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THE CIRCUMGALACTIC MEDIUM OF SUBMILLIMETER GALAXIES. I. FIRST RESULTS
FROM A RADIO-IDENTIFIED SAMPLE
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ABSTRACT

We present the first results from an ongoing survey to characterize the circumgalactic medium (CGM) of massive
high-redshift galaxies detected as submillimeter galaxies (SMGs). We constructed a parent sample of 163 SMG–
QSO pairs with separations less than ∼36″ by cross-matching far-infrared-selected galaxies from Herschel with
spectroscopically confirmed QSOs. The Herschel sources were selected to match the properties of the SMGs. We
determined the sub-arcsecond positions of six Herschel sources with the Very Large Array and obtained secure
redshift identification for three of those with near-infrared spectroscopy. The QSO sightlines probe transverse
proper distances of 112, 157, and 198kpc at foreground redshifts of 2.043, 2.515, and 2.184, respectively, which
are comparable to the virial radius of the ∼1013 Me halos expected to host SMGs. High-quality absorption-line
spectroscopy of the QSOs reveals systematically strong H I Lyα absorption around all three SMGs, with rest-frame
equivalent widths of ∼2–3Å. However, none of the three absorbers exhibit compelling evidence for optically thick
H I gas or metal absorption, in contrast to the dominance of strong neutral absorbers in the CGM of luminous z∼2
QSOs. The low covering factor of optically thick H I gas around SMGs tentatively indicates that SMGs may not
have as prominent cool gas reservoirs in their halos as the coeval QSOs and that they may inhabit less massive
halos than previously thought.

Key words: galaxies: halos – intergalactic medium – quasars: absorption lines

1. INTRODUCTION

The first millijansky-level submillimeter surveys discovered
a population of distant submillimeter-bright galaxies (SMGs),
namely, unresolved sources with 850μm flux density (S850)
greater than 3–5mJy (Smail et al. 1997; Barger et al. 1998;
Hughes et al. 1998; Eales et al. 1999). The SMGs selected at
wavelengths between 850μm and 1mm are intense starbursts
(SFR500 -

M yr 1) at a median redshift of z∼2.5 (Chap-
man et al. 2005; Wardlow et al. 2011; Smolčić et al. 2012; Yun
et al. 2012). The intense star formation is dust-enshrouded, so
that the SMGs radiate most of their bolometric luminosity in
the far-infrared (IR). The observed molecular and stellar
emission indicates that they are massive gas-rich galaxies
(Mgas∼Mstar∼ 1011 Me; e.g., Michalowski et al. 2010; Hain-
line et al. 2011; Bothwell et al. 2013), but the typical halo mass
of SMGs remains uncertain, with estimates ranging from 1012

to 1013Me. Two lines of evidence suggest that SMGs may
inhabit dark matter halos as massive as ∼1013 Me: (1) their
strong clustering strength estimated from either the angular
two-point correlation function (e.g., Scott et al. 2006; Weiß
et al. 2009) or the cross-correlation function between SMGs
and other high-redshift galaxies (e.g., Hickox et al. 2012), and
(2) their high stellar mass and the Mstar−Mhalo relation from
abundance matching (Mhalo=6×1012 Me forMstar=1011 Me

at z= 2; e.g., Behroozi et al. 2010). However, because source
blending due to the large beams of single-dish (sub)millimeter
telescopes may have significantly elevated clustering strength
(Cowley et al. 2016) and the stellar mass estimates remain
uncertain within an order of magnitude (e.g., Hainline et al.
2011; Michałowski et al. 2012; Targett et al. 2012), it is possible
that a typical SMG may inhabit much less massive halos
(∼1012Me).
SMGs are absent in the local universe, and it is commonly

thought that they have evolved into massive ellipticals today
(e.g., Blain et al. 2004; Toft et al. 2014). To understand the
evolution of SMGs, it is imperative to know how long the
observed intense star formation would last. For 1013Me halos
at z=2.5, the average baryonic accretion rate from the mass
growth rate of dark matter halos is º ´M 0.18gas˙

´M 1.4 10halo
3˙ -

M yr 1 (Neistein & Dekel 2008; Bouché
et al. 2010). In such massive halos, it is expected that most
of the baryons will be shock-heated to the virial temperature
of the halo (∼107 K), so that only a small fraction of the
accreted gas can actually cool and accrete onto galaxies (e.g.,
Keres et al. 2005; Dekel & Birnboim 2006). Therefore, the
ongoing gas accretion is unlikely to sustain the extreme
SFRs. Without a comparable gas supply rate, the SFR
would decline with an e-folding timescale of only ∼200Myr
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(2Mgas/SFR; e.g., Greve et al. 2005; Tacconi et al. 2008; Ivison
et al. 2011; Bothwell et al. 2013; Fu et al. 2013). At such a rate,
the SMGs would become red sequence galaxies in only a Gyr
or 5 e-folding times.14 Such a short transitional time of a
significant high-redshift star-forming population might help
explain the rapid build-up of the massive end of the red
sequence at z>1 (e.g., Ilbert et al. 2013). Starbursts thus
provide an alternative mechanism to the QSO-mode feedback
(e.g., Silk & Rees 1998; Di Matteo et al. 2005) to form red and
dead galaxies. Note that both mechanisms still require feedback
from radio jets (i.e., the maintenance mode; e.g., Fabian 2012;
Heckman & Best 2014) to prevent the hot gaseous halo from
cooling. On the other hand, if SMGs were in 1012Me halos,
the intense star formation would also be unsustainable because
the gas accretion rate would be only ∼110 -

M yr 1 at z=2.5.
However, could there be enough cool gas in the circumga-

lactic medium (CGM) around SMGs to fuel a prolonged
starburst phase (e.g., see the simulation of Narayanan
et al. 2015)? The CGM of coeval QSOs may give us a hint,
because they inhabit comparably massive (∼1012.6Me) halos
(White et al. 2012). Contrary to the expected dominance of
virialized X-ray plasma, absorption line spectroscopy of a
statistical sample of z∼2 projected QSO pairs reveals the
prevalence of cool (T∼ 104 K), metal-enriched (Z� 0.1 Ze),
and optically thick Lyα absorbers (NH I � 1017.2 cm−2)
extending to at least the expected virial radius of 160kpc
(the “QSO Probing QSO” (QPQ) project: Hennawi et al.
2006a; Hennawi & Prochaska 2007; Prochaska et al. 2013a,
2013b). The high observed covering factor of the cool CGM
gas (60%) in ∼1012.6Me halos has been compared to
predictions from numerical simulations. While several studies
found that they cannot reproduce the high covering factor
around QSOs (Fumagalli et al. 2014; Faucher-Giguère
et al. 2015; but see Rahmati et al. 2015), it has been argued
that efficient star formation-driven winds from accreted satellite
galaxies that interact with cosmological filaments are required
to increase the H I covering factor to the observed level, which
is resolved only in the highest-resolution cosmological zoom
simulations (Faucher-Giguere et al. 2016).

These high-resolution simulations predict that the covering
factor is roughly independent of SFR, decreases with redshift,
and has relatively large halo–halo variations. In the relevant
halo mass range, ∼3×1012–1013Me, simulations show
H I covering factors of ∼30%–80% with little mass dependence
at z∼2 (Faucher-Giguere et al. 2016). Given the estimated
halo mass for QSOs and SMGs, one could expect similar
covering factors if these are determined primarily by the
interplay between gas infall and star formation-driven outflows.
To test this, we exploit QSO absorption line spectroscopy
to probe the CGM of SMGs. In Section 2, we present the
data sets and the method we used to select projected SMG
−QSO pairs. We then describe our follow-up observations in
Section 3, including those from radio interferometer imaging,
near-infrared spectroscopy, and optical spectroscopy. We
present our analysis and results in Section 4, including a
comparison between the covering factor of optically thick gas
around SMGs and that of z∼2 QSOs. We summarize the
results and conclude in Section 5. Throughout we adopt

a ΛCDM cosmology with Ωm=0.27, ΩΛ=0.73, and
H0=70 kms−1Mpc−1.

2. SELECTION OF PROJECTED SMG−QSO PAIRS

Because both high-redshift QSOs and SMGs have low-
number counts, we needed large samples of both to come up
with a sizable sample of projected SMG−QSO pairs with small
angular separations. We compiled 464,866 spectroscopically
confirmed QSOs from various surveys—primarily, the Sloan
Digital Sky Survey (SDSS; Alam et al. 2015), the 2dF QSO
Redshift Survey (Croom et al. 2004), the AGN and Galaxy
Evolution Survey (Kochanek et al. 2012), and the MMT
Hectospec Redshift Survey of 24 μm Sources in the Spitzer
First Look Survey (Papovich et al. 2006). Since we selected
foreground galaxies that are likely to be at z>2 (see the next
paragraph), we kept only 102,472 QSOs at zQSO>2.5. The
average surface density of these background QSOs is
∼10 deg−2.
To select the foreground SMGs, we combined source

catalogs from a number of wide-area extragalactic surveys
carried out by the Herschel15 Space Observatory (Pilbratt
et al. 2010): the Herschel Multi-tiered Extragalactic Survey
(HerMES, 95 deg2; Oliver et al. 2012; Wang et al. 2014), the
Herschel Astrophysical Terahertz Large Area Survey (H-
ATLAS, 600 deg2; Eales et al. 2010; Valiante et al. 2016), the
Herschel Large Mode Survey (HeLMS, 301 deg2; Oliver
et al. 2012; Asboth et al. 2016; C.L. Clarke et al. 2016, in
preparation; Nayyeri et al. 2016), and the Herschel Stripe 82
Survey (HerS, 79 deg2; Viero et al. 2014). All of these surveys
used SPIRE (Spectral and Photometric Imaging Receiver;
Griffin et al. 2010) to image the sky at 250, 350, and 500 μm,
and the combined xID25016 catalog contains 1,586,047 sources
covering a total of 767 deg2 (the HerS and HeLMS fields
overlap by 10 deg2).
However, most Herschel sources are not SMGs; they are,

instead, less luminous dusty star-forming galaxies at lower
redshifts (z< 2; Casey et al. 2012, 2014). To select Herschel
sources that are likely to be SMGs, we chose only the
subsample that satisfies the following criteria: (1) flux density
peak at 350 μm ( <S S250 350 and S500< S350; i.e., “350μm
peakers”), (2) S500> 20 mJy, and (3)>3σ detections in all
three SPIRE bands. Criterion 1 is essentially a photometric
redshift selection because emission from dusts at T= 35 K
would peak at 350 μm if redshifted to z∼ 2.5. This is confirmed
by the blind carbon monoxide (CO J= 1–0) survey of a
subsample of the brightest 350 μm peakers (S350� 115 mJy),
which has shown a strikingly similar redshift distribution as
850 μm selected SMGs (zCO= 2.5± 0.8; Harris et al. 2012).
But note that most of these bright sources are strongly lensed
and they do not overlap with our sample. Criterion 2 is
introduced to ensure that the Rayleigh–Jeans extrapolation
would give S850> 3 mJy, the classic definition of an SMG,
given a typical power-law slope of 3.5 for a modified
blackbody with a frequency-dependent absorption cross section
(k nµ 1.5). Criterion 3 ensures that all of the sources we
considered are statistically significant. This is necessary
because the image depth varies substantially from field to

14 This is the time it would take to decrease the specific SFR (SFR/Mstar) from
∼10−9 Gyr−1 for the SMGs at the observed epoch to ∼10−11 Gyr−1 for the red
sequence at z∼2 (Brammer et al. 2009).

15 Herschel is an ESA space observatory with science instruments provided by
European-led Principal Investigator consortia and with important participation
from NASA.
16 Fluxes of 250, 350 and 500 μm were all extracted at source positions
detected on the 250 μm map (e.g., Roseboom et al. 2010; Rigby et al. 2011).
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field, ranging from σ500= 15 mJy beam−1 for the large HeLMS
and HerS fields (confusion noise included; Oliver et al. 2012;
Viero et al. 2014) to confusion limited with σ500= 6.8
mJy beam−1 for the deeper HerMES fields (Nguyen
et al. 2010). Given the range of observed far-IR SEDs at
z= 2 from Casey et al. (2012), our color selection and the high
threshold on the 500 μm flux density ensure that ∼95% of our
sample would be classified as SMGs if they were observed at
870 μm. Nevertheless, we should keep in mind that the
Herschel-selected SMGs are a subsample of SMGs and they
likely cover a smaller range of dust temperatures than 870 μm
selected SMGs (e.g., Hwang et al. 2010; Magnelli et al. 2012).
Only 70,823 Herschel sources remained after this selection.
The average surface density of 92 deg−2 is five times lower
than the observed 870 μm source count above S8703 mJy
(∼500 deg−2; Coppin et al. 2006; Weiß et al. 2009). This is not
surprising given that almost half of the total Herschel area is
only 10%–20% complete at S500= 20 mJy. Note that this
incompleteness in the Herschel catalogs is not a concern for
compiling a sample of SMG−QSO pairs.

We identified 230 projected SMG−QSO pairs with angular
separations (θ250)

17 of  q 5 36250 by cross-matching the
QSO and SMG subsamples described above. The corresp-
onding impact parameters (R̂ ) are < <R̂40 300 kpc for
zSMG= 2.5. The impact parameter is defined as the transverse
proper distance at the redshift of the foreground SMG, which
equals the angular diameter distance of the SMG multiplied by
the angular separation in the sky ( q= ´R̂ D zA ( ) ). These
QSO sightlines thus probe out to the ∼1.5 virial radii of
1013Me halos ( =r 200 kpcvir at z= 2.5). Given the positional
uncertainty of the Herschel 250 μm sources (s = 3. 4pos ; see
Section 4.1), the 5″ lower limit on the angular separation is
imposed as an attempt to avoid far-IR-luminous QSOs, i.e., the
QSOs are the SMGs themselves. Through visual inspection of
the QSO spectra, we further excluded 31 pairs whose QSOs
exhibit strong broad absorption lines (this makes them
unsuitable for absorption line work), have wrong redshifts, or
are misclassified. Therefore, our final sample includes 199
pairs, among which 90/163 QSOs have SDSS g 21 22
(bright enough for absorption line spectroscopy). One Herschel
source is probed by two QSOs at θ250=8 0 and 18 2. No
QSO probes multiple Herschel sources within 36″, but a
“single” Herschel source may consist of multiple SMGs due to
the large beam size, so it is possible that a single QSO could
probe multiple SMGs at different impact parameters (this is
indeed the case for the last source shown in Figure 1).

3. FOLLOW-UP OBSERVATIONS

Extensive follow-up observations are needed to perform an
absorption-line analysis of SMGs. Identifying the absorption
features in the spectrum of the background QSO requires a
precise redshift for the foreground SMG. But the full-width-at-
half-maximum (FWHM) angular resolution of Herschel—18″/
25″/36″ at 250/350/500 μm—precludes longslit spectroscopic
observations with a typical slit width of 1″. To obtain more
accurate positions and to identify blended sources, we
exploited interferometer observations with the Karl G. Jansky
Very Large Array (VLA). Furthermore, once the positions are
determined with sub-arcsec accuracy, we need to determine the
spectroscopic redshifts of the SMGs with near-IR spectro-
graphs by targeting rest-frame optical lines that suffer less dust
extinction than rest-frame UV lines. Finally, a high S/N
optical/near-UV spectrum of the background QSO is needed to
detect the UV absorption lines imprinted by the diffuse medium
around the SMGs. Below we describe these observations in
more detail.

3.1. SMG Identification with the VLA

Far-IR-luminous galaxies, like our Herschel sources, are
expected to be luminous in the radio wavelengths, according to
the IR–radio correlation (Helou et al. 1985; Condon 1992;
Ivison et al. 2010). We can thus obtain better positions for the
Herschel sources by identifying the radio counterparts with
interferometers. We observed 15 SMG−QSO pairs with the
VLA in the B configuration with the C-band (6 GHz) receivers
(program ID: 15A-266). The sample was selected randomly
from SMG−QSO pairs with QSOs brighter than g� 21,
excluding those with θ250>30″. We later realized that two of
the VLA targets in the HeLMS field are likely to be spurious
detections because of Galactic cirrus (Clarke et al. 2016, in
preparation), so we excluded them in this discussion. Table 1
lists the Herschel positions and photometry of the final VLA
sample. The receivers have a total bandwidth of 4 GHz at a
central frequency of 5.9985 GHz. The targets were selected
from six different extragalactic fields. To maximize the
observing efficiency, we grouped the targets with their R.A.
into five scheduling blocks of 0.8 to 3.1 hr. A nearby
unresolved calibrator was observed every ∼10 minutes.
Depending on the R.A. of the targets, 3C 48, 3C 286, or
3C 295 was observed for bandpass and flux-density calibration.
The entire program took 8.3 hr of VLA time. The on-source
integration time ranged from 9 to 70 minutes, allocated based
on the 6 GHz flux density estimated from fitting the Herschel
photometry with the SED template of a well-studied, strongly

Figure 1. VLA 6GHz continuum maps for the six VLA-identified SMGs. Each image is 30″×30″ centered on the Herschel position. The restoring beam of each
map is plotted as the red ellipse at the lower right corner, above which the 1σ noise level is labeled in units of μJy beam−1. The cross and the dashed circle indicate the
Herschel positions and the 18″ FWHM of the 250μm PSF. The red square highlights the detected radio source within the Herschel FWHM. The blue diamond marks
the optical position of the QSO, if it is within the displayed region. The contours are at (+2, +4)σ (s = 4.9¯ μJy beam−1). Major tickmarks are spaced in 5″ intervals.
North is up and east is left for all panels.

17 The angular separation θ250 is measured as that between the Herschel
250 μm position and the optical position of the QSO.
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lensed SMG at z= 2.3259 (SMM J2135-0102, aka the “Eye-
lash”; Swinbank et al. 2010).

The observations were calibrated using the Common
Astronomical Software Applications (CASA) package
(McMullin et al. 2007). We used the VLA pipeline to perform
basic flagging and calibration. Additional flagging was
performed whenever necessary by inspecting the visibility
data. We used the self-calibration technique with bright sources
within the primary beam to reduce the gain errors for four
fields: HeLMS 0015+0404, HeLMS 0041−0410, L6-
XMM 0223−0605, and NGP 1313+2924. For imaging and
deconvolution, we used the standard CASA task CLEAN with
“natural” weighting to achieve the best sensitivity. The
resulting restoring beams are on average 1 5×1 2 FWHM.
The rms image noise level ranges from 2.1 to 14.1 μJy beam−1,
with a mean of 6 μJy beam−1. This measured noise is
consistent with thermal noise using natural weighting of the
visibility data, except for maps contaminated by the sidelobes
of strong sources lying far outside the cleaned image.

We will present the results in Section 4.1, but here is a
summary: The VLA detected six of the 13 SMGs; for one of
those, NGP 1335+2805, the QSO at z= 2.973 itself was
responsible for the IR emission, so we excluded it from
subsequent spectroscopic observations.

3.2. Near-IR Spectroscopy of the VLA-detected SMGs

With the VLA positions that are accurate to 0 1, we
carried out a redshift survey for the five VLA-detected SMGs
with near-IR spectrographs. The VLA resolved the Herschel
source of L6-FLS 1712+6001 into two sources at similar
brightness (Figure 1, last panel). We chose the one closer to the
Herschel position as the nominal counterpart and obtained a
deep near-IR spectrum at that location. It is unclear whether the

two sources are physically related because the redshift of the
other source remains to be determined.
We observed G15 1435+0110, L6-FLS 1712+6001, and

NGP 1333+2357 with the LUCI-1 spectrograph (LBT NIR-
Spectroscopic Utility with Camera and Integral-Field Unit;
Seifert et al. 2003) on the Large Binocular Telescope (LBT) on
2015 April 14. We used the 200 l/mm H+K grating at
λc= 1.93 μm and the N1.8 camera (0 25 per pixel) to obtain a
spectral range between 1.5 and 2.3 μm. The 1″-wide 4′-long slit
was centered on the VLA-determined SMG position, and it was
aligned with the QSO in each pair to obtain the QSO spectrum
simultaneously. The QSO spectrum was bright enough to serve
as a useful reference for spatial alignment. The spectral
resolution (R) was ∼940 in H-band and ∼1290 in K-band.
We obtained 32×120 s exposures for each target. Between
exposures, we dithered along the slit among six dithering
positions distributed within 40″. Atmospheric transparency
varied dramatically during the night, and no telluric star was
observed. So we used the telluric star observation from the
previous night for an approximate telluric and flux calibration.
We observed HeLMS 0015+0404 and G15 1413+0058 with

the Gemini near-infrared spectrograph (GNIRS; Elias
et al. 2006) in the queue mode (program IDs: GN-2015B-Q-
46, GN-2016A-Q-41). We used the cross-dispersing prism with
the 31.7 l/mm grating and the short camera to obtain a
complete spectral coverage between 0.85 and 2.5 μm. With the
0 68 short slit, the spectral resolution was R ∼ 750 across all
orders. We obtained 14×300 s exposures for HeLMS 0015
+0404 on 2015 August 9 and 12 and October 18, and
24×115 s exposures for G15 1413+0058 on 2016 May 20.
We dithered by 3″ along the 7″-slit between exposures.
Data reduction was carried out with a modified version of

LONGSLIT_REDUCE (Becker et al. 2009) for LUCI-1 by

Table 1
VLA-observed Herschel Sources

Pair Name R.A.250 Decl.250 S250 S350 S500 Int Time R.A.6 GHz Decl.6 GHz S6 GHz
peak S6 GHz

int

(deg) (deg) (mJy) (mJy) (mJy) (minutes) (deg) (deg) (μJy/bm) (μJy)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

HeLMS
0015+0404

3.9286 +4.0715 61.7±6.0 67.8±5.7 54.3±7.2 26.5 3.93038 +4.07262 69.4±6.7 72.4±13.4

HeLMS
0041−0410

10.3541 −4.1679 80.8±6.2 83.0±6.5 43.6±7.0 15.8 K K <35.1 K

L6-XMM
0223−0605

35.8056 −6.0860 33.8±2.3 40.3±2.5 24.2±3.5 69.7 K K <14.4 K

G09 0918−0039 139.6159 −0.6644 41.1±6.9 49.7±8.1 31.2±9.1 18.9 K K <17.7 K
G09 0920+0024 140.2475 +0.4049 35.0±7.0 51.6±8.1 32.0±8.9 22.9 K K <18.6 K
NGP 1313+2924 198.4530 +29.4126 59.7±5.6 78.5±6.6 53.6±7.8 17.2 K K <42.3 K
NGP 1330+2540 202.5866 +25.6749 49.2±5.8 54.3±6.4 29.3±7.8 18.0 K K <15.3 K
NGP 1333+2357 203.3743 +23.9592 30.4±5.4 31.8±6.4 29.1±7.5 55.2 203.37514 +23.95909 20.0±3.0 31.0±8.1
NGP 1335+2805 203.9409 +28.0986 41.7±5.5 49.8±6.4 38.2±7.7 27.6 203.94249 +28.09750 38.3±4.5 51.4±11.0
G15 1413+0058 213.4580 +0.9725 46.6±6.4 52.8±7.7 36.1±8.5 16.2 213.45743 +0.97321 37.3±5.8 37.3±11.6
G15 1435+0110 218.9043 +1.1682 63.0±6.7 63.8±8.0 56.6±8.8 9.2 218.90494 +1.16958 75.6±7.3 89.1±16.0
G15 1450+0026 222.6773 +0.4351 47.5±6.9 47.9±8.1 29.1±8.9 16.3 K K <18.0 K
L6-FLS

1712+6001
258.0352 +60.0281 32.3±2.2 34.0±2.4 22.4±3.6 30.1 258.03111 +60.02722 10.8±2.1 10.8±4.2

258.04010 +60.02625 13.9±2.1 15.6±4.5

Note. L6-FLS 1712+6001 has two radio counterparts (see Figure 1); the first line shows the nominal counterpart, which is closer to the Herschel position, although
slightly fainter. Columns (2–6) list the Herschel 250μm positions and the photometry at 250, 350, and 500μm. Column (7) is the total VLA on-source integration
time. Columns (8–9) list the positions of the radio counterparts. Columns (10–11) are the peak flux density in μJy/bm and the integrated flux density in μJy, both of
which are derived by fitting an elliptical Gaussian model to the source. The uncertainty of peak flux density is given by the rms noise in the map at the source position,
while the uncertainty of the integrated flux density is estimated using the formulae provided by Hopkins et al. (2003); this uncertainty includes the 1% uncertainty in
the VLA flux-density scale at 6GHz (Perley & Butler 2013).
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Fuyan Bian (Bian et al. 2010) and a modified version of
Spextool (Vacca et al. 2003; Cushing et al. 2004) for GNIRS
by K. Allers (2016, private communication). These IDL
packages carry out the standard data reduction steps for near-
IR spectroscopy: flat-fielding, wavelength calibration, pairwise
sky subtraction, residual sky removal, shifting and coadding,
spectral extraction, telluric correction, and flux calibration.

We identified narrow emission lines in three of the five
observed SMGs, which enabled redshift measurements. We
were unable to determine the redshifts of the other two sources
because we detected only the continuum emission at low S/N.

3.3. Optical Spectroscopy of the Background QSOs

Although previous optical spectra exist for all of the QSOs in
our sample, most of them do not have the necessary
wavelength coverage or sufficient S/N for absorption line
analysis. Hence, we obtained new optical spectra for the three
background QSOs that were associated with the spectro-
scopically identified SMGs. We observed HeLMS 0015+0404
and NGP 1333+2357 on 2016 January 9 and L6-FLS 1712
+6001 on 2015 June 13 with the Low Resolution Imaging
Spectrometer (LRIS; Oke et al. 1995) on the Keck I telescope.
We used the 1″ longslit and the 560 dichroic for both runs. For
the former run, we used the 600/4000 Grism on the blue side
(R∼ 1000 at 4000Å, FWHM=300 km s−1) and the 600/
7500 grating at λc= 7407Å on the red side to cover 3300 to
8700Å. For the latter run, we used the 400/3400 Grism on the
blue side (R ∼ 600 at 4000Å, FWHM=500 km s−1) and the
400/8500 grating tilted to a central wavelength of λc= 8300Å
on the red side to cover 3300 to 10,200Å. The total integration
time for each source ranged between 30 and 40 minutes.
Conditions were non-photometric for both nights. We obtained
useful spectra for all three background QSOs.

We reduced the raw data with XIDL, an IDL data reduction
package for a number of spectrographs written by two of us
(JXP and JFH). The pipeline follows the standard data
reduction steps and reduces the blue and red channels
separately. It begins by subtracting a super bias from the raw
CCD frames, tracing the slit profiles using flat fields, and
deriving the 2D wavelength solution for each slit using the arcs.
Then it flat-fields each slit and rejects cosmic-rays, identifies
objects automatically in the slit, and builds the b-spline super
sky model without rectification (Kelson 2003). After subtract-
ing the super sky model, it performs optimal 1D extraction
based on the spatial profile of the QSO (Horne 1986). Finally, it
removes instrument flexure using isolated sky lines, performs
heliocentric correction, and does flux calibration.

4. RESULTS

4.1. Radio Detections

We targeted the Herschel sources in 13 SMG−QSO pairs
with the VLA and made six clear detections (46% detection
rate). Figure 1 shows the VLA detections, and Table 1 lists the
6 GHz positions and flux density measurements for the
detections and 3σ upper limits on the non-detections. The
VLA revealed five genuine SMG−QSO pairs (HeLMS 0015
+0404, NGP 1333+2357, G15 1413+0058, G15 1435+0110,
L6-FLS 1712+6001) and one far-IR-luminous QSO
(NGP 1335+2805).

The VLA-detected SMGs have 6 GHz peak flux densities
between 11 and 76 μJy with a mean of ∼40 μJy. For these

detections, there is a clear positive correlation between the
observed flux densities at 6 GHz and 500 μm, as expected from
the IR–radio correlation convolved with a redshift distribution.
The 54% non-detection rate is not surprising given the
uncertainties in the predicted 6 GHz flux density and the fact
that the sensitivity of radio data may deviate substantially from
the theoretical prediction because of confusion sources and
weather.
The offsets between the Herschel positions and the VLA

positions range between 2 7 and 7 9. The maximum offset
is comparable to the estimated 2σ positional uncertainty
of Herschel 250 μm selected catalogs: s s= =2pos R.A.

´ = 0.93 FWHM SNR 3. 4 for FWHM=18 1 and
SNR=5 (Ivison et al. 2007; Smith et al. 2011). This
indicates that a fraction of the “pairs” that have small
angular separations (θ2508″) could be single sources, i.e.,
QSOs that are far-IR-luminous. In our VLA-detected sample,
NGP 1335+2805, with θ250= 6 5, is the only such case (see
the third panel of Figure 1). The VLA position agrees with
the optical QSO position within 0 1, which is well within the
cross-band astrometry accuracy of ∼0 3 (SDSS+VLA; e.g.,
Ivezić et al. 2002). But on the other hand, the SMG in L6-FLS
1712+6001 is a separate source from the QSO, despite its even
smaller 250 μm separation (θ250= 5 4). We thus chose not to
exclude pairs with 5″< θ250< 8″. The far-IR-luminous QSOs in
our sample are interesting in their own right, and they will be
discussed elsewhere.

4.2. Physical Properties of the SMGs

Estimating the intrinsic properties of the VLA-detected
Herschel sources requires knowledge of their spectroscopic
redshifts. We obtained deep near-IR spectra for the five VLA
counterparts whose spectroscopic redshifts were previously
unknown. We detected Hα and [N II] lines from three of the
five sources, enabling accurate determination of the spectro-
scopic redshifts (Figure 2 and Table 2). The [N II]/Hα line
ratios are consistent with the range observed in typical SMGs
(0.1[N II]/Hα1.4; Swinbank et al. 2004). The two
remaining sources, G15 1413+0058 and G15 1435+0110,
show near-IR continuum emission without detectable emission
lines or stellar absorption features. It is possible that the
emission lines either fall into one of the telluric absorption
bands or are simply outside of the spectral range. Our redshift
success rate is thus 60%, comparable to those of previous
redshift surveys of SMGs in the optical range (e.g., Chapman
et al. 2005; Casey et al. 2011).
With the photometry from Herschel and the VLA and

spectroscopic redshifts, we can estimate the total rest-frame 8
−1000μm luminosity (LIR) and the IR-to-radio luminosity
ratio (qIR). The results are listed in Table 2. We fit the Herschel
photometry with a modified blackbody at the spectroscopic
redshift, with β fixed to 1.5. We found that they have
LIR>1012Le and SFRIR=470–1500 -

M yr 1. The SFR
was estimated from LIR using the calibration of Murphy et al.
(2011) for a Kroupa (2002) initial mass function:

= ´- -
 M L LSFR yr 1.5 10 . 11 10

IR ( )

The extrapolated 850μm flux densities are in the range
7�S850�18 mJy, confirming that they are SMGs.
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The IR-to-radio luminosity/flux ratio was estimated using
the following equation (Helou et al. 1985; Ivison et al. 2010):

=
´ -

- -
q

S

S
log

3.75 10 W m

W m Hz
2IR

IR
12 2

1.4 GHz
2 1

( )

where SIR is the rest-frame integrated 8–1000μm flux and
S1.4GHz is the rest-frame 1.4GHz flux density.18 The former is
from the modified blackbody fit to the IR SED, and the latter is
converted from the observed 6GHz flux densities assuming a
typical synchrotron slope ( nµn

-S 0.8). The three SMGs show
 q2.1 2.6IR , consistent with the observed radio–IR

correlation for Herschel sources (qIR= 2.4± 0.5; Ivison et al.
2010). This indicates that our sample is not biased to radio-loud
AGNs despite being radio selected.

4.3. Absorption Line Systems

To compare our results with previous results on the CGM of
other high-redshift galaxies, we needed to characterize the
covering factor of optically thick gas clouds around SMGs (i.e.,
Lyman limit systems [LLSs] with column densities of neutral
hydrogen NH I > 1017.2 cm−2). We searched for Lyα absorbers
near the spectroscopic redshifts of the foreground SMGs and
classified the Lyα absorbers in the QSO spectra following the
procedure used in the QPQ study (e.g., Prochaska et al. 2013b).
We classified the absorbers as optically thick (i.e., LLSs),
optically thin, or ambiguous based on the Lyα equivalent
widths (EWs) and the presence of associated metal transitions.

We first identified H I Lyα absorption due to the SMGs in
the QSO spectra within±600km s−1 of the systemic redshifts
of the SMGs. The search window was chosen because the
escape velocity is 610km s−1 at the virial radius (Rvir= 230
kpc) of a 1013Me dark matter halo at z=2 (Navarro
et al. 1996; Bullock et al. 2001). Strong Lyα absorption lines
were detected in all three systems (Figure 3). We report their
rest-frame EWs ( aWLy ), the updated angular separations based

on the VLA positions (θ6 GHz), and the impact parameters (R̂ )
in Table 2. As we have found in our earlier QSO absorption
line studies, systematic error associated with continuum
placement and line blending generally dominates the statistical
error of the QSO spectra. So we estimated the error of WLyα

assuming a 10% error in the continuum placement. From our
best-fit Gaussians to the absorption profiles (shown in Figure 3),
we found that all three systems show strong Lyα absorption
lines with =aW 1.7 2.9Ly – Å. Note that when

-z z 0.5QSO SMG , the H I Lyα absorption from the SMG
may lie within the QSO Lyβ forest. Unfortunately, all three
pairs fall in this category, so contamination from Lyβ lines
from systems in the Lyα forest may be a concern. However, it
turned out that Lyβ contamination is not a serious issue for
these systems. Because we assumed the detected Lyα
absorption to be Lyβ, we searched for the corresponding Lyα
lines in each spectrum but did not find any.
Given the absorption profiles of the Lyα line, we then

searched for the associated metal transitions commonly
observed in optically thick absorption systems (e.g., Prochaska
et al. 2015): Si II λ1260,1304,1527, O I λ1302, C II λ1335,
Si IV λ1394,1403, C IV λ1548,1551, Fe II λ1608,2383,2600,
Al II λ1671, and Mg II λ2796,2804. However, none of these
metal transitions were convincingly detected in any of our
systems. In the following, we discuss the systems individually
and provide our classifications:

1. HeLMS 0015+0404. This system shows an H I Lyα
absorption at +500km s−1 with WLyα=2.0±0.2Å
and intrinsic19 FWHM=430km s−1 (Figure 3 top
panels). The EW gives an upper limit on the H I column
density at log(NH I)  18.9±0.1 cm−2. The column
density is estimated from the theoretical curve of growth
where =a

-W N7.3 10 cmLy H i
20 2 0.5( ) Å for NH I>1018

cm−2, the regime where the relation is insensitive to the
Doppler b-parameter (e.g., Mo et al. 2010, Section
16.4.4). This is an upper limit because it assumes that the

Figure 2. Near-infrared spectra of the VLA-identified SMGs. The top panel shows the coadded 2D spectrum. The ordinate is the positional offset along the spatial
direction and is centered on the SMG location. The bottom panel shows the flux-calibrated 1D spectrum (black ) and its 1σ uncertainty (blue). Wavelengths affected by
strong sky lines show large errors. The dashed lines indicate the redshifted Hα λ6563 and [N II] λλ6548,6583 lines.

18 This flux ratio is equivalent to the luminosity ratio defined in Kovács
et al. (2006). 19 Instrumental broadening has been deconvolved.
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absorption is dominated by a single component, while
line blending is likely to be in the forest. There is putative
C II absorption at +400km s−1 (WCII= 1.2Å); but it is
likely a false identification of a Lyα forest line, because it
is misaligned in velocity with the Lyα absorption and
none of the strong metal lines in the “clean” region
outside of the Lyman forests is detected (e.g., Si II, C IV,
Fe II, Al II). To assess our sensitivity to these strong metal
lines in a typical LLS, we overlay the expected absorption
profiles on top of the observed spectra in Figure 3. The
model absorption lines are smoothed to the spectral
resolution and have the average EWs in LLSs around
z∼2 QSOs: 0.6Å for C II and 0.3Å for the other lines
(Prochaska et al. 2013a). It is clear that the S/N of our
spectra are high enough to detect the metal lines from a
typical LLS when the lines lie outside of the Lyman
forest. Without detections of strong metal lines and/or
the damping wings in Lyα, we cannot conclude that the
absorber is optically thick based on current data because
the high WLyα could be due to line blending. We
conservatively classify this system as ambiguous, even
though the non-detection of strong metal lines strongly
suggests that it is an optically thin absorber, because
fewer than 5% of optically thick absorbers have no
detection of a metal transition (Prochaska et al. 2015).

2. NGP 1333+2357. This system shows an H I Lyα
absorption at −34km s−1 with WLyα=1.7±0.2Å
and intrinsic FWHM=260km s−1 (Figure 3 middle
panels). Similar to that of HeLMS 0015+0404, the EW
gives an upper limit on the H I column density at log
(NH I)  18.8±0.1 cm−2. We observed putative
absorption around the expected locations of C II, Si IV,
Si II, and C IV. But all of these lines lie within the Lyα
forest, and their velocity profiles are distinctly different
from that of the Lyα line, indicating that these putative
metal absorptions are spurious. The Fe II and Al II lines
are outside of the Lyman forests, but the expected
absorption lines are not detected. As in the previous case,
we conservatively classify this system as ambiguous.

3. L6-FLS 1712+6001. There is a broad but shallow H I
Lyα absorption line at +200km s−1 with
WLyα=2.9±0.5Å and intrinsic FWHM=950km
s−1 (Figure 3 bottom panels). The EW gives an upper
limit on the H I column density at log(NH I)  19.2±0.2
cm−2. But this system is most likely optically thin
because the line center drops only to 38±4% of the
continuum intensity (i.e., it does not go line black like the
other two systems). Applying instrumental broadening
and pixel sampling to theoretical Voigt profiles, we found
that the line center depth places a much stronger limit on
the H I column density than the EW: log
(NH I)17.5–15.8 at b=20–30 km s−1, the range of
b parameters observed in H I absorbers at z∼2–3 (e.g.,
Hu et al. 1995; Rudie et al. 2012). As in the previous

cases, we observed putative metal absorption inside the
Lyman forests (e.g., O I, C II, Si II, and Si IV) but no metal
absorption outside of the forests (e.g., C IV, Fe II, Al II,
and Mg II20). Note that the weak C IV absorption is
blueshifted by more than 200 km s−1 from the Lyα line
center. Considering the strict limit on the H I column
density and the absence of metal lines, we classify this
system as optically thin.

In summary, we have identified one clearly optically thin
case and two ambiguous cases with three QSO sightlines
covering impact parameters within < <R̂100 200 kpc
around SMGs at 2.0<z<2.6. The two ambiguous cases
are also likely to be optically thin, given the non-detection of
any metal transitions.

4.4. Comparison with the CGM Around QSOs

For background QSO sightlines probing the CGM of
z∼2–3 foreground QSOs, one observes H I absorbers
optically thick at the Lyman limit 60% of the time. The high
H I covering factor extends to at least the expected virial radius
of ∼160kpc (Hennawi et al. 2006a; Prochaska et al. 2013a,
2013b). In Figure 4, we compare (1) the SMG sample
distribution with the QSOs from the QPQ project and (2) the
covering factor of optically thick H I gas around SMGs with
that around QSOs. The two samples overlap in the plane of
foreground redshift versus impact parameter: the SMGs cover
the same redshift range as the QSOs in the intermediate impact
parameter range between 100 and 200kpc. We calculated the
1σ binomial confidence intervals of the optically thick fraction
using the quantiles of the beta distribution (Cameron 2011).
Because there is no clearly optically thick absorber among the
three systems we analyzed, the 1σ confidence interval of our
covering factor is 4.2%–36.9% for a non-detection in a sample
of three. For comparison, we considered all of the QSO
sightlines with < <R̂100 200 kpc from the QPQ project
(Prochaska et al. 2013b), and we found the optically thick
covering factor is -

+64 9
7% for 21 clearly optically thick systems

among 33 systems. Therefore, despite our small sample, the
upper bound of our 1σ confidence interval is 3σ below the best-
estimated covering factor around QSOs at the same ranges of
redshifts and impact parameters.
Note that although our analysis may appear to have

limitations based on the classification of two of the SMG
absorbers as ambiguous, these same limitations also apply to
the QPQ analysis and are inherent to any attempt to classify
absorbers using low- or moderate-resolution spectra without
coverage of the H I Lyman limit (at 912Å in the rest-frame). As
such, we followed exactly the same procedure for absorber
classification as in the QPQ studies, enabling a direct
comparison to that work. Our data show that clear optically

Table 2
Properties of the Spectroscopically Confirmed SMG−QSO pairs

Pair Name SMG zSMG log(LIR) qIR QSO zQSO θ6GHz R⊥ aWLy Optical Depth
(J2000) (Le) (J2000) (″) (kpc) (Å) Classification

HeLMS 0015+0404 J001543.29+040421.4 2.515 13.1 2.1 J001542.31+040433.5 3.256 19.0 157 2.0±0.2 ambiguous
NGP 1333+2357 J133330.03+235732.7 2.184 12.6 2.3 J133330.36+235709.9 3.108 23.3 198 1.7±0.2 ambiguous
L6-FLS 1712+6001 J171207.47+600138.0 2.043 12.6 2.6 J171209.00+600144.4 2.821 13.1 112 2.9±0.5 optically thin

20 Because of the wider spectral coverage and the lower foreground redshift,
this is the only object where we have coverage of the Mg II λ2796,2804 lines.

7

The Astrophysical Journal, 832:52 (11pp), 2016 November 20 Fu et al.



Figure 3. Keck optical spectra of background (b/g) QSOs probing foreground SMGs. The black curve shows the observed flux-calibrated spectrum, while the blue
curve shows the continuum model used to normalize the spectrum. The expected locations of absorption lines due to the foreground SMG are marked in blue and
green for lines inside and outside the Lyman forests, respectively. Below the full spectrum, we also show the velocity profiles for the H I Lyα and a number of
common metal absorption lines. All panels show the region±3000km s−1 around the systemic redshifts of the foreground SMGs. On the first panel, we show a
Gaussian fit to the strongest H I Lyα absorption line within our search window of±600 km s−1. In other panels, we overlay the metal line profiles of a typical LLS,
using the average observed EWs (0.6 Å for C II and 0.3 Å for other lines; Prochaska et al. 2013a). The vertical dashed line shows the centroid velocity, and the gray
shaded region highlights the±1σ width of the best-fit Gaussian. Both components of the C IV and Mg II doublets are highlighted.
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thick cases appear much less frequently around SMGs than
around coeval QSOs. However, if we treat the ambiguous cases
in both samples as if they were optically thick absorbers, then
the difference in the optically thick covering factor becomes
smaller because of the high number of ambiguous cases in the
SMG sample: the covering factor around SMGs increases to

-
+67 28

15% (2 out of 3 systems), while the covering factor around
~z 2 QSOs increases to -

+91 8
3% (30 out of 33 systems)

within < <R̂100 200 kpc.
There are some minor differences between our analysis and

the QPQ analysis. But they are unlikely to affect our result.
First, the bulk of the QPQ dataset (Prochaska et al. 2013a)
utilized background QSO spectra with moderate resolution
(R∼ 2000). This is a factor of two higher than the resolution we
used for the QSO spectra probing two of our SMGs (R ∼ 1000),
whereas in L6-FLS 1712+6001 our spectrum has R∼600. But
the lower resolution of our spectra does not play a significant
role in the resulting classification of our absorbers, since the
typical strength of the metal lines seen in the optically thick
systems would still be easily detectable at R∼1000, and the
one system that we observed at R∼600 is most likely optically
thin, since it does not go line black. Another significant

difference is whereas Prochaska et al. (2013a) restricted
analysis to only those foreground QSOs with redshifts lying
within the Lyα forest of the background QSO, we included
foreground SMGs landing in the Lyβ forest, owing to the larger
redshift separations between the SMGs and the QSOs in our
sample. This is unlikely to impact our deduced covering factor
in Figure 4 though. For example, earlier QPQ studies (Hennawi
et al. 2006b; Hennawi & Prochaska 2007, 2013) also
considered absorbers lying in the Lyβ forest, and the covering
factors deduced there are consistent with that derived in
Prochaska et al. (2013a). Furthermore, in all of the three
SMG−QSO pairs shown in Figure 3, multiple metal lines that
are strong in optically thick absorbers (i.e., Si II λ1527,
C IVλλ1548,1551, Al IIIλ1671, and Mg IIλλ2796,2804) land
in the clean regions outside of the Lyman forest but remain
undetected. Finally, whereas QPQ searched for absorbers
within a velocity window of ±1500 km s−1 owing to the large
errors in QSO redshifts, we adopted a±600 km s−1 search
window. We were able to consider a smaller velocity interval
because our SMG redshifts derived from narrow rest-frame
optical lines are much more accurate, and this interval was
instead chosen to encompass the typical virial motions in a
1013Me dark matter halo. The larger velocity interval used in
QPQ formally implies a higher level of contamination from
physically unassociated absorbers. But the contamination is
estimated to be at only the ∼3% level for a±1500 km s−1

window (Prochaska et al. 2013a; see their Figure 10 and Table
7). This is too small to be responsible for the difference in the
optically thick covering factor that we observed between QSOs
and SMGs.

5. SUMMARY AND CONCLUSIONS

Motivated by the unique properties of SMGs and their
purported evolutionary link to high-redshift QSOs and today’s
massive ellipticals, we have started a project to use QSO
absorption line spectroscopy to probe the diffuse cool H I gas in
the CGM of SMGs. This work requires a sample of projected
SMG−QSO pairs, which are extremely rare. Wide-area
submillimeter surveys are needed to compile such a sample.
Thanks to the advent of Herschel, we have identified 163 SMG
−QSO pairs with bright z>2.5 QSOs (gQSO< 22) and
angular separations between 5″ and 36″ from a suite of wide-
area Herschel surveys and spectroscopic QSO surveys.
Extensive follow-up observations are required to carry out

the absorption line study. To allow slit spectroscopy, the first
stage is to use an interferometer to pin down the positions of
the Herschel sources. This paper focuses on a subsample of 13
SMG−QSO pairs that were observed with the VLA in C-band.
With an average integration time of 25minutes per source, the
VLA detected sources within the Herschel beam in six fields.
One of the six SMG−QSO pairs turns out to be a far-IR-
luminous QSO at z=2.973, while the Herschel source in
another pair turns out to be a pair of SMGs. Hence, we
effectively identified six SMG−QSO pairs from observations
of 13 fields (46%). The second stage is to measure the
spectroscopic redshifts of the SMGs. We observed five of the
six VLA-identified SMG−QSO pairs with near-IR spectrosc-
opy. We were able to determine the redshifts for three of the
five SMGs (60%) from the redshifted Hα and [N II] lines. The
remaining two sources show only a featureless continuum in
the near-IR windows, making it impossible to determine an
accurate redshift. The last stage is to obtain optical

Figure 4. Top: sample distributions in foreground redshift vs. impact
parameter. The red squares and the black circles show the SMGs from this
study and the QSOs from the QPQ survey (Prochaska et al. 2013b),
respectively. The black-filled, gray-filled, and open symbols correspond to
systems that are optically thick, optically thin, and ambiguous, respectively.
The top axis marks the virial radii for a range of dark matter halos at z=2.
Bottom: the covering factor of optically thick gas around SMGs (red square
with a downward arrow: our 1σ confidence interval for a non-detection in a
sample of three) vs. impact parameter, compared to that around QSOs from the
QPQ survey (blue/gray circles with error bars; Prochaska et al. 2013b). The
blue and gray circles are estimates of the covering factor based on 100 kpc
wide bins and 50 kpc wide bins, respectively. Our sample probes similar ranges
of redshifts and impact parameters as the QPQ QSOs but shows less optically
thick absorbers.
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spectroscopy of the QSOs once it is confirmed that the QSOs
are in the background of the SMGs. Because we selected
only the brightest QSOs, the success rate of this step
approaches 100%. Because of the low success rates of the
first two follow-up stages, only ∼23% of the initial sample (i.e.,
three SMG−QSO pairs out of 13) is spectroscopically
confirmed and is suitable for final absorption line study. Our
main findings are as follows:

1. The near-IR spectra of the five VLA-detected sources
were all detected in hour-long integrations with 8-meter
telescopes, although only three of those show emission
lines that yielded accurate spectroscopic redshifts. Since
we positioned the slits on the VLA positions, this result
shows that the spatial offset, if any, between the near-IR
and the radio counterparts is less than an arcsec (the slit
width), consistent with the finding from differential
lensing in strongly lensed sources (e.g., Fu et al. 2012).

2. The VLA-identified Herschel “350μmpeakers” at
2.0<z<2.6 are similar to SMGs selected at longer
wavelengths (i.e., 850 μm to 1 mm) in terms of the [N II]/
Hα ratio (i.e., gas metallicity), the IR luminosity (i.e.,
SFR), and the IR-to-radio luminosity ratio (i.e., radio
excess due to the AGN). The VLA-identified SMGs are
optically faint and unbiased to radio-loud AGNs, so they
indeed represent a galaxy population distinct from the
optical selected QSOs and the Lyman break galaxies
(LBGs) in the same redshift range.

3. Strong H I Lyα absorption was found in the background
QSO spectra for all of the three spectroscopically
confirmed SMG−QSO pairs with impact parameters of

< <R̂100 200 kpc. Here we adopted a much narrower
search window (±600 km s−1) than the QPQ study,
further reducing the level of contamination from
physically unrelated clouds. However, none of the three
absorption line systems seems optically thick at the
Lyman limit (i.e., LLSs with NH I> 1017.2 cm−2), in
contrast to the ∼60% covering factor of LLSs around
QSOs from the QPQ study despite similar data quality,
foreground redshifts, and impact parameters.

Our comparison thus suggests either that SMGs do not have
a substantial neutral gas reservoir in their halos that could
potentially fuel a prolonged star formation phase or that SMGs
inhabit ∼1012Me halos, so that our sightlines have yet to probe
inside their virial radii. If the latter, their halos are comparable
to those of LBGs. Rudie et al. (2012) found an optically thick
covering factor of 30±14% around LBGs at z∼2.3 and

<R̂ 90 kpc. Note that this is ∼2 times lower than that of
coeval QSOs and is consistent with the 1σ confidence interval
that we were able to place for the SMGs. On the other hand, the
difference in the optically thick H I covering factor between
SMGs and QSOs casts doubt on the evolutionary link between
the two populations, unless AGN outflows can somehow affect
the physical state of gas at hundreds of kpc scales within its
short lifetime.

Our final conclusion is limited by the small sample size. To
enable a more robust comparison with previous absorption-line
studies, we badly need to increase the effective yield of our
survey from the current level of ∼23%. In a future publication,
we will present observations with the Atacama Large
Millimeter/Submillimeter Array (ALMA) to pinpoint the
positions of the Herschel sources in the SMG−QSO pairs.

Observing at a wavelength (870 μm) much closer to the
selection wavelengths (250–500 μm), we expect to double the
detection rate with integration times of just several minutes per
source. The Herschel sources in our sample are too faint to
allow a quick CO redshift search with ALMA (e.g., the survey
of strongly lensed SMGs by Weiß et al. 2013), but spectro-
graphs on large optical telescopes covering the full optical+IR
range at a moderate spectral resolution (R  2000) will greatly
increase the redshift search range and decrease the areas
blinded by strong airglow lines.
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