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Abstract 
 
Assessing compounds for their pharmacological and toxicological properties is of 

great importance for industry and regulatory agencies. In this study an approach 

using open source software and open access databases to build screening tools 

for receptor-mediated effects is presented. The retinoic acid receptor (RAR), as a 

pharmacologically and toxicologically relevant target, was chosen for study. RAR 

agonists are used in the treatment of a number of dermal conditions and specific 

types of cancer, such as acute promyelocytic leukemia. However, when 

administered chronically, there is strong evidence that RAR agonists cause 

hepatosteatosis and liver injury. After compiling information on ligand-protein-

interactions, common substructures and physico-chemical properties of ligands 

were identified manually and coded into SMARTS strings. Based on these 

SMARTS strings and calculated physico-chemical features, a rule-based 

screening workflow was built within the KNIME platform. The workflow was 

evaluated on two datasets: one with RAR agonists exclusively and another large, 

chemically diverse dataset containing only a few RAR agonists. Possible 

modifications and applications of screening workflows, dependent on their 

purpose, are presented. 

 

1. Introduction 

mailto:M.T.Cronin@ljmu.ac.uk
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Predicting and understanding the properties of new chemical entities is not 

trivial, whether in the development of novel pharmaceuticals or in assessing 

potential toxicity. However, in silico, Quantitative Structure-Activity Relationship 

((Q)SAR) and read-across approaches provide a means of rapidly obtaining 

information (Blackburn and Stuard, 2014; Patlewicz et al., 2013; Cronin et al., 

2013). These can be supported by, or developed from, mechanistic 

understanding (Zhu et al., 2014). Additionally the concept of the Adverse 

Outcome Pathway (AOP), i.e. describing a sequence of causally linked events at 

different biological levels, is increasingly being applied to investigate adverse 

effects (Vinken et al., 2013). Models may be developed from knowledge of the 

first key event of an AOP, the molecular initiating event (MIE). In AOP 

terminology the MIE is followed by cellular and organ responses, which may 

ultimately result in an adverse effect to an organ, organism or population 

(Ankley et al., 2010). The MIE represents the initial interaction between 

molecule and the target. Examples of MIEs include covalent binding to DNA and, 

of relevance for this study, receptor binding (Gutsell and Russell, 2013; Allen et 

al., 2014). In pharmacology the mode of action, similar to an AOP, incorporates a 

MIE which describes how a compound interacts with specific proteins, e.g. 

receptors, carriers and enzymes. Instead of an adverse effect, the aim in 

pharmacology is, to achieve a beneficial effect, such as the prevention or 

treatment of a disease (OECD, 2012; FDA, 2013). 

 

Toxicity may also be brought about by interactions with specific proteins, such 

as receptors. Endocrine disruptors, for example, are a class of toxicants known to 

cause their effects by receptor-mediated mechanisms. As such, models for 

endocrine disruption are usually built around knowledge of receptor 

interactions, e.g. binding to the oestrogen receptor. For instance, one approach to 

modelling these effects has been proposed recently by Kolšek et al. (2014) who 

developed a tool to identify nuclear receptor ligands based on AutoDock Vina; a 

freeware to investigate ligand-protein-interactions (Molecular Graphics 

Laboratory, 2014). Limitations of this type of approach are associated with 

several of the typical issues of docking. First, nuclear receptors, particularly the 
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non-steroid receptors, are considered to be flexible (Nettles et al., 2007). An 

inflexible docking model, such as AutoDock Vina, is unlikely to cope with the 

diversity of ligands (cf. full, partial, inverse agonists and antagonists). The second 

limitation, when docking is applied on its own, is that kinetics are systemically 

ignored, which might be vital for in vivo biological activity, such as target-organ-

toxicity (Campbell, 1983; Davis and Riley, 2004).  

 

The current study focuses on the retinoic acid receptor (RAR), a target relevant 

for pharmacology and toxicology in equal measure. The RAR is a nuclear 

receptor which can be divided into three subtypes, RAR-α, RAR-β and RAR-γ. 

Bound together with the retinoid X receptor (RXR) as a heterodimer, RAR 

regulates genetic expression. All three subtypes of the RAR are activated by all-

trans retinoic acid and 9-cis retinoic acid, which are derivatives of vitamin A (Liu 

et al., 2014). Ligands are used in the treatment of dermal diseases, e.g. Acne 

vulgaris, Psoriasis vulgaris, Keratosis pilaris and specific types of cancer, such as 

acute promyelocytic leukemia (Alizadeh et al., 2014; Leyden et al., 2005; Allen 

and Bloxham, 1989; Dicken, 1984). The toxicological effects of RAR agonists 

include changes in lipid metabolism, which may cause hepatosteatosis and 

leading to liver inflammation, fibrosis and eventually liver failure. Teratogenic 

effects and neural disorders, such as nausea and headache, have been also 

reported from retinoids (Moya et al. 2010; Adams, 1993; Biesalski, 1989; Shalita, 

1988). There is, therefore, a great need to develop tools to identify these 

compounds which show these effects. 

 

There are many open source software applications and open access databases 

supporting modern life sciences and informatics. A number of these open 

access/source technologies can be utilised to develop tools and approaches for 

predictive and/or computational toxicology. Some technologies relevant to this 

study are described below. 

 

The KoNstanz Information MinEr (KNIME) technology is freely available 

software to analyse and mine data, as well as to build and evaluate predictive 

models. The software is based on a graphical user interface utilising so called 
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“nodes” as key units to alter and process data in a “workflow”. The basic KNIME 

workflow technology, as well as many nodes and add-ons for chemo-informatics, 

is available from www.knime.org. Many types of data can be handled, including 

chemical formats, such as the Simplified Molecular Input Line Entry System 

(SMILES) and SMiles ARbitrary Target Specification (SMARTS) strings (Daylight, 

2014). KNIME has a strong community of developers building additional nodes 

for chemo-informatics applications (amongst others), to edit data, calculate 

physico-chemical properties, analyse structural features etc. It has been shown 

to be useful in developing workflows for screening tools (Saubern et al., 2011) in 

the context of predictive toxicology (KNIME, 2013). Furthermore, many other 

programming languages, such as R, Python or Perl, can be used within a KNIME 

workflow (KNIME, 2014; Richarz et al., 2013; Berthold et al., 2007).  

 

With regard to biological activity, there are an increasing number of resources 

available.  For instance, ChEMBL is a database of bioactive molecules comprising 

over 1.5 million compounds and over 9,000 biological targets. Activity values are 

reported for a variety of endpoints including Ki, Kd, AC50, IC50, and EC50. The 

database is curated manually and maintained by the European Molecular Biology 

Laboratory (ChEMBL, 2014). A good example of the application of ChEMBL and 

the utilisation of its resources was published by Czodrowski (2013). In that 

study, a detailed analysis of ChEMBL hERG assay data was used to build 

classification models relevant for drug development and demonstrated the 

applicability of these data for modelling and value that may result from data 

mining (Czodrowski, 2013). 

 

Another valuable resource is the Protein Data Bank (PDB) which contains over 

100,000 crystallographic structures of proteins such as receptors, transporters 

and enzymes. A quarter of these protein structures are of human origin, the 

other structures are from other mammals (mainly rodents) and bacteria. For 

some proteins, such as the RAR, there are data for several subtypes, species and 

ligands (PDB, 2014; Berman et al., 1999). Besides the linked publications for 

every entry, ligand-protein-interactions can be investigated with specific 

software, for example the freely available PyMOL (PyMOL, 2014). Visualisation 
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of protein structures of targets, such as receptors, transporters and enzymes, 

and their corresponding ligands helps to understand ligand-protein-interactions, 

e.g. hydrogen bonds between ligand and ligand-binding-domain of the protein. 

 

Whilst there is a growing number of computational resources, some of which 

have been developed for computational toxicology, up until now there has been 

little effort, and few publications demonstrating the utility of these disparate 

sources of information and techniques. The aim of this investigation, therefore, 

was to present a hands-on approach to develop screening tools applicable for 

many pharmacological and toxicological challenges. The methods applied are 

based firstly on gathering publically available data on RAR ligands (from 

ChEMBL and PDB) and secondly extracting information on physico-chemical 

space and structural features that are relevant to activity. Thirdly, this 

information was used to build a rule-based screening tool within KNIME. The 

purpose of the screening tool in this study was to identify potential RAR ligands. 

RAR is only one example target, i.e. this approach was designed to provide a 

framework that can, in principle, be used to create screening tools for other 

receptors should sufficient data be available. 
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2. Methods 

 

The RAR and its ligands were investigated solely using freeware (N.B. PyMOL is 

free for academic users only) and open access databases. 

 

2.1 Analysis of RAR ligands using the PDB 

 

The PDB 3.3 (PDB, 2014) was searched for human RAR structures, i.e. RAR-α, 

RAR-β and RAR-γ. The structures obtained were investigated visually with 

regard to their ligand-protein-interaction within PyMOL 1.3. Common structural 

features of the ligands, particularly when apparently responsible for similar 

ligand-protein-interactions, were extracted. The extracted structural features 

combined information about molecular distances and electric forces, which may 

be responsible for hydrogen bonding or the occupation of lipophilic pockets. 

Subsequently the structural features were coded manually into SMARTS strings. 

These SMARTS strings were later used in the rule-based workflow to predict 

potential RAR ligands.  

 

2.2 Extracting data from ChEMBL 

 

The ChEMBL_19 (ChEMBL, 2014) database was searched for the target “RAR”. 

Human data from compounds with Ki (binding affinity), Kd (dissociation 

constant), AC50 (50% activity in molar units) and EC50 (50% effect concentration 

in molar units) values towards RAR-α, RAR-β and RAR-γ were downloaded, 

combined and sorted by the pChEMBL value. The pChEMBL value is an approach 

to standardise different types of activity values (Bento et al., 2013). Every 

compound with a value of not less than five was regarded as being active. This is 

consistent with the activity interpretations of the ChEMBL database. 

 

2.3 Physico-chemical property calculation 

 

The physico-chemical properties of RAR ligands were calculated using the CDK 

node for molecular properties within KNIME 2.9.4 (incl. community 
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contributions). Ranges (i.e. minimum and maximum values) for different types of 

calculated descriptors for the active ligands were studied including: vertex 

adjacency information magnitude (VAIM) for structural complexity, number of 

rotational bonds (RB) for flexibility, molecular weight (MW) for molecular size 

and the logarithm of the water-octanol partition coefficient (XLogP) for 

lipophilicity. These four descriptors and their calculated property ranges were 

utilised to give an insight into the physico-chemical applicability domain (i.e. 

space) of active RAR ligands. 

 

2.4 Building rules for the screening workflow 

 

The analysis of the PDB has provided structural features coded as SMARTS 

strings; whilst the analysis of the ChEMBL dataset provided physico-chemical 

property ranges. Both describe the necessary features for compounds to be 

active RAR ligands. These features can be interpreted as rules, where compliance 

and violation will distinguish between RAR ligands and non-ligands respectively.  

These rules, characterising the physico-chemical space (CDK node for molecular 

properties) and structural features (Indigo substructure matcher), were written 

into a KNIME workflow. When executed, this KNIME “screening workflow” will 

identify potential RAR ligands.  

 

2.5 Testing the screening workflow 

 

The RAR ligands, identified from the ChEMBL dataset, were used to test if all 

active compounds were identified by the “screening workflow”. Since no external 

validation dataset was available, the dataset of hepatotoxicants provided by 

Fourches et al. (2010) was screened.  The Fourches dataset is a large, chemically 

diverse dataset (951 compounds), which contains hepatotoxic and non-

hepatotoxic drug molecules, including several RAR ligands (Fourches et al., 

2010). As the number of RAR ligands is unknown, the performance statistics 

(sensitivity, specificity etc.) of the screening workflow cannot be calculated, and 

the predictions for the Fourches dataset are for illustration only. This approach 
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cannot be considered a full validation as the Fourches data could include liver 

damage by a number of mechanism not restricted to RAR binding. 
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3. Results 

 

This study utilised a number of data sources, such as the PDB for ligand-protein-

interactions and the ChEMBL database for chemical structures of active 

compounds against RAR. 

 

3.1 Ligand-protein-interaction in RAR 

 

20 human RAR protein structures bound to different ligands were retrieved from 

the PDB. These were 4JYG, 4JYH, 4JYI, 4DQM, 4DM6, 4DM8, 3KMR, 3KMZ, 1XAP, 

1FD0, 1FCX, 1FCY, 1FCZ, 1DSZ, 1EXA, 1EXX, 3LBD, 4LBD, 2LBD and 1HRA (PDB, 

2014). Independent of receptor subtype and ligand, as proposed by Klaholz et al. 

(2000) the hydrogen bond between an oxygen (most often from a carboxylic 

group) and the arginine R278 was found to be of great importance for the ligand-

protein-interaction.  Figure 1, for example, indicates the carboxylic acid of 

retinoic acid binding to amino acid R278. 

 

 

Figure 1: Retinoic acid binding to human RAR gamma (3LBD), highlighting the distance of 2.1 Å 

between R278 and an oxygen of the carboxylic group of retinoic acid (investigated with PyMOL 

1.3) 
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3.2 Substructures extracted from the ChEMBL database 

 

251 active RAR ligands (pChEMBL ≥ 5) were identified from the ChEMBL 

database and recorded in the supplementary information. Common structural 

features to the ligands, as identified from analysis of the chemical properties and 

visual appearance, were flexibility, a lipophilic scaffold and a terminal hydrogen 

acceptor (e.g. the carbonyl of a carboxylic group).  This information about 

essential molecular substructures and properties was coded in SMARTS strings, 

as shown in Table 1. The first rule is for a carboxylic group, an amide or a ring 

structure derived from these structures, e.g. 1,2,4-oxadiazol-5-one, that has to be 

at the end of a predominately aliphatic chain. Specific aromatic-containing 

scaffolds are possible too (cf. Fig. 3), which are still recognised by the 

substructures from Table 1. Regarding the second rule, the ring structure, e.g. 

cyclohexene in retinoic acid, can be methylated or halogenated, as the ChEMBL 

dataset of active RAR ligands revealed. 

 

Table 1: Structural features of ligands converted to rules for the KNIME workflow 

Rule SMARTS string Structural feature 

1. Arginine (R278) 

binder  

 

*~*~*~*~*~*~*~*~*~*~*~[#6](=O)~[#8]  

 

 

                    or 

 

*~*~*~*~*~*~*~*~*~*~*~[#6](=O)~[#7] 

and 

 

2. Methylated or 

halogenated ring-

system 

*1~*([F,Cl,Br,I,C])~*~*~*~*~1 

“A” or “*” is a wild card, i.e. it could represent any heavy atom 
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Figure 2: Structures of 4-{[(4-Bromo-3-hydroxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-

naphthalenyl)carbonyl]amino}-2,6-difluorobenzoic acid (A) and 4-({5,5-Dimethyl-8-[4-

(trifluoromethyl)phenyl]-5,6-dihydro-2-naphthalenyl}ethynyl)benzoic acid (B) illustrating the 

flexible nature, lipophilic character and terminal hydrogen bonding group of two chemically 

diverse potent RAR ligands 

 

 

 

3.3 Physico-chemical properties 

 

The ranges of the physico-chemical properties calculated for the 251 ChEMBL-

derived RAR ligands are shown in Table 2. The ranges were converted into rules 

which can be used as exclusion critera, i.e. if a compound has a MW of greater or 

equal to 500 Da, then it is, according to the retrieved data, unlikely to be a RAR 

ligand. The rules have some structural basis, i.e. VAIM and MW express the size 

and the complexity of the molecule respectively, and the XLogP describes the 

overall molecular lipophilicity. Beside this basic information the RB indicates the 

required flexibility of the (lipophilic) chain. Generally speaking, the chemical 

space covers small, lipophilic molecules with certain degrees of flexibility within 

the lipophilic scaffold. This is constraint with our understanding of the 

properties of the ligands and their impact on receptor binding. When dealing 

with continuous data, margins of error have been applied to the rules, e.g. lower 

limit for XLogP being 2.00 instead of 2.03 (cf. Table 2). Whilst these are arbitrary, 

they provide a usable buffer. 
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Table 2: Physico-chemical property ranges of the RAR ligands and derived rules 

Descriptor Min Max  Rule 

RB:  4 23  ≥ 4 

VAIM:  5.46 6.40  5 to 6.5 

MW:  278.13 488.25  < 500 

XLogP: 2.03 10.18  ≥ 2.00 

 

 

3.4 Building the KNIME workflow 

 

A KNIME workflow, which can be downloaded from the supplementary 

information, was created combining structural features based on the information 

from PDB and physico-chemical rules based on the ChEMBL dataset. The 

workflow is shown diagrammatically in Figure 3. The workflow takes the 

compound of interest through molecular input, implementation of physico-

chemical and structural rules in turn, resulting in an output of whether the 

compound is in or out of “binding space”. In more detail, the chemical structure 

of interest is imported as a SMILES string. Subsequently physico-chemical 

properties are calculated and the exclusion criteria (cf. Tab. 2) are applied. 

Following this, the structural rules from Table 1 are applied. In this part of the 

workflow, the input SMILES strings, which have already passed the physico-

chemical rules, are run against a set of SMARTS strings, looking for matches 

regarding rule 1, the arginine binder, and rule 2, the methylated/halogenated 

ring-system (cf. Table 1). If a compound’s calculated physico-chemical properties 

is within the defined ranges (cf. Table 2), i.e. it lies within the applicability 

domain, and contains the relevant structural features (cf. Table 1), then the 

compound is classed as having the possibility of being an active RAR ligand. If a 

compound is outside the calculated physico-chemical ranges of Table 2 or does 

not contain the structural features (cf. Table 1), it is classified as being inactive 

towards RAR. Finally the workflow, as it is built in Figure 3, exports a csv-file 

gathering the potential RAR ligands. 
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Figure 3: KNIME workflow to screen for RAR ligands indicating the different  

 

3.5 Evaluating the workflow: Screening two datasets 

 

The workflow was used to screen the active 251 compounds from the ChEMBL 

dataset and all compounds were identified as RAR ligands. 109 of 951 

compounds in the Fourches dataset (Fourches et al., 2010) were identified as 

RAR ligands. Beside retinoids and retinoid-similar structures, some steroids and 

structurally diverse drugs, such as amineptine (tricyclic antidepressant) and 

cocaine (tropane alkaloid) were identified as potential RAR binders. The 

Fourches dataset does not contain information on RAR activity, so performance 

statistics, such as Cooper statistics (Cooper et al., 1979), i.e. false positive ratio, 

sensitivity etc., are not meaningful in this context.  
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4. Discussion  

 

Extrapolation of chemistry to pharmacology or toxicology is a non-trivial, often 

even impossible, task. However, it is recognised that assessing chemicals for 

their pharmacological and toxicological properties is of great importance for 

industry and regulatory agencies. The AOP framework is increasingly seen as 

providing useable information for modelling as it describes the linkage between 

the (bio)chemistry of the MIE and the potential adverse effect on individuals and 

populations (Gutsell and Russell, 2013). A key challenge remains in the 

prediction of chronic toxicity, particularly modes of action relating to organ level 

toxicity. New technologies have the potential to exploit the wealth of data that 

will be delivered from modern database approaches such as ChEMBL and 

increasing reporting of information from molecular biology. To exploit thse data, 

tools and strategies, such as data mining, knowledge extraction techniques and 

(chemo-)informatics tools, are required. Particularly in risk assessment, the 

identification, characterization and application of chemistry from the MIE of an 

AOP is increasingly commonly used method to “group” or form categories of 

similar categories (Vinken et al., 2013; Ankley et al., 2010). Grouping is a crucial 

element of the further use of predictive toxicology approaches, such as read-

across or QSAR and is best undertaken from mechanistic standpoint (Blackburn 

and Stuard, 2014; Patlewicz et al., 2013; Cronin et al., 2013; OECD, 2012). One of 

the key challenges for grouping compounds is the definition of similarity. The 

mechanistic framework provided by the AOP paradigm gives a rational basis to 

developing chemistry based alerts (from the MIE) for grouping and ultimately 

confirming group membership using data from assays representing key event. 

 

This study has applied innovative methods to obtain structural information 

relating to an important MIE. This has been achieved by investigating protein-

ligand binding data. Thus, screening a toxicity dataset with the RAR ligand 

workflow may help to identify compounds acting by the same mechanism and 

therefore belonging in the same group. For such a group of compounds it is more 

likely to develop mechanistically valid, robust QSARs (OECD, 2014; Patlewicz et 

al., 2013; Enoch et al.; OECD 2012; 2011). In drug design, there is an interest in 
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identifying potent RAR agonists to address several types of cancer and skin 

diseases (Alizadeh et al., 2014; Leyden et al., 2005; Allen and Bloxham, 1989; 

Dicken, 1984). The interest may lie in advances towards the receptor-specificity 

(Vaz and de Lera, 2012; Schinke et al., 2010), i.e. significant activity for certain 

receptor subtypes, or pharmacokinetics (el Mansouri et al., 1995), e.g. targeted 

drug localisation. Both strategies may lead to RAR agonists with fewer side 

effects or better risk-benefit ratios. 

 

In this study information from a set of 251 active RAR ligands from ChEMBL and 

20 crystal structures of ligand-protein-interactions from the PDB was extracted 

and investigated to build a screening workflow prediction potential RAR ligands. 

The set of active RAR ligands is based on Ki, Kd, AC50 and EC50 values, that means 

beside agonists, the dataset is also likely to contain antagonists.  However, 

structural and physico-chemical information on antagonists is regarded as 

beneficial to predict agonists, as both share many chemical features. The 

disadvantage of this procedure is a higher likelihood to predict false positives, i.e. 

predicting antagonists as being active. However as a result of the precautionary 

nature of this approach, potential drug candidates in drug discovery and 

potential toxicants should be identified the screening workflow. 

 

As proposed by Klaholz et al. (2000), and confirmed by this study, all ligands are 

small, flexible compounds with lipophilic (mostly aliphatic) scaffolds and a 

(more or less) terminal polar functional group, for example, an amide or a 

carboxylic acid, which creates a hydrogen bond with arginine R278 (PDB, 2014; 

Klaholz et al., 2000). Potent ligands contain at least one ring structure in the 

aliphatic scaffold. Furthermore, ring structures may be halogenated, as this does 

not decrease lipophilicty, such as the compounds illustrated in Figure 2, which 

are highly potent RAR-α binders (Beard et al., 2002; Johnson et al., 1999). 

 

Figure 2 also illustrates the lipophilic (mostly aliphatic) scaffold. As long as 

flexibility and lipophilicity are not greatly impaired, compounds with aromatic 

rings and amides within their scaffold are potential ligands. This explains the 

large number of wild cards within the SMARTS strings (cf. Table 1). These wild 



 16 

cards, which are expressed with a “*”, represent any heavy atom and the wild 

card bond expressed with a “~” represents any type of bond. On its own the 

SMARTS strings developed seem not to be very specific, however due to the rule-

based combination of SMARTS strings and the applicability domains defined by 

physico-chemical attributes, the RAR ligands can be identified with a certain 

degree of specificity. The exact degree of specificity cannot be calculated, but 

when observing the predictions for the Fourches dataset (Fourches et al., 2010), 

where 109 potential RAR ligands out of 951 drug-like compounds were 

predicted, the outcome implies a certain degree of specificity – or better, 

selectivity. According to the analysis of the Fourches, 85 compounds of the 109 

predicted RAR ligands are hepatotoxic. The RAR actives from the ChEMBL 

dataset were all correctly predicted, what indicates high sensitivity. 

 

A screening workflow, as designed as in this study, is assumed to be more 

sensitive than specific, according to the terminology of Cooper et al. (1979), but 

as “conservativeness” is relative. It should be pointed out that KNIME allows for 

the easy adjustment of workflows – without mastering computer language; 

parameters, thresholds and alerts can be changed intuitively. Furthermore it 

shall be pointed out that the purpose of these kind of screening tools is not to 

replace in vitro assays or any other in silico investigation. The main application 

lies in tasks, such as prioritisation, or as a valuable part of an elaborated 

consensus model (cf. integrated testing strategy) and it can also assist in the 

rational grouping of compounds assisting in read-across to predict activity and 

fill data gaps. It is noted that placing this knowledge in the context of the AOP 

framework allows for the grouping and read-across to be supported with 

evidence from assay for other key events (Tollefson et al., 2014).  
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5. Conclusions 

 

A novel approach to build screening tools solely with freeware (at least for 

academia) and open access databases has been described. The flexible design 

within KNIME allows for adjustment and combination of workflows individually 

regarding their purpose and their specific endpoints. Furthermore a prediction 

tool for RAR ligands, as an example for toxicology and pharmacology in equal 

measure, is presented, which may help to identify potential new drugs and 

toxicants.  
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