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The need for multivariate analysis of magnetic resonance spectroscopy (MRS) data was recognized about 20 years ago, when it became
evident that spectral patterns were characteristic of some diseases. Despite this, there is no generally accepted methodology for performing
pattern recognition (PR) analysis of MRS data sets. Here, the data acquisition and processing requirements for performing successful PR as
applied to human MRS studies are introduced, and the main techniques for feature selection, extraction, and classification are described. These
include methods of dimensionality reduction such as principal component analysis (PCA), independent component analysis (ICA), non-negative
matrix factorization (NMF), and feature selection. Supervised methods such as linear discriminant analysis (LDA), logistic regression (LogR),
and nonlinear classification are discussed separately from unsupervised and semisupervised classification techniques, including k -means
clustering. Methods for testing and metrics for gauging the performance of PR models (sensitivity and specificity, the ‘Confusion Matrix’, ‘k -fold
cross-validation’, ‘Leave One Out’, ‘Bootstrapping’, the ‘Receiver Operating Characteristic curve’, and balanced error and accuracy rates) are
briefly described. This article ends with a summary of the main lessons learned from PR applied to MRS to date.
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Introduction
Magnetic resonance spectroscopy (MRS) is essentially a quan-
titative methodology. The areas and, with adequate constraints,
the heights of individual resonances are directly proportional
to the number or concentration of nuclei contributing to them
in the sampled volume. Accordingly, a common way to obtain
information of interest from a sample tissue is to quantify
a number of substances that contribute to the spectral pat-
tern. However, this quantification may not directly address the
question posed by the clinician or the researcher. For example,
even if there are statistically significant differences in the mean
concentration measured between two experimental conditions
of interest, their ranges can overlap so that no threshold can
be used to reliably assign a new spectrum into one of the
compared classes. In addition, in pathological conditions such
as brain tumors, there are simultaneous changes in several
resonances (Figure 1). This has led researchers to combine all
of the changes using multivariate analysis methods in order
to discriminate clinical conditions, based on either the whole
spectral vector or selected regions from it after postprocessing
or feature extraction.

One step further leads us into the pattern recognition (PR)
domain. PR in MRS can be used for characterizing both in
vivo spectra from animals or patients or ex vivo spectra from
biopsies and cells and/or their extracts. We will restrict this
article to the evaluation of in vivo MRS, although most of
the PR principles and strategies described are also applicable

to ex vivo data (e.g., to high-resolution magic angle spinning
NMR analysis of biopsies).

This article will guide the reader through some of the
strategies available to undertake a PR analysis of magnetic
resonance (MR) spectra and will also discuss the requirements
for obtaining a robust result.

Data
The use of PR methods with MRS data started in the early
1990s, when it was first shown that phosphorus (31P) MR
spectra from in vivo preclinical tumors could be successfully
classified.2 Subsequent studies on human brain tumors3–5 also
showed that in vivo 1H MR spectra could be correctly assigned
to different tumor types. Despite the early work on 31P MRS,
proton (1H) MRS has historically been the most-used nucleus,
with most studies concentrating in the categorization of tumor
types and grades and their prognostic assessment, mostly for
brain and prostate, but also in breast, lymphoma, and bone
marrow. A few other studies have focused on the diagnosis or
prognosis of various neurodegenerative diseases.

The reasons why these have been the most common ques-
tions addressed by PR are first, data sparsity, which is also a
limiting factor for many other questions of potential interest;
and second, data acquisition limitations, such as those related
to magnetic field homogeneity or low signal-to-noise ratio
(SNR). In addition, there is an inherent difficulty in the use of
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Figure 1. Mean (lines) and plus and minus one standard deviation (±1 SD; shaded areas) for the three most common types of brain tumor spectra
included in the INTERPRET database,1 at short TE (20–32 ms) at 1.5 T. Aggressive tumors (glioblastoma and metastasis), n = 124, are shown in red; low
grade glial (astrocytoma, oligoastrocytoma and oligodendroglioma WHO grade II), n = 35 are in blue; and low grade meningioma, n = 58, are depicted in
yellow. As can be seen, several peaks change, and their SDs also overlap, for example, the green shade results from overlap of the SDs of meningioma in
yellow and low grade glioma in blue (see Ref. 1 for further details; au = arbitrary units for UL2-normalized mean spectra of different tumor types)

PR by clinicians and biological scientists, owing to problems
ranging from its postprocessing requirements to the adequate
visualization of the resulting classifications.

How Many Data?

Typically, MRS data sets are characterized by their small num-
ber of cases, especially when compared to the large number of
spectral components, or ‘features’ that may be used for PR work.
This makes computer-based automated classification particu-
larly challenging. Most importantly, a large number of features
can also preclude the straightforward interpretation of the
results obtained, limiting their usability in a practical medical
context in which interpretability is paramount and simplicity
and robustness of the methods employed are essential.6 For this
reason, the features containing little discriminative power must
be discarded, which means that we will need a large number
of cases (about three to five times more cases than the number
of features to extract) from which to extract those features.7,8

However, in real life, the number of available cases will be
limited by epidemiology and budget. This problem is called
the curse of dimensionality.7 It is common to try to compensate
for this restriction with large multicenter studies8 (see Clinical
Trials of MRS Methods), which brings an added problem:
data compatibility in the face of slightly different acquisition

conditions (field strength, localization pulse sequence, echo
time (TE), and recycling time, among others). These factors
will introduce variability or noise into the classifier training
process.

Another source of variability originates from the labeling of
the cases. There are many instances in which the ‘gold stan-
dard’ used for labeling can itself contain errors or ambiguities,
which may create problems depending of the PR strategy being
attempted. A well-known example of this is the labeling of
astrocytic WHO grade III brain tumors (anaplastic astrocy-
tomas) for which there is usually lack of agreement among
pathologists,9 compromising both classifier training and vali-
dation. Furthermore, many of the tissues investigated by single
voxel (SV) MRS, for example, contain metabolic pattern het-
erogeneities at a scale smaller than the sampled voxel. This
is particularly relevant for tumors.10,11 Therefore, even if the
gold standard label of two cases is the same, their metabolomes
and spectral patterns may vary. The process of training robust
classifiers will be hampered whenever intratissue (intraclass)
heterogeneity is comparable to the variability in the population
(interclass) heterogeneity.

One way out of this problem can be to use a smaller voxel size
and perform a multivolume (MV) acquisition. This brings two
possible bonuses, firstly, the heterogeneity of the case may be
more apparent and can then be used for a combined assessment
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of the functional question being analyzed and, secondly, a single
case can produce hundreds of data vectors, highly correlated,
but still different from each other, which can help to reduce the
impact of the curse of dimensionality. It is common practice to
obtain robust classifiers from only a few cases with the use of
such highly correlated MV data matrices.12

Data Processing

Data processing has common steps for different nuclei. Fourier
transformation of the time domain data is sooner or later
required in the reconstruction pipeline, while there are specific
steps required for certain nuclei, such as filtering of the par-
tially suppressed water resonance in 1H MRS. Some of these
steps have a varying influence on the subsequent PR analysis.
For example, some line broadening (signal smoothing) may
help with visual appreciation of the instrumental quality of
the spectral pattern by spectroscopy experts (via the assess-
ment of SNR and the presence of artifacts), whereas this is
not normally desirable before quantification of individual res-
onances (metabolites) in the frequency domain.13 For proper
PR studies, these individual metabolite quantifications should
be transformed into data vectors, which can then be further
analyzed (see section titled ‘Analysis’). On the other hand, spec-
tral alignment with respect to an internal reference is usually
crucial for PR studies in which individual data points are used
as the input for feature extraction.

Normalization is also an important issue. A common strategy
is to normalize the spectrum by the unsuppressed water signal
from the same volume of interest (VOI), be it for an SV
spectrum or each of the individual voxels of an MV grid.
This requires subsequent corrections, usually by assuming
a percentage of water content in the tissue of interest or
by the presence of various metabolites in the tissue when
metabolite ratios are being quantified, and also the spin-lattice
and spin–spin relaxation times (T1 and T2) of the water (if it is
used as a reference) and the relevant functional groups of those
metabolites, in the conditions being evaluated (e.g., control vs
pathological). Any error in those assumptions will introduce
noise into the PR system, although if it is coherent noise it
may be tolerable. Another widely used option is normalization
to one of the various unit length possibilities. An example is
use of the ‘UL2 norm’ (see Clinical Trials of MRS Methods
for a detailed explanation) because it maintains the sign of
negative resonance intensities from lactate or alanine among
other metabolites at ‘long’ TE values (135–144 ms). This type
of normalization is not neutral and may introduce scaling
effects of its own; the point here is whether those effects are
beneficial for class/cluster discrimination or not.

Proper alignment must be checked and corrected if neces-
sary, especially if we are using individual features or the whole
spectral pattern instead of integrated peak areas. Internal ref-
erences, such as total creatine, total choline, or mobile lipids
in 1H spectra, have been used for peak alignment because their
chemical shift is pH independent in the biological range, and
one of them will usually be visible in the tissue of interest.
Some authors have also developed empirical alignment algo-
rithms for cases in which the SNR for the potential reference
resonances may vary strongly among samples.14

Analysis

Dimensionality Reduction. The reduction of the dimensionality
of a data set can be seen as a process of selecting relevant features
with the aim of removing redundant information from the data,
while retaining the most informative features to improve the
performance of predictive models.15,16 Consequently, feature
selection or feature extraction is often performed in MRS
data sets before diagnostic classification. However, selecting
the type of feature extraction or selection method is problem-
and domain-dependent and thus requires some knowledge of
the domain under consideration. Reducing the dimensionality
of spectra can also be beneficial for reducing computational
complexity and so allow algorithms to operate faster and more
effectively, as well as reducing the risk of overfitting the data
by having too many parameters in the model. In this section,
however, we focus on how reduced feature sets can improve
the accuracy of classification by briefly outlining some of the
most commonly used methods for dimensionality reduction in
MRS data analysis.

Historically, two general approaches to dimensionality
reduction were adopted in early studies of MRS classification.
One approach was to focus on spectral peaks with known
metabolic significance, which could be normalized within each
spectrum by taking the ratio of peak heights or integrated
peak areas. This is still a useful and transparent method,
which is developed later in this section with more data-driven
methods to automatically search for discriminating parts of
the spectrum. The alternative approach for dimensionality
reduction for MRS was to exploit the correlation structure of
the data with principal component analysis (PCA).

Principal Component Analysis (PCA). This is a natural
methodology for entirely data-driven dimensionality reduc-
tion, as any data set with more covariates than the sample
size is necessarily linearly separable, so that it is natural to
apply linear methods first. The rationale for PCA is to cap-
ture as much of the variation in the data as possible using a
small number of linear combinations of the predictive features,
typically peak or individual data point heights. In this way,
the correlation structure contained in the covariance matrix is
optimally exploited to reduce the dimensionality to the selected
number of principal component features: typically around a
dozen suffices to describe about 90% of the variance in the
data. This process is also known to result in some cleaning of
noise from the observed variables.

From a statistical standpoint, linear principal components
are obtained from a factorization of the sampled covariance
matrix into a set of orthogonal directions called eigenvectors,
which define the principal directions along which the data
spreads.16 PCA was successful for building early data-based
models for differential diagnosis of tissue types or tumor
grades. However, the interpretation of principal components
is not trivial as they comprise both positive and negative linear
combinations of the original variables. Nevertheless, they can
be useful for exploring the variation in the data sets (Figure 2).

Independent Component Analysis (ICA). The purpose of
this approach is to go beyond the correlation structure of the
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Figure 2. Variation in tumor cell content as described by PCA. (a) The score plot of the pre-processed spectra, colored based on tumor cell content (%,
color scale at right) determined from corresponding biopsies. (b) The corresponding loading profile of PC1, explaining 40.1% of the total variation of the
data. β-Glc, β-glucose; Asc, ascorbate; Lac, lactate; Cr, creatine; Gly, glycine; Tau, taurine; GPC, glycerophosphocholine; PCho, phosphocholine; Cho,
free choline. (Reproduced from Ref. 17. © PLoS One, 2013)

spectra and focus instead on the latent tissue types that occur
independently and together result in the mixtures measured
in each voxel. In other words, to attempt to decompose the
spectra in each voxel into the components (also named sources,
latent variables, or independent components) of the constituent
tissues present. ICA (independent component analysis) defines
a generative model for the observed multivariate data, in which
the data variables are assumed to be linear mixtures of some
unknown latent variables such that the probability of each
source being present is independent for the different sources.
That is, the joint probability of all latent variables is assumed
to factorize into a product of separate probabilities for each
variable. The latent variables must be assumed to be non-
Gaussian, as linearly mixing Gaussian distributions produce a
single multivariate Gaussian distribution that cannot then be
decomposed. The resulting latent variables are thus mutually
independent and so are called the independent components of
the observed data.18,19

Given an observed data matrix X (of dimensions d × n,
where d is the number of spectral features and n is the number
of observations), factors S (of dimensions d × k, namely the
matrix of sources, latent variables, or independent components,
where k is the number of components), and H (of dimensions
k × n, namely the mixing matrix) can be estimated using ICA,
such that X ≈ SH.

When applied to spectral peak heights, this method naturally
separates normal from infiltrating tumoral tissue.20 However,
the independent components are not readily interpretable
because they contain both positive and negative mixtures of
the original variables, as was the case with PCA. It is then
natural to seek positive-only mixtures and determine whether
this permits a more detailed separation of component tissues.

Non-negative Matrix Factorization (NMF). In NMF (non-
negative matrix factorization) methods,21,22 the non-negative
data matrix X (also of dimensions d × n) is approximately
factorized into two non-negative matrices: the matrix of sources

or data basis S (of dimensions d × k, where k is the number of
sources, and k < d) and the mixing matrix H (of dimensions
k × n). The product of these two matrices provides a good
approximation to the original data matrix in the form X ≈ SH.
There are different NMF variants, which mainly arise from
using different cost functions for computing the divergence
between X and SH.

While this methodology describes the observed data with
positive-only mixtures of the latent variables or data sources,
this does not apply to long echo times where spectral phase-
related signal modulation frequently results in negative values
in the lactate and alanine regions.23 Convex non-negative
matrix factorization (convex-NMF)24 is a variant of NMF that
imposes a restriction over the source matrix S to be a convex
combination of the input data vectors. This restriction signifi-
cantly improves the quality of data representation of S. Unlike
standard NMF, convex-NMF applies to both non-negative and
mixed-sign data matrices. What this means in practice is that (i)
the data are described by positive-only mixtures of the sources;
and (ii) the sources, or latent variables, are also positive-only
mixtures of the data. In principle, this makes it easier to inter-
pret both the mixing and unmixing processes, taking care to
consider that the model coefficients represent the strength of
linear mixtures but are not probabilities for the purpose of
subsequent modeling.

Both NMF and convex-NMF have proved successful for
classifying pathological tissue types into specific subgroups,
e.g., by tumor type or grade23,25 (Figure 3).

Feature Selection. Feature selection methods are also widely
and successfully used in this area for reducing the dimensional-
ity of a data set to a small number of relevant MRS features.26,27

More details on this type of method are discussed in the
following section.

Supervised Methods. Supervised learning, otherwise known as
regression or classification, is the task of analyzing a set of vari-
ables or features to achieve known outcomes, which typically
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Figure 3. (a) Source signals obtained with convex-NMF in a data set containing SV, 1.5 T spectra, from 20 astrocytomas grade II (A2), 55 low-grade
meningiomas (MM) and 15 normal brain parenchyma measurements from healthy controls (NO) at long TE (135–136 ms), extracted from the
INTERPRET database.1,23 (b) Mean spectra of A2, MM and NO, at long TE (135–136 ms). Note the resemblance between the extracted sources and the
mean spectra

consist of continuous values or class labels. In MRS, the typical
aim is to classify unseen test instances, that is, spectra other
than the modeling data set. Although there is an extensive
range of supervised learning algorithms available, there is no
single learning algorithm that works best on all supervised
learning problems. Broadly speaking, there are three groups
of supervised models. First there are those which are linear
in the modeling parameters, such as linear discriminant anal-
ysis (LDA) and logistic regression (LogR). Second there are
semiparametric models that are generic nonlinear classifiers,
such as neural networks; and finally, there are nonparametric
approaches such as nearest neighbor classifiers. In this section,
we briefly describe the most commonly used supervised learn-
ing algorithms in MRS data analysis.

Linear Discriminant Analysis (LDA). LDA is a classification
method based on the assumption of a common variance of the
classes. Fisher LDA is a reduced-rank version of LDA, which
projects the variables into the lower dimensional subspace that
maximizes the rate of the between-variance and the within-
variance on the training set. As a simple illustration of this
method, let us project a d-dimensional data set onto a line. It
will usually produce a confused mixture of samples from all of
the classes and thus poor recognition performance. However,
by moving the line around, we might be able to find an
orientation for which the projected samples are well separated.

Figure 4(a) illustrates this effect for a two-dimensional (2-D)
example. The goal is to find the direction of this line. In brief, its
formulation is as follows.28 Suppose the observed data matrix X
(d × n, where d is the data set dimensionality and n the number
of samples) has n1 samples in the subset D1, labeled ω1, and

n2 samples in the subset D2, labeled ω2. A linear combination
of the components of X is formed to obtain Y = WTX, and a
corresponding set of n samples of Y divided into subsets, Υ 1
and Υ 2. The magnitude of W is of no real significance, as it
merely scales Y. What is important is finding the best direction
for W that will enable the most accurate classification of the
two subsets.

The extent to which we create or learn a proper represen-
tation and how we quantify what is near and far apart will
determine the success of a classifier. An additional desirable
characteristic is28 a small number of features, which might lead
(i) to simpler decision regions and a classifier that is easier to
train and (ii) to robust behavior, i.e., being relatively insensitive
to noise or other errors.

Logistic Regression (LogR). The main downfall of LDA is
that its predictions are binary class labels, without any indica-
tion of confidence in the predictions. To obtain this we need to
turn to probabilistic classifiers. The one most commonly used
is LogR. This model has a similar structure to the LDA, with an
important difference, namely that now the linear combination
of the components of X is linked directly to the odds ratio of class
membership, i.e., log(OddsRatio(class|x)) = WTX where the
OddsRatio(class| x) = P(class| X)/(1 − P(class| x)). This results
in models that are directly interpretable in terms of the com-
ponents of X through the values of the linear coefficients and
also very well calibrated to the actual probabilities of class
membership.29

These models have a very natural Bayesian interpreta-
tion of the odds of a particular class being detected in
terms of the individual contributions from each component
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Figure 4. (a) Effect of choosing two different values for w for a 2-D example. Top: projection of samples onto two different lines. Bottom: representation
of the projected samples. The example on the right shows greater separation between the red and blue projected points. (b) The ideal number of features
for a classifier. (Reproduced with permission from Ref. 27. © John Wiley & Sons, Ltd., 2014.) An improvement in the percentage of correctly classified
cases for response to therapy in preclinical 1H MRS MV data with increasing number of features is observed in the training set. In the independent test
set, overtraining occurs above 12 features after which the BER increases with increasing number of features

of X = (X1, X2, . . . , Xd) and the corresponding coefficients
(W1, W2, . . . , Wd, W0); the latter is related to the prior value,
or prevalence of the class, as follows:

OddsRatio(class|x) = eW1X1 eW2X2 . . . eWdXd eW0 (1)

Moreover, the probabilistic nature of the model makes it
possible to guide a statistical feature selection process, to which
we return to later in this section.

Nonlinear Classifiers. The linear structure of the previous
models can be seen as a limitation if there are significant
interactions between covariates. To test this hypothesis, two
radically different methodologies can be applied. One is to
exploit the interactions directly via the covariance matrix or by
seeking independent latent variables, which were outlined in
the previous section. The other approach is to model nonlinear
decision boundaries directly. We now explore the latter method.

Perhaps the most straightforward approach to nonlinear
modeling is to allocate spectra to the class membership of
near-neighbors. However, for high-dimensional data such as

MRS, the metric structure is nonintuitive because the pairwise
distances between any one spectrum and all of the others is
typically very similar, in marked contrast to intuition for 2-D
or three-dimensional (3-D) spaces.

It is better to apply semiparametric models that may be purely
discriminative with binary predictions, such as support vector
machines (SVMs).30 This algorithm is known as a maximum
margin classifier because it seeks the largest gaps between
classes using the spectra nearest to the boundary as reference
points, known as support vectors. However, this approach is
not calibrated to likelihood of class membership because it is
not probabilistic. To achieve this, a probabilistic cost function
based on least squares optimization may be used, hence least-
squared support vector machine (LS-SVM).31 Alternatively, a
direct nonlinear model of the posterior class probability can be
used, of which the most frequent is the multilayer perceptron,
sometimes referred to as a feedforward neural network.

Different linear and nonlinear methods have been frequently
benchmarked with similar classification performance. Occam’s
razor then suggests taking the simpler models: typically linear
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and preferably probabilistic. However, more value for clinical
applications will typically be derived from interpretations of
models that support clinical reasoning with data-based evi-
dence. This is the focus of the latent variable models discussed
earlier. Alternatively, if the aim is to study the predictive value
of individual spectral values or features, it is then necessary to
select the most informative ones.

Sequential Feature Selection. All classifiers may be applied
to a predetermined set of spectral components or to features of
known clinical relevance. An alternative approach for finding
the most informative predictors is to carry out a systematic
search using statistical feature selection methods. Sequential
feature selection methods proceed either by successfully build-
ing a model one variable at a time, known as forward selection,
or by starting with all available variables and pruning them one
at a time, in backward selection.

For linear models such as LogR, there are well-understood
models of classification error from which significance values
can be generated for each model parameter. This automatically
ends the process of selecting variables at a particular signifi-
cance threshold set by a traditional p-value. Moreover, forward
selection tests at each step for variables that can be dropped
from, as well as added to the model.

In nonlinear models such as neural networks and SVM,
no such model of the error exists; hence, the procedures
for selecting variables are more pragmatic and sequentially
increase or reduce the mode based on heuristic measures of the
change in classification accuracy. Other related approaches use
correlation-based heuristics to evaluate the worth or merit of
features. These are called correlation-based feature subset (CFS)
evaluators32; they evaluate and hence rank feature subsets rather
than individual features. More complex approaches to take
account of multiple testing using bootstrap resampling of linear
models have also been published for spectral classification.33

Unsupervised Methods. Unsupervised learning studies the
problem of learning from unlabeled data, based on the similar-
ity of patterns, and creates a model that reflects the statistical
structure of the overall collection of such data, assigning
each pattern to a previously unknown class. Clustering or
cluster analysis can be regarded as one of the most important
unsupervised learning problems. It refers to the task of finding
a structure in a collection of unlabeled samples or observations,
and grouping them such that samples/observations in the same
group (or cluster) are more similar (according to a particular
criterion) to each other, than to those in other groups.

The clustering task can be accomplished by several algo-
rithms that differ significantly in their definition of clusters
and how to efficiently find them. The appropriate clustering
algorithm would depend on the individual data set and the
problem intended to be solved. A good clustering method
would be one that creates clusters with high similarity intr-
aclass or intracluster and low interclass similarity. From the
wide range of clustering algorithms available, here, we briefly
describe k-means clustering, one of the most commonly used
methods in the analysis of MRS data.

k-Means Clustering. Arguably, the most widely used clus-
tering algorithm, k-means is an iterative method to find k
prototypes that best represent the variance of the data. This
method optimizes a quadratic function, which is the sum of
within-cluster distances. However, it requires that the number
of prototypes is set in advance and can be prone to finding local
minima of the cost function wherein different prototypes result
from different random initializations. There are no generally
accepted initialization methods.34 In addition, the results of
k-means clustering are strongly dependent on the choice of
features selected to represent the spectra, as these determine
the distances between data points.

Semisupervised Methods. A more advanced approach to unsu-
pervised methods is to define a metric in the space of spectral
features using a probabilistic classifier. This will ensure that the
application of clustering methods with the estimated metric
will naturally group together spectra with similar classification.
The methodology proposed in Ref. 35 takes advantage of a
useful feature of probabilistic models, namely that the change
in information with respect to perturbations of the data defines
a bona fide metric whose local properties are measured by the
Fisher information matrix. This enables more advanced latent
variable models such as NMF and convex-NMF, discussed
earlier (see section titled ‘Dimensionality Reduction’), to be
applied when the sources sought are difficult to separate, for
instance to separate the spectra of metastatic brain masses from
those of glioblastomas.

Performance Evaluation. The evaluation of models of MRS
has two distinct components. One is the interpretation of
the model with respect to clinical expertise. This pertains to
the structure of the latent variables identified in dimensionality
reduction studies, the features selected by data-driven classifiers
and the cluster structure in unsupervised studies. The second
component is the predictive value of the models. For classifiers,
the clinically accepted standard for performance evaluation is
the receiver operating characteristic (ROC) framework. It is
always necessary to estimate classification accuracy using data
separate from the modeling data set, to mitigate the risk of
overfitting. This also applies to linear models but especially to
flexible or nonlinear classifiers. When the available sample size
is low, hold-out samples can be used in the process of cross-
validation. A more robust performance estimations strategy is
the bootstrap, which requires repeated resampling of the data
with replacement, if computational resources permit this.

In brief, the ROC permits several distinct views of the predic-
tive performance to be characterized. First, there is the overall
area under the receiver operating characteristic (AUROC)
curve. This quantifies the discriminating ability of different
classifiers without setting a threshold for classification, thus
separating the tasks of discrimination and the selection of an
operating point. From an operational point of view, the most
relevant measures are the proportion of true cases detected
(sensitivity) and the proportion of true negative cases excluded
(specificity), the latter relating to the false positive detection
rate. Neither of these measures depends on the prevalence of the
data in each class, so they are robust evaluators for unbalanced
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data. They are sometime combined in a single equivalent accu-
racy weighted for balanced data, called the balanced error rate
(BER). However, this can be misleading for practical purposes,
as we see in the following.

In practice, arguably the most important single measure
is a combination of the earlier indices and the prevalence
to estimate the positive predictive value (PPV), which is the
proportion of positive predictions that are correct. However, it
is readily shown that the PPV will necessarily be limited by low
prevalence. In order to derive clinical value from cases where
the prevalence of the class to be detected is lower than about
10%, care must be taken to specify the classification model in
a form that relates to an operational service model.

Evaluation methods allow the estimation of the predictive
ability of the model, that is, the accuracy of the model when
out-of-sample (i.e., new or previously unseen) but similar data
are used. This validation is an essential part of the life cycle of
the development of a classifier. Some of the most commonly
used methods for evaluating MRS-based classifiers are listed
and briefly described as follows.

• Confusion matrix, sensitivity, and specificity: The confusion
matrix, also known as a contingency table, represents the
count of a classifier’s class predictions with respect to
the actual outcome. Each row of the matrix represents
the members in a predicted class, whereas each column
represents the actual value of members in the original
class. It leads naturally to the concepts of sensitivity and
specificity. Sensitivity (true positive rate) measures the
proportion of actual positives that are correctly identified
as such, and specificity (false positive rate) measures the
proportion of negatives that are correctly identified as such.
A good predictor would be one with a high sensitivity and
specificity.

• k-fold cross-validation: one round of cross-validation
involves partitioning a data set into complementary sub-
sets, performing the training on one subset, and validating
the model on the other. In k-fold cross-validation, the
original data set is partitioned into k subsamples. Of the k
subsamples, a single subsample is retained for testing the
model, and the remaining k − 1 subsamples are used as
training data. The cross-validation process is then repeated
k times (as in k-fold), with each of the k subsamples used
exactly once as test data. The k results from the k-fold
cross-validations can then be averaged to produce a single
estimation of prediction accuracy.28

• Leave-one-out (LOO): this is a special and extreme case
of a k-fold cross-validation. It uses a single case from the
original data set for testing, and the remaining cases are
used for training the model. This is repeated so that each
case in the data set is used once as test data. This is the
same as a k-fold cross-validation with k being equal to the
number of cases in the original data set.

• Bootstrapping : it is implemented by constructing a number
n of bootstrap cases of the observed data set (and of equal
size to the training data set), each of which is obtained
by random sampling with replacement from the original
data set (there is almost always duplication of individual
cases in a bootstrap data set). The n results from the

bootstrap samples can then be averaged to produce a single
estimation.28 Bootstrapping may be better at estimating
error rates in a linear discriminant problem compared to
simple cross-validation.36

• ROC curve: it is a graphical plot of the sensitivity vs 1-
specificity for a binary classifier system as its discrimination
threshold is varied.37 It is complemented numerically with
the area under the curve (AUC), whose estimation can be
interpreted as the probability that the classifier will assign a
higher score to a randomly chosen positive sample than to
a randomly chosen negative sample.

• BER: it is the average of the error rate of the classes, i.e., the
average of the proportion of wrong classifications in each
class. It is a useful measure for problems in which classes
are imbalanced (not an unusual characteristic of MRS data
sets) and the classifier could therefore be biased toward the
most frequent class.

• Balanced accuracy rate: it is defined as the arithmetic mean
of the sensitivity and specificity or the average accuracy
obtained for the classes. As in the BER, it is useful because
it avoids overstated performance estimates on imbalanced
data sets. If the classifier performs equally well on all of the
classes, this metric reduces to the conventional accuracy
(that is, the number of correct predictions divided by the
total number of predictions).38

• Performance with out-of-sample test sets: there is consensus
in the literature that the use of a fully independent test set to
validate the ‘correctness’ of a model is one of the most robust
evaluation strategies (provided new cases are available)
and is, to some extent, complementary to the methods
described earlier. It assesses whether a model derived from
an analysis of the original data set is transportable to
similar cases in another location, providing an insight into
the generalization applicability and validity of the model.39

In favorable cases, it may even help to choose the optimal
classifier for further evaluation (Figure 4b).

Which Pattern Recognition Technique is the Best?. As has been
shown, the same classification problem can be analyzed by
many different techniques for feature selection or classifica-
tion. However, when dealing with the practical application
of PR techniques to clinical problems, there are two impor-
tant questions with respect to the presentation of PR results:
namely, does PR method ‘A’ (for example, a novel method)
perform significantly differently than, (i) existing PR method
‘B’ (for example, LDA) and (ii) technique ‘C’ (for example, the
conventional accepted MRS analysis method)?

When comparing the performance of two different methods
(‘A’ and ‘B’) on a two-class classifier for the same sample
of cases, the McNemar test for two proportions on related
groups40 is appropriate. If there are more than two classes, then
Cochran’s Q test41 can be used. If we just want to measure
agreement among different PR techniques, we can use Cohen’s
Kappa.40 Sometimes, classifier results are given as ROC curves;
in these cases, the Hanley McNeil test for comparing two AUCs
is the test of choice.42
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Lessons Learned from Previous Studies
An approach used to overcome the curse of dimensionality has

sometimes been to create superclasses (aggregates of classes)

that have similar spectral patterns.8 This requires either prior

knowledge of the diseases of study and their spectral patterns

or a pilot PR study to determine that these spectral patterns are
in effect too similar to be easily separable.

One of the most important lessons learned from the brain
tumor studies that have dealt with classification was that
easy discriminations normally yield similar performances, no
matter the choice of the feature selection or extraction, and
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classification techniques.43 Despite the fact that classes some-
times have overlapping spectra, linear and nonlinear classifiers
usually perform similarly44 for these types of discriminations.
While this may seem disappointing for PR practitioners, it has
an interesting corollary: spectra that are consistently misclassi-
fied by different PR techniques will be, most probably, outliers
(Figure 5).

In contrast, if the problem is a difficult discrimination, such
as distinguishing glioblastoma from metastasis with 1H SV
MRS, or among types of low-grade glial brain tumors, caution
is required as good results obtained using a particular data
set may not generalize to independent data sets,8 for instance
acquired from patients at a different hospital. Therefore, if we
would like to apply a particular classifier to unseen patient
MRS data or in any relevant application, we must ensure that it
has undergone a previous external validation.47 An important
fact to consider as well is that not all classes are homogeneous,
that is to say, they may not follow a normal distribution. One
example is the spectral pattern of glioblastoma, as assessed by
1H MRS (Figure 6).

There is an important difference between a classifier in the
hands of a mathematician and the same classifier used as a
routine tool by third parties (e.g., radiologists) on their laptop
computers. While we can develop a classifier to distinguish

disease ‘A’ from ‘B’, in a real-life situation MR spectra belonging
to ‘C’, ‘D’, and ‘E’ will also be submitted to that classifier. It
is crucial that the final user of the classifier is made aware of
the classes and data types that it is able to deal with. Otherwise,
the classifier in question would not only be unfairly tested
but, more critically in clinical MRS, risk harm to patients
if it leads to errors in patient management. For example, a
classifier developed with 1.5 T 1H MRS of adults should not be
tested on 7 T spectra unless it has first been demonstrated that
both data types would be compatible. Unfortunately, this may
require a lengthy and expensive data collection process and
validation, which may be less attractive unless the potential for
improvement at 7 T were high and the performance at 1.5 T
were sub-par, for example.

Finally, despite their attractiveness from the PR point-of-
view, two-class classifiers will find a clinical application only
in particular situations and clinicians will normally demand
multiclass classifiers. This raises the question of what the
main purpose of using advanced PR methods should be for
clinical MRS. PR may be suitable as an initial screen among
multiple classes, but for class labeling, it may be best suited to
differential diagnosis between two classes where an ambiguity
remains after information from other pertinent modalities has

Figure 7. The INTERPRET DSS version 3.1 screen for the ‘low grade glial vs aggressive tumors vs low grade meningioma’ short-TE classifier. The screen
is divided in two main parts, left and right. The overview space of cases in the database is displayed on the left side, where each case is a colored circle
(see legend on the bottom left). The position of each case is determined by the result of the PR algorithm, in this case sequential forward feature selection
followed by LDA, as described in Ref. 14. The right side has two panels (top and bottom) for comparison of the spectra from two different individual
cases. The top right panel displays the short-TE spectrum of an astrocytoma of WHO grade II from the study,8 which is displayed as a yellow symbol in
the overview space, correctly classified as low-grade glioma. The bottom right panel displays the mean TE spectrum of the corresponding class from the
INTERPRET validated database
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(a) (b)

Figure 8. Nosological image. (Adapted from Ref. 5.) (a) Nosological image (yellow, necrosis; red, high-grade glioma; light blue, cerebrospinal fluid;
purple, normal brain; light green, meningioma). The tumor was a high-grade glioma. (b) Morphological T2-weighted image with the spectroscopic grid
overlaid (black lines)

been exhausted. These concerns, as well as the need for user-
friendly data input and evaluation of classifier output, have led
to the development of decision-support systems.8 It is in this
step where the final clinical or biomedical user will experience
classifiers. Having such systems will then require, for example,
well-documented data sets, processing pipelines, and classifiers
developed by PR practitioners. Unfortunately to date, most
findings on PR with MRS have not yet reached that stage of
maturity.

An important issue for the final users of a classifier is the
visualization of their results. The possibility of seeing each
spectrum as a symbol in a 2-D or 3-D space, where its position
is determined by the PR algorithm, has been shown to be a
successful approach, and it has even been implemented in a
decision-support system (Figure 7).8,14,49 On the other hand,
for MV data, the most successful representation has been the
‘nosologic image’ concept, where each pixel or voxel is colored
according to the predicted class (Figure 8)5,50. An interesting
approach related to visualization of MV data was developed
for classifying voxels in an MV study of brain tumor patients,
as belonging to the investigated classes or to ‘unknown’ or
‘undecided’ (Figure 9), by applying a threshold based on
Mahalanobis inter- and intraclass distances.12

With respect to the tools to perform PR analyses, the
MRS specialist has the choice to either use mathematical plat-
forms, such as R or Matlab, or more user-friendly programs
that facilitate performing PR of their MRS data. A commer-
cial alternative is SIMCA (http://www.umetrics.com/products/
spectroscopyskin), which provides PCA and other techniques
such as partial least squares (PLS) and is widely used by the
‘-omics’ community. A free software suite that integrates PCA,
sequential feature selection, and LDA is SpectraClassifier; it
has been shown to perform robustly with 1H MRS from brain
tumors.26,27
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