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Brain metabolic pattern analysis using 
a magnetic resonance spectra classification 
software in experimental stroke
Elena Jiménez‑Xarrié1, Myriam Davila2,3, Ana Paula Candiota2,3,4, Raquel Delgado‑Mederos1, 
Sandra Ortega‑Martorell3,5, Margarida Julià‑Sapé2,3,4, Carles Arús2,3,4* and Joan Martí‑Fàbregas1

Abstract 

Background:  Magnetic resonance spectroscopy (MRS) provides non‑invasive information about the metabolic pat‑
tern of the brain parenchyma in vivo. The SpectraClassifier software performs MRS pattern‑recognition by determin‑
ing the spectral features (metabolites) which can be used objectively to classify spectra. Our aim was to develop an 
Infarct Evolution Classifier and a Brain Regions Classifier in a rat model of focal ischemic stroke using SpectraClassifier.

Results: A total of 164 single‑voxel proton spectra obtained with a 7 Tesla magnet at an echo time of 12 ms from 
non‑infarcted parenchyma, subventricular zones and infarcted parenchyma were analyzed with SpectraClassifier 
(http://gabrmn.uab.es/?q=sc). The spectra corresponded to Sprague‑Dawley rats (healthy rats, n = 7) and stroke rats 
at day 1 post‑stroke (acute phase, n = 6 rats) and at days 7 ± 1 post‑stroke (subacute phase, n = 14). In the Infarct 
Evolution Classifier, spectral features contributed by lactate + mobile lipids (1.33 ppm), total creatine (3.05 ppm) and 
mobile lipids (0.85 ppm) distinguished among non‑infarcted parenchyma (100% sensitivity and 100% specificity), 
acute phase of infarct (100% sensitivity and 95% specificity) and subacute phase of infarct (78% sensitivity and 100% 
specificity). In the Brain Regions Classifier, spectral features contributed by myoinositol (3.62 ppm) and total creatine 
(3.04/3.05 ppm) distinguished among infarcted parenchyma (100% sensitivity and 98% specificity), non‑infarcted 
parenchyma (84% sensitivity and 84% specificity) and subventricular zones (76% sensitivity and 93% specificity).

Conclusion: SpectraClassifier identified candidate biomarkers for infarct evolution (mobile lipids accumulation) and 
different brain regions (myoinositol content).
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Background
Magnetic resonance spectroscopy (MRS) is a technique 
that allows obtaining metabolic information of the brain 
parenchyma in  vivo non-invasively, either in preclinical 
or clinical studies [1]. However, MRS is not used rou-
tinely in the diagnosis and management of stroke patients 
probably because metabolic biomarkers that can help to 
make clinical decisions have been scarcely reported [2].

Metabolites have defined chemical shifts [parts per mil-
lion (ppm)] in the magnetic resonance (MR) spectrum, so 
each metabolite can be individually identified and quan-
tified. The quantification can be performed based on sev-
eral approaches: peak heights or ratios, integrals based 
on resonance fittings, or quantification using software 
programs like LCmodel [3], jMRUI accessible routines [4] 
or TARQUIN [5].

A multivariate statistical analysis of the whole MR 
spectrum is more appropriate than individual feature 
analysis as it gives information about many metabolites 
simultaneously. The increase/decrease of some of these 
metabolites may be characteristic of a certain condition 
and at the same time distinguish this condition from 
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others. This allows performing a classifier based on fea-
tures (peak heights of typical resonances) which can be 
useful to assign unknown spectra to a condition.

A classifier based on multivariate statistical analy-
sis may be an unbiased way of categorizing spectral 
data as it is a method with a minimum requirement for 
prior hypothesis to be made. This may be especially rel-
evant when there is no prior knowledge of which are the 
metabolites to be considered relevant, for example in a 
certain pathology or as a consequence of a treatment.

SpectraClassifier (http://gabrmn.uab.es/?q=sc) [6] is 
a pattern-recognition software that applies multivariate 
statistical analysis for classifying MR spectra. It performs 
a supervised analysis, where the researcher knows a pri-
ori the real class to which each MR spectrum (from now 
on called case) belongs to. Thus, the researcher prede-
fines the classes and assigns each case (by adding a label) 
to its corresponding class.

The software uses a set of labelled cases (the training set) 
to produce a predictive mathematical model, which is the 
classifier, by identifying the datapoint intensities that differ 
most among the classes (features). The classifier is then val-
idated by assessing its predictive accuracy not only for the 
training set cases, but also when similar new cases (labelled 
or not) are analyzed (an independent test set) [7]. So far, 
SpectraClassifier has been applied to evaluate brain cancer 
either with preclinical [8] or clinical [9, 10] MRS data.

Multivariate statistical analysis is increasingly being 
applied to MRS data in different diseases [11]. In stroke, 
multivariate statistical analysis has been applied to the 
MRS metabolic analysis of plasma and urine samples 
from stroke patients [12] and metabolite extracts of 
infarcted tissue in a rat model of ischemic stroke [13]. 
However, there is no multivariate analysis of in  vivo 
MRS data from specific regions of interest in the stroke-
afflicted brain. Our aim was to find, in a rat model of focal 
ischemic stroke, surrogate biomarkers of the infarct evo-
lution and for different brain regions including the sub-
ventricular zones (SVZ) of the lateral ventricles, which 
are a known neurogenic niche in the adult mammalian 
brain [14] affected by stroke [15, 16].

In our study, we provide proof-of-concept of two dif-
ferent classifiers generated using SpectraClassifier: (a) 
Infarct Evolution Classifier (to differentiate among non-
infarcted parenchyma, acute phase of infarct and suba-
cute phase of infarct and (b) Brain Regions Classifier (to 
differentiate among non-infarcted parenchyma, SVZ and 
infarcted parenchyma).

Methods
Animals
A total of twenty-seven male Sprague-Dawley rats 
(Charles River Laboratories, L’Arbresle, France) of 

approximately 10 weeks of age and 306 ± 39 g of weight 
were used. MR spectra from 24 rats were obtained ret-
rospectively from a previous study performed on a rat 
model of focal ischemic stroke [17] while three additional 
rats with available spectroscopic information were added, 
not included in the previous study due to incomplete 
data but belonging to the same protocol.

Rats were divided into the following groups: healthy 
rats (n = 7), day 1 post-stroke rats (acute phase of infarct, 
n = 6) and day 7 ± 1 post-stroke rats (subacute phase of 
infarct, n = 14), according to the temporal classification of 
Pitkonen et al. [18]. Rats from the last group were analyzed 
at two time points (acute and subacute phase of infarct).

The rat model of focal ischemic stroke was the 90 min 
right middle cerebral artery occlusion (MCAO) with 
the intraluminal filament [19] which results in a large 
infarct (250 ± 82 mm3 measured at day 1 post-stroke in 
T2-weighted images). After surgery, analgesia (Metacam, 
Boheringer Inghelm GmbH, Inghelm, Germany, 1.0 mg/
kg body weight) was administered subcutaneously. Rats 
were housed at 25 ±  1  °C and were kept on a 12/12  h 
light/darkness cycle with ad  libitum access to food and 
water.

Magnetic resonance studies
In vivo magnetic resonance studies were carried out at 
the joint nuclear magnetic resonance facility of the Uni-
versitat Autònoma de Barcelona and Centro de Investi-
gación Biomédica en Red – Bioingeniería, Biomateriales 
y Nanomedicina (CIBER-BBN) (Cerdanyola del Vallès, 
Spain), Unit 25 of NANBIOSIS, in a 7 Tesla horizon-
tal magnet (BioSpec 70/30, Bruker BioSpin, Ettlingen 
Germany) equipped with actively shielded gradients 
(B-GA12 gradient coil inserted into a B-GA20S gradient 
system). For signal reception, a rat brain phased array coil 
was used, actively decoupled from a 72 mm inner diam-
eter volume resonator. During exploration the rats were 
anesthetized with 1–2% isoflurane (IsoVet, Braun Vet-
Care, Spain). Breathing and temperature were constantly 
monitored (SA Instruments, Inc, New York, USA).

T2-weighted images were used for infarct volume 
measurement [17] and MRS voxel positioning (a sche-
matic representation is shown in Figs.  1b, 2b). These 
were acquired using a rapid acquisition with a relaxa-
tion-enhancement sequence. The acquisition parameters 
were: orientation = coronal plane, echo train length = 8, 
field of view =  32 ×  32  mm, matrix size =  256 ×  256 
(125 × 125 μm/pixel), number of slices = 30, slice thick-
ness = 0.5 mm, interslice distance = 0.1 mm, repetition 
time/effective echo time = 4560/60 ms, number of acqui-
sitions = 4, total acquisition time = 7 min and 17 s.

MR spectra were acquired from rectangular vox-
els of 18  µl (2  ×  2  ×  4.5  mm) using point-resolved 
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spectroscopy localization and variable pulse power 
and optimized relaxation delay water suppression. 
The acquisition parameters were: repetition time/ 
echo time =  1800/12  ms, spectral width =  13.34  ppm 
(4006.41 Hz), number of acquisitions = 256; total acqui-
sition time = 7 min and 48 s.

A total of 164 MR spectra were obtained from 27 
Sprague Dawley rats. The spectra corresponded to:

  • 34 Infarcted parenchyma spectra: 6 spectra were 
obtained from day 1 post-stroke rats and 28 spec-
tra from days 7  ±  1 post-stroke rats analyzed at 
two different time points (the acute and the suba-
cute phase of infarct).

  • 82 SVZ spectra from both cerebral hemispheres: 14 
spectra were obtained from healthy rats, 12 spectra 
from day 1 post-stroke rats and 56 spectra from day 
7 ± 1 post-stroke rats analyzed at two different time 
points (the acute and the subacute phase of infarct. 
Due to the dimensions of the acquisition voxel, its 
2  mm thickness will unavoidably produce contri-
butions from outside the SVZ region (i.e. nearby 
striatum, cerebrospinal fluid from the ventricle). In 

this respect, SVZ should be taken to mean “SVZ 
enriched” brain parenchyma MRS pattern.

  • 48 Non-infarcted parenchyma spectra: 14 spectra 
were obtained from both cerebral hemispheres in 
healthy rats, 6 spectra from non-infarcted paren-
chyma from day 1 post-stroke rats and 28 spec-
tra from non-infarcted parenchyma from day 
7  ±  1 post-stroke rats analyzed at two different 
time points (the acute and the subacute phase of 
infarct).

MR spectra processing
MR spectra were processed using Topspin 1.3 software 
(Bruker Daltonik Gmbh, Rheinstetten, Germany). Fou-
rier transformation was applied with previous 4 Hz line 
broadening. Manual zero- and first-order phase correc-
tions were applied and the chemical shifts were refer-
enced to total creatine (TCr) peak maxima at 3.03 ppm. 
MRS data peak heights were normalized to unit length 
to the contralateral area (UL2CA) (non-infarcted paren-
chyma) according to Eq. 1 for the region between 0 and 
4.5  ppm. This region was digitized with 1383 complex 
datapoints and exported as ASCII files.

Fig. 1 Results from the Infarct Evolution Classifier. a Analysis of the Balanced Error Rate (BER) of the independent test set, the correctly classified 
cases (CCC) and the plot of the three ROC curves of the training set. The best performance was achieved using three features (red arrow). b Image 
of the voxel position and the mean spectrum ± SD (in gray shading) of the training set for each class with the approximate position of the features 
selected by the SFFS method indicated by red arrows (see also Table 1). c 2D Fisher’s LDA latent space representing the classification in the training 
set and the independent test set using three features
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Equation 1: Unit length normalization to the contralat-
eral area (UL2CA). hreal refers to the peak heights at each 
datapoint in the real part of the acquired spectra and hre-

alCA refers to the peak heights between 0 and 4.5  ppm 
from the contralateral area spectra of each animal.

Supervised pattern‑recognition analysis
The Pattern-Recognition analysis was performed with 
SpectraClassifier v3.1.1 software (http://gabrmn.uab.
es/?q=sc). We used the available cases to design two clas-
sifiers, each including three classes.

1. The Infarct Evolution Classifier: comparison among 
48 non-infarcted parenchyma spectra (32 training 
set and 16 test set), 20 acute phase of infarct spectra 
(13 training set and 7 test set) and 14 subacute phase 
of infarct spectra (9 training set and 5 test set). The 
processed data vectors used to perform the Infarct 
Evolution Classifier are provided as additional files: 

(1)UL2CA =
hreal

√

∑

4.5

0
(hrealCA)2

· 100

training set (Additional file 1) and test set (Additional 
file 2).

2. The Brain Regions Classifier: comparison among 48 
non-infarcted parenchyma spectra (32 training set 
and 16 test set), 82 SVZ spectra (54 training set and 
28 test set) and 34 infarcted parenchyma spectra (22 
training set and 12 test set). The processed data vec-
tors used to perform the Brain Regions Classifier are 
provided as additional files: training set (Additional 
file 3) and test set (Additional file 4).

Data splitting into the training or the test set was per-
formed by an investigator (MD) different from the one 
acquiring spectra (EJX) and blinded to the quality of 
those spectra. Approximately 2/3 of the spectra were 
assigned by MD to the training set and 1/3 of the spectra 
to the independent test set [20]. This data splitting pro-
cess was based on the spectra organized by a unique ani-
mal identification number (ID, lower numbers indicating 
animals incorporated to the protocol earlier). Once the 
total number of spectra to be allocated in each training 
dataset was decided, spectra of the lower ID number 
rats contributed to training set and the remaining high 

Fig. 2 Results from the Brain Regions Classifier. a Analysis of the Balanced Error Rate (BER) of the independent test set and the correctly classified 
cases (CCC) and the plot of the three ROC curves of the training set. The best performance was achieved using three features (red arrow). b Image 
of the voxel position and the mean spectrum ± SD (in gray shading) of the training group for each class with the position of the features selected 
by the SFFS method indicated approximately by red arrows (see also Table 3). c 2D Fisher’s LDA latent space representing the classification in the 
training set and the independent test set using three features

http://gabrmn.uab.es/?q=sc
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ID number contributed all to the test set. This “chrono-
logical” methodology was used as it would emulate a real 
machine learning protocol were new prospective cases 
could be added continuously to the test set. The final allo-
cation of each case in the training or the test set can be 
seen in the additional file identified in the xml file.

Feature selection was performed by sequential for-
ward feature selection (SFFS), based on the criterion of 
correlation-based feature subset selection. The classi-
fier was created using Fisher’s linear discriminant analy-
sis (LDA), and the number of selectable features was set 
from 2 to 20. Ideally, the final number of selected fea-
tures should be approximately 1/3 of the number of cases 
in the smallest size class of the training set [21]. It took 
approximately 15 min for each classifier to perform fea-
ture selection using SpectraClassifier v3.1.1 on a core 
i5-6600  K@3.5  GHz with 16.38  GB of RAM. The selec-
tion of the overall best descriptive performance of the 
classifier was determined by the number of features that 
provided the highest correctly classified cases (CCC)-
value in the training set by Bootstrapping. Bootstrapping 
was performed by 1000 times random sampling with 
replacement from the original dataset.

The final number of features used for classification was 
selected based on the criterion of the lowest balanced 
error rate (BER)-value (Eq. 2) in the independent test set. 
The BER-value is the average of the proportion of mis-
classified cases in each class weighted by the size of the 
class [8] which is an overall measure of the predictive 
accuracy.

Equation 2: Balanced Error Rate (BER) for a three class 
classifier where CL1, CL2 and CL3 correspond to the 
first, second and third class respectively.

Statistics
The multivariate statistical methods integrated in Spec-
traClassifier were used to calculate the classifier based on 
Fisher’s LDA [6].

For further analysis of the predictive accuracy for each 
class, data of the training set were dichotomized to one 
class compared to the other two classes combined. The 
analyses performed were: (1) sensitivity, specificity, positive 
predictive value (PPV) and negative predictive value (NPV) 
calculated with Vassar stats (www.vassarstats.net) using the 
confusion matrix values provided by SpectraClassifier and 

(2)

BER =
1

3
·

[(

misclassified cases

total cases

)

CL1

+

(

misclassified cases

total cases

)

CL2

+

(

misclassified cases

total cases

)

CL3

]

· 100

(2) the area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) provided by SpectraClassifier.

The normality of the data distribution of the individ-
ual selected features was assessed with Kolmogorov–
Smirnov test and variance homogeneity with Levene’s 
test. The results obtained with Kolmogorov–Smirnov test 
showed that not all features followed a normal distribu-
tion. Accordingly, the non-parametric Kruskall–Wallis 
test for independent samples was used to evaluate dif-
ferences among classes. Post-hoc pairwise compari-
sons were performed using SPSS 22.0 software (SPSS 
Inc., Chicago, IL, USA). The α-level for statistical sig-
nificance was 0.05 with a confidence interval of 95%. 
Home-written R software scripts were used for the mean 
spectrum ± standard deviation (SD) representation.

Results
Infarct Evolution Classifier
The Infarct Evolution Classifier was performed using 
from 2 to 16 features. The training set showed an increas-
ing CCC-value as more features were used for the clas-
sification. However, the first minimum BER-value (8.8%) 
in the independent test set was achieved with three fea-
tures. This number of features corresponded to a CCC-
value of 96.4 ± 2.5% in the training set (Fig. 1a).

The three selected features with their tentative reso-
nance assignment according to the literature [22] are 
shown in Table  1 and Fig.  1b. The selected features (in 
their selection order number) correspond to individual 
spectral datapoints: the first containing overlapping lac-
tate and the methylene of the fatty acyl chain of mobile 
lipids [Lac + ML(–CH2)] at 1.33 ppm, the second to the 
N-methyl of TCr at 3.05 ppm and the third to the methyl 
of the fatty acyl chain of mobile lipids [ML(–CH3)] at 
0.85 ppm [23].

The classifier was trained with three features (Fig. 1c). 
The results for each class are shown on Table 2. The abil-
ity of this classifier to determine whether a stroke cor-
responds to the acute or the subacute phase of infarct 
showed a higher sensitivity in the acute phase class 
(100%) compared to the subacute phase class (78%). 
However, in the latter, the specificity was 100% which 
gives an optimum PPV (100%).

Median and interquartile ranges of the peak height 
values of the selected spectral features for each class are 
shown on Table 1. The post-hoc analysis of both TCr and 
Lac +  ML(–CH2) features showed statistical difference 
(p  <  0.01) when comparing non-infarcted parenchyma 
class with the other two classes. In Lac  +  ML(–CH2), 
there was no significant difference between the acute 
and the subacute phase of infarct classes, probably due 
to higher variability in the subacute phase of infarct. 
Accordingly, ML(–CH3) was the only metabolite 

http://www.vassarstats.net
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resonance that increased significantly (p < 0.01) between 
the acute and the subacute phase of infarct.

Brain Regions Classifier
For the Brain Regions Classifier, spectra from brain 
parenchyma at different time-points post-stroke (non-
infarcted parenchyma, acute and subacute phase of 
infarct) were combined into the same class.

The Brain Regions Classifier was performed using 
from 2 to 20 features. In this classifier, the first mini-
mum BER-value of the independent test set (5.7%) was 
achieved using three features for classification (Fig.  2a). 
This number of features corresponded to a CCC-value 
of 83.2  ±  3.5% in the training set. Another minimum 
BER-value was achieved with 6 features (5.5%) which cor-
responded to a better CCC-value of 91.7 ±  2.7%. How-
ever, the classifier was trained using three features as the 
results shown by the BER-value were similar. Moreover, 
when the spectral features selected in the fourth and fifth 
position were added, the classification was worse, as the 
BER-value rose to 12.3%. Accordingly, adding spectral 
features might be a source of overtraining for the final 
classifier [24].

The selected spectral features corresponding to the 
first and the third selection order number were very close 
datapoints in the MR spectrum (3.04 and 3.05 ppm) and 
were related to the same resonance (TCr) as in the Infarct 
Evolution Classifier. Still, it should be mentioned that 
TCr is contributed by resonances from several metabo-
lites, with slightly different chemical shifts: phosphocre-
atine, creatine, γ-aminobutyric acid (GABA), glutathione, 
lysine in small molecular weight proteins. Accordingly, 

changes in their relative contributions could make two 
close datapoint heights relevant for classification per-
formance. The second selected feature (3.62  ppm) was 
related to myoinositol (Myo) (Table 3; Fig. 2b).

Results for each class are shown on Table 4. The classi-
fier showed good predictive values for the infarcted paren-
chyma class in the training set (100% of sensitivity and 98% 
of specificity). In this classifier the misclassified cases were 
found to belong to the non-infarcted parenchyma and the 
SVZ, which show similar MR spectral patterns (Fig.  2b). 
Thus, when the ability of the classifier to identify the SVZ 
was analyzed, it had moderate sensitivity (76%) but good 
values of specificity (93%) and a good PPV (91%).

When the features selected by the classifier were ana-
lyzed individually, a decreased TCr (p < 0.01) allowed the 
differentiation of the infarcted parenchyma class com-
pared to the other two classes. For Myo, there was a sta-
tistically significant difference among the three classes 
(p  <  0.01). It was increased in the SVZ and decreased 
in the infarcted parenchyma with respect to the non-
infarcted parenchyma.

Discussion
The two classifiers developed with SpectraClassifier have 
good predictive values and a robust independent test set 
performance, which suggests that they have discrimina-
tory power. The selected metabolites used for class dis-
crimination may be of interest as potential biomarkers to 
monitor infarct evolution or to evaluate whether a spe-
cific MRS-based biomarker for the SVZ exists.

Numerous studies have utilized MRS to analyze meta-
bolic changes in experimental stroke. Most literature 

Table 1 Features selected for the Infarct Evolution Classifier, and the metabolites tentatively assigned to those features

* Median (interquartile range) of UL2CA normalized peak height values for each feature in the training set
† p value resulting from the Kruskall–Wallis test of the comparison of the selected feature among the three classes of the training set

Feature selection 
order number

Feature chemical 
shift (ppm)

Assigned metabo‑
lite

Non‑infarcted 
parenchyma*

Acute phase post‑
stroke*

Subacute phase 
post‑stroke*

p value†

1 1.33 Lac + ML(–CH2) 2.78 (2.38–3.21) 7.39 (6.67–8.90) 19.88 (10.38–22.11) p < 0.01

2 3.05 TCr 3.83 (3.42–4.18) 1.96 (1.63–2.36) 2.01 (1.62–2.31) p < 0.01

3 0.85 ML(–CH3) 3.32 (3.09–3.95) 3.02 (2.33–4.27) 12.30 (8.39–15.52) p < 0.01

Table 2 Infarct Evolution Classifier predictive accuracy analysis in the training set

Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the mean ± standard error area under curve (AUC) value of the receiver 
operating curve (ROC) of the dichotomization of each class compared to the other two classes combined. Results are given in percentage with the number of spectra 
within parentheses. Total number of spectra in the training set (n = 54) corresponded to non‑infarcted parenchyma (n = 32), acute phase of infarct (n = 13) and 
subacute phase of infarct (n = 9).

Training set Sensitivity Specificity PPV NPV AUC value

Non‑infarcted parenchyma 100% (32/32) 100% (22/22) 100% (32/32) 100% (22/22) 1.00 ± 0.00

Acute phase of infarct 100% (13/13) 95% (39/41) 87% (13/15) 100% (39/39) 0.98 ± 0.00

Subacute phase of infarct 78% (7/9) 100% (45/45) 100% (7/7) 96% (45/47) 0.98 ± 0.04
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focuses on metabolites of interest for the pathology, such 
as lactate, which is related to anaerobic metabolism onset 
and N-acetyl aspartate (NAA), which is related to neuron 
viability [25].

In the acute phase of stroke, several dynamic meta-
bolic changes occur. Studies in a permanent MCAO rat 
model showed that increases in lactate and decreases in 
NAA as well as increases in glutamate and taurine are 
already detectable at 1 h post-stroke [26]. Recent stud-
ies performed approach to a complete analysis of the 
whole metabolome. In brain tissue extracts from a per-
manent MCAO rat compared with the sham group at 
day 1 post-stroke, an increase in glucose and decreases 
in glutamate, glutamine, aspartate, myoinositol, GABA, 
taurine, malate, fumarate, acetate, phosphocreatine, 
and purine and pyrimidine metabolites such as ino-
sine, hypoxanthine, xanthine and uracil were detected. 
However, in this work neither NAA nor lactate were 
selected as metabolites that changed, probably due to 
limitations in the ex vivo MRS technique used [13]. In 
another study performed with in  vivo MRS in a tran-
sient MCAO mice model (30 min) at day 1 post-stroke, 
an increase in lactate and a decrease in NAA were 
detectable, concomitant with increases in glutamine 
and decreases in TCr, Myo, alanine, GABA, glutamate, 
glycine, total choline, glutathione, glucose, phosphati-
dylethanolamine and taurine [27]. Although both stud-
ies show slight differences, maybe due to differences in 
species or the durability of the ischemia (permanent 
versus transient), they give an idea of the different met-
abolic pathways affected during stroke and the com-
plexity of the disease.

On the other hand, in the subacute phase metabolic 
changes tend to stabilize representing the established 
infarct. In a permanent MCAO rat model, decreases in 
the initial levels of lactate, NAA, TCr, glutamate and glu-
tamine were described at day 7 post-stroke [28] and in a 
transient MCAO rat model (45  min) a gradual increase 
in mobile lipid signals [ML(–CH2)] were described [29].

Our results using multiparametric analysis-derived 
classifiers in a transient MCAO rat model (90 min) show 
that only a few metabolites among all possible candidates 
(already shown to change by work mentioned above) 
would be suitable as MRS biomarkers for monitor-
ing infarct evolution during the acute and the subacute 
phase: TCr, Lac + ML(–CH2) and ML(–CH3).

TCr mostly comprises the resonances of creatine and 
phosphocreatine. These are involved in the creatine 
kinase reaction that replenishes consumed ATP. TCr con-
centration is thought to be highly stable throughout the 
brain. This is the reason why it is often used as an inter-
nal reference to analyze other metabolic changes. How-
ever in the infarcted parenchyma, TCr concentration is 
decreased, probably due to diminished viable cell density 
[30]. Moreover, our results suggest that TCr levels are not 
recovered in the subacute phase of infarct.

The Lac and the ML(–CH2) resonances at 1.33  ppm 
appear to increase continuously during the acute and the 
subacute phase of infarct, but due to the spectral over-
lapping, they cannot be separated at the echo time used 
in this study (12 ms) without additional post-processing 
methods [17]. Lac is a metabolite resulting from the onset 
of anaerobic metabolism. It is rapidly increased during 
the first hours post-stroke and diminished thereafter, 

Table 3 Features selected for the Brain Regions Classifier and the metabolites tentatively assigned to those features

* Median (interquartile range) for the UL2CA normalized peak height values for each selected spectral feature using the SFFS method in the training set
† p value resulting from the non‑parametric Kruskall–Wallis test of the comparison of the selected spectral feature among the three classes of the training set

Feature selection 
order number

Feature chemical 
shift (ppm)

Assigned metabolite Non‑infarcted paren‑
chyma*

SVZ* Infarcted paren‑
chyma*

p value†

1 3.05 TCr 5.80 (5.31–6.04) 5.74 (5.26–6.44) 2.43 (2.01–3.32) p < 0.01

2 3.62 Myo 2.73 (2.31–2.93) 3.45 (3.15–3.91) 1.61 (1.41–2.01) p < 0.01

3 3.04 TCr 6.92 (6.47–7.37) 6.91 (6.38–7.70) 2.84 (1.95–3.80) p < 0.01

Table 4 Brain Regions Classifier predictive accuracy analysis in the training set

Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the mean ± standard error area under curve (AUC) value of the receiver 
operating curve (ROC) of the dichotomization of each class compared to the other two classes combined. Results are given in percentage with the number of spectra 
within parentheses. Total number of spectra in the training set (n = 108) corresponded to non‑infarcted parenchyma (n = 32), SVZ (n = 54) and infarcted parenchyma 
(n = 22).

Training set Sensitivity Specificity PPV NPV AUC

Non‑infarcted parenchyma 84% (27/32) 84% (64/76) 69% (27/39) 93% (64/69) 0.90 ± 0.06

SVZ 76% (41/54) 93% (50/54) 91% (41/45) 79% (50/63) 0.92 ± 0.04

Infarcted parenchyma 100% (22/22) 98% (84/86) 92% (22/24) 100% (84/84) 1.00 ± 0.00
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as brain cells die and perfusion allows extracellular Lac 
clearance [29]. However, in the subacute phase of infarct, 
it is ML(–CH2) and not Lac that differentially increases, 
as can be confirmed by the increase in the other func-
tional group of ML, the ML(–CH3) at 0.85  ppm. More-
over, this latter resonance is the only significant change 
detected between the acute and the subacute phase post-
stroke. This is in agreement with the in vivo and ex vivo 
data from our previous work [17] which confirms the 
good performance of the pattern-recognition software 
in objectively detecting spectral pattern changes. Thus, 
ML(–CH3) is the most suitable surrogate spectral bio-
marker detected for the infarct evolution.

ML resonances are not found in the non-infarcted 
parenchyma, but are associated with many metaboli-
cally altered states as proliferative, necrotic/apoptotic or 
inflammation processes [31]. ML are related to changes 
in the cell membrane, which are reflected in changes in 
the composition and dimensions of cytosolic lipid drop-
lets [32, 33] that contain neutral lipids (mainly triacylg-
lycerids and cholesterol esters). Such ML accumulation 
was described in a rat stroke model [29].

The Brain Regions Classifier was used to distinguish 
among non-infarcted parenchyma, SVZ and infarcted 
parenchyma. The SVZ is a thin layer of cells in the wall 
of the lateral ventricles [34] which cannot be completely 
isolated from the surrounding tissues using in vivo MRS. 
However, potential metabolic contributions of these SVZ 
to the voxel can contribute to its differentiation from 
other brain regions.

The metabolites that originate the features selected for 
this Brain Regions classification were TCr and Myo.

TCr is able to differentiate the infarcted parenchyma 
class from the other two classes. This is consistent with 
the Infarct Evolution Classifier where TCr was chosen 
also to differentiate non-infarcted parenchyma from 
infarcted parenchyma.

Myo is significantly different among all the classes, 
for this reason it is the only detected surrogate spec-
tral biomarker able to differentiate the SVZ from non-
infarcted parenchyma or infarcted parenchyma. Myo is 
an osmolyte present in the cytoplasm that preserves the 
osmotic equilibrium during osmotic stress. It is consid-
ered a specific marker of glial cells [35]. Myo is altered 
in cerebral diseases, including stroke [36]. Its decrease in 
stroke may be related (similarly to TCr) to the loss of via-
ble cells in the infarcted parenchyma [37]. On the other 
hand, the Myo concentration in the SVZ may be relevant 
since it is the only metabolite that differentiates between 
SVZ and non-infarcted parenchyma. Accordingly, a high 
content of Myo in neural stem cells (NSC) was described 
[38]. This Myo content of NSC may be related to the 
fact that NSC are astrocyte-like cells [39]. Furthermore, 

Myo content in cultured human striatal NSC decreased 
48-fold when differentiation was induced [40].

The metabolites proposed as surrogate spectral bio-
markers must be validated in larger studies, especially in 
a clinical setting, to test whether they could be followed-
up to detect and monitor changes in the SVZ after a 
stroke or temporal changes in the infarct evolution.

Moreover, the use of SpectraClassifier as the main 
approach to identify potential spectroscopic biomarkers 
could be used in any research question based on MRS 
data. For example one of its interests could be in the eval-
uation of the effect of different stroke therapies. Finally, 
SpectraClassifier is a relatively fast and user-friendly soft-
ware, which make it adequate for clinical applications [9, 
10].

Conclusions
SpectraClassifier has been used to identify potential 
spectral biomarkers from infarct evolution (ML) and dif-
ferent brain regions (Myo). This software may be applied 
in future spectral metabolomic studies in the preclinical 
or clinical setting.
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