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ABSTRACT 

Many industrial processes have non-linear and time-varying dynamics, for which the 

control and optimization require further investigations. Adaptive modelling techniques 

using radial basis function (RBF) networks often provide competitive modelling 

performances but encounter slow recovery speed when processes operating regions are 

shifted largely. In addition, RBF networks based model predictive control results as a 

non-linear programming problem, which restricts the application to fast dynamic 

systems. To these targets, the thesis presents the development of adaptive and 

factorized RBF network models. Model predictive control (MPC) based on the 

factorized RBF model is applied to a non-linear proton exchange membrane fuel cell 

(PEMFC) stack system. The main contents include three parts: RBF model adaptation; 

model factorization and fast long-range prediction; and MPC for the PEMFC stack 

system.  

The adaptive RBF model employs the recursive orthogonal least squares (ROLS) 

algorithm for both structure and parameter adaptation. In decomposing the regression 

matrix of the RBF model, the   matrix is obtained. Principles for adding centres and 

pruning centres are developed based on the manipulation of the   matrix. While the 

modelling accuracy is remained, the developed structure adaptation algorithm ensures 

the model size to be kept to the minimum. At the same time, the RBF model parameters 

are optimized in terms of minimum Frobenius norm of the model prediction error. A 

simulation example is used to evaluate the developed adaptive RBF model, and the 

model performance in output prediction is superior over the existing methods.  

Considering that a model with fast long-range prediction is needed for the MPC of fast 

dynamic systems, a  -step factorization algorithm is developed for the RBF model. The 

model structure is re-arranged so that the unknown future process outputs are not 

required for output prediction. Therefore, the accumulative error caused by recursive 

calculation in normal neural network model is avoided. Furthermore, as the information 

for output prediction is explicitly divided into the past information and the future 

information, the optimization of the control variable in the MPC based on this 
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developed factorized model can be solved much faster than the normal NARX-RBF 

model. The developed model adaptation algorithm can be applied to this  -step 

factorized model to achieve fast and adaptive model prediction.  

Finally, the developed factorized RBF model is applied to the MPC of a PEMFC stack 

system with a popular industrial benchmark model in Simulink developed at Michigan 

University. The optimization algorithms for quadratic and non-linear system without 

and with constraints are presented and discussed for application purpose in the NMPC. 

Simulation results confirm the effectiveness of the developed model in both smooth 

tracking performance and less optimization time used.   

Conclusions and further work are given at the end of the thesis. Major contributions of 

the research have been outlined and achievements are checked against the objectives 

assigned. Further work is also suggested to extend the developed work to industrial 

applications in real-time simulation. This is to further examine the effectiveness of 

developed models. Extensive investigations are also recommended on the optimization 

problems to improve the existing algorithms.  
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Chapter 1 

INTRODUCTION 

1.1 Background 

With the advancement of technology driven by the high growth rate of consumerism, 

industrial expectations for process control have increased rapidly. For this reason, the 

monitoring and control of industrial processes have become more challenging. 

Processes are required to operate at a wider operating region to satisfy the operating 

criteria and economic objectives which often involves a large number of variable 

interactions. To integrate these demanding requirements, the complexity of processes 

has inevitably increased, which in turn has led to the development of advanced control 

approaches such as model predictive control (MPC). 

As one of the optimal control theories, linear quadratic Gaussian controller (LQG) 

based on Kalman filter addressed linear control problems effectively. However, 

extensive practical concerns such as process constraints, non-linearity of a process and 

model uncertainty has restricted the application of LQG in the process industries (Qin 

and Badgwell, 2003). From an economic perspective, processes are often required to 

operate near to the limit of its constraints. The economic and psychological 

environment required for a successful control implementation is often not met in 

practice so that many constraints prevent the implementation of on-line control 

schemes on production plants (Richalet et al., 1978). Furthermore, industrial processes 

are typically of high complexity. The development of a process model may require vast 

variety of fundamental engineering disciplines such as chemistry, physics and other 

knowledge, which is not practically realistic. Another important aspect is that industrial 
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processes are quite distinctive and have their own performance criteria and reliability 

requirements. The performance criteria includes safety regulations, physical limitations 

on equipment and others as stated in (Garcia et al., 1989).  

MPC that has the ability to deal with the factors discussed above becomes one of the 

dominant control strategies. Process variable interactions and process constraints are 

the important features in MPC. Another advantage of MPC is the capability of its 

operating objective function in integrating the outlined practical performance criteria. 

Generally, MPC is divided into linear and non-linear types which is characterised by its 

internal model. Most industrial processes employ linear internal models where they are 

extended to cover different operating points of processes (Forbes et al., 2015). However, 

most industrial processes exhibit non-linear behaviours, which necessitate the 

employment of a non-linear internal model for a satisfying prediction and control 

performance, leading to the rise of non-linear MPC (NMPC). Obtaining a good 

prediction performance is essential in MPC. 

System identification is introduced to deal with the problems in deriving a 

mathematical model of a complex process for the purpose of control system design. 

Although system identification techniques are developed independently, their efficient 

outcomes have led to the applications in MPC. Empirical models are useful as they are 

built from measured process data directly without requiring process knowledge. Thus, 

they are also known as data-driven models. Linear empirical models include 

autoregressive model with exogenous input model (ARX) and autoregressive moving 

average model with exogenous inputs model (ARMAX) (Ljung, 1999). These models 

are linear for unknown parameters, but are non-linear for variables. They can be easily 

identified using the linear identification methods. For non-linear cases, a non-linear 

ARMAX (NARMAX) model is used. One of the disadvantages of ARX, ARMAX and 

NARMAX models are they are constrained within the scope of data that used to build 

them. For time-varying processes, these models are required to be updated using by the 

latest process data.  

Adaptive modelling, regarded as one of the advanced techniques in system 

identification, has been studied intensively in the past few decades. The implementation 

of a radial basis function (RBF) network as a function estimator for non-linear 



Chapter 1  Introduction 

Page 3 

functions was presented by Broomhead and Lowe (1988). They proposed a linear 

function space which depends on the positions of the generally non-linear known data 

points according to an arbitrary distance measure. Following their work, the popularity 

of RBF networks in adaptive modelling rises rapidly and has been intensively studied 

for the adaptation of its structure and parameters. The dynamic structures of adaptive 

RBF networks are able to accommodate different operating points of processes and 

their parameters estimation can be updated in on-line mode according to the parameters 

of processes (Yu and Yu, 2007, Qiao and Han, 2012). 

The on-line execution of MPC has become more effective with its implementation 

based on an adaptive RBF network (Yu et al., 2006, Han et al., 2013). The research 

interest in this work focuses on process modelling using adaptive RBF networks, RBF 

model-based MPC and its application including a discussion of related optimization 

algorithms. 

1.2 Research Motivations 

There are three motivations. The first motivation is on the adaptive RBF networks. 

Secondly, the motivation in studying the mathematical optimization in relation to MPC 

is described. Lastly, the desire to improve the RBF model-based MPC is included.  

As outlined, the emergence of time-varying processes inspires adaptive modelling 

techniques. An adaptive RBF network is able to model non-linear time-varying 

processes without reconstructing its structure. The centre adding strategy plays a vital 

role in producing informative centres that adapts to the operating regions. The 

challenge is to produce new centres that can adapt to new process dynamics 

immediately and effectively. Existing methods (Yu et al., 2004, Yu and Yu, 2007, Han 

et al., 2011) produce new centres without assessing the contribution of centres, 

resulting in a slow recovery speed after the migration of operating points. The first part 

in the thesis focuses on developing an effective adaptive RBF network with a new 

centre adding strategy. Recursive orthogonal least squares (ROLS) algorithm is 

employed to train the RBF network. The main reason of selecting ROLS training 

algorithm is that it enables the assessment of the contribution of every centre, which 
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formulates the forward and backward centre selection methods. In addition, the 

simplicity of ROLS training algorithm enables the training of network structure and 

parameters simultaneously.  

MPC is popular due to its straightforward implementation framework which formulates 

a control problem into an operating objective function by taking process constraints 

into consideration. Nevertheless, optimizing the formulated objective function requires 

Non-linear Programming (NLP) algorithms when an NMPC is considered. Nowadays, 

optimization techniques are easily available through developed software tools such as 

Matlab that can be implemented in a straightforward manner. Many work have, instead, 

emphasized on improving process models such the development of RBF networks. But, 

the understanding and selection of an optimization algorithm are equally important. 

Mathematical optimization is a wide topic area that includes linear and non-linear 

problems. It requires a great effort to explore relevant optimization techniques for MPC. 

As part of the research, the experience of author in studying optimization algorithms is 

used to construct a foundation in this discipline, particularly for the techniques in 

relation to the MPC.  

One of the advantages of a RBF network model-based on a NARX model (NARX-RBF) 

is that it can be trained as an independent model to make multi-step ahead predictions 

for MPC. The use of a RBF network as an internal model in MPC leads to a NMPC, 

which increases the computational efforts in solving the formulated optimization 

problem. This has restricted the use of RBF models in MPC as time constraint is one of 

main factors during the on-line execution for fast dynamic processes. The computation 

time required to solve an optimization problem at each sampling interval may be 

insufficient if a small sampling period is selected. In this work, a RBF network is made 

factorable by modifying the elements in the NARX model. The factorized RBF model 

enables the derivation of an explicit objective function for MPC with the aim to reduce 

the computation burden in executing the optimization algorithm. As one of the 

challenges, the factorization has to be done without compromising the prediction 

performance and model compactness of the RBF network. This is because model 

compactness has the direct impact on the computational load. An existing factorized 

RBF network (Bhartiya and Whiteley, 2001) is capable of achieving satisfactory 

prediction performance but the model compactness is compromised.  
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1.3 Aims and Objectives 

Based on the motivations above, the aims and objectives are summarized as: 

Aims:  

1. To develop an effective adaptation algorithm for RBF networks. 

2. To develop a more efficient RBF network model for MPC. 

Objectives: 

The aims above will be accomplished by fulfilling the following objectives: 

1. Develop a structure adaptation algorithm for RBF networks 

2. Develop an adaptive RBF network model for time-varying processes 

3. Develop a  -step prediction method for RBF network models 

4. Develop a factorization algorithm for fast model prediction in RBF network 

models 

5. Develop a model predictive control based on  -step model-based RBF network 

( -step RBF) 

6. Apply the  -step RBF network model-based MPC to a PEMFC stack system 

1.4 Contribution to Knowledge 

The main contributions of the research: 

1. A new adaptive RBF network is developed using ROLS training algorithm (Tok 

et al., 2015). The developed network is constructed based on three main steps 

which are adding, pruning and grouping of the centres. An effective centre 

adding strategy is proposed to adapt the network structure to the operating 
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regions of the process to be modelled. In order to maintain the compactness of 

the network model, a grouping algorithm is introduced to select significant 

centres to form a final network model. The experiment result confirms that the 

developed technique has advantages in term of overall prediction performances 

and achieves a faster recovery speed compared to other methods.  

2. A new factorized  -step model-based RBF network is developed and 

implemented in MPC (Gu et al., 2016). The developed network is able to 

predict future system response without requiring the unknown system response, 

which allows the RBF network to be factorized for the application in MPC. The 

outcomes demonstrate that the developed network is more compact than 

existing methods while maintaining the prediction accuracy. Furthermore, 

recorded results show that the developed network model-based MPC achieves a 

reduction in the computational load in solving the on-line optimization problem. 

3. The  -step RBF network is applied in MPC to control a PEMFC stack system. 

First comparison results indicate the advantages of the developed network in 

term of modelling performance and model compactness. Secondly, the proposed 

model-based MPC achieves a satisfactory control performance while requiring 

less computation load. Both modelling and control outcomes demonstrate that 

neural network based MPC is a potential control strategy for the PEMFC stack 

system. Another key point is this application has validated the potential of the 

developed factorized RBF network.  

1.5 Thesis Overview 

This thesis consists of eight chapters and it is organized as follows. Chapter 1 

introduces the background and covers the research motivations. Aims and objectives 

are clearly defined. The contributions to knowledge are highlighted.  

Chapter 2 presents the literature review. The key aspects of a RBF network are 

discussed. The distinctions between fixed structure and adaptive structure RBF network 

models are examined. The recent developments for adaptive structure RBF networks 
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are reviewed. This includes adaptive approaches that based on orthogonal 

decomposition methods such as batch orthogonal least squares and recursive 

orthogonal least squares algorithms which form the fundamental principles for the 

developed approach in the research. In next section, the historical background of MPC 

is firstly reported, followed by the studies on linear and non-linear models based MPC. 

In particular, the review of RBF network models based MPC is imperative in the 

development of the factorized RBF network approach. Finally, a review on the 

properties of MPC is also included.  

Chapter 3 describes the methodology of the research. The basic concept of a RBF 

network and employed training algorithms are presented. An overview of a RBF 

network is given, including the structure, the non-linear prediction model and the 

activation function. The key training algorithms such as recursive K-means algorithm 

and P-nearest neighbour method are introduced which are used to decide network 

structure. Then, it is followed by the recursive least square training algorithm and 

ROLS training algorithm for network parameters estimation and structure adaptation. 

This chapter concludes with dynamic process modelling techniques, namely prediction 

models, data collection, a data scaling method and an error measurement method.  

In Chapter 4, an adaptive structure RBF network model is proposed to model non-

linear processes with operating region migration (Tok et al., 2015). The ROLS training 

algorithm is adopted to select new centres on-line, as well as to train the network 

weights. Based on the R matrix in the orthogonal decomposition, an initial centre bank 

is formed and updated in each sample period. A new learning strategy is proposed to 

gain information from the new data for network structure adaptation. A centre grouping 

algorithm is also developed to divide the centres into active and non-active groups, so 

that a structure with a smaller size is maintained in the final network model. The 

proposed RBF model is evaluated and compared to the three adaptive structure RBF 

networks by modelling a non-linear time-varying numerical example. Simulation 

results demonstrate that the proposed algorithm has several advantages in term of the 

adaptive tracking ability and a better recovery speed over the existing methods (Yu et 

al., 2004, Yu and Yu, 2007, Han et al., 2011) during the migration of process’s 

operating points. 
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In the first part of Chapter 5, the concept of receding horizon approach in MPC is 

introduced and the following section describes the features of MPC. The effects of 

tuning parameters and their relationships are discussed. The following part presents the 

optimization algorithms. The order of this part is constructed based on author’s 

experience. Linear Programming is firstly considered with a constrained algorithm, 

Simplex method. Next, the Lagrange method that employed for a general problem is 

included as it forms the basis for many optimization algorithms. It is followed by 

Quadratic Programming and Active Set method. Non-linear Linear Programming is 

outlined including the background of unconstrained methods and a constrained 

algorithm, Sequential Quadratic Programming. Ultimately, the selections of 

optimization algorithms in relation to MPC are discussed.  

In Chapter 6, a new factorized  -step RBF network model for MPC is proposed. The 

strategy is to develop a  -step predictor for non-linear dynamic systems and implement 

it with a RBF network. In contrast to the popular NARX model based RBF network 

model, the developed  -step RBF network model is capable of making a designated 

sequence of future output prediction without requiring the unknown future process 

measurements. Furthermore, the developed  -step RBF network model is factorized 

into two parts, with one part including past plant input/output and the other part 

including the future input/output. When this model is used as the internal model in the 

MPC, the factorization enables an explicit objective function for the on-line 

optimization in the MPC. Thus, the computing load in solving the optimization 

problem is greatly reduced. The developed model is used in MPC and applied to a 

continuous-stirred tank reactor. The simulation results are compared with that of MPCs 

with other two models. The comparison confirms that the developed model makes more 

accurate predictions so that the MPC performance is better, it also uses much less 

computing time than the other two models based MPC.  

In Chapter 7, a  -step RBF network model is developed for oxygen excess ratio 

prediction of the PEMFC stack system. Then, the MPC based on the factorized  -step 

RBF network model is developed and applied to control the oxygen excess ratio for 

PEMFCs. Compared with the widely used NARX-RBF model, the  -step RBF network 

model can predict more precisely for long-term prediction. Furthermore, the 

factorization algorithm developed in the  -step RBF network model significantly 
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reduces the computing load when the model is used in the MPC for long-term 

prediction, and consequently reduces time for on-line optimization in the MPC. The 

developed scheme is successfully applied to a non-linear simulation of a PEMFC stack 

system to control the oxygen excess ratio, and the aforementioned features are 

demonstrated by comparing the performance with the control using the NARX-RBF 

model.  

Finally, Chapter 8 concludes the contributions of this research including the achieved 

aims and objectives. The conclusions are generally divided into two parts, summarising 

the development of an adaptive RBF network, and  -step RBF network based MPC, 

respectively. The recommended future work is given in the final part of this chapter. 



Chapter 2  Literature Review 

Page 10 

 

Chapter 2 

LITERATURE REVIEW 

This chapter is divided into two main sections. The first section covers the background 

of a RBF network including the on-line and offline parameters training approaches. The 

discussion is followed on network structures for both fixed and adaptive types. Existing 

methods for adaptive structure RBF networks are reviewed where the focus is on 

orthogonal least square training algorithm in both offline and on-line modes. 

In the second part, MPC is discussed, with an overview and historical background at 

times. Next section discusses the internal models in linear and non-linear forms. Lastly, 

a brief overview of the properties of model predictive control is included.  

2.1 RBF Network Models 

Artificial neural networks (ANN) have been found in many applications such as non-

linear control, signal processing, system diagnosis and faults detection due to their 

good approximation accuracy (Xie et al., 2011). There are two popular ANNs, which 

are RBF and multilayer perceptron (MLP) networks. Early development is focussed on 

MLP networks but RBF networks have gained more attentions due to reported superior 

performances (Finan et al., 1996).  

Both RBF and MLP networks have different properties despite having similar network 

topologies. The MLP structures are global approximators whereas the RBF networks 

are local ones. MLP networks tend to have more hidden units, resulting in a more 
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complex architecture. Therefore, the training of a MLP network can be computationally 

demanding (Dawson et al., 2002). With a simple architecture, RBF networks are 

simpler to train (Hao et al., 2011). Many applications compare the performance 

between MLP and RBF networks. In flood forecasting, Jayawardena et al. (1997) 

showed that RBF networks used less time and effort in model development while 

producing comparable prediction accuracy compared to that of MLP networks. A 

survey paper by Kumar and Yadav (2011) compared different MLP and RBF network 

techniques and concluded that RBF networks provided more accurate predictions and 

excellent generalization. An additional point is that the convergence to optimum values 

is guaranteed for a RBF network as it is a linear in the parameters model.  

RBF network models have been popular due to their on-line learning abilities and 

simple architecture (Hao et al., 2011). The application of RBF networks to approximate 

non-linear functions was first studied by Broomhead and Lowe (1988) and the 

generalisation ability was investigated in (Lowe, 1989). Since then, the RBF networks 

have been studied intensively (Zhao and Huang, 2007, Herrera et al., 2011, Wang et al., 

2012) and widely used in non-linear systems modelling and control (Seshagiri and 

Khalil, 2000, Li et al., 2001, Qin et al., 2015, Zhao et al., 2015, Wu et al., 2016). 

In a RBF network, the approximation is done by mapping a non-linear function into a 

linear combination of weighted outputs using an activation function. There are a few of 

activation functions available for the RBF network. The RBF network centres have 

greater impacts on the network performance compared to the activations functions. 

Therefore, the choice of activation functions is often neglected as stated in (Chen et al., 

1991). 

In general, there are two phases in constructing a RBF network: forming a network 

structure and the estimation of network parameters (weights). The construction of a 

network structure involves in deciding an optimal number of centres and their width of 

radius. The network parameters can be trained in two modes: 1) an off-line mode using 

the batch least squares training algorithm, 2) an on-line mode using the recursive least 

squares training algorithm. In the off-line training mode, the network parameters are 

pre-trained using a set of collected data points. This means that the network has fixed 

parameters. Meanwhile, in the on-line training mode, the network parameters are 
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updated with the arrival of new data points at each sampling interval. The advantage of 

this method is the network parameters are adapted recursively to the process dynamics, 

improving the network performance, in particular for processes with high parameter 

uncertainties as demonstrated in (Wang et al., 2006). However, the on-line parameter 

training mode only tends to be effective within the scope of training data points. For 

processes with operating regions migration, adaptive structure RBF networks are 

proposed which is discussed in Section 2.2. 

In early implementations, RBF networks used all data points as centres, leading to a 

large network structure which required a huge memory space and also encouraged 

numerical ill-conditions (Mashor, 2000). This is practically unrealistic for industrial 

applications as a big amount of data points is usually employed. To overcome this 

drawback, Poggio and Girosi (1990) proposed a restricted network structure which 

used a finite amount of centres. 

In general, the structure of a RBF network is classified into two categories: fixed-

structure and adaptive structure. For a fixed-structure RBF network, the number and 

location of centres are static during the modelling process and the model parameters 

(weights) may be adapted. In early developments, input data vectors from the training 

data were arbitrarily chosen as network centres (S. Elanayar and Shin, 1994). Another 

approach was to employ random vectors from the input space (Kaminski and Strumillo, 

1997). The other method is the position of centres is decided using a clustering method 

such as the popular K-means clustering algorithm (Moody and Darken, 1989, Mashor, 

2000). As an statistical approach, the disadvantages of K-means clustering algorithm 

are its lacklustre learning ability in the training data and the effect of data noise (Cui et 

al., 2016). However, it is still effective in some cases if sufficient centres are used. One 

major drawback of the fixed-structure RBF network is the selection of centres are 

strictly bounded by the training data (Zhang and Li, 1996). 

The performance of a RBF network is heavily dependent on its structure and it is 

imperative to optimize the network structure to achieve a satisfactory performance, 

especially in modelling a highly time-varying process. A satisfactory network 

performance can be achieved provided a sufficient number of centres is employed and 

there is no prior knowledge to find an exact number of centres that needed (Gomm and 
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Yu, 2000). The number of centre is often predefined by the user intuitively and 

empirically. An inappropriate number of centres may result in poor global 

generalization of the RBF network (Sun et al., 2009). A short amount of centres can 

lead the degradation in the prediction accuracy. For this reason, an unnecessary large 

RBF network is usually used, which causes numerical ill-conditioning in the training of 

the network and the worsen generalization of the trained model (Chen et al., 1992b, 

Zhang and Li, 1996). 

2.2 RBF Network Structure Adaptation 

To overcome the drawbacks of fixed-structure networks as discussed in the previous 

section, adaptive RBF network structures are proposed. An adaptive structure RBF 

network has the number and location of its hidden layer neurons adapted to better fit 

the dynamics of the process to be modelled, in addition to the adaptation of network 

parameters (Chen et al., 1992a).  

In the past decades, the adaptations of RBF network structures have been intensively 

investigated. First of all, the development of a dynamic RBF network structure was 

initiated by Platt (1991) who introduced an algorithm called resource allocating 

network (RAN). For an RAN, the hidden units are gradually inserted into the hidden 

layer based on the novelty of new data. In a latter attempt, Karayiannis and Mi (1997) 

developed a framework for growing RBF networks which merged supervised and 

unsupervised learning with network growth techniques. They proposed that the 

structure of network could be gradually constructed by splitting and increasing the 

prototypes which represented the network centres. However, the insignificant hidden 

neurons in (Platt, 1991, Karayiannis and Mi, 1997) were not pruned which led to a final 

network with a huge structure.  

To solve the oversized problem, Lu et al. (1997) proposed a sequential learning scheme 

for function approximation using a minimal RBF network which was referred as 

minimal RAN (M-RAN). Their pruning strategy was to prune the hidden units that had 

insignificant contributions to the network performance. The performance of M-RAN 

was evaluated in (Lu et al., 1998). However, the optimal network structure achieved in 
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(Lu et al., 1998, Lu et al., 1997) is only for a certain data set, while the performance 

would be degraded if it is used to predict future behaviour in other regions. Huang et al. 

(2005) developed a generalized growing and pruning training algorithm for RBF 

networks (GGAP-RBF). Their algorithm constructed the network structure by 

evaluating the hidden neuron’s statistical contribution. Then, Bortman and Aladjem 

(2009) modified the GGAP-RBF and showed that modified GGAP-RBF outperformed 

the original GGAP-RBF. However, in order to implement both approaches (Huang et 

al., 2005, Bortman and Aladjem, 2009), full information of the training data is required 

which is not practically realistic.  

In recent years, a few methods have been proposed for self-organizing RBF networks 

(Qiao and Han, 2012, Han et al., 2011). Although it was claimed that these methods 

(Han et al., 2011, Qiao and Han, 2012) outperformed M-RAN (Lu et al., 1997) and 

GGAP-RBF (Huang et al., 2005), the convergence of their algorithms needed to be 

investigated carefully for successful applications, which complicated the entire training 

algorithms. Moreover, there are many unknown parameters in (Han et al., 2011, Qiao 

and Han, 2012) which need preliminary runs to find optimal values for the parameters 

before the adaptation of network take places. 

2.2.1 Orthogonal Least Squares Algorithm Based Model Adaptation 

Orthogonal decomposition is a numerically stable method for solving least squares 

problems. The application of the orthogonal least squares algorithm (OLS) in non-

linear system identification was firstly analysed in (Chen et al., 1989). Chen et al. 

(1989) introduced an efficient subset selection method to select significant terms for 

NARMAX polynomial models using the OLS algorithm. With this in mind, not only 

does the OLS algorithm is simple to execute, its convergence is also guaranteed with its 

least squares algorithm. A great number of research references for the applications of 

OLS algorithm are available in (Drioli and Rocchesso, 2003), (Sheng et al., 2009), (Lin 

et al., 2009), (Chang, 2013) and (Mehta et al., 2016). 
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2.2.1.1 Batch Orthogonal Least Squares Algorithm based Methods 

An orthogonal estimation method was firstly proposed by Korenberg et al. (1988). To 

determine a RBF network structure, Chen et al. (1991) proposed a forward regression 

learning approach based on the batch orthogonal least squares algorithm (BOLS). In 

their approach, the OLS algorithm was employed to determine an appropriate set of 

centres from a large set of candidate centres in a forward regression procedure. Chen et 

al. (1991) exploited the decomposition transformation to investigate the individual 

contribution of each centre to the desired network output. In their method, using an 

error reduction ratio as the termination criterion, the centre was chosen systematically, 

one by one, until an adequate RBF network structure was achieved. Chen et al. (1992b) 

further extended this method (Chen and Billings, 1992, Chen et al., 1991) to train a 

multi-input multi-output (MIMO) RBF network. The application results in (Chen et al., 

1991) and (Chen et al., 1992b) showed that satisfactory performances were achieved. In 

a further attempt, Chng et al. (1996) extended the work in (Chen et al., 1991) and 

(Chen and Billings, 1992) by introducing a local adaptation process for a RBF network 

structure. In the work of (Chng et al., 1996), the subset models with higher accuracy 

were achieved compared to (Chen et al., 1991, Chen and Billings, 1992). Zhou et al. 

(2010) suggested to incorporate Bayesian information criteria with a forward selection 

procedure based on OLS algorithm to decide the number of centres. The advantage in 

(Chen et al., 1991, Chen and Billings, 1992, Chng et al., 1996, Zhou et al., 2010) is the 

network structure and parameters were decided simultaneously by evaluating the 

contributions of centres to network performance. However, one major drawback is the 

optimization of network parameters is of off-line training mode as their methods (Chen 

et al., 1991, Chen and Billings, 1992, Chng et al., 1996) are based on the BOLS 

algorithm. This means that the process parameters are not adapted. 

2.2.1.2 Recursive Orthogonal Least Squares Algorithm based Methods 

In order to overcome the drawbacks of BOLS as mentioned above, Bobrow and Murray 

(1993) had developed a recursive algorithm based on OLS (ROLS) to identify the 

network parameters in an on-line mode. However, the developed algorithm in (Bobrow 

and Murray, 1993)  is only applicable for a single-input, single-output (SISO) form. In 
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a following effort, Yu et al. (1997) extended the work in (Bobrow and Murray, 1993) to 

a multi-input, multi-output form and employed it in an on-line application to train the 

weights of RBF networks. Yu et al. (1997) showed that the ROLS training algorithm 

was capable of maintaining the same accuracy of the RBF network model as the off-

line training while requiring less computation. With the developed ROLS training 

algorithm, Yu (2004) improved the network performance by adopting a localized 

forgetting algorithm. Gomm and Yu (2000) developed a forward and a backward centre 

selection algorithms using ROLS training algorithm. For the backward selection 

algorithm, the structure of network is simplified by removing the centres which had 

smallest contribution to the network performance. On the other hand, for the forward 

selection algorithm the technique is to build a network by adding centres which will 

maximally enhance the network performance. The termination of both backward and 

forward centre selecting procedures is decided using a final prediction error criterion 

which gauges the trade-off between network performance and model complexity. Their 

method (Gomm and Yu, 2000) resulted in an acceptable level of efficiency and 

accuracy with a smaller network’s size. Recently, Zhang et al. (2015) proposed a 

computationally efficient two-stage OLS method to construct the network structure. 

However, the developed RBF network models in (Gomm and Yu, 2000, Yu, 2004, 

Chen, 2009, Zhang et al., 2015) were not ‘fully’ adaptive as the centres can only be 

selected from a pre-specified candidate centre set.  

The use of the backward centre selection method was extended in (Yu et al., 2004) to 

develop an adaptive RBF network model but the performance was not satisfactory due 

to the lack of efficiency in the selection of centres. In further work,  Yu and Yu (2007) 

proposed an adaptive algorithm that incorporated the pruning strategy in (Gomm and 

Yu, 2000) to adapt a RBF network model using the ROLS training algorithm. The 

adding and pruning of centres was based on the error index between the desired and 

measured modelling performances. New data was added as new centres if the desired 

modelling performance was not achieved. Results showed that a compact RBF network 

was achieved while the desired modelling performance was maintained. However, in 

this method the added new centres did not play a role immediately as the performance 

was degraded for a few sample periods before the positive role was observed during the 

migration of the process’s operating point.  
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In this work, the adaptive structure RBF network model based on ROLS training 

algorithm proposed by the author comprises an effective centre adding algorithm using 

a new learning strategy (See Chapter 4 and (Tok et al., 2015)). The RBF network 

model is updated in on-line mode according to the information of new process data at 

each sample period. The improvements in the adaptive tracking ability and recovery 

speed of this proposed approach over the existing methods (Yu et al., 2004, Yu and Yu, 

2007, Han et al., 2011) are demonstrated.  

2.3 Model Predictive Control 

MPC is a popular advanced control method that has many successful industry 

applications (Forbes et al., 2015). Due to its popularity and promising long term 

success, the development and achievements of existing MPC methods have been 

consistently reviewed (Garcia et al., 1989, Morari and Lee, 1999, Qin and Badgwell, 

2003, Mayne, 2014, Forbes et al., 2015) since its introduction as a software called 

Identification Control (IDCOM) by Richalet et al. (1978). The simple concept of MPC 

is one of the reasons that it gained a wider acceptance as the early popular modern 

control methodology (Qin and Badgwell, 2003). Another key reason is the economic 

considerations, processes are usually required to operate at boundary permitted state 

within the operating points respecting all the constraints; this is the situation where the 

MPC can address effectively (Mayne et al., 2000). 

The general concept underlying the MPC is to solve an optimization problem to obtain 

an optimal control variable over a finite horizon at each sample time. The optimization 

problem is formulated based on a defined control objective respecting the desired set-

points, future predictions, input control moves and constraints for inputs and outputs. 

The computed optimal control variable is then selected to apply to the process to obtain 

updated process conditions, resulting as a feedback control law. The procedure is 

repeatedly executed over a shifted horizon. Therefore, the control strategy is regarded 

as a receding horizon approach (see Chapter 5 for more details). In short, the feedback 

of MPC is formed by solving a formulated optimization problem using the process 

current states. Depending on the control problems, the general characteristic of the 
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optimization problems can be categorized by its linearity, weight and constraint (Li et 

al., 1989). 

2.3.1 The Relation to Other Control Methods 

MPC serves as an effective replacement for traditional optimal control methodologies 

due to its ability in computing on-line control solutions, which is advantageous in the 

case where initial states of processes cannot be obtained easily (Mayne, 2014). For this 

reason, MPC allows processes to deviate from its actual states. However, it is important 

to point out that the feedback of other optimal control methods such the linear quadratic 

regulator (LQR) can be achieved easily by computing simple matrix multiplications, 

whilst, MPC is required to solve an optimization problem to achieve the feedback. An 

early comprehensive review by Garcia et al. (1989) included the MPC design 

techniques and its key relationship to the LQR. Different from the MPC, LQR is 

executed over a fixed window horizon (Wang, 2009). MPC resembles the LQR 

problem in linear cases under the circumstances of infinite control and prediction 

horizons without considering the constraints as discussed in (Morari and Lee, 1999). 

One of the useful features in the MPC approach over conventional model-based control 

methods such the internal model control (IMC) and Smith predictor is it can be applied 

to MIMO processes by taking constraints into consideration in a systematic manner. 

The close relationship between the configurations of MPC, IMC and Smith predictor 

was discussed in (Garcia et al., 1989). The handling of constraints is of great 

importance as relevant performance criteria of industry processes can be directly 

reflected during the control execution. In practical applications, most actuators have 

their own nature limitation, forming as one of the constraints for inputs. On the other 

hand, it is important for processes to respect the safety constraints, leading to the 

constraints on outputs. Another key advantage of MPC is the dependence of the current 

control signal on future predictions is being considered (Rossiter, 2003), using the 

optimal control variables to observe the changes in future predictions. This helps 

reduce the difficulties in executing the future control signals. Despite the MPC is easy 

to understand and being a straightforward formulation, the optimization problem may 

become complex depending on the nature of internal models and defined constraints. 
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2.3.2 Historical Background 

The MPC has a great background which its emergence was largely related to industrial 

applications before being investigated extensively in academia. It was reported in 

(Garcia et al., 1989, Morari and Lee, 1999) that the ideas of MPC could go back as far 

to 1960s in relation to Linear Programming methodologies (LP) which are the 

fundamental concept of MPC with respective publications:  

 Zadeh and Whalen (1962) discovered the connections between minimum time 

problem and LP, proposing that it can be formulated as a series of LP problems.  

 Propoi (1963) suggested that a LP problem to be solved at each sampling period 

which founded the moving horizon idea and this idea was named as open look 

optimal feedback by (Dreyfus, 1964).  

 Chang and Seborg (1983) developed a feedback control strategy which was to 

solve on-line LP problems considering the inequality constraints.  

As suggested by many researchers, MPC started to rise to prominence with its 

successful industrial applications. The tremendous impact of MPC on industrial 

processes, particularly petrochemical processes, was verified by Qin and Badgwell 

(2003) with over 4500 reported applications by mid of 1999. The first recognised MPC 

design was called model predictive heuristic control (MPHC) introduced by Richalet et 

al. (1978). In a later attempt, an improved version, IDCOM-M, presented by Grosdidier 

et al. (1988) had also attracted great attentions. Another MPC design, dynamic matrix 

control (DMC), was successfully applied in petrochemical industries (Prett and Gillette, 

1980) by engineers from Shell Oil Co (Cutler and Ramaker, 1979), saving the 

respective industry an enormous cost. A following extended work of DMC developed 

by Morshedi et al. (1985), named as linear DMC, which merged the LP techniques with 

DMC. Both MPHC and DMC were regarded as first generation MPC methodology. 

The main difference between MPHC and DMC is on their models; the former 

employed an impulse response model while a step response model was used in the 

latter (Holkar and Waghmare, 2010). The benefit of using these models in MPHC and 

DMC is both models represent the processes with stable dynamic response, providing 
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better prediction accuracy. However, unstable processes are not encouraged in MPHC 

and DMC. 

As suggested by Morari and Lee (1999), the increasing interest in MPC was also due to  

the development of generalized predictive control (GPC), which is an adaptive MPC 

method developed by Clarke et al. (1987). The features between different adaptive 

control designs in the MPCs were reviewed in (Holkar and Waghmare, 2010), which 

included predictive functional control (PFC) (Richalet et al., 1995), extended predictive 

self-adaptive control (EPSC) (DeKeyser, 1988) and extended horizon adaptive control 

(EHAC) (Ydstie et al., 1988). The models employed in GPC, PFC, EPSC and EHAC 

reflects the dissimilarities between each method. As discussed in (Holkar and 

Waghmare, 2010), the emerging of these techniques is due to different control 

objectives and motivations, which means that there is no technique inherently superior 

than another. Although every MPC technique has distinctive properties in relation to 

their models, their control designs are based on a general framework such as the 

employment of a process model and the optimization of an objective function (Rossiter, 

2003).  

2.3.3 Linear Model MPC 

The selection of an internal model for MPC is an important stage as a good prediction 

accuracy of the internal model is a fundamental requirement for a good control 

performance. Demonstrably, the demand of control quality is highly dependent on the 

prediction performance of the internal model (Rossiter, 2003). One of the advantages of 

MPC is its flexibility in selecting the internal model. Despite having stating this, 

different internal models lead to different optimization problems, namely Linear 

Programming, Quadratic Programming and Non-linear Programming. The use of linear 

and non-linear internal models characterises the MPC as linear MPC (LMPC) and non-

linear MPC (NMPC), respectively. 

For LMPC, the internal model can be a simple transfer function but the expansion to 

multivariable case for MPC is non-trivial despite having similar advantageous 

properties of black-box models (Rossiter, 2003). As discussed early, both FIR models, 
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impulse response and step response models were regarded as the common models used 

in industrial. FIR models are easy to comprehend and they have high abilities in 

making accurate predictions but their applications are confined to stable processes. The 

other popular approach is to use a linear state space representation model as discussed 

in (Li et al., 1989). Kalpesh (2004) expressed the state space based MPC in factorized 

form and proposed to solve the resulting constrained quadratic optimization problem 

using Active Set method. The advantages of using a state space model is it can be 

expanded to multivariable case easily. Additionally, there are a lot of supportive 

theoretical works such as observers can be incorporated in the state space model as 

discussed in (Rossiter, 2003). The disadvantage of FIR models and state-space 

representation models is process parameters are needed.  

Alternatively, linear parametric models are employed for LMPC such as the ARX 

model (Huusom et al., 2010, Tajjudin et al., 2010, Kon and Yamashita, 2010, Muddu et 

al., 2010) and the ARMAX model. The advantage of the ARX model is the formulated 

optimization problem is convex, which simplifies the optimizing process as discussed 

in (Bemporad et al., 2002). Although the ARMAX model has a more flexible 

disturbance handling ability compared to the ARX model, the formulated optimization 

problem in MPC becomes non-convex (Huusom et al., 2012). On top of that, the ARX 

model is comparably less difficult in identifying higher order systems. For this reason, 

the ARX model is widely used in MPC design. However, the incompetence of linear 

models in modelling non-linear processes has always been a hindrance to LMPC, 

encouraging the employment of non-linear models as an alternative approach.  

2.3.4 Non-linear Model MPC 

For non-linear cases, it was understood that the popular feedback linearization had been 

an effective method for non-linear control but their complicated design framework and 

its lack of ability in handling contraints were the drawbacks that lead to the NMPC 

(Johansen, 2011). Many real application processes are non-linear where a large 

mismatch between a linear internal model and a real process is often encountered, 

resulting in a poor control performance eventually. Beside from this, additional factors 

such as the high demand of product quality, productivity and other external economic 
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factors require processes to extend the operating regions. Therefore, linear internal 

models are not capable to capture the process dynamics adequately (Allgower et al., 

2004). Under these circumstances, a non-linear internal model provides a better model 

fit to the processes.  

A distinguish factor between LMPC and NPMPC lies in their computation aspects as 

the challenge for NMPC is to solve non-linear optimization problems using Non-linear 

Programming algorithms, which requires expensive computational requirements. In 

other words, the implementation of NMPC is non-trivial as the LMPC that the 

optimization problem is normally a LP problem. This has remained as a hindrance to 

the practical application of NMPC. Moreover, the difficulties in solving an NMPC over 

an infinite horizon have leaded to the interest in implementing the NMPC with a finite 

prediction horizon iteratively. These disadvantages have restricted the application of 

NMPC to relatively slow processes, which only allows a considerable huge sampling 

period that provides sufficient time to solve the optimization problems. However, the 

improvement of hardware such as the fast computer has widened the applications of 

NMPC such in medical field (Haverbeke et al., 2008, Hafidi et al., 2008), aviation 

industry (Chemori and Marchand, 2008), ore milling industry (Coetzee et al., 2010), 

robotic application (Wilson et al., 2016) and the trending electric vehicle control (Yuan 

et al., 2016). 

One of the advantages of NMPC is a first principle model is allowed in direct 

applications (Rodríguez and Pérez, 2005). However, using the first principle model can 

be advantageous and disadvantageous at the same time. On the positive side, the 

closed-loop performance of NMPC can be greatly improved (Allgower et al., 2004). On 

the negative side, as for complex processes, their first principle models are usually of 

high complexity and may cause numerical ill-condition in the on-line framework of 

MPC. Moreover, the development of a first principle model is non-trivial and it can be 

a very time consuming procedure as it may involve a wide area of engineering 

disciplines that governing the processes. 

Similar to the LMPC, a state space model is one of popular models but it is of non-

linear version. Its formulation and applications were described in (Guerreiro et al., 2008, 

Mills et al., 2009). Another model such as an extended state-space model is also used to 
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accommodate non-linear dynamics processes by employing a fuzzified model to 

estimate the parameters of state-space models as suggested in (Blanco et al., 2008). 

However, the prior knowledge of processes is required in order to construct the state-

space models. It is understood that the states that are not available have to be estimated, 

which can be achieved using the extended Kalman filter. Another methodology is to 

employ a optimization-based moving horizon estimate (MHE) model (Haverbeke et al., 

2008), which is proved to be a more effective technique as evaluated by Haseltine and 

Rawlings (2005). The estimation of state is done within a moving horizon window. 

Different from the LMPC, it is difficult to make comparisons technically between the 

non-linear internal models as the selections of these models mentioned above involve 

an extensive theoretical background from the processes. The efficacy of models hugely 

depends on the knowledge of the processes and often, the derivation of these models 

may require huge efforts if the processes are of high complexity. Given these 

conditions, it restricts the applications of these respective models in NMPC. For these 

reasons, an input-output model is preferable. 

The improvement of non-linear system identification techniques has played an 

important role in NMPC. One of the popular non-linear empirical models is the NARX 

model. The application of a NARX model based MPC approach in the fermentation 

process by Mohd and Aziz (2015) had proved to have an obvious advantage in the 

prediction performance and simulation results demonstrated that it had a better 

disturbance handling with a faster response time compared to linear model-based 

approaches. There are a few classical non-linear identification methods derived from 

the Volterra series such as Hammerstein, Wiener and NDE models. The comparison 

results in (Nelles and Isermann, 1995) showed that the RBF network performed better 

in the absence of the process structure compared to the Volterra series models. The 

notable disadvantage of the Volterra model based MPC that pointed out by Shi et al. 

(2015) is a high order Volterra model, which gives a satisfying modelling performance, 

requires high computing loads.  

For the reasons mentioned above, a RBF network based on a NARX model is 

renowned for its promising abilities in modelling non-linear dynamic systems 

(Diaconescu, 2008). The compact RBF network model structure is vital for MPC. A 

RBF network can be trained as a dependent model or an independent model (see 
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Chapter 3 for more details). The independent model plays a significant role in the MPC 

framework in which a multi-step future prediction is required instead of the one-step 

ahead prediction by the dependent model. The non-linear function in the NARX model 

that approximated by a regression model can also be formulated in a multi-step 

prediction form as illustrated in (Zulkeflee et al., 2011). However, the NARX-RBF 

model has superior prediction and adaptive abilities compared to that of the NARX 

model. Therefore, a NARX-RBF model is often used as an internal model in MPC 

(RBF-MPC) and the applications of this approach can be found in (Wang et al., 2006, 

Yu et al., 2006, Wang et al., 2007, Samek and Dostal, 2009). However, there are 

several drawbacks in the NARX-RBF model. The first drawback lies in the lack of 

efficiency in long range predictions due to its accumulated errors in each prediction 

step (Su and McAvoy, 1997, Bhartiya and Whiteley, 2001). Another disadvantage is 

that its future output predictions are made depending on future unknown process 

measurements. This means that the network cannot be factorized according to the past 

and future information, and the objective function is needed to be computed 

numerically. To overcome these issues, Bhartiya and Whiteley (2001) developed a 

factorable p-Step control model-based RBF network which produces efficient long 

predictions and applied it in MPC. Their results showed that the model performed 

better than the cascaded 1-step ahead prediction. However, one of the major drawbacks 

in (Bhartiya and Whiteley, 2001) is its unrealistic huge network structure which 

increases the model complexity and the computation times in predictions and solving 

the optimization problem in MPC. 

2.3.5 Properties of MPC 

As outlined in previous sections, MPC is regarded as a closed-loop control system 

where its feedback is achieved by solving an optimization problem. An ideal case 

would be solving the optimization problem in an infinite horizon considering the 

condition of a perfect modelling performance with no disturbance, which yields an 

open-loop problem (Allgower et al., 2004). Despite having stating this, a finite 

prediction and control horizon is required considering the computing burden to solve 

the optimization problem. In the meantime, to assume a perfect model matching 

scenario to exist is unrealistically optimistic, raising the issues of stability. 
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It is worth to study the background, ideas and approaches that have been done on the 

properties of MPC to develop fundamental knowledge (excluding the technical details) 

albeit it is beyond the scope of this work. In early developments, there were limited 

related studies in the properties of MPC as the advent of MPC was initiated with the 

successful industrial applications as discussed previously. However, extensive 

literatures on this aspect ensued after assorted MPC were proposed. The literature in 

this section does not intend to cover the complete properties of MPC. Instead, a more 

important aspect, namely the stability issue is considered.  

Understandably, the investigation of stability of MPC was not considered theoretically 

in early process applications. For most of the applications, stability can be achieved 

provided the employed prediction horizon is sufficiently long as claimed in (Mayne, 

2014). For this reason, the effect of stability in industrial applications was not heavily 

investigated. On the contrary, there are few efforts being made on this aspect 

academically. 

A few approaches that modify the setup of NMPC have been developed to mimic the 

characteristic of the infinite horizon approach to achieve stability. A simple zero 

terminal constraint, also called as equality terminal constraint, was initially proposed 

but its computational requirements are very high and it often leads to aggressive 

behaviours as the predictive system state is being forced to origin; therefore, only a 

short control horizon is encouraged (Morari and Lee, 1999). To overcome this, other 

methods such as terminal region constraint and terminal cost function were proposed 

but it appeared that the addition of only the terminal cost function was insufficient to 

achieve stability. Thus, it came to the introduction of incorporating a terminal cost and 

a terminal constraint set (Mayne et al., 2000). Using this combined method, stability 

can be achieved provided a terminal region and a terminal cost function is suitably 

chosen. Alternatively, a terminal inequality constraint is used, which improves the 

computation efficiency and feasibility. However, the use of these approaches is a trade-

off between the achievement of stability and control performance (Haverbeke et al., 

2008). For a comprehensive review on terminal constraints, readers are referred to 

(Allgower et al., 2004), (Morari and Lee, 1999), (Mayne et al., 2000), (Magni and 

Scattolini, 2004) and (Mayne, 2014).  
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2.4 Summary 

The linear-in-parameter feature of a RBF network has made it superior compared to 

other system identification methods. The advantages of a RBF network are its simple 

structure and relatively simple and efficient training approaches. The network 

parameters can be trained in offline mode or on-line mode using the least squares (LS) 

algorithm, leading to batch or recursive data training approaches. The recursive 

approach is preferred as new data can be taken into consideration, addressing the 

concern of the uncertainties in process parameters. Furthermore, the RBF network has 

the flexibility to be employed as a fixed or an adaptive form. An adaptive network 

structure is more effective for time-varying processes. 

Among adaptive RBF network structure approaches, the OLS algorithm offers the 

advantage of being simple in executing the training algorithm effectively and in 

addition, for the model adaptation as well. Thus, the developed network model 

adaptation method in this work is based on the OLS algorithm. The OLS algorithm is 

initially employed to train network parameters and similar to the LS algorithm, it can 

be implemented in both batch (BOLS) and recursive (ROLS) training approaches. The 

ROLS training algorithm is extended as forward and backward centre selection 

methods for network structure determination. Both forward and backward methods 

were employed by several researchers to achieve adaptive structure RBF networks. 

Although the literature reviews showed that existing methods had achieved satisfactory 

overall modelling performances, little attention has been given to the efficacy of the 

new centres. The first part of the research focuses on the development of an adaptive 

structure RBF network using ROLS training algorithm with the objectives to improve 

the prediction performance (see Chapter 4).  

MPC is a repetitive optimal control which its characteristics are varied depending on 

the characteristic of its internal model. The selection of an internal model, linear or 

non-linear, should be made by judging the characteristic of processes to be controlled. 

For linear cases, MPC has proved to be successful in industrial applications. For 

ineffective LMPC applications, NMPC is considered where a non-linear internal model 

is employed, resulting in the improvement of control performance. However, the use of 
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NMPC is very challenging theoretically and practically. From the literature review, it is 

understood that different internal models yields different optimization problems.  

As reviewed, the propagation problem of the RBF network results in accumulative 

errors at each sampling instant which affect the modelling performance. Furthermore, 

the factorability of the Gaussian exponential activation function in the RBF network 

has played an important role in re-structuring the network model to suit the MPC 

approach. The major drawback of an existing method is the model compactness is 

compromised. In Chapter 6, a new factorable approach is introduced for RBF networks 

model-based MPC. 
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Chapter 3 

RBF NETWORK MODEL & 

DYNAMIC PROCESS 

MODELLING 

This chapter provides an overview of a RBF network which is used to model non-linear 

dynamics processes. The training algorithms are given: recursive K-means algorithm, 

P-nearest neighbour method and two least squares training algorithms. The final section 

introduces the techniques and procedure for dynamic process modelling. 

3.1 RBF Network 

A standard RBF network has three layers: an input layer, a hidden layer and an output 

layer, as depicted in Fig. 3-1. ,       -  and [ ̂     ̂ ]  are the input and output 

vectors with their entries being network m inputs and p outputs, respectively. The 

hidden layer consists of hidden neurons and each hidden neuron has a vector called 

centre. The hidden layer is equipped with a non-linear RBF activation function in 

which the information of each input neuron in the input layer is mapped into. Then, the 

network output is a linear combination of outputs of the activation function and 

network parameters. 
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Fig. 3-1 The structure of a RBF network. 

A non-linear dynamic process is presented by a NARX model in (3-1).  

  ( )   ,( (   )    (    )  ( )    (    )]   ( ) (3-1) 

where      and      are system input and output, and    and    are input and 

output orders, respectively.      is measurement noise. A RBF network is used as an 

approximate for the non-linear function in (3-1), where the RBF network performs a 

non-linear static mapping via the linear output transformation (Gomm and Yu, 2000). 

The input vector x of the RBF network includes all variables in function f(*) in (3-1), 

while the network output is ŷ . Here, the Gaussian function is used in the RBF network 

as the non-linear basis function in (3-1). 

   ( )     ( 
‖ ( )    ‖

 

  
 )           (3-2) 

where  ( ) is the hidden layer output,    is the number of hidden layer nodes (centre); 

 ( ) is the network input vector and    is the  th centre with         . The network 

output is the weighted sum of the hidden layer output and is given by, 
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  ( )     (3-3) 

where         is the weighting matrix connecting the hidden layer nodes and 

network output. 

3.2 Training Algorithms 

In this section, the training algorithms for RBF networks are described. The recursive 

K-means algorithm is firstly introduced. Then, it is followed by the P-nearest neighbour 

method. Both of these methods are used to compute the network centres. The weight of 

the RBF network can be trained using different algorithms - recursive least square and 

recursive orthogonal least square algorithm. 

3.2.1 Recursive K-means Algorithm 

The recursive K-means algorithm is used to compute the position of centres (Chen et al., 

1992a). The number of centres is usually decided by the user according to the 

complexity of the process. The procedure of K-means algorithm is as follows (Wang et 

al., 2006). 

Choose q input data arbitrary to be the initial centres   ( )   ( )     ( )   

Assume  ( ) is the index of the best candidates for the centres for the input vector  , 

At the iteration  , find  ( ) by minimizing the sum squared distances using  

  ( )        ‖ ( )    ( )‖  (3-4) 

where   ( ) is the centre of the     activation at iteration  . 

Step 1 Then, update the centres using the rules: 



Chapter 3 RBF Network Model & Dynamic Process Modelling 

Page 31 

   (   )  {
  ( )    , ( )    ( )-               ( )

  ( )                                                     
  (3-5) 

where    is the centre learning rate that lies in the range (0,1). 

Step 2 Increases   by 1 and repeat Step 1 until   (   )    ( ). 

3.2.2 P-nearest Neighbour Method 

The P-nearest neighbour method that used to compute the radius of centres (Leonard 

and Kramer, 1991) is described as  

    √∑ ‖     ‖
 
   

 
                  (3-6) 

This step is equally important as K-means algorithm as it decides the area of assigned 

centres that cover in the domain of the collected sample data.  

3.2.3 Recursive Least Squares Algorithm 

The recursive least squares (RLS) training algorithm (Ljung, 1999) is used to train the 

weight of the network, 

  ( )  
 (   ) ( )

 ( )    ( ) (   ) ( )
 (3-7a) 

  ̂( )   ̂(   )   ( ), ( )    ( ) ̂(   )- (3-7b) 

  ( )  
 

 ( )
* (   )  

 (   ) ( )  ( ) (   )

 ( )    ( ) (   ) ( )
+ (3-7c) 

where  ̂( ) and  ( ) represent the network weights and activation function outputs at 

time,  .  ( ) and  ( ) are middle terms.  ( ) is a forgetting factor which is in the range 

of (0,1).  
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3.2.4 Recursive Orthogonal Least Squares Algorithm 

The multi-variable ROLS training algorithm is developed in (Gomm and Yu, 2000). By 

considering a set of   input-output training data, 

    ̂         (3-8) 

where        is the desired output matrix of the system to be modelled;  ̂       

is the output matrix of neural network.;         is the hidden layer output matrix 

and        is the error modelling matrix. 

    , ( )    ( )- (3-9a) 

  ̂  , ̂( )    ̂( )- (3-9b) 

    , ( )    ( )- (3-9c) 

    , ( )    ( )- (3-9d) 

The least squares problem to solve   becomes 

  ( )  ‖ ‖  ‖    ‖  (3-10) 

where ‖ ‖  is the F-norm of a matrix defined as ‖ ‖ 
       (   ). 

The hidden layer output matrix can be factorized as 

    0
 
 
1 (3-11) 

by assuming   is of full rank.   is an     orthogonal matrix which consists of 

orthonormal columns and   is an       upper triangular matrix. 

With orthogonal transformation, (3-10) becomes 

  ( )  ‖        ‖  (3-12) 

with 
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     [ ̂
 ̃
]. (3-13) 

Then (3-12) becomes 

  ( )  ‖[ ̂
 ̃
]  0

 
 
1 ‖

 

 ‖[ ̂    
 ̃

]‖
 

 (3-14) 

where  ̂ is an      matrix and  ̃ is an (    )    matrix. 

From (3-14), the optimal   can be solved from backward substitution, 

     ̂ (3-15) 

and leaves ‖ ̃‖
 
 as the residual. This is the batch algorithm. 

For recursive ROLS training algorithm, the cost function becomes 

  ( )  ‖ ( )‖  ‖[
 (   )

  ( )
]  [

 (   )

  ( )
] ( )‖

 

. (3-16) 

Applying QR decomposition to  (   )  in (3-16), and multiply the inverse of 

 (   ) to  (   ), we have 

  (   )   (   ) 0 
(   )

 
1 (3-17a) 

   (   ) (   )  [
 ̂(   )

 ̃(   )
] (3-17b) 

And the cost function in (3-16) becomes 

  ( )  ‖{
 (   ) [

 ̂(   )

 ̃(   )
]

 
  ( )

}  {
 (   ) 0
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  ( )
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  ‖[
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. (3-18) 
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With the arrival of new data, the update using orthogonal decomposition is described as 

follows, 

 [
 (   )

 
  ( )

]    [
 ( )
 
 

] (3-19a) 

 [
 ̂( )
 

 ̃ ( )
]    

 ( ) [
 ̂(   )

 
  ( )

] (3-19b) 

The final cost function is  

  ( )  ‖{
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 ‖[
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. (3-20) 

The optimal weight  ( ) is then solved as, 

  ( ) ( )   ̂( ) (3-21) 

and leaves the residual as 

 ‖ ̃( )‖
 

 
 ‖[

 ̃( )

 ̃(   )
]‖

 

 

 ‖ ̃ ( )‖ 
  ‖ ̃(   )‖

 

 
. (3-22) 

The procedure of the ROLS training algorithm is therefore as follows. 

1) Set the initial value for  ,  ̂ and ‖ ̃( )‖
 

 
 as below, 

a.  ( )     where   is a small positive value. 

b.  ̂( ) and ‖ ̃( )‖
 

 
  . 

2) At iteration  , with the arrival of new data   ( ) , compute  ( ) . Then, 

calculate  ( ) and  ̂( ) using (3-19a) and (3-19b), respectively. 
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3.3 Dynamic Process Modelling with RBF networks 

The RBF network model can be trained as a dependent model and an independent 

model. In practice, a dependent model is usually more accurate as it is updated and 

trained using the process measurements at every sample period. However, this confines 

a dependent model to a single step prediction; thus, it is called one-step-ahead (OSA) 

predictor. On the other hand, a RBF network that trained as an independent model 

produces a series of multi-step ahead predictions, as illustrated in Fig. 3-2. Both 

dependent and independent models are NARX model based. Their relationship plays an 

important role in the developed  -step RBF network model in Chapter 6.  

 

Fig. 3-2 Independent model of a RBF network.  
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3.3.1 Data Collection and Scaling 

Data collection is a key procedure in obtaining an effective RBF network model. The 

collected data samples are divided into training data and validation data. The training 

data samples are required to cover all the interested process dynamics. In other words, 

the accuracy of network model is dependent on the content of information in the 

training data. To collect a set of informative input/output data samples, a random 

amplitude signal (RAS) is proposed to excite the process dynamics. The boundary of 

RAS is selected subject to the process constraints that correspond to interested 

operating regions of the process. For the pulse width of RAS, it is carefully selected 

depending on the response of the process. Small pulse width is preferable for a fast 

dynamics process as it enables the capture of fast response of the process. However, the 

selection of a pulse width can be an amalgamation of both small and large widths if 

both fast and slow responses are observed.  

Both collected training and validation data sets are firstly scaled to [0 1] to minimize 

the error caused by the difference between ranges of different variables using a linear 

scale: 

     
      ( )

   ( )      ( )
 (3-23) 

    
      ( )

   ( )      ( )
 (3-24) 

where   and   are input and output in raw data and    and    are the scaled data; 

min(  )  and min( ) are the minimum values of input and output, respectively. The 

scaled output predictions are then scaled back after the model is used. 

3.3.2 Network Structure Determination 

After the data collection, the next step is to decide the model order for process inputs 

   and outputs    described in (3-1). The model orders can be decided by evaluating 

the process order. If this information is inaccessible, an empirical approach is employed. 

It is understood that a higher model order gives better modelling performances but it 
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also compromises the model complexity. After this, the number of centres is predefined 

by users and the location of centre is computed using the recursive K-means algorithm 

following the procedure in Section 3.2.1. The radius of centre is calculated using the P-

nearest neighbour method described in Section 3.2.2. Finally, the network parameters 

can be trained using RLS or ROLS training algorithms as in Section 3.2.3 and 3.2.4, 

respectively.  

It is apparent that model orders and the number of centres decide the complexity of the 

network structure; thus, a trade-off between model complexity and modelling 

performance has to be taken into consideration. The mean absolute error (MAE), which 

is used to indicate the modelling performance by measuring the prediction errors, is 

described as 

     
 

 
∑|    ̂ |

 

   

 (3-25) 

where   is the number of data samples;    and  ̂  are outputs and predicted outputs of a 

process.  

3.4 Summary 

This chapter gives an overview of a RBF network together with its training algorithms. 

This includes the recursive K-means algorithm and P-nearest neighbour method for 

network centres. For network parameter estimation, two different least squares training 

algorithms, RLS and ROLS, are considered. The ROLS training algorithm is used to 

develop an adaptation algorithm for RBF networks in next chapter. 

Dynamic process modelling techniques are described, which comprise a data selection 

approach, a data scaling method and the network structure determination procedure. It 

can be concluded that in order to obtain a good network model, the training data 

samples that generated using the RAS have to fully cover the interested process 

dynamics. In following chapters, RAS is used to generate the input signals specifically 

according to the processes. The network model is obtained by considering the balance 
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between model complexity and modelling performance. In addition, basic concepts and 

features of dependent and independent models are explained. This forms a basis for the 

development of a factorized RBF network model in Chapter 6. 
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Chapter 4 

RBF NETWORK MODEL 

STRUCTURE ADAPTATION 

4.1 Introduction 

In this chapter, a new adaptation algorithm of a RBF network structure for process with 

operating point migration using ROLS training algorithm is presented (Tok et al., 2015). 

The advantage of this proposed algorithm is that the RBF network is able to be adapted 

effectively and immediately to fit the new dynamics in the new operating region of the 

process and achieving a satisfactory overall prediction performance. In this developed 

algorithm, the RBF network structure, the number and location of centres, and 

parameter (weight) are adapted based on the novelty of new data.  

An initial centre bank with a pre-specified number of centres is formed which involves 

the actions of adding, pruning and grouping of centres. In adding new centres, a new 

strategy is designed to spread more significant centres in the current operating regions 

to maximize the network performance. The pruning method in (Yu and Yu, 2007) is 

extended to prune insignificant centres from the centre bank. Then, the centres in the 

centre bank are divided into two groups – active centre and redundant centre groups. 

The centre grouping algorithm is developed using a different criterion that improves the 

selection of more efficient centres. Active centres are used to predict the process output, 

while redundant centres are preserved for next sample time. When the process 

operating point migrates largely, the original centres will not be effective to act for 

output prediction and the new centres in the region where the operating point moves to 
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will be added. The developed algorithm is evaluated using a non-linear operating point-

migrating numerical example. The effectiveness of the developed algorithm is verified 

by comparing it with three adaptive structure models.  

This chapter is organized as follows. The adaptation algorithm is presented in Section 

4.2 which includes the adding, pruning and grouping of centres. The evaluation of the 

developed adaptive RBF network and comparison studies is demonstrated in Section 

4.3. 

4.2 RBF Network Structure Adaptation 

The model structure adaptation for a RBF network in this work is mainly achieved by 

updating the number and locations of the centres according to the current operating 

region. More centres will enable the network to have more accurate mapping but result 

in a big network size, whilst fewer centres will reduce the mapping accuracy but result 

in a smaller network, which consequently enhance the model generalization and reduce 

computing load.  

Based on the ROLS training algorithm described in Section 3.2.4, the adaptation of the 

RBF network is implemented by evaluating the contribution of each centre to the model 

prediction performance, and then according to the contribution to decide which centre 

will be added or pruned. Also, the location of the added centre needs to be determined 

to reflect the migration of the system operating point. Firstly, an initial centre bank with 

a pre-specified number of centres is formed by arbitrarily selecting some input data 

points as initial centres. Secondly, at each sample time, the network learns the 

information of the centre with the most contribution and the information of the new 

data. Then, the location of the added centre is determined according to the learned 

information. 

The third step is to prune a centre, which has the least contribution among the centres in 

the centre bank at each sample time. This is to maintain the size of the centre bank, 

which also maintains the computational demand that have been increased from the 

addition of new centres. The last step is that, after updating the centre bank with the 
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added and pruned centres, the centres are classified into two groups, active centre group 

and redundant centre group, based on their contributions to the network performance. 

The aim of the strategy to group these centres is to achieve a compact optimal network 

structure without degrading the network performance. Active centres will have bigger 

weight in contribution to the network output compared to redundant centres. Active 

centres are used for network prediction, while redundant centres are preserved for the 

later selection at the next sample time.  

4.2.1 Centres Adding Strategy 

For the structure of the RBF network, adding a new centre means adding a hidden 

neuron. A new strategy of adding new centres is designed based on the information 

combining the centre giving the most contribution to the network performance and the 

new data. At sample time  , the matrix  (   ) is updated with new data  ( ) using 

ROLS training algorithm. From the updated matrix  ( ) that contains the information 

of new data, the contribution of each centre to the network performance is evaluated. 

Consider the evaluation index for contribution of each centre proposed in (Gomm and 

Yu, 2000), 

 ‖ ̂‖
 

 ∑‖ ̂  ̂ 
 ‖

 

  

   

 (4-1) 

where   ̂ 
  is the  th row of   ̂. This shows that  th centre has a separable contribution of 

‖ ̂  ̂ 
 ‖

 
    ‖ ̂‖

 
. Thus, the centre with the most contribution     can be found by 

computing ‖ ̂  ̂ 
 ‖

 
 for each centre and then compare them. The assessment of centre 

contribution is done by moving  th column in matrix    to  th column position 

sequentially as 

     ,                                   
- (4-2) 

For    , matrix   , which is no longer an upper triangular matrix after the moving of 

its column, is re-triangularized by applying an orthogonal decomposition 
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 , ̂       ̂     - and [ ̂ 
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 , ̂         ̂    
-. Thus, the contribution of 

 th centre at  th stage is ‖ ̂    ̂   
 ‖

 
.  

The location of the added centre should consider both the centre with     and the new 

data  ( ). The former represents the location for more effective centre, while the latter 

represents the current operating region of the process. Ideally the best location for the 

added centre should be found by the line search along the connection line of the most 

effective centre and the new data, which is the optimal location in terms of maximal 

contribution to the prediction of current system output. In this research, the location of 

the new centre is determined by the equation in (4-4) with a proper  ,  

           (   ) ( ) (4-4) 

where       is the parameter to be selected using the trial and error method for 

specific process. Smaller   tends to use the current effective centre location, while the 

bigger   tends to move the new centre to the new operating region. A compromise 

between the two can generate a smoother move to the new operating region which will 

benefit the future predictions. After adding a new centre, new matrix      with 

previous   samples is retrained using (Yu and Yu, 2007), 

 [

 (     )

 (     )
 

 ( )

]      0
    

 
1 (4-5) 

  ̂        
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 (     )

 (     )
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] (4-6) 

where      and  ̂    are the updated matrices with newly added centres. 
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4.2.2 Centres Pruning Method 

In order to maintain the size of the centre bank, an insignificant centre is pruned from 

the centre bank. In other words, a centre which has the least contribution to the network 

performance is removed. For a RBF network structure, pruning a centre implies 

removing a hidden layer neuron which is associated to a column vector in matrix  . To 

calculate the modelling residual, each column of matrix   is removed, sequentially, and 

the matrix   is re-triangularized (Hong and Billings, 1997, Gomm and Yu, 2000). The 

pruning algorithm using orthogonal decomposition developed in (Hong and Billings, 

1997, Gomm and Yu, 2000) is as follows. If  th centre is removed, the corresponding 

 th column vector of matrix  ,    is removed as well, which results in matrix   , 

    [                      
] (4-7) 

and the weight matrix is now 

     [                      
] (4-8) 

where   
  is the  th row of  . After the removal of the column   , the cost function in 

(3-20) becomes 

   
  ‖[ ̂      

 ̃
]‖

 

 

 ‖[
    

 

 ̃
]‖

 

 

  

  ‖[    
 ]‖

 

 
 ‖ ̃‖

 

 
  

(4-9) 

The matrix    is no longer an upper triangular matrix. Thus, it is necessary to re-

triangularize the matrix   ,  

      [
  

 
 

] (4-10a) 

 [
 ̂ 
 
 ̃ 

 
]      ̂ (4-10b) 

and the cost function becomes 
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. (4-11) 

The weight,    can be solved from 

       ̂   (4-12) 

The residual is given as 

 ‖ ̃ ‖ 

 
 ‖ ̃ 

 ‖
 

 
 ‖ ̃‖

 

 
  (4-13) 

From (4-13), it can be seen that the increment in residual caused by removing the  th 

column of matrix  ,  th centre, is ‖ ̃ 
 ‖

 

 
. Thus, the procedure is summarized as: use (4-

7) to remove the column of matrix   in turn and compute the residual ‖ ̃ 
 ‖

 

 
 using (4-

13). Then, the  th column of matrix   with least residual ‖ ̃ 
 ‖

 

 
 is removed, and matrix 

  is re-triangularized using (4.10). 

4.2.3 Centres Grouping Strategy 

After the adding and pruning centres, the centres in the centre bank are classified into 

two groups which are active centres and redundant centres. The centres in the active 

group will be used to predict the process output, while the centres in the redundant 

group will not be included in the network for process output prediction at this sampling 

period, but will be preserved for later use in the consequent sampling instants. So, the 

relation between the hidden neurons and the output neurons for active and inactive 

centres are illustrated in Fig. 4-1. While, the redundant centres, which may contain the 

information for next sample time, are preserved in the centre bank. 
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Fig. 4-1 The connections between hidden neuron   and output neuron   for active and 

redundant centres. 

The centre pruning algorithm provides a good foundation for centre grouping. This is 

implemented by evaluating the modelling residual when each centre is grouped as a 

redundant centre, sequentially. When the grouping procedure stops, the remaining 

centres would be active centres. In other words, it is the contribution of each centre to 

the network performance that decides which group the centre belongs to. Akaike’s final 

prediction error (FPE) criterion in is used to stop the grouping procedure, 

     
   (    )

   (    )
     (4-14a) 

   ‖ ̃( )‖
 

 
 ( ) (4-14b) 

where   is the loss function,    is the number of weights and   is a weighting factor. 

The value of     is suggested in (Gomm and Yu, 2000). However, due to that the 

sample data   is a fixed parameter in (4-14) for every sample time  , the value of   

can be manipulated to decide the number of active centres. In order to stop the 

grouping procedure, FPE has to be larger than the past FPE     . Thus, the equation to 

calculate number of active centres is derived as 

    (    )    (4-15a) 

    
 

 
 (4-15b) 

         
 

 
 (4-15c) 

where         is the number of active centres. 
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The procedure of centre grouping algorithm is summarized as follows: 

Step 1 Initialize   and     for the network after updating the centre bank. 

Step 2 Compute the new loss function    when each centre is grouped in turn using (4-

7) and (4-13). 

Step 3 Set   = arg min (  ) and compute the     for the smallest loss function,      

using (4-14). 

If          , group the centre   as redundant centre and go to Step 4. 

If         , go to Step 5. 

Step 4 Then, set     ,  ̂   ̂  ,      ,          and        . Go to Step 2. 

Step 5 Stop the grouping procedure. The remaining centres in the centre bank are 

active centres and the optimal weight    can be computed using (4-12). 

4.2.4 RBF Network Adaptation Procedure 

At each sample time, the centre bank will be updated with the adding, pruning and 

grouping of centres. The main step of the proposed adaptive algorithm is summarized 

as follows. 

Step 1 Initialize an initial RBF network by using a set of   samples data, form a centre 

bank by arbitrarily choosing data points and obtain an initial matrix   and  . 

Step 2 At each sample time  , update the matrix   with new data  ( ) using (4-10a). 

Evaluate the contribution of centres and add a new centre into centre bank using 

(4-1) and (4-4), respectively. Then, generate a matrix      and  ̂    using (4-5) 

and (4-6), respectively. 

Step 3 Prune a centre that causes the least increase in modelling residual from the 

centre bank by following the summarized pruning procedure given in Section 

4.2.2. 
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Step 4 Group the centres in the centre bank into two groups: active and redundant 

centres, using the provided grouping procedure in Section 4.2.3. Use the active 

centre to form a network model to make prediction. 

Step 5 if    , terminate the algorithm, else       and go to Step 2. 

4.3 Performance Evaluation 

In order to verify the effectiveness and to demonstrate the advantages of the proposed 

adaptive RBF network model, three existing RBF network models with structure 

adaptation in (Han et al., 2011, Yu et al., 2004, Yu and Yu, 2007) are employed for 

performance comparison purpose. Both methods in (Yu et al., 2004, Yu and Yu, 2007) 

are also ROLS training based. Thus, these two employed adaptive structure RBF 

network models (Yu et al., 2004, Yu and Yu, 2007) are briefly explained here as to 

show the differences of features being employed between the compared networks and 

the proposed algorithm. 

The adaptation of network structure in (Yu et al., 2004) is done by updating the centres 

with new measurements and the least significant centre is pruned in each sample period. 

Then, a set of centres is selected by making use of the Akaike’s FPE criterion to form a 

network structure for prediction. In the method in (Yu and Yu, 2007), the network 

structure is adapted by adding the new data as a new centre when the prediction error is 

larger than the error threshold and a centre with least contribution is pruned. Similarly, 

a network structure is then formed using the all the centres in the centre bank. 

The main difference between the existing methods and the proposed method in this 

thesis is that, the remaining centres in the proposed method, after adding and pruning, 

are divided into active and inactive groups with a different criterion. Then the centres in 

the active group are used for prediction, while the centres in the inactive group are 

preserved for later selections. In addition, a new learning strategy is proposed to 

optimize the option of centres in the centre bank. This makes the proposed method 

outperforms over the existing methods.  
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To compare the prediction performance of the proposed method and the three existing 

methods, a non-linear dynamic system with a large migration of the operating point is 

used to be modelled by the four methods. The system is chosen from (Narendra and 

Parthasarathy, 1990), 

  (   )  
 ( )

   ( ) 
  ( )  (4-16) 

A set of 900 input/output data samples has been generated and collected in a specific 

way where the system outputs fall into three obvious different regions. Region 1 

represents the first 300 data, region 2 represents data samples from 301 to 600, and 

region 3 represents the 601 to 900 data. This is to validate the effectiveness of 

adaptation and the performance in recovery speed of the proposed algorithm during the 

migration of system’s operating point. 

In this simulation, the proposed adaptive RBF network model is chosen to have two 

inputs, one output and an initial centre bank with 20 centres. In this simulation, the 

proper value for   is 0.3. The   and   in (4-15) are selected as 50 and 4, respectively. 

The number of active centres is calculated using (4-15c). Thus, there are 13 active 

centres and 7 redundant centres in the centre bank. The two employed adaptive 

structure RBF network models (Yu et al., 2004, Yu and Yu, 2007) are chosen to have 

same centre bank size with the proposed algorithm of 20 centres. While the flexible 

structure RBF network (FS-RBF) (Han et al., 2011) is chosen to have 2 initial centres 

and the ‘best’ values of the parameters for the network are obtained after 40 

preliminary runs. 

The evaluation of the network performance is emphasized on its overall prediction 

error and the recovery speed during the change of system’s operating regions. The 

MAE is used to measure the network prediction error while the performance in 

recovery speed of the network can be observed during the changing of system’s 

operating regions. The MAE values of the four RBF network models are compared in 

Table 4-1. 

As can be seen from Fig. 4-2, the proposed algorithm and the adaptive RBF network in 

(Yu et al., 2004) have achieved similar recovery speeds during the migration of 
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system’s operating regions. But from Fig. 4-3, it is observed that the prediction 

performance of the adaptive RBF network in (Yu et al., 2004) is not satisfactory and 

from Table 4-1, it has the worst performance among the four networks. The comparison 

between the performance of network in (Yu et al., 2004) and proposed algorithm shows 

that the proposed algorithm is able to select more significant centres based on the 

modified centre grouping criterion that being employed in this work. Apart from the 

efficacy of selecting more efficient centres, the option of centres that available in the 

centre bank is also critically important. Thus, the learning strategy in this research has 

an important role in providing a set of good centre candidates in the centre bank. 

Networks MAE 

Proposed Adaptive RBF Network 0.0436 

Adaptive RBF Network in (Yu et al., 2004) 0.1770 

Adaptive RBF Network in (Yu and Yu, 2007) 0.0780 

FS-RBF network in (Han et al., 2011) 0.0594 

Table 4-1 The performance comparison of the four different RBF networks. 

From Table 4-1, it can be noticed that the proposed algorithm and the adaptive RBF 

networks in (Han et al., 2011, Yu and Yu, 2007) have achieved comparable overall 

prediction performance but the proposed algorithm has a better recovery speed during 

the changing of system’s operating region as illustrated in Fig. 4-2 (top and bottom). 

After the migration of system’s operating region, the performance of adaptive RBF 

network in (Yu and Yu, 2007) is degraded and it needs 8 to 11 sample periods to 

recover as shown in Fig. 4-2 (top and bottom). Meanwhile, the FS-RBF network (Han 

et al., 2011) needs 3-5 sample periods to recover its performance. Beside from this, the 

drawback of FS-RBF network is a series of preliminary runs is needed to obtain the 
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‘best’ parameters of the network. This comparison demonstrates that the learning 

strategy in proposed algorithm is more capable of generating more significant centres 

which adapts the system quickly and effectively. 

Fig. 4-4 shows the predicted system output by the proposed method only. The 13 active 

centres were adapted effectively to all regions of the system output, as illustrated in Fig. 

4-5. It can be observed that the 13 active centres emigrate from region 1 to region 2, 

then to region 3 following the moving of the system’s operating points. Also from 

Table 4-1, the values of MAE clearly suggest that the proposed algorithm has the best 

performance among four networks. All simulation results can be summarized that the 

proposed algorithm achieves the best prediction performance and shows the fastest 

recovery speed during the changes of system’s operating regions. 
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Fig. 4-2. The performance of four networks during the change of system’s operating 

regions. 
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Fig. 4-3 The performance of the adaptive structure RBF network in (Yu et al., 2004). 
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Fig. 4-4 The performance of the proposed adaptive structure RBF network. 
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Fig. 4-5 The location of centres of the proposed network in three regions. 

4.4 Summary 

In this chapter, a new algorithm based on the ROLS training has been proposed for 

designing a structure adaptive RBF network model. A new strategy of adding new 

centres based on the information of the centre with the most contribution and the new 

data is developed. In the meantime, the insignificant centre is pruned from the centre 

bank to maintain the minimum size of the network model. In addition, a small 

modification on the parameter of FPE enables the network to improve the efficiency in 

grouping the centres in the centre bank. The effectiveness of the proposed algorithm is 

demonstrated by applying it in modelling a non-linear numerical example with 

significant operating point migration. The simulation results demonstrate that the 

developed RBF network adapts its structure dynamically following the migration of the 

system operating point without degrading the prediction performance. Comparison with 

the three existing adaptive structure RBF networks demonstrates the advantages of 

proposed algorithm in term of the prediction performance and the recovery speed 

during the migration of system’s operating regions.  
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Chapter 5 

MODEL PREDICTIVE CONTROL 

& OPTIMIZATION ALGORITHMS 

This chapter includes two main parts. The first part introduces the concept of the model 

predictive control, the receding horizon idea and the main features. The key tuning 

parameters are explained. The optimization algorithms in the second part have three 

subsections, namely Linear Programming, Quadratic Programming and Non-linear 

Programming. The respective techniques for constrained optimization problems 

included are Simplex method, Active Set method, and Sequential Quadratic 

Programming. Besides, related methods for unconstrained problems are discussed. In 

addition, the formulation of Lagrange method and optimality conditions is discussed. 

5.1 Model Predictive Control 

Model predictive control (MPC) has a simple but effective concept that reflects human 

behaviours (Rossiter, 2003). Human normally reacts with a purpose that yields an 

intended outcome. In relation to the MPC, it can be said that human decides control 

actions based on vision, predicting that the control actions will result to the desired 

output. For MPC, an internal model is employed to make future predictions which act 

like the human vision. These predictions are constantly updated with new observations 

to assist in deciding the control actions. Eventually, this set of on-line control action 

leads to a desired result, expressing the concept of a receding horizon approach. With 
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this idea in mind, the MPC has unique abilities to control multivariable processes and 

incorporate defined constraints for inputs and outputs which is critical in preventing 

processes to exhibit aggressive behaviours (Qin and Badgwell, 2003). 

5.2 Receding Horizon Approach 

A block diagram of the MPC in generalised form is shown in Fig. 5-1, obtained in 

(Seborg et al., 2010). The role of the model is to predict a series of outputs within a 

defined prediction horizon. The residuals between the process actual outputs and model 

predicted outputs are used as a feedback to the prediction block. This helps correct the 

deficit of the prediction outputs which eliminates offset steady-state errors in the set-

point calculation block. In the control calculation block, an optimization algorithm is 

employed to solve a cost function that defined by a control objective respecting all the 

constraints.  

The set-points calculation is useful when an economic objective function is considered 

such as a production rate or a profit function. In this research, this part is ignored as 

desired outputs are already known. For more detail on set-point calculations, readers 

are referred to (Seborg et al., 2010). In process control, the set-points are normally set 

to a constant value or time-based varying desired values according to the control 

objective.  

 

Fig. 5-1 Block diagram of the MPC (Seborg et al., 2010). 
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The control calculations are implemented in adopting the receding horizon mechanism 

as illustrated in Fig. 5-2, which involves two important user-defined parameters: a 

control horizon and a prediction horizon. Assuming a single-input and single-output 

(SISO) process, the calculations are computed based on current process output    and 

future output predictions over a prediction horizon 0            
1. The reference 

point trajectory is denoted as    at time instant  . The strategy is to compute a sequence 

of control moves [          
]  to drive the predicted outputs to the reference point 

trajectory. The control inputs are remained constant after the control horizon   . The 

control moves are determined by optimizing a cost function    in (5-1) that described 

in Fig. 5-2.  

 

   ∑ ‖ ̂   |      | ‖  

 

  

    

 ∑ ‖  ̂   | ‖  

 

    

   

 (5-1) 

where    and    are the penalty on the changes in inputs   ̂   |  and the errors 

between predicted outputs  ̂   | and desired set-points     |   respectively.    and    

represent a window parameter for the prediction horizon and the control horizon, 

respectively.  

 

Fig. 5-2 Receding horizon strategy. 
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After calculating the control moves, only the first element is applied as the input to the 

process. With this implementation, all updated process measurements (outputs) and 

conditions are obtained for the next sample time instant    . Then, the whole 

procedure is repeated. Therefore, it is called a receding horizon approach. Notice that 

this on-line optimization method yields a feedback control strategy.  

5.3 The Features of Model Predictive Control 

The features of MPC and some important remarks are summarized as (Rossiter, 2003): 

1) The control law is based on the predicted behaviour. 

This is a major benefit as the execution of control inputs is dependence on the future 

behaviours of a process to be controlled. This helps improve the efficiency in 

computing the control signals. 

2) The output predictions are computed using an internal model. 

An internal model should be descriptive enough to represent system dynamics while 

the model complexity should not be ignored. In addition, a precise internal model helps 

to envisage the possibility of potential problems. 

3) The control input is computed by optimising the measure of predicted performance. 

This point implies the efficiency of an internal model plays an important role in the 

control performance.  It is only possible to demand high quality control performance if 

the internal model is accurate enough.  

4) The control design for multivariable systems. 

The MPC framework allows a multivariable system (square or non-square system) to 

be controlled in a straightforward manner. Compared to conventional control methods, 

a PID controller has to employ a complicated design such as a decoupling framework 

for a multivariable system. In addition, the interactions between system inputs and 

outputs are addressed directly in MPC.  
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5) The constraint handling. 

As discussed in Chapter 2, this is the biggest selling point and also the most important 

feature for MPC. The adoption of constraints in the on-line framework of MPC is 

compellingly unmatchable by other control methods as described in (Seborg et al., 

2010). The inequality constraint on inputs is particularly useful as it provides an 

operating window for practical applications such as the physical limitation of an 

actuator. Moreover, the inequality constraint on outputs offer an advantageous 

approach called range control, which is useful for a process without a fine set-point. 

5.4 Tuning Parameters 

There are few key parameters that have impacts on the control performance of the MPC, 

as illustrated in Fig. 5-2. These parameters are decided by users and their interaction 

effects are discussed as follows.  

a) Sampling Period 

The first parameter to be decided is a sampling period which has to be chosen 

adequately to match the computation time for solving the optimization problem. The 

choice of sampling period is, however, restricted as it also has to be selected depending 

on the process dynamics in relation to the process modelling performance.  

b) Prediction and control horizon 

The window parameter    is selected according to the dead time of a process. 

Understandably, a small prediction horizon    leads to an aggressive controller. On the 

hand, a large control horizon    yields a complex controller. The control horizon    is 

normally smaller than the prediction horizon   . This means that it has a small degree 

of freedom and the control performance might be degraded. However, on the positive 

side the computational load is greatly reduced as the dimension of decision variables to 

be optimized is smaller. Thus, the control horizon is selected by considering a trade-off 

between the computational requirement and the desired control performance.  

c) Penalty Matrices 
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The other additional tuning parameters are penalties on the errors    and control moves 

  , as expressed in (5-1). Both penalties are diagonal matrices. For    matrix, its 

penalty values can be varied individually according to the importance of each output 

for a multivariable case. A larger ratio is used for a more important output. The higher 

the penalty values in    matrix, the more aggressive the controller becomes. The    

matrix has a similar advantage comparatively; however, it has an opposing influence 

where smaller values will lead to a more aggressive control effect.  

The guideline of tuning parameters mentioned above can be found in (Seborg et al., 

2010). However, the tuning effect may differ depending on the internal model. This can 

be observed in the selections between a sampling period and a control horizon. A 

selected sampling period has to satisfy a desired modelling performance while meeting 

the computational requirement for solving the optimization problem in (5-1) which its 

complexity is decided by the selection of control horizon. At the same time, a long 

prediction horizon is preferred if a precise internal model is available but this also 

increases the complexity of the optimization problem which has an indirect impact on 

the sampling period. With the effects contributed by each parameter, they are tuned 

empirically for an optimum control performance considering necessary trade-offs. 

5.5 Optimization Algorithms 

This section discusses the optimization algorithms for MPC. Solving an optimization 

problem is a major part in the MPC. Control engineers often have less experience with 

optimization algorithms. Mathematical optimization is a very wide topic with many 

algorithms available with different implementations but many algorithms are based on 

similar philosophies. It is imperative to stress that this section focuses on the general 

concepts of optimization algorithms of interest to develop a foundation of knowledge in 

this discipline. The section starts with a simple problem, Linear Programming (LP), and 

proceeds to a special case, Quadratic Programming (QP). Finally, the key concept of 

Non-linear Programming (NLP) is included. All related techniques with respect to the 

three optimization problems are included. The concepts of relevant techniques and their 

respective relationships are considered. The constructed materials are mainly taken 

from (Luenberger, 1984), (Griva et al., 2009) and (Borwein and Lewis, 2010). 
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5.6 Linear Programming 

A Linear Programming (LP) problem consists of a linear objective function subjects to 

linear constraints. Understanding the LP is vital as it forms the basis for mathematical 

optimization. In this section, Simplex method is covered as its concept of searching an 

optimum solution is identical to a QP algorithm (Active Set method). Moreover, Phase 

1 problem is an important first step to find an initial feasible solution for LP and QP 

problems. The linear behaviours of a LP problem identify the characteristics that 

provide readers with sufficient information to understand the problem in detail. This 

makes the LP an easier problem to solve. The key properties of a LP problem can be 

summarized as (Griva et al., 2009) 

1) If an optimum solution exists, then the optimum solution is located at corner 

points (vertex) where a corner point is an intersection between constraint 

boundaries. This simplifies an optimum solution searching procedure 

significantly. 

2) If there is more than one optimum solution, then optimum solutions are in the 

form of a line or a plane. 

3) The problem may be infeasible (no optimum solution) or unbounded (infinite 

optimum solution). 

The general form of a LP problem is not convenient to implement. Hence, a generalised 

standard form is introduced. Considered a general problem with equality constraints    

and inequality constraints   , 

    
 

    (5-2a) 

subject to 

      (5-2b) 

     . (5-2c) 
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The standard form, which employs slack variables   to convert inequality constraints in 

(5-2b) into compatible form of equality constraints and unrestricted variables   to 

express the differences between nonnegative variables, can be described as follows. 

     
 

,       -          [
  

  

 

] (5-3a) 

subject to 

 0
    
    

1   0
 
 
1 (5-3b) 

    . (5-3c) 

For a problem with   inequalities constraints, surplus variables are used instead of 

slack variables. On the contrary, multiply the problem in (5-2a) with -1 for a 

maximization. 

A LP problem can be solved by sketching the problem and its constraints provided the 

problem is feasible, bounded and an optimum solution exists. An optimum solution can 

be found by inspecting the corner points. This is called graphical method.  The 

disadvantage of this method is only restricted to a small-scale problem with a relatively 

small variable dimension that allows for sketching. However, the graphical method 

provides an effective way to interpret the properties of a LP problem. An alternative 

method is to compute all corner points and evaluate the objective function with all 

corner points but this method is exhaustive when a large scale-problem is considered. 

Hence, it is called exhaustive search method.  

5.6.1 Simplex Method 

A popular method to solve a large-scale LP problem is Simplex method developed by 

George Dantzig in 1974 (Dantzig and Thapa, 2006). Simplex method converts a LP 

problem with   variables into a form of basic and nonbasic variables. Consider the 

problem in (5-3a) and rewrite the constraints in (5-3b) into 
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       (5-4) 

where        with an assumption that   is a full rank matrix with     ( )    

and    . The problem in (5-3a) can be written as a combination of basic variables 

   and nonbasic variables   , 

        
      

    (5-5a) 

     ,     - 0
  

  
1    (5-5b) 

              (5-5c) 

where        ,       (   ),       and     (   ). 

The impact of non-basic variables    on the objective function is assessed at every 

iteration. A basic variable    is replaced (called leaving basic variable) by a nonbasic 

variable (called entering basic variable) iteratively until an optimum solution is 

obtained. The leaving basic variable is decided by measuring a reduced cost    

expressed as 

     (     
   

    ). (5-6) 

While, a minimum ratio test (   ) that used to select an entering basic variable is 

described as  

     
 ̂ 

   
               (5-7a) 

   ̂    
                

     (5-7b) 

where    is a column of   that corresponds to the selected entering basic variable. 

    only takes      into consideration. If there is no     , it means that the 

problem in (5-3) is unbounded.  

Assuming an initial feasible solution is available, the procedure of Simplex method can 

be summarized as (Vanderbei, 2015) 



Chapter 5 Model Predictive Control & Optimization Algorithms 

Page 64 

Step 1 Compute the reduced cost    using (5-6) and select a nonbasic variable    that 

has most negative value as the entering basic variable and go to Step 2.  

If the computed reduced cost     , it means that an optimum condition is 

reached. Thus, the procedure is terminated.  

Step 2 Compute the     using (5-7) and select a basic variable    with the smallest 

ratio as the leaving basic variable. Then, go to Step 1. 

It is understood that Simplex method has a similar concept with Active Set method 

which is discussed in Section 5.9.3. This indicates the importance of understanding the 

Simplex method. In comparison, it can be said that basic variables represent active 

constraints that the current basic feasible solution intersects while, non-active 

constraints are represented by non-basic variables. At each iteration, Simplex method 

migrates from a current feasible solution to an improved adjacent feasible solution. 

This is achieved by sliding along the constraint boundaries. When the current feasible 

solution leaves one of its intersected constraints, it has to eliminate the constraint which 

is represented by a leaving basic variable. Next, an entering basic variable that 

represents the new constraint, which the current feasible solution migrates to, is added. 

Finally, the algorithm stops when there is no improvement of feasible solution can be 

found. The use of slack variables indicates the active constraints and it enables Simplex 

method to move along the constraints boundaries to search for an improved feasible 

solution. Based on author’s experience, solve a simple LP problem using Simplex 

method with sketching provides a good understanding of the concept.  

From the procedure above, it can be concluded that Simplex method is a version of 

Active Set method that tackles a LP problem despite their implementation methods are 

different. For a small-scale problem, Simplex method can be formulated and solved in a 

Tableau format (Griva et al., 2009). Although Simplex method is effective, there is 

degeneracy which causes a cycling phenomenon (not covered in this work), which 

prevents the algorithm to terminate by repeatedly visiting a number of feasible 

solutions. This can be avoided using Bland’s rule (Bland, 1977). 
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5.6.2 Phase 1 Problem 

The Simplex method described in previous section assumes that a selected initial basic 

solution is feasible. However, this is only applicable for a ‘all slack variable basic’ case 

where a LP problem in (5-2a) is of a form with the equality constraints in (5-2b) with 

nonnegative values on its right hand side, which allows all slack variables to be 

employed as basic variables   . Other than this case, Simplex method is usually 

implemented in two phases as it requires an initial basic feasible solution to commence 

(Guenin et al., 2014). To achieve this, the first phase is to formulate the constraints as 

an independent LP problem and it can be solved using Simplex method; thus, it is 

called Phase 1 problem. In other words, one has to solve two LP problems. Phase 1 

forms a fundamental problem to find an initial feasible solution for optimization 

algorithms including Active Set method. In short, Phase 1 is to find a solution that 

satisfies all the constraints. 

The strategy is to isolate each constraint with at least one basic variable with a +1 

coefficient. This can be achieved by adding an artificial variable    to the following 

constraints: 1) Equality constraints without a slack variable; 2)   inequality constraints 

with surplus variables. Then, the problem in Phase 1 is expressed as (Guenin et al., 

2014) 

                         (5-8) 

where   is the total number of artificial variables. If the solution in (5-8) is       

      , then the original LP problem is not feasible. This is because all artificial 

variables are nonnegative, which means that the summation in (5-8) is only zero if the 

artificial variables are all zero. Phase 1 problem can be integrated into Simplex method 

using the Tableau format. After an initial feasible solution is provided from Phase 1, 

the procedure proceeds to Phase 2 with the original LP problem. 
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5.7 Lagrange Method 

Lagrange multiplier   is a factor which describes the relationship between an 

optimization problem and gradients of its constraints. In other words, the tangent of an 

equality constraint (or an active inequality constraint) is parallel to the tangent of the 

level curve of an objective function for an optimum solution (Griva et al., 2009).  

5.7.1 Problem with Equality Constraints 

Lagrange multiplier   is firstly used in handling equality constraints. Consider a 

general problem with two variables       

    
       

 (     ) (5-9a) 

subject to an equality constraint, 

  (     )   . (5-9b) 

The problem in (5-9) can be interpreted as two gradient vectors are parallel if and only 

if there is a Lagrange multiplier   such that  

   (  
    

 )     (  
    

 ) (5-10) 

where   ( )  and   ( )  are the gradients of the problem and the constraint, 

respectively; (  
    

 ) is an optimal point. Based on this, the formulation of Lagrange 

method is described as 

  (       )   (     )   ( (     )   ) (5-11a) 

with the necessary conditions for (  
    

    ) being an optimum solution: 

 
  

   

(  
    

    )  
  

   

(  
    

 )   
  

   

(  
    

 )    (5-11b) 

 
  

   

(  
    

    )  
  

   

(  
    

 )   
  

   

(  
    

 )    (5-11c) 
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(  

    
    )   (     )       (5-11d) 

It is noticeable that in (5-11b) and (5-11c), Lagrange multiplier   describes the 

relationship between the gradients of the problem and the gradients of constraints with 

respect to each variable. The equation in (5-11d) is to satisfy the equality constraint. 

This technique is called Lagrange method which converts a constrained optimization 

problem into an unconstrained one, with an important condition   (  
    

 )   .  

5.7.2 Problem with Inequality Constraints 

The Lagrange method can be extended for the case of inequality constraints. Consider 

the problem in (5-9a) subject to an inequality constraint, 

  (     )    (5-12) 

and, there exist two possible situations at an optimal point   
    

 : 

1)  (  
    

 )       –  Binding Case:       ,      

2)  (  
    

 )     –  Non-binding Case:     ,      

Using the non-binding case, it is possible to stipulate     . Therefore, this yields two 

possible outcomes: 1)     , 2)  (  
    

 )     . This condition is called 

complementary slackness. Reconsider the problem in (5-9a) subject to an inequality 

constraint in (5-12), the Lagrange method can be written as 

  (       )   (     )   ( (     )   ) (5-13a) 

with the necessary conditions: 

 
  

   

(  
    

    )    (5-13b) 

 
  

   

(  
    

    )    (5-13c) 
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   , (  
    

 )   -    (5-13d) 

      (5-13e) 

  (  
    

 )    (5-13f) 

Equation (5-13d) expresses the complementary slackness condition, while the 

nonnegative condition of the Lagrange multiplier is described in (5-13e). In order to 

satisfy the inequality constraints, equation in (5-13f) is included. This form of Lagrange 

method is also used to check the optimum condition for a QP problem in later section. 

5.7.3 Procedure and Remarks 

The importance of Lagrange method will be seen in later sections (QP and NLP) where 

it is used to augment an optimization problem. A Lagrange method converts an original 

optimization problem using the Lagrange function in (5.11a) and (5.13a) with respect 

to the constraints. Then, compute the gradients using partial derivatives and set them to 

zero. Finally, solve the formulated problem with the necessary conditions as in (5-11b - 

5.11d) and (5-13b – 5.13f), respectively. 

Although the conditions for both equality and inequality constraints are derived based 

on an optimum solution, it is important to stress that solving the equations for both 

conditions with respect to the optimization problem only yields a stationary point. It is 

also called critical point. This means that the Lagrange methods in first order form 

described in Section 5.7.1 and 5.7.2 only provide necessary conditions for an optimum 

solution. Another key point is the formulated problem may be non-linear, which means 

a numerical method such as Newton method is required.  

It is necessary to state that both conditions for equality constraints in (5.11) and 

inequality constraints (5.13) can be merged for an optimization problem with both 

equality and inequality constraints, which forms the basis of Karush-Kuhn-Tucker 

conditions in next section.  
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5.8 Optimality Conditions 

In general, optimality conditions are divided into necessary and sufficient conditions. 

Necessary conditions are satisfied by a local optimum solution while, satisfying 

sufficient conditions provides a local optimum solution. In this section, consider a 

general problem (Shevade, 2012) 

     ( ) (5-14a) 

subject to 

   ( )            (5-14b) 

   ( )            (5-14c) 

 

     

      {    ( )      ( )                   } 

(5-14d) 

and active constraints are denoted as 

  ( )  {    ( )   }  (5-14e) 

5.8.1 Regular Points  

Regular points for inequality and equality constraints are essential in Karush-Kuhn-

Tucker conditions (Chachuat, 2007, Shevade, 2012). Consider the problem in (5-14a) 

with inequality constraints in (5-14b), a point      is a regular point if the gradient 

vectors of inequality constraints    ( 
 ),    (  ) (active constraints) are linearly 

independent. For an equality constraints case, consider the problem in (5-14a) with 

equality constraints in (5-14c), a point  ̅    is said to be a regular point if gradient 

vectors of equality constraints    ( ̅) are linearly independent.  
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5.8.2 Karush-Kuhn-Tucker Conditions 

Karush-Kuhn-Tucker conditions (KKT) are deemed one of greatest development as it is 

used as the basis for many optimization algorithms of LP, QP or NLP. It was claimed 

that the conditions were firstly derived by William Karush in 1939 but it was not 

published and Harold W. Kuhn and Albert W. Tucker derived the conditions 

independently and published it in 1951 (Cottle, 2012). KKT conditions are computed to 

solve an optimization problem with inequality constraints using Lagrange method as 

described in Section 5.7.2. Furthermore, KKT conditions are used to identify a critical 

point for constrained QP and NLP; this type of critical point is called KKT point. In 

general, there are two categories of KKT conditions: 1) First order conditions; 2) 

Second order conditions. Readers are referred to (Boyd and Vandenberghe, 2004, 

Shevade, 2012) for more details where the materials are obtained for the following 

sections.  

5.8.2.1 KKT First Order Necessary Conditions  

The KKT first order necessary conditions are the generalised form of the extended 

Lagrange method with active inequality constraints in Section 5.7.2. Consider the 

problem in (5-14), if      is a local minimum and a regular point, then there exists a 

unique vector    (  
      

 )  such that  

 

  ( )  ∑  
 

 

   

   ( 
 )    

  
   ( 

 )                  

  
                             

(5-15) 

 KKT point: (     )           

 Lagrange Function:  (   )   ( )  ∑   
 
      ( ) 

    ( 
    )    

   : Lagrange multipliers,         for inequality constraints 
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   
   ( 

 )                       Complementary slackness condition 

   
           (  )         Non-active constraints 

For equality constraints, the condition can be stated as let      be a regular point and 

local minimum. Then         such that 

   (  )  ∑  
 

 

   

   ( 
 )     (5-16) 

5.8.2.2 Generalised Form of KKT First Order Necessary Conditions 

By merging the conditions for equality and inequality constraints in previous section, a 

generalised form of KKT first order necessary condition can be stated as follows. 

Consider the problem in (5-14), if      is a local minimum and a regular point, then 

there exist unique vectors       and       such that 

 

   (        )    ( )  ∑  
 

 

   

   ( 
 )  ∑  

 

 

   

   ( 
 )     

  
   ( 

 )                  

  
                             

(5-17) 

 KKT point: (        )                 satisfying above conditions. 

5.8.2.3 KKT Second Order Necessary Conditions 

Based on the Lagrange function in (5-17), if      is a local minimum and a regular 

point, then there exists unique vectors       and       such that 
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   (        )    

  
   ( 

 )                      

  
                                 

(5-18a) 

and the hessian, 

     
  (        )        Positive Definite (5-18b) 

for all      ( 
 )         and    ( 

 )        , where   and   represent 

the index of active constraints for   ( 
 ) and   ( 

 ), respectively.  

5.8.2.4 KKT Second Order Sufficient Conditions 

If there exist     ,       and       such that 

 

   (        )    

  
   ( 

 )                      

  
                                 

(5-19a) 

and 

     
  (        )        Positive Definite (5-19b) 

for all     such that 

 

   ( 
 )         and   

    

   ( 
 )          and   

    

   ( 
 )          

(5-19c) 

Then,    is a strict local minimum of NLP. 
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5.9 Quadratic Programming 

QP is regarded as a special case of NLP. A QP problem consists of a quadratic 

objective function subject to linear equality and inequality constraints. It is an easier 

problem to solve compared to NLP. More importantly, it provides the basis for 

Sequential Quadratic Programming to solve NLP problems. In an ideal case of QP, a 

global optimum solution is guaranteed due to its convex or concave shapes. One of the 

advantages of a QP problem is its characteristic can be determined by examining the 

definiteness of its hessian matrix. 

5.9.1 Convex Function 

A convex function is included to show its relationship to QP. For details information on 

its background, readers are referred to see (Boyd and Vandenberghe, 2004) which 

includes line function, affine set and convex set. A convex function that governed by a 

line segment equation is described as 

  (    (   )  )    (  )  (   ) (  )         ,   - (5-20) 

where         . From (5-20), it is expressed as a line, which joins the two points 

 (  ) and  (  ) (right hand side) within the function, is always greater than a line joint 

by    and    (left hand side). This condition implies that the function is a convex shape 

as illustrated in Fig. 5-3. This property guarantees two important conditions with 

  (  )    and    (  )   . 

The form of a quadratic optimization problem is as below, 

    
 

 ( )  
 

 
         (5-21a) 

subject to linear inequality constraints 

      (5-21b) 

where        which is a symmetric positive definite matrix. The definiteness of 

matrix can be found by evaluating its eigenvalues. 
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Fig. 5-3 Convex function. 

5.9.2 Unconstrained Problem 

Understanding an unconstrained QP problem is important as it forms the optimality 

conditions for constrained problems. By observing the function in (5-21a), if the 

hessian   is not positive semi-definite,       , then  ( ) approaches to a negative 

infinity, which means no minimum point is available (refer to KKT second order 

necessary conditions in Section 5.8.2.3). To solve an unconstrained quadratic problem 

in (5-21a), computes the gradient and takes it equals to zero which yields an local 

minimum         . A global minimum is guaranteed for a positive definite   case. 

This implies that it has an unique stationary point   . On the hand, in a semi-positive 

definite   case, the formulated problem might be inconsistent. Therefore, a solution is 

not guaranteed.  

5.9.3 Constrained Problem – Active Set Method 

For a constrained problem with equality constraints case, the hessian matrix   is only 

needed to be positive definite on the subspace to obtain a minimum point. One of the 

popular methods to solve a constrained QP problem is Active Set method (ASM), 
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which forms a foundation of step-wise line search method for Sequential Quadratic 

Program algorithm in the next section. Thus, the understanding of this method is of 

great importance. The development of ASM is based on the Lagrange Method in (5-11) 

which can be used to solve a constrained QP problem with equality constraints. In a 

case with inequality constraints, it can be formulated as an optimization problem with a 

series of equality constraints that represent active inequality constraints using the KKT 

first order necessary conditions in (5-15); this is also a binding case as described in 

Section 5.7.2.  

A constraint is said to be active if a current feasible solution binds to the constraint 

boundary. The concept of ASM is to search an optimum solution by minimizing an 

objective function iteratively while remaining on the boundaries of constraints. An 

initial feasible solution is required and this can be achieved by solving the Phase 1 

problem that described in Section 5.6.2. Given an initial feasible solution to commence, 

the first step is to search for a descent direction    which minimizes the objective 

function while keeping the current solution remains on constraint boundaries. A basis 

   that satisfies        is computed from the QR decomposition of an active set 

  
       (Kalpesh, 2004), 

 

  (  
 )  [ ̂   ] 0

 
 
1 

      

(5-22) 

This makes    provides a basis that corresponding to the current active constraints. 

Thus,    can be determined as a linear combination of some vector   in the  

     (  ) , which yields      
  . The vector   is computed by solving an 

unconstrained quadratic optimization with respect to  , 

 

 ( )  
 

 
    

            

   (  
    ) (  

  ). 

(5-23) 

After    is found, next is to determine a maximum distance of which the current 

solution    allowed to travel on the constraints boundaries without violating the 
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constraints; this distance is defined as a step length  . The next feasible solution is 

expressed as 

             (5-24) 

If a unit length   along    can be taken while remaining feasible, then this is the 

ultimate optimum solution to the QP problem. Otherwise, one has to calculate a   that 

current feasible solution is allowed to travel to nearest non-active constraints bindingly, 

 

   (      )                   

     
      

 (       )

    
  

(5-25) 

The following step is to compute the Lagrange multipliers    provided the linear 

equations are non-singular, 

 

  
      

   (   (  )). 

(5-26) 

If all components of     , it means that the optimality in the KKT first order 

necessary conditions in (5-15) are satisfied, implying that an ultimate optimum solution 

is achieved. Otherwise, a constraint that corresponds to the most negative Lagrange 

multiplier    (if there is more than one negative element), which the current solution is 

set to leave, is removed from the active set   . After this, the algorithm proceeds to 

next iteration. The procedure is illustrated in Fig. 5-4. Alternatively, for a small-scale 

problem, the ASM method can be executed in solving a set of linear equation (non-

singular) formulated by KKT first order necessary conditions as described in Section 

5.8.2.1.  

It is noticeable that ASM adopts a similar concept with Simplex method as ASM also 

tracks an optimum solution along constraint boundaries iteratively. The difference is 

ASM has a step length   in computing the next feasible solution      because the 

optimum solution for a QP problem is not necessary a corner point. ASM plays an 

important role in Sequential Quadratic Programming (SQP) algorithm for NLP which is 

discussed in next section.  
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Fig. 5-4 Flow chart of Active Set method. 
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5.10 Non-linear Programming 

The difficulties in mathematical optimization arise when a non-linear problem is 

considered which is called Non-linear Programming (NLP). Non-linear characteristics 

have led to few severe consequences that summarized in (Chinneck, 2006). Limited 

information of the problem has restricted the recognition of a global optimum. Instead, 

a local optimum solution can be recognised as the information of the problem at current 

point is available for assessment. Dissimilar from LP and QP, optimum solutions of 

NLP problems are not restricted to corner points or constraint boundaries, increasing 

the difficulties in exploring the optimum solutions. Moreover, disconnected feasible 

regions may be encountered for problems that encounter severe non-linearity. These 

consequences have shown that the uncertainties in NLP problems are very high, leading 

to the employment of numerical methods. It is understood constraints help narrow the 

space of tracking an optimum solution in some cases, resulting in a shorter time frame 

needed in solving the problem compared to that of an unconstrained problem.  

5.10.1 Unconstrained NLP 

Similar to LP and QP, the understanding of unconstrained problems in NLP is equally 

important. Line search methods are the fundamental concept for both unconstrained 

and constrained NLP problems. A simple case for an unconstrained NLP problem with 

single variable dimension can be solved using Bisection Search method (BS) which a 

local optimum solution is searched along a line using the first derivatives information 

of the problem. Thus, in order to use BS method, the problem has to be differentiable.  

For a multi-dimension problem, the concept of BS method is extended into methods 

called steepest descent (minimization) and steepest ascent (maximization); their 

difference with BS method is in the derivatives information where a gradient vector 

(first derivative) and hessian matrix (second derivative) are needed. The definiteness of 

a hessian matrix, which is determined by its determinant, is used to decide the 

characteristic of a stationary point. A step length along a descent direction is employed 

in both steepest descent and steepest ascent methods. In order to provide a clear 

relationship between unconstrained algorithms, their descent directions are briefly 
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discussed. A descent direction      , which defines a direction that minimizes an 

objective function at every iteration  , is expressed as 

    
      (5-27) 

where    is a gradient of the objective function at every iteration  . Equation in (5-27) 

requires an angle to be maintained between the gradient    and descent direction    to 

achieve a decrease in the objective function, as illustrated in Fig. 5-5. For global 

convergence theorem, readers are referred to (Yuan, 1999). Different optimization 

algorithms compute the descent directions differently. Every algorithm has very a 

distinctive characteristic. The discussion concentrates on the features and relationships 

between every technique (Shevade, 2012), as summarized in Fig. 5-6.  

 

Fig. 5-5 Descent direction. 

For steepest descent method (SD), its objective is to obtain a decrease of objective 

function maximally with       . SD method is computationally cheap but it has a 

poor convergence rate except for a circular convex problem where an optimum solution 

can be achieved in one iteration. In comparison, classical Newton method has a better 

convergence rate especially for a convex problem regardless of its shape but it is 

computationally expensive as it has to compute an inverse of hessian matrix     for its 

descent direction     (  )
    . Moreover, it is sensitive to the initial starting point 

for non-quadratic problems as its convergence is guaranteed only if a starting point is 
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sufficiently close to the optimum solution. The drawback of both SD and classical 

Newton methods is they are positive definite hessian matrix based.  

For non-positive definite problems, a modified Newton method is with a descent 

direction     (      )
     is introduced. Its strategy is to modify the hessian 

matrix to achieve positive definiteness using an additional term   . A small    means 

that it has a good approximation of the positive definite hessian matrix. However, if    

is large and becomes dominant, the algorithm may fail to converge. The main drawback 

of both classical and modified Newton methods is the requirement in computing the 

hessian matrix which may not be available in some cases (Ding et al., 2010).  

Another advanced method that based on the Newton method, Quasi-Newton method, 

approximates the inversion of a hessian matrix    using rank-one correction method. 

This helps reduce the computational requirement. The resulting descent direction is 

        . The drawback of this method is the positive definiteness of a hessian 

matrix is not guaranteed at every iteration, which leads to improved methods such as 

Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shannon (BFGS) 

methods. The difference between both methods is DFP method updates    while BFGS 

method updates      
  . The update of DFP method is achieved by satisfying Quasi-

Newton condition (secant condition), 

 

          

                       

(5-28) 

While, BFGS method is to satisfy (Dai, 2013) 

            (5-29) 

Among two methods, BFGS method is claimed to be more efficient as it has a self-

correcting properties (Ding et al., 2010). 
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Fig. 5-6 Unconstrained NLP methods. 

5.10.2 Constrained NLP: Penalty Method  

Penalty method employs a penalty function to assess the infeasibility of an optimization 

problem where unsatisfied constraints are penalised with a cost. This method initiates 



Chapter 5 Model Predictive Control & Optimization Algorithms 

Page 82 

from an infeasible solution, then reduces infeasibilities and terminates with feasible 

solutions eventually provided that convergence is achieved. This means the optimum 

and feasible solutions are computed simultaneously. Due to its feature of driving 

solutions into feasibility, it can be used to find a feasible starting point for NLP 

algorithms. Consider a NLP problem 

     ( ) (5-30a) 

subject to 

   ( )               (5-30b) 

   ( )               (5-30c) 

Then, converts a constrained problem into an unconstrained problem by adding a 

penalty function to the objective function in (5-30a) (Di Pillo and Grippo, 1989), 

     * ( )    ( )+ (5-31) 

where   is a positive parameter.   is a function that penalises unsatisfied constraints 

which can be defined as 

  ( )  
 

 
∑[    (    ( )]

 
 

 

 

 

   

∑  
 ( )

 

   

 (5-32) 

and the augmented objective function can be rewritten as 

  (   )   ( )    ( ). (5-33) 

The magnitude of parameter   has an important effect. A suitably large   relative to 

 ( ) will have a heavy penalise cost for any constraint violation. Using this penalty 

conversion strategy, an unconstrained problem can be solved using unconstrained 

search methods iteratively with an assumption of    approaching infinity, 

                                . (5-34) 

 With this assumption, the convergence is as below  
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       as      . (5-35) 

It is recommended to start   with a small value in order to ensure a convergence is 

achieved and a sequential unconstrained minimization technique can be used to 

implement the Penalty method (Bryan and Shibberu, 2005).  

On the contrary, Barrier method is employed for infeasibility prevention which is 

useful when the search for an optimum solution is conducted in feasible regions. 

Barrier method penalises constraints that the current solution moves into by imposing a 

barrier function to prevent current solution to go infeasible. Similar to the Penalty 

method, Barrier method also transforms a constrained problem into an unconstrained 

problem (Byrne, 2013). However, this method is proved to be effective in dealing with  

problems with inequality constraints only (Chinneck, 2006).  

5.10.3 Sequential Quadratic Programing 

Sequential quadratic programming (SQP) is one of the effective techniques to solve a 

constrained NLP problem but it is also regarded as one of high complexity algorithms. 

SQP is based on a line search method that founded by other optimization algorithms 

such as the ASM described in Section 5.9.3 (Leyffer and Mahajan, 2010). The 

difference in SQP is it employs linear approximations to the objective function and 

constraints due to the non-linear characteristics of the problem. BFGS method is 

employed to approximate the positive definite Hessian matrix. Consider the general 

NLP problem in (5-30) augmented with the Lagrange function in (5-17), a quadratic 

approximation of the objective function is described as (Boggs and Tolle, 1995) 

   ( )    (  )
   

 

 
     

  (     )  (5-36a) 

and the linear approximation of constrains 

    (  )
     (  )             (5-36b) 

    (  )
     (  )                (5-36c) 
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Notice that    in (5-17) is integrated into    using the notation         in (5-36b). 

The linearized QP problem is solved using ASM described in Section 5.9.3 to obtain a 

descent direction    for next iterate 

             . (5-37) 

One of the main stages in SQP approach is to approximate the hessian matrix 

   
  (     ) . An approximation of the hessian matrix    is updated using BFGS 

method at every iteration 

 

        
    

 

  
   

 
      

   

  
     

 

                 (       )    (     )  

(5-38) 

However, the positive definiteness in    is not assured. When this happens,    is 

modified so that   
      (Boggs and Tolle, 1995). 

Another important step is to decide a step length    along a descent direction    from 

the quadratic problem. Different from the unconstrained algorithms, a taken step length 

   not only required to decrease the objective function value, but also attempts to 

satisfy the constraints. These two requirements can be achieved using the Penalty 

method, 

  ( )   ( )  ∑  

  

   

   ( )  ∑  

  

   

    ,    ( )- (5-39) 

where      are penalty parameters and the penalty parameter is set to 

    (    )    
 

,   
(  )    

 
 -                  (5-40) 

In order to implement the Penalty method, a sequential unconstrained minimization 

technique is recommended (Chinneck, 2006) where a series of formulated 

unconstrained problems is solved. From the procedure above, it shows that SQP 

algorithm involves a wide area of techniques which includes ASM, Quasi-Newton 

method, and Penalty method.  
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5.11 Selection of Optimization Algorithm 

As discussed in previous sections, there are three general problems, namely LP, QP and 

NLP. Respective algorithms are used to tackle different optimization problems. In this 

section, Matlab functions for optimization algorithms based on Matlab 2009b are 

discussed. It is no doubt that LP is the easier problem to recognise and it can be solved 

using the popular Simplex method.  

For constrained QP problems, the advantage of ASM is the feasibility is maintained 

throughout the procedure as it starts with a feasible solution by solving a Phase 1 

problem. This is useful for the MPC because if ASM fails to terminate with an 

optimum solution, a feasible solution is still available. This is important for processes 

with strict safety operating regions. However, this feature can be disadvantageous at the 

same time as an initial feasible solution may not be easy to compute. Moreover, a QP 

problem in MPC only occurs when linear models such as state-space representation is 

used. ASM is described in active-set quadprog and fmincon Active Set as Matlab 

functions. 

In this research, a RBF network is employed as the internal model for the MPC, leading 

to NMPC. An NLP algorithm, SQP, is used as the non-linear optimiser for MPC. The 

Matlab function of SQP algorithm that used in this work is fmincon SQP algorithm as 

in (Wang et al., 2006, Yu et al., 2006). The advantage of SQP is feasibility is not 

required, which means that there is no Phase 1 problem. This is because computing an 

initial feasible solution for a NLP problem may require huge efforts and it can be a very 

time-consuming procedure. This is one of the main reasons that SQP being employed 

in this work. As discussed previously, maintaining feasibility is beneficial to MPC but 

it is difficult to compute an optimum solution while remaining feasible due to the non-

linear characteristic of NLP problems. However, with the receding horizon approach 

that adopted by MPC, the solution in SQP is used as a starting point for every 

subsequent iteration, providing a warm start approach which improves the searching of 

an optimum solution. SQP algorithm is more efficient in term of execution time for 

constrained problems because of the limits on feasibility regions as stated in Matlab 

support documentation. Thus, SQP algorithm is useful for constrained control problems 

in the thesis.  
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5.12 Summary 

In brief, MPC adopts a receding horizon strategy to formulate a control objective with 

the consideration of constraints for inputs and outputs into an optimization problem. 

The main idea of the receding horizon approach is clearly described together with its 

objective function. The benefits of MPC are the process interactions and process 

constraints are addressed. The interaction effects between every tuning parameter have 

direct impacts on the control performance. The difficulties arise in solving the 

optimization problem, particularly for NMPC. 

Three optimization algorithms, Simplex method, ASM and SQP, to tackle the problems 

of LP, QP and NLP, respectively, are discussed. Although every method has a different 

strategy, their concepts are related. For a large-scale problem, Simplex method is 

proved to be more effective than the exhaustive search method. The understanding of 

Simplex method helps to visualize a tracking procedure of an optimum solution. The 

discussion concludes that the tracking procedure of Simplex method has a similar 

concept to the ASM. Furthermore, the Phase 1 problem is equally important for 

Simplex method and ASM to find an initial feasible solution. 

The concept underlying the Lagrange multiplier forms the basis for KKT conditions for 

constrained problems. KKT conditions are regarded as the generalised form of 

Lagrange method to check optimality conditions. Thus, the KKT conditions are 

important for the ASM and SQP. The formulation of the binding and non-binding case 

for inequality constraints plays a vital role in the ASM. 

Convex function is the core of QP, which an optimum solution is guaranteed. An 

obvious similarity between Simplex method and ASM is the tracking process is 

executed by staying on constraints boundaries. The concluded difference between these 

two methods is ASM has a step length as an optimum solution of QP can lie at any 

section of constraint boundaries. ASM demonstrates a comprehensive line search 

mechanism which provides a good foundation for SQP algorithm.  

SQP algorithm adopts a step-wise line search based strategy to solve NLP problems. 

The linearization yields a QP sub-problem to find a descent direction, which is solved 
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using the ASM. In order to ensure the positive definiteness, BFGS method is employed 

to approximate the hessian matrix. Then, a penalty method is used to find a step length 

in relation to the computed descent direction, producing a solution for next iteration.  

Lastly, the features of algorithms are briefly discussed in relation to the MPC and their 

respective Matlab functions are mentioned. The studies for optimization algorithms are 

constructed in the order based on author’s experiences. The main purpose is to build a 

foundation of knowledge for optimization techniques that related to MPC.   
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Chapter 6 

FACTORIZED RBF NETWORK 

MODEL 

6.1 Introduction 

NARX-RBF model is often used as an internal model in MPC (RBF-MPC) As 

reviewed in Section 2.3.4, the NARX-RBF model lacks of efficiency in long range 

predictions (Su and McAvoy, 1997, Bhartiya and Whiteley, 2001). Another drawback 

is that the network cannot be factorized according to the past and future information. 

This chapter presents a new factorized  -step model-based RBF network ( -step RBF). 

The objective of this work is twofold. The first objective is to introduce a  -step 

predictor and implement it with a RBF network. Secondly, the novelty in this work is 

the factorization of the  -step RBF network. As a result, an explicit objective function 

of the MPC is derived to reduce the computing load in solving the on-line optimization 

problem. The proposed model is evaluated in term of the modelling performance, 

model compactness, and computational requirement using a continuous-stirred tank 

reactor (CSTR) plant.  

Both the prediction performance and the computing time for long range prediction of 

the developed model are evaluated by comparing the results with that of two existing 

models. By applying to the MPC of the CSTR plant, the simulation results show that 

not only the developed model outperforms the other two models but more importantly, 

the developed model also uses a more compact structure. Secondly, the control 
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performance and computational requirement in solving the optimization problem of the 

proposed network is verified by comparing it with existing control approaches. The 

proposed network is proved to be more computationally efficient while achieving a 

good control performance.  

The chapter is presented in the following structure. Section 6.2 describes the 

development of  -step prediction model. Section 6.3 explains the training algorithm of 

 -step RBF model; it also presents the prediction performance of proposed  -step RBF 

model and the comparison with other two models. Section 6.4 describes the 

factorization of  -step RBF model. The evaluation of control performance and 

computational requirement of the proposed model-based MPC and comparison studies 

are presented in Section 6.5. 

6.2  -Step Prediction Model 

A  -Step control (PSC) model was developed in (Bhartiya and Whiteley, 2001) and it 

was implemented with a RBF network. It was reported that the PSC model was capable 

of predicting future process outputs over a prediction horizon without requiring future 

unknown process outputs. However, the flaw of PSC model is that an unrealistic 

massive network structure is required in order to achieve a satisfactory prediction 

performance. This has incurred a big computational burden load to prevent its 

application in fast dynamic systems. Moreover, there is a limitation in selecting the 

network model that      is required. To address these problems, an improved model, 

 -step prediction model, is developed in this thesis and is implemented with a RBF 

network.  In this section, the derivation of the  -step model is described. 

In the applications of RBF networks (Wang et al., 2006, Yu and Yu, 2007), a 

continuous-time non-linear system is represented by a NARX model in (6-1). 

     0            
             

1     (6-1) 

where      and      are the input and output vectors with     and    being the 

output and input orders respectively and   is the error.  , - is a vector-valued non-
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linear function. There are two types of predictor structure as depicted in Fig. 6-1, where 

a RBF network can be trained as an one-step-ahead (OSA) predictor or a multistep-

ahead (MSA) predictor (also see Section 3.3). 

 

Fig. 6-1 Block diagrams of OSA and MSA predictors. 

From Fig. 6-1, it is observed that the OSA predictor is trained using the plant inputs 

            
 and outputs             

 at sample time   to estimate the one-step-

ahead prediction  ̂   . For the OSA predictor, the future predictions  ̂        ̂    

over a prediction horizon    are described as 

  ̂     0            
             

1 

 

  ̂     0                              
1  

    

  ̂     0                  
                   

1 (6-2) 
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In contrast, in the MSA predictor the predicted outputs  ̂       ̂      , instead of the 

plant outputs, are iteratively used in the future sample predictions  ̂       ̂    across 

a prediction horizon    as described as 

  ̂     0            
             

1 

 

  ̂     0 ̂                
               

1  

    

  ̂     0 ̂          ̂       
                   

1. (6-3) 

From (6-2), it is understood that the MSA predictor is less accurate compared with the 

OSA because the MSA uses the predicted outputs iteratively as its inputs, which 

introduces accumulated modelling error to the future predictions. However, though the 

MSA predictor is not as accurate as the OSA predictor, its ability to predict the 

multistep-ahead behaviour is essential for being used in the MPC (Yu et al., 2004, 

Wang et al., 2006). 

In order to improve the inaccurate prediction and at the same time to reserve the 

multistep-ahead prediction ability of the MSA predictor, a new FS prediction model is 

proposed here. The  -step model is designed to make predictions over a prediction 

horizon    without using the future process outputs. It therefore makes use of the 

advantages of both the OSA and MSA predictors. The derivation of  -step model 

commences with a NARX model in (6-1). To illustrate the concept of proposed  -step 

model, consider an example with output orders      and input orders      to 

make predictions across a prediction horizon     . Using this example, the NARX 

model in (6-1) can be expressed as 

  ̂   ,                   - (6-4) 

The outputs             can be described in prediction forms of 

  ̂     ,                   - 
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  ̂     ,                   - (6-5) 

Now, using (6-5) to approximate           in (6-4), it becomes 

  ̂   , ,                   -  ,                   -          - 

 

 

         , , ,                   -               -  

   ,                   -          - (6-6) 

Using a function   to represent the composite function   in (6-6),  

  ̂ |     ,                             - (6-7) 

Using (6-7) for predictions over       , they are as follows, 

  ̂   |     ,                           - 

 
  ̂   |     ,                           - 

 

  ̂   |   ,                         - (6-8) 

Equation (6-7) can be extended to a general form, 

  ̂ |     0                
                  

1 (6-9) 

or alternatively, 

  ̂   |   0            
                  

1  (6-10) 

From (6-10), it can be observed that the  -step prediction  ̂   |  requires process 

outputs up to  th
 sample time, which are all available at current sample period  . In 

other words, only process output measurements up to  th
 sample time are required for 

the prediction of outputs up to (   )th
 sample time. This means that the dependency 

on the future predicted outputs               over a prediction horizon    is 

eliminated. Therefore, it improves the prediction accuracy.  
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6.3 Modelling a CSTR 

To demonstrate the effectiveness of the developed  -step RBF model for multistep 

ahead prediction, the  -step RBF model is developed for a CSTR and compared with 

other two frequently used RBF models. The structure of the developed  -step RBF 

model is the same as that of normal RBF network with only difference being different 

input vectors. Therefore, except for forming input vector by different input/output 

sample values, the training of the network including find centre vector and width for 

the Gaussian functions in each hidden layer node and training of the connected weights 

between the hidden layer and the output layer, are all the same. As in (Lightbody and 

Irwin, 1997) and (Yu et al., 2006), the K-means clustering algorithm and p-nearest 

centres algorithm are used to determine the location and width of centres, respectively as 

described in in Section 3.2.1 and 3.2.2.. The RLS algorithm in Section 3.2.3 is used to 

optimize the connection weights. 

6.3.1 CSTR Dynamics and Data Acquisition 

A CSTR plant in (Lightbody and Irwin, 1997, Morningred et al., 1990) is selected as 

the example process for evaluation of modelling and control of the developed  -step 

RBF model as illustrated in Fig. 6-2. This process has non-linear dynamics not only in 

static gain and also in dynamic parameters. It is therefore often employed as a 

benchmark for non-linear control evaluation. The plant is described by the following 

non-linear differential equations, 

   ̇( )  
 

 
(      ( ))      ( ) 

 
 

  ( ) (6-11a) 

  ̇( )  
 

 
(    ( ))      ( ) 

 
 

  ( ) 
 

       ( ) (   
 

  
  ( )) (     ( )) (6-11b) 

The reactor is used to mix two chemicals to produce a product compound A. A type of 

exothermic reaction takes place in the reactor, which slows down the reaction resulting 

with non-linear dynamics. The objective of the control system is to control the 
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concentration of product compound A,   ( ) with temperature  ( ) by manipulating 

the flow rate of coolant,   ( ). Therefore, the input is the flow rate of coolant    and 

the output is the concentration of compound A,   ( ). For the reactor the nominal 

values of the physical parameters are listed in Appendix A. The non-linearity of the 

plant is illustrated in Fig. 6-3, where the step response at different operating points (90, 

106, 98, 105 l/min) is displayed. It can be observed that the dynamics are more 

underdamped when the concentration is higher. 

 

Fig. 6-2 The schemetic of the CSTR tank. 

 

Fig. 6-3 Step responses of the CSTR plant. 
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The sampling period is chosen to be 0.1min. A set of persistently exciting input signal 

is designed as shown in Fig. 6-4 to generate a set of 1400 output data samples. The 

excitation input signal consists of a RAS of large amplitude superimposed on it with a 

RAS of small amplitude, to capture the dynamic behaviours of the plant at all 

frequencies and at all different levels of operating space. The collected input-output 

data points are halved into two sets - first 700 data samples are used as training data 

and the remainders are used as validation data. The orders of all variables in the 

network input vector are selected according to the orders of them in the reactor 

dynamic equations and are carefully tuned to give the best generalization result. In the 

meantime, the numbers of centres are decided considering a trade-off between the 

network size and the prediction error.  

 

Fig. 6-4 Collected data samples. 
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6.3.2  -step RBF Modelling and Comparison 

In this section, the prediction performance and model compactness of the  -step RBF 

model are evaluated with the training and validation date sets, and compared with the 

NARX-RBF model and the PSC-RBF model. The NARX-RBF model is of the 

structures shown on right hand side in Fig. 6-1 and is able to predict for multistep ahead 

with the predicted outputs as model inputs. The PSC-RBF model can predict for multi-

step ahead outputs (Bhartiya and Whiteley, 2001). To effectively evaluate the ability of 

accurate long range prediction, the proposed  -step RBF model and PSC-RBF model 

are tested with three different prediction horizons           , respectively. Both 

training and validation data sets are scaled to [0 1] to minimize the error caused by the 

difference between ranges of different variables. The scaled output predictions are then 

scaled back after the model is used as described in Section 3.3.1. 

All the three network models are trained with the RLS training algorithm in Section 

3.2.3. For a fair comparison, the parameters in all networks are carefully tuned. The K-

means clustering algorithm is used to find the position of centres and the radius of the 

Gaussian functions is calculated using P-nearest neighbour algorithm. The MAE 

described in Section 3.3.2 is used to measure the prediction errors. After training, the 

validation data set is applied to the three types of model and model prediction results 

are recorded in Table 6-1. 

From the prediction results in Table 6-1 it is evidence that the following four points. 

First, both  -step RBF and PSC-RBF models have more accurate predictions than the 

NARX-RBF model for 5-step-ahead prediction. This is because the former two models 

used measured input/output data rather than the latter model used predicted output as 

model input to bring in accumulated error. Secondly, for long-range,       and 

     , the  -step RBF predictions are more accurate than that of the PSC-RBF 

model, especially for the validation data. Thirdly, in addition to the more accurate 

prediction, the  -step RBF model has a much smaller size than the corresponding PSC-

RBF model for all the three different prediction horizons. This point is important as the 

bigger size of the model will lead to a much increased computing load in MPC 

optimization. Fourthly, the  -step RBF model prediction has only a slight degradation 
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with the increase of the prediction horizon compared with the PSC-RBF model. This 

point is vital when the model is used as the internal model in the non-linear MPC.  

As can be seen, the PSC-RBF model has the largest network structures as listed in 

Table 6-1. With the prediction horizon increasing, the PSC-RBF model needs to use 

unrealistically large network structures to achieve satisfactory predictions. This 

prevents the PSC-RBF model to be used in MPC for systems with slow dynamics only, 

for example a temperature control system. Unlike the PSC model, the proposed  -step 

model is able to maintain its structure size while producing satisfactory predictions for 

long range. 

Models 
NARX-

RBF 
PSC-RBF  -step RBF 

   5 5 10 20 5 10 20 

   3 3 2 2 3 2 2 

   3 3 2 2 3 2 2 

   43 150 216 362 44 36 44 

Training data 

MAE 
0.0154 0.0086 0.0157 0.0156 0.0080 0.0104 0.0116 

Validation 

data MAE 
0.0121 0.0070 0.0125 0.0176 0.0056 0.0075 0.0081 

Table 6-1 Performance comparison of different RBF-based models. 
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6.4 Factorization of  -step RBF Network for MPC 

The purpose to factorize  -step RBF network is to derive an explicit objective function 

for MPC to reduce the computation burden in solving the on-line optimization problem. 

For a NARX model, it is impossible to factorize because its future predictions are 

dependent on unknown future process measurement. Although PSC model manages to 

offer the factorization form, an unrealistic large network structure is required to obtain 

a satisfied modelling performance as shown in Section 6.3.2. As the  -step RBF model 

is different from the PSC model, the derivation of factorization is completely different. 

Due to the factorability of the exponential function, the prediction output of a RBF 

network can be rewritten as 

  ̂     ∑      (           )

  

   

 

 

  [

     (    )
 

   
   (    )

]

 

[
    (      )

 
    (      )

] 

 

 

  ̂ 
  ̂  (6-12) 

with  ̂ 
  and  ̂  denote the past and future matrices, respectively. 

Based on  -step model in (6-10),                     and        
 can be called as 

past inputs and future inputs, respectively. In MPC, the future inputs        
are the 

variables to be optimized. From Chapter 5, the objective function of MPC is described 

as 

 

   ∑ ‖ ̂   |      | ‖  

 

  

    

 ∑ ‖  ̂   | ‖  

 

    

   

 (6-13) 

where    and    are the penalty on the changes of inputs and the errors between output 

and desired set-point     |   respectively.   ̂   |  represents the changes in input.    

and    represent the window parameter and control horizon, respectively. From (6-13), 

it can be noticed that the objective function penalizes the changes in input   ̂   | . 
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Therefore, it is necessary to re-formulate  -step model in (6-9). The changes in input 

are described by 

   ̂   ̂        

 

 ̂    ̂       

   ̂      ̂     ̂   

    ̂    (  ̂      )  

    

  ̂        ̂        ̂          ̂      ̂       (6-14) 

with  ̂  denotes the future prediction. Then, substitute (6-14) into (6-10), the  -step 

model becomes 

 ̂     (                   
          

        (        )) 

 

   

 ̂     (             
      (    

    )   (  ̂        ̂          ̂      ̂      )) 

(6-15) 

Note that the order of inputs is rearranged for factorization purpose. To illustrate the 

factorized  -step RBF model, an example with     ,     ,     , and      is 

considered. The  -step predictions within prediction horizon in (6-10) are 

  ̂ |   (                 )  

  ̂ |   (                 )  

 

 ̂ |   (                 ) (6-16) 

and the changes in inputs are rewritten according to (6-14) 

 

 ̂    ̂     
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  ̂    ̂   ̂    ̂  (  ̂    )  

  ̂    ̂   ̂    ̂    ̂  (  ̂    ) (6-17) 

By substituting (6-17) into (6-16), the predictions become 

 ̂ |   (               (  ̂    )) 

 
 ̂ |   (            (  ̂    ) (  ̂    ̂    ))  

 ̂ |   (         (  ̂    ) (  ̂    ̂    ) (  ̂    ̂    ̂    )) (6-18) 

Using (6-12), the output predictions can be factorized as 
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(6-19) 
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(6-

21) 

with      representing the  th
 element of the centre vector   . This example shows that 

the output predictions of  -step RBF model is factorized into the past and the future 

matrices form as in (6-12). On the right hand side in (6-19 – 6-21), the first factor 

represents  ̂ 
  which consists of all known process measurements, whilst the second 

factor represents  ̂  which consists of the changes in inputs to be optimized in MPC. 

The general form of the factorized  -step RBF model is described by 
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(6-24) 

Notice all control inputs remain constant from    to   in MPC. With the factorization 

of  -step RBF model, the objective function in MPC in (6-13) becomes explicit in the 

changes of inputs,  

 

   ∑ ‖ ̂           
   ̂          (  ̂   )      | ‖  
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 (6-25) 

From (6-25), it is understood that unlike the NARX-RBF model, the factorized  -step 

RBF model provides an analytical form of objective function for MPC. 

 ̂        
      ̂        

  in (6-23) are only computed once at each sample time, which 

reduces the computational requirement when solving the on-line optimization problem.  

6.5 MPC of the CSTR 

To evaluate the effectiveness of the proposed  -step RBF model-based MPC (MPC-

FS), the CSTR plant in Section 6.3.1 is considered. The CSTR plant possesses different 

non-linear characteristics in different level of the product concentration. Thus, the 

control performance is assessed in three levels of product concentration: high 

(0.11mol/l), middle (0.09mol/l), and low (0.065mol/l). Step changes of the set-point in 

two different levels are used to further test the dynamic response of the control 

approach. The upper and lower bound constraints for the control variable, coolant flow 

rate    , are set to 110 and 90, respectively. There is no constraint imposed on the 

outputs. The MPC approaches based on both the NARX-RBF model and the PSC-RBF 

model for the CSTR are developed. The control system performances and the 
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computing loads with the two different models are then compared with the MPC based 

on the  -step RBF model.  

6.5.1 Control Performance 

To provide a fair comparison, the prediction horizon    and control horizon    for all 

control approaches are set to 10 and 5, respectively. It is realized that in MPC, the 

control performance is strongly based on the prediction accuracy of the internal model 

that represents the real process. Thus, based on the modelling performance, the model 

orders and number of centres are selected from Table 6-1 in Section 6.3.2. In practice, 

the parameters of three control approaches are well tuned and recorded in Table 6-2.  

Control Strategy Parameters 

MPC-NARX       ,        

MPC-FS       ,         

MPC-PSC        ,        

Table 6-2 Control parameters. 

In the first control experiment a small step change in the middle level of concentration 

             as shown in Fig. 6-5 is used as the set-point. The set-point is a 

rectangular waveform where the product concentration level decreases from 0.1mol/l to 

0.09mol/l, and then increases from 0.09mol/l to 0.1mol/l again. The control 

performances of all compared control strategies are shown in Fig. 6-5 and the MAE are 

recorded in Table 6-3. The MPC-NARX has the largest overshoot among three control 

strategies, for both drop and rise of the set-points. Meanwhile, the MPC-PSC has the 

largest steady-state error in both drop and rise scenarios. Conversely, the MPC-FS 
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clearly has the least steady-state error. From the MAE presented in Table 6-3, the 

overall control performance of MPC-FS is the best among the group of three models.  

 

Fig. 6-5 Control performance in middle level of product concentration. 

The second experiment is executed with a large step change in the set-point, which 

involves the low and high levels of product concentration,         and         , 

respectively. The product concentration increases from 0.09mol/l to the highest level 

0.11mol/l, and then decreases to the lowest level 0.065mol/l. The process responses 

with the manipulated variables are displayed in Fig. 6-6. Besides, the MAE is given in 

Table 6-3.  
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Fig. 6-6 Control performance in low and high level of product concentration. 

In the both rise of step changes, the MPC-PSC has the largest overshoot. The MPC-

NARX and MPC-FS have similar overshoot when the set-point jumps, but the MPC-

NARX has severe oscillation. When the set-point drops, the MPC-PSC has the slowest 

response. Meanwhile, in the same scenario, there is a small acceptable overshoot for 

MPC-FS. In both rise and drop scenarios, the proposed MPC-FS has the smallest 

steady-state error, as illustrated in Fig. 6-6. Furthermore, from Table 6-3, the MAE 

clearly suggests that the proposed MPC-FS has the best overall control performance.  

As a whole, in the evaluation of control performances, it is verified that the proposed 

MPC-FS has a better performance than that of MPC-NARX and MPC-PSC. In the 
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control in the middle level of product concentration, it can be said that all the three 

control approaches have similar performance. For the control in low and high level of 

product concentration, the advantage of proposed MPC-FS over the other two 

approaches is more obvious. This is because the non-linearity of CSTR plant is much 

stronger on the high level of product concentration than the other regions of the 

operating space. In addition, as presented in Section 6.3.2, the MPC-FS has the best 

modelling performance among the three RBF models, which is the main reason for the 

better control performance.  

Control Strategy 

MAE 

Middle level Low & High level 

MPC-NARX 0.00037880 0.0016 

MPC-FS 0.00032564 0.0013 

MPC-PSC 0.00051959 0.0017 

Table 6-3 Control performances. 

6.5.2 Computing Load 

As mentioned previously, although a non-linear model appears to be a better internal 

model in MPC, one of disadvantages of NMPC is its large computational load in on-

line optimization of control variables. Therefore, after the evaluation of modelling and 

control performance, it is imperative to evaluate the computational requirement of all 

the control strategies in previous section. In this work, MATLAB R2009a on an Intel 

Core i3 laptop with Windows 7 system is used to carry out this simulation. For a fair 

comparison, the optimization problem in all control strategies is solved using the 

Matlab function, fmincon SQP, as mentioned in Section 5.11. The computation time in 

solving the on-line optimization problem is measured using tic-toc command in Matlab. 
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The on-line computing times of all control algorithms at each sample time for the 

control in middle level and low/high level of product concentration are shown in Fig. 6-

7 and 6-8, respectively. The total computation times are recorded in Table 6-4. It is 

observed that the computing times of all the three approaches are high when step 

changes occur. Then, the computing times gradually reduce as the outputs track the 

constant set-point as illustrated in both Fig. 6-7 and 6-8. This is because the control 

value used in this sample time is set as the initial value of the control for next sample 

time, so that the computing load is greatly reduced. For middle level control, the 

highest computation time of MPC-NARX, MPC-FS and MPC-PSC are approximately 

6s, 3.26s and 9.327s, respectively. For low/high control, the highest computation time 

of MPC-NARX, MPC-FS and MPC-PSC are approximately 5s, 3.33s and 33s, 

respectively. Considering the computing time using Matlab is more than 10 times high 

compared that using the industrial C code, the highest computing time 6 seconds in 

MPC-NARX using Matlab is equivalent to 0.6 seconds using the C code, which is 

acceptable for the sampling time of 6 second. While the MPC-PSC for large set-point 

change uses 33 seconds to solve the optimization problem, which is much larger than 

the MPC-FS.  

Furthermore, it is obvious the MPC-PSC has the largest total computation time as 

presented in Table 6-4. Although the MPC-PSC is a factorized approach, its unrealistic 

huge network structure to acquire a satisfying modelling performance has increased the 

size of factorized matrices in (6-23) and (6-24). Therefore, the computation load has 

inevitably become greater during the execution of optimized control variable.  

On the other hand, it is noticeable that the computation time of MPC-FS for low/high 

level is not as efficient as for middle level due to the high non-linearity characteristic in 

this region. Despite this, the proposed MPC-FS is proved to have advantages over 

MPC-NARX with lower computation times every time step changes occur as shown in 

Fig. 6-7 and 6-8.  Furthermore, Table 6-4 suggests that in overall, the MPC-FS is more 

efficient than the MPC-NARX. This is because unlike the MPC-NARX, the MPC-FS 

has the advantages using the factorized model in (6-23) where  ̂        
      ̂        

  

are only needed to be computed once at each sample time instant, which reduces the 

computational requirement. In this simulation, it is proved that the MPC-FS is a more 

efficient control strategy in term of control results and computational requirement.  
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Control Strategy 

Total Computation Times (s) 

Middle level Low & High level 

MPC-NARX 155.4303 221.0456 

MPC-FS 125.3157 213.2456 

MPC-PSC 394.3540 1565.8 

Table 6-4 Total computation times. 

 

Fig. 6-7 Computing times of all control approaches at the control in middle level. 
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Fig. 6-8 Computing times of all control approaches at the control in low and high level. 

6.6 Summary 

In summary, a new  -step RBF model is developed for non-linear dynamics processes 

and its factorized form is developed for the application in MPC. A  -step prediction 

model is firstly developed and implemented with a RBF network. The effectiveness of 

the  -step RBF model is verified in modelling a CSTR plant. The comparison results 

demonstrate that the  -step RBF model outperforms the PSC-RBF model in term of 

prediction accuracy and model compactness. In addition, the proposed network model 

matches the NARX-RBF model in model compactness and it presents a better 

modelling performance. With these two advantages, the developed network model is 

more effective to be used in MPC for output prediction. After that, the factorization of 

proposed network is derived and an explicit MPC’s objective function is obtained to 

reduce the computational load. The control performance and the computational load of 

the MPC based on the proposed model are evaluated by controlling the CSTR plant. 
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Comparing with existing control approaches, the results show that the proposed control 

approaches possesses a more efficient and better control performance. These 

advantages proved that the developed factorized  -step RBF model provided a better 

approach to be applied in MPC.  
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Chapter 7 

 -STEP RBF MODEL-BASED 

MPC FOR PEMFC STACK 

SYSTEM 

7.1 Introduction 

In recent years, green technology has been widely promoted due to the climate changes 

and depletion of fossil fuel. Fuel cell, which is widely regarded as a potential 

alternative stationary and mobile power source, is an electrochemical device that 

converts chemical energy into electricity with hydrogen and oxygen being its fuel 

supplies. The proton exchange membrane fuel cell (PEMFC) stack system, as one of 

the popular fuel cells in automobile applications, is controlled via the  -step RBF 

network in this chapter.  

PEMFC is a complex system, in which the relationship between the output stack 

voltage, net power and input variables is highly non-linear (Grötsch, 2010). Although 

the structure of a PEMFC stack system is simple, there are many internal factors, such 

as the effects of temperature (Rohendi et al., 2015) and the supply of hydrogen and air 

(Jo et al., 2010) and the amount of produced water (Hou et al., 2012), which need good 

control schemes in order to maintain the safe production and maximise the performance 

and lifetime of the system. In the past years, various control strategies have been 

implemented to provide control solutions in respect to the internal control problems of 
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the PEMFC stack systems, such as cathode outlet flow (Feroldi et al., 2007) and water 

management (Damour et al., 2015). It was reported that the traditional control 

techniques were found not suitable in one way or another to be used in the PEMFC 

control system, and therefore some advanced control methods were investigated in 

(Rezazadeh et al., 2010), (Sedighizadeh et al., 2011), (Panos et al., 2011) and 

(Benchouia et al., 2015) to control the output voltage of the PEMFC stack systems, and 

the results showed that the performances were improved. 

One of the major difficulties in controlling the PEMFC stack system is due to the sharp 

change in power demands as in the automobile application. This leads to the PEMFC 

stack system often operates under non-optimum conditions. In further, the sharp 

changes also cause oxygen excess ratio dramatically change. When the oxygen excess 

ratio is lower than a certain threshold, it will reduce the life time of the device and may 

damage the fuel cells, which is called oxygen starvation (Guo et al., 2013). The 

investigation in (Pukrushpan et al., 2002) and (Guo et al., 2013) reported that the 

control of air flow has an important role in maintaining the reliability and efficiency of 

the PEMFC stack systems against the problem of oxygen starvation. Several control 

strategies have been proposed for the oxygen starvation problem. Pukrushpan et al. 

(2002) demonstrated that a feed-forward plus feedback control can improve the oxygen 

response. However, the control method does not take constraints and parameter 

uncertainty into consideration and the improvement in oxygen response is weak. To 

overcome this problem, Vahidi et al. (2004) designed a model predictive control 

strategy and their results showed that the oxygen starvation could be avoided. However, 

this was achieved by using an auxiliary power source. Bordons et al. (2006) proposed a 

predictive controller. Their results showed that quick control response was achieved but 

the overall performance was not satisfactory. Recently, Abdullah and Idres (2014) 

employed the MPC strategy to prevent the oxygen starvation from happening. Guo et al. 

(2013) attempted to control the oxygen excess ratio by using a fuzzy logic control. 

Acceptable results were achieved in (Abdullah and Idres, 2014) and (Guo et al., 2013) 

but the computing load was not evaluated and was possibly large. Neural networks 

were also considered in modelling the non-linear dynamics of the PEMFC stack 

systems (Puranik et al., 2010, Grondin-Perez et al., 2014, da Costa Lopes et al., 2015) 

due to their strong ability in approximating non-linear maps for complex processes 

(Hao et al., 2011).  
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This chapter designs an MPC to control the oxygen excess ratio of the PEMFC stack 

system by regulating the air mass flow rate through tuning the air compressor motor 

voltage. The developed MPC employs a  -step RBF model that described in Chapter 6. 

The advantages of proposed  -step RBF model based MPC (MPC-FS) have been 

validated by simulation based on the non-linear model of the PEMFC stack system and 

comparison with the NARX-RBF model based MPC (MPC-NARX).  

This chapter is organised as follows. Section 7.2 describes the PEMFC stack system 

model and oxygen starvation phenomenon. Section 7.3 introduces the  -step RBF 

model and presents its prediction performance for the PEMFC stack system. Section 

7.4 describes the control performance and computing loads of the MPC-FS. 

7.2 Fuel Cell System Model 

The considered PEMFC stack system in this work, as shown in Fig. 7-1 (Pukrushpan et 

al., 2004), can be mainly categorized into four main components, namely air flow 

system, hydrogen flow supply, cooling system and humidification system. The 

dynamics of reactant flow, heat and temperature, water management, power 

management and fuel processor are taken into consideration.  

The dynamic reactant flow can be separated into two models – the hydrogen flow in 

anode flow model and the air flow in cathode flow model. The hydrogen, stored in a 

high pressured tank, is supplied to the anode side of the fuel cell using a valve. In order 

to provide a sufficient supply of hydrogen, a proportional controller is employed for the 

anode pressure to match the cathode pressure. This is achievable due to the high 

pressure flow rate of hydrogen. The membrane is assumed to be fully humidified by 

setting      . As a result, it enables the focus on the control of air supply.  
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Fig. 7-1 Schematic of the PEMFC stack system (Pukrushpan et al., 2004). 

In the cathode side, the air is supplied into the fuel cell stack using a compressor motor.  

The compressor model is separated into two parts. The first part represents a static 

compressor map which determines air flow rate through the compressor. The required 

compressor power is calculated using thermodynamic equations. The second part 

characterizes the compressor speed. The inlet air pressure       , temperature       , 

input voltage     and downstream pressure are the inputs to the compressor model. 

The downstream pressure is determined by the supply manifold model. The dynamics 

of compressor speed is governed by compressor motor torque and the torque is required 

to drive the compressor. The compressor air flow rate is determined by manipulating 

the input voltage which is the input to the fuel cell system. Before entering into the fuel 

cell stack, the air flow is cooled and humidified to prevent damage to the fuel cell 

membrane. The dynamics of compressor, air cooler and humidified model can be found 

in (Pukrushpan et al., 2004).  

7.2.1 Oxygen Starvation Phenomenon 

Before examining the oxygen excess ratio (OER), it is important to observe the 

relationship between stack power    , net power      and compressor motor power    . 

In a standalone PEMFC stack system, the power required by the compressor motor is 
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drawn from the system. Due to the high power consumed by compressor motor 

compared to that of other auxiliary components, the power consumptions of other 

components are neglected. Thus, the net power      can be described as 

              (7-1) 

This relationship plays an important role in obtaining the trade-off for an optimum 

OER value. The OER, which is used to measure the excess amount of oxygen that 

being supplied to the fuel cell system in the cathode side, can be expressed as  

    
 

      

         
 (7-2) 

where        and          are the supplied and reacted oxygen, respectively.  

It can be seen in (7-2) that    
  , the amount of reacted oxygen is always less than 

supplied. A too high OER, such as greater than 2, means a high oxygen supply, which 

requests a high air flow rate and results in a high compressor energy consumption. On 

the other hand, a low QER, such as between 1 and 2 or lower than 1 instantly, will 

result in deficiency of oxygen supply, and causes oxygen starvation. As pointed out in 

(Pukrushpan et al., 2004), the oxygen starvation may cause a rapid decrease in cell 

voltage which affects the stack current. Moreover, it may also damage the fuel cell 

membrane due to a hot spot on the surface of membrane. Therefore, an optimum value 

of    
 was studied in (Pukrushpan et al., 2004) and it was simplified to be a constant 

value of 2 in order to maximise the efficiency of the     . Using this criterion, the 

control problem can be formulated as the compressor motor voltage     is manipulated 

to achieve the optimum value of    
, subject to an input disturbance which is the stack 

current    , as depicted in Fig. 7-2.  

 

Fig. 7-2 Input/output of oxygen feeding dynamics. 
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7.3  -Step RBF Model for the OER 

In this section, a newly developed  -step RBF network model described in Chapter 6 is 

selected as the prediction model for the PEMFC stack system. Normally, when a RBF 

network is used to model a dynamic system, the modelling is achieved by using the 

network to approximate the non-linear mapping in the NARX model presented in 

equation (6-1), where the NARX model is used to present the non-linear dynamics of 

the process to be modelled.  

For the  -step RBF model, the RBF network structure is not changed as presented in 

Section 3.1. The  -step RBF model uses a RBF network to implement an  -step 

predictive model equation given in (6-10). The  -step prediction model is used to 

present the non-linear dynamics of the system to be modelled. From the  -step 

prediction equation in (6-10), it can be seen that the  -step ahead outputs are predicted 

from the currently available process output data with the expectation of higher 

prediction accuracy as demonstrated in Section 6.3.2. 

7.3.1 Data Collection 

Due to strong non-linearity in different operating regions of the PEMFC stack system, 

the collected data set has been selected carefully to reflect the interested regions which 

will be used for control purpose in the following section. The compressor motor 

voltage     is the input while the output is the OER. A set of excitation input signal, 

with a RAS of large amplitude superimposed with a series of small amplitude RAS at 

all different levels within a designated operating space in a range between 100 and 235 

volts, is designed for the compressor motor voltage    . The collected data set is 

subject to a disturbance which is the stack current of a range of 120 to 280 A. The 

sampling time is set to 0.2 sec and a set of 6600 data samples of the OER is collected 

for network training and validation purpose. All input/output data are scaled to [0, 1] 

using a linear scaling and are shown in Fig. 7-3. The scaled prediction results are then 

scaled back for control purpose in the next section. 
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Fig. 7-3 Scaled input and output data. 

7.3.2 Fuel Cell Stack System Modelling 

In this sub-section, the  -step RBF model is employed to model the OER of the 

PEMFC stack system. The modelling performance and model compactness of the  -

step RBF model are evaluated and compared with that of a NARX-RBF model. As 

mentioned in the previous section, three variables are chosen to be network inputs 

which are compressor motor voltage    , stack current     and OER    
. To achieve a 

good performance, the orders of model for both network inputs are determined 

empirically and carefully tuned. Considering a trade-off between the network 

compactness and modelling residual, the number of the hidden neurons is decided 

experimentally. The collected input-output data set in previous section is divided into 
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two sets - first 5000 data samples and remainders are used as the training data and 

validation data sets, respectively.  

Both RBF networks are trained with the recursive least squares algorithm in Section 

3.2.3. The position of centres and the radius of the Gaussian functions are computed 

using the K-means clustering algorithm and P-nearest neighbour algorithm, 

respectively, as described in Section 3.2.1 and 3.2.2. The prediction error is measured 

using the MAE. The criteria and modelling performances for both networks are 

recorded in Table 7-1.  

Models NARX-RBF 
 -step RBF 

(    ) 

   1 1 

    2 1 

   3 1 

   42 31 

Training data MAE 0.0137 0.0124 

Validation data MAE 0.0149 0.0131 

Table 7-1 Performance comparison of the two RBF models. 

The  -step RBF model is assessed in term of modelling performance and model 

compactness. A good prediction performance is crucial as the control performance of 

the MPC is highly dependent on the accuracy of the future outputs prediction by the 
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model. The model compactness, which contributes to the computing load of the on-line 

optimization in MPC, is an equally important assessment. 

The results in Table 7-1 clearly indicate the advantages of  -step RBF in both 

modelling performance and model compactness. Firstly, the  -step RBF has a smaller 

modelling error. This is because, unlike the NARX-RBF, the prediction model in (6-10) 

allows  -step RBF network to make a series of predictions in a specified prediction 

horizon range at each sample period using available output variables, which 

successfully avoids the accumulated prediction errors. This feature also enables the 

factorization of  -step RBF in the application of the MPC as developed in Section 6.4. 

On top of that, the  -step RBF also has a more compact network structure as suggested 

in Table 7-1. These notable advantages of  -step RBF network model are very useful 

for the MPC, which will be shown in the next section. 

7.4 MPC of the OER with  -step RBF Model Factorization 

In this section, the MPC strategy is applied to the control of the OER in the PEMFC 

stack system, in which the developed  -step RBF model is used as the internal 

prediction model. Furthermore, the factorization algorithm in Section 6.4 is employed 

for the MPC, so that the time used for on-line optimization in the MPC is also 

significantly reduced. The factorized model is adapted with the input/output data using 

the RLS algorithm under the framework of the MPC, so that the robustness of the 

developed MPC against model uncertainty and external disturbance is also enhanced. 

The strategy of the  -step RBF model-based MPC for the PEMFC stack system is 

displayed in Fig. 7-4. The  -step RBF network model has three input variables which 

are the compressor motor voltage    , stack current     and OER     . The trained  -

step RBF network model obtained in Section 7.3.2 is employed to make a succession of 

future predictions  ̂  ( )    ̂  (      ) within a defined prediction horizon   . 

The control approach is as follows. Based on the information of predicted outputs 

 ̂  ( )    ̂  (      ) and the predefined set point  , the cost function in (6-13) 

is minimized using a non-linear optimiser to obtain a series of optimal control variables 
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   ( )     (    ) at each sample period. Then, the first control variable    ( ) 

is applied to fuel cell simulation model to generate an output    ( ). At next sample 

period, the whole procedure is repeated with the newly computed    ( ) and    ( ). 

 

Fig. 7-4 Control scheme of PEMFC stack system. 

Different with the NARX-RBF model-based MPC, the future predictions 

 ̂  ( )    ̂  (      ) in the  -step RBF model-based MPC are being predicted 

using known system measurements    (    )      (   ) , which is clearly 

shown in the derivation of  -step prediction model in Section 6.2. This feature has not 

only enabled the factorization of network model as shown in Section 6.4 but also 

simplifies the objective function for the MPC. 

7.4.1 Simulation 

The proposed  -step RBF model-based MPC (MPC-FS) is applied to an industrial 

benchmark Simulink model of a PEMFC stack system developed at Michigan 

University (Pukrushpan et al., 2004) to evaluate its effectiveness and lower computing 
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load. Due to the strong non-linear characteristics of the OER in the PEMFC stack 

system at different levels of stack current, various step changes are selected in the stack 

current over the operating space between 100 and 300 amps. The sampling time is 

chosen as 0.2s. The optimum value for OER, as mentioned in Section 7.2.1, is selected 

as a constant set-point    . The upper and lower bound constraint for the control 

variables, compressor motor voltage    are set to 100 and 235 volts, respectively and 

there is no constraint imposed on the output variable, OER.  

As mentioned in previous section, the same MPC strategy but based on the NARX-

RBF model is also applied to the same Simulink model of the system, and both the 

control performance and the computing load are compared with the developed model 

with factorization. It is understood that the control performance of MPC pivots on the 

prediction accuracy of its internal prediction model. Hence, the model orders and 

number of centres for both networks are determined based on the modelling 

performance in Section 7.3.2. In practice, the parameters for both control approaches 

are chosen as     ,     ,        and       .  

7.4.2 Control Performance 

The two models trained in Section 7.3.2 are used in the MPC strategy to control the 

OER,     by manipulating the compressor motor voltage     , subject to different step 

changes in the stack current. The control performance of the proposed MPC-FS is 

shown in Fig. 7-5. At every rises of step change, it can be observed in the response 

curve that a drop or rise in OER follows every step change in load current, it then 

quickly recovers by the tuning of the compressor motor voltage. For example, when the 

stack current drops at the 115
th

 sample, the OER has an overshoot and then it drops 

before recovering to steady-states. Overall, it can be concluded that the MPC-FS 

achieves a satisfactory control performance with no steady state offset and fast 

recovery from the changes caused by the disturbances, so that the oxygen starvation 

can be successfully avoided.  

The NARX-RBF model-based MPC exhibits a similar control performance to that 

shown in Fig. 7-5 and therefore, it is not displayed here. But the control performances 
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of the two methods are compared by the MAEs, which are listed in Table 7-2. It seems 

that both control approaches have achieved competitive performances with the MPC-

FS slightly outperforms the MPC-NARX, as suggested in Table 7-2. The reported 

results from both control approaches have clearly demonstrated that neural network 

based MPC is a potential control strategy for the PEMFC stack system. As mentioned 

in previous section, this achievement is imperative before assessing the computing 

loads in MPC which is presented in next section. 

 

Fig. 7-5 Control performance of MPC-FS. 
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Control Strategy MAEs 

MPC-NARX 0.0079 

MPC-FS 0.0065 

Table 7-2 Control performances. 

7.4.3 Computing Load 

Due to the factorization in the output prediction of the  -step RBF model, the 

computation load in the on-line optimization in this model-based MPC is significantly 

reduced. This feature is validated in the MPC simulation of the PEMFC stack system. 

Therefore, after achieving a good control performance, the computing loads of the 

MPC is evaluated and compared to that of NARX-RBF model-based MPC. In this 

work, the simulation is performed with MATLAB R2009a on an Intel Core i3 laptop 

with Windows 7 operating system. The computing load is measured by recording the 

computation time at each sample period using the tic-toc command in Matlab. For a fair 

comparison, the optimization problem in all control strategies is solved using the 

Matlab function fmincon SQP as described in Section 5.11. 

The recorded on-line computing times of both control approaches at each sample 

period are shown in Fig. 7-6. As can be observed, the computing times for both control 

approaches rise when the stack current has a step change. As the output tracks the 

constant set-point, the computing times reduces gradually. This is mainly because the 

computed control variable at the current sample instant is set as the initial value for the 

optimization problem at the next sample period. 

From Fig. 7-6, it is obvious that the proposed  -step RBF model-based MPC requires 

less computing time compared with that of NARX-RBF model-based. Computing time 

is reduced more when the output exhibits transient responses. The highest computation 
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times of the two model-based methods are 0.8184s and 0.4113s, respectively. 

Considering the computing time using Matlab is more than 10 times higher compared 

that using the industrial C code, the recorded computing time is acceptable for the 

sampling time of 0.2s. Furthermore, the total computation time recorded in Table 7-3 

suggests that the MPC-FS with factorization is more efficient in terms of time than the 

MPC-NARX. This is because in contrast to the MPC-NARX, the factorized 

 ̂        
      ̂        

  of MPC-FS in (6-23) are only needed to be computed once at 

each sample period, which reduces the computational requirement. In this experiment, 

the advantage of MPC-FS is presented and the method is proved to be a more efficient 

control strategy.  

 

Fig. 7-6 Computing loads of the two model-based MPC. 

  

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sample

C
a

lc
u

la
ti
o

n
 T

im
e

 (
s
)

 

 

MPC-NARX

MPC-FS



Chapter 7 Application in PEMFC Stack System 

Page 126 

Control Strategy Total Computation Times (s) 

MPC-NARX 49.3928 

MPC-FS 31.1177 

Table 7-3 Total computation times 

7.5 Summary 

In this Chapter, a newly proposed  -step RBF model is employed to model the PEMFC 

stack system and subsequently, it is used in the MPC to control the OER in the PEMFC 

stack system. Few key points have been concluded from this chapter:  

Firstly, the developed  -step RBF model can make multi-step ahead prediction more 

accurately than the widely used NARX-RBF model, due to that the developed model 

uses available system output for prediction rather than the unknown future system 

output as in the NARX-RBF model. 

Secondly, with the factorization algorithm, when the model used in the MPC, the multi-

step ahead prediction can be computed more effectively by saving some repeated 

calculations, so that the time used for on-line optimization in the MPC is significantly 

reduced. 

Thirdly, the developed model and the model-based MPC scheme are applied to control 

the oxygen excess ratio for a widely used industrial benchmark system: a simulated 

PEMFC stack system, the simulation results proves the effectiveness of the method in 

both long-term prediction and the execution time in the MPC scheme. The two supreme 

features of the developed method are also validated by comparing with a traditional 

NARX-RBF model and the based MPC. 
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Chapter 8 

CONCLUSIONS AND FUTURE 

WORK 

8.1 Conclusions 

Issues on adaptive modelling techniques using RBF networks and the MPC based on 

RBF network models are investigated in this thesis. The contributions of the research 

are composed of a developed adaptation algorithm for RBF network, a proposed 

factorized  -step RBF model-based MPC and the application of the developed method 

to a PEMFC stack system. 

For adaptive RBF networks, the problem of existing methods is the degradation in 

prediction performance after the operating point migration. This problem is solved by 

the developed adaptive modelling scheme for RBF networks based on ROLS training 

algorithm. 

The proposed adaptive structure RBF network is equipped with on-line parameters 

optimization to achieve a fully adaptive model. The use of ROLS algorithm, which 

enables the training of structure and parameter simultaneously, simplifies the training 

procedure. In the adaptation procedure, an initial centre bank is firstly developed and 

three actions are proposed as follows. A new centre adding strategy has been developed 

to add new resourceful centres into the centre bank according to the information of new 

data. A centre pruning method is employed to eliminate insignificant centres to prevent 

an oversized centre bank. Lastly, a grouping algorithm is developed to select significant 
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centres to form the final network model. These three integrated actions ensure that a 

parsimonious RBF network model is achieved. Using a non-linear simulation example 

with shifting operating regions, the comparison results demonstrate the effectiveness of 

the developed network.  

The second aim is to develop a more efficient RBF model-based predictive control for 

complex processes, which often serves as an effectual control approach for non-linear 

complex processes. The NMPC requires a high computational ability as outlined in the 

literature review. A traditional independent NARX model restricts the factorization of a 

RBF network in the application of MPC, resulting in a non-explicit objective function. 

A  -step prediction model is developed and implemented with a RBF network in this 

research. A RBF model with the  -step prediction is developed and proved to have the 

advantages in term of prediction accuracy and model compactness compared to that of 

the existing methods in modelling a CSTR plant. These advantages indicate that the 

developed network is a better internal model for MPC. More importantly, the  -step 

prediction model allows the RBF network to make future predictions without requiring 

the unknown process outputs. With this feature, the factorization of the model is 

derived to obtain an explicit MPC’s objective function. The objective function consists 

of two parts, namely, the known past plant input/output and the unknown future plant 

input/output. Using the CSTR as an experimental plant, the evaluation results suggest 

that the developed  -step RBF model-based MPC needs much less time for execution 

of the on-line optimization and achieves a better control performance. 

Another contribution is the application of MPC using the proposed  -step RBF model 

to an industrial benchmark Simulink model of a PEMFC stack system. The modelling 

results indicate that the proposed network has achieved a better overall performance 

with a smaller prediction error and a more compact structure compared to that of a 

NARX-RBF model. In comparison, a decrement in computing loads of the proposed 

control approach is observed while achieving competitive control performance. These 

achievements have verified the effectiveness of the developed network model.  

An additional important point is that the control performances of the  -step RBF 

model-based MPC for both the CSTR plant (Chapter 6) and the PEMFC stack system 
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(Chapter 7) achieve satisfactory results. This further confirms the potential of this 

proposed approach. The evaluation using the CSTR plant shows that the proposed 

approach is able to cope with the changes in set-points and outperforms the other 

methods. The ability in disturbance rejection with fast response is demonstrated in 

controlling the PEMFC stack system. Besides, the difference between the computing 

times in both cases is observed. It is understood that the demands of changes in set-

points require a higher computational load as longer prediction and control horizons are 

usually required as illustrated in controlling the CSTR plant. 

On top of that, optimization techniques are investigated and a foundation of knowledge 

is constructed from the perspective of the author as one of the outlined motivations. 

The materials included in this thesis are specifically selected and arranged in a 

sequence that covers necessary basic knowledge and also offers the flexibility to 

incorporate advanced techniques related to MPC. This sequence helps ensure an 

effective flow of knowledge for readers. Additionally, key relationships between 

related techniques with the respect to LP, QP and NLP are emphasised to visualize a 

big picture in this discipline. This provides a clear direction that forms the background 

of the related optimization algorithms. 

In conclusion, the following key points are drawn:  

1.  The proposed RBF network adaption algorithm presents a procedure that 

provides a smooth transition in the locations of centres according to the 

operating regions of a process as presented in Chapter 4. In addition, adaptive 

network parameter estimation is also developed, providing a fully adaptive 

modelling scheme for non-linear time-varying processes. 

2. In the developed adaption algorithm, the centre adding strategy described in 

Chapter 4 is capable of producing new effective centres that cover the operating 

regions of a process, which is justified by its good recovery speed. This gives an 

alternative option in modelling processes with a wide operating region or 

processes with limited training data samples.  
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3. The  -step prediction model developed in Chapter 6 provides a great alternative 

to the conventional NARX-RBF model for long range prediction. The 

modelling of a CSTR plant and a PEMFC stack system outlines the process of 

verifying the developed model.  

4. The developed  -step RBF network is proved to be a more potent choice for 

MPC due to its attractive feature of being compact and factorable, which helps 

reduce the computing load in the MPC. This is validated in the applications in 

Chapter 6 and 7 as the modelling and control outcomes in both chapters confirm 

that the  -step RBF model is suitable for complex processes.  

8.2 Future Work 

Industrial applications often consist of physical conditions and parameters that cannot 

be accounted by processes models. For this reason, further investigations can be carried 

out on the modelling and control abilities of both adaptive and factorized RBF network 

models. Furthermore, industrial process models from diverse areas are encouraged to 

extend the applications of both developed RBF network models. Recommended future 

work is summarized as follows.  

1. It is necessary to have a suitable industry benchmark process model with 

migration operating regions. The effectiveness of the developed adaptive 

structure RBF network has been verified using a non-linear numerical example. 

However, the application to an industrial process model is worth doing as it 

would further verify the developed adaptation algorithm. Furthermore, it could 

be applied to MPC to examine its effectiveness.  

2. The developed factorized  -step RBF model gives an explicit objective function 

for MPC which manages to reduce the computing loads. A further assessment 

on the objective function could be carried out to improve the understanding of 

the formulated optimization problem, which would help in the development of 

optimization algorithms. Besides, a continuous effort on exploring other 

optimization algorithms is required to expand the knowledge in this discipline. 
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3. Experimental works on the  -step RBF model-based MPC in the thesis are 

carried out using Matlab. It could be extended to a real-time simulation 

application using C language to fully test the proposed approach. The outcome 

would also be useful in evaluating the efficient of optimization algorithms for 

MPC. A real process, which can be used as an experimental test bed, with a 

good control purpose is needed to conduct this suggested experiment.   

4. The developed structure adaptation algorithm can be integrated into the  -step 

RBF model. Based on this proposal, an implementation with MPC would be 

useful to control non-linear time-varying processes. In order to fully 

demonstrate the potential of this proposed approach, an industrial process 

simulation model with obvious migration of operating regions is encouraged.  

5. The simulation model of the PEMFC stack system could be extended to a 

multivariable model. An additional input, the flow rate of hydrogen, would help 

to improve the OER when the demand of stack current increases. For instance, 

the increment in hydrogen flow rate would raise the generated power which 

could be used to compensate the demand of stack current. This proposed 

approach is possible as the hydrogen is assumed to store in a high pressured 

tank that allows rapid increment in its flow rate. However, the subsystem of 

hydrogen flow in the simulation model has a complex relationship with the 

oxygen supply as both of them are regulated by monitoring the manifold 

pressure. A further study on this relationship is required to extend the 

simulation model.   

6. The consequence of depleted OER in the PEMFC stack system is it could burn 

the membrane. Aside from this, it is also imperative to control the amount of 

water to keep the membrane hydrated while preventing the flooding phenomena.  

Since the proposed control approach can be used in the PEMFC stack system, it 

should be tested to solve the water management problem. In order to implement 

this, a further investigation on this problem is needed to extend the simulation 

model. The proposed control scheme should not be limited to this only as the 

PEMFC stack system is a complex process that consists of many practical 

control problems within its subsystems.  
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APPENDIX A – CSTR Parameters 

product concentration    0.1 mol/l 

reactor temperature   438.54 K 

coolant flow rate    103.41 l/min 

process flow rate   100 l/min 

feed concentration     1 mol/l 

inlet coolant temperature     350 K 

CSTR volume   100 l 

heat transfer coefficient    7 x 10
5
 cal/min/K 

reaction rate constant    7.2 x 10
10

 min
-1

 

activation energy term     1 x 10
4
 K 

heat of reaction    -2 x 10
5
 cal/mol 

liquid densities  ,    1 x 10
3
 g/l 

specific heats   ,     1 cal/g/k 
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