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Abstract

Problem setting

Support vector machines (SVMs) are very popular tools for classification, regression and

other problems. Due to the large choice of kernels they can be applied with, a large variety

of data can be analysed using these tools. Machine learning thanks its popularity to the

good performance of the resulting models. However, interpreting the models is far from

obvious, especially when non-linear kernels are used. Hence, the methods are used as

black boxes. As a consequence, the use of SVMs is less supported in areas where

interpretability is important and where people are held responsible for the decisions made

by models.

Objective

In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be

explained such that interpretations for model-based decisions can be provided. We further

indicate when SVMs can be explained and in which situations interpretation of SVMs is

(hitherto) not possible. Here, explainability is defined as the ability to produce the final deci-

sion based on a sum of contributions which depend on one single or at most two input

variables.

Results

Our experiments on simulated and real-life data show that explainability of an SVM

depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel

and regularization constant). When several combinations of parameter values yield the

same cross-validation performance, combinations with a lower polynomial degree or a

larger kernel width have a higher chance of being explainable.
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Conclusions

This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in

a single plot. Linear and polynomial kernels up to the second degree are represented

exactly. For other kernels an indication of the reliability of the approximation is presented.

The complete methodology is available as an R package and two apps and a movie are

provided to illustrate the possibilities offered by the method.

Introduction

Support vector machines (SVMs) have proven to be good classifiers in all kinds of domains,
including text classification [1], handwritten digit recognition [2], face recognition [3], bioin-
formatics [4], among many others. Thanks to the large variety of possible kernels, the applica-
tion areas of SVMs are widespread. However, although these methods generalize well to
unseen data, decisionsmade based on non-linear SVM predictions are difficult to explain and
as such are treated as black boxes. For clinical applications, information on how the risk of dis-
ease is estimated from the inputs is crucial information to decide upon the optimal treatment
strategy and to inform patients. Being able to discuss this information with patients might
enable patients to change their behaviour, life style or therapy compliance. Interpretation is
especially important for validation of the model inferences by subject area experts. The fact
that machine learning techniques are not able to find their way into clinical practice might very
well be related to the lack of acquiring this information.

Offering interpretation to SVMs is a topic of research with different perspectives [5]. Identi-
fication of prototypes [6] (interpretability in dual space) offers an interpretation closely related
to how doctors work: based on experience from previous patients (the prototypes) a decision is
made for the current patient. A second view on interpretability (interpretability in the input
space) intends to offer insights in how each input variable influences the decision. Some
researchers worked on a combination of both [7] and identified prototypes dividing the input
space into Voronoi sections, within which a linear decision boundary is created, offering inter-
pretation w.r.t. the effect of the inputs in a local way. Other approaches try to visualize the deci-
sion boundary in a two-dimensional plane [8], using techniques related to self-organizing
maps [9]. The current work attempts to offer a global interpretation in the input space.

The literature describes several methods to extract rules from the SVMmodel (see [10, 11]
and references therein) in order to provide some interpretation of the decisions obtained from
SVM classifiers. However these rules do not always yield user-friendly results, and when inputs
are present in several rules, identifying how the decision will change depending on the value of
an input is not straightforward.

Several authors have therefore tried to open the black box by attempts to visualize the effect
of individual inputs to the output of the SVM. In [12], Principal Component Analysis is used
on the kernel matrix. Biplots are used to visualize along which principal components the class
separability is the largest. To visualize which original inputs contribute the most to the classi-
fier, pseudosamples with only one input differing from zero are used to mark trajectories
within the plane spanned by the two principal components identified before. Those inputs
with the largest trajectories along the direction of largest class separability are the most impor-
tant inputs. Although this approach enables to visualize which inputs are most relevant, it is
not possible to indicate how the output of the classifier (i.e. the latent variable or the estimated
probability) would change in case the value of one input would change.
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A secondmethod to visualize and interpret SVMs was proposed by [13] for support vector
regression. They propose to multiply the input matrix containing the inputs of all support vec-
tors with the Lagrangemultipliers to get the impact of each input. This approach is again able
to identify the most important inputs, but is not able to indicate how the output of the SVM
changes with changing inputs.

Other work consists in visualizing the discrimination of data cohorts by means of projec-
tions guided by paths through the data (tours) [14–16]. Although these methods offer addi-
tional insights, they do not quantify the impact of each feature on the prediction, which is the
goal of the current work.

Standard statistical methods such as linear and logistic regression offer the advantage that
they are interpretable in the sense that it is clear how a change in the value of one input vari-
able will affect the predicted outcome. To further clarify the impact of the input variables,
visualization techniques such as nomograms [17] can be used (see Fig 1). In short, a nomo-
gram represents a linear model ŷ ¼

Pd
p¼1

wðpÞxðpÞ þ b, with x(p) the pth input and w(p) the cor-
responding weight, by means of lines, the length of which is related to the range of w(p) x(p)

observed in the training data. For each input value the contribution to the predicted outcome
can instantly be read of from the plot. See Section Logistic regression models for more infor-
mation. Straightforward extension of this technique to SVMs is not possible due to the fact
that the SVMs are mainly used in combination with flexible kernels that can not be decom-
posed into additive terms, each accounting for one single input variable. A possible extension

Fig 1. Visualization of the logistic regression model for the Pima dataset by means of a nomogram.

The contribution of each input variable x (p) (f (p) = w (p) x (p)) to the linear predictor is shifted and rescaled such

that each contribution has a minimal value of zero and the maximal value of all contributions is 100. Each

input variable is represented by means of a scale and the value of the contribution can be found by drawing a

vertical line from the input variable value to the points scale on top of the plot. Adding the contributions of all

input variables results in the total points. These can be transformed into a risk estimate by drawing a vertical

line from the total points scale to the risk scale. The importance of the inputs is represented by means of the

length of the scales: variables with longer scales have a larger impact on the risk prediction.

doi:10.1371/journal.pone.0164568.g001
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of nomograms towards support vector machines [18] therefore focusses on the use of decom-
poseble kernels [19]. The most restricting way of applying this approach is to define a kernel
as the addition of subkernels that only depend on one single input. The use of a localized
radial basis function kernel in [20] is only one example. The original work of [18] to represent
SVMs by means of nomograms is less restrictive in the sense that kernels including interac-
tions between two inputs are allowed. The idea behind these approaches is that by using a
decomposible kernel, the latent variable of the SVM can be expressed as a sum of terms,
depending on one input. As such, the SVM becomes a generalized additive model and can be
visualized by means of a nomogram. In [18] non-linearities are visualized by drawing two-
dimensional curves instead of straight lines in the nomogram, such that non-linearities can
more easily be represented than when using a line. They also allow for interactions between
two inputs, but, as with standard nomograms, they can only be represented after categoriza-
tion of one of the two involved inputs.

In contrast with the approaches found in the literature, this work does not intend to adapt
the kernel nor the SVMmodel formulation. This work takes the first steps in answering the
question whether existing SVMs in combination with generally used kernels can be explained
and visualized, in which circumstances this is possible and to which extent. Instead of adapting
the kernel, the nomogram representation is altered to easily allow for non-linear and two-way
interaction effects. This is achieved by replacing the lines by color bars with colors offering the
same interpretation as the length of the lines in nomograms. It is indicated for which kernels
and kernel parameters the representation by means of this color based nomogram is exact. In
cases where the visualization is only approximate, additional graphs indicate why the approxi-
mation is not sufficient and how this might be solved. The current approach is related to the
work in [21, 22], where a Taylor expansion of the RBF kernel is used to extract interpretable
and visualizable components from an SVMwith RBF kernel. In this work, the expansion is
indicated for linear, polynomial and RBF kernels. Additionally, the expansion is used to visual-
ize the working of an existing SVM, whereas in the previous work a newmodel was created
after feature selection by means of iterative l1 regularization of a parametric model with the dif-
ferent components as inputs.

The remainder of this work is structured as follows. First, a short introduction to SVM clas-
sification is given. It is shown how a nomogram is built for logistic regression models and how
an alternative color based nomogram for logistic regression was used in [23]. Next, it is
explained how to reformulate the SVM classifier in the same framework. Experiments on artifi-
cial data illustrates the approach and indicates possible problems and solutions. Finally, real
life datasets are used to illustrate the applicability on real examples. The work concludes with
information on the available software and a discussion on the strengths and weaknesses of the
study.

Methods

This section clarifies how an SVM can be explained by means of a color based nomogram. For
generality, we start with a brief summary of an SVM classifier, followed by an introduction on
the use of a nomogram to visualize logistic regression models.

In the remainder of this work, xðpÞi
m
will indicate the mth power of the pth input variable of

the ith observation xi.
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SVM classifier

Suppose a dataset D ¼ fxi; yig
N
i¼1

is a set of N observations with input variables xi 2 R
d and

class labels yi 2 {−1, 1}. The SVM classifier as defined by Vapnik [24] is formulated as

min
w;b;�

1

2
wTwþ C

XN

i¼1

�i subject to
yi wT φðxiÞ þ bð Þ � 1 � �i; 8 i ¼ 1; . . . ;N

�i � 0; 8 i ¼ 1; . . . ;N :

8
<

:
ð1Þ

To facilitate the classification, a feature map φ(�) is used to transform the inputs into a
higher dimensional feature space. The coefficients in this higher dimensional feature space are
denoted by w 2 Rnφ . The trade-off between a smooth decision boundary and correct classifica-
tion of the training data is made by means of the strictly positive regularization constant C.

The dual formulation of the problem stated in Eq (1) is found by defining the Lagrangian
and characterizing the saddle point and results in:

min
a

1

2

XN

i;j¼1

yiyjφðxiÞ
T φðxjÞaiaj �

XN

i¼1

ai subject to

XN

i¼1

aiyi ¼ 0

0 � ai � C; 8 i ¼ 1; . . . ;N :

8
>>><

>>>:

ð2Þ

The power of SVMs lies in the fact that the feature map does not need to be defined explic-
itly. An appropriate choice of a kernel functionK(x, z) for any two points x and z that can be
expressed as

Kðx; zÞ ¼ φðxÞTφðzÞ ;

makes it possible to use an implicit feature map.
A class label for a new point x can then be predicted as

ŷ ¼ sign
XN

i¼1

aiyiKðxi; xÞ þ b

 !

:

Here ‘ ¼
PN

i¼1
aiyiKðxi; xÞ þ b is called the latent variable. In order to obtain probabilities,

the sign(�) function can be replaced by a function h(�). In this work the latent variable will be
converted into a risk estimate by using it as a single input in a logistic regression model with
two parameters. This approach is known as Platt’s rule [25, 26].

Visualization of risk prediction models

Logistic regressionmodels. In statistics, regression models can be visualized using nomo-
grams [17]. More recently color plots have been proposed [23] to represent contributions to
the linear predictor (here

Pd
p¼1

wðpÞxðpÞ þ b) depending on only one or by extension maximally
two input variables. The nomogram for logistic regression (LR) builds on the fact that the
model in its most basic form can be written as

p̂ ¼ h
Xd

p¼1

wðpÞxðpÞ þ b

 !

; ð3Þ

where h(�) is a link function (here the sigmoid function) transforming the linear predictor to a
chance, w(p) is the coefficient corresponding to the pth input variable x(p) and b is a constant.
The contribution of each input variable x(p) to the linear predictor can thus be visualized by
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plotting f (p)(x(p)) = w(p) x(p). In fact, for nomograms these terms are rescaled to start from 0 to a
maximum of 100 points. Doing so makes clear that the range of the contributions is important.
A wide range of the contributions for one input variable indicates that changing the value of
this input, can have a large impact on the linear predictor and as such on the risk estimate.
Fig 1 clarifies this approach for a logistic regression model trained on the Pima Indian diabetes
dataset from the UCI repository [27]. The training data as provided in the R package MASS
[28, 29] was used to train the logistic regression model. The nomogramwas generated using
the rms package [28, 30]. To obtain the risk estimate for an observation, the points corre-
sponding to each input variable are obtained by drawing a vertical line from this value up to
the points scale on top of the plot. These points are added to obtain the total points, which are
converted to a risk by means of the bottom two scales.

A similar approach using the methods proposed in [23] is illustrated in Fig 2. Instead of
scales, color bars are used, the color of which indicates the contribution of the input variable
value. In this case, the contributions are shifted to make sure that the minimal contribution of
each input is zero. The contributions are not rescaled. The importance of the inputs is clear
from the color. The intenser the red color becomes within the color bar, the more impact this
input has (similar to the length of the scales in the nomogram). To obtain a risk estimate for an
observation, the procedure is as follows. For each input, find the color corresponding to the
input’s value. This color is converted to a point by means of the color legend at the right.

Fig 2. Visualization of the logistic regression model for the Pima dataset by means of a color plot or

color based nomogram. The contribution of each input variable x (p) (f (p) = w (p) x (p)) to the linear predictor is

shifted such that each contribution has a minimal value of zero. To obtain a risk estimate for an observation,

the color corresponding to the input’s value needs to be indicated. This color is converted to a point by means

of the color legend at the right. Repeating this for each input and summing the resulting points, yields the

score. This score is then converted into the risk estimate by means of the bottom most color bar. The

importance of the inputs is represented by means of the redness of the color: variables with a higher intensity

in red have a larger impact on the risk prediction.

doi:10.1371/journal.pone.0164568.g002
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Repeating this for each input and summing the resulting points, yields the score. This score is
then converted into the risk estimate by means of the bottommost color bar. A more detailed
explanation of how this color based nomogram is constructed from the risk predictionmodel
is given in S1 Text.

From both approaches (nomogram and color-based plot) it is easily concluded that glucose,
the pedigree function and bmi are the most influential inputs.

Support vector classifiers. Whether or not an SVM classifier can be interpreted in the
same way as explained above and represented by similar graphs, depends on the choice of the
kernel. A derivation for the linear, polynomial and RBF kernel is given here.

When using a linear kernel Klinðx; zÞ ¼
Pd

p¼1
xðpÞzðpÞ, the extension of the nomogram to an

SVM is easily made. The predicted risk is found as:

ŷ ¼ h
XN

i¼1

aiyiKðxi; xÞ þ b

 !

¼ h
XN

i¼1

aiyi

Xd

p¼1

xðpÞi xðpÞ þ b

 !

;

such that the contribution of the pth input variable to the linear predictor is defined as

f ðpÞ ¼
XN

i¼1

aiyix
ðpÞ
i xðpÞ :

This expansion enables to visualize an SVMmodel with a linear kernel using plots of the
type presented in Fig 2. Each contribution f (p) is then represented by a color bar. The points
that are allocated to the value of an input are read off by means of the color legend. The score is
obtained by addition of all points. The function h(�) converting this score to a risk estimate is
visualized by another color bar at the bottom of the graph. Examples of this type of representa-
tion for SVMmodels are given in SectionResults.

This approach can also be extended to other additive kernels [31] and ANOVA kernels [19,
24], in which kernels are expressed as a sum of subkernels, each of which depend on a restricted
set of input variables. In cases were no more than two inputs are involved in each subkernel,
the representation will be exact. Visualization of two-way interaction effects is done by the use
of color plots instead of color bars. Examples of this approach are given in SectionResults.

For the polynomial kernel Kpoly(x, z) = (axT z + c)δ, with δ a positive integer, an expansion
of the latent variable is found by use of the multinomial theorem [32]

ðxð1Þ þ � � � þ xðdÞÞd ¼
X

k1þ���þkd¼d

d

k1; . . . ; kd

 !
Y

1�p�d

xðpÞkp
: ð4Þ
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The latent variable of the SVM classifier can then be written as:

‘ ¼
XN

i¼1

aiyiKpolyðxi; xÞ þ b

¼
XN

i¼1

aiyiðaxT
i x þ cÞd þ b ¼

XN

i¼1

aiyi a
Xd

p¼1

xðpÞi xðpÞ þ c

 !d

þ b

¼
XN

i¼1

aiyi cd þ ad
Xd

p¼1

xðpÞi
dxðpÞd þ

Xd

p¼1

X

kpþkc¼d

d

kp; kc

0

@

1

Aakp xðpÞi
kp xðpÞkp ckcþ

2

4

Xd

p¼1

X

q6¼p

X

kp þ kq ¼ d

kp; kq 6¼ d

d

kp; kq

0

@

1

A axðpÞi xðpÞ
� �kp

axðqÞi xðqÞ
� �kq

þ

Xd

p¼1

X

q6¼p

X

kp þ kq þ kc ¼ d

kp; kq; kc 6¼ d

kp þ kq 6¼ d

kp þ kc 6¼ d

kq þ kc 6¼ d

d

kp; kq; kc

0

@

1

A axðpÞi xðpÞ
� �kp

axðqÞi xðqÞ
� �kq

ckc þ D

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

þ b

¼
XN

i¼1

aiyi b0 þ
Xd

p¼1

gðpÞ xðpÞi ; xðpÞ
� �

þ
Xd

p¼1

X

q6¼p

gðp;qÞ xðp;qÞi ; xðp;qÞ
� �

þ D

 !

þ b

¼
Xd

p¼1

f ðpÞ xðpÞi ; xðpÞ
� �

þ
Xd

p¼1

X

q6¼p

f ðp;qÞ xðp;qÞi ; xðp;qÞ
� �

þ b@ þ D‘

Here, we define f(p) as the functional form of the pth input x(p), i.e. the contribution to the
latent variable that is solely attributed to x(p). In analogy, f (p,q) is defined as the contribution to
the latent variable that is attributed to the combination of inputs x(p) and x(q). The derivation
above, shows that for each a, c and δ, an SVM classifier with a polynomial kernel can be
expanded in main contributions f (p), contributions f (p,q) involving two input variables and a
rest term Δℓ, including all contributions involving a combination of more than two input vari-
ables. From the equations, it can be seen that whenever d or δ are not higher than 2, the expan-
sion of the polynomial kernel is exact, i.e. Δℓ = 0. S2 Text indicates how the terms f (p) and f (p,q)

for this polynomial kernel can be calculated.
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When using the popular Radial Basis Function (RBF) kernel, the extension is based on a
similar approach. The RBF kernel is defined as

KRBFðx; zÞ ¼ exp �
1

s2
jjx � zjj2

2

� �

¼ exp � gjjx � zjj2
2

� �
;

with s2 ¼ 1

g
the kernel width. Using the Taylor expansion of the exponential function, this ker-

nel can be written as

KRBFðx; zÞ ¼
X1

n¼0

ð� 1Þ
n
gnðjjx � zjj2

2
Þ

n

n!
:

Application of the multinomial theorem results in

KRBFðx; zÞ ¼
X1

n¼0

ð� 1Þ
n
gn

n!

X

k1þ���þkd¼n

n

k1; . . . ; kd

 !
Y

1�p�d

xðpÞ � zðpÞ
� �2
� �kp

: ð5Þ

The question whether SVM classifiers using the RBF kernel can be visualized and explained as
in Figs 1 and 2 is now reduced to the question whether we can write Eq (5) as the addition of
terms only depending on one input variable, or by extension also including terms depending
on two input variables. To achieve this, Eq (5) is written as:

KRBFðx; zÞ ¼
X1

n¼0

ð� 1Þ
n
gn

n!

Xd

p¼1

ðxðpÞ � zðpÞÞ2n

"

þ
Xd

p¼1

X

q6¼p

X

kp þ kq ¼ n

kp; kq 6¼ n

n

kp; kq

 !

ðxðpÞ � zðpÞÞ2kpðxðqÞ � zðqÞÞ2kq

3

7
7
7
7
7
7
7
5

þ D ; ð6Þ

¼
Xd

p¼1

gðpÞ xðpÞ; zðpÞ
� �

þ
Xd

p¼1

X

q6¼p

gðp;qÞ xðp;qÞ; zðp;qÞ
� �

þ D : ð7Þ

The latent variable can then be written as:

‘ ¼
XN

i¼1
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The kernel function can thus be written as a part dependent on single inputs, i.e. the first
term in the above equation, a part depending on two inputs, i.e. the second term, and a rest
part, including terms depending on a combination of more than two inputs. A formal defini-
tion of these terms is given in S2 Text. The only question that remains is whether the rest term
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is small enough to be ignored without preformance reduction. The experiments in the next Sec-
tion illustrate whether and when this is the case.Whenever Δℓ can be ignored, the SVMmodel
can be visualized by use of color based nomograms, representing f (p) by color bars, f (p,q) by
color plots and converting the latent variable (visualized via the score) into a risk estimate by
means of another color bar. A more detailed explanation of how the color based nomogram is
constructed from the above expansion is presented in S1 Text.

Results

In this Section, it is investigated whether it is possible to approximate the SVMmodel by an
additive model, only including terms that can be visualized. Stated otherwise, the SVMmodel
will be approximated using the expansions obtained in the previous sections and ignoring the
rest term Δℓ. This approach is illustrated on several simulated and real-life datasets. Since the
proposed visualizationmethod is exact for two-dimensional problems, only problems with at
least three input variables will be discussed here. The first examples are based on artificial data-
sets with only 3 input variables, of which only two are relevant. Each artificial dataset contains
1000 observations, 500 of which are used for training, the remainder for testing the SVM
model. It is assumed that, since only two inputs are necessary for the true classification, the
approximation method should be able to explain the resulting SVMmodels: if one input is
irrelevant, then why would a well performing SVMmodel use contributions that involve this
input variable? The artificial problem settings are illustrated in S3 Text, where the class separa-
tion is illustrated in the two relevant dimensions.We conclude with an application on three
real-life datasets from the UCI depository [27] (Fisher Iris, Pima Indians diabetes and German
credit risk data).

When using SVMs in combination with an RBF or polynomial kernel, multiple parameters
need to be set: (i) the regularization constant C, (ii) the width 1

g
of the RBF kernel or the degree

δ of the polynomial kernel. For simplicity, we keep both the scale a and the bias c of the polyno-
mial kernel equal to 1. A grid search in combination with 10-fold cross validation is used to
select the optimal parameter set on the training set.

In all the examples we use a fixed grid to tune the parameters. The regularization constant C
is varied over [10−7, 102], using ten steps (exponential grid). The inverse kernel width γ is var-
ied over [2−7, 22], using ten steps (exponential grid). The degree of the polynomial kernel can
range from 1 to 4. Class probabilities are obtained by means of a sigmoid function, the parame-
ters of which are fitted using 3-fold cross-validation on the training data (the default in the R
package kernlab). Parameter tuning is performed using the R package caret [33]. The R
package kernlab [34] is used to train the SVMs.

Regarding the visualizations, it is opted to show the plots with contributions that are shifted
such that the median of all contributions is zero. A diverging colormap is used such that a
value of zero corresponds to a white color, negative values are represented in blue and positive
values in red. The most important input variables are those with the largest color range.

Before continuing to the experiments, it is stressed that visualizing an SVMmodel based on
the proposed approximation and extracting how the SVMmodel works based on this approxi-
mation is only possible after confirmation that the approximation is valid: the rest term should
be small. Otherwise, conclusions drawn from the approximation cannot be assumed to be cor-
rect. In order to check the validity of the approximation, two types of plots are provided. A first
plot relates the latent variable of the SVMmodel with the approximated latent variable (i.e. the
latent variable of the SVMmodel without the rest term Δℓ). An example of this type of plot is
given in Fig 3(a). The straight line in the plot indicates where the points should be located
when the approximation is valid. A second plot represents the ranges of all contributions in the
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expansion of the latent variable. The range of the latent variable of the SVMmodel (indicated
by lpmodel) is given as well. Whenever the approximation is valid, the rest term will be small
in comparison with the latent variable. An example of this plot is given in Fig 3(b).

Artificial examples

Two circles problem. Consider a dataset with three input variables, only two of which are
relevant. The observations are all elements of one of two classes. All elements of one class are
located on a circle and both circles are concentric. See S3 Text for a visualization of this setting.
The SVM classifier with the highest cross-validation performance using an RBF kernel has
parameter values γ = 2 and C = 10−5. The resulting classifier is able to classify the training sam-
ples perfectly, i.e. an accuracy of 100%. The same accuracy is obtained for the test set.

To check whether the proposedmethod is able to explain the SVM classifier, the latent vari-
ables of the SVMmodel and the approximation are plotted against each other in Fig 3(a). Only
41% of the training datapoints get the same class label by the approximation and the SVM
model. To explain this malfunctioning, the individual terms in the approximation and the rest
term are reported in Fig 3(b). The range of the latent variable of the SVMmodel (indicated as
lpmodel) is added as a reference. Since the range of the rest term is large in comparison with
the other terms, the rest term can not be ignored. As a result, the approximation method pro-
posed here will not be able to explain the SVMmodel.

This experiment raises the question how the SVM achieves a good performance despite tak-
ing non-relevant information (i.e. higher-order terms including input variables of which it is
known that they are irrelevant) into account. To answer this question, the correlation between
the rest term and the different terms in the approximation are studied (results not shown). The
rest term is highly correlated with the interaction between x(1) and x(2) (Pearson correlation
coefficient= -0.993). The rest term can thus be explained as an interaction between the first

Fig 3. Performance of the approximation method (i.e. the expansion without the rest termΔℓ) on the

two circles data. (a) Latent variables of the SVM model with RBF kernel and the approximation. The

approximation is not able to approximate the latent variables of the SVM model. (b) Contributions of the

approximation of the SVM model and the rest term. The box-plots visualize the range of the different

contributions. The upper boxplot indicates the range of the latent variable of the SVM model. In this example

the range of the rest term cannot be ignored in comparison with the ranges of the other contributions. As

such, the approximation of this specific SVM model cannot serve as an explanation of the SVM model.

doi:10.1371/journal.pone.0164568.g003
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two input variables and not as a higher order interaction effect as was expected.As such, drop-
ping the rest term in the approximation results in loss of information.

To investigate whether the above problem is due to the SVMmodel or due to the expansion
in individual terms, other SVMmodels, with other tuning parameters but similar cross-valida-
tion results, are analysed. The same 10-fold cross validation performance can be achieved from
a variety of parameter values. As such, the approximation method is applied a second time.
This time, a cross-validation performance of at least 95% of the optimal performance is
required and the kernel width should be as large a possible. The validity of the approximation
of this second SVMmodel, with parameter values γ = 2−7 and C = 10, is analysed in Fig 4. The
approximation is very good and the rest term can be ignored. As such, the proposed approxi-
mation is able to explain the SVM classifier. The visualization of this model (see Fig 5) reveals
that the contributions of x(1), x(2) and their interaction are most important. This SVM classifier
and the approximation obtain a performance accuracy of 100% on training and test set.

To compare the working of different kernels, the polynomial kernel is used on the same
example. The best performing kernel had a degree δ = 2 and the regularization constant was
C = 0.01. The approximation is able to perfectly explain the SVMmodel since the degree of the
kernel is not larger than 2. The SVMmodel is approximated by the terms visualized in Fig 6.
Comparison with Fig 5 instantly shows that a polynomial kernel is better suited for the job: the
value of the irrelevant input x(3) is not used by the polynomial kernel. Only the main effects of
the first two input variables are necessary to obtain a classifier with 100% accuracy.

To compare the proposed color based nomogramwith existing tools for logistic regression,
a logistic regression model allowing polynomial transformations of the input variables is
trained using the lrm functionwithin the rms package in R [30]. The model includes polyno-
mial transformations of all input variables of the first and second degree. The resulting

Fig 4. Performance of the approximation method (i.e. the expansion without the rest termΔℓ) on the

two circles data (second SVM model). (a) Latent variables of the SVM model with RBF kernel and the

approximation. The approximated latent variable is a good estimate of the latent variable of the SVM model.

(b) Contributions of the approximation of the second SVM model and the rest term. The box-plots visualize

the range of the different contributions. The upper boxplot indicates the range of the latent variable of the

SVM model. In this example the range of the rest term can be ignored in comparison with the ranges of the

other contributions. As such, the approximation of this specific SVM model will be able to explain the

classifier.

doi:10.1371/journal.pone.0164568.g004
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nomogram is represented in Fig 7. The model results in an accuracy of 100% on training and
test set. The non-linear relationship is visualized by repetition of the input axis.

Swiss roll problem. As a second example, an SVMmodel is trained on the artificial two-
class swiss roll example. The data are points in a three-dimensional space and non-linearly sep-
arable in a 2-dimensional plane spanned by x(1) and x(2). The third variable is again irrelevant.
See S3 Text for an illustration of this setting.

The tuning parameters resulting in the largest 10-fold CV performance for the SVMmodel
with RBF kernel are γ = 4 and C = 10. The latent variable of the SVMmodel and the approxi-
mation as well as the ranges of the contributions, the rest term and the latent variable of the
SVMmodel are shown in Fig 8. One can clearly see that the approximation is not able to
explain the SVM classifier. The rest term cannot be ignored in this case.

In contrast with the previous artificial example, looking for another optimal parameter pair
does not yield a satisfying solution. This can be explained by the fact that the swiss roll example
is highly non-linear and a small kernel width is necessary to obtain a good performance. To
have a small rest term, a large kernel width is necessary, to reduce the influence of higher-order
interaction terms. Scatterplots between all contributions and the rest term (plot not shown)
explain why dropping the rest term has such a dramatical effect: the rest term is highly
(inversely) correlated with the contribution of the interaction between x(1) and x(2) (Pearson

Fig 5. Visualization of the second SVM model with RBF kernel on the example of the two circles.

doi:10.1371/journal.pone.0164568.g005

Explaining Support Vector Machines: A Color Based Nomogram

PLOS ONE | DOI:10.1371/journal.pone.0164568 October 10, 2016 13 / 33



correlation coefficient = -0.968). Investigation of the Pearson correlations between the terms of
the approximation reveals that the contribution of the interaction between x(1) and x(3) is
highly (inversely) correlated with the contribution of x(1) (Pearson correlation coefficient=
-0.965) and the contribution of the interaction between x(2) and x(3) is highly (inversely) corre-
lated with the contribution of x(2) (Pearson correlation coefficient= -0.962). The rest term in

Fig 6. Visualization of the third SVM model (polynomial kernel) on the example of the two circles.

doi:10.1371/journal.pone.0164568.g006

Fig 7. Nomogram of a logistic regression model including polynomial transformations of the input

variables for the two circles problem. The non-linearities are visualized by the use of two axes for each

input.

doi:10.1371/journal.pone.0164568.g007
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this example is seemingly used to counter-balance other contributions. The same is true for the
interaction terms involving x(3). All these findings indicate that the third input variable might
be dropped before building the SVM. Results of this approach are not shown here since this
yields a two-dimensional problem for which the approximation is exact.

Note that for the example on the two circles, selection of the most relevant input variables is
an alternative (and probably preferred) to the solution proposed in the previous Section.

Checkerboardproblem. This last artificial example illustrates that in some cases it is pos-
sible to explain an SVMmodel using one kernel type, while it is not possible to explain an SVM
model trained on the same data using another kernel type. To illustrate this, a checkerboard
problem with 9 blocks in the plane spanned by x(1) and x(2) is used. A third input variable is
again irrelevant. A visualization of this setting is provided in S3 Text. The two SVMmodels
with optimal tuning parameters are: a first SVMmodel with an RBF kernel (γ = 2−4 and
C = 105) and a second SVMmodel with a polynomial kernel (δ = 4 and C = 100). For both
models, the optimal tuning parameters by means of 10-fold cross validation are used. The
latent variables and the terms in the approximations for both models are given in Fig 9. The
accuracy of the SVMwith RBF kernel on the training data is 0.96% and on the test data 0.91%.
The accuracy of the SVMwith polynomial kernel on the training data is 0.99% and on the test
data 0.96%. The SVMmodel with an RBF kernel and its approximation agree on the class label
in only 56% of the observations in the training data. The use of another parameter pair does
not yield a better approximation. For the polynomial kernel, the agreement is 99%. This perfor-
mance difference of the approximation method is also seen in Fig 9, where a very large rest
term is noted for the expansion of the SVMwith RBF kernel and a very small rest term is seen
when using the polynomial kernel. Fig 10 illustrates the visualization of the SVMmodel with
the polynomial kernel. This visualization is very valuable since it clearly indicates that the third
variable is not necessary and the estimated functional forms of the other effects are correct.

Overlapping Gaussians. In this last artificial problem a classification problem of two
strongly overlapping classes is used. The data of these two overlapping Gaussians are illustrated

Fig 8. Performance of the approximation method (i.e. the expansion without the rest termΔℓ) on the

swiss roll problem. (a) Latent variables of the SVM model with RBF kernel and the approximation. The

approximation is not able to approximate the latent variables of the SVM model. (b) Contributions of the

approximation of the SVM model and the rest term. The box-plots visualize the range of the different

contributions. The upper boxplot indicates the range of the latent variable of the SVM model. In this example

the range of the rest term cannot be ignored in comparison with the ranges of the other contributions. As

such, the approximation of this specific SVM model cannot serve as an explanation of the SVM model.

doi:10.1371/journal.pone.0164568.g008
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in S3 Text. For an SVMmodel using an RBF kernel the optimal tuning parameters by means of
10-fold cross validation are γ = 2−6 and C = 100. The latent variables and the terms in the
approximations for both models are given in Fig 11. Since the rest term is very small, the
approximation can be used to explain the SVMmodel. The accuracy of the SVMwith RBF ker-
nel on the training data is 78% and on the test data 75%. The accuracy of the approximation on
the training data is 78% and on the test data 74%. The SVM and the approximation agree on
100% of the cases in the training set and on 99.8% of the cases in the test set. Fig 12 illustrates
the visualization of the SVMmodel.

Real life data

The IRIS dataset. The proposed approach is applied to the IRIS dataset [27, 35] and using
an RBF kernel. This data contains information on 150 cases, four input variables and a class

Fig 9. Comparison of the performance of the approximations (i.e. the expansion without the rest

termΔℓ) of two SVM models on the checkerboard problem. (a)-(c): RBF kernel, (b)-(d): polynomial

kernel. (a)-(b): Latent variable of the approximation versus latent variable of the original SVM model. (c)-(d):

Range of all contributions in the approximation, the rest term and the latent variable of the SVM model. For

the RBF kernel, the rest term is much larger than the latent variable, resulting in an approximation that is

unable to explain the SVM model. For the polynomial kernel, the rest term is negligible in comparison with the

other terms and the approximation is nearly perfect.

doi:10.1371/journal.pone.0164568.g009
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label. The labels are setosa, versicolor and virginica. For the purpose of this work, the output
label was defined as species of type versicolor. An SVMwas trained on 100 randomly chosen
observations and tested on the remaining 50. The classifier obtained from parameter values
that achieve the highest 10-fold cross validation performance (γ = 2−5 and C = 100) is repre-
sented in Fig 13. The SVM achieves an accuracy of 99% and 96% on training and test set
respectively. The approximation achieves an accuracy of 98% and 96% on training and test set
respectively. The validity of the approximation is illustrated in Fig 14. Since the rest term is
very small, the approximation yields latent variables that are very close to the latent variables
obtained by the original SVMmodel. The approximation performs very good in this case and
agrees on class labels with the SVMmodel in 98% of the training cases and in 100% of the test
cases. From the visualization of the model it is seen that sepal length (SL), petal length (PL) and
petal width (PW), and the interaction between PL and PW contribute the most to the latent
variable (colors range to the extremes of the color legend). This is also confirmed by investigat-
ing the ranges of the contributions (see SectionDiscussion for a discussion on the importance
of the latter.) A bivariate plot (see S1 Fig) indicates that PL and PW are most important for
class separation in a linear setting. The interaction between PL and PW is also valuable.

Fig 10. Visualization of the SVM model with polynomial kernel on the checkerboard example. It can

be seen that all contributions involving x (3) do not contribute in a large extent since the range of these

contributions is very small in comparison with the other contributions.

doi:10.1371/journal.pone.0164568.g010
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The Pima Indians data set. The Pima Indians dataset [27, 29] contains 532 cases with
complete information for women who were at least 21 years old, of Pima Indian heritage and
living near Phoenix, Arizona. Seven different input variables were available: number of preg-
nancies (npreg), plasma glucose concentration (glu), diastolic blood pressure (bp), triceps skin
fold thickness (skin), bodymass index (bmi), diabetes pedigree function (ped) and age. The
outcome is whether or not these women have diabetes according toWorld Health Organiza-
tion criteria. The SVMmodel with RBF kernel was trained on a random set of 200 of these
women, as provided as a training set in the R package MASS [29]. The classifier obtained from
parameter values that achieve the highest 10-fold cross validation accuracy (γ = 2−7 and C = 1)
is represented in Fig 15. The accuracy of the approximation is illustrated in Fig 16. Since the
rest term is very small, the approximation yields latent variables that are very close to the latent
variables obtained by the original SVMmodel. The approximation performs very good in this
case and agrees on the estimated class labels with the SVMmodel in 100% of the cases. The
SVM achieves an accuracy of 78% on training and test set. The approximation also achieves an
accuracy of 78% on training and test set. From the visualization of the model it is seen that the
interaction effects are of minor importance (very light colors for all ranges of the input vari-
ables). The main effects of blood pressure and skin thickness are less important than the other
main effects. Comparing this result with feature selectionmethods in the literature confirms
these results. In [21] 12 feature selectionmethods from the literature are compared on the
Pima dataset. The blood pressure and the skin thickness are selected three times among these
12 methods, whereas all other variables are selected at least four times. In [36] different feature
selectionmethods are also compared on the Pima dataset. Ranking features according to their
importance (see Table 3 in [36]) also indicates that the blood pressure and the skin thickness
are least important.)

German credit risk data. An SVMwith a polynomial kernel is used to illustrate the
approach on the German credit risk data [27]. The data is taken from https://onlinecourses.
science.psu.edu/stat857/node/215, and a random subset of 500 observations is used to train the

Fig 11. Performance of the approximation method (i.e. the expansion without the rest termΔℓ) on the

two Gaussians data. (a) Latent variables of the SVM model with RBF kernel and the approximation. The

approximated latent variable is a good estimate of the latent variable of the SVM model. (b) Contributions of

the approximation of the SVM model and the rest term. The box-plots visualize the range of the different

contributions. The upper boxplot indicates the range of the latent variable of the SVM model. In this example

the range of the rest term can be ignored in comparison with the ranges of the other contributions. As such,

the approximation of this specific SVM model will be able to explain the classifier.

doi:10.1371/journal.pone.0164568.g011
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SVM, the remaining 500 observations are used to test the SVM. In this example only 6 inputs
are selected to predict the creditability of the applicants: the status of applicant’s account in the
bank (balance, categorical input), the duration of the credit in months (cr.dur.), the purpose of
the credit (purpose), the amount of credit asked for (amount), the duration of the applicant’s
present employment (employ.dur.), and the applicant’s duration of residence (address.dur.).
The classifier obtained from parameter values that achieve the highest 10-fold cross validation
accuracy (δ = 2 and C = 1) is represented in Fig 17. Since the degree of the polynomial kernel
equals 2, the visualization is an exact representation of the SVMmodel. The accuracy on the
training and test set are 75% and 76% respectively. Looking at the interaction effects, it is clear
that most of the interactions are not relevant (white color in the graph). Taking the range of
the contributions into account (see Fig 18) illustrates that the most important effects are the
effects of balance, credit duration, amount of the credit and interactions between these. A sec-
ond SVM is built using only these 3 inputs, resulting in a polynomial kernel of the third degree
and a regularization constant C = 0.01. The model is visualized in Fig 19 and the correctness of
the representation is illustrated in Fig 20. It is clear that the approximation yields latent vari-
ables that are in line with those obtained from the SVM classifier. The accuracy of the model
and approximation on the training set is 73%, for the test set this accuracy is 76%. The approxi-
mation and the SVMmodel agree on the predicted class label in 99% of the cases.

Fig 12. Visualization of the SVM model with RBF kernel on the example of the two Gaussians.

doi:10.1371/journal.pone.0164568.g012
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What can we learn from this representation? It has to be noted that all effects containing the
same input should be considered together when interpreting the results. With more than 2
inputs, this is however impossible, so the effects should be interpreted considering all other
inputs constant. For interaction effects the interpretation is harder since one input can occur in
more than one interaction effect. For this example it is noted that having a higher balance on
the current account increases the chance of being creditable. A longer duration of the credit
decreases this chance. The same effect is noted for an increasing credit amount. Looking at the
interaction effect of balance and credit duration, it is noted that for a duration larger than 20–
25 months, the main effect of the balance on the account is amplified, whereas for a short credit
duration the effect of balance is opposite to the main effect. For a low balance on the current
account, an increasing credit amount increases the chance of being creditable. This seems
counterintuitive, however this increase (increase in points indicated by the color legend) is
lower than the decrease indicated in the main effect of the credit amount. As such, the interac-
tion is making a small correctionw.r.t. the main effect, depending on the balance. From the
interaction effect between credit amount and credit duration it could be concluded that a
higher credit duration and amount increases the chance of being creditable. However, this
interpretation leaves out the main effects of the involved inputs. To aid in this complex inter-
pretation, the contributions of all effects are plotted (Fig 21) for three applicants: applicant 1

Fig 13. Visualization of the SVM model on the IRIS data set.

doi:10.1371/journal.pone.0164568.g013
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(balance = 4, credit duration = 35, credit amount = 10000), applicant 2 (balance = 4, credit
duration = 35, credit amount = 15000), applicant 3 (balance = 4, credit duration = 50, credit
amount = 10000). This type of summary for one observationwas proposed in [23] and is
related to the work in [37, 38]. The displayed charts illustrate how the chances on creditability
are obtained from the different input values. Comparison of the charts for different applicants
illustrates the change in effects of the inputs. Comparing applicant 1 and 2 reveals that the
increase in amount implies a decrease in the contribution of amount by 3.57 points, the effect
of the interaction between balance and amount increases by 0.8 points and the effect of the
interaction between amount and credit duration increases by 0.87 points. The result is a reduc-
tion of the creditability of the applicant. Comparing applicant 1 and 3 indicates that an increase
in the credit duration yields a reduction of 0.84 points for the main effect of credit duration, an
increase of 0.73 points due to the interaction of credit duration and balance, and an increase of
0.89 points due to the interaction of credit duration and amount. As such, an increase of the
credit duration would increase the chance of being creditable.

To compare the proposed color based nomogramwith the standard nomogramwhen deal-
ing with non-linearities and interactions, a nomogramwas created for a logistic regression
model including only linear main and interaction effects for the reduced set of input variables.
The lrm functionwithin the rms package in R [30] was used for this purpose. The resulting
nomogram is represented in Fig 22. To create this nomogram, it was necessary to categorize
continuous input variables (i.e cr.dur. and amount). To make the graph readable, only 3 cate-
gories for amount were used. For all inputs involved in an interaction, combinations of input
variables are made such that for each input only one point needs to be read from the graph.
Since all inputs interact with each other in this example, only one point needs to be read from
the graph. An obvious disadvantage of this representation, is the loss of information due to the
categorization of continuous inputs. Additionally, it was impossible to represent a full model in
a one page graph, since the number of possible combinations becomes too large. Getting a
global view on the risk prediction process from this representation is less straightforward as

Fig 14. Performance of the approximation method (i.e. the expansion without the rest termΔℓ) on the

IRIS data. (a) Boxplots of the contributions of the approximation of the SVM model, the rest term and the

latent variable of the SVM model. The range of the rest term can be ignored in comparison with the ranges of

the other contributions. (b) Latent variable of the original model versus those obtained from the

approximation. The approximation is able to estimate the latent variable of the SVM model very accurately

and as such can be used to explain the SVM model.

doi:10.1371/journal.pone.0164568.g014
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Fig 15. Visualization of the SVM model on the Pima data set.

doi:10.1371/journal.pone.0164568.g015
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with the presented color based technique. The accuracy of this model on training and test set is
72% and 77% respectively.

In [39] a feature selection algorithm indicated that out of the 20 available features, status,
credit duration, credit history, credit amount, savings, housing and foreign worker, were the 7
selectable features. From the selected set of features that we used, only credit duration and
credit amount also occur in this set. This agrees with the selection obtained after interpreting
the visualization of the SVMmodel, indicating balance, credit duration and credit amount as
most important features.

Software

All functionality to perform the analyses from this manuscript is provided as an R package
https://cran.r-project.org/web/packages/VRPM/.The package also includes two applications
that enable to play with the methods for the IRIS and Pima datasets, such that the interested
user can have a look at the possibilities of the method before learning to use the package. The
software provides additional functionalities. Firstly, the color map can be chosen: a rainbow
color map, a sequential color map (a single color with changing intensity), a diverging color
map (with two different colors and white in the middle, as used throughout this work), a black-
and-white color map, or the viridis color map. Secondly, the level of the contributions that is
represented as zero can be set to zero, mean, median (as in this work), or minimum (as is done
in a classical nomogram). Thirdly, the range of the input variables can be chosen to reduce the
effect of outliers on the visualization of the approximation and as such on the interpretation
(see the discussion). Fourthly, one specific observation can be added to the representation to
visualize how the risk prediction for this observation is built up using the approximation of the
SVMmodel. A movie illustrating all these functionalities is provided in S1 Video.

Fig 16. Performance of the approximation method (i.e. the expansion without the rest termΔℓ) on the

Pima data. (a) Boxplots of the contributions of the approximation of the SVM model, the rest term and the

latent variable of the SVM model. The range of the rest term can be ignored in comparison with the ranges of

the other contributions. (b) Latent variable of the original model versus those obtained from the

approximation. The approximation is able to estimate the latent variable of the SVM model very accurately

and as such can be used to explain the SVM model.

doi:10.1371/journal.pone.0164568.g016
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Fig 17. Visualization of the SVM model with polynomial kernel on the German credit risk data set.

doi:10.1371/journal.pone.0164568.g017
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Discussion

This manuscript provides a way to explain how support vector machines using RBF and poly-
nomial kernels generate decisions for unseen data. This approach is completely new and raises
a lot of questions. Firstly, the method can aid in the selection of kernel and regularization
parameters in order to select parameters that lead to a visualizable SVMmodel. As such, it
offers a way to (possibly) explain SVMmodels, but at this stage, it is not completely clear why
certainmodels cannot be represented in this way. When the SVMmodel can be explained, a
second question comes up: How should the different components be interpreted? This will be
investigated in future research but the claim that components with small effects can always be
ignored and components with large effects are always important is certainly not true. It is well
possible that a main effect and an interaction effect counter-balance each other. Assume a lin-
ear main effect of input x(3) and an interaction effect between x(3) and x(4). It is possible that the
modelled interaction effect in fact barely depends on x(4) and that the interaction is actually a
main effect of x(3). If both this effect and the estimated main effect of x(3) are each others oppo-
site, there is in fact no effect of x(3). It is therefore very important to investigate the modelled
effects together with their range and interpret the results carefully. This issue is a result of the
non-unique nature of additive models involving main and interaction effects.Whether this can
be solved by means of other, more restrictive expansions of the RBF kernel is a topic for future
research.

Another aspect involves the representation of the approximation. The chosen representa-
tion resembles nomograms for standard statistical risk predictionmodels, with the advantages
of being able to (i) represent non-linearities without the need for repetitive scales and (ii) repre-
sent interactions between continuous inputs in a continuous way. The color in this representa-
tion offers the same interpretation as the length of the scales for nomograms. Bothmethods
suffer from outliers. When one input has an outlier, this is not visible in the representation

Fig 18. Performance of the approximation method (i.e. the expansion without the rest termΔℓ) on the

German credit risk data. (a) Boxplots of the contributions of the approximation of the SVM model, the rest

term and the latent variable of the SVM model. The range of the rest term can be ignored in comparison with

the ranges of the other contributions. (b) Latent variable of the original model versus those obtained from the

approximation. The approximation is able to estimate the latent variable of the SVM model very accurately

and as such can be used to explain the SVM model.

doi:10.1371/journal.pone.0164568.g018
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provided by nomograms, nor the representation provided here. The code for the presented
representation however enables to include lines to indicate the fifth and ninetyfifth percentile
of the training data on top of the color bars for continuous inputs such that it can be indicated
whether the data are skewed or outliers are present. The code also provides a way to alter the
representation by adapting the range of the input variables, as such allowing to reduce the
impact of outliers on the visualization.

Similarly to the length of the bars for standard nomograms, the range of the colors indicates
the importance of the input variables. However, applying automated feature selection based on
this range (as proposed in [40]) might not be ideal. The range should be combined with a dis-
tribution of the input variables, since an outlier might have a large effect on the color represen-
tation, but should not have a large effect when performing feature selection.When taking the
distribution of inputs into account, the visualization can be used to select relevant contribu-
tions. Based on the selected set of contributions, ANOVA kernels [41] containing only these
terms could be used to train a sparser, data-specific kernel. We stress however, that this will
only yield satisfactory results when (i) the visualization is the result of a well performing
approximation of the SVMmodel, (ii) the effect of outliers is not taken into account and (iii)

Fig 19. Visualization of the second SVM model on the German credit risk data set.

doi:10.1371/journal.pone.0164568.g019
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correlations between the contributions have been investigated to identify irrelevant input
variables.

An obvious disadvantage of the approach is the exponential increase in the number of inter-
action plots in the representation with increasing dimension of the data set. This hampers the
use of the presented methodology for data sets with evenmoderate dimensionality.

The methodology elaborated on in this work is not restricted to SVM classification nor to
the kernels discussed here. Extensions towards SVM regression, least-squares support vector
machines [42, 43] and other kernel-basedmethods should be straightforward. An example is
that the projection of a new input on each non-linear principal component of kernel principal
component analysis [44], could be explained by contributions from the original input space.
Experiments will indicate whether the rest term can be ignored in this case.

The proposed technology also offers possibilities in other domains. The developed appli-
cations can be used for teaching purposes since it is ideal to illustrate the working of different
kernels within machine learning methods. The tools can also aid in the communication with
end users of classifiers. They offer a way to increase the credability of black-box models, since
experts can compare the working of the classifier with domain knowledge. It can also aid in
the communication of risk to patients by indicating which inputs are related to a certain diag-
nosis or prognosis and might as such explain treatment choices and improve therapy
adherence.

When an SVMmodel can be explained using the proposedmethodology and the working
of the model is counterintuitive, in contrast to expert knowledge or too complex to be realistic,
the model can be rejected for practical applications, although test performancemight be high.
As such, the methods are also able to provide evidencewhy not to use SVMmodels.

Conclusions

This work proposes to approximate an SVMmodel by a sum of main and two-way interaction
terms that can be visualized, to illustrate and explain SVMmodels. It is shown that in some

Fig 20. Performance of the approximation method (i.e. the expansion without the rest termΔℓ) on the

German credit risk data (using only three inputs). (a) Boxplots of the contributions of the approximation

of the SVM model, the rest term and the latent variable of the SVM model. The range of the rest term can be

ignored in comparison with the ranges of the other contributions. (b) Latent variable of the original model

versus those obtained from the approximation. The approximation is able to estimate the latent variable of

the SVM model accurately and as such can be used to explain the SVM model.

doi:10.1371/journal.pone.0164568.g020
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Fig 21. Cumulative contribution charts for three applicants to illustrate the effect of the SVM model

on the German credit risk data. The bars indicate the value of the contributions. (a) applicant 1

(balance = 4, credit duration = 35, credit amount = 10000), (b) applicant 2 (balance = 4, credit duration = 35,

credit amount = 15000), (c) applicant 3 (balance = 4, credit duration = 50, credit amount = 10000).

doi:10.1371/journal.pone.0164568.g021
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Fig 22. Nomogram of a logistic regression model including linear main and interaction effects for the

German credit risk problem with a reduced input set and 3 categories for the amount. Interactions are

dealt with by grouping main and interaction effects containing the same inputs. Interactions between

continuous inputs are only possible after categorization of at least one of these inputs.

doi:10.1371/journal.pone.0164568.g022
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cases the approximation is exact. In other cases a rest term is ignored and interpretation of the
results is only possible whenever this rest term is small.

The proposedmethod should not be considered as a final way to explain and visualize the
working of SVMmodels. It is one step that enables explanation in certain cases, but cannot
solve the issues of black box models completely. However, it offers the opportunity to open
debate on the use, application and interpretation of SVMs in areas where interpretability is
important. End users now have a tool that provides them with the possibility to compare the
SVMmodel with expert knowledge, providing evidence (or not) of how the model obtains a
class label or risk prediction.

Supporting Information

S1 Video. Application of the method to the IRIS data set.This video illustrates the possibili-
ties of the R package by means of an R application using the IRIS data set.
(MP4)

S1 Text. Explanation of how a color based nomogram results from a risk predictionmodel.
This appendix explains in detail how a risk predictionmodel that can be represented by means
of Eq (3) can be represented by the proposed color based nomogram.
(PDF)

S2 Text. Definition of the different contributions in the approximation of the SVM classifi-
ers. This appendix summarizes how the terms f (q) and f (p,q) used in the expansion of the SVM
model, are calculated for the linear, polynomial and RBF kernel.
(PDF)

S3 Text. Setting of artificial examples.This appendix illustrates the settings of the artificial
examples.
(PDF)

S1 Fig. Bivariate plot of the Iris data (training data).
(PDF)
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