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Abstract 

Abstract. 

The work undertaken in this thesis is about the integration of two well-known 

methodologies: Petri net (PN) model Ii ng/analysis of industrial production processes 

and Artificial Intelligence (AI) optimisation search techniques. The objective of this 

integration is to demonstrate its potential in solving a difficult and widely studied 

problem, the scheduling of Flexible Manufacturing Systems (FIVIS). 

This work builds on existing results that clearly show the convenience of PNs as a 

modelling tool for FIVIS. It addresses the problem of the integration of PN and Al based 

search methods. Whilst this is recognised as a potentially important approach to the 

scheduling of FIVIS there is a lack of any clear evidence that practical systems might be 

built. This thesis presents a novel scheduling methodology that takes forward the 

current state of the art in the area by: 

Firstly presenting a novel modelling procedure based on a new class of PN (cb- 

NETS) and a language to define the essential features of basic FIVIS, demonstrating 

that the inclusion of high level FIVIS constraints is straightforward. 
Secondly, we demonstrate that PN analysis is useful in reducing search complexity 

and presents two main results: a novel heuristic function based on PN analysis that is 

more efficient than existing methods and a novel reachability scheme that avoids futile 

exploration of candidate schedules. 
Thirdly a novel scheduling algorithm that overcomes the efficiency drawbacks of 

previous algorithms is presented. This algorithm satisfactorily overcomes the 

complexity issue while achieving very promising results in terms of optimality. 
Finally, this thesis presents a novel hybrid scheduler that demonstrates the 

convenience of the use of PN as a representation paradigm to support hybridisation 

between traditional OR methods, Al systematic search and stochastic optimisation 

algorithms. Initial results show that the approach is promising. 
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Chapter 1. 

Chapter 1. Introduction. 

1. Flexible Manufacturing Systems. 

Introduction. 

Over the past thirty years, a new type of production system has emerged: the 

Flexible Manufacturing System (FMS) [Ranky 90] [Parrish 90]. Traditionally, transfer 

lines have been used for the manufacturing of large volumes of single items. In such 

systems changing a transfer line to the production of a different item is costly in terms 

of lost production. This, together with the increase of medium variety/medium volume 

markets, has generated concern about the low productivity of traditional production 

methods [Kimemia 85]. Although the flexibility to manufacture a range of products can 

be achieved at the expense of efficiency, the development of new automated systems, 

such as flexible manufacturing systems, aims to provide the flexibility of job shop with 

close to the efficiency of large volume manufacturing. In essence, FMS are hoped to 

provide potential for increasing the throughput rate by reducing the effect of the 

shortage of manufacturing resources while still being able to adapt to dynamic 

production demands of multiple types of products. Additional advantages include 

reduction in space used and work-in-process (WIP) inventory requirements. 

In terms of organisation, an FMS is a network formed by versatile computer 

numerically controlled manufacturing machines (CNC) and storage buffers, which are 
linked to automated material handling systems or automated guided vehicles (AGV). 

Flexibility, both in production batches and resource usage, is mainly determined by the 

existence of machines with multiple capabilities and the minimisation of set-up times 

and tool changeover. This allows the use of alternative production plans for each 

product, and the possibility of using different resources within the same plan. In other 

words, parts need not be processed in batches and each part of an order can be 

scheduled as a separate unit and may follow any available plan [Y. D. Kim 94]. 

The key to this sophistication is the absence of a physical production line, or in 

other words: the machine layout does not correspond to the sequences of machine 

utilisation, thus any location on the shop floor has to be reachable from any other [Silva 

89]. The automatic transport system is in charge of moving parts and tools through the 
facility. 
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But despite their promise, the design and subsequent operation of FMSs have 

proven disappointing [Hutchison 91]. One aspect of FMS operation that has been 

particularly difficult is scheduling. 

2. Scheduling of FMS. 

Productivity in a batch system devoted to the continuous manufacturing of a 

single product is determined by the way it is designed. This means that analysis 

concentrates on bottlenecks, operation times and line balancing that are determined at 

the design stage. The operation phase is essentially a continuous mode free of decision 

making. 

In the FMS scenario the relatively low size, but variable and changing 

production demands, have their processing optimised by using the flexibility design of 

the system. This means that they compete for the use of resources that are not eternally 

assigned to product types. It can be said that an FMS is a fully reprogrammable system 

[Ranky 1990] and consequently, it needs to be strongly controlled. The flexibility in a 

FMS basically introduces two decision variables to the control: a) how things are done 

and b) when things are done. The first determines which, among the available resources, 

is used to perform an operation and also decides which processing plan a part will 

follow. The second determines the order in which different parts are processed by the 

resources of the system, giving the sequence of operations that achieve the objectives 

and satisfy the constraints of the system. 

Having said that, we define the scheduling of an FMS as the problem of 

determining plans for the parts to be produced, assigning operations to machines, and 

sequencing these operations. Obtaining performance that justifies the high-cost of an 

FMS depends on how we answer these questions. In other words, the beneficial effects 

of flexibility in an FMS (see [Wilhelm 85] comes at a price in terms of operation 

complexity. Without an effective means of scheduling and controlling FMS, it is clear 

that no reasonable economic returns can be expected from them [Harmonoski 91]. 

The problem has challenged both academic and industrial researchers during the 

last three decades and it is far from being given a definitive solution mainly because 

scheduling a FMS is amongst the hardest combinatorial problems. Not only is it NP- 

hard [Tzafestas 93], but even among members of the latter class it belongs to the worst 
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in practice. The real complexity of the problem can be illustrated by the history of three 

Job Shop Systems (FMS without routing flexibility) test examples published in 1963 

[Muth 631 The optimal solution of the 20x5 problem was obtained in 1975 and the 

10x1O problem was solved 26 years after the publication of the problem data [Carlier 

89]. 

3. Scheduling objectives. 

In most situations some schedules are regarded as being "better" than others. In 

other words schedulers may be compared with respect to the achievement of various 

objectives. 
Three measures of schedule performance are common in the literature: 

* Efficient utilisation of resources: completion time or makespan. 

* Rapid response to demands: Mean completion time, flow time or waiting 

time. 

9 Close conformance to prescribed deadlines: Mean/maximum tardiness. 

Makespan has received the most attention in the scheduling literature and it is the 

measure we will concentrate on in this thesis. However, there is an increasing 

recognition for the need to develop production scheduling methods based on economic 

consequences rather than on measures such as flowtime and makespan which are often 

of secondary importance [Bistline 98]. It is increasingly common to assess schedules 

against multiple criteria rather than just one criteria [Chan 97] [O'Grady 87] [Chryss 

91]. From the point of view of the research developed here, this is formally a separate 
issue to the problem of scheduling as it relates to the comparison of schedules rather 

than the creation of schedules themselves. As we will see, however, the distinction is 

blurred in practice as some approaches (for example, those based on heuristics) 

commonly employ measures of schedule quality within the scheduling algorithm itself. 

Scheduling of FMS integrating PN and Al methods. 
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4. Scheduling FMS based on PN modelling and Al techniques. 

Introduction. 

The scheduling of an FMS needs two things: a) a representation paradigm that 

models the essence of the system and how it works and b) a means of reasoning about 
its behaviour, i. e., to develop methodologies that solve the scheduling problem based on 

the model. 
In the following chapter, we will present a review of how this issue has been 

addressed in the literature. As we will see, two main groups of approaches will be 
identified. The first one, known as operation research methods (OR), pays less attention 

to the modelling and concentrates on producing optimal schedules. 

UIR" is characterised by a reduction of the problem into mathematical 

programming or network model formulations [Rogers 91], and subsequent solution by 

formal algorithmic methods. Although they can provide efficient solution techniques for 

small problems, the main disadvantage is that such models do not naturally reflect the 

complex structure of FMS and hence make it difficult to employ domain-specific 

knowledge to achieve afordable and effective schedulers [Noronha 91], although 
disjunctive graph models are better [Rogers 91]. [Bona 90] states that it is common 

practice in mathematical programming to decompose the whole set of constraints into 

subsets of easy (primary) constraints and complicating (secondary) ones. Primary 

constraints can be dealt with by building a model of the production facility, (typically 

sequence and technological constraints) which result from the relaxation of secondary 

constraints (for example, buffer policy and WIP constraints) which are not easily dealt 

with by OR algorithmic techniques. Consecuently, their results are difficult to translate 

to the industrial level. 

The second well-known group is the on-line/real-time methods, which propose 

representation paradigms based on simulation tools that are more able to capture the 

complexity of FMS. The problem is that the scheduling techniques that they offer often 

resort to heuristic techniques that do not map well on to the operational complexity of 
FMS. [Hutchinson 91] suggested that the effects of routeing flexibility are more 
beneficial in high-cost optimal scheduling schemes than in cheap heuristics ones; and 
[Shaw 92] states that, because of the tighly-controlled environment in which they 

operate, FMS's present schedulers with several operating problems that were not 

encountered in earlier conventional manufacturing systems. 
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As [Bensana 88] states scheduling is a field of investigations where advances in 

theory and solving techniques have not produced the expected results at the industrial 

level due to specific features of case-studies which prevent the general application of 

the approach. This criticism is often found in the literature, particularly when the OR 

general methodologies are confronted with real-time scheduling [Bistline 98] [Benjaafar 

92] [Tamura 89]. As almost every review of production scheduling states [Harmonosky 

91] [Rodammer 88] [Ammons 88] [Maccarthy 93] [Basnet 94] [Sukla 96], literature is 

sadly lacking the consideration of important FMS factors such as buffer policies, 

transportation systems, pallets, product stability constraints and slots in the tool 

magazines, etc. This is due to the complexity of modelling these constraints with 

traditional formulations of the problems. [Liu 97] states that very few models have tried 

to address all the aspects of FMS descriptions. 

Consequently, there is a growing need to investigate new approaches to 

manufacturing scheduling that are capable of addressing the issues raised by these 

sophisticated systems. As [C. Y. Lee 97] points out, the new trend in scheduling theory 

is to extend results of classical algorithms to models that are more closely related to real 

problems. Even though many results may not be applicable immediately, these new 

models are at least motivated by industrial problems and have a greater potential for 

application. Finally as [Zhou 93] states, it is highly desirable for researchers, system 

analysts and production engineers to have a unified representation model for modelling, 

analysis, simulation, planning and the final control of manufacturing systems, i. e., a 

shared paradigm that covers all the stages of the life cycle. The Petri net (PN) formalism 

is a strong candidate to achieve these goals. 

The potential of PN to solve the FMS scheduling problem is not only due to the 

fact that PN are a powerful modelling tool for the simulation of production processes 

and, consequently, they have been extensively employed in the on-line control of FMS. 

What it is of real interest, is that the PN formalism may also be viewed as a definition of 

a state-space structure. In other words, a modelling and simulation tool widely used in 

on-line/real-time scheduling is at the same time a possible representation paradigm for 

high-level scheduling strategies based in Artificial Intelligence (AI) methods. We 

believe this represents a promising scenario that has the potential to reduce the gap 

between advances in solving techniques and the industrial level by integrating AI search 

technology with simulation-based feasibility checking. 
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Although this integration has already begun, research in this area is relatively 

recent, immature and mostly unexplored [Onaga 911. 

Work such as [Sakamoto 941 seems to corroborate this affirmation, and has 

highlighted the weak state of the art when search procedures are adopted within the PN 

community. To our knowledge, the first serious results were the work of [Lee 94] and 

since then, initial interesting results have been achieved. However, in our opinion, the 

main problem with all these approaches is that the complexity nature of the scheduling 

problem is not adequately dealt with. This resulted in poor results whose immediate 

consequence is that they obscure an important PN attibute: their ability to guide an AI 

based optimisation strategy in a search space that naturally models the behaviour of a 

system. 

This thesis develops a technology based on AI search and PN that overcomes 

these problems and fully exploits the value of PN as a modeling tool for FMS 

scheduling. 

5. Thesis structure. 

The thesis begins by explaining how a FMS is modelled using a PN, and ends 

with a description of scheduling algorithms based on PN theory. Since each chapter 

deals with a different aspect of the problem, the background for each topic will be given 

there, as well as a full and detailed critical review of how the matter has been treated by 

previous work in the area. 

Chapter 2 covers relevant literature and begins with a comprehensive review of 

the different families of FMS scheduling methodologies. We concentrate on reporting 

the findings and drawbacks of each of the disciplines. This will serve as the background 

for justifying the integration of PN and AI problem solving methods. The chapter will 

provide then the background on PN and AI search applied to manufacturing 

optimisation needed to understand their integration. The rest of the chapter is a 

comprehensive review of works that have integrated PN with AI based search methods. 

A description and review of each of these works will be given. 
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Chapter 3 starts by defining what is interesting about FMS, i. e., which are the 

main features that distinguish an FMS among other manufacturing organisations. The 

chapter provides the FMS formulation that we will use. 

To demonstrate that AI techniques are relevant to PN models of FMS and vice 

versa, requires the definition of a scheduling architecture and each of its components. 

First, a new class of PN, the cb-NET is presented, which enhances the modelling 

techniques for manufacturing systems with features that are typically considered 

difficult to model, in particular bounded buffer residence times. Second, the integration 

of well-known heuristic search algorithms within the search space provided by the PN 

model is explained. 

The chapter also presents an automated modelling methodology based on the 

parsing of textual specifications of. FMS descriptions using a formal language that we 

have defined: FmsML or Flexible manufacturing system Modelling language. Finally, 

we discuss and reason about the complexity problem and how it may be allieviated by 

exploiting PN'S capabilities. 

Chapter 4 studies PN structures and their dynamics to help the systematic search 

process within the PN reachability graph. The new heuristic function developed tries to 

give a theoretical lower bound for the minimum makespan between two production 

states of a FMS. We first review problems with previous approaches. A relevant 

heuristic function is presented and its properties explained. We will show that this 

heuristic function is admissible, and is very effective if the FMS is designed to exploit 

concurrency and avoid high machine idle time. Empirical evidence will show the 

superiority of the heuristic function. 

Chapter 5 analyses the search space defined by a PN model of a FMS and how 

the knowledge acquired can be employed to reduce the search effort by avoiding the 

exploration of partial solutions that are known not to lead to a better schedule. The 

exploitation of PN reachability analysis in the terms mentioned, has received little 

attention in the works consulted, despite its potential in terms of search effort reduction. 

We first analyse procedures to identify partial solutions that have already been reached 

at the cost of maintaining a history record of the search process. Then we present a 

novel technique that avoids the generation of scheduling alternatives that do not yield to 

better schedules. Empirical analysis will show that the method ensures optimality and 
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considerably reduces the search effort, thus overcoming the drawbacks of previous 

methods. 

Chapter 6 presents a search algorithm to be applied to medium and large FMS 

scheduling problems. We first discuss the literature that attempts to obtain affordable 
PN based heuristic search algorithms. We present a novel algorithm that overcomes the 

drawbacks observed in previous efforts, i. e, it allows the application of a pure PN based 

heuristic function, the search effort does not grown exponentially and it maintains the 

best-first1backtracking philosophy of A *. Experiments will show interesting results, 
both in terms of optimality and comparison with other algorithms. 

Chapter 7 integrates the results achieved in the previous chapters- heuristic 

search based on state space representation and structural analysis- with several 

successfully employed techniques - genetic algorithms optimisation ideas, and splitting 

up approaches - in a hybrid scheduling paradigm. The approach supposes an 

improvement and generalisation of the preliminary results based on PN truncation 

previously proposed. Experimental results show that its performance is close with the 

current works integrating PN and heuristic search. Compared with genetic algorithms 

approaches it presents advantages over global methods by identifying good structures in 

a progressive schedule building methodology. The preliminary scheduler demonstrates 

the benefits of a PN based implementation by allowing easy truncation analysis, 

immediate application of heuristic dispatching rules and state space search 

methodologies. 

We conclude with a review of the contributions of the thesis and suggestions for 

further work. 
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Chapter 2. 

1 Introduction. 

Literature review. 

Literature review. 

This chapter provides the context for the work reported in this thesis. It reviews: 

a) Previous work on the scheduling of FMS. 

b) The relevance of PN to the scheduling of FMS. 

c) The relationship between PNs and AI problem solving methods. 
d) AI approaches to FMS scheduling problems. 

e) PN based scheduling and the use of AI with PN. 

Given the wide ranging nature of the research and the rich and varied literature 

available on relevant topics, it is impossible to offer even a brief description of all the 

main methodologies that have been employed. We will concentrate instead on reporting 

the findings and drawbacks that each of the main disciplines present. This will serve as 

the background for justifying the integration of PN and AI problem solving methods. 
An individual review and description of work that is directly related with such 

an integration will be provided in detail. The technological background for each topic 

will be given in each chapter, as well as a critical review of how the matter has been 

dealt with previously and the major contributions of each approach. 

2 Flexible Manufacturing Systems and scheduling. 

Although there is great diversity in the type of FMS, an unchanging feature is 

the existence of flexibility in job routing. Typically, the formulation of an FMS is an 

extension of a Job Shop System (M). In a standard JSS each part type has its own 
individual flow pattern, or route, through the machines that must be adhered to [Pinedo 

95]. In a JSS there is little flexibility in the use of resources, and scheduling may often 
be formulated as a sequencing problem. The JSS definition may be extended so that 

several (different) resources can be used to perform an operation. These are usually 

referred as JSS with alternative. 
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The second type of flexibility in routing is usually encountered when the 

chronological order among operations is not fixed. These FMS are more difficult to 

formulate, since it requires a third decision variable to specify which route among the 

alternatives is to be followed. Only when this decision is made, are precedence 

constraints between tasks fixed. Whichever plan is chosen, the existence of different 

resource alternatives is also considered. 
The FMS fon-nulation tenns that we will consider here consists of a set of Jobs 

to be produced. Several alternate plans for each job can be given, as a result of 
flexibility in technological constraints. We assume that each plan is described as a 

sequence of tasks to be achieved. Each task can be performed by different resources, 

each of these possibilities is called an operation. Each operation needs the use of one or 

more resources. The scheduling of an FMS can be described as the problem of 
determining plans for the parts to be produced, assigning operations to machines, and 

sequencing these operations. 

3 Classification of scheduling methods. 

A useful taxonomy separates scheduling approaches in two approximations 

which are dominated by two research communities which have produced a collection of 

substantially different methodologies: 

a) Static scheduling, off-line scheduling or long to medium term scheduling. 
This refers to scheduling operations of available jobs for the entire scheduling period. 

b) On line scheduling. This addresses issues of real-time control of FMS and 

concerns the detailed control of the processes as they occur. 

It should be noted, however, that there is lack of clarity in these terms in relation 

to real-time scheduling, rescheduling and dynamic scheduling. Although real time 

scheduling is conceptually closer to on-line scheduling, a real time system can employ 

an off-line method. If off-line scheduling methods are utilised, the scheduling process 
becomes scheduling and rescheduling; whereas, according to the on-line scheduling 

approach, the scheduling decision is made when the state of the system changes, such as 
job completion or arrival of parts. There are advantages and disadvantages to both. 
Scheduling can be a very tedious task with off-line methods due to both the difficulty in 
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generating the schedule, and updating it frequently in a dynamic environment. On the 

other hand, scheduling decisions made by on-line methods may be sub-optimal due to a 

myopic system view. 

A second classification scheme is based on the methodology followed. The 

follow ing review attempts to classify the FMS operations methodologies into three main 

groups, which have a strong connection with the off-line / on-line division. Although 

the following discussion is a general classification of production scheduling, references 

are restricted, whenever possible, to works related to FMS. PN based work is excluded 

from this review. A complete review of PN methods is presented in section 3. 

3.1 Operational research optimisation. 

3.1.1 Operational research methods. 
Mathematicians and operational researchers have typically considered off-line 

static scheduling and have emphasised optimisation. The problem is represented 

mathematically (mathematical programming, queuing, and network models) where a set 

of decision variables need to be fixed. The feasibility of the schedule is represented by a 

set of mathematical constraints. The problem is then solved optimality using a complete 

enumerative method such as Branch & bound [Spachis 79] [Brucker 94] 

[Demeulemeester 92] [Berrada 86] [Ram 90] [Christofides 87] [Jeng 93b]. The main 
discussion between different works is how fast the algorithms are and how deeply into 

the natural constraints of the FMS they go. Unfortunately, the goal of optimality is only 

relevant for small problems due to the combinatorics at the enumerative process. 
A wish to address larger problems lead to the use of heuristic algorithms 

providing near-optimal solutions in a reasonable amount of time (see [Ahn 93] and 
[Hutchinson 91] for example). Basically, the following conceptual methodologies can 

be found: 

a) Incomplete enumerative methods based either on incomplete enumerative 

algorithms (truncated branch & bound [Chu 92], beam search [Ow 88]) or heuristic 

algorithms [Adams 88]. 

b) Methods based on the relaxation of constraints in order to solve an affordable model 

analytically and then progress to a feasible solution (lagangrian relaxation) [Chen 
98] [Chen 96] [Hwan 89] [Banaszak 90]. 
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c) Stochastic exploration of the search space, and iterative optimisation, such as 

neighbourhood search [Chu 98], simulated annealing [Lo 91] [Mamalis 96] [Kruger 

98], tabu search [Logendran 94] [Logendran 97] and genetic algorithms, 

Comparison between these methods are provided in [Tadei 95] [Glass 96] [C. Y. Lee 

97]. 

d) Splitting the problem into separate yet linked sub-problems [Ashour 67] [Adams 88] 

[Yamamoto 77]. 

The last two methodologies represent the background for chapter 7 of this thesis 

and section 3.1.3 aims to briefly give the necessary background on genetic algorithms to 

manufacturing scheduling. 

3.1.2 Drawbacks of OR methods when appHed to FMS structures. 
Many OR techniques have their origin in the solution of mathematical models of 

the JSS problem and need to be adapted for FMS structures. For example, the famous 

shifting bottleneck [Adams 88] is based on a decomposition approach where the 

sequencing problem concerning a single machine is solved in an iterative algorithm. 
The approach assumes fixed machine operation assignments and cannot be directly 

applied to FMS since machines are not assigned to operations a priori. Local 

neighbourhood methods such as operation pairwise reordering [Wemer 95] [Chu 98] or 

splitting approaches based on workload assigned to machines [Chu 92] suffer from the 

same difficulty. This fact and the need for managing the complexity of the problem 
have lead many authors to divide the FMS operation problem into three identifiable 

stages [Kimemia 83]; part selection, loading and sequencing. Part selection determines 

the part types to be produced in the FMS out of the total production requirements. 
Loading is concerned with the assignation of resources to operations, (sometimes is 

referred to as pre-processing [Stecke 83]). Once the routes for each part type are fixed, 

the problem becomes a JSS, and traditional, effective and well-known methods can be 

applied. This hierarchical decomposition approach is considered in many papers (see 

[Liu 97] [Das 97] [Liu 89] [Sarin 87] [Y-D Kim 94] [Sawik 93]). 

However, some authors have pointed out the drawbacks of hierarchical multi- 
level decomposition and proposed an integrated or single level approach [Zhang 931 

[Khoshnevis 89] [Chryssolouris 85]. [Vasquez 91] states that the solutions obtained for 

Scheduling of FMS integrating PN and A/ methods. 12 



Chapter 2. Literature review. 

one sub-problem may inadvertely impose constraints on the next sequenced sub- 

problem. Hence, the approach may be incomplete as it potentially eliminates feasible 

regions. In contrast the concurrent (single level) approach can work over the entire 
feasible region by constantly considering the criticality of the resources. [Kim 99] states 
that a loading then sequencing approach results in many problems due to conflicting 

objectives, inability to communicate the dynamic characteristics of a shop or abnormal 

situations. When process planning (loading plus part selection) and scheduling 
(sequencing) are performed separately in time, it contradicts the aim of flexibility and 

adaptability of a FMS [Nasr 90]. An integration of these activities may result in a much 

more effective production control. 
The bulk of published literature on FMS takes the operational research 

optimisation (OR) approach, and represents a first step in the analysis and control on the 

operations of production processes. However, they have severe limitations in terms of 

modelling and computational effort involved. The NP-complete nature of the problem 

and mathematical complexities force many assumptions. In order to formulate a model, 

simplifying assumptions about important practical issues such as buffer policies, set- 

ups, tool change-over and part stability constraints are made. These assumptions may 

not hold in practice. As a result, the solution of the OR models is usually unsatisfactory 
[Kusiak 89b]. This reduces the attractiveness of traditional analytical methods to 

produce practical problem solutions. 

Although complexity reduction improvements can be made, some authors 

suggest that this cannot change the situation radically and is difficult to envisage an 

exact or even a good approximate algorithm suitable for a large class of scheduling 

problems. As a consequence, heuristics, such as priority dispatching rules, are often the 

only way to handle real-life scheduling problems [Shakhlevich 96]. We will review 

these in section 3.2. 

3.1.3 Genetic algorithms. 
Genetic algorithms (GA) belong to the class of iterative optimisation methods 

based on stochastic exploration of the search space. They represent an alternative to 

systematic deterministic search methods when these fail in search spaces which are in 

some respect too complex. Neighbourhood search, simulated annealing, and tabu-search 

also belong to this class, but differ from GA in that they are based on manipulating one 
feasible solution, whereas GA considers a population of feasible solutions. 
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Roughly speaking, a genetic algorithm aims to produce a near-optimal solution 

inspired by the principles of natural genetics and evolution. They operate through a 

simulated evolution process on a population of data structures, each of which represents 

a possible solution in the search space. Evolution occurs through a selection process and 

genetic recombination of selected high fitness strings to produce better solutions for the 

new generation. 

Genetic algorithms were initially developed by John Holland [Holland 81] in the 

seventies, and since then, they have been extensively applied to search, optimisation and 

machine learning problems [Goldberg 89]. The application of GA to the scheduling of 

manufacturing processes has a more recent history. They have been applied to different 

production scenarios, from general resource-constrained project scheduling [Cheng 981, 

batch sequencing problems [Jordan 98], to Single machine scheduling [Lee 95], 

[Herrmann 95] flow shop systems [Reeves 95], [C-L. Cheng 96] [Murata 96] [Murata 

96b], [Sikora 96], [1. Lee 97], [Aytug 98], JSS [Yamada 1992] [Bean 94], [Herrmann 

95b], [Kopfer 97], [Biegel 90], [Domdorf 95], [Della Croce 95], [Kobayashi 95], 

[Nakano 91], [Falkenauer 91], [Ombuky 98], [Ulusoy 97], [Maturana 97], [Lee 97] and 

machine centers [Sakawa 96] FMS [Bagchi 91], [Jain 97], [Uckun 93], [Holsapple 93], 

[Fujimoto 96], [Jawahar 98]. 

When GA are applied to manufacturing scheduling, three components must be 

specified. 

a) Chromosome representation. The chromosome is a string of symbols that in general 

terms, specifies a single point of the problem space, (or individual). Each symbol in 

the chromosome is known as a gene. Both the position of the gene in the 

chromosome (locus) and the value of the symbol (allele) specifies the individual 

candidate solution. 

b) Schedule builder. The schedule builder is in charge of obtaining a schedule from the 

information (usually decision variables) expressed by the genes of the chromosome. 

Depending on how much of the problem space represents the chromosome, the 

schedule builder will be a simulation or a more complex heuristic algorithm. We 

will deal with both the representation and the schedule builder in the following 

section. For a complete tutorial review of chromosome representations for 

production scheduling problems see [R. Chen 96]. The schedule builder also 
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determines the fitness of the individual, an indication of how good the schedule is 

with respect to the scheduling objectives. 

c) GA operators. The general GA is composed of three operators: selection, crossover 

and mutation. Selection models a mating of individuals. When two (or more) 
individuals are selected (generally based on probability and the fitness function), 

crossover produces a new individual that inherits the characteristics of both parents. 
The combination of selection and crossover is also referred as reproduction. The 

last operation mutation is the random alteration of the value of a gene. The idea is to 

perform a random exploration of the problem space with the aim of assuring against 

premature loss of good scheduling decisions or strategies (which may lead to falling 

into local minima/maxima). 

3.2 Heuristics and simulation. 

Heuristic dispatching rules are different from heuristic algorithms proposed by 

OR in the sense that the scheduling is performed in a dynamic environment using a 

discrete event simulation of the system. Petri nets, a powerful tool for analysis and 

simulation, have been widely employed in the area of on-line simulation based 

scheduling. This work will be discussed in section 6.1. Usually the concepts scheduler 

and scheduling are substituted by the ten-ns decision module and decision making 

respectively. Based on the role of simulation in the decision module, heuristic 

approaches can be divided into those based on dispatching rules and those using 

simulation. 

3.2.1 Dispatching rules. 

In this method, simulation is used as a tool to analyse the performance of a 
heuristic decision rule; which is later implemented in the real system. Usually, two 

heuristics levels are considered: one for deciding the next task to be processed and a 

second to choose the resources to perform the operation. A single policy may govern all 

the system [Iwata 80] [Ahn 93] [Chan 90] or dedicated heuristic rules for each resource 

may be considered, but this approach encounters co-ordination problems when multiple 

resources are needed to perform a single task (which is common in FMS). To increase 

the decision power several methodologies have been proposed. Multi -obj ecti ve, multi- 
level heuristics are considered in [Norbis 96]. [Chan 97] proposes a fuzzy approach to 
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operation selection. Hierarchically organised dispatching algorithms are proposed in 

[Sabuncuoglu 881 [Sabuncuoglu 92] and dispatching rules in loading/sequencing 

decomposition are studied in [Shanker 85]. [Co 88] investigates the effect of buffer 

queue-length on five traditional dispatching in rules FMS. In [Donath 88] the real-time 

scheduling and routing of multiple products of a Flexible assembly system is performed 
by a heuristic approach. 

These decision making rules are fast and easy to implement and the solutions 

obtained for traditional systems are usually acceptable. In many situations this is all that 
is needed, and so their use is justified. A major shortcoming of heuristic rules is that 

they embody a strong local decision making process [Khoshnevis 89]. In addition, the 
investigation of priority rules may give improved schedules for a given FMS but it does 

not lead to effective algorithms of wide applicability [Doulgeri 871 since the general 

consensus is that no single rule is the best under all possible conditions. On the other 
hand, its computational cost is fixed (the heuristics are hard-wired) preventing the 

decision module using extra computational time and improving the quality of decisions. 

As said in the introductory chapter, the complexity of FMS systems requires effective 

schedulers to fully exploit their potential. 

With the rapid increase in the speed of computing and the growing need for 

efficiency in scheduling, it becomes increasingly important to explore ways of obtaining 
better schedules at some extra computational cost, short of going all the way towards 

the usually futile attempt of finding a guaranteed optimal schedule [Adams 88]. A first 

approach to this is the use of performance evaluation based on simulation. As 

[Kazerooni 97] states, a typical FMS has a high investment cost which justifies the use 

of computer simulation support. 

3.2.2 Simulation-based systems. 
Whenever a scheduling decision arises in a system, a simulation model of the 

real-system is built and initialised to the exact current state of the factory. Then, parallel 

simulations are carried on to evaluate the performance of a set of plausible dispatching 

rules over a short planning horizon. The rule or combination of rules that performs best 

in the planning horizon is then applied to the physical system. This approach is 
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sometimes referred as a multi-pass heuristic and is implemented in [Yung 88] and [Wu 

891. Other approaches based on simulation of candidate dispatch rules can be found in 

[M. H. Kim 94] [Ishii 911 [Ishii 96]. Fuzzy decision making via a combination of rules 
in a multi-criteria decision making is studied in [Kazerooni 89]. 

These works are an improvement on fixed dispatch rules. Normally, depending 

on the system deadline for decision response, computational effort can be controlled by 

increasing the horizon or varying the number of dispatch rules that are simulated. 
However, [Shuckla 96] states that the main problem with this approach is the need for 

multiple simulation replication due to the stochastic (and complex) nature of FMS if one 

seeks to obtain relatively accurate results based on statistical analysis. Unfortunately, 

multiple replications consume computational time and possible solutions, such as 

parallel computation, quickly increase the cost in terms of hardware. 

Nevertheless, the interest of these works is that they provide the opportunity for 

reasoning in a what-if scenario that is based on a simulation of the real system. 
[Chryssolouris 88] suggests that a modular system can be built which, on the one hand, 

will utilize the rigourous analysis of scheduling and decision-making theory while, on 

the other hand, will allow the utilization of some Al techniques such as rule-based 

systems. 

3.3 Artificial intelligence methods. 

AI based methods are particularly well suited to solving FMS scheduling 

problems as AI has addressed similar problems involving large search spaces where 
human expertise can find reasonable solutions relatively quickly. [Steffen 86] has 

identified two main research directions based on AI techniques for FMS scheduling: 

3.3.1 Expert systems. 

Expert systems applied to FMS normally attempt to emulate expert human 

knowledge and are typically applied to. real-time scenarios [Bistline 90]. Usually an 

expert system architecture is formed by: 

e structured representation of the problem [Sauve 87] [Bu 88] 
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9 Knowledge sources about how to solve the problem such as: dispatch rules [De 88], 

simulation [Bruno 86] [Yung 88], multi-criteria decision making [Chryss 91], OR 

optimisation heuristic search [Bona 90] [Kusiak 89b]. 

9A control strategy that may be based on co-operation of multiple knowledge sources 
[Bensana 98] or agents (blackboard systems) [O'Grady 88]. 

9A knowledge adquisition module from past decisions [Shen 88], [Maley 88]. Some 

approaches employ neural networks [Li 97], decision trees [Park 89] [Shaw 92], and 

genetic algorithms [Aytug 98] or a combination of these [Lee 97] [Jones 95]. 

An expert system represents a paradigm of knowledge organisation and control 
based on scheduling techniques (knowledge sources) rather than a scheduling 

methodology per se. Many of these architectures ISIS [Fox 84], OPAL [Bensana 88] and 
KBSS [Kusiak 89] employ AI problem solving and planning as such knowledge sources 
(a collection of this work is presented in section 5). 

3.3.2 Planning. 

Planning usually involves the application of goal directed search techniques 

based on a state representation of the problem. 

One can distinguish four main steps towards a successful application of AI based 

search methods: 

Provide a representation of the problem in terms of state, operations and 

constraints that describes the FMS environment. 

Understanding the problem domain: It is easy to find a first solution? What is 

the quality of this first solution?, how much can this solution be improved? 

At what cost? It is possible to identify futile decisions? What kind of 

knowledge can be used that is problem specific? 

* Understanding the size of the problem in terms of search effort. Usually, the 

problem will not admit an optimum algorithm. The existing techniques 

consider 1) splitting approaches, 2) limited work based on job arrivals or 3) 

the whole problem but devise a solution-space pruning strategy if this 

becomes unwieldy. 

* Develop a search paradigm capable of exploiting this analysis to effectively 

control the combinatorics of the underlying search space. 
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4 Integrating Petri Nets and AL 

4.1 Representation and reasoning. 

Literature review. 

Whatever approach is considered, but especially from the point of view of Al 

problem solving, the scheduling of an FMS requires two fundamental things to be done: 

representing the system and reasoning about its behaviour. 

In the following sections, we will justify why PN are a good representation 
fonnalism and how AI aproaches can be used to reason with this representation. 

4.2 PN as a representation tool for FMS. 

A Petri Net (PN) [Murata 89] is a mathematical formalism and graph tool that 

provides a uniform environment for the modelling, formal analysis and design of 
discrete event systems. Petri Nets have been widely used in industrial applications 
[Zurawsky 94]. The performance of production systems, involving simple production, 
job shops, robotic assembly cells and flexible manufacturing systems, have been 

extensively studied by the PN community [Proth 96] [Silva 89] [Zhou 93] [Zhou 92] 

[Zhou 93] [Dicesare 91]. As a graphical tool, a PN works like a flow chart and provides 

a visualisation of a dynamic system. As a mathematical tool, a PN model can be 

described by a set of linear algebraic equations, which allow the possibility of formal 

checking for properties related to the behaviour of the underlying system. 

A Petri net can be defined as a bipartite directed graph formed by three, types of 

entities: places, transitions and directed arcs connecting places to transitions and 

transitions to places. The network structure represents the static part of the system. In 

order to study the dynamic behaviour of the net, in terms of states and changes, each 

place may potentially hold zero or more tokens, which are usually represented by solid 
dots. A distribution of tokens in the places of the PN is called a marking of the PN. The 

initial state of the system is called the Initial Marking or Mo.. 
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Starting from the initial state MO, two simple rules associated to transitions, the 

enabling and firing rules, are used to govern the flow of tokens in the net, which 

simulates the dynamic behaviour of the modelled system. 

In order to study the evolution of dynamic systems the concept of time needs to be 

included in ordinary Petri nets. Time will typically model the duration of operations. 
Apart from simulation based schedulers that may model stochastic behaviour, 

deterministic behaviour is typical of off-line and some on-line schedulers. 

Deterministic timed PN are sufficient for the modelling of traditional production 

processes and simple control of real systems. In some contexts that contain complex 

commands and constraints the ordinary PN needs to be extended. Extensions such as 

Coloured PN [Cossins 92] [Feldmann 98], Object Oriented PN [Adamou 93] [L-C. 

Wang 96] [Wang 98], High Level PN [Chang 97] Hierarchical Time-Extended PN 

[Ramaswamy 97] Priority Nets [RaJu 93], and Dedicated Petri Nets [Zimmermann 99] 

amongst others, have been employed in the modelling and analysis of FMS. 

PNs are a useful tool for modelling FMS since they have been widely recognised 

as appropriate tools for describing phenomena such as concurrency, synchronisation, 

mutual exclusion and conflict, which are typical features of distributed environments 

such as FMS. PNs allow distributed system states to be modelled naturally and through 

their approach to state change can capture both the static and the dynamic 

characteristics of real systems. Hence, PNs are: 

a) Capable of modelling the characteristics and natural constraints of FMS 

systematically in a single coherent formulation, this makes unnecessary the 

discussion about loading/sequencing problem decomposition previously 

mentioned. Further a PN model can explicitly and easily characterise 
features such as multiple lot sizes, finite buffer sizes and part stability 

constraints encountered in a practical manufacturing environment, (recall 

that mathematical programming techniques have formulation difficulties 

with these features, in fact, the constraints on the storage of WIP are 

normally not included in these formulations, even though they are critical 
for practical FMS scheduling problems [Liu 97]). 

b) Can provide information (by well understood mathematical analyses) that 

can be used to guide the scheduling process 

Scheduling of FMS integrating PN and Al methods. 20 



Chapter 2. Literature review. 

c) Can support a modular and hierarchical construction approach [Narahari 85] 

[Zhou 92] [Jeng 93] to automatically synthesise PNs from, for example, 

FMS specification languages or formal definitions [Camurri 931 [Xue 98]. 

d) A single family of PN based tools can serve at different levels, from design 

to implementation. For example, PN are employed for the design and 

verification of Manufacturing System Control Software in [Zurawski 94b] 

[Heiner 99] [Kochikar 93]., for supervisory purposes [Caramihai 98], and 
decision/monitoring support for production engineers in [Murata 86] 

[Sahraoui 87]. 

e) The feasibility of the schedule obtained is guaranteed, (provided the 

mapping between the PN and the modelled system is valid) and the 

sequence of transitions is directly applicable by a control module that shares 

the PN representation [Chang 97] [Uzam 98]. 

These features justify the use of PN as a modelling paradigm in the reasoning 

process involved in the solution of the FMS scheduling problem. 

4.3 PN as a state-space definition for Al search techniques. 

A Petri net is a definition of a state-space structure in terms of state and 

operators that are partial functions that map states into states which together with the 

definition of an initial and final state, transforms the scheduling problem into a problem 

state [Newel 72] to which traditional AI search algorithms can be applied. The 

definition of search space is equivalent to the PN concept of reachability tree [Murata 

89], which is the enumeration of all possible markings reachable from a given state of 

the system. Starting with an initial state representation, Mo, one can track all the 

possible behaviours of the system by firing all possible transitions enabled in all 

possible markings reachable from the initial marking Mo. The generation of the 

reachability tree takes exponential time for the general case [Murata 89]. An interesting 

empirical study of the complexity metrics of PN with the reachability tree as the target 

Scheduling of FMS integrating PN and Al methods. 21 



Chapter 2. Literature review. 

problem can be found in [Soo 92]. An overview of methods to manage coverability 
(reachability) graph constructions can be found in [Coves 98] 

On the other hand, given a PN the reachability problem is defined as finding a 

sequence of transitions that reach a final marking from an initial marking. It is not 

surprising that the connection between PN and Al problem solving has already been 

studied. [Zhang 90] [Zhang 92], [Yu, 97] and [Yim 94] transform a propositional 

planning problem into a class of timed PN and apply the A* algorithm within the PN 

reachability graph. The reverse also applies, i. e. the PN defines a problem-space model 

as a propositional planning problem [Fikes 71]. When time information is included in 

the PN model, the reachability problem can be extended to a search with optimisation, 
thus establishing a parallel with the FMS scheduling problem. 

S. Al problem solving in manufacturing optimisation. 

If a PN model is a description of an FMS, the scheduling problem may be 

translated into a search problem within the state space defined by the PN reachability 
tree. A range of algorithms exists for solving such problems. From blind enumerative 

search methods such as depth-first and breadth-first search, to informed search methods 

such as A* or Branch & Bound (B&B) approaches (see [Pearl 84]). 

Rather than concentrate on problem solving techniques, many approaches that 

can be classified as AI approaches are relevant from the point of view of the 

representation paradigm adopted. Typically, this work represents a collection of 
different traditional AI based problem representations of FMS's. For example, 
[Chakravarty 97] proposes an Object Oriented model of FMS and employs Branch & 
Bound to solve the sequencing problem once the loading problem has been solved, 
however, this work is mainly focused on the analysis of the FMS domain. A Knowledge 

Based approach using frames is studied in [Kusiak 89] where the schedule is obtained 
with a multi-level heuristic algorithm. Although not specifically for FMS, the work 
proposed in [Zamani 97] implements a version of the LRTA * (learning real time A*) of 
[Korf 901 for general resource constrained problems (which can model simple FMS 

scenarios). The interest of this work is that it identifies the need for defining a system 

state that includes time, and state transition operators that models resource and 
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precedence constraints. The fact that this work fails to provide a formal definition of 

this representation paradigm, reinforces the idea of employing a PN as a state-transition 

representation which is well defined. [Fox 82] [Fox 84] represents the problem as a 

constraint-satisfaction problem and also employs beam-search for the scheduling of 

resources. [Cheng 96] also presents a methodology based on constraint satisfaction 

problem solving. Although the problem domain is not an FMS, the interest of this work 
is that they demonstrate that CSP scheduling techniques can provide a basis for 

developing high-performance approximate solution procedures and the representational 

assumptions underlying CSP models allow these procedures to naturally accommodate 
the constraints of most real-world applications. [De 901 represents a FMS environment 

using frames and production rules which are exploited for progressing search and which 
implement heuristic knowledge to solve conflicts while filtered beam search is 

employed to prune the search space. 

A second class of approach adapts AI search algorithms to manufacturing 

scheduling. For example [Lee 98] adapts A* to a modelling paradigm based on a 

concept called schedule elements. A schedule element acts like a decision variable that 

decides how a stage of a part is processed. The main criticism is that this is not a model 

of the system but a representation fonnat of feasible schedules. 
It is interesting to mention that work in this line usually requires feasibility 

checking, i. e, it needs to determine whether a planning/schedule decision is feasible 

according to the constraints. This problem is not observed if a representation based on 
PN is adopted, since typical constraints of the domain are modelled ruling the behaviour 

of the model. 

As an attempt to solve the unfeasibility problem, some works start by proposing 

modelling paradigms that get close to PN fundamentals. For example, [Liu 89] devised 

a representation paradigm called a work-graph and applies A* search. In this work, the 

sequence and precedence constraints are modelled, but not mutual exclusion for the use 

of resources. A similar approach is presented in [Liu 92]. This work introduces the idea 

of a dynamic state of the work-graph using tokens to represent the sequence status for 

each job, which starts to resemble to a PN. 

From the point of view of search algorithms and schedule generation 

methodologies interesting work is reported in [Shaw 88] [Shaw 88b] [Shaw 89]. A non- 
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linear planning strategy that employs a knowledge-based representation of the FMS first 

decompose the overall problem, applies A* to each sub-problem, and finally applies a 

plan revision procedure. A* is used to obtain the best route for a single job, based on a 

representation of the entities using frames. Interestingly, the authors highlight the 

progression to a schedule by means of state-space transitions, which differs from 

conventional scheduling methods. Also, this scheduling methodology is interesting due 

to its integration of planning methodologies and splitting up approaches. We will return 
to this work in chapter 7. 

. 
The major contribution of this work by the time of publication was the 

demonstration that AI problem solving techniques based in state space representation 

are a powerful tool for FMS scheduling problem. More importantly, it confirmed the 

potential of a representation paradigm that is both a state space representation and a 
powerful and well-known tool for the analysis of discrete event systems. For example: 
A* is used to determine the best (shortest) route for -a Job. However if a PN is employed, 
this problem is simply reduced to a search for the shortest path in the graph structure 
represented by the PN. In addition, to identify conflicts among operations, they define 

the concept of critical sections. These are sequences of operations that require a shared 
resource. To define a mutual exclusion among critical sections (and avoid pre-emption), 
they suggest the use of semaphores. In other words, they provide a solution that includes 

the concept of concurrence, sequence and mutual exclusion. But a PN results in a much 
simpler and intuitive representation to model these concepts. A very similar AI non- 
linear planning application to scheduling FMS is described in [De 88]. 

An alternate approach to fight the complexity problem is the use of incomplete 

enumerative methods, which are based on the partial exploration of the search space by, 

for example, the search in parallel of different alternatives as a result of the heuristic 

selection of the next action to apply. Beam-Search remains the most used methods both 

for on-line and off-line [Chang 89] [Holsapple 93] [Ow 88] [Chryss 91] [Karabuck 93]. 

A description of Branch & Bound, A* and Beam Search will be given in chapters 3 and 
6 since they are the basis of the scheduling algorithms developed as part of this 

research. 

The translation of state-space generation algorithms to on-line scenarios has 

resulted in the application of look-ahead simulation and game search influenced 

algorithms from AI to real-time scheduling [Rajan 90] [Chryss 94]. A more recent 
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example is [Dario 96] that presents a methodology called Chess. Basically the approach 

tries to minimise the contentions produced by a single strategy. Whenever a conflict 

arises, a look-ahead simulation of heuristics expands the search tree to a limit. The next 
decision is made accordingly with the most favourable simulation. 

The interest of work in this line is that it seems to confirm what was stated in the 

work of [Doulgeri 87] where a simulation-based method that uses a simple look-ahead 

to evaluate conflicting activities was proposed. The algorithm is rather simple since it 

employs fixed dispatching rules. Although no representation paradigm for the problem 
is explained, they conclude that the decision-making process could be improved through 

a highly accurate, short-term look-ahead, as opposed to a less-accurate long-term look- 

ahead, where the noise induced by look-ahead inaccuracy could overshadow the 

marginal differences between decision paths. 
These results are of interest to us in terms of dealing with the complexity of the 

scheduling problem as we will see in chapter 6. Also, a discussion about the translation 

of the search algorithm developed in this work to on-line scenarios will be presented in 

chapter 8. 

6A review of the use of PN in scheduling manufacturing 

optimisation. 

The application of PN in the modelling, analysis and simulation of production 

processes has been widely studied. Intelligent planning and scheduling over PN models, 

which is the topic of this research, will be reviewed in detail in this section. The 

literature about Petri Nets as a scheduling tool for FMS can be divided into two groups, 
defined by their different scheduling methodologies and the time horizon considered. 

6.1 On-line scheduling based on PN simulation. 

As PYs are a powerful modelling tool for the simulation of FMS, it is not 

surprising that the major application of PN in scheduling and control of production 

processes is the on-line control of FMS using dispatching rules, simple try-and-test 

simulation schemes or more elaborated optimisation approaches. Although the majority 
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of this work does not assume an integration of PN with AI technologies, a review of 

recent work that employs PN theory for the scheduling of FMS is needed for the 

understanding of the context of the work reported here. 

The integration of PN modelling and conflict resolution based on dispatching 

rules is the common theme. [Chang 97] [Malo-Tamayo 98] [Colombo 97] [Lin 97] 

[L. C. Wang 96] [Hu 95] [Huang 92] [Yirn 93] [Yirn 94] [Chincholkar 96] [Kuo 98] 

[Schmidt 92] all describe dispatch rule based approaches to scheduling. Sometimes, new 
PN extensions are developed to incorporate such control policies into the PN 

formulation [Raju 93]. 

The simulation based scheduling methods described in section 3.2 have been 

implemented over PN models of FMS. For example, selection of a combination of 
different dispatching rules based on simulation is studied in [Lin 95]. Dedicated 

machine dispatching rules are proposed in [Liu 93] and PN simulation to evaluate the 

effect on performance of different decision alternatives is studied in [Ravichandran 86]. 

Heuristic algorithms have also been applied to PN models of FMS systems, for example 
the heuristic approach of [Donath 88] is employed in [Chetty 96] and the Shifting 

Bottleneck procedure [Adams 88] is adapted in [Chang 97]. 

All these PN approaches can be described as on-line heuristic-simulation- 

methods. Their main contribution is the use of PN modelling power to reduce the gap 
between OR-based scheduling and practical applications, but they inherit the drawbacks 

associated with simulation and heuristics dispatching algorithms. For example, in a 

more complex simulation approach, [Peng 98], a parallel simulation of dispatching rules 
in an ordinal optimisation approach is employed, but the authors argue that further 

research is needed to find a more sophisticated scheduling algorithm. 

The integration of PN and AI may have its starting point in work that employs 
PNs as a representation paradigm for knowledge based architectures to produce 

schedules. For example, [Martinez 87] suggests the application of rule-based 
knowledge as a control strategy to a system modelled with a PN. Other work exploits 

the simulation capabilities of a PN model to implement expert systems based on 
hierarchical rules that observe performance parameters from the PN simulation [Tamura 

891 [Hatono 91]. I-Egher control architectures are proposed in [Yan 97] [Yan 98], where 
high-level PNs are proposed for the control of FMS based on an expert system 

employing dynamic re-scheduling rules and a blackboard organisation. 
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However, work in this line focuses on descriptions of scheduling architectures 

and the integration of techniques within a coherent framework but pays little attention to 

algorithmic techniques based on PN. 

For example, in [Camurri 93], a high level description of FMS as a knowledge 

base is transformed into a coloured PN. The work proposes two scheduling schemes: a 

monte-carlo simulation based scheduling scheme and simple/complex dispatching rules 

[Camurri 91]. As described in 3.2, these are not powerful enough to couple with the 

complexity of FMS. The same can be said of [Tsukiyama 92] where a scheduling tool 

based on human-computer cooperative problem solving is proposed. The system 

proposes PN as a simulation tool over which state-dependent decision rules and 
dispatching rules are in charge of build an initial schedule. The schedule obtained can 
be modified by human editing. 

In [Martinez 89] the basis of a hierarchical control architecture is proposed for 

the real-time control of production systems. They represent the problem by means of PN 

models. As part of the decision module, they suggest the application of look-ahead 

search (heuristic Beam Search), however no algorithm description or results were given. 

It seems clear that these papers suggest the benefits of use PN representation for 

scheduling paradigms which are related to AI methods, but lack the definition of AI 

based search algorithms that use and exploit this PN representation. Such an affirmation 

justifies the aim of this research to provide effective PN based scheduling algorithms as 

decision modules which can be integrated within these control architectures. 

6.2 PN based Heuristic search. 

The discussion above suggests that the combination of PN modelling and AI 

problem-solving methods may be a promising way to solve Flexible Manufacturing 

Systems (FMS) scheduling problems. Although this integration has already begun, this 

research direction is relatively recent and immature. 

The following, is a review of the existing literature that transforms a PN model 

of a FMS into a state-space problem, and applies AI space search algorithms. It includes 

other approaches of interest that are relevant from the point of view of modelling or 

integration of technologies. Table I gives a classification of each work in terms of the 

manufacturing system characteristics considered and the scheduling strategy applied. 

Scheduling of FMS integrating PN and A/ methods. 27 



Chapter 2. Literature review. 

Unless specified, approaches consider minimisation of the makespan as the scheduling 

objective. 

Paper System Buffer Search Method Heuristic Information 

considered constraints 

[Hillion 87] Cyclic JSS Infinite Heuristic algorithm 
[Hillion 89] 
[Hillion 98] 

[Proth 96b] Pseudo-Cyclic Decomposition, 
[Proth 98] FMS mathematical 

programming and 
heuristic algorithms. 

[Damasceno 98] JSS Limited Splitting up and 
buffer. mathematical 

programming 
[Liu 93] FMS Dispatching rules. 
[Tanida 92] Cyclic JSS Approximation 

algorithm based on 
priority list 
dispatching 

[Gusikhin 931 iss with Infinite Heuristic guided 
alternative backtracking. 

operations 

[Sakamoto 94] iss Depth first Search 

within the PN 

reachability graph. 
[Dutilleul 98] Hoist scheduling Null-buffer Branch & Bound Heuristic based on 

problem "process the maximum 
number of products at the 

same time". 

[Lloyd 95] iss with Infinite Branch & Bound Longest machine working 
assembly/ with search time 
disassembly. reduction 

[Shen 92 Parallel Truncation of the Lower bound based on 
[Chen 931 processing with PN model. Branch longest remaining Job 
[Cheng 94] synchronisation & Bound with 

search reduction. 

[Abdallah 98] iss Null-buffer B&B guided by a PN - based structural 
heuristic information, heuristics 
dispatching rule. 
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Paper System Buffer Search Method Heuristic Information 

considered constraints 

[Shih 91 iss with Limited buffer Look ahead Best first. 

alternate approach based in 

operations. beam search 
[Lee 92] FMS with Infinite A* Non admissible heuristic 
[Lee 94] alternate function based on the 

operations number of operations 
remaining. 

[Sutdhiraksa 96] Robotic Reachability graph Lee 94 heuristic, plus 
assembly analysis based on consideration of robot idle 

operations heuristic methods time 
[Lee 94b] FMS with AGV Limited A* [Lee 941 heuristic but 

transportation buffer. tuned using problem 
information . 

[Sun 94] AGV control in Staged search A* [Lee 94] heuristic. 
FAfS 

[Yim 96] FMS with Infinite A Several tuned heuristic 

alternate function based on 
operations problem information 

[Chen 95] FMS with Infinite Irrevocable depth- Heuristic estimation based 

alternate routing first search on the PN state equation. 
technique 

[Jeng 96] FMS with Infinite A* Heuristic estimation based 
[Jeng 98] alternate routing on the PN state equation. 
[Jeng 99] 

[Jeng 98 b) FMS with Limited A* with limited Heuristic estimation based 

alternate routing buffer. backtracking. on the PN structure plus 
longest remaining job 

[Xiong 98] iss Infinite Hybrid search based A*- employs longest 
in A* and depth remaining job. 
first. 

[Xiong 97] iss Limited Hybrid search based Longest machine working 
buffer/ Null- in A* and depth time 
buffer first. 

[Chiu 97] FMS Infinite Embedded Genetic 
Algorithm 

[Inaba 981 Assembly Infinite Staged search A Completion time 
Systems Search reductions. estimation based on the 

ý 
mean operation cost 

7 
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Paper System Buffer Search Method Heuristic Information 

considered constraints 

[Boutet 98] FMS in Reachability graph 
Preliminary analysis. 
System Design 

Table 1: Summary ofPN based works. 

[Gusikhin 93] states that heuristic based simulation remains the more widely used 
computer-based scheduling technique for PN. In this work FMS with alternative routing 
is considered. An infinite buffer policy is assumed between any two operations. The PN 

model is a composition of models of both FMS facilities and technological processes. 
Time is deterministic and assigned to transitions. The main contribution of this paper is 

the clear view of the combination of PN traditional simulation techniques and AI 

systematic search within the reachability graph. The algorithm proposed employs 

simple chronological backtracking guided by heuristic knowledge when deciding the 

next operation to apply. The main problem is that no heuristic function or procedure is 

given and no case study is presented. 

[Sakamoto 1994] considers the scheduling of a AS (no alternate routing). PAIs are said 

to be extended to consider deterministic time (although it is difficult to see that is 

anything other than standard timed-PN ). The scheduling approach lies in reachability 

tree generation. Being aware of the NP-hard nature of the problem, they suggest a 
depth-first approach and a control mechanism for duplicate markings. Although the 

paper does not offer anything new, its main contribution seems to be the application 
field: Chemical Plants. However, the paper has an elegant description of how the 

simulation of time is conducted in a PN model. This type of analysis is missing in much 

other work. 

[11illion 87,89,98] consider the problem of scheduling a JSS with n different parts and 

m machines. The number of parts of each type are manufactured according to a given 

production mix and follow repetitive demands in steady state. The PN model follows a 
hierarchical approach: A first sub-net, called the Processing Circuit models the 

precedence constraints. This circuit is said to be decision free (no possible alternate 

routing is considered). A second circuit: the Command Circuit models resources and the 

Scheduling of FMS integrating PN and A/ methods. 30 



Chapter 2. Literature review. 

machine utilisation conflicts among operations. This organisation is commonly found in 

analytical approaches using disjunctive network graphs. 
The scheduling algorithm is based on effective algorithms obtained for Flow- 

shop systems scheduling approaches. It is based on the idea of determining the critical 

circuit containing the bottleneck machine, which determines the productivity of the 

system. The algorithm employed is heuristic, identifying the bottleneck machine and 
trying to guarantee full utilisation of this machine, whilst minimising WEP. 

Although interesting, these papers are a clear example of previous results that 

are non-extendible to FMS. Notice that in a JSS, the assignment of operations to 

machines is fixed, and hence, given an input rate, it is possible to identify the bottleneck 

machine. In application to FMS this has two problems: the random arrival of production 
demands and, more criticaly, the unfixed assignment of operations to machines (due to 

flexibility). 

[Proth 96,98] consider JSS with alternative operations and assembly processing. The 

scheduling approach is based on continuous part processing, in the sense that it is 

assumed that the number of parts of each type to be produced is large. To solve this 

problem, a traditional decomposition approach based on loading then sequencing is 

proposed. The loading or short term planning is solved as a mathematical program. The 

scheduling is obtained by first reaching a steady state (a minimum initial marking) that 

reduces work in process and allows the system to continue by firing the transitions as 

soon as they are enabled (Earliest Operation Mode). 

The main problem with this approach is the assumption of constant part rates. it 

would be interesting to study its response to dynamic job arrivals, which are usually 

considered in FMS environments. 

[Damasceno 98] also address the problem of JSS (no alternate routes) with limited 

buffers by exporting traditional OR research methods to PN models. Due to NP- 

hardness, they propose a scheduling method based on Job arrival decomposition. Jobs 

are scheduled one after another using dynamic programming taking into account already 

scheduled operations. No PN based search is described. In addition the paper criticises 

previous heuristic search approaches such as best first A* in [Jeng 98] claiming that it 

seems difficult to obtain reasonable bounds for partial solutions and it is improbable that 
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the A* search method can solve large scheduling problems. Such a conclusion seems to 

confirm the immature state of the integration of PN and AI 

[Liu 93] also suggest the application of AI to the control of FMS modelled by PN. The 

paper analyses buffer overflow and deadlock problems and suggests the possibility of 

scheduling by studying all the possible combinations of firing policies for each 

machine. The use of the reachability tree is proposed as a means of detecting deadlock 

situations. However, since they are constrained to a small case study, there is no 

mention of the difficulty of extending this method to larger FMS formulation. 

[Tanida 92] consider cycled JSS with no alternate operations. Scheduling is performed 
in terms of the construction of priority lists of transitions, which are ordered by 

measures. The paper is particularly opaque, specifically the algorithms lack an intuitive 

interpretation. As far as we can determine, the approach followed is simply the use of 
dispatching rules to determine the next transition to apply. 

[Lloyd 95] considered a FMS with product assembly/disassembly and infinite buffer 

capacity. However alternative routing seems not to be considered. A typical PN 

modelling procedure is employed where time is assigned to places. A branch & bound 

method is proposed which includes a method for search reduction by comparing 

previously explored markings. As a branch & bound approach, it is only appropriate for 

small problems. 

[Dutilleul 98] also employed a branch and bound search algorithm for the Hoist 

scheduling problem. The major characteristic of such scheduling problem is that they 
include operations where the processing times are included between a minimum and 

maximum value. This particular property of operations may be found in several kinds of 

chemical industry (for example, electroplating). The main interest of this paper is that 

the authors indicate that the usual timed PN are not able to model, amongst other things, 

a no-wait machine. A PN extension known as P-Time PN [Khansa 96] is proposed to 

model these constraints. The advantage is that the constraints for the scheduling 

algorithm are automatically extracted from the model. The heuristic function employed 
by the branch and bound maximises the production rate by processing the maximum 

number of products simultaneously. 
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[Shen 92] propose a splitting up approach based on PN structures for the affordable 

scheduling of parallel processing in industry. The PN is truncated into sub-nets that are 
solved using Branch & Bound procedures. A lower bound based on the longest job is 

used to prune non-promising markings. Sub-schedules are joined together for the final 

solution. 

[Chen 93,94] is an extension of the previous paper. The problem domain is not FMS, 
but parallel processing with synchronisation such as CPU task scheduling and industrial 

manipulators. The branch & bound approach uses no heuristic information to select the 

next node to expand, although a comparison test is proposed to find previous reached 
markings. The branch and bound algorithm, when solving a sub-net, employs 
information about synchronisation with previously generated schedules. Both this work 
and the previous one are interesting since they show how PN structural and property 
analysis are useful in truncating larger problems and guiding search methodologies. 

[Abdallah 98] modelled a JSS where the buffer policy is a NULL-buffer, in the sense 
that parts can wait in the machines but the machine is not released until the part has 
been transferred to the next stage. Although no alternative operations are allowed, an 
operation may required multiple resources. Since null-buffering is considered deadlocks 

must be avoided. A PN model of such systems possesses structural properties that can 
be exploited to generate deadlock avoidance heuristics. A branch and bound procedure 
that makes use of this information is used. The branching scheme, however, is depth- 
first guided by a two-level dispatching rule. They report successful computational 

results with large problems. However, the problem domain is strongly constrained. 
There is no flexibility and the null-buffer policy leads to many dead markings, which 
are pruned. This suggests that the dispatching rule is likely to find a very good first 

solution. A pruning method based on comparison with markings that actually exist in 

the candidate path for the optimum solution is employed. 

[Shih 91] considered the on-line scheduling of cycled JSS with alternative machines and 
limited buffer capacity. The target optimisation parameter is earliness/tardiness. The 

system is modelled with a deterministic PN with time assigned to transitions. The main 
result of the paper is that it demonstrates the benefits of employing AI techniques (Beam 
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Search) as a short term look-ahead instead of general dispatching rules such as FIFO, 

priorities based on dynamic slack and the number of remaining operations. This 

confirms the possibilities of PN reachability analysis based on simulation. However, no 
heuristic information extracted from the PN model seems to be employed to guide the 

search. Chapter 6 will analyse the implication of this in terms of the quality of the 
solution obtained. 

[Chen 95] stated that FMS characteristics such as resources, sharing concurrency, 

routing flexibility and mutual exclusion, lot sizes are difficult to describe using 
conventional tools such as mathematical methods equations and proposes a PN 

modelling of the system. Infinite buffer policies are considered by assuming that 
buffering is a shared resource that allows enough space for all the unfinished parts. This 

obviously avoids deadlock situations. Alternate routes for each job are considered. Two 

types of systems are considered, symmetric and asymmetric depending on wether 

alternate plans have or do not have the same number of operations. The scheduling 

methodology is based in an irreversible strategy (notice that no deadlocks can occur) 

guided by a heuristic estimation of the goodness of the marking. In other words, all the 

transitions for the cur-rent markings are fired, obtaining a set of successors out of which, 

a single marking is considered, discarding the rest. In this sense the procedure can be 

considered as a Beam Search with Beam width of one, or simply a Hill Climbing 

strategy. The selection is based on a heuristic estimation of the minimum total cost of 

operations needed to complete the jobs. In fact they consider the PN as a mathematical 
formulation and try to solve a relaxation of the original minimisation problem based on 
the PN state equation. The interest of this work lies in the use of the PN definition to 

obtain heuristics that can guide the search process. However, the main problem with this 

approach is that it implements an irrevocable strategy and that the heuristic function is 

an estimation of the total processing cost of remaining operations, and not the 

makespan, which is the scheduling objective. 

[Lee 92,94] presents an excellent synthesis procedure for FMS with alternate 

operations, and multiple resource utilisation. To avoid deadlock situations, intermediate 

storage is allowed between any two operations. Models for limited buffer situations are 
described, although not applied in the scheduling experiments. They propose a heuristic 

search algorithm LI which is an adaptation of the well-known A* algorithm. The 
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authors are aware of the NP hard nature of the problem and a comprehensive analysis of 
the perfon-nance of the A* algorithm based on the heuristic function is provided. The 

main problem identified is handling the complexity of large problems. To make the A* 

algorithm progress quickly to a solution (any leaf in the reachability tree is a solution), 
they propose a heuristic function that makes the algorithm prefer markings that are 
closer to the solution. The main problem with this heuristic function is that it does not 
contain any information about the current state of the system and that it is difficult to 
tune. This leads to unforeseen and weak results as we will analyse in chapter 6. 

Nevertheless, the main contribution of this work is the clear suggestion of the 

combination of heuristic search and PN modelling, leaving the door open for an 
effective integration of both technologies. Many researchers have considered this work 
(not least this thesis) as a starting point for further research. As an example, [Lee 92b] 

adapts the previous work for the periodic scheduling of FMS. LI is modified by the 
inclusion of a restriction on the number of times each transition can be fired to complete 
a cycle. 

[Lee 94b] follows the approach of [Lee 94] and extends the PN model to consider the 

application of AGV and limited capacity intermediate storage. Two types of AGV 
layouts are considered: Centralised and distributed. Also, limited buffer capacity is 

modelled. The main contribution of this work is an improvement of the heuristic 
function proposed in [Lee 94]. Being aware of the difficulties of tuning the heuristic 
function proposed there for ekh problem, they present an alternative that takes into 

account average operation cost. However, this is still far from being a PN based 
heuristic function and provides only small improvement to [Lee 94] 

[Sun 94] also follows [Lee 94] in integrating AGV modelling and control in an 
application concerned with vehicle collision and traffic jam problems. The PN model, 
consequently, is not the usual approach. The algorithm is a version of a staged search 
algorithm Limited expansion A*. The algorithm is the same proposed in [Lee 94] but 

with a limitation on the number of markings as candidates to be explored, which 
prevents exponential explosion. However, the heuristic function employed is the same 

as in [Lee 941. This is a typical example of work that both uses heuristic functions with 

a depth-first search component and an irrevocable decision strategy. This has clear 
drawbacks as we will see in chapters 4 and 6. For example, the work [Yim 96] tries to 
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overcome the tuning difficulties of [Lee 94] with a heuristic function by including 

information about the specific system. Again, It is interesting to note that this paper 

introduces irrevocable decisions (as in [Sun 94]), by limiting the number of markings to 

be considered during the search. They conclude that they do not observe any difference 

if such limitation is employed. This suggests the need to separate control of the search 

effort from the application of PN based heuristics to direct the search. 

[Sutdhiraksa 96] does not study FMS descriptions but considers the problem of robotic 

assembly. A single case study consisting of two robots arms assembling two pieces of a 

product with three assembly steps, is modelled as a timed PN. Three scheduling 

approaches based on reachability graph analysis are proposed for comparison. The first 

two are based on a combination of simple splitting up techniques and the entire 

generation of the reachability graph. To improve the results, the A* approach of [Lee 

941 is proposed although no algorithm description is given. They report unsuccessful 

results for medium problems due to computational expense. Apart from the interest of 

applying A* in a rolling horizon manner, an interesting aspect of the work is the use of 

heuristic knowledge about the specific problem domain to reduce search. 

[Jeng 98] (see also [Jeng 96], [Jeng 99]) follows [Lee 94] in using A* but proposes the 

use of the heuristic function of [Cheng 95]. The FMS considered allows alternate 

routing of symmetric and asymmetric types. The buffer policy, is (as in [Lee 94]) 

unlimited storage. The heuristic function h(m), is based on the minimisation of the total 

operation cost of the remaining operations from m to the goal marking, constrained by 

the PN state equation. This is an important advance on [Lee 94] since the heuristic 

estimation now takes into account global information on the system state represented by 

the PN. The heuristic, nevertheless, tries to give a value for the minimum sum of total 

operation costs, but not the makespan. As a result, the heuristic function also makes the 

algorithm progress quickly to a first (although not optimum) solution. 

The paper also presents a pruning procedure with the objective of pruning paths 

that represent permutations of concurrent transitions, which yield equivalent schedules. 

However, the amount of space that is pruned is determined by a comparison with [Lee 

94]. These results are problematic, since a proper comparison must be made using 

exactly the same algonthm and heuristic function with and without the pruning method. 

It is interesting to note that the algorithm settings for [Lee 94] are not specified. 
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The main contribution of this paper is the use of a heuristic function that 

depends on the state of the system and is PN based, but the system described has the 

same problems as [Lee 94] when fighting the combinatorial explosion. 

[Jeng 98b] tries to improve the work of [Jeng 98]. The PN heuristic function in 

[Jeng 98] was presented as a solution of a linear system of equations based on the PN 

state equation. In [Jeng 98b] they become aware of a simplest way of obtaining the 

heuristic in [Jeng 98], which is similar to the PN analysis that will be presented in 

chapter 4. However, some of the heuristics appear to have limited the applicability to 

FMS in which the batch size for each job is restricted to one. The second aspect of 

interest in the approach is that the backtracking capability of A* is limited. This 

supposes a compromise between pure A* and the backtracking free algorithm of [Cheng 

95]. Criticism of this approach will be discussed in chapter 6. Here we simply note that 

they consider a limited backtracking depth of four, which is a conservative setting but 

necessary to avoid exponential explosion. The problem with this approach is the so- 

called deadlock recovery capability (limited buffer capacity is considered). It is not 

completely clear how this can be achieved as they propose an arbitrary pruning of paths. 

[Xiong 98] proposes the combination of best first (BF) and backtracking (BT) search. 

Although, the problem considered is a simple JSS with no alternative operations and 

infinite buffer policies, the approach is easily adaptable to PN models of alternative 

routings and buffer constraints. This is because the reasoning mechanism is not based 

on a mathematical formulation but on the state-space description of the PN. The 

proposed algorithms can thus be directly applied to PN models with typical FMS 

features such as alternate routings or plans. This contrasts with the approaches followed 

by [Hillion 88,87,981 were the introduction of flexibility leads to major changes in the 

scheduling procedure proposed. A major problem with the approach is the absence of 

heuristic information to guide the BT (Branch & Bound) phase, so results are not 

completely satisfactory. We will return to this approach in chapter 6. 

Although published earlier, [Xiong 97] is an extension of the previous work [Xiong 98] 

but with the aim of testing the capability of the algorithm to avoid deadlocks. Infinite 

buffer, no buffer, and limited buffer are considered, as well as the modelling of material 

handling devices. The main conclusion is that Petri Nets provide an explicit way to 
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represent deadlock states, and traditional backtracking approaches can explore alternate 

paths based on this information. The scheduling algorithm employed is the BF/BT 

strategy of [Xiong 98]. For the BF (A*) stage, the heuristic function proposed is the 

maximum sum of operation times of those remain 
' 
ing operations for all jobs which are 

planned on each machine. Although the function is admissible for a pure JSS, it cannot 
be applied if alternate routing is considered since machines are not assigned to 

processes. 

[Chiu 97] propose an embedded Genetic algorithm approach for the scheduling of FMS 

problems. Although no PN model is described or explained, the authors seem to be 

employing a timed place PN. The model of the system is decomposed into a 
transportation model and the process-flow model. 

To reduce search, the methodology is based on a time-decomposition approach, 
where parts are scheduled in a rolling horizon manner. A limited WIP limit is initially 
defined, then the total schedule is generated segment by segment, each segment being 

the result of a GA search. 
The main problem with this approach is that the PN are employed only as a 

simulation tool, the PN state is transformed into a chromosome representation, the GA 

obtains a solution (chromosome), which must be transformed into a feasible solution for 

the PN model. 

This work is based on a previous paper [Liu 92] that employs the same method 
but substitutes the GA algorithm by A*. Unfortunately, this work does not make use of 
PN modelling, and it is merely descriptive from the point of view of A*. 

In a recent work, [Inaba 98] considers a flexible formulation of mechanical assembly 

systems. They consider a PN model that integrates path selection and machine selection. 
All parts are loaded from a common stack where infinite is assumed. All operations are 
performed using a single machine. The A* approach of [Lee 94] is adopted, and 
includes the limitation of the number of markings to be explored proposed in [Yim 96] 

and [Sun 94]. The heuristic function proposed is basically the same as [Lee 94b]. 

This work again demonstrates the potential of PN reachability analysis based 

scheduling in the sense that previous results from FMS domains are easily extended to 

other scenarios such as Flexible Assembly systems with minor variations. From the 

point of view of scheduling methodology, the novelty of the approach is the inclusion of 
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a technique to identify repetitive processes. This captures a repetitive good strategy if 

large quantities of parts are considered. The procedure identifies previous decision 

scenarios in terms of machine status. For example, if a previous similar status of 

resources is found along the path from the initial state to the current marking, one can 

repeat the actions previously taken and progress in a decision free manner. If this 

happens, the A* algorithm is re-started with the new marking as the initial marking. 
In our opinion, this is an interesting idea to be considered in the future, but the 

paper fails in addressing it clearly and many questions arise. For example, what is the 

chance of finding a repetitive process? Since once a repetitive process is identified, the 

current path is considered as irrevocable, how would you know that you were repeating 

something that was good? The experimental results, based on a single simple problem 
instance, are not compelling. 

Finally, [Boutet 98] considers the FMS scheduling problem in terms of Preliminary 

System Design of FMS: the static part of the FMS: resources, jobs and routes are 

modelled with timed PN, but they consider interval membership constraints on 

operation duration. Constrained Predicate Nets [Kubek 951 are proposed to include 

global constraints such as due dates. Although no specific algorithm is given, the paper 

concludes that studying the relationship between conventional graph-oriented 

scheduling methods from OR and AI with PN reachability analysis methods should lead 

to theoretically and practically useful results. 

Summary. 

The scheduling of an FMS requires two fundamental things to be done: a) define 

a representation paradigm that captures the essence of the system and how it works and 

b) reason about its behaviour, i. e., to develop methodologies that solve the scheduling 

problem based on the formal expression that it is the model. 

The first part of this chapter reviewed how this issue has been addressed in the 

literature. Two main groups of approaches have been identified. The first one (OR 

methods), pays less attention to the modelling and concentrates on producing optimal 

schedules. Unfortunately, the main disadvantage is that such models do not naturally 

reflect the complex structure of FMS and their results are difficult to translate at the 
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industrial level. The second well-known group are the on-line/real-time methods, which 

propose representation paradigms based on simulation tools that are better qualified to 

capture the full operation complexity of FMS but the scheduling techniques that they 

offer often revert to heuristic techniques that can not deal with the operational 

complexity of FMS. 

The interest of PN to the solution of the FMS scheduling problems is not only 
due to the fact that PN are a powerful modelling tool for the simulation of production 

processes and, consequently, that they have been extensively used in the on-line control 
of FMS. What it is of real interest, is that the PN formalism may also be viewed as a 
definition of a state-space structure in terms of state and operators. This is a 
representation paradigm very familiar in AI planning. We believe this represents a 
promising scenario that has the potential to reduce the gap between advances in the 
theory of AI search techniques and the industrial level [Jianjun 92] by the integration of 
both AI search based on domain heuristic knowledge supported by the powerful 

analysis and simulation tool that is the PN. 

Although this integration has already begun, this research direction is relatively recent 

and immature. We will provide a better insight on this matter in the following chapters. 
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Chapter 3. PN modelling of FMS and scheduling 
based on PN reachability analysis. 

1 Introduction. 

This chapter is about providing PN's and associated techniques that allow PN to 
be used to schedule FMS. As explained in the previous chapter, AI techniques are 

potentially relevant to solving problems based on finding sequences of operations in PN 
based models of FMS. First, we give a definition of the FMS model that we will use in 

the thesis. Second, we describe how a PN can represent the constraints and dynamics of 
a discrete event system. This chapter does not attempt to describe a complete modelling 

methodology for FMS using PNs, but we will introduce a new class of PN, the cb-NET 
that is intended to allow us to represent manufacturing systems with features that are 
typically considered difficult to model. Next step we to define an architecture in which 
PN and AI search algorithms are integrated. Finally we present an automatic synthesis 

procedure for PN models from FMS specifications. A basic language for specifying 
FMS descriptions is given, and the top-down methodology implemented by the parser 
for this language is outlined. Application examples are given at the end of the chapter. 

2 FMS formulation. 

In this section, we propose a problem formulation that captures what we believe 

to be the major characteristics of a general FMS layout. To consider all the aspects of an 
FMS layout would be too great a task [Basnet 94]. Bear in mind that we would be 

required to deal simultaneously with routing flexibility, part transportation, buffer 

spaces, tool slots, machine availability and pallets. Few authors consider all these 

characteristics simultaneously, and in the cases that do there are serious concerns over 
the ability to actually define solutions for general FMS systems [Basnet 94]. 

The algorithms and work developed in this research may be described as 

studying novel scheduling approaches applied to a general FMS description which are 

validated with random instances that attempt to capture the essence of the problem 
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domain. We will consider an FMS defined as a set of different product types to be 

produced in the system. A job type (or product type) is defined in terms of a number of 
different paths or plans that describe how to produce that part. Each plan is formed by 

an ordered sequence of operations or tasks. The term operation applies to any 
loading/unloading operation, part transportation or machine processing. Due to machine 
flexibility, an operation can be carried out by different resource sets. After the 

completion of an operation, parts may be transferred to intermediate buffer facilities 

where capacity and residence time constraints apply. The scheduling objective is to 

minimise the makespan or total completion time. 
The description above may be defined more formally as: 

Definition 1: FMS notation. 

An FMS consists of: 

1. m available resources (RI, R2 
. ........ R,, ). 

2. n jobs to be processed (JI, J2 
. ........ 

J, ). 

3. Each job Ji has pi process plans 
4. Each plan Py has a sequence of qy temporally related tasks (TY], TY2 

..... Ty-qjj) 

ordered by the technological constraints 
5. Each task can be processed in several ways. Cyk stands for the number of different 

possibilities (choices) for achieving task Tyk. Syk, is the set of resources needed for 

choice I of task Tyk. hykl is the processing time for task Tijk using resource set Sykj. 

6. The processing of task Tyk using resource set Syla is termed an operation, (Oukl). 

7. Intermediate part buffers may exist between tasks. They may be constrained in 

capacity and time. 
8. The following standard assumptions apply: 

Machines are always available and never break down. 

Each machine can process at most one task at a time. 

Any task Tijk can be processed using at most one resource set SYkI at any time. 
Each task consumes a single subpart of the previous unit and produces only a 

single subpart. This means that no assembly/disassembly procedures are 

allowed. 

1 The indicies refer to: i-thjob, j4h plan, k-th task, 1-th choice. 
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Operations are non pre-emptive, i. e, once an operation has started, it cannot be 

interrupted. 

Set-up times are independent of the schedules and are included in processing 
times. 

* Processing times, due dates, ready time and technological constraints between 

tasks are deterministic and known in advance. 

The following section will present the PN formalism as a tool for modelling such 

scenaiios. 

3 Constrained buffer Petri nets: cb-NETs. 

Having defined such a generic problem formulation for an FMS it is now the 
time to describe how such scenario can be modelled as a PN structure. 

Although we assume the reader familiar with basic PN theory (see [Murata 89] ) 

the following sections cover basic background. 

FMS buffer constraints have also not been considered in the relevant work 
reviewed in the previous chapter (section 6.2) since they employ deterrninistic time PN 
[Murata 89] which are not sufficient for modelling these constraints. To handle them, 

we have defined a class of PN that we have called constrained buffer nets or cb-NETs. 
Extending the definition of ordinary PN has been a traditional solution independently 

carried out by authors. For example, [Khansa 96] and [Caramihai 98] extend the PN 
definition to include a time limit for the firing of transitions. These models have been 

recently applied to the hoist scheduling problem in [Calvez 98] and [Dutilleull 98]. 
However, integration of both models to effectively model residence time constraints is 

needed. 

It is not our intention to define a complete modelling paradigm based on PN for 

production processes. Our aim is to demonstrate that PN integration within AI problem 
methodologies is straightforward (for example recently [Konstas 981 has proposed a 
rule-based PN definition that allows the modelling of time constraints). The situation 

appears to be radically different from traditional modelling approaches, such as 
mathematical models or disjunctive graph models, where inclusion of constraints other 
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than sequence dependencies usually leads to major revisions of the search algorithms 

involved. 

Defmition 2: A cb-PN is a tuple 

N=(P, B, T, 1,0, y, r, V, Mo) where: 

P=(P], P2 ..... p,, ) is a finite set of places. 

B is a subset of P that represents intennediate storage buffers. We call a place pEB a 

buffer-place. 

* T= (tj, t2 ....... 
Q is a finite set of transitions with P L) T -; ýý 0 and P nT =0 

9LPxT=:; ý N"- u (0) is an input function that defines directed arcs from places to 

transitions, i. e., if I(pi, t) >0, then pi is said to be an input place of tj and we include 

an arc from pi to tj. If I(p,, t) = k, then we label the arc k. 

0 0: Px T=; ý N+ L/ (0) is an output function that defines directed arcs from transitions 

to places, i. e., if 0(pi, tj) >0, then we include an arc from tj to pi. Besides, pi is said to 

be an output place of tj. If 0(pi, tj) = k, then we label the arc k. Additionally, C: Px 

T =; ý N+ u (0) = [cy] where c. = 0(pi, tj) -I (pi, tj) is called the incidence matrix. 

y: P 4R+ u (0) is the delay function assigned to a place. 

r: T4R+ u (0) is the firing time function. 

* (p. - B4R3 is a 3-tuple associated with buffer-places that contains the constraint 

information which is interpreted in the following way: the first component (ý(p) 

refers to the maximum number of available tokens that must reside at the place 

(buffer), the second V2(p) is a constraint on the minimum residence time of a token in 

that buffer-place. e(p) is the maximum residence time for that token. It is noted that 

the inten-nediate storage capacity is measured in terms of the number of units, not the 

physical size of storage units. 

o M. - P=:; ý Y' u (0) is the m-component marking vector that defines the state of the PN 

and whose i-th component M(p) is the number of tokens in the i-th place. MO is the 

initial marking. 

Normally, the concept of time is not assigned both to transitions and places. Two 

main models have been favoured in the literature, timed-place PN and timed-transition 

PN and it can be demonstrated that both models are conceptually equivalent [Murata 
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89]. However, timed-transition PN produce simpler models and also carry an implicit 

concept of time limit, by fixing an exact duration of the operations. In chapter 5, we will 

require both these properties. 

To show how cb-nets work, we start by defining a simple robotic example 

depicted in fig. 1: An FMS consists of a robot and a cutting machine. Pieces from the 

unprocessed parts buffer are transferred to the cutting machine by means of the Robot. 

Before pieces are processed, they wait in the machine's input buffer, and once 

processed they remain in the machine's output buffer until they are transferred to the 

completed parts buffer. The operation cost for the robot to load/unload a part is always 

1. For illustrative purposes we assume that robot movements without parts have 

negligible cost. The processing time of the cutting machine is 2. Both the machine input 

and output buffer have a maximum capacity of 5 parts and the maximum time a part can 

stay in these buffers is 15 time units. 

Cutting 
Out 

Unprocessed Processed 
Parts Parts 

F 
Robot 

Fig. 1: FMS layout 

To introduce the graphical concept of PNs, considerfig. 2 which shows the cb- 
NET model for the system layout offig. 1. 

PI 

tl - 

p2ý, j '-A, 
t2 

p5 
(ý)p6 

p3 

t3 
p4 

pI= Unprocessed parts 
p2 = Machine input buffer: (p(5 0,15) 
p3 = Machine output buffer: (p (5 0,15) 
p4 = Processed parts 
p5 = Cutting machine 
p6 = Robot. 

t] = load. r(13) =1 

12 = cut. r 03) =2 

0= unload. r(13) =I 

Fig. 2: cb-NET model of FMS example offig 1. 

Scheduling of FMS integrating PN and Al methods. 45 



Chapter 3. PN modelling of FMS and scheduling based on PN reachability analysis. 

In our example, places (circles) p5 and p6 represent the status of the resources, 

p2 and p3 represent buffers and finally pl and p4 represent unprocessed and finished 

parts respectively. Transitions (bars) represent machine operations (but also events such 

as starting or stopping of operations). Places and transitions are connected by arcs as 

defined by the cb-NET input and output function. Shadowed places represent the cutting 

machine input and output buffers, which are constrained in the number of tokens (parts) 

they can hold and token's residence time. In the cb-NET of the figure, the initial 

marking (state) of the system is given by placing a token in the unprocessed part buffer 

and placing tokens in places representing resources indicating their availability. 
Once a system state (marking) is defined, the question is: how does a PN work? 

The dynamics of the PN are explained in terms of marking evolution defined through a 

pair of rules, informally named the token game [Silva 89]: 

1) Enabling rule. A transition t becomes enabled at M if each input place p of t 

contains as many available tokens as the arc weight. 
2) Firing rule. Once transition t is enabled at M, it can be fired. The firing starts by 

removing from each input place p as many tokens as the weight of the directed arc 

connecting p to t. It also deposits in each output place p the number of tokens equal 

to the weight of the directed arc that connects t with p. The newly deposited token 

will stay unavailable and will become ready (available) after the time associated in 

p plus the firing delay of the transition; i. e., r (t) + y(p). 

Given this definition, a marking Mis said to be reachable from an initial marking MO 

if there exists afiring sequence of transitions that following the enabling and firing rule, 

transfonns MO into M 

Figure 3 shows the marking evolution of the cb-PN resulting from the following 

firing sequence: t], t2 and t3. 
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"A, 
cc 

tl isfired, which means 
that the robot loads the 
part into the machine 
input buffer. Tokens are 
unavailable (shadowed) 
for I time unit. 

0 
When tokens become ready 
t2 isfired and the cutting 
process starts. 
This operation takes 2 
time units. 

A, 
CC) 

After the part has been 
processed, it is unloaded 
from the machine output 
buffer. (t3 becomes 
enabled and it isfired) 

9T 
Finally, the system reaches 
itsfinal state. 7he part has 
been tramferred to 
finishedparts. All resource 
are available. 

Fig. 3: Marking evolutionfor the cb-NET model of FMS example offig 1. 

4 Scheduling FMS based on PN dynamics and heuristic search within 
the PN reachability graph. 

So far we have given a definition of the FMS problem domain and given a PN 

extension that able to model the FMS formulation given in section 2. The cb-NET model 

contains the constraints of the system and the PN theory provides the rules that define 

its dynamics. However, PN theory does not provide any conflict-solving method, since 

the firing rule does not specify, for example, which of the transitions among those 

enabled should be fired or when. In other words, the control of the system is not 

determined from the point of view of decision making. This is where AI based search 

methods may be employed. 

A Petri net (and consequently a cb-NET) can be seen as a definition of a state- 

space structure. A state-space structure is described in terms of a formal definition of 

states and operators. Operators are partial functions that map states into states [Newell 

72]. The problem space representation is a classic representation formalism used by AI 

problem solving methodologies. The problem is defined by the initial world model, the 

set of available operators and their effects on world models, and the goal statement 

[Fikes 71]. The solution of a planning/scheduling problem is defined as the problem of 
finding a sequence of actions that achieves a goal state from an initial state, often 

optimising some performance criteria. 
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As stated in chapter 2, this connection between PN and AI problem solving has 

already been studied. [Zhang 90] [Zhang 921 [Yirn 941 transform a propositional 

planning problem into a class of timed PN (Predicate-Transition Nets) [Genrich 8 11 and 

apply the A* algorithm. [Yu 97] model the classic blocks world planning problem and 

devise a search strategy for its solution. The parallels between a propositional STRIPS 

like planning problem including temporal costs and timed PN can be adapted to the 

FMS scheduling problem and are summarised in table 2 [Zhang 92]. 

Propositional Planning/scheduling. PN based scheduling. 
Elements of a state description: machine, buffers 

and other resources 

places in the cb-NET 

A state description A marking 

Initial and goal states Initial and goal markings 
Operations: preconditions --) Actions. A transition: enabling rule + 

Satisfaction of buffer constraints-)ý firing rule. 
State space cb-NETreachability tree. 

Plan (schedule) and its temporal cost (makespan) Firing sequence and time associated to a 

marking 

Table 2. Parallels between prepositionalplanning and a PNmodel. 

In the previous table, the problem search space is identified by a concept known 

as the reachability tree. The reachability tree [Murata 89] associated with a PN is a 

graph in which each node represents a marking reachable from MO and each arc 

represents the firing of a sequence of transitions. The reachability tree for a FMS 

description modelled with a cb-PN is finite 2. 

Consequently, if the cb-NET model is a description of the FMS, the scheduling 

problem is translated into a search problem within the state space defined by the cb-NET 

reachability tree. An optimal schedule can, in general, be obtained by generating all the 

solution paths. The problem is that, for the general case, the generation of the 

reachability tree takes exponential time [Murata 89] 3. The minimum architecture that 

enables a PN based scheduling with an appropiate PN definition (cb-NETs in our case) 
is depicted infig. 4. 

2 Since cb-PN are bounded and irreversible PN (see chapter 4). 
3 An interesting empirical study of the complexity metrics of PN with the reachability tree as the target 
problem can be found in [Soo 92]. 
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Apart from the FMS model in terms of a data structure that contains the cb-NET 

mathematical expression, the architecture depicted in fig. 4 contains three elements. (1) 

a cb-NET simulator, that is in charge of the dynamics of the model (enabling, firing rule 

and buffer-places constraint satisfaction). (2) a search algorithm that explores the cb- j 
NET reachability graph with the objective of finding an optimum solution. (3) an 

automatic generator of PN models from textual FMS specifications following the FMS 

formulation given in definition 1. 

Both the simulator and the search algorithm make use of the cb-NET model. The 

former as an input to perform the token game and the latter as a mathematical 

expression to obtain information about the system to guide the search process. The 

search algorithm is in charge of constructing the reachability tree (or search graph) by 

generating feasible sequences of transitions. To determine the operations (transitions) 

that can be applied and to obtain new states (markings) the search module makes use of 

the simulator. Each of these modules is described next. 

4.1. A Flexible Manufacturing System Modelling Language FmsML. 

Recently, several works have addressed the synthesis of coloured PN for FMS 

task specification [Villarroel 88] [Xue 98] [Arjona 96] [Camurri 93] [Zimmermann 99]. 

These works are interesting from the point of view of developing methodologies and 

experiences of automatic PN synthesis rather than in providing formal languages for the 

specification of production processes. To obtain any practical benefit, the results must 
be integrated with PN theory for large system analysis and PN-independent commercial 

manufacturing system's description languages such as WITNESS [Witness]. Cý Cý 
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However, for the shake of an effective study, test and validation of the methods 

and algorithms that we propose in this thesis, the tedious and error prone task of 

manually construct cb-NETs models of FMS formulations needs to be practically 

supported 
4. 

The FMS definition tool developed here allows the definition of resource types, 

buffers, and jobs in a way that is oriented to the FMS formulation given in definition 1. 

The prototype implemented consists of a formal language called FmsML (Flexible 

manufacturing system Modelling Language) in which the FMS is encoded. The 

encoding is parsed generating source code in C that contains a sequence of functions 

that construct the cb-NET When the code is executed, it generates the data structure that 

is the cb-NET model (depicted infig 4). Figure 5 shows the data flow for this process. 

Top4mm syndusis Source code 
Procedurv conpaadon 

FmsML system Internal PN 
definition FPTiRKE7R 

--i 
FK&e-c-ut-i-onI--o,, Representation 

user defines A sequence of functions Internal representation 
the FMS is obtained that builds the cb-AET of the cb-AET. 

Fig. 5. Dataflow 

The lexical and syntactical specifications for the grammar of FmsML are coded in 

standard BNF format for lex & yacc. Lex & yacc [Mason 90] were originally designed 

for UNIX as automatic generators of lexical and syntactical analysers. The user gives the 

specification of the grammar in BNF and the semantic procedures (coded in ANSI Q to 

be called when the statements of the grammar are found (semantics of the grammar). 

Lex & yacc generate source code in ANSI C with the lexical analyser and merge the 

syntactical analyser with the semantics defined, thus obtaining a complete parser that 

implements the synthesis procedure presented in the following section. 

4 For example, a typical FMS description consisting of ten jobs and eight resources presented in [Lee 94], 
assuming infinite buffer policy (which simplifies the model), has a total of 63 places, 91 transitions, and 
318 arcs. The code for defining this FMS description in a textual language for creating cb-NETs is 
approximately 700 lines long. This language, named PWA, has been developed as part of this research, Cl 
but its description is beyond the scope of this thesis. A brief description of it can be found in [Reyes 98]. 
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4.1.1 A top-down synthesis procedure based on the FMsML syntax. 

The parsing of an FMS description is a top-down synthesis directed by the 

FmsML syntax 5. The procedure considers each job as a subsystem that competes for the 

use of resources. First, resources are created as places. Then there is a stepwise 

refinement of sub-PN (that can also be viewed as complex transitions). The upper level 

is the definition of a job and the lower level is formed by the cb-NET model of 

operations. Through the following description, we will make use of the FMS notation 

given in definition 1. 

I't Step: Resources andjobs. 
RESOURCE_CONSTRUCT: 

#resource SYMBOL 

[units = INTEGER 

[set-up = REAL A 

#end ; 

BUFFER CONSTRUCT: 

#buffer SYMBOL 

#end ; 

[capacity = INTEGER 

[min_waiting = REAL 

(max-waiting = REAL ;] 

JOEý_CONSTRUCT: #job SYMBOL PLAN_CONSTRUCT* #end ; 

Two types of resources can be defined: resources such as machines, robots, 

AGV, etc., and buffers. A resource is defined by a name, a number of units of the same 

resource type (parallel processors) and (optionally) a set-up time can be specified. A 

buffer is defined by a name and the constraints applied on the buffer. Each job is 

defined by the different plan descriptions to achieve the parts of this type. The parsing 

of such structures is as follows: 

Every time the parser analyses a correct #j ob statement, it creates two new 

places. The first one, the input buffer, represents the unprocessed parts that are ready to 

enter the system. A second place (the output buffer) represents parts that have been 

processed. The input(output) buffer acts as an input (output) place for pi sub-PNs that 

model each of the pi plans for the job Ji. Any #resource or Ouffer R construction of the 

5 See [Jeng 931 for a review of top-down, bottom-up synthesis methods and [Narahary 85] and [D-S. Yim 

94] for examples of these methods. 
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language is modelled as a single place. If Ri is found by the parser within the #plan 

statement then Ri is an input/output place for that plan. Fig. 7 shows this organisation. 

Job Input B uffer 

A_ ............ 

OR] 

Plan Plan ... ........ 
Plan 0 Ri 

1211AI", 

......... 
0 

Rm 

A-----ý 
Job Output B zýf'er 

Fig. 7: Modelling a Job. 

Step 2: Plans. 

PLAN_CONSTRUCT: #plan SYMBOL TASK* #end; 

The jth #plan statement that defines process plan Py for job Ji is formed by a 

sequence of qy tasb to be performed. Between any two stages or tasks (sub-PNs) a 
buffer policy is applied. These buffers are modelled by places, but the buffer specific 

policy is not yet known. The first (last) operation uses as a buffer the input (output) 

buffer defined previously (see Fig 8). Any place representing a buffer is an input 

(output) place for the next (previous) ftask, except the input and output buffers. If any 

of the alternatives for achieving a task use resource Ri then the place representing the 

resource is an input/output place for the sub-PN. 
Job Input 
Buffer 

Ty I 

Interm ediale 
Buffer 

TJ2 

Ri 

T 
yqlj 

Job Oupul 
Buffer 

Fig. 8: A description of a part-processing plan. 
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Step 3: Tasks. 

TASK CONSTRUCT: BUFFER REFERENCE: SYMBOL 

#task SYMBOL 

description = RESOURCE_LIST: REAL [: RESOURCE_LIST: REAL]*- 
. 4. 

[buffer = SYMBOL /( INTEGER , REAL , REAL) / NULL / NO-WAIT ;] 

end ; 

A task is defined by two attributes: description and buffer. description 

specifies the resource sets that may be used to perform the operation and buffer 

indicates the buffer policy applied after the finish of the operation. A shared buffer is 

specified by addressing the name of a previous ibuffer construction. A dedicated 

buffer (or infinite buffer policy) can be specified by setting cb-NET values for the task 

output buffer defined in the previous step. 

When the parser finds a #task statement, the first step is to determine the 

number of alternatives (choices) to perform the operation. This is achieved by analysis 

of the attribute description. Each alternative is defined by the set of resources 

needed and its temporal cost. 

Fig. 9 shows how a task Tijk,, that can be achieved by Cuk alternative operations, 
is modelled as Cjjk sub-PN that share the input and output places of the task. If resource 

Ri is addressed in one of the alternate resource sets, then Ri is an input/output place of 

the sub-net representing that choice. 

Step 4: Operations. 

RESOURCE_LIST: SYMBOL [& SYMBOL I 

Each operation alternative of the description attribute has the following 

fonnat: R, & R2 & ... Ri :t, where R, ... Ri is the list of resources that may perform the 

operation and t is the operation cost. Each of these alternatives for a task (namely OYkI) 

is modelled dependent on the output buffer policy applied expressed in the buffer 

attribute. Fig. 10 shows the three basic cb-NET structures or modules used to model a 

processing stage, dependent on which storage policy is employed. Each model begins 

with a transition and ends with a place. This structure realises the connectivity between 

the basic modules. 
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Fig. 10: cb-NET basic modules. 4: 31- 

Figure 10 qeft) models a Buffer policy with a dedicated buffer: This basic module 

models the existence of a limited buffer dedicated to a single stage of a part plan (i. e, 

not shared by other processing stages). The operation is represented by a transition t, the 

firing delay associated with the transition models the operation cost op. A buffer-place b 

represents the buffer. Depending on the constraints, it can model an infinite, finite, or 

zero-wait buffer policy. The dynamic sequence is as follows: (1) t becomes enabled, (2) 

t is fired, releasing an unavailable token in b, (3) the token becomes available after op 

time units. 
Figure 10 (center) models a Buffer policy with common buffer. When a central 

storage facility (or input/output buffers located at the machines), exist, job stages 

compete for the use of the buffer. In other words, the buffer is a shared resource. t 

models the operation that once fired, releases a token into bl,,,, l and b. bl,,,, l models the 

part status; whilst b is a shared resource limited by the buffer capacity. tend is an 

immediate transition that releases all the resources used by the task when the next 

operation starts. This is followed by a zero-wait buffer at the end. The cb-NET 

controller is then forced to start the next operation when the part is removed from the 

common buffer. Time constraints are associated with bl,,,,, I. A second level of capacity 

constraint can be defined for bi,, cai., which models that a maximum of (W(b1,,,,, dparts of 

this specific job type can wait in b. 

Finally, fig. 10 (right) models a Null-buffer policy: where a part can wait in the 

machine after being processed. The models employ a transition t,,,,, t that marks the 

beginning of the operation and consumes the resources. Place p models the operation 
,7 time using 9(b). The token becomes available and can be transferred to the next 
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processing stage at any time. However, it will occupy the resource until the transition 

tendtransfers the part and releases the resource. A zero-wait place finishes the sequence. 

4.2 cb-NET simulator. 

The cb-NET simulator performs two operations: 

a) Given a marking and a transition, the simulator determine which transition 

will become enabled within the current marking. It makes use of the cb-NET 

model to check the enabling rule. Also, it determines if the application of the 

transition will violate the constraints associated with buffer-places. 

b) Given a marking and a transition that is enabled, the simulator makes use of 

the cb-NET model to obtain a new marking as a result of firing the transition. 

It is assumed that the application of the transition does not violate buffer- 

place constraints, because this was checked in a). 

Consequently the cb-NET simulator actualises a marking by firing an enabled 

transition that does not violate any buffer constraints. The marking is actualised by 

token redistribution and time information. In other words, the system keeps track of the 

time status of tokens in the places. This information is used to determine the time cost 

of the schedule and to verify residence time constraints. 

4.3 Search algorithms based on cb-NET structures. 

The search algorithm explores the search space defined by the PN reachability 

tree. The objective is to find a path that is a sequence of transitions that results in an 

optimal schedule. The AI community has studied several optimal systematic search 

algorithms in the last decades. From blind enumerative search methods such as depth- 

first and breadth-first search, to informed search methods such as A* or Branch & 

Bound approaches (see [Pearl 841). Before presenting the two algorithms adopted in the 

literature for PN based scheduling, table 3 gives the basic notation of graph search and 
its relation to the cb-NETreachability graph. 
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Concept Meaning cb-NET translation 

A node in the search tree Data structure representing the cb-NET marking. 

state of the system. The root node Mo is the initial marking (root 

is the initial state. Goal states are no de). MF is the final marking 
leaf nodes. (leaf node) 

Expand or Explore a node Obtain descendants for a node. Obtain a new marking M' from a 
The node under exploration is marking M. 

usually referred to as the current 

node. 

A branch of the search tree Part of the search tree reached by A new marking M'obtained after 

applying a specific operation. the firing of a specific transition t 

in M. 

depth(n): depth of a current node Depth of the node in the search Number of transitions applied 

n also node level. graph in terms of number of from Mo to the current marking. 

operations applied from the root 

node. 

g(n): cost of the node Current value of the objective Makespan or elapsed time of M 

function for the node. 
Table 3: Graph search and its relation with PN reachability analysis. 

4.3.1 Branch & Bound. 

The principle of a B&B algorithm is a depth-first search where a discrimination 

function is generally employed to determine the next operation to apply. A second 
feature is the calculation of a lower bound or estimate of the minimum total cost that 

can be obtained if the search continues from the current branch (node). When the first 

solution is found, and a process of backtrack is started, each new node generated is 

compared with the candidate solution by means of such a lower bound. If the theoretical 

solution with minimum cost solution that can be obtained following this branch is 

greater that the actual cost of the candidate solution, the exploration of this branch is 

discarded. 

The B&B algorithm has been applied to search in PN models of production 

processes with modifications in [Shen 92][Chen 94] [Lloyd 95] [Abdallah 98]. All this 

work deals with JSS descriptions in the sense that no alternative routes or operations are 

considered. [Shen 92] and [Chen 94] obtained a first solution following a blind strategy 
(the next operation to apply is selected randomly among the conflicting ones). The 

selection of the next transition to fire in [Lloyd 951 also seems to be randomly decided. 
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[Abdallah 98] employs a dispatching rule based on the shortest processing time (SP7) 

and least working remaining time (LWR7). The main disadvantage of a B&B approach 
is that it limits the application of PN based information to guide the search since 
decisions are restricted to the next transition to fire at the current node (depth-first 

strategy). On the other hand, a standard depth-first methodology does not keep a record 

of previously explored similar markings (states) which is a problem as we will see. 

4.3.2 Best-First A *. 

The A* algorithm (see [Pearl 84] [Nilsson 82]) bases its strategy on reordering 
the nodes not yet expanded according to increasing values of a function fi M4 R f(M) 

representings an estimate of the minimum makespan of the schedule that we might get if 

we follow the path from MO to M towards MF. By choosing the markings with a lower 

value of f(M) we are heuristically guiding the search towards the most promising 
markings. 

fM4R is calculated from the following expression, f(M) = g(M) + h(M). 

g: M4R is the cost associated with the current marking M (in terms of makespan, it is 

the elapsed time associated with M. 

The key to the performace of A* lies in h: M4R. h(O is an heuristic estimation 
of the actual cost of the minimal cost path between node n and the goal node (over all 
possible paths from n to all possible goal nodes). Given a current marking M, h(M is 

trying to estimate the cost of the best possible sequence of transitions to be fired to 

achieve the final marking MF. 

Ideally, h(M) should be a solution of a relaxation of the problem; which results 
in a easier problem to solve. Generally, these heuristics represent theoretical lower 
bounds, which may never be reached in the actual problem. 

To ensure optimality, Le, to ensure that the first solution found by A* is an 
optimum solution to the problem, h(M) must satisfy the following condition: 

Definition 3: A heuristicfunction h is said to be admissible if h(m) : 5h*(m). 
*(m) represents the actual optimum cost from m to MF . If h(m) satisfies this 

property, the estimation of the makespan from the current marking m to the final 

marking mf is always lower than the actual optimum makespan that can be obtained. 
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The case when h(A4)= h*(M) represents the ideal situation but implies the 

problem is already solved. The admissibility of the heuristic functions proposed in the 

literature and the PN based heuristic function developed will be studied in detail in the 

next chapter. 
The general A* algorithm has been adapted to PN structures in [Zhang 90] 

[Zhang 92] [Yim 94] [Lee 94], [Yim 96], [Jeng 98], [Inaba 98] and [Sun 94]. Fig. 6 

shows a first definition of A* adapted to search within a cb-NET reachability graph. 

The algorithm can be explained as follows: The initial marking starts the search 

space at the root node. The list UnExplored contains markings whose successors have 

not yet been determined ("new" markings). The Explored list contains already 

considered markings. At each iteration of the algorithm (1) the marking M yielding the 
lowest value of f(Al' ) is chosen for exploratioOr by removing it from the UnExplored list 

(2). 

If M represents the goal marking MFthe path from Mo to M is recovered and the 

algorithm terminates (3). If not M is added to the &p1ored list (4). For each enabled 

transition t in M, a new marking M' is obtained (5). To determine those enabled 

transitions, and the new marking, A* makes use of the cb-NET simulator module. 

The algorithm also identifies previously reached markings in terms of the 

distribution of tokens. When a new marking is similar to a previously considered 

marking and the new one represents a more promising path (7), it is still considered for 

exploration. If two similar markings are found in the UnExplored list (6), the one 

suggesting a more promising path is kept for further exploration and the other is 

discarded. It must be noted that for complex data structures this step can considerably 

increase the computation time of the algorithm. The application of decision heuristics at 

this level, by determining the interpretation of similar and more promising, will have 

great implications for the performance of the algorithm. Chapter 5 of this thesis 

considers PN based techniques to optimise the interpretation of these concepts for the 

FMS scheduling problem. 
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Algorithm cb-NET A*: 

Receives: MO, MF: The initial and final marking of a cb-N ET N from FmsML. 

Returns: Sequence of transitions representing the schedule. 
Variables: UnExplored: List of new markings for exploration. 

Explored: List of markings already explored. 

UnExplored = Mo 

Explored =0 
(1) while UnExplored is not empty do the following 

(2) Remove a marking M from UnExplored yielding the smallest f(M). 
(3) If M matches with MF then 

Retrieve the path from MO to MF 

Exit with success. 
(4) else Put M in the Explored List 

(5) For every transition t enabled in marking M do the following: 
Obtain the marking Vas result of firing t in M 

(6) If Vis similar to another marking M" in UnExplored then 
If Vis more promising tha M" then 

Put Vin UnExplored 

Remove M" from UnExplored 

else goto (5) 

(7) If Vis similar to another marking M" in Explored then 

If Vis more Dromisinq tha M" then 
Put Vin UnExplored 

else goto (5) 

Put Vin UnExplored 

goto (5) 

goto(l) 

Fig. 6: cb-PN based A* algorithm. 

4.4. The NP-hard nature of the FMS scheduling problem. 

Unfortunately, due to the NP-hard nature of the FMS scheduling problem it is 

not possible to obtain a polynomial scheduling algorithm that assures optimality as a 
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function of the parameters of the problem (parts, jobs, machines, degree of flexibility, 

etc). 
Infon-ned search approaches such as A* guide the search towards the optimum 

solution using heuristic analysis of as yet uncompleted solutions. But the property of 

optimality and/or accuracy is double edged. Studies have shown that the A* approach 

with an admissible heuristic function spends a large amount of time discriminating 

between sub-schedules whose makespan's do not vary significantly from each other 
[Pearl 84]. In such cases, the admissibility property of h(M) adds a breadth-first search 

component that prevents A* from completing the search if the search space is large. 

The AI community has been aware of this problem: [Korf 85] proposes an alternate A* 

algorithm called iterative deepening A* (IDA*) as a way to bound memory requirements 

at the cost of node re-expansion by a hybrid algorithm between B&B and A*. However, 

[Sarkar 91] states that IDA* performs poorly for problems such as the AS scheduling 

problem which has real-valued cost estimates due to excessive node re-expansions. 
The immediate implication of these results is that the vast majority of work in 

FMS scheduling considers the objective of optimality unrealistic. Additionally, the 

application of PN to manufacturing has typically been concerned with real-time control 

and more detailed system modelling [Zurawsky 94]. It thus seems natural to move 

towards the development of scheduling algorithms with application to dynamic real- 

time scheduling scenarios where the pursuit of optimality is ill-defined and unrealistic 

(not only unaffordable in terms of response time but the dynamic nature of the FMS 

environment implies many uncertainties which imply planning and scheduling are a 

continuous process). It is our belief that the depth-first search guided B&B algorithms 

are less applicable to these environments and limits the applicability of heuristic 

analysis on PN structures. As stated in [Korg 90], a related drawback is that B&B must 

search all the way to a solution before making a commitment to how good a node (path) 

is. Actually, B&B finds solutions quickly basing the optimisation procedure on 

chronological backtracking. In other words, before a possible alternate choice at depth k 

is considered, the complete search sub-tree from the current state of depth k to the goal 

marking needs to be explored. 
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In the literature surveyed, two general strategies have been followed to obtain 

affordable PN based A *-like search algorithms that guarantee a sub-optimal but 

acceptable solution within a reasonable time 6. 

a) Adjusting the heuristicfunction. 

In essence, the approach depends on finding a heuristic function h(M that over- 

estimates h*(A4) and whose difference h(M - h*(M) reduces closer to the goal marking. 
If h(M) affects f(M) in such a way that f(M decreases as M is deeper in the reachability 

tree, then the search is performed in a mixture of depth-first - best-first search. To 

achieve this, tuning parameters are needed. 
The main problem with this approach is that: a) If h is unreliable it can lead to 

unpredictable solutions in terms of quality. b) Parameter tuning is needed and this can 
be difficult, and c) the search effort of the algorithm is difficult to control. 

b) Hybrid search approaches. 
If one cannot afford a full A* algorithm, various hybrid combinations of 

strategies can be implemented, with the aim of reducing storage requirements at the 

expense of narrowing the evaluation scope of the algorithm (and optimality). 

These algorithms control the amount of search by adjusting one or more 

parameters, allowing the computational cost to be bounded. This, theoretically, makes 

possible the use of admissible pure PN based heuristics applied to the bounded search 

space. Stage search [Nilsson 82] and Beam Search [Ow 88] are examples of incomplete 

search algorithms. 

It is interesting to mention that - adjusting the heuristic function and Incomplete 

A*- have the same effect: they obtain an acceptable sub-optimal solution within a 

reasonable and controllable search space. The combination of both methods is possible, 

and is a common practice in the literature. 

6 Recall what was said in chapter 2: the traditional approach that rejects optimal search algorithms and 
devises more or less complex heuristic dispatching rules might not be an advisable solution. As suggested 
in [Hutchinson 911 the benefits of FMS organisation may only be obtained with high-cost optimal (near- 
optimal) scheduling schemes rather than cheap heuristic ones. Recall also the game-search approaches 
summarised in chapter 2, and their conclusion regarding short-term accurate search and how this 
reinforces the idea of rejecting depth-first B&B based approaches. 
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Nevertheless, the aim of this research is the exploitation of PN information to 

guide search and thus to develop accurate and well informed PN-based heuristic 

functions. However, this may well lead to unaffordable search spaces. A useful 

algorithm that exploits the heuristic function available from PN, must thus control the 

complexity problem. 

S. Case studies. 

The two case studies that we present in this section, aim to briefly demonstrate 

the PN based modelling paradigm presented in this chapter 
The first shows a small example that aims to capture FmsM-L capabilities and 

allows easy following of the cb-NET automatic synthesis process. The system is a small 

manufacturing layout consisting of two pressing machines and a robot. The example has 

been taken from the company AEMS. A [Aemsa]. Fig. 11 shows the layout of the 

system. 

Raw material Finished 
(crystalfibre paste) Parts 

I IN I oul 

Machine 
I 

Fig. 11. System layout 

Two part types are produced in this system in two steps. First, the raw material 

(crystal fibre paste), is shaped by a pressing-heating machine, then a sanding machine 

removes excess material. 
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BY-Steza AEMSA; 

resource Robot #end; 
buffer Input 

capacity = 10; 
min_waiting = 1.0; 

encL ; 
buffer output 

capacity = 10; 
end; 
resource Pressi #end; 

resource Press2 #end; 

resource Sander #end; 

job Partl 
#task Loadl 

description= Robot: 1.0; 
buffer = NO-WAIT; 

#end; 
#task Pressingl 

description= Pressl: 2.0; 
buffer = NO-WAIT; 

#end; 
#task Tranf erl 

descript±on= Robot: 1.0; 
buffer = Input; 

#end; 
#task Sandingl 

description= Sander: 1.0; 
buffer = Output; 

#end; 
#task UnLoadl 

description= Robot: 1.0; 
#end; 

#end, 

#job Part2 
#task Load2 

description= Robot: 1.0; 
buffer = NO-WAIT; 

#end; 
#task Pressing2 

description= Press2: 2.0; 
buffer = NO-WAIT; 

#end; 
#task Tranfer2 

description= Robot: 1.0; 
buffer = Input; 

#end; 
#task Sanding2 

descr±ptlon= Sander: 1.0; 
buffer = Output; 

#end; 
#task UnLoad2 

description= Robot: 1.0; 
#end; 

#end; 

Fig. 12: FmsAfL code for the system example. 

Product demand varies greatly from one day to another. A robot is in charge of 
loading and unloading the presses. The presses have no buffer since once the product is 

made it has to be removed immediately from the press to avoid deformation. On the 

other hand, raw material is kept from desiccation in a special initial buffer, so when the 

robot picks up raw material, it must be immediately processed. This means that there is 

no intermediate buffer among robot movements to/from the presses and that the robot 

cannot wait holding parts. This type of buffer policy is known as zero-wait [Lloyd 95b]. 

On the other hand, the sander has a input and an output buffers with a maximum 

capacity of 10. Since the material is hot and relatively soft after the pressing stage, 

cooling is needed before sanding, so it must wait in the buffer at least for one time unit. 

The cost of the pressing+heating is constant and equal to two units, sanding takes one 

time unit and pickup/release movements take one time unit. The movement of the robot 

when not holding parts takes negligible time. Fig. 12 shows the FmsAIL code for the 

system that results in the cb-NET model of figurefig 13. 
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pI= Raw material for press I (p(+(x 0, +a) 
p2 = Pressl input buffer: (p(l 0,0) 
p3 = Press I output buffer: (p (1 0,0) 
p4 = Sander local input buffer I (p(+(x , 1, +(x) 
p5 = Zero-wait buffer (p(I 0,0) 
p6 = Sander local output buffer I 9(+cc, 0, +(x) 
p7 = Zero-wait buffer q(I 0,0) 
p8 = Processed parts of type I (p(+cc, 0, +(x) 
p9 = Raw material for press 2 (p(+(x, O, +cc) 
p 10 = Press2 input buffer: p(I 0,0) 
pI I= Press2 output buffer: p (1 0,0) 
p 12 = Sander local input buffer 2 (p(+ (x , 1, +oc) 
p 13 = Zero-wait buffer (p(l 0,0) 
p14 = Sander local output buffer 2 9(+a, O, +(x) 
p 15 = Zero-wait buffer q(I 0,0) 
p 16 = Processed parts of type 2 (p(+(x 0, +oc) 
p 17 = Sander input buffer (p(I 0 0, +cc) 
p 18 = Sander output buffer (p(I 0 0, +(x) 
p19 = Robot 
p20 = Pressl 
p2l = Press2 
P22 = Sander 

tl, t3, t7, t8, tIO, H4 = robot movements. r=I 
t2, t9 = presssing+heating. r=2 
t5, tl 2= Sanding process. T=I 
t4, t6, tl 1, tl 3= Buffer realease. T=0 

Fig. 13: cb-NET model of FMS example offig 11/12. 

We have considered the problem of scheduling two parts of each type. The 

problem is solved optimally obtaining a makespan of 13 time units (Fig. 14). The 

solution obtained satisfies the buffer policies, i. e., once a raw material has been picked 

up, it is processed immediately. Also, when a press is finished, it is immediately 

emptied. Parts wait for at least one time unit in the sander input buffer before being 

processed. The key to this problem is a good schedule for robot movements (the 

bottleneck resource). 
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02 31 4ý 5679 10ý 11; 12; 13: 

2r ,I 11 IM Robot 
Press I 
Press2 

1 Sander 

Raw material is loaded into Press 
Part transferred to sander. 
Part moved to final buffer. 

Fig. 14: Gannt chartfor the optimal schedule. 

The second example focuses more on how FmsML is employed to model 

academic case study problems that will form the test scenarios for the validation and 

comparison of the methods and algorithms presented this thesis. Additionally, it shows 

the modelling of alternate routes and different storage policies. The selected system is 

taken from a case study presented in [Lee 94] that consists of five different part-types. 
The FmsAlIL code for the first job is given in fig. 15 (the full specification for the 

problem is given in [Reyes 98]). 

#system LEE_94; 

// The FMS has three multipurpose machines 
#resource M1 #end; 
#resource M2 #end; 
#resource M3 #end; 

// The FMS has five jobs. 

#job Job 
- 

One 
#task Tll // The task can be achieved by either Ml or M3 

description=Ml: 7.0 1 M3: 4.0; 
#end; 
#task T12 

description=M2: 3.0; 
#end; 
#task T13 

description=Ml: 3.0 M3: 6.0; 
#end; 
#task T14 

description=Ml: 2.0 M2: 4.0; 
#end; 

#end; 

Fig. 15: FmsML definitionfor thefirstjob of[Lee 94] example. 
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The original problem considered ten parts for each job to be scheduled and an 
infinite buffer policy between any two tasks. For illustrative purposes of cb-NET 

dynamics, we studied the same problem with different storage policies [Lloyd 95]: a) 

Infinite buffer size, b) Limited storage size of one, c) No storage, but parts may wait in 

machines and d) zero-wait. The problem is too large to be solved optimally so we 

employed the sub-optimal algorithm DWS* which presented in chapter 6. 

Figure 16 shows the Gantt Chart of activity for each machine. It is noticeable 

that machine idle time increases as we constrain the buffer policy, as operations are 
delayed to guarantee system constraints. 

Note that in the zero-wait case, when a part is processed it is transferred to the 

next stage immediately. Also, for the no storage-case, note that machine 3 is kept 

unavailable until the part of type one is processed by machine 2 at the next stage. 

6. Summary and Conclusions. 

In this chapter we have examined the FMS problem domain and presented a PN 

extension, cb-NETS that allows us to model FMS formulations and enables automatic 

synthesis process. The existence of bounded operation times is not observed frequently 

in FMS formulations from the literature. This is also the case with constraints associated 

with residence times in buffers. To the best of our knowledge, as [Lloyd 95b] affirms, 
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the modelling and consideration of the no-wait buffer policy is not found in work 
integrating PN and AI based heuristic search methodologies for FMS scheduling 

purposes. 

A language for the definition of FMS specifications has been defined. This tool 

and the automated synthesis of PN models from these definitions has been motivated 

by: 1) the need for a systematic method that guarantees properties of the PN model 

needed for the scheduling process, 2) the need for a fast and reliable tool to obtain PN 

models of FMS case studies, 3) to serve as a preformatted input to generate random case 

studies to validate the PN-based scheduling algorithms. 
Finally, we have reviewed the basic integration of PN theory and AI based 

search techniques and discussed the issue of complexity. 
The work undertaken in this thesis has resulted in a collection of PN based 

hybrid algorithms and the use of PN based heuristic information to guide search and 

achieve useful search effort reduction. The next chapter will formally define the 

mathematical basis of this, and the algorithms to calculate it. Formal methods to reduce 

the search effort based on the cb-PN domain will be given in chapter 5. The hybrid 

search approaches developed will be defined in chapter 6. 
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Chapter 4. Heuristics from Petri nets. 

1 Introduction. 

Heuristics from Petri Nets. 

This chapter is about the study of PN structures and dynamics to help the 

systematic search process -within the PN reachability graph by means of a new PN based 

heuristic function. 

One of the most interesting features of integrating PN theory and AI problem 

solving is the possibility of employing mathematical analysis over the problem domain 

that is a PN model. This possibility has been under exploited in previous work. This 

work typically either proposes a non-PN based heuristic, (which usually considers only 
limited information), or restricts the FMS problem domain. The heuristic function has 

normaly been typically employed to fight the combinatorial explosion, which masks the 

ability of PN to guide the search process, results in tuning difficulties and can lead to 

unexpected results. As our aim is a heuristic search algorithm, search effort reduction 

will be derived from the use of incomplete hybrid search algorithms that allow the 

application of admissible PN based heuristic functions. 

The approach described here tries to give a theoretical lower bound for the 

minimum makespan. It is based on the idea of solving the problem by relaxing the 

resource constraints of the problem, both in terms of the use, of machinery as well as 

buffer constraints. From this we have a problem which is only constrained by the 

operation sequence between jobs. With this assumption, jobs can always be done by 

following the path with the lowest blocking time. There is no blocking due to the 

availability of the resources, that is, every part is immediately processed. 

In order to do so, a relaxation of the cb-NET model of an FMS needs to be obtained., 

which preserves those constraints related to part routing and neglects the others. Such a 

model defines a PN subclass that we have called b-NETs. b-nets are useful since they 

follow the same rules and perform close to the original FMS cb-NET scheduling 

formulation that we attempt to solve. Consequently good estimates of possible 

behaviours can be obtained. On the other hand, a b-NET has properties that allow the 

relaxed scheduling problem to be more easily solved. We will show that the optimum 

solution to such a relaxed problem is a good candidate as a heuristic function for the 

original problem. 
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The heuristic function developed and experimentally studied in this chapter has 

the following characteristics. It: 

is applicable to typical FMS descriptions. 

exploits PN based structures and dynamics. 

- is admissible. 

considers both current status and global information. 

- has a low computational cost without the need for mathematical 

relaxation. 
is very effective if the FMS is designed to exploit concurrency and 

avoid high machine idle time (bottleneck resources), which is 

typically a desirable design objective 

The first section of the chapter reviews the efforts produced in this direction and 
identifies their difficulties. Section 3 formally defines b-NETs and explains their 

properties, b-NETs are a subclass of PN that satisfy structural properties which are 

needed to obtain a mathematical expression from where to easily obtain the relaxed 

solution of the problem. Section 4 and 5 describe the heuristic function obtained from a 
b-NET model of a FMS based on a matrix structure called Resource Cost Reachability 

(RCR). This matrix will allow minimum calculation during the search process. Finally, 

section 6 presents experimental results. 

2 Search reduction based on heuristic relaxation. 

In the previous chapter, we stated that one of the strategies to be followed to 

progress to a first near-optimum solution was the relaxation of the property of 

admissibility of the heuristic function h(m). If a depth-first search component is added 

to h(m), thus makingf(m)= g(m) + h(m) to reflect a tendency to decrease as depth(m) 

increases within the path, the search will progress towards a first solution quicker than it 

otherwise might. 

A simpler way to achieve this behaviour is by defining h(m)= -we depth(m) 

which is the heuristic function developed in [Lee 94]. The rationale for this approach is: 

the closer we are to thefinal marking, the closer we are to the optimum solution. w is a 
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tuning parameter that specifies the degree of depth-first behaviour over the search. 

Clearly, this function is not admissible if w>O, for the general case. 

The tuning of w is the most problematic issue to deal with. Consider a FMS 

scheduling problem defined by a cb-NET Let M be the current marking under 

evaluation. Any marking M' which is a successor of M has an associated elapsed time 

gM7. g(M) or makespan which will usually be greater than () 

If w=O then f(M)=g(M) making A* behave in a pure Best-First manner and 

consequently the next marking to explore is chosen according to the elapsed time of the 

marking. Iff(M<f(M) then a breadth-first search behaviour is evident. 

If we define c(MM)=f(M)-f(M) then for depth first search to occur c(MM) 

must be less than 0: 

g(M) -g(M) - wo depth(M) + wo depth(M)< 0 

g(M9-g(M) < wodepth(» +w- wo depth(» 

g(m) - g(m) 

In other words, w must be greater that the cost of obtaining M' from M for the 

general case. As a first approximation, one can use the following variation of h(m) 

(1) h(m) =- OP v depth(M) 

where OP is the mean delay associated with operations. The work proposed in [Lee 

94b] and later in [Yim 96] implements a similar approach by considering the heuristic 

function: 

(2) h(m) = Wo Aa EI - Wo Ao depth(m) 

where A is the mean operation cost and E is the number of operations to schedule. In the 

case studies proposed any possible solution has exactly the same number of operations, 

hence the term We Av El is a constant that does not affect the selection process. 

Consequently, this expression can be reduced to 

h(m) =- w' @A v depth(m) 

Which is almost expression (1) except for w' which models machine 

concurrency. In fact, expression (1) does not take into account any concurrency between 

resources so, in the majority of cases, A is greater than g(M)-g(M). If w' is set to the 

inverse of the number of independent machines, full concurrency is assumed. It must be 

7 g(M) =g(M) if the transition fired at M was enabled, i e, it had all its input tokens already available. 
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noted that the degree of concurrency between machines varies with each FMS 

formulation. As an attempt to more accurately predict the gap g(M)-g(Ad), a third 

heuristic function is proposed in [Yim 961: 

h(m) =: w' 9Ao EI - Wo (A ± sw 9 S) 

Which also takes into account the variance in operation cost. The sign of sw 
depends on the cost of the transition fired being greater than A. This is an incremental 

heuristic function in the sense that the new h value is added to the h of the current 

marking, and it follows that the term depth(m) is present in such a calculation. 

The implementation and experimentation undertaken as part of this research 

with these heuristic functions showed a difficulty in tuning. For example, an experiment 

with randomly generated FMS problems obtained using a uniform distribution for the 

operation cost was generated. The setting of W=0.5, meant that the algorithm did not 
finish in reasonable time in around 15% of problems, due to its breadth-first behaviour. 

Two alternate heuristic function are also proposed in [Yim 96]: 

a) h(m) =-wv AMj. M-Aj is the mean operation cost for the operations 

performed in machine L Again this is an additive function and i depends on 

the transition fired. 

b) h(m) =-w *JAj. JAj is the mean operation cost for the operations belonging 

to job i. 

The main problem with these heuristics is that the authors do not offer a 

satisfactory explanation of their motivation. If b) was developed to take into account 
differences between jobs, they should have suggested an appropriate case study. The 

case of a) is less clear, it can be seen that a) may favour operations being performed on 

machines with greater mean cost than of others available ones. This is contradictory in 

terms of minimising makespan. 

[Inaba 98] adapts the A* search of [Lee 94] over PN models of FMS assembly 

systems, and proposes the following heuristic function which is an adaptation of (2) 

h(m) = IINm * C,,,, v r(m) 
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where C,,, i, is the minimum assembly operation cost, and r(m) is the number of 

remaining assembly operations. Nm is the number of assembly machines. They are 

aware that as such a heuristic is admissible (and too optimistic), it leads to large search 

spaces. Hence, they propose h(m) = IINm # C,, v r(m), where C,, is the mean operation 

cost plus the mean of loadin g/un loading task. 
The number of remaining assembly tasks r(m) is obtained from the number of 

tokens in the places indicating subassembly stages. Although the same effect as (2) is 

obtained, this work begin to show the possibilities inherent in analysing the cur-rent 

marking to obtain information. 

The main criticism of a heuristic function that is based on the number of 

remaining operations is that it betrays the original idea of a heuristic function as an 

estimation of what is yet to be done. Two markings of the same depth have the same 

value of h(m), no matter the path followed. This leads to undesirable behaviours. For 

example, suppose two partial schedules represented by MI and M2have both scheduled 

exactly the same number of operations. MI has followed the strategy in which the 

fastest operations have been done first, achieving a low total operation cost but with low 

machine parallelism. On the other hand M2 has achieved a quasi-full machine 

concurrency, the total operation cost is higher as a result of not just choosing the fastest 

operations. Suppose that the makespan g(Ml) is almost g(M2). Notice that in MI the 

longest operations still need to be scheduled, which suggests that M, is less promising 

than M2. However since depth(MI) = depth(M2) both markings are heuristically equal. 
Situations of this kind lead to unforeseen and often poor results. For example, a 

problem with 5 different jobs, 3 machines and ten parts per job is solved in [Lee 94] and 

the best makespan obtained is 426. However a simple splitting up approach obtains a 

solution of 3708. 

A heuristic function that is common in the literature based on PN reachability 

tree search is the following [Xiong 981: 

h(m) = maxj(ýj (m), i=1,2,... N) 

8 The approach solves a single part job problem optimally and then replicates the result ten times. 
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Where ýj (m) is the sum of operation times of the remaining operations for all 

jobs which remain to be processed on the i-th machine for the current system state 

represented by marking m. N is the total number of machines. By choosing the i-th 

machine that maximises this expression, one is supposing that no idle time is produced 
for the machine, and the other machines finish at least at the same time as the i1h 

machine. 
Although the heuristic function is admissible, it is not directly applicable to FAE 

since processing tasks are not assigned a priori to machines due to routing flexibility. 

Such an admissible heuristic function is employed to node selection pruning in the B&B 

approaches implemented in [Shen 92] [Chen 94] [Lloyd 95]. 

An adaptation of such heuristics to FMS scenarios is proposed in [Jeng 98b]. 

The case studies considered restrict the number of parts to be processed to a single part 

per job. 

(3) h(M) = maxppi (M(p) * min,, L(p) (Cq))) 

This heuristic is estimating the cost of reaching the final marking by calculating 

the minimum cost path among those possible for each of the remaining subparts. 
Although it is not completely clear, the cost of the path Cý) appears to be obtained from 

the sum of the minimum delay of transitions that belong to the paths. Intuitively, this is 

an admissible heuristic function, but it is only valid if a single part perjob is considered. 
Although replicating PN structures for these jobs may solve this problem, this leads to 

huge PN models. In addition, when many parts compete for the use of resources, the 

assumption that the rest of the parts are done concurrently with the longest part, 

becomes overly optimistic. 

[Jeng 98] and [Jeng 99] propose an alternative approach based on the PN state 

equation [Murata 89] that relates two markings with a firing sequence of transitions 

expressed as the array u and the incidence matrix C: 
MFýM+ COU 

It is well known that, if there exists a firing sequence from a current marking M 

to a final marking MF, then the sequence expressed as u is a solution to the 

corresponding state equation [Murata 89]. Although the converse is not necessarily true, 

the solved firing count vector can serve as an estimate of the current makespan. If we 
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multiply each element of the vector by a delay time corresponding to each transition. 

Taking the sum of this seems to be a good candidate for the estimated cost9. This is 

deiived in [Jeng 99] as follows: 

minimise lcost(t)v uj j-1 n 

Subject to Co u= AM 

and u, 7EW U(O)) 

The problem is that the above is an integer programming problem which is 

typically expensive to solve. Consequently [Jeng 98] proposes an alternate linear system 

that is easy to solve and avoids excessive matrix computation for each marking 

generated during the search. This heuristic function is not admissible and adds a depth- 

first component to the search, since g(m) tend to increase less than h(m) decreases. Such 

behaviour is produced since h(m) is an estimation of the total operation cost and does 

not take into account concurrence between resources. 
Combinations of (3) and (4) are possible. For example, [Jeng 981 fixes a depth- 

bound for the application of (4). The search is controlled as follows: (4) is used until a 

given depth is reached. The motivation for this seems to be ensuring that at least a few 

operations of each job are scheduled. This is due to the ability of (4) to differentiate 

between alternate routes better than (3). Once the first decisions are made, (3) is used 

for the rest of the search. 

3 Buffer nets: b-NETs. 

As described above, the heuristic function developed is based on the idea of 

relaxing two constraints of the system: the limited amount of resource and the time 

constraints imposed on materials. With these assumptions jobs can always be performed 

by following the fastest routes and operations are not delayed by constraints imposed on 

buffers or materials. As a result, maximum machine parallelism can be assumed. To 

achieve such a relaxed system as a PN model, the original cb-NET model of a FMS 

needs to be transformed into a simpler one, where no constraints are assigned to places 

9 Actually, [Jeng 99] proposes a place-timed PN model, so the operation cost of the transition is defined 
to be the maximum time associated with its input places. 
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and hence, an infinite buffer policy can always be applied. We will call such a net a 

buffer NET or b-NET. 

A b-NET is technically a net subclass. A net subclass is defined exclusively by 

introducing constraints on the structure of ordinary nets [Silva 89]. In general, the aim is 

to restrict the generality of the model, allowing us to characterise fully otherwise hard to 

study properties such as liveness and reversibility. The definition of net subclasses is a 

common practice in the PN literature. For example, CO-nets [Proth 97] and ECO-nets 

[Wang 96] where introduced with the aim of defining a subclass of PN for 

manufacturing system integration. 

In our case, it is from a b-NET that the heuristic function will be obtained. b- 

NET's are convinient since their structural properties enable a mathematical expression 

which results in PN based heuristic function with is cheap to calculate. 

3.1 b-NET definitions and properties. 

Deftition 4: A timed-PN (P, T, 1,0, MO) is called a b-NET if 

(P =R u Q) A (RnQ=2). 

where the set of places R represents the resources and the set of places Q represents the 
buffers, and the following three conditions are also satisfied: 
(a) I(rt)=O(rt) Vtr tET, reR 

(b) V tET, there exists a single pEQ : I(pt)=] and a single p'eQ : O(p j)=], for 

(c)The subnet G'= Q, T, I'J- O'Y M'j' h), where Fand 0'are the restrictions of Ito Qx 

T) and 0 to (T x Q) respectively and M' is the restriction of M to P, is an acyclic 

graph without isolated places. 

p PP' Q 
I 

R, 
... 

&ER 

TR 

Fig. 17: A single-transition scheme constrained by (a) and (b). 
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Condition (a) ensures that all the resources used by a transition are released after 
the firing of the transition. Condition (b) indicates that each transition has an input 

(output) buffer; and only one input (output) buffer is allowed for each transition. 

Condition (q) ensures that no cycles are introduced. 

It can be seen that b-NETs have two types of places: resource-places and buffer- 

places. Time is associated with transitions. From a structural point of view, a b-NET is 

any ordinary deterministic timed PN that can be formed using only the single-transition 

structure shown in Fig. ] 7. 

Deftition 5: Initial andfinal state (markings) of a b-NET. 

For a b-NET N, BI cQ (the Input buffer set) contains all the places of Q which are 

not output places of any transition, i. e., Bl=(pEQ 1 -3 tET O(p, t) > 0); B,, cQ 
(Output buffers set) contains all the places of Q which are not input places of any 

transition i. e., Bo=(peQ I (not 4tET I(pt)>O). A state Mo is an initial state 
(marking) for a b-NET if (M(p) =0 VpO(BI u R)) A (M(P)2ý I( Vp eR))A(3pc BI I 

M(p) z? I ). A state MF is a goal (final) state (marking) for a b-NET if (M(p) =0V 

p0 (B, LA)) A (M(P) 
i -ý- ýI (VpeR))A (3pE B0 I M[p] i? I ). ý 

Note that BnBO=O. Two interesting properties can be observed in b-NETs: they are 

practically live and bounded, whatever the initial marking may be. 

A PN is said to be live if, no matter the marking which has been reached, it is 

possible to ultimately fire any transition of the net by progressing through some further 

firing sequence. It is obvious that the definition offinal state of a cb-PN does not satisfy 

this property, however: 

Property 1: A b-NET is live for all M, -, MF. 

The proof is straightforward fromfig. 17 and the definition of a b-NET. It is always 

possible to perform any of the operations for which the system was designed whatever 

the decisions made in the past. This is the practical meaning of liveness: there always 

exist enabled transitions at any marking m that is not a final marking. 
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Property 2: Given an initial bounded marking Mo the number of tokens for any 

marking reachable from MO is constant and equal to the initial number of tokens. 

Again, the proof is straightforward. The b-NET definition ensures that any transition 

releases as many tokens as it consumes, i. e., no tokens are created or consumed i. e., 
VtET, * O(pt) = EO(pt) VpEP, hence a b-NET is bounded and the number of tokens 

remains constant. 

The following proposition follows from these properties: 

Proposition 1: Given an initial bounded marking MO of a b-NET it is possible obtain 

a sequence of transitions that leads to any final state (marking) MF the number of tokens 

in input buffers are the same as in output buffers. 

Proof: Proof is straightforward from properties 1 and 2. 

3.2 b-NET generation from FMS definitions. 

We use the b-NET to model FMS having assumed that only an infinite buffer 

policy can be applied. It is worth noting that the structure of fig. 17 corresponds to the 

cb-NET basic module presented in the previous chapter. In fact it is possible to obtain an 

infinite buffer sub-net from any of the basic modules if one ignores the constraints (P 

imposed on buffer places in a cb-NET As an example, fig. 18 shows how the cb-NET 

model of a limited shared buffer is reduced to a b-NET (the other basic modules follow 

a similar approach). 

The first step removes the constraints imposed on the common buffer b and the 

__ 
9 buffer. This results in an unconstrained cb-NET with (p(b) (+ o-ý 0, + oc) zero-wait (z w 

_ 
9=(+o-ý0, +oc). The first reduction step merges b with b local. The resulting and qýý w 

net contains a transition that removes a token from an infinite buffer b and puts a token 

into an infinite buffer z_w, which has a firing delay of zero and uses no resources. 
Hence, the b-NET obtained after eliminating tdand z-w is equivalent to the previous 

one from the point of view of scheduling. 
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Input Input Input 

t: op t: op t OP 
bR 

0b 

end 
tend 

zw0zw 

oc 

Fig. 18: Reduction of an unconstrained cb-NET to its equivalent b-NET 

Although such a reduction procedure indicates that it is always possible to obtain 

a b-NET from a FmsML definition, by ignoring the constraints imposed on buffers, the 

following construction procedure formalises the methodology. 

Let N=(RQTIOM,, r) be a timed-transition PN where initially R=0 Q=O 

and T= 0. The following are the steps for the construction of a b-NET for a FMS 

formulation expressed in a FMsML that follows the formulation given in definition 1. 

1. Create the set of resource places: Add the #resource construction Ri (R = Ru[Ri)) for 

i=1 to m, where m is the number of resources. 

2. Create the set of buffer places: 

2.1. Add the initial input buffer of the ith 4job Ji to the buffer set Q (Q = Qu(Ji0j) 

for i=[l .. n], where n is the number of jobs. 

2.2. Add the buffer place for #task Týk of #plan Pij for the #job Ji, Qý QC-J(Jyk) 

for i=[l ... n], j=[l... pi] and k =[l ... qijl where pi is the number of different 

plans for job Ji and qij is the number of tasks for plan Py of job Ji. 

3. Create the set of transitions: Adding 1'h choice defined in the description of task, Tyk 

of #plan Py for 4jobi T= Tultijkl I for i=[1 ... n], j=[I... pj], k =[I ... qij] and 
Cykl where Cyk. is the number of choices for TYk- 

4. Create the input matrix: 

a) Define the arcs from Q to T 
I (Jijk- 

, 
tyk+j, d=l 

otherwise 
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b) Define the arcs from R to T 
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I(R, Jjj d=I if R, c Suk. 
.I-:!: -: ýLs'n; I.:! ýjs-pi; O.: s-k < qy; -: 

SýCyk 

otherwise. 

5. Create the output matrix: 

a) Define the arcs from T to 

0 (Jok, Tijkl) =II:! ý Ls'n; ].:! ýj.:! ýpj; O.:!: 
-: ýk < qu ; 1.: 5'1 -!! ýCyk, 

otherwise. 

b) Define the arcs from T to R. 

O(Ri, Jyd=l if Ri E Sýk, I -s'i !! ýn; h! ýj: 5pi; 0-s-k < qu; h! ý1: 5: ýCijký 

otherwise. 

6. Create the time vector: z* (tijkl) =h ijkk. I :! ýLs-n; ].:! ýj.:!: -: ýpj; 0-:! ýk < qý ; Ls-l.:! ýCyk, 

It can be easily demonstrated that the PN generated by following the above 

procedure is a b-NET. Fig. 19 shows the b-NET for a simple FmsML definition. The 

following equivalencies have been used: 

9A totally unprocessed part for job i =- Jio EQ =- Jistt -=JiO 
A partial processed part at task j of job i, buffery Jy c Q. 1 :! 5, i : 5, n; 0.:! ýj . 5-pi-i 

with pi the number of tasks for Ji. 

A completed part for Job i -= Jipj EE Q JiEnd =JiPi with pi the number of tasks for Ji. 

Fig. 19 shows the b-NET model of a simple FMS. 

AStart 

A12 44 

Bu7fferA I 

A2243 
M" 

ml 0 

V,,, 
411 

42 
M2,0ýý13 8 

(: K3 BEnP 

#system FNB; 

#resource MI #end; 
#resource M2 #end, 
#resource NO #end; 

#job Job_A 
#task Al description=Ml: 2.0 1 N12: 4.0; #end; 
#task A2 description=NU: 3.0; #end; 

#end; 

#job Job_B 
#task BI description= Ml & AU: 8.0; #end, 

#end; 

Fig. 19: b-Net model of a simple FMS. 
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In a way, a b-NET represents a relaxation of a FMS model. No constraints are 
imposed on the use of buffers. Hence, the solution to the scheduling problem defined by 

the b-NET is a lower bound on the solution to the original problem defined by the cb- 
NET The difficulty is that solving a b-NET problem is as difficult as solving the whole 

problem itself. 

Ideally, h(M) should be a solution of a relaxation of the problem; which results 
in an easier problem to solve. A b-NET guarantees that operations are not delayed by 

constraints imposed on buffers or materials. However, we need to go further by 

considering an unlimited resources. This will guarantee that jobs can always be done 

following the fastest routes and that they are not delayed by the sharing of resources. As 

a result, maximum machine parallelism can be assumed. Conceptually, this relaxation is 

introduced into the PN model by eliminating those places representing resources. This 

results in a PN that represents the alternate paths that a product may follow. The 

reduced model corresponds to the routing (processing) circuit that can be found in some 

modelling approaches [Hillion 98]. PN theory provides mathematical analysis for the 

solving of such a relaxed problem. However, as we have reviewed in section 2 of this 

chapter, this may well lead to expensive matrix calculations that require relaxation of 
the original heuristic function [Jeng 99]. Being aware of this, our approach bases its 

methodology in the calculation a priori of a matrix called the Resource Cost 

Reachability (RCR) matrix, which is obtained once the b-NET model is given. The RCR 

matrix will later be employed to calculate the heuristic function for every marking using 

a cheap algorithm. 

4 Resource Cost Reachability Matrix (RCR). 

The Resource Cost Reachability (RCR) matrix can informally be defined as 

follows: RCR(pp )=r; re R+ indicates that it is possible to move a token from place p 

to p' and the minimum path in terms of resource utilisation has a cost of r. In other 

words, a subpart in buffer p can be processed and transferred to buffer p' with a total 

machine utilisation- cost of r. 
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For example, a preliminary RCR matrix for the FMS infig. 19 is given in table 4: 

Astart B ufferA I Aend Bstart Bend 

Astart 0.0 + oc + cx + oc + oc 

BufferAl 2.0 0.0 + oc + oc + oc 
Aend 5.0 3.0 0.0 + oc + oc 
Bstart + oc + oc + oc 0.0 + oc 
Bend +- + oc + oc 16.0 0.0 

Table 4: pre-RCR for FMS offig. 19. 

RCR(Aend, BqfferA1) represents the minimum machine utilisation for processing 

a subpart from task I to task 2 of job A. The minimum machine utilisation for 

processing job A is RCR(AendAstart) = 5. 

RCR(Bend, Bstart) is 16.0 because although the operation cost is 8.0 it needs MI 

and M3. If RCR(PP 9=+ oc, it means that there is no relationship between two tasks. In 

fact, RCR(PP) stands for the optimum path to produce a single part in the scheduling 

problem (in terms of machine utilisation) assuming that only a single subpart is being 

processed. It can be seen that, the RCR is a concept related to b-NET's and not to the 

FMS itself. 

4.1 Formal definition of the RCR Matrix. 

Definition 6: Transition resource number (Trn). Trn(t) returns the number of 

resources used by a transition t. 

Trn: T --=; ý N+ L/ (0); 

Trn (t) = T, I(t, r) V r; rER. 10 

Definition 7: Resource time (Rt) of a transition. Rt(t) computes the total operation 

time modelled by transition t. 

Rt: T =; ý R+ u (0) ; 

Rt (t) = Trn(t) - -r (t); with r (t) the delay time associated with the transition. 

10 Recall that in the definition of a b-net the expression Trn(t) = 1,. I(tr) Vr; re R also holds, so Tsm(t) =. EO(tr) 
Vr ; rE R 
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Derinition 8: t is said to be directly connected with t' where Vt, t'E: T, if 3pEP such 

that I(pt)>01\0(p, t) >0 i. e., if there is a place that is an output for t and an input for t'. 

Deftition 9: t is said to be connected with t' Vt, t'EET, if 3s=t, to, tj, , t,,, tI (n.? 

0) where s is an ordered sequence of transitions such that: 
i) t is directly connected with tO 

ii) tj is directly connected with ti+,; Os-i <n 

iii) t, is directly connected with t J, 

s is also said to be a connected sequence. 

Dermition 10: Resource time of a connected sequence (Rs). 

Rs: In ==> R+ u (0) ; 

Rs: (s) = Lj,, Rt(t) ;s is a connected sequence. 

Definition 11: RCR Matrix. 

RCR: QxQ ==; > R+ u (0) 
RCR(p, p) =0 if P=P' 

minf+oc, Rs(s)); s is any connected sequence Ito, ti, t,, 1. 

where p' is an input place of to 

and p is an output place of t,. 

Table 5 shows the RCR matrix for the PN in fig. 19, where: 

RCR(AEnd, AInit) = minf+oc, Rs(AIZA21), Rs(All, A22)) = 

(+oc, (4+3) (2+3)) = 5; 

RCR(BEnd, Blnit) = minf+oc, Rs(B]3)) - 

min (+ o-ý 2* -r (B] 1)) = (+ oc, 16) = 16 

This means that to produce parts A and B we need a minimum utilisation of 

machines of 5 and 16 time units respectively. 
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AO 

Al 

A2 

BO 

BI 

AO 

0.0 

2.0 

5.0 

Al A2 BO Bl 

+ oc 

0.0 

3.0 

oc + oc + oc 

+ oc 

0.0 

oc + oc + oc 

oc + oc + oc 

Table 5: RCR matrix 

oc + oc 

+ oc + oc 

0.0 + oc 
16.0 0.0 
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To summarise, for a b-NET obtained by parsing a FmsML description, if for Jy, 

Jjj, (j'>j) included in Q, the element of the RCR matrix RCR(Jy,, Jj) -; 6 + 0C is the 

minimum utilisation time of resources required for a token in JU, to reach JU,. 

4.2 An algorithm for the computation of the RCR matrix. 

The algorithm shown in fig. 20 computes the RCR matrix. We claim that, for a 
b-NET generated from a FmsML description, the RCR matrix can be constructed in 

polynomial time. Prior to entering the while loop, the algorithm only determines RCR[p, 

P7 if p and p' are directly interconnected. The second part of the algorithm tries to find 

indirect connections between p and p". If the pairs [p, p7 and fp',, p'-'] are both 

connected, then the buffer-places p and p -" are connected and the minimum resource 

time of the sequence is assigned to RCR[pp'7. Every time a new value for RCR[pp'7 

is found, we need to repeat the cycle (this is controlled by the variable Change). Since 

the creation order of the buffer-places during the b-NET generation ensures that Jif is 

always defined before Jy+,, the algorithm will only need one iteration to calculate the 

rest of the RCR matrix. It follows that, for a b-NET created by parsing an FmsML 

specification, the computational cost of obtaining the RCR matrix is O(IQ12 0 ITI + IQ, 3). 
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Function Compute-RCR: 

Receives: N: A B-net obtained from FmsML. 

Returns: RCR matrix for N 

Algorithm: 

RCR [p, p7 =+ --ý Vp, p'eQ Ap -p' 
RCR[p, p]=O VpEQ 

Vp, p'EQ and Vt ET 

if I(p'Yt) =1A 0(p, t) =1 then 
R CR[p, p] =min(R CR[p, P 7, RQ) 

Changes = TRUE 

while Changes 

Changes =FALSE 
vp, p, tp,, EQ 

if (RCR[pp7>RCR[p, p7+ RCR[p', P'7) then 
RCR[p, p**7 = RCR [pp7 + RCR[p')p'7 
Changes = TRUE 

return RCR 

Fig. 20: RCR computation algorithm. 

The following section will show how to use the RCR matfix to obtain a heuristic 

function that represents a lower bound on the scheduling problem represented by the b- 

NET and thus the cb-NET 

5 Generating a heuristic function from the RCR matrix. 

By definition 11 RCR[Jiend, Jstart] represents the minimum machine 

utilisation for processing a product of job type Job,, where Jistart and Jiend represent 

the initial and output job buffers respectively. Expression (1) represents the minimum 

total operation cost for processing a product of each job type where n is the number of 

jobs and pi is the number of parts to produce each job. 

(1) 1 (pi *RCR[Jiend, Jistart ]); for i=l ton. 
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By considering that the concurrence between resources is maximum (i. e. there is 

no conflict for the use of resource so each part does not need to wait to be processed) we 

can obtain (2) where m is the number of resources. Note that (2) is a lower bound of the 

minimum makespan or total completion time for the problem of for example, 

scheduling one product of each job. 

(pi v RCR [ Jjend, Jistart 1) / M; for i=l to n 

For example, for the FMS offig. 19 this theoretical lower bound is: 
(RCR[JAend, JAStart] + RCR[JBend, JBstart]) / 3= 

(5 + 16) 13 =7 
On the other hand, the optimum makespan for this problem is 8. 

A further step is to generalise expression (2) so that it computes a lower bound 

of the optimal makespan from any intermediate state of the b-NET to the goal marking 
MF. The problem is thus defined as: 

Given M any state of a b-NET that represents the relaxed scheduling problem 

andMFafinal marking, obtain the optimum transition sequence, in terms of makespan, 
11 that startingfrom M reaches MF, assuming no conflictfor the use ofresources 

5.1 The heuristic function hRcR(M) definition and properties. 

Definition 12: RCR based heuristic function hRCR(IVP- 

Let M be a marking of a b-NET Let MFbe a final marking for a b-NET which 

represents the goal marking for the scheduling problem. 

We define A: M --=; ý Q as the set of place-tokens (representing parts) of the 

marking defined as VqE Q if M[q] =0q0 A(M); if M[q] =n (ql, q2 qn 
A (M). 

11 This condition assumes that places of M representing resources contain as many tokens as the 
maximum number of operations that can be performed to produce the total number of parts. This 
assumption guarantees that parts do not compete for the use of resources. 
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The problem is to find the set PAIRS(MFM) formed by elements of the form (q, p) 

p EA (Al), q EA (MF), that satisfies: 

(1) A(MF)-=(q I (qp)EPAIRS(MF, M)) 

(2) IRCR(qp), V(q, p)EPAIRS(MF, M) is miniMUM12 

i. e. all the place-tokens in MFmust be in PAIRS(MF, M) and the sum of the 

total operation cost for moving a part from p in M to q in MF is minimal. 

Finally: hRCR(Ap = ERCR(q, p)lm V(q, p)EPAIRS(MF, AP; m=IRI 

In other words, hRCR(M first computes the minimum machine utilisation needed 
(or total operation cost) to achieve the fully processed parts expressed as MF (the goal 

state of the system) from a partial processed stage of these parts modelled by M. If we 

assume that the degree of concurrency between the machines is maximal, we obtain a 

theoretical lower bound on the minimum makespan by dividing the total operation cost 
by the number of machines (expressed as the number of resource-places R of the b- 

NET). 

We claim that this function is admissible i. e hRcR(M) :!! ý hRcR*(M), because 

hRcR(M) represents the solution with minimum machine utilisation at the maximum 

concurrence rate. For any other possible solution, an alternate choice for a task must be 

considered instead, but then the utilisation time is at least the same but never less than 

the expressed by the RCR matrix. If we still consider the maximum concurrence 
between resources, the makespan will be the same or greater. Let us formalise this: 

Proposition 2: hRcR(M): 5 h*RCR(M)- 

Proof. - hRCR(M) = (ERCR(pi', pi)) 1m; (pi 
ypi) E PAIRS(MF, M) so the expression is 

minimal. By the definition of the RCR matrix, for each pair (pi', pi) there exists a firing 

sequence si= to, ti, j, n>0 such that Rs(sd = M(t) VtEsi is minimal. By 

proposition 1, this represents the minimum utilisation time of resources required for a 

token in p to reach p'. Thus we can express hRcR(M) =X Rs(sj) /m. 

12 the following equivalence must be assumed when obtaining : q'- E IV+' =q; i in order to obtain 
RCR[q, pl. 
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Consider si' = to, tj, ---tk 
,-- 

it, an alternate firing sequence for (pi Pi) E PAIRS(MF, 4 

with at least tk' -I tk. Then, by definition 11 Rt(tk ) =? Rt(td and so &(si ) ýý Rs(sd =; ý 

RS(Sj ) :? RCR(pi', Pi) ---* hRCR'(M) = hR CR (M)- Rs(si)lm + Rs(sj')1m :? 
hRCR(M 

- 

Thus for any other possible sequence that reaches the final marking MF from M, 

the makespan will be equal or greater to hRcR(All). 

5.2 An algorithm for the calculation of hRcR(M). 

The following algorithm (fig. 21) computes hRCR(M) 

unction hRcR(M): 

celves: M: the current Marking reached from an initial marking M,, 

mputes: A lower bound Costfor the minimum makespan from M to MF 

ables: N: A b-NET model. 
RCR matrix of N 
MF: a copy of the goal Marking for N 

NR: number of resources of the FIVIS modelled by N 
Q: the subset of buffer-places of N. 
F. the subset of places of Q representing Job's output buffers 

orithm: 
Cost =0, - 
VpeF 

while MF[p] >0 do 
MF[P] ý MF[P1 -I 

find peQ IM [p 7>0 such that RCR[p', p] is minimal 

m IP7 =m IP7 -1 
Cost = Cost + RCR[p' p] 

Cost = Cost/ NR 

re turn Cost 
Fig. 21: Algorithmjor the calculation of'hRCR, 

For each token in MF at any final output buffer p, we search for any buffer p -' in 

the current marking M, such that RCR[p', p] is minimised. This place always exists 
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because a b-NET is practically live for any marking M reached from an initial marking 

Mo (see property 1). We then remove the token indicating that a subpart in place p has 

been processed and increment the total resource utilisation cost by the RCR value. 
The main loop continues until all parts have been considered. Cost is the total 

minimum machine utilisation needed to achieve MFfrom a partially processed stage of 
the parts as modelled by M. 

The cost of the algorithm is polynomial and depends on the cost of the operation 

find, which is O(IQI). However, Q must be organised as Q= Q, u Q2u ... Q, where Qj 

contains the buffer-places belonging to Ji . This organisation reduces the cost of the 

operation find to 0( max jQjj). The maximum number of times find can be executed is 

the total number of parts to be produced. 

To conclude: the heuristic function is designed to quickly direct the search for 

FMS formulations where a) an acceptable degree of flexibility is observed; b) a 
balanced machine workload can be achieved (which is typically a desirable design 

objective); and c) there is a reasonably low operation cost variation between alternatives 
for a task. As stated in [Dario 96] in realistic FMS, the basic configuration and 
balancing phases of the design are aimed at ensuring that no individual part type (and 

we may add, machines) seriously degrades the system performance by continually 
bottlenecking particular machines. However, for problems where a resource is clearly a 
bottleneck and a balanced work-load is not possible, the estimate produced by h(M 

might be too optimistic. The experience reported in chapter 6 confirms this hypothesis. 

Notice that in our scheduling approach, the search effort will be mainly controlled by 

means of an incomplete search algorithm. This is an interesting property from the point 

of view of the heuristic function, since even for ideal FMS, a machine breakdown can 

create a temporary imbalance of the system. In this situation, h(M) also becomes too 

optimistic, thus resulting in increased search. 

5.3 Example of hRCR(M) application. 

Figures 22,23 and 24 show the search tree generated for the PN example of 

fig. 19 when using the A* algorithm from chapter 3 employing h(4-0; h(A4)-h*(Al) 

and h(M)::::::::: hRCR(M) respectively. The set Unexplored is ordered in the increasing 
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magnitude of h(m). Notice that if several nodes yield the same value of h(M), the one 

that is deeper in the graph has priority, breaking ties in a FIEFO manner. 
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Fig. 23: search graphfor h(* =h *(M). 

Notice that the heuristic function proposed quickly identifies the most promising 

markings and only explores one node more than the unrealistic setting h(M)=h*(M). 

Notice that the execution for h*(M) follows a strictly depth-first search, and 

consequently finds the optimum solution in O(d) where d is the depth of the solution 

node. However since h*(M already solves the problem, its calculation is of exponential 

complexity. 

On the other hand, the breadth-search effect of not using predictive information 

can be observed for the pure best first search h(M)==O. 
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The effect of a heuristic function with a depth-first search component h(M)= -A 
# depth(m), is observed in fig. 25. The value of A is set to (4+2+3+8)14 = 4.25. Notice 

how the solution obtained is not optimum. 
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Experimental results. 

The following experimental analysis was performed in order to evaluate the 

effectiveness of the heuristic function developed. A collection of 2000 problems 

consisting of 3 different jobs and 3 machines were randomly generated. Randomness is 

achieved by the employment of robust random number generator routines for uniform 

and normal distributions [Numerical 92]. 
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These problems were solved using a pure A* approach without identification of 

previously reached markings. Three heuristic functions were evaluated: 

a) hBF(m)=O, - which turns A* into a Best First approach. 

h, 4(m) =-A/N# depth(m) being A the mean operation cost and N the number of 

resources. Which is a typical non-PN heuristic. 

c) hRCR(m) a PN based heuristic. 

The first analysis corresponds to the study of the search space explored by each 

heuristic. Table 6 shows the descriptive statistics for the number of markings (states) 

explored by A* employing each of the heuristic. 

Heuristic 

Function 

Minimum Maximum Mean Std. 

Deviation 

hBF(m) 11 2293 479.56 399.92 

h, 4 (m) 10 1997 307.39 284.14 

hRcR(m) 5 1131 105.22 115.03 

Table 6. Descriptive statistics of 'the no. of markings exploredfor the set of 2000 problems. 

The first interesting result is that, although hA(m) explores a larger number of 

markings than hRcR(m), which indicates a less informed search, it suffers from the 

problem of non-admissibility. i. e, while hRcR(m) always finds on optimum solution, 
h, 4(m) fails to do so in 6 problems out of 2000. Further experiments have shown that 

with less optimistic settings of h. 4(m) (decreased N) the search effort tends to match the 

search effort with hRCR 
, but the number of cases were a near optimum solution is found 

also increases. 

In order to compare in more detail the effectiveness of each heuristic function, 

we studied the statistics of the relative difference of the search space explored for each 

problem. 
The relative difference, expressed as Rd(A, B) is calculated as the following 

expression., where the term Exploredo makes reference to the number of markings 

explored when employing each heuristic function. 
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Explored(A) - Explored (B) 
Rd(A, B) =% 

Explored(A) 

Heuristics from Petri Nets. 

Table 7 shows the descriptive statistics for Rd(A, B) for the set of problems 

solved. Figures 26,27 and 28 show the frequency histogram of each distribution 

respectively. 

Algorithm Minimum Maximum Mean Std. 

Deviation 

Rd(hBF,, hA) 0.0 94.88 31.42 21.05- 

Rd(hBF, hRCR) 2.74 97.90 73.35 16.82 

Rd(hA, hRCR) 
-35.59 96.6 62.48 16.62 

Table 7. Statistics of the difference ofsearch effort between heuristics expressed as Rd(A, B). 

Fig. 26: Histogram for the % relative difference of markings explored of hBFand hA (Rd(hBF, hA)) 

Notice that the distribution of the relative difference for the number of states 

explored by hBT(M)with hA(m) approximates to a uniform distribution, showing that for 

many problems hA(m) results are too optimistic, thus confirming the tuning difficulties 

of hA(m). Such a distribution is not produced for Rd(hBF, hRCR) as observed infig. 27, 

where the search effort reduction approximates more to a normal curve where the 

number of problems for which hRCRperforms poorly is marginal. 
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Fig. 27: Histogram for the relative difference ofmarkings explored ofhBFand hRcRexpressed as Rd(hBF, 
hRCP) 

Finallyfig. 28 shows the histogram for Rd(h, 4, hRcR). Only in four cases is the 

search effort reduced with respect to hRCR(M) while, in general terms, the difference of 

search effort follows a normal curve with mean 62.5 and std. deviation of 16.62. 

Fig. 28: Histogram for the relative difference of markings explored of hA and hRCR expressed as 
Rd(hA,, hRCP) 

The results observed in these experiments leads to the following conclusions. 

a) The fact that h, 4(m), which is not a PN based heuristic, seems to be less 

informed than hRCR(m) and is more difficult to tune. 

b) As explained in section 5.2, the use of limited global information in hA(m) is 

likely to be leading the search to the exploration of the search space guided 

by strategies such as do the fastest operations first. This seems to be 

increasing the backtracking effort. 

Scheduling of FMS integrating PN and Al methods. 93 

ýýJj UJI 



Chapter 4. 

7 Summary. 

Heuristics from Petri Nets. 

The work undertaken in this chapter has shown the potential of PN to use 

reachability analysis for scheduling purposes. The PN, as a representation tool, easily 

allows the relaxation of the problem by the elimination of constraints that are naturally 

modelled by a PN model. Also, the PN theory and mathematical analysis allow an easy 
formulation of heuristic functions whose properties can be studied and that represent an 

approximate solution to the problem. From the point of view of calculating estimates, b- 

nets are useful since they are obtained from the PN model, of the FMS. This is 

interesting since the algorithm for calculating the heuristic employs a modelling 

paradigm that performs close to the original model over which we simulate scheduling 

alternatives. Consequently good estimates of possible behaviours can be obtained. 
The concept of the RCR matrix allows the core of the heuristic function to be 

calculated prior to search. This reduces the computational cost of calculating the 

heuristic function, thus supposing an improvement over previous PN based heuristics 

that needed from mathematical relaxation. 

From the point of view of the effectiveness of the heuristic function proposed, 

the experimental results have shown considerable improvement over previous heuristics 

that have been widely employed in the literature consulted. 
The benefits of the hRCR heuristic function will be later demonstrated in chapter 

6, where this heuristic is employed in conjunction with incomplete search procedures. 
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Chapter 5. Reachability graph truncation based 

in PN dynamics and heuristics 

1 Introduction. 

The FMS scheduling problem can be defined as a procedure that identifies the 

best way to reach a goal among a very large number of possibilities. In fact, obviating 
deadlocks, any possible sequence of operations that completes all the parts leads to the 

same final state in terms of part status. i. e, all parts have been processed, the difference 

is in the performance of the system. While certain schedules lead to optimum solutions, 

others do not. This chapter reviews the search space defined by cb-PN reachability 

analysis and how the knowledge acquired can reduce search effort by avoiding paths 

that do not lead to a better schedule. 

The techniques studied here attempt to: 

a) Identify the best alternative among partial schedules that lead to a similar 

system status. 

b) Avoid the generation of schedule permutations where two or more non- 

conflicting operations become active at the same time instant. 

c) Avoid the generation of partial schedules that do not yield an optimum 

solution. 

This kind of PN reachability analysis has received little attention in the work 

consulted, despite its potential in terms of search effort reduction. This chapter is 

organised as follows: section 2 presents a comparative study of different strategies to 

identify previously reached states and how two states describing the same system status 

can be compared and differentiated. Results will show that incorporating a test to prune 

paths that assure optimality adds complexity to the search procedure. On the other hand, 

less complex heuristic tests may be used achieving higher search reduction. The price 

paid is loss of admissibility. 

Section 3 studies why different paths reach a similar system status and proposes a 
PN-based branching scheme (Controlled Generation 

t: ) Of Successors) that avoids 
branches that do not yield better schedules. In short this approach adapts the following 
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methodology: for each active operation (transition) the algorithm decides if the 

operation is to be delayed or applied. The decision to delay an operation is motivated by 

the desire to keep resources available for other operations not yet active. The algorithm 

maintains this decision until the evolution of the system forces an operation to be 

reconsidered. Empirical analysis will show that the method ensures optimality and 

considerably reduces the search effort, thus overcoming the drawbacks of the methods 

presented in section 2. 

2 Identifying previously explored markings. 

2.1 Similar and more promising markings. 

When the cb-NETA * algorithm was presented infig. 6 in chapter 3, a question arose 

about the meaning of the tenns similar and more promising than (fig. 29): 

If M'is similar to another marking M" in UnExplored 

if Mis more promisitzg than M" then 

Put Min UnExplored 

Remove M" from UnExplored 

goto (1) 

Fig. 29: Subpart of cb-NETA * offig. 6. 

The objective of this test can be explained as follows: M' is a new marking 

reached from Mo following some sequence of transitions (s'). The marking Mindicates 

the state of the partially processed parts as well as the state of the resources. Let us 

suppose that another marking M' has been previously found expressing the same 
distribution of tokens (and hence the same state of parts and resources) reached from MO 

following its own sequence of transitions s". That is, two markings, expressing the same 

state of parts and resources have been reached following two different sequences (two 

different partial schedules and consequently different system performance). 
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It is interesting to determine which path s' or s Yj represents a more promising 

way to go. Suppose that Mis found to be better than M, 13 
. 

By rejecting the exploration 

of M" the algorithm will not duplicate search effort that is not likely to lead to a better 

solution. 

An interesting question is: which sequence represents a better schedule in terms 

of our objectives?. Since both M' and M" represent the same marking in terms of the 

distribution of tokens, their associated heuristic functions h(M), h(M') will be the 

same 14 
. It is tempting to think that the current makespan g(M) would easily differentiate 

between alternatives: the marking yielding the smallest g(M) indicates, a priori ,a better 

schedule. 
However, this approach is too simplistic for the following reason. A marking of 

a timed-PN has its tokens in two possible states: available and unavailable. g(M) express 

the current time of the system in terms of available markings as expressed in chapter 4. 

14owever, the status of the unavailable markings is not reflected in g(M), although it has 

a great effect in determining the next transition to be fired next (Fig. 30). 

PI 

p2 
2 

p5 
p3 

13 --; - 
p4o 

M 1: g(MI) =60 
p2 available at 9.0 

PI 
t] ! 
p2 

P5 
p3(ý) 

t3 --; --- 
p4o 

M2: g(AD) = 7.0 
p2 available at 8.0 

Reachability graph truncation based in PN dynamics and heuristics. 

Fig. 30: two similar markings. 

The distribution of tokens in both markings is equivalent, which means that the 

product is being transferred to the cutting machine. Comparing makespans, MI seems 

to be better than M2. However, at MI, t2 will not became enabled until 3 time units, 

whereas at M2, t2 will be enabled earlier (in I time unit). This is a simple example, but 

leads to the conclusion that an exact comparison between markings with the same token 

distribution is only possible if also taking into account the possible transitions to be 

13 Although we are actually comparing partial schedules, since each schedule is associated with a marking 
the expression M' bettei- than M" is equivalent to s' better than s 
14 This is valid for a typical heuristic function as the ones presented in chapter 4. 
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fired. From the point of view of firing t2, M2 represents a better solution, but this 

reasoning may not be applicable to other possible firing sequences. 

As mention before, a second alternative is to use full node estimation: f(m) - 

g(m) + h(m). The marking yielding the worst value of f(m) may be discarded. This 

approach is employed in [Xiong 98]. Consider m and m' two markings with the same 

token distribution. Evidently, if f(m) is based in the distribution of tokens in M, both 

nodes are equally valued, i. e, h(m) =h(m ). Hence, the result of the test depends on g(M). 

If for the general case we cannot confirm that h(m)=: h(m ) both markings are compared 
in basis of an estimation of the lower bound, so we cannot claim the admissibility of the 

test in this case. 

2.2 A safe test that guarantees optimality. 

To ensure that a marking M will produce a better schedule than a previously 

reached marking M, each token in M should be available sooner than the same token in 

M. To formalise this, the following definitions are given. 

Definition 13: Define AT as the set of pairs (p, t) where p represents a place and t the 

time when the token will become available in p. AT is constructed from a marking M 

using the following definition: 

Vp EA(M (p, t) c-AT 

That is, for each token in a place-token p, an element (p, t) is included in AT 

where t is the elapsed time of this token. 

Definition 14: A marking M' is said to be better than a marking M with the same 

token distribution if it is possible to create a set of pairs AT2 -ATxAT' that satisfies the 

following conditions: 
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(1) If ((P, t), (p 'Y t )) EA2 then p represents the same place as p T 

(2) V (p, t) E AT there exists one and only one pair ((p, t), (p' t )) EA2 1T 

(3) V (p'l t)EA Tthere exists one and only one pair ((p, t), (p' t )) EA2 YT 

V t), (p tA2t : 5, t) T 

Condition (1) guarantee that pairs of tokens can only be formed between 

elements that refer to the same place in the cb-NET model. Conditions (2) and (3) 
2 

ensure that each element of AT or AT'must be included in AT but also that each element 

can only be used once to create a pair of A2. Hence, p 21 
= PT I= JAT'J. TT 

Finally condition (4) ensures that a token of M will become available before or 

at the same time as its pair in M. If M is better than M, the best schedule that can be 

obtained from Mo to MF through M' is equal to or worse than the best possible schedule 
through M It is important to note that if M is not better than M' this does not 

necessarily imply that M'is better than M 

Proposition 3: If Mis better than M'then h*(M).:! ý h*(M) 

Proof: Since M represents the same distribution of tokens as M' then any transition t 

enabled in Mis also enabled in M. As Mis better than Meach of the tokens that enable 
2 the transition b in M'has its corresponding pair in AT that becomes available earlier in 

M. Consequently transition t will fire in M no later than in M'. It is easy to see that the 

firing of t in M and M' produce two new markings A12 and Alf' which have the same 

distribution of tokens and satisfies the condition that A42 is better than A42'. Repeating 

the process with A112 and A42' we will eventually reach two final markings MF and MF' 

where MF is better than MF'. 

The problem with this approach is complexity. Each marking must be stored 

with its full state description. In addition the algorithm that determines whether a new 
of 02 marking M is better than another marking M' has a cost (n ) for the general worst 

case with n being the number of different tokens in the marking, and O(n) for the 

general case. Since this comparison is made with all the explored and unexplored 

markings, the computational overhead is large. This is not surprising and has been noted 

previously [Nilsson 82]. 
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2.3 The complete Cb-NET A* algorithm. 

The complete cb-NET A* algorithm can now be defined (fig. 31) from the one 

shown infig. 6 in chapter 3: 

rithm cb-NETA*. 
ilives: MO, MF: The initial and final marking of a cb-NET N from FmsML. 
rns: Sequence of transitions representing the schedule. 
ibles: UnExplored., List of new markings for exploration. 

Explored., List of markings already explored. 

UnExplored = Mo 
Explored =0 

(1) while UnExplored is not empty do the following 
(2) Remove a marking M from UnExplored yielding the smallest f(M). 
(3) If M matches with MF then 

Retrieve the path from Mo to MF 
Exit with success. 

(4) else Put M in the Explored List 
(5) For every transition tenable in marking Mdo the following: 

Obtain the marking Was result of firing t in M 
(6) while exists M" e UnExplored I M'= M" do 

If Wis better than M" then 
Remove M" from UnExplored 

(6.2) else If M" is better than M' then 

goto (5) // M is not considered 
(7) while exists M" e Explored I M= M" do 

If M" is better than M'then 

goto (5) // M is not considered 
(7.2) // else continue' 

Put Vin UnExplored 
goto (5) 

goto(l) 

Fig. 3 1: cb-PN based A* algorithm. 

Step (6) compares the new marking M' with all the unexplored markings. For 

each marking M" with the same token distribution a comparison is made. If M' is 

determined to be better than M" (6.1) M" is removed from UnExplored. If M" results 

in a better marking than M' (6.2) then M is not considered, and the algorithm considers 

the successor of the current marking under exploration. 

If M' exits successfully from (6) it is compared to the set of markings which 

have already been explored (7). If a marking M" is found to be better than M', the latest 

is rejected (7.1). If not (7.2), M' may represent a better alternative than a previous 

explored path and is thus included in UnExplored for further exploration. 

SohAdulina of FMS intearatina PN and Al methods. 100 



Chapter 5. Reachability graph truncation based in PN dynamics and heuristics. 

The following section presents an empirical study of four different tests that 

establish a more promising criterion between two markings that represent the same 

static state of the system (similarity). 

2.4 Experimental comparison with different check tests. 

Test 1: A marking M is more promising than a previously generated marking M' 

with the same token distribution if M is better than M'. This test is admissible, i. e, it 

never rejects a marking that leads to a better solution. 
Test 2: A marking is more promising than a previously generated marking M' if 

g(M) < g(M). This is a heuristic test, in the sense that it does not guarantee optimality, 
however, the computational complexity is lower than for Test 1. 

Test 3: Test 2 only considers time information regarding the set of available 

tokens of the marking. Several heuristics can be proposed to add a time component to 

the tokens that are still not available. The following heuristic test has been shown to 

provide good results in our experiments. A marking is more promising than a previously 

generated marking M'if j(M <j(M). j: M-> R' is calculated as j (M) = g(AI) + U(M). 

U. M--) R+ is the mean time for the as yet unavailable tokens of the marking to become 

available in M. 

Test 4: is similar to Test I., however the better criterion is constrained to the set 

of places R that model resources. The idea underlying this test is to determine which of 

two markings expressing the same distribution of parts in the FMS will release the 

resources earlier. A similar test. is employed in [Inaba 98] with the aim of detecting 

repetitive processes. 

The experiment consisted of the generation of a random set of FMS descriptions 

with 3 jobs, 3 machines and a maximum of 3 tasks per job. 85% of operations allowed 

alternate routing. The problem is small since it needs to be solved optimally. However, 

the problem set is representative enough i. e., 10xlOx1O is just a larger version in terms 

of search space size but does not introduce new elements concerning scheduling 
decisions. 
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Each problem was first solved with the cb-NET A* algorithm using hRcRas the heuristic 

function without the test for similar markings. The same problem was then solved using 

each of the four tests defined above. 
Table 8 surnmarises the descriptive statistics for the % of search space pruning 

achieved by each of the above-described tests when compared with a pure cb-NET A* 

that not apply a test for similar markings. 

Test Minimum maximum mean Std dev 

Test] 1.1 67.0 27.7 16.0 

Test2 91.7 98.4 96.1 1.3 

TeW 88.0 98.4 95.7 1.4 

TesN 56.6 79.0 44.0 19.2 

Table 8: % of'Search space prunedfor each test 

Table 9 shows the % of the number of problems not solved optimally by each 

test. It also shows the statistics for the relative distance of the solution obtained against 

the optimum solution known for the problem. 

Test % of problems 

not solved 

Relative difference of the solutions obtained with 

respect to the optimum solution. 

optimally. min. Max. mean Std dev 

Test] 0.0 0.0 0.0 0.0 0.0 

TeW 71.0 0.4 51.7 10.0 7.9 

Test3 42.2 0.4 30.0 6.0 5.1 

TesN 14.6 0.5 22.0 4.7 4.7 

Table 9: Descriptive statistic of the optimalityfor each test. 

Results clearly show that although Test I ensures optimality, the search 

reduction is relatively small compared with Test2. However, it is noted that the 

percentage of problems not solved optimality with this test is close to 70%. 

Test 3 achieves almost the same percentage of search reduction but considerably 
increases the quality of the solution reducing both the number of problems not optimally 

solved and the distance of the solution obtained from the optimum solution. 

Finally, Test 4 represents a compromise between the admissibility of Test] and 

the effectiveness of Test3- 
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In the work consulted, the majority of approaches that follow [Lee 94] consider 
the test for duplicate markings as a comparison of the current elapsed time of the 

marking g(m) or makespan i. e, Test 2. 

We finish this section with the following argument. The strategy of identifying 

previously reached markings is inherit from the definition of the standard A* itself. We 

only have made use of PN analysis to achieve effective search reduction, but A* 

assumes complete exploration of the entire search graph. This represents a problem 

when incomplete search procedures are adopted, since the part of the entire reachability 

graph observed is minimal. Neither these strategies nor the ones in the work consulted 
investigate the application of a branching scheme, based on PN structures and 
dynamics, that reasons forward about the search space generation without having to 

compare with previous markings. The next section describes a successor generation 

strategy that avoids the generation of PN markings that represent futile or duplicate 

paths in terms of the optimisation objective. 

3 Controlled generation of successors: CGS. 

If we think about what situations may lead to similar markings we can readily 

identify two groups: 

a) Permutations of the same schedule, where two or more transitions can be 

fired at the same instant, leading to identical states. 
b) Schedules that do not lead to an optimum solution, there exists an alternate 

better schedule which is easily identifiable 15 
. 

This is, obviously, not exhaustive - there will be other cases, but taking a) and b) 

into account should improve performance. Let us discuss a) and b) separately. 

15 Those schedules are usually known as non-active [Pinedo 95]. A feasible schedule is called active if no 
operation can be completed earlier by altering processing sequences on machines and not delaying any 
other operation. 
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pi p3 

ti R2 t2 

p2 
RI 

p4 0 

Fig. 32: Marking Mo with two concurrent enabled transitions. 

tl is fired 

0 mo 

t2 is fired : ýz *"*ýA 

M, M2 

t2 is fir tl is fired 

M, M4 

Fig. 33: Search graphfor Mo infig 32 

a) In the cb-PN of fig. 32 two transitions can be fired simultaneously: tI and t2. This 

situation leads to the reachability tree expressed in fig. 33. Obviously, M3 and M4 are 

equivalent. A* would eventually prune any of those markings using the techniques to 

identify same markings presented in the previous section. However, while not 
detected (MI and M2), they represent candidate paths to be explored and lead to 

unnecessary computational effort. 

b) Now consider the PN of fig. 34. Again tI and t2 are enabled, but now tI can be fired 

earlier than t2. An order permutation of the firing will lead to similar markings, as 

seen in fig 35, but this time one is clearly better than the other, i. e. the subpart in p2 

is available sooner in M3 than in M4. In other words, M3 is an active schedule while 

M4 is not. One may think that a successful strategy is to fire the transition that 

becomes enabled soonest, but this idea does not work 16 
. However, if we eventually 

16 Such a strategy is known as a non-delay. A feasible schedule is called non-delay if no machine is kept 
idle when there is an operation available for processing [Pinedo 95]. It must be noted that the optimum 
schedule is an active one, but it is not a non-delay schedule for the general case. Hence, a scheduling 
search strategy based in the generation of only non-delay schedule is not optimal, although it reduces the 
search space [Doulgery 871. A non-delay strategy is easy to implement with PN structures by always 
forcing the firing of those transitions that have all the tokens required available in the current marking 
[Azzopardi 94]. 
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fire t2 first (i. e, delay t]), it seems logical not to fire tI afterwards, since a better 

schedule could have been obtained by firing t] first. 

pi 0 p3 0 

ti R2 t2 JRI 

p2 p4 00 

p] available p3 available 
in I time units in 2 time units 

Fig. 34: Marking MO with two enabled transitions. 

40 1- 9(mo) =0 

, fi 

0 

tl is ired is fired 

g(MI) =IM, M2 g2 

12 is fire 11 is fired 

( 3) =2 g(Mý =2 gM M3 M4 

Fig. 35: Search graphfor A infig. 34. 

The strategy that we pursue with our CGS method is often observed in 

mathematical programming approaches under the name of dominance rules. [Hariri 97] 

include several dominance rules for Flow Shop scheduling based on analysis of the 

problem domain. [Derneulemeester 92] report a next-node generation strategy to avoid 

schedule permutation caused by unrelated operations and provide a rule to transform 

non-active partial schedules into active ones. However, the problem domain is a JSS and 

the fact that there is no alternative routing is considered may invalidate the results for 

FMS descriptions. In addition, to the best of our knowledge, in both approaches nodes 

are actually generated and then pruned. An enumerative algorithm for the generation of 

all active schedules for FMS formulation is given in [Shen 88], but the method is not 

event driven, leading to duplicate copies of schedules. 

However, in works dealing with PN only the work of [Jeng 98] seems to have 

given attention to this issue. They devised a function that prunes paths that are 

permutations of non conflicting transitions that can be fired at the same instant. Apart 

from the fact that they only seem to be considering concurrent transition permutations, 
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their approach actually generates the markings which are pruned later. In other words, 

to the best of our knowledge no one else has considered a PN based pre-emptive 

pruning strategy. 

3.1 Description of the method 

Let us consider a marking M. Associated with this marking, is a data structure 

called Agenda(M) 17 as an ordered list of pairs (t, r) where r is the delay needed for all 
the tokens required by t to become available from the current time of the marking, 

provided that no other transition is fired earlier. Agenda(M is ordered in the increasing 

magnitude of r. Such a list may be understood as the set of transitions that may fire in M 

to generate successor nodes. For the initial marking Mo, Agenda(Mo) is defined as the 

set of enabled transitions, however, it is important to mention that not all of the 

transitions enabled at an intermediate marking M are included in Agenda(". 

Let us take the first pair (tr) of the Agenda. We can now consider two possible 

actions: 
Actualise the marking M increasing the time by r and apply t, obtaining 

a new marking M'. 

b) Decide not to fire the transition, and generate a new marking M' -v 

equivalent to M'but with (tr) removed from Agenda(M). 

A first interpretation leads us to a search tree of branching factor two as seen in 

fig. 38. Each marking represents a decision point that divides the feasible schedules into 

a) schedules were transition t was fired in M, and b) schedules where transition t was 

not fired in M. 

17 The term Agenda is imported from rule-based production systems. The agenda contains the instances of 
rules whose conditional part is satisfied in the current state. 
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m0 4genda r) 

Apply I Do not apply t. 

mi M99 
Agenda(M = (? ) 

--) r-). 
Agenda(M') 

Transition t was 
Fired under marking M 
A new marking is 
obtakied. Agenda(M') 
ieeds to be recalculated 

Transition t was not 
fired under M. Haýc-e 

M" =M andAgenda(M") 
is equal to Agenda(M) hut 
minus the pair (t, r). 

Fig. 38: Search tree generated considering Agenda. 

The first question that arises is: why not fire t ?. To answer this question, 

consider the PN of fig. 39. Resource RI is ready, and two parts from BI can be 

processed, however, resource R2 is currently processing another subpart, but will be 

available in I time units. On the other hand, a part in buffer B2 will be ready to be 

processed in I time units. The cost associated with'tl, t2 and t3 are 1,3,1 respectively. 
If we decide not to fire t2 now, and increase time by 1; t] and t2 can now both be firedl 

and after the release of RI, t2 becomes enabled again and can be fired, resulting in a 
better schedule than if tl had been chosen the first time. The reason, then, for not firing 

tI first is to keep available resources that might be used by other operations and 

progress to a better schedule. This is usually referred to as strategic or tactical delay. 

R2 will be 
Ready in I BI B2 (0' )) Product will be 
time unit Ready in I time 

RI 
units 

12% t3 

0 

Fig. 39: Marking example 

The agenda for this marking is ( (0,0) (tl, 1) (t3,2) ). Let us consider the branch 

where (t2,0) is not fired, which leads to a search state M' equal to M except that the pair 
(t2,0) has been removed from the agenda i. e. Agenda(M) = f(t], 1), (t3,2)). Notice that t2 

is still enabled in M'but it will not fire since it is not included in Agenda. The reason for 

this is clear, we have decided that t2 should not fired and we will maintain this decision. 
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This, of course, leads to a second question: If a transition has been removedfrom the 

agenda, when should it be re-considered ? Let us try to answer this: 

Two situations are defined where a transition t that was in Agenda is not in a 

subsequent marking: 

a) The firing of a transition t' in marking M produces a new state M' where t is 

not enabled, since, for example, t and t' are mutually exclusive, or the firing 

of t' excludes the firing of t in terms of resource constraints. Consequently, t 

will not be further included in Agenda(M). 

b) Transition t has not been fired in M, and is removed from agenda, although it 

is enabled. 

Situation a) is solved by the PN enabling rule i. e., transition t will be included in the 

agenda of any marking M' that is a successor of M where t satisfies the enabling rule. 
Situation b) escapes to the usual PN token game since M is actually enabled but has 

been removed from Agenda by an arbitrary decision. Transition t will not appear in the 

agenda of any marking M'that is a successor of M until: 
b. a) Transition t is still enabled but follows situation a) i. e. eventually, the 

application of some other transition makes t not enabled. The re-inclusion of t is 

determined by the PN enabling rule. 
b. b) Transition t stays enabled but a sensitive event concerning this transition 

happens that leads to the reconsideration of the re-inclusion of t. 

Situation b. b) needs an explanation of the concept of sensitive events in the 

partial state identified by the inputs and output places of a transition. In other words we 

must define what sensitive events mean and how they can be modelled. 

In table 2 in chapter 3, we established the parallelism between a PN model and 

the enabling and firing rule with a state change operation in a STREPS-like [Fikes 711 

problem representation. This definition is extended to include a new term, sensitive. 

Operator: t 
Precondition: cb-PN enabling rule 

SENSITIVE: S cP 

Post condition effect: Firing rule. 
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Where the set SENSITIVE specifies a set of places that are directly related to the 

transition (they are either input or output places) and changes to which affect the context 

in which the transition can be fired. For example, consider the PN offig. 40. 

A single 
AGV 

tready 

Load 

0 

Marking M 

Two 
AGV available 

load 

0 

Marking M' 

Reachability graph truncation based in PN dynamics and heuristics. 

Fig. 40: a change in the partial state. 

The figure represents a loading operation from an input buffer. To perform this 

operation, the system has two AGV's. In the left marking M of fig 40, transition load is 

enabled, although only one AGV is available at the time. The system can evolve to the 

right marking M' expressed in fig. 40, where load is still enabled; but now both AGV's 

are available. Marking M' represents a different context for t in the sense that two 

resources are available instead of the one available in M If, at marking M, load was not 
fired, we should reconsider the decision at marking M'since a change in the place AGV 

has occurred We considered that a sensitive event for a transition t is any change in the 

number of tokens observed in the places that represent resources (machines, buffers, 

etc., ). 

There is a last question left to be considered. We need to determine when the 

decision to delay a transition is useless, i. e., the effect of delaying the application of an 

operation has no benefit. The following section, will present an implementation of the 

CGS branching method and will address the issues raised above. 

3.2 CGS algorithm. 

The branching factor of two first noted in fig. 38 can be revised. Fig 41 shows 

the search tree starting from a marking M Notice that NF, A44... Nf" is exactly the same 

as M It is meaningless, from the point of view of systematic search, to store any of 
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-1 3 2n+l 
these markings for further exploration. In fact M, M ... M, can be obtained by 

sequentially processing the list Agenda(M). 

A ly/ Do not apply 1. 

ml 

Pp 

m2 
Agenda(M') = (? 

0 
Agenda(M) 

Apply Do not apply 1'. 
m3 

ý 

M4 
Agenda(A43) Agenda(Al) 

M0 Agenda(" = ((Q), (1', r) ) 

Fig- 41: Search tree generated 

The terms and concepts of Agenda and Sensitive are now formally defined: 

For every transition t we define the set Sensitivet as Sensitivet = (r eRI I(r, t); zO) 

being R the set of resource places, and I the pre-incidence matrix of a cb-PN. Associated 

with any state of the search graph represented by a marking M we define two lists: 

Agenda(M) and Delayed(M) as follows. Agenda(M, as explained before, contains the 

set of transitions that are enabled at M and can still be fired to generate a new branch 

M'. The new list, Delayed(M) is formed by those transitions that, although enabled at M, 

have not been fired. Notice that the union of Agenda(M and Delayed(M) equals the set 

of transitions enabled at M Agenda contains pairs of the form (tr) where t is an enabled 

transition and r=c(t, 018 
. The elements in Agenda are ordered by the increasing 

magnitude of r. The list Delayed is also formed by pairs of elements (tr) and is used to 

decide when the arbitrary delay of a transition is useless. To do this, we determine if no 

change occurs within the interval defined by c(tM) + r(t)19 for a transition t included in 

Delayed 

CGS (fig. 42) substitutes the standard branching procedure of generate a new 

marking for every transition enabled. For example, in our cb-PN A* algorithm 
descnbed in chapter 3 20 

18 c(l, " is an alternate expression for c(MMý that is the cost of an arc in the search tree defined in page 
70. Le, I is the transition that, if fired in Mproduces M'. 
19 r(t) is defined as the delay associated with the system operation represented by t, either as the operation 
itself or as the transition marking the beginning of the operation. 
20 See chapter 3, figure 6, step 5. 
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gorithm CGS. 

ceives. M the current marking under exploration. 

omputes. The set of markings successors of M and their associated Agenda and 
Delayed lists. 

(1) while Agenda(M) is not empt 

remove the first element (Q) in Agenda(M) 

generate the next marking Vas a result of firing t in M. 
Agenda(M) = 0,, Delayed(M) = o; 

for every pair (t, r) E=- Delayed(M) 

if t'is enabled at Vand no change is observed in any i2lace pe Sensitivet, 

then include (t, r! -c(M, t)) in Delayed(M). 

for every other transition t'enabled at M'. 

if tiý Delayed(M) then include (t, c(M, t)) in Agenda(M). 

If qtOE Delayed(M) r> 0 then 

if Wis not a final marking and passes the test for similar marking then 

put Vin the list UnExplored for further exploration. 
add the pair (tr) to Delayed(M). r= r+ i(t) being 

-r(t) the delay associated with the operation. 

goto (1) - 

Fig. 42: CGS algorithm. 

Let M be the marking selected from UnExplored yielding the lowest h(Ad). Let 

Agenda(M be its associated agenda. The first pair (tr) (i. e., the one that Yields the 

smallest r) is removed from Agenda(M). The marking M' from (tr), is obtained by 

firing t. Agenda(M) and Delayed(M) are built as follows: only the newly enabled 

transitions, or those delayed transitions in Delayed(M) for which a change has been 

observed in the places of Sensitive,, are included in Agenda(M). If no change is 

observed in the Sensitivet places of a delayed transition of M then the transition is still 

observed in Delayed(M) but its associated time information is actualised by subtracting 

the cost of applying t in M. 

Next we determine whether the time variable r of any pair (tr) of the elements 

of Delayed has reached 0. The rationale is that transition t was delayed in order to keep 

its resources available, but these resources have not been used by any other operation 

within the interval defined by t(t) or new resources affecting t have become available 

(no change has been observed for Sensitive, ). Consequently, we consider that the 
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arbitrary delay of t is useless and the path associated with M is pruned since it represents 

a non-active. If this does not happen, then M' is included in UnExplored for further 

exploration if it is not the goal marking and it passes the checking for duplicate 

markings, 

Finally, Delayed(M is created by adding the pair (tr). By doing this, we 

consider that transition t is to be delayed and fix its deadline r' as the cost of performing 

the operation that t represents. 

3.2 Example application. 

To illustrate the algorithm, consider the PN model of Fig. 43. The system has 

two jobs with two operations each, and two machines. 

JobAlnit JobBInit 
mi 

A142 
M2 

1 42 

BufferA 0 '0 

A243 B241 

,77 
JobAEn JobBEnlo 

Fig. 43: PN modd 

Fig. 44 shows the search tree. At every marking M, we consider as a possible 

successor the firing of any t enabled at M Fig. 45 shows the search tree generated with 

the control based in the structure AgendaO of the CGS algorithm. The contents of 

AgendaO is given for each node in the figure. CGS generates 12 nodes, as opposed to 

18 for the original approach. Note that the search tree is generated with a full 

enumerative search algorithm ( such as breadth-first) and no pruning is perfonned 
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Al 

jýý 

C 
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00 

B A2 2 
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Fig. 44: Full reachability tree. 

MO ((AI, O), (BI, O)) 
Al BI 

(ýff(BI, 
O), (A2,2)) 

A 
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ý BI 

0 j(BI, 3)) ((A2,2), (B22)) 
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f(B2,2)) J(B2,0)) 0 ((A22)) 

B2 B2 A2 

BI 

B: Al 

00 

Al A2 E2 

A2 B2 A2 

Fig. 45: Reduced reachability tree generated with CGS. 

The initial MO contains two transitions from the Agenda, AI and B1. The second 
branch (M2) results after firing BI and ignoring Al. Note that A] is still enabled but not 
included in Agenda(M2). The only choice is to fire B2. Since B2 uses RI, Al becomes 

enabled again in M3. 

4 Experimental results. 

In order to study the performance of the CGS approach, three experimental tests 

were carried out. The first one studies CGS as an alternative to substitute the pruning of 

paths by comparison of similar markings in A* that we studied in section 2 of this 

chapter. The second studies the performance of CGS in branch and bound algorithms 

where it is not possible to apply such test for similar markings. Finally the last 
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experiment shows how CGS improves the results when applied to incomplete search 

procedures. 

4.1 Integration with A* 

A set of 200 random problems consisting of 3 machines and 3 jobs were 

generated. The number of tasks per job was randomly decided between 2 and 3, 

additionally, 75% of operations allow alternate routing and 40% of operations require 

more than one machine. 

Four algorithms were implemented: A* (Algl) that did not include any test for 

similar markings, the second algorithm (Alg2) is A* including the test for similar 

markings Test 3 presented in 2.4. Such a test represents a compromise between pruning 

efficiency and optimality. The third algorithm (Alg3) does not employ a test for similar 

marking but integrates CGS. Finally, in Alg4, A* was implemented employing both the 

branching scheme CGS and our admissible test for similar markings Test 1. 

The number of markings explored (iterations of A *) for each problem when 

solved with AIgI was compared with the number of markings explored with the rest of 

algorithms. The comparison is expressed as the relative difference: 

iterations Alg 1- iterations Alg x 

iterations Alg I 
% (1) 

Table 10 provides descriptive statistics for the relative difference between 

markings explored by AlgZ AIg3 and Alg4 versus AIgI. Also, the percentage of 

problems solved optimally is shown for each algorithm. 
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% difference of markings explored from % problems 
Alg] solved 

Min Max Mean Std. Dev. optimally 
AIg2 64.4 99.8 96.2 5.1 66% 
AIg3 13.1 92.9 76.0 10.5 100% 
AIg4 22.7 98.1 82.0 10.9 100% 

Table 10. Comparative results. 

The first interesting observation is that the relative difference of markings 

explored (close to 77%) indicates a greater search reduction than if we implement a pure 
breadth-search., (where our experiments showed a reduction of mean 44%). An 

explanation for this may be that CGS is not generating markings whose heuristic 

estimates do not vary significantly from each other 21 
.A reduction of these equally 

heuristically evaluated nodes results in a relaxation of the breadth-first aspects of A* 

with an admissible heuristic function. Fig. 47 shows the frequency histogram for 1500 

problems of the same characteristics if solved with A* (Algl) versus A* incorporating 

CGS (A Ig3). 
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Fig. 4 7: %relative difference of markings explored 

A second interesting observation: theoretically, a safe pruning procedure such as 
22 Test I will partiall y achieve the same effect as CGS, i. e., it will prune paths that lead 

to the same state but with a longer (or equal) makespan than a previous path. However, 

if we compare the results obtained in section 2.4 for Test I the search reduction is on 

21 Which happens for markings which are permutations of concurrent transitions, or non-active schedules 
and their associated acti ve- schedule. 
22 We say partially since it is not always the case that a positive comparison results in discarding one of 
the markings (see algorithm in section 2.3). 
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27.7. This performance is noticeably inferior to Alg3. However, as we studied in section 
2.4, one may increase the effectiveness of Test I by employing heuristic tests such as 
Test 3 (Alg2). Unfortunately, this introduces the disadvantage of inadmissibility. Any of 
these techniques produce an overhead, since markings and paths are actually generated, 

stored and list-search and comparison algorithms are needed. 
Apart from achieving a considerable search reduction embedding CGS as a 

branching scheme, the approach appears to be, in practice, admissible. Note that now 

there is no need to maintain a UnExplored list and the computational overhead 

mentioned above is not produced. It is worth noting that the reduction of the search 

effort is achieved without appreciable additional computational cost. The CGS 

algorithm has the same asymptotic linear cost as the normal procedure used to identify 

enabled transitions, the memory expenses due to the storage of the Agenda list are small 

compared to the search space reduction, which results in a reduction of the storage 

required for the nodes. 

Finally, a combination of an admissible test (Test 1) with the branching scheme 
(Alg4) gets close to the performance of AIg2 but also provides the optimal solution. This 

indicates that Test] complements CGS in the sense that it is detecting those other cases 
(see beginning of section 3) which lead to similar system status which are not covered 
by CGS. This indicates that further combination of CGS and, for example Test 3, may 

produce greater search reductions and may reduce the amount of problems not solved 

optimally. 

4.2. Integration with Branch & Bound. 

CGS gains relevance for the scheduling approaches based on Branch & Bound 

described in [Lloyd 951 [Chen 94] [Abdallah 98]. Unlike A* a B&B algorithm bases its 

strategy on the progressive optimisation of a candidate solution. The memory 

requirements are kept bounded at the cost of not maintaining a list of previously visited 

markings, which means it is impossible to fully perform comparison tests between 

markings in an A* manner. Often ( [Lloyd 95], [Chen 94] [Abdallah 98]) a second test is 

applied that checks whether the new marking obtained is in the current solution path. If 
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the time for the new marking is greater than the one previously reached then the branch 

is ignored. This is not very effective, since few markings are available for comparison. 

The same set of 200 problems described in section 4.2 was first solved with a 
B&B approach that uses the admissible heuristic function employed in A* as the lower 

bound. Each problem was also solved with the same B&B algorithm but including CGS. 

Table 11 shows the descriptive statistics of the relative difference of the number of 

markings explored between both algorithms calculated as: 

iterations B&B - iterations B&B-IGC 

iterations B&B 
% (2) 

% difference of markings explored 
Min Max Mean Std. Dev. 

% rel. diff 44,7 93.9 74.9 10.3 

Table IL %difference of markings explored. 

Results show a considerable reduction of the search space generated. Notice that 

final markings representing solution paths were not considered. Again 100% of 

problems where solved optimally. 

4.3 Integration with an incomplete search procedure. 

This experiment aims to study the effect of CGS with incomplete search 

algorithms, where candidate markings are arbitrarily pruned based on heuristic 

information. One such algorithm widely employed is Beam-Search (see [Shi 91] for 

example). The objective is to search a number of potentially optimal decision paths in 

parallel, eliminating the need for backtracking and to obtain a solution quickly. 

Beam-Search will be presented in the following chapter, for now we simply 

observe that Beam-Search represents a dramatic decision in terms of both avoiding 

backtracking and limiting the number of paths for further exploration. It is important 

that markings representing different paths to achieve the same, schedule permutations 
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and non-active schedules are either not generated or identified as soon as possible so 

that they are not included in the search. The integration of the branching scheme within 

Beam-Search successfully achieved this objective as the experimental results will show. 

A set of 200 random problems consisting of 10 machines, 10 jobs, and 10 tasks 

per job was generated. The rest of the settings were the same as for the set of problems 

of section 4.2. Each problem was first solved with Beam Search set to perform 2000 

search iterations. The criterion for selecting markings for further exploration is the 

heuristic function hRCR(M)- CGS was then incorporated into the algorithm and the 

problem was solved again (the number of iterations still set to 2000). The solutions 

obtained with each algorithm were compared in terms of the relative difference between 

their makespans calculated as: 

makespan without Branching scheme - makespan vvith Branching scheme 

makespan without Branching scheme 
%(3) 

Fig. 48 shows the frequency histogram for the value of (3) for the set of 200 

problems. A better solution was obtained for 70% of problems when employing the 

branching scheme. 
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Fig 48. Histogram for the relative difference of makespans. 
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5. Summary. 

Reachability graph truncation based in PN dynamics and heuristics. 

This chapter has studied the search space associated with a PN model of FMS 

descriptions and has proposed different techniques to reduce the search effort, a matter 

that has received little interest in the work consulted. The first part of the chapter has 

studied different pruning methods based on comparison with previously visited paths. 

Such techniques allow alternatives from pure admissible tests to sub-optimal but very 

effective ones. However these tests are only effective if a complete algorithm is 

employed and require storage of and comparison with previously explored markings. 
Since we intend to provide a incomplete search procedure, we explored why different 

paths reach a similar system status and proposed a PN-based branching scheme called 
Controlled Generation of Successors that avoids the generation of branches that do not 

yield better schedules. Finally, experiments reported in [Reyes 00b] have shown that the 

branching scheme considerably reduces the search effort for optimal B&B algorithms 

and achieves similar search reduction to the standard pruning methods of A*. Also, 

results indicate that when applying the approach to an incomplete search procedure, it 

produces useful results in terms of enhancement of the quality of the solution obtained. 
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Chapter 6. 
1 Introduction. 

PN-based hybrid heuristic search. 

PN-based hybrid heuristic search. 

This chapter is about the development and study of a hybrid search algorithm to 

be applied to large FMS scheduling problems. 

In chapter 4 we concentrated efforts on developing a heuristic cost estimation, 

namely hRcR, which was obtained after the analysis of the cb-PN model which is a 
function of both the PN structure and dynamic information expressed by the cb-PN 

marking. Results showed that the search effort was considerable reduced if compared 

with a pure best first search strategy and previously proposed heuristics [Yirn 96] [Sun 

94] [Lee 94]. 

In chapter 5 we dealt with techniques to identify non-promising paths and 

showed that it was possible to dramatically reduce the search effort at little cost. Even 

with such reduction, the cb-PN-A* is only applicable to small problem instances. To see 

this, consider the following problem from [Lee 94]. It consists of five jobs, three 

machines, and four tasks per job. The total number of operations to schedule is 20. The 

Cb-PN A* algorithm solved optimally after exploring 20,666 markings, from a total of 
150,730 markings generated. In other words, 130,000 intermediate states were 

generated, stored in UnExplored but never expanded. Execution took about an hour on a 

PC Pentium Id at 300 Mhz. 

Apart from the considerably amount of memory needed, the problem is the cost 

of asserting a new marking, in order, in the list of candidate markings. This operation 

has a cost of O(n). We are aware that algorithm optimisations are possible, but this does 

not solve the main problem described in chapter 3, i. e., that the NP-hard nature of the 

reachability graph generator did not allow the application of an admissible A* algorithm 

without, sooner or later, overwhelming computational cost. 

We believe that it is possible to create a branch and bound approach that will not 

suffer from this effect and that employs a PN based heuristic rule to determine the next 

transition to fire. CGS can be exploited to reduce the search as we showed in the last 

chapter. 
B&B approaches have been used traditionally to solve production scheduling 

problems represented by a mathematical model. For example, [Carlier 89] solved, 
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optimally, a ten job, ten machine Job Shop problem proposed 30 years earlier [Muth 

63]. The problem is that an FMS not only increases JSS complexity because of the 

existence of alternate paths and operations, but also involves lot-sizes which increase 

the total number of operations to be scheduled. One possibility is to use incomplete or 

truncated B&B algorithms, for example [Chu 92]. This algorithm is stopped when a 

given number of consecutive branching steps do not improve the makespan. Approaches 

of this kind tend to confirm our intuition that B&B fundamentally will experience the 

same problem as A*, i. e the existence of a large number of equally promising paths. 
Nevertheless, in chapter 3 we justified the use of an A* approach rather than a B&B 

method since B&B limits the application of PN based information to guide the search. 
Heuristic decisions are restricted to the next transition to fire at the current node as the 

search is govemed by a depth-first strategy. 

In chapter 3 we also stated that in order to obtain an affordable A *-like search 

algorithm that guarantees a sub-optimal but acceptable solution, two general strategies 

were possible: 

The first adds a depth-first component to the heuristic function to prevent 

excessive backtracking. The experimental tests carried out in chapter 4 seem to confirm 

that using a non admissible heuristic function as a way to reduce the search effort 

caused non-admissibility and resulted in difficult parameter tuning to control the search 

effort. Nevertheless, in the conclusion to chapter 3, we noted that if the exploitation of 

PN information is used to guide search, the search effort must be controlled by an 

incomplete algorithm where an admissible and pure PN-based heuristic function is 

applied. 

This chapter is organised as follows. Section 2 reviews the literature on 

affordable PN based heuristic search algorithms for PN models of FAIS, and presents 

their deficiencies. Section 3 analyses the potential of two arbitrary pruning approaches 
by studying two algorithms (HST and DWS). A revision of these methods leads, in 

section 4, to a final algorithm DLSS* that overcomes the difficulties of previous 

approaches. Experimental results in section 5 will suggest that the algorithm is 

polynomial, and produces interesting results both in terms of optimality and in 

comparison to other PN based heuristic search algorithms. 
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2 Review of previous approaches. 

PN-basedl hybrid heuristic search. 

An obvious methodology to avoid the exponential growth of the number of 

markings contained in the UnExplored list, is to limit the number of nodes that this list 

might contain. This is an approach that has been independently used by three different 

authors [Yirn 94] [Sun 96] and [Inaba 98]. [Sun 96] calls this algorithm limited 

expansion A*. At the end of each iteration of the A* algorithm of [Lee 94], if the 

number of nodes in UnExplored exceeds a given number b, the list is truncated and only 

the best b nodes are kept. The criterion for rejection is based on the estimation function 

f(M) - 
The main attraction of this method is that the maximum number of markings that 

are explored to obtain the first solution is bounded by 0(b*n), where b is the size of the 

UnExplored list and n is the depth of the goal marking. 

Unfortunately, this method presents problems with an admissible heuristic 

function. In general terms, the search may fall into a backtracking free breadth-first 

search. In other words, the UnExplored list will be completed with markings of depth I 

and from there, new markings of depth 1+1 will be generated. Notice that, in the worst 

case, a single successor of the current marking may be included when the list 

UnExplored is full. 

To illustrate such behaviour, consider the simple search tree created with a 
branching factor of two. Suppose that the general rule is that f(m )>f(m) Vmm' I 

depth(m )>depth(m). Although this supposition may seem to be, a priori, too strong, 

note that at a certain given of the search, UnExplored will contain the b markings 

yielding the lowest values of f(m) and we have already shown experimentally that the 

number of equally heuristically valued markings grows exponentially, which causes 

breadth-first behaviour. Hence we can reasonably assume that (except for very large 

values of b), the variance off(m) within the limited UnExplored list will be rather small. 

Also, as stated in [Nilsson 82] an admissible heuristic function usually satisfies h(M) - 
h(M) 

-!; -ý-c(MM) and consequentlyf(M)--'-ý'(M) for the general case. 

Fig. 49 shows the evolution of the contents of the UnExplored list for the 
Cy 

artificial search tree mentioned above as markings are explored by a limited expansion 

cb-NET A* algorithm. The size of UnExplored is set to 8 for illustrative purposes. A 
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number represents a marking of this depth, 

UnExplored list. 

PN-based hybrid heuristic search. 

'-' represents an empty space in the 

Depth =1 

Depth =2 

................ ........................... .......... ...................... ........................................... ............. ............ .......................... .......... 

Depth =3 
[3,3,4,4,4,4, -, -] 

.......... ......................... ..... ........... ........................... ................ ............ ................................ .......... .......... [3,4,4,4,4,4,4, -] 
[4,4,4,4,4,4,4,4] 

Depth =4 [4,4,4,4,4,4,4,5] 
[4,4,4,4,4,4,5,5] 

... .... ... .... . .... . ... ........ .... . [4,4,4,4,4,5,5,5] 
Depth =5......... 

[5,5,5,5,5,5,5,5] 

Fig. 49: Evolution ofthe contents of the UnExplored list (right) as limited expansion A* 

explores the tree (left). 

Only if the heuristic function is an extremely good estimate (which is difficult 

for a general FMS) and the UnExplored list is large will this situation be avoided. In 

general, a limited UnExplored is likely to contain markings of near depth, which limits 

the recovery distance in terms of backtracking. Again, as in the pure stage search 

mentioned before, this may have unwanted effects in terms of solution quality due to 

local optima 23 
. 

The implication for the search of such limited expansion is poorly addressed in 

the literature. For example, [Yim 96] considers a limitation of the list UnExplored of 50, 

but they also employ a heuristic function with a major component of depth-first search. 

Not surprisingly, they conclude that there is no difference between a pure A* and A* 

with this limitation. This is obvious, since analysis of [Lee 94] demonstrates that the 

depth-first behaviour almost eliminates backtracking and consequently the breadth-first 

effect. This is a clear example of what happens if both the algorithm and the heuristic 

function pursue the same objective of focusing the search quickly on an optimum 

solution. In both [Sun 94] and [Inaba 98], the Limited Expansion A* is again combined 

with heuristic functions that essentially follow [Lee 94]. Unfortunately, the 

experimental results for both approaches are restricted to a single case study. In some 

ways this last method is to A* what beam search is to pure breadth-first search. The 

23 We show this experimentally in section 5.8. 
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Beam Search algorithm (see [Ow 881 ) has been extensively applied to production 

scheduling problems (particularly on-line scenarios), as we reviewed in chapter 2. The 

objective is to search a limited number of potentially optimal decision paths in parallel, 

eliminating the need for backtracking and to obtain a solution quickly. To our 
knowledge only the work of Shi and Sekiguchi [Shi 1991] implements a Beam Search 

procedure for the on-line scheduling of FMS based on PN modelling. A major problem 
is that the evaluation function to select the best nodes is not described in the paper. The 

authors appear to be utilising Beam Search as a decision module for solving the 

resource assignment problem, whilst the sequence of jobs seems to be determined by a 
three level heuristic dispatching rule. 

Finally, in [Xiong 98], a two-phase algorithm combining Branch & Bound and A* 

is presented as means of dealing with complexity problems in search spaces defined by 

a PN model of FMS. Two hybrid algorithms are proposed in this work: 
0 B&B-A* :A depth-first search is performed until a maximum depth is found. 

Then, the last marking found is used as a root node for an A* based search. The 

A* search employs an admissible heuristic function based on the longest 

remaining job. 

0A *-B&B: The A* algorithm finds the best marking at a specific depth, and then 

B&B is used to find a leaf. 

The authors report better results with the B&B-A * approach. The rationale is that 

this overcomes the intractability of the problem by progressing quickly to the end of the 

search tree using B&B and then using A* to find the best leaf starting with that path. The 

idea is interesting but we have many criticisms. First, the PN model of the JSS 

guarantees that any sequence of transitions is a feasible schedule (excluding deadlocks). 

The paper specifies clearly that the algorithm stops when the first solution is found, 

hence, there is no backtracking capability and the B&B approach is actually a depth first 

irrevocable strategy since no heuristic information seems to be employed at this stage. 

This yields poor results in terms of the quality solution found. 

Nevertheless, since pure A* search does not admit large search trees, the depth 

where depth-first search changes to A* must be close to the depth for the solution 
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marking. Consequently, for medium-large problems, the depth-first irrevocable search is 

predominant over A *, and thus is likely to produce weak results. 

From the reviewed works, we conclude that improvements can be made. We 

intend to avoid algorithms with severe backtracking limitations (Beam Search) and 

algorithms that critically limit selection capacity based on PN heuristics (Depth-first 

search and Branch&Bound). The following section will present two algorithms that use 

pruning techniques based on the search space defined by a PN. 

3 PN based incomplete search. HST and DWS algorithms. 

An incomplete algorithm results when constraints are imposed on any of the two 

dimensions of any systematic PN reachability-tree-based search algorithm. This is 

obvious if we consider [Pearl 84]: 

e Scope of selection: the capability of an algorithm to consider all the 

possible fireable transitions at the current marking. A heuristic algorithm 
based on a dispatching rule only considers one conflicting transition for 

firing and no other possible choices are considered. 

9 Backtracking capability: the capability of the algorithm to return to 

previously unexplored paths in the PN reachability tree, cb-PN A* has full 

backtracking capability because of the management of the UnExplored 

list. An algorithm with no backtracking capability is said to adopt an 

irreversible strategy. 

From the full range of capabilities of A* in selection or backtracking, a 

compromise situation can be found that allows dramatic reduction of the search effort 

whilst ensuring a useful degree of optimality. 

3.1 Heuristic selection of transitions: HST. 

For any marking M, there exist a number of possible transitions that may be 

applied Additionally, due to flexibility, the number of conflicting transitions that can 

be found is typically large. As they are conflicting transitions, the firing of one will 
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block the firing of the other. This mutual exclusion is produced either because they 

compete for a resource, or because they represent alternate routings to achieve a sub- 

task. Whatever the case, the fact is that the firing of conflicting transitions produces two 

different markings that will generally lead to different schedules in terms of makespan. 
The A* algorithm stores these markings in order to backtrack wheneverf(M) indicates a 

more promising path. An immediate way to reduce the scope of selection is to 

implement one or several dispatching rules or heuristic rules that can be used to 
discriminate amongst all enabled transitions for a specific marking. The most promising 

transitions (one or more) in terms of these heuristic dispatching rules are selected, whilst 
the rest are discarded, and A* continues. 

As we stated in chapter 2, the on-line conflict resolution within production 

scheduling problems has been widely solved with the use of dispatching or scheduling 

r ules associated with buffers: FIFO, LIFO, job-priority or to resources: SI, LI, SR, LR 24 

(see [Gupta 89] for a reference on FMS scheduling rules). However, as stated in 

[Basnet 94] [Harmonosky 91], a fixed policy encounters problems with the degree of 
flexibility of FMS. Additionally, its computational cost is constant and this prevents a 
decision module from making use of extra computational time to improve the quality of 

the decision. 

The fact is that PN easily allow the implementation of simple dispatching rules 
based on the dynamic information expressed by the marking and the PN structure. The 

irreversible and unreliable decisions made by considering a single transition can be 

corrected by considering several choices and allowing backtracking. In other words, 
heuristic dispatching rules can be integrated with a general graph search procedure 

allowing us to reject the application of operations that seem to be very unpromising. 

This effectively limits the possible alternatives generated by A*. 

In this section we propose an approach, HST (Heuristic Selection of Transitions) 

to bound the scope of evaluation of the cb-PN A* algofithm based on the use of 

traditional dispatching rules adapted to PN dynamics. 

An alternate approach that integrates basic dispatching rules and sYsternatic 

search algorithms is presented in [Abdallah 981. They propose a branch & bound 

approach where the next transition to be fired is determined by a two level heuristic that 

implements SRT (shorter remaining time) and SPT (shorter processing time). Also in 

24 Shortest operation time, largest operation time, shortest remaining processing time, largest remaining 
processing time respectively. r> 
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[Elmekkawy 98] experimental results are reported for the employment of heuristic rules 
in transition firing selection embedded in a Branch and Bound approach. The effect on 

makespan as well as on the computing CPU time was studied. Their conclusion is that 

the dispatching rule that provides the best solution, in terms of makespan, depends on 

the characteristics of the FMS. 

The approach is not seen in A* implementations, and the reason is obvious: a 
best first based algorithm uses the heuristic estimation f(4 to determine the next 

marking to be explored. 

Our intention is not to use dispatching rules for heuristic search guidance as in 

[Abdallah 98]. We intend to identify those transitions that will rarely be selected for 

firing by a collection of well-known and effective dispatching rules. The rationale is 

that they indicate a bad choice (very large operation time for example) and so they can 
be rejected without excessive loss of optimality and yet still achieve a reduction of the 

search effort. 

We studied the following heuristic rule k: T xM 4 R+ which is defined as 

sj (t, M) 

sj(t, M) models the SRT rule and is the minimum time needed for all the tokens required 
by transition t to become available in M z-(t) is the delay associated with the transition t 

and models a kind of SPT rule. 
The methodology is integrated into the cb-PN A* algorithm as follows. At each 

iteration of the algorithm the set E containing the transitions that are enabled under the 

current marking M is created. E is ordered in the increasing magnitude of k(tM) for any 

transition t of E. Then, the set E is truncated keeping the N first transitions. 

We conducted the following experiment: 30 random problems with 3 machines, 4 

jobs and between 2 and 3 tasks per job. The number of alternatives for each operation 

was randomly selected between 1 and 3. Each problem was solved for values of N 

=1,2,..., 12. 

Notice that when N=1, the algorithm corresponds to an irrevocable strategy based 

on the SRTISPT dispatching policies. The maximum number of transitions that can be 

applied at each marking is bounded by the number of parts in the system multiplied by 
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the maximum number of alternate routes for an operation. Thus all possible transitions 

are considered, and the optimum solution is obtained, when N is 12. 

Fig. 50 (left) shows the mean relative difference of the solution obtained when 

N=[]... 11] with the optimum solution obtained for N=12. On the other hand, fig 50 

(right) shows the evolution of the search effort, in terms of the number of markings 

explored by each setting of N. 
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Fig. 50: Average % relative differenceftom the optimum qeft) and average number of nodes explored 
(right) with respect to N. 

Note that convergence on the best solution (optimality) obtained for N= 12 is 

quicker than the convergence of the search effort expressed as the number of markings. 
E. g., for N=5, the relative difference of the solution obtained with the optimum is 

around 1.25% but on average, it explores 53% of the total markings explored when 
N=12. 

The second study includes the test for similar marking (Test3) proposed in 

chapter 5 in order to evaluate the performance of HST for larger problems with more 

search space pruning 25 
. The experiment consisted of a set of 100 random FMS 

descriptions comprising 5 jobs, and between 2 and 7 tasks per job. The maximum 

number of alternatives for each operation was 3. Each problem was solved employing 

HST for N (maximum number of successors per node) between [I 
... 

15]. 

The plots show the evolution of the mean for the relative difference of the best 

solution obtained for the theoretical minimum makespan calculated as h*(mo) (fig. 51 

left), and the number of nodes explored (fig. 51 right), as in the previous experiment 
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Fig. 51: qeft) Relative difference of the solution obtained 
for each setting with the theoretical minimum makespan and (right) average number of nodes explored 

with respect to N. 

The most interesting effect observed is that the convergence of the quality of the 

solution is reached faster than the convergence of the search effort. This provides some 

confirmation of the effectiveness of the approach in eliminating unpromising markings. 

Finally we studied a second heuristic-dispatching function k2(t). The motivation 
behind this was to obtain a dispatching policy that adjusted better to the characteristics 

of the CGS branching method. k2(t) is informally defined as k2(tM) = sj(tM) +K r' 

models how soon we will be able to apply the next operation and is calculated as the 

average delay time of unavailable tokens in the marking M. resulting in the application 

of t in M. Results indicated slightly better results for k2 with respect to the previous k 

only if the value of N is lower. 

The interest of these results is that it seems possible to avoid the generation of 

paths, based on PN based heuristic dispatching rules. These paths are not likely to lead 

to the optimum solution. Obviously, the approach does not solve the complexity 

problem for large FMS, but it is an interesting arbitrary pruning method to be 

considered and integrated within other approaches; for example, the one presented in 

the next section. 

25 Test3 is a non admissible test that may prune paths leading to the optimum solution. 
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3.2 Dynamic window stage search algorithm: DWS*. 

The second possibility we discussed for achieving effective search reduction is 

to reduce the ability of a systematic search procedure to backtrack. In other words, if 

one cannot afford a pure A* strategy, it may be desirable to take a risk and prune the 

tree so far generated by the search in order to allow deepening. Many variants of these 

techniques can be implemented. They all attempt to avoid backtracking over sub-trees 

unlikely to improve optimality. 
A pruning technique that has gained some popularity is called stage search 

[Pearl 84]. Translating this to a PN domain, instead of maintaining the entire 

reachability tree generated by A*, only the most promising sub-tree is retained. At the 

end of each storage reclamation stage, a subset of markings not yet explored is kept. 

The best sub-schedules of these markings are remembered and the rest of the markings 

are discarded. The search continues as normal until the storage allotment is again 

exhausted, which again forces node selection. Of course, optimality is not guaranteed. 

In our PN based scheduling context, we can think about the effects that early 

decisions (operations) might have on operations very distant in sequence. If we assume 

that the application of an operation will only affect the schedule locally, we can risk 
forgetting the earliest choices still unexplored. 

In order to study the benefits of such a methodology, we have adapted a more 

sophisticated version of stage search to the cb-NET reachability graph search employing 

A *. We have called this algorithm cb-NET Dynamic Window A* Search (cb-NET 

DWS*), since the application of A* is constrained to a search window that dynamically 

advances towards markings that are deeper in the reachability tree. The following is a 

basic description of the algorithm: 

The search starts as an A* approach, but markings at a given depth (TopDepth) 

are created but not explored. When a certain number of markings MaxNodes at 

TopDepth have been created, the markings whose depth is less or equal to ForgetDepth 

arq discarded and the rest kept. Fig. 52 shows the cb-NET DWS* algorithm. 
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gorithm cb-NET DWS* 

ives: Mo, MF: The initial and final marking of a cb-NET Nfrom FmsML. 

rns: Sequence of transitions representing the schedule. 
Cb-NETA* is embedded in the algorithm 

Variables: MaxNodes, TopDepth, and ForgetDepth settings of the algorithm. 

UnExplored = MO 

(1) while number markings at TppDepth: ý MaxNodes do 

Apply cb-NET A* algorithm (if a solution is found then exit successfully) 
Retrieve paths to markings whose depth > ForgetDepth. 

Remove markings whose depth: 5 ForgetDepth from UnExplored 

Actualise the attribute depth in all remaining markings as: 
Depth(M) = depth(M) - ForgetDepth VM e Explored 

goto (1) 

Fig. 52: cb-NETDWS* algorithm 

Notice that the application of the cbNET A* algorithm within this schema is 

constrained to the exploration of markings whose depth is less than TopDepth. 

Each of the three parameters considered affects the performance of the algorithm in 

the following way: 

(a)ForgelDepth 

Choosing ForgetDepth equal to TopDepth-] we only keep the first MaxNodes found at 

the TopDepth. This maximises the algorithm's forgetting capability and represents a 

drastic decision. On the other hand, Choosing ForgetDepth =1 (which is the lowest 

level), we progressively forget only the last level thus damping the irrevocable decisions 

made. 

(b) TopDepth. 

Determines the depth-size of the tree within which we apply A*. Experiments showed 

that affordable values are between the range of 5-20, although this is obviously problem 

dependent. Notice that a full backtracking A* algorithm is applied in this search space 

and will be expensive for large values of TopDepth. 
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(c) MaxNodes. 

PN-based hybrid heuristic search. 

Determines when to enter the forgetting procedure. An infinite value of MaxNodes 

implies the complete exploration of the sub-tree delimited by TopDepth. 

The following experiment aims to determine the evolution of the performance 

variables of the DWS* approach. A set of 20 random problems was generated consisting 

of three machines, five jobs, and between three and seven tasks per job. Each operation 

can be achieved by a maximum of 3 alternatives, each operation requires a single 

resource. The lot size was set to 3 parts for each job, meaning an average number of 75 

operations to schedule, which is impractical for a pure A* strategy. 
The cb-NET A* algorithm employed hRCR as the heuristic function and included 

CGS and Test3 for checking similar markings. Test3 was based on an estimation of how 

soon parts and resources will be ready to process in the current marking. As 

demonstrated in chapter 5, this test may reject paths leading to the optimum solution, 
but optimality has been already sacrificed with the application of DWS*. 

The problem set was solved for different values of TopLevel (windows size) and 
MaxNodes, while ForgetLevel is always set as equal to TopLevel-1. 

Fig. 53a shows the mean relative distance of the solution obtained to the theoretical 

optimum makespan h*(hRCP) for the 20 problems for each setting of cb-NET DWS*. 

Fig. 53b, shows the number of markings explored for each setting. Finally fig. 53c 

shows the execution time on a Pentium PC at 166 Mhz. Each algorithm setting is 

represented as the pair (TopLevel, MaxNodes) in each graph. 
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Fig. 53a: Relative differenceftom theoretical minimum makespan 
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Fig. 53c: Execution time in seconds. 

The results indicate that DWS the approach is promising. It seems to be possible 

to escape the exponential zone of the curves representing computational cost by 

reducing the capability of the algorithm to backtrack (introduce irrevocable decisions) 

while being able to achieve good results in terms of optimality. 

3.3 Analysis of HST and DWS: motivations for a new algorithm. 

The immediate benefit of applying HST and DWS to A* with a depth-first 

heuristic function [Lee 94] is that reduces the depth first component of the heuristic 

function and improves the poor results obtained due to this fact. For example, in a case 

study proposed in [Lee 94], the best makespan reported there employing an A* version 
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with h(m)= -we depth(m) was 426. w was set to 2. Table 12 surnmarises our results 

obtained with different algorithm settings. 

Algorithm w setting. Makespan Markings Explored 

Cb-NET A 1.5 396 474 

DWS* 1.25 389 878 

DWS* + HST 1 375 937 

Table 12: execution summaries. 

Our cb-PN A* algorithm incorporating IGC, allowed us to reduce the setting of 

w to 1.5, but failed to finish the search, (e. g. for w-1.25) If we employ DWS with a 

window size of 5, we can apply this setting and finish the search successfully. Finally, 

incorporating HST, further relaxation is possible due to the heuristic identification of 

promising transitions. 

Unfortunately, h(Al-f) still needs to add a depth first search component to the 

search and problems arise when an admissible heuristic function is used to guide the 

search 26 
. The reason is that neither HST nor DWS* escape from the combinatoric 

explosion. This is because a best-first search is applied within the search window and 

although HST can reduce the branching factor, even with a binary search tree the search 

space grows exponentially. 

In addition, the way irrevocable decisions are performed in DWS* plays a major 

role in the quality of the solutions obtained. If we set ForgetDepth equal to TopLevel-I 

(we refer to this setting as pure stage search) we guarantee that a constant number of 

nodes are kept at each A* stage. The main problem with this is that the irrevocable 

decision is much more drastic, increasing the chances of a local optima effect. To 

smooth this effect, the parameter ForgetDepth in DWS* may be set to values which are 

relatively distant from TopDepth. DWS* will then still go deep into the reachability tree 

whilst it progressively cancels the possibility of backtracking to markings beyond a 

maximum depth. The capability of DWS* to recover from bad moves is then superior to 

a pure stage search. The problem is that now the number of markings that are kept every 

time the search window advances is not constant and will typically grow exponentially. 

26 Although in the experiment of the last section, we employed hRcR as an admissible heuristic function, 
the problem set was created with the intention to increase the chances of hRCR to guide the search 
effectively. 
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We confirmed this behaviour experimentally. The first experiment studies how 

the search effort is affected by different settings of the parameter ForgetLevel, when the 

size of the search window is kept constant in DWS*. A set of 20 random problems 

consisting of 3 machines, 10 jobs and 4 tasks per job was generated, making a total of 
40 operations to schedule. 

The window size was set to 5, MaxNodes was set to I and each problem was 

solved four times for values of ForgetDepth from 1 to 4. Fig 54b shows the average 

number of markings explored versus the value of ForgetDepth while Fig. 54a shows the 

average relative distance of the solution obtained from the lower bound expressed by 

hRCR*(MO)for each problem. 
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Fig. 54: (a) Average relative distance to the lower bound (b) Average number of markings explored 
ForgetLevel versus values of ForgetLevel. 

It is obvious that since settings of ForgetDepth closer to TopDepth increase the 

search effort better solutions can be expected. However, it is our intuition that this 

improvement is also due to the greatest backtracking capability. 

The second experiment is more meaningful. A simple problem consists of two 

machines a robot and two part types Oobs). Each part needs two operations to be 

completed. However, the robot is only employed in one of the operations which creates 

imbalance in the use of resources or, in other words, hRCR becomes too optimistic. 

Even with a low setting of DWS* (TopDepth=3, ForgetLevel=], MaxNodes =1) 

the search effort grows exponentially with the size of the problem. Fig. 55 shows the 

number of markings explored when the number of parts to be produced of each type is 

increased from I to 7. These results clearly indicate that even for small problems it is 

Scheduling of FMS integrating PN and Al methods. 135 

4321 



Chapter 6. PN-based hybrid heuristic search. 

not possible to increase backtracking to the limit in DWS* although it is an interesting 

thing to do to avoid excessive irrevocable wrong decisions. 

1 

1 

1 

Fig. 55: Number ofmarkings explored versus problem size. 

After the publication of the first results employing an integration of DWS* and 
LYST [Reyes 98], the work in [Jeng 98b] came to our attention. A stage search algorithm 

was described that is essentially DWS with the following settings, MaxNodes=l and 
ForgetLevel = 1, the algorithm only allowed the tuning of TopLevel. In this work [Jeng 

98b], although not purely admissible, the heuristic function can for practical purposes be 

considered to be admissible. This is why they were forced to consider a very weak 

setting for their version of stage search ( TopLevel=4 if we translate to DWS* when 

solving medium/large size problem instances (100-200 operations to schedule). 

Our own experience leads to the same tuning needs. When the case study 

proposed in [Lee 94] was solved with DWS* (TqpDepth=5, ForgetLevel=], MaxNodes 

=5) and hRCR as the heuristic function, a solution was not obtained in a reasonable 

amount of time, despite the fact that hRCR is a good estimate for this problem and is 

typically satisfactory for the first 70% of the search 27 
. 

The following section will present an algorithm that preserves the benefits of 

HST and DWS but which deals effectively with the complexity problem thus allowing 

the application of well-infonned PN based heunstic functions. 

27 The best solution that we have obtained for this problem is 329 while h*(M, ) = 310. 
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4. Dynamic look-ahead stage search: DLSV. 

4.1 The breadth-search effect. 

When an admissible heuristic function is employed in a Best First algorithm, the 

evaluation function f(M) = g(M) + h(M) represents an optimistic estimation of the 

actual makespan (h(M).: 5'h*(M)). As the search advances, previously ignored markings 

now become candidates in terms of f(M). This forces the algorithm to backtrack to 

previous markings. It is possible that by reconsidering alternate previous paths, the 

search might continue successfully. This is obviously true, but, in practice, what 
happens is that the distance of h(M) to the actual makespan decreases the closer we are 

to a goal marking. 

In other words, a previously rejected marking is now explored but, as soon as its 

successors are generated, the optimistic estimation is corrected by the actual schedule 

and a new backtracking procedure towards better heuristically valued markings is 

performed. 

To show this idea, let us consider the problem given in the introduction to this 

chapter. The FMS with five jobs, three machines, and a total of 20 operations. A 

software monitor was included in the algorithm that records the depth of the marking 

that is currently being explored. 

The following graph in fig. 56 shows the evolution of the search in terms of 

depth of the marking explored as the search advances in terms of number iterations. 
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Fig. 56: Evolution of the search in terms of depth of the mat-king. 
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It is clearly seen infig. 56 that the search is characterised by a phase where the 

heuristic function guides the search towards deeper markings (which are closer to the 

solution) and a phase of backtracking over heuristically better markings. 

By considering three products of each job type, which makes a total of 60 

operations to be scheduled, a second experiment was performed. Obviously, the 

problem was unaffordable for the cb-NET A* algorithm, so the execution was halted 

with no solution being found after 80.000 markings where explored. Fig. 57a represents 

the evolution of the search in terms of the depth of the marking for the first 4% of the 

search. Fig. 57b shows the complete search space after 78.000 nodes. 
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Fig. 57a: first 4% of the search Fig. 57b: the search after 80000 markings explored 

The PN based heuristic function guides the search relatively well during the first 

75% of the operations to be performed 28 
. After this, the heuristic search cannot deal 

with the exponential nature of the reachability tree generated and the breadth-first 

behaviour is clearly seen, making the algorithm collapse before reaching a solution. 

Two interesting observations from these three plots can be identified: 

9 Looking atfig 56, the search seems to be constrained within a bandwidth 

delimited by a top-depth and a bottom-depth. The heuristically guided 

28 Notice that this example belongs to the class of problems discussed in chapter 4, section 5: Jobs are 
similar in terms of the structure of the operations, there is an acceptable degree offlexibilify, and there 
are no critical bottlenecks, the heuristicfunction performs satisfactorily. In a situation where the heuristic 
function is too optimistic, the breadth-search stage is reached earlier. L_ 
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depth-first search stages are clearly identified, followed by a recovery 

stage. 

9 This effect becomes more evident infig 57a andfig 57b, where drastic 

recovery backtracking stages are missing but the search can be seen as a 
decomposition of two effects: A band-width limited best-first 

/backtracking strategy and a breadth-first search strategy that dominates. 

This appears to be common to all our case study problems. The conclusion is 

that the search seems to be constrained in a top-bottom bandwidth that follows a 
breadth-first. A dual hypothesis about the FMS scheduling problem can be formulated 

as follows: 

9 The flexibility of the system results in multiple alternate schedules 

which are heuristically valued similarly in terms of makespan. 

9 The consequences of choosing the wrong operation have little impact 

on the overall cost, and the effect is limited (and can be corrected in a 

relatively small local neighbourhood). In other words, the 

performance of the FMS does not depend on a single decision made at 

an earlier stage, but on a complex and difficult to identify strategy. It 

is necessary to maintain a reasonable local backtracking capability in 

order to test the effect of different scheduling decisions. 

These hypothetical characteristics of the problem are compatible with the lack of 

clearly advantageous paths identified by the heuristic function and the breadth-first 

search degradation of the optimistic heuristic as the search advances. 

4.2 DLSS* description. 

The aim of DLSS* is to implement the band-width limited depth-first lbest-first 

backtracking strategy observed in fig 56 and fig 57alb, but avoiding the exponential 

generation of heuristically equal markings as the search progresses. The objective is to 

overcome the breadth-first effect. In other words DLSS* monitors whether the expected 

results are reasonable during the search. If this is the case, search is allowed to continue 

in a depth-first manner, if not, the best-first effort will be increased to a limit. 
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The cb-NET A* search is constrained by a number of markings that are 
contained in a geometric structure called the Search Frame (SF) which is conceptually 
identified with the UnExplored list in the cb-NET A* algorithm. The number of 

markings'that this frame can contain is limited; thus avoiding exponential grown. SF 

changes dynamically both in a) contents and b) search limits: 

a) If SF has reached its limited capacity, the inclusion of a newly generated 

marking is controlled by determining how promising the new marking is with 

respect to the ones already included in the frame. 

The cb-NET A* is also geornetfically limited by SF in two aspects: the 

backtracking is limited to the markings contained in SF; and no markings 
beyond the limits of the search frame can be generated. Since the search must 

progress to a final marking representing a solution, this frame must not 

remain stationary. In this sense, as SF advances it allows A* further 

exploration at the expense of introducing irrevocable decisions. This dynamic 

behaviour of SF is controlled by a set of rules. 

At each iteration of the algorithm, a marking M of the SF yielding the lower 

value of f(M) is selected for further exploration. New markings are obtained and the 

inclusion criterion for these markings is examined. The following sections explain the 

algorithm in detail. 

i 

4.2 Geometry of the search frame. 

Each marking M in the reachability tree is associated with the number of 

transitions that have been fired. This value is equivalent to the depth of Min the search 

tree: depth(M). In our modelling paradigm, since operations are represented by 

transitions, depth(M) also matches the number of operations that have been scheduled. 

The geometry of SF is defined by two edges: (vertical and horizontal). We define the 

vertical edges of SF in terms of two integers: bottom-depth and top-depth which defines 

the minimum and maximum depth of the markings that SF can contain. Hence, a 

marking M is only included in SF if depth(M) E [top - bottom] 
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These two values limit the application of the A* algorithm in two ways: 

a) The backtracking capability is constrained to markings whose depth 

is equal to or bigger than bottom-depth. 

b) Nodes of depth equal to top-depth can be generated but not explored. 

The horizontal edges of SF make reference to the maximum number of markings 

of [bottom-depth ... top-depth], that the frame can contain. We have organised SF into 

levels, each level is labelled with a number that represents a depth in the PN reachability 

graph, and therefore SF contains a total of top - bottom levels. A level 1, can only 

contain a maximum of max_nodes( I) markings of depth(M) = 1. The number of 

markings currently allocated in this level is expressed as size( 1). 

The vertical edges of SF limit the backtracking capability of the algorithm; the 

horizontal edges limit the scope of selection, and the breadth of the reachability tree. As 

a result, SF is shaped as a vertically symmetrical geometric figure. 

In a first implementation of this methodology, we have consider max-nodesq) to 

be equal to a fixed constant max-wide for every level. This defines a rectangular shape 

that can allocate a maximum number of markings given by the expression [top - 
bottom] * mwc-wide. 

An immediate advantage of the organisation of the candidates markings to be 

explored in levels, is that it facilitates the search for similar previously explored states. 

This is justified because the number of operations to complete any job is fixed. [Chen 

95] however, describes a second type of FMS (asymmetric), where a job can have 

alternate routes or plans with a different number of operations. These paths can be 

transformed into symmetric ones with the introduction of intermediate transitions. 

4.4 Introducing irrevocable decisions: Dynamics of SF. 

From the previous section, we can conclude that the UnExplored list of A* has 

been substituted by a structure called SF which constrains the application of a pure A* 

search both in terms of backtracking and depth. 

In this sense, SF provides a bounded safety frame within which to apply a 

heuristic best first search that considers the markings at bottom level as irrevocable 
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decisions. It still remains the case, of course, that the search must progress towards a 

final marking representing a solution to the problem. The horizontal edges of SF are, in 

this initial approach, kept unchanged during the search process. But the vertical edges 

of SF must change in order to allow cb-NETA * to: a) assume new irrevocable decisions 

and b) allow a deeper generation of the reachability tree. As we will see, the advance of 

SF will be determined by two rules. A first rule forces the search to progress under the 

existence of heuristically equal paths. A second rule allows the search to progress depth- 

first if the heuristic function is able to identify promising paths. 

The advance of SF follows the rule shown infig. 58: 

29 Rule 1: if the bottom level of SF is empty then increase bottom and top edges . The 

explanation for this is that since the bottom level represents the limit of the markings 

where the algorithm can still backtrack; if bottom level is emptied during the search 30 
, 

level bottom+] becomes the new backtracking limit. Notice that no new markings for 

bottom level can be generated, as this would mean that a marking from level bottom -1 
has been chosen for exploration, which contradicts the specification of the Search 

Frame. 

size(bottom) =0 

-)d 
Rule 1: if Bottom level has been completely 

explored, =; ý advance the window. 

C ý%0\4 if size(bottom) =0 then 
Ar" 

top = top + 1; 

bottom bottom + 1; \4 

Fig. 58: Rule 1: if bottom level of SF is empty then increase bottom and top edges. 

This rule is enough to ensure the advance of SF. - the number of markings kept 

for exploration is limited and no new markings beyond top level are generated. 

However, controlling the behaviour of SF with this single rule, inhibits the capacity of a 

well-informed heuristic function to guide the search quickly towards a solution. In other 

words, it forces all markings contained in bottom-level to be explored. A rule decision 

29 From now on, an increase in the top and bottom edges means to advance SF. L- 
30 Remenber that when a marking is selected for exploration, i is removed from the UnExplored Ii Cý t ist, now 
expressed by SF - 
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which is the extreme of Rule I could be as follows: when the first marking of level Top 

is found, advance SF. 

In a pure A* approach, whenever f(M) is optimistic, the search tends towards a 
final-goal marking. If during this heuristic depth-first process, the path becomes less 

promising than was thought, we backtrack. The DLSS* approach has a limited 

backtracking capability, so it is important to consider how promising the paths are 
beyond the recoverability edge. In other words, we must define a criteria to determine 

when DLSS* can take the risk of introducing irrevocable decisions. 

As a compromise between the two extremes represented by Rule]: explore all 

the markings at bottom level before advance SF and by the rule Advance SF as soon as 

you can. We experimented with an alternative shown in fig. 59: Rule 2, which was 
intended to explore when one could take the risk of introducing irrevocable decisions 

(advance SF). 

2: if relevant information isfound, =; ý 
consider nodes at bottom+ I as irreversible 
decisions and advance the window. 

0 

size (Top) = move-at =3 

if size(top) =ý move-at then 
Reject markings in bottom-Level. 

top = top + 1; 
bottom = bottom + 1; 

Fig. 59: Rule 2: if relevant information is found then increase bottom and top edges. 

Rule 2: Advance the window when a certain number move at o f nodes has been 

successfully included in Top Level. As a first approach, we have considered move_at 

equal to max-wide. 

If h(M) guides the search reasonably well, markings at top level will easily be 

found, if not, a greater search effort will occur within SF. Notice that Rule I guarantees 

that SF advances in the case that Rule 2 is never satisfied due to continuous 

backtracking. 
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4.5 Inclusion criterion. 

The last two sections have defined the scope of evaluation of the DLSS* 

algorithm and how the search advances towards a solution. 
The second dynamic aspect of the Search Frame is the heuristic selection of 

markings for exploration for SF. Notice that, as said before, SF is limiting the number of 

paths. This obviously introduces the need for a strategy to optimise the quality of the 

candidate markings to be explored. This strategy is implemented in rule 3 shown in fig 

60. 

The immediate idea is to use the estimate functionf(m) as the inclusion criterion. 
It is the simplest and cheapest thing to do and it maintains the coherence of the heuristic 

approach. For each level 1 of SF, markings are ordered in the increasing magnitude of 
f(m). Any newly obtained marking m can be included into a level if the level is not yet 

complete. If the level is complete, the marking will be included only if a marking m' 

with f(m')> f(m) is already included. In this case, the marking m" with the greatest 

value of f(m') will be rejected for exploration and discarded. The marking m" for each 
level is referred to infig. 60 as WORST(l). 

Rule 3: if a new marking m is createdfor level L 
if sizeý) < max-nodesq) then 

include marking m in SF 
else if f(m) < WORST ý) 

include marking m in SF 
reject WORST q) 

else reject marking. 

Fig. 60: Rule 3. 

4.6 Final algorithm, integration of A*, HST, CGS and SF: DLSSý. 

Fig 61 shows the pseudo-code for the algorithm. SF is initialised to the initial 

marking. The generation of the PN reachability tree follows cb-NET A*. The next 

marking is selected from SF using the heuristic function f(m). The PN branching 

scheme CGS is integrated within the algorithm to determine the set of transitions to 

apply. HST truncates the set based on the PN dispatching rule applied. 
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Every new marking obtained is compared with the final marking and with 

previously generated markings in the normal way using any of the tests for similar 

markings described in chapter 5. If the new marking is a candidate for exploration, Rule 

3 is applied to see if inclusion in SF is possible. Finally, Rule 2 is checked to see if SF 

should advance. 

Igorithm DLSS*: 
Mo, MF: The initial and final marking of a cb-NET Nfrorn FmsML. 

rns: Sequence of transitions representing the schedule. 
Cb-NET A* is embedded in the algorithm 

iables: move at, max wide, bottom and top /eve/ settings of DLSS* 

SF. Search frame containing new markings for exploration. 
Explored., List of markings already explored. 

SF =( Mo) 

Explored =0 
(1) while SF is not empty do 

Apply Rule 1; ff the bottom level is exhausted then advance SF 

Remove a marking M from SF with the smallest f(M) and depth(M) < top. 

Put M in the Explored List 

(2) for every new marking M'that can be generated using CGS and HST do 

if Wis ithe goal maLkLng exit with success. 

else-if M'pass the test for similar markings of cb-NET A* then 
Call Rule 3 for marking M' 

Apply Rule 2; ff move at markings have been found then advance SF 

goto (2) 

goto (1) 

Fig. 61: DLSS* Algorithm. 

The integration of all the methodologies developed results in a cb-NET based 

heuristic search algorithm that overcomes all the difficulties encountered with previous 

approaches analysed in section 2 and 3. Each methodology concentrates on different 

aspects of the search space and aims to reduce the search effort whilst maximising 

admissibility. 
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The following summaiises the function of each of these components. 

* cb-NET A* & PN Admissible Heuristic function: guides the search 

towards the most promising paths. 

e PN based branching scheme CGS: Avoids the generation of paths that 
do not yield better solutions. 

9 Check for previously markings: Prune markings that have been 

reached before by other better paths. 

* HST. - Heuristically determine those operations whose application is not 
likely to lead to a near optimum solution. 

e DLSS*: Control the search effort by heuristically avoiding exponential 

generation of markings and force the search to progress to a solution. 
Heuristic rules control the rejection of heuristically less favoured paths 

that have passed CGS, HST and have not been explored before. 

It is worth noting that DLSS* represents the most dramatic decision in terms of 

rejection of paths by the use of rule Rule 3. It is important that markings representing 

different paths to achieve the same, schedule permutations and paths which are not 

optimum are determined before are not included in SF. The integration of CGS and the 

test to identify previously reached markings successfully achieves this objective. 

4.7 Deadlock avoidance and DLSV. 

An exploration algorithm that has limited its backtracking capability does not 

guarantee finding a solution. For the problem domain of FMS, deadlocks might occur, 

due to buffer policies and time constraints imposed on sub-partS31. 

In [Abdallha 98b] deadlock control has been addressed by three approaches: 

Deadlock Recovery, Deadlock avoidance, and Deadlock prevention. 

The first technique allows the occurrence of a deadlock and then implements a 

recovery procedure. The second method tries to minimise the occurrence of deadlocks 

by a control policy. The third implies the use of a deadlock free algorithm. 

31 Which are modeled as constrained places in a cb-NET markings. 
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DLSS* algorithm can be considered as a deadlock avoidance policy, since 
deadlock situations (dead markings) can be detected within the Search Frame and 

several alternatives are available for exploration 32 
. But complete backtracking is not 

possible with the actual approach, and hence the algorithm is not deadlock-free, as for 

example A* or B&B. 10 

4.8 Effects of the heuristic function in irrevocable decisions. 

We justified the limited expansion/limited backtracking nature of DLSS* by the 

nature of the FMS scheduling problem, based on the hypothesis that the consequences 

of choosing the wrong operation is limited and can be corrected in a reasonably small 
local neighbourhood. In other words, we assumed that the performance of the FMS does 

not depend on a single decision made at an earlier stage, but on an overall strategy. With 

this assumption we have presented a scheduling algorithm, DLSS* that performs local 

search based on a strategy that in the main follows a heuristic best-first search. 
The strategy of DLSS* lies in the estimation given byf(m) as the combination of 

what has been achieved (g(m)) and what is left to be achieved (h(m)). 

Since the backtracking capability of DLSS* is limited, it is important that h(m) 

depends on the state of the system and not just on limited information (as for example 

the number of operations remaining). If not, a local optima effect is likelY to be 

produced. 
We performed a detailed study of how the cost of the candidate marking under 

exploration evolved during the search process. We observed that, when scheduling the 

last 30% operations, the quality of the solution decreased noticeable more as it did for 

the first 70% of operations. This fact was initially taken as obvious and explained as a 

result of a smaller degree of freedom (choices) when few remaining operations were left 

to schedule. Although this is partially true, a more detailed observation revealed the 

following effect: DLSS* followed a SPT strategy scheduling the fastest operations first, 

leaving the longest for the end. Obviously this will not affect a complete A* as it will 

correct the situation, but not so DLSS* since it has backtracking limitations and hence 

this SPT behaviour may influence the overall strategy previously mentioned. 

32 Recall that in chapter 3, section 6, several systems with buffer constraints were solved satisfactorily by 
DLSS*. 
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Fortunately, the heuristic function hRcR proposed in chapter 4 offsets this 

situation by taking into account the operations that have not yet been achieved. 
Consequently paths with the fastest transitions will produce a greater value of h(M), as a 

result of the longer operations still not being scheduled. However, despite the capability 

of hRcRto identify situations of this kind, the SPT effect still happened as experimental 

results showed. 
A simple modification of the heuristic function, by incorporating in DLSS* 

heuristic strategies, such as production rates and balance of different product types, 

showed an improvement of the results and a minimisation of this effect. 

An alternative heuristic function was proposed as: hRcR'(m) = hRcR(M - 
Balance(M). Balance (see fig. 62) considers the places of the PN that represent 

operations performed. A marking where the parts are spread over all the system, and not 

concentrated in certain places gets greater values for Balance. On the other hand tokens 

concentrated at certain nodes (as may happen if only the fastest operations are 

considered first), get a lower value of Balance. Obviously, this distribution of WIP parts 
is heavily influenced the buffer constraints. 

Function Balance 
Receives M marking of a cb-NET. 
returns da heuristic value. 

d=O 
Vpc= Q 

if M[p] >0 then d =d +I 

Fig. 62: Algorithm for Balance. 

With the aim of testing the superiority of our heuristic function avoiding local 

optima we performed the following experiment. Also we were interested to study the 

effect of a heuristic function that adds a depth-first component to DLSS*. 

A set of 250 FMS descriptions consisted of a random number of jobs, machines 

and tasks. 70% of operations have alternate routing, multiple resources may be needed 

to perform a task and variance of operation time among alternate choices is set to 33.3% 

of the mean cost. Number of parts to be produced per job is between 1 and 10. 

DLSS* was employed to solve the problem with the following settings: the 

vertical and horizontal size of SF were both set to 5, as was the number of markings, to 
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find at top level before advancing SF. ICG & Test] for similar marking is included, HST 

is set to 10, employing k(m, t). 

Each problem was solved three times with exactly the same settings but using 
different heuristic functions: 

a) The heuristic function proposed in [Yim 96] and [Lee 94] (see chapter 4, 

section 2): hyi,,, (m) =-wP# Up* depth(m), where wP was set to the inverse 

of the total number of resources, to model maximum machine parallelism. 
b) hRcR(m) 

c) hBal(m) = hRCR(m) - Balance(m). 

Table 13 summarises the comparison of the makespan obtained among different 

heuristics. The value presented for two heuristics A and B is the % of relative difference 

of the makespan of the solutions obtained and it is calculated by: 

Rd(A, B) = 
Makespan(A) - Makespan (B) 

Makespaii(A) 
% 

Minimum Maximum Mean Std. Deviation 

Rd(hyj ... 
hRCR) 

-13.5 28.9 7.5 7.7 

Rd(hRcp, hBý,, ) -14.9 19.3 1.1 4.8 

Table 13: Comparison ofthe makespan obtained 

Table 14 summarises the average of nodes explored using each heuristic. 

Minimum Maximum Mean Std. Deviation 

Iterations using hyj. 203.0 1523.0 680.4 267.0 

Iterations using hRCR 219.0 1448.0 678.0 250.8 

Iterations using hB,,, 214.0 1421.0 666.31 242.6 

Table 14: Descriptive statistics of the search effort. 

The effect of including Balance obtains results that are an average of 1.1% better 

than pure hRCR.. On the other hand, the makespan difference with hyi,,, from hRCR iS 

noticeable, 7.5% greater on average, despite the fact that in general terms, hyi. slightly 

increases the search effort. 
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The study reveals the importance of developing a heuristic function that takes 

into account what has been done in order to estimate what has to be done ( hRCR 

achieves better results than hyi,,, ). 

We finish this section by noting that, theoretically, if a more drastic backtracking 

limitation policy is applied, the greater the tendency towards local optima. For example, 

the effect of not using Balance with hRCR in a pure stage search (DWS*; TopDepth = 5, 

ForgetDepth=TqpDqpth-1) gives a relative difference of 2.5% with the makespan 

obtained if Balance is considered. This observation may be general if a severe limitation 

of backtracking is considered [Sun 94] [Yim 96] [Inaba 98] such as in Beam Search 

[Shi 91], as we initially suggested in section 2. 

5 Experimental Results. 

This section presents experimental tests conducted to investigate the different 

aspects of the DLSS* algorithm presented in this chapter. The results obtained 

complement preliminary results reported in [Reyes 00] and [Reyes 00c]. 

The following notation is used in the rest of the section: 

9 DLSS*(height, width, N) represents the parameter setting for DLSS* where 

height indicates the distance between bottom-level and top-level; width 

stands for the maximum number of nodes per level and N is the maximum 

number of transitions to be kept and fired by HST at each marking. 

9 hRcR*(Mo ) represents the theoretical lower bound for the problem, i. e. the 

optimum makespan of the relaxed problem where no conflicts for resources 

are considered. This lower bound is considered as the optimum solution for 

comparison purposes. 

* To compare the solution provided with other solutions or values, we use the 

relative difference (Rd) expression. For example, the relative difference of 
two makespans is expressed as Rd (A, B) and is calculated by the following 

expression: 
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Makespan(A) - Makespan (B) 
Rd(A, B) =-% 

Makespan(B) 

All the algorithms were implemented in C++ and run under Windows95 on a 
300 Mhz PentiumH PC with 64 Mb RAM. 

5.1 Empirical study of computational costs of DLSS*ý 

Since the number of nodes in the search window is limited. ) we can expect the 

computational cost of the algorithm to be polynomial on the number of operations to 

schedule. 
10 FMS descriptions consisting of 3 machines, 5 jobs and four tasks per job 

were generated. The degree of flexibility (alternate routing) and the operation cost were 

randomly generated for each problem. 30 problem sets were obtained by increasing the 

number of parts per job from I to 20, resulting in problems with between 20 to 600 

operations. 

Each of the 30 problem sets contained 10 problems which were solved by 

. 
DLSS*(10,5,15). Three parameters where obtained for each set. a) The average relative 
difference (Rd) of the makespan for each problem with respect to the lower bound 

hRCR*(MO) b) the average number of iterations of the algorithm (number of markings 

explored) and c) the average execution time. 

Figs. 63a, 63b, 63c represent the evolution of these values as the problem size 

increases, given the number of operations to schedule for each of the 30 problem sets. 
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Fig. 63a: Evolution of the solution obtained 
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Fig. 63b: Evolution of the search effort. 
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Fig. 63c: Evolution of the execution time (sec). 
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I--- 
From the above results the algorithm appears to perform polynomially in the size 

of the problem. The optimality, expressed as the relative distance to the lower bound, 

seems to be constant, i. e., no degradation of the solution quality is observed as we 
increase the size of the problem. Since the lower bound is obtained assuming no 

machine idle time, the results when considering 1-2 parts per job show a greater 
distance due to a lower production demand. The quadratic behaviour of the 

computational time was also an expected value, as algorithms employed in the 
2 

simulation module of the system have a computational cost of O(n ), where n is the 

number of tokens in the marking. 

5.2 Optimality of the algorithm. 

A first experiment was conducted in order to determine the degree of 

effectiveness of the algorithm for problems where it is likely that we may obtain 

optimum solutions that are closer to the lower bound defined by h*(Mo). A set of 1000 

random problems where generated with the following characteristics. The system has 3 

machines and 5 different part types (jobs) each with a number of tasks between 3 and 6. 

50% of jobs have 2 alternate plans. 85% of operations can be performed by more than 

one machine. Each operation is assigned a random ground cost from an uniform 

distribution [L. 100]. The actual cost of each alternative is randomly obtained from a 

normal distribution of mean ground and variance of 15%. A total of ten parts for each 

job are to be produced in the system. 

Each problem was solved by DLSS* with the following settings (Topjeve1=IO, 

Max-Nodes=5, Move At=5). Fig. 64 shows the histogram of the relative difference 

(Rd) of the makespan obtained with respect to the heuristic lower bound h*(Mo). Notice 

that DLSS* may be reaching the optimum as the hypothetical lower bound may be lower 

than the actual optimum in many cases. We believe this explains the skew of the 

distribution to the right. 
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Fig. 64: Relative difference with the lower bound 

Each of the problems was also solved with a heuristic dispatching algorithm that 

selects the next transition to fire based on the LWRT (least working remaining time) 

rule, ties are broken by applying the SPT (shortest processing time) rule. This approach 
is conceptually equivalent to [Abdallah 98]. The makespan obtained is an average of 

18.8% times greater than the heuristic lower bound. 

Results indicate that the heuristic function quickly directs the search for those 

FMS with extreme flexibility, where balanced machine workload can be achieved 

(which is a desirable design objective), and there is low variation of operation cost 

between different alternatives for a task. 

For problems where a resource is clearly a bottleneck and a balanced work-load 

is not possible, the estimation of h(M) might be too optimistic. However, in our 

approach, the search effort is mainly controlled by DLSS*. Again, this is an interesting 

property, since even for those ideal FMS, a machine breakdown can create a 

temporarily imbalance of the system. In this situation, h(M) also becomes too 

optimistic, and forces DLSS* to increase the search within the Search Frame whilst 

ensuring that the search will advance towards a solution. 
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5.3 Comparison with other approaches. 

PN-based hybrid heuristic search. 

The following experiment was conducted in order to compare DLSS* with 
different PN search algorithms: 

a) DLSS*(10,15, ITI 12). Where /T/is the number of transitions in the system. 

b) Non-admissible A* with a depth-first heuristic function [Yim 96]: h(m) =w#AvE- 

we A* depth(M). Where A is the mean operating cost of all operations and E is the 

nominal number of transition firings from the initial marking to a goal marking. 
Because there is no concept of concurrency in the total operating cost, w explains 

the extent of reduction of this expression. We set w to 21M with m the number of 

resources in the system. 

c) Incomplete Branch & Bound procedure. The search stops when the number of nodes 

expanded at least doubles the average nodes explored by DLSS*. We employ hRCR as 

the lower bound for pruning purposes. For selecting the next branch a combination 

of the FWRT and SPT rules is adopted. Such an algorithm can be considered a 

sophistication to the B&B approach of [Abdallah 98]. 

d) Beam Search with a beam-with of 80; such a setting explores the same number of 

nodes as DLSS* on average. The algorithm uses the same heuristic function as 
DLSS* to select the beams i. e., hRCR- We believe such an approach is similar to the 

limited-expansion A* proposed in [Sun 961 and the Beam Search approach of [Shi 

91]. 

The problem data was 1000 FMS descriptions, randomly obtained as follows. 

The number of jobs is uniformly obtained within the range [5.10], the number of 

resources in the system is calculated as the number of jobs divided by two. 25% , 50% 

and 25% of jobs have 3,2 and one process plans respectively and 65% of tasks have 

alternate routing and multiple resources may be required to perform a task. Each 

operation is assigned a random ground cost from a uniform distribution [1-100]. The 

actual cost of each alternative is randomly obtained from a normal distribution of mean 

ground and 33% variance. 
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Each problem was solved by the four previously mentioned algorithms. The 

makespan obtained by DLSS* was takep as the reference and compared with the rest of 

the solutions obtained. Table 15 shows the results. 

The first column indicates for the percentage of problems for which the 

algorithm obtains a better makespan than DLSSIý The other columns show the 

descriptive statistics for the % relative increment (Rd) of the makespan obtained by 

each problem with respect with the solution makespan provided by DLSS*. 

Problems improved Minimum Maximum Mean Std. dev. 
A* (a) 6.3% -15.0 94.8 22.8 17.1 
B&B (b) 5.4% -15.9 125 26.0 19.6 

_Beam 
(c) 15.6% -23.0 57.6 8.7 10.2 

Table 15: Descriptive statistics. 

We experienced tuning problems with the A* algorithm, the variance of the 

search effort was high, making difficult a proper comparison; 24% of executions were 
halted due to memory problems. Results with B&B are clearly worst due to the fact that 

B&B bases its strategies on chronological optimisation of a first solution, rather than on 

accurate local improvement. When DLSS* is compared with Beam Search a less 

dramatic difference is obtained. Since both approaches follow a similar optimisation 

philosophy the difference is explained in terms of the backtracking recovery capacity of 
DLSS*. 

5.4 Comparison with some benchmarks problems from the literature. 

We solved several concrete benchmark problems proposed in two papers. Table 

16 shows the comparison results for three FMS problems in [Lee 941. This paper 

implements A* with a non-admissible heuristic function. The results show considerable 

improvement. Additionally hRcR results in a better heuristic function and DLSS* allows 

us to increase the search effort without falling into breadth-first search. In [Lee 94] the 

authors reported that no further improvement of the solution could be made since 

further relaxing the depth-first component of the heuristic function resulted in the 

algorithm not finding a solution in reasonable time. 
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Problem Reported DLSS* 
Lee 94 (a) 426 329 
Lee 94 (b) 298 254 
Lee 94 (c ) 273 237 

PN-based hybrid heuristic search. 

Table 16: Comparison with benchmarks proposed in [Lee 94]. 

Table 17 shows results for three problems presented in [Xiong 981. The optimal 

solution is given by a pure Best-First technique, while [Xiong 98] proposes a hybrid 

search technique between a B&B and Best-First. Results show DLSS* finds the 

optimum solution with considerably less search effort (measured in terms of number of 

markings explored). 

Problem Makespan Number of markings explored 
BF BT-BF DLSS* BF BT-BF DLSS* 

1 58 62 58 3437 1687 _ 431 
2 100 104 100 9 38 8045 856 
3 134 148 134 23092 18875 1204 

Table 17: comparison results with [Xiong 98]. 

Also, in this paper, they provide a model of a real Integrated Circuit sort and test 

floor in San Jose, CA. The system consists of 79 resources, and 30 jobs, each job has 

three tasks. No alternate routing is available and the total number of operations to 

schedule is 90. The best makespan reported in [Xiong 98] is said to be 30. DLSS*(5,15) 

found a makespan of 28 in 7 seconds. Table 18 shows the operation starting times for 

the schpdule obtained. 
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Operation Start 
Time 

peration Starffi 
me 

Dperation Start 
Time 

Job-1-1 0.0 obJ8-2 4.0 lob_2-2 13.0 
Job-2-1 0.0 ob-29-2 4.0 [ob-8-2 13.0 
Job-3-1 0.0 ob-1-2 5.0 ob-12-2 13.0 
Job-4-1 0.0 ob-6-2 5.0 ob-19_3 13.0 
Job- 161 0.0 lob-10_1 5.0 ob-21-3 13.0 
Job 17 1 0.0 ob 12 1 5.0 ob 18 2 14.0 
Job_18_1 0.0 ob-3 2 6.0 ob 23 15.0 
Job-1 91 0.0 ob-5 2 6.0 

, 
ob 72 15.0 

Jobý20 
-1 

0.0 

1 

ob-13-1 6.0 ob-1 23 15.0 
Job-23-1 0.0 ob_22-1 6.0 ob-14 -2 

15.0 
Job-24 

-1 
0.0 ob-27-3 6.0 ob_ 113 16.0 

Job 
- 
25 

-1 
0.0 obý21_1 7.0 ob-13-3 

1 
16.0 

Job-26-1 0.0 ob-8-1 8.0 ob_7_3 17.0 
Job 

- 
27 

-1 
0.0 ob-9-2 8.0 Job-15 

-1 
17.0 

Job 
- 

28 
-1 

0.0 ob-10-2 8.0 ob-26-3 17.0 
Job 

- 
29 

-1 
0.0 

l 

ob-30-3 8.0 ob-28-3 17.0 
Job 

- 
30 

-1 
0.0 ob-3-3 9.0 ob-20-2 18.0 

Job 
-4-2 

1.0 obý5-3 9.0 ob-24 -2 
18.0 

Job 6-1 
- 

1.0 ob -7-1 
9.0 ob-25 -2 

[ 

18.0 
91 Job 2.0 ob-13 2 9.0 ob 83 19.0 

Job 
- 

23 
-2 

2.0 ob_19 2 9.0 ob-22 -3 
19.0 

Job 
- 

30 
-2 

2.0 ob. 21-2 9.0 ob-14-3 20.0 
Job-4-3 3.0 ob-23-3 

[ 

9.0 ob_24_3 

[ 

20.0 
Job 

- 
11 

-1 
3.0 obý-9j 10.0 ob-29-3 21.0 

Job 
- 

14 
-1 

3.0 ob-1 1-2 10.0 lob-16-3 22.0 
Job 

- 
17 

-2 
3.0 

rob-1-3 
11.0 ob-15_2 22.0 

Job 
- 

26 
-2 

3.0 ob-17-3 11.0 ob-18 -3 
25.0 

Job 
- 

27 
-2 

3.0 ob-6-3 12.0 ob-20-3 25.0 
Job 

-5-1 
4.0 ob-10-3 12.0 ob-25-3 25.0 

Job 16 2 4.0 gob-22-2 , 12.0 F ob-15-3 , 26.0 

Table 18. Schedulefor the IC problem. 

6 Summary. 

In this chapter we have presented a PN based heuristic search algorithm DLSS* 

that we believe overcomes the difficulties encountered with other approaches reviewed. 

DLSS* builds on results studied by [Reyes 98]. The algorithm can be integrated with the 

branching scheme CGS presented in the previous chapter and allows the application of a 

Best-First heuristic search based on PN heuristic information without experiencing 

exponential cost. This results in an algorithm that is able to achieve a useful degree of 

optimality. The results indicate that DLSS* is highly effective when solving case studies 

of the literature. When compared with other approaches, experimental tests indicate the 

superiority of our approach. 
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Chapter 7. An evolutionary Hybrid scheduler 
based on PN structures for FMS 

1. Introduction. 

The main body of this thesis has dealt with the definition of a scheduling 

methodology for FMS based on the application of systematic heuristic search algorithms 

within the state space defined by a PN based representation of a problem. To handle the 

complexity problem for large FMS instances and maximise the use of PN based 

heuristic search, we have presented an incomplete hybrid search algorithm DLSS* that 

successfully handles large problem instances. In the literature consulted, two other 
interesting methodologies have been followed (see chapter 2, section 4.1). The first is 

based on problem decomposition techniques which is a well-known [Ashour 67) classic 

solution. The second is a relatively new technology: Genetic Algorithms (GA). As 

reviewed in chapter 2 genetic algorithms GAs belongs to the class of iterative 

optimisation methods based on random exploration of the search space. 
From the literature review on these methods, we have concluded the following: 

- The hybridisation between splitting-up approaches and random optimisation 

methods appears to be promising. 

- Results from GA methods applied to manufacturing scheduling suggest that 

hybridisation of the GA main scheme with simulation of heuristics and 

systematic search algorithms. We believe this connects with the potential of 
PN as a simulation tool and PN based algorithms for scheduling (DLSS*). 

However, the idea of integrating PN capabilities with these methodologies is 

largely untried. We believe that PN are convenient to support the hybridisation of these 

methodologies as we will explain in this chapter. 
The objective of the method that we present in this chapter is a preliminary 

integration of these two ideas, GA and decomposition/progressive construction of 

schedules with a PN representation of the FMS and PN scheduling based on simulation, 

heuristics and the PN based heuristic search algorithm DLSS*. 
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To justify this integration, we present an evolutionary hybrid scheduler called 
BSPC that resulted in a promising method that obtains useful results, demonstrates the 

use of PN with OR methods and justifies further research. 

This chapter is organised as follows: section 2 gives reviews other relevant 

work, highlighting the relationship between, splitting up approaches, schedule builder 

methods and GA approaches. Section 3 presents the algorithm and gives a case study. 
Section 4 provides preliminary experimental results. 

2. Background. 

2.1 FMS scheduling approaches based on decomposition. 

The idea of splitting the scheduling problem into more tractable sub-problems 
has been tried many times; often in combination with other methodologies. We can 

classify these approaches, depending on how the problem is truncated, as temporal, 

spatial or hierarchical. 

Temporal truncation: The recurrent idea is the rolling-horizon. This consists of 

generating successive partial schedules as production evolves, instead of generating a 
full schedule for all parts. A job release policy decides which job or jobs to schedule for 

the next production horizon [Yamamoto 77]. The scheduler then employs a search 

methodology restricted to these jobs. This general approach is implemented with 

variations on search algorithms and heuristics, for example [Bispo 92] employs a very 

restrictive Beam Search procedure, while [Liu 92] employs A*. 

Spatial truncation. The scheduling problem formulation is truncated into affordable 

sub-systems which are solved optimally usually by a systematic method. Then all 

schedules are joined and usually an iterative heuristic optimisation method is employed 

to solve conflicts among sub-problems. The truncation is based either on job 

decomposition [Chu 92] or disjunctive graph representation of machine sequences 

[Kruger 95] [Byeon 981 [Kruger 98]. 

Hierarchical truncation. A different approach separates loading from sequencing and 

integrates them in a hybrid scheduler. For example, [Shaw 881 [Shaw 88b] [Shaw 891 
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generates the best possible route for each job using a linear planner based on A* and 

then, following a non-linear planner methodology, combines the sub-solutions to 

construct the overall schedule by solving conflicts. The most interesting aspect of this 

work is the use of an iterative algorithm as a plan revision procedure that is also a 

construction procedure: whenever a conflict arises, one of the jobs causing the conflict 
is chosen and an alternative plan is proposed. If the new plan enhances the schedule, it 

is retained. A similar approach can be found in [De 88]. 

From the literature, we can identify the major weakness of a decomposition 

approach: it typically is composed of an expensive systematic search with a 

construction/decomposition strategy heavily based on heuristics. For example, the 

Shifting bottleneck algorithm [Adams 88] is based on a spatial decomposition approach 

where the single sequencing problem for one machine is solved in an iterative 

algorithm. Unfortuntely the selection of the next machine to schedule affects the final 

schedule, specially if it is based on a simple rule. The decomposition approach of [Shaw 

88] employs optimal A* search to schedule a single job, but is forced to employ an 
iterative construction algorithm based on local search in order to obtain the complete 

solution. 

In an attempt to improve the construction phase recent work has incorporated 

random search within the general decomposition approach. For example, [Kim 99] 

modifies the work of [Shaw 88]. First they obtain all the possible routes for the 

processing a part of each job-type. The scheduling algorithm is a hybrid schedule 

construction methodology based on neighbourhood search and dispatching rules. The 

algorithm starts with an initial combination of routes and a random neighbourhood 

search seeks improvement. 

The interest of this work is in the combination of two methodologies, optimal or 

heuristic search for sequencing and random search for loading. This hybiidisation of 

heuristic or systematic search and stochastic elements has been seen in approaches that 

apply Genetics Algorithms to FMS problems as we will see below. 

2.2 FMS scheduling based on Genetic algorithms. 

Much of the early work on genetic algorithms used a universal internal 

representation of fixed-length binary strings with binary genetic operators to operate in 

a domain -independent fashion [Cheng 98]. However, such simple genetic algorithms are 
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difficult to apply directly and successfully in optimisation problems. This is the case for 

FMS where determining paths and machine allocation must be considered. As reviewed 
by [Ulusoy 98], for production scheduling two main approaches for chromosome 

representation are used: direct and indirect. 

In direct, the chromosome models all the information relevant to solve the 

problem. The advantage is that the search is performed entirely by the GA (and 

consequently the schedule builder is very simple). Unfortunately more complex genetic 

operators are needed as are functions for repairing illegal chromosomes i. e. 

chromosomes that represent unfeasible schedules, and this happens because the 

chromosome representation can not handle all the constraints of the system. Besides, 

some authors point out that although these GA's can explore large problem spaces and 
locate possible solution areas they cannot quickly converge on an optimal solution due 

to the complexity of the algorithms required to produce legal schedules [Uckun 93]. 

What GA seem best able to provide for FMS scheduling is high level decisions 

or strategies for the system. In other words, a simple genetic algorithm can do its work 

very well if an individual is considered to be a sequence of local decisions to be used as 
knowledge by a special purpose heuristic algorithm which is known as the schedule 
builder. A GA algorithm that follows this approach has an indirect representation. 

In an indirect representation, the chromosome does not represent the total 

sequence and assignment of operations to machines. In other words, the GA does not 

explore the solution space defined by the scheduling problem; it doesn't build the 

solution directly but provides guidance on how to build the schedule. Here is where PN 

are of interest. First of all, because PN are a powerfull and well known modelling tool 

capable of including all the characteristiques of the FMS. The consequence of this is 

that the problem of unfeasible schedules during GA operation is eliminated. But also, as 

we will see, because approaches employing indirect chromosome representation 

integrate GA with previous and well established methodologies to act as schedule 

builders: simulation., dispatching rules and systematic heuristic search. Scheduling 

based on simulation and heuristic/dispatching rules has been largely applied using PN as 

a representation and the previous chapters of this thesis has demonstrated the potential 

of the integration of PN and Al based search methods. 

The GA determines plans, machine selection and job ordering, whilst the 

schedule builder acts like as heuristic algorithm that solves the remaining sequencing 

problem (see for example [Uckum 93], [Holsapple 93] and [Ulusoy 97]). There is a 

Scheduling of FMS integrating PN and Al methods. 162 



Chapter 7. An evolutionary hybrid scheduler based on PN structures for FMS 

clear similarity between these approaches and the hierarchical decomposition methods 

of [Shaw 88] and [De 88]. In an attempt to reduce the gap between heuristic procedures 

and the systematic search employed in decomposition approaches, GA'S have been used 
to enhance heuristic decision making in systematic procedures. The GA explores the 
heuristic space instead of the problem space. (see [Dundorf 95] and [Herrman 95]. ) 

2.3 The proposed approach. 

What we propose is to employ the same idea of integrating GA with heuristic 

techniques based on a spatial splitting approach using a PN model of an FMS. Rather 

than control a search algorithm by a GA, we employ an evolutionary scheme to 

progressively construct a final schedule from partial schedules, favouring those 

combinations that improve the schedule obtained. It is our opinion that this represents 

an interesting alternative to the iterative construction methods of [Shaw 88] [De 88] 

[Kim 99]. We justify the use of PN by: 

a) Unlike previous research, mostly based in mathematical representation of the 

problem, more complex FMS representation can be faced. Aditionally, a good 

model not only allows us to implement schedule builders easily, but also help to 

track the status of lots and machines efficiently. Which is useful to heuristically 

guide the decision making part of the GA phase. 

b) They allow easy structural truncation analysis and decomposition. For example, the 

top-down synthesis procedure given in chapter 3 for the parsing of FmsML 

descriptions easily support the identification of independent sub-PN that represent 

job descriptions. This potential has already been exploited. For example, in the 

process and command circuits of [11illion 98] and [Proth 98] that separate 

sequencing from resource sharing. PN truncation has also been applied in PN 

representations of discrete event systems (not necessarily FMS) [Shen 1992] where 

the original PN model is truncated into two simple sub-nets which are solved by a 

B&B algorithm. The sub-schedules obtained are then joined, solving conflict among 

subsystems. [Chen 93] and [Chen 94] extended this work by modifying the branch 

and bound algorithm so that when solving a sub-net (sub-system) there was 

synchronisation with an already solved sub-system. It is interesting to see how this 

synchronisation is easily guided by the PN model, by means of identifying related or 
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conflicting transitions. The algorithm uses this synchronisation to guide the search 

and avoid futile schedules. Although results are only illustrative, they justify further 

research and the interest of employing PN as a representation tool for hybrids GA 

approaches. 

c) A PN model allows the immediate and easy application of heuristic algorithms 
based on dispatching rules and simulation. This is an interesting feature for those 

GA based approaches for production scheduling that require an indirect 

representation where to simulate the effects of the GA output, as for example to 

evolve a combination of different heuristics [Herman 95] [Fujimoto 96] [Lee 97] 

[Jawahar 98]. Additionaly a simpler schedule builder based on dispatching rules can 
be subsituted by a PN based systhematic heuristic search algorithm such as DLSS*. 

d) The literature integrating PN representation with GA optimisation is very scarce. 
[Chiu 97] and later [Chu 98] propose an embedded GA in a rolling horizon 

scheduling approach. Work in progress is initially defined, then the total schedule is 

generated segment by segment, each segment being the result of running a GA 

search. The PN structure in terms of places and transitions is transformed into a 
direct chromosome representation. Two criticisms can be made to this work. First, it 

is a direct chromosome representation which means that chromosome needs to be 

transformed into a feasible sequence of transitions for the PN model to simulate the 

behaviour until the next time horizon. The second is that the GA merely substitutes a 

systematic A* search employed in a similar rolling horizon approach [Liu 92] in an 

attempt to overcome intractability. While A* allow PN analysis to guide the search, 

the GA proposed in [Chu 98] adopts a direct chromosome representation, which is 

not a PN. This cancels the possibility of employing PN heuristics and analysis. 

3 BSPC: An Evolutionary Hybrid scheduler based in PN 

structures for FMS. 

The scheduling methodology presented in this chapter integrates PN based 

heuristic search and structural analysis of the PN graph for a splitting up procedure. An 

evolutionary procedure is used to join and sequence sub-problems in which the loading, 

routing and part of the sequencing problem have already been determined. 
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The following steps describe the method: 

eA splitting up approach is performed, by grouping jobs or lot sizes or both. The 

rationale is to use the PN graph to identify those jobs that conflict most. This 

gives a collection of affordable sub-problems. 

e Each of these sub-problems is solved using various random settings of DLLS* 

This produces a collection of different, near optimal, solutions for each sub- 

problem. 

* All these initial solutions can be understood as building blocks and fonn an 
initial building pool. Each individual has information on how much of the 

overall problem it solves and how. This information can be represented as a 

chromosome, for example: Solve a single part type ofJA using route r' and one 

part of JB using route r" is represented as (WA, RJB). Associated with this 

chromosome is a sequence of firing transitions that completely determine the 

schedule over the PN model. 

* An evolutionary algorithm selects the best partial solutions and combines them 

to produce new individuals that are closer to a solution. The chromosome 

structure evolves by creating new building blocks. This evolutionary procedure 

searches the space of possible combinations of sub-schedules and controls a 
final schedule construction procedure. This paradigm is conceptually different 

from the concept of chromosome evolution employed in [I. Lee 97] and [Sikora 

96] where the chromosome structure varies from iteration to iteration, but is 

constant during each GA phase. 

* When a new individual is constructed, DLSS* or other specific dispatching 

algorithm based on PN simulation, acts as a schedule builder by solving the 

remaining conflicts. Note that there is a great deal of information inherited from 

the parents about the firing sequences associated with each individual. Already 

scheduled operations do not need to be considered by the schedule builder, 

which only solves conflicts amongst sub-schedules. This differs from 

approaches such as [Holsapple 93] where for each new individual, a complete 

schedule is produced using Beam-Search, without identifying previous good 

building blocks already scheduled. 
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3.1 Overview of the method. 

We present an overview of the main stages of the BSPC algorithm infig. 65. For 

the rest of the discussion, the term individual, sub-schedule and sub-problem are 

equivalent. 

Stepl Obtain initial POPULATION 

while not termination condition found do 

Step2 SONS= Combine (POPULATION) 

PARENTS = POPULATION 

Step3 POPULATION = Truncate (SONS) u Truncate (PARENTS) 

Fig. 65: BSPC algorithm 

Step 1 surnmarises the definition of the problem, the truncation of the lot-sizes 

and the application of the heuristic search algorithms to obtain the initial population. 
The algorithm enters an iterative procedure where a new set of individuals called SONS 

is obtained as a result of combining individuals (Step 2). SONS represents a set of sub- 

schedules that are closer to the final schedule. Step3 updates POPULATION by 

eliminating the least fit members. There is no mutation in this initial approach. 

In order to give a detailed explanation of each of the components of the 

algorithm consider the simple FMS description in fig. 66, which is parsed as the PN of 
fig. 67. The system manufactures two different jobs JA, JB and has three machines MI, 

M2, M3. JA consists of two tasks, the first can be achieved by two alternative 

operations. The first uses machine MI and takes three time units. The same operation 

can alternatively use M2 taking four time units. The second task of JA can only be 

processed by M2 taking five time units. The initial marking in JI'g. 67 indicates that the 

product requirements are two parts per job. 
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tem EXAMPLE; 
ource Ml #end; 
ource M2 #end; 
ource M3 #end; 

#Job A 
#task Al 

description = M1: 3.0 M2: 4.0; 
buffer = INF; 

#end; 
#task A2 

description = M1: 5.0 
buffer = INF; 

#end; 
#end; 

#job B 
#task Bl 

description = M1: 3.0 M3: 5.0; 
buffer = INF; 

#end; 
#task B2 

description = M1: 3.0 M2: 5.0 
buffer = INF; 

#end; 
#end; 

Fig. 66: FMS example. 

Job AJB Input Buffer 
Input Buffe rA 

0 Ml OpA 12: 4. All: 3 OpB 11: OpB13: 5.0 

M2 BI Intermediate 
Al Interm diate Buffer M3 

Buffer 

OpB22: 3.0 B23: 5.0 
OpA21: 5.0 

0 
Job A Output Buffer Job B Output Buffer 

Fig. 67: PN modelfor the FMS example offig. 66 

3.2 Truncating the problem. 

The first step of the algorithm splits the problem into smaller sub-problems. A 

first approach might be to consider jobs in isolation and to include a collection of 

alternative paths for each job as the initial pool. This has the advantage that any lot-size 

can be obtained from this truncation, and also that they represent easy sub-problems, 

where no conflicts on the use of resources need to be solved. However, it implies that 

the effort in the iterative construction phase is greater. 

A second choice is to reduce the lot-size by, for example, solving (1xJobA, 

IxJobB). Different solutions for this problem will form the initial pool. Note that for an 

FMS including many jobs, a lot-size of one job represents an unaffordable problem for 

an admissible search algorithm so the use of DLSS* is justified. The first individuals 

obtained are now more complex since they have a greater number of scheduling 

conflicts already solved. 
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3.3 Obtaining the initial solutions. 

Each sub-problem is solved using a PN based heuristic search algorithm, (branch 

and bound, A *, DLSS* etc). A collection of different solutions for each problem, 
including the optimum, can be found in a reasonable amount of time because the size of 

the problem is small. The search process is guided by the PN definition, and heuristic 

information from the PN model is applied. 

3.4 Representing each sub-schedule. 

A fixed string identifies each individual in the population and looks like this: 

G: p, xJ, + p2xJ3+ 
... + p, xJ, tl, t2, 

... 
tk 

The first symbol G denotes the gender (M or F) of the individual and will later 

be used for combining individuals. the term pixJi indicates that the schedule of pi parts 

of job i are solved by this individual. Finally a sequence of transitions contains the 

solution to the sub-problem. By simulating such sequence in the PN model, we obtain 

a final marking and the completion time or makespan of the schedule. If we reduce the 

final marking to the tokens in places representing final output buffers, the number of 

tokens in these places equals the number of parts produced for each job as expressed in 

the chromosome. Finally, a makespan-based fitness function (f*) is defined to 

evaluate each individual. 

3.5 Building larger solutions. 

Once the initial population is obtained, the algorithm enters the evolutionary 

optimisation process that constructs the overall schedule from the partial solutions in the 

population. 

The first phase of the algorithm combines individuals representing sub- 

schedules. The entire population forms the mating pool. The gender of each individual 

divides the mating pool into two disjoint sets named F and M Combination among 
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individuals of F and M produces a set of new sub-schedules S The procedure for 

obtaining S is ruled by the fitness function and is given infig. 68. 

gorithm Combine(P) 

celves: P the population of sub-schedules 

mputes: S the set of sub-schedules resulting from combination of F and M. 

riables: FM the set of sub-schedules from P. 

=o 

(1) while F is not emQtv do 
Determine fEFI f*(O is minimum 
Remove f from F. 
(a) Determine mcMI P(m) is minimum and FEASIBLE(f, m) >0 

JOIN (f, m). 
S=Sus 

Remove m from M. 
(b) Determine mcMI FEASIBLE(fm)>O and FEASIBLE(fm) is minimum 

s'= JOIN (f, m). 
S=S us, 

(c) If no individual s or s'has been obtained then 
Obtain an individual m'either from list dead 

or solve m'as the remaining problem 
JOIN (f, m). 
S us 

goto (1) 

Fig. 68: Combination ofsub-schedules. 

Each individual fEF within the mating pool will be considered for 

combination. A priority list among individuals of F is established based on the fitness 

function. 

Initially, f tries to combine with the best m (a) . If this is possible (the function 

FEASIBLE determines this), a new sub-schedule s is obtained from f and m. s is 

included in S and m is removed from M. Secondly (b), f tries to combine with the best m 

in terms of a fitness function based on the function FEASIBLE obtaining s'. 

FEASIBLE(f, m) determines if f and m can be joined. If this happens it also gives 

an estimate of the potential of this combination which is used as a fitness function. 
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FEASIBLE is a PN based simulation function that concatenates the sub-schedules using 

the Shortest Remaining Time rule (SRT) for conflict resolution. The final marking 

obtained after simulation is compared with the goal marking MF defined for the 

problem. If any final buffer-place contains more tokens than the same place in MF then 

the joining of f and m is over-solving the problem and thus, its combination is not 

viable. Fig 69. shows the algorithm. 

orithm FEASIBLE(fm) 

ceives: f, m sub-schedules. 
Mo and MF are the initial final marking. 

tums: Determines if the combination of fm is possible and gives an estimate. 

ables: sf the firing sequence of transitions associated with f. 

s .. the firing sequence of transitions associated with m. 
P the set of places of the PN modeling the system. 
M the marking employed for simulation. 

f= mo 

0 
let tf be the first transition of sf. 
let tm be the first transition of sm 
If SRT(td < SRT (td then 

Remove tf from sf 
Fire ý in M 

else Removetmfromsm 

Fire t,,, in M 

ile sf or s.. are not null sequences 

if (M(p)-WF(p) Vpe P) then return success and the makespan associated to M 

Ise return failure 

Fig. 69: Algorithm Feasible. 

When the evolutionary phase has progressed to the point where the population is 

close to a final solution (schedule), it may be that, for a givenf it is not possible to find 

any m that satisfies the conditions expressed in 1) and 2). In these situations, and in 

order to force the creation of individuals that complete the search, an individual not in 

the population needs to be determined. 

To deal with situations of this kind (see case (c) in fig. 68), the approach 

includes a mechanism that preserves the best of previously existing sub-problems. A 
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limited list of dead individuals is maintained. When the process of selection discards 

individuals, each is considered for inclusion in a dead list. The smaller the sub-schedule, 

the higher chance it has to be included in this list. If an individual that solves the same 

sub-problem already exists in dead, the one yielding the best fitness function is kept. 

The rationale is to maintain the best solution to small sub-problems that can complete a 

sub-schedule F that is almost a final solution. 1f no individual that is FEASIBLE with f 

can be found both in the population and the dead list, an artificial sub-schedule m'must 
be obtained. m' is obtained by determining the remaining parts to be produced afterf to 

achieve the goal. DLSS* is used to solve m'. And a new individual representing a 

complete solution is obtained by combining m'andf 
It must be noted that this situation will only occur when f is almost a complete 

schedule and thus in the final stages of the algorithm. In such cases, m' will be a small 

sub-problem not previously considered. 

3.6 Actualising the population. 

Once the combination phase (step 2 in fig 65) has terminated, SONS contains a 

collection of new sub-schedules. Based on the fitness function f*(m) the best k 

individuals of SONS are retained. If the size of the population is g, the best g-k 
individuals of POPULATION are also kept (step 3). Initially we must consider values of 
k equal to half the number of new sub-schedules in SONS. This forces the population to 

progress towards individuals that are closer to the final solution. 

3.7 Joining two sub-schedules: JOIN procedure. 

The purpose of joining two sub-schedules is to combine two operation 

sequences and minimise the idle time of the resulting schedule by filling the machine 

idle time gaps. This new schedule maintains the partial order of operations for both 

sequences (a problem already solved), and the total machine operation cost, since no 

other machine assignment is made, however, the total machine idle time should be 

reduced. 
The simplest procedure is based in a heuristic-dispatching algonthm. A 

dispatching rule, Shortest Remaining Time assigns higher priorities to those operations 
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that can be applied early. The feasibility of the schedule is assured, since the PN model 

contains all the constraints of the system. The algorithm is described infig. 70. 

gorithm JOIN(fm) 

meives: f, m sub-schedules. 
MO is the initial final marking. 

tums: ss the sequence to be constructed 

riables: sý the firing sequence of transitions associated with f. 

s,, the firing sequence of transitions associated with m. 
M the marking employed for simulation. 

n the number of jobs in the system. 

MO 

do 
Let tf be the first transition of *. 
Let tmbe a the transition yielding the smaller SRT(t. ) 

of the first n enabled transition of sm 
If SRT(ý) < SRT (t, ) then 

Remove tf from sf. 
Add tf to s,,. 
Fire tf in M 

else Remove tm from sin 
Add tm to ss. 
Fire tm in M 

while sf or sm are not null sequences 

return ss as the final sequence 

Fig. 70: Algorithm Join. 

The sub-schedule s,, associated with each m controls the execution of the 

algorithm. At each iteration, the next potentially enabled transition t,, of s,,, is examined 

in terms of the SRT rule. SRT(t,,, ) is the time needed for t,, to become fireable under the 

PN marking M. The next n potentially enabled transitions of sy are evaluated by the SRT 

rule, n being the number of jobs in the system. If any transition tf has an STR(t) < 

STR(t, d then tf is fired, otherwise t,,, is fired. The transition selected is fired under M 

and added to the final list ss. 

The algorithm JOIN, although simple, produced interesting results, which 

suggest that a better dispatching algorithm employing limited look-ahead (such as 
DLSS*) and enabling alternate machine selection would improve the results. 
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3.8 Calculating the fitness function. 

Associated with each individual is a fitness function f*(m) that is used during 

combination and to determine whether the individual is retained. As individuals 

represent sub-problems of various sizes the fitness function must be normalised. In fact, 

J*(M) is an upper bound on the final solution that we might get if we select m to be 

combined. J*(m) is calculated differently depending on wheter m is a new individual or 
it is already included in POPULATION. 

a) If m is a new individual obtained, f*(m) is equal to the makespan of the schedule 

obtained as follows: First we simulate the schedule associated with m as many 

times as needed without over-solving the problem. If remaining operations to 

complete the number of parts are left (a simulaton of m produce more parts than 

the required by the problem), individuals from the population are considered, and 

their schedules simulated in the PN. When we have scheduled the totallity of 

parts, j*(m) is the makespan obtained. 

b) When the individual m already belongs to the population, its_f*(m) is recalculated 

at each iteration by the following expression: 

f*(M) + 
AE 

f*(Mi) Mi C 
Sm 

f*(M) =-w0a+ We J6 
1 +1 smi 

Where S,, is the set of new individuals that have been obtained by combining m 

with some other sub-schedule. Consequently f*(M) is recalculated at each iteration by 

calculating the average off*(M) together with the sum of the fitness values of the new 

individuals in S, The rationale is to include inf*(m) an estimate of how good m is when 

combined with other sub-schedules. The term -w#a is intended to favour sub- 

schedules whose combination produces new individuals which have not been rejected 

after the selection phase. w is a tuning parameter and a is the number of individuals of 

S,, successfully included in the population after truncation of SONS (see step 3 in fig. 

65). On the other hand, there is a need for the population to progress towards larger 
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solutions, hence, older individuals are also penalised. The term W &, 8 models this, with 

the number of iterations since m was created. The preliminary results were obtained 

with w= w'= 

3.9 Termination of the algorithm. 

For evaluation purposes, we have established the following condition for 

termination: The population size is kept constant until a first solution to the problem is 

obtained. This schedule is taken as a candidate solution to the problem and the 

population size is decreased by 1. If a new solution is found it is compared with the 

candidate obtained so far and the best kept. Notice that a schedule that is a solution does 

not allow further combination, this is why, for practical reasons we have decided to 
decrease the population. Consequently, a total of G solutions will be obtained before the 

algorithm terminates. 

3.10 A case study. 

Let us consider the problem of Fig 66 The problem is to schedule a number of 3 

parts per job type. The problem is truncated by considering a single part for each job 

and we have optimally solved this problem. There are eight possible active schedules 

for this problem (see chapter 5, section 3), and DLSS* was configured to find them all. 

Table 19 shows these solutions which form the initial pool of individuals for the 

construction algorithm. 
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Individual Chromosome Makespan f*O Schedule 

I F. I xJobA+ I xJobB 8 24 OpAll, OpB13, OpA21, OpA23 

2 F: lxJobA+lxJobB 9 27 OpA1Z OpBJ1, OpA21, OpB22 

3 M. IxJobA+lxJobB 9 27 OpA12, OpB11, OpB23, OpA21 

4 M. lxJobA+lxJobB 9 27 OpA12, OpB13, OpA21, OpB22 

5 F: IxJobA+IxJobB 10 30 OpAll, OpB13, OpA21, OpA23 

6 F: lxJobA+lxJobB 10 30 OpA12, OpB13, OpA21, OpB23 

7 M. I xJobA+ 1 xJobB 11 33 OpB11, OpAll, OpB23, OpA21 

8 M. - lxJobA+lxJobB 11 33 OpB11, OpAll, OpB22, OpA21 

Table 19. Initial population ofsub-schedules. 

Notice how the fitness value is calculated for each individual as 3 times the 

makespan of the sub-schedule (see section 3.8). 

After the first iteration of the algorithm, a total of 8 schedules were created 

resulting from combination. The four with the best value of f* were selected to form 

part of the population. As a consequence, 4 individuals from the original population 

were discarded based on the fitness functionf*. 

Table 20 shows the population after this first iteration of the algorithm. 

Individual Chromosome Makespan f*O 

I F: IxJobA+lxJobB 8 22.5 

2 MI xJobA+ 1 xJobB 9 23.4 

3 M. lxJobA+lxJobB 9 24.2 

4 M. lxJobA+IxJobB 9 24.8 

9 F: 2xJobA+2xJobB 13 21 

10 F: 2xJobA+2xJobB 14 22 

11 F: 2xJobA+2xJobB 15 23 

12 M. 2xJobA+2xJobB 16 24 

Table 20. Population after thefirst iteration. 

Notice how the fitness function for individuals 1,2,3 and 4 is now less than 3 

times their makespan. The reason is that their combination has produced successful sub- 

schedules. On the other hand, new individuals have been added to the population. The 
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individual with the best fitness function (9) also corresponds with the optimum solution 
for producing two parts of each job. This individual resulted from joining sub-schedules 
I and 4, fig. 71 shows their Gantt chart. The resulting schedule after applying the 

algorithm JOIN is shown infig. 72. Indices show the part number. 

mi 

M2 

N43 

0123456789 

mi Job A, 2 
A 

M2 Job A, I Jo b, B, 2 

Job B, I 

Figy. 71: Gantt Charts ofsub-schedules I and 4. 

0123456789 10 11 12 13 

MI Job A ýl Job A, 2 Job A22 

22 M2 Job A, I Job Eý', 2 Job B, 2 

M3 Job B', 1 Job Eý, I 

Fig. 72: Gantt Chartfor sub-schedule 5. 

The next iteration of the algorithm produced several final solutions, the best 

solution (which is also the optimum solution for the problem) is found by the 

combination of schedules, 9 and 4. The makespan obtained was 18 andfig. 73 shows its 

Gantt chart. 

345 10 11 13 15 18 

MI JA' 11 JA' 2 JA 321 JA 32 

111''''''''11, 
M2 JA 211 JA 3, JB' 21 JB 221 jB3 2 

M3 JB' 1 JB 2 JB 3 

1 JA 211 JA 3,1 JB' 21 JB 

Fig. 73: Gantt Chartforfinal solution. 
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4 Experimental results. 

An evolutionary hybrid scheduler based on PN structures for FMS 

Table 21 shows the results obtained applying BSPC to the example problem of 
fig. 66. The number of parts per job varies from 2 to 6. Each problem was also solved 

using the admissible cb-PN A* algorithm and DLSS* when a pure A* becomes 

unaffordable. Note that BSPC finds the same solution as A *. The number of iterations of 
both algorithms is also given. The number of nodes explored for A* and the population 

size and number of generations obtained by BSPC is also given. 

Number of 
Parts per job. 

Makespan A */ 

(DLSS(I 0,100)) 

A* 

Iterations 

Makespan 

BSPC 

Population size 
/Iterations 

2 13* 143* 13 8/1 

3 18* 1029* 18 8/2 

4 24* 17.787* 24 16/3 

5 31 10.317 31 16/6 

6 36 13.496 36 24/6 

Table 21: Summary of results A *(DLSS) vs. BSPC. 

We also solved the case-study proposed in [Lee 94]. The best solution that we 
have obtained for this problem using DLSS* is 329. The best solution reported by [Lee 

94] using A* was 426. The problem consisted of scheduling ten parts for each of the 

five different jobs in the system. 

We solved the problem using the BSPC algorithm with a pool size of 20 

individuals that are obtained as the best 20 solutions obtained by DLSS* solving the 

reduced problem of scheduling a single part per job. Fig. 74 shows the evolution of an 

obvious solution for each generation in the sense that a schedule can be built by simply 

replicating the best member. At iteration five (the sixth generation) the first solution 

(334) is found. The final solution (332) is found after seven generations. Notice that, for 

example, DLSS*(10,5,15) finds a makespan of 334 and DLSS*(20,20,20) obtains 329. 
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The second experiment consisted of generating 20 random FMS descriptions 

corresponding to systems where the optimum solution should be close to the theoretical 

lower bound h*(Mo). The lot sizes per job were set to 10. Each problem was solved by 

BSPC with an initial population of the best 20 solutions obtained by 36 random settings 
for DLSS*. These problems were taken from [Reyes 99] were a preliminary version of 
BSPC employing DWS was presented. The initial sub-schedules were solutions to the 

one-part-perjob problem. Table 22 shows the results. 

Lower bound BSPC Lower bound BSPC 
383.33 393 426.66 446 
323.33 338 513.33 528 

450 459 336.66 357 
360 390 433.33 442 

423.33 433 436.66 456 
393.33 400 320 335 

510 525 316.66 325 
360 384 370 382 
300 321 333.33 342 

393-33 403 383.33 389 
Table 22: Resultsfor FMS with three machines, I Ox5jobs to schedule, and a random number of 

tasks between three and seven. The average number of operations to schedule was approximately 220. 

The average relative difference from the lower bound is 3.8% which is close to 

the results obtained with DLSS* for problems of the same type in a similar experiment 

performed in [Reyes 00]. 

Table 23 represents another set of problems generated where the parallelism 

between machines is known to be low. The settings for BSPC were the same as for the 

previous experiment. Each problem was also solved by the A* approach of [Lee 94]. 
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Operations to BSPC A Operations to BSPC A 
Schedule schedule 

450 623 705 410 716 898 
400 533 601 380 566 661 
190 480 509 210 386 382 
390 496 562 460 718 844 
390 556 575 270 568 698 
240 380 417 430 665 746 
360 625 649 330 502 578 
400 631 704 219 438 461 
350 764 780 210 313 345 
380 799 872 350 528 555 

Table 23: Results for FMS with [5.30] machines, 10x[5.. 10] jobs to schedule, and a random number of 
tasks between three and seven. 

The relative difference of makespans has a mean of 10.7 which improves the 

results obtained in [Reyes 98] when comparing DWS* with A* guided by the heuristic 

function of [Lee 94]. 

5 Summary. 

This chapter has presented a preliminary hybrid scheduling algorithm for PN 

structures of FMS that is an alternative to the application of DLSS* for large problems. 
The objective was the integration of PN capabilities - heuristic search based on state 

space representation and structural analysis- with several successfully employed 

techniques - GA optimisation ideas, and splitting up approaches - in a hybrid 

scheduling paradigm. It represents a promising alternative to approaches that employ 

splitting up with construction techniques [Shaw 88] [De 88] and [Kim 99]. In addition 

the approach supposes an improvement and generalisation of the preliminary results 

based on PN truncation proposed in [Shen 921 and [Chen 94]. Experimental results 

show that the performance is good compared with the current work integrating PN and 

heuristic search. Compared with DLSS* the BSPC is likely to better handle the problem 

of local optima (see section 4.8 in this chapter) for irrevocable strategies based on local 

optimisation, since the adaptive construction can be seen as a global procedure to 

determine the order in which jobs are produced. 

In relation to GA paradigms the dynamic evolution of the chromosome structure 

presents advantages over global approaches by identifying good structures in a 
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progressive schedule building methodology. The inheritance of partial schedules from 

individuals (no need to re-schedule using the schedule builder) is also an interesting 

property since it avoids repetition of previous work. 
The approach retains the benefits of a PN implementation. It allows easy 

truncation analysis, the application of heuristic dispatching rules is immediate, and 

application of state space search methodologies is straightforward. 

The preliminary results obtained suggest further research on the method. 
Particulary in terms of the integration of the three basic GA operators (selection, 

crossover and mutation) to the BSPC algorithm. 
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1. Summary of the thesis. 

Conclusions and future work. 

The work presented in this thesis has resulted in the integration of PN theory 

with AI heuristic search techniques for the scheduling of FMS. We have studied 
different issues that impact this integration and concentrated on the development of PN 

based methods that are useful to guide AI based search algorithms. This has resulted in a 
PN-based scheduling algorithm that in the tests that we have conducted improves 

existing results. The following will summarise the work presented and briefly describe 

its contribution. 

Chapter 2 has reviewed current theory and methods applied to FMS scheduling 

problems. We presented the integration of PN and AI search methods as a promising 

way to overcome the modelling difficulties of operational research approaches which 
lacks a powerful representation paradigm, and the less effective scheduling methods 
based on heuristic rules and simulation that can not cope with the complexity of FMS. 

Finally, we presented an exhaustive review of previous work that attempted to solve 

manufacturing scheduling problems by the integration of PN and AI based searches. 

Chapter 3 presented a language for defining FMS called FmsML that allowed the 

automated synthesis of PN models that capture the main features of the FMS. It has 

been shown that a PN results in a natural way of representing a state-space search 

problem via reachability analysis. We have defined a class of PN (cb-NETs) that allow 

the easy inclusion of high-level constraints within PN models and which allow easy 

automatic synthesis of PN models for FMS. No previous work has considered buffer 

residence constraints such as zero-wait in PN based heuristic search for the scheduling 

of production processes. Examples were given to illustrate the modelling and scheduling 

of different storage policies. 

Chapter 4 studied the development of a new heuristic function based on PN structures 

that model FMS descriptions. The heuristic function plays an important role in PN based 

search algorithms. The new heuristic function developed has resulted in an admissible 
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and easy to calculate heuristic function that takes into account the current state of the 

system expressed by the marking of the PN- This heuristic function is clearly superior to 

previous heuristics which are either not admissible nor based in PN information [Lee 

941 [Yim 96] [Sun 94] [Inaba 98] or are computationaly expensive and require 

mathematical expression relaxation [Jeng 98]. In addition it can be applied to problems 

where multiple parts per job are considered. Experimental tests have shown the benefits 

of our heuristic function in terms of predicting what has to be done based in what has 

been done. This has resulted in greater search reduction when, compared with other 

approaches, and has eliminated tuning difficulties observed in other work. 

Chapter 5 studied the search space that is defined by PN models of FMS and has 

proposed methodologies to achieve effective search reduction. The first part studied the 

identification of intermediate states (markings) which have been previously unexplored, 

and has proposed heuristic tests based on the PN markings that our experiments showed 

to improve previous methods. We believe this work has resulted in a better 

understanding of an issue that has not been sufficiently addressed in the literature. The 

second part has presented a branching scheme based on PN analysis that controls the 

generation of candidate markings by not generating partial schedules that are known not 

to yield optimum schedules. To the best of our knowledge, no other previous work has 

applied such a methodology. The experimental results have shown the effectiveness of 

the approach, in particular for scheduling approaches that do not admit historical 

records of previous explorations e. g. (B&B) and for incomplete search procedures 

where the number of candidate schedules is limited and thus it is interesting to avoid 

futile schedules. 

Chapter 6 has dealt with the development of an affordable incomplete search algorithm 

that can be integrated with the heuristic PN based information presented in the previous 

chapters. Previous PN-based search algorithms are analysed and their shortcomings 

reviewed. The problems occur because they rely excessively on depth-first search 

methods [Lee 94] [Yim 961 [Xiong 98] due to the vast search space, thus inhibiting the 

successful application of PN information to guide the search. Although attempts have 

been made to relax such depth-first dependency, either they cannot successfully fight 

the combinatorial explosion [Jeng 98b] or severely restrict the recovery capability of the 

search [Sun 94] [Inabla 98]. The novel incomplete search algorithm DLSS* is built from 
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this analysis of previous methods and the study of two strategies based on PN heuristics 

and FMS operation assumptions. The first exploits the PN analysis capabilities of the 

system to obtain heuristic dispatching rules that are employed to identify very 

unpromising alternatives; the second assumes a limited backtracking capability based on 
the hypothesis that the performance of the FMS does not depend on a single decision 

made at an earlier stage, but on a complex and difficult to identify strategy. The 

experimental results showed that the algorithm was easy to tune and performed 

polynomially, thus avoiding the combinatorial explosion. It showed very promising 

results in terms of optimality for well-balanced systems, and produced better schedules 
than previous methods for more general FMS formulations. The superiority over 

previous PN approaches [Lee 94] [Xiong 98] was demonstrated by the solving of 

various benchmark problems. 

Chapter 7 presented a novel approach that extended the results obtained in PN based 

heuristic search with the current trends from OR towards stochastic methods. We 

believe that it represents an interesting result in the rare literature on PN based 

scheduling that employs operation research methods, and provides an improvement and 

generalisation of the preliminary results based in PN truncation proposed in [Shen 921 

[Chen 93] and [Chen 94]. It represents a promising alternative to the recent approaches 

that employ splitting up with construction techniques [Shaw 88] [De 88] [Kim 99]. 

Experimental results show that performance is close to current works integrating PN 

and heuristic search. We believe this justifies the viability of the approach. Finally, we 

believe that the method demonstrates the benefits of a PN based implementation as 

PN's allow easy truncation analysis, the application of heuristic dispatching rules is 

immediate, and application of state space search methodologies is straightforward. 

2. Current and future work. 

Current and future work at the moment is concentrated in two directions. The 

first is devoted to improve the algorithms presented in this thesis. The second is more 

directed to the application of the algorithms to real-time scheduling and to real 

industfial systems. 
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2.1 Further improvement and development of DLSS* and BSPC 

algorithms. 
The following are a collection of affordable research directions that concentrate 

in the improvement and further analysis of the PN based scheduling algorithms, DLSS* 

and BSPC that we believe of interest and that are based on the findings of our work. 

2.1.1 A sophistication of DLSSý. 

Geometry of SF. 

In our implementation of the search frame (SF), we have considered 

max-nodesfl) to be equal to a fixed constant for every level. This defines a rectangular 

shape that can allocate a maximum number of markings given by the expression [top - 
bottom] # max-wide. A second approach increases the number of nodes to consider as 

we approach the top level. Since nodes included in bottom level represent the limit for 

backtracking, it seems to be interesting to reduce the choices as we are further from top 
level. It will be interesting to study if these variations in the geometry of SF enhance 
DLSS* capability of selecting the most promising markings. 

Study of different heuristics for advance of SF in DLSSt 

The study of the rules that control the advance of SF in DLSS* algorithm is an 
interesting framework within which to perform empirical experiments, and many ideas 

can be tried. The following is a collection of other different approaches that we believe 

of interest: 

9 Compare the overall quality of markings in SF (such as the mean and std. 

deviation); with a certain reference value based on previous history. 

9 Study the degradation of the heuristic function along bottom and Top levels of SF. 

e Consider at least a minimum number of nodes in SF, either at each level, or in a 

subset of levels. 

It is clear that two parameters will be relevant: a) the heuristicf(M) value of the 

markings and b) the number of nodes contained in SF; but others may be considered. 
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Inclusion criterion in SF. 

Conclusions and future work. 

Further complex analysis could be performed to determine if a marking would 
be considered for exploration. Note that our approach only considers markings of the 

same level, but other levels can be taken into account. For example, include a marking 
in a level not only if it improves the quality of the level, but also if the marking 

represents an improvement over markings from lower or upper levels. Additionally, we 

could improve the heuristic rejection of transitions by incorporating a large number of 
traditional dispatching and heuristic rules [Y-D. Kim 90] in HST 

DLSS* and deadlock avoidance policies. 
DLSS* is implements itself a deadlock avoidance policy. Obviously, previous works on 

the deadlock problem in FMS with the use of PN analysis may be suitable for use in 

DLSS*. For example, [Abdallah 98b] describes a deadlock avoidance policy based on 
PN information and dispatching rules. DLSS* may substitute for such a simple 
dispatching rule approach. [Hsieh 941 employ PN analysis to derive an algorithm that 

checks whether the execution of a control action is valid to maintain a deadlock free 

policy, independently of the dispatching policy employed. Similar work on these lines 

is found in [D'Souza 93] [Banaszak 90] [Ferrarini 98] [Wiswanadham 90]. 

Incorporating these techniques into DLSS* may improve the capability of the algorithm 

to avoid exploration of unfeasible schedules by an earlier detection of deadlock 

situations. 

Ifflnimisation of the local optima effect caused by the backtracking limitation of 

DLSS* 

In chapter 6, section 4.8, we showed that DLSS* suffered from a kind of SPT 

strategy, scheduling the fastest jobs first, leaving the longest for the end. However, 

despite the capability of hRCR to attack this problem, we showed that modifying the 

heuristic function to avoid this SPT strategy improved the results. It will be of interest to 

integrate well-know heuristic strategies for job sequencing. For example, the work 

proposed in [Santos 96] reviews several heuristics for sequencing jobs in flow shop 

systems (FSS). Such heuristics are based on the evolution of the operation times within 

a job description. It should be noted that in a FSS all the jobs follow the same path, and 

usually the problem is reduced to finding a sequence of jobs, given a fixed dispatching 

Scheduling of FMS integrating PN and Al methods. 185 



Chapter 8. Conclusions and future work. 

policy, for example a FIFO policy [Santos 95]. Establishing a parallel, we can consider 

the FMS problem as finding a sequence of jobs, given a scheduling policy, which is 

DLSS*. The sequencing policy will add a component of global strategy that balances the 

tendency of an incomplete best-first strategy to fall into local optima. 

2.1.2 A full Genetic Algorithm BSPC approach. 

Despite the fact that BSPC presented in chapter 7 is an adaptive algorithm, one 

cannot claim that the approach falls into the class of Genetic Algorithms. The following 

subsections will discuss the integration of the three basic GA operators (selection, 

crossover and mutation) to the BSPC algorithm. We suggest integration with different 

GA methodologies that have been successfully applied to manufacturing scheduling 

problems. 

Probabilistic selection of individuals for reproduction. 
The way reproduction is performed in BSPC is deterministic, although based on 

the fitness function. This could be modified in order to consider a random selection of 

pairs of individuals based on the probability distribution defined by the fitness function. 

Crossover. 

BSPC defines a unique operator: the schedule joiner. It takes two partial sub- 

schedules and obtains a new schedule that inherits all the characteristics of both parents. 

A general crossover that inherits partial information from the individuals could be 

introduced. 

Obviously, non-homogeneous individuals form the population. This is due to 

BSPC using a progressive construction method. The crossover operator optimises 

existing plans and schedules for parts and introduces new variants, the schedule builder 

identifies good building blocks and creates new individuals that are closer to the final 

solution. Consequently, the dual application of operators contributes in a different 

manner to the final solution. 

The work in [Hsu 96], although not focussed on manufacturing scheduling 

scenarios, provides an interesting analysis of GA performance and insight on our 
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approach. The main idea is to employ different genetic operators that are priced 

according to their contribution to the enhancement of the solution. Their analysis leads 

to the conclusion that certain GA operators (crossover, mutation, interchange) have 

advantages in different stages of search or for different population groups. For example, 

they state that crossover may be ineffective in earlier stages because of bad genes that 

are present in the parents. Additionally, individuals with higher fitness values have a 
higher probability of breeding better offspring. 

In other words the two operators crossover-schedule builder and the schedule 
joiner are executed in each generation but the population over which they are applied 

changes both in type and size. The appropriateness and usefulness of crossover and 

mutation varies with population and, consequently, stage of search. On the other hand, 

the schedule joiner will be used for those sub-schedules identified as good building 

blocks so their combination contributes towards rapid convergence on the final solution. 

Mutation. 

Mutation is perhaps the most confusing operator from the work applying GA to 

production scheduling. Most of the work employs traditional mutation operators in 

others, for example [I. Lee 97], the mutation implements a neighborhood movement 

which is accepted if it supposes an enhancement of the chromosome, if not, simulated 

annealing is employed. In [Kanet 91] mutation is simply an elimination of a random 

member of the population and its substitution by a randomly generated chromosome. 
Some work simply does not consider mutation [Dundorf 95]. 

As said previously the aim of mutation is to introduce random variations that 

may have not been explored with the aim of avoiding local optima. It is worth noting 

that, when an indirect representation is employed, a fixed deterministic heuristic 

algorithm is in charge of building the schedule. This means that the chance of climbing 

local peaks may be higher. Introducing a certain amount of random behaviour in the 

schedule builder may be an elegant alternative to mutation. The crossover operator 

employed in [Yamada 92] based on Giffler & Thompson's algorithm, employs such an 

approach by randomly determining the next operation that the algorithm selects at 

different stages of the algorithm. In [Holsalpple 93] the Beam Search schedule builder 

includes a random behaviour, hence guaranteeing that even two identical chromosomes 

identical after Beam Search would obtain different schedules. 
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[Ombuky 88] propose that the chromosome not only represents the schedule in 

terms of the order of jobs in the machines but also employ a gene to evolve the 
heuristics that may be used during the GA phase. This gene is obviously affected by 

mutation and crossover. They call this genetized-knowledge. This is clearly related to 
the problem of which combination of heuristic rules assigned to resources solves the 

problem best. 

What we propose is an integrated approach between a chromosome that 
represents a solution, and a chromosome that represents how to obtain the solution. 
Instead of evolving the combination of different heuristic rules, it would be interesting 
to explore which different schedule builders/joiners are available to be used during the 
GA search, from simple dispatching rules, to more complex heuristics (Giffler & 
Thompson's algorithm, Shifting botleneck procedure) and heuristic search algorithms 
(Beam Search, DLSS*). As stated before, [Yamada 92] and [Holsalpe 93] identify a 
degree of uncertainty in these algorithms: (e. g. breaking ties between equally valued 
heuristics, selection of the next operation in heuristic procedures, generation of branches 
in tree search). It is possible to define different alternatives to handle these situations 
and which could be coded as part of the chromosome. Consequently, the partial 
schedules expressed by individuals evolve, but so does the knowledge about which 
method to be applied as a schedule builder/joiner and how it is to be applied. 

2.2 Application to real industrial systems. 

At almost any conference on the field, the existing gap between practice and 
theory in the application of OR results in industry becomes evident. A challenging 

research direction will be the development of a PN based simulation and control tool in 

cooperation with industrial partners. The PN based techniques developed here will be 

integrated in such product as an attempt to compete with current and popular available 

commercial tools such as WITNESS in UK and ARENA in USA offering two main 

advantages: first, that it is a PN based tool, which is a well known methodology for 

practitioners and second that offers powerful scheduling methodologies confronted with 

the heuristic dispatching rules that are normally employed. 

The first steps to achieve this goal and a more affordable lines of research are 

the following: 
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2.2.1 Increase the complexity of the FMS formulation. 

Cb-NETS have allowed to incorporate constraints of the FMS such as buffer 

policies and material stability constraints which are typically difficult to model with 

other representation paradigms such as mathematical programming. However, it will be 

of interest to adapt the algorithms developed in this work to more powerful PN 

extensions. Cb-NETS can be further extended to obtain a systematic Hybrid High Level 

Petri nets that can model the detailed manufacturing characteristics not considered here, 

such as part assembly/di s assembly, dependant set-up times, tool changeover, pallet 
loading, AGV routing and path planning, and more complex models of machine 

operations. Although the work reviewed that integrates PN and heuristic systematic 

search have not considered these characteristics, there exists a large number of works 
focusing in the simulation and analysis part of production processes that have proposed 

powerful PN extensions to often model real systems [Camurri 93] [Yan 98] [Peng 98]. 

However, this work pays little attention to complex search techniques based on PN. We 

believe that the adaptation of CGS and DLSS* would not suppose a major challenge and 

we believe that the performance of the systems will be increased. 

2.2.2 Integration with results in PN applied to manufacturing control. 
PN applied to manufacturing processes is a vast area of research. There are 

different sub-areas that concentrate in different problems and at different level of 

abstraction. Examples of these are human-system interfaces, user supervisory control, 

deadlock detention, control of forbidden states, transformation to PN structures to 

ladder -logic diagrams (LLD) for Programable logic controllers (PLCs). Interesting 

ideas and approaches needs to be integrated within the overall framework. 

2.2.3. Adaptation of DLSS* to on-line scheduling scenarios. 
The natural evolution of the PN based scheduling methodology presented in this 

thesis is its extension to on-line and real-time scheduling scenarios. A preliminary 

extension is straightforward and is currently under development. The scheduling 

architecture changes slightly from the one depicted infig. 4 chapter 3. In fact, two new 

modules need to be added, a stochastic PN simulator [Murata 89] and a control module. 

The on-line architecture is shown infig. 75. 
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Fig. 75: PN based scheduling architecture. 

The user models the FMS description using FMsML which is parsed into two PN 

models. A first model is an extension of a stochastic PN which aims to model the 

behaviour of the real system. The second model is the deterministic cb-NET model. 
DLSS* is the scheduling algorithm of the decision module. It receives the current state 

of the system from the Stochastic PN simulator and produces a complete or partial 

schedule in the form of the sequence of transitions to be fired. This sequence is applied 
by the control module to the Stochastic PN simulator and the performance obtained is 

monitored with the aim to meet unforeesen changes. If deviations from the expected 
behaviour are observed, the current state is passed to the decision module as the initial 

marking and a new schedule is obtained. 

In order to achieve these objectives, the following changes or extensions need to 

be made to each of the following modules: 

FmsML language: 

The FmsAltL needs to be extended to allow the possibility of defining general 

time distributions such as normal and exponential. Normal distributions will usually be 

employed to define operation times and set-up times, while exponential distributions 

allow the simulation of machine/resource failures. Fig. 76 shows an example of a 

resource definition. 
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resource Robot 

setup = gaus s (mean, std dev) 
failure_rate =exp( ... 
repair_time gauss( ... 

ci; 

Fig. 76: FmsML definition of a resource. 

Conclusions and future work. 

FmsML also needs to be extended to allow the definition of part demand rates 

and part cancellation rates. 
The stochastic timed PN is then constructed from the FmsML definition 

following the top-down methodology presented in chapter 3. It is in charge of firing the 

sequence of transitions provided by the scheduler, but obtaining the operation times 
from the time distribution expressed. Also, it fires those transitions that will model new 

arrival or cancellation of parts, as well as unavailability of resources. 

Decision module (DLSS* scheduling algorithm): 
Initially, the PN-based scheduling algorithms do not need modification. They 

still work over a deterministic PN model and obtain a sub-optimal schedule that 

achieves the production objectives. 

However, instead of generating a full schedule, DLSS* may be tuned to 

concentrate effort in local improvement. This is a common procedure in look-ahead 

methods that are related to AI search algorithms. The application of AI game search 

algorithms is an interesting alternative that frequently appears in scheduling 

methodologies based on AI paradigms (Expert Systems and knowledge based 

approaches) for on-line and real time scheduling. The application of the decision 

constrained by a limited search horizon (response time) or by the non -deterministic 
nature of a real system (for example, machine failure, product demand reorder, and the 

stochastic nature of the processes) that cause deviations from expected behaviour. 

The parallel between games and real-time scheduling problems has been 

identified in the literature [Korf 90] [Dario 96]. In essence, a real-time scheduling 

problem can be seen as computer-real world game search. The computer devises a 

short-term strategy based on the expected behaviour of the system (model 

representation and deterministic simulation). The decisions (moves) are applied to the 

real system, which is obviously ruled by uncertainties both in processing times and 

unexpected events. Deviations from the expected behaviour represent the real system 

Scheduling of FMS integrating PN and Al methods. 191 



Chapter 8. Conclusions and future work. 

move and the decision module plays now by reviewing the strategy. This continuous 

invocation of the decision module makes it inappropriate to devise a long strategy or to 

spend to much time worrying about obtaining a complete solution. 

Even if deviations from the deterministic behaviour are not produced, we can 
identify the limited search horizon as a result of computational or information 

limitations [Korf 90] or, for example, avoid the generation of an unaffordable number of 

alternatives. Korf proposed several real-time heuristic search algorithms based on A *. 

For example, time-limit A* applies a pure A* until a time limit is reached; threshold- 
limited IDA * algorithm applies an iteration of the IDA * [Korf 85] algorithm with a 
threshold which is always a constant amount greater than the heuristic estimate of the 

current state. At the end of each iteration, a move will be made in the direction of the 

most promising marking, each such move is an irrevocable decision and starts a new A* 

or IDA* iteration. 

It is worth noting that the application of DLSS* to an on-line scenario is 

straightforward. This is cannot be said for a B&B approach, for example. As stated in 

[Korg 90], a related drawback is that they must search all the way to a solution before 

making a commitment to how good a node (path) is. Actually, B&B finds solutions 

quickly basing the optimisation procedure on chronological backtracking. In other 

words, before a possible alternate choice at depth k is considered, the complete search 

sub-tree from the current state of depth k to the goal marking needs to be explored. On 

the contrary, DLSS* can, for example, increase the searchframe size and be interrupted 

when the time limit expires, returning the best partial schedule generated so far. We 

have implemented a preliminary version of DLSS* that stops when a certain number of 

operations have been scheduled and integrated with a stochastic PN simulation that only 

considers non-determinism in operation time, and we are obtaining interesting results. 

The implementation, testing and validation of the previous proposed PN based 

on-line scheduling methodology, will be of great interest to study a real situation. The 

scheduling algorithms developed in this thesis will be tested against traditional 

scheduling methods based on dispatching rules and simulation optimisation over PN 

models. Advances in this research direction aim to provide effective decision modules 

to be integrated in knowledge based architectures that employ PN as a representation 

paradigm [Martinez 891. 
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