactions of 13.3 BW were recorded by Burdett (1982) in running, 

compared to 3.9 BW cited by Proctor & Paul (1982) for walking. Peak 

muscle forces are similarly elevated: calf-muscle forces of 10.0 BW 

were found during running (Burdett, 1982), whilst studies of walking 

give an average value of 1.7 BW. The highest muscle forces quoted 

in the literature are those occurring in the quadriceps group i. e. 

16.5 BW (Smith, 1975) during a drop landing or 16.0 BW (Bishop, 

1977) during a squat exercise. Patella-femoral contact forces show 

a wide range of values possibly reflecting the complex nature of 

this joint or the infrequency of its scrutiny. 

These muscle forces are more commonly represented by the net moment 

acting about the specific joint. Calculation of these moments can 

be determined directly from the foot-ground reaction forces and 

gross joint spatial co-ordinates and thus require no investigation 

into individual muscular activity. Table 2.5.3 shows results from 
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various investigations into different forms of gait. The knee joint 

moments rise from on average, 53 NtrL during walking to 203 Nm during 

running. The hip joint moment shows similar increases from walking 

to running but it exhibits a significant increase when the speed of 

gait increases to sprinting: 77 Nm for walking; 179 Nm for running; 

497 Nm for sprinting. The ankle however shows the least change of 

all three joints. 

The significance of these high muscle and joint forces and net joint 

moments acting particularly in and around the knee joint may be 

appreciated when viewed in conjunction with the injury history of 

athletes. Table 2.2.2 shows that the major injury site of running 

related injuries in the knee joint and even in these sedate 

activities of walking knee joint compressive forces of up to 5 BW 

are reported. For those studies that investigated more dynamic 

activities (Smith, 1975) these forces have increased significantly 

to 24.4 BW. 

The second most injured component in the human lower limbs as 

reported in Table 2.2*2 is the achilles tendon and in the studies by 

Smith (1975) and Burdett (1982) tensions of 6.1 BW and 10.0 BW are 

reported respectively. These high forces could be the cause of 

these injuries. 
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TABLE 2.5.3 Summary of Joint Moments Recorded in the Literature 

Investigators(l) Activity 
Maximum 

Ankle- 

Joint Moments--(Nm 

Knee 

ý(? ) 

Hip 

Cappozzo et al., 1976 -160 45 -85 
Olney & Winter, 1985 walking -120 80 - 
Paul, 1985 -100 -35 70 

Winter, 1983 Jogging 175 212 -95 

Alexander & Vernon, 1975 200 200 - 
Harrison et al., 1986 Running -174 -188 98 
Miller, 1987 200 -225 260 
Nicol & Harrison, 1985 - 200 - 

Mann, 1981 Sprinting -250 280 -475 
Sprague & Mann, -1983 - 250 -520 

(1) Moment sense is dependent upon investigation sign convention. 

(2) Stance phase only 

The shin muscle, the third most injured component in the human lower 

limbs is not reported in the studies summarised in Table 2.5.2. Its 

significance in the walking cycle being less than in running. 

Nearly all those. forces and moments are recorded for sedate, two 

dimensional activities and hence when more dynamic actions are 

considered the force values multiply. How these are then affected 

by such items as footwear, speed and style, which have been shown 

via Table 2.3.1 to affect the foot/ground reaction forces, are 

unknown. If the effects on speed on the footground reaction force 

(Table 2.3.1) are as marked as the effects upon muscle and joint 

forces then this could be the reasoning behind training errors being 

the predominant cause of injury (see Table 2.2.4). 
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2.6. Summary of7 'Lit'erature Review 

Injury occurs to 66% of all runners and the most commonly injured 

site is the knee joint. Causes of these injuries have been shown to 

include anatomical factors and footwear conditions and hence 

modification of the footwear worn has been identified as an 

important method of rehabilitation and cure. 

A full analysis of muscle and joint forces in running has not been 

undertaken, the nearest dynamic activities including those of Smith 

(1975) and Burdett (1982). These and other studies have in general 

omitted the shin muscle group from the model and as this is the 

third most injured component in the human lower limbs it must be 

included in any model. 

It is proposed that biomechanical modelling will allow a study of 

muscle and joint forces in running to be carried out. Controlling 

such variables as speed and footwear will enable anatomical 

anomalies of the gait cycle to be identified, varying running speed 

and categorising the athletes into rear and front foot strikers will 

enable the influence of speed and style to be analysed in accordance 

with the corresponding injury profiles outlined in Sections 2.2 and 

2.3. 

Hence a biomechanical model needs to be developed that will allow a 

detailed analysis of muscle and joint forces in running and 

specifically how the magnitude, sense and loading rates are affected 

by such variables as fatigue, speed, footwear, surfaces and running 

style. This may be important in understanding the aetiology of 

running related injuries. 

An evaluation technique will also have to be devised that is both 
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accurate and repeatable as no one standard method is reported in the 

literature. This should be designed to use standard biomechanical 

equipment. 
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I 

THEORETICAL. ANALYSIS 

3.1 Introduction 

Direct measurement of forces acting in the lower limbs of the human 

body can only be made after surgical implantation of a transducer 

into the appropriate region. This is usually done during the 

installation of a prosthetic device into a joint, for example the 

hip. This has severe limitations as an experimental method 

particularly for the study of athletic activities. Therefore in 

order to analyse muscle forces and joint reactions throughout the 

whole of the lower limbs a mathematical model, based upon 

biomechanical principles must be used. The studies by Seedhom & 

Terayama (1976), Smith (1975) and Burdett (1982) are ideal examples 

of this technique. 

The human musculo-skeletal system can be approximated to a spatial 

linkage system and solved as for any 'rigid body dynamic linkaqel 

problem. From knowledge of the kinematics of the linkages, or 

limbs, the forces and moments present around the joints of the 

linkages may be obtained. In the human body these forces and 

moments are manifested as muscle forces and joint reactions. The 

dynamic inputs to the system are represented by D'Alemberts inertial 

forces and the foot/ground reaction forces. A Newtonian analysis, 

of summing forces horizontally and vertically and moments about 

points of contact permits these muscle forces to be estimated. 

Before any analysis can be performed, biomechanical modelling of the 

musculo-skeletal system must be carried out for the human body to 

represent a spatial linkage system. This modelling takes the form 

of the assumptions and observations outlined below. 
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3'* 2 Biomechanical Modelling of the, human body - General Assumptions 

and Simplifications 

(1) Running is primarily a two-dimensional activity with 

ground reaction forces, net joint moments and motion in 

the third plane generally small. Nigg (1986) found 

vertical ground reaction forces in the region of 2000 N 

anterior-posterior reaction forces Of ±200 N but medial- 

lateral (M-L) horizontal forces of only +100 No Thus 

these M-L forces are only in the order of 5% of the 

vertical component and are in agreement with studies by 

Cavanagh & Lafortune (1980). 

Joint moments about the anterior-posterior axis, that is 

those causing internal and external rotation, are 

similarly small. For example Harrison and Nicol (1988) 

found knee joint moment of 200 Nm in the sagital plane but 

only 20 Nm in the frontal plane. Hence these 'rotational' 

moments are only 10% of the 'flexing' moments. These 

results are confirmed by Crowninshield et al. (1978) and 

Miller (1987). 

Motion in the third small is also small. Rotation of the 

hip in presenting the leg to the ground for foot strike 

causes the action of pronation/supination at the ankle. 

Both of these actions are in general restricted to 5-10 

degrees compared to 30' knee flexion and 40' hip 

flexion/extension (Mann & Hagy, 1980; Mann, 1982; 

Cavanagh, 1980). 
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To record these third dimension joint motions and 

segmental kinematics required two orthogonally placed 

optical recording devices. These need to be accurately 

calibrated and synchronised. This is a lengthy and 

complex process. (Greive et al., 1975; Dainty and Normal, 

1987; Williams and Lissner, 1962). The collection time of 

the data, via digitising, is doubled and hence a lengthy 

data analysis process is further lengthened into an 

unwieldy and cumbersome technique. This does not lend 

itself to a sport analysis technique. 

The use of a three dimensional model has also been 

criticised by Engberg (1987), Burdett (1982) and Denoth 

(1985) as being unnecessarily complex and costly in the 

nature of data capture and not yielding significantly more 

accurate results than a corresponding two dimensional 

model. With these considerations in mind a number of 

dynamic studies have utilised two dimensional models 

(Smith, 1975; Bishop, 1977; Ariel, 1974; Dahlkvist et al., 

1982; Ellis et al., 1979,1985; Moeinzadeh et al., 1983) 

Hence for this study a two-dimensional model is employed. 

(2) The muscles can be considered to act together in their 

major groups according to their main function (Paul, 

1967). See Table 3.1.1 and Figure 3.1. They are also 

considered to act synchronously and initially at all times 

during the stance phase according to their primary 

functions (University of California, 1953). This 

technique has been used by numerous investigators in 
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TABLE 3.1.1 Muscle Grouping and Function") 

muscle Nomenclature Contributory Muscle 
Group Used in this muscle(s) Group Primary 

Notation Study Function 

kT(2) .. .. Achilles Tendon Foot Plantar-Flexor 

Gluteals GL Gluteal Maximus Hip Extensor 

Hamstrings HM Biceps Femoris Hip Extensors 
Semimembranosus and 
Semitendinosus Knee Flexors 

Ilio-Psoas IP ill s Hip Flexors 
Psoas Major 

PL(2) . .. Patellar Ligament Shank Extensor 

Qiiadriceps Vasti Medialis 
Vk Vasti Intermedialis 

I 
Knee Extensors 

QUI - Vasti Lateralis 
RF ... .. Rectus Femoris Hip Flexor and Knee 

Extensor 

Shin SH Extensor Hallucis 
Longus 
Extensor Digitorum Foot Dorsi-Flexors 
Lonqus 
Tibialis Anterior 

Tricep Surea GA ... .. Gastrocnemius Knee Flexor and Foot 
Plantar-Flexor 

so ... .. Soleus Foot Plantar-Flexor 

Reference; Gray's Anatomy (1980) 36th edition 

(2) Included for completeness 
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biomechanics and has become standard modelling (Morrison, 

1968; Williams & Svensson, 1968; Morrison, 1969; Seedhom 

Terayama 1976; Dahlkvist et al., 1982 are some 

examples). The use of the muscles acting individually 

results in gross mathematical redundancy of the model and 

as such needs optimisation techniques to solve the 

system. As outlined in Chapter 2 this is not practical in 

sports biomechanics. I 

(3) The limbs of the lower extremities may be replaced by 

geometrically simple segments of known mass, centre of 

gravity and moment of inertia as presented by Whitsett 

(1963) and Hanavan (1964). These data have been updated 

by a number of investigators (Drillis & Contini, 1966; 

Contini, 1972; Chandler et al., 1975; and Reynolds et al., 

1975) but the original works are still extensively used as 

they provide compatibility with other studies. As such a 

number of studies have used one or other of the above 

basic studies, for example Miller (1973) studied diving, 

Huston and Passerello (1971) analysed kicking and Smith 

(1975) investigated a drop jump. 

(4) The joints of these lower limbs are represented by non 

complex articulating surfaces with point load contact. 

Although this is not at all correct, especially for the 

hip and knee joints (Smidt, 1973; Dowson & Wright, 1981) 

it is standard biomechanical practice and is used 

extensively in all areas of biomechanical modelling 

(Winter, 1979; Dainty & Norman, 1987; Plagenhoef, 1971; 

Miller & Nelson, 1973). 
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(5) The line of action or tension of a muscle or muscle group 

can be assumed to be one directly between the muscles 

origin and insertion unless the muscle is severely 

distorted by bony obstacles. In these cases a tangential 

direction of action from either the origin or the 

insertion may be assumed (Seedhom & Terayama, 1976). 

However the use of a tangential approach requires the 

collection of more data than a straight line approach and 

wide fluctuation in the assumed direction of tangency may 

occur (Dostal & Andrews, 1981). A straight line approach 

affords greater inter- and intra-investigator 

repeatability (Jensen & Davy, 1975). A tangential 

approach can result in a change of muscle moment arms of 

between 1& 12%. However, this change in moment arms may 

be masked by the accuracy of determining and repeating 

tangential vectors, (Jensen & Davy, 1975). Thus a 

straight line appraoch has been greatly adopted by 

biomechaical researchers (Smith, 1975; Rohle et al., 1984; 

Dahlkvist et al., 1982; Morrison, 1968). 

The selection of a single point to represent the insertion 

point of a number of muscles acting in a group and 

attaching over an area also causes Problems. The angle of 

pennation, uniformity and cross sectional area of each of 

the muscles in the group complicates the matter but a 

simple centre of the cross sectional area of the muscular 

attachments is assumed to represent the effective centre 

of the force vector (Seedhom & Terayama, 1976; Jenson & 

Davy, 1975; Brand et al., 1982). 
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(6) Frictional forces within the joints may be neglected due 

to the minimal coefficient of friction existing within 

synovial joints. Any tangential forces are then assumed 

to be absorbed by the ligaments within that joint (Seedhom 

& Terayama, 1976). The coefficient of friction in a 

synovial joint is in the range 0.001 to 0.1 depending upon 

the friction mechanism considered (Hydrodynamic, 

Elastohydrodynamic or Boundary) (Dowson & Wright, 1982) 

and it has been shown that as load increased, the 

coefficient of friction decreases (Tabor, 1982; and 

O'Kelly et al., 1978 - Via Ellis et al., 1980) and as 

such, at the high impact loads sustained by the body in 

sport (see Table 2.5.2) the coefficient of friction may be 

less than those figures stated above. The neglection of 

friction forces is hence accepted by a wide range of 

biomechanical investigators (Morrison, 1967; Perry et al., 

1975; via Ellis et al., 1979; Seedhom & Terayama, 1976; 

Ellis et al., 1979). 

On the basis of these assumptions a dynamic biomechanical 

model can be produced as Shown in Figure 3.2. Here 

D'Alemberts inertia forces are omitted for clarity only. 

If D'Alemberts forces are also included a Newtonian 

analysis can be performed. This e 

evaluation based upon the inversed 

the model to be produced and gives 

from the three major segments i. e. 

Forces vertically 

Forces horizontally 

Joint Moments 

,, iables a mathematical 

dynamics principle to 

rise to nine equations 

for each segment: 

0 

0 

0 
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Examinations of this biomechanical model shows that there 

are six joint reactions (vertical and horizontal 

components at each of the three joints) and eight muscle 

forces and one ligament force (PL), resulting in this 

biomechanical model being statistically indeterminant by a 

redundancy factor of six. Therefore further, or specific, 

assumptions need to be made to simplify the model. 

3.3 Specific Biomechanical Modelling with Respect to Running 

(1) The 'short' flexors of the hip - the ilio-psoas muscles 

may be ignored from the model due to their unimportance 

for the following reasons: - 

The origins of the psoas muscles lie on the 12th thoracic 

vertebra and the 1st, 4th and 5th lumbar vertebra. The 

muscle crosses the hip joint very close to the capsular of 

the acetabulum and is only separated from the capsule by 

an iliac bursa. It attaches onto the femur at and below 

the lesser trochanter i. e. inside the thiqh. The muscle 

not only flexes the hip but also rotates it. 

The origin of the iliacus is 

pelvis and it obtains fibres 

as it passes over the joint. 

trochanter on the femur. Iti 

psoas major and is primarily 

Anatomy, 1980). 

the medial portion of the 

from the capsule of the hip, 

It attaches below the lesser 

3 action is to assist the 

a postural muscle. (Gray's 

Combined, to form the ilio-psoas muscles, the group have a 

small moment arm and non significant role in athletic 
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events, and are only active during the swing or recovery 

phase in gait. 

No activity was detected during the support phase by 

Le Ban et al., 1965 in an EMG study into the muscles role 

in the gait cycle. These muscles are rarely injured in 

running sports. Hence they can be eliminated from the 

biomechanical model due to their lack of contribution to 

hip or thigh flexion when compared to the stronger flexor 

muscles such as the quadriceps. 

(2) Maximum knee flexion angles during the stance phase in 

running have been expressed as between 27' (Sinning & 

Forsyth, 1970) and 30* (Elliott & Blanksby, 1979a). For 

such angles of knee flexion Ellis et al. (1980) found that 

the ratio between tensions along the quadriceps tendon and 

the patella tendon was on average 0.97 for 30% 0.99 for 

20* and 1.00 for angles less than 15'. For this study it 

was assumed, therefore, that the tension developed in the 

quadriceps muscle group is fully transmitted to the 

patellar ligament. 

Initially the patella is assumed to be segmentally a part 

of the thigh, such that the three vasti muscles (see Table 

3.1.1) become internal forces, Seedhom & Terayama, 1976). 

(3) Due to the similarity in the physiological cross sectional 

areas of the rectus femoris and the three vasti muscles 

(see Table 3.1.1), each individual muscle can be assumed 

to equally share the total force developed in the 

quadriceps, that being one quarter each. (Alexander & 
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Vernon, 1975; Seedhom & Terayama, 1976). 

(4) The hip extensor moment can be assumed to be equally 

shared between the hamstrings and the gluteals, Seedhom 

Terayama (1976). 

(5) During the stance phase the foot possesses almost zero 

angular and linear accelerations and it also has a minimal 

mass value compared to the other masses in the 

biomechanical model. The inertia forces of the foot can 

hence be ignored (Harrison, 1982). 

(6) Net muscular torques or joint moments can be approximated 

well through cinematographic techniques but the accuracy 

of joint reactions, being dependant upon input parameters 

of muscle moment arms, accelerations and anthropomorphic 

data, decrease with the increasing number of segments ' 

included in the analysis (Dainty & Norman, 1987; Smith, 

1975). The acquisition of radiographic data of the hip 

area 'of the human subjects also presents ethical 

problems. With this in mind hip joint reactions are not 

calculated in this model, the hip joint centre is only 

used as a centre of rotation to take moments from. This 

thus reduces the number of equations available for 

evaluation to seven and the number of unknowns still 

exceeds this figure. 

3.4 Model. Development 

The previous specific biomechanical modelling reduced the number of 

unknowns to nine but the corresponding number of equations available 

to produce solutions has been reduced to seven. Additional 
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modelling was therefore undertaken to facilitate the production of 

results. A continuous process of model refinement was then 

undertaken as outlined in the following sections. 

3.4.1 First Biomechanical Model 

In line with models produced and presented by Seedhom & Terayama 

(1976) and Smith (1975) the redundancy of the model was accommodated 

by ignoring the role of the shin muscle group and the soleus 

muscle. This was initially justified in the following way. 

(1) The shin muscles (see Table 3.1.1) are foremost dorsi- 

flexors of the foot and during the stance phase in running 

are inactive for the majority of that period. Their 

action is primarily involved in preparing the foot for 

landing (while in the swing phase of the running cycle) 

and there may only be a residual of force present in the 

shin muscles at heel strike (Proctor et al., 1982). The 

shin muscles are also responsible for inverting the foot 

(commonly termed pronation) and this action is held to be 

the cause of the majority of shin injuries (James et al., 

1978). It could then be hypothesised that the shin 

muscles are active only in the third dimension during the 

stance phase of running. 

(2) The tricep surea muscle group of the soleus and 

gastrocnemius can be assumed to share the moment of force 

produced at the ankle either equally (50% each) or non 

equally depending upon such factors as physiological cross 

sectional area, mathematical optimisation or 

(electromyographical) activity. For this part of the 
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study the soleus could be considered inactive in 

accordance with the study by Seedhom & Terayama (1976). 

(3) Simple linear mathematical optimisation techniques were 

employed in order to accommodate the shin muscle group and 

the soleus muscle into the model. Primarily this 

consisted of sharing the ankle joint moment between the 

shin and calf muscle and then sharing the tricep surea 

plantar flexion force between the soleus and gastrocnemius 

muscles. Weighted values were attributed firstly to shin 

and then to the soleus and a computer program iterated 

through all possible combinations. This can be shown as 

f ollows, 

Fig. 3.3 Ankle Joint Biomechanics 

RR = resultant qround reaction force 

AT = achilles tendon or tricep surea muscle force - 

CA = gastrocnemius; SO = soleus 
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SH = shin group muscle force 

A= ankle joint centre of rotation 

AM = ankle moment caused by RR 

XVX2 = moment arms of AT & SH 

The ankle moment AM can be balanced by either AT or SH or 

any combination of the two. Hence let, 

AT. X 
1=y. 

AM & SH. X 
2ý 

(1-y) AM where 0>y>1 

Similarly the achilles tendon force AT can be shared by 

the gastrocnemius (GA) or the soleus (SO) in any 

combination such that, 

GA = z. AT & SO = (1-z). AT where 0 >z >1 

Hence by iterating through y&z and solving the full 

biomechanical model an appropriate solution was obtained 

based upon one of the following objective functions, 

(a) minimum total muscle force (viz. minimum energy 

expenditure) 

(b) minimum total joint force (viz. joint damaqe 

reduction) 

(C) a combination of (a) & (b) (viz. efficiency of 

movement). 

All proved inconclusive however and the only feasible 

solutions obtained were with the shin and soleus inactive 

as all the objective functions increased in value as value 

was apportioned to the two muscles in question and the 

hamstring forces turned negative. 

(4) An Engineering analysis based on Virtual Work techniques 

was also investigated but this relied upon treating the 

foot as a deformable structure which did not conform with 
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the rigid body dynamics approach adopted here and thus had 

to be discarded. 

Hence a simplistic approach was adopted with the shin and 

soleus omitted which permitted a primary analysis to be 

performed. Thus a dynamic biomechanical model was 

produced as presented in figure 3.4 (with D'Alemberts 

inertia forces omitted for clarity only) and was used to 

produce results presented in the study by Harrison (1982) 

and summarised by Harrison et al. (1982). 

3.4.2 Second Biomechanical Model 

The result produced by the model presented in 3.4.1 allowed 

refinement to take place and this consisted in the first instance of 

the inclusion of the tibialis anterior muscle to represent the shin 

muscle group. A study by Burdett (1982) showed that the 

dorsiflexion/inversion group of muscles were active for the first 

10-20% of the support phase whilst running at 4.47 ms-1 and Proctor 

& Paul (1982) report similar findings for their anterior tibial 

group (average 25% activity during walking). This would appear to 

be verified by EMG studies carried out by Mero et al. (1987). This 

plantar or dorsi flexion moment is best represented by the moment 

created by the ground reaction forces giving either a negative or 

positive sense (see figure 3.3). Thus a positive moment is 

countered by the tricep surea muscles and a negative by the shin 

group (Harrison et al., 1986). 

Hence with the shin muscle group represented in the model (figure 

3.5) a secondary set of results could be calculated. This analysis 
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was used by Harrison et al. (1986) and Harrison et al. (1988) and 

afforded good comparisons with the previous study and that of 

Burdett (1982). 

3.4.3 Third Biomechanical Model 

An inactive soleus has been favoured by numerous investigators 

Burdett (1982), Seedhom & Terayama (1976), Morrison (1968 & 1969) 

Paul (1967) and Smith (1975), but electromyographic studies show 

that it is active during the stance phase in running (Brandell, 

1973). Hence the inclusion of the soleus into the biomechanical 

model was addressed in various ways following the unsuccessful 

optimisation trials reported in 3.4.1. Physiological cross 

sectional area (PCSA) measurement was not available to this 

investigation and thus force sharing based upon this criteria was 

eliminated. Sharing of the plantar flexion moment equally, as used 

with the hip moment sharing between the hamstrings and gluteals, was 

thus adopted. Results are presented with and without the soleus in 

section 5.4 and conclusions about the effectiveness are presented in 

section 6.6. 

Initially, and in common with studies by Seedhom and Terayama 

(1976), Smith (1975) and Nissel & Mizrahi (1988) the patella was 

considered to be integral to the thigh. This permitted the 

evaluation of the model to be performed with the equations produced 

and thus comparison between phases and models is possible. If the 

patella is considered a separate segment, the rectus femoris muscle 

no longer acts upon the thigh segment. The vasti group of muscles, 

initial classified as totally internal to the thigh, would hence 

have to be included in the model. Thus direct comparisons between 
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the models developed here and those of, for example, Smith (1975), 

Seedhom and Terayama (1976) and Nissel & Mizrahi (1988) would not be 

possible. 

Thus this model is shown in figure 3.6 and the calculation of the 

patella-femoral contact force is performed as shown in figure 3.7. 

3.5 Verification of Model 

Verification of the above model, muscle grouping and roles during 

the stance phase in running was carried out over a period of time on 

a number of subjects (as recommended by McIntyre & Robertson, 1987) 

using EMG techniques whilst undergoing treadmill running. A San-ei 

four channel polygraph was utilised with surface electrodes placed 

over various muscles. Co-ordination of the EMG traces with the 

beginning of stance phase was achieved with the aid of a contact 

switch built into the running shoes of the subject (Plate 3.1). For 

a range of speeds from 3.8 ms-1 to 5.4 ms-1 all the major muscle 

groups outlined'for this study indicated activity during the stance 

phase. The shin muscles, represented by the tibialis anterior, 

displayed activity for approximately the first 5% of the stance 

phase; the tricep surea group then exhibited the dominant muscular 

activity. This compares favourably with the 9% reported by Burdett 

(1982). 
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Plate 3.1 Running Shoe Adapted to Include a Contact Switch. 

From Plates 3.2 it can be seen that of the major muscle qroups 

represented in the bioengineering model the soleus and qastrocnemius 

are almost fully active. In phase two the gastrocnemius displays 

only 80% activity but in phase three it is fully active. However, 

both GA and SO do not display activity at heel strike. The tibialis 

anterior, representinq the anterior shin muscles displays activity 

during the recovery section of the swing phase and during the first 

5% of the stance phase following heel or foot strike. Of the upper 

limb muscles the hamstrings, as represented by bicep femoris, 

display full activity for the two faster speeds and 60% activity at 

ug 



EI 

0) 

EI 

1 141- 

�-I 

(I 

8 

0 U) 

W 
I 4J 

U) 0 
0 

Lr) :3 

L) a) 

0 

Aj 
Its 
m 

44 
0 

w 
10 

1 10 

ri 

o "S14, 
4j -4 

W 
ý4 4. ) 
Q) U) 

44 
Q) 4J 
$4 0 

0 
44 

,a 4J 
r. M 
,vu 

R 10 

10 

71 

E 
0 



C) 
4J 

(F) 
4-, 

E-. 

H 

ul 

E- 

E-4 
(n 

0 

E 

N 

:e 

U) 

F3 

0 

rz 

tP 

44 
0 

m 10 

m 
-4 

10 
r. 
(0 

-4 0 
-, 4 
10 
d) 
ri 

0 
41 

$4 
w 4J 
Q) U) 

41 
a) 41 
ý4 0 

0 
44 

V 41 
r. It 
-0 u 

.4 1,10 
11 1. - 
U) 

4) 
C4 

14 
14 
,4 
(1) 
41 

I 
El ri) ýj 

41 
0 
0 

4ý 



EI 

EI 

C') 

-F 

- 
I. ' 

". ti-. 

T-A 

{1 
H 

- 1, -I 

'- 

'11 4-. -' 

"4 " i.,. ', -" 

C) 
4J 

(I) 
4J 
0 
0 
r. 

m 
Ln 

2 

'3 
ý4 

0 
0 

41 

E (D 
(1) 

10 

4J 

4-j 
0 
0 

41 

z 

; "ll 1: 4 

(12 



the slowest speed. This could partly explain why hamstrings are not 

frequently injured by long or middle distance athletes but suffer 

muscle pulls at higher velocities by sprinters. The quadricep 

muscle group, as represented by the rectus femoris, display 

activity, on average, 50%-60% of the stance phase following heel 

"built in" strike. It could be suggested that this was to the 

biomechanical model i. e. assigning zero force to the muscle qroup 

once 50%-60% of the stance phase had elapsed. The phasic activity 

of the vasti muscles is such that they may develop force throuqhout 

the stance phase (University of California, 1953). It was thus 

concluded that full activity of the quadricep muscle group was 

justified in the model. 

The model, thus produced in section 3.4.3 can therefore be solved as 

for any rigid body dynamics problem with D'Alembert's inertia forces 

incorporated. 

Analysis of Blomechanical Model 

Foot segment (see Fig. 3.6)- 

Taking moments about the centre of rotation of the ankle joint, 

E External moments =E Internal moments 

and 

Moments of ground reaction forces (RZ and RY) + 

Moments of muscular balancing force (AT or SH) + 

Moments of foot mass = Moments of foot inertia (2) 

(see Table 3.1.2 for nomenclature). 

mow, if the moment of ground reaction force Is positive then the 

moment of muscular balancing force is provided by the shin muscle 

(SH). If the moment of ground reaction force is negative then the 
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moment of muscular balancing force is provided by tricep surea 

muscles (AT). Foot mass and inertia are small compared to the 

ground reaction forces, RZ and RY, and hence can be ignored. 

Therefore, either 

-RY(Al)+RZ(A2)+AT(A3)=O and SH=O (3) 

or 

-RY(Al)+RZ(A2)+SH(A4)=O and AT=O (4) 

Now, summing forces vertically gives 

Z External forces vertically=E Internal forces vertically (5) 

AT[cos(BO)]+SH[cos(B4)]+AN+RZ-WF=ZO(MF) (6) 

where WF (foot weight) and ZO(MF)(foot inertia) are small and can be 

ignored. (Harrison, 1982). 

Hence, 

AN= -RZ-AT[cos(BO)j-SH[cos(B4)1 (7) 

Similarly, summing forces horizontally gives 

AS= -RY-AT[sin(BO)1-SH[sin(B4H (8) 

Assuming equal sharing of the tricep surea force (see main text) 

GA = 0.5 AT (9) 

SO = 0.5 AT (10) 

Shank segment (see Fig. 3.6) 

Taking moments about the knee centre of contact, 

E External moments =E Internal moments (11) 

PT(Kl)+HM(K2)-WL(K3)+AS(K4)-AN(K5)-SH(K8)-SO(K7)=BF (12) 

where BF = shank inertial moment, and PT = 4RF (see main text). 

Hence, 

4RF (K1 ) +HM (K2) -WL (K3) +AS (K4) -AN (K5) -SH (K8) -SO (K7) =BF (13) 

Summing forces vertically qives, 

External forces vertically=E Internal forces vertically (14) 
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PT [Cos (Bl ) ]+HM[ COS (B2) I -SH[cos (B4) I -SO[ cos(BO) ]+KZ-AN-WL 

= ML(ZA) (15) 

where ML(ZA) = shank inertial forces and PT = 4RF. 

Hence, 

4RF[cos(Bl)]+HM[cos(B2)]-SH(cos(B4)]-SO[cos(BO)I+KZ-AN-WL 

ML(ZA) (16) 

Summing horizontal forces gives, 

E External horizontal forcesnE Internal horizontal 

forces (17) 

PT[sin(Bl)]+IIM[sin(B4)]-SH(sin(B4)]+SO[pin(BO)I+KY-AS 

=ML (YA) (18) 

where ML(YA) = shank intertial forces and PT = 4RF. 

Hence, 

4RF[sin(Bl)]+HM[sin(B2)]-SH[sin(B4)]+SO[sin(BO)I+KY-AS 

=ML(YA) (19) 

Thigh segment(see Fig. 3.6) 

Taking moments about hip centre of rotation, 

External moments Internal moments, (20) 

RF(Hl)+GL(H2)-PT(H3)-GA(H4)-KZ(H5)+KY(H6)-WT(H7) = TP (21) 

where TF = thigh inertial moment, PT = 4RF, and GL(H2) = HM(H9), 

i. e. hip extension equally shared between hamstring and gluteal 

muscles (see main text). 

Hence, 

RF(HI-4H3)+RM(H9)-GA(H4)-KZ(H5)+KY(H6)-WT(H7)=TF (22) 

Therefore, by examining Equations 13,16,19 & 22 it can be seen that 

four unknowns exist, i. e. RF, HM, KZ and KY. These can be solved, 

which allows solutions for PT and GL to be derived. 

Also, resolving along the femoral axis gives, 
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KN=KZ[cos(B3)]+KY[sin(B3)1 

KS=KY[cos(B3)1-KZ[sin(B3)1 

Patella Segment (see Fig. 3.7) 

Resolving the force system at the patella gives, 

PF=PL V 211-cos(Bl-B9)1 

B9 

PF PATELLA 

PL 

al . 

FIGURE 3.7 PATELLA-FEMORAL FORCE 

(23) 

(24) 

(25) 
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TABLE 3.1.2 Nomenclature 

Abbreviation Item 

4, 

RZ Vertical foot - ground reaction force 

RY Horizontal foot - ground reaction force 

AN Vertical ankle-joint reaction 

AS Horizontal ankle-joint reaction 

KZ Vertical knee-joint reaction 

KY Horizontal knee-joint reaction 

KN Normal knee-joint reaction (parallel to lower leg 

centre line) 

KS Shear knee-joint reaction (perpendicular to lower leg 

centre line) 

HZ Vertical hip-joint reaction 

HY Horizontal hip-joint reaction 

PF Patella-femoral contact force 

AT Achilles tendon action 

HM Hamstring muscle action 

GA Gastrocnemius muscle action 

GL Gluteal muscle action 

PT Patellar ligament action 

RF Rectus femoris muscle action 

SH Shin muscle action 

so Soleus muscle action 

QU Quadriceps muscle action 

ZO Vertical acceleration of foot 

YO Horizontal acceleration of foot 

AO Angular acceleration of foot 

ZA Vertical acceleration of lower leg 
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YA Horizontal acceleration of lower leg 

AA Angular acceleration of lower leg 

ZB Vertical acceleration of thigh 

YB Horizontal acceleration of thigh 

AB Angular acceleration of thigh 

WL, ML Lower leg weight (N) and mass (kg) 

WT, WL Thigh weight (N) and mass (kg) 

A1, A2 ... A4 Moment arms about foot centre of contact 

K1, K2 ... K8 Moment arms about knee centre of contact 

H1, H2... H9 Moment arms about hip centre of rotation 

BO Angle made by AT measured from vertical 

B1 Angle made by PT, measured from vertical 

B2 Angle made by HM, measured from vertical 

B3 Angle made by lower leg, measured from vertical 

B4 Angle made by SH, measured from vertical 

B9 Angle made by thigh, measured from vertical 
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3.7 Discussion and Conclusions 

A biomechanical model has been produced which allows calculation of 

five joint, reaction components and seven muscle forces using a three 

segment model and an inverse dynamics approach to its solution. The 

model affords comparison with others produced in the field of 

bioengineering for example, Paul (1967); Williams & Svensson (1968); 

Seedhom & Terayama (1976); Burdett (1982); and Proctor & Paul 

(1982). 

The roles of the muscles have been verified by EMG techniques and 

mathematical optimisation has been investigated, albeit 

unsuccessfully, in order to try to enhance the model. 

Whilst other techniques exist for the investigation of the human 

locomotor system, the process of simplifying the body to produce a 

biomechanical model presents the sports bioengineer with a most 

flexible analysis method. 
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_EXPERIMENTAL 
METHODS 

4.1 Installation, Calibration and Modification of Ecruipment 

A previous study by Harrison (1982) has outlined the basic data 

collection, transfer and analysis system. This used a Bolex 16 mm 

camera to film an athlete running across a Kistler force platform. 

Six components of force could then be recorded on an ultra-violet 

galvanometer. Hand measurements from the ultra-violet trace and the 

developed film were taken and then manually fed into a computer 

program on a microcomputer. The final output gave muscle forces and 

joint reactions corresponding to each frame of developed film for 

the foot in contact with the force platform (see figure 4.1). 

The limitations of 

below. 

1) Filminq speed 

second. This 

of 4.47 m. s-1 

showed the fo 

the above equipment configuration are outlined 

of the Bolex camera is a maximum of 64 frames per 

needed to be increased as for the running speed 

only, on average, nine frames of developed film 

ot in contact with the platform. 

2) The analogue signal trace output from the ultra-violet unit was 

not accurate enough due to the format of the actual trace (line 

thickness of 1 mm). Also the mode of operation of the 

electronic unit used to convert the electrical charges yielded 

by the quartz transducers within the force platform into 

proportional voltages and then into force, moment and 

displacement values was inadequate. This final conversion of 

voltages into moment and displacement data is obtained via the 

electronic unit's analog divider. It was specifically this 

unit that was unreliable because it only became operational 
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above a threshold value of 10% of the sensitivity settinq of 

the* charge amplifiers. Thus the first and last portion of the 

"Centre of Pressure" data calculated by the analogue divider 

were given as zero, as illustrated below, which was 

unacceptable in establishing specifically the position of the 

force vector on foot strike. 

UV Galvanometer Output 

PX - Centre of Pressure in X Direction 

RZ = Vertical Foot/Ground Force 

3) The memory storage space of the microcomputer, Commodor 64 

(PET), used for the data analysis was insufficient if a fully 

computerised data collection, transfer and analysis route was 

to be instigated. 
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4) Data collection, transfer and analysis time was generally 

lengthy, the process laborious and predominantly manual. 

5) Synchronisation of the force platform results with film data 

was difficult due to the relatively few frames of film and 

knowledge of exact foot contact time on the force platform. 

Hence refinement of the experimental equipment was needed, this 

included use of: - 

A Locam high speed camera capable of filming at up to 500 

frames per second (Hz). 

2) A 13D Digital Design and Development' 8-channel, 12 bit, 

analog-to-digital converter (ADC) unit capable of operating 

between 1000 Hz for one channel and 125 Hz for all 8 channels. 

3) A 'Summographic' diqitising tablet interface to the DEC-20 

mainframe computer. Operating size being 750 mm x 750 mm, with 

overhead projection (see Plate 4.1). 

4) Commodore 64 PET Microcomputer analysis, bypassing the analogue 

divider in the control electronics of the force platform to 

calculate displacement (centre of pressure or point of 

application of force) data along with the recorded force values 

via the A. D. C. (see figure 4.2). 

5) Microcomputer disc storage of data (stored on two discs each 

time to prevent data loss with corrupt disc/disc drive 

interface). 

6) Data transfer from microcomputer disc to DEC-20 mainframe 

computer memory via a mainframe compatible microcomputer 

terminal and disc drive. 
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Plate 4.1. Initial Data Analysis Equipment 
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7) DEC-20 mainframe manipulation of the two data sets with a 

polynomial cubic spline interpolation routine (Conte & Deboor, 

1980) 

The equipment configuration is summarised in Figure 4.3. 

Calibration of the equipment and data transfer routes shown in 

figure 4.3 were necessary prior to data collection. Calibration 

details are summarised below and presented in detail in Section 4.3. 

The Analogue to Digital Converter Unit (ADC) and Ultra-Violet 

Galvanometer (UV Galvo) were calibrated for sampling frequency and 

signal response with the UV Galvo also being used to determine the 

drift characteristics of the electronic control equipment of the 

force platform. The force platform was calibrated itself for point 

of force application, centre of platform and load accuracy using the 

apparatus shown in Plate 4.2. 

This equipment was further updated due to the Summoqraphics 

digitiser needing extensive servicing and being unavailable for 

approximately'six months and the overhead projection frame shown in 

Plate 4.1 becoming unoperational. The Commodore Pet microcomputers 

were also becoming obsolete and the mainframe compatible terminal 

was no longer operating reliably. 

Third and final data collection and analysis equipment configuration 

is illustrated In figure 4.4. It was based on the BBC microcomputer 

and as such a CIL-16 analogue to digital convertor was also 

incorporated into the system to speed up the data collection 

process. Front projection was utilised with the digitiser as being 
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Plate 4.2. Point Loader Used to Calibrate Force Platform 
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the most practicable methods available to the laboratory location of 

the tablet (see Plate 4.3). 

4.2 Experimental Procedure 

Although the equipment had been modified from previous studies 

(Harrison, 1982) and during the course of this study the basic data 

collection, transfer and analysis routes still existed and remained 

basically unchanged. The final experimental methods procedure was 

developed and consisted of the following. 

4.2.1 Data Collection 

Prior to the experimentation the Kistler force platform was 

installed in an external location berth in a 60 m roadway and 

allowed to reach ambient temperature for 1 hour. The film rate of 

the Locam high speed camera was selected and a calibrated 2 second 

sweep clock was filmed for film speed verification. In the initial 

study by Harrison (1982) the Bolex camera operated at 64 Hz. This 

gave on average 9 frames of useful data. On inclusion of the Locam 

into the system 180 Hz was initially chosen to match the selected 

sampling frequency of the 3D ADC. This gave niýarly 40 frames of 

data and was found to be excessive in analysis time and erroneous 

with respect to noise acquisition (Lees, 1980). Hence a frame rate 

of 120 Hz was selected, which gave on average 24 frames. 

Film scale was recorded prior to direct experimentation by recordinq 

a1 metre rule placed upon the centre of the force platform. 

Prior to experimentation anthropometric measures were taken off each 

subject as shown in Plate 4.5. This enhanced data from individual 
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radiographs of the subjects lower limbs. Each athlete was then 

allocated a pair of standard running shoes and a one legged white 

tracksuit (this highlighted the support leg over the non support leg 

as they crossed during mid stance) and was weighed in the clothing 

they would run in. The athlete was then asked to warm up by 

undertaking as many trial runs as necessary over the platform under 

filming conditions to achieve the correct speeds and full right foot 

contact on the force platform (without altering their stride to 

accomplish this). 2x 1000 watts flood lights illuminated the test 

area and background film identification numbers were used to co- 

ordinate film and force platform records. 

Once familiarised, each subject ran along the 60 m roadway and timed 

themselves over a 10 m span (5 m either side of the force platform), 

this gave them immediate feedback of their performance. Trails 

outside a+ 10% velocity tolerance band or with partial or unnatural 

foot contact, as determined by subject feedback, visual observation 

or force trace anomalies, were rejected until upto 10 qood trials 

had been obtaine d. On the subjects return up the roadway, if a 

successful trial had been noted, they advanced the background 

numbering system in recognition of success. The data could then be 

transferred to microcomputer disc storaqe and at the end of the 

regime transferred to DEC 20 mainframe storaqe. 

Radiographs of the lower limbs of each subject were obtained to 

enable production of individual 'bone models' of the legs as shown 

in Plate 4.4. This was deemed necessary in order to identify joint 

contact points, muscle lines of action, and origins and insertions 

for each individual subject and so improve accuracy. The use of 
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individual bone models has been shown to improve accuracy by 

reducing peak forces by 50% to more conservative and acceptable 

values (Harrison, 1982). This was performed after obtaining 

informed subject consent from each individual. 

The production of these individual bone models was preceded by 

collection of anthropometric data from the subjects lower limbs. 

Here foot length, floor to top of femoral condyles and patella to 

greater trochanter (obtained by palpation) could be recorded (Plate 

4.5). This was to enable accurate reconstruction of the bone models 

to take placet Spherically ended steel pins of known 'length (50 mm) 

were strapped vertically on the anterior and posterior aspects of 

the subject's limbs. This quantified the amount of divergence 

present with the radiographs and also permitted reconstruction of 

the developed radiograph films. 

Two radiographs of the limbs were then taken in the positions 

indicated in figure 4.5 and the divergence of the radiographs 

measured from the developed film using the above pins. This 

divergence could also be verified from the anthropometric data 

recorded earlier. 

Tracings were made, with a skin line included, from the 

reconstituted radiographs. The position of the hip was estimated 

because the complete leg could not be radiographed as this would 

nave meant exposing the subjects genital area. This was achieved by 

establishing the position of the greater trochanter and adding the 

correction factor shown in figure 4.6. 

The tracings were reduced to either 33% or 40% of real full size 
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FIGURE 4.5 Experimental Configuration for Establishment 

of Radiograms of Subject's Limbs 

a) Height of Radiographic Lens 

b) Positions Adopted 

I 

Fig. 4.5a 

1 

X-ray Film Plate 
0.43m x 0.35m 

on 

K-U. 13. L LI. LVIL ý 

Fig. 4.5L) 
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"The hip joint centre is located 

approximately 3cm above the most 

lateral bony prominence of the 

greater trochanter". From Patterns 

of Human Motion. Plagenhoef, S. 1971. 

I 

Ilip joint centre, lateral aspect is 

located 1cm from the "tip of femoral 
lini"'us 

trochanter anterior to the most 

laterally projecting part of femoral 

trochanter". From Biomechanics, of 

Human Motion. Williams, M. & 

Lissner, II. R. 1962. Sketch from 

Grays Anatomy 1980. 

'. te"). "I it, 8 

FIGURE 4.6. Hip Centre of Rotation in Relation to Greater 

Trochanter 
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thus correcting for radiograph divergence and cut from the 

photographic paper to make the bone models. The patella was wired 

to the tibia with fuse wire at a distance appropriate to the 

patellar ligament and from the corresponding origin and insertion 

locations. A second model of the foot, from the cuboid to the 

phalanges was wired to the first foot model, as shown in Plate 4.4, 

to facilitate the adoption of a flexible foot regime. Verification 

of the completed bone model could then be carried out by overlayinq 

the model onto the projected cine film. 

4.2.2 Data Processing 

Tne bone models, photographically reduced to either 33% or 40% of 

full size, were combined with the developed cine film which was 

projected overhead or frontally, also at 33% or 40% full size onto a 

Summographics digitizing table linked to the DEC 20 computer or a 

TDS digitiser linked to a BBC Model B microcomputer. Salient points 

such as muscle lines of action, segmental centres of gravity and 

instantaneous p9ints of joint contact were digitized for each frame 

of data during the stance phase as shown in figure 4.7. These data 

were combined with the force platform data using a piecewise 

polynomial cubic spline interpolation routine (Conte & Deboor, 1980) 

to give output at the original 180 Hz sampling frequency. 

A cubic spline routine was chosen for its ease of implementation and 

because of the lack of discontinuities in the data due to sudden 

change in data value. If discontinuities exist then end slopes have 

to be constructed to fit the two halves of the data together. As 

such, start and finish end slopes were calculated from the first and 

last two data. All other data were then splined between these end 
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slopes. 

With the two data sets constructed at the higher frequency of 180 Hz 

limb displacements and accelerations could be calculated and the 

data combined to calculate the relative position of the centre of 

pressure or point of force application on the force platform (Figure 

4.8). 

Following the calculation of the moment arms Al and A2 all muscle 

and joint forces, joint moments and muscular loading rates were 

calculated as illustrated in the following computer flowchart 

(Computer program is included in Appendix A3). 
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DATA ANALYSIS COMPUTER PROGRAM FLOWCHART : OPTTDS 

tiTART/RUN C)I'M'DS 

INITIALISE SCREEN CONTROLN 

(VIDENS 1113RARY SUBROUTINE) 

IDENTIPYING TERMINAL 

PRINT TO SCREEN 

PROGRAM TITI. F TO INITIATE 

FROM OPTION 2 

DIMENSION DATA FILES 

FOR DATA INPUT 

INPUT DATA FILE N: AM 
ýES 

LE UT (INPUT AND ourp 

: 

HLES) 

MORE YES 
THAN ONE 

Sf-r 

NO 

OK 
NO 

I YES 

OPEN DATA FILES 

TO READ AND OUTPUT 

DIMENSION MAIN 

VAPIABLES 

PRINT TO SCREEN 

DATA CONTROL MENU 

I R-d IMLý F-111 File. 
2 Re Alloc. Le Files for Manipulation 
3 

SEIT. CT 

E017NS 

4 Output To Scleell Only 
5 Output To Data File Oitly 

INPUT CHOICE ,6 Output to File & Screen 
7 Frid Progtain 
8 Auto RLIII (fOI- 11101-C than one file. 

Print to file 0111y) 

TO OPTIONS 
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OPTION 1: READ DATA FROM FILES 

READ DlGrl'ISED DATA (W[TH 

2 EXTRA FRAMES AT EACII END) 

SMOOTH SEGMENT COG AND 
ANGULAR DISPLACEMENTS USING 
EVERY SECOND POINT FOR 
GREATER PRECISION. A FIANNING 

NON-RECURSIVE FILTER USED TWICE 

CALCULATE ACCELERATIONS 
FROM SMOOTHED DATA USINC 

LANCZOS t. POINT ROUTINE 

SPLINE DATA BACK TO 

ORIGINAL DATA POINTS 

ANOTIIEI('\-Y'ES 
DATA sE-r / 

I NO 

RE -ASSIGN MEMORY LOCATIONS 

AS FIRST & LAST 2 POINTS NOW 
ZERO FOR ACCELERATION DATA 

\ READ FORCE PLATFORM DATA\ 

1 
*9 1 STAwr & FINISH 
OEFIDCAITAVCI)Jlý 

I? E-ASSIGN MEMOkY IADCATIONS 

TO EUMINATE BASE UNE 
DATA ON ALL CHANNELS 

PRFPARE ['ACII DIGITISED DA'rA 

SFA' FOR SI'IJNIN(; BY CALCULATING 
END SLOPES 

SPLINE EACH DATA srr 'ro 

FORCE PIATFORM DATA ITEMS 

RE-ASSIGN MEMORY LOCATION 

OF NEW DATA 

'ANOTHER\ 

DATA SET, " 

TO Nil: NI) 

REPEAT FOR 
ALI. DISPLACEMENT 

DATA 

REPEAT FOR 
All, DISPIACEMENT 

DATA 
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OPTION 2: RE-ALLOCATE FILES FOR MANIPULATION 

FROM MENU 

D, ""NS'ON ')AýrrAA 

I ý, ,, 
,S FOR DA 

INPUT 

INPUT NEW 
DATA FILE 

NAMES 

PROCEED AS 
PER PAGE 1. 

104 



OPTION 3: CALCULATE FORCES 

FROM MENU (At-FER OPHON I ONLY ) 

CONVERT VOLTAGE VALUES FROM 
FORCE PLATFORM INTO 
FORCE + DISPIACEMENT 

DATA 

CALCLII, %TE CENTRE OF 

PkESSURE DATA REPEAT 
UN'rii. 

All, D ATA 
CALCULATED 

FINISH 
NO 

YES ý-4 

CA 1, c tj l'Al'E mu (, l-E 

FORCES AND j() 1 NT 

REACTI () NS 

CALUIATE JOINT 

MOMENTS 

RETEXI 
UNTIL 

All. DATA 
CALCULATE 11MIJ ALCULATED 

ANGLES 

CALCULATE MUSCUIAR 

LOADING RATES 

\ NO 
FINISIJ 

y Es 

ESULTS TWICE 

NON-RECURSIVF 

.. TEI? 

To M EN IJ 
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OPTION 4: OUTPUT TO SCREEN ONLY 

FROM MENU 

I 

PRINT TO SCREEN 

SELECTED RESULTS 

TO MENU 

OPTION 5: OUTPUT TO DATA FILE ONLY 

FROM MENU 

PRINT TO DATA FILE 
MUSCLE FORCES 
JOINT REAcTiONS 
JOINT MOMENTS 
I, IM11 ANCLES 
LOADING HATES 

TO MENU 
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OPTION 6: OUTPUT TO FILE & SCREEN 

FROM MENU 

PRINT TO SCREEN 

(OPTION 4) 

1- 

PRINT TO FILE 

(OPTION 5) 

1 

TO MENU 

OPTION 7: END PROGRAM 

FROM MENU 

CLOSE DATA FILES 

END 
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OPTION 8: AUTO RUN ( For more than 
one file. Print to file only 

FROM MENU 

READ DATA FILE 

sE'r AS OP'1ION I 

CALCULATE AS 
PER OPTION 3 

--f 

,U PRINT RESULTS TO 

FILE AS OPTION 5 

ANOTHER YES 
FILE SE, r 

NO 

TO MENU 
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4.2.3 Data Analysis 

In a previous study (Harrison, 1982) data were analysed with and 

without D'Alemberts inertia forces to test the effect of using a 

dynamic model. For the primary biomechanical model presented in 

section 3.4.1 the following results were obtained. 

TABLE 4.2.1 Comparison of Results from Static and Dynamic Models 

Selected Muscle & Joint Forces (BW) 

Model QU HM AN AS KZ 

Static 19.2 15.2 1111 6.3 24.5 

Dynamic 17.2 12.3 11.0 5.3 23.1 

DifferenceM 10.4 19.1 0.9 15.9 5.7 

Thus it can be seen that the inclusion of these inertia forces 

results in a decrease of 10.5% on average and as such all further 

results from the biomechanical models are for the fully dynamic 

case. 

Overall the procedure and time taken in performing the data capture, 

processing and analysis can be shown as follows. 
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TABLE 4.2.2 Gross Data Analysis Procedure and Time Taken 

Title Details Approximate Time 
Taken in Hours 

Data Collection Subjects running over 
platform whilst being 1.5 per 30 runs 
filmed 

Radiograph Production Anthropometric data 
collection and radio- 1 per subject 
graph production 

Bone Model Production Reconstruction of radio- 
graphy, photography and 1 per subject 
model making 

Digitisation Approximately 24 frames 1 per subject 
per run 

Data Transfer To Mainframe Computer 1 per 30 runs 

Analysis Splining, plotting and 1 per 30 runs 
data storage 

Average Time Taken Per Run 1.2 hours 

As can be seen from Table 4.2.2 the average time per run for overall 

data analysis is 1.2 hours and as 339 runs were analysed throughout 

the study then a total analysis time of over 400 hours has been 

consumed in the collection of useful data. 

To estabILsh the repeatability of the data collected from these 339 

data sets three investigations were undertaken. Here the 

repeatability of the data processing was evaluated, firstly to 

establish if there were any siqnificant differences in digitising 

performance between days of the week and secondly to assess if there 

were similar differences during a single day. 

In the fxrst study film from one subject was diqitised five times 

over a full working week, the time of day of that analysis being 

kept constant. The data were combined with its corresponding force 
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data and three muscle and four joint force curves were produced. A 

2-way anova statistical test was performed on these seven selected 

measures and significant differences between days were found for all 

items, levels of significance ranging from p>0.0005 to p)0.04 

with an average value of p>0.01. This suggests that digitisation 

of each subject's run should be carried out on a single day. 

In the second study film from one subject was analysed twelve times 

in succession on one day. The digitised data was combined with 

force data and pertinent peak muscle and joint forces were selected 

before a statistical error analysis was performed (Bajpai et al., 

1974). From these data the required sample size for a given 

accuracy level was established. A suqgested target accuracy of ±3% 

was used here to establish this sample size. The following results' 

were obtained. 

TABLE 4.2.3 Selected Muscle or Joint Peak Force Data used in 

Repeatability Study 

Item Peak Range (N) Mean Peak (N) 3% of Mean Standard 
Peak (N) Deviation ±(N) 

GA 5317-4967 5184 155 110 

QU 6139-5532 5827 174 196 

AZ 7138-6788 7004 210 110 

KN 8060-7389 7695 230 222 

For a 3% error, from the mean of each muscle and joint force (99.9% 

confidence level or 3.3 standard deviations), the followinq equation 

was used to establish the respective number of runs required (NR); 

(3.3 x Standard Deviation) 
2 

R 3% of Mean Peak 

These calculations gave the following results; 
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TABLE 4.2.4 SamPle Sizes Required to give +-3% Repeatability 

I tem NR 

GA 6 

QU 14 

AZ 3 

KN 10 

Average =8 

Overall, the number of runs required per subject to achieve a final 

repeatability figure of 13% is eight (p = 0.1%). Similar 

calculations show that ten runs per subject would result in 

repeatability within +2.6%. 

Thus between seven and ten runs per subject were employed in this 

analysis and repeatability is suggested to be approximately j3%. 

This figure is, however, not a representation of the model's 

validity which can only be achieved, as suggested in Section 3, with 

direct force measurements such as strain gauges implanted into joint 

replacements and transducers implanted into muscular-tendon 

complexes. Neither does this figure represent the reproductability 

between investigators using the same model and method. This can 

only be established when a number of independant investigators 

analyse the data separately. 

Thus, the +13% figure of reliability quoted here represents a level 

of skill and to some extent accuracy in digitising acquired by the 

single investigator used in this study. To assist the achievement, 

of this required performance value between seven and ten runs per 

subject per speed were employed and each subject's data (per speed) 

was analysed on one day. 
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Table 4.3.1 Summary of Calibratory Work Performed on Data 

Collection System (See page 112) 

I tem Detai ls Results 

(See Figure Kistler force platform's 
4.2) Electronic Unit adapted 

for use with either an 
ADC or a UV galvonometer 

2. (See Tables ADC frequency 
4.3.2) calibration 

1.4% error reduced to 
0.4% error(reading 
slow) 

3. (See Table UV Galvonometer frequency 4% error noted 
4.3.3) calibration (reading slow) 

4. (See Table W Galvonometer drift 35 N/min (worst case) 
4.3.4) calibration 

5. (See Table Kistler force platform 3.1% overall P. O. L. A(1) 
4.3.5 and point of load application error noted 
Plate 4.2) (P. O. L. A. )(AX & AY) 

calibration 

6. (See Table Kistler force platform 
4.3.6) load calibration 

0.989 

7. Kistler force platform 
load & point of load 
application recalibra- 
tion after change amp. 
modification (12.5% 
load error noted) 

8. CIL-16 ADC & BBC B 
Computer Program 
verification 

1.05% underweighing 
noted regression = 

2.0% overall P. O. L. A. 
error noted 
0.8% underweighinq 
noted regression 
0.997 

To establish 5 channel 
input of 240 samples, 
185 Hz frequency and 
estimated sampling time 
of 1.3 seconds 

(1) Point of load application. 
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4.3 Calibration of Equipment 

4.3.1 Introduction 

At each stage of installation and at various times during the 

testing regime calibration of all the equipment used in data 

collection was undertaken as summarised in Table 4.3.1. This 

included, for example, the two analogue to digital converters (ADC), 

the force platform and an ultra violet (UV) mirror galvonometer. A 

summary of the full list of calibrations follows. 

4.3.2 Analoque to Digital Converter Calibration 

Following modification of the force platform's electronic unit as 

outlined in Section 4.1 and presented in Figure 4.2 both the ADCs 

used were calibrated by inputting known signals. Results of these 

tests are presented in the following Table 4.3.2. 

TABLE 4.3.2a Initial Calibratiuon of '13D" A. D. C. 

Input Frequency '= 50 Hz (Mains) 
Selected Frequency of Sampling = 900 Hz 

Trial Output Frequency Recorded (Hz) Error(%) 

1 888.5 1.28 

2 889.5 1.17 

3 886.1 1.54 

4 886.3 1.52 

5 887.0 1.44 

I Mean Error 1.39% 
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TABLE 4.3.2b Final Calibration of "3D" A. D. C. 

Input Frequency = 50 Hz (Mains) 
Selected Frequency of Samplinq = 900 Hz 

Trial Output Frequency Recorded (Hz) 

1 50.36 

2 50.40 

3 50.02 

4 50.08 

Mean 50.21 

Error 0.42% 

Thus the results indicated that sufficient accuracy could be 

expected from equipment and data collection could proceed. 

4.3.3 U. V. Galvonometer Calibration 

This was performed in two separate experiments, firstly the 

frequency 'response' was calibrated then the drift characteristics 

established. For the frequency calibration a known input (National 

Grid 'Mains') signal was used and a four percent variation in output 

signal was noted as shown in Table 4.3.3. 

TABLE 4.3.3 UV Galvo Frequency Calibration 

Item Frequency (Hz) No. of Cycles Sample Time (seconds) 

Mains Input 50 72 1.44 

Uv Output 48(l) 72 1.5 

Error 4% 

output Frequency No of Cycles 
Sample Time 
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For the dr3. ft characteris tics, the galvonometer was connected to the 

Kistler Force Platform to be used in this study. No load was 

applied and the amount of drift from a datum settinq was noted after 

10 minutes as recorded in Table 4.3.4. 

TABLE 4.3.4. UV Galvo. Drift Test 

UV Magntfication Setting: - 1 v/cm 
Platform Sensitivity: - 500 Channel Units/Volt") 

Channel 
UV Drift After 

10 Minutes in cm 

UV Drift in 
Channel Units 

After 10 minutes 

UV Drift in 
Channel Units/Min 

FZ 0.7 cm 350.0 N 35.0 N/min 

FY 0.275 cm 137.5 N 13.75 N/min 

FX 0.025 cm 1.5 N 1.25 N/min 

AY 0.35 cm 1.75 cm 0.175 cm/min 

AX 0.25 cm 1.25 cm 0.25 cm/min 

Mz 0.075 cm 0.375 Nm 0.0375 Nm/min 

(1 ) Channel Un2. ts = Newtons for PZ, FY, FX; cm for AY, AX and 

Nm for MZ 

The worst chann6l could thus be considered to be FZ at 35 N/min but 

as the average time to perform each subjects run was only one 

m. inute, and resetting could be performed before each run, this was 

considered reasonable. The UV Galvonometer was only to act as back up 

to the main data recording equipment outlined in Section 4.1 and 

thus these for frequency and drift were acceptable. 

4.3.4 Force Platform Calibration 

Mith the Kistler Force Platform's electronic unit modified to 

calculate the point of application of force indirectly as outlined 

3. n Section 4.1 verification was performed on the Platform, ADC and 
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corresponding computer program. A tripod or point loading frame of 

known weight (Plate 4.2) was used to apply loads onto random 

locations on the force platform. The actual or measured and 

calculýted results are presented in Table 4.3.5. 

TABLE 4.3.5 Force Platform Positional Calibration 

weight used = 20 kg & 0.301 kg +AX 
= 199.15 NI 

Q4 Ql 

Q3 Q2 

-AY +AY 

-AY 

Position Measured values(mm) Program Results(mm) Absolute Error 
AX AY AX AY -AX. - AY 

Q1 42 184 41 181 2.4% 1.6% 

Q2 -109 156 -108 159 0.9% 1.9% 
Q3 -144 -243 -135 -234 6.3% 3.7% 
Q4 79 -127 so -132 1.3% 3.9% 

Centre 0 0 1.4 0.6 - - 
Q2 -63 69 -60 72 4.8% 4.3% 

Q2 -90 107 -87 110 3 3% 2.8% 
Q2 -110 134 -108 138 1.8% 3.0% 
Q2 -144 180 -138 182 4.2% 1.1% 
Q2 -169 215 -162 212 4.1% 1.4% 

Q2 -187 273 -183 263 2.1% 3.7%. 

Mean error 3.12 2.75.. 

Overall. error - -. 2.95 - .... , 

As shown an overall error of 2.9% in the calculation of the point of 

application of load was obtained. 

Using the same equipment the load response of the force platform was 

tested by applying varying loads. The following results were 

obtained. 
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TABLE 4.3.6. Calibration of Force Platform's Load Response 

Applied Load 
(kgs) 

Recorded Load 
(kgs) 

Error 
(%) 

10 9.96 0.45 

20 19.96 0.21 

40 39.97 0.08 

60 58.14 3.11 

70 68.49 2.16 

70 68.94 1.51 

60 59.58 0.70 

20 19.96 0.21 

These results show a mean error of 1.05% with a regression slope of 

0.989. 

Both these results were found unacceptable and after modification to 

one of the force platform's electronic unit's charge amplifiers the 

point of load application and load response were re-assessed and the 

followed results obtained. 

Point of Load Response Overall Error = 2.0% 

Load Response Mean Error 0.77%(Reqression 
Slope = 0.997). 

These results were deemed acceptable and data collection could take 

place. 
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5. RESULTS 

Four phases of experimentation took place which corresponded to the 

development of the biomechanical models outlined in Section 3.4. 

Firstly sample muscle and joint forces were calculated from four 

subjects running at 4.47 ms-1 in order to establish the data 

collection, processing and analysis route. using this as a 

foundation the second phase of experimentation evaluated different 

running styles of front- and rear-foot strikes also at 4.47 ms-1. 

Two groups of seven athletes were employed here. In the third stage 

of this investigation, running speed was varied and nine athletes 

performed the experiment at the velocities of 3.83 ms-1,4.47 ms-1 

and 5.36 ms-1. The final phase concerned enhancing the 

bioengineering model with the inclusion of the soleus muscle and 

data was reanalysed from the third phase at all speeds for the same 

nine subjects. 

All subjects were highly experienced athletes, members of local 

athletic clubs, who regularly completed 70 km per week in training 

and raced at distances from 800 m to marathon. Common elements 

across all regimes involved the same footwear for all subjects, warm 

up and familiarisation routines, film and force platform co- 

ordination and data analysis procedures. Results obtained for each 

phase varied in their content depending on, as suggested above, the 

model and the relevance to the object proposed. All graphs are 

presented with a time based abscissa starting at foot strike and 

terminating at take off and are mean curves from all subjects. 

As reported in Section 4.2 all data were analysed with and without 

D'Alemberts inertia forces. The inclusion of these elements reduced 
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the mean peak muscle and joint forces by an overall value of 

approximately 10% and hence all results are presented for a fully 

dynamic bioengineering model of the lower limbs. Significance 

between speeds, styles and model employed were tested for 

significance using pair t tests. These differences are presented 

with each result section. 
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5.1 Phase One: Establishment of Muscle and Joint Forces 

The model outlined in Section 3.4.1 was used to establish the 

experimental procedure. Table 5.1.1 summarises the testing and 

model basis for these results and subject information is included in 

Table 5.1.2. 

TABLE 5.1 .1 Phase One Experimentation 

Item Data 

Speeds (ms-1) 5.36 4.47 3.83 

Subjects - 4- 

Runs/Speed") - 29 - 

Model Includes: 

SH, Shin - YES - 

SO, Soleus - NO - 

(1) Total runs for all subjects, average of 7 runs per subject. 

Data are presented either graphically or numerically. Graphical 

data (Figs. 5.1.1 to 5.1.3) are mean curves from all subjects and a 

full summary of'all the results is given in Tables 5.1.3 to 5.1.5. 

Table 5.1.3 shows the mean peak joint moments for the four subjects 

and the overall mean for all subjects. Knee joint moments are the 

highest at 188 Nm while the maximum hip moment is the smallest at 

98 Nm. These results afford good comparison with the published data 

presented in Table 2.5-3. 

The muscle and joint forces generated within the human lower limbs 

are presented for all subjects in Table 5.1.4 in body weight 

units(BW), whilst Figs. 5.1.2 and 5.1.3 show the muscle and joint 

forces, respectively, in newtons. The largest of the mean peak 
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muscle forces present is that of the quadriceps (QU) group at 22.0 

BW (mean for all subjects). The gastrocnemius (GA) develops the 

next largest muscle force at 7.3 BW, whilst the shin muscle group 

(SH) develops only 0.8 BW during the first 9.3% of the stance phase 

as determined by the ankle joint moment. The hamstrings also 

exhibit a relatively low level of activity at 3.1 BW. 

Joint forces are greatest at the knee. The compressive component 

exhibits a mean peak maximum of 33.0 BW and the shear component a 

maximum of 2.5 BW. The compressive force of the ankle joint is 9.0 

BW whilst the shear component is 3.9 BW, but is of an opposite sense 

to the shear component of the knee joint. 

The high muscle forces developed during the stance phase occur over 

a short period of time and, as can be seen from Fig. 5.1.2, peak 

values for the quadriceps muscle group are reached after 

approximately 0.09 s. This short time period gives muscular loading 

rates of on average 175 kN s-1 (as displayed in Table 5.1.5). The 

gastrocnemius muscle can be seen to exhibit a more gradual loading 

rate, and Komi et al. (1985) quoted values of 100 kN s-I for an in 

vivo measurement of the loading rate of the achilles tendon. 
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TABLE 5.1.2 Subject Information 

0" 

Subjects (n=4) Age (years) Height (m) Weight (kg) 

Mean 21.50 1.78 65.3 

Standard deviation +0.58 +0.66 +3.3 

Range 21-22 1.72-1.87 62.5-69.8 

TABLE 5.1.3 Summary of Joint Moment Results 

Maximum joint moments (Nm)(mean of seven trials per subject) 

Subject number Ankle Knee Hip 

1 -155 -183 137 

2 -169 -182 83 

3 -198 -192 103 

4 -172 -194 70 

Total mean -174 -188 98 
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FIGURE 

FIGURE 5.1.2. Mean Muscle Forces During Stance Phase for Four Subjects 

FIGURE 5.1.3. Mean Joint Forces During Stance Phase for Four Subjects 
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5.2 Phase Two: Front Foot Strikers versus Rear Foot Strikers 

Fourteen highly experienced and well trained male middle distance 

athletes were selected on the grounds of their athletic 

performances. This group included one European Champion, one Welsh 

International, five National student representatives with the 

remainder being top class club representatives in the North West of 

England. Seven of these athletes exhibited rear foot strike 

patterns as identified by their foot/ground reaction force profile 

and their recorded foot contact centre of pressure pattern (Cavanagh 

& Lafortune, 1980). The remaining seven being grouped together into 

fore foot strikers. Table 5.2.1 summarises the experimental 

methodology and Table 5.2.2 displays subject data. 

TABLE 5.2.1 Phase Two Experimentation 

Item Data 

Speeds (m. s-1) 5.36 4.47 3.83 

Subjects - 14 - 
Runs/Speed(l) - 101 - 

Model includes: 

SH, Shin - YES - 

SO, Soleus - NO - 

(1) Total runs for all subjects, average of 7 per subject 

The results for the two groups are presented graphically in Figures 

5.2.1 to 5.2.7 and are summarised in Table 5.2.3. Standard 

deviation bands are not included to assist comparison between 

groups. 

Figures 5.2.1 to 5.2.3 show differences between the rear and front 

strikes in the muscle groups gastrocnemius, shin, quadriceps and 
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hamstrings. For the gastrocnemius activity the rear foot group have 

a much more defined peak than the front foot group and this peak 

appears somewhat phase shifted. The converse is true for the 

quadriceps muscle group and the rear foot group shows initial 

muscular activity. more significant profile differences occur in 

the hamstrings although for both an initial peak, followed by a 

reduction in tension then a gradual increase to peak values is 

observed. The negative force values presented in the figure are 

minimal and would normally be viewed as representing a quiescent 

state. 

The joint reaction forces are represented in Figures 5.2.4 to 

5.2.7. Both groups profiles are very similar for the ankle joint 

shear and compressive components (Figures 5.2.4 and 5.2.5 

respectively). More subtle differences occur in the knee joint 

compressive component (Figure 5.2.7), even though the peak values 

occur at the same time, the loading of the rear foot group begins 

earlier then levels out to a more 'gradual' maximum value. The knee 

joint shear components exhibit the greatest profile differences 

between groups as the rear foot group's profile is predominantly 

positive (posterior-anterior) whilst the front foot group's is 

almost entirely negative (anterior-posterior). The profiles exhibit 

similarity however in that they initially decrease to a minimum 

value, then increase to a maximum before fluctuating back to zero 

through the secondary peak. 

All these results are summarised in Tables 5.2.3 to 5.2.6 with the 

significant differences between the groups peak muscle and joint 

forces identified in Table 5.2-3. Table 5.2.5 shows the shin muscle 
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activity time for both groups in seconds and as a percentage of the 

total foot contact time. The front foot group's activity time is 

less than that for the rear group (8.8% compared to 10.5%), however, 

this was not found to be significant due to high intra group 

variance. Table 5.2.4 shows the foot/ground contact data for the 

experiment and here the greatest differences between groups is found 

in the foot contact times; the front foot strikers contact time 

being the shorter of the two, 0-19s compared to 0.20s. 

The differences between groups which were found to be significant, 

are summarised in Table 5.2.6. 

0 
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TABLE-5.2.4 Foot/Ground Reaction Forces and Foot Contact Time 

Group 

Front 

Rear 

Vertical Force (RZ) 

(BW) 

2.90 

2.83 

Contact Time (CT) 

(S) 

0.193 

0.202 

Significant 
Difference 

p< 1% < 

TABLE 5.2.5 Shin Activity Time in Seconds and as a Percentaqe of 

Overall Foot Contact Time 

Shin Activity Time 
in seconds 

Group 5E 

Front 0.017 : LO. 013 

Rear 0.021 +0.011 

Shin Activity as 
Percentaqe of Foot 

Contact Time 

Per Group Overall 

8.8 

10.5 9.7 

No significant differences found 
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FIGURE 5.2.1. Gastrocnemius & Shin Muscle Force Mean Curves for 

FIGURE 5.2.2. Quadricep Muscle Force Mean Curves for Rear 
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Rear and Front Foot Strikers 

and Front Foot Strikers 



FIGURE 5.2.3. Hamstring Muscle Force Mean Curves for Rear 

and Front Foot Strikers 

133 



FIGURE 5.2.4. Ankle Joint Shear Reaction Mean Curves for 

Rear and Front Foot Strikers 

FIGURE 5.2.5. Ankle Joint Normal Reaction Mean Curves for 

134 

Rear and Front Foot Strikers 



FIGURE 5.2.6. Knee Joint Shear Reaction Mean Curves for 

Rear and Front Foot Strikers 

FIGURE 5.2.7. Knee Joint Normal Reaction Mean Curves for 

Rear and Front Foot Strikers 
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5.3 
_Phase 

Three: Analysis between Running Speeds 

Three speeds representing a spectrum of middle distance racing and 

training velocities were adopted, these being, 5.36 ms-1 (five 

minutes per mile), 4.47 ms-1 (six minutes per mile) and 3.83 ms-1 

(seveý minutes per mile). 

Five minutes per mile for 26.2 miles is near world record pace 

(equals 2 hours and 11 minutes) and gives a 31 minute 15 second ten 

kilometer time which is a respectable time for a good club runner. 

Six minutes per mile is a typical middle distance training speed, 

and as outlined in Section 2.3 has become a standard biomechanical 

testing speed. 

Seven minutes per mile for the full marathon distance would result 

in a finishing time of 3 hours and 3 minutes, a time achievable by 

most club marathon runners and a time bettered by 2,215 runners in 

the 1988 London Marathon (2 runners per second crossed the line 

during the finishing times of 2 hours 57 minutes and 3 hours. 

Nine experienced subjects were employed as outlined in the summary 

presented in Tables 5.3.1 and 5.3.2. 

TABLE 5.3.1 Phase Three Experimentation 

Item Data 

Speed ms-1 5.36 4.47 3.88 

Subjects 9 9 9 

Runs per speed(l) 61 57 51 

Model includes: 

S11, Shin Yes Yes Yes 

So, Soleus No No No 

(1) Total runs for all 

subjects ie average 

of 6 per subject per 

speed 
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The results for the three speeds are presented graphically in 

Figures 5.3.1 to 5.3.5 and summarised in Tables 5.3.3 to 5.3.7. 

Graphical data is presented in newtons and tabular data in body 

weight (BW) units where appropriate. 

Table 5.3.3 and Figure 5.3.1 show the joint moments during stance 

phase for the three speeds and as can be seen from the data there is 

little difference between the results at these speeds. The peak 

forces were not found to be significantly different with running 

speed and whilst the largest moment is reported in the ankle joint 

(plantar flexion) at -225 Nm at 5.36 ms-1 the largest hip moments, 

both flexion and extension, are reported at 185 Nm and -53 Nm for 

the slower speeds. Knee joint peak moments are completely 

unaffected by speed and can be seen to be -189 Nm for all 

velocities. 

Graphically the hip can be seen to exhibit rapid flexion followed by 

extension before a final flexion prior to toe off. As speed of qait 

decreases this change over from flexion to extension take 

proportionally longer whilst the change back to flexion appears to 

remain constant in the stance phase cycle. The only significant 

differences found between speeds were recorded for 4.47 ms-1 and 

5.35 ms-1 (p < 0.02). 

The knee joint moment is somewhat smoother than the hip with a 

predominent extensor moment but representative flexor moment seen to 

be exhibited only for the two faster speeds. The maximum moment 

occurs later in the stance phase cycle as speeds decrease and would 

appear to be moving more in line with the ankle moment curve for the 

3.83 ms-1 speed. 
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The ankle is the last of the joints to reach its peak, this peak 

corresponding in time to the peak propulsion ground reaction 

force. No significant differences were found with change in speed. 

mean peak muscle forces are displayed in Figures 5.3.2 and Table 

5.3.4. The largest forces are reported in the quadricep muscle 

group (QU) at 18.2 W whilst the gastrocnemius (GA) has a maximum 

value of 11.4 BW and the hamstrings (HM) 2.0 BW. The shin muscle 

(SH) group's activity is not clearly identified graphically but 

represents, at most, the first 0.016 seconds of the stance phase and 

has a maximum value of 0.44 BW. No significant differences were 

found between speeds for all peak muscle forces. 

Graphically the quadricep force curves exhibit two steps during load 

application and one during load removal. These steps become less 

noticeable as speed decreases. Significant, however, is the 

reduction to almost zero after only approximately 65 to 70 percent 

of the stance phase. This compares favourably to the 50 to 60 

percent activity recorded with EMG during model verification (see 

Section 3.5). 

The hamstring muscle force, the lowest of all muscle groups in the 

model, exhibits an initial peak correspondinq to the hip joint 

moment peak. Thereafter, apart from a secondary maximum at mid 

stance, possibly corresponding with the maximum knee extension 

moment, the hamstring force just fluctuates with a nominal positive 

value. 

Apart from the faster speed, the gastrocnemius force curve could 

almost be described as a 'normal distribution' curve. 
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Figures 5.3.3 to 5.3.4 and Table 5.3.4 show joint reaction data for 

all speeds and maximum reactions are reported in the knee joint 

(normal, KN) at -31.6 BW (the negative representing a compressive 

sense) and the ankle joint (normal, AN) at -11.9 BW. The shear 

components for knee (KS) and ankle (AS) are a maximum of -2.1 and 

-7.2 respectively, here the negative represents the anterior- 

posterior sense. Whilst the general trend is a reduction in mean 

peak force with speed (KS is the only exception) the only 

significant differences were found for the ankle joint shear 

component, AS; p 0.001 for differences between 5.36 ms-1 and 3.83 

ms-1 and p 0.10 for differences between 5.36 ms-1 and 4.47 ms-1. 

Graphically, as shown in Figures 5.3.3, AN exhibits a small step 

corresponding to the ground reaction force impact peak, and apart 

from the fastest speed also exhibits a small step during force 

reduction. The major peak is at mid stance and corresponding to the 

ground reaction propulsion peak. The AS force trace is posterio- 

anterior in sense for approximately the first 15% of the stance 

phase which would correspond to the braking action at heel strike. 

The knee joint shear force fluctuates about the zero value with two 

noticeable peaks in the first third of the cycle. As speed 

decreases the curve shifts more negative such that the positive peak 

present at 5.36 ms-1 becomes negative. 

very little differences are detectable for the knee joint normal 

force (Figure 5.3.4a) with speed except for a stretching out of the 

cycle over the longer time base. Two steps in the curve are 

present, the first corresponding to the maximum foot/ground impact 
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peak and the second during reaction reduction. 

The patella-femoral contact force (PF) is reprsented in Figure 

5.3.4b and as can be seen very little difference can be seen in the 

curves form. Two major, almost equal peaks exist, the second being 

the greater of the two, at -5.0 BW for the faster speeds. The first 

peak could correspond to the foot/ground impact peak and the second 

to the propulsion peak. 

As can be seen from Figure 5.3.5 and Table 5.3.5 foot ground 

reaction force curves and peak values are similar for all speeds 

showing relatively high subject repeatability. The only significant 

differences found between all speeds were in the foot contact times 

(CT) and the horizontal ground reaction force (RY). Here contact 

time decreased from Oo225 seconds to 0.191 seconds for the overall 

increase in speed. All other foot/ground data reduced with speed 

but not significantly except for the peak propulsion vertical 

reaction force which did decrease significantly (p < MO) from 3oO4 

Bw to 2o84 BW over the extremes of speed. Impact peaks and impact 

peak loading rates were highest for the 5o36 ms-1 speed at 2.66 BW 

and106 kNos-1 respectively. 

Table 5.3.6 displays muscular loading rates for the tricep surea 

(TS) and quadricep (QU) groups occurring at heel strike. Maximum 

muscular loading rates were reported for the faster speed, 

129 kN. s-1 for TS and 340 kN. s-1 for QU. These loading rates did 

not reduce significantly with speed, except at the two extremes, to 

109 kN. s-1 and 299 kN. s-1 respectively. 

Kinematic data is presented in Table 5.3.7. Here the position of 
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the lower limbs at heel strike are represented by the amount of knee 

flexion and the angle of the shank, maximum knee flexion is also 

recorded. Significant differences were found between speeds for a 

number of aspects and generally as speed increases the amount of 

knee flexion at heel strike increases as does the shank angle. 

maximum knee flexion is unaffected at between 38 and 40 degrees. 

TABLE_ 5.3.2 Subject Information 

Age(years) Height(m) Weiqht(kq) 

Mean 23.2 1.76 69.3 

Standard Deviation 3.5 0.02 6.1 

Range 20-28 1.72-1.80 60.6-81.4 

TABLE 5.3.3 Mean Peak Joint Moments in Nm 

Speed(ms-1) Ankle Knee Hip 
Max Min 

5.36 -225 -189 177 -46 
4.47 -214 -189 150 -53 
3.83 -218 -189 185 -48 
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FIGURE 5.3.1. Net Joint Moments for Three Speeds 

a) 5.36 m s-1, b) 4.47 m s-1, c) 3.83 m S-1 
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FIGURE 5.3.2. Gastrocnemius, Quadricep and Hamstring 
Muscle Forces for Three Speeds 

a) 5.36 m s-1, b) 4.47 m s-1, c) 3.83 m s-1 
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FIGURE 5.3.3. Ankle Joint, Shear & Normal, and Knee 
Joint Shear Reactions for Three Speeds 

a) 5.36 m s-1, b) 4.47 m s-1, c) 3.83 m s-1 
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FIGURE 5.3.4. (a) Knee Joint, Normal and (b) Patella-Femoral 

Reactions for Three Speeds 
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FIGURE 5.3.5. Vertical Ground Reaction Force Curves 

for Three Speeds (see Figure 5.3.6 for legend) 
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5.4 Phase Four: Model Enhancement 

Using the subjects and testing regime outlined in Section 5.3 (see 

Table 5.3.2) the model was manipulated to include the soleus 

muscle. As the input data to the model was unaltered, ground 

reaction forces, kinematics and joint moments were unaffected and 

only data for muscle and joint forces and muscular loading rates is 

presented. 

Table 5.4.1 Phase Four Experimentation 

Item Data 

Speed (m. s-1) 5.36 4.47 3.83 

Subjects 9 9 9 

Runs per Speed") 30 57 25 

model Includes- 

SH, Shin Yes Yes Yes 

so, Soleus Yes Yes Yes 

(1) Total runs for all subjects (Data reanalysed from Phase Three) 

Comparison between speeds was not possible here due to the smaller 
I 

sample sizes, and large inter- and intra-subject variences obtained 

(examples of these variences is shown in Table 5.4.2. ). Similarly 

comparisons between models was not attempted for these two speeds 

due to the unequal sample sizes represented. 

Figures 5.4.1 to 5.4.2 show the differences in results obtained for 

the enhanced model as against the data presented in Section 5.3 

(referenced as the Normal Model). All results are for 4.47 ms-1 and 

only those values affected by the enhancement are displayed. Thus 

data from AN, AS joint reactions, foot/ground reactions, kinematics 

and joint moments are not tabulated. 
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As can be seen from figure 5.4.1a the gastrocnemius force has been 

halved but a slightly less smooth curve obtained. The curve also 

represents the soleus muscle force such that peak values of 5.35 BW 

were recorded for both instead of 10.7 BW previously solely 

attributed to the gastrocnemius. Tests for significance were not 

performed here. 

The quadricep'peak muscle force was reduced from 18.2 BW to 15.0 BW 

(p < 0.001) for the new model with a smoother force profile as 

displayed in figure 5.4.1b. Conversely the peak hamstring muscle 

force was increased with the inclusion of the soleus into the model, 

1.8 BW to 2.8 BW (p < 0.05). This was caused by a much more severe 

initial loading peak occurring at heel strike (see Figure 5.4.1c). 

Thereafter the force level decreased almost to zero before 

increasing to a plateau prior to toe off. This later part of the 

force curve is almost a mirror image of the previously obtained data 

but is still relatively low, less than 1000 N, when compared to all 

other muscle forces. 

For the knee joint reactions (Figure 5.4.2) the normal aspect KN is 

reduced from -31.0 BW to -21.3 BW (p < 0.0005) with a smoother force 

profile but the shear aspect KS is generally unaffected (-2.0 BW to 

-2.4 BW but non significant) except for a longer peak plateau around 

mid stancel The patella-femoral contact force is reduced with the 

inclusion of the soleus with the model, -5.0 BW to -4.1 BW 

(p < 0.002), the force traces are however very similar. 
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TABLE 5.4.2 Intra- & Inter- Subject Variability (at 4.47 ms-1 
) 

Subject Statistical 
Muscle Force (B. W. ) Joint Reaction (B. W. ) 

Number Test SH GA QU HM AN AS KN KS 

1. Mean 0.05 9.8 18.2 1.7 -10.1 -6.2 -29.2 -2.0 
(n=7) S. D. (±) 0.09 1.49 0.58 0.48 1.15 0.99 2.25 0.62 

2. Mean 1.2 9.4 18.8 2.1 -10.3 -6.3 -31.2 -1.3 
(n=8) S.. D. (±) 0.35 0.53 0.94 0.33 0.42 0.56 1.16 0.20 

3. Mean 0.4 11.9 14.3 1.3 -12.2 -7.0 -27.8 -2.2 
(n=B) S. D. (+) 0.28 0.87 0.22 0.16 0.60 0.72 1.51 1.18 

4. Mean 1.0 7.9 16.5 1.4 -9.2 -4.8 -26.1 -3.4 
(n=7) S. D. (+) 0.29 1.37 1.65 0.42 1.15 0.83 2.93 0.97 

overall Grand 0.6 9.8 16.9 1.6 -10.5 -6.1 -29.0 -2.2 Mean 

Grand 0.54 1.80 1.97 0.45 1.39 1.10 2.94 1.07 
S. D. (±) 

n= number of runs per subject 
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FIGURE 5.4.1. a) Gastrocnemius, b) Quadricep and 

c) Hamstring Force Curves for Normal and 

enhanced Model 
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FIGURE 5.4.2. Knee Reaction Curves for Normal 

and Enhanced Model 
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6. DISCUSSION 

6.1 Phase One Model: Muscle and Joint Forces 

The bioengineering model developed for this study includes a number 

of assumptions which need scrutiny before verification of the model 

can be established. The use of a straight-line approach to muscular 

mqdelling in preference to tangential modelling was chosen on the 

grounds of repeatability and comparability to other studies such as 

Smith (1975) and Burdett (1982) the only two dynamic studies 

reported in the literature. Data presented in section 3.5 indicate 

that the method of analysis used gave high repeatability, hence 

indicating the value of using this method. 

A fully dynamic model is also needed as omitting D'Alemberts inertia 

forces caused the muscle and joint forces to be increased by 10.5% 

as shown in section 3. This compares with an increase in value of 

2.2% found by Smith (1975) in his study of knee-joint forces in a 

drop jump. 

The shin muscle group is commonly omitted from bioengineering models 

to reduce mathematical indeterminancy, but a study by Burdett (1982) 

showed the anterior leg muscles to be active for the first 9% of the 

stance phase. The force data here indicate activity for 9.3% and 

were verified by EMG (at approximately 5%), as were all the major 
I 

muscle groups, whilst running on a treadmill at the same speed as 

used in the investigation. 

The inclusion of the soleus may well influence the final results of 

this type of study and hence further analysis was performed later on 

in this investigation to include this muscle. Moment sharing based 
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on physiological cross-sectional area provides the easiest solution, 

but mathematical optimization using a cost function of, say, minimum 

total muscle force or minimum total joint force would normally -be an 

equally valid solution. Clear electromyographic analysis of soleus 

activity would assist in determining the role played by this muscle 

in both force generation and injury causation. 

Results obtained from this bioengineering model displayed good 

agreement with other studies with regard to joint moments. Mean 

values of 174 Nm for the ankle, 188 Nm for the knee and 98 Nm for 

the hip are within the range of values reported in the literature 

and recorded in Table 2.5.3. 

Quadriceps muscular loading rates were recorded at between 135 and 

201 kN S-1 for the four subjects. The calculation is based upon the 

maximum loading rate value over 0.02 seconds obtained from each 

muscular force trace. It is not an average value calculated from 

the commencement of force development to the peak value. This could 

account for the, differences recorded here, average of four subjects 

of 175 kN s-1, with those of Komi et al. (1985) who reported a value 

of 100 kN s-1 using a strain gauge implant attached to the Achilles 

tendon. If this "averaging" technique on the Achilles tendon then a 

value of 62 kN s-1 is derived. This is hence more conservative than 

Komi's values. 

Scrutiny of the muscle and joint force data obtained show that other 

dynamic activities studied display similar results. Smith (1975) 

found knee-joint compressive loads of 24.4 BW for a1m drop jump 

compared to 33.0 BW reported here. Smith also reported ankle 

compressive forces of 7.4 BW, quadriceps muscle forces of 16.5 BW 
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and a calf muscle force of 6.1 BW. All these forces reported by 

Smith are approximately three-quarters of the values found in this 

study at 9.0 BW, 22.0 BW and 7.3 BW, respectively. 

Burdett (1982), in his research into ankle biomechanics in running, 

found ankle-joint compressive forces of 13.3 BW and gastrocnemius 

10.0 BW. Both are larger than those respective muscle forces of 

. 
components reported here for the same running speed. 

In comparison, forces in sedate activities, walking for example, are 

much lower. Knee joint compressive forces are commonly 3.8 BW to 

3.5 BW and quadricep muscle forces in the range 1.1 to 3.4 BW (see 

Table 2.5.2 for full summary). Thus for a modest increase in speed 

from normal walking (approximately 1.3 m s-1) to running at 

4.47 m s-1 knee joint reactions and quadricep muscle forces both 

increase ten-fold. This is achieved with the aid of 'protective, 

running shoes and shows the injury potential of this activity. 

Running without adequate footwear or increasing these forces further 

may increase the likelihood of injury. 

The largest muscle force reported here of 22.0 BW in the quadriceps 

muscle group could result in a tensile stress of 70 MPa existing 

within the quadriceps tendon (assuming a cross-sectional area of the 

tendon of 2x 10-4 m2). This is within the range of ultimate 

tensile strength (UTS) reported by Burdett (1982) to be between 34 

and 147 MPa. However, these UTS tests were performed statically on 

cadavers and the strength of human tissue has been shown to be 

dependent upon strain rate (Abrahams, 1967). The brevity of the 

loading action occurring in running may well explain how the tendons 

accommodate such high forces without incurring physical damage. 
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Table 2.2.2 shows the incidence of running-related injuries as 

reported by various investigators and, as can be seen, the knee 

joint incurs the highest of all injuries (average of 28%) followed 

by Achilles tendon disorders (8%) and shin sPlints, usually tibialis 

anterior compartment dysfunction (8%). The results summarized in 

Table 5.1.4 show that the highest muscle and joint, forces occur in 

and around the knee, and the second largest muscle force is in the 

gastrocnemius, i. e. Achilles tendon tension. 

with such high muscle and joint forces in and around the knee,. 

including patella-femoral contact force, it is not surprising that 

the knee joint incurs injury, especially in long-distance running. 

Knee joint injuries in this case are predominantly over-use injuries 

caused from either training errors, as highlighted in section 2.2, 

human biomechanical irregularities or the shoe-surface (James et 

al., 1978); any small change in running action, either from 

footwear, terrain or style, could be suggested to cause 

irregularities in the force patterns developed by the knee joint 

components and thus cause injury. 

The second most injured part of the human body in running, the 

Achilles tendon, displays high muscular loading rates as previously 

outlined. For its small cross-sectional area, very high stress and 

strain rates are present and hence with extensive running (70 km per 

week on average for long-distance athletes) it is not surprising 

that the Achilles tendon 'breaks down'. Passive stretching and 

progressive strengthening (Nigg, 1986) routines are recommended to 

reduce the likelihood of such injuries (Clement & Taunton, 1980). 

Shin splints, a term given to almost every anterior tibial leg pain, 
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is used more specifically to identify tibialis anterior muscular 

compartment dysfunction, or swelling of the muscle causing it to rub 

against the tibia. Shin splints is also an over-use injury, but as 

can be seen from Table 5.1.4, SH has a low peak force value of 0.8 

BW and is only active for the first 9% of the stance phase. It is 

suspected that variations in style, footwear and speed may have a 

significant effect upon the role of the shin muscles. Any small 

alteraton in these parameters may cause relatively large differences 

in this relatively quiescent muscle group and thus may be the cause 

of such injuries. 

As suggested above, it is suspected that changes in speed, footwear, 

running style, terrain and fatigue may contribute to the occurrence 

of injury. Further studies were considered to investigate the 

effects of such parameters and how the muscle and joint forces are 

altered by them. It may then be possible to propose a strategy to 

minimize the likelihood of injury from these parameters. 

Investigation of all these variables was not be feasible in one test 

and as such a systematic approach of analysing one or two at a time 

was the most efficient approach. 

6.2 Phase Two: Effects of Running Style 

As suggested in section 6.1 the effects of speed, style and shoes 

may influence muscle and joint force profiles and one aspect was 

investigated here with running style being analysed. Two groups of 

runners, front and rear foot strikers, were identified by their foot 

ground reaction force traces. 

As can be seen from Table 5.2.6 the significant difference between 
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the two groups of runners occurs in shin muscle group (tibialis 

anterior) and knee joint shear force. Table 2.2.2 shows the 

occurence of injuries to runners and it can be seen that the knee 

joint is the most frequently injured aspect of the human lower 

limbs, the shin group being the third most injured aspect. 

The second most injured site in the human lower limbs as can be seen 

from Table 2.2.2 is the Achilles tendon as served by the tricep 

surea muscle group. This muscle group can accommodate a large load 

capacity and is reflected by its relatively large cross sectional 

area (Alexander and Vernon, 1975). Any small changes occurring in 

this group, due to running style, may not be immediately noticeable 

and is possibly why no variation is reported here. Conversely the 

shin muscle group is anatomically smaller and hence "weaker" and 

contributes less to the gait cycle (Figure 5.2.1), any small changes 

here are significant (as shown) and as proposed in section 6.1 this 

could be why injury so readily occurs in this group. 

The knee joint ýs one of the most complex structures in the human 

body with intricate movements in 3 planes needed for flexion and 

extension. It is also surrounded by or crossed by a number of large 

muscle groups as well as numerous smaller ligaments and muscles. 

Its ability to absorb vertical or compressive loading can be seen 

from Table 5.2.3 as being in the region of 31 BW (2 Tonne). Its 

ability to absorb anterior-posterior (or posterior-anterior) shear 

forces is questionable and can be considered due to its lack of 

protection offered by local soft tissue. This is represented in 

Figure 5.2.6 by the large differences between subject groups. In a 

similar context to the force in the anterior shin muscle group, 
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large variations in. this otherwise weak load bearing joint aspect 

may lead to joint, and ligament, injuries. Chondromalacia patella, 

or cartilage degradation may well occur occur as a combination of 

high compressive forces and fluctuations in shear forces. 

which group is more susceptible to injury from peak forces is not 

conclusive and foot contact time data may be significant in further 

understanding the aetiology of injury. The rear foot striker group 

has a longer foot contact time and lower vertical ground reaction 

force indicating a more gradual loading regime of the muscles and 

joints. This increased contact time is also represented with a 

longer shin activitY time and a higher shin muscle peak force as 

might be expected due to the role of the tibialis anterior in the 

rear foot strikers' gait. Here the foot is held in dorsi-flexion 

longer by the anterior shin group. This also results in the foot 

being presented to the ground in an inverted position which can 

cause greater pronation. 

It may be hypothesised therefore that rear foot strikers, with their 

reduced ground reaction force and increased foot contact time could 

be less susceptable to injury than front foot strikers. The reduced 

loading rates, produced by the longer foot contact time and reduced 

force peaks may be the cause of injury more than the actual muscle 

and joint force value. If this is correct, these front foot 

strikers may be more at risk. This could be clarified with a 

coordinated injury history and muscle and joint force profile and 

may be an area for sports injury clinics to consider in the future. 
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6.3 Phase Three: Analysis Between Running Speeds 

Following the recommendations set down in 6.1 the next variable to 

be tested was speed with three different velocities being selected 

according to the guidelines established in 5.3. Here speeds of 

3.83 m s-1,4.47 m s-1 and 5.36 m s-1 were employed. Further 

parameters were also evaluated in the analysis, namely lower limb 

angles, foot/ground impact data and minimum hip flexion moments. 

Although intra-subject variations were minimised, larger inter- 

subject differences in muscle and joint force data were noted. 

This made comparisons between speeds difficult due to the high 

statistical variances recorded. These inter subject differences 

could be due to the unnatural speeds selected for evaluation. Some 

subjects found it difficult to run comfortably at 3.83 m S-1 and 

took longer to warm up at this speed than the 4.47 m s-1 velocity. 

similarly some of the athletes, more comfortable at the slower 

speeds, due to their main athletic events being longer distance 

races (marathons, ), found it difficult to maintain the elevated pace 

of 5.36 m s, -1 and needed extended recovery periods. This faster 

speed was also the last of the three to be undertaken by each 

subject and fatigue may have begun to effect their performance. 

However no subjective feedback was recorded on any of these matters. 

The kinematic range displayed by the athlete in knee flexion (Figure 

5.3.6) is similar to those reported in the literature and summarised 

in Table 6.3.1. As can be seen the results here resemble most 

closely the data presented by Nigg (1986), Nigg et al. (1987), Mero 

et al. (1987) and Sinning & Forsyth (1970). The maximum knee 

flexion angles reported here of 38% in accordance with the data in 
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the literature (Table 6.3.2. ), tends to suport the modelling 

criteria of the force developed in the quadriceps being 

fully transmitted to the patellar ligament. 

TABLE 6.3.1. Summary of Anqular Ki ematics Reported in 

the Literature 

Limb Angles in Degrees 
ti to s and I nves ga r 

Speed Knee Flexion Lower Limb 

Heel Strike Max. Heel Strike 

Elliott & Blanksby, j? 79a 
3.5ms- 156.2 NR 6.2 
3.5ms 156.3 NR 2.9 

Elliott & Roberts, 1990 
5.2ms 151.0-153.7 NR 0.5-3.1 

Gamble et al., 1988 1 4. Oms- 153-158 NR 1.0 

Mann et al., 1985 
3,. 4ms 

-1 
142 120 NR 

4.5ms- 
6 3 

137 118 (1) NR 
. ms 150 125 NR 

Mero et al., 1987 
9.7-10.3ms 146-152 138-142 1.0-4.0 

Nigg, 1986 & 
Nigg et al, 1987 

3ms 161.9-161.4 NR NR 
-1 4ms- 1 158.9-158.6 NR NR 

5ms- 1 152.2-150.4 NR NR 
6ms 144.0-144.2 NR NR 

Sinning & Forsyth 197? ; 
3.8 ms- I NR 153.5 NR 
4.47ms NR 153.0 NR 
5.36ms NR 153.2 NR 

NR = Not Recorded 
(1) = No peak maximum flexion exhibited 
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TABLE 6.3.2 Ratio of Tensions Along Quadricep Tendon and 

Patellar Ligament 

01 

4 

Investigator 
Angle of Knee Flexion (degrees) 

0 10 20 30 40 

Bishop & Denham, 1977 NR NR 1.00 0.95 0.88 

Buff et al., 1988 1.10 1.30 1.10 0.92 0.76 

Ellis et al., 1980 1.00 1.00 0.98 0.95 0.91 

NR = Not recorded 

This maximum value of nearly 40* would result in a minimum ratio of 

tension along the quadriceps tendon to the force in the patellar 

ligament of 0.88 according to Bishop & Denham (1977), 0.76 according 

to Buff et al. (1988) and 0.91 according to Ellis et al. (1980). If 

the average knee flexion angle, during foot stance, is 200 (Figure 

5.3.6), then the average ratio, as expressed in Table 6.3.2 would be 

close to unity. 

The maximum knee flexion angle reduces as speed increases and this 

could be a prote ctive mechanism that helps reduce forces at higher 

speeds by transferring loads to and from other bony structures. 

This is similar to the concept forwarded by Nigg (1986) with his 

'equivalent mass' hypothesis. 

Minimum hip joint moments were extrapolated from data during this 

study to elicit an understanding of hamstring injuries as the 

previous study (Phase 1, section 6.1) had shown an initial maximum 

and then proceeded to become negative. However no significant 

differences between speeds are reported from this value. 

Impact loading rates were calculated from the ground reaction data 

but no significant differences between speeds were recorded. As 
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suggested in section 6.2, muscular loading rates could be 

responsible for injury causation. Hence the lack of significant 

difference between running speeds for the ground reaction force 

impact loading rate is inconsistent with this hypothesis. However 

the sampling rate chosen for the force platform data capture of 180 

Hz may not be high enough to extract this relevant information. 

Data smoothing and cubic spline reconstruction of the data may also 

rob the raw data of the impact peak characteristics. The loading 

rates at between 82 and 106 kN s-1 are generally lower than those 

recorded by Nigg (1986) who recorded 150 kNs-1 for barefoot running 

and values between approximately 70 kNs-1 and 270 kNs-1 for various 

speeds and footwear conditions. These lower loadinq rates could be 

due to this smoothing of the data. It could also be suggested from 

these results that the shoes worn by the subjects throughout the 

tests were thus providing significant impact force protection and 

could have outsoles with a Shore A hardness of approximately 25. 

very few significant differences between speeds can be reported 

throughout this analysis and out of the twenty four separate items 

considered for scrutiny for each speed Table 5.3.8 shows only two 

significant differences between the slowest speeds, 3.83 ms-1 to 

4.47 ms-1 (7 min/mile to 6 min/mile); six significant differences 

between the faster speeds, 4.47 ms-1 to 5.36ms-1 (6 min/mile to 5 

min/mile); and seven significant differences for the extremes of 

speed, 3.83 ms-1 to 5.36 ms-1 (7 min/mile to 5 min/mile). 

Predominantly-the shear force elements within the overall force 

system display significant differences across nearly all speeds. 

RY, the horizontal foot/ground propulsion force, Increases 

significantly as speed increases and AY, the ankle joint reaction 
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force shows significant increases across the higher speed 

comparisons. This ankle joint shear increase may be viewed 

alongside the increase in contact angle of lower limb which also 

increases significantly as speed similarly increases. The vertical 

ground reaction forces do not show respectively significant 

increases across the velocity range and it could be hypothesised 

that the athlete provides the extra drive required more by 

inaximising his horizontal force profile, increasinq his range of 

motion, all in a shorter time, without subjecting his body to 

elevated loads. This would require a flattening of the hips 

trajectory i. e. reduction of loss of potential enerqy with each 

stride. 

Although a film re-analysis would be needed to establish this 

trajectory pattern, scrutiny of the knee flexion angles shows that 

for an almost constant amount of knee flexion (across the speeds, as 

is represented in Table 5.3.7) the hip must lower as the lower leg 

angle increases (see Figure 6.3.1 below) at heel strike. 

HIP 

3.83 M. S-l 4.47 M. S-l 

\ FOOT 

5.36 M. S-l 

FIGURE 6.3.1 LIMB ANGLES AT HEEL STRIKE ILLUSTRATING 
LOWERING OF HIP & HENCE BODY COG 
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These increases in shear forces can also be seen to be significant 

when reference is made to the discussion on knee joint shear force 

(KS) variations with running style presented in Section 6.2. There 

it was hypothesised that large differences recorded in the KS value 

could be a factor in the cause of chondramalacia patella. Although 

the knee joint shear force KS (and the patella-femoral contact 

force) do not display significant differences in this study the 

overall trend tends to show that variations in style and speed 

affect the horizontal force elements specifically. As these values 

are, in general, small compared to the horizontal or normal elements 

in the force system they may have been easily overlooked in previous 

studies. 

However, when considering the anatomical construction of the human 

long bones it can be seen that they are "designed" more to withstand 

normal forces than tangential forces. Soft tissue, and ligaments 

mostly, are all that the human lower limbs have to resist these 

lateral loads. 

These facilities may be minimised by appropriate strengthening and 

stretching routines and running shoe companies may do well to 
I 

maximise on grip rather than purely on impact force reduction and 

motion control if this hypothesis is confirmed. 

James et al. (1978) and other investigators state that the most 

common cause of injury is training errors (see Section 2.1 & Table 

2.2.4) and as discussed earlier are commonly reported as being rapid 

changes in training, intensive workouts and race related training. 

All these could be reflected in the significant differences between 

the two extreme speeds i. e. any rapid change of pace from the 7 min. 

per mile pace to 5 min. per mile pace will produce elevated force 
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components, specifically the muscular loading rates (see Table 5.3.8 

for summary). 

Combined with the increases in force elements with increased speed, 

athletes tend to utilise racing footwear or spiked shoes to 

undertake intensive workouts or races. These lighter shoes also 

offer less protection to the human locomotor force system and often 

have a construction with, for example, less heel lift thus 

stretching the tricep surea muscle group over a larger working range 

(Plate 6.1). This combination could be responsible for increasing 

injury potential. 

In conclusion it can be seen that an analysis between three speeds 

i 
representing 7,6 &5 minute per mile running has produced in 

general inconclusive results and it could be suggested that a wider 

spread of speeds could be selected. These could be a jog, run and 

sprint as used by Mann et al. (1986) or speeds of 3 ms-1 (9 min per 

mile), 4.5 ms-1 (6 min per mile) and 7 ms-1 (3.75 min per mile). 

These speeds represent a four hour marathon, an extremely popular 

finishing time in the 1988 London Marathon for the slower speed. 

Average training velocities for most club and elite athletes for the 

median speed and world record pace for one mile for the fastest 

speed. However, finding subjects who can run naturally and 

comfortably at all speeds may be difficult and analysing three 

different groups of athletes, one group at each speed, may not show 

why changes in routine and speed elevates athletes injury potential. 

A re-analysis with larger groups, more runs per speed and slightly 

wider speeds may be the most profitable way of both reducing 

variability and establishing concrete proposals of the effects of 

speed on injury. 
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PLATE 6.1. Sample of Running Shoes Showing Varying Amounts of 

Heel Lif t 
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6.4 Phase Four Model: Model Enhancement 

The three previous analyses have been performed without the 

inclusion of the soleus muscle in the tricep surea group. The 

results presented in Section 5.4 were obtained by re-analysing the 

data from Section 5.3 with the soleus included in the bioengineering 

model. Hence the results discussed here are in comparison to the 

-data presented and discussed in phase 3 (Sections 5.3 and 6.3). 

Data from the three speeds were analysed, but at the two extremes of 

velocity data were corrupted, and hence only 25 and 31 runs were 

successfully analysed for the respective speed of 5.36 m s-1 and 

3.83 m s-1. In comparison 61 and 51 runs were analysed in phase 3 

for these respective speeds. Combined with the large inter-subject 

differences (see Table 5.4.2) this made comparison between models 

difficult and no significant differences were recorded. Hence data 

from these speeds have been omitted from this discussion. 

Whilst some studies, Smith (1975); Nissel & Mizrahi (1988) and 

Seedhom & Terayama. (1976) have excluded the soleus from the model 

for various reasons Ellis et al. (1979) and Bobbert et al. (1986a 

b) have included the muscle into their biomechanical models. EMG 

scrutiny clearly shows that the soleus should be included in the 

model and hence a method of inclusion had to be sought. The choice 

of moment sharing about the ankle is hence consistent with the 

studies of Dahlkvist et al. (1982), the specific biomechanical 

modelling performed in 3.2 (point 4) and the EMG validation 

performed and reported in Section 3.5. 
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The results obtained reduce the largest muscle group force and joint 

reaction, QU & KN by substantial amounts from 18.2 BW to 15.0 BW and 

-31.0 BW to -21.3 BW respectively. The hamstring muscle force Is 

increased, this however is only in the order of 11%, from 1.8 BW to 

2.8 BW, and the sharp peak force trace displayed in Figure 5.4.1c is 

more consistent with the type of injury sustained by the hamstring 

i. e. acute muscle 'pulls'. The quadriceps muscle force curve is 

also consistent with the EMG recordings in that the force developed 

reduces significantly after approximately 60% of the stance phase. 

The reduction of the peak quadricep muscle force and knee joint 

normal reaction gives results similar to those found by Smith (1975) 

of 16.5 BW and 24.4 BW respectively, and may be considered to be 

more realistic overall. 

Hence the model presented here produces results more conservative in 

nature but also consistent with other results in this study and 

other models and investigations. This model with the soleus 

included, according to a joint moment sharing criteria, should now 

be adopted for all further analyses. 

6.5 Comparison between all Phases 

In total 339 runs were analysed across all the phases of this study 

and Table 6.5.1 (and Figure 6.5.1) shows the consistency of the 

results for 227 of these runs (all those at 6 minute per mile pace). 

The consistency of the GA result in phase three, performed over 57 

runs is relatively high: - mean value 10.7 BW, standard deviation 

+1.5 BW. This consistency could be due to the refinements made to 

the subjects bone models where a one segment rigid foot model was 

replaced with a two segment flexible foot model. This allowed 
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FIGURE 6.5.1. Comparison of a) Total Muscle Force, b) Total 

Joint Force and c) Total Muscle and Joint Force 

in Body Weight Units. Modulus values used in 

calculation of totals. Data from Table 6.5.1. 

Tricep Surea value used for Phase 4. Mean & 

Deviations presented. 
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accurate placement of the bone model when the metatarso- 

phalangeal joint is in extension (see Plate 4.4). 

After the soleus was included in the model the total muscle force 

remained relatively constant and the predominant factor in reducing 

the overall muscle and joint force total is the reduction in KN. 

The inclusion of the soleus into the model, halving the 

gastrocnemius moment around the knee joint, thus reduces the 

balancing moment required by the quadriceps and hence the joint 

compression force. The refinements made to the bone models, in 

wiring the patella to the tibea at a distance proportional to the 

relatively inflexible patellar ligament, may have also helped in 

making the forces around the knee more consistent. 

The hip and ankle joint moments show a marked increase from phase 

one to phase three but these values, shown in Table 6.5.2 are still 

within the range of values reported in the literature and reviewed 

in Table 2.5.3. 

The quadricep muscle group loading rate shows an increase across 

phases one and three (Table 6.5.3) even though the peak force for QU 

is reduced in phase three. The force curves representing these 

items are shown in Figures 5.1.2 and 5.3.2, the 'sharpness' of the 

loading curve can be seen in Figure 5.3.2 which is more consistent 

with the EMG findings reported in Section 3.5. 

Also consistent with the EMG study performed in Section 3.5 are the 

results obtained-for the shin activity time (presented in Table 

6.5.1). This shows, on average, shin muscular activity for the 

first 8.6% of the support phase. Burdett (1982) reported 9% shin 

muscle activity and the EMG study performed showed approximately 5% 
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activity. 

The larger number of analyses performed in phases 3 and 4 should 

make these the most consistent results of the study. The differing 

number of samples and large inter-subject differences makes 

statistical comparisons across phase difficult however. Different 

subjects, running styles, experience and data collection, 

pFocessing, analysis equipment and routines also reduces the 

viability of statistical tests between phases. For these reasons 

these tests were not performed. In general, however, a marked 

degree of consistency can be seen from Figure 6.5.1 and within phase 

repeatability has been quoted at t 3%. 

TABLE 6.5.2 Comparison of Joint Moments Between_Phases of 

Study for 4.47 m. s-1 

Phase Joint Moments (Nm). 

Ankle Knee Hip 

1 174 188 98 

3 214 189 150 

TABLE 6.5.3 Comparison of Quadricep Muscular Lo*aAi'n-q Rate 

Between Phases of*'Stuýy for 4 47 m sý-l'-in_'Klý. 

Phase Loading Rate - 

1 175 

3 333 

4 292 
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6.6 Model and Method Verification 

6.6.1 Model 

Although there is no method for establishing the validity of this 

bioengineering model, Section 3 outlines the reasoning behind the 

modelling performed for this study. The first part looks at the 

basic biomechanical techniques used, most of which are standard 

_techniques 
employed in this field of engineering. Representing the 

running action as a two dimensional activity is consistent with a 

number of studies involved in athletic and similar sports (jumping - 

Smith, 1975; Weightlifting - Ariel, 1974; Cycling - Nordeen & 

Cavanagh, 1976; Skiing - Quigley & Chaffin, 1971; Walking - 

Morrison, 1968). Grouping the muscles according to their major 

function, segmenting the body into simple shapes and neglecting 

friction in synovial joints have all become standard techniques. 

Considering the joints to be represented by non complex articulating 

surfaces with point load contact is also becoming standard but care 

must be taken in identifying the knee joint centre of contact. This 

is different frým the centre of rotation (or instantaneous centre of 

rotation) which cannot be used in the bioengineering model. It 

introduces two more variables into the system if moments are taken 

about the centre of rotation i. e. KN & KS. 

The use of straight lines between muscle origins and insertions in 

preference to tangential representations has been discussed by 

Jenson & Davy (1975) who state that the straight line approach 

accords greater repeatability. Scrutiny of Figure 6.5.1 shows that 

the results presented throughout the four phases of testing display 

relatively high consistency. The average error within a phase of 

testing is that quoted in Section 4.2 where a repeatability study 
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showed an average error of ±3% from experimentation. These 

different phases were performed during a three year period, on 

different equipment and under different lighting conditions thus 

confirming this hypothesis. 

For the specific modelling performed in Section 3.2 the exclusion of 

the ileo-psoas muscles can be further justified by the force 

generated by the quadricep muscle group. These short weak flexors 

of the hip could easily be absorbed into this QU muscle force value. 

The results from the kinematic study performed in 5.3 show maximum 

knee flexion angles to be 38 degrees. According to Ellis et al. 

(1980) this would result in a ratio of 0.91 for the tensions between 

quadricep tendon and the patellar ligament. As this is only of a 

short duration and varies for each subject and speed therefore 

adoption of a ratio of unity is justified. 

Apportioning the force developed in the tricep surea group between 

the soleus and the gastrocnemius could have been performed on the 

grounds of physiological cross sectional area. This would have been 

consistent with the rationale for equally splitting the quadriceps 

muscle group up into four equally potent muscles. Data from 

Alexander & Vernon (1975) could have been used but this would have 

been inconsistent with other studies by for example Seedhom 

Terayama (1976). It was consistent with the sharing of the hip 

moment by the gluteals and hamstring muscle groups. The inclusion 

of the soleus was justifiable on the grounds of the EMG results 

(Section 3) which showed across two separate testing regimes 

activity continuing almost throughout the stance phase. Similar EMG 

results validate the inclusion of the shin muscle qroup as described 
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in Section 6.5. This also keeps the model consistent with the only 

other dynamic bioengineering model used in the analysis of running 

(Burdett, 1982). 

Whilst these reasonings justify the muscles omitted or included in 

the model they do not validate the levels of force recorded by the 

model per se. Only surgical implantation will enable this, and the 

work currently being performed by Komi and his associates is likely 

to lead to ratification. Komi et al. (1985) have already reported 

muscular loading rates in the achilles tendon of 100 kNs-1 using a 

surgically implanted strain gauge. Results for this study show 

muscular loading rates in the tricep surea group of being between 

109 kN. s-1 and 129 kN. s-1 for the three speeds investigated in 

Section 5.3. This helps to validate that section of the model to a 

great extent and further results from these investigators will be 

eagerly awaited and recent publications from their study group have 

elicited achilles loadings in the cycling domain (Komi et al., 1987; 

Gregor et al., 1987). 

The use of a simple inverse dynamics approach has been used but as 

suggested in the Review of Literature other techniques exist in 

mathematical optimisation and these have been rejected for the 

reasons cited in Section 2. During the study other techniques were 

also investigated within the engineering and mathematical domain. 

These possible solutions included using the Principle of Virtual 

Work (Case & Chilver, 1971) to determine if a relationship between 

deflection of the foot and the work done displacing it, and hence 

the forces in the shin and tricep surea muscles existed. This 

proved unsuccessful as did an attempt to calculate the forces in the 
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muscles of the lower limb f rom knowledge of their tension/length 

characteristics (Elftman, 1966; Morehouse & Miller, 1976). A 

further possible solution involved calculating the total upper body 

linear and angular accelerations to determine their inertial 

forces. This produced twelve equations with twelve unknowns but the 

twelve by twelve mathematical matrix produced was 'ill-conditioned, 

in that wide fluctuations in the solutions were obtained for very 

small changes in input parameters. This method was hence rejected 

The only method hence available via computing power, knowledge and 

experience was that of simplification or reduction such that "an 

originally indeterminate problem is simplified until it becomes 

determinate" Herzog (1985). Hence all results produced here are 

from this simplification technique of biomechanical modelling and 

the data is within the range or expected range of data presented in 

the literature. Whilst most of these studies have been more static 

in nature than dynamic those involving more dynamic activities show 

good correlation with data produced here (Burdett, 1982; Ariel, 

1974; Nissel & Mizrahi, 1988). 

6.6.2 Methodology 

A number of the techniques used in this study may not be considered 

standard biomechanical testing or analysis regimes but have been 

adopted to improve the models accuracy. 

Firstly the number of runs per subject, per speed or style, was 

initially chosen in accordance with the findings of Bates et al. 

(1980) which established expected error bands for corresponding 

number of repeat trials. They reported that repeatable data could 
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only be expected if the number of trials exceeded eight. The 

repeatability study performed here showed an expected accuracy of 

±3% if seven runs were utilised. This compares favourably with the 

50-100% errors reported by Smith (1975) who however only used one 

subject and does not report the number of repeat trials employed. 

Where different speeds were to be analysed the subjects started at 

the slower velocities and progressed up the speed range, warming up 

to each in the process. This reduced any effects of fatigue and 

problems caused by undertaking 'fast' speeds were thus minimised. 

Adequate rest between trials was accommodated by allowing the 

subject to participate in the experimental procedure. The subject 

recorded his own time over the 10 m span and reported if that was 

acceptable within the given tolerance. He also reported a 

subjective analysis of the trial such that he had not stuttered 

during the approach run or landed with a non standard foot strike. 

If he and the experimenter felt happy he advanced the background co- 

6 
ordination number for the next trial and returned to the start line 

ready for the next run. This involvement increased subject 

enthusiasm and thus performance. 

Bone models, of various sizes, have been used by a number of 

investigators, Seedhom & Terayama (1976), Smith (1975), Ellis et al. 

(1979) and Dahlkvist et al. (1982). 40% full size were employed in 

this study due to the availability of corresponding digitisers and 

film projection equipment. Full size models have been used by 

Harrison (1982) to show how model viability could be improved when 

compared to using standard anthropometric data obtained from 

cadavers or the literature as used in studies by, for example, Ariel 

(1974), Bishop & Denham (1977), Burdett (1982), Proctor & Paul 
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(1982). Brand et al. (1982) also used data from three cadavers to 

produce a biomechanical model but expressed possible errors of 20% 

in establishing muscle moment errors using this Istandardising 

technique'. Thus these errors can be minimised by utilising bone 

models tailored for each subject from their own radiographs. 

These radiographs need to be accurately reproduced however and the 

double precision technique adopted in this study (using pins of 

known length and cross referencing with subject anthropometric 

measurements), enables errors from divergent rays and non lateral 

exposures to be corrected for. 

If the use of individual radiographs to produce bone models is 

advisable then so should individual EMG recordings. These could be 

used to either build up a full data base or standardised gait 

pattern for the group to enable an algorithm for each subjects 

muscular activity pattern to be included in the mathematical 

model. This may be required due to the findings of McIntyre & 

Robertson (1987) and Van der Straaten et al. (1975) who report 

variations in EMG recordings between subjects. For this study the 

production of a footswitch built into every subjects running shoe to 

co-ordinate footstrike and EMG recordings was not feasible and the 

employment of three experienced subjects is in partial 

acknowledgement of this requirement. 

Hence methodological repeatability has been established using 

careful experimental techniques in accordance with practices 

recorded in the literature above. 
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6.7 Forces in Relation to Injury 

Data presented in Table 2.5.2 shows the magnitude of forces 

estimated in the human lower limbs during various activities. Only 

Ariel (1974); Burdett (1982); Nisell & Mizrahi (1988) and Smith 

(1975) could be considered dynamic or sporting in nature. Only 

Smith's study reports muscle and joint forces of the magnitude 

reported in this study, the highest joint force reported there was 

24.4 BW in his study of a1m deep landing. None of these studies 

present kinematic data, joint moments, loading rates and muscle and 

joint forces together and as such direct comparison is difficult. 

However, the underlying facts that derive from this study are the 

high magnitude of all the kinetic parameters in a somewhat safe and 

healthy pastime. Even squatting with 200 kg (or approximately three 

times body weight) only produces knee joint compression forces of 

8.9 BW (Ariel, 1974). 

If a subject was asked to repeat that squatting activity, or the 

vertical jump from one metre as in Smith's study, 80,000 times 

during one week, it could be expected that some subjective 

resistance might be met. That, however, is the nature of the 

activity with running i. e. an average runner completing 70 km per 

week can expect to impact the ground 80,000 times. The injurious 

nature of athletics should thus not be taken too lightly. 

This injurious nature is obviously reflected in the history profile 

of injured athletes as presented in Table 2.2.2. The major injury 

sites of athletes are reported as being the knee joint, achilles 

tendon and the shin and comparison of this data with the summary of 

data presented in Table 6.5.1 shows the relationships between these 
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forces and injuries. 

The knee joint compressive force is the highest joint force and the 

muscular forces around the knee are similarly high (QU and GA) thus 

helping to create the high joint force. The knee joint shear forces 

KS display relatively low magnitudes of approximately 2.0-2.5 Bw but 

this value has a very high range of values across all subjects 

-suggesting that this is in need of further investigation and these 

variations have been discussed in Section 6.2. It could also be 

suggested that quadricep tendon strains might manifest themselves as 

knee injuries due to the close proximity of this tendon, and its 

related patellar ligament. This could be the reason for the lack of 

quadricep muscle/tendon injuries when the muscle force generated is 

greater than that in the tricep surea group. 

These two muscle groups also have similar physiological cross 

sectional areas and thus should develop similar tensions. According 

to Alexander & Vernon (1975), the ratio of cross sectional areas of 

the quadriceps to the tricep surea group is 1.3: 1 which is similar 

to the tension developed by them in Phase 4 of this study. The 

ratio recorded there is 1.4: 1 i. e. the quadriceps equal 15.0 BW and 

the tricep surea equal 10.7 BW. 

For the shin muscle group, tension developed is only between 0.4 BW 

and 0.8 BW across all phases of testing. This muscle group is the 

third most commonly injured despite its low force value although 

stress fractures in the shin bones, tibia and fibula are also often 

grouped as 'shin splints'. The physiological cross sectional area 

reported by Alexander & Vernon is approximately one eighth of that 

of the tricep surea group which would be in line with the force data 
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presented in Phase 1 of this study (SH = 0.8 BW and GA = 7.3 BW). 

As reported through the EMG study and the biomechanical data the 

muscle is not used greatly in the gait cycle and hence any sharp 

variations in its usage could render it liable to trauma. This 

combined with the muscles limited space both at the front of the 

shin, and at its posterior aspect where it is bordered closely by 

bone makes development of the muscle/muscle group difficult. Here 

intra muscular pressure in the muscles compartment increases 

creating "circulatory disturbances within the muscle ischemia and 

delayed verious outflow". The tight fascial lining of the muscle 

compartment is thus too rigid to permit swelling of the muscle 

during exercise. (Wallensten & Eriksson, 1982). 

overuse injuries in the hamstring muscles are rare in middle and 

long distance running as reported in Table 2.2.2. and this is 

reflected in the peak values recorded throughout all phases of 

testing and summarised in Table 6.5.1. The phase four testing 

regime results in a quadricep to hamstring force ratio of 5.3: 1 (QU 

15.0 BW, HM = 2.8 BW) which does not agree with the findings of 

Morris et al. (1983) and Agre (1985) who report isokinetic ratios of 

1.2: 1 to 1.6: 1 in cross country athletes and values of between 1.1: 1 

to 1.8: 1 for sprinters. The nature of the isokinetic test may not 

be representative of the running action thus nullifying the validity 

of this comparison. 

During the stance phase the hamstrings display EMG activity for 

approximately the first 60% producing hip extension and resisting 

extension of the knee by concentric muscle contraction. There is 

also a sharp hip flexion moment (Figure 5.3.1) and force development 

(Figure 5.4.1) within the hamstring. It is this rapid recruitment 
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of muscle fibres that could lead to the majority of muscular strains 

that generally occur more in sprinting than middle distance running 

(Agre, 1985 and Mann, 1982). 

This effect of elevated speed, making the muscles contract in a 

shorter period of time and over a great joint range could be one of 

I'll. the main causes of athletic injury. James et al. (1978) proposed 

-that training errors were the cause of the greatest percentage of 

running injuries. These training errors could manifest, themselves 

as rapid changes in routine, interval training, hill running and 

race related training. All these involve an increase in speed 

and/or joint kinematics and as shown in Section 5.4 peak muscle and 

joint forces increase within a decreased stance phase. Thus the 

loading rates, rather than the peak forces, may be the prime causes 

of these injuries, especially if the body in not accustomed to the 

activity. 

Running style has also been shown to influence the muscle and joint 

force profiles . 
(Section 5.2). Here, as above, the effects of 

decreased foot contact time results in increased loading rates for 

the front foot striker rendering him more liable to injury. It 

would, however, have been interesting in this phase to evaluate knee 

angles during this study to see if greater knee flexion was adopted 

by either group to accommodate increased forces. Nigg (1986) 

proposed that increased knee flexion at foot strike results in a 

reduction of the effective body mass and thus reduces impact forces. 

i 

This analysis was performed in phase three and knee flexion angles 

at impact, and at maximum condition increased as speed increased 

(these increases were non significant however). The rationale 
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behind this increase in flexion could be similar to that proposed by 

Nigg and further investigation could well produce more significant 

results. 

S 

It could be however that the physiological or mechanical limits of 

the knee joint's ability to absorb shock is reached (perhaps 

psychologically) and other structures of the musculo-skeletal system 

contribute more. This could be considered with the changing knee 

angles discussed earlier or the development of eversion (pronation) 

where the outside of the foot is used more and provides a softer 

landing. Hip joint moments are also elevated at the faster speed 

and thus this joint could be absorbing more of the applied load. 

Similarly the muscles may be recruiting more fibres to accommodate 

this force and protect the joint and the increased muscular loading 

rates may be representative of that. 

Conversely it could be suggested that whilst increasing cadence from 

walking speed to running speed produces significant increases in 

muscle and joint forces, variations in running speed do not affect 

them accordingly. Thus the change from a double support phase in 

walking to a single support phase (and non-suPport phase) in running 

results in a limit in impact forces presented to the skeletal 

system. Analysis of a speed at which subjects are comfortable both 

walking and running may assist in this hypothesis. 

Throughout this investigation the muscle and joint force elements 

which were found to be significantly different, between subjects 

speeds and styles, have been the shear force elements of RY, KS and 

AS. The impact and propulsion peaks of ground reaction forces, 

muscle forces and joint reactions have exhibited less variation than 

might have been expected. It should therefore be the shear or 
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anterior-posterior force elements that should be further discussed 

k and evaluated. 

This is particularly important when considering the construction of 

running shoes. Much research has been directed towards reducing the 

impact forces acting on the lower limbs during running and as 

outlined in the review of literature in Section 2.3 various shoe 

companies have approached this in different ways. Pronation and 

supination has also been the subject of a great number of studies 

and has had an effect on the development of shoe design. Both these 

areas have been catered for by evaluation of running shoe 

midsole/outsole hardness, shock absorption and deformation. These 

developments have seen an increase in heel lift or toe spring (Niqq, 

1986) to accommodate greater cushioning as shown below in Figure 

6.7.1 and in Plates 6.1. 

TOE SPRING HEEL SPRING 
OLD 

NEW 

NEW 

OLD 

PITCH 

Figure 6.7.1 Heel and Toe Spring with Increased Heel Height (From 

Nigg, 1986) 

This increase in heel lift has allowed cushloninq systems such as 

air encapsulated midsoles (Plate 6.1) to be incorporated. With this 
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increased cushioning greater motion control (pronation) has been 

needed and this has been achieved in some cases by the incorporation 

of different density midsoles or outsoles into the shoes as shown in 

Plate 20. 

No research has been directed (reported) towards the effects of 

these technological advancements upon kinematics or kinetics with 

.. 'special respect to the shear force elements. The increase in heel 

height could be hypothesised to increase knee flexion angle, which 

according to Nigg 1986 reduces the effective body mass and thus 

reduces impact forces: - this would be a favourable trade off. 

However it could cause the athlete to become more of a front foot 

striker by presenting the toe area to the floor earlier and this has 

been suggested to increase the likelihood of injury. 

This larger heel lift can also create problems when an athlete 

transfers from training shoes to racing shoes or spikes as these 

lighter, less protected shoes as shown in Plate 6.1. have less of a 

heel lift. This causes the tricep surea group to be stretched at 

each impact by an average one centimeter; repeated continuously over 

a 10 km, I marathon or further running distance it will cause 

obvious damage and possibly trauma. The use of the same style shoe 

for racing and training is thus recommended to reduce this risk. 

The significance of the anterior-posterior shear forces must also be 

viewed in conjunction with the grip offered by running shoes. The 

impact and push off phases of the gait cycle are accompanied by 

sliding of-the shoe over the ground, thus creating wear patterns 

(Cavanagh, 1980). If insufficient grip is proffered by the shoe for 

the corresponding terrain then the horizontal ground reaction 
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forces, RY, may be significantly altered and this could lead to 

athletic injury. This could manifest itself in the anterior shin 

muscles if insufficient grip is present at heel strike as the 

tibialis anterior is stretched beyond its normal range. The 

ligaments in and around the knee may also be over stretched causing 

muscular or skeletal imbalances which create chondramalacia 

patella. The hamstrings may also be over exerted causing trauma and 

the EMG and force profiles produced here display a major peak early 

in the gait cycle. Thus overloading this group could lead to 

hamstring muscle 'pulls'. 

Other areas where the running shoe can influence'muscle and joint 

forces can be found with respect to the 'life' of a shoe. Harrison 

& Lees (1984) found that running shoes with EVA midsoles can lose up 

to 40% of that resistance after approximately 1200 km of use and 

Cook et al. (1985) found that a similar amount of shock absorption 

was lost after only 800 km. In both cases tread and upper 

appearance was good giving no Indication of loss of performance. If 

the average athle'te is completing 70 km per week, on average, 14 

weeks of usage can be expected from a running shoe with EVA 

midsoles. The effects on the musclo-skeletal system of this change 

in cushioning is unknown and in need of further investigation. As 

outlined in the review of current literature the major running shoe 

manufacturers have introduced alternative materials into the 

midsoles to improve the 'life' of their running shoes. This may be 

gas or liquid encapsulated midsoles or other energy return systems. 

The effects of all the various parameters involved In the 

construction of a running shoe can only be evaluated with the use of 

a biomechanical model (Niqg, 1986). The biomechanical model 
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developed here will allow these effects to be studied so as to 

provide information on the reduction of the likelihood of injury. 

Although prevention through an understandinq of muscle and joint 

forces and their reliance upon such parameters as speed, footwear 

terrain and style can be sought, common preventative measures 

exist. Agre (1985) expresses the common causes of hamstring 

injuries as "poor flexibility, inadequate muscle strength and 

endurance, dys-synergic muscle contraction during running, 

insufficient. warm up and stretching prior to exercise, awkward 

running style and a return to activity before complete 

rehabilitation following injury". This could also relate to any 

muscle and joint injury and similarly the treatments suggested by 

Agre are correspondingly valid for all injuries: ".. the best 

treatment for hamstring injuries is prevention, which should include 

training to maintain and/or improve strength, flexibility, 

endurance, co-ordination and agility". 

The use of a bioqiechanical model to develop a& 

information on muscle and joint force values in 

help to identify any abnormalities/anomalies in 

could be leadinq to a muscular-skeletal injury. 

study of athletes with and without a history of 

the data base development. 

6.8 Further Work 

ata base of 

fit athletes may 

other athletes that 

A lonqitudinal 

injury may assist in 

Although a biomechanical model has been produced further work with 

this model, and method, may well provide interestinq data. For 

example the effects of footwear upon musculo-skeletal forces can now 

be evaluated. Hence varying parameters such as grip (co-efficient 
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of friction of the outsole via materials or tread patterns); heel 

lift (training versus racing shoes); age (effects of usage and 

mileage on loss of cushioning); construction (board, slip or 

combination lastings); materials (EVA, blown rubber, air soles) and 

orthotic inserts may produce results which will provide advice on 

the selection and the design of running shoes to minimise injury. 

'o* 

Similarly the effects of sports surfaces can be evaluated to assess 

both the kinematics and the kinetics of running on different 

terrain. Hard surfaces such as tarmacadam and concrete are easily 

tested, as are synthetic surfaces such as synthetic running 

tracks. Topping a force platform with softer materials such as 

artificial turf is also feasible if the remainder of the runway is 

also covered. However, analysis of natural grass and other organic 

surfaces presents problems and will need careful scrutiny before 

force platforms can be topped with such terrain. The use of 

accelerometers cross calibrated against known force platform data 

may be of use here. 

As suggested in Section 6.3 analysis between speeds of a greater 

range than employed in this study (3.83,4i45 and 5.36 m. s-1) must 

be undertaken to elicit the effects of velocity on the musculo- 

skeletal force system. Such speeds as walking (1.3 m. s-1), jogging 

(3 m. s-1), running (6 m. s-1) and sprinting (in excess of 7 m. s-1). 

If closer speeds are employed it is suggested that the subject group 

size should exceed the nine used here or the number of runs 

performed by all the subjects exceeds the 60 (on average) performed 

here. 

Agre (1985) suggests that one cause of injury is inadequate muscle 

192 



endurance and as such having the athletes perform the data 

collection test both with and without the effects of fatigue may 

also elicit significant results. Quantifying the amount of fatigue 

may however present problems and as the length of an average test 

was 20 minutes for 10 runs at each speed the athlete may either 

recover or tire depending upon level of fitness. This test may thus 

IF 
lend itself to analysis through accelerometers and treadmill running 

whilst physiological monitoring of, for example, oxygen uptake 

levels takes place. 

A longitudinal study of athletes with and without injury histories 

and studies of elite and non elite or novice athletes may also be 

enlightening as an insight into such factors as running style and 

muscle strength, endurance, agility and fitness level. All these 

above mentioned studies will however be longwinded in nature due to 

the number of trials in need of analysis for repeatability and the 

nature of the data collection and analysis (film techniques). As 

such cross correlation of a number of variables may reduce the 

overall workload. 

Whilst no literature exists of muscle and joint force analyses in 

the lower limbs during running, verification of the biomechanical 

model produced here is difficult. Employment of this model (and 

method) by. other independent investigators will help validate the 

model to some extent. Although not in the running domain the model 

has been used by Nel (1985); Brandon (1986); Sharples (1987) and 

Thomas (1988) in independent analysis of different aspects of weight 

lifting and squatting exercises. Their results conform with results 

obtained by other experimenters using separately developed 

biomechanical models (Ariel, 1974). This can also be seen as 
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approaching full verification of this model. 

Further verification may also need to incorporate individual EMG 

testing and the production of algorithms derived from the EMG traces 

of a muscle's activity or non activity. This would probably require 

a larger computer memory than is presently available to this 

department if a microcomputer based system is souqht. The rapid 

development of microcomputers should however make this feasible. 

The use of individual EMG profiles would produce a need for 

individual shoes incorporating a foot switch. the shoe/footswitch 

utilised in this study does not lend itself to use by athletes- with 

varying foot sizes. It is also capable of only beinq used with rear 

foot strikers and as such a more flexible footswitch is in need of 

development that can be transferred to any shoe. 

A final refinement to the model and method could be developed due to 

the need to provide rapid feedback of results to athletes, coaches 

and physiotherapists. The present method of analysis is slow due to 

the use of high- speed cinematographic techniques (developing of the 

film etc. ) and the slow nature of digitisation (each run takes 

approximately one hour to digitise carefully). It is possible thus 

that feedback to the subjects may take longer than five days which 

may not be acceptable. The development of on-line systems with 

digital cameras may assist in reducing this turnaround time. 
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7. CONCLUSIONS 

A bioengineering analysis of muscle and joint forces acting in the 

human lower limbs has been performed to allow a scrutiny of the gait 

cycle involved in running to take place. This analysis produces 

results for ground reaction forces and loadinq rates, joint moments, 

limb angles, muscular tensions and loading rates and joint 

reactions. From this an understandinq of the relationships between 

athlete activity and injury has been developed. 

A biomechanical model has been produced. It is a fully dynamic one 

which includes all the major muscles within the human lower limbs 

including the soleus muscle and the anterior shin group. The model 

has been solved by an inverse dynamics approach to solving a rigid 

body simplification of the human lower limbs. Standard 

biomechanical assumptions have been employed which will allow 

replication by other investigators and allows comparison with other 

studies and models in related fields. 

An analysis method based on standard biomechanical laboratory 

equipment and techniques has been developed. This method, combined 

with the biomechanical model produces results repeatable to within ± 

3% per subject per speed run. The equipment used was basically a 

Kistler force platform, a Locam high speed cinematographic camera, a 

magnetorestrictive digitising tablet, individual tailored bone 

models, electromyography and foot switches. All the primary 

analysis was performed with the aid of laboratory microcomputers 

with the final cubic spline combining of the data being performed on 

a DEC 20 mainframe computer. 

This study has shown maximum joint reactions to be present in the 
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knee, the mean compressive or normal force component being 21.3 

times body weight (BW) when the final biomechanical model is 

employed. The highest muscle force can be found in the quadriceps 

group at 15.0 BW whilst the tricep surea group exhibit 10.7 BW and 

the hamstrings 2.8 BW. The shin muscle group, active for 

approximately the first seven percent of the stance phase displays a 

low level of activity of 0.5 BW- Other joint reactions include 2.4 

BW for the shear component at the knee, 4.1 BW for the patella- 

femoral reaction and 11.5 BW and 6.4 BW for the ankle joint 

compressive and shear elements respectively. 

These results, along with the other kinetic and kinematic data 

presented in Sections 5.1 to 5.4 provide the first fully dynamic 

bioengineering analysis of muscle and joint forces acting in the 

human lower limbs during a sporting activity. 

Evaluation of external performance parameters such as speed and 

style have been undertaken with rear foot strikers beinq suggested 

as less likely to incur injury than front foot strikers due to their 

longer foot contact time and more gradual loading rates of both 

muscle and joint. 

Elevated speeds increase these muscle and joint forces also but 

generally modestly and the speeds employed here, 7,6 and 5 minutes 

per mile pace do not show significant differences in the majority of 

peak values. It is concluded that it is not necessarily the higher 

velocities that are more likely to cause injury but rapid or sudden 

changes in training that elevate the forces present in the lower 

limbs above values they are accustomed to. 

more significant differences occur within the anterio-posterior 
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aspect and the muscular loading rates and it is suggested that it Is 

these forces that are more likely to cause injury than purely the 

vertical impact forces. These vertical impact or drive off forces 

do not increase in proportion to the increase in speed from walkinq 

and running. It is suggested that the body reaches a force limit 

and by altering the kinematics of lower limb angles the maximum 

forces are shared by all the load bearing joints. 

From these conclusions, recommendations for the minimisation of the 

likelihood of injury are: 

1. Design of running shoes to maximise on grip and therefore 

minimise sudden variations in the anterio-posterior or shear 

forces. 

2. Careful selection of running footwear to maximise on grip (from 

(1) above) and to minimise changes in heel lift between traininq 

and racing shoes. 

3. Avoiding sudden changes in training routine, speed or terrain, 

to minimise the training error injury risk. Gradual 

introduction to these regimes must be considered (i. e. 

progressive strengthening). 

4. The incorporation of flexibility and strengthening programs to 

assist (3) above. 

selecting shoes purely on their shock absorbinq properties 

should be avoided. 

A wealth of data has now been amassed through this' study which can 

be used in various ways. Limb accelerations, centre of pressure 

profiles, other limb kinematics (angles), muscle length chanqes and 

EMG profiles can all be analysed from the data base created here and 

may form a basis for further work. 
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8. RECOMMENDATIONS FOR FURTHER WORK 

Before any more parameters such as footwear and surfaces are 

analysed the biomechanical model and method should be further 

verified. An analysis of the walking gait would enable the model 

and method to be compared against the standard reference works of 

Morrison (1968,1969), Paul (1967,1974) and Harrington (1976). 

The reliability of the data analysis procedure should also be 

evaluated by allowing a number of independent experimenters to 

perform the analysis. A level of reliability, in comparison to the 

± 3% figure for repeatability, may then be presented. 

Validation of the model should also be sought either by direct 

experimentation (force transducer implantation) or via EMG to force 

processing as attempted by Hof and his co-workers (Hof, 1987). 

Once the validity, reliability and repeatability of the procedures 

have been established, further parameters may be considered. The 

effects of footwear (construction and age), surfaces, fatigue, level 

of fitness and injury history may all produce useful results. 

Deliberately altering the subject's running action, by causing 

slippage, stuttering or over-stretching may highlight other factors 

associated with running style. 

Finally, the data collection, processing and analysis time should be 

reduced from approximately the five days now required to one day. 

This may be achieved with the aid of high speed digital video 

cameras linked to micro-computers. This would reduce the waiting 

time for the cinematographic film - the prime cause of the long 

turnaround time. 
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ATHLETE SHOE & INJURY FACT SHEETS 

A1.1 Buying a running shoe. 

A1.2 , Common causes of injury. 

Al .3 Running shoe lif e. 
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A1.1 Buying a New Running Shoe 

Due to the popularity of the sport specialised running shoe 
companies and general sport shoe manufacturers are attempting to 
capitalise on the upsurge in athletic footwear demand. As such the 
athlete is now faced with a bewildering selection of brands and 
models of running shoes to choose from. But which is the best or 
correct shoe for a particular athlete? Outlined below is an 8 point 
guide to buying a new pair of running shoes. 

POINT OBSERVATION TO MAKE CONCLUSION 

1. LOOK AT YOUR OLD SHOES 

The heel counters turn in You pronate excessively 
and need a strong heel 
counter. 

The heel counters turn out Your foot is too rigid 
- avoid antipronation 
devices. 

The uppers are badly stretched You need wider shoes 
Hole in toe box You need bigger toe box 
Midsole & Wedge hard and brittle Shoes are too old 
Uneven compression on midsole and Need a 'soldier' shoe 
wedge 

LOOK AT YOUR OWN BODY 

You often get blackened toenails Need bigger toe box 
Toes or forefoot goes numb when Need wider shoes 
running 
Body weight higher than most Avoid light shoes 
Feet different sizes Try both shoes before 

buying 

3. CONSIDER YOUR INJURY HISTORY 

Knee injuries You need narrower shoe 
with snug heel counter 

Shin splints Shoes need more grip 
Achilles tendon problems Shoe needs heel lift 

and reasonable heel 
flare 

General ankle pains Shoe needs reasonable 
heel flare and snug 

See common causes of injury fact fitting heel counter 
sheet attached. 

CONSIDER YOUR RUNNING STYLE 

Most outsole wear is at heel Rearfoot striker - good 
heel protection needed 

Most outsole wear is at mid/forefoot Forefoot striker - 
don't need shoe with 
antipronation. device 

2 



CONSIDER YOUR TRAINING REGIME 

Running surface predominantly: Road 

Running surface predominantly: 
Grass etc. 

GO TO GOOD RUNNING SHOE SHOP 

Choose a well stocked specialised 
shop 
Avoid mail order 

Take this guide with you 

TRY AS MANY SHOES ON AS POSSIBLE 

Check function 

WHEN BOUGHT YOUR SHOES 

Try both shoes 
Check quality 

Impact properties are 
important: racing type 
O. K 
Grip properties more 
important: waffle 
needed 

They have most shoes 

Unless you are 
reordering 
For help 

In case of differences 
In & out stitching 
glueing of sole 
ie. they stand straight 
to start with 

Clean and dry 
Like a car, for longer 
life 
Discard if not happy - 
don't wait for injury 
See running shoe life 
face sheet attached 

Treat them well 
Run them in 

Check points 1-5 regularly 

Discard when cushioning lost 

Conclusion 

In conclusion, "you get what you pay for", so buying the best you 
can afford is usually very good policy. No shoe is the best for 
everyone, but there will be one that suits you. With the aid of the 
above checklist you should be able to purchase a pair of running 
shoes that will give you many miles of trouble free running. 

3 



V) 10 0 
41 r. 0 
r. (a 

-4 ft$ .0 
pU 

0 u $4 
CL) 

4j (D ý4 

-4 A (0 
:r 4J 

Lo 00 
>, 4j 4 
ý4 a) 
(D 04 

.0 M (a 
PU '0 
:1 -r-i 4) 

4J 
00 
4-) U) 0 
r-) :J 
00 

$4 0) 
tyl 4) 53 
r, 

-4 
-i 

., A rc) 

r-I 
>1 W 

. 11 > 
M 
:3 d) ý4 4-J 

4J 
C: 4. ) -, 1 4-J 
00r. 
uu0 

., I U 
4) u 4J 

., I a) ra 
r-4 'A -r-I 
. 04 0 

4J > 
0 (d 

4J 
a) 44 M 

:5 41 
44 W (L) 
0 d) 

:1M 
0 

. r., 
10 

4J 4) 0 

t3l 0 
0 C, 4J 
04 !5 

*rq 0 U) 

44 44 4) 
0 41 0a 

En -4 
41 0 >1 

>4 
p0p 
09M 

. r-, (L) >a -4 (d 
U) 0 

04 cn 
>I 0W 

0 4J $4 

r-i (d 5: :3 
En (d $4 ., 1 
11) (D d) 
U) A -1 4) 

0 U) 
4-) (o 

L) ý4 
4) 4) 
> 

0 

1 4-4 
:jW0 
0 

cn 
'D 

4-) in 
0ý fa :3 

> 
0 

0) ý4 
r. 04 

41 ., 4 a 
4) . 14 `4 4) 4j -, I ý4 --I ol 0) 4J 
0 a 0 (a r. . ýq 0 
U) (L) 0 4 ra -4 4-4 4J 
(a d) 10 9 J., 
0) 04 (d $4 to u 
X U) ý4 a) 4. ) 0 a) 

tp 41 W 4) 0 -4 
4) d) 44 0) $4 ty% 0 
> ý4 tp >4 r-q 41 U) 04 

-1 0 r--f m (A V - a) -4 
4J r-4 r. En E0 Ww 
(o (a (a (a 44 r4 0) On 
4J r-A a ý3 0 14 0 
r. U) 4) ra z to Ic: (D 0) k ýt 5 >4 (o 0) ri U) 09 
> 4J $4 (A ý4 5 4-) U 
4) 134 (o m fil ! r. a) 
ý4 rz 0 ý'- 4) tyl (1) 4) 04 4) 0 
N t7% 4J r. U -4 co lz (13 -1 

En r. r:: 04 0) ý4 0) ., 1 04 4.1.1 

cn to $4 (1) > a) as P> >1 ri) a) (13 (U (0 r. 4-1 4j (1) 0 (1) 0 ý4 0 
ý4 0 cn C/) a 0 cn m0 

0 
0 

W 41 r-I 
> C: 0 41 

. rq a) u 0 
U) En rj a U) 0 4) 

U) ý4 0 0 4J a) (D w 0 4-) -r-i ., I r. 
w (1) 0) . 14 00 w H 04 4J a p 0 r-4 -4 . 0 

0ý 14 44 0 4J 9 4) 1 
r, 

-. 0) 0 ., 1 ta, 'd 
< 
C) 

x 
0) 0 

0 
ra 

44 
:3 F. >4 >1 

> 
0 

0 Ea 
4) 4J 

rl 
(a 4J 

0) 4) 
-1 r. 'TJ 

U) 04 
4J 

0) U) $4 'o rc) U ý4 $4 r. 4-) 0) r. c 4) 
Z >4 ý4 

A (1) 
>4 
a 

4 r. (a 00 4) -, 4 (a 10 (D -, -4 -4 a) 
O 

4-) 
u 
cn 

*11 ý: PQ rQ k :3 04 
tr 

04r. 
*r-i U) 54 

to 
4J ra 6 .. .... 

0) 4) ý9 41 00 
0 4) 8 0) r. 4j 9 V4 -1 -4 (a 44 U) 

cn . cn W ri 0 0 ýr :3 .0 4J :j :j ro -ri .. U) ý Ma 41 C: 
a (a to 0 a) U) Cn 0 0 4) 01 (a 4) 0 u tyl U) w r. 0 . 11 's r. U 
rz r. 0 (U 4 4J ý, (D 
fý cn cn (13 V) r, 4J (a VW r-I t7w 
0 4) (1) c 4J r. r- rq (13 9 

U -4 .,. 1 U0 4) 0 ý4 b) 
$4 $4 r. ý4 M ., q 4 4) 
:j 0 - ra c a) 04 .0 tp 1-4 0 

. rn . 1.1 (1) -4 >, a) -4 44 -4 -r-I ., -I rl r. * 04 rO 4. ) r-I 44 4) X9 U) 4J 9" 
ro 0 C: . 14 -14 > 4) u r. Ea ., -I 4j 
P4 Q rq r, $4 -4 4) ý4 ., f 

4-4 0 44 Cl) En 44 0 4. J P 
0 

M 44 
0 (d 0 p cn 0 9) 0) 0 . 14 . 11 4) $4 4J 44 W $4 $4 
dp -i dp W -, 4 . 14 u 0 (d 44 000 
0 ., f 0 $4 x 01 p -A 000 
to Ei (N w w A4 44 0Q P4 P4 P4 

ý4 

1-n 
cn $4 

CD 9 ý4 00 0 
cn q0 4J 41 0) 
0 m ý4 (0 () 0 
(o kk r. (a 4 L) E-4 44 U) 

0 
(13 u 

r-4 rA 
H 4) 
(d r. 

> 
00 

M 

$4 

0) 

43 44 
r-) 41 
(a A 
ý4 t3l 
41 0 
00 
0 
u 

44 0 
0 41 

>4 10 
4J (D 
-r4 r-4 

:3 
0 

U) 
0 (d 
04 

4) 4J 
0 
0 

(D 
to 

4) 0 
$4 4 

u 

u 

Um 
4.1 4) 4) 
0) w (D 

0 to ii uu ra 
ra 0 
0 . 14 

(a As 41 
0) 

r-i 
El a) 

-I (n 1ý 
4J -ri (a 

u 
10 W 

0; 9 4) 
$4 

41 44 
A 01 

0 r: 

44 
0 r. 

41 $4 ri 
r. 41 4 
0 to (d 
0 >4 

10.0 
r. ri 
to 9 

03 

0 

4 



A1.3 Runninq Shoe Life 

Average club runners are recording in excess of 40 miles per week in 
training and thus in a matter of twelve weeks nearly 500 miles can 
have been completed. But how long does or should a running shoe 
last? When does the protection afforded by the midsole etc., begin 
to deteriorate? How long will the tread be effective? What should 
be done when the shoes are at the end of their life? Below are some 
answers. 

Figure 1 shows tread wear rates for two running shoes tested at 
Liverpool Polytechnic and as'can be seen shoe B has far better wear 

-characterts tics, a life in excess of 1500. Shoe A appears to have a 
life of 1000 miles and it is usually at this stage when no tread is 
left on the shoe that it is discarded. In contrast the 

As new 

Zero 
Tread 

z 0 

Shoe A 
0 

S oe 0 NJ 

300 too - 900 
Miles 

Figure 2 

compression set results (figure 2), which indicate how much the 
midsole of the shoe have compressed from their original thickness, 
show that after only about 600 miles shoe A is fully compressed and 
therefore providing very poor cushioning or protection to the 
body. Hence the shoe lives can be said to be in the region of 600- 
800 miles governed by their cushioning. 

In conclusion it can be seen that the life of a running shoe should 
not be governed by its external appearance, in this case tread 
depth, and should be discarded or have new midsoles/outsoles fitted 
after approximately 600 miles. If the price of an average training 
shoe is taken to be L40 then this equates to 6 pence per mile: very 
economic in relation to other forms of entertainment. 
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APPENDIX A2. Sample Results. 
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oeoge Guir, 2we 

0011,0 PRINT" 
dolle Pklhl* 

00120 PkIt-7" "0044,04 
0013e Pk, N, * 44,0444" OPTTDS (SPLINE FOPCFS) PROGRAM 
00140 Pkl%l* 44*4*404 RESULTS GIVE PUSCLF & JOINT FOOCES. JOINT PCHENTS 
00141 PigINT* *44444*4 & mAXImUM LGADING RATE FOR QUADS. L, ACHILLPS PLUS 040*0$**a 
00143 PRIWT" ***404*4 PATELLA-FEAORAL CONTACT FORCF AND 
00145 PRINT" *4444444 KNEE & HIF ANGLES CF FLEXION . LIw& ACCFLSI 
00147 PRibT, **444*$* ALSO CALCULATED bUT NOT PRINTED (JUT. 
04160 PPINT, 
00170 Pp I f-T" 
ealbo ps I I-T" 4*4 
00182 SLEEP 12 
00185 Golo 695 
00190 REM 
00200 REM 

. 00210 REX DEFINE SCREEN CONTROL ==z==ZZZ==ZZ=Z===xzz 
00220 REw 
0024e CORMON CV. AREA) V. HOMES(2)=4, V. ERASS(2)=3. V. ERALS(2)m3. TEPaTYps*V. CLRS(2)=7 
00245 ESCSxCHRS(27) \ 7ERPTYPI=2% 

\ V. HOMES(2)zCHRS(13)*CHRSCIG)+CHRS(A)*CHPS(O) 00250 V. HONES(I)=CHPS(I3)*ESCS+"(Ho 
002S5 V. EAASS(I)zESCS+"(J' \ V. ERAS$(2)=E5CS41Y'*CHR$t0) 
00260 V. ERALs(I)zESCS+q[Kl \ V. ERALS(2)=ESCS+'T'+CHRSCO) 
002b5 V. CLRS(I)=ESCS*"12J'+ESCS+'IH" 
00270 W. CLRS(2)=CHRS(26)+CHRS(O)+ChRS(O)+CHRS(O)+CHRSCO)+CHRS(O)*CHNSCO) 
00275 OPEN 0TlY: ' AS FILE 11 
00290 Y=bOECHO(I%) 
00285 PRINT 1I. ESCS; nZo; 
00290 SLEEP 1% 
00295 LINPUT lIrmHIT RETUR"O; TTS 
00300 TT59LEFTS(EDITSCITS. 32%). 3) 
00310 IF NOTMWESCS4*17")) THEN 333 
00320 TERMTYP%zl% , 
00333 X=ECHO(I%) \ CLOSE it 
00340 DLF FN. CLRS=V. CLRS(TERATYP%) 
00350 DEF FW. HOMES=V. HOMES(TERMTYP%) 
00360 DEF FN. ERALS=V. ERAL$(TERMTYP%) 
00370 DEF FN. ERAS&=V. EPAS6(TERMTYP%) 
00380 DEF FN. GOTOXYS(X%, Y%) 
00390 IF TERMTYP%=2% THEN FN. GOTOXYS=CHPS(13)+ESCS+'='+CHRS(Y%*32)+CHPS(X%432) 

FNEXIT 00400 FO. GOTOXYS=CHRS(13)*ESCS*O(I+STPSCY%*1)41; '+STRS(X%+I)*$Ho 
00410 FhEND 
00460 REX 
00470 PEN Z=ZZ=ý1z" END OF SCPEEK CONTROL =Rzzzzzmzaxxzzzuzc 
o0480 ýEg 
00490 REM 
00500 REP 
00510 PEI' 
00520 i-Em 
00530 PEP 
, a0540 REM INIIIALISE 4, OFEN FILES ANE DIMENSION V&RIAdLES 
oe55e REV 
005bo NEw 
oa5b5 Div FLIs(20). FL2S(2e), FL3S(20) \PEI AUTO PUN FlLt CCLN7ER 
00570 PkLNT FN. CLPS 
00560 ALP 
00590 kE- 
00bee REM INITIALISE PPGGRAP zzzzzzzzzzzzzzzzzzzzzxzx 
o0ble HEM 
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00620 ýEP 
00625 GCIO 100 
00695 PýINT Fh. CLP$ 
oveo PRINT \ PRINT ---------------------------------------------------------------------- 
00710 PPINT \ PRINT "FIRST YOU MUST ICENTIFY THE TWO GROUPS OF DATA FILES FPOP .......... 
0072f PRINT \ PRINT "*HICH DATA IS TAKEN (THIS OPENS THE DATA FILES FC14 REAUING) 
00730 Pin I N't \ PKINT "A f4lo GROUP OF FILES OUST BE OPENED AlSo FOR THE I-ESULTS 
00749 pl. I KT \ Pkjlsl 'Tri BE SENT TO (SEE BELOW FCP THIS NEW NAME) - ------------ a 
00750 PI-IriT \ PRINI 0-----------------------------------a 
OV3152 PPINT \ INPUI *hLNCE INPUT EO. CP FILES TO BE READ *; FRN 
00754 FOFc fRC=l 10 FF, h 
00756 PPINT PkINT "FILE SET No. '; FI-C 
00757 PRINT 
00700 P&INT INPUT NhENCE INPUT ADIGITISEe DATA FILE (IDS RbC)'; Fl, l$ (F'IiC) 
0077C PRINT INPUI "AND INPUT OCIL-160 DATA FILF (IDS. BPC) *; FL2$(FRC) 
ofd780 PRIhT INFUT *AND INPUT A RESULTS 'TEXV FILE (IDS. TXT) "IFL35CFRC) 
00790 PRINT *o***** $6444004*40 
%60800 PRINT INPUT 'IS THIS ACCEPTABLE ? YIN .......... IASS 
00810 IF ASSz6YQ THEN GOIC 810 
%60620 GOTO 760 
00930 MlEXT FPC 
00935 F&C=13 
00840 RJEM 
008bo REP OPEN DATA PILES 
J0660 RL14 tax 
00862 FIIC=FNC+l 
00864 IF FRC)lFRN GOTC 13le 
00866 FLI$zFLIS(FRC) \ FL2$=FL2s(FRC) \ FL3S=FL3S(FRC) 
00870 REP 
00890 OPEN FLI$ FOR INPUT AS FILE #I, ACCESS READ 
00890 OPEN FL2S FOR INPUT AS FILE 12, ACCESS READ 
00900 OPEN FL35 FOR OUTPUT AS FILE 13 
00910 PARGIN13,132 
00920 RE14 
00930 PIEM 
00940 REM DIMENSION VARIABLES ===Zzz=x======a=z=zxxzz=X 
00950 REIN 
00960 PEP 
00970 DIM FXCISOI. FY(150), F-zciso). Px(ise). my(i5e) \PEN F. P. INFUT 
00980 DIM RX(I00), RY(100). RZ(I00) REM F. P. ACTUAL DATA 
00990 DIM AZI(IOe). AZ2(lee), PLCIOO)opw(100)- REM F. P. COORDINATES 
01000 DIM Px(lee), Pycloo) RE" F. P. PTS. OF APFC. 
01010 PEN 
01020 DIM Al(100). A2(l00), A3(100). A4(100) 
011630 DIM KI(l00), K2(100), K3(100). K40oe) 
01040 DIM REM MOME4NT ARMS 
0105V cip HI(100). H2(I00), H3(I00). H4(Ik0) 
01060 DIP H5(100). Hb(leO). H7(100). HB(10e), H9(IeO) 
01? 7o PE " 
iolobe CIS B01100), 81(100). B2(100) 
Alege cim 83(lf40), E! 4(le0) \ PEN ANGLES 
alloo DIM 
01111a IlEr 
01120 VII, 
01130 DIP KY(100)*KS(19, #Z), KN(IGO). PF(ICe) REM JOJhT 10FACIICKS 
01149 Ulm 
01150 r1m GL(Ieid). SH(IiZkl. PT(10f? ). Al(lVe) RF0 ;, tll. 'CLk F(; PCEe 
ollbo PEN 

, 31170 DIM ZA(10J), ZE(I0e), AA(IlV) 
0116e Dili AB(100). YA(1W-"), YB(lO0) \ PEP ACCLL. r)ATA 
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JI 14ye DIP RA(l00). DA(I(oe) REM ACCFL. VARIABLES 
01200 REX 
01210 DIP XI(I00). X8(I00), DG(I00) 
01220 Dlm DM(I50), vC(I5e), vs(I50) REM SPLINE VARIAPLES 
01230 DIP C(4,150) 
01240 PEN 
01250 DIP ID$(25.2) REM GENERAL ARRAY SIP 
01260 DIX AM2(100) REM ANXLE FOPClhr, PCPENT 
01274 DIX AMI(109), K0I(Ie0), PMI(100) \ REM JOINT 0(-AE%7S 
01280 DIP AAN(IPW), KAN(l0f6), HAN(100) \ RLM JOINT ANGLES 
01290 PRINT \ GOSUe MOO 
el3PO IF SE=8 GOTO Ib20 
013le PklNT FN. CLRS 
01320 REM 
01330 PEP 
0134e REM DATA CUNIkOl, MENU 
013! )o REM 
01360 F: E 14 
01370 PRINT DATA CON7kOL MENU" 
01380 PRINT 
01390 PPINT PRINT "READ DATA FROM FILES .................. 1. 
014010 PRINT PRINT "RE-ALLOCATE FILES FOR MANIPULATION .......... 2" 
01410 PRINT PRINT 'CALCULATE FORCES .................... 3- 
01420 PRINT PRINT 'OUTPUT 70 SCREEN ONLY ................. 4- 
01430 PRINT PRINT "OUTPUT TO DATA FILE ONLY ................ So 
01440 PRINT PRINT 'OUTPUT TO FILE & SCREEN ... o.. o......... 6* 
01450 PRINT PRINT *END PROGRAM .............. 7- 
01455 PRINT PRINT "AUTO RUN (FOR MORE THAN ONE FILE. PRINT TO FILE ONLY).. 60 
01460 PRINT PRINT \ PRINT 
01470 INPUT "ENTER SELECTION. + SCRO "; SE 
01480 IF SE<l THEN GOTO 1470 
01490 IF SE>8 THEN GOTO 1470 
01495 PRINT FN. CLR8 
01500 Oil 3E GOTO 1520,550.3870,5570,5150.5150,10510,1620 
01519 REX 
91529 PEN 
91530 REP READ DATA FROM FILES 
01540 REX 
sisse REP 
01560 PRINT \ PRINT \ GOSUS 10500 
03570 PRINT FN. CLR$ 
01580 PRINT " ---------------------------------------------------------------- 
01590 PRINT "READING DATA FROM FIRST FILE - THIS IS: -"; FLIS 
01600 PRINT "AND CALCULATING ACCELERATION DATA* 
01610 PRINT * ------------------------------------- ------------------------ - 0162e INPUT 11, SWS 
01630 INPUT 0I. SD$ 
01b40 INPUT 81*FOI 
01650 INPUT #lvICI 
01670 FOR K=I TO 3CI\INPUTlI, ZA(K)\NfXT K 
01672 full K=I TO ICI\INPUIII#YA(V)\N*Xl V 
01674 FGA N=I TU ICI\INPUTlI, b3(1c)\NEX7 K 
01676 FCR K=1 TU ICI\INPUINI, ZB(K)\NEXI K 
01678 FCR 9=1 TO ICI\INPUIII, YB(V)\NEXT K 
0168C FCR F=l TO ICI\INPIJIII.; 34(K)\NLXT K 
01682 FOR KZI 10 ICI\INPUI#I, K7(K)\14EXI f 
01b84 FcA K=I TC ICI\INPUIl1. X9(K)\NEXT K 
olb8b FCF KCI Tu JCI\I%FUT4I, AZI(P)\NEXT K 
01686 Eci. K=I TO ICI\IkPUTlI. AZ2(K)\hEXT K 
01690 FCR K=I TO ICI\IhPUTlI, PW(K)\hExT K 
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, hlb92 FON K=l TO ICI\INPUT#I, PL(K)\NEXT N 
01694 FOR N=l TO ICI\INPUTII, A3(K)\NEXT K 
e1696 FOP K=j TO ICI\INPU78l, A4(K)\NEXT K 
01699 FOR Kzl TO ICl\IhPUT0l. Kl(K)\NEXT K 
0170e FOR Kzl TO ICI\INPU7$1, K2(K)\NFXI K 
01702 FOP K=j To ICI\INPUI#I, K3(K)\NEXT K 
01104 FOR K=l To ICI\INPUIII, K4(K)\NEXT K 
#41 70b FOR KZI 10 1CI\INPUT#I, K5(K)\NFXT K 
017we FOR K=I TO ICI\lNPUTll, X6(K)\NEXT K 
0 17 10 FOR K=l To ICl\I 14PUT II, HI (K ) \NEXT K 
01712 FC4 K=l TO ICI\INPU7ol. H2(K)\NFXT v 
01714 fok K=l TO ICl\lNPUlll, H3(K)\NEN7 K 
el7lb FOR K=j TO ICI\INPUl#l. H4(K)\NEXT lk 
01718 FOR Kzl TO ICI\INPUTII*HS(V)\NFXI K 
01720 FOR K=l TO ICI\IWPUISIPH6(X)\NEXT K 

. 01724 FOR Kr-I TO ICI\INPUTli, H7(K)\NEXT K 
01726 FOR K=l TO ICI\INPUTOI, H8(K)\NEXT K 
01728 FOR K=1 TO ICI\INPU7#lvH9(K)\NEXT K 
01730 FOR K=I TO ICI\INPUTSI@BO(K)\NEXT K 
01732 FOR Kzl TO ICI\INPUl$l, B1(K)\NEXT K 
01734 FOR Kzl TO ICI\INPU7$l, B2(K)\NEXT K 
01735 FOR Kr-I TO ICI\INPUIOI#BS(K)\NEXT K 
01736 FOR K=1 TO ICI\INPUTII, 86(K)\NEXT K 
01738 FOR K=l TO ICI\INPUT#1#89(K)\NEXT K 
01790 
01790 REM== SMOOTH DISPLACEMENTS THLN CALCULATE ACCELEkATION DATA z=zzzz 

01910 REP =z==z== DATA PREPERATION PRIOR TO ACCELERATION CALCS. zz=x 
01820 PEN 
01930 ASVm2 REM ARRAY STEP VALUE 
01840 REX REASSIGN DATA FOR IASVI POINT ACCEL CALCS. 
oleso IC2r-INT((ICI-I)/ASV)+l 
01866 rOR 1=1 TO IC2 
81670 AACI)=B3(1+CI-1)*ASV) 
Ojos@ AB(I)=B4(1*(I-I)*ASV) 
91898 ZACI)MZA(I*(I-I)*ASV) 
01900 YA(I)=YA(I+(I-I)*ASV) 
01910 ZBCI)=ZB(14(1-1)*ASV) 
01920 YBCI)=YB(14(1-1)*ASV) 
01930 NEXT 1 
01940 IC=IC2-4 ZC=ICI ZG=ICI-4 
01950 REM 
01960 REM ==== DATA PREP FOR SMOOTH. @ACCEL. FIRST SPLINE FIT xzxzz 
01970 REM 
01960 REN 
01990 REM 
02000 NEM FOR ZA 
02010 REM 
eme FCR 1=1 TO IC2 \ OA(I)=ZA(l) NEXT 1 
0203F GOSUB 266e 
0204e Gosub 2780 
02050 FOR 1=1 TO IC \ C(Itl)zRA(1+2) \ Xl(I)zl*A. SV/ros \ NfX7, I 
91200 C(2,1)z(RA(3)-PA(4))*FOI/ASV \ C(2, IC)x(kA(7C). R4(, C_l ))4F0j/ASV 
02070 GObUB 598e 
02080 FcR I= I To 2G \ ZA(I)ZYC(I) \ NEXT 
02090 REM 
021VA FEW =z====z=====z FOR YA 
02110 PEN 
02120 FOP Iml TO IC2 \ CA(I)=YA(l) \ FA(J)x0 ý NEXT I 
02130 GuSUB 2660 
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02140 GUSUB ? 790 
02150 FOk Iml TO IC \ C(1.1)=RA(1+2) \ NEXT I 
02160 C(2,1)=CRA(3)-PA(4))*FOI/ASV C(2, IC)Z(RA(TC)-RA(IC-1))SFQI/ASV 
02170 GGCJSUB 5880 
02180 FOR 1=1 TO ZG YA(1)=VC(l) \ NEXT I 
0219fo REM 
02200 REM FOR 2p 
02210 REM 
02220 FOR 1=1 TO IC2 DA(I)=ZB(I) RA(I)=0 \ NEXT I 
0223e %; OSUB 2660 
02240 GOSUS 27616 
02250 FOR 1=1 TO IC C(I. I)ZRA(1+2) \ NEXT 1 
02261? C(2,1)=(RA(l)-HA(4))*FOI/ASV C(2, IC)Z(RA(TC)-RA(IC-1))OFOI/ASU 
02270 GUSUB 5880 
0226e FOR 1=1 TO ZG \ 28(1)=VC(I) NEXT I 
02290 PEM 
0230e FIEN FOP lb 
02310 PEM 
02320 FOR 1=1 TO IC2 \ DA(I)=YB(I) A RA(])=O \ NEXT 1 
02330 GOSUS 2669 
02340 GosuB 2780 
02350 FOR 1=1 TO IC C(I, I)=RA(I+2) \ NEXT 1 
02360 C(2,1)=(RA(3)-RA(4))*FQI/ASV C(2, IC)X(RACIC)-RA(IC-1))*FOI/ASV 
02370 COSUB 5980 
02390 FOR Iml TO ZG \ YBCI)=VC(l) NEXT 1 
02390 PEM 
02400 PEA FOR AA 
02410 IRIEM 
02420 FOR Iml TO IC2 \ DA(I)=83(I) -RA(1)20 \ NEXT 1 
02430 GOSUB 2660 
02440 GOSUB 2780 
02450 FOR 1=1 TO IC \ C(1.1)=RA(1+2) \ NEXT I 
02460 C(2,1)2(RA(3)-PA(4))*FGI/ASV C(2, IC)a(RA(IC)-RA(IC-1))OFGI/ASV 
02479 COSUB 5880 
02490 rOR 121 TO ZG AA(I)PVC(l) NEXT I 
02490 PEM 
02500 REM FOR AS 
02510 PEN 
02520 FOR Iml TO IC2 DA(I)=B4(j) \ RA(I)=0 \ NFXT 1 
02530 GOSUB 2660 
02540 COSU13 2780 
02550 FOR 1=1 TO IC C(1,1)=RA(1+2) \ NEXT 1 
02560 C(2&1)=(RA(3)-RA(4))*FOI/ASV C(2#IC)z(PACIC)-RA(IC-1))*FOI/ASV 
02570 Cosus 5860 
02580 FOR 1=1 TO ZG \ AB(I)=VC(l) NEXT 1 
02590 FEM a 
02600 IC=ZG 2G=O ZC=o REM RFSET FOR SIMD FILE 

. 02610 EEO, 
0262e REM 
02630 GOTO 29lid 
02b4O REM 
02650 AEM ==Zz===z=====zSUBROUTIKF --- SMOOTHIhG DISPLACEMFhTS=zzzzzz 
w2bbO REM 
0200 iCzl? 
02680, i-CZHC+l 
02690 FOR 1=2 TO (IC2-1) 
027,60 LACI)=0.25$(DACI-1)4DA(1+1))+0.5$C-A(l) 
02710 &EXI I 
02720 VA(I)=V,. 5*(UA(l)*r)A(2)) \ f)A(IC2)ZO. 54(DA(TC2-1)iUA(IC2)) 
027JC IF hC=I THEN C010 2680 
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1? 2740 FLIURN 
02750 REP z=============== END OF SMCCThING SUBROUTINE 
02760 RLP 
02770 FEK 
02710 FEM ===z=========zzSU8ROUTINk: --- ACCELFRATIONZ===Zzzzzz=zzzz==--Xz 
02790 REM 
02800 PEO LANCZOS 5 POINT ROUTINE 
02610 REM 
02820 FOR 1=3 TO (IC2-2) 
02830 
162840 pA(I)2RI4FUl*FOIl(7*9) 
02850 NEXT 1 
02660 owElUkh 
02070 JEM OF ACCELFRATION RCUTINE=====z==zz==Z==== 
02880 PEI' 
02990 REM 
02900 REM 
02910 REM --------------- NOW REASSIGN MEMORY LOCATIONS ------------- 
02920 kEM 
02930 FOR 1=1 TO IC, \ A3(I)zA3(1+2) \ NEXT 1 
02940 FOR 1=1 TO ICI \ A4(1)=A4(1+2) \ NEXT 1 
02950 FOR 1=1 TO ICI \ PW(I)=PW(1*2) \ NEXT 2 
02960 FOR 121 TO ICI \ PLCI)=PL(1+2) \ NEXT 1 
02970 FOR 121 TO ICI \ AZI(I)=AZI(1+2) \ NEXT I 
02980 FOR 1=1 TO ICI \ A22(1)=AZ2(I+2) \ NEXT I 
02990 FOR 1=1 TO ICI \ Kl(l)=Kl(1+2) NEXT I 
03000 FOR IZI TO ICI \ K2(1)=K2(1+2) NEXT I 
03010 FOR IZ, TO IC, \ K3(I)=K3(1+2) NEXT 1 
03020 FOR 12, TO ICI \ 94(1)=K4(1+2) NEXT I 
03030 FOR Ixl TO ICI \ KS(I)=K5(1+2) NEXT 1 
03040 FOR 1=1 To ICI \ g6(l)=K6(1+2) NEXT I 
03050 FOR lal TO ICI \ K7(1)=K7(1+2) NEXT 1 
03060 FOR 1=1 TO ICI \ K8(l)=K8(I+2) NEXT I 
03070 rOR 1=1 TO ICI \ Hl(I)xHI(I+2) NEXT 1 
03080 FOR 1=1 TO ICI \ H2Cl)=82(1+2) NEXT 1 
03090 FOR 1=1 TO ICI \ H3(1)=H3(I+2) NEXT 1 
03100 FOR 1=1 TO Icl \ H4(I)=H4(1+2) NEXT I 
03110 FOR IZI TO ICI H5(1)=HS(1+2) NEXT I 
03120 FOR Iml TO ICI H6(1)=H6(1+2) NFXT I 
0313e FOR 1=1 TO ICI Nl(j)=H7CI+2) \ NEXT 1 
03140 FOR 1=1 TO ICI HBEI)=HS(I+2) \ NEXT I 
03150 FOR 1=1 TO Icl H9(I)=H9(1+2) \ NEXT 1 
03160 FOR 1=1 TO ICI 80(1)=80(1+2) \ NEXT I 
03170 rOR I=l TO ICI 81(1)=BI(I+2) \ NEXT 1 
03180 FOR I=l TO ICI B2(l)=B2(1+2) \ NEXT 1 
03190 FOR IZI TO ICI B3(1)=B3(1+2) \ NEXT 1 
03200 FOR Izi TO ICI B4(1)=B4(142) \ NEXT 1 
03210 FOR 1=1 TO ICI 85(1)=85(1+2) \ NEXT 1 
, 33220 FOY 1=1 70 ICI B6(I)=86(1+2) \ NEXT 1 
(63240 FOR IZI TO ICI 89(1)=B9(1+2) \ NEXT I 
0325e FOR 1=1 TO ICI Xl(l)zIIFOI \ NEXT I 
fJJ2bO FiEfA 
03270 IF SE=b G070 3322 
032be PRINT * ---------------------------------------------------------------- 
03290 PRINT "IHAl DAIA READ AND ACCELE14ATION r-AlA CALCULATEl'. " 
03300 PRINT "NOa PEACING DATA FROM SECOND FILF 11141CH IS: -". FL26 
033 10 PRINT ---------------------------------------------------------------- 
03320 IhPUT 42. ZC INPUTo2, PS \ INPLIT#2. Fu? \ INPUT$2. Aw 
0333e INPUT 12. BLI INPUT 92, BL2 \ INPUT 12, HL3 
03340 INPUT 02,8L4 INPUT 12, RLS 
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03 350 IL=0.128 1, ITze. 265 
, 33360 mFz0.0t45*eo, \ %F=MF49.81 
J331J PL=0. e46511Blx \ wjLmML49.6I 
03 Jb I? przO. 099,644,, \ lmTzmT*9. R1 

0339V FOR 1=1 TO ZC \ INPUT12, FX(I) \ NEXT I 
03400 r0k 1=1 TO ZC \ lhPfJTl2, FY(I) \ NEXT I 
034JU Fck IZI 10 ZC \ IbPUT$2*FZ(I) \ NEXT 1 
03420 FOR 1=1 TO ZC \ INFUT$2. MX(l) \ NEXT 1 
0343e FOR 1=1 TO 2c \ INPUT92, mY(I) \ NEXT I 
, 33440 otm 
0345e it LP 
03460 REM SELECT STARI AND FINISH POINTS tPOM DATA CUSING FZ C14ANNEL) 
0347e ICE% 
0.14HO 14 k: A 
01490 Foiq 121 TO 2C 
03500 IF ABSCFZ(I)-BL3)>Se THEN ZD=l \ COTO 352e 
,a351e 16tXT I 
11 3520 VCR ImZD TO ZC 
03530 If ABS(BL3-FZ(1))<2e THEN ZE=I-l \ COTO 3545 
03540 %EXI I 
03S45 IF' 5E=8 COTO 3570 
03550 PRINT *START VALUE 2 ....... ZD 
03560 PRINT *FINISH VALUE= ...... ". ZE 
03570 ZG=ZE-20+1 
03575 IF SE=8 GOIC We 
03580 PRINT \ PRINT `START TO FINISH VALUES (INCLUSIVE) "JZG 
03590 REM 
03600 REM - ZZ Zz= zzzz= x==Zmx=x m=z=zmzz= x=z=, z=x rxa 
03619 REP Z2zzZzzx REALLOCATION OF MEMORY STORES 
0300 REM 
03630 REM 
03649 FOR KzI TO ZC \ FX(K)=FX(K+ZD-1) \ NEXT K 
03650 FOR Kzl TO 2C \ FY(K)=FY(K+ZD-1) \ NEXT K 
03660 FOR Kxl TO ZC \ FZ(K)=FZ(K+ZD-1) \ NEXT K 
03670 FOR KzI TO ZC \ MX(K)=MX(K+ZD-1) \ NEXT K 
03660 FOR KzI TO ZC \ MY(K)=MY(K+ZD-1) \ NEXT K' 
03690 REM 
03700 REM 
037le REM D&TA READY FOR SPLINE FITTING 
03720 PEK 
03730 IF SE=8 GOTC 3810 
03740 PRINT \ PRINT \ GOSUB 10500 
03750 PRINT \ PRINT "ALL DATA READ AND ACCEPTED" 
03760 PRINT \ PRINT 'ADC PLATFN DATA ITEMS a ": ZG 
03770 PRINT \ PRINT "FILM DIG@D DATA 17EMS z *; IC 
03760 IF ZC=IC THEN PRINI 'SPLINE CUPVE FITTING NOT REOUIRED' 
03790 PRINT \ INFUl "FWESS 000 + PCRtO 7C CONTINUE". ASS 
03BOO PRINT FN. CLPS 
03610 PEP 
0382V IF ZG<>IC THEN GUSUS bboo 
e3630 FEM THIS IS IHE 5PLINL SUBR(IUTJVF 
038be IF SE=8 GOIC 3920 
03670 FkINT 
613W FAINT CALCULATIOUS" 
J1690 PlINT 
v39 ft, il REM 
V39le REM 
03926, iýLA 
s' 39 U ioFm It 44444 CONVLNllrjN OF VULIAGES TO FCRCF DATA q$qss4*ss4$* 
v, 344C AqLo 
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0395e FEP 
0396to SF=PS*10/32768 FEM SCALE FAC'Tf)k 
03970 FCP Iml TO ZG 
039be kZ(I)=(FZ(I)-BLI)OSF 
03990 PX(I)=(FX(l)-HL2)OSF 
040eie YY(I)=(FY(l)-BL3)*SF 
040le vxtl)=(mx(l)-BL4)tSF 
0402C NV(Ijz(MY(l)-BL5)*SF 
0403e PXEI)29-999999 \ Py(l)=9-999999 \ PEM SAFlY CHECK FOR ZERO LIOISICN 
0404it IF RZ(I)=O TeEW GOTC 4070 
04050 PX(I)=(-U. 05441, X(l)-ii. 24$UY(l))/RZ(I) 
0406P PYCI)=(-O. c544ýYEI)+j. 24#MX(j))/RZ(I) 
04e7e 
0408e &EXT I 
J409C FREN 
04100 PEN 
04tIC RE14 CALCULA. TION OF A j. J FORCES 
w4l2t REM 
16413e KLIRAT=O \ ALFOU=0 REM MAX LOADING RATE INDICATION 
0414e FOR I =1 TO ZG 
04150 hX=(0.2+PX(I))*PW(I)/0.4 
0416e Altl)=NX-AZ2(Ii 
04178 NV=PY(I)*PL(I')/0.6 
04160 A2(1)=NY-AZI(l) 
04190 
04200 Ir AKI>O THEN GO10 4220 
04210 Al(l)=AMI/A3(1) \ AMVI)CAT(I) \GA(I)=0.5*AT(l) SL(T)zO. 5*AT(l) GOTO 4230 
04220 SH(I)xAXI/A4(I) \ AM2(I)=SH(I) 
04239 AYCI)=-PY(l)-AT(I)*SIN(BO(l))-SH(I)*STN(B6(l)) 
04240 AZ(1)=-RZCI)-AT(I)*COS(BO(l))-SH(I)*COSCB6(i)) 
04259 BF=ZA(I)*ML*K3(I)-YACI)*ML$K6(I)+ILOAA(l) 
04266 TF=ZBCI)*KT*H7(l)-YB(1)49T*HB(I)+IT*AB(lI 
04270 CI=BF+WLOKI(I)-AY(l)*K4(1)4AZ(I)41(5(1)*SH(I)*KS(I)+SL(I)OK7(lI 
04209 C2=ML*YACI)4AY(I)-(CI*SIN(82(j))/K2(l))-SHCI)VSIN(B6(l))+SL(I)*SIN(B5(1)) 
04290 C3=ML*ZA(I)+wL+AZCI)"(Cl*COS(82(l))/K2(i))+SW(I)*COS(86(I))+SLCI)*COS(BS(l)) 
04300 C4=TF+WT4H7(1)+GACl)*H4(l)-Cl*H9(I)/K2CI) 
043le C5=4$COS(BI(l))-4*KI(I)OCOS(82(l))/K2(i) 
04320 C6=4*SIN(BI(l))-4*91(1)*SIN(B2(l))/h2(i) 
0433e C7=Hl(l)-49H3(l)-4*KI(I)*H9(1)/K2(l) 
04340 Cb=C3*H5(I)-C24H6(l)*C4 
04359 C9=C7+C5*HS(I)-C64H6(l) 
04360 REM 
04370 RF(Z)=CB/C9 
04390 PTCI)=4*RF(l) 
04385 Pf(l)=PT(I)*SOR(20(1-COS(ol(l)-89(i)))) 
0439Z KY(l)=C2-RF(1)4C6 
044eO KZCI)=C3-RF(1)4CS 
04410 Hm(l)=(Cl-4*RF(I)4Kl(I))/K2(I) 
0442C GL(I)=HM(I)4H9(l)/H2(I) 
0443f KN(I)=NZ(I)*COS(83(1))4KY(I)OSIN(P3(i)) 
0444e %Sti)zKY(1)4CCS(E3(l))-YZ(l)*SlN(B3(l)) 
044 $0 fiflA mzzx=zzzzz=z== CALCULATF JOINT MOMFNTS 
04460 Avl(I)XAMI 
04470 lýMICI)ZRZ(1)4(A2(1)4K5(1))-RY(I)O(N4(1)+AICI)) 
044BE P! -I(I)ZRZ(I)*(H5(1)4K5(l)*A2(l))'0'1(1)*(H6(1)*94(1)443(111 
0449e I%EY CALCtILATE 'LE(; ' ANk; LES 

0451d IkAto(l)=(J. 141594b4(j)-83(l))#57.29b 
0453e Rtk ====--=zzzzzzz= CALCULATE PAk PUSCLE LCADING RATE: mcmzzzzzz=zzzzzzc 0454(l FEM ==zzz=zzzzzzz= FOP CAI-F & ouAns. zzzczzzzzzctz=zzx 
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04545 if 1<2 COTO 4580 
0454b IF 1>(ZG/2) COTO 4590 
04550 LPQL=(P7(1)-PI(I-2))$FQ2/3 
04555 IF LRUU>MLRGU THEN MLROIJ=LROU 
e4561 LFAI=(AM2(l)-AM2(I-2))*FO2/3 
u4570 If LRAT>MLRAT THEN mLNAT=LRAT 
04589 NEA1 1 
04595 If SE=8 COTO 4640 
04beP PP1NT 
04610 PPINT S400THING ROUTINE. A HANNING NON RECURSIVE 
04620 PPINT 4404444* FILTER TWICE. FROM KB(GPA) PROGRAM ON PET. 
04b. le PRINT 
04640 spal=. 25 \ 502=e. 5 \ SA3=0.25 
04650 Hcze 
046bP 14C=HC+l 
04670 VCR Iz2 TO (ZG-1) 
4468e AP2(1)=SMI*(AK2(1-1)4A%2(1+1))4SP24AM2(II 
04b9e GALEI)=SMI*((; A(1-1)*GA(1+1))+S42*GA(l) 
0469S SLEII=SAI*(SL(1-1)#SLCI+I))*SP2*SL(lI 
0000 SH(I)=SMI*(SH(I-I)+SH(1+1))#SM2*. %H(l) 
J47le Pftl)=SMI*(RF(1-1)*bF(1*1))+SM24RF(l) 
04720 Pltl)=Sml*(PT(I-I)*PT(1+1))+SK2*Plr(l) 
04725 PFEI)=Sxl*(PF(1-1)*FF(1+1))+SM24PF(l) 
04730 14P(I)=SMI$(Hm(1-1)4HM(Itt))+Sm2*Hp(l) 
04748 GL(I)=SMI*(GL(I-I)+GL(I+I))*SM2*GL(l) 
04750 AZ(I)=SMI*(AZ(I-1)4AZ(1+1))+SM24AZ(I) 
04760 Ali (I)=SMI*(AY(I-1 )*AY(I+t))+SM2*AY (1) 
04776 KZ(I)=SMI*(KZ(1-1)+KZ(1+1))+SP2*KZ(I) 
04760 
04790 KS(I)=Sgl*(KSCI-I)+KS(1+1))+SM2*KS(l) 
04800 KOCI)=SMI*(KN(I-I)+KNCI+I))+Sk2vKN(l) 
04818 A141(IINSI(14(AMICI-I)+AMI(1+1))*SM2*AMI(l) 
04820 
04830 PPkl(I)=SNI*(PMI(1-1)#PMI(1+1))*SM20PMICI) 
04840 kEXT I 
04850 AX2(1)zSM2s(AM2(I)+AM2(2)) \ A142(ZG)=SM2*(AM2(ZG-I)+AP2(ZG)I 
04960 GA(I)=SM20(GA(I)+CA(2)) \ GA(ZG)=SM2*(GA(2G-1)+GA(ZG)) 
04865 SL(I)=SM2f(SL(I)+SL(2)) \ SL(7. G)=SM2$(SL(ZG-1)45L(ZG)) 
04870 SH(I)=SM2*(SH(I)4SH(2)) \ SHtZG)tSM2*(SH(2G-I)+SH(ZG)) 
04890 PF'(I)=SM2*(RF(I)+RF(2)) \ RFCZG)=Sid2*(PF(ZG-I)*RF(ZG)) 
04890 PT(I)=Sm2*(FT(I)+P7(2)) \ PT(ZG)=SI, 24(PT(ZG-I)+PT(Z(; )) 
04895 PF(1)=SM2*(PF(I)*PF(2)) \ PF(ZG)=SM2*(PF(ZG-I)+PF(ZG)) 
04906 1Hm(I)=SM2*(HM(I)+HM(2)) HX(ZG)=SM2*(HMCZG-I)+HM(ZG)) 
04910 GL(I)=SM2*(GL(I)*GL(2)) GL(ZG)=SM24(GL(ZG-I)+GL(ZG)) 
0492e AZCI)=SM2*(AZ(I)+AZ(2)) AZ(ZG)--SK2$(AZCZG-1)4&Z(ZG)) 
04930 AY(I)=SM2*(AY(Il4AY(2)) AY(ZG)=SM2*(AY(ZG-I)+AY(ZG)) 
0494E' 1cZ(I)=SM2*(KZ(I)*KZ(2)) KZ(ZG)=SM2*(KZ(ZG-))+KZCZG)) 
0495P 1kY(I)=S? 024(XY(I)*KY(2)) \ KY(ZG)=SM2*(KY(ZC-I)+NY(ZG)) 
04960. ' i,. N(I)cSW2*(KN(I)*XN(2)) \ KN(ZG)=SK2*(KN(ZG-I)+KN(ZG)) 
04970 t5(I)=Sm2*(KS(I)iKS(2)) \ VS(ZG)=SM2*(KS(ZC. -I)+KS(ZG)) 
.6 49se AP'I(I)zSM2*(AmI(I)*AvI(2)) \ AMI (ZG)zSP24(Aml (ZG-1 )#Awl (ZG)) 
04990 \ ? -? I (ZG)=SW2*jkmI(ZG-I)+kwI(ZC. )) 
05 LA V tj FP-I(l)zS? 024(PMI(l)+P9I(2)) \ PI'I(ZG)zSM24(Pml(Z(; -I)+Pmt(2G)) 
05010 If HC=I THEN GOTU 4oP)O 
kisols IF SE=8 COIC 5230. 
, ASC20 FkINT \ PRINI \ FkINr 
(IbIA10 GOSUB 1135OZ \ PRINT 
05050 iEM 
050e2 kPINT COKE CALCULATIONS ti444*4444 
0507P FrINT ++4+++++++ FITTEO -SPLINE +44+4*4444: 
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05080 
05090 

id5l 20 
es I joh 
ObI40 
05250 
165log 
05170 
05180 
05190 
05200 
05210 

. 3522e 
05230 
05240 
05250 
ob2bo 
05261 
05270 
05280 
05290 
05309 
05310 
05320 
05330 
05340 
05350 
053bO 
05370 
05300 
05390 
05400 
05410 
05420 
05430 
05435 
05440 
05450 
054bO 
05470 
05480 
05490 
0551AO 
05510 
05512 
05520 
05510 
05540 
05550 
055aO 
05570 
05590 
05590 
o561? O 

%45b 10 
ki 562 th 
05o3O 
0564e 

PkINT .......... SMOOTHED CATA 
PEW 
REM 
pi-INT \ GOSUS 114500 
pl%INT \ INPUT "PRESS 10' + 'CP' 70 CONTINUE ". ASS 
GOTU 1300 
REM 
kEP 
REP zzzzzzzzz OUTPUT (TO FILE & TO SCREEN) zzz=======xxmx=ZZ== 

REM 

REM CUTFUT TO FILE FIRST 

14 E 04 
PkINT13#ZG 
LLS= ------------------------------------------------------------------------------------ 
P R, 1NTS3. LLS 
PRINT13. ' ------------ RESULTS FOR "; FL3$; " FILE --------- 
PRINT83. " ------------ RODY WEIGHT2 oSBW#9.8I; s NO 
PRINT13, LLS 
PRINT63 
PRINTl3. LLS 
PRINT13, " I GA/SH RF ". * PT HM GL, *. o PZ 6.6 RY 
PRINT03, LLS 
FOR Iml TO ZG PRINT#3,1. AM2(1). RF(I). PT(I), Hm(l), GL(l). RZ(I). RY(l) % NEXT I 
PRIMT13, ZG 
PRINT#I, LLS 
PRINT13, * I ". ' SL 's' AZ 0. ' AY *#' KZ 'p" KY ", " KN ", * KS 0 
PRINT13, LLS 
FOR Imi TO ZG \ PRINT#3,1#SL(I), AZCI), AY(I). KZ(I). KY(I). KN(l), KS(I) \ NEXT I 
PRINT#3*ZG \ PRINT13. LLS 
PRINT13, " I ', * Agl**" KMI', * PNIO. 0 PF 0. " KANO, * MAN* 
PRINTSI. LLS 
FOR 1=1 TO ZG \ PRINT#3,1. AMI(I)-KM1(I), PPICI). PF(l). KAN(I), HAN(l) \ NEXT I 
PRINT13, LLS I 
PRINT13, "QUADS. MAX LOADING RATE ... z ", MLROU 
PRINTl3s'CALF MAX LOADING RATE ..... = ". 14LRAT 
PRINT13, LLS 
REM 
REM 
PRINT PRINT *DATA WRITTEN TO FILE "; FL3S \ SLEEP 5 
REM 
REM 
PRINT PRINT \ PRINT 
IF SE=5 THEN GOIO 1300 
If SE=8 GO10 862 
REM 
PEjO 
REM RESULTS 70 SCREEN ====Z===zZ=zzz=cmzm=xz 

k L14 
PRINT % PRINT ****4* ..... RkSUL75 
PRINT \ PRINT 

PRINT "GA/SH"; IAE(25); "RF"; TAEs(5(1); "HiAm 
FOR 1=1 70 2C \ PkINT AM2(l); TAd(25); PF(l); TAO(St'); ritA(I) \ 16rkl 1 
PRINT \ PRINT ----------------------------------- w .............................. 
PFINT \ 
FOR 1=1 TO Zf; k PNINT AZ(I); TAe(25); KZ([): TAB(S-1): P. ', (I) \ t'FX7 I 
PPlNT \ PkINT ------------ w --------------------------------- w .......... w ........ 
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I 

Ot)650 PRINT \ INFLI "FRESS '0' + 'CR' TC CONTINUE-; ASS 
0 5t)60 COIC 13eki 
0500 C070 IJ51.: 
05080 IF SL=13 GOIC 58le 
osb9e HE" GCSUO MOO 
1657cu PRINT SPLINE CURVE F17TING StlbROUTINF 

, 35710 REP cc5llB Irseo 
05720 I-ek 
05730 PEP 
05740 RE$ REMIENCE OELEMENTARY NUPIE61CAL ANALYSIS: AN ALGIORITHMIC AFFROACHI 
(J5750 REM 81-CONIE & CE PCOR. PUR MC. CRAW HILL THIRD EDITION 
05760 REM PACES 264-2q3.... 'PFICE*WISE-P(; LYNO)OIAL CUBIC SPLINE INIERPCLAllokl 
05770 REP 
w5780 kEM 
e5790 REM 
OS800 REM 
165810 REM ....... - ............. 
05820 REM GU TO DATA PREPERATION SUBROUTINE 
(e. 5830 GOSU8 *540 
05940 REM 
059513 REM 
05860 RETURN 
05970 PEA 
05880 PEA CALCULATE SPLINE 
05b90 REM 
165900 REP 
05910 DG(I)zl \ DMCI)20 
05920 FOR X=l TO IC 
05930 DM(M)=Xl(M)-XI(M-1) 
05940 DG(M)2(C(loM)-C(I, P-1))/DM(M) 
05950 NEXT M 
05960 ZFxIC_I 
05970 FOR M=2 TO ZF 
OS980 C(2. M)z3s(DM(M)*DG(M+1)4DMCM*I)ODG(M)I 
05990 DG(M)z2*(DM(M)*DM(m4I)) 
06000 NiXT 14 
06010 FOR M=2 TO ZF 
06020 G=-Dm(M+I)/DG(N-1) 
06030 DG(M)=DG(M)*G$DP(M-I) 
06040 C(2. m)=C(2. m)*G$C(2, K-1) 
06050 NEXT M 
06060 FOR M=ZF TO 2 STEP-1 
06070 C(2,9)=(C(2, M)-DM(P)*C(2. M+I))/DG(MI 
06080 NEXT K 
06090 REM 
06100 REM Z=ZZ=ZZ== CALCCF PART 
061117 REM 
06120 FOR 1=1 TO ZF 
06130 DXZXI(1*1)-XI(l) 
ObJ40 Dl=(C(Iol+l)-C(I. 1))/DX 
06150 IjJ=C(2.1)*C(C. I+I)-2*Dl 
(16300 C(3,1)z(DI-C(2.1)-C3)/DX 
00170 C(4, l)zC3/(CX*DX) 
96lbO NEXT I 
labl9p PEM 
062PO ýFs zzz=zz==== PCUAIC PART 
06210 pEtA 
ot)220 XHZAI(I) 
0623(t ISP=O 
06240 FOR 1=1 10 ZC 
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Ob 2 50 IsFr I SP It I 
fhb 200 it X13<Xltl) THEN COTO 6320 
06270 (, OIc 02bkl 

' FOR JzI TO ZF Ob 2 OU 
06290 IF XB<XI(J*I) tlElY COTO 6370 
06300 NEXT J 
ob 3 10 Jzh 
06320 FOR izi-I TO I STEP-) 
(jb 3 30 IF X6<XICJ) TdEX GGTO 6170 
J6340 (; 010 6370 
06350 hex, J 
oo360 J21 
06370 IZJ 
063did DX=Xb-XI(I) 
06390 PC=C(1,1)+CXI(C(2,1)*nX$(C(3.1)4DXOC(4.1))) 
06400 Vc(ISP)ZPc vu(ISPI=XB 
06410 XB=XB4(JC/(FQIOZG)) 
06420 If ISP=ZC THEN COTO 6440 

046430 NEXT I 
06440 RETURN 
k3b4so PEN 
06460 REM =Zzz=== END OF SUBROUTINE FOR SPLINE 
06470 REM 
#h6480 REM 
06490 REM 
06500 REM 
Ob510 REM 
06520 REM 
06530 COTO 10510 
06540 PEN 
06550 REM 
06560 REM 
06570 REM SUBROUTINE FOR DATA PREPERATION FOR SPLINING 
06580 REM 
06590 REM 
06600 REM 
06610 REM 
06620 
06630 REM-... FCR A3 ..................... 
06640 REM, --`- ..................................... 
06650 REM 
06660 C(2. I)m(A3(2)-A3(I))*FOl \ C(2, IC)=(A3(lC)-A3(IC-I))*FOI 
06670 FOP 1=1 TO IC \ CCI. I)=A3(1) \ NEXT 1 
066613 GOSUB 5880 
Ob690 FOR Izi TO ZG \ A3(1)=VC(l) \ NEXT I 
ob700 REM 
0010 REM 
06720 REM----.... 
66730 REM'^^ .... - FCR A4 .............. 

06740 
06759 PEP 
067bO C(2,1)z(A4(2)-A4(J))4FQI \ C(2. lC)=(A4(IC)-A4(TC-I))4F(jI 
06770 FOA 1=1 TO IC C(I. l)=A4(I) \ NEXT 1 
06780 GUSUB 58iO - 
06790 FOR 1=1 TO ZG A4(1)=VC(l) \ NEXT I 
06800 RLA 
06810 kE .4 0o820 14EFA ......... A ........ A 

............ A ...... 06630 REM . FCW Poo 
06840 aft-aAall 
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ob 8 50 RE0 
06860 C(2-JC)=(P, 4(IC)-PW(IC-1))$F(JI 
06870 FOR 1=1 TU IC \ L(t. t)=PW(I) \ NEXT I 
obabo GOSUb 5680 
06H90 FOR 1=1 TO ZG \ PA(l)=VC(l) \ NEXT I 
ob9po kLM 

06910 REM 
06921h REA- ... 
06930 FOR PL ....................... 
06941b ------ 
06950 PEN 
069bO C(2,1)=(PL(2)-PL(l))4FQl \ C(2,1C)=(PL(IC)-PL(JC-1))*FQl 
ObM FOR 1=1 10 IC C(1,1)=PL(l) \ KEXT I 
1669po GOSUd 5680 
06990 FOR 1=1 10 ZG PL(I)=VC(l) \ hFXT I 
070e0 REA 
07010 REA 
07020 ....................................... 
07030 REA-- ... FOR AZI ....................... 
07040 ......................................... 
07050 REA 
07060 C(2,1)=(AZI(2)-AZI(l))*F0I \ C(2, IC)=(AZI(IC)-AZI(IC-1))*FQj 
07070 FOR I=l TO IC \ C(1,1)=AZI(l) \ NEXT I 
07090 GOSUB 5890 
07090 FOR 1=1 TO ZG \ AZI(I)=VC(l) \ NEXT I 
07100 REM 
07110 REM 
07120 REM------... 
07130 REA--- FOR AZ2 ....................... 
07140 REM .................................................. 
07150 REM 
07160 C(2,1)=(AZ2(2)-AZ2(1))*FOI \ C(2. IC)R(AZ2(IC)-AZ2(IC-1))$Fol 
07170 FOR 1=1 TO IC \ C(1.1)=AZ2(1) \ NEXT 1 
07160 GOSUB 5890 
07190 FOR 1=1 TO ZG \ AZ2(I)=VC(l) \ NEXT 1 
07200 REM 
07210 REM 
07220 .......................... 
07230 REA--- FOR KI ....................... 
07240 ................ 
o7250 REM 
07260 C(2,1)=(KI(2)-KI(l))*FOI \ C(2-IC)=(KI(IC)-KI(IC-1))4F0I 
07270 FOR 121 TO IC CCI. 1)=Kl(l) NEXT I 
07280 GOSUS 5880 
07290 FOR 1=1 TO ZG Kl(l)=VC(I) NEXT I 
07300 REM 
07310 REM 
07320 
07330 REP--- FOR K2 ....................... 
07340 REM .................................................. 
e'7350 14EY 
073bO C(2, JJ=(K2(2)-K2(j))4FUl \ C(2, ]C)=CK2(IC)-K2(]C-1))*Ft)l 
07370 FOR 1=1 TO IC \ C(1.1)=K2(l) \ NEA7 I 
073aO GUSUB 5dilb 
07390 COR 1=1 TO ZG \ i. 2(1)=VC(l) \ NEXT 1 
07400 RF14 
07410 REM 
07420 
07430 REA--- FCR K) ....................... 
07440 .............. A^^^A, ^^ 
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07450 kEp 
074bO C(2,1)Z(K3(2)-K3(l))*FQI \ C(2. LC)=(K3(IC)-K3(ic-i))$FOI 
07470 FCR 1=1 TO IC \ CCI. I)=K3(l) \ NEXT 1 
07460 GOSU13 5880. 
07490 FCP lat TO ZG \ t, 3(1)zVC(l) \ NEXT I 
%M00 kE04 
v3751C 
07520 
0753%6 FEJI"^-- FCR K4 ....................... 
07540 
07550 PEO 
07bbO C(2,1)=(K4(2)-ý4(l))*FQ1 \ C(2. IC)=(K4(IC)-K4(]C-1))*Fot 
0757e FCP 1=1 TO IC \ C(I. I)ZK4(l) \ NEXT I 
075dio GC5US SBSO 
37590 FOR 1=1 TO ZG \ K4(1)=VC(l) \ NEXT I 
07600 PEK 
07blO REP 
07620 
07630 PEP4^--- FCR K5 ... a ................... 
07640 REV--^ ........................... A ............... . 
07b5O FIEP 
07660 C(2,1)=(KS(2)-K5(1))*FGI \ C(2. IC)=(h5(IC)-K5(IC-1))*FUI 
07670 FOR 1=1 TO IC C(1.1)=K5(l) \ NEXT 1 
07690 GOSUB 5980 
07690 FOR Izi TO ZG K5(1)=VC(l) \ NEXT 1 
07700 REM 
07710 PEP 
o7720 
07730 REM- FOR K6 ............. 
07740 RE14-:::: ........................ A ...... A ............ 
07750 REM 
07760 C(2,1)zCK6(2)-K6(l))*FOI \ C(2, IC)=(K6(IC)-K6(IC-1))*FOI 
07770 rOR 1=1 TO IC C(l, l)=K6(I) \ NEXT 1 
07780 COSUB 5880 
07790 FOR 1=1 TO ZG K6(I)=VC(I) \ NEXT 1 
07800 RE14 
07810 REM 
07620 REM.. 
07830 REP41--- FOR K7 ....................... 
07840 PE14"--- ....... 
07850 REP' 
07860 C(2#1)=(K7(2)-K7(l))*FGI \ C(2rIC)=CK7(IC)-K7(IC-1))VFUI 
07810 FOR 1=1 TO IC C(I. I)=K7(l) \ NEXT 1 
07980 GOSUB 5880 
07890 FOR Izi TO-ZG K7(1)=VC(l) \ NEXT 1 
07900 FEM 
07910 PE14 
01920 
07930 IýE*--- FOR K8 ....................... 
07940 
07ýp5lt FEA 
07960 C(2, l)=(K8(2)-K6(1))*Ful \ C(2, IC)=(KS(jC)-K8(jC-j))4V(jj 
0797P FtLP 1=1 TO IC \ C(1.1)=K8(j) \ NEXT I 
079813 GCSUB 5880 
0799e FCP 1=1 10 ZG \ Kfi(l)zVC(l) \ hEXT I 
04000 
08ello 

FCR Hl .................... 
08040 --- I ............ 
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08(/5e ftEw 
06060 % C(2, lC)=(HI(lC)-HI(lC-l))4Ful 
Zb070 FC& 1=1 TO IC C(1,1)=Hl(l) % NEXT 1 
08080 GGSUS 5880 
06090 FOR 1=1 TO ZG Hl(I)=VC(l) \ NEXT I 
;381C kh RE14 
081le REM 
081241 PL 04 ................................. AA. A. A ........... 

0813e REM^^'^'^^^^ FCR H2 ....... --A ........ A 
081416 14E)A ................. &-& .............................. 
0815fz PEP 
08160 C(2. l)=(H2(2)-H2(l))4F0l \ C(2. lC)=(H2(ir)-H2(IC-1))4FUl 
08170 tCA 1=1 70 IC \ C(1,1)=H2(I) \ NEXT I 
GaIde GOSU13 5880 
081ge FOP 1=1 TO ZG \ H2(l)zVC(I) \ NEXT 1 
08200 RE14 
08210 REPA 
08220 
08239 RIE14 ......... FCR H3 ................... 
08240 ...... 
o9256 REpt 
082613 C(2, l)=(H3(2)-H3(1))$FOl \ C(2, lL)=(H3(IC)-HI(IC-J ))*Fill 
08270 FOR I=I TO IC \ C(I, I)=H3(I) \I NEXT 1 
08299 GOSUB 5880 
08290 FOP 1=1 TO ZG \ H3(1)=VC(l) \ NEXT 1 
08300 REM 
08310 REM 
08320 
08338 RE14--- FOR H4 ............. 

09340 
08350 FIE" 
08360 C(2, l)=(H4(2)-H4(l))*FQl C(2, IC)z(H4CIC)-H4(lC-l))*FOI 
08370 FOR Izl TO IC C(l#I)zH4(D \ NEXT I 
08380*GCSUB 5980 
06390 FOR 1=1 TO ZG H4CI)=VC(I) \ NEXT 1 
08400 REM 
09410 REM 
06420 
08430 REM^^^'^'^^^ FCR HS ....................... 
08440 
08450 REM 
0846t C(2,1)=(H5(2)-H5CI))*FQI \ C(2, lC)=(H5(IC)-H5(lC-1))#FQl 
08470 FOR 1=1 TO IC \ C(l, I)=H5(I) \ NEXT 1 
08480 GOSUB 5880 
0849e FOR 1=1 TO ZG \ H5(1)=VC(l) \ NEXT I 
Osseo REM 
08510 REM 
08520 PEM----^... 
08530 REM`-- FOR Hb ....................... 
0854P I-EK .................................................. 
e855e ý-ES 
opsoo C(2. l)=(H6(2)-H6(I))4F0l \ C(2, JC)ý(H6(IC)-Hb(JC-1))*FOl 
ob5le FOR 1=1 TO IC C(1.1)ZH6(l) \ GEXI I 
LAS589 GOSub 5680 
0859%; FOR I=I TO ZG Ho(l)=VC(I) \ NEXI 1 
066go FEP4 

16861? jý E 14 

08630 &Lm--- FCR H7 ..................... 
0864e 
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08 t) be PE 11 
0A () t, (I C(2, I (H 7(2H7(I FIJ I\C21Ch71CH71 C- I Fr, I 
0 ts o 7e Fee 1=1 TO IC \ C(1,1)=R7(j) NEXT I 
086Ee cusuH 5990 
o8b9e FOP 1=1 TO ZG \ H7(1)=VC(l) NEXI I 
ObUO lit: m 
087le kEP 
08720 
Oa730 REIA ....... A. FOR HS ...................... A 
ON749 --- -4, 
06750 REM 
03 7 61a \ C(2, IC)=(H8(ICI-)48(jC-j))*FQj 
0877e FOR 131 TO IC \ C(Isf)ýHg(l) \ NEXT 1 
08780 GCSUB 58613 
09790 FCR 1=1 TO ZG \ Wl)ýVCM \ NEXT I 
oboof? IkEw 
08610 FEN 
08 b20 NEK "AA...... A ... A. A AAA A.. AAA... AAAAAAAA. aA. AAA. AAAA 

00830 REM-^ 
: 

.... FOR H9 AAA. Aa................. 

0885(c AE 
088bo C(2,1)=(H9(2)-H9(l))OFQI \ C(2, lC)=(H9(IC)-H9(IC-1))*FOI 
08870 FOR 1=1 TO IC C(1.1)3H9(1) \ NEXT 1 
08880 GOSUB 5890 
08890 FOR 1=1 TO ZG H9(1)=VC(l) \ NEXT I 
06900 REM 
08910 REM 
08920 RIEM^ A^ "AAA, 'A "A ^--A^ ...... A ... 

08930 REM A^ FOR Be AAA!. A... AAA, .AAAA4AAAAA 

08940 ...... 
08959 REM 
08960 c(2,1)z(B0(2)-B0(l))*F0I \ C(2, IC)=(BW(IC)-B0(IC-1))*FQI 
08970 FOR 1=1 TO IC Ctl-l)=BO(I) \ NEXT 1 
08960 GoSUB 5800 
08990 FOR Ict TO ZG BO(I)=VC(l) \ NEXT 1 
09000 REM 
09010 REM 
0902e Rk: M^A'^ A, AAA- AAA 

09e3b 

...... 

! CR St -A ...... A. -A ..... A... 

09040 FEM^"^ ......................... 

09050 REM 
090be C(2,1)=(BI(2)-B1(1))*FOl \ C(2, IC)=(BI CIC)-BI (IC-1 )), $Fat 
0907e FOR 1ý1 TO IC C(1*1)-=BI(l) \ NEXT 1 
09080 GOSUB 5880 
09090 FOR 1=1 TO ZG HI(I)=VC(I) \ NEXT I 
0910C REM 
09110 REM 

0913e FOR 142 ....... AA .............. 
0914o FEY^^^^^ ...... A ............. A ................. AAA .... 
(09150 PLO 

09160 C(2,1)=(B2(2)-b2(l))*F0I \ C(2. IC)z(b2(lCl-S2(lC-1))#F(; l 
-49170 FCR 121 10 IC C(1.1)=P2(l) \ NEXT 1 
09180 GUSUB 5880 
1691qe FOR 1=1 TO ZG b2(1)=VC(l) \ NEýT 1 
09200 ALM 
09210 ! ýEM 
%39220 ........................ 
09230 IýEP--- FOR BJ ................... A ... 
09240 IýEm--- AAA ........ A ....... A ................ A .... 
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092 50 REM 
Oq 2o0 C(2,1 *F0 I\ C(2, IC)=(BJ( IC)-B)( I C-1 )*F(i I 
0927e FCR 1=1 TO IC \ C(l, l)zP3(l) \ NEXT I 
09280 COSUB 5880 
09290 FOR 1=1 TO ZG \ 83(1)=VC(l) \ NEXI 1 
09300 REM 
09 3 10 P EA 
09320 REM----- ......... A ................... 
o933e FOR 64 ........... 

09340 HEP-^`- ... 
093se PLK 
09360 C(2, j)=(b4(2)-P4(l))*FQl \ C(2, IC)2(h4(lC)-B4(IC-1))flFol 
09371? FLI% 1=1 TU IC \ C(l. l)zB4(l) \ týFxT I 
093bio GOSUB 5d80 
09390 FCP 1=1 TO ZG \ B4(11--VC(I) \ NEXT I 
094Vth REM 
094le kEll 
469420 kE, 4- ............................................... 
09421 f%EP--- FCR 85 ....................... 
09422 REM--- ... -A ................. A .......... 
09423 REM 
09424 C(2#j)ý(B5(2)-e5(1)j*Fol \ C(2, IC)=(B5(ic)-BSEIC. I))#FQI 
09425 FCR Iml TO IC C(I, I)=BSCI) \ NEXT I 
09426 GOSUB 5980 
09427 FOW 1=1 TO ZG B5(1)=VC(l) \ NEXT 1 
09428 REM 
09520 

09530 FOR B6 AAaaft-AAAAAAAA&AAAAAma 

09540 

09550 RE14 
09560 C(2,1)=CB6(2)-B6(l))*FQI \ C(2tlC)=CB6(IC)-B6(IC-1))*FQI 
09570 FOR 1=1 TO IC C(l. I)=B6(l) \ NEXT I 
09580 GOSUS 5880 
09590 FOR I=l TO ZG B6(1)=VC(l) \ NEXT I 
09boo REM 
09619 REM 
09720 

09730 REM .... FOR P9 
09740 

09750 REM 
09760 C(2,1)=(B9(2)-B9(l))*FQj \ C(2, IC)'(B9(IC)-A9(IC-1))*FUI 
09770 FOR 1=1 TO IC \ C(1.1)=89(i) \ NEXT I 
09780 GOSUB 5880 
09790 FOR Izl TO ZG \ B9(1)=VC(l) \ NEXT 1 
09800 PE14 
09sle REM 
09820 
09830 FEM- 
(69840 FEM- .... A^ ...... 

09950 REM 
04860 C(2,1)=(ZA12J-ZA(l))*FQI k C(2. IC)Z(ZA(JC)-ZA(IC-1))*F(, l 
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0987C F00 Iz I To IC \ C( I. I )=ZA( I) \ NFXT I 
'A q8 8e cusud b682 
098ý, o FOP 1=1 TO ZG \ ZA(1)=VC(I) \ NEXT I 
09900 "im 
09910 Ki 4 

09920 1- Cýv .......................... 
o99 31c i-E #-- ... ^ FOR YA ....................... 
09940 PEI- ................................................ 
oqg5fh FtEm 
099be C(2, l)=(YA(2)-YA(l))4F(; l \ C(2, IC)=(YA(IC)-YA(IC-j))*FUj 
09970 FOP 1=1 TO IC \ C(I, I)=YA(l) \ NEXT I 
099be GOSUB 5880 
09990 FOR Izl TO ZG \ YACI)=VC(I) \ NEXT I 
10000 FE 14 
1 VOIJ4 YLP 

10020 
10030 REM^'^"^^^^ FOR ZR ...... & ................ 
10042 ALM-^ .... 
10050 FEM 
I oebio C(2,1)=(ZB(2)-ZSLI))*FOI \ C(2. IC)Z(ZB(IC)-ZB(IC-1))9FUl 
1007C FOR 1=1 TO IC \ C(1.1)=ZBCI) \ NEXT I 
10080 GOSUB 5880 
10090 FOR 1=1 To ZG \ ZBCI)=VC(l) \ NEXT I 
101013 REM 
jollo RLK 
10120 ............ 
IoI30 REM--- FOR YS ....................... 
10140 REM-`-... .............. 
10150 REM 
10160 C(2,1)=CYB(2)-YB(l))*FGI \ C(2, IC)=(YB(IC)-YB(IC-1))#FQl 
10170 FOR 1=1 TO IC \ C(Iol)zyB(I) \ NEXT I 
jolso GOSUB 5880 
10190 FoR 1=1 TO ZG \ YB(I)=VC(I) \ NEXT I 
10200 REM 
10210 REM 
10220 REM" 
10230 REM^--^^ FOR AA ....................... 
10240 REM ................................................. 
10250 REM 
10260 C(2,1)=(AA(2)-AA(l))*FQI \ C(2, IC)=(AA(IC)-AA(IC-1))*F(, l 
10270 FOR 1=1 TO IC \ C(1,1)=AA(l) \ NEXT I 
10280 GOSUB 5880 
10290 FOR 1=1 TO ZG \ AA(I)=VC(l) \ NEXT 1 
jo300 REM 
10310 REM 
10320 RIE14---, ... ......................... ^ .......... 
10330 REM--- FOR AB ....................... 
10340 REM^ ................................................. 
10350 FLA 
103bi3 C(2.1)=(AI3(2)-AE(l))4F01 \ C(2vlC)=(AB(IC)-AB(lC-I))*F0I 
10370 FOR 1=1 TO IC \ C(1,1)=ABCI) \ NEXT I 
103BO COSUB 5880 
llaMt F(, R 1=1 TO ZG \ Ab(l)=VC(l) \ NFXT I 
JjW? FEM 
10410 FFM 
1042e. r. Em 
1043f& pfe 2z===ZZ=Z= END OF CAIA PFEPER-AIION atzzzzzcczxmazxmx 
1.144%; iýE" 
1,345V pilur, 14 
10460 kEp 
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10470 kEw 
104 fift 1ý EP 
104914 REP 
I fhboe Pk I NT 
1,65 1 ji IqLw 

1165 20 I't I zzzz==Z=zz CLOSE VAIA FILES 
* 
Ahn END PROGRAM 

10540 CLOSEll \ CLOSE82 CLOSE13 
10550 F UD 

\ RETUkN 
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