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Abstract 

Contemporary research into training load in team sports primarily focusses on the 

physiological load demands, whereas the biomechanical load still remains largely 

unexplored. While the former refers to the work-energy relationship when the players 

move around the pitch, the latter refers to the external forces the players are exposed to 

from their movements around the pitch. Monitoring of the biomechanical load helps 

practitioners estimate the stresses on an athlete’s musculoskeletal structures as a 

consequence of the external forces acting on their body. Monitoring of the biomechanical 

load is currently restricted to laboratory settings, but the recent introduction of GPS 

devices with integrated accelerometers in team sports may enable practitioners to monitor 

whole-body biomechanical load during training sessions and match-play. The aim of this 

thesis was therefore to explore if body-worn accelerometry can be used for whole-body 

biomechanical load monitoring in team sports.  

 

The first study of this thesis showed that although a linear relationship exists between 

body-worn accelerometry (e.g. from GPS integrated accelerometers) and whole-body 

accelerations, the linear relationship based on Newton’s second law of motion is weak 

regardless of accelerometer location (trunk, pelvis or tibia). Body-worn accelerometry 

only measures the acceleration of the segment it is attached to and is therefore inadequate 

to measure the complex multi-segment dynamics of the whole body during team sports 

movements. The second study of this thesis did however offer a potential solution to that 

problem, and it was demonstrated that the complex multi-segment dynamics of the body 

and the associated ground reaction forces (GRF), a surrogate for whole-body 

biomechanical load, can be estimated with a mass-spring-damper model (MSD-model). 

Nonetheless, the MSD-model’s accuracy to estimate GRF slightly decreases for sharp 

changes of direction at high intensities, because the absorption of energy and generation 
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of energy are decoupled. Finally, a novel approach to estimate GRF from the combination 

of trunk-mounted accelerometry and a MSD-model was introduced in this thesis. This 

approach showed that trunk accelerometry data has the potential to generate the eight 

model parameters required to estimate GRF from a MSD-model, though further work is 

required in particular towards improving the model’s ability to estimate GRF across a 

wide range of activities.  

 

The novel approach introduced in this thesis has the potential to give practitioners in team 

sports the opportunity to monitor whole-body biomechanical load due to player-ground 

interaction in the field, a necessity if they wish to predict the consequent musculoskeletal 

structural adaptations of training sessions and match-play. 
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BACKGROUND 

 



Background 

2 

 

Researchers and practitioners have had a longstanding interest in monitoring and 

understanding athletes’ training load (the volume, frequency and intensity of their 

training). Monitoring training load has in the first place enabled researchers and 

practitioners to understand how adjustments in training load can lead to improved 

performance. The first model of the relationship between training load and performance 

was proposed in the mid 1970’s where it was suggested that performance depends on the 

athlete’s fitness and fatigue, and increased fatigue was associated with decreased 

performance and increased injury risk (Banister et al., 1975). Though the field of training 

load monitoring has grown substantially since then, modern training load monitoring still 

builds on the principles suggested by Bannister et al. (1975) where the physiological 

aspect of training load monitoring is the main focus when pursuing performance 

enhancement as well as injury prevention. 

 

The physiological aspect of training load monitoring is governed by monitoring the 

relationship between the work performed by the athletes from voluntary skeletal muscle 

contractions to move their body around the field and the energy (with or without oxygen 

uptake) needed to complete the required work. This work-energy relationship has been 

extensively monitored in professional athletes and more recently gone from heart rate 

monitoring to GPS position tracking in team sports. GPS data can monitor the external 

work generated by the athlete (e.g. distance covered and running velocity) and the 

associated energy demands. In other words, if the body were considered as a car then it 

monitors fuel consumption based on the athlete’s velocity and distance travelled. This 

can help scientists and practitioners to make sure the athlete is able to cope with the 

energetic demands and make time for recovery (refuelling) when needed. Despite the 

introduction of technologies such as GPS, and an increased emphasis on training load 

monitoring in professional team sports such as basketball, football and rugby, the injury 
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rates in professional team sports remain unchanged (Dick et al., 2007; Ekstrand et al., 

2013; King et al., 2010). Therefore, a shift in focus may be required. 

 
Figure 1: Car analogy used to illustrate the difference between physiological and 

biomechanical load monitoring. The permission to reproduce the human skeletal images has 

been granted by iStock/LindaMariaB.  
 

Keeping the car analogy, the athlete’s soft tissues (bones, cartilage, muscles, tendons and 

ligaments) work as shock absorbers for the external forces that athletes are exposed to 

(Figure B.1). These shock absorbers undergo considerable stresses from the high forces 

they need to generate against the ground during accelerations and decelerations. Just as a 

high physiological load leads to an empty fuel tank, a high biomechanical load leads to 

wear and tear of the shock absorbers, which has been largely unexplored in the team 

sports. Whilst it seems logical that appropriate levels of biomechanical stress will lead to 

desirable bone and muscle adaptations, it remains pretty much unknown what constitutes 

‘appropriate’ biomechanical load during training sessions and match-play in team sports. 

Similarly, excessive accumulated stresses over time with insufficient recovery will lead 

to undesirable damage of the soft tissues (overload/overuse injuries), or in the worst case 

scenario to acute injuries when the individual stresses are simply too large for the soft 

tissues to resist. Monitoring of the biomechanical load to which team sports players are 
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exposed might therefore help to better understand the dose-response relationship between 

biomechanical load and overuse injuries in team sports. However, monitoring the 

biomechanical load imposed on a player’s body is currently restricted to laboratory 

measurements and therefore remains very limited during training sessions and match-

play. 

 

A strong candidate for biomechanical load monitoring are accelerometers that can be 

integrated in the GPS devices worn by the players, considering that Newton’s second law 

of motion (F = m ∙ a) offers a linear relationship between forces acting on the body and 

the net acceleration of the body. As promising as this sounds, it still remains largely 

unexplored if the accelerations measured with the GPS integrated accelerometers, 

typically attached to the torso, are related to the net acceleration of the whole body. If a 

linear relationship does not exist, one might have to explore other methods from which 

accelerations measured through trunk-mounted accelerometers can be used to monitor the 

external forces acting on team sports players during training sessions and match-play. 

  

The seed for a highly innovative research venture was planted.
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1.  

The aim of this literature review is to provide the reader with information regarding the 

current literature on 1) training load monitoring and the differentiation between 

physiological and biomechanical load; 2) training load monitoring using GPS integrated 

accelerometry and its application for biomechanical load monitoring; 3) spring-mass 

models and the application of these to simulate whole-body acceleration of the human 

body during running. Finally, the aim and objectives of this thesis are outline at the end 

of this chapter.  

 

1.1. Training load monitoring 

This section of the literature review will cover the basic principles of training load 

monitoring and introduce the difference between physiological training load and 

biomechanical training load.   

 

1.1.1. Evidence based training prescription 

In team sports, the coaches and team of sports scientists analyse player performances 

during and after every match or training session, often based on subjective perceptions. 

The information gained from this analysis is used to make decisions about team selection, 

training periodisation, the mental and physiological status of the players, etc. (Akenhead 

and Nassis, 2016; Cummins et al., 2013; Impellizzeri et al., 2004). The coaching team 

uses this to plan aspects such as intensity, frequency or volume of the following training 

sessions. This plan is then implemented within an organisational structure and the training 

load monitoring cycle starts over again (Figure 1.1). The sports scientist’s role in the 

training load monitoring cycle is to provide objective evidence of the players’ 

performance or state. This objective analysis is expected to better inform the coach about 

changes in a player’s performance and minimize some of the uncertainties of the coach’s 

subjective analysis (Akenhead and Nassis, 2016; Cummins et al., 2013). Providing robust 
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and evidence based training load information is crucial to get the coach’s “buy-in”, as 

otherwise the objective analysis from the sports scientist easily becomes redundant.         

 

 

Figure 1.1: The training load monitoring circle illustrating how subjective (coach) and 

objective (sports scientist) analysis is used to make decisions on training planning, match 

selection etc. 

 

1.1.2. Dose-response relationship of training 

Coaches and sports scientists monitor their players on a daily basis to gain insight into 

the dose-response relationship of the prescribed training. Where the dose refers to the 

stresses imposed on the player and the response refers to the adaptation following the 

prescribed training (Banister et al., 1975; Impellizzeri et al., 2004; Lambert and Borresen, 

2010). Understanding the dose-response relationship of training is the first step to provide 

evidence-based training prescription (Akubat et al., 2014; Busso, 2003). Since the 

response (adaptations) is dependent on the training dose (e.g. the intensity, frequency or 

volume), it is important that the level of the dose challenges the players to an appropriate 

level which will lead to positive adaptations. It is well-known that positive adaptions to 

the aerobic, cardiovascular and muscular systems follow the supercompensation principle 

in team sports (Meeusen et al., 2006). The positive adaptations are associated with 
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improvements in endurance, speed, strength and power, and thereby the player’s 

performance (Busso, 2003). At the same time insufficient or excessive levels of training 

load can lead to negative adaptations that degenerate the cardiovascular and muscular 

systems which eventually can result in failure to the system such as injuries and illness 

(Soligard et al., 2016; Viru and Viru, 2000). Adjusting the training load through 

appropriate periodization, which combines adequate training stimuli with optimal 

recovery periods, is therefore of high importance for sports scientists to ensure the players 

reach the desired response/adaptations. The internal adaptation imposed from training, 

the so called internal load, is however very difficult to measure directly in the field and is 

therefore traditionally estimated from the external work completed by the player, the so 

called external load (Akubat et al., 2014; Impellizzeri et al., 2004). Monitoring the 

external load is therefore widely accepted as a method to gain insight into the internal 

load imposed on the body.   

 

1.1.3. Physiological vs. biomechanical load monitoring 

The body’s soft tissues (bones, cartilage, muscles, tendons and ligaments) follow the 

same loading principles as the cardiovascular, metabolic, and muscular systems though 

this seems to have received less attention in training load monitoring. The principle is 

illustrated in Figure 1.2 where the load volume is dictated by the frequency, duration and 

intensity, and the impact load is a broad representation of joint load (Dye, 2005; Kibler 

et al., 1992). The dose-response relationship of training load can lead to undesirable 

damage to the soft tissues, either leading to overuse/overload injuries because of 

insufficient recovery, or (subsequently) to acute injuries when the load rapidly increases 

and the load becomes too large for the tissue. At the same time the right dose will lead to 

positive adaptions of the tissue (Dye, 2005; Kibler et al., 1992; Soligard et al., 2016).  
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Figure 1.2: Remake of the model presented in Dye (2005) illustrating the relationship between 

tissue loading and structural adaption. The grey area illustrates the zone of supraphysiological 

overload which is reached with the right level of load volume and impact load. 

 

Measures of physiological training load in team sports have traditionally been related to 

the kinetic energy associated with a player’s movement around the pitch. The external 

physiological training load is practically done by monitoring the distance covered and 

running velocity from GPS devices or semi-automated video tracking systems providing 

sports scientists with an estimate of the work done by the player (Cunniffe et al., 2009; 

Gaudino et al., 2014; Malone et al., 2015). The player’s movement is a result of voluntary 

muscle contraction, where the muscle cells are stimulated with a nerve impulse from the 

brain resulting in an active muscle contraction. The muscle cells require energy for this 

contraction, either from energy already stored in the muscle cells or from the 

cardiovascular system’s delivery of oxygen to the muscle cells. Heart rate monitoring has, 

due to its linear relationship with oxygen uptake (Hopkins, 1991), been used frequently 

as a measurement of the internal physiological training load in team sports (Drust et al., 

2007), primarily through the Training Impulse (TRIMP) combining different measures of 
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heart rate (maximal, rest, average heart rate) and training duration (Morton et al., 1990). 

Heart rate is still the most commonly used measurement of the internal physiological 

training load in a field context despite daily variation (Bagger et al., 2003). Session 

duration dependent rating of perceived exertion (sRPE) has also been frequently used to 

estimate the internal physiological load in team sports (Foster, 1998; Gallo et al., 2015; 

Impellizzeri et al., 2004; Lovell et al., 2013). It appears that a number of methods 

successfully have been developed and implemented in team sports to monitor the external 

and internal physiological load in team sports and that researchers and practitioners 

should explore methods that can monitor the biomechanical load players are exposed to. 

 

Figure 1.3: Illustration of the attempt to separate the external and internal load of physiological 

and biomechanical load from each other and the associated adaptations (taken from 

Vanrenterghem et al., Under Review). 

 

When players move around the pitch they generate forces against the ground to accelerate 

and decelerate their body, however this comes with a cost because equal and opposite 

reaction forces from the ground (GRF) are acting on their body imposing a biomechanical 

load. As a consequence of the external forces from the ground, the body’s soft tissues are 
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imposed to biomechanical stress as they absorb the external forces. The internal 

biomechanical load associated with external load is the joint contact forces and the muscle 

tendon forces (Figure 1.3). In vivo measurements of the internal forces are rare, as this 

will require direct measurements of the joint contact forces from force/pressure sensors 

integrated in the joint and therefore are seen only in patients with artificial knee or hip 

joint (D'Lima et al., 2007; Mundermann et al., 2008). The joint contact forces and muscle 

tendon forces are therefore typically estimated from inverse dynamics in biomechanics 

using musculoskeletal modelling systems such as AnyBody (Damsgaard et al., 2006) and 

OpenSim (Delp et al., 2007). However, these modelling systems currently require 

external measurements of the body’s kinematics and/or kinetics to estimate the internal 

load. Three-dimensional motion capture systems, where a series of optoelectronics 

cameras are used to measure the movement of retroreflective markers positioned on 

anatomical landmarks (Winter, 2005), is for instance required to measure the three-

dimensional kinematics of the body and therefore limits it application in applied sports 

settings. Though recent studies have shown promising results in using kinematics from 

full-body inertial sensor systems as model input in musculoskeletal modelling systems 

(Koning et al., 2015).  

 

Measurements of the external GRF acting on the human body are typically taken from 

force transducers inbuilt to the ground (force platforms) which since its introduction in 

1938 (Elfmann, 1938) has been considered as the gold standard to measure GRF (Winter, 

2005). These are typically restricted to laboratory settings and can only measure the GRF 

from one foot-ground-contact, making the use of these in the field very limited. 

Measurements of the external GRF can also be obtained from other techniques such as 

insole pressure sensors (Jung et al., 2014) and full-body motion capture (Mapelli et al., 

2014), but these also come with practical and technical constraints when applied in a field 
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setting. Another candidate for external biomechanical load monitoring in the field is 

accelerometry and in particular the GPS integrated accelerometers. 

 

1.2. Training load monitoring using GPS integrated accelerometry  

This section of the literature review will cover the use of GPS integrated accelerometry 

for training load monitoring in the current literature. This includes general information 

about the GPS integrated accelerometers as well as their current application for 

physiological and biomechanical training load monitoring.  

 

1.2.1. Micro GPS sensor technology in team sports 

Since its introduction in Australian football in the mid-2000s GPS devices has become a 

common training load monitoring tool in professional team sports. The literature on team 

sport players’ activity profiles including measurements of total distance covered and 

running velocity (typically through different speed zones) has accordingly increased 

considerably over the last decade. Whereas the semi-automated video tracking systems 

such as Prozone are limited to match analysis, GPS technology has made it possible to 

monitor the energy demands of player’s movements during training sessions (Aughey, 

2011; Cummins et al., 2013; Dellaserra et al., 2014). The GPS technology is even allowed 

during games in Australian football and rugby, and more recently the international 

football federation (FIFA) has also allowed GPS technology in professional football. In 

other words, it looks like the GPS technology as a training load monitoring tool in 

professional team sports is here to stay. 
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Figure 1.4: Example of a GPS device (MinimaxX S4, Catapult Sports) and its location on the 

upper trunk within a small pocket of a tight fitted vest. 

 

The GPS device has a total mass of 64 grams, 88 x 50 x 19 mm in dimension and is 

typically located on the upper trunk between the scapulae within a small pocket of a tight 

fitted elastic vest, see Figure 1.4. The GPS device’s reliability and validity with specific 

focus on sampling frequency (currently at 10 Hz) has been extensively investigated in the 

current literature (Akenhead et al., 2014; Aughey, 2011; Coutts and Duffield, 2010; 

Jennings et al., 2010; Varley et al., 2012). Though the GPS devices have shown 

acceptable levels of accuracy and reliability of total distance covered during team sports 

movements (Coutts and Duffield, 2010; Jennings et al., 2010) its accuracy is 

compromised at high speeds, short distances, accelerations over 4 m·s-1, and when players 

frequently change their direction (Akenhead et al., 2014; Varley et al., 2012). Researchers 

and sports scientists have therefore turned their attention to the inertial measurement unit 

(IMU) integrated in the GPS device including a tri-axial accelerometer, gyroscope and 

magnetometer. The IMU can potentially provide better information about high intensity 

movements, sports specific movements (e.g. jumps and kicking) and the external forces 

from collisions with other players and from player-ground interaction and even allow 

monitoring during indoor sports which is not possible from the GPS measurements 

(Cummins et al., 2013; Dellaserra et al., 2014).  

 

Dimensions:  

- Length: 88 mm 

- Width: 50 mm 

- Depth: 19 mm 

Mass (64 grams)  

GPS (10 Hz) 

3D Accelerometer (100 Hz) 

3D Gyroscope (100 Hz) 

3D Magnetometer (100 Hz) 

Heart rate from Polar 

compatible strap 
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1.2.2. GPS integrated accelerometry 

The recent advancement in IMU sensor technology has made it possible to manufacture 

low cost sensors which has increased the use of IMU to detect sports movements in 

individual and team sports such as tennis, weightlifting, swimming, baseball, handball 

and cricket (Chambers et al., 2015; Luteberget and Spencer, 2016). Though the IMU 

sensor integrated in the GPS device also includes a gyroscope and magnetometer, the 

accelerometer has gained considerably more attention than the other two sensors. 

Accelerometers measure the applied accelerations acting along one or three sensing axes, 

where the former is called a uni-axial accelerometer and the latter a tri-axial 

accelerometer. Though a number of different accelerometer types exist (e.g. piezo-

resistive and piezoelectric accelerometers) the conceptual measuring principles are based 

on a spring-mass system. A sensing mass is attached to a suspension system, and the 

applied acceleration in the accelerometer is measured from the displacement of the mass 

along its reference axis (Mathie et al., 2004; Yang and Hsu, 2010). Accelerometers were 

first introduced in the 1950s to measure gait velocity and accelerations (Saunders et al., 

1953) and have historically been used in physical activity monitoring to estimate energy 

expenditure, classify different movement patterns in daily life activities, identify risk of 

falls (Mathie et al., 2004; Yang and Hsu, 2010), or measure tibial shock acceleration 

during walking, running and jumping activities (Lafortune, 1991).      

 

Accelerometry has been used in a number of ways in team sports, the raw GPS integrated 

accelerometer and/or gyroscope signal has for instance been used to successfully classify 

team sports movements (Wundersitz et al., 2015d) whereas contrasting results have been 

found in its ability to detect tackling/collisions in rugby and Australian football from 

automatic tackle/collision algorithms (Gabbett, 2013; Gastin et al., 2014; Kelly et al., 

2012). Finally, a recent study has shown that raw GPS integrated accelerometer data 



Chapter 1 Literature Review 

15 

cannot be used to measure the average horizontal acceleration during high speed running 

(Alexander et al., 2016). The latter study confirms the limitation of the GPS integrated 

accelerometers to monitor players’ kinetic energy demands as outlined in Figure 1.3 

despite its successful application in physical activity monitoring. The most common use 

of accelerometry in team sports is to calculate the amount of accelerations as a measure 

of load, where a number of manufacturers have proposed to summarise the continuous 

accelerometer signal from the GPS integrated accelerometer as a modified vector 

magnitude. The different commercial GPS integrated accelerometer companies use 

different terminologies for the summarised vector magnitude (e.g. PlayerLoadTM from 

Catapult Sports and Body Load from GPSports Systems) where PlayerLoadTM is most 

commonly reported in the current literature. PlayerLoadTM is an arbitrary unit vector 

magnitude value expressed as the square root of the sum of the squared instantaneous 

rates of change in acceleration along each of the three accelerometer axes, divided by a 

scaling factor of 100 (Boyd et al., 2011), see Equation 1.1. 

 

𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑𝑇𝑀 = ∑ √
(𝑎𝑦1−𝑎𝑦−1)2+(𝑎𝑥1−𝑎𝑥−1)2+(𝑎𝑧1−𝑎𝑧−1)2

100
   [Equation 1.1] 

 

Where ax, ay, az, is the instantaneous acceleration from the accelerometer’s medial-lateral, 

anterior-posterior and vertical axis, respectively. Due to the single value nature of the 

summarised vector magnitude it has its clear advantages in applied team sports because 

it is very easy to collect and has therefore been used to investigate match and training 

demands in a range of team sports such as Australian football (Boyd et al., 2013; Kempton 

et al., 2015; Ritchie et al., 2016), basketball (Montgomery et al., 2010), football (Barrett 

et al., 2016a; Barron et al., 2014; Dalen et al., 2016), hockey (Polglaze et al., 2015), 

lacrosse (Polley et al., 2015), netball (Chandler et al., 2014; Cormack et al., 2014; Young 

et al., 2016) and rugby union (McLaren et al., 2016c). Recent studies have also explored 
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the relationship between the summarised vector magnitude obtained from the GPS 

integrated accelerometry and the risk of soft tissue injuries in Australian football (Colby 

et al., 2014) and football (Bowen et al., 2016; Ehrmann et al., 2016). The downside of the 

summarised vector magnitude is however that it is very difficult to interpret how the 

“shaking up” of the body is related to the internal training load. This is confirmed in the 

contrasting findings from studies exploring the relationship between PlayerLoadTM and 

fatigue (Barrett et al., 2016b; Page et al., 2015, 2016) and between PlayerLoadTM and 

external measurements of physiological load such as total distance covered (Casamichana 

et al., 2013; Polglaze et al., 2015) and internal physiological load such as oxygen uptake, 

heart rate (Barrett et al., 2014; Highton et al., 2016; Scanlan et al., 2014; Scott et al., 2013; 

Walker et al., 2016) and session duration dependent rating of perceived exertion (sRPE) 

(Casamichana et al., 2013; Gallo et al., 2015; Gaudino et al., 2015; Gomez-Piriz et al., 

2011; Lovell et al., 2013; Scanlan et al., 2014; Scott et al., 2013). Taking a step backwards 

exploring the potential of the raw accelerometer data is therefore needed to fulfil the GPS 

integrated accelerometers prospective in a training load context.         

 

A number of recent studies have explored the GPS integrated accelerometers reliability 

and validity during laboratory and field tests (Barrett et al., 2014; Boyd et al., 2011; Kelly 

et al., 2015). The variable PlayerLoadTM has for example shown moderate to high 

reliability across tasks performed at different speeds (Barreira et al., 2016) and moderate 

to high within-subject reliability regardless of accelerometer position (upper and lower 

trunk), whereas large between-subject variance in PlayerLoadTM has been observed, 

indicating that between-player comparisons should be made with caution (Barreira et al., 

2016; Barrett et al., 2014). Recent studies have found contradicting results for the GPS 

integrated accelerometer’s ability to measure peak accelerations; the GPS integrated 

accelerometer underestimated peak accelerations when tested against a reference 
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accelerometer, particularly during high frequency movements (Kelly et al., 2015; Lake et 

al., 2014), whereas it overestimated peak acceleration when tested against acceleration 

data obtained from three-dimensional motion analysis systems (Wundersitz et al., 2015a; 

Wundersitz et al., 2015b; Wundersitz et al., 2015c). The overestimation could be caused 

by the poor quality “fixing” of the accelerometer to the trunk resulting in unwanted high-

frequency artefacts in the data. The application of a low-pass filter has for instance shown 

to improve the validity though the optimal filtering is yet to be established (Wundersitz 

et al., 2015a; Wundersitz et al., 2015b; Wundersitz et al., 2015c; Wundersitz et al., 2013).  

 

1.2.3. Biomechanical load monitoring from GPS integrated accelerometry 

The use of GPS integrated accelerometry for biomechanical load monitoring in team 

sports is based on Newton’s second law of motion (F = m ∙ a), with a common assumption 

that the acceleration from the trunk-mounted accelerometer is equal or very similar to the 

whole body acceleration. Whereas the GPS integrated accelerometer ability to monitoring 

physiological load has been explored extensively in the current literature, its ability to 

monitor whole-body biomechanical loading remains largely unexplored. In fact, this is 

limited to three studies in the current literature, where trunk acceleration from GPS 

integrated accelerometers has been validated against GRF from force platforms (Table 

1.1). In two of these studies vertical and resultant peak acceleration data from GPS 

integrated accelerometers were compared with GRF measurements during 

jumping/landing tasks (Tran, 2010) and running/change of direction tasks (Wundersitz et 

al., 2013). Both studies showed that the GPS integrated accelerometers significantly 

overestimated peak resultant GRF. Both studies found that the overestimation was 

reduced when a low-pass filter of 10-25 Hz was applied to the accelerometer data 

removing high frequency signal noise (likely due to movement of the unit/vest relative to 

the trunk).  
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Table 1.1: Summary of the findings from the studies validating GPS integrated accelerometry 

against golden standard GRF measurements. 

Author 

(year) 

Participants 

(N) 

Acceleromete/ 

Force plate 
Task 

Dependent 

variable 
Findings 

Tran et al. 

(2010) 
10 

SPI Pro from 

GPSports 

 

A portable 

force plate 

(model ACG) 

from Advanced 

Mechanical 

Technologies 

DLAND 

from 30, 40 

and 50 cm 

heights 

 

CMJ 

Peak vertical 

and resultant 

acceleration 

 

Filtered 

acceleration data 

(20 Hz low-pass 

filter) 

↑ DLAND and 

CMJ 16.8 – 

30.8% 

(rp: 0.45 – 0.56)  

 

Filtered data 

↑ DLAND and 

CMJ 10.9 – 

22.2% 

(rp: 0.55 – 0.70)  

Wundersitz 

et al. (2013) 
17 

SPI Pro from 

GPSports 

 

In-ground  

force plate 

(BP600900) 

from Advanced 

Mechanical 

Technology 

Running 

and COD 

(45°,90°, 

and 180°) 

 

Velocities 

ranged from 

2.5 to 7.4 

m·s-1 

Peak vertical 

and resultant 

acceleration 

 

Filtered 

acceleration data 

(10 - 25 Hz low-

pass filter) 

↓ Vertical 

acceleration for 

running and all 

COD  

(rs: -0.26 – 0.33) 
 

↑ Resultant 

acceleration for 

running and all 

COD  

(rs: 0.00 – 0.48) 

 

Filtered data 

↓ Vertical 

acceleration for 

running and all 

COD  

(rs: -0.26 – 0.39) 
 

↑ Resultant 

acceleration for 

running and all 

COD  

(rs: 0.23 – 0.76) 

Hollville  

et al. (2015) 
14 

MinimaxX S4 

from Catapult 

 

One on the 

upper trunk & 

one at the  

lower trunk 

 

6 individual 

Kistler force 

plates (KI 

9067) 

connected in 

series 

General 

team sports 

movements  

 

A running 

start  

 

A simulated 

1x1 

 

All at both 

high and 

low 

intensities 

PlayerLoadTM 

Upper back 

↑ 43.3 – 95.6% 

for all tasks  

(rp: 0.74 – 0.90)  

 

Lower back 

↑ 78.7 – 113.8% 

for all tasks  

(rp: 0.77 – 0.93)  

↑: Overestimate; ↓: Underestimate; DLAND: Drop landings; CMJ: Countermovement jumps; rp: Pearson 

r-value; COD: Change of direction; rs: Spearman’s correlation coefficient.   
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Contrasting results were however found when vertical acceleration was compared to 

vertical GRF (vGRF), as it overestimated vGRF for the landing/jumping tasks (Tran, 

2010) but underestimated vGRF for the running/change of direction tasks (Wundersitz et 

al., 2013). These contrasting findings are most likely because the accelerometer measures 

the acceleration in its own local coordinate system, and although the vertical axis of the 

accelerometer is the same as the vertical axis of the GRF when the participant is standing 

still, this would not be the case when the participant is performing changes of directions 

where the trunk is often leaning forward. Nonetheless, it was concluded that the GPS 

integrated accelerometers could measure whole-body impact peaks from the collision 

with the ground during team sports activities with reasonable accuracy when a 10-20 Hz 

low-pass filter was applied to the accelerometer data (Tran, 2010; Wundersitz et al., 

2013). The optimal filtering frequency is yet to be established which can prove to be 

difficult as the optimal filtering frequency will depend on sports, task and intensity.  

 

In a more recent study the traditional output variable from the GPS integrated 

accelerometer when used in the field (PlayerLoadTM) was compared with PlayerLoadTM 

calculated from multiple force platforms during typical running related team sports 

movements (Hollville et al., 2015). Though PlayerLoadTM calculated from the upper trunk 

accelerometer overestimated PlayerLoadTM calculated from the GRF by as much as 43.3-

58.0% for low intensity activity and 52.4-95.6% for high intensity activities, moderate to 

strong correlations (0.74-0.90) were found between the accelerometer and GRF data. In 

addition even larger overestimations were found for a GPS integrated accelerometer 

positioned on the lower part of the trunk, at the level of the posterior superior iliac spines, 

(78.7-113.8%) but with similar correlations (0.77-0.93) across the different tasks and 

intensities (Hollville et al., 2015). The higher PlayerLoadTM observed from the lower 

trunk-mounted accelerometer is similar to observations from previous studies that have 
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explored the effect of GPS integrated accelerometer location and PlayerLoadTM during 

90 minutes of simulated football (Barrett et al., 2014; Barrett et al., 2016b). Similar results 

were found for treadmill and overground running at different running intensities, when 

accelerations of the upper and lower trunk were measured with a similar 100 Hz tri-axial 

accelerometer (Kawabata et al., 2013). 

 

The discrepancy between trunk-mounted accelerometer data and GRF is expected as the 

impact acceleration from the foot colliding with the ground is attenuated as it travels up 

along the body (Lafortune et al., 1996). The location of the accelerometer is therefore 

likely to influence the relationship with whole-body loading. The relationship may also 

be influenced by the type of activity and intensity of the activity. Accelerometers located 

at the hip have for example demonstrated an acceptable association with the GRF, during 

daily life activities (Meyer et al., 2015; Rowlands and Stiles, 2012), and accelerometers 

located at the hip and tibia have shown a strong association with GRF in vertical jumping 

(Elvin et al., 2007; Setuain et al., 2016). Not only is the magnitude of the accelerometer 

signal influenced by the position of the accelerometer, the acceleration pattern also 

differs. Differences in the medial/lateral acceleration pattern from an upper and lower 

trunk-mounted accelerometer have also been observed during running (Kawabata et al., 

2013). The difference in segmental acceleration from different accelerometer locations 

and whole-body acceleration from force platforms is therefore a combination of the 

attenuation of the acceleration magnitude and changes in acceleration pattern. 

Nonetheless it still remains uncertain which segmental accelerations and accelerometer 

locations would better relate to whole-body biomechanical loading (GRF) during typical 

team sports movements. 
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1.3. Spring-mass modelling of the human body 

Spring-mass models has successfully been used to estimate the whole-body acceleration 

and the associated GRF acting on the human body during running. If a direct relationship 

does not exist between body-worn accelerometry and whole-body acceleration, 

researchers might seek inspiration from the biomechanical literature on spring-mass 

models. A brief literature review on the current use of spring-mass models in sports 

science is therefore provided in the following section. Though a number of different 

spring-mass models exist, this literature review will focus on the most commonly used 

spring-mass models, i.e. consisting of a single mass and a spring, and a mass-spring-

damper model consisting of spring-mass model on top of another mass in series with a 

spring-damper system. 

  

1.3.1. The “bouncing” nature of running  

During running the human body follows a spring-like behaviour where elastic energy is 

absorbed and re-generated as the body’s CoM moves down and up. During the contact 

phase elastic energy is absorbed and re-generated by the body’s soft tissues (bones, 

cartilage, ligaments, tendons, muscles), where the energy is absorbed when the tissue is 

compressed/stretched and returned as it recoils (Cavagna et al., 1964; Farley and 

Gonzalez, 1996). As the body’s CoM moves downwards during the first half of the stance 

phase elastic energy is stored in the legs’ soft tissues. In the second half of the stance 

phase the stored energy is released and the CoM is moved upwards again as the soft 

tissues recoil the stored energy accelerating the body into the next step (Blickhan, 1989; 

Farley and Gonzalez, 1996; McMahon and Cheng, 1990). As a result of the storage and 

return of energy the body bounces along the ground during running, similar to a person 

hopping on a pogo stick, where the spring stores and returns the mechanical energy.  
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The spring-like behaviour of the human body is however dependent on movement and 

frequency of the movement (Farley et al., 1991; McMahon and Cheng, 1990). This is for 

example the case when hopping at low frequencies because the maximal force is reached 

before the body reaches its maximal vertical displacement (Farley et al., 1991). This 

violates the assumption of a 100% elastic system because the storage and return of elastic 

energy is not equal. Similarly, the body does not follow the spring-like behaviour during 

walking because the CoM is at its highest at the middle of the stance phase (Cavagna et 

al., 1976; McMahon and Cheng, 1990).    

 

1.3.2. Spring-mass model 

A simple spring-mass model, consisting of a single mass representing the CoM on top of 

a  mass-less linear spring (Figure 1.5), has been successful in describing and predicting 

CoM movement and GRF of running humans and animals (Alexander, 1984; Blickhan, 

1989; McMahon and Cheng, 1990). The force acting on the model is equal to the force in 

the spring, which according to Hooke’s law is proportional to the ratio of the 

compression/extension and the natural length of the spring. In this case, the compression 

of the spring is caused by the mass, and the amount of compression is linearly related to 

the stiffness of the spring. 

 

Figure 1.5: Illustration of the simple spring-mass model, where l is the natural length of the 

spring, ∆y is the displacement of the mass (m) and l-∆y is the length of the compressed spring. 
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The GRF acting on the model (GRFmodel) can therefore be described as in Equation 1.2 

 

𝐺𝑅𝐹𝑚𝑜𝑑𝑒𝑙 = 𝑘(𝑙 − ∆𝑦) + 𝑚𝑔      [Equation 1.2] 

 

Where, k is the spring constants, l is the natural length of the spring when it is under no 

external load, (l-∆y) is the length of the compressed spring, m is the mass and g is the 

acceleration due to gravity. The linear relationship between GRFmodel and the 

displacement of the mass ∆y for this spring-mass model is displayed in Figure 1.6. The 

displacement of the mass is dependent on the mass and the stiffness of the spring (k).      

 

 
Figure 1.6: Illustration of the linear relationship between displacement of the mass (dashed 

grey line) and the GRF acting on the spring-mass model (black line). 

 

Vertical and leg stiffness are inarguably the most widely used output variables from the 

simple spring-mass model. The biggest difference between the two is that the vertical 
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stiffness (kver) only represent the 1D vertical stiffness whereas leg stiffness (kleg) is a 2D 

stiffness representing the stiffness of the leg/spring as the angle between the leg/spring 

and the ground changes during the contact phase. kver is calculated from the maximum 

GRF (GRFmax) divided by the maximal CoM displacement (∆ymax) and kleg is defined as 

GRFmax divided by the maximal vertical displacement of the leg/spring (∆Lmax), see 

Equation 1. 3 and 1. 4 (Zadpoor and Nikooyan, 2010).  

 

𝑘𝑣𝑒𝑟 =
𝐺𝑅𝐹𝑚𝑎𝑥

∆𝑦𝑚𝑎𝑥
         [Equation 1.3] 

𝑘𝑙𝑒𝑔 =
𝐺𝑅𝐹𝑚𝑎𝑥

∆𝐿𝑚𝑎𝑥
         [Equation 1.4] 

 

1.3.3. Current application of spring-mass models 

Spring-mass models have been used since the late 1980s to explore how changes in 

running mechanics relate to energy cost and performance. McMahon et al. (1987) showed 

that running with increased knee flexion reduced kver and though this was associated with 

an attenuation in the impact forces, it increased the oxygen consumption by as much as 

50% (McMahon et al., 1987). A number of studies have since explored the change in kver 

and/or kleg and fatigue during exhaustive running (Dalleau et al., 1998; Dutto and Smith, 

2002; Fourchet et al., 2015; Rabita et al., 2013), middle distance running (Girard et al., 

2013) and mountain ultra-marathon races (Degache et al., 2016; Morin et al., 2011). In 

addition, a number of studies have within recent years explored the relationship between 

spring stiffness and sprint performance using the spring-mass model approach 

(Arampatzis et al., 1999; Girard et al., 2016a; Girard et al., 2016b; Girard et al., 2011; 

Hobara et al., 2010; Morin et al., 2006; Taylor and Beneke, 2012). 

   

The simple spring-mass model has more recently been adopted to team sports, where 

vertical trunk accelerometry from GPS devices have been used to determine contact time 
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(tc) and flight time (tf) from which kver is calculated following the spring-mass model 

approach by Morin et al. (2005). See Equation 1.5 and 1.6, where g is the gravitational 

acceleration and m the mass of the participant. 

 

𝐺𝑅𝐹𝑚𝑎𝑥 = 𝑚 ∙ 𝑔 ∙
𝜋

2
∙ (

𝑡𝑓

𝑡𝑐
+ 1)      [Equation 1.5] 

∆𝑦𝑚𝑎𝑥 =
𝐺𝑅𝐹𝑚𝑎𝑥∙𝑡𝑐

2

𝑚∙𝜋2 + 𝑔 ∙
𝑡𝑐

2

8
      [Equation 1.6] 

 

This approach has been used to estimate the CoM movement, GRF and kver when running 

on different surfaces such as natural grass and sand (Gaudino et al., 2013) and to explore 

induced lower-limb imbalance during running (Buchheit et al., 2015). One of the studies 

showed that kver can be estimated successfully with the trunk accelerometry spring-mass 

model approach and potentially give insight into monitoring of neuromuscular fatigue in 

team sports (Buchheit et al., 2015). The same study also explored the lower-limb 

imbalance between a taped and non-taped ankle. A large effect of taping was seen as tc, 

tf and kver increased for the taped leg when these were measured on a treadmill with 

instrumented force transducers. This effect was also observed in the trunk accelerometry 

data for tc and kver, though the increase was not as high and the tf data was reported as 

unclear (Buchheit et al., 2015). The latter illustrates that the combination of trunk 

accelerometry data and spring-mass models potentially can provide useful insight into 

biomechanical load monitoring and its relationship with injuries.        

  

1.3.4. Limitations of the simple spring-mass model 

Though this simplistic modelling of the human body in motion where the GRF is 

simulated as a half sine-wave, has been applied in a large range of sports and contexts as 

illustrated in the previous paragraph, it obviously has limitations in estimating the 

asymmetric GRF patterns, i.e. patterns in which the rising part is not equal to the falling 
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part of the GRF profile. Though GRF patterns from forefoot running in many cases are 

similar to the symmetric half sine-wave, it often deviates from the symmetric pattern. In 

fact, variables such as running speed (Clark et al., 2014; Clark and Weyand, 2014), foot-

strike and footwear (Clark et al., 2014; Lieberman et al., 2010) and even the level of the 

athlete (Clark and Weyand, 2014) have all shown to affect the GRF pattern. The collision 

between the foot and ground causes a high frequency impact peak in the initial GRF 

pattern which the simple spring-mass model is not able to estimate (Bobbert et al., 1992), 

see Figure 1.7. 

  

 
Figure 1.7: Measured GRF (solid black line) and GRF estimated from a simple spring-mass 

model (dotted black line) for running and change of direction of 45° and 90°. The shared grey 

area illustrates the differences between the measured and modelled GRF. 

 

Studies have shown that the spring-mass model estimates the active peak (2nd GRF peak) 

but neglects the impact peak (Bullimore and Burn, 2007). In a recent study it was 

demonstrated that competitive sprinters deviated (higher impact GRF) significantly more 

from the simple half sine-wave GRF pattern than non-competitive sprinters for running 

speeds at 5, 7 m·s-1 and their individual top speed. It was therefore concluded that the 

simple spring-mass model has limited application in analysis of sprint performance in 

competitive sprinters (Clark and Weyand, 2014). Similarly, the application of the simple 



Chapter 1 Literature Review 

27 

spring-mass model in a biomechanical loading context is limited because it neglects the 

GRF impact peak which for instance has been associated with the development of overuse 

musculoskeletal injuries in long distance runners (Hreljac, 2004; Nigg et al., 1995).  

 

1.3.5. Multi-body models  

Multi-body models consisting of two or more masses have been proposed to better 

estimate the multi-segment dynamics of the human body during running activities 

(Nikooyan and Zadpoor, 2011). These multi-body models build on the theoretical 

framework presented by Alexander et al. (1986) which demonstrated that multi-body 

models were capable of predicting both the impact and active GRF peak observed in 

running animals (Alexander et al., 1986). This multi-body model consisting of a spring-

mass on top of another spring-mass, where the upper spring-mass represents the upper 

body and the lower spring-mass represents the foot/lower limb. This model has been used 

to explore the mechanical properties of the human heel pad (Ker et al., 1989) and to 

estimate GRF during forefoot and rear-foot running at different running velocities (Clark 

et al., 2014). Alexander et al. (1986) did however demonstrate that the double spring-

mass model could go into oscillation due to the impact from the ground. A damper 

element, which dissipates some of the energy from the impact collision between the lower 

spring and the ground was therefore connected to the lower spring (see Figure 1.8), to 

successfully estimate the asymmetric GRF pattern observed in running animals and 

humans (Alexander et al., 1986; Derrick et al., 2000). 
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Figure 1.8: Illustration of the MSD-model used by Derrick et al. (2000) to estimate GRF 

patterns and an example of the simulated GRF from this model (dotted black line) and the 

measured GRF (solid black line) for running. 

 

The following assumptions are made for the mass-spring-damper model (MSD-model) 

proposed by Alexander et al. (1986) and Derrick et al. (2000) for running 

animals/humans: 

- The lower mass (m2) represents the support leg 

- The upper mass (m1) represents the rest of the body 

- The horizontal velocity of the model is assumed to be constant 

- The model neglects movement in the horizontal direction and consider only the 

movements and forces in the vertical direction 

- The model only consists of passive elements and therefore neglects energy from 

active elements such as muscles 

- The model is limited to analyse the movement of the system during stance phase 

only 
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The vertical motion of the upper mass (m1) and lower mass (m2) can be described as in  

Equations 1.7 & 1.8 (Alexander et al., 1986; Derrick et al., 2000).  

 

𝑎1(𝑡) =
−𝑘1

𝑚1
(𝑥1 − 𝑥2) +

𝑘1𝑙1

𝑚1
+ 𝑔         [Equation 1.7] 

𝑎2(𝑡) = −
𝑘1+𝑘2

𝑚1
𝑥2 +

𝑘1

𝑚2
𝑥1 −

𝑐

𝑚2
𝑣2(𝑡) +

𝑘2𝑙2−𝑘1𝑙1

𝑚1
+ 𝑔   [Equation 1.8] 

 

Where x1, a1 are the vertical position and acceleration of the upper mass, x2, v2, a2 are the 

vertical position, velocity and acceleration of the lower mass. Example of the 

displacement, velocity and acceleration of the two masses is displayed in Figure 1.9. k1 

and k2 are the linear spring constants of the massless upper and lower spring, c is the 

damping coefficient of the lower spring and g is the acceleration due to gravity (-9.81 

m·s-2). Finally, l1 and l2 are the natural lengths of the upper and lower spring under no 

external load. The GRF acting on the MSD-model (GRFmodel) can be estimated when the 

motion, spring characteristics and damping coefficient of the lower mass is known 

(Equation 1.9).  

 

𝐺𝑅𝐹𝑚𝑜𝑑𝑒𝑙 = 𝑘2(𝑙2 − 𝑥2) − 𝑐𝑣2         [Equation 1.9] 
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Figure 1.9: The displacement, velocity and acceleration of the upper and lower mass for two 

running examples (example A: dotted grey line and example B: dotted black line).The bottom 

row display the measured GRF (solid black line) and simulated MSD-model GRF (dotted grey 

line) from the two examples. 

 

The MSD-model has until this thesis only been used to replicate GRF patterns from 

running at 3.83 m·s-1 ± 5% (Derrick et al., 2000). In that study the MSD-model 

successfully replicated the GRF patterns with an average difference in impulse between 

the measured and modelled GRF of 6.99 N·s (2.5%) and average difference in loading 

rate of 4.3 N/BW (4.7 %) (Derrick et al., 2000). In addition, a sensitivity analysis of the 
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individual model parameters’ influence on the modelled GRF as well as the effect of 

stride length on the model’s stiffness characteristics (stiffness of the upper and lower 

springs) were explored in the study by Derrick et al. (2000). The MSD-model’s 

application is currently limited to the study by Derrick et al. (2000) and it is therefore still 

unknown to what extent the MSD-model can replicate GRF patterns from typical team 

sports movements.  

 

1.3.6. More complex models  

A number of more complex multi-body spring-mass models with additional masses, 

springs, dampers and active elements to simulate the energy from muscles and shoe 

cushioning have been introduced in the literature (Nikooyan and Zadpoor, 2011). 

However, these are not addressed in this literature review, because the MSD-model 

proposed by Alexander et al. (1986) and Derrick et al. (2000) has demonstrated sufficient 

ability to mimic the asymmetric GRF patterns and features typically observed for running.      
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1.4. Summary 

The physiological training load and its relationship with performance enhancement and 

injury risk has been explored extensively in team sports whereas our understanding of 

biomechanical load, which is associated with the external forces players are exposed to 

from the player-ground interaction, still remain largely unexplored. The introduction of 

wearable GPS devices in team sports has made it possible to monitor the external training 

load on a daily basis (Aughey, 2011; Dellaserra et al., 2014). These devices have typically 

been used to monitor the kinetic energy demands associated with the players’ movements 

around the pitch, but the integrated accelerometer could potentially provide useful 

information about the external biomechanical training load.  

 

The direct relationship between the acceleration from trunk-mounted GPS integrated 

accelerometers and whole-body biomechanical loading (GRF) is however still largely 

underexplored in the literature (Tran, 2010; Wundersitz et al., 2013). Whole-body 

biomechanical loading depends on the complex multi-segmental dynamics of the body, a 

complex system that successfully has been modelled as a MSD-model system in the past 

(Alexander et al., 1986; Derrick et al., 2000). The generalisability of the MSD-model for 

team sport movements such as running and change of direction at different intensities is 

however yet to be established. If a direct relationship does not exist between body-worn 

accelerometry and whole-body acceleration, the ability to use the acceleration signal 

measured from the GPS integrated accelerometer to drive a MSD-model should be 

explored. If the external GRF acting on a player’s body can be successfully estimated 

from a combination of trunk-mounted accelerometry and a MSD-model it might open a 

new avenue for external biomechanical load monitoring in team sports during training 

sessions and match-play. 
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1.5. Aim and objectives  

The overall aim of the present thesis was to explore if body-worn accelerometry can be 

used for whole-body biomechanical load monitoring in team sports.  

 

This will be explored through the fulfilment of the following studies and objectives:  

- Study 1: To explore the association between whole-body accelerations and body-

worn accelerometry during team sports movements. 

- Study 2: To establish the generalisability of a mass-spring-damper model to 

simulate ground reaction forces from team sports related movements.  

- Study 3: Based on a positive outcome of the first two, to introduce a novel 

approach to estimating ground reaction forces from body-worn accelerometry 

and a mass-spring-damper model. 

 

The successful completion of the above aim and objectives will potentially enable 

researchers and practitioners to monitor the external whole-body biomechanical load 

from body-worn accelerometry in professional team sports. 
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2.  

This study has been accepted for publication in the International Journal of Sports 

Physiology and Performance. The aim of this study was to investigate the relationship 

between whole-body accelerations and body-worn accelerometry during team sports 

related movements. Though the study demonstrated that body-worn accelerometry 

correlates to whole-body loading in team sports movements and can reveal useful 

estimation concerning biomechanical loading, these correlations are not strong.  

 

2.1. Introduction 

Team sports players experience high external forces on the body, in particular during the 

large number of accelerations and decelerations they perform (Bloomfield and 

O'Donoghue, 2007). As a consequence, soft tissues (bones, cartilage, muscles, tendons 

and ligaments) are put under considerable biomechanical load. The accumulation of this 

biomechanical load over time can result in structural adaptations that are beneficial 

(repair, regeneration, and strengthening of the tissue) and/or detrimental (leading to 

overuse or acute injury). A subtle balance of biomechanical load that depends on the 

frequency, duration and intensity of the external forces acting on the body is required to 

have beneficial adaptation yet avoid soft tissue injury (Kjaer et al., 2009). Quantifying 

the external forces acting on the body during team sport movements in the field could 

therefore help researchers and practitioners to better monitor and understand the 

biomechanical load experienced by players in training and matches. 

 

Accelerometers embedded in Global Positioning Systems (GPS) devices are commonly 

used in professional team sport to monitor the players’ energetic demands, e.g. from the 

distance players cover and the speed they run at or to estimate the external forces acting 

on the players’ body (Boyd et al., 2011, 2013). The GPS integrated accelerometer devices 

are worn on the dorsal part of the upper trunk within an elastic vest and allow the 
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registration of acceleration of the (upper) trunk segment. It has previously been 

demonstrated that the accelerations registered from these GPS integrated accelerometers 

overestimate the peak external forces acting on the players’ body during running and 

changes in direction (Wundersitz et al., 2013), or in landing and jumping tasks (Tran, 

2010). However, the relationship between trunk acceleration from GPS integrated 

accelerometers and whole-body biomechanical loading during team sports movements it 

is still largely unexplored. 

 

The estimation of external forces acting on the body from trunk accelerometry is based 

on Newton’s second law of motion (Fwhole-body = mwhole-body ∙ awhole-body) and the assumption 

that body-worn accelerometers are able to measure whole-body acceleration. However, 

because the GPS integrated accelerometers measures trunk accelerations the external 

forces measured are actually the external forces acting on the trunk (Ftrunk = mtrunk ∙ atrunk). 

If however segmental accelerations from the trunk accelerometer are related to the whole-

body acceleration it could be feasible to estimate the external forces experienced by 

players in the field. Whole-body accelerations, biomechanically expressed as Centre of 

Mass (CoM) accelerations, do however depend on the complex multi-segmental 

dynamics of the body. Since the position of the CoM relative to individual segments 

varies depending on the player’s movements it remains questionable whether trunk-

mounted accelerometers and body-worn accelerometry in general are able to measure the 

multi-segment dynamics during those movements that are typically performed in team 

sports. 

 

The relationship between segmental acceleration from body-worn accelerometry and 

CoM accelerations seems to be affected by the location of the accelerometer. 

Accelerometers located at the hip have for example demonstrated an acceptable 
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association with the external forces acting on the whole body, biomechanically expressed 

as the ground reaction forces (GRF), during daily life activities (Meyer et al., 2015; 

Rowlands and Stiles, 2012). In addition accelerometers located at the hip and tibia have 

shown a strong association with GRF in vertical jumping (Elvin et al., 2007; Setuain et 

al., 2016). Furthermore, higher accumulated accelerometer-based loading values have 

recently been observed from a GPS integrated accelerometer located at the hip compared 

to the trunk for a 90 minute football simulation (Barrett et al., 2014; Barrett et al., 2016b) 

but it remains uncertain which segmental accelerations would better relate to whole-body 

biomechanical loading during typical team sports movements.       

 

Altogether, the influence of accelerometer location on the relationship between measured 

accelerations and CoM accelerations during team sports movements such as running and 

changes in direction is still largely unexplored. The aim of this study was therefore to 

investigate the association between whole-body biomechanical loading and accelerations 

measured from an accelerometer that is attached to an individual body segment. This was 

done by investigating whether accelerations from the body-worn accelerometers are 

related to variables that represent whole-body loading, and whether peak accelerations 

are related to specific features of the CoM accelerations during the time when the player 

is in contact with the ground. 

 

2.2. Methods 

Twenty recreational male team sports athletes volunteered to participate in this study (age 

22 ± 4 years, height 178 ± 8 cm, mass 76 ± 11 kg). No participants had a history of severe 

lower limb injuries (e.g. ACL injuries or ankle sprains). The study was approved by the 

Institutional Ethics Committee and written consent was obtained from all participants. 
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2.2.1. Protocol 

The participants completed four forward running trials (Run), four anticipated 45° 

(Cut45) and four 90° side cutting trials (Cut90) at approach speeds of 2, 3, 4 and 5 m·s-1 

(± 5%) in a randomised condition order. Approach speed was measured with photocell 

timing gates (Brower Timing System, Utah, USA) that were positioned 2 m apart and 2 

m from the centre of a force platform. The participants were instructed to hit the force 

platform with their dominant leg (defined as their preferred kicking leg) during the Run 

trials and to perform the cutting step with their dominant leg on the force platform. An 

individual number of practice trials were incorporated in the warm up routine until the 

participants were familiar with the different tasks and approach speeds (typically around 

4 ± 2 practise trials for each conditions).         

 

2.2.2. Acceleration measurements 

Segmental acceleration data were collected from four body-mounted accelerometers: 1) 

a trunk-mounted tri-axial accelerometer (KXP94, Kionex, Inc., Ithaca, NY, USA) 

embedded within a commercial GPS device (MinimaxX S4, Catapult Innovations, 

Scoresby, Australia). This accelerometer had a sampling frequency of 100 Hz and an 

output range of ± 13 g. The GPS device was positioned on the dorsal part of the upper 

trunk between the scapulae within a small pocket of a tight fitted elastic vest according 

to the manufactures recommendations; 2) A tri-axial wireless laboratory accelerometer 

(518, DTS accelerometer, Noraxon Inc., Scottsdale, USA) with an effective sampling 

frequency of 1000 Hz, an output range of 24 g, a total weight of 5.7 grams and 19 x 14.2 

x 6.3 mm in dimension was tightly fixated to the posterior side of the GPS device using 

double sided tape. Pilot work showed a difference of approximately 0.34 g in peak 

acceleration between a laboratory accelerometer fixated to the posterior side of the GPS 

device compared to the anterior side (see detail in Appendix A). The posterior location 



Chapter 2 Estimating CoM acceleration from body-worn accelerometry 

39 

was therefore used for all measurements; 3) A tri-axial wireless accelerometer (same 

specifications as accelerometer 2) was located inside the shorts worn by the participants 

(level with the 5th lumbar vertebra) during the session with double sided tape. An elastic 

belt was strapped around the participant’s waist and accelerometer to minimise the 

movement of the accelerometer relative to pelvis; 4) A tri-axial wireless accelerometer 

(same specifications as accelerometer 2) was fixed to a lightweight fibre glass plate 

shaped to the shaft of the tibia with double sided tape and with elastic velcro straps tightly 

strapped to the front of the tibia shaft with which the participant performed the 

pivot/cutting step. The location of the four body-mounted accelerometers in displayed in 

Figure 2.1.  

 

 

Figure 2.1: Pictures displaying the position of the four body-mounted accelerometers, the red 

circles display the location of the three laboratory accelerometers (Trunk, Pelvis and Tibia). 

 

The accelerometers’ static validity were tested pre and post every test session by rotating 

the accelerometers through 6 degrees of freedom to detect a ± 1g acceleration due to 

gravity (see detail in Appendix B). The average resultant acceleration were calculated 

over a 10 second time period for each of the sensing axes and the overall averages were 

calculated from the average values of the sensing axis. A one sample t-test was used to 

test if the average resultant acceleration obtained from each accelerometer were 

significant different (α ≤ 0.01) from 1g pre or post every test session. Neither of the 
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accelerometers showed a significant difference from 1g pre or post any of the test 

sessions. 

 

Ground reaction forces (GRF) were collected from a 0.9 x 0.6 m2 Kistler force plateform 

(9287C, Kistler Instruments Ltd., Winterthur, Switzerland) embedded in the floor 

sampling at 3000 Hz. The GRF data were synchronised with the accelerometer data from 

the three laboratory tri-axial accelerometers through an analogue board and recorded 

simultaneously in Qualisys Track Manager (Qualisys AB, Gothenburg, Sweden). The 

Trunk accelerometer was gently tapped three times before each trial creating three clear 

spikes in the acceleration traces which were used to synchronise the Catapult acceleration 

data with the other acceleration data (accuracy of ± 10 ms), see detail in Appendix C.  

 

2.2.3. Data processing 

All acceleration and GRF data were exported to Matlab (Version R2014a, The 

MathWorks, Inc., Natick, MA, USA) where the whole-body CoM acceleration was 

determined by dividing the GRF data by the participants’ body mass and subtracting the 

gravitational acceleration from the vertical GRF data. The GRF data were filtered with a 

6th order low-pass filter with a cut-off frequency of 20 Hz, while a similar low-pass filter 

with a cut-off frequency of 60 Hz, 60 Hz and 90 Hz were applied to the Trunk, Pelvis and 

Tibia acceleration data, respectively. The accelerometer filtering cut-off frequencies were 

determined from a sensitivity analysis, see details in Appendix D. The raw Catapult 

acceleration data were not filtered, as the accelerometer data from the commercial GPS 

embedded accelerometers according to the authors’ knowledge is left unfiltered when 

used in the field. Resultant accelerations were calculated from the individual axes for the 

accelerometry and CoM acceleration data. The foot-ground-contacts on the force 

platform were determined from the vertical GRF, where touch down and take off events 
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were created when the vertical GRF crossed a 20 N threshold. The following variables 

were calculated from the accelerometry and CoM acceleration data for each trial: peak 

resultant acceleration (Peak Acc); the average loading rate (Loading rate) defined as the 

average gradient of the resultant acceleration data from touch down to Peak Acc within 

the first 140 ms of the stance phase; the impulse (Impulse) calculated as the integral of 

the resultant acceleration over time.                   

 

2.2.4. Statistical analysis 

A linear regression analysis was used to explore the within task relationship between Peak 

Acc, Loading rate, Impulse of the CoM acceleration and accelerometry from the different 

accelerometers. In addition, a linear multiple regression using the three laboratory 

accelerometers was used to explore if accelerometry from multiple accelerometers would 

improve the relationship with the variables obtained from the CoM acceleration. The 

linear regression analyses were performed using SPSS (Version 22, SPSS Inc., Chicago, 

IL, USA). 

 

One-dimensional Statistical Parametric Mapping (SPM) was used to explore the within 

task relationship between Peak Acc from the different accelerometer locations and CoM 

acceleration across the entire stance phase for the Run, Cut45 and Cut90 tasks 

respectively. The SPM analysis is an n-dimensional statistical approach of the 

traditionally 0-dimensional linear regression and one-sample t test approach performed 

in SPSS (Pataky, 2012). SPM analysis makes it possible to explore the relationship 

without having to impose the temporal focus bias (Pataky et al., 2013), that may occur in 

the 0-dimensional linear regression approach described above, because of the between 

task variation in the GRF pattern. The SPM analysis will reveal the periods of the stance 
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phase where Peak Acc from the individual accelerometers is significantly related to the 

CoM acceleration.   

 

𝐶𝑜𝑀 𝑎𝑐𝑐(𝑡) = (𝛽1(𝑡) × 𝑃𝑒𝑎𝑘 𝐴𝑐𝑐) + 𝛼1(𝑡) + 𝜀(𝑡)   [Equation 2.1] 

 

The slopes of the regression line between Peak Acc from the Catapult, Trunk, Pelvis and 

Tibia accelerometer (β1, β2, β3 and β4, respectively) and the CoM acceleration were 

computed at each time node (t) of the stance phase (Equation 2.1) resulting in beta (β) 

trajectories (third row Figure 2.3). These β trajectories were computed for each participant 

and were subsequently submitted to a population level one-sample t test, yielding 

statistical curves (SPM{t}) for each of the four accelerometers describing the strength 

and slope of the relationship between Peak Acc and CoM acceleration (fourth row Figure 

2.3). The significance of each SPM{t} was then determined topologically using random 

field theory (Adler and Taylor, 2007), with an alpha level at 0.0125, for each of the three 

tasks Run, Cut45 and Cut90, respectively.   

 

2.3. Results 

The segmental acceleration data overestimated the CoM acceleration (Figure 2.2) and 

whole-body biomechanical loading variables regardless of task (Table 2.1). 

  

 
Figure 2.2: Representative examples of the resultant CoM acceleration and resultant 

acceleration from the Catapult and Trunk accelerometer for the Run, Cut45 and Cut90 at  

5 m·s-1. All curves are normalised over the stance phase (%). 
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Table 2.1: Peak Acc, Loading Rate and Impulse for all tasks (Run, Cut45, Cut90) and approach 

speeds (2-5 m∙s-1) for CoM accelerations and the four body-mounted accelerometers. The values 

presented are means ± standard deviations and n = 80 trails in total for each task. 

 COM Catapult Trunk Pelvis Tibia 

M ± SD M ± SD M ± SD M ± SD M ± SD 

Peak Acc (g)          
     Run 2 m·s-1 1.32 ± 0.30 2.82 ± 0.60 3.78 ± 1.13 4.56 ± 1.70 8.02 ± 2.77 

     Run 3 m·s-1 1.56 ± 0.33 3.33 ± 0.69 4.52 ± 1.22 5.38 ± 1.57 10.47 ± 3.65 

     Run 4 m·s-1 1.80 ± 0.30 2.79 ± 0.80 5.09 ± 1.32 6.38 ± 1.72 14.25 ± 3.78 

     Run 5 m·s-1 1.85 ± 0.41 2.82 ± 0.89 5.34 ± 1.75 7.39 ± 2.48 20.36 ± 5.39 

     Cut45 2 m·s-1 1.40 ± 0.34 2.81 ± 0.63 3.73 ± 1.19 4.90 ± 2.11 8.69 ± 3.54 

     Cut45 3 m·s-1 1.72 ± 0.38 3.41 ± 0.79 4.52 ± 1.30 6.06 ± 1.89 11.62 ± 3.86 

     Cut45 4 m·s-1 2.04 ± 0.42 2.92 ± 1.09 5.40 ± 1.56 8.62 ± 3.20 16.83 ± 5.19 

     Cut45 5 m·s-1 2.25 ± 0.49 3.10 ± 0.95 5.78 ± 1.65 11.36 ± 4.89 18.95 ± 5.99 

     Cut90 2 m·s-1 1.49 ± 0.37 3.10 ± 0.82 3.99 ± 1.38 5.52 ± 2.40 9.92 ± 4.15 

     Cut90 3 m·s-1 1.90 ± 0.50 3.89 ± 0.96 5.01 ± 1.49 8.73 ± 4.71 14.37 ± 6.27 

     Cut90 4 m·s-1 2.08 ± 0.51 2.86 ± 1.03 5.08 ± 1.36 10.33 ± 4.28 16.95 ± 6.26 

   a Cut90 5 m·s-1 2.28 ± 0.51 3.05 ± 1.04 5.35 ± 1.56 12.53 ± 5.45 19.85 ± 5.72 

Loading rate (g·s-1)                   

     Run 2 m·s-1 18.6 ± 4.6 31.7 ± 9.8 56.2 ± 24.2 83.6 ± 38.2 233.1 ± 111.8 

     Run 3 m·s-1 22.7 ± 5.5 38.3 ± 10.9 70.7 ± 27.1 116.9 ± 45.0 318.8 ± 166.8 

     Run 4 m·s-1 30.8 ± 11.1 34.6 ± 16.6 83.4 ± 28.6 146.4 ± 52.1 463.6 ± 176.5 

     Run 5 m·s-1 44.8 ± 18.4 51.9 ± 16.8 93.1 ± 34.2 191.9 ± 73.7 731.4 ± 249.9 

     Cut45 2 m·s-1 15.4 ± 3.8 30.8 ± 10.5 54.9 ± 26.7 87.8 ± 53.3 261.8 ± 141.3 

     Cut45 3 m·s-1 19.8 ± 6.5 38.4 ± 12.1 67.3 ± 28.1 126.2 ± 57.9 355.3 ± 128.3 

     Cut45 4 m·s-1 36.9 ± 20.2 45.8 ± 18.2 86.2 ± 36.4 202.8 ± 96.8 565.7 ± 234.3 

     Cut45 5 m·s-1 52.7 ± 26.2 63.6 ± 19.3 97.1 ± 36.2 266.1 ± 145.7 690.7 ± 315.3 

     Cut90 2 m·s-1 18.3 ± 10.7 33.7 ± 13.1 55.0 ± 28.5 92.4 ± 53.6 301.2 ± 180.1 

     Cut90 3 m·s-1 32.8 ± 20.9 42.8 ± 17.1 69.5 ± 26.6 154.8 ± 88.6 446.1 ± 224.2 

     Cut90 4 m·s-1 44.1 ± 23.6 52.8 ± 13.0 71.9 ± 24.6 199.4 ± 105.6 567.9 ± 268.5 

   a Cut90 5 m·s-1 56.3 ± 21.4 65.3 ± 15.8 76.9 ± 28.6 247.2 ± 126.6 701.0 ± 237.9 

Impulse (g∙s)                   

     Run 2 m·s-1 0.25 ± 0.04 0.42 ± 0.03 0.43 ± 0.04 0.51 ± 0.04 0.75 ± 0.09 

     Run 3 m·s-1 0.24 ± 0.04 0.40 ± 0.03 0.41 ± 0.04 0.50 ± 0.05 0.84 ± 0.09 

     Run 4 m·s-1 0.24 ± 0.04 0.38 ± 0.04 0.39 ± 0.05 0.51 ± 0.05 1.00 ± 0.11 

     Run 5 m·s-1 0.21 ± 0.04 0.33 ± 0.05 0.34 ± 0.05 0.47 ± 0.08 1.14 ± 0.14 

     Cut45 2 m·s-1 0.28 ± 0.05 0.47 ± 0.04 0.47 ± 0.04 0.55 ± 0.05 0.81 ± 0.11 

     Cut45 3 m·s-1 0.30 ± 0.04 0.46 ± 0.05 0.47 ± 0.05 0.57 ± 0.06 0.93 ± 0.12 

     Cut45 4 m·s-1 0.31 ± 0.04 0.46 ± 0.06 0.49 ± 0.07 0.63 ± 0.08 1.12 ± 0.15 

     Cut45 5 m·s-1 0.29 ± 0.04 0.41 ± 0.07 0.46 ± 0.07 0.62 ± 0.13 1.25 ± 0.21 

     Cut90 2 m·s-1 0.35 ± 0.06 0.55 ± 0.08 0.56 ± 0.08 0.64 ± 0.09 0.92 ± 0.14 

     Cut90 3 m·s-1 0.38 ± 0.05 0.58 ± 0.08 0.60 ± 0.09 0.72 ± 0.13 1.09 ± 0.20 

     Cut90 4 m·s-1 0.41 ± 0.06 0.58 ± 0.09 0.68 ± 0.10 0.80 ± 0.13 1.28 ± 0.27 

   a Cut90 5 m·s-1 0.38 ± 0.06 0.54 ± 0.09 0.66 ± 0.10 0.81 ± 0.12 1.44 ± 0.25 
a One of the participants was not able to perform the four Cut90 trials with an approach speed at 5 m∙s-1 

(n = 76 for this task). 
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In general, the Catapult and Trunk accelerations were the closest to the CoM acceleration, 

followed by Pelvis and Tibia accelerations regardless of task and variable of interest. The 

loading variables increased with an increase in approach speed regardless of task and 

accelerometer location. 

 

Weak to moderate within task relationships were observed between the segmental 

acceleration data and CoM acceleration data (Table 2.2). The Catapult and Trunk 

accelerometry data most strongly predicted whole-body Peak Acc and Impulse whereas 

Pelvis and Tibia accelerometry data were the strongest predictor of Loading Rate 

regardless of task. The addition of multiple accelerometers only showed minor 

improvements of the relationship with the CoM acceleration loading variables.  

 

Table 2.2: Within task linear regression values (R2) for Peak Acc, Loading Rate and Impulse 

between the CoM acceleration and acceleration data from the individual accelerometers and 

multiple laboratory accelerometers.  

 N Catapult Trunk Pelvis Tibia 
Trunk  

& Hip 

Trunk  

& Shank 

Trunk, Hip 

& Shank 

Peak Acc (g) 

       Run 320 0.26 0.20 0.08 0.26 0.21 0.31 0.31 

Cut45 320 0.42 0.32 0.35 0.50 0.42 0.52 0.54 

Cut90 316 a 0.55 0.46 0.48 0.34 0.60 0.53 0.61 

Loading rate (g·s-1) 

       Run 320 0.27 0.41 0.29 0.45 0.47 0.56 0.56 

Cut45 320 0.38 0.34 0.59 0.45 0.59 0.49 0.62 

Cut90 316 a 0.36 0.32 0.59 0.43 0.62 0.49 0.64 

Impulse (g∙s) 

       Run 320 0.26 0.25 0.13 0.02 0.26 0.26 0.26 

Cut45 320 0.26 0.25 0.17 0.10 0.27 0.29 0.29 

Cut90 316 a 0.59 0.57 0.44 0.27 0.57 0.57 0.57 
a One of the participants was not able to perform the four Cut90 trials with an approach speed at 5 m∙s-1. 
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Figure 2.3: SPM1D regression analysis of the Run task for the four body-worn accelerometers, 

all curves are normalised over the stance phase (%). The top row shows a representative 

acceleration from the four approach speeds and accelerometer locations for one participant. 

The second row shows the CoM acceleration, coloured according to the peak acceleration from 

the same participant for all trials. The third row shows the β curves from all participants. The 

specific β curve generated from the data in the second row is shown in black. The bottom row 

shows the statistical relationship (SPM{t}) between Peak Acc and CoM acceleration across the 

entire stance phase. Shaded areas indicate a significant relationship (p<0.0125) between Peak 

Acc from the accelerometer and CoM acceleration. 

 

The SPM analysis for the Run and Cut45 task generally showed that peak segmental 

accelerations, regardless of accelerometer location, were significantly positive related to 

the CoM accelerations during the 10-75% of the stance phase with the strongest 

relationship from the 10-50% of the stance phase (Figure 2.3 and 2.4). While a 

significantly negative relationship were observed for all accelerometers from the 75-95% 

of the stance phase between peak segmental acceleration and CoM acceleration for the 

Run task before take off where the CoM acceleration were low (Figure 2.3).  
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Figure 2.4: SPM1D regression analysis of the Cut45 task for the four body-worn 

accelerometers, all curves are normalised over the stance phase (%). See Figure 2.3 for a 

detailed explanation of the data displayed in the individual rows. 

 

For the Cut90 task, Peak Acc and CoM acceleration was in general positive significantly 

related to the CoM acceleration in the initial part of the weight acceptance phase (10-25% 

stance phase), apart from the peak Tibia acceleration which also demonstrated a positive 

significant relationship from 70-80% of the stance phase (Figure 2.5).  
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Figure 2.5: SPM1D regression analysis of the Cut90 task for the four body-worn 

accelerometers, all curves are normalised over the stance phase (%). See Figure 2.3 for a 

detailed explanation of the data displayed in the individual rows. 

 

2.4. Discussion 

The aim of the study was to investigate the association between whole-body 

biomechanical loading and segmental accelerations measured from body-worn 

accelerometers. The segmental acceleration data consistently overestimated the whole-

body biomechanical loading variables investigated in this study regardless of task and a 

weak relationship was observed between segmental acceleration and CoM acceleration. 

Furthermore, this study showed that peak segmental acceleration data is primarily related 

to whole-body biomechanical loading in the 10-50% of foot-ground-contact. 

 

Body-worn accelerometry only measures the acceleration of the segment it is attached to 

and therefore according to our results it is inadequate to measure the acceleration of the 
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whole body due to the complex multi-segment motion during team sports movements. 

Furthermore, this linear relationship has previously been questioned, because the 

relationship between lower limb segmental acceleration and whole-body loading is 

influenced by the kinematics of the lower limbs at initial foot-ground-contact (Derrick, 

2004). The difference between acceleration of individual segments and the acceleration 

of the whole body can explain the consistent overestimation of peak whole-body loading 

from body-worn accelerometers observed in this study. These results are in line with the 

weak relationship previously observed between peak resultant accelerations from a GPS 

integrated trunk-mounted accelerometer and resultant peak GRF during running and 

change of directions at similar intensities (Wundersitz et al., 2013).    

 

The peak segmental accelerations measured with the Catapult and Trunk accelerometers 

were the closest to the peak CoM acceleration. This may be explained by the attenuation 

of the acceleration signal as it travels up through the body (Hamill et al., 1995). In 

addition, the trunk segment represents the largest proportion of the whole-body mass 

(49.7%) compared to the pelvis (14.2%) and tibia (4.7%) segments (Dempster, 1955) 

which may explain why the segmental acceleration of the trunk best represented the 

acceleration of the whole body in the current study. The trunk segment’s higher mass may 

also explain why the two trunk-mounted accelerometers demonstrated a higher 

relationship with the impulse of the CoM acceleration as the impulse represent the 

acceleration measured over time. This indicates that the current practice of positioning 

GPS integrated accelerometers on the trunk may be the best location to represent the 

accumulated whole-body biomechanical loading to which team sport players are exposed 

in the field.  
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The results from this study showed that tibial segmental accelerations were not a good 

indicator of whole-body biomechanical loading. However, tibial segmental accelerations 

could potentially provide valuable information about the impact forces the lower 

extremities are exposed to during initial foot-ground-contact. Studies on overuse injuries 

in running have for instance showed that runners with previous stress fracture history 

were exposed to high initial peak ground reaction forces and higher loading rate than 

runners with no previous stress fracture history (Hreljac, 2004). The potential of using 

tibia mounted accelerometer to monitor initial loading rate in team sport is supported by 

the results of this study as the tibia mounted accelerometer demonstrated a higher 

relationship with whole-body loading rate than the trunk-mounted accelerometer. 

Consideration should therefore be given to accelerometer location in team sports based 

on the mechanical variable/s of interest. 

               

The GPS integrated accelerometer (Catapult) consistently measured lower accelerations 

than the Trunk laboratory accelerometer, and the Peak Acc was slightly delayed in the 

Catapult data (see Figure 2.2). The difference in sampling frequencies (Catapult: 100 Hz, 

laboratory accelerometer: 1000 Hz) may explain the systematic difference between the 

two trunk-mounted accelerometers. The commercial GPS embedded accelerometers’ 

ability to measure peak acceleration during high frequency movements has previously 

been questioned when compared to laboratory accelerometers with a higher sampling 

frequency (Kelly et al., 2015; Lake et al., 2014). Increasing the sampling frequency of the 

commercial GPS integrated accelerometers may improve their ability to represent the true 

accelerations experienced in team sports. 

 

The Statistical Parametric Mapping analysis enabled us to investigate the relationship 

between peak segmental accelerations from body-worn accelerometry and CoM 
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acceleration across the stance phase. This analysis showed that peak segmental 

accelerations, regardless of accelerometer location, were strongest related to CoM 

acceleration from the 10-50% of the stance phase. Peak segmental accelerations, which 

previously have been used to investigate whole-body biomechanical loading in daily life 

activities (Meyer et al., 2015; Rowlands and Stiles, 2012) or as in this and previously 

studies to validate whole-body loading from body-worn accelerometry (Tran, 2010; 

Wundersitz et al., 2013), can therefore describe only part of the biomechanical loading 

the body’s soft tissues is exposed to during foot-ground-contact. Trying to use peak 

segmental accelerations to understand whole-body biomechanical loading during foot-

ground-contact in team sport movements could therefore be misleading. Additional 

information other than peak segmental accelerations is needed to better represent the 

whole-body biomechanical loading across the stance phase in dynamic sports 

movements.  

 

Our results indicated that the relationship between peak segmental acceleration and 

whole-body loading is task dependent. The difference observed between the two change-

in-direction tasks may be explained by the difference in the segmental and CoM 

acceleration patterns during the stance phase with a clear initial peak after touch down in 

the Cut90 task (Figure 2.4) compared to the later occurrence of peak CoM acceleration in 

the Cut45 task (Figure 2.3). Furthermore, the CoM accelerations of the Cut45 task 

indicated that approach speed changed the shape of CoM acceleration pattern while the 

accelerometer trace remained consistent (Figure 2.3) and thereby affect the relationship 

with the peak segmental acceleration. 

 

Limitations within this study include the attachment of the individual accelerometers 

which may have resulted in errors in the accelerometry signal due to the movement of the 
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accelerometer relative to the segment. The attachment methods and locations were chosen 

with a combination of ideal an applied approach in mind for potential use in team sports. 

Fixing the accelerometer directly to the skin may have improved the accuracy of the 

accelerometer data but this is currently less feasible in an everyday field context. In 

addition, lower filtering cut-off frequency of the accelerometry data may have improved 

the relationship with the CoM accelerations, as previously demonstrated for GPS-

embedded accelerometers (Tran, 2010; Wundersitz et al., 2013). However, it was beyond 

the scope of this study to determine the optimal cut-off frequency as this most likely will 

be dependent on task and intensity making it difficult to apply optimal filter settings in 

the field. Importantly though, improving the relationship with specific cut-off frequencies 

does not change the fundamental issue with the use of body-worn accelerometry to 

estimate CoM acceleration as it only measures the accelerations of the segment it is 

attached to and not the accelerations of the whole-body.  

 

The assumption of a simple linear relationship, based on Newton’s second law of motion, 

where segmental accelerations is measured from body-worn accelerometers is not 

sufficient to determine the linked multi-segment dynamics of the whole body during team 

sports movements in the field. For instance when this linear assumption is used to 

investigate the relationship between GPS integrated accelerometry data and risk of soft 

tissue injuries (Colby et al., 2014; Ehrmann et al., 2016). To better estimate whole-body 

acceleration, the multibody dynamics of a complex system, such as the human body, must 

be accounted for. Future studies should not assume that a linear approach is sufficient to 

estimate the mechanical external force acting on players in the field but investigate the 

application of multi-segment models for this purpose (Derrick et al., 2000). 
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Although a linear relationship exists between body-worn accelerometry (e.g. GPS 

integrated accelerometers) and whole-body accelerations the assumption of a simple 

linear relationship, based on Newton’s second law of motion, should be used with caution. 

Practitioners should therefore be careful when attempts are made to monitor, summarise 

and evaluate the biomechanical load the players are exposed to from body-worn 

accelerometry or associated to soft tissue injury risk. New methods need to be developed 

to use body-worn accelerometry to more accurately explain whole-body biomechanical 

loading in dynamic team sports. 

 

2.5. Conclusion 

Whilst a weak to moderate correlation was observed between segmental accelerations 

from body-worn accelerometry and can reveal useful estimations of whole-body 

biomechanical loading in team sports movements, particularly in the first 10-50% of foot-

ground-contact, the linear relationship is weak regardless of accelerometer location and 

task. Body-worn accelerometry only measures the acceleration of the segment it is 

attached to and is inadequate to measure the acceleration of the whole body due to the 

complex multi-segment motion during team sports movements. Practitioners should 

consider the weak to moderate linear relationship between body-worn accelerometry and 

whole-body biomechanical loading when interpreting the accelerometry data in this 

context. 
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3.  

The aim of this study was to establish the generalisability of a mass-spring- damper model 

to simulate ground reaction forces during team sports movements. The study 

demonstrated that the mass-spring-damper model’s generalisability to mimic ground 

reaction forces from team sports movements was strong, though larger mean differences 

and limits of agreements were observed for the 90° side cut at high intensities.  

 

3.1. Introduction 

Human running is spring-like in nature as the elastic tissues of the support leg absorb and 

return elastic energy. Simple spring-mass models have therefore been used to explore the 

mechanics of running (Alexander et al., 1986; Blickhan, 1989; McMahon and Cheng, 

1990). The simplest and most widely used spring-mass model consists of a mass-less 

spring attached to a point mass representing the body’s centre of mass (CoM). These 

models have primarily been used to describe vertical stiffness and leg stiffness during 

running, calculated as a ratio between the maximal force and maximal leg compression 

or maximal vertical displacement of the CoM, respectively (Farley and Gonzalez, 1996; 

McMahon and Cheng, 1990; Morin et al., 2005). The stiffness data obtained from these 

models has for example been used to explore running economy (Dalleau et al., 1998; 

McMahon et al., 1987), changes in stiffness at different running velocities (Brughelli and 

Cronin, 2008), or fatigue effects on performance during long distance running (Degache 

et al., 2016; Morin et al., 2006; Morin et al., 2011), middle distance running (Girard et 

al., 2013) and repeated sprints and high intensity running (Girard et al., 2016a; Girard et 

al., 2016b; Taylor and Beneke, 2012). 

 

The principle of the spring-mass model is that the vertical ground reaction force (GRF) 

can be estimated as a half-sine wave from the vertical movement of the mass. The spring 

is compressed in the first half of the stance time as the CoM moves downwards until mid-
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stance at which time the CoM reaches its lowest position. In the second half of stance the 

CoM is accelerated upwards as the stored elastic energy is released generating a half-sine 

wave GRF with a single peak at mid-stance (Alexander et al., 1986; Blickhan, 1989; 

McMahon and Cheng, 1990). It is however well-known that GRF patterns deviate from 

this pattern depending on foot-strike (Lieberman et al., 2010), running speed (Clark et al., 

2014; Hamill et al., 1983) and/or level of the athlete (Clark and Weyand, 2014). As the 

body is exposed to high-frequency impact forces when the foot collides with the ground, 

an impact peak is often present in the initial phase of stance, particularly in heel-toe 

running (Bobbert et al., 1991; Nigg et al., 1995) and cutting manoeuvres (Besier et al., 

2001). These impact forces are passively absorbed by the soft tissues of the lower limbs 

(bones, cartilage, ligaments, tendons) (Bobbert et al., 1991), by the position of the joints 

(Bobbert et al., 1992; Derrick et al., 2002), and actively by the muscles (Christina et al., 

2001). The commonly used spring-mass model consisting of a single mass and a single 

spring does not account for the energy absorbed by the shock absorption of the support 

leg in the initial stance phase (Alexander et al., 1986; Derrick et al., 2000). 

 

To model the GRF pattern during heel-toe running a modified mass-spring-damper model 

(MSD-model) with a second mass in series with a spring-damper is needed. Such a model 

has been successful in estimating both the impact and active vertical peak for straight line 

running at 3.83 m·s-1 (± 5%) (Derrick et al., 2000). An understanding of this model’s 

generalisability to other running speeds, and to running actions typically seen in team 

sports (football, hockey, basketball etc.), is largely unexplored. In team sports the 

majority of playing time is spent in running related utility movements such as jogging, 

accelerations/decelerations, sprinting and changing direction at different intensities (Di 

Salvo et al., 2007). As a consequence of these movements the players’ soft tissues (bones, 

cartilage, muscles, tendons and ligaments) are put under biomechanical load and over 
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time the accumulation of this load will result in strengthening on the one hand, but it can 

also lead to weakening and subsequently injury, on the other hand (Hreljac, 2004; Kjaer 

et al., 2009; Nigg et al., 1995). If a MSD-model is capable of estimating GRF patterns 

from a variety of movements such as running at different intensities and when changing 

direction, then this could be used to gain a better understanding of whole-body 

biomechanical load during team sports. The aim of this study was therefore to explore the 

generalisability of a MSD-model to estimate GRF during running and side cutting at 

different running speeds. 

 

3.2. Methods 

Twenty recreational male team sports athletes (age 22 ± 4 years, height 178 ± 8 cm, mass 

76 ± 11 kg) completed four straight line running trials (Run), four anticipated 45° (Cut45) 

and four 90° side cutting trials (Cut90) at approach speeds of 2, 3, 4 and 5 m·s-1 (± 5%) 

in a randomised task order. Approach speeds were measured with photocell timing gates 

(Brower Timing System, Utah, USA) positioned 2 m apart and 2 m from the centre of the 

force platform as described in Vanrenterghem et al., 2012. No participants had any history 

of severe lower limb injuries. The study was approved by the institutional ethics 

committee and written consent was obtained from all participants. 

 

3.2.1. Measured GRF 

Ground reaction forces of one ground contact were measured (GRFmeasured) with a 

sampling frequency of 3000 Hz from a Kistler force platform (9287C, Kistler Instruments 

Ltd., Winterthur, Switzerland). Participants ran over the force platform with their 

dominant leg during the Run trials. The cutting task was performed at the time that their 

dominant leg made contact with the force platform during the Cut45 and Cut90 tasks, 

making an open cut towards the non-dominant side (similar to cutting task as described 
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in Vanrenterghem et al., 2012). GRFmeasured were exported to Matlab (Version R2015a, 

The MathWorks, Inc., Natick, MA, USA) where touch down and take off was defined for 

each trial based on the vertical GRF crossing a 20 N threshold. GRFmeasured were filtered 

with a 4th order Butterworth low-pass filter with a cut-off frequency of 20 Hz. 

 

3.2.2. Mass-spring-damper model 

A MSD-model consisting of a lower mass (m2) on top of a spring-damper combination 

and an upper mass (m1) on top of another spring (Figure 3.1) was used in this study 

(Alexander et al., 1986; Derrick et al., 2000). Eight natural model parameters were 

determined to describe the motion of the model: the position (p1) and velocity (v1) of the 

upper mass, the position (p2) and velocity (v2) of the lower mass, the mass ratio (λ) of the 

lower mass relative to the participant’s total body mass, the natural frequency of the upper 

(ω1
2) and lower spring (ω2

2), and the dampening ratio (ζ) of the damper. The model 

parameters were defined as described in Appendix E. 

 

 
Figure 3.1: Illustration of the MSD-model and a free-body diagram of the model. 
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The equations of motion of the MSD-model are described in Equations 3.1 and 3.2, where 

a1 and a2 are the acceleration of the upper and lower mass respectively, and g is the 

acceleration due to gravity (-9.81 m·s-2). 

  

𝑎1(𝑡) = −𝜔1
 2(𝑝1 − 𝑝2) + 𝑔       [Equation 3.1] 

𝑎2(𝑡) = −𝜔2
 2𝑝2 + 𝜔1

 2𝜆(𝑝1 − 𝑝2) − 2𝜁𝜔2𝑣2 + 𝑔    [Equation 3.2] 

 

Finally, the GRF acting on the MSD-model (GRFmodel) could be estimated as described 

in Equations 3.3, where M is the total mass. 

 

𝐺𝑅𝐹𝑚𝑜𝑑𝑒𝑙 =
𝑀𝜔2

1+𝜆
(𝜔2𝑝2 + 2𝜁𝑣2)      [Equation 3.3] 

 

3.2.3. Optimisation Routine 

The eight model parameters were determined for each trial from a gradient descent 

optimisation routine in Matlab to estimate GRFmodel (Figure 3.2). The two second order 

differential equations (Equations 3.1 and 3.2) were transformed to four first order 

differential equations which were solved numerically using a Runge Kutta 4th order 

method to determine the eight model parameters. The MSD-model was fitted to the 

resultant GRFmeasured rather than to individual vector components of GRF because the two 

cutting tasks (Cut45 and Cut90) clearly involved three-dimensional movements that were 

not represented along one single primary lab axis (e.g. vertical) or in any primary plane 

(e.g. sagittal plane). The best fit between GRFmeasured and GRFmodel was determined as the 

sum of squared errors (SSE) across the contact phase (Equation 3.4).  

 

𝑆𝑆𝐸 = ∑ √(𝐺𝑅𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) − 𝐺𝑅𝐹𝑚𝑜𝑑𝑒𝑙(𝑡))2    [Equation 3.4] 
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Figure 3.2: Flow-chart of the purpose built gradient descent optimisation routine used to 

estimate GRFmodel. 

 

The initial search parameters for the optimisation routine were determined from a two-

step process including 1) typical model parameters presented by Derrick et al. (2000) for 

running and 2) median parameters across tasks and approach speeds from 4 participants 

(see detail in Appendix F). The initial search parameters of each parameter were split into 

a range of 5 values creating an 85 model parameter solution from which the solution with 

the smallest SSE was used to determine the search direction for the gradient descent 

optimisation. Furthermore, the parameter range obtained from the initial search 

parameters determined the size of the search window (boundary conditions) of the 

gradient descent optimisation. If any model parameter reached the boundary condition 

after the gradient descent optimisation, the search window was shifted and the gradient 

descent optimisation was repeated. The gradient descent optimisation was restricted to 

progress in a maximum of 500 iterations or until the SSE was less than 0.001. The 

GRFmeasured were downsampled to 100 Hz to reduce computation time. Examples of the 

SSE and model parameter history from the gradient descent optimisation routine along 

with the associated GRFmodel is displayed in Figure 3.3.     
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Figure 3.3: The top row display the SSE history from the gradient descent optimisation. The 

second row display GRFmeasured and GRFmodel calculated from the initial search parameters 

(ISparam) and the model parameters from iteration 0, 100, 300 and 500 (Itera). The polar plots 

in the bottom row display the model parameter history from the initial search parameters to 

iteration step 500 (in scaled dimensionless values).  

 

3.2.4. Data processing 

The GRFmeasured and GRFmodel were normalised to the participants’ mass. The SSE was 

further normalised for the duration of stance time. The ability of the MSD-model to 

estimate specific GRF loading characteristics was evaluated using the following GRF 

trajectory characteristics: impulse, calculated as the integral of GRF across the stance 

time; impact peak, defined as peak GRF within the first 25% of the stance time; time to 

impact peak, defined as the time from touch down to the impact peak; average loading 
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rate, defined as the average gradient from touch down to the impact peak; active peak, 

defined as peak GRF in the last 75% of stance time; and time to active peak, defined as 

the time from touch down to the active peak. These GRF variables, stance time, SSE, and 

the eight model parameters, were averaged per condition for each individual participant. 

One of the participants was not able to complete the Cut90 condition with an approach 

speed at 5 m·s-1, and therefore all statistical analyses for this condition only included data 

from 19 participants.          

 

3.2.5. Statistical analysis 

Similarities between GRFmeasured and GRFmodel were interpreted from the magnitude of 

SSE, being poor (>75 N·kg-1·ms-1), moderate (25-75 N·kg-1·ms-1), good (10-25 N·kg-

1·ms-1), and very good (<10 N·kg-1·ms-1). A two-way ANOVA analysis was used to 

evaluate the effect of task and approach speed on the SSE. Pairwise post-hoc analyses, 

with a Bonferroni corrected alpha level set at 0.0125, were used to test for any significant 

differences between tasks or approach speeds. Linear regression analyses were used to 

explore the within condition relationship between the GRF loading variables calculated 

from the GRFmeasured and GRFmodel. The magnitudes of the linear relationships were 

interpreted as described by (Hopkins et al., 2009). The two-way ANOVA and linear 

regression analyses were performed using SPSS 22.0 (SPSS Inc. Chicago, IL, USA). 

Finally, Bland-Altman analyses were used to explore within conditions the mean 

difference (bias) and the 95% limits of agreement (LoA) between the GRF loading 

variables calculated from GRFmeasured and GRFmodel (Bland and Altman, 2010). 
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3.3. Results 

The MSD-model was able to mimic the GRFmeasured with moderate to very good similarity 

across the different conditions (Figure 3.4). The best and worst similarity were observed 

for Run (SSE between 2.5 ± 1.6 and 5.8 ± 2.4 N·kg-1·ms-1) and Cut90 (SSE between 9.9 

± 6.3 and 33.8 ± 16.8 N·kg-1·ms-1), respectively, and the SSE generally increased, i.e. 

showing less similarity, with increasing approach speeds (Table 3.1).  The main effect 

from the two-way ANOVA analysis showed that SSE was significantly affected by both 

task and approach speed (task: F2,227 = 69.5, p = <0.001; approach speed: F3,227 = 22.2, p 

= <0.001). Post-hoc analysis revealed that mean SSE was significantly higher for Cut45 

compared to Run, and that SSE for Cut90 was significantly higher than both Run and 

Cut45 (Table 3.1). In addition, SSE for the two fastest approach speeds (4 and 5 m·s-1) 

was significantly higher than the two slowest approach speeds (2 and 3 m·s-1). 

 

Table 3.1: Mean ± standard deviation for SSE (N·kg-1·ms-1) for the individual tasks and approach 

speeds. Mean difference and 98.75% confidence interval (CI) of the difference in SSE between 

tasks and approach speeds (alpha = 0.0125) obtained from the two-way ANOVA and post-hoc 

analysis. 

*  Indicates a significant difference between tasks or approach speeds (alpha = 0.0125). 

 Run Cut45 Cut90 

2 m·s-1 2.5 ± 1.6 3.3 ± 1.9 9.9 ± 6.3 

3 m·s-1 3.3 ± 2.3 5.6 ± 4.0 18.0 ± 15.1 

4 m·s-1 4.1 ± 2.1 13.9 ± 10.7 29.1 ± 19.2 

5 m·s-1 5.8 ± 2.4 17.3 ± 13.8 33.8 ± 16.8 

Post-Hoc 
Mean 

Difference 

98.75% CI 
p - value 

Lower Upper 

Run vs. Cut45 -6.1 -10.8 -1.4 0.001* 

Run vs. Cut90 -18.6 -23.3 -13.9 >0.001* 

Cut45 vs. Cut90 -12.5 -17.2 -7.8 >0.001* 

2 m·s-1 – 3 m·s-1 -3.7 -9.5 2.1 0.293 

2 m·s-1 – 4 m·s-1 -10.5 -16.3 -4.6 >0.001* 

2 m·s-1 – 5 m·s-1 -13.5 -19.3 -7.6 >0.001* 

3 m·s-1 – 4 m·s-1 -6.8 -12.6 -0.9 0.002* 

3 m·s-1 – 5 m·s-1 -9.8 -15.6 -3.9 >0.001* 

4 m·s-1 – 5 m·s-1 -3.0 -8.9 2.8 0.652 
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Figure 3.4: Representative example of GRFmeasured (solid black line) and GRFmodel (dotted grey 

line) and the associated SSE for the conditions investigated in this study. 

 

Very strong correlations (R2: 0.9 to 1.0) were found for the majority of GRF loading 

variables calculated from GRFmeasured and GRFmodel across the different tasks and 

approach speeds (Table 3.2). Overall, the GRF loading variables showed smaller bias 

(GRFmodel underestimating or overestimating the variables from GRFmeasured) and smaller 

LoA (within condition variability) for the Run and Cut45 tasks compared to the Cut90 

task (Figure 3.5). The Cut45 at the fastest approach speeds (4 and 5 m·s-1) showed larger 

bias and LoA than the Run for impact peak, loading rate and active peak. Larger bias and 
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LoA were in particularly observed for the Cut90 task compared to the Run and Cut45 

tasks for impact peak, time to impact peak, loading rate and active peak. 

 

Table 3.2: Mean ± standard deviation and R2 for the extracted GRF variables from the GRFmeasured 

and GRFmodel for the individual tasks and approach speeds. 

 Run Cut45 Cut90 

 GRFmeasured GRFmodel R2 GRFmeasured GRFmodel R2 GRFmeasured GRFmodel R2 

Impulse (N·s·kg-1)   

2 m·s-1 4.1 ± 0.2 4.1 ± 0.2 0.99 4.5 ± 0.4 4.5 ± 0.4 0.99 5.2 ± 0.6 5.3 ± 0.7 0.98 

3 m·s-1 4.0 ± 0.3 4.0 ± 0.2 1.00 4.5 ± 0.5 4.5 ± 0.5 1.00 5.4 ± 0.8 5.5 ± 0.8 1.00 

4 m·s-1 3.8 ± 0.3 3.8 ± 0.3 1.00 4.5 ± 0.5 4.5 ± 0.5 1.00 5.8 ± 0.8 5.8 ± 0.9 1.00 

5 m·s-1 3.3 ± 0.4 3.2 ± 0.4 1.00 4.0 ± 0.5 4.0 ± 0.5 1.00 5.3 ± 0.7 5.3 ± 0.8 1.00 

Impact peak (N·kg-1)   

2 m·s-1 18.6 ± 1.8 18.5 ± 1.9 0.96 18.2 ± 2.0 18.1 ± 2.1 0.95 20.4 ± 3.3 19.6 ± 2.5 0.94 

3 m·s-1 20.0 ± 2.3 20.2 ± 2.4 0.98 20.6 ± 2.4 20.4 ± 2.2 0.96 24.9 ± 5.2 23.4 ± 3.9 0.95 

4 m·s-1 22.9 ± 2.7 23.1 ± 2.4 0.99 25.8 ± 4.3 24.9 ± 3.4 0.93 27.7 ± 5.3 25.0 ± 4.1 0.88 

5 m·s-1 25.6 ± 2.8 25.5 ± 2.6 0.98 28.9 ± 5.0 27.8 ± 4.5 0.95 29.4 ± 4.6 26.7 ± 4.1 0.96 

Time to impact peak (ms)   

2 m·s-1 81 ± 12 82 ± 11 0.98 79 ± 15 80 ± 14 0.98 77 ± 20 83 ± 18 0.85 

3 m·s-1 66 ± 9 67 ± 8 0.94 62 ± 14 66 ± 11 0.90 59 ± 16 68 ± 18 0.82 

4 m·s-1 54 ± 7 55 ± 7 0.90 50 ± 12 54 ± 12 0.90 55 ± 14 63 ± 19 0.87 

5 m·s-1 44 ± 4 47 ± 5 0.80 44 ± 8 46 ± 9 0.93 46 ± 8 51 ± 12 0.81 

Loading rate (N·kg-1·s-1)   

2 m·s-1 235 ± 54 233 ± 50 0.92 245 ± 73 237 ± 66 0.94 307 ± 126 263 ± 104 0.91 

3 m·s-1 310 ± 74 312 ± 68 0.92 361 ± 113 331 ± 86 0.93 474 ± 193 405 ± 171 0.94 

4 m·s-1 438 ± 99 434 ± 86 0.96 559 ± 178 511 ± 161 0.97 550 ± 198 487 ± 215 0.94 

5 m·s-1 584 ± 91 561 ± 86 0.92 684 ± 207 645 ± 186 0.99 659 ± 165 612 ± 201 0.97 

Active peak (N·kg-1)   

2 m·s-1 22.5 ± 2.2 22.5 ± 2.2 0.96 22.7 ± 2.8 23.0 ± 2.7 0.99 22.6 ± 3.0 22.9 ± 3.0 0.93 

3 m·s-1 24.9 ± 2.0 25.0 ± 2.0 0.96 25.5 ± 2.6 25.9 ± 2.6 0.96 24.5 ± 2.9 24.9 ± 3.0 0.91 

4 m·s-1 27.0 ± 1.7 27.1 ± 1.6 0.98 27.3 ± 2.6 27.9 ± 2.6 0.93 23.8 ± 2.7 25.1 ± 2.9 0.94 

5 m·s-1 27.1 ± 2.5 27.4 ± 2.4 0.98 28.3 ± 3.0 28.9 ± 3.0 0.94 24.5 ± 3.5 25.6 ± 3.5 0.94 

Time to active peak (ms)   

2 m·s-1 125 ± 14 126 ± 16 0.83 143 ± 25 144 ± 26 0.88 169 ± 49 167 ± 44 0.96 

3 m·s-1 109 ± 14 109 ± 15 0.89 125 ± 23 124 ± 23 0.90 137 ± 32 139 ± 33 0.74 

4 m·s-1 92 ± 14 93 ± 14 0.92 108 ± 22 106 ± 24 0.75 126 ± 33 131 ± 40 0.88 

5 m·s-1 68 ± 17 65 ± 16 0.84 84 ± 23 85 ± 25 0.93 122 ± 26 123 ± 28 0.76 

Stance time (ms) – from GRFmeasured   

2 m·s-1 331 ± 38   332 ± 43   368 ± 63   

3 m·s-1 274 ± 27   284 ± 32   334 ± 51   

4 m·s-1 231 ± 21   256 ±32   351 ± 61   

5 m·s-1 195 ± 19   218 ± 29   316 ± 58   

 

 



Chapter 3 Generalisability of mass-spring-damper model 

65 

 
Figure 3.5: Results from the Bland-Altman analysis, showing the mean difference (marker) and 

95% limits of agreements (error bar) for the Run (solid square), Cut45 (solid circle) and Cut90 

(open circle) across the different tasks and approach speeds. 

 

The average model parameters, apart from p2, saw limited change within tasks or 

approach speeds, similarly did p2 vary the most within tasks (Figure 3.6). The illustrative 

polar plots of the eight model parameters displayed in Figures 3.4 and 3.7 showed that λ, 

ω1
2, ω2

2 and ζ varied the most across the different GRF patterns observed in this study. 

Generally higher values of ω1
2 (the natural frequency of the upper spring) were for 

example observed for the Run task compared to the two cutting tasks, whereas the 

smallest values of ω2
2 (the natural frequency of the lower spring) were observed for the 

Cut90 task (Table 3.3). 
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Figure 3.6: Polar plots displaying the mean (black line and circles) and standard deviations 

(dotted grey line) of the model parameters (in scaled dimensionless values) across all 

conditions and for the individual tasks and approach speeds. 

 

Table 3.3: Mean ± standard deviation of the eight model parameters for the individual tasks and 

approach speeds. 

 
p1 

(m) 

p2 

(m) 

v1 

(m·s-1) 

v2 

(m·s-1) 

λ 

(au) 

ω1
2 

(N·m-1·kg-1) 

ω2
2 

(N·m-1·kg-1) 

ζ 

(au) 

Run 2 m·s-1 
0.00 

±0.03   

0.01  

±0.01 

-1.00  

±0.54 

0.19  

±0.33 

4.42  

±2.70 

616  

±339 

2771  

±1905 

0.53  

±0.53 

Run 3 m·s-1 
0.00 

±0.01 

0.00  

±0.01 

-1.16  

± 0.57 

-0.14  

± 0.24 

6.43  

±8.49 

765  

±448 

3989  

±3496 

0.53  

± 0.52 

Run 4 m·s-1 
-0.01  

±0.01 

0.00  

±0.01 

-1.26  

± 0.27 

-0.09  

± 0.40 

3.80  

±2.41 

810  

±465 

3973  

±2288 

0.41  

± 0.36 

Run 5 m·s-1 
-0.02  

±0.02 

0.00  

±0.00 

-1.11  

± 0.20 

-0.05  

± 0.23 

2.97  

±1.64 

878  

±542 

4804  

±2364 

0.33  

± 0.10 

Cut45 2 m·s-1 
0.00  

±0.02 

0.00  

±0.01 

-1.10 

± 0.40 

-0.22  

± 0.37 

3.98  

±3.19 

400  

±345 

4063  

±2688 

0.31  

± 0.20 

Cut45 3 m·s-1 
-0.01  

±0.03 

0.00  

±0.01 

-1.33  

± 0.37 

-0.22  

± 0.31 

3.94  

±2.61 

400  

±216 

4719  

±2928 

0.32  

± 0.37 

Cut45 4 m·s-1 
-0.02  

±0.03 

0.00  

±0.01 

-1.65  

± 0.45 

-0.22  

± 0.48 

3.20  

±2.62 

443  

±287 

4083  

±2559 

0.34  

± 0.19 

Cut45 5 m·s-1 
-0.03  

±0.03 

0.00  

±0.01 

-1.47  

± 0.40 

-0.02  

± 0.67 

3.32  

±2.33 

638  

±465 

4164  

±2075 

0.31  

± 0.13 

Cut90 2 m·s-1 
0.01  

±0.06 

0.01 

±0.02 

-1.41 

± 0.74 

-0.41 

± 0.68 

2.53 

±2.63 

307 

±239 

2481 

±2374 

0.31  

± 0.21 

Cut90 3 m·s-1 
0.02  

±0.08 

0.02 

±0.03 

-1.74 

± 0.88 

-0.57 

± 0.83 

2.51 

±3.09 

344 

±309 

2296 

±2172 

0.35 

± 0.17 

Cut90 4 m·s-1 
-0.06  

±0.12 

0.01  

±0.03 

-1.68 

± 0.48 

-0.34  

± 1.00 

3.82 

±4.89 

277 

±336 

2963  

±2455 

0.31 

± 0.16 

Cut90 5 m·s-1 
-0.07  

±0.10 

0.01  

±0.03 

-1.82  

± 1.01 

-0.18  

± 0.97 

3.88  

±5.08 

244  

±234 

3808 

±2434 

0.31  

± 0.21 
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Figure 3.7: Examples of the MSD-models ability to estimate the range of different GRF patterns 

(GRFmeasured is the solid black line and GRFmodel is the dotted grey line) observed in this study 

between participants, tasks and approach speeds. The SSE (N·kg-1·ms-1) and polar plots 

displaying the model parameters (in scaled dimensionless values) for the individual trials. 

 

3.4. Discussion 

The aim of this study was to explore the generalisability of a mass-spring-damper model 

to estimate GRF in running and changing direction at different running speeds. The MSD-

model was able to mimic GRF patterns observed in this study with moderate to very good 

accuracy. Less similarity between modelled and measured GRF was observed in both side 

cutting tasks. In addition, significantly better similarity was observed for the two slowest 
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approach speeds (2 to 3 m·s-1) compared to the fastest approach speeds (4 to 5 m·s-1). The 

biomechanically most relevant features of the GRF trajectories could be represented 

through the model as strong (R2: 0.7 to 0.9) to very strong (R2: 0.9 to 1.0) correlations 

were found between the GRF loading variables calculated from GRFmeasured and GRFmodel 

for all conditions, despite larger bias and LoA observed in Cut90.  

 

The moderate to very good similarity between GRFmeasured and GRFmodel across tasks and 

approach speeds, and small mean difference in the impulse, illustrated that a simple MSD-

model can mimic GRF patterns and its biomechanically relevant features for utility 

movements at different intensities. In fact, the differences in impulse between GRFmeasured 

and GRFmodel observed across tasks and approach speeds in this study were smaller than 

what was previously observed by Derrick et al. (2000) for running at 3.83 m·s-1 (19.9 N∙s 

≈ 0.26 N·s·kg-1). In comparison the mean difference in impulse observed in this study 

was 0.01 N·s·kg-1 for running at 4 m·s-1, which is similar to the difference in impulse (-

1.3 N∙s ≈ -0.02 N·s·kg-1) observed by Derrick et al. (2000) after their 10% adjustment of 

GRFmodel. Derrick et al. (2000) only included the spring constants of the upper and lower 

spring (k1 and k2) and the position of the lower mass (p2) in their optimisation routine. 

The damping ratio was for example kept constant (ζ = 0.35), whereas it was included in 

the optimisation routine in the present study. Damping ratios between 0.31 and 0.53 were 

observed between conditions in the present study, which is within the range previously 

reported for running (Cavagna, 1970; McMahon and Greene, 1979). The additional model 

parameters included in our optimisation routine may explain the fact that better agreement 

for parameters such as impulse was found in this study compared to the study by Derrick 

et al. (2000). 
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Team sport players spend the majority of playing time performing running related utility 

movements at different intensities, amongst which changes in direction are in general 

characterised by a large deceleration of the body followed by an acceleration to push off 

in a new direction (Jones et al., 2016; Jones et al., 2015). These movements can to some 

extent fail to follow spring-like behaviour, particularly when the energy absorbed during 

the deceleration is larger than that which the body is able to generate when 

(re-)accelerating the body in a new direction. The CoM velocity at the end of foot-ground-

contact would then be lower than the CoM velocity at the beginning of foot-ground-

contact, and the return of energy is then likely postponed to the following steps when the 

body is already moving into the new direction. This was confirmed through full-body 

kinematics, as the average resultant CoM velocity decreased by 0.24 ± 0.19 m·s-1 for 

Cut90, compared to 0.13 ± 0.12 and 0.16 ± 0.04 m·s-1 for Cut45 and Run, respectively. 

This energy absorption therefore likely explained why the MSD-model’s accuracy for 

representing GRF was lowest for the Cut90 task. 

 

Strong to very strong correlations were observed for the GRF loading variables 

investigated in this study demonstrating that the model estimates follow measured 

variations closely. Though the accuracy of the GRF loading variables estimated from the 

model decreased for Cut90 task, we believe these under- and overestimations are still 

within an acceptable range for this simple model approach to estimate GRF characteristics 

acting on the human body. GRF loading variables are largely unexplored in team sports, 

but the simple MSD-model approach might help researchers explore if accumulation of 

high impact forces, impulse, or loading rates are associated with increased risk of overuse 

injuries in team sports, something which has already been demonstrated in long distance 

runners (Hreljac, 2004).  
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The MSD-model showed to be the least accurate for GRF patterns characterised by a high 

impact peak, loading rate and long stance times, such as the examples of the Cut90 at 4 

and 5 m·s-1 displayed in Figures 3.4 and 3.7. The model especially underestimated the 

impact peak when the stance time increased. Derrick et al. (2000) demonstrated that the 

MSD-model, due to its spring-like behaviour, increases the stance time by decreasing the 

natural frequencies of the two springs (ω1
2 and ω2

2). This is similar to the results observed 

in this study where the change in direction tasks had the longest stance time (Table 3.2) 

and the lowest natural frequencies of the two springs (ω1
2 and ω2

2) (Table 3.3). The 

impact peak was however systematically underestimated as a consequence of the 

decreased spring stiffness. The natural “springs” in our body are the soft tissues of the 

lower extremities which can absorb and return elastic energy. It might very well be the 

case that for shorter contact times the body is increasingly able to utilize the stiffness of 

its tendons (e.g. the Achilles tendon), something which was suggested to be the case when 

jumping towards different heights (Vanrenterghem et al., 2004). 

 

There are a number of limitations to this study. One limitation is the fact that the approach 

speeds and tasks included in this study do not cover all of the agility movements team 

sports player perform. For instance, the model’s generalisability to simulate GRF from 

running velocities higher than 5 m·s-1 remains unknown, though it might be expected that 

the model can mimic these GRF trajectories because GRF patterns previously presented 

for sprinting (Clark and Weyand, 2014) are largely similar to those predicted in this study. 

Another limitation is that the simplified MSD-model does not account for the energy 

generated by the body’s “active” structures (muscles). Whilst a more complex model 

could account for these it is questionable if the addition of “active” elements actually 

would improve the simulation of GRF trajectories. A third limitation is that the gradient 

descent optimisation routine used in this study may find local minima and not the true 
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global minimum. A number of local minima (model parameter solutions) might exist 

close to the global minimum due to the number of model parameter solutions which exist 

close to the global minimum. The gradient descent optimisation was however believed to 

be sufficient for this study.  

 

The eight model parameters, required to estimate GRF from the MSD-model, are 

currently obtained from GRF measured by a force platform, which to some extent limits 

the application of the MSD-model in team sports. For wider applicability, researchers 

should investigate if the model parameters can be established from other methods. For 

example, professional team sport players currently wear trunk-mounted accelerometers 

during training (Akenhead and Nassis, 2016; Cummins et al., 2013). Although these 

accelerometers only measure the accelerations of the trunk (Nedergaard et al., 2016; 

Wundersitz et al., 2013), future studies should explored if trunk accelerometry can be 

used to establish the eight model parameters. If that is the case, then one could start 

estimating GRF from MSD-models using model parameters obtained from trunk 

accelerometry. 

 

3.5. Conclusion 

In conclusion, this study demonstrated that a mass-spring-damper model is generalisable 

for estimating GRF patterns and related loading variables observed during a broad range 

of movements in team sports. The MSD-model approach may well become a useful 

approach for researchers to estimate whole-body biomechanical loading in team sports, 

which could be invaluable for linking biomechanical load to injury risk. 
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4.  

This study was presented at the 2nd ASPIRE Sport Science Conference “Monitoring 

Athlete Training Loads – The Hows and Whys” in Doha, Qatar 2016. The aim of this 

study was to introduce a novel mass-spring-damper model approach to estimate ground 

reaction forces from trunk-mounted accelerometry in team sports related movements. The 

mass-spring-damper model’s upper mass acceleration was able to simulate the measured 

trunk accelerometry data. Though poor ground reaction forces were predicted from the 

direct approach a sensitivity analysis of the eight model parameters revealed promising 

improvements of the ground reaction force predictions.  

 

4.1. Introduction 

Team sports players generate forces against the ground to move their body around the 

pitch e.g. during tasks such as walking, sprinting, accelerating, decelerating and changing 

direction. This comes at a cost because equal and opposite ground reaction forces (GRF), 

from the interaction with the ground, are acting on their body imposing the player’s soft 

tissues under biomechanical stress (bones, cartilage, muscles, tendons and ligaments) 

(Dye, 2005; Kibler et al., 1992; Nigg et al., 1995). Over time the accumulation of 

biomechanical load can result in beneficial structural adaptations e.g. repair, regeneration, 

and strengthening of the player’s soft tissues or negative adaptions leading to overuse or 

acute injuries depending on the volume, frequency, duration and intensity of the load and 

recovery period (Dye, 2005; Kibler et al., 1992; Nigg et al., 1995). Overuse injuries are 

per definition a result of the cumulative tissue damage over time (Clarsen et al., 2015; 

Finch and Cook, 2014) and monitoring of the biomechanical load may therefore help 

researchers and practitioners to better understand the relationship between whole-body 

biomechanical load and soft tissue overuse injuries in team sports.  
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Measurement of GRF, a surrogate for whole-body biomechanical load, is currently 

restricted to laboratory environments where force platforms inbuilt to the ground are 

considered as the gold standard to measure the GRF acting on the body (Winter, 2005). 

This makes it difficult to monitor the biomechanical loads to which a player is exposed 

from the external GRF during training sessions or match-play. Researchers and 

practitioners have therefore focused on the relationship between the exposure to 

physiological load measurements (e.g. total distance covered or distance covered at high 

intensity running, session duration dependent rating of perceived exertion) and overuse 

injuries in the current literature (Ehrmann et al., 2016; Gabbett, 2010; Gabbett and Ullah, 

2012). More recently it has been suggested that the accelerometer integrated in the 

commercial GPS devices, which are used on a daily basis in professional team sports 

(Akenhead and Nassis, 2016; Cummins et al., 2013), can be used to estimate the GRF 

acting on the player’s body (Boyd et al., 2011). However, the GPS integrated 

accelerometer is known to overestimate GRF during team sports movements (Nedergaard 

et al., 2016; Wundersitz et al., 2013).  

 

The challenge with trunk-mounted accelerometry is that it does not measure the body’s 

centre of mass (CoM), but only the accelerations of the segment it is attached to 

(Nedergaard et al., 2016). This is therefore not sufficient to determine the multi-segment 

dynamics of the body during dynamic movements. Due to the spring-like behaviour of 

the human body during running, where the elastic tissues of the support leg absorb and 

return the elastic energy, simple spring-mass models have been used to estimate the CoM 

displacement and running mechanics of the human body (Alexander et al., 1986; 

Blickhan, 1989; McMahon and Cheng, 1990). The vertical GRF can be estimated as a 

half sinusoidal wave from the vertical movement of the model’s mass (the system’s centre 

of mass) but this simple spring-mass model approach is insufficient to estimate the initial 
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impact forces when the foot collides with the ground (Alexander et al., 1986; Bobbert et 

al., 1992; Clark and Weyand, 2014). A modified mass-spring-damper model (MSD-

model) with a second mass in series with a spring-damper, representing the support leg 

at initial impact, has been successful in overcoming this issue, and allows one to replicate 

the GRF pattern of humans during running (Derrick et al., 2000) and change in direction 

at different intensities (Chapter 3). It is however still unknown if the eight model 

parameters required to estimate GRF from the MSD-model can be established from trunk 

accelerometry data (e.g. from a GPS integrated accelerometer). The aim of this study was 

therefore to explore the opportunity to generate the eight MSD-model parameters from 

measured trunk accelerometry and thereby predict the GRF during team sports related 

movements. 

 

4.2. Methods 

Twenty recreational male team sports athletes volunteered to participate in this study (age 

22 ± 4 years, height 178 ± 8 cm, mass 76 ± 11 kg). No participants had a history of severe 

lower limb injuries (e.g. ACL injuries or ankle sprains). The study was approved by the 

institutional ethics committee and written consent was obtained from all participants. 

 

4.2.1. Protocol 

The participants completed four forward straight line running trials (Run) and four 

anticipated 45° (Cut45) and four 90° (Cut90) open side-cutting manoeuvres at approach 

speeds of 2, 3, 4 and 5 m·s-1 (± 5%) in a randomised condition order. Participants ran over 

the force platform with their dominant leg during the Run trials and performed the Cut45 

and Cut90 when their dominant leg made contact with the force platform (turning in the 

direction of their non-dominant leg). Approach speeds were measured with photocell 
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timing gates (Brower Timing System, Utah, USA) positioned 2 m apart and 2 m before 

the centre of the force platform.  

 

4.2.2. Measurements 

Resultant trunk accelerations (TrunkAccmeasured) were collected at 100 Hz using a tri-axial 

accelerometer embedded within a commercial GPS device (MinimaxX S4, Catapult 

Innovations, Scoresby, Australia). The GPS device was positioned on the dorsal part of 

the upper trunk between the scapulae within a small pocket of a tight fitted elastic vest 

according to the manufacturer’s recommendations (Boyd et al., 2011). Resultant ground 

reaction forces were measured (GRFmeasured) with a sampling frequency of 3000 Hz from 

a Kistler force platform (9287C, Kistler Instruments Ltd., Winterthur, Switzerland). 

TrunkAccmeasured and GRFmeasured were exported to Matlab (version R2016a, The 

MathWorks, Inc., Natick, MA, USA) where a 4th order recursive Butterworth low-pass 

filter with a cut-off frequency of 20 Hz was applied to the GRFmeasured and 

TrunkAccmeasured data. In contrast to Chapter 2, TrunkAccmeasured was filtered in this study 

to remove the high frequency content of the signal before it was used as model input, as 

this was expected to improve the models ability to replicate the trunk accelerometer 

signal. TrunkAccmeasured and GRFmeasured were synchronised as described in Nedergaard et 

al. (2016) (see details in Appendix C) and touch down and take off on the force platform 

were defined for each trial when the vertical GRF crossed a 20 N threshold. 

 

4.2.3. Accelerometry MSD-model 

The multi-dynamics of the human body was modelled as a mass-spring-damper model 

(MSD-model) consisting of a lower mass (m2) on top of a spring-damper combination 

representing generally the support leg at initial impact and an upper mass (m1) on top of 

another spring representing generally the rest of the body (Alexander et al., 1986; Derrick 
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et al., 2000). The GRF acting on the MSD-model (GRFmodel) can mathematically be 

calculated (Equation 4.3) from the equation of motion of the two masses (Equations 4.1 

and 4.2) when eight initial model parameters are known: the position (p1) and velocity 

(v1) of the upper mass, the position (p2) and velocity (v2) of the lower mass, the mass ratio 

(λ) of the lower mass relative to the participant’s total body mass, the natural frequency 

of the upper (ω1
2) and lower spring (ω2

2), and the dampening ratio (ζ) of the damper 

(Derrick et al., 2000).  

 

𝑎1(𝑡) = −𝜔1
 2(𝑝1 − 𝑝2) + 𝑔             [Equation 4.1]    

𝑎2(𝑡) = −𝜔2
 2𝑝2 + 𝜔1

 2𝜆(𝑝1 − 𝑝2) − 2𝜁𝜔2𝑣2 + 𝑔             [Equation 4.2] 

𝐺𝑅𝐹𝑚𝑜𝑑𝑒𝑙 =
𝑀𝜔2

1+𝜆
(𝜔2𝑝2 + 2𝜁𝑣2)               [Equation 4.3] 

  

 
Figure 4.1: Illustration of the accelerometer/MSD-model, where TrunkAccmeasured is used to 

simulate the acceleration of the upper mass from which the eight natural model parameters are 

obtained required to predict GRFmodel. 

 

The eight model parameters were determined from a purpose built gradient descent 

optimisation routine in Matlab where the acceleration of the upper mass (a1) was 

simulated using the gravity corrected TrunkAccmeasured (Figure 4.1). Assuming that the 

upper mass is representative of the trunk, the sum of squared errors between the 
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TrunkAccmeasured and a1 (SSEtrunk) was used to determine the eight model parameters from 

which the model best simulated the TrunkAccmeasured (Equation 4.4). The structure of the 

gradient descent optimisation routine (Figure 4.2) was similar to the structure previously 

described in Chapter 3, where GRFmeasured were used to determine the eight model 

parameters. The initial search parameters for the optimisation routine were defined 

following the same two-step pilot study approach described in Chapter 3 where the mean 

model parameter values from Chapter 3 were used as initial search parameters on the data 

from 4 participants (see details in Appendix F). The two second order differential 

equations (Equations 4.1 and 4.2) were transformed to four first order differential 

equations which were solved numerically using a 4th order Runge Kutta method to 

calculate GRFmodel and a1 from the eight model parameters. 

 

𝑆𝑆𝐸 = ∑ √(𝑇𝑟𝑢𝑛𝑘𝐴𝑐𝑐𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) − 𝑎2(𝑡)2           [Equation 4.4] 

 

 

 

Figure 4.2: Flow-chart of the gradient descent optimisation routine from which the eight model 

parameters were generated when TrunkAccmeasured was used as model input. The model 

parameter sensitivity analysis is displayed with grey dashed lines. 

 

4.2.4. Model parameter sensitivity analysis  

A sensitivity analysis of TrunkAccmeasured model parameters on the predicted GRFmodel 

and SSEGRF was performed where GRFmodel was re-calculated with new model parameters 
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(GRFmodelNP) using the 4th order Runge Kutta method. The combination of the new model 

parameters was defined from the results of 1) a comparison between the average 

TrunkAccmeasured and GRFmeasured (data from Chapter 3) model parameters and 2) a linear 

regression between the TrunkAccmeasured and GRFmeasured model parameters. In case a 

linear relationship existed, the TrunkAccmeasured model parameters were re-calculated 

based on the slope of the linear regression to generate new model parameters. 

 

4.2.5. Data processing 

GRFmeasured was down-sampled to 100Hz and the sum of squared errors between 

GRFmeasured and GRFmodel were calculated to determine the accuracy of the predicted 

GRFmodel. In addition, both SSEtrunk and SSEGRF were normalised to stance time to 

compare between conditions. The GRFmeasured and GRFmodel were normalised to the 

participant’s mass. The ability of the MSD-model to estimate specific GRF loading 

characteristics was evaluated using the following GRF trajectory characteristics: Impulse; 

Impact peak; Time to impact peak; Loading rate; Active peak and Time to active peak, 

all defined as previously described in Chapter 3. The eight model parameters, SSEtrunk, 

SSEGRF and the GRF variables were averaged per condition for each individual 

participant. One of the participants was not able to complete the Cut90 condition with an 

approach speed at 5 m·s-1, and therefore all statistical analyses for this condition only 

included data from 19 participants. 

 

4.2.6. Statistical analysis 

Similarities between TrunkAccmeasured and a1 were interpreted from the magnitude of 

SSEtrunk, being poor (>0.5 g/frames), moderate (0.2-0.5 g/frames), good (0.1-0.2 

g/frames), and very good (<0.1 g/frames). The similarities between GRFmeasured and 

GRFmodel were interpreted from the magnitude of SSEGRF, being poor (>25 N/kg/frames), 
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moderate (10-25 N/kg/frames), good (1-10 N/kg/frames), and very good (<1 

N/kg/frames). A one-way ANOVA analysis was used to evaluate the effect of task and 

approach speed respectively on the SSEtrunk and SSEGRF. Pairwise post-hoc analyses, with 

a Bonferroni corrected alpha level set at 0.0125, were used to test for any significant 

differences between tasks or approach speeds. Linear regression analyses were used to 

explore the within condition relationship between the GRF loading variables calculated 

from the GRFmeasured and GRFmodel. The magnitudes of the linear relationships were 

interpreted as described by (Hopkins et al., 2009). The one-way ANOVA and linear 

regression analyses were performed using SPSS 22.0 (SPSS Inc. Chicago, IL, USA). 

Finally, Bland-Altman analyses were used to explore within conditions mean difference 

(bias) and the 95% limits of agreement (LoA) between the GRF loading variables 

calculated from GRFmeasured and GRFmodel (Bland and Altman, 2010). 

 

4.3. Results 

4.3.1. Simulation of upper mass acceleration 

The optimisation routine found a solution in 938 out of 956 trials (Run: 316:320; Cut45: 

319:320; 303:316 trials) when a1 of the MSD-model was fitted to TrunkAccmeasured. The 

MSD-model was able to simulate the acceleration patterns of the TrunkAccmeasured with 

good to very good accuracy across tasks and intensities (Table 4.1), though a1 generally 

underestimated the magnitude of the first peak in the acceleration signal during the stance 

time (Figure 4.3, 4.4 and 4.5).  
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Table 4.1: Mean ± standard deviation for SSETrunk (g/frames) and SSEGRF (N/kg/frames) for the 

individual tasks and approach speeds. Trials with SSEGRF above 5000 were removed before mean 

and standard deviations was calculated for SSEGRF, a total of 82 trials were removed (Run: 19 

trials; Cut45: 30 trials; Cut90: 33 trials).  

Approach  

speed 

Run Cut45 Cut90 

SSETrunk SSEGRF SSETrunk SSEGRF SSETrunk SSEGRF 

2 m·s-1 
0.04  

±0.03 

269 

±357 

0.04  

±0.03 

544 

±812 

0.08  

±0.07 

387 

±361 

3 m·s-1 
0.06  

±0.04 

375 

±432 

0.07  

±0.05 

500 

±612 

0.13  

±0.08 

374 

±446 

4 m·s-1 
0.07  

±0.06 

463 

±555 

0.12  

±0.13 

362 

±419 

0.14  

±0.11 

427 

±577 

5 m·s-1 
0.07  

±0.06 

385 

±509 

0.09  

±0.09 

561 

±644 

0.13  

±0.11 

226 

±306 

 

 

 
Figure 4.3: Example of TrunkAccmeasured (black line), a1 (dashed grey line), GRFmeasured (black 

line) and GRFmodel (dashed grey line) for the Run from a representative participant. The polar 

plots display the model parameters (in scaled dimensionless values) for the individual trials. 
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Figure 4.4: Example of TrunkAccmeasured (black line), a1 (dashed grey line), GRFmeasured (black 

line) and GRFmodel (dashed grey line) for the Cut45 from a representative participant. The polar 

plots display the model parameters (in scaled dimensionless values) for the individual trials. 
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Figure 4.5: Example of TrunkAccmeasured (black line), a1 (dashed grey line), GRFmeasured (black 

line) and GRFmodel (dashed grey line) for the Cut90 from a representative participant. The polar 

plots display the model parameters (in scaled dimensionless values) for the individual trials. 
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The smallest SSEtrunk was observed for the Run (SSEtrunk between 0.04 ± 0.03 and 0.07 ± 

0.06 g/frames) compared to the two change in direction tasks (SSEtrunk between 0.04 ± 

0.03 and 0.14 ± 0.09 g/frames). In addition, the main effect from the one-way ANOVA 

analysis showed that SSEtrunk was significantly affected by both task (F2,227 = 11.8, p = < 

0.001) and approach speed (F3,227 = 5.8, p = 0.001). The post-hoc analysis revealed that 

mean SSEtrunk from the Cut90 was significantly higher than the Run and Cut45, and that 

the mean SSEtrunk at 4 and 5 m·s-1 was significantly higher than the SSEtrunk at 2 m·s-1 

(Table 4.2).  

 

Table 4.2: Mean difference and 98.75% confidence interval (CI) of the difference in SSETrunk 

(g/frames) between tasks and approach speeds (alpha = 0.0125) obtained from the one-way 

ANOVA post-hoc analysis.  

 Mean 

Difference 

98.75% CI 
p - value 

 Lower Upper 

Run vs. Cut45 -0.02 -0.06 0.02 0.263 

Run vs. Cut90 -0.06 -0.10 -0.02 <0.001 

Cut45 vs. Cut90 -0.04 -0.08 0.00 0.007 

2 m·s-1 vs. 3 m·s-1 -0.03 -0.08 0.01 0.173 

2 m·s-1 vs. 4 m·s-1 -0.59 -0.11 -0.01 0.001 

2 m·s-1 vs. 5 m·s-1 -0.46 -0.09 0.00 0.015 

3 m·s-1 vs. 4 m·s-1 -0.03 -0.07 0.02 0.466 

3 m·s-1 vs. 5 m·s-1 -0.01 -0.06 0.03 1.000 

4 m·s-1 vs. 5 m·s-1 0.01 -0.03 0.06 1.000 
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Despite the good to very good match between a1 and TrunkAccmeasured, poor SSEGRF were 

observed regardless of task and approach speed for the accelerometer/MSD-model (Table 

4.1). The lowest average p1, p2, v1, v2 values were generally observed for the two cutting 

tasks compared to the Run (Table 4.3). The lowest ω1
2 and ω2

2 values were observed for 

the Cut90 (ω1
2: between 314 ± 401 and 478 ± 450 N·kg-1·ms-1; ω2

2: between 1446 ± 1296 

and 2511 ± 1471 N·kg-1·ms-1) compared to the Cut45 and Run (ω1
2: between 388 ± 433 

and 755 ± 671 N·kg-1·ms-1; ω2
2: between 2571 ± 1427 and 3404 ± 1427 N·kg-1·ms-1).  

  

Table 4.3: Mean ± standard deviation of the eight model parameters from the 

accelerometer/MSD-model for the individual tasks and approach speeds. 

 
p1  

(m) 

p2  

(m) 

v1  

(m·s-1) 

v2  

(m·s-1) 

λ  

(au) 

ω1
2  

(N·kg-1·ms-1) 

ω2
2  

(N·kg-1·ms-1) 

ζ  

(au) 

Run 2 m·s-1 
-0.03 

±0.03 

-0.01 

±0.03 

-0.60 

±0.19 

-2.22 

±1.32 

3.42 

±2.69 

542 

±504 

2571 

±1427 

0.29 

±0.18 

Run 3 m·s-1 
-0.02 

±0.05 

-0.01 

±0.04 

-0.71 

±0.17 

-2.04 

±1.77 

3.00 

±3.00 

755 

±671 

2885 

±1851 

0.25 

±0.13 

Run 4 m·s-1 
-0.03 

±0.05 

-0.02 

±0.04 

-0.72 

±0.17 

-2.32 

±1.81 

3.11 

±2.88 

740 

±581 

3246 

±1930 

0.23 

±0.14 

Run 5 m·s-1 
-0.05 

±0.06 

-0.03 

±0.05 

-0.59 

±0.23 

-2.38 

±2.95 

2.55 

±2.14 

745 

±605 

3404 

±2047 

0.22 

±0.18 

Cut45 m·s-1 
-0.04 

±0.05 

-0.02 

±0.05 

-0.71 

±0.18 

-2.59 

±2.07 

3.42 

±4.34 

385 

±433 

3044 

±1466 

0.22 

±0.17 

Cut45 3 m·s-1 
-0.04 

±0.05 

-0.01 

±0.05 

-0.89 

±0.23 

-3.03 

±2.54 

3.51 

±3.52 

452 

±519 

3317 

±1702 

0.18 

0.14 

Cut45 4 m·s-1 
-0.06 

±0.07 

-0.03 

±0.06 

-1.03 

±0.34 

-3.36 

±3.17 

3.48 

±3.64 

541 

±519 

3002 

±1984 

0.22 

±0.18 

Cut45 5 m·s-1 
-0.06 

±0.06 

-0.03 

±0.05 

-0.98 

±0.34 

-3.13 

±3.17 

3.85 

±3.09 

620 

±589 

3143 

±1817 

0.20 

±0.21 

Cut90 2 m·s-1 
-0.06 

±0.05 

-0.02 

±0.05 

-0.94 

±0.31 

-4.28 

±3.65 

2.86 

±3.80 

314 

±401 

2511 

±1471 

0.24 

±0.19 

Cut90 3 m·s-1 
-0.09 

±0.13 

-0.04 

±0.10 

-1.24 

±0.49 

-4.74 

±5.29 

4.79 

±6.44 

414 

±549 

2305 

±1637 

0.24 

±0.26 

Cut90 4 m·s-1 
-0.11 

±0.11 

-0.06 

±0.08 

-1.60 

±0.58 

-3.72 

±3.89 

4.46 

±4.39 

413 

±449 

1446 

±1296 

0.35 

±0.34 

Cut90 5 m·s-1 
-0.11 

±0.12 

-0.06 

±0.09 

-1.55 

±0.61 

-4.58 

±5.36 

4.31 

±3.94 

478 

±450 

1730 

±1672 

0.36 

±0.41 
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4.3.2. Model parameter sensitivity analysis  

The average model parameter values for v1, λ and ω1
2 were similar to the values obtained 

from the GRF fitting (Chapter 3), whereas p1, p2, v2 deviated the most from the GRFmeasured 

model parameters, especially for the Cut90 task (Figure 4.6).  

 

 
Figure 4.6: Polar plots displaying the mean model parameters (in scaled dimensionless values) 

across all tasks and for the individual tasks. The grey circles display the average model 

parameters for TrunkAccmeasured and the black circles display average model parameters for 

GRFmeasured (Chapter 3).  

 

A relationship (Figure 4.7), though it was weak to moderate (R2 between 0.01 and 0.61), 

was observed for p2 (R
2: 0.17), v1 (R

2: 0.61), ω1
2 (R2: 0.60) and ω2

2 (R2: 0.36) between 

average model parameters from TrunkAccmeasured and GRFmeasured (Chapter 3). 
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Figure 4.7: Linear regression between TrunkAccmeasured (horizontal axis) and GRFmeasured 

(vertical axis) model parameters. Each circle represents the participants mean within task 

parameters (Run: circle; Cut45: square and Cut90: diamond). Mean within task parameters 

outside the 95% prediction interval (dashed line) were not included in the regression analysis. 
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GRFmodelNP was calculated from five new model parameter combinations to explore if this 

would improve the predicted GRFmodel. The new model parameters were created using 

the TrunkAccmeasured model parameters from the optimisation routine and/or the 

parameters were kept constant based on the average model parameter values found in 

Chapter 3, and/or the TrunkAccmeasured model parameters were recalculated from the slope 

of the linear regression where a relationship existed. The specific new model parameter 

combinations and representative examples of GRFmodelNP from Run, Cut45, and Cut90 at 

an approach speed of 4 m·s-1 are displayed in Figure 4.8. 
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Figure 4.8: Displaying the five new model parameter combinations (GRFmodelNP1-5) and histograms of the SSEGRF distribution for the different model  

parameter combinations. Representative examples of GRFmeasured (black line) and GRFmodelNP1-5 (dashed grey line) for the Run, Cut45 and Cut90  

at an approach speed of 4 m·s1. 
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Table 4.4: Mean ± standard deviation for SSEGRF (N/kg/frames) for GRFmodelNP3, GRFmodelNP4 and GRFmodelNP5 across the individual tasks and approach speeds. Trials 

with SSEGRF above 100 were removed before mean and standard deviations were calculated, the number of trials removed are indicated in brackets. 

 GRFmodelNP3 (88) GRFmodelNP4 (82) GRFmodelNP5 (76) 

 Run (11) Cut45 (9) Cut90 (68) Run (11) Cut45 (13) Cut90 (58) Run (16) Cut45 (30) Cut90 (30) 

2 m·s-1 18 ± 10 17 ± 10 23 ± 15 19 ± 10 18 ± 9 22 ± 29 16 ± 11 14 ± 8 14 ± 7 

3 m·s-1 19 ± 8 19 ± 14 28 ± 12 20 ± 8 20 ± 12 29 ± 13 24 ± 17 21 ± 15 29 ± 19 

4 m·s-1 20 ± 10 29 ± 16 45 ± 18 23 ± 9 31 ± 16 43 ± 21 35 ± 16 44 ± 24 42 ± 21 

5 m·s-1 35 ± 19 46 ± 20 55 ± 21 38 ± 17 46 ± 18 47 ± 18 52 ± 18 51 ± 16 51 ± 22 

Post-Hoc 
Mean  

Difference 

98.75% CI 
p - value 

Mean  

Difference 

98.75% CI 
p - value 

Mean  

Difference 

98.75% CI 
p - value 

Lower Upper Lower Upper Lower Upper 

Run vs Cut45 -5 -13 4 0.287 -4 -12 4 0.447 -1 -11 9 1.000 

Run vs Cut90 -14 -23 -6 <0.001* -10 -18 -2 0.001* -2 -12 8 1.000 

Cut45 vs Cut90 -9 -18 -1 0.006* -6 -14 2 0.061 -1 -11 9 1.000 

2 m·s-1 vs 3 m·s-1 -3 -12 6 1.000 -4 -12 5 1.000 -10 -19 0 0.010* 

2 m·s-1 vs 4 m·s-1 -11 -21 -2 <0.001* -13 -21 -4 <0.001* -25 -35 -16 <0.001* 

2 m·s-1 vs 5 m·s-1 -26 -35 -17 <0.001* -24 -32 -15 <0.001* -37 -46 -27 <0.001* 

3 m·s-1 vs 4 m·s-1 -8 -18 1 0.034 -9 -18 -1 0.006* -16 -25 -6 <0.001* 

3 m·s-1 vs 5 m·s-1 -23 -33 -14 <0.001* -20 -29 -12 <0.001* -27 -37 -17 <0.001* 

4 m·s-1 vs 5 m·s-1 -15 -24 -5 <0.001* -11 -20 -2 0.001* -11 -21 -2 0.002* 

*  Indicates a significant difference between tasks or approach speeds (alpha = 0.0125).
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The new model parameters used for GRFmodelNP3, GRFmodelNP4 and GRFmodelNP5 had the 

highest number of trials with a SSEGRF below 25 N/kg/frames and similarly these model 

parameter combinations were able to reduce the number of trials with an SSEGRF above 

150 N/kg/frames compared to GRFmodelNP1 and GRFmodelNP2 (Figure 4.8). Poor to good 

SSEGRF (between 14 ± 7 and 52 ± 18 N/kg/frames) was observed across tasks and 

approach speeds for GRFmodelNP3, GRFmodelNP4 and GRFmodelNP5 (Table 4.4). The lowest 

SSEGRF were observed for the two slowest approach speeds (between 14 ± 7 and 29 ± 19 

N/kg/frames) compared to the two fastest approach speeds (between 20 ± 10 and 52 ± 18 

N/kg/frames) and the main effect from the one-way ANOVA analysis showed that 

SSEGRF was significantly affected by approach speed (GRFmodelNP3: F3,227 = 30.3, p = < 

0.001; GRFmodelNP4: F3,227 = 30.0, p = < 0.001; GRFmodelNP5: F3,227 = 54.8, p = < 0.001). In 

contrast, the SSEGRF was only significantly affected by task for GRFmodelNP3 (F2,227 = 11.7, 

p = < 0.001) and GRFmodelNP4 (F2,227 = 7.2, p = 0.001), but not for GRFmodelNP5 (F2,227 = 

0.2, p = 0.826).  

 

The post-hoc analysis revealed that mean SSEtrunk from the 5 m·s-1 approach speed was 

significantly higher than the other approach speeds for GRFmodelNP3, GRFmodelNP4 and 

GRFmodelNP5. In addition, the post-hoc analysis showed that mean SSEtrunk from the Cut90 

was significantly higher than both the Run and Cut45 for GRFmodelNP3, but only 

significantly higher than the Run for the GRFmodelNP4 (Table 4.4). Representative 

examples of GRFmodelNP3 and GRFmodelNP5 for the different tasks and approach speeds are 

displayed in Figure 4.9. 
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Figure 4.9: Examples of the GRFmeasured (black line), GRFmodelNP3 (dashed grey line),  

GRFmodelNP5 (dotted grey line) for the difference tasks and approach speeds from a 

representative participants. The SSEGRF (N/kg/frames) and polar plots displaying the           

model parameters of the four model parameters that was not kept constant.   
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4.3.3. GRF loading variables 

GRF loading variables were not calculated for GRFmodel because of the high SSEGRF 

observed, or for GRFmodelNP4 due to the similarities in SSEGRF between GRFmodelNP3 and 

GRFmodelNP4 (Table 4.4). Therefore, the GRF loading variables were only calculated for 

GRFmodelNP3 and GRFmodelNP5. Trials with SSEGRF above 100 were removed before the 

GRF loading variables were calculated, as such a total number of 88 and 76 trials were 

removed from GRFmodelNP3 (Run: 11 trials; Cut45: 9 trials; Cut90: 68 trials) and 

GRFmodelNP5 (Run: 16 trials; Cut45: 30 trials; Cut90: 30 trials), respectively.  

 

Table 4.5: Correlation (R2) values from the linear regression analysis between the GRF variables 

from GRFmeasured and GRFNP3 and GRFNP5 respectively.    

 Run Cut45 Cut90 

 GRFmodelNP3 GRFmodelNP5 GRFmodelNP3 GRFmodelNP5 GRFmodelNP3 GRFmodelNP5 

Impulse    

2 m·s-1 0.49 0.20 0.62 0.69 0.56 0.73 

3 m·s-1 0.41 0.67 0.64 0.79 0.78 0.86 

4 m·s-1 0.80 0.84 0.64 0.75 0.71 0.81 

5 m·s-1 0.84 0.86 0.69 0.67 0.40 0.81 

Impact peak     

2 m·s-1 0.25 0.14 0.31 0.18 0.04 0.40 

3 m·s-1 0.21 0.08 0.32 0.12 0.42 0.02 

4 m·s-1 0.11 0.00 0.54 0.01 0.00 0.19 

5 m·s-1 0.51 0.15 0.20 0.11 0.29 0.42 

Time to impact peak     

2 m·s-1 0.80 0.46 0.22 0.54 0.34 0.54 

3 m·s-1 0.68 0.59 0.52 0.34 0.19 0.26 

4 m·s-1 0.31 0.23 0.47 0.04 0.41 0.39 

5 m·s-1 0.42 0.49 0.23 0.16 0.41 0.19 

Loading rate     

2 m·s-1 0.62 0.43 0.06 0.22 0.07 0.13 

3 m·s-1 0.39 0.52 0.30 0.33 0.08 0.22 

4 m·s-1 0.08 0.07 0.44 0.41 0.09 0.13 

5 m·s-1 0.57 0.32 0.29 0.21 0.43 0.03 

Active peak     

2 m·s-1 0.29 0.34 0.69 0.57 0.48 0.56 

3 m·s-1 0.71 0.44 0.71 0.51 0.61 0.42 

4 m·s-1 0.48 0.42 0.30 0.38 0.47 0.64 

5 m·s-1 0.70 0.58 0.16 0.37 0.51 0.30 

Time to active peak     

2 m·s-1 0.37 0.01 0.75 0.62 0.38 0.27 

3 m·s-1 0.36 0.22 0.68 0.24 0.39 0.09 

4 m·s-1 0.01 0.00 0.50 0.25 0.16 0.27 

5 m·s-1 0.16 0.23 0.44 0.52 0.52 0.07 
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Impulse showed the strongest correlations with moderate (R2: 0.3-0.5) to very strong (R2: 

0.7-0.9) correlations across tasks and approach speed (Table 4.5), with mean within 

condition Impulse for GRFmodelNP3 (between 3.6 ± 0.3 and 5.6 ± 0.6 N∙s/kg) and 

GRFmodelNP5 (between 3.5 ± 0.3 and 5.9 ± 0.7 N∙s/kg) close to the Impulse observed for 

GRFmeasured (between 3.3 ± 0.4 and 5.8 ± 0.8 N∙s/kg). Small (R2: 0.1-0.3) to very strong 

correlations were observed for Active peak, with mean Active peak overestimations 

between 0.1 and 5.2 N·kg-1 for GRFmodelNP3 and between 0.1 and 1.8 N·kg-1 for 

GRFmodelNP5 (Table 4.6). Trivial (R2: <0.1) to strong (R2: 0.5-0.7) correlations were 

observed for Impact peak, with mean Impact peak overestimations between 0.9 and 7.6 

N·kg-1 for GRFmodelNP3 and between 1.2 and 11.1 N·kg-1 for GRFmodelNP5.
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Table 4.6: Mean ± standard deviation for the GRF loading variables from GRFmeasured (bold font), GRFNP3 and GRFNP5 for the individual tasks and approach speeds. 
 Run Cut45 Cut90 

 GRFmeasured GRFmodelNP3 GRFmodelNP5 GRFmeasured GRFmodelNP3 GRFmodelNP5 GRFmeasured GRFmodelNP3 GRFmodelNP5 

Impulse (N·s·kg-1)        

2 m·s-1 4.1 ± 0.2 4.2 ± 0.2 4.5 ± 0.2 4.5 ± 0.4 4.6 ± 0.4 4.8 ± 0.3 5.2 ± 0.6 5.1 ± 0.4 5.4 ± 0.4 

3 m·s-1 4.0 ± 0.3 4.1 ± 0.3 4.3 ± 0.3 4.5 ± 0.5 4.6 ± 0.4 4.7 ± 0.3 5.4 ± 0.8 5.3 ± 0.5 5.5 ± 0.5 

4 m·s-1 3.8 ± 0.3 3.9 ± 0.3 4.0 ± 0.3 4.5 ± 0.5 4.5 ± 0.3 4.6 ± 0.4 5.8 ± 0.8 5.4 ± 0.5 5.9 ± 0.7 

5 m·s-1 3.3 ± 0.4 3.6 ± 0.3 3.5 ± 0.3 4.0 ± 0.5 4.2 ± 0.4 4.3 ± 0.5 5.3 ± 0.7 5.6 ± 0.6 5.6 ± 0.6 

Impact peak  (N·kg-1)        

2 m·s-1 18.6 ± 1.8 19.5 ± 1.8 16.8 ± 1.5 18.2 ± 2.0 18.9 ± 2.3 17.0 ± 1.7 20.3 ± 3.5 18.7 ± 2.3 17.0 ± 1.5 

3 m·s-1 20.0 ± 2.3 20.9 ± 2.5 18.2 ± 1.8 20.6 ± 2.4 19.9 ± 2.9 18.4 ± 2.3 24.6 ± 4.7 20.2 ± 2.5 17.3 ± 2.7 

4 m·s-1 22.9 ± 2.7 21.0 ± 2.4 19.4 ± 2.1 25.8 ± 4.3 21.5 ± 4.1 18.4 ± 2.1 27.0 ± 4.9 21.9 ± 3.5 17.2 ± 3.2 

5 m·s-1 25.7± 3.6 20.1 ± 2.3 19.9 ± 2.6 28.8 ± 5.0 21.2 ± 4.0 20.6 ± 3.1 29.2 ± 4.5 23.9 ± 4.7 18.1 ± 3.3 

Time to impact peak  (ms)        

2 m·s-1 81 ± 12 79 ± 11 69 ± 13 79 ± 15 77 ± 12 74 ± 16 77 ± 21 87 ± 13 85 ± 15 

3 m·s-1 66 ± 9 63 ± 7 56 ± 7 62 ± 14 66 ± 9 61 ± 12 59 ± 16 76 ± 13 75 ± 15 

4 m·s-1 53 ± 7 54 ± 6 52 ± 5 50 ± 12 59 ± 8 57 ± 9 55 ± 14 77 ± 12 80 ± 16 

5 m·s-1 44 ± 4 46 ± 5 44 ± 4 44 ± 8 51 ± 7 50 ± 7 46 ± 8 70 ± 12 72 ± 12 

Loading rate (N·s-1·kg-1)        

2 m·s-1 235 ± 54 305 ± 42 300 ± 44 245 ± 73 319 ± 117 294 ± 73 305 ± 129 282 ± 74 264 ± 78 

3 m·s-1 310 ± 74 415 ± 95 348 ± 64 362 ± 113 386 ± 146 400 ± 129 470 ± 193 381 ± 209 334 ± 136 

4 m·s-1 441 ± 105 495 ± 124 535 ± 107 560 ± 179 486 ± 149 559 ± 166 529 ± 183 398 ± 95 575 ± 216 

5 m·s-1 594 ± 118 584 ± 136 759 ± 143 678 ± 206 552 ± 102 751 ± 156 654 ± 163 451 ± 153 742 ± 236 

Active peak (N·kg-1)        

2 m·s-1 22.5 ± 2.2 24.8 ± 1.2 23.6 ± 1.2 22.7 ± 2.8 25.2 ± 1.7 24.3 ± 1.7 22.7 ± 2.9 25.5 ± 1.8 24.5 ± 1.7 

3 m·s-1 24.9 ± 2.0 26.2 ± 1.4 24.8 ± 1.2 25.5 ± 2.6 27.0 ± 1.9 25.9 ± 1.6 24.4 ± 2.9 27.2 ± 2.0 25.4 ± 2.3 

4 m·s-1 27.0 ± 1.6 27.1 ± 1.4 25.8 ± 1.5 27.4 ± 2.6 28.2 ± 2.6 26.2 ± 1.6 23.7 ± 2.7 28.6 ± 2.2 25.1 ± 2.6 

5 m·s-1 27.2 ± 2.8 26.8 ± 1.3 25.7 ± 1.6 28.2 ± 3.1 29.3 ± 2.5 27.9 ± 1.7 24.5 ± 3.5 29.8 ± 2.6 26.0 ± 2.4 

Time to active peak (ms)        

2 m·s-1 125 ± 14 143 ± 10 159 ± 15 143 ± 25 154 ± 16 163 ± 16 168 ± 42 173 ± 20 183 ± 18 

3 m·s-1 109 ± 14 134 ± 15 146 ± 13 125 ± 23 146 ± 17 156 ± 17 137 ± 32 165 ± 20 193 ± 38 

4 m·s-1 92 ± 14 129 ± 11 138 ± 13 107 ± 22 141 ± 16 154 ± 19 131 ± 40 167 ± 21 219 ± 57 

5 m·s-1 68 ± 17 124 ± 13 133 ± 24 83 ± 26 131 ± 20 142 ± 17 121 ± 27 157 ± 23 204 ± 50 
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The smallest within condition bias and LoA were generally observed for the Run whereas 

the largest within condition bias and LoA were observed for the Cut90, and both bias and 

LoA generally increased with approach speed (Figure 4.10). In general, similar within 

condition bias and LoA were observed for the GRFmodelNP3 and GRFmodelNP5, though 

smaller Impulse and Impact peak (especially for the Cut90 task) bias and LoA were 

observed for the GRFmodelNP3 compared to GRFmodelNP5. In contrast, the smallest Active 

peak bias and LoA observed for the GRFmodelNP5 compared to the GRFmodelNP3, especially 

for the Cut90 task. 

 

 

Figure 4.10: Results from the Bland-Altman analysis, showing the mean difference (marker) 

and 95% limits of agreements (error bar) for the Run (Circle), Cut45 (square) and Cut90 

(diamond) across the different tasks and approach speeds calculated from GRFmodelNP3 (open 

marker) and GRFmodelNP5 (filled marker). 
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4.4. Discussion 

The aim of this study was to explore the ability to generate the eight natural MSD-model 

parameters from measured trunk accelerometry with the purpose of predicting GRF from 

trunk accelerometry during team sports related movements. The MSD-models upper mass 

acceleration was able to simulate the measured trunk accelerometer and generate the eight 

natural model parameters. Despite the good to very good match between the measured 

trunk accelerometry and the model’s upper mass acceleration poor GRF predictions were 

observed across the different tasks and approach speeds when the trunk accelerometry 

derived model parameters were used to predict GRF. A sensitivity analysis of the 

TrunkAccmeasured model parameter did however reveal that the GRF pattern could be 

predicted with moderate accuracy for running and side-cutting at low running speeds, 

when the initial model parameters were kept constant (p1, v2, λ, ζ) or recalculated (p2, v1, 

ω1
2, ω2

2) based on the linear relationship observed between TrunkAccmeasured and 

GRFmeasured model parameters.  

 

The new accelerometer/MSD-model introduced in this study builds on the assumption 

that the accelerometer positioned on the upper trunk measures the acceleration of the 

trunk segment (Nedergaard et al., 2016) and that the model’s upper mass primarily 

represents the mass and motion of the upper body (Alexander et al., 1986; Derrick et al., 

2000). One would therefore expect that the trunk accelerometer data would be able to 

generate the model parameters representing the motion and stiffness of the upper mass 

and spring (p1, v1, ω1
2) with high accuracy. This was to some extent confirmed by 

similarities in mean parameter values and high correlations observed for v1 and ω1
2 

between the TrunkAccmeasured model parameters and the traditional GRFmeasured model 

parameters (Figure 4.6 and 4.7). However, the accelerometer/MSD-model overestimated 

the position of the model’s upper mass (p1) and there was no relationship with the 



Chapter 4 A new approach to predict GRF from trunk accelerometry 

98 

GRFmeasured p1 values. The complexity of MSD-model made it difficult to interpret why 

the accelerometer/MSD-model only could provide useful model parameters for v1 and ω1
2 

and not for p1. Also, the trunk accelerometry was not able to generate accurate model 

parameters related to the motion of the lower mass (p2 and v2) though a relationship 

existed between the natural frequency of the lower spring (ω2
2) obtained from 

TrunkAccmeasured and GRFmeasured. It is well known that the impact accelerations 

experienced at the lower limbs, due to the collision between the foot and the ground, are 

attenuated by the body’s soft tissue as it travels through the body (Hamill et al., 1995; 

Lafortune et al., 1996) and is influenced by the joint angle (e.g. knee joint angle) at touch 

down (Derrick, 2004; Lafortune et al., 1996). This may explain why the trunk 

accelerometry data allowed to determine the stiffness of the MSD-model’s lower spring 

(ω2
2).   

 

Despite the good to very good match between the measured trunk accelerometry and the 

MSD-model’s upper mass acceleration observed in this study, poor GRF predictions were 

observed from the eight model parameters obtained from the optimisation routine. This 

naturally raises the question of whether poor GRF predictions observed from the GPS 

integrated accelerometer signal is because the accelerometer does not measure the 

acceleration of the trunk well enough. Previous studies have shown than the GPS 

integrated accelerometer is capable of accurately measuring peak trunk accelerations 

during team sports movements, when filtered at a cut-off frequency of 10-12 Hz 

(Wundersitz et al., 2015a; Wundersitz et al., 2015b). The GPS integrated accelerometer 

data were filtered with a low-pass filter at a cut-off frequency of 20 Hz in this study and 

applying a filter with a cut-off frequency of 15, 10 or 5 Hz did not improve the GRF 

predictions obtained from the accelerometer/MSD-model (see detail in Appendix G). 

Similarly, a previous study has shown that the trunk accelerometer signal is dependent on 
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the accelerometer’s sampling frequency (Nedergaard et al., 2016). Nevertheless, the use 

of a wireless laboratory accelerometer, with a sampling frequency of 1000 Hz, as model 

input for the accelerometer/MSD-model had no or minor influence on the optimised 

model parameters, the linear relationship with the GRFmeasured model parameters, or the 

SSEGRF (see details in Appendix H).  

 

Using vertical acceleration data from trunk kinematics as MSD-model input, measured 

with a three-dimensional motion capture system, did have a positive influence on the 

mean model parameter values for p1, λ and ζ, and stronger correlations were generally 

observed (R2 between 0.19 and 0.61) apart from v2 (R2: 0.04). Nevertheless, poor to 

moderate GRF predictions were observed and the GRF predictions only got worse when 

new model parameters were recalculated (see details in Appendix I). Comparisons 

between the accelerometry data and vertical acceleration from trunk kinematics 

demonstrated that there were deviations in the acceleration signal, and that the 

accelerometer especially overestimated the acceleration of the trunk in the first 25% of 

the stance phase. Nevertheless, this raises the question regarding the accelerometer/MSD-

model, in particular the assumption that the model’s upper mass acceleration represents 

the acceleration of the trunk. According to the original MSD-model literature, the upper 

mass in the MSD-model represent the mass and motion of the entire body apart from the 

support leg (Alexander et al., 1986; Derrick et al., 2000). This may help explain the poor 

GRF predictions observed from the accelerometer/MSD-model. This may be improved 

by the construction of a much more complex MSD-model, defeating the overall 

translational purpose of our work.  

 

The sensitivity analysis showed that the SSEGRF decreased when the model parameters 

were kept constant (p1, v2, λ, ζ) or recalculated (p2, v1, ω1
2, ω2

2) based on the slope of the 
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linear relationship observed between TrunkAccmeasured and GRFmeasured model parameters. 

Similar SSEGRF were observed for GRFmodelN3 and GRFmodelNP4 indicating that p2 only had 

little influence on the predicted GRF because the only difference between the two model 

parameter combinations was that p2 was recalculated in the former but kept constant in 

the latter. Derrick et al. (2000) previously demonstrated that changes in p2 influenced both 

magnitude and timing of the impact peak of GRFmodel at touch down. If the fixed or 

recalculated p2 value for instance are higher than the optimal p2 value for a giving foot-

ground-contact, GRFmodel becomes negative at touch down, which could be the case in 

the examples displayed in Figure 4.9 for GRFmodelNP4 and GRFmodelNP4 where p2 was kept 

constant. The fact that p2 was recalculated for GRFmodelNP3 rather than kept constant may 

explain why the smallest mean differences in the predicted and measured Impact peak 

were observed for GRFmodelNP3. Furthermore, p2 is included in the calculation of GRFmodel 

(Equation 4.3) and the large variation observed between tasks in this study (Figure 4.6) 

and in Chapter 3, indicates that the re-calculation of p2, despite the weak correlation (R2: 

0.17), can help improve the GRF predictions when the accelerometer/MSD-model is used 

for a variety of utility movements.   

 

The SSEGRF were significantly influenced by both tasks (GRFmodelNP3, GRFmodelNP4) and 

approach speeds (GRFmodelNP3, GRFmodelNP4, and GRFmodelNP5). The variation in model 

parameters between tasks and approach speeds observed in Chapter 3 may have an 

influence on the model parameters which were kept constant (p1, v2, λ, ζ) and thereby the 

SSEGRF. Nevertheless, a sensitive analysis of the fixed model parameters, where (p1, v2, 

λ, ζ) were kept constant at the mean condition values presented in Chapter 3, only had a 

minor influence on the mean SSEGRF for the Run and Cut45 tasks, and actually increased 

the mean SSEGRF for the Cut90 task for GRFmodelNP3 and GRFmodelNP4 (see details in 

Appendix J). In fact, keeping four of the model parameters constant was expected to 
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impair the accelerometer/MSD-model’s ability to predict different GRF patterns, 

especially λ and ζ which is included in the calculation of GRFmodel (Equation 4.3) and 

vary more between different GRF pattern than p1 and v2 (Chapter 3).  

 

Though the SSEGRF decreased when the model parameters were kept constant (p1, v2, λ, 

ζ) or recalculated (p2, v1, ω1
2, ω2

2), adjusting the TrunkAccmeasured model parameters from 

the optimisation routine to improve the predicted GRF is like solving a puzzle with pieces 

from another puzzle. In other words, the optimisation routine generates the eight model 

parameters that best replicate the measured trunk accelerometry data for the given stance 

time, and are therefore dependent on each other. When the model parameters are kept 

constant or recalculated, the relationship between the model parameters is broken. This 

might solve one problem, e.g. decreasing v1 and ω2
2 to decrease the magnitude of the 

Active peak (Derrick et al., 2000), but at the same time it causes a new problem because 

the decreased velocity and spring stiffness will increase the model’s stances time and 

thereby the Impulse. Furthermore, a sensitivity analysis following the approach by 

Derrick et al. (2000), where the model parameter data from Chapter 3 was used, showed 

that the effect of changing the individual model parameters was highly dependent on the 

stance time and the individual GRF pattern (see details in Appendix K).  

 

The predicted GRF from the new model parameter combinations (GRFmodelNP3 and 

GRFmodelNP5) typically underestimated the Impact peak but overestimated the Active peak. 

Nevertheless, the mean difference and correlations of the GRF loading variables were 

similar to those presented in the literature where GRF were estimated from MSD-models 

or trunk accelerometry. The mean difference in Impulse between GRFmeasured and 

GRFmodelNP3 ranged from 0.08 to 0.29 N·s·kg-1 across tasks and approach speeds in this 

study. This is similar to the differences in Impulse previously observed by Derrick et al. 
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(2000) for running at 3.83 m·s-1 (19.9 N∙s ≈ 0.26 N·s·kg-1) using the traditional MSD-

model. In comparison, the mean differences in Impulse for the Run at 4 m·s-1 observed 

in this study were 0.18 and 0.25 N·s/kg for the GRFmodelNP3 and GRFmodelNP5, respectively. 

Furthermore, the correlations for Impulse, Impact peak, Active peak and Loading rate 

observed in this study were similar too, and for some conditions/variables better than the 

correlations previously observed between trunk accelerations from a commercial GPS 

integrated accelerometer and CoM acceleration (Nedergaard et al., 2016) or GRF data 

(Wundersitz et al., 2013). The large within task variation in the correlations observed in 

this study does however still limit the application of the current accelerometer/MSD-

model for whole-body biomechanical loading in field settings. Nevertheless, the results 

from this study indicate that the accelerometer/MSD-model has the potential to provide 

better predictions of typical whole-body biomechanical loading variables than the raw 

trunk accelerometry data.         

 

4.5. Conclusion 

In conclusion, the novel accelerometer/MSD-model introduced in this study showed 

promising results in predicting GRF when four of the eight natural (p1, v2, λ, ζ) model 

parameters derived from the accelerometer/MSD-model was kept constant, and the other 

four model parameters (p2, v1, ω1
2, ω2

2) were re-calculated based on the linear relationship 

observed between trunk accelerometry and GRFmeasured model parameters. Future work 

should aim at reducing the model’s sensitivity to variations in tasks and approach speeds 

to more accurately reproduce GRF patterns across tasks and approach speeds. Ultimately, 

this will give researchers and practitioners in team sports a biomechanically sound 

foundation to explore the internal musculoskeletal structural stresses and consequent 

adaptations due to external whole-body biomechanical load from player-ground 

interaction.  
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5.  

The aim of this chapter is to interpret and reflect on the potential application of the main 

findings obtained within this thesis with respect to whole-body biomechanical loading in 

team sports and in general. To better achieve this, after in-depth interpretations of 

detailed findings in the individual chapters, a birds-eye view will be assumed. Finally, 

recommendations for future research on whole-body biomechanical loading are 

suggested based on the findings from this thesis. 

 

5.1. Summary 

The overall aim of the present thesis was to explore if body-worn accelerometry could be 

used to estimate whole-body biomechanical loading during team sports movements. The 

findings from this thesis showed that; 1) although a linear relationship exists between 

body-worn accelerometry (e.g. GPS integrated accelerometers) and whole-body 

accelerations the assumption of a simple linear relationship, based on Newton’s second 

law of motion, should be used with caution for whole-body biomechanical load 

monitoring; 2) the complex multi-segment dynamics of the body and associated GRF 

during team sports movements, to a large extent, can be estimated with a MSD-model. 

However, the MSD-model’s accuracy slightly decreases for sharp changes of direction at 

high intensities, when absorption of energy and generation of energy are decoupled; 3) 

trunk accelerometry data has the potential to generate the eight MSD-model parameters 

required to estimate GRF from a MSD-model, though further work is required in 

particular towards improving the model’s sensitivity to estimate GRF. A combination of 

keeping model parameters constant and re-calculating model parameters based on the 

relationship between GRF and trunk accelerometry model parameters showed promising 

results. The novel accelerometer/MSD-model approach introduced in this thesis has the 

potential to give practitioners in team sports the opportunity to perform biomechanical 
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field observation of whole-body biomechanical load due to player-ground interaction, a 

necessity if they wish to predict the consequent musculoskeletal structural adaptations. 

 

5.2. The challenges associated with the use of wearable sensor 

technology 

The advancements in micro sensor technology within recent years have led to a hype 

around wearable micro sensor technology and its applications for training load 

monitoring in professional sports and even in amateur athletes. However, this thesis 

highlighted one of the biggest challenges with the current use of the commercial wearable 

micro sensor, namely that the true value of the measurements obtained from these devices 

only are revealed through carefully evaluating its reliability and validity, as in Chapter 2.  

 

Due to the time taken to conduct and publish such studies, the various micro sensor 

technologies are often used in the applied settings before independent information on the 

measurement’s precision and limitations are known. This can lead to misinterpretation of 

the data. This is particularly the case for the GPS devices that are used on a daily basis in 

professional team sports (Akenhead and Nassis, 2016). The misinterpretation is 

exemplified by the fact that both practitioners and researchers predominantly use the 

accelerometer data as an additional measurement of the physiological load (Barrett et al., 

2014; Cormack et al., 2013), rather than a tool to monitor biomechanical load as suggested 

in this thesis (Chapter 1). Similarly, applied research is emerging where the relationship 

between GPS integrated accelerometer data and overuse injury risk are explored (Bowen 

et al., 2016; Colby et al., 2014; Ehrmann et al., 2016), despite the findings from Chapter 

2 and previous studies (Nedergaard et al., 2016; Tran, 2010; Wundersitz et al., 2013) 

demonstrating that the raw trunk GPS integrated accelerometer data overestimates GRF 

during team sports movements, and therefore should be used with caution to monitor 
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whole-body biomechanical loading. Applied sports scientists working in professional 

team sports settings are of course restricted by time and their daily obligations within the 

club. Therefore, they do not have time to rigorously test their measurement methods 

before application. Instead, they should seek to undertake pilot studies in their search to 

better understand the GPS integrated accelerometer data (Coutts, 2016). Only if 

researchers and practitioners together continue to explore the accelerometer’s reliability 

and validity in a biomechanical loading context one is hopeful to obtain a good 

understanding of its value in the field.       

 

The novel approach introduced in Chapter 4 of the thesis, where accelerometry from a 

GPS device was used to drive a simple model describing the complex multi-body 

dynamics of the human body, demonstrated how researchers could explore biomechanical 

approaches to transform the raw signal from wearable sensors into meaningful 

biomechanical measures such as GRF. Only through such approach practitioners will 

become able to relate their data back to basic biomechanical knowledge on tissue loading 

and the structural adaptations associated with the load. Whilst the biggest strength of 

wearable sensor technology is undoubtedly the ability to easily collect large non-invasive 

datasets from patients, athletes etc. in their natural environments (Aughey, 2011; Yang 

and Hsu, 2010), overly simplified outcome variables can often become difficult to 

interpret and lead to confusion. To make the sensor data attractive to their clients, 

commercial companies behind the wearable sensor technology typically develop 

algorithms and matrices that help reduce the data considerably, which enables 

practitioners to handle a single variable, e.g. the accumulated accelerometer vector 

magnitude variables currently provided by the commercial GPS device companies 

(PlayerLoadTM, BodyLoad etc.). This is undoubtedly an effective way to summarize large 

datasets on a daily basis, but it makes it difficult to relate the observed changes in such 
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variable to whole-body biomechanical loading without the knowledge of how it has been 

constructed. Nevertheless, if we can develop simple but valid biomechanical approaches, 

to transform raw signals from the wearable sensors into biomechanically meaningful 

outcome variables, as in Chapter 4, then this will enable researchers and practitioners to 

better explore the true value of the large datasets collected from athletes and/or patients 

in their natural environment.  

 

5.3. Application of biomechanical load monitoring in team sports 

This thesis has focused on the ability to use GPS integrated accelerometry for whole-body 

biomechanical load monitoring in team sports. Making considerations of the 

biomechanical load is not new in professional sports as coaches and physiotherapist 

already make daily attempts to control the biomechanical stress the players are exposed 

to. For instance, it is common practice to differentiate the physiological and 

biomechanical load in rehabilitation of lower limb injuries through aqua jogging exercises 

(Haupenthal et al., 2010; Prins and Cutner, 1999) and running on lower-body positive-

pressure treadmills, also referred to as anti-gravity treadmills (Jensen et al., 2016; Raffalt 

et al., 2013). The benefit of these methods is that the GRF can be reduced by as much as 

20% during walking or running locomotion but the cardiovascular and neuromuscular 

stimulus that is relevant to team sports is maintained (Haupenthal et al., 2010; Raffalt et 

al., 2013). Nevertheless, the findings from this thesis may form a starting point to also 

differentiate between physiological and biomechanical loads from the data collected with 

the GPS integrated accelerometer during field training sessions, and even match-play. 

The accelerometer/MSD-model introduced in Chapter 4 could potentially enable 

practitioners to monitor the impulse of the GRF to which players are exposed, as a 

measure of the whole-body biomechanical loading from a training session in the same 

way as heart rate, sRPE or total distance covered are used to monitor the physiological 
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load. Similarly, the impact peak, loading rate and active peak of the accelerometer/MSD-

model predicted GRF could be used to describe the intensity of the biomechanical load 

to which players are exposed, in the same way as the distance covered in different running 

velocity zones or number of accelerations and decelerations are used to describe the 

intensity of the physiological load in professional team sports. This will enable 

practitioners to monitor, prescribe and adjust the volume and intensity of the 

biomechanical load across a season, for different individuals in the same way as the 

physiological load is currently monitored. The results from Chapter 4 do however 

illustrate that further work on the accelerometer/MSD-model’s sensitivity to accurately 

predict the GRF pattern and in particularly the GRF loading variables related to the 

intensity of the biomechanical load (impact peak and loading rate) is needed before it can 

be successfully applied. Nevertheless, the following paragraphs include examples of the 

potential application of the accelerometer/MSD-model to monitor the variation in whole-

body biomechanical load.  

 

5.3.1. Example of two players performing the same standardised running task  

Trunk accelerometry data was taken from two participants/players (player A: 71 kg and 

player B 75 kg), performing the straight line running tasks previously described in this 

thesis at 4 m·s-1. The trunk accelerometry data included both the acceleration phase, the 

steady state phase where players were running at 4 m·s-1, and the deceleration phase 

where players were decelerating to jogging or walking. A threshold of -0.55 g was used 

to identify foot-ground-contact in the trunk accelerometry signal (see detail in Appendix 

L). The accelerometer/MSD-model (new model parameter combination 3) was applied to 

the trunk accelerometry from the individual foot-ground-contacts, apart from the first step 

in the acceleration phase and the last step in the deceleration phase, to predict the GRF 

(GRFmodel) from the individual foot-ground-contacts (Figure 5.1). Finally, Impulse, 



Chapter 5 General Discussion 

109 

Impact peak and Active peak were determined for every foot-ground-contact from the 

GRFmodel data for player A and B respectively. 

 

 
Figure 5.1: Resultant gravity corrected trunk acceleration measured from a trunk-mounted 

accelerometer is displayed in top row, in which the solid black line indicate the individual foot-

ground-contacts. The second row display the GRFmodel predicted from the accelerometer/MSD-

model and the bar plots in the bottom row display the sum and average values from player A 

(black) and B (grey) respectively for Impulse, Impact peak and Active peak. 

 

It is well known that the magnitude of GRF is sensitive to a person’s running kinematics 

such as footfall (Lieberman et al., 2010) and knee joint angle (Derrick, 2004). As a result, 

the biomechanical load to which players are exposed will most likely vary when covering 

the same distance. The example above illustrates that monitoring of the GRF, e.g. from 
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the accelerometer/MSD-model introduced in this thesis, has the ability to reveal 

differences in biomechanical load due to the players running style, which typically is 

ignored when the training duration, running speed, or distance covered is used to estimate 

the biomechanical load.                 

 

5.3.2. Application in the traditional physiological test-batteries 

A recent study on the current practise and perception of training load monitoring in high-

level football was conducted, and identified that manpower is ranked as the highest 

perceived barrier for effective monitoring of training load (Akenhead and Nassis, 2016). 

With this in mind, and the extra data processing currently required to estimate GRF from 

the accelerometer/MSD-model, as the optimisation routine is required for every foot-

ground-contact, it would still be difficult for the biomechanical load to be estimated for 

every player on a daily basis in a professional club. The work in this thesis has 

demonstrated that computerisation of GRF estimates based on an accelerometer/MSD-

model are still a distant thought, particularly considering the great variety in activities that 

dictate performance and load in team sports. Nonetheless, it may well be feasible in the 

near future to apply the accelerometer/MSD-model to the sub-maximal / non-exhaustive 

performance tests commonly used in professional team sports on a quarterly or even 

weekly basis (Akenhead and Nassis, 2016). These tests are typically standardised 

submaximal shuttle runs where the majority of time is spent at straight line running during 

which the accelerometer/MSD-model can estimate GRF with reasonable accuracy. This 

could enable practitioners to differentiate the physiological and biomechanical loads from 

a standardised drill which may help them to better estimate the biomechanical load during 

small sided games and match-play based on the observed changes in load. The 

relationship between the biomechanical load observed from the standardised performance 

tests and the differential session RPE focussing on the perceived “leg” exertion (McLaren 
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et al., 2016a; McLaren et al., 2016b; Weston et al., 2015) may also provide additional 

information about the dose-response relationship of the biomechanical load. 

  

5.3.3. Application in return to sport scenarios 

The accelerometer/MSD-model introduced in Chapter 4 may enable physiotherapists and 

sports scientists to more closely monitor the load progression in their injured players 

during rehabilitation and more importantly during the return to sport period. When a 

player/athlete gets injured, the first question that is raised is when he/she will be able to 

return to competition again (Ardern et al., 2016; Drust et al., 2014). The decision of 

releasing a player back to full training/match-play therefore is made over time by 

gradually releasing the player back into training/match-play. Part of this process is to 

progressively manage the player’s biomechanical load making sure that the damaged 

tissues respond positively to the load by strengthening the tissue rather than re-injuring it 

(Ardern et al., 2016; Blanch and Gabbett, 2016). Monitoring of the biomechanical load 

using the accelerometer/MSD-model introduced in this thesis (Chapter 4) may provide 

practitioners with valuable objective information on the overall external tissue stresses 

and the level of biomechanical stress players should be able to tolerate to fully return to 

training/match-play. Rather than monitoring and prescribing the training load solely from 

physiological measures such as training duration, total distance covered, or high speed 

running, the biomechanical loading approach introduced in this thesis enables 

practitioners to prescribe the return to play training load on biomechanical periodization 

principles (e.g. through the exposure to GRF features such as impulse and impact peak).  
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5.4. Potential application in other load related studies 

The ability to monitor GRF outside the laboratory from the accelerometer/MSD-model 

introduced in this thesis also has the potential to be applied in other fields, such as when 

exploring the consequences of training periodization. The results from Chapter 3 

illustrated that the MSD-model can estimate the multi-body dynamics of the human body 

during straight line running at submaximal speeds (4-5 m·s-1) with high accuracy. 

Similarly, better GRF predictions were observed for straight line running tasks compared 

to the change in direction tasks when the trunk accelerometer data were used to predict 

GRF (Chapter 4). These results illustrate that the accelerometer/MSD-model has the 

potential to estimate whole-body biomechanical load with high accuracy during activities 

such as long-distance running. In fact, this might be the best application for the current 

accelerometer/MSD-model, as it can enable researchers to monitor exposure to whole-

body biomechanical load, rather than the exposure to measurements of the physiological 

load, when the relationship between running and chronic injuries such as patella femoral 

pain, Achilles tendon injuries, stress fractures is explored (Hreljac, 2004; Nielsen et al., 

2012; Nielsen et al., 2013). Also, as highlighted in Chapter 2, an accelerometer measures 

the acceleration of the segment it is attached to, and therefore trunk-mounted 

accelerometry could be complemented with accelerometry data from a tibial mounted 

accelerometer to provide comprehensive insights if the aim is to monitor/measure the 

biomechanical stress on the tibial bone during running (Hreljac, 2004).     

 

The ability to monitor the external whole-body biomechanical load via GRF from the 

accelerometer/MSD-model introduced in this thesis may as well help us to better 

understand how the longitudinal exposure and periodization of GRF are associated with 

the internal joint contact forces. The relationship between knee joint contact forces from 

physical activity and the development of knee osteoarthritis has been explored 
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extensively in the current literature, but with contrasting results (Miller et al., 2014). 

Monitoring of the GRF that runners are exposed to could potentially be used to estimate 

the internal contact forces and help us to better understand the relationship between the 

development of knee osteoarthritis and the external whole-body biomechanical load 

experienced during running.  

 

Body-worn accelerometers are commonly used in physical activity monitoring to estimate 

the energy expenditure, for classification of movement/posture, and to identify 

individuals at increased risk of falling during daily life activities (Mathie et al., 2004; 

Yang and Hsu, 2010). Though the biomechanical load is largely unexplored in physical 

activity monitoring the accelerometer/MSD-model could be useful, even if it should be 

used with caution for daily life activities. The key limitation is that the current MSD-

model builds on the assumption that the human body follows a spring-like behaviour 

(Chapter 3), which is violated during walking, standing and sitting. This limits the 

application of the accelerometer/MSD-model in physical activity monitoring. 

Researchers seeking to explore the whole-body biomechanical load could instead use the 

assumption that during daily life activities a linear relationship exists between body-worn 

accelerometry and whole-body acceleration, as previous studies have showed that such a 

linear relationship exists for low intensity daily life activities such as walking (Meyer et 

al., 2015; Rowlands and Stiles, 2012). 

 

5.5. The relationship between external and internal biomechanical load 

The accelerometer/MSD-model introduced in this thesis (Chapter 4) has the potential to 

improve our ability to monitor the external whole-body biomechanical load in the field. 

Monitoring of GRF is interesting from a biomechanical point of view as the positive and 

negative adaptations of the body’s soft tissues such as cartilage (Eggli et al., 1988; 
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Slowman and Brandt, 1986; Swann and Seedhom, 1993), bone (Forwood and Parker, 

1991; Frost, 1997) and tendons (Dye, 2005; Kjaer et al., 2009; Maganaris et al., 2004) 

depends on the mechanical stresses to which the body is exposed (Dye, 2005; Nigg et al., 

1995). However, the GRF does not directly provide information about the internal forces 

without additional information and complex inverse dynamic calculations (Damsgaard et 

al., 2006; Delp et al., 2007). The relationship between biomechanical loading and tissue 

adaptations is complex, and the optimal biomechanical loading distribution and positive 

tissue adaptations still remains unclear in terms of the variation in response rate and how 

the response rate is influenced by factors such as age, gender, fitness or fatigue. The 

ability to monitor the external biomechanical load is nevertheless a first step to estimate 

the internal responses leading to tissue regeneration or damage in sports. Furthermore, if 

we can establish the internal tissue response to GRF, the accelerometer/MSD-model  

introduced in this study will ultimately give scope for better monitoring of overuse 

injuries in sports as these per definition are a result of the cumulative tissue damage over 

time (Clarsen et al., 2015; Finch and Cook, 2014).  

 

5.6. Recommendations for future research 

In this thesis a novel approach to monitor whole-body biomechanical loading from trunk-

mounted accelerometry has been introduced, ultimately with an attempt to differentiate 

between the physiological and biomechanical load. Based on the studies conducted in this 

thesis some recommendations for future research on biomechanical load monitoring have 

been formulated. 

 

5.6.1. Model sensitivity 

Future research on the accelerometer/MSD-model’s validity, reliability, generalisability 

and sensitivity is essential if this approach is ever to be used to monitor the biomechanical 
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load in team sports. Additional sensitivity studies will enable us to better understand the 

strengths and limitations of this approach and as a results the potential application of this 

approach. Model improvements may as well emerge which can improve the 

accelerometer/MSD-model’s ability to monitor athletes’ GRF in their natural 

environment. In the short term, studies are needed that explore the interaction between 

model parameters, or that explore the influence of only including the four model 

parameters that have shown a relationship with the GRF derived model parameters (p2, 

v1, ω1
2, ω2

2) in the trunk accelerometer optimisation routine. Or studies that explore the 

opportunity to apply boundary conditions to the individual model parameters so that 

model parameter solutions with unrealistic model parameters can be better avoided. In 

the long term, researchers could explore the opportunity to including extra elements in 

the model that can account for the loss of energy during less-elastic movements such as 

the Cut90. This could for instance be in the form of the inclusion of an extra damper in 

series with the upper spring to allow energy to dissipate, or even the addition of an 

actuator that can add energy to the system.          

 

5.6.2. Biomechanical load monitoring with wearable technologies 

Future research could explore how the continuous development of wearable technologies 

can contribute to the biomechanical load monitoring in team sports. Team sports could 

seek inspiration from clinical gait analysis where development of full-body inertial 

measurement unit technologies to measure full-body kinematics is emerging (Ferrari et 

al., 2010). Kinematic analysis of a player’s movement pattern, e.g. joint angles, enables 

us to better understand how a player’s movement pattern and external forces acting on 

their body increase the risk of overuse injuries. Furthermore, smart clothes with wearable 

sensor technologies such as integrated electromyography (EMG) electrodes are emerging 

enabling researchers and practitioners to monitor the player’s muscle activity during 
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training/match-play (Düking et al., 2016; Finni et al., 2007). However, the validity and 

reliability of these technologies and generalisability to team sports should be established 

before it is deployed in team sports. The introduction of additional technologies will 

furthermore increase the data processing time and it is therefore important to identify if 

and how these measurements can be turned into knowledge about the biomechanical load 

that is easily accessible and meaningful for the practitioner. 

           

5.6.3. Consideration of the biomechanical load in future studies on training load  

This thesis has made a first attempt to not only distinguish between the physiological and 

biomechanical load from collisions with opponents (Gabbett, 2013; Gastin et al., 2014) 

but also to distinguish between the physiological and biomechanical load associated with 

the players’ movements around the pitch. Future studies on training load should therefore 

recognise that there is a difference between physiological and biomechanical load and 

explore the opportunity to monitor this separately. For instance, through the use of 

accelerometer/MSD-model introduced in this thesis or similar methods that can estimate 

whole-body biomechanical loading from the player-ground interaction in the field, future 

studies may provide objective data supporting that there is a difference between 

physiological and biomechanical load which until now has only been described 

theoretically (Vanrenterghem et al., Under Review). 

 

5.6.4. Establishment of the biomechanical dose-response relationship 

Whereas the accelerometer/MSD-model improves our ability to better monitor the 

external biomechanical load, it still does not provide direct information about the internal 

biomechanical load. Future research should therefore explore how volume, frequency and 

intensity of the external biomechanical load each lead to positive or negative tissue 

adaptations and how these adaptations are influenced by fatigue, recovery time and the 
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individual’s response level. In a field context, researchers and practitioners will need to 

explore if GRF exposure from the accelerometer/MSD-model is a stronger indicator of 

tissue damage than existing estimates of load, and consequently if it is, for example, a 

better predictor of muscle soreness (McLellan et al., 2011; McNamara et al., 2013) or 

“leg exertion” (McLaren et al., 2016a; McLaren et al., 2016b; Weston et al., 2015) in 

team sports. In a clinical context, future intervention studies should explore the 

relationship between the longitudinal GRF exposure from physical activity and changes 

in tendon properties (e.g. stiffness and hypertrophy) or bone adaptions (e.g. mass and 

calcium content) (Kibler et al., 1992; Nigg et al., 1995).   

 

5.6.5. Establish the relationship between biomechanical load and overuse injury 

risk 

Based on the findings of the present work, future research may have the possibility to 

explore if the estimated biomechanical load from the accelerometer/MSD-model is a 

better predictor of overuse injuries than other estimates such as the accumulated vector 

magnitude currently obtained from the GPS integrated accelerometer (Bowen et al., 2016; 

Colby et al., 2014; Ehrmann et al., 2016). A unique asset of the accelerometer/MSD-

model is that it allows to investigate the relationship between specific GRF loading 

features and specific overuse injuries, and that in a field context. Lab studies have, for 

example, already suggested such relationship between increased loading rate and risk of 

tibial stress fractures in long distance runners (Hreljac, 2004), yet field-based 

observations would allow more in depth understanding of such relationship in terms of 

the specific roles of factors such as intensity, volume, or frequency. 
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5.7. General conclusion 

This thesis has made a first attempt to distinguish between the physiological and 

biomechanical load associated with team sports players’ movements around the pitch 

during training sessions and match-play. GPS integrated accelerometers are commonly 

used in professional team sports and are therefore a strong candidate for whole-body 

biomechanical monitoring in the field. Nevertheless, findings from this thesis have shown 

that body-worn accelerometry overestimates whole-body biomechanical loading. 

Practitioners should therefore exercise some caution when GPS integrated accelerometers 

are used to estimate the whole-body biomechanical load players are exposed to from the 

interaction between the player and the ground (e.g. through the accumulated vector 

magnitudes). The novel accelerometer/MSD-model approach introduced in this thesis 

showed promising results in the ability to estimate the multi-segment dynamics of the 

human body and the associated ground reaction forces from trunk-mounted 

accelerometry, though future work is needed to reduce the accelerometer/MSD-model’s 

sensitivity to variations in tasks for it to more accurately reproduce GRF patterns from 

various team sports movements. Ultimately, this will give researchers and practitioners 

in team sports a biomechanically sound foundation to external whole-body biomechanical 

load monitoring due to player-ground interaction and potentially provide useful 

information which may enable us to predict the musculoskeletal structural adaptations of 

training sessions and match-play in team sports. 
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  Laboratory accelerometers location relative to the GPS device 

The purpose of this appendix was to explore the influence of the laboratory 

accelerometers location relative to the GPS device and the consistently higher values 

observed for the laboratory accelerometer compared to the GPS integrated accelerometer.  

 

A pilot study was therefore conducted where two tri-axial wireless laboratory 

accelerometers (518, DTS accelerometer, Noraxon Inc., Scottsdale, USA) were attached 

to the GPS device, one accelerometer on the anterior side and one on the posterior side of 

the GPS device. All three accelerometers were positioned within a small pocket of a tight 

fitted elastic vest of one participant which was asked to complete 6 single leg drop 

landings from a 50 cm drop height. The two laboratory accelerometers were switched 

halfway through the pilot testing. 

 

Figure A.1: Pictures of the laboratory accelerometers location on the anterior  

(picture on the left) and posterior side (picture on the right) of the GPS device. 

 

Resultant peak accelerations were determined for each accelerometer (Table A.1). 

Though slightly higher accelerations generally were observed for the laboratory 

accelerometer positioned on the posterior side of the GPS device (Figure A.1), the pilot 

study showed that the laboratory accelerometer measured higher accelerations than the 

GPS integrated accelerometer regardless of the laboratory accelerometers position. In 

addition, the peak accelerations observed in the pilot study for the single leg drop landing 

were higher than the peak accelerations observed for the running and change in direction 
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trials in Chapter 2. The laboratory accelerometer was subsequently placed on the posterior 

side in Chapter 2 to ensure that the GPS device was placed as close as possible to the 

trunk and similar to its position in the field. 

 

Table A.1: Resultant peak accelerations measured with the GPS integrated accelerometer and 

the two laboratory accelerometers located on the anterior and posterior side of the GPS device. 

 
Catapult 

(g) 

Anterior 

Noraxon (g) 

Posterior 

Noraxon (g) 

Difference between the two 

Noraxon accelerometers (g) 

1st trial 5.62 7.56 7.78 0.22 

2nd trial 6.43 7.60 8.29 0.69 

3rd trial 5.66 6.10 6.54 0.44 

4th trial 6.01 8.05 8.43 0.38 

5th trial 5.97 8.72 8.52 0.20 

6th trial 5.18 6.06 6.20 0.14 

 

 
Figure A.2: Two representative examples of the trunk acceleration measured from the  

GPS integrated accelerometer (Catapult) and the two laboratory accelerometers  

(Noraxon) from the single leg drop landing. 

 

This pilot study showed a difference in peak acceleration of approximately 0.34 g 

between the anterior and posterior location. The posterior location could therefore 

unlikely explain the consistent difference in peak acceleration observed between the GPS 

integrated accelerometer and laboratory accelerometer observed in Chapter 2. 

6.   

 



Appendices 

141 

  1g static accelerometer calibration protocol 

The purpose of this appendix was to provide a detailed description of the 1g static 

accelerometer calibration carried out before and after each data collection. The calibration 

was performed to ensure the accuracy of the accelerometers. During the calibration 

protocol the three laboratory accelerometer sensors and the GPS integrated accelerometer 

described in Chapter 2 were fixed on a flat surface inside a box with double sided tape 

(Figure B.1). A second GPS integrated accelerometer was also included in the calibration 

protocol as a reference to the GPS integrated accelerometer used in this thesis.   

  

 

Figure B.1: Pictures of the three laboratory accelerometers and two GPS integrated 

accelerometers mounted inside the calibration box used for the 1g static calibration. 

 

The box was carefully rotated through all degrees of freedom, and orientated on the 

ground to measure acceleration in the positive and negative orientation of the three 

sensing axis (X, Y, Z). Acceleration data was measured over 20 seconds at each position 

measuring acceleration due to gravity 1 g or 9.81 m·s-1 (Figure B.2). 
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Figure B.2: Illustration of the change in acceleration of 2g when rotating an accelerometer 

180ᴼ during the static 1g calibration protocol. 

 

The static calibration was used to test the static validity of the individual accelerometers 

used in this thesis. In addition, the static calibration data before and after each test session 

was used to investigate the within session and between session static reliability of the 

different sensors. The sensors dynamic validity and reliability haven not been tested due 

to the absence of a mechanical shaking device within the department. 

7.  

 



Appendices 

143 

  Synchronisation of GPS integrated accelerometer 

The purpose of this appendix was to explain the method used in this thesis to synchronise 

the GPS integrated accelerometer with laboratory accelerometers and the ground reaction 

force measurements. The acceleration data from the GPS integrated accelerometer was 

continuously collected throughout the entire session (typically around 3 hours). The 

acceleration data from the trunk-mounted laboratory accelerometer fixed to the GPS 

device was used to synchronise the acceleration from the GPS integrated accelerometer.   

 

The laboratory accelerometer data was automatically synchronised with the data from the 

motion caption system through the analog channels of the A/D board. An External trigger 

was used to trigger and synchronise accelerometer data with motion capture data at the 

beginning of every trails. The two trunk-mounted accelerometers worn by the participants 

were tapped three times with a small rubber hammer at the beginning of every trial to 

create three clear spikes in the anterior/posterior acceleration signal. A customised Matlab 

code was created to automate the synchronisation of the two accelerometer signals. This 

basically consisted of two steps: 1) A time synchronisation using the information from 

the internal clock of the GPS device and the data collection computer and 2) A vector 

scalar product synchronisation where the signal created from tapping the accelerometers 

were to improve the time synchronisation. The step by step approach is described below: 

 

Step 1: Time synchronisation 

1. The start time of the individual trials were identified in the Catapult data from the 

QTM (Qualisys Track Manager) file 

2. Catapult data from the individual trials were identified as the start time + 25 

seconds (the length of the laboratory accelerometer data files), see figure C.1  
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Figure C.1: Time synchronised (A) and vector scalar product synchronisation (B) example from 

one trial. 

 

Step 2: Vector scalar product synchronisation 

1. The first minimum in the accelerometer signal was identify for the two 

accelerometers (minimum due to the tapping of the accelerometer)  

2. Two vectors (a: Catapult vector; b: Noraxon vector) were created from the 

minimum value and time of the minimum value, see Figure C.1  

3. The scalar product of the two vectors was calculated to create a vector (c) 

between vector a and b. The time difference between the two minimum values 

were defined as the x-value of vector c (xc) 

4. xc was used to correct the 25 second time synchronised Catapult signal with the 

Noraxon signal, see Figure C.2      

 
Figure C.2: Synchronised acceleration data from a representative example. 

8.  

0 5 10 15 20 25
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time (Sec)

A
n

te
ri

o
r/

p
o

s
te

ri
o

r 
a

c
c

e
le

ra
ti

o
n

 (
g

)

 

 

Synchronised Catapult

Noraxon

0 5 10 15 20 25
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time (Sec)

A
n

te
ri

o
r/

p
o

s
te

ri
o

r 
a

c
c

e
le

ra
ti

o
n

 (
g

)

 

 

Catapult

Noraxon

0 1 2 3 4 5
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time (Sec)

A
n

te
ri

o
r/

p
o

s
te

ri
o

r 
a

c
c

e
le

ra
ti

o
n

 (
g

)

 

 

a 

b 

c 

A B 

Xc 



Appendices 

145 

 Establishing accelerometer filter cuf-off frequency in Chapter 2 

The purpose of this appendix was to explore the sensitivity of the filter cut-off 

frequiencies applied to the acceleration signal from the three laboratory accelerometers 

(Trunk, Pelvis and Tibia) in Chapter 2.  

 

Methods 

The laboratory accelerometer data (Trunk, Pelvis and Tibia) from one representative 

participant for a Run, Cut45 and Cut90 trial with an approch speed of 2 and 5 m·s-1 were 

used to explore the effect of different filter cut-off frequencies on the acceleration signal 

and peak acceleration. A 6th order Butterworth low-pass with cut-off frequencies between 

20-80Hz were applied to the Trunk and Pelvis data, while cut-off frequencies between 

40-100Hz were applied to the Tibia data (Figure D.1). Peak accelerations were calculated  

as described in Chapter 2 for the individual trials and cut-off frequencies.        

 
Figure D.1: Resultant acceleration from the Trunk, Pelvis and Tibia for a representavie Run, 

Cut45 and Cut90 trial at 5 m·s- with different low-pass filter cut-off frequencies applied to the 

acceleration signal.  



Appendices 

146 

Table D.1: Resultant peak accelerations from the three laboratory accelerometers (Trunk, 

Pelvis and Tibia) with low-pass filter cut-off frequencies between 20-100Hz applied to the 

acceleration signal for the Run, Cut45 and Cut90 at 2 and 5 m·s-1. 

 Run Cut45 Cut90 

Trunk 2 m·s-1 5 m·s-1 2 m·s-1 5 m·s-1 2 m·s-1 5 m·s-1 

Raw 4.69 3.73 3.83 10.98 3.08 8.89 

80Hz 4.68 3.73 3.82 10.99 3.08 8.87 

70Hz 4.67 3.73 3.82 10.89 3.06 8.86 

60Hz 4.63 3.72 3.81 10.67 3.02 8.84 

50Hz 4.56 3.68 3.78 10.35 2.95 8.76 

40Hz 4.43 3.62 3.74 9.70 2.84 8.49 

20Hz 3.63 2.99 3.21 6.97 2.74 6.68 

Pelvis       

Raw 3.38 6.74 3.29 8.71 3.14 14.38 

80Hz 3.38 6.58 3.28 8.65 3.14 14.33 

70Hz 3.38 6.43 3.28 8.57 3.13 13.84 

60Hz 3.36 6.19 3.26 8.52 3.13 13.15 

50Hz 3.32 5.97 3.24 8.48 3.11 12.33 

40Hz 3.32 6.11 3.18 8.29 3.04 11.37 

20Hz 3.01 5.35 2.90 6.42 3.00 8.44 

Tibia       

Raw 7.26 24.04 6.79 25.14 5.93 21.18 

100Hz 7.26 23.69 6.73 25.05 5.91 21.04 

90Hz 7.23 23.29 6.71 24.47 5.92 20.68 

80Hz 7.18 22.90 6.68 23.61 5.92 20.12 

70Hz 7.11 22.44 6.63 22.73 5.84 19.13 

60Hz 7.03 21.67 6.59 21.62 5.63 17.88 

40Hz 6.51 19.32 6.51 16.49 5.08 16.20 

 

As illustrated in Table D.1 the lowest filtering cut-off frequencies had a higher effect on 

the peak accelerations espescially for the trials with the fastest approach speed (5 m·s-1). 

Based on these results and from the cut-off frequencies previously used for body-worn 

accelerometry during running, cut-off frequencies of 60 Hz for the Trunk and Pelvis data 

and 90Hz for the Tibia data were apllied to the accelerometer data in Chapter 2. These 

filtering cut-off frequencies were choose to remove any high-frequency noise in the 

signal, e.g. from the movement of the accelerometer relative to the segment it was 

attached to, but at the same time maintain as much at the raw signal as possible.  
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A fast Fourier analysis would have revealed the frequency content of the acceleration 

signal from the different accelerometer locations, tasks and intensities and been used as a 

guidance in choosing the filter cut-off frequency. It was however beyond the scope of this 

appendix to determine the optimal cut-off frequency as this will dependent on task and 

intensity as illustrated in this appendix. This makes it very difficult to apply “optimal” 

filter settings to team sports data from the field. As a consequence, the relationship 

between peak acceleration from body-worn accelerometers and CoM acceleration 

explored in Chapter 2 may improve or decrease depending on the filter cut-off frequency 

applied to the acceleration data. 

 

 

9.  



 

 Definition of the eight natural MSD-model parameters 

The purpose of this appendix is to describe how the nine MSD-model parameters 

presented in Figure E.1 (m1, m2, x1, x2, k1, k2, l1, l2 and c) were transformed into the eight 

natural model parameters used in this study. The position of m1 and m2 (p1 and p2), the 

mass ratio of the lower mass relative to the total body mass (λ), the natural frequencies of 

upper and lower spring (ω1
2 and ω2

2) and the damping ratio (ζ) were defined as describes 

in Equation E1-E8. 

 

 
Figure E.1: Illustration of the MSD-model and its free-body diagram. 

 

𝑝1 = 𝑥1 − 𝑙1 − 𝑙2        [Equation E.1] 

𝑝2 = 𝑥2 − 𝑙2          [Equation E.2] 

𝑣1 =  𝑝1̇        [Equation E.3] 

𝑣2 =  𝑝2̇                   [Equation E.4] 

𝜆 =
𝑚1

𝑚2
          [Equation E.5] 

𝜔12 =
𝑘1

𝑚1
=

(1+𝜆)𝑘1

𝜆𝑀
       [Equation E.6] 

𝜔22 =
𝑘2

𝑚2
=

(1+𝜆)𝑘2

𝑀
        [Equation E.7] 

𝜁 =
𝑐

2√𝑘2𝑚2
         [Equation E.8]  
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Where x1 and x2 are the position of the of the upper and lower spring under no external 

load, l1 and l2 are the natural lengths of the upper and lower spring under no external load, 

k1 and k2 are the linear spring constants of the massless upper and lower spring, c is the 

damping coefficient of the lower spring.  

10.  
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  Establishing study specific search parameters  

The purpose of this appendix was to clarify how model parameters adopted from Derrick 

et al. (2000) for running at 3.83 m·s-1 (± 5%) was used in a pilot study to determine the 

initial search parameters that best represented the types of tasks and approach speeds 

investigated in Chapter 3.  

 

The model parameters adopted from Derrick et al. (2000) were: p2: 0.0074 m; v1: -0.73 

m·s-1; v2: -0.66 m·s-1; k1: 34100 N·m-1; k2: 78400 N·m-1; λ: 0.2 and ζ: 0.35. p1 was not 

presented in the paper by Derrick et al. (2000) and p1 was therefore expected to be twice 

as long as the position of p2. The initial search parameter for p1 was therefore set at 0.015 

m for this analysis. The model parameters from Derrick et al. (2000) was used as initial 

search parameters in a pilot study including the data from all tasks and approach speeds 

for 4 participants. 

  

The median model parameters obtained from the optimisation routine when the model 

parameters from Derrick et al. (2000) were used as initial search parameters were as 

follows: p1: -0.01 m; p2: 0.00 m; v1: -1.29 m·s-1; v2: -0.19 m·s-1; λ: 2.81; ω1
2: 336 N·m-

1·kg-1; ω2
2: 3401 N·m-1·kg-1; ζ: 0.31. These parameters were used as the initial search 

parameter for all participants and tasks in Chapter 3. 

 

The same approach was adopted in Chapter 4 to determine accelerometer/MSD-model 

specific search model parameters. Only difference was that the average model parameters 

from Chapter 3 were used in the first step, instead of the model parameters from Derrick 

et al. 2000.    

11.  
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 Effect of filter cut-off frequency on accelerometer/MSD-model 

The purpose of this appendix was to explore the sensitivity of the filter cut-off frequency 

applied to the GPS integrated accelerometry and the model parameters from the 

accelerometer/MSD-model. 

 

Methods 

GPS integrated accelerometry from ten participants (age 22 ± 4 years, height 178 ± 8 cm, 

mass 76 ± 11 kg) were used in this sensitivity analysis to explore the influence of 

accelerometer filter cut-off frequency on the accelerometer/MSD-model parameters and 

predicted GRF. A 4th order recursive Butterworth low-pass filter with a cut-off frequency 

of 5, 10 and 15 Hz respectively were applied to the GPS integrated accelerometry data 

and used as accelerometer/MSD-model input. The model parameters from the 

accelerometry with different cut-off frequencies were compared to the model parameters 

from Chapter 4, where a 20 Hz cut-off was applied to the GPS integrated accelerometer 

data.  

 

Results 

The model parameters from the GPS integrated accelerometer with at filter cut-off 

frequency at 15 Hz were almost identical with the model parameters from Chapter 4 (20 

Hz cut-off frequency). Applying a cut-off frequencies of 5 or 10 Hz generally moved the 

average model parameters further away from the GRFmeasured model parameters observed 

in Chapter 3, though improvements were observed for p1, p2, v2 at the Cut90 task when 

the GPS integrated accelerometer data was filtered with a 5 Hz low-pass filter (Figure 

G.1).      
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Figure G.1: Polar plots displaying the mean task model parameters (in scaled dimensionless 

values) for GRFmeasured (Chapter 3) and the GPS integrated accelerometer (Catapult) with 

different cut-off frequencies. 

 

The acceleration changed dramatically when the cut-off frequency was lowered and the 

high frequency in the acceleration signal was removed. Though this enabled the 

accelerometer/MSD-model to simulate the acceleration patterns with stronger accuracy 

(Figure G.2) the GRF predictions were still poor regardless of the filter cut-off frequency 

applied to the GPS integrated accelerometer data.   
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Figure G.2: Representative examples of the of the measured trunk acceleration when different 

low-pass filter cut-off frequencies were applied to the GPS integrated accelerometer data (black 

line) and a1 for the associated acceleration signals (dashed grey line). 

 

Conclusion 

Though better MSD-model upper mass acceleration simulations were observed when a 

low-pass filter with a cut-off frequency at 10 Hz or 5 Hz was applied to the acceleration 

signal from the GPS integrated accelerometer, it generally did not improve the model 

parameters or the GRF predictions from the accelerometer/MSD-model. 

12.  
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  Laboratory accelerometer as accelerometer/MSD-model input 

The purpose of this appendix was to explore the sensitivity of the accelerometer/MSD-

model to predict GRF when accelerations from a laboratory accelerometer were used as 

accelerometer/MSD-model input. 

 

Methods 

The acceleration signal from the tri-axial wireless laboratory accelerometer (518, DTS 

accelerometer, Noraxon Inc., Scottsdale, USA) was used as accelerometer/MSD-model 

input in this sensitivity analysis. The laboratory accelerometer had an effective sampling 

frequency of 1000 Hz and was tightly fixated to the posterior side of the GPS device as 

described in Chapter 2. The laboratory accelerometer data from all participants, tasks and 

approach speeds were included in this sensitivity analysis of the accelerometer/MSD-

model.       

 

Results 

The MSD-model was able to simulate the acceleration patterns from the laboratory 

accelerometer with good to very good accuracy across the different tasks and approach 

speeds, though a1 generally underestimating the magnitude of the first peak in the 

acceleration signal during the stance time (Figure H.1). Nevertheless, poor GRF 

predictions were observed across tasks and approach speeds from the 

accelerometer/MSD-model when the acceleration signal from the laboratory 

accelerometer was used as model input. This was similar to the results observed in 

Chapter 4 when acceleration data from the GPS integrated accelerometer was used as 

model input.     
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Figure H.1: Representative examples of the measured trunk acceleration from the laboratory 

accelerometer (black line) and a1 (dashed grey line). 

 

Model parameter sensitivity analysis  

Similar average model parameters were obtained from the laboratory accelerometer data 

compared to the average model parameters observed in Chapter 4, where GPS integrated 

accelerometry was used as accelerometer/MSD-model input. Though larger average 

parameter values were observed for p1, p2, v2 and λ across the different tasks and approach 

speeds (Figure H.2).  
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Figure H.2: Polar plots displaying the mean model parameters (in scaled dimensionless values) 

for the individual conditions. The dark grey squares display the laboratory accelerometer model 

parameters, the light grey circles display the GPS integrated accelerometer model parameter 

from Chapter 4 and the black circles display the GRFmeasured model parameters from Chapter 3. 

 

A weak to moderate relationship (R2 between 0.01 and 0.61) was observed from the linear 

regression analysis between the laboratory accelerometer and GRF model parameters 

(Figure H.3). This range was almost identical with the range observed in Chapter 4, and 

p2 (R
2: 0.22), v1 (R

2: 0.61), ω1
2 (R2: 0.37) and ω2

2 (R2: 0.38) again showed the strongest 

relationship with the GRF model parameters. 

 

To improve the GRF predictions the new model parameter 3 (NP3) approach described 

in Chapter 4 was adopted to the laboratory accelerometer model parameters, in which p1, 

v2, λ and ζ were kept constant and p2, v1, ω1
2 and ω2

2 were recalculated based on the slope 

of the linear relationship (Figure H.3). Representative examples of GRFmodelNP3 from the 

laboratory accelerometer data is displayed in Figure H.4. 
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Figure H.3: Linear regression between laboratory accelerometer (horizontal axis) and 

GRFmeasured (vertical axis) model parameters. Each circle represents the participants mean 

within task parameters (Run: circle; Cut45: square and Cut90: diamond). Mean within task 

parameters outside the 95% prediction interval (dashed line) were not included in the 

regression analysis. 
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Figure H.4: Representative examples of the GRFmeasured (black line) and GRFmodelNP3 when GPS 

integrated accelerometer data (dashed grey line) and laboratory accelerometer data (dotted 

grey line) were used as accelerometer/MSD-model input. 

 

Conclusion 

The use of a wireless laboratory accelerometer with a higher sampling frequency (1000 

Hz) compared to the GPS integrated accelerometer (100 Hz) only had minor influence on 

the optimised model parameters, the linear relationship with the GRFmeasured model 

parameters and therefore did not improve the predicted GRF from the 

accelerometer/MSD-model. 

13.  
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  Acceleration from trunk kinematics as MSD-model input 

The purpose of this appendix was to explore the sensitivity of the accelerometer/MSD-

model to predict GRF when the vertical accelerations of the participant’s trunk segment, 

obtained from a three-dimensional motion capture system, were used as 

accelerometer/MSD-model input. 

 

Methods 

Three-dimensional trunk kinematics from sixteen participants (age 22 ± 3 years, height 

177 ± 8 cm, mass 74 ± 9 kg) were measured with 10 optoelectronic cameras (Qualisys 

AB, Gothenburg, Sweden) sampling at 500 Hz. The trunk segment was defined from a 

static measurement as described in (Vanrenterghem et al., 2010) and makers located at 

C7, Sternum, Xiphoid process and T8 were used to track the movements of the trunk 

during the different tasks and approach speeds (Figure I.1). Raw marker positions were 

filtered at 10 Hz using a fourth-order recursive Butterworth low-pass filter in Visual3D 

(C-motion, Germantown, MD, USA). Vertical trunk acceleration was calculated as the 

second time derivative of the vertical trunk displacement data in Visual3D for every foot-

ground-contact and exported to Matlab, where the vertical trunk acceleration was used as 

MSD-model input.    

 

 

Figure I.1: Pictures displaying the marker set used to measure the three-dimensional kinematics 

of the trunk segment. C7, Sternum, Xiphoid process and T8 (red circles) were used as tracking 

markers. 
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Results 

The MSD-model was able to simulate the vertical trunk acceleration obtained from trunk 

kinematics with very good accuracy across tasks and approach speeds (Figure I.2). The 

simulations were considerably better than the simulations observed when GPS integrated 

accelerometry was used as model input in Chapter 4. In addition, the measurements reveal 

a difference between the acceleration signal obtained from trunk kinematics and trunk 

accelerometry (Figure I.2).   

 
Figure I.2: Representative examples of the vertical trunk acceleration measured from trunk 

kinematics (black line) and a1 when trunk kinematics (dashed grey line) and GPS integrated 

accelerometry (dotted grey line) were used as MSD-model input. 
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Despite the almost perfect simulations of the measured vertical trunk acceleration, poor 

to moderate GRF predictions were observed when the model parameters from the 

optimisation routine were used to calculate GRFmodel (Figure I.3). Nevertheless, small 

improvements in the predicted GRF were observed when measured trunk acceleration 

was used as MSD-model input compared to the predicted GRF observed in Chapter 4.      

 

 
Figure I.3: Representative examples of GRFmeasuered (black line) and GRFmodel  (dashed grey line) 

when vertical trunk acceleration from trunk kinematics was used as MSD-model input. 
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Model parameter sensitivity analysis  

The average model parameters observed for p2, v2 and ω1
2 were similar to those observed 

in Chapter 4, where GPS integrated accelerometry was used as MSD-model input. The 

average model parameters observed for p1 and v2 from the vertical trunk acceleration were 

however closer to the GRFmeasured model parameters observed in Chapter 3. In contrast 

were worse model parameters observed for λ, ω2
2 and ζ when the vertical trunk 

acceleration signal was used as MSD/model input compared to the model parameters 

observed in Chapter 4, see Figure I.4. 

  

 
Figure I.4: Polar plots displaying the mean model parameters (in scaled dimensionless values) 

for the individual conditions. The dark grey squares display the parameters from vertical trunk 

acceleration, the light grey circles display the GPS integrated accelerometer parameters from 

Chapter 4 and the black circles display the GRFmeasured parameters from Chapter 3. 

 

Moderate relationships (R2 between 0.19 and 0.61) were observed for all model 

parameters, despite v2 (R2: 0.02), between the vertical trunk acceleration model 

parameters and GRFmeasured model parameters from Chapter 3 (Figure I.5). Stronger 

correlations were especially observed for p1, λ and ζ (R2 between 0.19 and 0.36) compared 

to the correlations observed in Chapter 4 (R2 between 0.01 and 0.05).  
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Figure I.5: Linear regression between vertical trunk kinematic (horizontal axis) and GRFmeasured 

(vertical axis) model parameters. Each circle represents the participants mean within task 

parameters (Run: circle; Cut45: square and Cut90: diamond). Mean within task parameters 

outside the 95% prediction interval (dashed line) were not included in the regression analysis. 
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New model parameters (NP) were therefore generated by recalculating all model 

parameters from the slope of the linear regression, despite v2 which was kept constant. 

Nevertheless, worse GRF predictions were observed from the new model parameters 

(GRFmodelNP) compared to the GRF predictions observed from the model parameters 

obtained directly from the optimisation routine (GRFmodelNP), see Figure I.6. 

   

 
Figure I.6: Representative examples of the GRFmeasured (black line), GRFmodelNP (dotted grey line) 

and GRFmodel (dashed grey line) when vertical trunk acceleration measured from trunk 

kinematics was used as MSD-model input for the difference tasks and approach speeds. 
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Conclusion 

Though better MSD-model upper mass acceleration simulations were observed when 

vertical acceleration from trunk kinematics was used as MSD-model input compared to 

Chapter 4. Nevertheless, this generally did not improve the GRFmodel predictions from the 

MSD-model. The best GRFmodel predictions were observed from the model parameters 

obtained directly from the optimisation routine, whereas worse GRFmodel predictions were 

observed when v2 was kept constant and the other model parameters were recalculating 

from the slope of the linear regression. Other model parameter combinations might 

improve the GRFmodel predictions, but it was beyond the scope of this sensitivity analysis 

to establish those. 

14.     

  



Appendices 

166 

 Sensitivity analysis of fixed model parameters on SSEGRF 

The purpose of this appendix was to explore the sensitivity of the fixed model parameters 

and the predicted GRF. In Chapter 4, the fixed model parameters (p1, p2, v2, λ and ζ) were 

kept constant using the across task average model parameters found in Chapter 3. 

However, in this sensitivity analysis the fixed model parameters were kept constant using 

the average task parameters (e.g. average Run parameters for all running trials) or average 

condition parameters (e.g. average Run at 3 m·s-1 parameters for all running trials with 

an approach speed at 3 m·s-1) values found in Chapter 3.  

 

The results from this sensitivity analysis showed that using average task or condition (task 

and approach speed) model parameters values as the fixed parameter values when 

GRFmodel were calculated from NP3, NP4 or NP5 generally did not improve the GRFmodel 

predictions (Figure J.1). In fact, this actually increased the SSEGRF for the Cut90 task and 

only had minor influence on the predicted GRF for the Run and Cut45. Future study 

should explore if the use of subject specific model parameters will improve the predicted 

GRF. 
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Figure J.1: The top row display the new model parameter combinations (NP), where the open circles indicate that the parameters were kept constant using the 

average task parameters found in Chapter 3, and the open squares indicate that the model parameters were kept constant using the average parameter value of the 

individual conditions. The second row display the histograms of the SSEGRF distribution and the bottom row display the average SSEGRF across tasks (All) and for 

the individual tasks. 
15.  
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 Sensitivity analysis of changing GRFmeasured model parameters 

The purpose of this appendix was to illustrate the effect of changing the individual 

GRFmeasured model parameters on GRFmodel and explore whether the effect was dependent 

on the original GRF pattern. 

  

Four GRP patterns from the same participant and GRFmeasured model parameters from the 

associated trials were used in this sensitivity analysis. Only one parameter was changed 

while the other seven model parameters were kept constant, similar to the approach 

described in Derrick et al. (2000). The change in the individual parameters were based on 

the mean standard deviations observed in Chapter 3.   

 

This sensitivity analysis clearly showed that the effect of changing the individual model 

parameters were largely dependent on the original GRF pattern and the stance phase 

(Figure K.1). v1, λ, ω1
2, ω2

2 and ζ were in particular sensitive to small changes in model 

parameters. The effect of changing two or more model parameters is yet to be established. 
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 Figure K.1: Displaying the effect of changing one parameter on GRFmodel for four different GRF patterns from the same participant. 

16.   
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  Foot-contact identification from GPS integrated accelerometry 

The purpose of this appendix was to explore the variation in acceleration values at touch 

down and take off from the GPS integrated accelerometers. This is of interest because the 

novel accelerometer/MSD-model introduced in this thesis are applied to the 

accelerometer signal from the foot-ground-contact. 

 

The acceleration signal from all participants, tasks and approach speeds from this thesis 

were used in this explorative sensitivity analysis of the variation in the acceleration signal 

at touch down and take off. The vertical GRF (20 N threshold) was used to determine the 

acceleration values at touch down and take off in the resultant gravity corrected 

acceleration signal measured with the GPS integrated accelerometer (Table L.1). 

  
Table L.1: Mean ± standard deviations of the gravity corrected acceleration values (g) at touch 

down and take off from the GPS integrated accelerometers.   
 Touch down Take off Average 
 Mean SD Mean SD Mean SD 

All tasks -0.51 0.14 -0.40 0.12 -0.46 0.08 

Run -0.63 0.11 -0.48 0.14 -0.55 0.10 

Cut45 -0.47 0.22 -0.35 0.12 -0.41 0.09 

Cut90 -0.41 0.21 -0.44 0.19 -0.43 0.02 

2 m·s-1 -0.72 0.13 -0.61 0.11 -0.67 0.08 

3 m·s-1 -0.59 0.13 -0.43 0.16 -0.51 0.11 

4 m·s-1 -0.53 0.18 -0.36 0.16 -0.44 0.12 

5 m·s-1 -0.21 0.25 -0.20 0.18 -0.21 0.01 

Run 2 m·s-1 -0.79 0.05 -0.71 0.10 -0.75 0.06 

Run 3 m·s-1 -0.67 0.15 -0.53 0.19 -0.60 0.10 

Run 4 m·s-1 -0.68 0.14 -0.45 0.18 -0.57 0.16 

Run 5 m·s-1 -0.36 0.30 -0.25 0.29 -0.30 0.08 

Cut45 2 m·s-1 -0.67 0.28 -0.59 0.10 -0.63 0.06 

Cut45 3 m·s-1 -0.61 0.17 -0.44 0.17 -0.52 0.12 

Cut45 4 m·s-1 -0.51 0.22 -0.28 0.24 -0.39 0.17 

Cut45 5 m·s-1 -0.09 0.36 -0.07 0.27 -0.08 0.01 

Cut90 2 m·s-1 -0.69 0.17 -0.59 0.14 -0.64 0.07 

Cut90 3 m·s-1 -0.55 0.21 -0.48 0.25 -0.51 0.05 

Cut90 4 m·s-1 -0.35 0.39 -0.45 0.32 -0.40 0.07 

Cut90 5 m·s-1 -0.10 0.33 -0.28 0.17 -0.19 0.13 
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Though differences were observed in the acceleration values at touch down and take off 

between the Run (-0.55 ± 0.10 g) and the two change in direction tasks (Cut 45: -0.41 ± 

0.09 g; Cut90: -0.43 ± 0.02 g), superior differences were observed between approach 

speeds. In particularly for the 5 m·s-1 (-0.21 ± 0.01 g) where smaller touch down and take 

off acceleration values were observed compared to the other approach speeds (-0.67 ± 

0.08 g to -0.44 ± 0.12 g). 

 

Applying a threshold to the acceleration signal would be the logical approach to determine 

the players foot-ground-contact from the GPS integrated accelerometer in the field. 

Nevertheless, this explorative study indicate that such threshold might be task dependent 

and surely dependent on the speed which the player is running at. This could have 

implications on the accelerometer/MSD-model introduced in this thesis, because the 

acceleration signal will differ depending on the threshold applied to the accelerometer 

signal. Future studies should therefore explore the sensitive of the foot-ground-contact 

threshold on the model parameters obtained from the accelerometer/MSD-model.  


