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ABSTRACT

This thesis describes an experimental study to determine the feasibility of using

zeolite addition for the in situ treatment of soils contaminated with heavy metals. The

aim of the present work was to examine the effectiveness of three synthetic zeolites to

reduce plant available metal pools in contaminated soils. Three contaminated soils were

studied, which are representative of typical contamination sites in the UK: Prescot, site

of a copper refmery, Trelogan, an old lead/zinc mine spoil, and Gateacre, a sewage

sludge treated field.

The action of zeolites to reduce available metal concentrations in soils is due to

their ion-exchange properties. To investigate the decrease of metal bioavailability by

zeolites, laboratory and greenhouse trials were performed to clarify the mechanism of

heavy metal fixation by synthetic zeolites and to quantify the effect of different zeolites for

land remediation. For this approach, it was necessary to measure the metal concentration in

the soil and the soil solution in zeolite-amended soils and to determine the zeolite specific

isotherms of all the metals studied.

Cation exchange studies involved exchanging the sodium form of the zeolites

with different metals in solution, in order to determine the zeolite affinity for the metals

copper, cadmium, zinc and lead. The resulting isotherms demonstrated that all three

zeolites showed a preference for the heavy metal ions over sodium ions.

The changes in metal speciation in zeolite-treated contaminated soils were evaluated

using sequential extraction procedures. After incubation with synthetic zeolites, metals

extracted with ammonium acetate were significantly decreased (31.4 % - 72.4 %) in amended

soils compared to the controls. This decrease in heavy metal availability is extremely

significant. The exchangeable metal fraction is the most available for uptake by plants.Long-

term soil solution experiments with zeolite-amended soils showed that the metal

concentrations in the aqueous leachate were significantly reduced than in the leachate

from the same substrates without zeolite addition.

Greenhouse pot trials were carried out with sunflower (Helianthus annuus),

maize (Zea mays), willows (Salix viminalis) and ryegrass (Lolium perenne) plants grown

in zeolite amended contaminated soils. There were significant improvements in visual

appearance and growth of plants from the zeolite-treated soils compared to the controls.

In addition, metal content of plant tissues was reduced when compared to the controls.

Optimum zeolite concentrations were noted for each zeolite. Zeolite P and 4A were
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more effective at reducing the phytotoxicity at 0.5% and 1%, whilst zeolite Y had to be

added at 5% to achieve a similar effect.

In order to link the laboratory test results and soil data to a pilot field scale, in which

the actual soil and environmental conditions are required to give a complete evaluation of the

proposal technique when applied to a given hazardous waste site, a field trial was initiated,

at a copper contaminated site at B.I.C.C., Prescot to examine the effectiveness of zeolite

amendments under field conditions. Zeolites P and 4A applied at 1% level proved to be

an effective treatment for the remediation of the contaminated site, as indicated by

improved plant growth and low metal concentrations in the water soluble fraction of the

soil.

The results show that zeolite addition, particularly zeolites P and 4A, provide an

effective method for decreasing plant heavy metal bioavailability in polluted soils, under

glasshouse and field conditions.
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CHAPTER 1.

INTRODUCTION

1.1. Contaminated land, particularly Merseyside and N.West.

Contaminated land is defined as land that contains substances that, when present in

sufficient quantities or concentrations, are likely to cause harm directly or indirectly to

humans and the environment (NATO Committee on the Challenges of Modern Society,

1993). Neither the total area of contaminated land in the UK, nor the number of sites, can be

quantified precisely at this moment, although an independent estimate suggested that the area

is in the range of 50,000 to 250,000 ha (Timothy, 1992) (Martin and Bardos, 1994).

Abandoned mine workings and other industrial wastes associated with the

exploitation of non-ferrous metal ores are ubiquitous in the United Kingdom. Derelict

buildings and mineral spoil heaps are typical features of the landscape in areas of

Central/North Wales, south-west England and the Central/North Pennines. The production of

lead, zinc, copper or tin ores was centred on these areas during the period 1700-1890 (Lewis,

1967). In Wales alone there are some 2000 ha of metal-contaminated derelict land comprising

mainly waste products discarded during the separation of valuable metals (chiefly lead and

zinc) from the associated gangue minerals in crude ore matrices.

Plant growth and development on metalliferous mine spoil is restricted by the high

concentrations of phytotoxic metals and by the low levels of macronutrients in the substrates.

Natural revegetation is restricted by residual quantities of toxic metals in these

substrates and by their inherent low fertility (Smith & Bradshaw, 1972). Many spoil tips are

therefore unstable and redistribution of spoil by flooding of contaminated watercourses

(Davies & Alloway, 1970) and by wind erosion (Smith, 1973) has caused extensive

despoilation of agricultural land adjacent to derelict mine sites.

Many derelict mines are situated in areas of outstanding natural beauty (e.g. National

Parks) which are subjected to considerable recreational pressures. The unattractive

appearance of these derelict mines is accentuated by the absence of a vegetation cover and, in

several cases, by uncontrolled disposal of other industrial, domestic or agricultural wastes. A

permanent, economically viable solution is required which will both minimise the potential

pollution hazards and enhance the low amenity value of these sites (Johnson et al., 1977).
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1.2. Problems of metal pollution

Soils may become polluted with high concentrations of heavy metals both naturally,

as a result of proximity to mineral outcrops or ore bodies, or anthropogenic ally, arising from

industrial activities. Metalliferous mining and processing, including the uncontrolled disposal

of wastes, usually produces the most severe cases of heavy metal pollution. Other operations

such as smelting, waste and effluent disposal have however dispersed metal contaminants

very widely from their sources of generation, although at lower concentrations (Mitchell and

Atkinson, 1991).

Compared with natural soils, metalliferous wastes exhibit physical and biological

characteristics which may prevent the re-establishment of locally dominant plant species

without prior remedial measures. The wastes are also a source of ground and surface water

pollution, caused by the presence of heavy metals. Common problems associated with the

waste include narrow particle size distribution, compaction, absence of beneficial macro- and

micro-organisms, plus the lack of essential plant nutrients and organic matter. These

characteristics can combine to inhibit germination, stunt plant growth, and cause premature

death. Equally important is the presence of heavy metals in the form of chemically reactive

minerals and related weathered products. Without vegetative cover, metal sulphides are

susceptible to oxidation, producing sulphuric acid and water-soluble metal sulphates. Waters

permeating the contaminated land become acidified and may dissolve the sulphates,

sometimes dissolving several hundred parts per million of copper, zinc and other heavy

metals. Theoretically the metals ions may be carried over large distances, however it is more

likely that they will be reabsorbed onto the surface of clay particles or organic matter by ion-

exchange or complexation, or reprecipitated as the groundwater pH increases. Despite this,

because of the size and number of sources, contamination can cover wide areas and can still

spread a considerable distance from its primary source. Additional dispersion may also occur

by wind removal of unconsolidated nonvegetated areas, particularly from fine-grained waste

or tailings (Alloway and Jackson, 1991).

1.3. Legislation

UK policy on contaminated land is not a new phenomenon. It has evolved over a 18

year period during which various measures (such as planning and building controls,
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environmental protection and public health legislation) have been used to identify

contaminated sites and provide for their safe and beneficial re-use.

In 1990 the Environmental Protection Act (EPA) was issued. Two sections of EPA

are of relevant importance for land remediation: Section 143, concerning the duty of local

authorities to compile registers of land which is, or has been, subject to contaminative use,

and Section 61, regarding the duty of waste regulation authorities to inspect land which may

cause pollution of the environment or harm human health (Draft Environmental Protection

Act, 1992).

Also in 1990, the DoE established a comprehensive research programme on

contaminated land. The research programme covers a wide spectrum of issues from methods

of accurately identifying, characterising and assessing the risks associated with contaminated

land, through the selection, design and implementation of remedial works, to quality

assurance considerations and the legal and other implications associated with the sale and

transfer of contaminated land. This research programme provides a welcome foundation

supporting both the further development of UK contaminated land policy and the safe,

effective and economic management of contaminated land in practice (Harris, 1993).

In recent years legislative criteria have developed worldwide on the basis of those

provided by " Best Available Technology "(BAT). Sometimes, as in UK, this has been

modified by economic and managerial factors to "Best Available Technique Not Entailing

Excessive Cost " (BATNEEC). Integrated Pollution Control requires all wastes and

emissions to be reduced to the practicable minimum by the use of BATNEEC (Barbour,

1994).

The EC Directive 76/464 for water pollution, which concerns the discharge of

Dangerous Substances into the Aquatic Environment, specifies a number of broad families of

chemical substances, dividing them into two Lists: List I, containing those considered most

toxic (the 'black list), and List IL (the 'grey list), containing those that are less dangerous

(Table 1.1.). The stated aims of the Directive are to 'eliminate' pollution caused by List I

substances, and to 'reduce' pollution caused by List II substances.

As a member of the European Community (EC) the UK Government is required to

comply with EC legislation. In the UK, as elsewhere in Europe, all political parties are

becoming 'greener', partly in response to public concern about specific topics such as

deterioration of the ozone layer, acid rain, and the greenhouse effect, and partly due to an

anti-industry view (Harrison, 1992).
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Table 1.1. Black and Grey List Chemicals (adapted from Harrison, 1992).

List 1 (Black List) List 2 (Grey List)

List 1 Substances List 2 Substances

organohalogen compounds and

substances which may form such

compounds in the aquatic

environment;organophosphorus

compounds; organotin compounds;

carcinogenic substances; mercury

and its compounds; cadmium and

its compounds; persistent mineral

oils and hydrocarbons of petroleum

origin; persistent synthetic

substances which may float,

remain in suspension or sink,

The following metalloids and metals and their compounds: zinc,

copper, nickel, chromium, lead, selenium, arsenic, antimony,

molybdenum, titanium, tin, barium, beryllium, boron, uranium,

vanadium, cobalt, thallium, tellurium, silver.

Biocides and their derivatives not appearing in List I; substances

which have a deleterious effect on the taste and/or smell of the

products for human consumption; toxic or persistent organic

compounds of silicon; inorganic compounds of phosphorus and

elemental phosphorus; non-persistent mineral oils and

hydrocarbons of petroleum origin; cyanides, fluorides;

substances which have an adverse effect on the oxygen balance,

particularly: ammonia, nitrites.

Chemicals selected for control as

List I Chemicals

Control for List II

mercury; cadmium;

hexachlorocyclohexane; carbon

tetrachloride; DDT;

pentachlorophenol; "drins" (aldrin,

dieldrin, endrin, isodrin);

hexachlorobenzene;

hexachlorobutadiene; chloroform.

using the EQO (Environmental Quality Objective) approach

using quality standards set nationally.

Candidate Chemicals for List I List H Chemicals for which UK National Standards have been

set

chlorinated hydrocarbons;

chlorophenols; chloroanilines and

nitrobenzene's; polycyclic aromatic

hydrocarbons; inorganic

chemicals; solvents; pesticides.

lead; chromium; zinc; copper; nickel; arsenic; boron; iron;

vanadium; tributyltin compounds; triphenyltin compounds;

cyfluthrin; sulcofuron; flucofuron; permethrin.
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Governmental directives are generally based on total metal contents permitted in soils.

However, for plants growing on these soils and for other biota directly or indirectly feeding

on these plants, total soil metal content only has relative significance since various other

physical and chemical soil parameters (pH, cation exchange capacity, chemical form of the

metals, organic matter content, etc.) determine the metal availability to the plant root system

and the transfer of metals from the abiotic to the biotic compartment of an ecosystem. Soil

metal content does not necessarily mirror the plant metal bioavailability (Juste and Tauzin,

1992). Government legislation takes into account only the total metal content, but it is the

metal species which needs to be taken into account.

1.4. Methods for remediation

Past industrial activity and inappropriate management of waste has left a legacy of

polluted sites which are now a major subject of concern for environmental protection in

industrialised countries. As a result, political and administrative action has been taken and

financial resources made available. Within the rehabilitation projects that are carried out, the

treatment of polluted soils constitutes a key element that has required, and still requires, the

development of new specific techniques (Table 1.2.).

There are several options available for the remediation of contaminated sites. The

choice of option will depend on the nature of the contaminants, the type of soil, the

characteristics of the site, its intended use, the relative costs of the appropriate options, and

the regulations which apply in the country or region where the site is located. The remediation

options can vary from the minimum of reducing the bio availability of the contaminants, to the

maximum of either complete clean-up of the soil, or its removal from the site.

Soils around metallurgical industries can be highly polluted by metals such as

cadmium, zinc, lead, copper, etc., due to the large emissions resulting from past metallurgical

production processes. Extremely high contamination, in combination with specific soil

conditions (e.g. infertile and acid sandy soils) can result in a complete disappearance of the

natural vegetation. A constant lateral (wind erosion) and vertical (percolation) dispersion of

metals to the surroundings argues for an immediate restoration of these types of desert-like

polluted soils.

For the restoration of such soils, three different strategies can be adopted. These

depend upon the nature and degree of the pollution, the desired end use of the area, and the

technical and financial means.
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Table 1.2. Remediation options for metal-contaminated sites (adapted from Pierzynslci et

al., 1994 and Martin and Bardos, 1994).

Method	 Comments

Ex situ 

Excavation followed by:

Solidification	 Addition of cementing agent to produce a hardened,

non-porous, non-leachable material.

Vitrification	 Heating to produce a glass-like, non-porous,

non- leachable material.

Washing	 Chelate or acid extraction.

Leaching	 Pile or batch leaching with chelates or acids.

Particle size segregation	 Selective removal of fmer particle sizes (e.g. clay) that

have the highest metal concentrations.

In situ

Solidification	 As described above.

Vitrification	 As described above.

Encapsulation	 Cover site with impermeable layer.

Attenuation	 Dilution with uncontaminated material.

Volatilisation	 Promote formation of volatile methylated species

(Se, As, Hg).

Vegetative	 Promote vegetative growth by providing proper

fertility and water availability, reducing metal

bioavailability, and/or using metal-tolerant plant species.

Process integration

Bioventing	 Bioremediation and soil venting for the clean-up of

petroleum hydrocarbons.

Soil washing	 For the clean-up of sites contaminated with both

heavy metals and organics.
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The most comprehensive solution is digging out the polluted substratum and

replacing it with unpolluted soil. Since the polluted upper litter layer strongly inhibits the root

development because of its high heavy metal content and its structure, the litter layer should

be removed to ensure proper germination of the plants. On a large scale, however, this type

of solution is not feasible due to the high costs involved, the problems relating to the safe

disposal of the polluted soil and the limited availability of clean soil for replacement.

A second approach could be the in situ or ex situ purification of the substratum by

means of chemical or physico-chemical techniques which 'extract' or 'remove' the metals from

the soil (Table 1.3.). The decontaminated substratum can then be reintroduced at the original

site, or transported elsewhere. Limited experience with such techniques (Woelders, 1988) has

demonstrated that they create new problems, e.g. increasing the mobility (and bioavailability)

of the remaining metals in the decontaminated substratum, redistribution of the pollution to

other remaining fractions of the process (resins, sludges, etc.), and changes in the physico-

chemical characteristics of the treated substratum, reducing its further potential to be used as

a normal soil.

A third type of solution is the in situ immobilisation of the pollutant by strong metal-

immobilising agents and subsequent revegetation of the area. This type of remedial action will

reduce the leaching potential of contaminant metals into groundwater and their subsequent

transport into the food chain. In situ immobilisation is carried out by introducing treatment

chemicals into contaminated soils. This could be an economically more realistic and cost-

effective alternative, especially for large industrial sites and dumping grounds.

In situ immobilisation will avoid the requirement for excavation of soils or pumping

of groundwater. Metals are prevented from migrating through the soil to groundwater and

isolated from other chemical and physical processes in the soil and its solution such as

hydrolysis, changes in soil pH or varying oxidation-reduction potential which tends to

solubilize the metals. Provided the metals remain immobilised, they will not present any

adverse environmental or health hazards in their treated state.

Immobilisation therefore reduces metal leaching and bioavailability to plant roots,

allowing vegetation to develop which can stabilise the soil. Besides the aesthetic advantage,

such vegetation cover provides stability to the soil and lateral wind erosion is prevented

(Vangronsveld et al., 1991, 1993).

Most investigations attempting to reduce the availability of metals to plants have

concentrated on the maintenance of a high soil pH through liming. In addition, application of

zeolites to soil has been shown to greatly reduce plant metal concentrations (Gworek, 1992).
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Table 1.3. Chemical or physico-chemical techniques for removing metals from soils.

Method Comments Element

remediated

References

Electroremediation An embedded electrode array

induces contaminant migration

through a combination of

electroysis, electro-osmosis and

electrophoresis.

Heavy

metals

Martin and

Bardos,

1994.

Electrokinetic An electric current passes

through the polluted soil,

acting as a chelating agent.

Cu, Cr, As Ribeiro et

al., 1995.

Electromigration Ions in the soil solution move in

the direction of the electrode of

opposite polarity.

Cu, Cr, As Ribeiro et

al., 1995.

Electroosmosis The soil solution flows parallel to

the electric field being able to be

displaced by clean pore water.

Increasing the mobility of metals

in soil by applying DC electric

current across the plant growth

media or the growing plants.

Cu, Cr, As,

Pb

Ribeiro et

al., 1995;

Huang et

al., 1995.

Electrochemical Stripping voltammetry with a

hydrodynamic sensor, the wall-jet

mercury film electrode.

Mo, Ni, Pb,

Cu, Cd.

Neto et al.,

1995.

Sorbents Zeolites, glauconite, bentonite Pb, Cu, Zn,

Cd, Mn

Haritonov

and Kroik,

1995.
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Table 1.3. continued

Steel shots An iron compound with a great

corrosion ability, which becomes

oxidised to hematite (a-Fe203),

magnetite (Fe2+Fe23+04) and

lepidocrocite (y-Fe 3+0(OH)) in the

soil.

Cd, Zn, Pb Rule &

Adriano, 1995;

Sappin-Didier

et al., 1995;

Mench et al.,

1994, ab;

Chlopecka &

Adriano, 1995.

Ca-Chelex

resin

membrane

The chelating resin membrane is

embedded in soils as an infmite sink

to adsorb soil heavy metals

Cd Lee and Jiang,

1995.

Chelating

agents,

complexons

CaNa2EDTA, Trion B, Unitiol,

NN-hydroxy ethylenediamine

triacetic acid (HEDTA),Sodium

thiosulfate, amino acids are

chelating agents which decrease the

toxicity of xenobiotics.

Hg, Pb, Cu,

Co, Cd, Cr,

As, Al, Pb

Tonkopii et

al., 1995;

Huang et al.,

1995.

Soil vapour

extraction

(SVE)

Drawing clean air through the

contaminated soil by means of

vacuuming wells, mobilising the

contaminants with the gaseous

stream.

Volatile

contaminants

Garcia-

Herruzo et al.,

1995.

CO2

injection

In-situ precipitation of calcite As, Cr Reddy et al.,

1995.

Acid rain Leaching metals from soils with

formic, succinic or sulphuric acid.

Heavy metals Abrahamsen,

1980;

Pierzynski et

al., 1994;

Nicholson et

al., 1995.
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An alternative would be to cultivate heavy metal-tolerant species, either leguminous

plants associated with specific mycorrhizae (Visser, 1985) or plants physiologically adapted

to high tissue concentrations (Geiger et al., 1993).

Smith and Bradshaw (1979) and Johnson et al. (1977) have already shown that, on

metal-polluted substrata, the use of metal-tolerant plants is the best reclamation technique,

giving reasonable prospects of long-term success on these intractable sites. However, when

the metal availability to the plants (dependant on soil type, pH, cation exchange capacity,

organic matter concentration, speciation of the element) is very high, even metal-tolerant

plants are not able to survive universally. Under such conditions, mixing of metal-

immobilising additives in the soil to reduce its phytotoxic potential, should be considered

(Vangronsveld et al., 1995 b).

A good reclamation procedure should be affordable, reasonably simple, and should

fully restore soil fertility and plant quality. Not only can process integration extend the range

of treatable contamination problems, it can reduce treatment costs of complex contamination

by allowing maximum use of low cost treatments, for example using extensive treatments

(such as cropping plants which contain heavy metals or toxic organic compounds) for dealing

with the process residues generated by intensive techniques (such as soil washing or

incineration). Alternatively extensive technologies can be used to complete the treatment of a

partially cleaned site, gradually increasing its range of potential uses, and hence its value in the

longer term (Martin and Bardos, 1994).

The use of zeolites as soil amendments does not reduce total metal concentrations of

soils, but decreases the bioavailable fraction to a considerable extent. The bioavailable fraction

is potentially the most dangerous fraction for uptake by plants and available to animals and

human. Reducing metal bioavailability is extremely important in view of the effects of heavy

metals in the food chain, where it is desirable to reduce their concentrations at levels far

below the phytotoxic threshold values, since phytotoxicity symptoms in crops sometimes

appear at metal concentrations many times higher than the guidelines for animal or human

consumption. Short-term changes in availability are important, but so too are the long-term

changes, which are more difficult to determine (Kabata-Pendias, 1987; Alloway, 1990;

Kabata-Pendias and Pendias, 1992).

The residence time for pollutant heavy metals in soils is in the region of hundreds and

even thousands of years depending on the element and the type of soil (ICabata-Pendias,

1987). Therefore, the most important questions to be addressed are the changes in the

bioavailability of the heavy metals and their distribution in the soil profile during the residual
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period and to determine those concentrations of metal pollutants which pose the greatest

threat to human health. Regardless of existing threshold values for the metals in soil, it is

necessary to investigate the metal behaviour in soil, their potential phytotoxicity, and the

feasibility of cost-effective technologies for soil remediation in order to limit soil-plant metal

transfer (Kabata-Pendias and Pendias, 1992).

The main points requiring consideration in relation to the behaviour of heavy metals

in polluted soils and their impact on the environment are:

(1) the concentrations of heavy metals in polluted soils;

(2) the bioavailability of these heavy metals to crops;

(3) effects of soil properties on the bioavailability of heavy metals and its modification by

amendment with synthetic zeolites;

(4) changes in bioavailability during the residual period;

(5) differences between crop species and cultivars in the uptake and accumulation of heavy

metals in edible organs;

(6) movement of heavy metals in the soil profile and the potential risk of groundwater

pollution (Alloway and Jackson, 1991).

1.5. Reasons for research

There is considerable interest in the development of in situ remediation strategies for

metal polluted soils that are both durable and robust. Techniques which are based on the

incorporation of potential complexing or immobilising agents, which possess a known

capacity for long-term and effective metal removal are especially favoured. However, there is

a distinct lack of trial data to support the potential benefits of this approach.

Generally, the total metal content of the soil is the primary focus for pollution, but

when the food chain is concerned, the mobility and the bioavailability of the metals has to be

taken into account. Plant uptake of metals parallels the bioavailable fractions of the metals in

soils (Alloway, 1990). Therefore, a logical solution to minimise plant uptake and thus protect

the quality of the food chain, or to enhance revegetation, is to render the metals in soil

immobile (1Cabata-Pendias and Pendias, 1992). There are several ways of immobilising metals

in soil. A common technique is to apply dolomitic lime, phosphates, or organic matter

residues (Impens et al., 1991). Immobilisation could also be achieved by adding other natural
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or synthetic chemical additives that may not produce any detrimental by-product and would

enhance the soil ion-exchange capacity.

The application of zeolites 4A and 13X into lead-contaminated soils has been shown

to reduce the lead content of plant tissues of several species (Gworek, 1992). Batch

equilibration and column testing have indicated that zeolite Valfor G100, when combined

with ferrous sulphate, was very effective in immobilising cadmium (Czupyrna et aL, 1989).

Beringite, a modified alumino-silicate has been shown to fix zinc and cadmium in

contaminated soils, and can strongly reduce or eliminate the phytotoxicity of these metals

towards the bean (Phaseolus vulgaris L.) (Vangronsveld et al., 1990). Other soil additives,

such as lime, Thomas phosphate basic slag (TSB), hydrous iron oxides (1110), hydrous

manganese oxides (HMO) and steel shot (ST), are also known to reduce metal mobility in

soils (Mench et al., 1994 a, b; Vangronsveld and Clijsters, 1992, etc. - see Table 1.3.).

In situ immobilisation techniques (Tables 1.2. and 1.3.) are designed to reduce the

solubility of soil contaminants by enhancing their sorption, precipitation, or complexation. In

particular, metals can be fixed by several inorganic ligands, such as iron and manganese

oxides, which may be used in conjunction with pH adjustment. The addition of these oxides in

soil can reduce the mobility of metals in soil solution (Mench et al., 1994 a).

The effects of acidity of artificial rain on the leaching of plant nutrients have been

studied by means of the field lysimeters (Abrahamsen, 1980). Evaluation of the effect of acid

precipitation on the amount of plant nutrients can be restricted to consideration for four

processes: deposition from the atmosphere, weathering, volatilisation and leaching from the

soil. Lysimeter experiments carried out with artificial rain (pH 2.5-5) have revealed a

significant leaching of NI-14+ and NO3.

The pH of the simulated acid rain affects the rate at which metals leach from the soil,

illustrating the potential consequences of failing to control emissions of SO 2 and NO2 which

lead to acid rain formation and may have implications for land use changes involving the

cessation of liming (Nicholson et al., 1995). Experiments with artificial acidification have

shown a reduction in the pool of exchangeable calcium, magnesium and manganese in the soil

and an increase levels of protons and aluminium ions. Aluminium ions will be mobilised from

soil particles into solution and become toxic both to uptake mechanisms on the fine root hairs

and to their partner fungi in mycorrhizal associations with the roots, thereby diminishing their

ability to take up essential minerals and water.

Treating metal contaminated soils with additives improving binding of metals to the

soil complex can reduce soil phytotoxicity. One class of materials which possess the potential
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to immobilise metal pollutants in soils on a long term basis are zeolites. Zeolites, both natural

and synthetic, have been shown to reduce the heavy metal content of plant tissues of several

species (Gworek, 1992; Mench et al., 1994 a,b; Rebedea and Lepp, 1995; Vangronsveld et

al., 1995 ab).

Among the technologies for metal control such as precipitation, oxidation, reduction

and coagulation, ion exchange seems to be an attractive method especially when synthetic

zeolites are used as exchangers.

Zeolites have a large potential for applications in pollution control and in industrial

processes. In this work, the ion exchange capabilities of synthetic zeolites are used to reduce

metal phytotoxicity in a range of contaminated soils. Similar technology is widely used for

water purification. Here zeolites or other cation exchangers reduce the concentration of metal

ions in a solution by a process of ion exchange, replacing undesirable metals such as copper

or lead with sodium ions or protons. After use the ion exchanger can be regenerated and the

metal ions recovered in a concentrated form.

Zeolites display typical selectivity sequences, and show remarkable affinities for heavy

metal cations (Breck, 1974). A basic understanding of the effect of zeolite amendments on the

heavy metal content of polluted soils is necessary to evaluate their potential suitability for

decreasing metal bio availability to plants.

The use of synthetic zeolites as amendments for contaminated soils is drawing

increased attention due to their low cost of manufacture, thermal stability and high selectivity

towards heavy metal ions (Loizidou, 1985). Zeolites are not presently used on a commercial

scale for land remediation, although some research has been done regarding this matter. In

field trials, the capacity of beringite to fix heavy metals in polluted soils was evaluated. 5%

beringite was applied on a sandy soil originating from the vicinity of a zinc smelter, where

plant life had been absent for several decades due to metal contamination. A mixture of

several grasses and clovers was sown. Plant growth was fully restored and metal specific iso-

enzymes were not induced. Beringite immobilised the mobile metal fraction to an extent that

the substrate was no longer phytotoxic (Vangronsveld and Clijsters, 1992).

Field experiments have also been carried out with phillipsite synthesised from coal fly

ash. The application of phillipsite to polluted soils improved the water capilar capacity and the

cation exchange capacity of the soil (Kralova et al., 1994).

The objectives of this study were:

(i) to compare and evaluate the affinities of three synthetic commercial zeolites: P. 4A and Y

for a variety of metals;
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(ii) through sequential extraction procedures, evaluate the speciation of contaminant metals:

copper, cadmium, zinc and lead in soil solutions of three metal-contaminated soils and

examine the changes in metal speciation that occur with the addition of zeolite treatments,

and to determine any changes over time in the chemical forms of heavy metals in the soil

solution and the stability of the zeolite in situ;

(iii) to determine the metal concentrations in plants grown on different amended contaminated

soils.
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CHAPTER 2.

ZEOLITES AND SOIL REMEDIATION.

2.1. Definition and occurrence

A zeolite can be defined as a crystalline aluminosilicate, with a tetrahedral framework

structure, enclosing cavities occupied by cations and water molecules, both of which have

enough freedom of movement to permit cation exchange and reversible dehydration (Vasant,

1990).

They were discovered in 1756 by Freiherr Axel Fredrick Cronstedt, a Swedish

mineralogist, who noted the intumescence properties of stilbite, that is, the way in which

crystals visibly lose water when heated. This observation inspired the name "zeolite" which in

Greek means "boiling stones". Since that time, nearly 50 natural species of zeolites have been

recognised, and more than 100 species having no natural counterparts have been synthesised

in the laboratory (Pond and Mumpton, 1984).

Zeolites are formed in a variety of geological environments, such as: saline and

alkaline lakes, soils and land surfaces, open hydrologic systems (ground water systems),

marine deposits and buried diagenetic or low grade metamorphic deposits (Pond and

Mumpton, 1984).

2.2. The structure of zeolites

The zeolite framework consists of (SiO4)4- and (A104)5" tetrahedra linked together by

sharing oxygen atoms at the corners of these alumina and silica tetrahedra. This arrangement

reduces the overall oxygen: silicon ratio to 2:1.

The isomorphous substitution of trivalent aluminium for tetravalent silicon in the

silicate tetrahedra of zeolite structures creates fixed, negatively charged sites throughout the

structure. To maintain electrical neutrality, the negative charges are neutralised by the

presence, in the interstices of the structure, of an equivalent number of mobile cations or

counterions. Such mobile cations are only loosely bonded in the crystal structure and are free

to exchange with cations in solution.

The maximum degree of substitution is when the silicon:aluminium ratio is 1:1.

Further substitution of silicon by aluminium is prohibited by the inability of two adjacent

linked tetrahedra to both contain aluminium (Loewenstein's Rule, 1954).
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The empirical formula of a zeolite may be given as:

M21nanAl203.xSi02. yH20

where M represents an alkali or alkaline earth metal cation, n is the cation valency, x is greater

than or equal to the number of aluminium atoms present and y is the water content.

Zeolite structures are classified by the presence of specific recurring subunits of

structure called "secondary building units" (S.B.U's) which are arrays of silicon (or

aluminium) and oxygen tetrahedra (Dyer, 1988). Breck (1974) classified zeolites into 7

groups based on a combination of framework topology with fundamental building units (Fig.

2.1.). These units include the primary building unit of the TO 4 tetrahedron (where T = Si4+ or

A13+), secondary building units which consist of both single rings of 4, 5, 6, 8, 10 and 12

tetrahedra and double rings of 4, 6 and 8 tetrahedra, and layer symmetrical polyhedra.

The large cations, coordinated by framework oxygens and water molecules, reside in

large cavities in the crystal structure; these cavities and channels may even permit the selective

passage of organic molecules. The minimum width of a channel is an approximate measure of

the maximum diameter of a molecule which can pass through it (Breck, 1974).

The internal void volume and access is determined by the framework topology and by

the presence of non framework species (water, cations, other occlusives). In general, the

internal voids consist of: channels - unidirectional or interconnected, or cavity -like voids

mutually interconnected through apertures which vary from six to twelve-membered rings of

tetrahedra.

The number of electrochemical equivalents of cations needed to balance the anionic

framework charge may also be considerably less than the total number of available cation sites

of all kinds. Thus when the cations distribute themselves among the sites so as to minimise the

free energy of the system there may be partial occupancy of some or all of the kinds of site

available. The distribution equilibria is expected to be a function of temperature, the cationic

species present and the state of hydration or dehydration of the zeolite. If all water is removed

and other guest molecules are introduced these guest species may also cause a redistribution

of some cations, especially if they are polar like ammonia or sulphur dioxide.

Another variable is the silicon/aluminium ratio which determines the anionic charge

per unit cell and so fixes the number of cations. As the silicon/aluminium ratio changes, so

may the distribution of the cations among the kinds of site present in the zeolite (Barrer,

1978). No zeolites are known that contain more aluminium atoms than silicon; thus, the

molecular Si02:Al203 ratio is always equal to or greater than 2:1 (Pond and Mumpton,

1984).
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Figure 2.1. The secondary building units (SBU) in zeolite structures according to

Dyer (1988). Only the positions of tetrahedral silicons and aluminium are shown.

single four ring, S4R
	 single six ring, S6R

single eight ring, S8R
	

double four ring, D4R

double six ring, D6R
	 complex 4-1

complex 5-1
	 complex 4-4-1
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2.3. Description of Zeolites Used

2.3.1. Zeolite A

Zeolite A is a synthetic zeolite first reported by Breck et al. in 1956. It is synthesised

mainly in the sodium form by crystallisation of sodium aluminosilicate hydrogels, although

other cationic forms are quite easily obtainable by simple ion-exchange in aqueous

solution.The ideal unit cell composition of zeolite NaA is given by:

Na12RA102)12(S102) 12].27H20.

The fundamental building block in zeolite A is the sodalite unit or beta-cage which

has a free diameter of approximately 0.66 nm. A n-cage or sodalite unit is made up of 24

tetrahedra (T04) linked as six 4-membered rings and eight 6-membered rings in the cagelike

fashion of a truncated octahedron (Fig. 2.2.a.). Linking the sodalite units through the single 4-

membered rings (S4R) gives the cubic framework structure of the sodalite mineral (Fig.

2.2.b.)(Beagley and Titiloye, 1992).

The zeolite A framework is built up in a similar manner to the sodalite mineral, except

that the (3-cages are linked through "double 4-membered rings" (D4R) to form an octahedral

array of [3-cages. The presence of the D4R leads to the formation of larger cavities, known as

a-cages (Fig. 2.2.c.) which have a cubic structure (Beagley and Titiloye, 1992).

2.3.2. Zeolite P

Zeolite P is the synthetic counterpart of the naturally occurring mineral gismodine. Its

composition lies in the Ca0-Al 203-Si02-H20 chemical system: in nature it is typically

CaO.Al203 .2Si02.4H20, though some variation is known to occur. The tetrahedra are cross-

linked by the sharing of oxygen atoms, so that 0/(A1+ Si) = 2. The resulting framework

comprises eight-membered ring channels which pervade the entire structure. In gismodine,

calcium occupies the channels to give charge balance (2A1/Ca = 1). Water molecules are also

accommodated in this channel network.

Within the synthetic P-group zeolites, chemical compositions are more varied. The

general formula for zeolite P is M0.nAl 203 .xSi02.yH20, where M represents a metal, and n

its valence. The x value can vary in the range 2.0 to 5.0, while y varies between 0 and 6.0,

depending on the accompanying cation (Atkins et aL, 1995). A typical unit cell composition
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Figure 2.2. Conventional line drawings of framework structures, which ignore the

oxygen atoms (each line represents T...T) (Beagley and Titiloye, 1992).

(a) The sodalite unit
	

(b) Sodalite units linked through S4R to
(0-cage)

	

	
form the cubic framework of sodalite
itself

(c) Sodalite units linked through
	

(d) Sodalite units linked through D6R
D4R forming the cubic zeolite A

	
forming the faujasite structure

framework
	

(double line represent T...T)
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is: Na3.6A13.6Sii2.4032.14H20 (Hansen et al., 1990). Two polymorphs of zeolite P are known

at room temperature; cubic (P a) and tetragonal (Pr) (Atkins et al., 1995).

2.3.3. Zeolite Y

Zeolite Y is isostructural with zeolite X and faujasite. It differs from 4A and P in its

higher silicon:aluminium ratio. There is a smaller amount of isomorphous substitution of

aluminium for silicon into the tetrahedral framework position and this also causes a reduction

in the number of water molecules present. It has the general formula:

Na56 (A102)56 (Si02)136 • 264 H20

with a silicon/aluminium ratio of about 2.4, although a range of 1.2 to 2.4 is possible

(Harjula et al., 1993).

The structure of faujasite is closely related to the A type structure, except that the

sodalite units are linked through double 6-membered rings (D6R) in a diamond like

tetrahedral array of 13-cages, utilising four of the eight S6R faces of each 13-cage (Fig.

2.2.d.). The synthetic zeolites " Linde" X and Y have the largest cavities and cavity

entrances of the strictly aluminium- silicate zeolites (Sherry, 1968).

Zeolites with larger cavities are known which belong to the pentasil group and

include zeolites ZSM-5, ZSM-11, ZSM-48. The Si02/Al203 ratio for zeolite ZSM-5

ranges between 25-1000. Because of their large cavities, these zeolites are used for

accommodating complexes and large organic molecules. ZSM-5 can accommodate large

ions such as molybdenum, gallium, vanadium and titanium, and is an excellent catalyst

for the oxidation of benzene to phenol and for propylene oligomerization (Barrer, 1978;

Townsend, 1979).

2.3.4. Berengite

Berengite is a calcined micaceous schist that originates from the fluidized bed

burning of coal refuse from the former coal mine of Beringen in the NE of Belgium.

Berengite is made from altered schists of the Paleozoic period (Westphalien deposits),

which are pulverized and then roasted in a fluidbed oven at 800°C. During the heating

process, the schists are broken down and partly recrystallized. Using air suction, particles

with an average diameter between 0.02 and 0.2 mm are separated from the others.

Berengite also contains elements from other minerals which are present in the schists:
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calcite (CaCO 3), dolomite (Ca/MgCO 3), anhydrite (CaSO4), siderite (FeCO3) and pyrite

(FeS2). A specific surface area of about 20 m2/g was measured by De Boodt, 1991. Table

2.1. shows a typical chemical composition of berengite (De Boodt, 1991). Si0 2 and

Al203 are the main fractions which comprise 82% of the whole structure (Wessolek and

Fahrenhorst, 1994).

Table 2.1. Chemical composition of Berengite (De Boodt, 1991).

Element Percent Element Concentration (mg/kg)

Si02 52 Mg 1100

Al203 30 Cu 120

CaO 3.5 Zn 630

MgO 1.5 Cd 9

K20 2.7 Co 98

Na20 0.6 Ni 123

Fe203 4.7 Pb 203

2.4. Zeolite Properties

Each zeolite species has a unique crystal structure, and hence, its own set of

physical and chemical properties:

(a) Adsorption properties:

This is a fundamental property of zeolites. The large cavities and entry channels of

zeolites are generally filled with water molecules that form hydration spheres around

exchangeable cations (Pond and Mumpton, 1984). The location of the cations and water

of hydration in any zeolite framework are functions of temperature, water content, cation

type and silicon:aluminium ratio (Dyer, 1988).

To activate zeolites for molecular sieves or cracking catalysts, it is necessary to

remove as much as possible of this water. If the water is removed, usually by heating the

zeolite for several hours or overnight at 350-400° C, molecules small enough to fit
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through the entry channels are readily adsorbed on the inner surfaces of the dehydrated

central cavities. Molecules too large to fit through the entry channels are excluded and

pass around the outside of the zeolite particle, giving rise to the well-known "molecular

sieving" of most crystalline zeolites (Pond and Mumpton, 1984).

Molecular sieves have the ability to undergo dehydration with little or no change

in crystal structure. The dehydrated crystals are honeycombed with regularly spaced

cavities interlaced by channels of molecular dimensions which offer a very high surface

area for the adsorption of foreign molecules.

The properties of molecular sieves as adsorbents which distinguish them from

non-zeolitic adsorbents are the relatively strong coulomb fields generated by the

adsorption surface and the uniform pore size; the pore size is controlled by the associated

cation (Breck, 1974).

The "effective pore size" is defined by the largest molecule able to pass through

the constriction. Zeolites with a low aluminium content and consequently few cations

have a low water content, so that their frameworks have hydrophobic tendencies, in

sharp contrast to the normally highly hydrophilic character of most other known zeolites

(Dyer, 1988).

(b) Cation-exchange properties:

The exchangeable cations of a zeolite are only loosely held in the tetrahedral framework

and can be removed or exchanged easily by washing with a strong solution of another

cation. As such, crystalline zeolites are some of the most effective cation exchangers

known. The number of cations available for exchange is given by the C.E.C. The cation-

exchange capacity (C.E.C.) is a measure of the number of counterions present per unit

weight or volume of the zeolite. The cation-exchange capacity is primarily a function of

the degree of aluminium substitution for silicon in the framework structure: the greater

the substitution, the greater the deficiency of positive charge and the greater the number

of alkali or alkaline earth cations required for electrical neutrality. The framework of a

crystalline zeolite dictates its selectivity towards competing ions by size preference.

(c) Extensive properties:

Sedimentary zeolite ores are generally soft, friable, and light weight, having bulk

densities of 1.2 to 1.8 g/cm 3 (Barrer, 1978).
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2.5. Zeolite applications

Ion-exchange is an intrinsic property of zeolites. As a consequence the

phenomenon has given rise to the potential use of zeolites as cation scavengers in

contaminated land remediation and wastewater purification techniques. There are a wide

range of natural zeolite minerals which may be applied to polluted soils, but their

properties are fixed and may not be manipulated. Synthetic zeolites are familiar industrial

materials, whose synthesis may be manipulated to generate products with a wide range of

chemical properties which relate to their abilities to trap and bind metals in solution.

The use of natural and synthetic zeolites for pollution control and remediation

depends on the ion-exchange capability of the alkali metals within the zeolite structure

and the selectivity of the zeolite in particular towards toxic metals. The possibility of

zeolites for in situ remediation techniques will also depend on the long term stability of

the metal-zeolite complex and permanently reducing metal bioavailability. As a result of

their high selectivity for many metals, especially some of the more toxic ones such as

lead and cadmium, zeolites may provide an alternative media for metal immobilisation.

The first practical use of zeolites probably occurred about 2000 years ago when

natural zeolite rock was quarried for use as building stone although zeolites were not

recognised as a new mineral species until 200 years ago. The first physico-chemical

property of zeolites which had an application (cation exchange) was investigated by

Eichhorn about 100 years ago. This led to the development of synthetic, amorphous

aluminosilicates as commercial cation exchange materials (permutites) in the early 20th

century, which were primarily used in water softening. The first application of

dehydrated zeolites as molecular sieves in the separation of gas mixtures was

demonstrated by Barrer in 1945 utilising the zeolite mineral chabazite. Synthetic zeolites

were first introduced and utilised commercially as molecular sieve adsorbents in 1954

(Townsend, 1979).

There are more than 50 distinct species of zeolite that occur in nature. However,

only seven, mordenite, clinoptilolite, ferrierite, chabazite, erionite, phillipsite, and

analcime, occur in sufficient quantity to be considered as viable mineral resources

(Vaughan, 1978). The availability of large natural deposits of these zeolites which can be

mined at low cost also make the use of these minerals attractive. Large deposits of

natural zeolites may provide cost-effective alternatives for treatment of soil and water

contaminated with heavy metals and radionuclides. Some of the environmental
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applications of natural zeolites include: (a) the use as a soil amendment for reduction of

fertiliser use and pollution from agricultural lands; (b) sorbent barriers as liners for

disposal sites containing heavy metals or radionuclides; (c) drinking water treatment; (d)

sewage treatment; (e) sorption of organic toxins from air; and (f) use in solar panels for

alternative energy sources (Leppert, 1991).

The potential successful applications of zeolites in many fields including those of

agriculture, animal dietary, fertiliser, petroleum industries and waste treatment have been

extensively reported in the literature and have received world-wide interest.

Nevertheless, zeolites are not widely used as commercial ion-exchange materials,

because of their susceptibility to acid attack.

There are four main areas where zeolites are finding direct application as ion-

exchangers: in detergents, in ammonia/ammonium removal from freshwater effluent, in

radioisotope removal from spent fuel effluent and in agriculture. By far the most

important of these applications is in detergents, where zeolites are employed as a water

softeners, partially replacing tripolyphosphate builders. The introduction of synthetic

zeolites into laundry detergents to replace environmentally undesirable phosphate has

made zeolite a household word.

Zeolite A has the advantage of being a "maximum aluminium" structure

containing the maximum possible proportion of aluminium to silicon, so that its capacity

for taking up calcium ions from aqueous solution is intrinsically greater than those of

zeolite Y and P which generally contain a lower proportion of aluminium (or a higher

silicon: aluminium ratio).

The synthesis of a novel zeolite P (maximum aluminium zeolite P, or zeolite

MAP) having an especially low silicon to aluminium ratio, not greater than 1.33 and

preferably not lower than 1.15 has been described (Araya, 1995). This zeolite is

demonstrated to be a more efficient detergency builder than zeolite 4A (Chapple, 1993).

One of the earliest applications of synthetic zeolites for ion-exchange was in the

removal and purification of caesium and strontium radio-isotopes for the nuclear energy

industry. The use of zeolites in this field has concentrated on three important areas: (1)

removal of 137Cs from high-level radioactive wastes; (2) decontamination of low- and

intermediate-level wastes; and (3) fixation of radioactive wastes for long-term storage.

They offer significant advantages over organic resin ion exchangers because of their

stability in the presence of ionising radiation, low solubility and dimensional stability

(Townsend, 1979).
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Natural zeolites (especially clinoptilolite) are used in the removal of ammonia and

ammonium ions from freshwater effluent. Nishita and Haug (1972) conducted studies

indicating that addition of clinoptilolite to soil contaminated with 90Sr decreased

strontium uptake by plants. Clinoptilolite displays a strong affmity for caesium, lead and

cadmium and can selectively absorb some radionuclides and organic compounds

(Leppert, 1991). Apart from their use in radio-isotope removal, a major factor which has

been taken into consideration in choosing zeolites, rather than other exchangers, for

these four applications is cost, zeolites being cheaper than resins. Cost is not a major

consideration for radio-isotope removal, it is the high resistance of zeolites to thermal

and radiation damage which makes them an attractive option (Townsend, 1984).

Work has also been conducted on using zeolites as soil amendments. A soil

amendment is defmed as a substance that aids plant growth indirectly by improving the

condition of the soil. Soil amendments should not be confused with plant nutrients, such

as nitrogen, that are used directly by the plants. Natural zeolites have been used in Japan

as soil amendments for years because of their ion-exchange and water retention

capabilities (Hoye et al., 1987). As soil amendments, zeolites appear to retain moisture

longer after irrigation and to improve the cation-exchange capacity of the soils

(Townsend, 1979).

Zeolites have been used to improve soil fertility. Slow-release fertilisers enriched

with ammonium ions have been developed, which also act to improve the buffering

capacity of soils. The pronounced selectivity of clinoptilolite for large cations, such as

ammonium and potassium has been exploited for the preparation of chemical fertilisers

that offer a slower release of these elements to the soil and thus a more efficient uptake

by plants. In rice fields, where nitrogen efficiencies of less than 50% are not uncommon,

Minato (1975) reported a 63% improvement in the amount of nitrogen available in a

highly permeable paddy soil four weeks after about 40 ton/acre of clinoptilolite-rich tuff

had been added along with a standard fertiliser. Natural clinoptilolite added to soil in

conjunction with urea reduced the growth suppression that normally occurs when urea is

added alone. The presence of zeolites also resulted in less nitrate-nitrogen being leached

from the soil. The ammonium-exchanged clinoptilolite acted as a reservoir for

ammonium that was produced by the decomposition of the urea, and thereby prevented

both ammonium and nitrate toxicity by disrupting the bacterial nitrification process. The

ability of clinoptilolite to sorb excess moisture represents an attractive addition to

chemical fertilisers to prevent caking and hardening during storage.
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Zeolites exhibit high selectivity for various heavy metals and are considered

suitable for the removal of precious and semi-precious metals as well as the removal of

heavy metals from industrial and processing waste waters. Blanchard et al. (1984)

investigated the removal of ammonium and heavy metal ions from drinking water and

found that the selectivity of the sodium-exchanged clinoptilolite decreases in the order

Pb2+ > NH4+ > Cu2+, Cd2+ > Zn2+, Co2+ > Ni2+ > Hg2+. Similar observations that

clinoptilolite exhibits high levels of exchange for lead and cadmium have been reported

(Semmens and Martin, 1988; Loizidou and Townsend, 1987).

In addition to the above, applications are being developed for sedimentary

zeolites as fillers in the paper industry, as lightweight aggregates in construction, as ion-

exchangers in the purification of water and municipal sewage effluent, in the separation

of oxygen and nitrogen from air, as reforming petroleum catalysts, as acid-resistant

adsorbents in gas drying and purification and in the removal of nitrogen compounds from

the blood of kidney patients (Pond and Mumpton, 1984). A rather exotic application of

synthetic zeolites is in the improvement of coffee aroma by removal of pungent volatiles

using zeolites 4A and 5A (Sakano et al., 1996).

A major application of zeolites is for cracking long-chain hydrocarbons of crude

oil to useful C I - C6 fractions (Dyer, 1988). Acidic silica alumina catalysts have been

developed for the cracking reaction. The activity required is based upon the production

of Bronsted sites arising from the creation of "hydroxyls" within the zeolite pore

structure. Ideally the "protonated" form contains hydroxyls which are protons associated

with negatively charged framework oxygens linked into alumina tetrahedra, i.e. Bronsted

sites are created:

	

Ht	 I-1+

0 0 0 0 0	 0 0	 0 0 0

/	 \ / \	 /	 \	 /	 \	 /	 \	 / \	 / \ / \	 /

Si	 Al	 Si	 Al ---'	 Si Al+	 Si+ Al Si

/\	 /\	 /\	 /\	 / \ / \	 / \ / \ / \

Bronsted site	 Lewis site

The Lewis sites in turn are unstable, especially in the continued presence of water

vapour and an annealing process stabilises the structure. This produces the "true" Lewis

sites by ejecting aluminium species from the framework, i.e.:
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(A10)÷

0 0	 0 0 0	 0 0 0 0 0

\	 / \	 / \ / \ /	 /	 \ / \	 /	 \	 /	 \ /

Si Al+	 AF Si	 Si	 Si	 Al	 Si

/ \ / \	 / \ / \ / \	 /\	 /\	 I\	 I\

Lewis site	 "True" Lewis site

The uniqueness of zeolites as cracking catalysts lies in the high density of these

active sites coupled with the zeolite inherent stability and amenability to regeneration

(Dyer, 1988).

With such a variety of interesting ion-exchange properties, it is unusual that the

application of zeolites as ion-exchangers is not more widespread. There are two main

reasons. First, many zeolites are relatively unstable even in mildly acid solution (such as

pH 4 to 5). To attain a high resistance to acid attack, a material with a high

silicon:aluminium ratio is needed (for example, clinoptilolite or mordenite) - the higher

the value of this ratio, the lower the exchange capacity of the zeolite. Second, there are

problems in obtaining a satisfactory rate of exchange for column operation. The rate at

which a given ion exchanges into discrete crystallites of the zeolite frequently bears

comparison with exchange rates for the same ion into a typical macroreticular resin at

ambient temperature. In order to obtain an acceptable throughput rate, it is necessary to

pelletise the zeolite. This results in a drop in the exchange rate to a value which is often

far below that found for a macroreticular resin of comparable bed size (Townsend,

1984).

Nevertheless, the ability of zeolites to exchange cations makes them attractive

alternatives for removing undesirable heavy metal ions from polluted soils. The

usefulness of synthetic zeolites for pollution control applications depends primarily on

their ion-exchange capabilities and their porous, three-dimensional framework structure.

Previous studies have shown that the addition of synthetic zeolite pellets to soils

contaminated with cadmium significantly reduced the concentrations of cadmium in the

roots and shoots of a range of crop plants, including lettuce (Lactuca sativa), oats

(Avena sativa) and ryegrass (Lolium perenne).

Use of synthetic foyazite group zeolites 4A and 13X, at application rates of 1%

soil weight, caused reductions in metal concentrations in monocotyledonous (grasses and
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oats) and dicotyledonous (lettuce and table beets) plants grown in contaminated soils

amended with these zeolites. For ryegrass, the addition of zeolites to the soil resulted in

an approximately 74% reduction of cadmium concentration in the leaves and 52%

reduction in the roots, whereas for lettuce leaves the cadmium concentration decreased

by 86%. The lead content in lettuce leaves was 49-73% lower; for grasses, these

reductions were 47-77%, for the aboveground parts of oats 58-68%, for beet leaves

62%, and for beet roots 26-83% (Gworek, 1992).

Synthetic zeolites 3A, 4A, 5A and 13X have also been introduced into copper

contaminated soils at levels of 1, 2 and 3% by weight in relation to the soil mass. The

copper content of lettuce grown in the contaminated soil decreased in the presence of

zeolites by 29-77%, in grass by 41-78%, in oats by 45-64% and in beets by 21-41%, as

compared to the control (Gworek, 1993).

The application of the synthetic zeolites is gaining importance in cleaning

industrial sewage sludges of toxic amounts of heavy metals. Investigations have shown

that sewage sludge incubated with synthetic zeolites X and 4A resulted in a reduction in

the metal content (70% lead, 57% copper, 53.5% nickel, 67.5% zinc, and 61%

cadmium) of the sludge studied (Gworek, 1992).

The chemical modification capabilities of the synthetic zeolites in order to

provide specific properties may provide a cost-effective alternative for the treatment of

heavy metal contaminated soil and water. The application of synthetic zeolites in

industrial pollution control is becoming important and the level of technical effort is

increasingly expanding (Kesraoui-Ouki et al., 1994).
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CHAPTER 3.

INVESTIGATION OF ION EXCHANGE EQUILIBRIA IN THE METAL -

ZEOLITE SYSTEM.

3.1. Introduction

Zeolites are a potential source of exchangeable cations and ion-exchange is

undoubtedly one of their most important properties. Isomorphous replacement of silicon by

aluminium within a zeolite lattice gives rise to an excess negative charge on the framework.

Electroneutrality within the zeolite is maintained by the presence of cations which reside in the

cavities and channels of the zeolite. These cations are usually mobile and may be exchanged

with other similarly charged cations, or possibly with cations of different nature and valency in

aqueous solutions under favourable conditions (Dyer, 1988).

Assuming that the zeolite is in equilibria with the aqueous phase it is in contact with,

three main properties are important in ion-exchange applications. They are: exchange kinetics,

ion-exchange capacity and cation selectivity.

Ion-exchange kinetics concerns the time required for the counter-ion to travel to the

exchange site and displace a cation in the structure. The ion-exchange capacity refers to the

number of milli-equivalents (meq) of a given cation per gram of zeolite that can be retained in

a maximally exchanged zeolite. This is a function of the silica to alumina mole ratio and

cationic form. The cation selectivity refers to the preference order of a zeolite for cations,

based on the energetics of the distance between anionic sites, cationic radii, and cationic

hydration energies (Kesraoui-Ouki et al., 1994).

Ion-exchange can be between cations of the same or different charges and can be

expressed according to equation (1),

n z+ B
z An (c)	 +Z

z
+

A	 z
+

B	 A z+A
)	 <=> z

A
B

(s)	 ± z B
ri(c)	 (1)

where zA,B represents the valencies of the cations A and B, respectively, and the subscripts (s)

and (c) refer to the solution phase and zeolite crystal phase respectively. The ion A, initially in

solution, is frequently referred to as the counter ion. If cation B, initially in the zeolite, is in

contact with a solution containing cation A, then providing conditions are favourable and the
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As — A 	B
zA ms +zBms

A
zAms

(2)

zeolite has a preference for the counter ion A, ion-exchange will take place and can be

described by equation (1).

The exchange equilibria for these ions can be characterised by an ion-exchange

isotherm, which is a plot of the concentration of an exchanging ion in solution against the

concentration of the same ion in the exchanger zeolite at constant temperature and constant

solution normality. In general, the isotherm is plotted in terms of the equivalent fraction of the

entering ion in solution (A,) against that in the zeolite (Ac). The equivalent fraction of A, in

solution is given by:

where m,A and m5B are the concentrations (mol. dm-3) of the ions A and B, respectively, in the

equilibrium solution, also (Ac + BO = 1 and (A, + B 5) = 1. Ac may be similarly expressed, but

it is more conveniently expressed in terms of the ion-exchange capacity of the exchanger,

equation (3).

zAMA	 zAMA

zAMA+zBMB - Q
	 (3)

where MA0 is the concentration (mol. Kg -1 ) of the ions A and B respectively in the zeolite,

and Q is the ion-exchange capacity expressed as the number of charges per 100 g of zeolite

after equilibration over a saturated salt solution (eq/100g).

Experimentally, ion-exchange isotherms are obtained by equilibrating solutions of

constant total solution normality, but having varying proportions of the two exchanging

cations, with known sample weights of the homoionic zeolite of interest. The equilibrium

composition of both crystal and solution phase are generally determined by analysis of the

equilibrated solutions, or by direct analysis of the zeolite.

Different types of ion-exchange are possible in zeolites which depend on many

parameters, e.g. selectivity. The ion-exchange mechanisms are represented by the types of

isotherm curves shown in Figs. 3.1.1. - 3.1.3. and represent:

A c —
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1.0

As

0

Figure 3.1.1. Isotherm Types a and b.

(Ac --,- equivalent fraction of exchanging ion in the crystal.

As --= equivalent fraction of exchanging ion in solution).

1.0-

As

0

0
	

Ac
	 1.0

(a) The exchanger is selective for the outgoing ion B, over the entire range of zeolite

compositions (Fig. 3.1.1.).

(b) The exchanger is selective for the ingoing ion A, over the entire range of zeolite

compositions (Fig. 3.1.1.).

Figure 3.1.2. Isotherm Types c and d.

(for legend see Fig. 3.1.1.)

0
	

Ac
	 1.0

(c) There is a definite concentration dependence at which the exchanger will be selective for

ion A (Fig. 3.1.2.).

(d) This shows that the zeolite has no preference for either ion A or B over the whole

isotherm (Fig. 3.1.2.).
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1.0

As

0

Figure 3.1.3. Isotherm Types e and f.

(for legend see Fig. 3.1.1.).

0
	

Ac	 1.0

(e) Exchange does not go to completion although the outgoing ion B is initially preferred

(Fig. 3.1.3.).

(f) Exchange does not go to completion although the ingoing ion A is initially preferred

(Fig. 3.1.3.) (Amin, 1991).

3.2. Factors affecting ion-exchange

The ion-exchange properties of zeolites depend on the structure of their crystal

lattices and the distribution of cations over various possible positions in channels and cavities

of diverse crystal structures.

The cation exchange behaviour of zeolites also depends upon: (1) the nature of the

cation species; (2) the temperature; (3) the concentration of the cation species in solution; (4)

the anion species associated with the cation in solution; (5) the solvent; and (6) the structural

characteristics of the particular zeolite (Breck, 1974).

Ion-exchange may occur in zeolites without significant changes to the zeolite

structure as a result of the rigid three-dimensional framework which does not allow

appreciable swelling to occur during the ion-exchange process. In zeolites where the internal

void space consists of ion exchange sites accessible through larger pores as well as sites

accessible only through smaller pores, total ion-exchange may only be available to the

smallest ions and only partially available to the larger ions (Dyer, 1988). A further difficulty is

encountered in obtaining fully exchanged zeolites with divalent ions such as calcium or

cadmium. The type of coordination complex formed between the metal and zeolite in the
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small and big cavities hinders the coordination ability of the divalent ions. Because the volume

of lattice cavities and channels in zeolites is limited, completeness of sorption is, to a

considerable extent, determined by the size of cations themselves and the energy of their

hydration (Maes and Cremers, 1974).

The zeolite ion-exchange affinity sequence is often found to be in accord with the

hydrated ionic radius. A zeolite generally favours the least hydrated ion, while the solution

phase favours the most highly hydrated ion and therefore water molecules in solution are

competing with the zeolite for attraction of the cation. The smaller the radius of the hydrated

ion, the more preferential the sorption (Naumova et al., 1994). Additionally, if the pore

volume of the zeolite is smaller, then the degree of hydration possible for ions within the

zeolite will be limited (Barrer and Townsend, 1975).

The degree of cation hydration increases with a decrease in the Pauling radii of

divalent cations. The sequence of the ionic radii for the metals studied here are: Cu (0.72A) <

Zn (0.74A) < Cd (0.97A) < Pb (1.20A) (Elfattah and Wada, 1981). Large, fully hydrated

ions, such as cadmium or lead are preferred by "weak" field zeolites, i.e. those with lower

aluminium content and thus lower framework charge densities, such as zeolite Y.

In addition to the ion hydration characteristic and ionic radius, exchange is also

governed by the coordination ability of the transition metal ion. The direct coordination of the

divalent ion with the oxygen framework can be compared with an inner sphere co-ordination

complex, the interposition of water molecules giving rise to an outer sphere complex with

respect to the zeolite framework (Maes and Cremers, 1974).

Each zeolite can be considered as a different and unusual ligand which can impact the

coordination shell and chemistry of the cations through unusual electrostatic forces, varying

topologies, and multiple types of cation sittings. The activity of transition metals in zeolites

varies directly with the level of exchange, which is often achieved by using high alumina (low

silicon / aluminium) zeolites. However, as more cation sites are added with increasing levels

of alumina, the alumina centres get closer to one another. The high aluminium content not

only provides a greater number of exchangeable cations but also permits positioning of two

cations fairly close to one another and can be used to demonstrate cooperative effects

(Armor, 1994).

When zeolites come into contact with acidic solutions, proton exchange will occur.

Therefore, the pH of the exchanging solution is particularly important, because acid solutions

can partially hydrolyse and dealuminate zeolites (especially if the zeolite has a high aluminium

content, such as zeolite X) (Fletcher and Townsend, 1980). Zeolites which are used for ion-
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exchange in acid media gradually lose their sorption properties. Therefore, the employment of

zeolites at optimum pH values of 5 to 8 is recommended (Naumova et aL, 1994).

With the exception of some monovalent cations (e.g. caesium, potassium, lithium)

and divalent cations (e.g. barium, strontium), most metals form more or less insoluble oxides

and hydroxides as solution pH increases (Table 3.1.).

Table 3.1. Solubility Products of Some Metal Hydroxides (Amin, 1991).

Metal hydroxide Ca2+ Mg2+ Cd2+ Pb2+ Zn2+ Cu2+

Solubility product (mo13/13 ) 10-6 10"" 10-14 10-16 10-17 10-20
_

During the loading of aluminosilicate zeolites with heavy metal cations by ion-

exchange, metal hydroxides may precipitate. The reason for the formation of hydroxides

during the ion-exchange process is the alkaline reaction of the aluminosilicates in aqueous

solution. Before di- or trivalent cations enter the crystal, the smaller hydronium ions resulting

from the hydrolysis of water, partially exchange with the sodium cations of the zeolite.

Thereby, the hydroxyl ions of the sodium hydroxide react with the heavy metal cations to

form partially soluble solids which precipitate at the crystal surface. In dilute salt solutions

(< 0.05M) the hydroxides may dissolve under the action of the re-exchanged hydronium ions.

In more concentrated solutions (> 0.05M) the precipitates are stable due to the high

concentration of the di- or trivalent cations in the solution after reaching equilibrium (VVark et

al., 1994).

The precipitation of surface deposits increases as the solubility product of the metal

hydroxide decreases. Surface deposits of insoluble metal hydroxides have been noted on

zeolites during ion-exchange processes. To overcome the precipitation of transition metal

oxides and hydroxides, the exchanging solution is buffered at an appropriate pH.

3.3. Experimental Ion-Exchange Studies.

Three synthetic zeolites P, 4A and Y were obtained from Crosfield Chemicals,

Warrington as fine powders and were supplied in the sodium form. Berengite was obtained

from Limburgs University, Belgium. All chemicals used for the analysis and ion-exchange

reactions were of analytical-reagent grade.
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3.3.1. Preparation of reagents

i) 0.1 M NaNO3 . NaNO3 (8.499 g, A.R.) was dissolved in deionised water and

transferred to a 1 dm3 volumetric flask and diluted to volume.

ii) A saturated sodium sulphate solution was prepared by dissolving Na 2SO4 (142.07

g, A.R.) in a minimum volume of deionised water.

iii)Heavy metal solutions (0.1M) were prepared by dissolving appropriate amounts of

each metal nitrate in deionised water (1 dm3): Cu(NO3)2 (9.3700 g, A.R.), Cd(NO3)2.41-120

(15.4235 g, A.R.), Zn(NO3)2 .6H20 (14.8735 g, A.R.) and Pb(NO3)2 (16.5600 g, A.R.).

3.3.2. Identification of zeolites.

3.3.2.a. Thermal analysis

Differential thermogravimetric analysis (DTG) was carried out on a Standard Perkin

Elmer TGA 7. A sample of zeolite (0.15 mg), previously dried at 60°C, was heated at a rate

of 5°C per minute over a temperature range of 20°C to 750°C, and the weight loss, and

energy differential recorded. The thermogravimetric curves of all zeolites reveal an

endothermic weight loss due to dehydration. This process is complete at about 300°C (Fig.

3.2. a., b., c, d.). The weight losses observed for each zeolite agree with the theoretical values

determined from the unit cell formulae (Chapter 2) (Table 3.2.).

Crystallinities and phase purities were checked by X-ray diffraction and SEM.

Table 3.2. Percentage of water in the zeolite samples.

% H20 P 4A Y Berengite

Theoretical 19.4 22.2 25.0 5.0

Experimental 20.0 24.0 26.3 2.5

3.3.2.b. X-Ray Diffraction

In order to check the crystallinity and to confirm the identity of the zeolites, samples

of the original materials were examined by powder X-ray diffraction. X-ray irradiation of
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zeolite powders produces a scattering pattern from the regular arrays of atoms (ions) within

the structure. It reflects the framework and nonframework symmetry of the constituents of

each zeolite.

The dry zeolite samples were analysed at room temperature using Cu-Ka radiation

on a PW 1720 X Kristalloflex difractometer. The powder pattern for zeolites P, 4A and Y

coincide with those reported by Breck (1974) (Table 3.3.). The XRD pattern for berengite is

also indicated in Table 3.3., although no pattern has been reported for this compound.

3.3.2.c. SEM

For electron microscopy examination, a few milligrams of sedimentated zeolite was

dusted on a small metal target coated with an adhesive. The particles of zeolite were then

coated with heavy and structureless platinum/gold which evaporates much more easily than

pure platinum. The vacuum evaporation was carried out by a tungsten filament. The

evaporation time was 1-2 sec. and the vacuum in this case was 6.5 x 10 -3 Nm-2. The sample

holder was mounted at a 45° angle to the electron beam in the electron microscope and a

series of photographs were taken. SEM photographs were recorded with an accelerating

voltage of 25 kV on a Jeol JSM 840 scanning electron microscope. These are presented in

Plate 3.1. (a, b, c, d).

3.3.3. Preparation of maximally exchanged zeolites

The zeolites were first exchanged several times with a solution of NaNO 3 (1 moYdm3)

in order to obtain as far as possible the homoionic form of the zeolite. Approximately 20 g of

each zeolite were equilibrated with NaNO 3 (300 ml, 1M). The solutions were shaken at room

temperature for two hours. The zeolites were filtered then washed with a small amount of

deionised water and dried at 70°C. The procedure was repeated three times. Finally and

before use, the zeolites were equilibrated over saturated aqueous Na2SO4 in a dessicator at

room temperature for two months.

3.3.4. Determination of Binary Ion-Exchange Isotherms.

Binary exchange isotherms were determined for the homoionio sodium forms of three

synthetic zeolites and also for berengite with the metal ions, Cu 2+, Cd2+, zn and Pb2+.
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Plate 3.1. SEM for zeolite samples.

a. Scanning electron micrograph of zeolite P, gold-

sputter coated. Taken using 25 kV; bar = 1 [L.

b. Scanning electron micrograph of zeolite 4A, gold-

sputter coated. Taken using 25 kV; bar = 1 p.
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c. Scanning electron micrograph of zeolite Y, gold-

sputter coated. Taken using 25 kV; bar = 11.1.

d. Scanning electron micrograph of Berengite, gold-

sputter coated. Taken using 25 kV; bar — 10 g.
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The isotherms were obtained by equilibrating accurately weighed portions of the

zeolite in a series of solutions containing the two competing ions in different concentrations,

at a constant solution normality of 0.1 mol equiv.dm -3 . Isotherm points were obtained by

equilibrating accurately weighed samples of each zeolite (0.400 g) with 50 cm3 portions of

solution containing the appropriate quantities of copper, cadmium, zinc and lead nitrate and

sodium nitrate as the counter ion.

The equilibration experiments were carried out in sealed polyethylene bottles, which

were placed in a thermostatted water bath at 298.2° K (± 0.1) for 30 days with constant

agitation, to ensure equilibrium had been established. Preliminary investigations indicated that

equilibrium was established well before this time. The pH of all solutions was measured with a

Radiometer PHM85 precision pH meter fitted with a Radiometer GIC2401C combination

glass electrode and adjusted to pH 5 by adding NaOH (0.1M) or HNO 3 (0.1M) at the start of

the experiment to avoid hydroxide precipitation.

After equilibration the mixtures were centrifuged for 10 mins. at 4000 rpm, filtered

through GF/C glass fibre filter paper and analysed immediately for metal content by AAS

using a Perkin Elmer SP9 Atomic Absorbtion Spectrophotometer. Standard copper,

cadmium, zinc and lead solutions were prepared in dilute nitric acid (c.a. 20%).

3.4. Results and Discussion

Binary ion-exchange isotherms have been derived for the three zeolites P. 4A and Y

and also for berengite, studied under standard conditions, with aqueous solutions of copper,

cadmium, zinc and lead. The degree of ion-exchange was calculated from a knowledge of the

composition of the initial and final solutions, volume of solution and mass of zeolite used. The

ion-exchange isotherms presented in Figs. 3.4.-3.8. were derived by calculating after

equilibration, the equivalent fraction of exchanging ion in solution (As) and plotted against

the equivalent fraction of exchanging ion in the solid zeolite crystal (Ac) (Tables 3.4.-3.8.).

All values are the means of three replicate determinations.

Calculations were based on the maximum exchange capacity of each zeolite (Table

3.9.), although under the conditions studied, complete ion exchange was not observed in any

case.

All three zeolites studied exhibit a preference for the divalent exchanging cation over

sodium. The selectivity patterns observed are not equal, but dependant on the size and nature

of the exchanging cation in aqueous solution.
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Table 3.9. General characteristics of zeolites.

Zeolite Na:Si:Al Ratio Maximum Exchange Capacity (moles/g)

based on anhydrous form

P 1:1:1 2.9 x 10-3

4A 1:1:1 2.9 x 10-3

Y 1:2.6:1 1.54 x 10-3

Berengite 1:2.8:35.5 0.23 x 10-3

Each zeolite provides a different pattern of ion-exchange selectivity.

The characteristic features of the binary isotherms for all three zeolites with zinc and

cadmium are very similar and exhibit the typical exchange behaviour of a simple divalent

cation (Fig. 3.4. and 3.5.). At low metal concentrations, the zeolites show a high selectivity

for the divalent metal over sodium, and will readily exchange sodium in the crystal for the

divalent cation up to an average of 0.5 Ac (50% of the theoretical exchange capacity). Zinc

and cadmium are both group 2B elements and therefore the behaviour of zinc in a zeolitic

environment is expected to resemble that of cadmium.

Although copper and zinc have Pauling radii with nearly identical values (Cu = 0.72 A

and Zn = 0.74 A), which are small enough to suggest free diffusion into the small zeolite

cavities, the ion-exchange isotherms for these two metals are different (see Fig. 3.6. and 3.4.).

Copper and lead replacement is less efficient than that observed both for cadmium

and zinc (Fig. 3.6. and 3.7.). Copper and lead tend to form polymeric species in neutral and

slightly acidic aqueous solution (Burges, 1978), and their effective size prevents efficient

exchange through the zeolite channels. The values of hydrolysis constants (pK1) for Pb2+

(7.8-7.9) and Cu2+ (7.3-8.0) are smaller than those for Zn 2+ (9.0-9.4) and Cd2+ (7.6-11.6);

therefore, lead and copper are more easily hydrolysed than zinc and cadmium (Elfattah and

Wada, 1981). Copper solutions at different pH's can readily precipitate basic salts within the

zeolite matrix to differing degrees (Tone et al., 1974). Dyer and Barni (1977) have shown that

hydroxy-copper species do precipitate from copper nitrate solutions on the external crystalline

surfaces. To prevent hydroxy species forming, all exchanging solutions were maintained at

pH 5.00.
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The equivalent fraction of copper and lead in all three zeolites increases to

approximately 0.5 Ac as the concentration of exchanging metal in solution increases (up to

0.7 equivalent fraction). This is in agreement with previous observations, that complete

exchange of the sodium ions in the zeolite structure is rarely achieved (Jama and Yucel,

1990).

The difference in exchange between copper and lead compared to cadmium and zinc

can also be related to the substantially greater water structuring properties of copper and lead

compared to the other two ions, hindering diffusion to the exchange sites in the smaller cages

in the zeolite (Barrer and Townsend, 1975).

All the isotherms demonstrate limited exchange and a strong preference for the

divalent cation over sodium is shown in all cases by all three zeolites. The readily replaceable

sodium ions originate from the a-supercage zeolite framework, whereas the sodium ions in

the f3-, or sodalite structure are less easily replaced, and complete exchange of sodium is

highly unlikely.

The sigmoidal shape of the isotherm is due to the heterogeneous character of the ion-

exchange sites (heterogeneous in the sense that cations are involved in different interactions

with the lattice oxygen atoms and water molecules in the different cages). Even in the large

cages the cations can occupy crystallographically different sites (Sherry, 1968). The lack of

correspondence between the models of ion-exchange and the selectivity of the zeolites for

given cations is often attributed to differences in the polarizability of the exchanging cations.

Thus, the sigmoidal shape of the isotherms can be interpreted in terms of a pronounced

selectivity of the divalent cations for the sites in the supercages, and a preference of sodium

for the sites in the small cages.

Implicit in these views is that, in cases of complete exchange, the divalent ions

predominantly occupy positions in the large cages in the initial phases of the exchange

reaction, the sites in the small cages being taken in the very last stages of the exchange (Maes

and Cremers, 1974).

Zeolite A displays a double ion-sieve action. Only small cations can penetrate the

single 6-rings into the 13-cages. Large ions such as organic cations cannot penetrate the 8-

rings into the a-cages. Zeolite A has a high aluminium content and also a large void volume

and the order of selectivity for divalent ions is: Mg

Ba2+ < Sr2+ < Zn2+. In synthetic zeolite 4A, the maximum exchange levels decrease from zinc

2+ < Hg2+ < cd2+ < Ni2+ < co2+ < Ca2+ <
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to cadmium and nickel (Maes and Cremers, 1974). In this study, the same order of preference

for zinc and cadmium was observed.

Zinc ion-exchange and the factors determining the degree of exchange in zeolite A

has been extensively investigated (Gal et al., 1971; Coughlan and Caron, 1976; Takaishi et

al., 1975; Lutz et al., 1990). The maximum degree of exchange was 70% which was in

agreement for the selectivity of divalent ions by zeolite A (Breck et al., 1956).

The order of decreasing selectivity for the transition metals in zeolite Y is: Ni 2+ > Cul'

> Co2+ > Zn2+ > M 2+ > Cd2+ (Coughlan and Carroll, 1976). In zeolites X and Y, the copper

ions are partially situated in the sodalite units (Maxwell and de Boer, 1975), access to which

is limited by six-oxygen windows of free diameter —0.22 nm (Breck, 1974), a much smaller

diameter than that of the channels limiting access to the side pockets in mordenite, into which

hydrated copper ions did not exchange (Fletcher and Townsend, 1980).

As the ionic radii of the transition metal ions are very much smaller than the diameters

of the 6-rings governing access to the sodalite cages, the incomplete exchange of sodium by

copper in zeolite Y at 25°C implies that this ion exists as distinct aqua-complex in the

supercages of zeolite Y (Lai and Rees, 1975). Copper ions readily replace sodium ions in the

supercages, where the selectivity is Cu 2+ > Na+ in the hydrated zeolite Y (Herman and Bulko,

1980).

In the case of lead, the introduced lead ions occupy the strongly coordinated positions

within the r3-cages and those of weekly coordinated sites in the a-cages. The strongly

coordinated lead ions are situated near the double 4-rings where they disturb the symmetry of

the framework as hydrated species (Steinike eta!., 1995).

In zeolite Y, ion exchange at 25°C is essentially restricted to the large cages, as

inferred from the maximum exchange levels. A 75-80% zinc exchange seems to be the critical

limit for framework stability of zeolite Y since greater than 80% zinc-exchanged Y zeolites

have been reported to lead to framework collapse (Boddenberg and Seidel, 1994). In

exhaustive ion-exchange experiments, Dyer and Townsend (1973) and Wolf et cd.(1973) did

observe complete exchange of zinc for sodium in zeolite Y. The selectivity of the ion

exchangers for the cations Pb2÷ and Zn2+ increases correspondingly from zeolite NaY to

zeolite NaX, i.e., with strengthening of the electric field of the zeolite (Bobonich, 1991).

Zeolites 4A and P show similar exchange characteristics with heavy metals (Table

3.10.), whereas the amount exchanged by zeolite Y is much less, which is in agreement with

the structural formulae.
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Table 3.10. Efficiency of zeolites for ion-exchange.

Exchange Capacity (mg/g) Percentage Exchanged (%)

Metal Zeo P Zeo 4A Zeo Y Berengite Zeo P Zeo 4A Zeo Y Berengite

Copper 100 112.4 62.4 22.3 63 64 59 53

Cadmium 140 202 95 65 55 68 42 88

Zinc 102.4 132.5 67.5 32.5 67 70 65 80

Lead 220 282 207.5 70 45 50 44 52

All four ion-exchange isotherms for berengite (Fig. 3.8.) correspond to type d

isotherm (Fig. 3.1.2.d.), showing that overall berengite has no preference for either

exchanging ion or counterion over the whole isotherm. The copper, cadmium, zinc and lead

isotherms for berengite are straight lines and do not have the characteristical sigmoidal shape

of the isotherms for the other three zeolites. This indicates a lack of selectivity for the divalent

cations, and a surface adsorption phenomenon as a main sorption mechanism.

Berengite has a high pH value of 12.7 (Wessolek and Fahrenhorst, 1994), which is

explained by the presence of calcium- and magnesium oxides which form hydroxides in

contact with water. Both hydroxides are responsible for the high buffering capacity.

Studies by Wessolek and Fahrenhorst (1994) revealed the sigmoidal shape of the

isotherms for zinc and cadmium, but only at 8% concentration of berengite. Also, these

studies did not take into account the other two metals that were measured in this study,

namely copper and lead. 0.8% berengite was used in this study, a concentration which is ten

times lower than that used by Wessolek and Fahrenhorst (1994) in order to construct ion-

exchange isotherms for berengite, therefore the differences between the results.

The equivalent fraction of exchanging ion in berengite (Ac) was higher for cadmium

and zinc (0.9 and 0.8 respectively) than for copper and lead (above 0.5), in this respect

berengite showing somewhat a similarity with the other three zeolites (P, 4A and Y), which

also showed a higher selectivity for cadmium and zinc than for copper and lead.

The maximum exchange capacity of berengite (0.23 x 10 -3 moles/g) is lower than

that of zeolite Y (1.54 x 10 -3 moles/g), therefore the ion-exchange isotherms indicate that

berengite has a much lower selectivity for heavy metals in solution, at low concentrations

compared to zeolite Y.
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As inferred from the isotherms, partial levels of exchange have been obtained for all

zeolites. This is a phenomenon that is commonly observed in zeolite ion exchange. At a given

temperature, the ingoing ion fails to exchange to 100% of the theoretical exchange capacity

of the zeolite. In effect, some sites within the crystal remain inaccessible to the entering ion.

The cause of this phenomenon may be due to a number of factors. The rigid, regular

crystalline structure of the zeolite, entering ions which are larger than the channel size within

the crystal are excluded, so the zeolite acts as a sieve.

This "ion sieving" is often observed when the ions themselves have ionic radii which

should not cause their exclusion from zeolite channels. These ions are usually strongly

hydrated in aqueous solution, and their exclusion is considered to be associated with this

factor.

Zeolite channels may also cause ion exclusion in another manner, connected with the

total void volume of the channels. Ions are partially excluded, not because they cannot pass

through the channel windows, but because they fill all the intracrystalline volume before

100% exchange is achieved. This phenomenon is known as the volume-steric exclusion

mechanism. Occasionally, the ion sieve and volume steric effects appear to operate together

and 100% exchange cannot be achieved. A further factor which influences the maximum

exchange level is the ratio of the total available cation sites to charges on the zeolite lattice

and the strength of interaction between exchanging cations (Fletcher and Townsend, 1985).

With zeolite Y, interaction with the lattice was concluded to be the most important

factor in exchange. In zeolite Y, due to the reduced charge on the zeolite aluminosilicate

framework the interaction between the cations and the water molecules in the large

supercages results in incomplete replacement.

This is similar to the case in zeolite A where the presence of water in the large cavities

influences the ease with which a divalent ion removes water and enters the smaller sodalite or

13-cages (Breck, 1974).

Despite the observed partial exchange levels, the three zeolites show a high

preference for the heavy metal ions over sodium ions.

3.5. Conclusions

The determination of ion-exchange isotherms for the three zeolites P, 4A and Y

has identified the nature of interaction between zeolites and heavy metals, the efficiencies

and capacities of each zeolite for absorbing heavy metals from solution. Among the four
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types of zeolites studied, zeolites P and 4A were found to have a higher exchange

capacity, providing a high percent of metal immobilisation per gram of zeolite. The

exchange of a divalent metal ion into the zeolite matrix required the removal of two

sodium ions in order to maintain electroneutrality. Zeolite Y and berengite have a lower

availability of sodium ions (lower exchange capacity) for exchange and a weak

electrostatic environment inside the matrix.

The results of the ion-exchange isotherms indicate that zeolites P and 4A were

more efficient in exchanging metal ions than zeolite Y, in agreement with that predicted

from their Al/Si ratio and their theoretical exchange capacity. Zeolite Y was also efficient

in exchanging metal ions, but a greater amount of it is required in order to obtain the

same levels of exchange as zeolites P and 4A. Because zeolites P and 4A have showed

considerable ion-exchange ability, they should be preferred for further experimental tests.

After analysing the ability of synthetic zeolites to exchange heavy metals in

solution, the biological impact of synthetic zeolites P, 4A and Y upon the food chain was

investigated step by step, starting with their effect upon the first link of the food chain,

and namely, with the soil.

The three sites which were the subject of in situ land remediation by synthetic

zeolites in this study have been selected carefully, from a wide range of polluted areas of

the landscape of Merseyside and North Wales. The criteria of selection were two-fold: 1)

single to multiple metal contamination from different sources or origins and 2) the

compulsory demand of finding a solution for the remediation of these polluted areas,

such as an improvement of the vegetation establishment or the reuse of the land in the

near future.
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CHAPTER 4.

HEAVY METAL CONTAMINATED SOIL STUDIES.

4.1. Definition and classification of potentially toxic metals.

Traditionally, toxic metals have been classified as elements having a density greater

than 4.5 g cm-3 (Lapedes, 1974) or 6 g cm-3 (Phipps, 1981), thus giving rise to the term

'heavy' metal. Certain of these metals such as copper and zinc are essential to living organisms

in minute amounts and are referred to as 'trace' elements, although they may become toxic at

higher concentrations (Alloway, 1995). The term 'heavy metal' is now generally considered to

be unsatisfactory because it refers only to the density of the element and is meaningless to

their behaviour in biological systems (Nieboer & Richardson, 1980). The term 'potentially

toxic element' (or PIE) has been suggested instead (Alloway, 1995) but 'heavy metal' is still

used widely. Current classifications of potentially toxic elements are based on the type of

donor atom preferences of metal ions and the stability of the metal complexes they form

(Nieboer & Richardson, 1980; Phipps, 1981). This gives more meaningful information on

their toxicity, by taking their availability and reactivity into consideration. This separates the

ions into the following categories:

• Class A elements = show a preference for ligands containing oxygen.

• Class B elements = show a preference for ligands containing nitrogen or sulphur.

• Borderline elements = having preferences which are intermediate, lying between class A and

B.

The metals investigated in the present study are copper, cadmium, zinc and lead, all of

which are 'borderline' elements according to the classification system. They are commonly

studied in ecotoxicology and have been chosen due to their prominent status as pollutants, the

growing problem of their deposition in soils as a result of industrial activity and their

availability and toxicity to plants.

Each metal has certain characteristics that influence its availability and toxicity to

biological systems, such as organic affinity and behaviour in biological systems. In general, a

metal which readily forms hydroxy complexes is sorbed onto soil components to the greatest

extent and is less 'available' or active within a biological system (Alloway, 1995).

The degree of attenuation of a pollutant by soil depends upon the water content

of the soil. Normally soil has a greater surface area at liquid-solid interfaces so that
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absorption and ion-exchange processes are favored. Replacement of Si (IV) with Al (III)

in the basic Si02 chemical unit in the crystalline lattice of some clay minerals yields sites

[Si02] + Al (III) --> [A102-] + Si (IV)

with a net negative charge. Similarly, replacement of Al (III) by a divalent metal ion such

as Mg (II) in the clay crystalline lattice produces a net negative charge.

Heavy-metal ions may be sorbed by the soil, held by ion-exchange processes,

interact with organic matter in soil, undergo oxidation-reduction processes leading to

mobilisation or immobilisation, or even be volatilized as organometallic compounds

formed by methylating bacteria. A large number of factors affect heavy metal mobility

and attenuation in soil. These include pH, pE, temperature, cation exchange capacity and

nature of soil mineral matter. Normally, the mobility of heavy metals in soil and mineral

matter is relatively low. A study of the relative mobilities in clay mineral columns (Griffin

and Shimp,1978) showed that lead, zinc, cadmium and mercury were strongly attenuated

by the clay, primarily by precipitation and exchange processes. Metal cations are readily

held by ion-exchange processes and precipitation on soil:

2 Soil } -1-1+ + Cu2+ --* (Soil ) -) 2 Cu2+ + 21-1+

Cu2+ + 20H- ---> Cu(OH)2(s)

Two aspects of precipitation process are particularly important in determining the

fate of hazardous ionic solutes in water. If precipitation occurs very rapidly and with a

high degree of supersaturation, the solid tends to form a large number of small colloidal

particles that may persist in the colloidal state for a long time. In this form, hazardous

substances are much more mobile and accesible to organisms than as precipitates. A

second important consideration is that many heavy metals are coprecipitated with

hydrated iron (III) oxide (Fe203 .xH20) or manganese (IV) oxide (Mn02.xH20)

(Manahan, 1994).

Specific adsorption increases with decreasing pK (hydrolysis) values, but in the case

of lead and copper which have the same value, lead is more strongly adsorbed due to its

greater ionic size. The equilibrium constants are given in Table 4.1., which also includes the

characteristics of the toxic metals used and information relevant to their behaviour in

biological systems (Lepp, 1981; Alloway, 1995).
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Table 4.1. Information about the heavy metals analysed in this study.

Element Natural

Source

Pollution

Source

Normal

Levels
(mgr')

pK Predominant

species in soil

(PH)

Effects

of metal

on plants

Copper* Occurs in pure

metal state; also

minerals malachite

(Cu2CO3 );

chalcocite (Cu2S).

Mining and

smelting;

fertilisers,

sewage sludge

application,

1-20 7.7

strong

[Cu(H20)6]2+

at pH < 7

Cu(OH)°2

in neutral and

alkaline soils,

Stunting of

growth (Foy et

al., 1978) &

inhibition of

root growth

(Daniels eta!.,

1972).

Cadmium Black shales Phosphatic

fertilisers, zinc

ores, sewage

sludge and

incineration of

plastics.

0.1-1.0 10.1

weak

Free ion Cd2+

predominant

but neutral

Cd504 or

CdC12

at pH > 6.5.

Damage to

photosynthetic

function

(Clijsters &

Van Assche,

1985).

Zinc * Sphalerite &

wurtzite (Zn,Fe)S.

Burning of

coal and other

fossil fuels;

aerial fallout;

sewage sludge,

agrochemicals.

50 9.0

weak

Zn2+ below

pH 7.7;

Zn0H+ up to

9.11; above

this the

neutral

Zn(OH) 2 is

predominant.

Photosynthetic

electron

transport

(Baker eta!.,

1982;

vacuolation in

root meristem

cells (Davies et

al., 1991); root

meristem size

and root hairs

(Powell et al.,

1988).

Lead Black shales;

galena (PbS).

Vehicle exhaust

fumes; mining

and smelting;

agricultural

materials.

17-29 7.7

strong

Calcareous

soils PbCO3 ;

non-

calcareous

Pb(OH)2,

Pb3(PO4)2

Inhibition of

growth and

mineral

nutrition

(Breckle &

Kahle, 1992).

* indicates that the element is plant-essential.
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4.2. Soil and Site Characteristics

Laboratory experiments involving binary ion-exchange isotherms have demonstrated

the ability of synthetic zeolites to undergo ion-exchange with different metals in solution

(Chapter 3). The ability of synthetic zeolites to exchange cations makes them attractive

alternatives for removing undesirable heavy metal ions from polluted soils. Soil samples were

collected from different sites, which were polluted with different contaminants. The three sites

studied represent three main sources of metal pollution: sewage sludge (Gateacre), smelting

activities (Prescot) and mining (Trelogan). All three sites are contaminated with heavy metals

to phytotoxic levels.

Gateacre (0.S.Grid reference SJ 878 341)

Very little is known regarding this site in terms of heavy metal pollution. The site is a

field next to a sewage farm owned by North West Water plc. It has had sewage sludge

applied to it from the 1960's, but this practice was ceased about 1989 due to concerns

regarding metal contamination.

The field is contaminated with a number of heavy metals, including high levels of

cadmium, lead, zinc, copper, nickel and mercury. The field was previously farmland, owned

by Liverpool County Council until 1974, when it was sold to what is now North West Water

plc. Crops farmed on the land included potatoes, barley and wheat by rotation, however the

land has been under grass for twelve years, but is still cut for silage.

Prescot (0.S.Grid reference SJ 464 926)

Aerial-contaminated soil was collected from Prescot, a small town 9 km to the east of

Liverpool. The main pollution input to the site is copper, and to a lesser extent cadmium and

zinc from nearby metal refining industry. Industrial operations began in 1906, converting

scrap copper into copper wire. This was superseded in 1932 by a copper fire refinery which

produced copper and cadmium alloys and high grade copper for use as rods and anodes. Soils

downwind of the plant received substantial inputs of copper and cadmium in the form of dust,

particulates and aerosols. The history of this site has been reviewed by Dickinson et al.

(1996), who showed that cessation of the activities of the refining plant may have led to a

slow decrease in the levels of plant-available heavy metals.
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Soil was collected from a woodland site adjacent to a churchyard which was

dominated mainly by Acer pseudoplatanus L. (sycamore) and to a lesser extent Aesculus

hippocastaneum (horse chestnut). Numerous studies have been undertaken in the vicinity of

the smelter concerned with the evolution of tolerant grass populations (Bradshaw &

McNeilly, 1981; Wu & Antonovics, 1978), movement of metals through food chains (Hunter

et al., 1987 ab), and more recently on the effect of emissions on sycamore trees (Dickinson et

al., 1992; Watmough, 1994).

Trelogan (0.S.Grid reference SJ 185 774)

The material collected from Trelogan is the spoil from an old abandoned lead and zinc

mine which has not been worked since at least the turn of the century. Mining activities at

Trelogan ceased around 1900, and grass species such as Agrostis tenuis and Agrostis

stolonifera have invaded in sparse patches around the spoil. A few tree species on the site

include sycamore (Acer pseudoplatanus L.), several willows (Salix caprea and Salix cinerea)

and a small number of young oaks (Quercus sp.).

Direct revegetation of the area is not possible, mainly because of the high metal

concentrations in the soil. Other limiting factors for plant growth are macronutrient

deficiency, dryness and an almost complete lack of organic material.

The parent rock underlying Trelogan spoil is limestone, typically rich in calcite giving

the soil a neutral pH; Smith & Bradshaw (1979) found a pH of 7.1 at this site and high

calcium concentrations between 41200 and 69400 lig 	 with between 768-1050 pg

potassium, 125-392 lig phosphorus and approximately 600 jtg g-1 total nitrogen. The

vegetation that does grow is limited to those which can tolerate extremely alkaline and

nutrient-poor conditions (Mench et al., 1989).

4.2.1. Experimental (Soil Analysis)

4.2.1.1. Soil sampling

Soil for subsequent use in the pot experiments and for metal analysis was collected at

the sites described above to a depth of 10 cm. Sub-samples were removed and analysed for
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water- and nitric acid- extractable concentrations of copper, cadmium, zinc and lead. All

samples were analysed in triplicate.

4.2.1.2. Analysis of soil characteristics.

Water-extractable and nitric acid-extractable heavy metal concentrations were

determined for all three test soils. A standard potting compost (John Innes No.1) was used as

a reference, uncontaminated soil.

Analysis of physical soil characteristics for Trelogan, Prescot and Gateacre soils and

the reference soil were also determined, they consisted of:

• pH

• % weight loss at 105°C (moisture content)

• % weight loss on ignition (organic matter content)

• exchangeable cations (calcium, potassium and magnesium)

pH

To measure the pH of the soil, 5 g of fresh soil was mixed with 12.5 cm3 of distilled

deionised water. The soil-water mixture was stirred thoroughly using a glass rod and allowed

to stand for 10 minutes before reading the pH. The pH of test soils was recorded using a

Radiometer PHM85 precision pH meter fitted with a calibrated Radiometer GI(2401C

combination glass electrode. The mean pH of the 3 replicates was calculated for each soil.

Moisture Content

For each soil, 3 replicates of 20.00 g of fresh sample was weighed and placed in

evaporating crucibles. The samples were then placed in an air-circulation oven at 105°C and

dried to a constant weight, where successive weighings did not differ more than 1-2 mg. The

samples were then cooled in a dessicator and weighed (Allen, 1989). Percentage moisture

was then calculated using the formula:
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loss in wt on drying (g)

Moisture (%) =

	

	 x100

initial sample wt (g)

Organic Matter Content (Loss on ignition)

5.00 g of oven-dried soil was weighed into a dry crucible of known weight. Samples

were placed in a muffle furnace and the temperature was allowed to rise to 550°C and

maintained at this temperature for 3 hours before removing and cooling in a dessicator.

Samples were weighed and organic matter was calculated as percentage weight loss. The

loss-on-ignition (%) was calculated using the following formula:

wt loss (g)

Loss-on-ignition (%) =

	

	 x 100

oven-dry wt. (g)

Exchangeable cations

10.00 g of air-dried sieved soil (0.5 mm) was extracted with NH 40Ac (250 cm3 ; 1M;

pH 7) and filtered using Whatman N°44 filter paper. The concentration of displaced cations

(principally calcium, potassium and magnesium) were determined by flame photometry and

expressed as meq 100e.

Water-extractable metal concentration.

The fraction of the total metal content of soil that can be extracted with water may be

taken as a simple representation of the concentration of metals immediately available for

uptake by plants. The method described below has been shown to be successful for a variety

of metal-contaminated soils, and correlates well with plant uptake of copper, nickel and zinc

(Ure, 1990; Watmough, 1994). For each soil sample, 3 replicates of air dried soil (5.00 g)

was shaken with distilled deionised water (25 cm 3) for 2 hours. The sample was filtered
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through Whatman N°1 filter paper into 50 cm3 volumetric flasks and diluted to volume using

deionised distilled water. Metal concentration was determined immediately by atomic

absorption spectroscopy.

Nitric acid-extractable metal concentration using microwave digestion.

All soil samples used were digested by microwave digestion using a MDS-81D

microwave oven, Teflon PFA vessels (120 cm3 size) with pressure relief valves and capping

station (CEM Corporation). This allowed a more complete digest and reduced the risk of

losing sample contents.

Triplicate soil samples were dried in an air-circulation oven to a constant weight at

105°C and ground to a fine powder using a mechanical mill. Approximately 1.0000 g of

sample was added to the Teflon digestion vessels and 1-111•103 (10 cm3 ; conc, A.R.) added. The

safety valve and caps were placed on and tightened in the capping station. After placing the

samples in the turntable the exhaust fan was switched on and the rotating turntable was

activated. The microwave was programmed as follows: step 1: 2 minutes 30 seconds at 100%

power, step 2: 10 minutes at 80% power. The solutions were then allowed to cool for 5

minutes and then manually vented to release pressure. After cooling in a fume cupboard the

solutions were filtered (Whatman N°1 filter paper) into volumetric flasks (25 cm 3) and diluted

to volume using deionised, distilled water. The samples were analysed by atomic absorption

spectroscopy. One nitric acid blank was included per run. All samples were analysed using a

Pye Unicam SP9 Atomic Absorption Spectrophotometer at standard operating conditions,

using a deuterium lamp with background correction. AAS operating conditions are presented

in Table 4.2.

4.3. Results and Discussion

The physical characteristics of the soils studied are shown in Table 4.3., and metal

concentrations are shown in Table 4.4. All figures are means with the standard deviation for n

= 3. The normal and critical concentrations of heavy metals in polluted soils are indicated in

Table 4.5.

The soils differed both in their physical characteristics (Table 4.3.) as well as in the

concentrations of metals (Table 4.4.). John Innes Compost contained a greater moisture and

organic matter content than all three contaminated substrates, although the organic matter
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Table 4.2. Atomic absorption spectrophotometer operating conditions.

Instrumental

Parameters

Copper Cadmium Zinc Lead

Light source Hollow

cathode

Hollow

cathode

Hollow

cathode

Hollow

cathode

Lamp current (mamps) 5 3 5 5

Wavelength (nm) 324.7 228.8 213.9 217.0

Slit Width (Tm) 320 320 320 320

Flame description lean, blue lean, blue lean, blue lean, blue

Sensitivity

(at 0.0044 A = 1%

absorption)

0.04 Tg mi l

(1Tg ml' =

0.1 A)

0.01 Tg m1-1

(0.25 Tg mi l

= 0.1 A)

0.02 Tg ml'

(0.5 Tg ml'

= 0.1 A)

0.1 Tg mil

(2 Tg ml'

= 0.1 A)

Optimum Working

Range (ppm)

2 - 8 0.5 - 2 0.4 - 1.6 5 - 20

Source: Perkin Elmer Standard Operating Conditions Manual.

Table 4.3. Background edaphic factors in the four soils used in the experiments

(Means ± standard deviation).

Soils pH Organic

Matter (%)

Moisture

Content (%)

Exchangeable

Cations

(meq 100g-1 )

NH40Ac-

extractable Ca

(jig g-1)

Control 5.6 (±0.8) 73.8 (±2.78) 67.3 (±0.92) 290 (±17.56) 140 (±1.15)

Trelogan 7.3 (±0.22) 3.5 (±0.14) 17.8 (±2.42) 316 (±54) 6100 (±1000)

Prescot 3.4 (±0.13) 27.3 (±1.01) 47.1 (±1.16) 8.7 (±2.33) 1.3 (±1.14)

Gateacre 5.3 (±0.8) 11.7 (±0.62) 22.1 (±3.60) 140 (±9.5) 50 (±4.7)
_
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Table 4.4. Water-extractable and nitric acid-extractable (total) metal concentrations in

samples of soils used in experiments (Means ± standard deviation).

Soils H20-extractable metals (.1.g g -1 ) HNO3-extractable metals (jig g-1)

Cu Cd Zn Pb Cu Cd Zn Pb

John 0.11 0.11 0.63 * 47.2 3.43 40.1 20.13

Innes (±0.03) (±0.03) (±0) (±1.62) (±0.3) (±3.64) (±2.61)

Compost

Trelogan 0.68 5.87 72.6 5.21 90 80 17700 10300

(±0.2) (±0.28) (±6.8) (±0.21) (±21) (±18) (±6042) (±1712)

Prescot 10.7 0.81 2.83 2.86 1100 5.4 400 500

(±0.56) (±0.49) (±0.3) (±0.05) (±279) (±2.4) (±31.6) (±118)

Gateacre 1.82 11.21 4 5.18 74.5 25 280 575

(±0.27) (±0.14) (±0.7) (±0.25) (±23) (±13) (±36) (±38.4)

* indicates the metal concentrations were below detection limits (see Table 4.2.).

Table 4.5. Normal ranges of heavy metals concentrations in soils and plants (Alloway,

1995).

Element Normal Range

In Soil (jig g- ')

Critical Range

In Soil (jig g-1 )

Normal Range In

Plants (14 g-i )

Critical Range In

Plants (jig gl)

Copper 2-250 60-125 5-20 20-100

Cadmium 0.01-2.0 3-8 0.1-2.4 5-30

Zinc 1-900 70-400 1-400 100-400

Lead 2-300 100-400 0.2-20 30-300
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content at Prescot was still relatively high. Previous studies on soil from Prescot have shown

that rates of leaf litter decomposition are slower due to the toxicity of the metals, particularly

copper to the microorganisms which decompose the organic matter (Coughtrey et al., 1987).

Trelogan spoil has a low moisture content; the substrate is a mixture of fine sandy silt with a

high clay content, suggesting that percolation of water through the spoil is less important than

run-off over the surface. Gateacre has intermediate values between Trelogan and Prescot.

The concentration of exchangeable cations (an indication of CEC) of the four soils

studied also differed (Table 4.3.). There are typically large differences between the CEC of

mineral and organic soils; in the former CEC can range from a few to 60 meq kg -1 (Alloway,

1995). The cations measured to determine the concentration of total exchangeable cations

were calcium, potassium and magnesium. The control soil (John Innes No.1) contained a high

percentage of organic matter, which also contributes to CEC (due to high absorptive capacity

above pH 5), and the concentration of exchangeable bases in the control soil is that expected

for normal levels in organic soils. The concentration of exchangeable cations in Trelogan soil

(316 meq 100 g-1 ) was much higher than the control due to abundance of calcium in the

substrate, with Prescot having the lowest concentration (8.7 meq 100 g -1 ). The concentration

of ammonium acetate-extractable calcium has also been included in Table 4.3. due to the

ameliorating effect calcium can have on metal toxicity under normal circumstances (Wilkins,

1978). Results of soil analysis carried out in this study are generally in agreement with Smith

& Bradshaw (1979).

In the soil test, all substrates were tested for metal concentration, where the analysis

took only four metals into consideration, although there may conceivably have been more

guest elements present in the soils, especially in Trelogan and Gateacre soils.

Trelogan soil contained much higher concentrations of cadmium, zinc and lead than

those from Prescot and Gateacre, and also presented a harsher edaphic environment, which

may have contributed towards the poor survival rate of vegetation in the area. The high

concentration of ammonium acetate-extractable calcium is likely to be responsible for the

neutral pH of the substrate which would also reduce the availability of essential metals for

uptake by plants.

The total copper content of Prescot was particularly high; with 1100 lig g-1 present,

of which 10.7 lig g-1 was water-extractable. The plant available copper concentration in

Trelogan soil was 0.68 lig g-1 and in Gateacre soil 1.82 jig g -1 (Table 4.4.). The water-

extractable concentration of cadmium in Trelogan soil was 5.87 jig g4 ; that of Prescot soil
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0.81 jig	 whereas that of Gateacre soil 1.82 jig g-1 . The concentration of water-extractable

zinc in Trelogan soil was 72.6 jig which is much higher than that of Prescot soil (2.83 jig

g-1 ) and also greater than that of Gateacre soil (4 jig g -1 ). Concentrations of lead removed

using water extraction were equal for Trelogan and Gateacre soils, lower for Prescot soil and

below detection limits (approximately 1.0 jig g- ') for John Imes No. 1 Compost.

Metal contamination at the sites considered in the present study occurred either as a

result of aerial metal deposition, at Prescot, as a result of mining activities at Trelogan and at

Gateacre, a field where sewage sludge has been applied.

Prescot, Trelogan and Gateacre were all metal contaminated sites, but differed not

only in their metal concentrations, but also in vegetation cover. Trelogan soil has very high

levels of metals, particularly cadmium, lead and zinc. The low organic matter of Trelogan in

comparison to the other soils implies that only a minor fraction of the metals will be

complexed by organic ligands. However, metal mobility will be counteracted to some extent

by the pH of the soil (pH 7.3). Zinc, lead and cadmium were present in potentially phytotoxic

concentrations at Trelogan (Table 4.4.), but the high soil pH may have reduced metal

availability and uptake by plants. It is noteworthy that total concentrations of zinc, lead and

cadmium were lower beneath an area occupied by sycamore trees than in the predominantly

non-vegetated areas of Trelogan spoil. This may explain the establishment of vegetation in

this area. In appearance, the absence of vegetation at Trelogan indicated the most severe

phytotoxic conditions of the three sites studied, with large areas of bare spoil remaining even

after several decades, apparently with little disturbance, and with no shortage of potential

colonising species from nearby fields. The Gateacre site by comparison is vegetated, implying

less phytotoxic conditions than found at Trelogan.

Cadmium, copper, lead and zinc are elevated above background levels at Prescot, but

only copper is present at levels which could be potentially phytotoxic (Hunter et al., 1987a;

Turner, 1991). For Prescot soil, the mobility of metals resulting from the low pH may be

compensated to some extent by the high organic matter content of 27.33%; more metal will

be immobilised by metal-organic complexation.

4.4. Conclusions

The next chapter reports a sequential extraction procedure to evaluate the

efficiency of synthetic zeolites: P, 4A and Y for reducing the bioavailable metal fraction

in polluted soils and also to investigate the optimum working range of zeolite
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concentrations for use in further experiments for assessing the feasibility of using zeolites

in field trial experiments. This is the starting point to determine the direct impact of the

zeolites upon polluted soils.

The effect of the synthetic zeolites: P. 4A and Y on the bioavailable fraction of

metals in the contaminated soils was investigated first by using a sequential extraction

procedure on the untreated and amended soils, in order to evaluate the metal

redistribution in the analysed fractions after adding zeolites to the soils. Secondly, soil

column experiments were carried out to measure the metal content of the leachates and

therefore to estimate the long-term effect of the three synthetic zeolites upon the test

soils. Laboratory investigations were followed by greenhouse trials using four test plants:

ryegrass, sunflower, maize and willow grown on zeolite amended soils. Plant growth and

heavy metal accumulation by the test plants were evaluated using visual examination of

the plants, AAS measurements and statistical analysis of the data. A field experiment was

also carried out at Prescot B.I.C.C., using zeolites P and 4A as soil amendments.
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CHAPTER 5.

INVESTIGATION OF CHANGES IN METAL SPECIATION OF ZEOLITE

AMENDED SOILS.

5.1. Introduction

The toxicity of metals in the natural environment depends on their chemical form.

Trace metals may be distributed among many components of the soil or sediment and may be

associated with them in different ways. The nature of this association has often been referred

to as speciation. Speciation is defined as the particular physical and chemical form in which an

element occurs. It is the chemical species or form that determines the mobility and

bioavailability of the soil metals to other environmental compartments (such as water, plants

and biota) when physicochemical conditions are favourable (Ramos et al., 1994).

Metal cations in soils may be present in several different physicochemical forms: (i) as

simple or complexed ions in soil solution; (ii) as easily exchangeable ions; (iii) organically

bound; (iv) occluded by or coprecipitated with metal oxides, carbonates, or phosphates and

other secondary minerals; or (v) as ions in crystal lattices of primary minerals (Viets, 1962;

Soon & Bates, 1982). Metal cations present in soil in the first three forms are considered to

be the most "available" to plants, successive forms representing decreasing degrees of

availability (Soon & Bates, 1982).

The total metal content of a soil is not a reliable indicator of the metal concentrations

in plants grown in that soil since only some fraction of the total metal content is available for

plant uptake (Davies, 1992). Total analysis may give information concerning possible

enrichment of the soil with heavy metals, but generally and for most elements, there is not

sufficient criteria for estimating their biological effects. This is because it is the chemical form

of a metal in the soil and sediment that determines its mobilisation capacity and behaviour in

the environment (Ramos et al., 1994).

A clear understanding of metal bioavailability to plants is an essential pre-requisite to

reducing metal accumulation in the human food chain and preventing their potentially harmful

effects on human health.

Sequential extraction or fractionation of trace metals from soils and sediments is a

useful technique for determining chemical forms of metals in soil materials. Such information

is valuable in predicting bioavailability, metal leaching rates, and transformations between

chemical forms in agricultural and polluted soils (Salomons and Forstner, 1980). It can also

69



be used for monitoring a site to determine if chemical changes are occurring that may threaten

the environment (Clevenger, 1990).

Selectivity of the extraction reagents toward specific geochemical phases is an

important performance criterion for a sequential extraction procedure. The challenge of

devising extraction schemes for transition metals is selecting reagents that are effective in

selectively solubilizing a given form of the element from the soil (Salomons and Forstner,

1980).

A wide variety of extractants have been used as a means of selectively removing

particular metal species from the bulk of the sample. They generally consist in solubilizing

fractions which are considered as available, accessible, mobile or simply extractable. From the

agricultural point of view, the extractions aim to determine amounts which are as narrowly as

possible correlated with plant uptake and if possible also with crop yields.

The transfer of mineral nutrient elements from their storage form to the liquid phase is

based on the following phenomena: (i) solubilization of components in the solid phase; (ii)

ion-exchange (desorption); (iii) formation of soluble complexes.

Therefore it seems logic to base the extraction on the same mechanisms and to use an

extracting solution responding to the following criteria: (i) be sufficient acid to solubilize the

solid phase fraction which contributes to plant nutrition; (ii) contains a displacing ion which

exchanges the mobile adsorbed ions; (iii) have a sufficient complexing power to form soluble

organo-mineral complexes (Kiekens and Cottenie, 1982).

Generally, these schemes use a sequence of reagents of increasing reactivity in the

dissolution process. The metal species extracted may then be associated with a specific

chemical pool. These reagents are known to provide a means of estimating potentially

available metal concentrations (Kheboian and Bauer, 1987). Most include up to five

extractants with the following general properties:

1. Cation-exchanging extractants: these are solutions (0.05 to 1 mol dm -3) of either sodium or

ammonium acetate (adjusted to pH 7) or solutions of magnesium chloride, calcium chloride

or sodium nitrate. The solutions act by displacing the ions from ion-exchangeable sites on the

sample.

2. Carbonate-dissolving extractants: an example is a 1 mol dm -3 solution of acetic acid-sodium

acetate at pH 5, which serves to dissolve a metal carbonate mineral phase.

70



3. Iron-manganese extractants: they dissolve oxyhydrates of iron and manganese and liberate

other co-precipitated metal ions and oxides, using typically a solution of 1 mol dm-3

hydroxylamine and 25% v/v acetic acid.

4. Organic and sulphide bound metals: strong oxidising agents such as acidified hydrogen

peroxide or sodium hypochlorite or sodium pyrophosphate are used to oxidise organic

matter, releasing organically bond metal ions. Sulphides are very difficult to extract

quantitatively.

5. Residual fraction: a strong acid extractant such as nitric acid (conc.) is used for dissolving

silicates or minerals that have not been attacked by the milder reagents (Van Loon and

Barefoot, 1992).

The exchangeable fraction and to a lesser extent the carbonate and organic fractions

are generally considered to be the ones which constitutes the immediate nutrient reservoir in

the soil solution. The biological significance and plant uptake of an element mainly depends

upon its mobility. Thus the mobile fraction of an element in the soil may be defined as the sum

of the soluble amount in the liquid phase and an amount retained by the solid phase, which

can be transferred to the liquid phase (Kiekens and Cottenie, 1982). Extracting soil samples

with nitric acid might be of interest to characterize unknown soils and provide useful

information concerning their potential trace element status. In view of planning international

programmes, unification of soil extraction would largely facilitate comparison and increase

efficiency.

The validity of sequential extraction procedure has been questioned by a number of

authors due to the lack of a standard set of reagents. The lack of a rigid test procedure makes

interlaboratory comparison of metal fractionation in different soils difficult, and can give rise

to inconsistencies and anomalies when comparing test data. Furthermore, nonselectivity of

some extractants and trace element redistribution among phases during extraction are also

problems associated with sequential extraction procedures. The analytical results are

moreover influenced by the operating modalities such as soil/solution ratio, which may vary

from 1/2 to 1/25. Nevertheless, such procedures do provide a valuable insight into the

distribution of metals in contaminated soils, and can be used to explain the changes that occur

in metal bioavailability in soils which have been the subject of in situ remedial action.
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5.2. Metal bioavailability and speciation.

According to the theory of 'plant nutrient uptake', ions in soluble forms are more

easily taken up by plants. Heavy metals in exchangeable forms have the highest solubility to

give the highest potential bioavailability in contrast to the other chemical forms. However,

heavy metals associated with carbonates are also easily released to solution when the soil pH

is sufficiently low to dissolve the carbonates. Metabolic products of plant root, such as

carbonic acid and other acid materials which are secreted during root physiological activities,

would lower the pH of the rhizosphere to promote plant absorption of heavy metals from the

carbonate form (Xian and Shokohifard, 1989). Massey (1972) reported that with lower soil

pH, soluble heavy metal concentrations in the soil were increased, leading to uptake by plants

(Xian, 1989). Heavy metals in the other chemical forms, such as iron-manganese oxides and

organics with very low solubility and high stability for biological activity, would not have

direct bearings on their uptake by plants (Asami et al., 1995).

Exchangeable metals are held through electrostatic attraction on the exchange sites of

the surface and interface of negatively charged inorganic and organic particles of the soil.

Metals in this group are considered to be nonspecifically adsorbed and ion-exchangeable, i.e.,

they can be replaced by competing cations. The predominance of metals in contaminated soils

in this fraction can lead to crop contents that can greatly exceed tolerable values for human

and animal food stuffs.

The retention mechanism of heavy metals in soils changes according to the difference

in speciation of the heavy metals and is influenced by soil solution pH. At higher pH values

(above pH 8), metals will tend to precipitate and form hydroxy species, especially lead and

copper. This enhances the retention of heavy metals in an hydroxide phase. It might be easier

for heavy metals to form hydroxy species in the presence of soil particles because of the fact

that the soil surfaces provide good nucleation sites where precipitates can grow at a faster

rate.

The more soluble fractions, namely the exchangeable (ammonium acetate-extractable)

and that associated with organic matter (hydrogen peroxide-extractable) are considered more

"potentially available" to plants (Soon and Bates, 1982) because they are more likely to be

released from the solid phases into the soil solution.

In contrast, the metals associated with the "residual" phase are not able to be released

and may constitute the background level of metals in soil (Legret, 1993).
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The residual fraction is generally considered to be within the lattice of silicate minerals

and can become available only after digestion with strong acids at elevated temperatures. The

residual materials consist of silicates and other resistant materials, and determination of the

metal associated with this fraction, which is not considered to be significantly large, is

important in completing mass-balance calculations (Yong et al., 1993).

Associated changes in bioavailability may produce large increases or decreases in the

risks of potentially toxic metals to crops, animals or man. It is therefore very important to

establish what might happen to the chemical forms of metals present in such soils (Salomons

and Forstner, 1980).

In the soil, the elements are stored in different ways and only those fractions which

are soluble or may be solubilized can enter into a biological cycle. Therefore it is important to

distinguish between the total quantities and the amounts which can be transferred into more

mobile forms.

The distribution of an element between these forms is governed by the equilibrium

constants of the corresponding reactions of precipitation and dissolution, complexation and

decomplexation, adsorption and desorption. Equilibrium displacements may occur as a

consequence of output of elements by plant uptake or by leaching, input of elements by

manuring, changing water content (dilution or concentration) and pH changes. The main part

of a trace element is present in the solid phase where it is incorporated in minerals and in

precipitates. Due to competition with calcium, potassium and magnesium, only small

quantities remain adsorbed and besides the free ions in solution, variable amounts may be

bound in organo-metal complexes (ICiekens and Cottenie, 1982).

The mobility and the bioavailability of trace elements are related to the biological

activity and the physicochemical properties of the soil. Heavy metals in ionic form, or

complexed by organic materials have a very different nature and strength of bonding and

therefore will react differently with the soil surfaces, so that the amount of these elements in

bioavailable forms will greatly differ among different types of soils. •

Field and laboratory studies have established relationships between metal speciation,

availability and toxicity. The metals may transfer from contaminated soils into the growing

plants and may retard the growth of plants and the growth of soil microorganisms. The

bioavailability of metals in soil is determined by characteristics of both the soil and plants

(Gupta and Aten, 1993).
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5.3. A review of sequential extraction procedures. 	 •

Two different approaches can be discerned to characterise the pollution status of

soils. The first is a single reagent leaching test, using an extractive reagent which is considered

to be able to extract the bioavailable metal fractions. The use of single chemical extractants

has been quite effective in evaluating the availability of soil trace elements which are essential

for plant growth (West, 1981). Typical examples include the use of deionised water on

different types of soil to examine soluble concentrations of copper, cadmium, nickel, zinc and

lead (Petruzzelli et al., 1981) and cadmium (Alloway et al., 1979) and also iron, copper and

manganese (Miller et al., 1986). The second approach involves the use of sequential

extraction techniques to distinguish between the different physico-chemical states of metals.

This can give detailed information on the origin, mode of occurrence, biological and

physicochemical availability, mobilisation and transport of trace metals (Tack and Verloo,

1995).

The metal species in soil can be defined as: (a) functional e.g. 'plant-available species';

(b) operational, according to the reagents or procedures used in their isolation or, most

specifically, (c) as particular compounds or oxidation states of an element (Alloway, 1990).

Operationally defined speciation often involves the use of single or sequential extractants to

release metal species associated with particular soil phases. In sequential extraction, the

sample is treated with a succession of reagents intended to specifically dissolve different soil

phases, but the reagents used in sequential extraction procedures may not be sufficiently

specific to dissolve exclusively the 'target' phases. Furthermore, results obtained from different

laboratories can vary widely when different extraction schemes and experimental conditions

are used as there appears to be only a general consensus on extraction schemes. Nevertheless,

useful information has been gained from such studies (Davidson et al., 1994).

Speciation reflects the flux of metal species in a certain medium, which contains both

accelerating and inhibiting factors and processes. Such influences comprise the effects of pH-

changes, redox reactions, inorganic and organic complexation and precipitation, and also

microbially mediated species transformations such as biomethylatiori. Physical processes

include adsorption, sedimentation and filtration. Biological barriers are often associated with

membrane processes, which can limit translocation of metals. "Complexation" in its various

forms can both inhibit and accelerate metal fluxes, particularly in biological systems consisting

of different types of membranes (Forstner, 1993).
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To understand the factors responsible for the elemental concentrations and to predict

their possible evolution in a natural system, it is necessary to have exact information on the

physico-chemical forms in which heavy metals exist in sediments and suspended matter. This

will lead to a greater appreciation of their possible impact on plant well being and human

health (Latouche et al., 1993).

The value of selective sequential extraction analysis of heavy metal retention in soils

can be seen in respect of their "partitioning". Despite some limitations, such as not being able

to identify exactly the total proportions of heavy metals retained by the different soil

constituents or as different phases in the soils studied, sequential extraction procedures are

useful for assessing the relative importance of chemical forms that may be present in soils

(Xian, 1989). Additionally, its usefulness in providing input to the evaluation of the capability

of a particular type of soil and its potential for attenuating heavy metal contaminants in the

leachate should not be discounted (Yong et al., 1993).

Sequential extraction procedures can be used to identify the major metal species

present in soils. In this way different mobilisation patterns are obtained which are

characteristic for the behaviour of the elements under study. A summary of the extractants

which have been used for each species are given in Table 5.1.

In the "exchangeable fraction" the metals are considered to be adsorbed and ion

exchangeable. Release of the metals physically adsorbed on clay or soil particles surfaces can

be accomplished by using a solution with excess cations. The "carbonate fraction" contains

the metals which are precipitated or co-precipitated. These can be released by the use of a

mild acid. In the "iron-manganese oxide fraction" the metals are specifically adsorbed or co-

precipitated and are released by reduction. In the "organic fraction" the metals are complexed

and adsorbed and are available through oxidation. Metals in the "residual fraction" are only

available by digestion with strong acids (Clevenger, 1990). Each extractant represents a

different level of availability and are described below. Water extracts the soluble fraction of

metals; the potential asimilable fraction is extracted by acetates, whereas the exchangeable

fraction can be extracted by neutral salts, such as K2504, KC1, NaCl, Na2504 etc. All these

three fractions represent potentially bioavailable metal fractions for plant uptake.

The exchangeable fraction consists of metals retained by the matrix of the soil by ionic

attraction or by means of Van der \ATMs forces (Petruzzelli et al., 1994). Ammonium acetate

is the preferred extractant, where the ammonium ion readily displaces the metal ion. In

addition, it has been suggested that ammonium acetate removes chromium and zinc from

ionic sites on organic matter and also from iron oxides; this extractant can also dissolve oxide
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coatings in the hydrous oxide fraction of soils, and ammonium chloride or acetate can

dissolve or complex transition metals from coatings on sediment grains. It has also been

added to other stronger extractants to prevent undesired readsorption of the trace metals

released by stronger extractants (Del Castihlo and Rix, 1993). Although ammonium acetate

(1M) is not entirely selective, it nevertheless permits the extraction of metals adsorbed on the

exchange sites of the hwnic acid and clay matrix of soils, thus giving a general picture of the

availability of the metals (Hahne and Kroontje, 1973).

Significant correlations between ammonium acetate (1M) extractable cadmium

concentrations in radish and lettuce (Lactuca sativa L.) grown on contaminated soils was

reported by John et al. (1972) and the same extract= was also favoured by Andersson and

Nilsson (1974) to determine plant available cadmium from contaminated soils. Andersson

(1975) reported that ammonium acetate (1M; pH 4.8) was a more effective extract= for

lead rather than some other commonly used reagents (see Table 5.1.). Hag et al. (1980)

found the best correlation between zinc concentration in Swiss chard (Beta vulgaris L.) and

zinc extracted by ammonium acetate (1M; pH 7.0) from metal-contaminated soils. Similarly,

others have reported significant correlations between exchangeable forms of zinc and plant

zinc concentrations (Le Claire et A, 1984; Sims and Kline, 1991).

Cottenie and Verloo (1984) have suggested that ammonium acetate is only suitable

for extracting metals from contaminated soils, although it is highly likely that in non-polluted

soils metal concentrations are below the limits of detection of typical analytical

instrumentation (such as ICP and AAS), and is not a consequence of the inability of

ammonium acetate to extract the metals.

Heavy metals adsorbed or complexed by organic materials can be extracted by

hydrogen peroxide solution, which is also able to dissolve heavy metal carbonates and,

partially, some sulfides (Petruzelli et al., 1994). The readsorption of released metal ions Onto

ion exchange sites can be prevented or reduced by lowering the pH of the solution, although

this will be to the detriment of selectivity. Ammonium acetate has been added to hydrogen

peroxide in order to stop the undesired readsorption of the trace metals released after this

stage of sequential extraction procedures.

Organically bound metals incorporate those forms that are complexed, chelated, or

adsorbed to organic matter in addition to components of living cells, their exudates, and a

spectrum of degradation products (Wildung et al., 1979). They are exchangeable only by

other cations with higher affinities for the adsorption/complexation sites (Viets, 1962) and
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have generally been measured by extraction with chelating agents (Cox & Kamprath, 1972).

At low pH, the organic compound-metal complexes are strongly adsorbed onto the

adsorption substrates, particularly amorphous metal oxides, therefore enhancing metal

adsorption (Jenne, 1977). Besides hydrogen peroxide, other reagents (e.g., potassium

pyrophosphate, sodium hypochlorite) have been used for the oxidation of organic matter.

Organic matter has a significant impact on copper availability, and many studies have

shown the greater ability of copper to form complexes with organic matter than zinc or

manganese (Van Dijk, 1971; Mc Bride, 1978).

The residue remaining after the preceding extractions consists essentially of detrital

minerals and resistant sulphides. Treatment with concentrated acid reagents results in

complete dissolution. The available amounts of metals in a soil do not correspond with its

total content and also, total chemical analysis is not necessarily indicative for the biological

activity of polluting elements and therefore, more distinctive analysis is necessary to

characterize their behaviour (Kiekens and Cottenie, 1982).

5.4. Speciation Experiments

The reagents used for the following have been chosen after reviewing several different

sequential extraction methods (see Table 5.1.). Reagents utilised were chosen on the basis of

their selectivity and specificity towards particular physicochemical forms.

5.4.1. Preparation of reagents

i) NH4CH3C00: (77.08 g, A.R.) was dissolved in deionised water and transferred to 1 litre

volumetric flask and diluted to near volume. The pH of the solution was adjusted to 7.0 by

adding a few drops of 1 M acetic acid and the solution was diluted to volume. The solution

was then stored at 4°C.

H202 : (30%, A.R.) was purchased from Aldrich and was adjusted to pH 2 with HNO3.

HNO3 : (conc., A.R.) was purchased from Aldrich.

5.4.2. Preparation of soil samples

The soil samples collected from three main sources of metal pollution: sewage sludge

(Gateacre), smelting activities (Prescot) and mining (Trelogan) (see Chapter 4 for details)
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were dried at 80°C in an oven for 48 hrs., then ground in a mortar and sieved through a 0.5

mm plastic sieve. Zeolites P. 4A and Y obtained from Crosfield Chemicals, Wan-ington were

used as received and were added to 100 g of dried soil in the ratios 0.5%, 1% and 5% w/w.

The amended moist soils were then stored in plastic bottles at 4°C for one month before being

used for experiments.

5.4..3. Extraction Procedures

5.4.3.1. Stage 1: Ammonium Acetate

Each of the soil samples (1.0000 g, Section 5.4.2.) were weighed into 50 cm3

centrifuge tubes. To these were added NH 40Ac (20 cm3 , 1 M, pH 7) and the mixture shaken

vigorously. After two hours at ambient temperature (ca. 20°C) the aqueous extract was

separated from the soil residue by centrifugation (4000 rpm for 10 mins.). The supernatant

was decanted into a polyethene bottle and stored at 4°C before being analysed for total metal

content.

5.4..3.2. Stage 2: Hydrogen Peroxide

H202 solution (20 cm3, 30%, pH 2) was added slowly to the residue from step 1, and

carefully transferred to a soda glass quickfit round bottom flask fitted with a water condenser.

The mixture was gently heated (ca. 80°C) for two hours with occasional agitation.

After this time, the mixture was allowed to cool, and NH 40Ac (20 cm3, 1M, pH 7)

was added to the mixture. The resulting mixture was heated for a further two hours, and after

cooling the aqueous extract was separated and collected from the soil residue as above.

5.4.3.3. Stage 3: Nitric Acid

The residue from stage 2 was dried and weighed. HNO 3 (conc., 20 cm3) was added

to the soil residue and the mixture heated at 80°C for two hours. After cooling, the mixture

was filtered and the residue discarded. The filtrate was diluted appropriately before analysis.
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5.4.3.4. Analysis

The supernatant/filtrate from each sample was filtered through GF/C fibre glass filter

paper prior to analysis by AAS. Standard Cu, Cd, Zn and Pb solutions were prepared in either

NH40Ac solution (1M) or HNO 3 (20%) to overcome any interference from the matrix. The

extracted samples were diluted appropriately with deionised water before analysis by AAS.

All solutions were kept at 4°C until analysis. Each solution was analysed in triplicate using

standards in a similar matrix. Blanks were analysed in the same way.

5.5. Results and Discussion.

The effects of amending polluted soils with synthetic zeolites on the fractionation of

cadmium, copper, lead and zinc were evaluated using a sequential extraction method on

experimental soils (see Section 5.4.2.).

Sequential extraction procedures have been used to identify the chemical forms of

heavy metals in the three soils studied (lead/zinc mining Trelogan site, copper refinery Prescot

site and sewage sludge treated Gateacre site) and the changes associated with metal

speciation on addition of each of the three zeolites: P. 4A and Y at different concentrations.

Each zeolite was applied at rates of 0.5%, 1% and 5% w/w. The three extractants used for

the fractionation of metals in these soils were: ammonium acetate for the soluble and

exchangeable metals, hydrogen peroxide for the organically and sulfide bound metals and

nitric acid for the residual metals. Untreated soil samples served as controls.

The total amount of copper, cadmium, zinc and lead in the soils and their distribution

in the three fractions depended on total metal content, soil type, and soil properties (i.e. pH

and percentage of sand, clay, organic matter and carbonates). There are clear differences in

the proportion of each metal that was present in each of the three chemical fractions

(Appendix 1).

The differences in extractability which have been observed depended on the zeolite

used and the metal being extracted. The presence of all types of zeolite resulted in a

significant reduction of exchangeable metal ions. After incubation of the polluted soils with

synthetic zeolites, the amount of metals extracted by ammonium acetate was significantly

decreased (31.4% - 72.4%) in comparison to the unamended soil (Fig. 5.1. and 5.2.). This is

of great importance for the use of zeolite application in agrotechnical amendments, as heavy
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metals extracted by this method constitute an exchangeable form, and are consequently

potentially available for plant uptake.

5.5.1. Ammonium acetate extract.

Ammonium acetate (1M, pH 7) was used to liberate adsorbed and ion-exchangeable

metals held through electrostatic attraction on the exchange sites of the negatively charged

soil surface. The acetate ion complexes released metal ions, thus retaining them in solution

and reducing the possibility of precipitation. Ammonium acetate is an extractant which does

not alter the natural pH; it therefore reflects the concentration of trace metals in the soil

solution and the readily exchangeable fraction, both strongly influenced by soil pH (Sauerbeck

and Styperek, 1985).

The percent proportion of exchangeable metals varied independently of the soil

characteristics, such as pH, soil type, organic matter content and heavy metal concentrations.

As a general trend, increasing zeolite concentration from 0.5% up to 5% resulted in more

exchangeable metals being trapped in the zeolite cages, thus reducing their bioavailability to

plants (Fig. 5.2. a.- c.).

For zeolite Y, the reduction of the heavy metal content for Trelogan soil between

31.4% and 51.3% depended on increasing the amount of zeolite Y used (Fig. 5.1.a.). For

Prescot soil, the percent reduction of ammonium acetate extractable metal varied between

43.8%- 67.46% (Fig. 5.1.b.), and for amended Gateacre soil, between 33% and 58% (Fig.

5.1.c.). For all three soils, zeolite Y showed smaller heavy metals sorption properties in

comparison to the other zeolites (see Fig. 5.1. a. - c.). This is in agreement with the ion-

exchange isotherms obtained for zeolite Y (see Chapter 3), which indicated a lower exchange

capacity for this zeolite.

In the case of application of zeolite 4A to the three contaminated soils, the

concentration of heavy metals in the exchangeable fraction was reduced between 40.3%-

70.2%.

Even greater sorption properties in relation to heavy metals were apparent for zeolite

P. For example, addition of zeolite P 5% reduced the amount of heavy metal extracted by

ammonium acetate (1M) from Prescot soil by 72.37% compared to Prescot soil without

zeolite P.
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While summing up the above results, it can be stated that the best reduction in the

exchangeable heavy metal content in polluted soils was 60.23% for Trelogan soil, 72.37% in

the case of Prescot soil and 65.56% for Gateacre soil with 5% zeolite P amendment.

For the ammonium acetate-exchangeable fraction, the zeolite efficiency was

significantly higher for cadmium and zinc than for copper and lead. These observations are

confirmed by data presented in Tables 1.1. - 1.4. in Appendix 1.

In general, cadmium in contaminated soils is in an "exchangeable" form (i.e.

extracted by ammonium acetate in this case) (see Appendix 1 - Table 1.2.), and this relative

ease of exchange must be considered in the light of both the mobility of this metal in soil

horizons and the uptake of cadmium by plants (Legret, 1993).

Similar sequential extraction studies of the effects of synthetic zeolites showed that

78% of zinc, 70% of copper and 68% of lead are not available for plants when contaminated

soils have been amended with zeolite 4A (Gworek and Borowiak, 1991). The investigations

carried out by Gworek and Borowiak (1991) have shown that sewage sludge incubated with

synthetic zeolites 13X and 4A resulted in a reduction in the ammonium acetate fraction by

approximately 70% lead, 57% copper, 53.5% nickel, 67.5% zinc and 61% cadmium.

The evaluation clearly shows that in spite of the fact that the metal concentrations in

ammonium acetate extracts are lower than in other extracts (Fig. 5.2. a.-c.), ammonium

acetate fulfils most of the prerequisites and is one of the best available choices to predict

biorelevant metal concentration in soils and indicates that it is particularly suitable for risk

assessment of metals in contaminated soils (Gupta and Aten, 1993).

5.5.2. Hydrogen peroxide extract.

Organic-metal complexation, which involves simple complex formation and/or

chelation, is a major mechanism responsible for the association of heavy metals with organic

matter. Hydrogen peroxide (30%, pH 2) was used to extract heavy metals adsorbed or

complexed by organic materials. The three soils under study contained different amounts of

organic matter (Chapter 4). Trelogan has the smallest percentage of organic matter (3.5%),

followed by Gateacre with 11.7% organic matter, whereas Prescot has the highest organic

matter content of 27.3%, therefore having more metal complexed by available ligands. Fig.

5.2.b. shows that a high proportion of metal (ranging from 6 x le _ 8.53 x 10-3 m moles)

was detectable in the hydrogen peroxide oxidizable fraction of Prescot soil.
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The four metals differ in their binding forms and their mobility. The different

behaviour of the four elements agrees with their adsorption behaviour and coordination

chemistry.

Many comparative studies have shown that soluble organic matter forms much

stronger complexes with copper than with the other three metals. Soil organic matter

(whether soluble or insoluble) is heterogeneous; copper being adsorbed on a number of sites

of various binding strengths, the strongest being filled first (McGrath et al., 1988). The main

binding forms of copper, and also lead, are association with carbonates or iron oxides and

especially in the case of copper, complexation by humic substances. Cadmium is particularly

adsorbed in the diffuse layer of the cation exchanger or associated with carbonates, which

results in a relatively high plant availability. In the soil solution, hydrated ions are the main

species of cadmium and zinc, whereas copper is almost exclusively complexed by dissolved

organic carbon (DOC). As hydrated ions are preferentially taken up by plants, the availability

of cadmium and zinc is greater than that of copper and lead.

All the metals occurred in significant amounts in the organically bound form, with the

majority of copper and lead being present in this form (see Appendix 1 - Tables 1.1. and 1.4.).

Even in Trelogan soil, where the fraction of the organic matter was low (3.5%), a significant

amount of the total soil copper was organically bound.

An enrichment amount of lead was found in the organic fraction as compared with

cadmium and zinc where the organic fraction was lower with respect to other fractions. This

is due to the fact that lead has strong affinity to humic acid (Takenaga and Aso, 1975) so

usually combines with organic matter to form stable lead-organic complexes. The

exchangeable fraction had smaller amount of lead suggesting that the solubility and mobility

of this element was lower in the soils (see Appendix 1 - Table 1.4.).

5.5.3. Residual fraction.

To ensure partial decomposition of the silicates, nitric acid (conc.) was used for the

residual metal fraction. Without exception, metal concentrations found in the residual fraction

are higher than those observed in any of the preceding extractions (see Appendix 1 - Tables

1.1.-1.4.). The concentration of residual metals increased after the addition of zeolites to all

the soils studied because the exchangeable metals and, to a smaller extent, the organic-bound

metals, became trapped in the zeolites.
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5.6. Conclusions

The exchangeable form is the most important form for heavy metal uptake by plants.

The results of this study confirm that potentially bioavailable heavy metals are strongly

controlled by their chemical forms and related to solubility. These results are summarised in

Fig. 5.1., with zeolite Y having a lower efficiency which is in accordance with its lower

exchange capacity previously observed in the ion-exchange experiments (see Chapter 3).

A decreasing trend in the extractability of cadmium, copper, zinc and lead by

ammonium acetate with increasing zeolite concentration was observed and, although in

different degrees, it was consistent for all three synthetic zeolites studied. The percentage

reduction of ammonium acetate extractable metals varied from 42.3% to 72.4% for zeolite P,

for zeolite 4A - between 40.3% and 70.2%, and for zeolite Y ranged from 31.4% to 67.46%

(Fig. 5.2. a.- c.).

The heavy metals in zeolite-treated soils changed their chemical forms following

zeolite incorporation. The percentage of heavy metals in the ammonium acetate-extracted

fraction for all metal elements examined (and, in some cases, also for the hydrogen peroxide-

extracted fraction for copper, cadmium, zinc and lead) decreased significantly with zeolite

treatment. Therefore the plant available soil fractions of zinc, cadmium, copper and lead were

significantly reduced by the addition of synthetic zeolites P. 4A and Y, with an equivalent

increase in the amount of metal being recovered from the insoluble fractions only removable

with strong acid extractions (see Fig. 5.1. a. - c.).

With respect to the heavy metal-soil interaction determined through sequential

extraction, the amount of lead and copper held in the exchangeable position was found to be

lower than the amount of cadmium and zinc. This reflects a stronger fixation of copper and

lead with the organic matter (Schnitzer and Skinner, 1966). The mobilization patterns of zinc

and cadmium indicate that ion-exchange is an important factor in the retention of these

elements by the solid phase of the soil.

The strong association of copper with the oxidisable fraction of soil has been

demonstrated in numerous studies (Sposito, 1983; McGrath et al., 1988). In areas of low

organic content, inorganic copper species, particularly copper carbonate, may become

important and biologically significant, as carbonate complexation reduces the toxicity of

copper (Langston and Bryon, 1984). The preference of copper for organic matter is

supported by the high stability constants of copper complexes with organic matter (Irving and

Williams, 1953).
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The residual form also contained significant amounts of metals, with zinc having the

lowest percentage present in this form. The residual form is considered the most stable form.

The distribution of trace elements between different forms in the soil is the result of

several equilibrium reactions. Once incorporated into the soil, the forms of the metals will

shift to more stable forms, so that the chemical equilibria of the soil will always be maintained.

When the soluble fraction of the metals is leached from the soil due to acid rain or soil

washing, some of the metals complexed by organic matter will shift towards the exchangeable

sites and the metals in the residual form will also slowly shift toward the organic/exchangeable

form. The possibility that the metals would continue to slowly shift toward the residual form

with time should not be an unreasonable expectation, as the more stable solid phase form of a

heavy metal will be, less likely to dissociate into the solution phase and become available for

movement with the soil solution.

The simple extraction scheme used here successfully identified differences in the

fractions according to the chemical nature of each metal, and clear differences between the

fractions present in zeolite-treated soils compared to the unamended soils. When zeolite

amended soils are fractionated, a smaller percentage of the total metals present is recovered in

forms readily available for plant absorption (e.g., soluble, exchangeable, or sorbed forms).

The metal concentrations were statistically analysed following the same procedure

described in Section 7.5. For statistical analysis, all data were previously expressed as a

zeolite treatment : untreated control ratio. ANOVA followed by Tukey multiple comparison

tests revealed significant differences (P <0.05) between all zeolites at all concentrations, for

all soils and metals for the ammonium acetate fraction. For the hydrogen peroxide fraction,

significant differences (P = 0.001) were obtained for zeolites P and 4A at 1% and 5% versus

untreated control. No significant differences between treatments were recorded for the

residual fraction.

The results from the selective sequential extraction analysis reveal the importance of

the effectiveness of synthetic zeolites with regard to heavy metal immobilisation. In order to

estimate how realistically this procedure relates to actual events in the soil solution, the

next step of this study involved the incubation of moist soils with zeolites for a longer

period of time, and the soil solution analysed following standard procedures (Sanders et

al., 1987; Litaor, 1988; Grossmann & Udluft, 1991).

Because some metals (such as cadmium and zinc) are strongly fixed in the soil

over a wide pH range, it is difficult to determine their long term displacement only by

field observations. The water displacement method described by Sanders et al. (1987)
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was used to estimate long term changes of the heavy metal content in the soil solution of

zeolite-amended soils. To evaluate the durability of the metal immobilising effect of the

soil treatment, the metal concentrations in the water leachates were measured every

month over a period of three months after the soil treatment.

The soil extraction data has indicated that addition of synthetic zeolites to

contaminated soils results in changes in the binding of heavy metals in soils. Therefore,

synthetic zeolites would be promising for in situ immobilisation of heavy metals in

contaminated soils. To understand the fate and distribution of metals in contaminated soils, a

combination of field and pot experiments were initiated in which various plant species were

grown in zeolite-amended soils in order to estimate their long-term efficacy.
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CHAPTER 6.

SOIL SOLUTION STUDIES WITH SYNTHETIC ZEOLITES.

6.1. Introduction

From a strictly chemical point of view, a soil is a multicomponent, reactive system

comprising solid, liquid, and gaseous matter, subjected to electromagnetic and gravitational

fields. Soil chemistry focuses primarily on the aqueous phase - the soil solution - and

investigates the processes which occur in it as a result of the actions of biological,

hydrological, and geological agents. Thus the soil solution is a dynamic and open natural

water system whose composition reflects the complicated reactions that can proceed

simultaneously between an aqueous solution and a mixture of mineral and organic solids

which themselves vary both temporally and spatially.

The principal chemical reactions of interest in soil solutions are soluble complex

formation, oxidation-reduction, adsorption, ion exchange, and precipitation-dissolution. All of

these reactions play an important role in the uptake of trace metals by plants (Sposito and

Bingham, 1981).

The soil solution is the aqueous portion of soil that contains dissolved matter

from soil chemical and biochemical processes and from exchange with the hydrosphere

and biosphere. This medium transports chemical species to and from soil particles and

provides intimate contact between the solutes and soil particles. In addition to providing

water for plant growth, it is an essential pathway for the exchange of plant nutrients

between roots and solid soil. Obtaining a sample of soil solution is often very difficult

because the most significant part of it is bound in capillaries and as surface films

(Manahan, 1994).

The importance of soil solutions in environmental studies was recognised long ago by

Joffe (1933), who described the soil solution as the "blood circulation of the soil body". The

chemistry of soil solutions provide important information regarding distribution of nutrients,

their mobility and availability to plants (Sollins et al., 1980) and it can also be used as a

sensitive medium for calibrating and validating theoretical models of solute transport (Van de

Pol et al., 1977). Soil solutions also provide crucial data concerning the acid-neutralising

capacity (ANC) of a soil system (David and Driscoll, 1984) and the magnitude and rate of

movement of pollutants to groundwater (Fortescue, 1980).
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Soil solutions provide information about the kinetics of solid-solution interaction in

situ (Murali and Aylmore, 1980). McDowell and Wood (1984) used soil solution chemistry

to asses the mechanism of podzolization and pedological control on dissolved organic carbon

concentrations in stream water (Litaor, 1988).

The study of trace metal chemistry in soils which support crop plants is made

complicated by the large number of reactions possible between trace metals and soil

constituents and by the web of interrelations among trace metals and the macrocomponents

of soil solutions which is created by these reactions. In a typical soil solution, there may be

10-20 different metal cations present (including trace metals) which can react with as many

different inorganic and organic ligands to form 300-400 soluble complexes and up to 80 solid

phases. In addition, redox, ion-exchange, and specific adsorption reactions occur (Sposito

and Bingham, 1981).

Metals present in the soil solution can be free metal ions, soluble complexes with

organic or inorganic ligands, or associated with mobile colloidal materials. Soil solution

studies generally show that plant response to metals is correlated with the free metal ion

activity. Therefore, one aspect of metal bioavailability is related to which factor or factors

contribute to the activity of the free metal ion in the soil solution (Pierzynski et al., 1994).

The chemical composition of the soil solution reflects the demand of soil biological

processes and the solubility and ion-exchange equilibria between physical and biological

components of the soil. The aqueous solution chemistry of metal ions play a central and

dominant role in determining their interaction and effect on plants.

Two principles are used as guides to understand the overall features of metal uptake

by plants from soil solutions. However, they cannot provide detailed information as to uptake

mechanisms (Sposito and Bingham, 1981).

The Bonding Rule states that nutrient trace metals tend to form complexes through

large decreases in entropy mediated by electrostatic interactions, whereas toxic trace metals

tend to form complexes through large decreases in enthalpy mediated by covalent

interactions.

The Selectivity Rule says that the relative selectivity for a given trace metal by a

complexing ligand site which is involved in an uptake process is proportional to the product

of the total concentration of the metal in solution with the stability constant for the metal-

ligand complex.

Consideration of rates of release of heavy metals from soil exchange surfaces, in

addition to their concentrations and those of interacting cations in soil solution, may be
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necessary in order to asssess fully the plant availability of heavy metals from a wide range of

soils.

The concept that the soil solution plays a critical role in controlling the availability of

ions to plants is long established (e.g. Whitney & Cameron, 1903). As uptake of ions by

plants occurs from the solution phase, it is heavy metals in this phase that have the greatest

ecological significance as well as species which are easily solubilised. In solution, the toxicity

of metals is proportional to the concentration of free, i.e. uncomplexed, metal ions. Complex

formation with chelating ligands reduces the concentration of free ions and thus inhibits the

metal toxic effects (Spencer and Nichols, 1983).

Soil-column studies by Tyler and McBride (1982) on the mobility of heavy metals

(cadmium, copper, nickel and zinc) in several soils indicate that least mobility (i.e., transport)

of metals was obtained in a mineral soil with a relatively high pH, CEC, and exchangeable

base content. Therefore, soils with these characteristics will exhibit good retention capability.

Under field conditions, soils are subjected to pH changes either by farm management

practices (e.g. liming, leguminous pastures) or other processes (e.g. acid rain). Similarly the

chemical composition and ionic strength of the soil solution will vary depending on the nature

of the parent material, the weathering environment, mineral constituents, soil amendments

and management practices. The ionic strength of soil solutions ranges from < 0.005 M in soils

from tropics (Naidu et al., 1991) to > 0.10 M in the less weathered soils from temperate

climates (Edmeades et al., 1985) or near fertiliser granules in the microenvironment. The

effect of ionic strength on anion and cation adsorption varies with pH. The effect of ionic

strength on metal sorption is often attributed to changes in soil-suspension pH (Barrow &

Ellis, 1986) through its effect on the diffuse double layer and consequent changes in the ions

present (Naidu et al., 1994).

Many different methods have been developed to obtain soil solution samples, either in

situ or in the laboratory (Litaor, 1988; Grossmann & Udluft, 1991). However, no single

method can claim to be generally valid and to obtain the "true" unaltered soil solution. This is

partly due to technical limitations (Litaor, 1988), but mainly because of the temporal and

spatial variability of soil-solution properties on a macro- and microscopic scale (Sposito,

1983). Despite these limitations, soil-solution data can provide valuable information on the

dynamics of ions within the soil profile, and over time on the availability of nutrients or toxic

ions to plants. The solutions closely represent the conditions in the soil to which the plant

roots are exposed.
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Three techniques for destructively extracting soil solutions are commonly used; each

have their associated advantages and disadvantages and applicability to different soil types:

miscible displacement (Adams, 1974), which utilises a displacing solution to push the soil

solution out of a packed column; immiscible displacement by a water-insoluble organic liquid,

with gravitational displacement by centrifugation (Kinniburgh and Miles, 1983); and

extraction of solution already in the soil by centrifugation (Ross and Bartlett, 1990).

Experiments on the bioavailability of either macro-or microelements to plants, which

are based on soil-solution parameters, should sample soil solution from the rhizosphere using

non-destructive, low-tension methods like water displacement (Sanders et al., 1987) in order

to obtain a true indication of the conditions the plant roots are exposed to. However, such

low-tension methods are probably limited to be used on light to medium textured soils, but

they may fail on soil with a high clay content. Solution composition may change substantially

over time, so soil solution would need to be sampled repeatedly during one experiment to

give a realistic reflection of the overall conditions.

Soil is a very complex substrate, with many factors operating in it, such as sorption,

chelation by organic matter or precipitation reactions. These factors are the cause of varying

bioavailability in different soils, and total concentrations do not adequately characterise the

risk of a given concentration in all soils, therefore measurement of the amount of metals in the

soil solution which bathes plant roots and soil organisms is a better indicator of metal

bioavailability. Measuring the speciation of metals in soil solution is more biologically

relevant.

6.2. Experimental

The soil solution composition was determined using water displacement (Sanders et

al., 1987). Typically, 10.0 g of soil (which had been previously rehydrated, see below) was

placed into a 30 by 2 cm glass column. Each column had a sintered glass base. The column

was gently jarred during filling to partially settle the soil. The degree of soil compaction

required for effective solution displacement had been previously determined by trial and error

on separate samples. The column was placed in a suitable rack. Distilled water (100 cm 3) was

added to the column and allowed to saturate the soil for two days in order to achieve

equilibration of the added water with that already present in the soil. Following this saturation

period, the stopcocks at the base of the soil columns were opened and the resulting leachate
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solutions were eluted from each soil column. The first 50.0 cm 3 of leachate was collected in a

beaker, and the remained discarded (Fig. 6.1.).

Soil samples collected from Trelogan, Prescot and Gateacre (see Chapter 4 for

details) were ground in a mortar and then sieved through a 0.5 mm plastic sieve. The requisite

amount of synthetic zeolite 4A, P and Y (0.50%, 1.00% and 5.00% w/w dry weight) was

added to each soil and mixed. Untreated soil samples served as controls. Each soil was air

dried; therefore, needed to be rehydrated, so that it was moist. The amount of distilled water

added to each soil varied depending on soil texture and initial moisture content. To each 10.0

g of air dried soil: 2.6 cm3 (Trelogan), 4 cm3 (Gateacre) and 6 cm3 (Prescot) of distilled water

was added in order to re-hydrate the soils.

Two replicates of 250 g of each soil were incubated in a dark, cool room (4°C) for a

period of three months and sampled at regular intervals. The room temperature was

permanently recorded using a maximum-minimum thermometer. Additional control samples

of Prescot and Gateacre soils amended with lime (calcium carbonate) were also incubated. To

these soils, an appropriate quantity of lime was added to bring the soil pH to a value of 6.5.

The synthetic zeolites increased the soil pH (Tables 6.1. and 6.2.), therefore additional

columns were packed with the three unamended soils and were leached with distilled water

which had been adjusted to the same pH as the zeolite-amended soils. NaOH (0.1M) was

used to increase the pH of the water. These allowed a more direct comparison of the

effectiveness of synthetic zeolites in reducing the heavy metal availability to the plants.

Soil samples were taken from each of the control and amended soils at intervals of 0,

30, 60 and 90 days. The soil solution composition was determined by water displacement,

and then filtered through fibre glass filter paper (Whatman GF/C) into polyethylene bottles.

The time required for collecting enough soil solution for analysis varied between 8 and 12

hours. The pH of the leachate was tested immediately using a Radiometer PEEN4 85 precision

pH meter fitted with a Radiometer GK 2401 C combination glass electrode. The collected

leachate was subsequently analysed for copper, cadmium, zinc and lead using a Perkin Elmer

SP9 Atomic Absorbtion Spectrophotometer. Precision was checked by triplication and

blanks.
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Fig. 6.1. Column Design Experiment

6.3. Results and Discussion

Determination of the chemical

composition of the soil solution is an

effective method to analyse the effect of

zeolites, since the soil solution is a direct

medium for the plant root, and the

changes in its composition directly affect

plant growth.

All the synthetic zeolites initially

chosen as possible candidates for land

remediation have been subjected to soil

column tests. Soil columns were

constructed to determine the

immobilisation efficiency of amended

soils in a dynamically-changing soil

environment. The purpose of this work

was to test the ability of the various amendments to remove leached metals from solution.

Two aspects of soil conditions were examined in detail: pH control and the effect of the

amendment on metal release into solution. As a measure of the performance of each

amendment the pH and metal content of the leachate was recorded.

6.3.1. pH

The pH increase in the soil-zeolite mixture reflected the high pH values of synthetic

zeolites: both the initial soil pH and the pH of the leachates increased with increasing zeolite

concentration (Appendix 2). The zeolites increased the soil pH immediately after being mixed

with the soils, but no further changes in the pH values were recorded after 30, 60 or 90 days.

Zeolites P and 4A increase the pH more than zeolite Y (Tables 6.1. and 6.2.). This is

due to the lower exchange capacity of zeolite Y (Chapter 3).
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Zeolites increase soil pH due to exchange of the Nal- ions from their cages for the fr

ions in the soil solution and therefore pH increases because less Er ions are present in the soil.

Increasing soil pH causes the metals to precipitate. Therefore, to test the zeolites ability to

decrease metal concentration by increasing the pH or by an ion-exchange process, calcium

carbonate was added to increase the pH of the unamended soils. In addition, the unamended

soils were leached with distilled deionised water having the same pH as the zeolite-treated

soils.

6.3.2. Metal Content

The soil solution was sampled at regular intervals (0, 30, 60 and 90 days) to

investigate whether zeolite addition was effective throughout the period of soil incubation, or

whether changes in heavy metal content in the soil solution occurred.

All the values of the metal concentrations in the soil solution were compared to the

metal content of the unamended soils which were leached with distilled water which had been

adjusted to the same pH as the zeolite-amended soils.

Metal concentrations in the soil solutions are given in Tables 6.3.- 6.6. After 30 days,

the incorporated synthetic zeolites decreased the soil solution concentrations of all the metals

in the amended soils. No further change in soil solution composition was observed up to the

ninety days test period. The metal content in the amended soils was reduced by 47% with

zeolites P or 4A and only by 37.5% with zeolite Y and remained unchanged with time. The

results in Tables 6.3.-6.6. also indicate that 1% calcium carbonate addition was less effective

than the synthetic zeolites at immobilising heavy metals in Prescot and Gateacre soils: the zinc

-1	 -
concentration in Prescot soil was 10 [tg.g after adding 5% zeolite P and 25 gg.g

1 when lime

-1	
iwas added. 1.3 p..g.g-1 of cadmium was found in Gateacre-limed soil versus 0.6 lig.g in

zeolite P-amended soil.

No further significant changes occurred in the concentration of copper, cadmium,

zinc and lead in the soil solutions whether they were obtained 60 or 90 days after zeolite

incubation. The metal concentrations in the soil solutions measured after three months of

zeolite incubation were similar to those measured after one month (Appendix 3). Long-term

stability tests with contaminated soils amended with synthetic zeolites showed that very little

metal leaching occurred over a period of 90 days, indicating that the zeolite structures were

97
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stable, and also that the zeolites did not decompose in the soils over the period of time

analysed.

The bioavailable fraction of metals of the soil-zeolite mixture decreased with

increasing the zeolite concentration and the changes in metal bioavailability were more

significant in the soil system with the highest zeolite enrichment (5%).The trend of this

relation was observed in all soil samples of the three types of soils under review.

The metal concentrations expressed as zeolite treatment : untreated control ratios

were statistically analysed following the same procedure as described in Section 7.5. No

significant differences were noted in the pH of the soils after three months incubation with

zeolites, compared to the initial values. By adding the synthetic zeolites to the soils, the pH

values increased, but they remained constant in time. For the pH of the leachates, Tukey tests

reveal significant contrasts for all soils; for Trelogan soils, zeolite 4A at 0.5% versus zeolites

P and Y at the same concentration, and also versus 1% concentration gave significant

differences (P = 0.002); for Prescot soil, the only significant contrast (P = 0.009) was for 1%

zeolite P versus Y, whereas for Gateacre soil, significant differences (P = 0.000) were noted

for untreated control versus zeolite P in all concentrations and also versus 5% zeolites Y and

4A.

Highly significant contrasts (P = 0.000) were found with respect to the heavy metal

concentrations in the leachates as a result of zeolite addition for all soil types. For Trelogan

soil, the contrasts were between untreated control versus zeolites P and 4A at all

concentrations and control versus zeolite Y at 5%. For Prescot and Gateacre soils, the

contrasts were between untreated control versus zeolite P at all concentrations, zeolite 4A at

1% and 5% and zeolite Y at 5%.

The concentration of heavy metals in the soil solution indicate most accurately the

rate of influx of metals from the soil into the plants. Changes in the concentrations of

uncomplexed heavy metals with time will give the best correlations with changes in plant

uptake of these metals over time, supporting the hypothesis that plants mainly absorb the free

metal ion from the soil solution.

The decrease of the heavy metal content in the soil solution was the result of the

addition of synthetic zeolites and a combination of both the zeolites ability to increase soil pH

as well as the ion-exchange processes they caused in the soil, indicating that synthetic zeolites

are effective treatments for immobilising heavy metals from contaminated soils.
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Results of this study indicate that under conditions of reasonable zeolite application

rates in metal-polluted soils, heavy metals remain unavailable in zeolite-mended soils for at

least three months after zeolite application.

The efficiency of lime in reducing the bioavailable fraction of metals was

approximately 2.5 times lower compared to that of synthetic zeolites. By increasing the pH of

the soils, the amount of metals in the leachates decreased by 14% for copper, 25% for

cadmium, 11% for zinc and 17% for lead after adding calcium carbonate to Prescot soil,

whereas in Gateacre soil, the reductions were 22% for copper, 23.5% for cadmium, 10.3%

for zinc and only 6% for lead.

In Prescot soil, the bioavailable fraction of copper decreased by 50% after adding

zeolite P to this soil; zeolite 4A decreased the copper concentration by 46%, and zeolite Y by

44%(Table 6.3.). In Gateacre soil, zeolites P and 4A decreased the copper amount by 50%,

whereas zeolite Y had a lower efficiency of only 43%. A 57% reduction in the bioavailable

fraction of cadmium was noticed after adding 5% zeolites P and 4A to Prescot soil and a 43%

decrease with zeolite Y. In Gateacre soil, zeolite 4A decreased cadmium availability by 58%,

zeolite P by 50% and zeolite Y by 42% (Table 6.4.). The highest reductions were noticed for

zinc in Prescot soil, that is 62% for zeolite P, 58% for zeolite 4A and 54% for zeolite Y. Zinc

concentrations also decreased in Gateacre soil after the addition of synthetic zeolites: 53% for

zeolite P, 56% for zeolite 4A and 42% for zeolite Y (Table 6.5.). The lowest metal decrease

was noticed for lead: 42% for zeolite P, 46% for zeolite 4A, 37.5% for zeolite Y in Prescot

soil, and 36% for zeolite P, 40% for zeolite 4A and 30% for zeolite Y in Gateacre soil (Table

6.6.).

After adding synthetic zeolites to the contaminated soils, the bioavailable fraction of

metals decreased by over 40% for zeolites P and 4A and by 32% for zeolite Y in Trelogan

soil, by more than 52% for zeolites P and 4A and by 45% for zeolite Y in Prescot soil, and by

47% for zeolite P, 51% for zeolite 4A and only by 39% for zeolite Y for Gateacre soil. This is

compared to 7% copper, 16.7% cadmium, 11.5% zinc and 4% lead for lime addition to

Prescot soil and 14.3% copper, 23% cadmium, 14% zinc and 4.3% lead with lime addition to

Gateacre soil (Tables 6.3 - 6.6.).

Overall, the highest efficiency in decreasing the bioavailable fraction of metals in all

soils was observed for zeolite P for copper and zinc. For cadmium, zeolites P and 4A had

equal efficiency. For lead, only in Prescot soil, the efficiency of zeolite 4A was higher than for

zeolite P. Zeolite Y had the lowest efficiency in all soils, due to its lower exchange capacity,

with lime having the lowest effect for metal immobilisation.
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6.4. Conclusions

For the range of soils studied, the amount of bioavailable metals decreased with

an increase in zeolite concentration. All the above results were calculated as an average

over three months from the results presented in Tables 6.3. - 6.6.

The results of the soil solution experiments are extremely important, as they show the

ability of zeolites to retain the heavy metals already immobilised in their cages over a longer

period of time. These results are also in agreement with those obtained by constructing the

ion-exchange isotherms and by the sequential extraction experiments.

In addition, the superior efficiency of synthetic zeolites over lime as soil amendments,

was demonstrated. The decrease in the bio available fraction of metals which was encountered

by the column experiments has ecological significance, because the chemical composition of

the soil solution reflects the demand of soil biological processes and, most important, as

uptake of ions by plants occurs from the solution phase. Leaching experiments may provide

information about the transfer of heavy metals from the solid to the liquid phase of the

soil and the effects to be expected over a longer period of time, while sequential

extraction techniques only reflect the situation at a given moment (Kiekens and Cottenie,

1982).

The experiments described in the present chapter were an attempt to gain a

greater understanding of the action of the synthetic zeolites in a zeolite-soil system and,

most important, constitutes one of the first column tests carried out with zeolite-

amended soils.

Only few percolation studies, mainly prognostic or semi-field simulations have

been carried out with natural clinoptilolite and with berengite and phillipsite, some of

them with conflicting results: Wessolek and Fahrenhorst (1994) carried out prognostic

simulations of cadmium and zinc transport in the soil profile of a sewage disposal site.

With 8% berengite in the soil, the zinc concentration in the soil solution was reduced by

a factor of 5, whereas cadmium was only reduced by a factor of 2-3. Semi-field

percolation simulations under natural rainfall conditions of a waste dump substratum

amended with 5% berengite were also carried out by Vangronsveld et al. (1995, ab). The

zinc and cadmium concentrations of the passing percolate was decreased by more than

50%, as compared to the control. But the effect of berengite application to the surface

substratum was somewhat conflicting: as in other similar cases (Vangronsveld et al.,

1994) it added to the success of revegetation and decreased the metal concentration in
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the percolate, but on the other hand doubled the volume of percolated water. Kralova et

al (1994) used phillipsite and natural clinoptilolite in model soil experiments where the

zeolite enrichment changed from 1, 2 to 3%. The addition of synthetic phillipsite to soil

samples increased the water holding capacity by 3 to 30% and cation exchange capacity

by 10 to 50%. Field experiments were carried out with 0.25% phillipsite enrichment; the

fields were fertilised with superphosphate (40 kg P to 1 ha) and potassium salts (60 kg K

to 1 ha). The improvement of cation exchange capacity of the soil in field experiments

was not observed, due to the low (0.25%) zeolite-enrichment used.

The laboratory testing procedures used in this study were designed to approach actual

field conditions so more reliable predictions of pollutant fate and immobilisation effectiveness

could be made. The column tests are the final stage of laboratory testwork and results from

these and other work have lead to the choice of the most suitable synthetic zeolite for use in

the field.

The previous chapters concentrated on the action of synthetic zeolites upon the first

link of the food chain, and namely on their effect upon polluted soils. The following chapters

will focus on the effect of synthetic zeolites on the second link of the food chain, namely the

plants.
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CHAPTER 7.

EFFECT OF ZEOLITE AMENDMENT ON PLANT GROWTH IN METAL

CONTAMINATED SOILS.

7.1. Introduction

In many ways living plants can be compared to solar driven pumps which can extract

and concentrate certain elements from their environment. All plants have the ability to

accumulate, from soil and water, those heavy metals which are essential for their growth and

development. These metals include iron, manganese, zinc, copper, magnesium, molybdenum,

and possibly nickel. Certain plants also have the ability to accumulate heavy metals which

have no known biological function, including cadmium, chromium, lead, cobalt, silver,

selenium and mercury (Raskin et al., 1994). Excessive accumulation of these heavy metals

can be toxic to most plants.

Baker (1981) classified plants as excluder, indicator or accumulator plants, according

to their ability to absorb heavy metals. Indicator plants tend to take up metals in amounts

directly related to their availability in soil; excluders take up only small amounts, until a

threshold value is exceeded, and uptake suddenly increases exponentially; and accumulator

plants can bioconcentrate large amounts of metal from soils with little contamination.

At the concentrations generally present in soil solutions, the absorption of metals by

plant roots is controlled by metabolic processes within the root. The proximity, extent, and

pattern of contact between soil and root are important factors in the absorption of ions from

soils and are especially important for the absorption of those metals which are tightly bonded

to the soil colloids. The interaction of plant and soil may also change the composition of the

soil solution at the root surface in ways which influence the absorption of metals from the

solution.

The plant root modifies the soil environment in its immediate vicinity both by

excreting chemically active substances and by absorbing water and ions. Mucilaginous

material, possibly pectin, coats the surface of young roots and extends some distance into the

soil. This and other excretions, such as organic acids, amino acids, HCO3", and fr ions, may

affect the release of metals from soil colloids. Excretions may also stimulate the activity of

microorganisms, which may in turn affect the bioavailability of metals both by competing with

the plant root for their absorption and by affecting their release from soil colloids (Lepp,

1981).
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In soil-plant systems there are five main pathways of toxic metal transport and

transformation: (i) absorption, via root uptake and possibly via stomata and foliar absorption;

(ii) redistribution, via xylem and phloem transport; (iii) metabolism, in biosynthesis; (iv)

excretion, in litterfall and root decay; (v) recycling, via decomposition and mobilisation

processes (Ross, 1994).

The production of agricultural plants can be depressed by the effect of heavy metals.

Crops may be negatively affected in regions where higher concentrations of these metals are

present in the soil or water. Research of the mechanism of the effect of these elements on

growth, development and metabolism of plants can provide valuable information to adopt

improving measures. In addition, permanent protection of the environment is necessary to

prevent the accumulation of heavy metals in the biosphere (Stiborova et al., 1986).

Growth conditions are further determinants of the extent of metal uptake by plants.

Field experiments have shown that heavy metal contents in plants vary from season to season

due to differences in ambient or soil temperatures, and precipitation (Chang et al., 1987) .

Heavy metal concentrations in plants also change during physiological development. In

general, young plants contain greater concentrations of nutrient and heavy metal ions than

older, less metabolically active plants.

Crops differ in their ability to take up, accumulate and tolerate heavy metals. Different

plant species take up different amounts of heavy metals, even when grown under identical

conditions (e.g. Turner, 1973; Zhang et al., 1991; Frossard, 1993). The mobility differs

between metals, according to the type of soil and type and degree of contamination being

considered. There is general agreement that cadmium and zinc are relatively more mobile in

soils than elements such as copper and lead.

The possibilities of movement of various metals into plants are not equal. A plant is

capable of retaining a large amount of lead in its roots and hence weakening the flow of

excess ions into its tops. The slowest component of metal removal, reported for high lead

concentrations (Dushenkov et al., 1995), involves root-mediated precipitation from the soil

solution in the form of insoluble lead phosphate. This precipitation probably involves a release

of root exudates. In addition, cell walls of roots exposed to lead accumulate large amounts of

insoluble lead carbonate, formed from respiratory carbon dioxide.

Copper tends to be very strongly bound to soil organic matter and is mainly non-toxic

to plants. However, copper is accumulated in plant roots, where it hinders the uptake of

essential nutrients and thus retards plant growth (Brams and Fiskell, 1971).
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Cadmium and zinc show the greatest tendency to move along the soil-to-plant

pathway (Alloway and Jackson, 1991). They move comparatively easily from the roots to the

stems and can accumulate at high concentration in storage organs.

With regard to the toxicity of metals to plants, Davis and Carlton-Smith (1984) found

that the relative toxicities to ryegrass, (Lolium perenne) of zinc, copper and nickel were

1.0:2.6:1.0 at pH 7. Wong and Bradshaw (1982) comparing the toxicity sequence of heavy

metals for Lolium perenne (Cu > Ni > Mn > Pb > Cd > Zn > Hg > Cr > Fe) found them

compatible with the order of stability of metal organic complexes. Burridge and Berrow

(1984) found copper concentrations in ryegrass and clover decreased with time, but nickel

and zinc remained highly available.

Early studies by Goldschmidt (1958) showed that the roots of perennial ryegrass had

the ability to rapidly take up almost all lead from a lead nitrate solution. Lead bound in the

roots was not released by exchange with calcium or barium ions, which precluded simple

absorption or metabolic processes. Also, the transport of lead from the roots to the shoots did

not exceed 29% of total uptake. Therefore, the roots of actively growing ryegrass provided a

barrier which restricts the movement of lead to the above-ground parts of the plants, and so

to animals or man (Jones et aL, 1973).

Jarvis et al. (1976) have found that cadmium uptake by the roots of ryegrass was

considerably depressed by calcium, manganese and zinc by competing for exchange sites at

the root surface.

The considerable mobility of cadmium and zinc in the soil-plant system represents a

potential hazard to human health when levels of these two metals in soils are high (Jackson

and Alloway, 1990). Less cadmium was accumulated in the shoots of grape vines grown on

contaminated soils than to sunflower, maize, wheat or ryegrass and toxicity was more severe

on acid soils than on those with a higher pH (Mohr, 1985). Studies with maize show that

cadmium is bound by the cell-wall proteins of the apoplast or deposited in the vacuoles of

root tissues. Rhizospheric interactions may also play a part, since root mucilages and soluble

root exudates from maize have been shown to posses cadmium-binding properties. In maize,

copper and zinc contents were higher in the leaves than in the seeds (Morel et al., 1986;

Mench et al., 1987).

The rate of metal accumulation can be rapid. Salt et al. (1995) found that within 24

hours, roots of sunflower (Helianthus annuus L.) were able to dramatically reduce the levels

of chromium (VI), manganese, cadmium, lead, zinc and copper in water, such that metal

concentrations were reduced to close or below the regulatory discharge limits.
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Metalliferous substrates tend to be heterogeneous, varying both in terms of

background edaphic characteristics and heavy metal content (Smith & Bradshaw, 1972).

Plant survival and tolerance are more difficult to predict when the metal species and

concentration are variable because the severity of contamination differs according to the

source of metal pollution, site topography, soil structure, fertility and vegetation. The most

important background edaphic factors which directly affect heavy metal availability are pH,

organic matter content, exchangeable cations and nutrient status, as well as the presence of

other pollutants (Livens, 1991; Alloway, 1995).

The work described here investigates the survival and biomass production of four

selected test plants grown on contaminated substrates from three different sites. pH, moisture

content, organic matter content, exchangeable cations, water- and nitric acid-extractable

concentrations of copper, cadmium, zinc and lead were measured at the beginning of the

experiment. The substrates were then amended with three synthetic zeolites (P, 4A and Y) at

concentrations of 0.50%, 1.00% and 5.00% (w/w) dry wt. together with untreated soil

samples as controls. This study aims to understand how previous ion-exchange studies

translate into a real-world situation by investigating the biological response of plants tested in

contaminated substrates amended with synthetic zeolites.

Sunflower (Helianthus annuus), maize (Zea mays), ryegrass (Lolium perenne) and

willows (Salix viminalis) were grown in the polluted soils with different zeolite amendments

as described above. The plant species were selected on the basis of their inherent capacity for

metal uptake and their use for food, fodder or biomass purposes.

Perennial ryegrass was grown because of its importance in the food chain from soils

through animal products to man. More than 40% of permanent grassland in England and

Wales contains about 1/3 perennial ryegrass and it is seldom absent from enclosed pastures

(Hopkins, 1990) because it survives well under conditions of high nitrogen input implemented

by most farmers. Sunflower and maize are plants with a high industrial importance, and

studying the heavy metal bioaccumulation in their parts is imperative. In addition to their

agricultural importance, these plants were selected because previous studies (Jones et al.,

1973; Salt et al., 1995; Mench et al., 1987) have demonstrated their intrinsic ability to

accumulate heavy metals from solution.

Willow, Salix viminalis was chosen as a test plant because it grows well in elevated

copper situations (Punshon et al., 1994) and is tolerant to extremely high levels of lead

(17000 Kg g- ') (Eltrop et al., 1991). The potential use of fast growing clones of species of

Salix in short rotation forestry as a biomass crop is well established (Sommerville, 1992).
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Some willow genotypes are able to survive on a wide range of metal-contaminated soils, to

allow revegetation, and may potentially be used to accumulate metals in tissues which could

then be harvested to remediate or polish contaminated soils.

7.2. Experimental

7.2.1. Material and Methods

Plant trials with mono- and dicotyledonous plants were carried out in order to

estimate the ability of zeolites to improve plant growth and reduce the concentration of heavy

metals in plants. The effect of synthetic zeolites on the pool of plant-available toxic metals

was investigated by adding zeolites P, 4A and Y at controlled levels to each of the soils

described (0.50%, 1.00% and 5.00% w/w, d.w.). Untreated soil samples served as controls.

The pots were filled with the contaminated soils containing appropriate amendments

(4 kg, dry weight basis) and fertilised with John Innes Base Fertiliser (0.16 g dm-3 soil). For

each greenhouse experiment, the amendments were thoroughly mixed with the soils and left

to equilibrate for 7 days to allow the reaction of the zeolite with the soil and fertiliser to

stabilise.

Sunflower (Helianthus anuus, var. Rodeo) and maize (Zea mays, var. Fronica) were

planted into pots (4 seeds/pot) and after germination, the plants were thinned to 2 plants per

pot. The plants were harvested after three months.

Perennial ryegrass (Lolium perenne, var. Elka) was sown (1.5 g/kg of dried soil) in

plastic trays each containing 1 kg of amended soil and the resulting growth was harvested

after six weeks.

One year old willow rods of Salix viminalis (Clone 379) were collected from the

National Willow Collection in Ness Botanic Gardens in May 1994. The rods were prepared

for planting by removing all leaf material and cutting down to 10 cm lengths. The cuttings

were maintained in 2.5 litre buckets containing 1 litre distilled water for 5 days prior to

planting, to prevent drying out. Cuttings were planted with approximately 8 cm beneath the

soil, with 4 cuttings per pot. After shooting, the cuttings were thinned to 2 per pot. The

reference uncontaminated soil chosen for this experiment was John Irmes No.1 potting

compost, with a pH of 5.6.
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The pots were placed randomly in an enclosure on the roof of the University

Buildings and watered daily during the summer months, with any weeds removed by hand.

Cuttings were allowed to grow for one year and some foliage was harvested in May 1995.

7.2.2. Harvesting and analysis of plant material

Following the completion of the treatment schedule, the plant material was removed

from the pots and care was taken not to damage any fine roots, which were cleaned

thoroughly with distilled water to remove soil. Plant material was separated into leaves (plus

petioles) and roots, the latter being washed with distilled water to remove any adherent soil

particles. All plant samples were dried at 60°C for 72 hours, weighed and ground in a

mechanical sample grinder. The resulting biomass (fresh and dry) was weighed to give a yield

figure (g dry wt.) of material produced per pot. The plant material was also analysed in

triplicate for concentrations of copper, cadmium, zinc and lead. Estimates of metal

accumulation were calculated (in lig) from yield and metal analysis data, giving approximate

figures for metal content in individual plant compartments and total uptake, expressed as mg

of metal per pot dry weight.

7.3. Microwave digestion of plant material

The methods described are optimised conditions for the plant material analysed in this

study using manufacturers recommendations as a base line. The samples were separated into

leaves and roots for ease of digest.

7.3.1. Leaves

A MDS-81D Microwave digestion system was used as described in section 4.2.1.2.

Approximately 0.5 g of finely ground sample was accurately weighed into each Teflon

digestion vessel after which HNO 3 (10 cm3 ; conc., A.R.) was added in a fume cupboard. The

vessels were allowed to stand for 30 minutes and a further aliquot of HNO3 (5 cm3 ; conc.,

A.R.) was added to each sample. A safety valve and cap were placed on each vessel and

tightened using the capping station. Each vessel was numbered, a venting tube attached and

placed on the turntable with fan and turntable activated. The oven was programmed for 4

minutes at 100% power (step 1) and 8 minutes at 50% power (step 2). Samples were
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removed and checked for any venting or loss of material, then allowed to cool at room

temperature. The vessels were then manually vented and digested samples were transferred to

25 cm3 volumetric flasks. Using this programme, the samples were digested until completely

clear, and the filtration stage was omitted. The samples were diluted to volume using distilled

water and analysed using atomic absorption spectroscopy. Triplicate samples were prepared

with nitric acid blanks.

7.3.2. Roots

0.5 g of dried, ground (1 mm) material was prepared for digestion as described in the

previous section. For 12 vessels the program was set at 20 minutes at 35% power after which

the samples were removed and allowed to cool to room temperature. Vessels were tightened

using the capping station and replaced. The oven was programmed for a further 10 minutes at

65% power. The samples were allowed to cool to room temperature and the clear solutions

were transferred to 25 cm3 volumetric flasks and diluted as above. Again, triplicate samples

and blanks were digested.

Between digests the Teflon vessels, caps, safety valves and venting tubes were

decontaminated by washing with tap water and Decon detergent followed by concentrated

nitric acid and distilled water after which they were dried at 60°C. Vessels were additionally

decontaminated by microwaving at full power for 20 minutes with HNO 3 (15 cm3 ; conc.,

A.R.) between experiments.

7.4. Growth observations

The need for watering and randomisation of the pots ensured that regular

observations of the pots were made during growth. A photographic record was taken at

various stages for all treatments.

7.5. Statistical analysis

A two-way analysis of variance (ANOVA) was used to test for differences in mean

metal concentration between zeolite type/concentration and between metal types, as well as

the interaction between these two factors. Because of the large data set, emphasis was placed
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on graphical representation of data and grouping of factors used in analyses of variance to

facilitate interpretation.

7.6. Results of Plant Trials

7.6.1. Plant Growth

Plant growth trials in a range of polluted soils have indicated that a beneficial and

positive effect on growth of all test species studied was observed by the addition of synthetic

zeolites to the contaminated soils (Tables 7.1. - 7.4.).

Growth damage was found in the test plants grown on all the unamended soils

containing high levels of metals, compared to the plants grown in amended soils. Yields on

the amended soils were not significantly different from the compost control. Dry matter yields

of test plants grown in the unamended and amended polluted soils are presented in Tables

7.1. -7.4.

Visual analysis of the most relevant effects of synthetic zeolites P, 4A and Y on plant

growth are presented in the following plates: 7.1. a.-d.(ryegrass); 7.2. a.-d.(sunflower); 7.3.

a.-d.(maize) and 7.4. a.-d. (willow).

In these experiments, unamended soils containing high levels of heavy metals

restricted the growth and reduced the dry matter yield of the test plants. Plants grown in the

unamended polluted soils (particularly in Trelogan soil) developed toxicity symptoms in the

leaves as observed in pot studies. In the untreated polluted soils, the plants showed typical

symptoms of heavy metal pollution, such as necrosis and chlorotic leaves.

The high levels of metals at Trelogan site, both total and water soluble, together with

the low organic matter content and poor soil structure had a cumulative effect on the

performance of the plants.

None of the sunflower seeds sown in Trelogan soil germinated, due to the extremely

high levels of heavy metals in this soil (Plate 7.2.a.). Maize and ryegrass survived in Trelogan

mine spoil but produced a very limited amount of biomass. Chlorosis and dessication was

rapid for ryegrass (Plate 7.1.a.). Chlorosis was also observed in the stunted growth of the

maize plants (Plate 7.3.a.). All willow growing in Trelogan soil presented typical symptoms of

heavy metal pollution, such as leaf necrosis, chlorotic leaves, serious loss of leaves and

showed distinctive reddening of new stem material (Plate 7.4.a.). This is also a characteristic
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Table 7.1. Sunflower dry wt.(g) grown in contaminated soils amended with zeolites

(2 plants/pot).

Soil Prescot

Part Roots Foliage

Conc. No zeolite 0.50% 1.00% 5.00% No zeolite

,

0.50% 1.00% 5.00%

Zeo P N.G. 0.88 1.41 N.G. N.G. 2.28 2.62 N.G.

Zeo 4A N.G. 1.72 0.61 N.G. N.G. 6 2.05 N.G.

Zeo Y N.G. 1.3 0.71 0.32 N.G. 3.4 2 1.97

Soil Gateacre

Part Roots Folia.e

Conc. No zeolite 0.50% 1.00% 5.00% No zeolite 0.50% 1.00% 5.00%

Zeo P 2.05 1.7 2.65 N.G. 8.76 6.4 9.73 1.06

Zeo 4A 2.05 3.14 0.33 0.54 8.76 11 2.41 2

Zeo Y 2.05 1.22 1 2.47	 _ 8.76 6 6.66 7.66

Note: N.G. = No plant growth

* = No plant growth on amended and unamended Trelogan soil (see text).

Table 7.2. Maize dry wt.(g) grown in contaminated soils amended with zeolites

(2 plants/pot).

Soil Prescot

Part Roots Foliage

Conc. No zeolite 0.50% 1.00% 5.00% No zeolite 0.50% 1.00% 5.00%

Zeo P 0.17 1.87 2.68 N.G. 0.34 5.48 6.34 N.G.

Zeo 4A 0.17 2.72 4.03 N.G. 0.34 5.95 8 N.G.

Zeo Y 0.17 0.11 0.4 0.74 0.34 0.28 1.9 4.25

Soil Gateacre

Part Roots Foliar

Conc. No zeolite 0.50% 1.00% 5.00% No zeolite 0.50% [ 1.00% 5.00%

Zeo P 4.37 2.7 0.39 0.35 13.23 8.44 1.81 0.32

Zeo 4A 4.37 4.5 4.05 N.G.	 , 13.23 10.27 8.18 0.27

Zeo Y 4.37 1.68 6.91 0.53	 _ 13.23 5.66 9.72 4

Note: N.G. = No plant growth

* = No plant growth on amended and unamended Trelogan soil (see text).
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Table 7.3. Ryegrass foliage dry wt.(g) grown in contaminated soils amended with

zeolites (2 plants/pot).

Soil Conc. Zeo P Zeo 4A Zeo Y

Prescot No zeolite 1.12 1.12 1.12

Prescot 0.50% 3.90 5.65 3.23

Prescot 1.00% 6.42 6.65 6.40

Prescot 5.00% 0.77 N.G.	 _ 5.60

Gateacre No zeolite 10.7 10.7 10.7

Gateacre 0.50% 16.3 18.1 13.5

Gateacre 1.00% 14.8 17.5 16.9

Gateacre 5.00% _	 0.64 6.50 18.1

Note: N.G. = No plant growth

* = No plant growth on amended and unamended Trelogan soil (see text).

Table 7.4. Willow dry wt.(g) grown in contaminated soils amended with zeolites

(2 plants/pot).

Soil
,

Prescot

Part Shoots Leaves

Conc. No zeolite 0.50% 1.00% 5.00% No zeolite 0.50% 1.00% 5.00%

Zeo P 1.24 1.34 1.38 N.G. 2.1 3 3.1 N.G.

Zeo 4A 1.24 0.86 1 N.G. 2.1 2.74 2.58 N.G.

Zeo Y 1.24 0.45 1.09 0.38 2.1 1.16 2.49 0.63

Soil Gateacre

Part Shoots Leaves

Conc. No zeolite 0.50% 1.00% 5.00% No zeolite 0.50% 1.00% 5.00%

Zeo P 1.14 1.21 1.71 N.G. 2.47 3.36 2.80 N.G.

Zeo 4A 1.14 1.28 1.62 N.G. 2.47 3.7 2.61 N.G.

Z,eo Y 1.14 N.G. N.G. 1.6 2.47 N.G. N.G. 3.9

Note: N.G. = No plant growth

* = No plant growth on amended and unamended Trelogan soil (see text).
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of native Trelogan willows. In unamended Trelogan soil, the willow shoots did not survive.

Salix viminalis failed to produce enough material in Trelogan soil for metal analysis.

Despite the addition of zeolites to this soil, there was no observable improvement in

the quality of the plants. This is due not only to the extremely high toxic metal levels

(Trelogan soil contains extremely high levels of lead and zinc (Table 4.4.), but also a lack of

nutrients in the low organic content of the soil. The organic matter content of Trelogan soil

was 3.5%. On the basis of the low value for this parameter, a rather low binding of metals to

organic matter was presumed. Therefore, input of organic matter (compost) would improve

the metal binding capacity of Trelogan soil. Viability was lowest in plants grown in Trelogan

mine spoil.

The strong metal immobilisation capacity of zeolites in metal-contaminated soils was

confirmed for Gateacre soil; the addition of zeolites P or 4A at 0.5% and 1% rates showed

better growth response as compared to the unamended soil and resulted in a complete

disappearance of visual symptoms of metal phytotoxicity (Plates 7.1.b., 7.2.c., 7.3.c. and

7.4.c.). For the sunflower plants, zeolite Y at 5% application rate showed a comparable

growth to that of compost (Plate 7.2.d.). Zeolite P at 0.5% and 1% concentrations improved

significantly the plant growth (Plate 7.2.c.). However, when the application of zeolites P and

4A was 5%, growth was significantly reduced in all the crops studied (Plates 7.1.b., 7.2.d.

and 7.3.d.). Only small maize plants were observed in Gateacre soil amended with 5% zeolite

P and 4A respectively (Plate 7.3.d.).

Ryegrass growth in Gateacre soil improved on addition of zeolites, but showed no

apparent visual differences between zeolite treatments, except that zeolites 4A and P at 5%

concentration had an adverse effect (Plate 7.1.b.).

Many of the successful willows grown in Gateacre soil recovered after initially

showing severe signs of metal toxicity, by producing new shoots and buds (Plate 7.4.c.).

Willows grew successfully on Prescot and Gateacre soils and showed comparable growth

to plants grown in John limes Compost (Plates 7.4.b., 7.4.c., 7.4.d.). Prescot soil is

contaminated primarily with copper. The growth of ryegrass on Prescot soil amended

with zeolite 4A at 0.5% or 1% was comparable to that of the compost control (Plate

7.1.c.). The 5% application rate for zeolites P and 4A proved far in excess, as ryegrass

presented acute chlorosis and drying (Plate 7.1.d.). The willow plants were much greener

in zeolite-amended Prescot soil than in the untreated soil (Plate 7.4.b.). In the

unamended soil, sunflower seedlings developed severe leaf chlorosis within a week of

sowing followed by necrosis and death (Plate 7.2.b.). The maize plants did survive in
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unamended Prescot soil (Plate 7.3.b.), although they presented acute symptoms of heavy

metal contamination, such as stunted growth and chlorosis. Maize is a

monocotyledonous plant which is known to have a higher tolerance to heavy metal

contamination than dicotyledonous plants such as sunflower. This is also confirmed by

the fact that even in the highly heavy metal contaminated Trelogan soil, the maize seeds

germinated, although the plants were very small and chlorotic (Plate 7.3.a.). These

observations are in agreement with other studies. Stoilov and Popov (1984) reported an

increase in maize yield (10%) and the acceleration of ripening when maize was grown in

soil amended with clinoptilolite, a naturally occurring zeolite.

Addition of synthetic zeolites to Prescot soil increased the biomass and reduced

the metal content of the maize plants studied. A similar pattern for the levels of zeolite

amendment to that described for Gateacre soil was also observed in Prescot soil.

Plant growth is considerably improved after adding synthetic zeolites to the

polluted soils. Each zeolite was effective to some extent, and in all cases an optimum rate

of addition could be detected.

Zeolites P and 4A were most effective at low rates of application but became

detrimental to plant growth at higher application rates (Plates 7.1.c., 7.2.c., 7.3.c. and

7.4.b.). Z,eolite Y was most effective at the 5% treatment rate; higher quantities of

zeolite Y are needed due to its lower exchange capacity (Plates 7.1.d., 7.2.d., 7.3.d. and

7.4.d.).

The poor plant growth (Plates 7.1.d., 7.3.d. and 7.4.d.) observed when zeolites

4A and P were used at the higher application rate (5.00%) can be attributed to the high

concentration of zeolite reducing not only the metal content of the soil, but also reducing

the availability of essential nutrients by the same ion exchange process.

The addition of an exchanger may reduce the heavy metal availability, but the

exchanger also absorbs essential cations. This reduced cation availability can lead to

nutrient deficiencies (Mohr, 1982).

The results showed that synthetic zeolite application is a feasible method for

improving plant growing conditions on highly polluted soils.

7.6.2. Accumulation of heavy metals by test plants.

Metal analyses showed that all plants grown in unamended contaminated soils

accumulated high concentrations of all metals, particularly cadmium, lead and zinc.
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These high concentrations explain why the plants performed so poorly in unamended

soils. The study of metal accumulation was very difficult in some cases because of lack of

plant material for metal analysis. Although heavy metal uptake into the primary producer

trophic level has decreased after zeolite applications, metals are still present at significant

levels.

The monocotyledonous plants with fibrous root systems responded more strongly

to heavy metal immobilisation by synthetic zeolites than did dicotyledonous plants with

tap root systems. The C.E.C. of the dicotyledons is twice as high as that of

monocotyledons, and the differences have been ascribed to the contents of pectic

substances in the roots (Iwasaki et al., 1990).

The use of synthetic zeolites as a treatment additive for the immobilisation of

heavy metals has proved effective for Prescot and Gateacre soils. Plants grown in soils

from both sites which had been amended with differing levels of each zeolite showed

considerable reductions in the concentration of the contaminating metals (Fig. 7.1.-

7.56.).

The total metal uptake by plants was calculated by multiplying the metal

concentration with dry matter yields of the plant species for each pot. Therefore, the

effects of synthetic zeolites on the total metal uptake depended upon their effects on both

the metal concentrations and dry matter yields of the plant species. These data are

presented in Appendix 4 (Tables 4.1.-4.7.).

General Observations

Adding 0.5% zeolite P to Prescot soil decreased the total metal uptake of

sunflowers by up to 0.264 mg zind/pot for roots and 0.41 mg copper/pot for foliage,

values which are far below the total uptake for the sunflower plants grown in compost

control (0.38 mg zinc/pot for roots and 0.87 mg copper/pot for foliage)(Appendix 4 -

Table 4.2.). Zeolite P 0.5% decreased the total metal uptake of cadmium and also zinc

for the sunflower plants grown on amended Gateacre soil. Cadmium uptake for

sunflower roots was 0.031 mg cadmium/pot for unamended Gateacre soil in comparison

to 0.017 mg cadmium/pot for zeolite P-amended soil. Cadmium availability for the

sunflower foliage decreased by 67% in the presence of 0.5% zeolite P (0.079 mg

cadmium/pot for unamended Gateacre soil and only 0.026 mg cadmium/pot for amended

soil)(Appendix 4- Table 4.3.) .

126































Zeolite 4A, when applied at the lowest concentration (0.5%), was very efficient

in reducing lead availability; for example, 46% for the shoots of the willows grown on

amended Prescot soil (Appendix 4 - Table 4.6.).

Zeolite Y only caused a significant decrease in the bioavailability of the heavy

metals to the plants when it was applied at 5% concentration. After adding this zeolite to

the contaminated soils, the total uptake of copper decreased by 75% for the foliage of

the maize grown on Gateacre soil and for the leaves of the willows grown on Prescot

soil. Cadmium uptake decreased even more: 81% for willows and 89% for maize when

the application rate of zeolite Y was 5% (Appendix 4 - Tables 4.5. and 4.6.).

Investigations of metal concentrations in the various plant organs indicate that

transport of copper and lead to aerial tissues is limited compared to cadmium and zinc.

The individual characteristics of the metal elements studied in this work are summarised

in Table 4.1. and are of particular significance in relation to accumulation characteristics.

Copper and lead typically forms more stable complexes with organic molecules,

and are therefore less mobile once a bond is formed. Cadmium and zinc form less stable

complexes and are therefore more mobile; they are taken up into the plant where they

can be translocated to the aerial tissues. The greater concentration of cadmium and zinc

in aerial tissues may be considered more of a problem because they may move through

the food chain more easily. The natural impedances to copper and lead uptake may play a

large role in successful induction of resistance and subsequently bioremediation, because

these two metals may not enter the symplast.

Copper Behaviour in Test Plants

The decrease in copper availability for plants grown on amended soils was more

pronounced for Gateacre than for Prescot soil; for willows, 45 gg copper in shoots

and 35 ps g-1 copper in leaves were found in amended Gateacre soil as compared to 80

jig	 -1g copper for shoots and 55	 g copper for leaves grown on Prescot soil amended

with 0.5% zeolite P (Fig. 7.41. and 7.44.). The same pattern was observed and for

ryegrass (Fig. 7.1. and 7.2.), and a more significant reduction in the copper available

fraction was noticed for maize than for sunflower grown on Gateacre amended soil (Fig.

7.13. and 7.14.).
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Uptake of copper was largely confined to the roots, with a lower concentration in

the leaf tissue. The highest concentration of root-bound copper was found in maize and

sunflower grown in Prescot soil. Statistical analyses of copper concentration showed

significant differences for copper uptake between different zeolites (P = 0.000) for maize

plants grown in Prescot soil amended with zeolites (Fig. 7.10.), with the order 4A> P>

Y at 0.5%.

Copper quickly becomes bound to available sites within the plant and since the

first organ encountered is the root system, this typically contains the majority of bound

copper. The concentration of copper bound within the roots may prevent further uptake

by stunting and reducing the efficiency of the root system. Alloway (1995) notes that

uptake of a metal element is not only determined by the quantity of that metal present

within the soil solution, but also depends upon the amount of root produced.

Cadmium Behaviour in Test Plants

The most notable reduction in the availability of metals to the plants after adding

synthetic zeolites P, 4A or Y to polluted soils was observed for cadmium. The

concentration of cadmium taken up from Prescot soil was decreased by zeolites up to

nearly 60% in roots and 50% in foliage of maize plants, although there were no

significant differences between tissue compartments (Fig. 7.18. and 7.20.). High

concentrations of cadmium were measured in the roots of maize grown in unamended

Gateacre soil : 18 jig g-1 cadmium as compared to 10 i_tg g 1 cadmium in 0.5% zeolite P-

amended soil (Fig. 7.22.). Sunflower and maize grown in Gateacre soil were found to

have a high proportion of cadmium in leaf tissue (9 t.tg g-1 for sunflower and 8 ps g-1 for

maize in unamended Gateacre soil) (Fig. 7.23. and 7.24.). In the presence of synthetic

zeolites, the cadmium concentration in sunflower foliage decreased by 72% when

Gateacre soil was amended with 1% zeolite 4A and by 67% when 1% zeolite P or 5%

zeolite Y was used. Ryegrass grown in Gateacre soil had high cadmium concentrations in

the foliage (Fig. 7.6.), ranging from 5.5 jig g -1 cadmium to 2.5 jig g -1 cadmium in zeolite-

amended soil. These concentrations are above the normal range of cadmium in plants

(0.1 - 2.4 jig g-1).
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Zinc Behaviour in Test Plants

There was a more equitable distribution of zinc between tissues compared to the

other metals. Maize accumulated the greatest overall concentration of zinc into tissue

compartments, with 300 jig g -1 in the roots and 100 jig g-I in the foliage for unamended

Gateacre and Prescot soils (Fig. 7.25.- 7.32.). By adding 0.5% zeolites P or 4A to

Prescot soil, the zinc concentration for ryegrass decreased by 73% (Fig. 7.7.). For both

roots and foliage, the zinc content of the maize plants grown in amended Prescot soil

was considerably decreased after adding synthetic zeolites to this soil. A 50% reduction

in the zinc availability was recorded for roots and 40% for foliage when 0.5% zeolites P

or 4A were used as amendments, whereas zeolite Y applied at 5% decreased zinc

availability by 33% for the roots and 45% for the foliage for Prescot soil (Fig. 7.25. and

7.28.). For Gateacre soil, the reduction in zinc availability after the application of zeolites

to this soil was more pronounced for sunflower, with a decrease of 65% for roots and

52% for foliage (Fig. 7.29. and 7.32.). The uptake of zinc differed significantly (P <

0.001) for the leaves of the willows grown in Gateacre soil after its amendment with

zeolites (Fig. 7.52.).

Lead Behaviour in Test Plants

Elevated concentrations of lead were measured in the roots of all plants grown in

the unamended soils (Fig. 7.3., 7.4., 7.33., 7.34., 7.37. and 7.38.). Lead accumulation

was greatest in the roots, because lead will precipitate forming either lead phosphate

(Pb3 (PO4)2) or lead carbonate (PbCO3)(Cotter-Howells et al., 1995). The differences

between root and foliage lead concentrations were large and greatest in the sunflower. A

6-fold difference between root and foliage of the sunflower grown in Prescot soil was

observed. The lead concentration in Prescot soil was 500 jig g -1 ; lead concentration in

the root was 170 lag g -1 , while in the foliage 30 jig') (Fig. 7.33. and 7.36.). The smallest

difference was found in maize (lead at 575 jig g -1 in Gateacre soil resulted in a lead

content in the roots of 160 jig g -i and in the foliage 70 jig g- ') (Fig. 7.37. and 7.40.).

Lead uptake was significantly different (P = 0.000) between different zeolites,

concentrations and plants for amended Prescot soil (Fig. 7.35. and 7.36.).
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Lead concentrations decreased in the leaves of the willows grown in Gateacre

soil by 28% and 17% respectively, when 0.5% zeolites P and 4A were applied. The

willows survived in zeolite Y-amended Gateacre soil only at 5% application rate, and the

reduction in the lead content was only 11% for shoots and 19.5% for leaves. Extended

field trials are necessary to assess the long term viability of those willows which

performed well in this work. The willows could take up significant concentrations of the

metals into their tissues to keep soil concentrations low.

Because of their nature, roots and stems can immobilise metallic elements for

several years, as opposed to leaves which are shed annually. Accumulation of metals in

stems and roots of willows could be of importance because it allows an immobilisation of

these elements for long periods of time, therefore reducing risks of contamination by•

inhibiting the circulation of these pollutants in the environment (Labrecque et al., 1995).

All plants responded to the zeolite treatment, although to different degrees. The

observations that the three zeolites studied have greater or lesser effects on the well

being of the plants is related to their cation exchange capacities, molecular sieving

properties and their efficiency at binding heavy metals in preference to alkali and alkaline

earth cations present in the soil.

From observations of the plant growth results (Plates 7.1.c., 7.2.c., 7.3.b., 7.3.c.,

7.4.a. and 7.4.b.) and comparable results for the fractionation data (Chapter 5), zeolites

4A and P at 0.50% and 1.00% treatment level were the most effective amendments in

terms of increased growth, reduced tissue metal concentrations, and decreased metal

uptake. At the same addition level, zeolite P in Prescot and Gateacre soils was more

efficient than zeolite 4A. In order to achieve a comparable reduction in metal content of

the plant, zeolite Y had to be added at 5%, due to its lower cation exchange capacity per

gram of zeolite.

The results suggest a strong reduction of heavy metal availability and

consequently phytotoxicity which was confirmed by a marked decrease of the heavy

metal content in both roots and foliage of plants grown on zeolite-amended polluted

soils. In view of the variable and secondary effects of the heavy metals in the food chain,

it is desirable to reduce their concentrations in crops at levels far below the phytotoxic

threshold values, since phytotoxicity symptoms sometimes appear at heavy metal

concentrations many times higher than the guidelines for animal or human consumption.
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7.6.3. Statistical Analysis

Metal concentrations (ppm) were log transformed to achieve approximate normality

(Normal plots of residuals were used to check this). There was a significant difference

between zeolite type/concentrations (F[9,8761 = 4.36, P < 0.001) and between metal

contaminated site (F[3,876] = 492.83, P < 0.001). There was no significant interaction

between zeolite type/concentrations and metal contaminated site (F [9,27] = 1.06, P > 0.05)

(Table 7.5.), so differences between pairs of means for different treatment combinations

(e.g., zeolite P at 0.5%, for ryegrass grown in Prescot soil) were tested using Tukey's

multiple range test (see Appendix 5). In Fig. 7.1.-7.56., different letters indicate a significant

difference at P <0.05; c denotes P <0.001; b denotes P <0.01; a denotes P <0.05, whereas

no letter in the tables means there were no significant differences (P > 0.05).

Ryegrass grown in Prescot soil accumulated far more copper in the foliage as that

grown in Gateacre soil, due to the very high copper level in Prescot soil (Fig. 7.1. and

7.2.). Tukey's test revealed that the addition of zeolite P to Prescot soil, at

concentrations of 0.5% and 1% resulted in a major decrease in copper content of the

ryegrass in comparison to the unamended soil (see Appendix 5). Although Tukey's test

did not indicate any apparent significant differences between means for sunflower (roots

and foliage) grown in Gateacre soil amended with synthetic zeolites, the general trend

appeared to be a major decrease in cadmium concentration for foliage (Fig. 7.21. and

7.23.) and in zinc concentration for the roots (Fig. 7.29.) after addition of each synthetic

zeolite to Gateacre soil.

Table 7.5. Analysis of variance by two-way ANOVA on log i o-transformed data.

Source of variation DF Seq SS Adi SS Ad] MS F P

Zeolite / Concentration (%) 9 4.97 4.65 0.52 4.36 0.000

Metal contaminated site 3 253.67 175.22 58.4 492.83 0.000

Zeolite / Concentration (%)

versus

Metal contaminated site

27 3.39 3.39 0.13 1.06 0.383

Error 876 103.8 103.8 0.12

Total 915 365.8
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Tukey test provides confidence intervals for all pairwise differences between level

means. The multiple comparison procedure exemplified by the Tukey test considers the

null hypothesis: H.: [LB = [tA versus HA: 11B # tA, where the subscripts denote any

possible pair of groups and p. is the population mean.

It is worth pointing out that Tukey's test, like all a posteriori methods, is very

conservative and will therefore frequently fail to detect a true difference between pairs of

means.

For the roots of sunflower and maize plants grown in Prescot soil, zeolite Y at

all concentrations appeared to decrease copper concentration significantly (Fig. 7.9. and

7.10.). Zeolite Y showed the same trend for lead concentration in the foliage of maize

grown in Prescot soil (Fig. 7.36.). 1% zeolite P and Y had a higher efficiency in reducing

zinc concentration in ryegrass grown in Gateacre soil (Fig. 7.8.), whereas for copper in

sunflower foliage, zeolites 4A and Y at 1% and 5% gave statistically better results (Fig.

7.15.). All three zeolites showed apparent significant differences between means for lead

concentration in sunflower and maize (foliage) grown in Prescot soil amended with

zeolites (Fig. 7.35. and 7.36.). For both plants, zeolite P was more efficient when applied

at 1% rate, zeolite 4A gave the best results at 0.5% and 1% concentrations, whereas all

three concentrations for zeolite Y were equally efficient, as indicated by P < 0.001

(Appendix 5).

In agreement with the plant growth and the metal accumulation results for the

test plants, Tukey's test indicated that zeolites P and 4A at 0.5% concentration and

zeolite Y at 5% decreased zinc availability to the same extent in the leaves of the willow

grown in Gateacre soil (Fig. 7.52.). Overall, metal accumulation trends for the test plants

showed that plants grown on zeolite-amended soils contained lower metal concentrations

than plants grown on unamended soils.

Although there was no general difference between the zeolite concentrations

(ANOVA), Tukey tests reveal significant differences for some of the data (such as for

copper, cadmium and zinc content of the sunflower foliage grown on amended Gateacre

soil, for zinc concentrations in willow, and for lead concentrations in the foliage of maize

also grown on Gateacre soil), but not for others (for the foliage of sunflower and maize

grown on amended Prescot soil, the probability values for the cadmium content were

above 0.4 (see Appendix 5).
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Highly significant differences (P < 0.001)(also indicated by the letter c in the

Tables of Fig. 7.1. - 7.56.) were found with respect to the heavy metal concentrations of

test plants as a result of the zeolite addition, for soil types and for all the plants.

Concentrations in the test plants were markedly decreased.

Analysis of variance combined with Tukey's test showed that metal

concentrations in all the plant species were significantly affected by the application of

synthetic zeolites. The addition of zeolites at any rates significantly decrease metal

content relative to the unamended soils with significant differences between the three

rates. With zeolite P and 4A additions, a significant metal reduction occurred in plant

tissues with the increase from 0.5% to 1%, but no further reduction occurred with 5%.

For zeolite Y, metal concentration was lower at the highest application rate.

In general, there appeared to be significant differences between soil type, plant

tissue and zeolites, with significant interactions between all factors. The statistical

analysis results- have shown that metal-contamination was fairly a homogeneous

distribution.

The analyses clearly show that the introduction of synthetic zeolites into polluted

soils leads to a significant reduction in the heavy metal content in plants cultivated on

zeolite-amended soils, irrespective of the concentrations of the heavy metals and the

zeolite application rate.

Copper in Soils

Ryegrass: For the ryegrass grown in Prescot soil, there were significant differences

(from Tukey multiple comparisons test)(P < 0.05) between zeolite P at 0.5% and 5%,

zeolite 4A at 0.5% and 1% and zeolite Y at all concentrations versus the untreated

control, and also between 0.5% and 1% zeolite P. For Gateacre soil, a significant

contrast was observed only between untreated control and zeolite . 4A at 1%

concentration (P = 0.04).

Sunflower: For sunflower roots in Prescot soil, the contrast was only significant

between two concentrations for zeolite Y, namely 0.5% and 5% (P = 0.044) whereas the

foliage, zeolite 4A at 0.5% concentration gave significant contrasts versus 1% and also

versus zeolite Y at all application rates (P <0.001). For Gateacre, the 0.5% zeolite 4A

versus untreated control contrast was significant for roots (P = 0.021), whereas for the
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foliage, all three zeolites at all three concentrations gave significant different contrasts (P

<0.00) by Tukey's test and the same contrasts were also noticed between 1% and 5%

zeolite 4A and 0.5% and 5% zeolite Y.

Maize: Tukey's test revealed many significant contrasts for maize roots in Prescot soil:

zeolites P and 4A at 0.5% and 1% versus untreated control and zeolite Y in all

concentrations versus untreated control and each zeolite gave significant contrasts (P=

0.001) for different concentrations or versus another zeolite (zeolite P at 0.5% versus

1%; 1% zeolite P versus 1% zeolite Y, 1% zeolite 4A versus zeolite Y at the same

concentration and between 0.5% and 5% zeolite Y). For foliage, significant contrasts

were found only for 5% zeolite Y versus untreated control (P = 0.015). 0.5% and 1%

zeolites P and 4A and all concentrations of zeolite Y versus untreated control were

significant different for roots in Gateacre soil (P = 0.015). For foliage, 1% zeolite P and

5% zeolites P and 4A gave significant differences in comparison to the untreated control

(P = 0.005).

Willow: No significant differences were obtained for the shoots of willow in Prescot

soil. But a significant contrast was found for untreated control versus 0.5% and 1%

zeolites P and 4A (P = 0.002) for the leaves. The only zeolite which gave a highly

significant contrast versus untreated control was zeolite P at 1% for willow shoots in

Gateacre soil (P = 0.021). For leaves, the significant contrasts were between 0.5% and

1% zeolites P and 4A and 5% zeolite Y versus untreated control (P = 0.001), which

supports the metal concentration results recorded by AAS measurements regarding the

efficiency of each zeolite in decreasing the bioavailable fraction of metals.

Cadmium in Soils

From Tukey multiple comparisons test, no significant contrasts were found for cadmium

concentrations in the test plants grown on zeolite-amended soils. The only significant

contrasts were obtained in Gateacre soil for sunflower foliage (P = 0.000), ryegrass (P =

0.002) and for the leaves of willow (P = 0.03) and they were mainly between the

untreated soil and all zeolites.
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Zinc in Soils

Ryegrass: For ryegrass in both soils, significant contrasts for zinc concentration were

between all zeolites in all concentrations versus the untreated control (P <0.002).

Sunflower: Tukey's test did not indicate significant contrasts for sunflower grown in

Prescot soil, but for Gateacre soil, significant differences (P < 0.01) between all zeolites

and concentrations versus untreated control were recorded.

Maize: For maize in Prescot soil, the contrasts were only significant for foliage, between

0.5% and 1% zeolites P and 4A and zeolite Y versus the untreated control (P = 0.001).

The Tukey's test results for maize (foliage) grown in Prescot soil are further proofs of

the higher efficiency of zeolites P and 4A when applied at lower concentrations (0.5%

and 1%), in comparison to zeolite Y, which had to be applied at higher concentrations in

order to produce a similar decrease in the metal availability. In Gateacre soil, significant

contrasts were between all zeolites versus untreated control for roots (P = 0.005), and

between control and zeolite P (5%) and 4A (0.5% or 1%) for foliage (P = 0.005).

Willow: For willow (shoots) in Prescot soil, 5% zeolite 4A gave significant contrasts,

either versus untreated control or zeolite P (P = 0.011). For the shoots of willow in

Gateacre soil (P = 0.000), the results of Tukey's test were similar to those obtained for

copper in the the leaves of willow and also for zinc in the foliage of maize in Prescot soil.

Zeolites P and Y versus untreated control gave significant contrasts in the leaves of

willow in Prescot soil (P = 0.005), whereas in Gateacre soil, significant contrasts were

recorded for zeolite P at all concentrations versus the untreated control, for 0.5% and

1% zeolite 4A and for 5% zeolite Y also versus untreated control (P = 0.000).

Significant contrasts were also noticed between zeolites P and 4A at the same

concentrations.

Lead in Soils

Ryegrass: For ryegrass in Prescot soil, significant contrasts were found for 1% zeolite P

or 4A against untreated control (P = 0.024) and versus all zeolites in all concentrations

and untreated control for Gateacre soil (P = 0.004).
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Sunflower: For sunflower in Prescot soil, Tukey test revealed significant contrasts

between 1% zeolite P versus the other two zeolites at the same concentrations (P =

0.021). For the roots of sunflower in Gateacre soil, 0.5% zeolites P and 4A and 5%

zeolite Y gave significant contrasts versus the untreated control (P = 0.004), but also

0.5% zeolite P against the other two zeolites. No significant contrasts were recorded for

sunflower foliage in Gateacre soil.

Maize: For maize in Prescot soil, 0.5% and 1% zeolite P and 1% zeolite 4A have given

significant contrasts versus the untreated control for roots and foliage (P <0.05), and the

same zeolites were significantly different compared to zeolite Y. For maize (foliage) in

Gateacre soil, the contrasts were between untreated control and 1% zeolite P and also •

between 1% zeolite Y versus 1% zeolite P (P = 0.01) (from Tukey multiple comparisons

test).

Willow: No significant contrasts for shoots were recorded after Tukey's pairwise

comparisons. The only significant contrasts were noticed for the leaves in Prescot soil

and they were between zeolite 4A and untreated control and also between 0.5% and 5%

zeolite 4A (P = 0.01).

7.7. Discussion

Similar patterns are observed when zeolites are used as soil amendments,

reducing extractable metal levels in soils polluted from aerial deposition of copper and

cadmium from a copper refinery at Prescot and from a sewage-sludge agricultural soil

contaminated with cadmium and lead at Gateacre, in Liverpool.

Differences in metal concentrations of test plants were attributed to differential

availability of heavy metals in soil, the different lengths of test periods in soils and

different zeolite selectivity for heavy metals.

The results for the immobilisation efficiency of synthetic zeolites shown in Fig.

7.1. - 7.56. are a function of the zeolite application rate for the soils contaminated with

heavy metals. The experimental results showed that zeolites P and 4A were capable of

immobilising heavy metal contaminants in each of the three soils at the lowest treatment

rate.
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During our investigations, exposure of four plant species to increasing amounts

of synthetic zeolites resulted in definite changes in plant available metal fraction. With P

and 4A, such changes occurred at low concentrations of the zeolite, with a concomitant

improvement of yield and no development of visible signs of phytotoxicity. The effect

also became apparent with zeolite Y, which substantially decreased heavy metal content

at higher concentration used, and also had a positive influence on yield.

A marked decrease in metal concentrations was observed for all plant parts

following zeolite application; metal concentrations were greater in roots than in foliage.

Plant cadmium, zinc, copper and lead availability was considerably reduced in the

zeolite-amended soils compared to the controls, despite the high metal content of these

polluted soils. The zeolite application does not change the total concentration of the

metals in the soils, but their speciation in the soil. The extent of these changes depends

on the metal, the zeolite, and the soil type.

These results indicated that the cation exchange reactions known to occur in

zeolites influenced plant yields and metal concentrations. The release of sodium cations

from binding sites within the mineral structure in exchange for heavy metal ions from

solution have permitted the permanent adsorption and retention of these heavy metal

ions.

The effects of synthetic zeolites were seen in the higher dry weight yield of test

plants from the highly polluted soils and the decreasing bioavailability of zinc, cadmium,

copper and lead. Adding synthetic zeolites to the polluted soils had a positive effect on

the yield of all crops and resulted in yields higher than the unamended soils for ryegrass,

sunflower, maize and willows. Furthermore, biomass production was comparable to that

of control compost and in some cases, even higher.

From these results, it was concluded that the phytotoxicity of metal-contaminated

substrata can be strongly reduced by addition of synthetic zeolites. The reduced

availability of metals in amended soils to plants is achieved because the metals are

strongly bound in the zeolite structure. The high metal immobilising capacity of the three

synthetic zeolites P. 4A and Y is based on chemical precipitation and ion-exchange.

The successful growth of test plants in zeolite-amended soils combined with the

decrease in the concentration of heavy metals measured in the plant tissues is very

encouraging and should provide impetus for further research.
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7.8. Conclusions

The results presented here demonstrate the efficiency of the three synthetic

zeolites in reducing the metal transfer from soil to plants by decreasing the bioavailable

fraction of metals and by increasing plant biomass. Consequently, after adding synthetic

zeolites to the contaminated soils, smaller amounts of metals will be available for transfer

from the first to the second link of the food chain, reducing the risk of reaching animals

or humans and also, results in an increase in plant productivity.

Beside synthetic zeolites, other soil amendments are frequently used for

decreasing metal bioavailability by increasing the pH of the soils. Remediation by

reducing bioavailability is the most widely practiced form of remediation in many regions

of the world and is particularly appropriate for trace metal contaminants, such as

cadmium, copper, chromium, lead, nickel and zinc. Liming the soil to pH 7 or higher

(with calcium carbonate) renders these metals less mobile and unavailable. This method

is regularly used in vineyards where copper toxicity occurs as a result of the

accumulation of copper from fungicides used previously. The most practicable method of

keeping the bioavailability of heavy metals to a minimum in sewage sludge-amended soils

is by keeping the pH at around 6.5 or 7. Other methods, often used together with liming,

are: to add relatively large amounts of organic matter with the aim of locking-up metals

as stable complexes with organic colloids and/or to apply phosphatic fertiliser to

stimulate crop growth and precipitate insoluble metal phosphates (Bewley, 1986).

The objectives of the next two chapters were as follows:

1. To examine heavy metal uptake into test plants in response to the following factors:

synthetic zeolites (P, 4A and Y), lime, fertiliser (John Innes Base), soil type, and

combinations of these.

2. To evaluate each amendment as a potential remedial treatment of soils contaminated

with heavy metals.

3. To monitor heavy metal uptake for a greater understanding of the effectiveness of

synthetic zeolites in a soil-plant system.
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CHAPTER 8

LIME AS A SOIL AMENDMENT

8.1. Introduction

For many centuries lime in various forms (e.g. calcium carbonate, magnesium

carbonate, calcium oxide, calcium hydroxide) has been used to raise soil pH in an

attempt to improve soil fertility. Lime is applied to land in quantities larger than any

other inorganic material (typically 2-10 t/ha), and applications are fairly frequent

(typically every 2-5 years) (Davies et al., 1993).

Soils differ considerably in their pH and most temperate crops grow best when

soil pH is approximately 6.5 to 7.0. Modification in pH level is usually achieved by the

addition of lime or sulphur. The addition of lime decreases the availability of most

micronutrients (Wallace et al., 1976), while sulphur has the opposite effect (Edelbauer,

1980). Liming the soil raises the pH, thereby reducing the bioavailability of many heavy

metals through increased soil adsorption.

Lime treatment removes heavy metals as insoluble hydroxides, basic salts, or

coprecipitated with calcium carbonate or ferric hydroxide. This process does not

completely remove mercury, cadmium or lead, so their removal is aided by addition of

sulfide, as most heavy metals are sulfide-seekers: Cd 2+ + S2- —> CdS(s). Lime

precipitation does not normally permit recovery of metals, and therefore is sometimes

undesirable from the economic viewpoint. As most common plants grow best in soil with

a pH near neutrality, if the soil becomes too acidic for optimum plant growth, it may be

restored to productivity by liming, ordinarily through the addition of calcium carbonate:

Soil } (H+) 2 + CaCO3 ---> Soil } Ca2+ + CO2 + H20

Clay minerals exchange cations because of the presence of negatively charged

sites on the mineral, resulting from the substitution of an atom of lower oxidation

number for one of higher number. Cation exchange in soil is the mechanism by which

potassium, calcium, magnesium and essential trace-level metals are made available to

plants. When nutrient metal ions are taken up by plant roots, the hydrogen ion is

exchanged for the metal ions. This process, plus the leaching of calcium, magnesium, and

other metal ions from the soil by water containing carbonic acid, tends to make the soil

acidic:

Soil } Ca2+ + 2CO2 + 2H20	 Soil (114-)2 + Ca2+(root) + 2HCO3"
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Although liming provides a more than adequate supply of calcium for plants,

calcium uptake by plants and leaching by carbonic acid may produce a calcium deficiency

in soil. Acid soils may still contain an appreciable level of calcium which, because of

competition by hydrogen ion, is not available to plants. In alkaline soils, the presence of

high levels of sodium, magnesium, and potassium sometimes produces calcium deficiency

because these ions compete with calcium for availability to plants (Manahan, 1994).

Raising the pH by liming is an efficient method for reducing plant absorption of

toxic elements and heavy metals. Because of lime's limited solubility, solutions of excess

lime do not reach extremely high pH values. The lowest pH level to which an acid soil

has to be limed in order to overcome heavy metal contamination is a function of both the

type species and concentration of the metal.

Valdares et al. (1983) reported that an increase in pH results in a lower uptake of

heavy metals, but the effect of liming on the mobility of heavy metals is complex. In acid

soils, addition of lime would raise the concentration of exchangeable calcium ions and

may release some of the absorbed heavy metals by an ion exchange process (Lakanen,

1967). Further lime application would cause the pH to rise and the availability of heavy

metals would decrease due to precipitation. If the soil was rich in organic matter, some

of the heavy metals would be present in complexes which may be either more or less

readily available than the non-complexed cations.

In addition to lime, sodium hydroxide is also used to increase soil pH to cause

metals to precipitate from solution. The hydroxide process is often not as efficient at

reducing the availability of heavy metal contaminants to acceptable levels. This is

because different metals have minimum solubilities at specific pH's and over addition of

hydroxide can cause resolubilisation (Peters and Ku, 1985).

Calcium carbonate also acts as a strong absorbent for heavy metals and can

precipitate them as double salts such as CaCO 3 .ZnCO3 and CaCO3 .PbCO3 (Ramos et al.,

1994). Additionally, when CaCO3 (calcite) precipitates from the soil solution it will

coprecipitate metals such as cadmium in the calcite lattice. Calcium and cadmium

carbonates have identical crystal structures; cations with ionic radii less than 1 A (e.g.

zinc, copper, cobalt and nickel) can also substitute in the calcite lattice, leading to a

significant decrease in the concentrations of these metals in the alkaline solution (Muller,

1994). Calcite has hexagonal (rhombohedral) symmetry and a structure built up of

alternate layers of calcium ions (Ca2+) and carbonate groups (CO32-) (Reeder, 1983).
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Metal mobility and bioavailability are restricted in calcareous soils, due to a

combination of chemisorption (Papadopoulos and Rowell, 1988), precipitation of

carbonates (Christensen and Tjell, 1984) and competition with calcium ions for

absorption sites on plant roots. These processes help to explain the decreased mobility

and plant availability normally found when acid soils are limed (Alloway and Jackson,

1991).

Changing soil pH frequently induces large changes in the absorption of trace

elements by plants. For example, the zinc content of sorghum plants progressively

decreased with increasing pH of Norfolk sandy loam to which calcium carbonate, sodium

carbonate or calcium sulphate was added (Wear, 1956). By contrast, the absorption of

copper by plants may show remarkably little change with treatments which change soil

pH. In these cases it is likely that the behaviour of copper is dominated by the formation

of soluble organic complexes in the soil solution, as suggested by Hodgson et al. (1966)

to explain the insensivity of plants to copper deficiency on calcareous soils.

The increase in soil pH associated with liming improves growing conditions for

populations of nitrifying (oxidising) bacteria (White, 1987), which catalyse the oxidation

of NH4+ to NO3- (Haynes, 1984). With this removal of NH4+ from the soil and increase in

nitrate content, metal uptake into plants could increase, as a result of more soluble metal-

nitrate species. An alternative explanation, also relating to microfaunal population

changes with liming, is indicated from the work of Johnson et al. (1991) who found that

some anaerobic microorganisms, (e.g. Cladosporium sp. and Bacillus sp.) accumulated

metals, reducing the availability of metals to plants. A change to a more oxidising

environment would cause a depopulation of these species, and hence, a new release of

their accumulated metals into soil.

Although the fmdings are not all consistent, in most cases it is generally found

that manipulation of soil pH is an effective and rapid method of controlling the

bioavailability of heavy metals in polluted soils (Jackson and Alloway, 1990). In general,

the bioavailability of heavy metals in acid soils are reduced by liming to pH 6.5-7

(Alloway and Jackson, 1991), but it is not a permanent solution. Lime is neutralised in

soil by acid rain and other acidifying processes, so that subsequent treatments will be

needed.
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8.2. Experimental

Prescot soil was chosen for this experiment because it has a very low pH of 3.4

and zeolite 4A was chosen because previous experiments (Section 7.6.) showed that

(along with zeolite P) it was the most efficient at increasing plant yield and decreasing

plant metal concentrations. John Innes Base No.1 potting compost was used as a control.

Both lime and zeolite 4A were applied at the same concentration (0.5%),

therefore processed soil (100 g dry wt.) was mixed with 0.5 g of CaCO 3 (reagent grade)

or zeolite 4A. The mixtures were incubated at room temperature for 7 days. After this

time, samples were withdrawn and the pH of the soil was measured using a calibrated

Radiometer PHM 85 precision pH meter fitted with a Radiometer GK 2401 C

combination glass electrode. Results indicated that 0.5 g of CaCO 3 per 100 g of Prescot

soil increased soil pH to 4.6, whereas 0.5 g of zeolite 4A per 100 g of Prescot soil

increased soil pH to 5.6.

For the growth trials, plastic pots were filled with 4 kg (dry weight basis) of

Prescot soil or John limes No. 1 potting compost (as the control) containing appropriate

amendments (Table 8.1.). To ensure that nutrient availability was not a limiting factor, all

the pots received the same amount of basal fertiliser (0.16 g John Innes Base Fertiliser

per dm3 soil). After 7 days equilibration, 4 sunflower seeds were sown in each pot. After

germination, pots were thinned to 2 plants. In unamended Prescot soil, the sunflower

seeds were sown on two successive occasions, but did not germinate. After three

months, the remaining plants were harvested and separated into roots and leaves. The

roots were washed with distilled water to remove the adherent soil particles. Plant

samples were dried at 60°C for 72 hours, weighed and ground in a mechanical sample

grinder before digestion. The resulting biomass (fresh and dry) was weighed and

recorded.

The plant material was digested following the same procedure as described in

Section 7.3. Total lead, zinc, copper and cadmium concentrations were determined in the

samples by atomic absorption spectroscopy. Results of triplicate analyses are presented

in Tables 8.1. and 8.2.
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8.3. Results and Discussion

Addition of synthetic zeolite to soil increases its pH as a result of proton

exchange from the soil with the sodium ions in the zeolite cages (Fletcher and Townsend,

1980; Naumova et al., 1994). The net effect of increasing soil pH and the ion exchange

properties of zeolites results in a reduction in the amount of soluble or plant available

metal ions. Therefore, the effect of zeolite amendments on the phytotoxicity of Prescot

soil was compared with the effect of increasing soil pH alone by liming.

Results for sunflower plants grown in compost and Prescot soils treated with lime

or zeolite 4A are shown in Tables 8.1. and 8.2. The results indicate that raising soil pH

by liming or by adding synthetic zeolites stimulates biomass activity and decreases the

amount of heavy metals available for plant uptake.

The dry weights of each treatment were examined for differences between liming

or zeolite 4A addition. The dry matter yield for sunflower grown in amended compost

increased by 23.4% with lime and 45.5% with zeolite 4A for roots (Table 8.1.) and only

by 9% with lime and 15.5% with zeolite 4A for foliage (Table 8.2.). When the same soil

amendments were added to Prescot soil, the yield was 0.15 g/pot with lime and 0.21

g/pot with zeolite 4A for roots, and respectively 1.00 g/pot for sunflower foliage. Dry

matter yield for a given treatment was almost always higher in the limed soil and soil

with the addition of zeolite than in unlimed soil. The yield response observed in the

greenhouse experiments when lime was applied is probably due to improved nutrient

availability, especially phosphorus (Tagwira, 1988). The positive relationship between

plant yield and soil pH is also due to the reduced metal availability caused by

precipitation at higher pH. The positive effects of lime or calcareous rich soils on plant

growth can additionally attributed to a decrease in soluble aluminium-species, since

aluminium is known to be toxic to plants (Hillard et al., 1993).

The effects on the uptake of cadmium, copper, lead and zinc in pH adjusted soils

have been evaluated by comparing the decrease in the bioavailable fraction for zeolite-

and lime- treated soils in Chapter 6. The present study expands on these observations by

determining the actual metal accumulation of sunflower plants grown in pH adjusted soil.

The sunflower parts (roots and foliage) were examined to determine whether the

liming treatments had decreased the heavy metal concentrations compared with those

grown on the unlimed control soil. Results indicate that as pH increases with liming,

heavy metal availability to plants decreases (Tables 8.1. and 8.2.).
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In unamended Prescot soil, the test plants did not survive, due to excessive metal

toxicity (see Section 7.6.1.). The addition of lime to the soil reduced heavy metal

availability, and allowed the sunflower to survive, albeit with elevated levels of metals

accumulated in the roots and foliage.

Similar observations have been reported by Jackson and Alloway (1990), who

found a cadmium reduction of 43% for cabbage and 41% for lettuce when grown in

limed (pH 7) sludge soils, although other studies found that liming did not reduce the

cadmium and zinc concentrations in peeled potato tuber (Jackson, 1990) nor the uptake

of cadmium by silage maize on either a silt loam or a fine sandy loam (Pepper et al.,

1983). Fiskell and Martin (1985) reported that liming increased the uptake of metals by

Lolium multiflorum as a result of increased dry matter production.

Addition of zeolite 4A to Prescot soil cause an increase in soil pH from 3.4 to

5.6. The concentration of metals in both the roots and foliage of sunflower were greatly

reduced, and accompanied by an increase in plant growth as compared with the same

quantities of lime used. Addition of lime to compost soil decreased copper concentration

by 34.6%, cadmium by 40%, zinc concentration by 24% and lead by 9% for roots, and

up to 50% for copper, 14.3% for cadmium, 18% for zinc and 37.5% for lead for foliage.

When zeolite 4A was added to compost soil, the metal concentrations in roots were

decreased by 46% for copper, 60% for cadmium, 29% for zinc and 23% for lead,

whereas in the foliage, the order of decreasing metal concentration was: copper (69%) >

lead (50%) > cadmium (28.6%) > zinc (23%).

Lime and zeolite 4A were used simultaneously as soil amendments so that a

direct comparison of the immobilisation efficiency could be made between the two

treatments. However, although both treatments increased soil pH, 0.5% zeolite 4A

provided superior immobilization efficiencies to lime (Tables 8.1. and 8.2.). The addition

of lime at the same concentration produced a similar effect, although the differences

were not as great as those for zeolite 4A. The efficiency of zeolite 4A compared to that

of lime in reducing heavy metal concentrations in amended Prescot soil was above 36%

for copper and zinc, 74% for cadmium and 20% for lead in sunflower roots, and above

48% for copper and cadmium, 26% zinc and 14% lead in foliage.

The addition of lime to soils will result in an increase in the concentration of

calcium, making it the dominant cation over the metal ions in the soil, increasing it's

competitiveness at the soil/root interface, and increasing the pH will cause precipitation

of metals (Hodkinson, 1994). Since the leaching of trace metals from soil is a slow
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process, lime application serves as an inhibitor towards uptake of such metals in toxic

concentrations by plants. It is not known how long the effects of liming will persist, or

how lime application will alter ecosystem processes on a long-term basis.

Although zeolites, like lime, increase soil pH (therefore reducing the availability

of heavy metals to the plants), the concentration of heavy metals in sunflower plants

grown in zeolite 4A amended Prescot soil was significantly less than for sunflowers in

limed Prescot soil. This is attributed to the slightly higher pH and additional ion-

exchange property of synthetic zeolites.

Extrapolation from the glasshouse to the field involves many uncertainties. The

lime was thoroughly mixed with all the soil in each pot whereas in the field it would be

applied to the soil surface. In the field, leaching of calcium would cause progressive soil

acidification and this will in turn affect the bioavailability of the heavy metals. Often this

acidification would be corrected by more lime, but further lime applications might not be

made for several years or even decades if land is taken out of agricultural use. Plant roots

also exploit soils in pots more effectively than in the field (Davies et al., 1993).

Quantifying the effects of soil acidity on plant growth remains a challenging research

topic as numerous soil and plant growth factors are influenced by pH and lime.

Although both soil amendments, synthetic zeolites and lime, increase the pH of

the soil, therefore decreasing metal bioavailability, the ion-exchange properties of the

zeolites make them more effective soil amendments, as the bioavailable fraction of metals

is significantly decreased by ion-exchange processes. These results are in agreement with

those presented in Chapter 6. As previously mentioned, lime needs to be applied quite

frequently in order to maintain its effect on metal availability, whereas a single

application of synthetic zeolites is sufficient to lock up heavy metals permanently.
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CHAPTER 9

JOHN INNES BASE FERTILISER AS A SOIL AMENDMENT

9.1. Introduction

Fertiliser additions may also affect the uptake of heavy metals and, therefore,

constitute a significant external factor. Phosphate fertilisers have been shown to decrease

availability of heavy metals (by precipitating the metals, for example lead as lead

phosphate Pb3 (PO4) 2 to plants in some (e.g. Street et al., 1978), but not all pot

experiments (e.g. Sanders & Kherbawy, 1987).

Application of macronutrients (like phosphorus) or metallic elements (like

potassium or iron) may revitalise plants grown in polluted soils, but they must be used

with a particular care because of complex relations between all mineral compounds and

soil organic matter for different soil types (Kiekens et al., 1984). Moreover, data

obtained for in vivo experiments cannot be simply transferred to natural conditions

because they differ with regard to plant sensitivity and growth stage (Reboredo, 1994).

Even the choice of plant organs for monitoring changes in the physiological processes

may be important because of differences in susceptibility to heavy metals and their

distribution mechanisms (Sieghardt, 1990).

Additions of fertiliser cations and anions such as potassium, ammonium or

nitrate, which are necessary for most pot experiments, may also affect the solubility of

heavy metals in soil. The increase in the concentrations of ions in solution is

accompanied by a decrease in soil pH. Crop fertilisers contain nitrogen, phosphorus, and

potassium as major components. Fertilisers are designated by numbers, such as 6 - 12 -

8, showing the respective concentrations of nitrogen expressed as N (6%), phosphorus

as P205 (12%) and potassium as K20 (8%). Farm manure corresponds to an

approximately 0.5 - 0.24 - 0.5 fertiliser. Organic fertilisers such as manure must undergo

biodegradation to release the simple inorganic species (NO3", H„1304'3 , IC) assimilable by

plants. Anhydrous ammonia has a very high nitrogen content of 82%. It may be added

directly to the soil, for which it has a strong affmity because of its water solubility and

formation of ammonium ion:

NH3 (g) (water) --> NH3 (aq)

NH3 (aq) + H20 —> NH4+ + OH"
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Special equipment is required, however, because of the toxicity of ammonia gas.

Ammonium-nitrate is a common solid nitrogen fertiliser and although convenient to

apply to soil, it requires considerable care during manufacture and storage because it is

explosive. Potassium fertiliser components consist of potassium salts, generally KC1. One

problem encountered with potassium fertilisers is the luxury uptake of potassium by

some crops, which absorb more potassium than is really needed for their maximum

growth (Manahan, 1994).

Bioavailability of nutrients is dependent on their concentration in the soil

solution, on exchange equilibria between solution and adsorbed nutrient species, and

uptake by plants of nitrogen, potassium and magnesium is closely linked to the rate of

transpiration (Lorenz et al., 1994). Available, cost-effective means of providing soil

supplements must be determined and assessed in terms of moisture requirements and the

establishment of fertiliser rates, so that adequate vegetative cover and growth responses

are possible.

The combination of fertiliser and zeolite as a soil amendment has a number of

advantages. In addition to the zeolite properties of metal immobilisation, they can act as

reservoirs for the slow release of fertiliser ions such as potassium and ammonium, and

also prevent loss of nitrogen by volatilisation from soil surfaces.

9.2. Experimental

This experiment was designed to investigate the effect on grass growth due to the

combined applications of zeolite 4A with different levels of fertiliser.

Trelogan soil was chosen for this experiment, because of its low fertility and low

organic matter content. John Innes No.1 potting compost was used as a control. Zeolite

4A was applied at 1.00% w/w dry weight, which was shown to be an optimum

concentration for improving plant biomass and metal concentrations (Section 7.6.).

Plastic trays (20 cm square) were used. Each tray contained 1 kg of the

unamended or amended soil and appropriate amount of fertiliser was added to each tray.

The composition of fertiliser is given in Table 9.1.

The amount of fertiliser and zeolite added to the Trelogan soil experiments are

given in Table 9.2. The currently recommended fertiliser rate of John Innes Base

Fertiliser (0.16 g kg -1 soil) was also increased by 10 and 20 times respectively. Each

treatment was thoroughly mixed and each tray was filled to within 1 cm of the rim. The
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Table 9.1. Composition of John Innes Base Fertiliser

Compound fertiliser	 5.1 - 8.2 - 10

Total Nitrogen (N)	 5.1%

Total Phosphorous Pentoxide (P205 )	 8.2% (3.5% P)

Phosphorous Pentoxide (P205) soluble in water 	 7.2% (3.1% P)

Phosphorous Pentoxide (P2O5) insoluble in water	 1.0% (0.4% P)

Total Potassium Oxide (K20)	 10.0% (8.3% K)

soils were allowed to equilibrate for 7 days in the glasshouse. Ryegrass (Lolium perenne,

var. Elka) was sown at 0.5 g per tray 0.5 cm below the soil surface in a uniform

arrangement. All the trays were watered thoroughly, arranged randomly and covered

with a plastic sheet until germination commenced. The plastic was removed after

germination and the plants watered every day for 6 weeks. The temperature was

maintained at not less than 15°C and natural light was supplemented to give a day length

of approximately 15 hours. The arrangement of trays was re-randomised every three to

four days.

The resulting foliage biomass was cut after 6 weeks. The grass was cut 2 cm

above the soil surface and dry weight yields were recorded.

Lead, zinc, copper and cadmium concentrations in the foliage were determined by

atomic absorption spectroscopy using a single beam, background corrected instrument.

Results of duplicate analysis are presented in Table 9.2.

9.3. Results and Discussion

Ryegrass sown in unfertilised Trelogan soil which was either amended or not

with zeolite 4A at 1% did not survive. The seeds germinated, but chlorosis and drying

started immediately and plants died in less than one week after germination.

The dry matter yields of ryegrass treated with three different combinations of

fertiliser and zeolite 4A are presented in Table 9.2.

The addition of fertiliser to Trelogan soil improved the fertility of the soil, as

evidenced by the survival of ryegrass. It was also observed that there was not a

significant difference in the dry weight of the harvested ryegrass after six weeks which
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had been treated with either the normal fertiliser application rate or 10 and 20 times the

normal application rate (Table 9.2.).

The plants treated with zeolite 4A and a single dose of fertiliser had greater yields

than those treated with increasing rates of fertiliser alone. The addition of increasing

amounts of fertiliser to the zeolite 4A treated soils did not increase the dry weight of

ryegrass compared to the single dose application.

It has been shown that the combined addition of fertiliser and zeolite to improve

soil fertility and reduce plant metal concentrations is successful. Nevertheless, for field

situations where fertilisers can reach locally high concentrations, this may lead to a

mobilisation of heavy metals and, therefore, increased bioavailability and toxicity.

Zeolites can be prepared through exchange with nutrient ions such as ammonia

and potassium and act as a reservoir, holding such elements in their structure for slow

release to the soil solution and hence to the plants. This will increase the overall

efficiency of such additives and reduce the total cost of fertilisation.

The heavy metal content and the dry weight of the ryegrass which was harvested

after six weeks was determined after digestion with nitric acid and analysed by AAS.

Results are presented in Table 9.2.

The results indicate that the concentration of all metals analysed from the

ryegrass grown in fertiliser amended soil had very high metal concentrations compared to

the compost control. The concentrations of the metals accumulated by the ryegrass

grown in fertiliser amended zeolite soils are far in excess of acceptable limits for metals

in plants (see Table 4.5.).

Ryegrass grown in Trelogan soil which had been amended with both zeolite 4A

and fertiliser added at the normal rate showed a large reduction in metal concentrations

as compared with ryegrass grown in soil which had been amended with only fertiliser. A

combination of those two amendments decreased copper concentration up to 44%,

cadmium concentration by 46%, zinc concentration over 40% and lead concentration up

to 33%.

Increasing the amount of fertiliser added to the zeolite amended soil resulted in

an increase of metal content of the ryegrass from 27 to 40 ppm for copper, from 7.5 to

10 ppm for cadmium, from 220 to 300 ppm for zinc and from 135 to 235 ppm for lead.

This increase indicates an increased availability of heavy metals in Trelogan soil and can

be attributed to two principal factors, namely (1) an increased competition for the ion
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exchange sites in the zeolites resulting from increased potassium and sodium content,

and (2) solubilisation of the heavy metal by the nitrogen component of the fertiliser.

After applying lime or compost to polluted soils, the bioavailable fraction of

metals decreased due to an increase in soil pH. The combined zeolite effects of pH

increase and ion-exchange processes resulted in a considerably decrease in heavy metal

availability. All the other soil amendments (John Innes Base Fertilizer, lime or compost)

provided supplementary, but rather limited metal-binding capacity compared to the

immobilising capacity of the synthetic zeolites. The four types of immobilising agents

proved to be effective in different degrees in mitigating the metal uptake by plants.

Among the tested additives, synthetic zeolites exhibited the most promising potential in

reducing metal transfer from the soil to the soil solution and their eventual entry into the

food chain via plant uptake.
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CHAPTER 10.

HELD TRIAL AT PRES COT.

10.1. Introduction

Vegetative growth on mine waste and metal contaminated land is characteristically

patchy and varied; isolated areas can become destabilised and removed by wind and water

action. This problem can be overcome by creating a continuous self-sustaining cover

(Mitchell and Atkinson, 1991). This is considered to be the most effective and, in the long

term, the cheapest method of controlling wind and water borne pollution from metalliferous

contamination. In addition this approach improves the visual impact of the sites, particularly

when vegetated with a wide range of common local plant species. Before successful

revegetation can occur however, the hostile chemical, physical and biological characteristics

of the spoil must be overcome. The proposed method of land reclamation involves the control

of conditions to allow self-sustaining vegetation to become established. Several methods of

ameliorating the conditions found in contaminated site were investigated (Chapters 7, 8, 9).

The most promising of these was the in situ use of ion-exchanging materials. An in situ

approach has the greatest flexibility and can be used on sites where large mechanical plant

necessary to reprocess the waste cannot gain access, or in areas that have undergone partial

natural regeneration.

In applying the amendments to contaminated land it is important to emphasise that no

specialised equipment is required, the amendment is ploughed into the land to a depth

equivalent to the rooting layer. Disturbance of the land is minimised so as not to expose any

remaining sulphide minerals at depth to oxidation. To speed up revegetation, seeding,

possibly with a nutrient supply being made available, may be needed. Once the vegetation

cover is established, the objective of the novel restoration technique is to reduce,

permanently, the availability of toxic metals to the root systems (Atkinson, 1994).

Laboratory and greenhouse experiments described throughout this work have

demonstrated that the use of synthetic zeolites as amendments for polluted soils results in a

significant decrease of the bioavailability of the heavy metals. There are many difficulties in

extrapolating laboratory experiments to field conditions, particularly if the great differences of

growing and climatic conditions or application techniques are considered.

In general, the uptake of metals from soils is greater from plants grown in pots of soil

in a greenhouse, than from the same soil in the field (De Vries and Tiller, 1978). Therefore
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plants which perform poorly in this work, may do so better in the field; however, those which

perform well in the pots, should do at least as well in the field, but may not accumulate the

same levels of metals as compared to those grown in pots. As field trials are extremely

important to real situations, a field experiment was initiated at Prescot site using zeolites P

and 4A as soil amendments. The field experiment was carried out to confirm the results of the

model pot experiments.

10.2. Experimental

In order to verify the laboratory test results on a pilot field scale, in which the actual

soil and environmental conditions are required to give a complete evaluation of the proposal •

technique when applied to a given hazardous waste site, a field trial was initiated at British

Insulated Callender Cables (B.I.C.C.) Rod Rollers Factory, Prescot.

The site: BICC Rod Rollers factory is located on the western outskirts of

Prescot, Merseyside (NGR SJ 462917), adjacent to the M57 motorway and the

Liverpool-St. Helens railway. The factory was constructed in 1975 on the site of a

former refuse tip. The entire site was covered with imported soil which came from

excavations associated with the construction of the adjacent motorway. The grasslands

which surround the factory were established on this material at the time of construction.

The factory produces copper rod via a continuous process, using ingots of 99.99% pure

copper as the starting material. Since the start of production, the factory has processed

over two million tonnes of copper (T. Hardman, BICC pers. comm.).

At present, the process emits particulate copper (mainly oxides) at a average

annual rate of 5.11 mg/m3 atmosphere, marginally in excess of the suggested limits of

5mg/m3 atmosphere. During its period of operation, it is estimated that approximately 26

tonnes of copper have been emitted from the furnace chimney (Inspectorate

International, 1993).

The site suffers from typical symptoms of metal contamination ranging from poor

vegetation cover to a lack of diversity in the few species colonising the site. Therefore,

zeolites were used as an in situ remediation process to reduce the phytotoxicity of the soil.

The success of the remediation was assessed after one year by determining changes in

the chemical nature of the soil, and by visually examining the ecology of the trial site, as

described below.

The trial was initiated on 13 th June 1995 on an area of land 9 x 9 m. The site is
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upper 20 cm of the contaminated soil was treated with 1% zeolite P or 4A. The mass of

zeolite required was calculated from the density of the soil and volume treated. The three

other plots were left as controls. The trial was left for one year, before further analyses to be

carried out.

Before and one year after treatment, soil samples were randomly collected from the

trial site and dried at 105°C for three days in an air-circulating oven, then ground using an

agar mortar and sieved through a 0.5 mm plastic sieve. The pH of the samples was measured

following the procedure described in Section 4.2.1.2. The soil samples were extracted with

distilled deionised water to determine the water-soluble cadmium, zinc, copper and lead

content, as described in Section 4.2.1.2. The total metal content of the soil was determined by

digestion with HNO3 (conc., A.R.) using a microwave digestor (which is described in Section

4.2.1.2.). After extraction and digestion, the total content of heavy metals was estimated

using the AAS. Results of triplicate analysis are presented in Tables 10.2. and 10.3.

10.3. Results and Discussion

10.3.1. Chemical Evaluation

Apart from the use of lime as an in situ amendment for metal contaminated land, only

a limited number of other materials have been investigated, and even fewer field trials have

been reported.

Field trials using ion exchange materials to reduce heavy metal uptake by plants or to

improve soil fertility have been reported (Wessolek and Fahrenhorst, 1994). The synthetic

phillipsite has been used successfully in field experiments to increase the water-holding

capacity of different types of soils (Kralova et al., 1994). Field trials with clinoptilolite which

was compared to sphagnum peat and sawdust in sand or sandy soils to enhance 'Penncross'

creeping bentgrass (Agrostis palustris) establishment, moisture retention and C.E.C.s of the

resultant mixes, found that all amendments, except 10% and 20% sawdust, resulted in

superior establishment compared to unamended sand (Nus and Brawen, 1991).

The addition of 5 to 10% beringite to zinc contaminated land resulted in a reduced

heavy metal uptake by plants (Phaseolus vulgaris). Growth parameters, enzyme activities and

zinc content of the leaves were restored to the control levels (Vangronsveld et aL, 1991).

Beringite and compost have also been used to remediate the site of a former zinc smelter,

strongly contaminated by several nonferrous metals. 18 months after sowing a seed mixture
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of selected metal-tolerant plants (Agrostis capillaris, Festuca rubra), a healthy and well

closed vegetation developed. Addition of 5% beringite to the substratum resulted in a

significantly lower metal content in the aerial parts of the plants (Vangronsveld et al., 1995 b).

The initial pH of the soil samples collected at random, from the test plot varied

between 3.3 - 3.8, which is very acidic (1: pH = 3.8 (±0.9); 2: pH = 3.3 (±0.4); 3: pH = 3.8

(±0.8); 4: pH = 3.6 (±0.7); 5: pH = 3.6 (±0.6)). After one year, the pH of the untreated plots

remained unchanged (Cl, 2 and 3), whereas the pH of the amended plots increased above 6

(Table 10.1.).

Table 10.1. pH of the soil samples after one year (n = 5).

Treatment Sample pH

Untreated, outside trial plots R1 3.6 (±0.4)

Untreated, outside trial plots R2 3.5 (±0.5)

Untreated plot Cl 3.5 (±3.5)

Untreated plot C2 3.7 (±0.7)

Untreated plot C3 3.4 (±0.6)

Zeolite P P1 6.5 (±0.4)

Zeolite P P2 6.1 (±0.3)

Zeolite P P3 6.3 (±0.5)

Zeolite 4A Al 6.0 (±0.3)

Zeolite 4A A2 6.2 (±0.2)

Zeolite 4A A3 6.3 (±0.4)

The water- and nitric acid-extractable metal levels before and one year after treatment

are given in Tables 10.2. and 10.3. The amount of copper in the soil increased slightly after

one year, due to its continued atmospheric deposition from the operational manufacturing

processes. This also led to a greater concentration of copper in the water extract, and
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consequently more copper is available for plant uptake. No increase in the input of cadmium,

zinc and lead was noted. The addition of 1% zeolite P or 4A to Prescot soil considerably

decreased the water soluble fraction of all metals.

No differences between the unamended and amended plots were observed for the

nitric acid fraction, as this extraction represents the total metal content of the soil, which is

not influenced by the addition of synthetic zeolites to the soil.

Table 10.2. Water-extractable and nitric acid-extractable (total) metal concentrations in

replicas of five different sites of Prescot soil at the beginning of the experiment (n = 5).

H20-extractable metals (p,g g -1 ) HNO3-extractable metals (lig g-1)

Sample Cu Cd Zn Pb Cu Cd Zn Pb

1 9.8 0.8 3 2.4 1000 5 400 500

(±0.83) (±0.53) (±0.91) (±0.05) (±263) (±2.1) (±32) (±125)

2 10 0.92 3.2 2.3 1100 5.2 380 480

(±0.72) (±0.61) (±1.1) (±0.02) (±274) (±2.6) (±30) (±111)

3 10.5 0.71 2.7 3 900 5.3 420 500

(±0.6) (±0.48) (±0.83) (±0.08) (±288) (±2.2) (±35) (±120)

4 10.2 0.73 2.6 2.6 950 6 360 470

(±0.63) (±0.45) (±0.87) (±0.04) (±250) (±2.7) (±33) (±116)

5 9.5 0.85 2.9 3.1 1000 5.8 370 480

(±0.57) (±0.62) (±0.92) (±0.08) (±264) (±2.8) (±31) (±113)

10.3.2. Biological Evaluation

To evaluate the durability of the metal-immobilising effect of the soil treatment, the

potential phytotoxicity of the treated substrata was tested 12 months after the soil treatment

was applied by analysing the colonisation of the treated plots. The plant cover for each plot

was assessed visually. Plant metal content was not measured, due to continuing copper

deposition on the foliage from the atmosphere.
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Table 10.3. Water-extractable and nitric acid-extractable (total) metal concentrations in

samples of Prescot soil after one year (n = 5)

H20-extractable metals (1.1g g-i ) HNO3-extractable metals (jig g-1)

Treatment Sample Cu Cd Zn Pb Cu Cd Zn Pb

Untreated,

outside trial

plots (see

Initial

Values

(Mean)

10

(±0.67)

0.8

(±0.54)

2.9

(±0.93)

2.7

(±0.05)

990

(±268)

5.5

(±2.5)

386

(±32)

486

(±117)

Table 10.1.)

Untreated,

outside trial

plots (After 1

year)

R1 14.4

(±0.64)

0.7

(±0.52)

3

(±1)

2.9

(±0.06)

1200

(±283)

5.5

(±2.6)

380

(±27.6)

460

(±120)

Untreated,

outside trial

plots (After 1

year)

R2 13.7

(±0.55)

0.8

(±0.5)

2.5

(±0.72)

2.5

(±0.04)

1300

(±294)

4.9

(±2.2)

350

(±28.8)

470

(±115)

Untreated plot Cl 15 0.8 2.8 2.8 1200 5 300 480

(±0.82) (±0.47) (±0.8) (±0.05) (±270) (±2.8) (±29.3) (±123)

Untreated plot C2 14.6 0.75 3 2.6 1000 4.8 360 460

(±0.71) (±0.45) (±0.93) (±0.03) (±280) (±2) (±29.5) (±110)

Untreated plot C3 13.8 0.7 2.6 2.5 1350 4.7 350 450

(±0.68) (±0.42) (±0.74) (±0.07) (±300) (±2.3) (±26.4) (±100)

Zeolite P P1 3.8 0.45 1.3 2 1150 4.5 350 420

(±0.75) (±0.3) (±0.53) (±0.02) (±310) (±2) (±25.5) (±112)

Zeolite P P2 4 0.42 1.4 2.3 1000 5.2 330 470

(±0.7) (±0.24) (±0.47) (±0.02) (±290) (±2.4) (±27.2) (±115)

Zeolite P P3 3.5 0.4 1.5 2 1200 4.6 370 450

(±0.73) (±0.25) (±0.43) (±0.03) (±270) (±2.5) (±26.9) (±118)

Zeolite 4A Al 3.7 0.43 1.2 2.2 1100 5.3 360 400

(±1) (±0.26) (±0.7) (±0.01) (±305) (±3) (±28.3) (±130)

Zeolite 4A A2 4.2 0.48 1.6 2.4 1250 5 370 480

(±0.92) (±0.32) (±0.64) (±0.05) (±282) (±3.1) (±27.3) (±134)

Zeolite 4A A3 4.5 0.5 1.4 2.3 1200 4.4 320 460

(±0.87) (±0.28) (±0.38) (±0.04) (±271) (±2) (±26.5) (±128)
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Plate 10.1. Field trial at Prescot site

a. Initially

b. After one year.
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At the beginning of the experiment, the plot was colonised only by a few species:

Agrostis sp., Sagina sp., Festuca sp., Rumex acetosa, Carex hirta and the moss Pohlia

nutans. After one year, no new species were detected, but there was a considerable increase

in numbers of the species already present on the amended plots, as shown in Plates 7.1. (a, b).

No comparable increase was observed in the untreated sites.

On the plots treated with zeolite P or 4A, the plants were much greener and healthier

than the plants grown on the unamended plots. No signs of chlorosis were detected for the

plants grown on the amended plots, whereas the plants grown on the unamended plots were

shorter, in smaller numbers and with visible signs of chlorosis, due to the higher amount of

metals available for plant uptake on the untreated plots.

The root growth was compared for grasses grown on all plots after one year. A

significant enhancement of root growth was noted in the presence of 1% zeolite P (Plate 7.2.

b.) and 4A (Plate 7.2 c.) in comparison to the untreated control (Plate 7.2.a.). Also, the

addition of synthetic zeolites to Prescot soil initiated the development of new and healthy

roots. This effect has considerable importance, as application of synthetic zeolites not only

reduce the available metal fraction of the soil, but will also stimulate the growth of new and

healthy species.

10.3.3. Conclusions

It is unusual to encounter an industrial process which emits only a single metal in

elevated quantities to the immediate environment (Alloway, 1995). In most cases, metals

are emitted in varying quantities from metal processing or smelting activities, frequently

accompanied by sulphur oxides (Ross, 1994). The site of a Copper Rod-Rolling factory

at Prescot, Merseyside, UK in the present investigation represents a rare occasion when

the effect of a single metal can be studied in isolation. The site was constructed on land

on the outskirts of Prescot with no previous industrial legacy and the surrounding

vegetation was established on soil imported from outside the immediate vicinity. Copper

is emmited from the process in the form of oxides and the annual emmissions are

routinely monitored (Inspectorate International, 1993).

Metals tend to accumulate in topsoils through aerial inputs and by vegetation uptake,

assimilation and subsequent litter fall. More studies quantifying the accumulation of metals in

topsoils are required to provide evidence for understanding how soil biological processes

respond over time.
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Plate 7.2. Root Growth in Prescot Soil.

a. Untreated Control.

b. 1% Zeolite P.
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period considered (one year). Nevertheless, the potential phytotoxicity of the treated soil must

be followed monitored regularly over a longer period of time.

The results from all the work to date indicate that in terms of the laboratory and

column tests, zeolite P and 4A, have been the most suitable candidates for amending land

contaminated by non ferrous metals. The synthetic zeolites perform well under field

conditions, and it can be anticipated that the further (generative and vegetative) development

of the vegetation cover will produce a humus layer, resulting in a supplementary metal-

immobilising capacity of the upper soil strata.

By initiating the field trial at Prescot, an assessment about how realistic the effect of

synthetic zeolites will be in the field was ascertained. The risk assessment in the actual

treatment was evaluated by calculating the long-term efficiency of zeolites P and 4A in the•

amended plots. Synthetic zeolites are efficient soil amendments, as they decrease the

bioavailable fraction of metals by ion-exchange processes. Another advantage of the

zeolite application is their long term efficiency. Assuming a constant input of copper to

the site, based on the previous year's observation, zeolite P and 4A would be able to ion

exchange copper for period of 223 and 211 years respectively at 1% application rate,

provided they remained unchanged and in situ. Traditional methods of soil amelioration

(e.g., liming, application of organic substances) need to be regularly repeated.

Although an important improvement of the root growth in the presence of synthetic

zeolites was noted, further work will be necessary for finding suitable methods to stain roots

and detecting mycorrhizal presence, as mycorrhizal fungi and vesicular-arbuscular mycorrhiza

increase the metal tolerance of the host plant by restricting passage of metals to the shoots,

therefore providing an effective exclusion barrier.

Ectomycorrhizal fungi have a role in the survival of plants in metal-contaminated soils

by enabling avoidance of the metal stress. The ameliorating influence of the ectomycorrhizal

fungi on metal toxicity is linked with compatibility of the fungal strain with the host.

Colonisation by fungal mycelium lead to metal adsorption on hyphal surfaces. As a result, less

metal will be taken up by the host. Further research is required into the adaptations of the

fungi to metal-contaminated environments and the role of the symbiosis on their survival. In

addition, there is a need for research into the toxicity of heavy metals to mycorrhiza and their

role in ameliorating plant metal uptake in contaminated environments. The presence of

infection in natural environments could partially explain why lower concentrations of metals

are generally found in plants in the field by comparison with those grown in pots in controlled

environments.
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Ecosystem development is an evolutionary process, and it is consequently unrealistic

to expect a properly functioning ecosystem immediately following reclamation. Nevertheless,

the revegetated area should be at least equal to that which existed initially and be capable of

stabilising the soil surface from erosion. The monitoring of habitats would provide an index of

the ecological performance of reclaimed land, as well as assisting in the assessment of

landscape quality (Tomlinson, 1984).

The need for long-term research in the field of ecology, particularly applied ecology

and ecological toxicology, is vital to understand fully how a system functions following

chronic long-term contaminations.

180



CHAPTER 11.

GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK.

This work was undertaken to evaluate the potential use of synthetic zeolites as

amendments for polluted soils. The capacity of synthetic zeolites to fix heavy metals in

polluted soils was evaluated by laboratory, greenhouse and field trial experiments.

The aim of the study was to investigate synthetic zeolites with respect to their heavy

metal absorption in contaminated soils, and namely: (1) to reveal zeolite capabilities of

absorbing and fixing heavy metals; (2) to trace changes of heavy metal content in vegetables

as a result of zeolite effects; and (3) to show zeolite effects on the speciation of heavy metals

in amended soils.

Modelling the fate of metals in ecosystems after amending polluted soils with

synthetic zeolites has been used to understand, predict and simulate the fate and distribution

of metals in soils and in plants, but also has taken into account food chain contamination in

soil-plant systems.

The extent of heavy metal pollution of plant products grown in an industrially

polluted zone varies widely. The unequal content of heavy metals in vegetable crops depends

on local industrial and geochemical conditions, on the type of crop (its ability to limit the

inflow of excess ions into edible parts of the plant), and on the chemical characteristics the

priority heavy metals have in accumulating in the plants.

The application of zeolites in reducing soil phytotoxicity is suggested in two areas of

major concern: 1) for safer food production in slightly polluted soils, and 2) in highly polluted

areas which are devoid of vegetation, such as in the vicinity of metal smelters, as a

reclamation policy to encourage the development of a vegetation cover, with the main

objective of reducing pollution dispersion by wind erosion and groundwater percolation

(Vangronsveld and Clijsters, 1992).

The efficiency of synthetic zeolites as potential amendments for in situ land

reclamation was investigated gradually, by analysing their effect upon each link of the food

chain. The zeolite characteristics were identified by TGA, SEM and XRD techniques. The

synthetic zeolites were then exchanged with different metals in solution and binary ion-

exchange isotherms were determined. This allowed a first estimation of their ability to trap

heavy metals by ion-exchange processes. The overall efficiency of zeolites for ion-exchange

was: 4A> P> Y (copper (%): 64> 63 > 59; cadmium (%): 68 >55 > 42; zinc (%): 70 > 67
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> 65 and lead (%): 50 > 45 > 44) (Table 3.10.). The possibility of reclamation of polluted

soils, strongly contaminated by different heavy metals, was studied by amending the soils with

three different synthetic zeolites: P, 4A and Y. The efficiency of three synthetic zeolites for

reducing metal bioavailability was tested on three contaminated soils: Trelogan, Prescot and

Gateacre. These three soils were amended with each zeolite in three different concentrations

(0.5%, 1% and 5%), whereas untreated soil samples served as controls.

Correlations between extractable fractions and uptake by test plants have been used

to estimate bioavailability of soil metals. The complexity of soil metal reactions and

transformations is the reason why it is so difficult to predict soil metal bioavailability, mobility

and retention (Ross, 1994). It is important to be able to identify the forms of metals in the

soil, especially in the soil solution, in order to more fully understand the dynamics of the metal

in agricultural and natural ecosystems.

A sequential extraction procedure on zeolite-amended soils indicated a metal

redistribution after incubating the soils with synthetic zeolites, namely a decrease in the

exchangeable metal fraction and an increase in the residual fraction for all three zeolites. The

mobility, bioavailability, and potential phytotoxicity of copper, cadmium, lead and zinc were

investigated using soil extractions (i.e. water, ammonium acetate, hydrogen peroxide and

nitric acid). The bioavailable fraction of metals decreased significantly after adding the zeolites

to the soils. As a general trend, increasing zeolite concentration from 0.5% up to 5% resulted

in more exchangeable metals being trapped in the zeolite cages. The highest efficiency was

shown by zeolite P, which decreased the ammonium acetate-extractable metals in amended

soils by 60% for Trelogan, 72.4% for Prescot and 65.6% for Gateacre (Fig. 5.2.).

In order to estimate how realistic the results of the sequential extraction experiments

may be in relation to soils, the potential beneficial effect of these amendments on metal

leaching from the contaminated soils was estimated. The ion exchange properties of the

zeolites can be used to retain selected ions in the soil. The main action of an effective sorption

additive is to enhance the capacity of the soil and retain the contaminant to minimise leaching.

Soil solution studies indicated the potential of using synthetic zeolites for reducing metal

leaching from contaminated soils. Semi-field simulations of percolation showed that the

beneficial effect of synthetic zeolites was marked: the amount of percolating metals was

reduced with more than 40% for zeolite Y and over 50% for the other two zeolites. The

relatively high mobility of cadmium and zinc (through the soil profile) were evident from the

distribution of these metals in the ammonium acetate and water soluble fractions of

unamended soils. A smaller amount of copper and lead were present in these leachates and
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the concentrations of all four elements studied were much less in the presence of synthetic

zeolites. The increased amount of zeolites (0.5, 1 and 5%) and the type of zeolite (P, 4A

or Y) influenced the values.

Column experiments (Chapter 6) indicated that the metal-exchanged zeolites are

stable over a period of several months, as indicated by continually low metal concentrations in

the eluent. The addition of synthetic zeolites to contaminated soils is very effective as a

remedial treatment, even at low rates of application (0.5% and 1% by weight). After adding

synthetic zeolites to the contaminated soils, the bioavailable fraction of metals decreased by

over 40% for zeolites P and 4A and by 32% for zeolite Y in Trelogan soil, by more than 52%

for zeolites P and 4A and by 45% for zeolite Y in Prescot soil, and by 47% for zeolite P. 51%

for zeolite 4A and only by 39% for zeolite Y for Gateacre soil (Tables 6.3. - 6.6.).

The effect of the three synthetic zeolites: P, 4A and Y upon the second link of the

food chain, the plants, was evaluated in greenhouse experiments with mono- and

dicotyledonous plants.

The three soils under study are contaminated with heavy metals: Trelogan soil

contains 80 [tg.g-1 cadmium, 17 700 lig.g -1 zinc and 10 300 [tg.g-1 lead (Table 4.4.), which are

far above the critical concentration of these metals in soils: 8 lig.g -1 for cadmium and 400

jig.g-1 for zinc or lead (Table 4.5.). Prescot soil is highly contaminated with copper (1100

lig.g-1 ), concentration far in excess from the critical permissible copper level in soils (125

Gateacre soil has a high concentration of cadmium (25 lig.g -1 ), compared to normal

soil (8 lig.g-1 ), and also lead (575 lig.g -1 ), concentration above the maximum permissible level

(4001.tg.g-1 ) (Alloway, 1995).

Greenhouse and field investigations were conducted to determine the effect of

incorporating synthetic zeolites into polluted soils on plant yield and metal concentration.

Glasshouse experiments were designed to study the direct effect of synthetic zeolites 4A, P

and Y on the dry matter yield of four test plants: ryegrass, sunflower, maize and willows. The

high levels of contaminant metals in the plant tissue of trial plants grown on the three

contaminated soils reached phytotoxic concentrations in nearly all cases. The tissue

concentration of all the metals studied showed a significant reduction in the presence of

synthetic zeolites in the roots and leaves of the test plants in zeolite-amended soils.

Copper: The normal copper range in plants is 5-20 [tg.g -1 , and the critical range

is 20-100 1.tg.g-1 (Table 4.5.). For the foliage of ryegrass, sunflower and maize grown in

Gateacre soil, the copper concentrations were below the upper copper critical range (100
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pg.g.1 ) for the unamended soil and in the normal range (5-20 [tg.g -1 ) for the zeolite-

amended Gateacre soil (Fig. 7.2., 7.15. and 7.16.). For sunflower and maize plants

grown on amended or unamended Prescot soil, the copper concentrations were

phytotoxic, as they were above the critical limit. The same results were obtained for

willow shoots in Prescot soil (Fig. 7.9.-7.12. and 7.41.). The copper concentration for

the ryegrass grown on amended Prescot soil was just under the critical upper limit. For

the roots of sunflower and maize grown on Gateacre soil, the copper concentrations

were under the upper critical limit for untreated and treated soil, but the presence of

synthetic zeolites decreased copper concentrations to lower values than the untreated

control. The same results were obtained for willow shoots in Gateacre soil and for

willow leaves in Prescot and Gateacre soil (Fig. 7.1., 7.13., 7.14. and 7.42.-7.44.).

Cadmium: The normal cadmium range in plants is 0.1-2.4 lig.g -1 , and the critical

range is 5-30 lig.g -1 (Alloway, 1995). Amending Prescot soil with synthetic zeolites

resulted in a decrease of cadmium concentrations in ryegrass, sunflower and maize

plants. Cadmium levels were in the normal range, therefore not phytotoxic for the plants

(Fig. 7.5. and 7.17.-7.20.). For zeolite-amended Gateacre soil, the cadmium

concentrations were well below the upper critical limit. The addition of synthetic zeolites

to this soil caused a decrease of phytotoxicity in the test plants. The same results were

noted for willow in both amended soils. Cadmium concentrations in the unamended

Gateacre soil were under the upper critical limit (Fig. 7.6., 7.21.-7.24. and 7.45.-7.48.).

Zinc: For zinc, the upper limit is equal for normal and critical range in plants,

namely 400 lig.g.1 (Table 4.5.). For sunflower plants and maize roots grown on Prescot

soil, the synthetic zeolites decreased the zinc concentrations below 400 p.g.g -1 . Zinc

concentrations in the unamended Prescot and Gateacre soil for ryegrass, sunflower and

willow and also for maize foliage in Prescot soil were in the normal range and the

addition of zeolites to these soils resulted in an important decrease in zinc concentrations

towards the lower normal limit in plants.

Lead: The normal lead range in plants is 0.2-20 ps.g -1 , and the critical range is

30-300 lig.g-1 (Alloway, 1995). Addition of synthetic zeolites to Prescot and Gateacre

soils resulted in a decrease in lead content of the test plants under the upper critical limit

(300 [tg.g-1 ) (Fig. 7.3., 7.4., 7.33-7.40. and 7.53.-7.56.).

Amending polluted soils with synthetic zeolites decreased the total metal fraction

in plants to less phytotoxic levels than the untreated controls, but the metal
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concentrations in the plant tissues remained above the upper critical limit of metals in

plants, which are: 100 p.g.g -1 for copper, 30 lig.g -1 for cadmium, 400 lig.g-1 for zinc and

300 gg.g-1 for lead (Table 4.5.) (Alloway, 1995).

It is not certain whether the toxicity symptoms produced in the plant were solely due

to the excessive levels of heavy metals in the plant tissue or that the toxicity was associated

with ionic imbalance involving other essential trace metals. The measured levels of

contaminant metals in tissues are indicators of potential toxicity but the development of

toxicity may be associated more with the localisation and chemical forms of the metals at the

cellular level. Of the four metals studied, zinc and cadmium were more concentrated in the

plant shoots and copper and lead in the plant roots. Comparing these observations with the

chemical forms of the metals from the sequential extraction experiments (Chapter 5), the

mobility of cadmium and zinc were found to be higher than copper and lead within the soil-

plant system studied.

Metal accumulation in food crops at phytotoxic levels is a great cause of concern

due to the risk of increased dietary exposure in consumers. The determination of the

heavy metals in tissue of food plants is an important factor in determining their

accumulation in the human body. Addition of synthetic zeolites to contaminated soils

decreased the metal concentrations in the plant tissues under the phytotoxic

concentrations. By applying synthetic zeolites to less contaminated soils, the metal

concentrations in the plant tissues could decrease below the critical range of metals in

plants, therefore improving the quality of the crops.

ANOVA and Tukey's Multiple Comparison Test were used to determine significant

differences (P < 0.05) between short- and long-term treatments regarding zeolite type and

concentration, plant and soil heavy metal concentrations, and plant species productivity. For

all three zeolites, there was a clear trend towards decreased metal bioavailability in samples

taken from the sewage-sludge and copper refinery sites, even though some of the analysed

metals did not occur in elevated amounts at all locations.

Application of synthetic zeolites to polluted soils results in a sharp decrease in the

concentration of bioavailable heavy metals. The reduced concentrations of mobile forms of

heavy metals in the amended soils had a positive effect on plant growth and heavy metal

content in the plant parts (roots, stems and leaves).

The effect of synthetic zeolites on the total metal contents depended upon their

effects on both the metal concentrations and dry matter yields of the test plants. The total
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metal uptake by plants was calculated by multiplying the metal concentration with dry

matter yields of the plant species for each pot (Appendix 4).

Ryegrass: For ryegrass in Prescot soil, zeolite P at 5% decreased the total metal

content compared to untreated control. All zeolites at all concentrations decreased the

total zinc and lead uptake below that of compost. The total uptake of copper, cadmium

and zinc was lower for Gateacre soil amended with zeolite P and 4A compared to

untreated control. The same result was obtained for lead when zeolite P was applied to

Gateacre soil. For zinc and lead, the total uptake was lower when Gateacre soil was

amended with zeolite Y at 0.5% (1 mg/pot) and 5% (1.35 mg/pot). All zeolites at all

concentrations decreased the total copper uptake below that of compost (Appendix 4 -

Table 4.1.).

Addition of synthetic zeolites to Prescot soil increased cadmium uptake by

ryegrass compared to the untreated control and compost, therefore increasing the risk of

metal transfers in the food chain. Amending Gateacre soil with zeolite Y produced a

similar effect (Appendix 4 - Table 4.1.).

Sunflower: For sunflower in Prescot soil (Appendix 4 - Table 4.2.), zeolites P

and Y at all concentrations and 1% zeolite 4A decreased the total copper and zinc

uptake below that of compost for the roots. The total lead uptake was lower when

zeolites were applied to Prescot soil compared to the lead uptake for the sunflower

plants grown on compost soil (Appendix 4 - Table 4.2.). All zeolites decreased the total

metal uptake below that of compost or untreated control for copper, cadmium and zinc

in the sunflower plants grown on Gateacre soil. Zeolite Y decreased the total lead uptake

below that of compost for the sunflower foliage in Gateacre soil. For roots, the same

zeolite gave identical results only when it was applied at lower concentrations (0.5% and

1%) (Appendix 4- Table 4.3.).

Zeolites increased the total copper uptake in the sunflower roots and also the

total cadmium uptake above that of compost for the sunflower plants grown on Prescot

soil (Appendix 4 - Table 4.2.). The sunflower plants did not survive in unamended

Prescot soil. All zeolites increased cadmium uptake above the compost level for the

sunflower foliage in Gateacre soil (Appendix 4 - Table 4.3.).

Maize: For maize roots in amended Prescot soil, the total copper and lead

uptake were below that of untreated control or compost. In addition, zeolite Y decreased

the total cadmium and zinc uptake below that of compost and the total metal uptake was

lower than for untreated control when zeolite Y was applied at the lowest rate (0.5%)
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(Appendix 4 - Table 4.4.). For maize plants in Gateacre soil, all zeolites at different

concentrations decreased the total metal uptake below that of untreated control. The

copper uptake was lower in amended Gateacre soil compared to compost. Zeolite P at

1% and 5% decreased the total zinc (0.17 mg/pot for 1% zeolite and 0.12 mg/pot for

5%) and lead (0.1 mg/pot for both concentrations) uptake below that of compost (0.3

mg/pot zinc and 0.21 mg/pot lead) for maize roots (Appendix 4 - Table 4.5.).

Zeolites P and 4A increased the total uptake of all metals for maize roots in

Prescot soil, as they increased the dry matter yields. Both zeolites gave the same results

also for copper and cadmium uptake in the foliage (Appendix 4 - Table 4.4.). The total

cadmium uptake was higher than for compost for the maize plants grown on amended

Gateacre soil (Appendix 4 - Table 4.5.).

Willow: The total metal uptake was lower than for untreated control for willow

(shoots) when grown on zeolite amended Prescot soil, and also copper uptake was

decreased for leaves in amended Prescot soil. For the leaves of the willow grown on

Prescot soil, zeolite Y decreased the total cadmium, zinc and lead uptake compared to

untreated control (Appendix 4 - Table 4.6.). 0.5% zeolite P and 4A decreased the total

metal uptake compared to the untreated control for the willow (shoots) grown on

Gateacre soil. The same zeolites at the same concentrations decreased zinc uptake (0.13

mg/pot for shoots and 0.19 mg/pot with zeolite P and 0.2 mg/pot with zeolite 4A for

leaves) compared to untreated control (0.23 mg/pot for shoots and 0.25 mg/pot for

leaves) and also copper uptake when zeolite P was applied (0.054 mg/pot with zeolite P

compared to 0.08 mg/pot for untreated control for shoots and 0.12 mg/pot with zeolite P

compared to 0.16 mg/pot for untreated control for leaves) and cadmium uptake (0.044

mg/pot with zeolite and 0.054 mg/pot without zeolite for leaves) with zeolite 4A at the

lowest concentration (0.5%). A higher concentration (1%) of zeolite P also decreased

the total copper, cadmium and zinc uptake below that of untreated control for willow

(leaves) in Gateacre soil, whereas the addition of zeolite 4A decreased copper, cadmium

and zinc uptake for willow leaves and also zinc uptake in the shoots of willow grown on

Gateacre soil. Zeolite Y had to be applied at the highest concentration (5%) in order to

decrease copper and zinc uptake for willow leaves in Gateacre soil (Appendix 4 - Table

4.7.).

Zeolites P and 4A increased zinc uptake for willow (leaves) in Prescot soil above

that of untreated control (0.42 mg/pot) and far above that of compost (0.13 mg/pot)

(Appendix 4 - Table 4.6.). The willows did not survive when Gateacre soil was amended
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with zeolite Y at lower concentrations (0.5% and 1%). 5% zeolite Y increased total

metal uptake for shoots and cadmium (0.055 mg/pot) and lead (0.57 mg/pot) uptake for

the leaves of the willow grown in Gateacre soil (Appendix 4 - Table 4.7.).

These results demonstrate the potential of synthetic zeolites as amendments for

polluted soils and an assessment of the overall remedial capacity of metal-immobilising

substances. The addition of synthetic zeolites to the polluted soils decreased levels of heavy

metals in plant tissues to less phytotoxic concentrations compared to untreated controls and

increased growth considerably. A decrease in plant metal concentration, following a strong

growth response to applied synthetic zeolites, was clearly observed.

The synthetic zeolites decreased the bioavailable fraction of metals by a double effect:

ion-exchange processes and pH increase. The lower plant accumulation of heavy metals when•

grown in polluted soils amended with synthetic zeolites can be attributed to the limited

number of metal cations available for retention by the negative sites of the plant tissues.

Other soil amendments decrease the mobility of metals in soils by a pH increase,

therefore different amendments (lime and compost) were tested to compare their ability to

immobilise heavy metals in contaminated soils.

Addition of zeolite 4A to compost soil increased total uptake for zinc and lead

compared to untreated compost (Table 8.1.). Amending Prescot soil with zeolite 4A

decreased total uptake for all four metals in the sunflower plants (Tables 8.1. and 8.2.)

compared to lime, and, most significant, the total uptake was lower than for untreated

compost for cadmium, zinc and lead.

Increasing the amount of fertiliser increased total metal uptake for cadmium, zinc

and lead for ryegrass grown on treated and untreated Trelogan soil. The total copper

uptake was lower than for compost (0.012 mg/pot for Trelogan amended with zeolite P

at 0.5% compared to 0.062 mg/pot for compost), but the metal uptake increased

proportionally with the increase of fertiliser rates (Table 9.2.).

The most effective proved to be synthetic zeolites, trapping and holding heavy metals

by a process of ion-exchange. Consequently, metal solubility, mobility and toxicity are greatly

reduced resulting in diminished leaching by rain or groundwater.

Preliminary pot trials provided an indicator which would subsequently assist in

planning field trials, as considerable problems are inevitably encountered when the results

of laboratory investigations are extrapolated to the 'real world'. A field trial was initiated

at B.I.C.C. Prescot, in order to check directly in a landscape environment the results

obtained in the laboratory for the synthetic zeolites: P and 4A, particularly their long-
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lasting efficiency in heavy metal immobilisation. Zeolites P and 4A applied at 1% level

proved to be an effective treatment for the remediation of the contaminated site, as

indicated by improved plant growth and low metal concentrations in the water soluble

fraction of the soil.

The results of this study are in agreement with previous results obtained by other

researchers (Breck, 1974; Gworek and Borowialc, 1991; Gworek, 1992) in model, pot

(greenhouse), and field experiments concerning the addition of synthetic zeolites into polluted

soils and the binding of heavy metals by natural and synthetic zeolites.

The data obtained from laboratory experiments and greenhouse trials allowed a

more comprehensive understanding of heavy metal immobilisation by synthetic zeolites

due to ion-exchange mechanisms.

A solution to the problem of land reclamation can be an enhanced immobilisation

of the metals through the addition of metal-immobilising soil additives. This was

demonstrated by the significant decrease in the bioavailable fraction of metals after

adding synthetic zeolites to the contaminated soils. This study has shown that, on metal

polluted soils, the use of synthetic zeolites was an efficient reclamation technique, giving

reasonable prospects of long-term success on these sites.

Further Directions

This work has evaluated the potential usefulness of synthetic zeolites as amendments

for polluted soils. The results suggest that benefits certainly exist, however further work is

necessary to demonstrate the economic value of synthetic zeolites in a soil fertility

management system. The suitability of zeolites as an amendment to soils in terms of an

economically viable soil fertility program will depend on their interaction with nutrients

applied as conventional fertilisers.

Synthetic zeolites exhibited a promising potential to reduce heavy metals transfer

from soil to soil solution and their entry into the food chain via plant uptake. These materials

are also promising for in situ remediation technologies geared to restore heavy metal-

contaminated soils. However, little is known about the kinetics and persistence of these

additives under field conditions. In particular, the degree of mixing between treatment

chemicals and contaminated soil to achieve complete immobilisation and the required dosages

should be evaluated.
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Work planned for future investigations includes a more realistic assessment of the

length of time that each amendment will remain viable, and how long conditions need to be

ameliorated for vegetation to become established and self sufficient. Monitoring test sites

when established will follow the success of each amendment in the field.

The optimum levels of application must still be determined for individual soil types

and species, as must the frequency of application, the optimum particle size, and the nature of

possible chemical pretreatments. Future work leave open possibilities for continuing to

monitor ecosystem structural and functional changes following zeolite application, looking at

sites with low metal contamination, amending them with various natural and synthetic

zeolites.

Relatively few studies have continued to monitor crop yields or changes in soil

physical and chemical properties over an extended period of time with zeolite applications.

Past research indicates that bioavailability and leaching of nutrients are influenced by zeolites,

but exact relationships have not been documented for essential plant nutrients, heavy metals,

or various soil types (clay, loam, sand, etc.). Long-term studies (5 years or longer) are needed

to determine plant uptake of elements from contaminated soils that have been amended with

synthetic zeolites.

The resistance of synthetic zeolites to chemical weathering, microbial

degradation, low pH, or varying pE is unknown, which further suggests the need for

more comprehensive long-term investigations.

Cost-efficient and cost-effective methods for applying synthetic zeolites to soil have

not been investigated, nor have the various methods of applying and incorporating zeolites

been adequately compared (presowing to seedbed; addition at seedling stage; multi-

application throughout growth, compared to an initial, single application). Questions still arise

as to whether they should be surface applied, trenched, banded, plowed under, disked in, or

applied as a mulch.

Overall, the potential for using synthetic zeolites for the application discussed in this

study is promising. However, a number of areas require additional research before synthetic

zeolites can be used safely and reliably for all their potential uses. The areas of research

include the following: (i) The optimum application parameters for use of synthetic zeolites

need to be defined. This involves study of the rate, time, method and frequency of application

to specific soil types. (ii) Marketing studies with farmers and local authorities to assess their

acceptance of synthetic zeolites as soil conditioners should be conducted. (iii) Determination

of the best method(s) of applying synthetic zeolites to land is needed.
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The numerous possibilities which exist to utilise the unique chemical and physical

properties of synthetic zeolites will surely receive even greater attention in the future.

Finally, there is an urgent need for standardised metal toxicity assessments in

contaminated soils and for the development and long-term monitoring of in situ contaminated

soil treatments for land and habitat restorations.
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Appendix 5



Table 5.1. ANOVA (One-way) and Tukey's Test.

Code	 Zeolite	 Concentration (%)
1
2
	

P	 0.5
3
	

P	 1
4
	

P	 5
5
	

4A	 0.5
6
	

4A	 1
7
	

4A	 5
8
	

Y	 0.5
9
	

Y	 1
10
	

Y	 5

Treatment F P

Cu Rg F P 16.46 0.000

Cu Rg F G 3.26 0.040

CdRgFP 1.54 0.277

Cd Rg F G 7.44 0.002

Zn Rg F P 9.76 0.002

ZnRgFG 10.16 0.001

Pb Rg F P 4.48 0.024

PbRgFG 6.33 0.004

Cu Sf R P 6.66 0.044

Cu Sf R G 5.26 0.021

CdSfRP 1.90 0.279

CdSfRG 7.89 0.007

Zn Sf R P 2.06 0.253

Zn Sf R G 8.86 0.005

PbSfRP 10.20 0.021

PbSfRG 9.33 0.004

Cu Sf F P 13.46 0.002

Cu Sf F G 17.80 0.000

Cd Sf F P 1.06 0.463

Cd Sf F G 43.46 0.000

Zn Sf F P 10.25 0.004

Zn Sf F G 10.99 0.000

PbSfFP 17.78 0.001

PbSfFG 3.48 0.033
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Table 5.1. continued

CuMRP 37.19 0.001

CuMRG 10.59 0.005

CdMRP 2.98 0.124

CdMRG 2.72 0.119

ZnMRP 3.67 0.086

ZnMRG 10.20 0.005

PbMRP 5.62 0.038

PbMRG 4.01 0.054

CuMFP 5.99 0.015

Cu M F G 7.53 0.005

CdMFP 1.14 0.433

Cd M F G 2.59 0.097

Zn M F P 16.52 0.001

ZnMFG 7.25 0.005

PbMFP 24.18 0.000

PbMFG 5.95 0.010

CuWSP 2.73 0.105

Cu W S G 4.74 0.021

CdWSP 1.95 0.199

Cd W S G 1.62 0.250

ZnWSP 6.71 0.011

ZnWSG 14.82 0.000

PbWSP 2.02 0.186

PbWSG 1.09 0.426

Cu W L P 5.98 0.002

CuWLG 8.61 0.001

CdWLP 11.71 0.181

CdWLG 3.70 0.029

ZnWLP 4.88 0.005

ZnWLG 5.34 0.000

PbWLP 2.19 0.100

Pb W L G 2.43 0.097

Note: Rg=ryegrass; Sf=sunflower; M=maize; W=willows; P=Prescot; G=Gateacre;
R=roots; F=foliage; S=shoots; L=leaves.
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