A FRAMEWORK FOR
SELF-ADAPTIVE NETWORKED APPLIANCES

By

Paul Fergus MSc., BSc., MBCS

A thesis submitted in partial fulfilment of the
requirements of Liverpool John Moores University
for the degree of Doctor of Philosophy

Networked Appliances Laboratory
School of Computing and Mathematical Sciences

December 2005



1és thesis is dedlicated te my father,
&eylzy @d/ﬁ/l&iﬁ %7((6 7 94/9 - 199 7



ACKNOWLEDGEMENTS

There have been many contributing factors associated with the completion of my PhD, the
most important being all the people who have helped me. I would like to thank Professor
Madjid Merabti for giving me the opportunity to fulfil my dreams; for believing in me;
providing me with invaluable knowledge and above all for being a good friend through the
good and bad times — I am forever indebted to you Professor Merabti. I would like to thank
Dr Martin Hanneghan for his continued support and guidance throughout my PhD. I will
remember the numerous conversations we have had over the past three years with great
fondness. 1 would like to thank him for sharing his in-depth technical and academic
knowledge for which this thesis would not have been possible. I would also like to thank him

for being a good friend.

I would like to thank my dad who, before he died, urged me to carry on with my studies when
I wanted to quit. I would also like to thank a very special family who have recently come into
my life and supported me during the final stages of my PhD; Lorna, Sasha-Lei, Lillian and
Brian Bracegirdle. I would also like to thank the cats Kami, Smokey, Minnie, Tigger, and

Charlie, for making me laugh when I needed it.

Last, but by no means least, I would like to thank all my friends who supported me through
my studies, which include Nicholas and Annette Hodder, Neil and Dawn Beaumont, Sue and
Ken Richardson, Hilton and Rona McCabe, Shaun and Christopher Bennett, Ray Brizell and
Jenny Leavitt. I would like to extend a special thank you to Omar Abuelmatt’ti, Anirach
Mingkhwan, Gurleen Arora, Henry Chang, David Llewellyn-Jones,'John Haggerty, Bob
Askwith, Arshad Mahammud, Huma Javed, Azzelarabe Taleb-bendiab, Qi Shi, Janette

Skentelbery, and Carol Oliver to name a few, for all their help and support over the years.

ii



ABSTRACT

The proliferation of home appliances and the complex functions they provide make it ever
harder for a specialist, let alone an ordinary home user, to configure and use them. Imagine
your home environment, more specifically your living room, and the devices it contains. It is
more than likely that it has a DVD player, Widescreen or Plasma TV, a surround sound
speaker system, and a HiFi. Now imagine the time you bought your DVD player and tried to
integrate it with your existing home appliance configuration. After taking the DVD player out
of the box you will have connected all the wires and tuned in your TV. This whole process
may have taken several hours and it is likely the configuration was not correct first time.
These kinds of experiences are becoming increasingly more common because devices and

their associated configurations are becoming more complex.

Now image a future environment whereby you take the DVD player out of the box, switch it
on, and it just works. You put your DVD movie into the player, press play and the video is
displayed on your TV, whilst the sound is directed to the surround sound speaker system. You
do not have to manually connect the player to any external devices and you do not have to
tune in your TV. When the DVD player is switched on it automatically communicates with all
other devices needed within the home via its wireless network interface. When the play button
is pressed all the devices are combined to form a home entertainment system and released

when the player no longer needs them.

In trying to achieve this, many challenges need to be addressed, which include service-
oriented networking; service discovery; device capability matching; dynamic service
composition; and device self-adaptation. Overcoming these challenges will allow mechanisms
to be developed that simplify the configuration and management tasks associated with next

generation networked appliances.

In this thesis we address these challenges using a new framework we have developed called
the Networked Appliance Service Utilisation Framework. Our framework allows
heterogeneous devices to be seamlessly interconnected and operated with little human
intervention. The operational functions provided by different appliances are dispersed within
the network and used to create high-level applications. Devices are interconnected using a
service-oriented middleware and discovered and combined using machine-processable
descriptions. Our framework takes into account the capabilities devices support and provides
self-adaptation mechanisms to manage device configurations automatically. We have
successfully developed a working prototype that implements an Intelligent Home

Environment, which is used to quantitatively evaluate our framework.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ....cootiitretntntntntenineneese et srs st eseeress b s s s saesenns ii
ABSTRACT ..ttt s s st e s e e e e s sae e sbe e seresssvneesbbssssnsesnnesssnnnnn 11
TABLE OF CONTENTS ..ottt ettt et sesre st s sa s st e tsvssrens v
LIST OF FIGURES ..ot stesn ettt ess e ste st st sbeaseressens s annens X
LIST OF TABLES ...ttt sttste s eesestessessseesaesresnssbesressesneesennesnennes Xvi
LIST OF ACRONYMS AND TERMS .....c.orviriiinriintiiteeeecrecre s ereve e s Xvii
1 INETOQUCTION ..cuuevriririirriitesesrecrereeesreebe sttt s ie s eresstebsesaessasessesaessorseseensensossessasessensensrns 1
LI PrEambIE .....oeeuiiiiieceecnencs et ss e esesaste e esebeseesessanebesessesesssssnssessnennnes 1
1.2 Networked Appliances and Home Networking ............ccocoeevvverernreverenererssrennnns 2
1.3 Structured and UnStructured SErVICES........cveuirrrerererieerieeeirreeneeseneesseenssesssesessans 4
1.4 Improving Service DISCOVETY .....ccccvrvervreinereirenreeeserisieseessssssssssssssesssssesssssessss 6
1.5 Composing Networked Appliances Automatically ...........ccourerrverrieeererresiennnne 7
1.6 Flexible Networked Appliances and Self-Adaptation ...........ccceceverrerereencrnenenes 8
1.7 Scope Of the T€SEAICh .......c.oovvveeiieeeeeceeee e er e e sbe e e earens 8
1.8 Project REQUITEMENLS ........cccvererereeienienieirrenieienitestese e s beseesseseserssseressesseneane 9
1.9 Novel Contributions to KNOWIEAZE .......cccevervvrerrierenrirrireniineeenrenrireseseesseseeseens 10
1.9.1 Service-Oriented NetWOTKING .....cccvevevreiereirienireniisesreseseresesesesseresseseseses 11
1.9.2 Service DISCOVETY .....cvuimimiiiiiiiiiiiieieieieesecietsssseesesreseseresssesssssesesesans 11
1.9.3 Device Capability Matching .........ccccecvvireniineniecieniinnesceceeseseseesnsresenenens 13
1.9.4 Dynamic service composition and self-adaptation ............c.cceevvrercereecrennenns 13
1.9.5 Ubiquitous COMPULING.....ccccourrrreririererienrerinerrereesssresressessessesessessssessesesseses 14
1.10 Thesis STIUCIUIE ......ociviirierinriiieriiniereerenreeesesessesseesssssassessesessaessessesssssensenses 15

2 Networked Appliances, P2P Networking and Semantics........c..cecevervenrecrecerenscrens 18
2.1 INTOAUCHION. ... cctiiiiriitiiircecre st see e serne st esae s e esasesnesteseesanesnssseasssssiesssesse 18
2.2 Networked APPHANCES......cevveevereererieniiniieesienesessisienesssesssssessensesssssssssossssseses 18
2.3 Interconnecting Home Networked Appliances.............ecevevevviriresnusisuesnsessisennes 19

iv



2.3.1 Open Services Gateway Initiative (OSGi).....ccccveervirrirrenecrenirenesernesennenn. 19

2.3.2 Digital Living Network Alliance (DLNA) .......ccocvvivivvenrncnrnenenininnninnn, 21
2.3.3 Universal Plug and Play (UPnP)........cccooeiriinininicrrcreceecccincnieens 23
2.3.4 Home Audio/Video Interoperability (HAVi)....cccoveivieneninnenreieniinnen 25
2.3.5 Versatile Home Network (VHN) c...ooiviiiiiirrcee et senes 25
2.3.6 Power Line Communication (PLC) .....ccccecirviiriinniniinnncinnccnecnnennnnns 26
2.3.7 EPEISPACE .....eeeceeeeieeieeeectteee ettt et s aaes 27
2.3 8 MEdIaNeL......ccvieeeniecriereeeenrr e e 28
239 RUNES ...ttt seee e s b et s e s sreesae et sbesesnsnensats 28
2.3.10 Semantic HiFi ......ccooveviiinevenniciniinieirecennneeicsnseeeseisnssensnesens 29
2.3.11 Future HOME .....c.cuooeiivirieecieneeenieeenenenereeesreeeses e nen s sassessssenssneseneneens 30
2312 WCAM.... sttt srs b e b s s s 31
2303 BETSY ittt sesbsse st s b s e b st g nas 31
2.4 Peer 10 Peer NEetWOTKING ...cccvevvereriiecenenieneenieniesesessssesessseessessessnesssesssssssans 31
2.4, 1 NAPSLET ..uveviiirieniiieeniiniicnitiit ettt e s srassesressesaessseressssbnsbesnsssasss 33
242 AIMESK.....ceiiicee et st 34
243 GULEILA......coveiiirececrtrc e bt st s 34
2.4 4 FaStTTACK. c..c.cueveereeenreerieetntsirtsseniine et seenssssaa s sssessenesesssansnenssssesansns 34
2.4.5 ChOTd.....ciiiecriiiiniit sttt et n s 35
2.4.6 Content-Addressable Network (CAN)....cccoovverierceceerensinnnectnsnisesisseeseesnens 37
2.4.7 PASHY ..coeeuieiieinrciriteese sttt a bbb s bbb s b sa e s 39
248 JXTA .ottt sa e s s 41
2.5 The Semantic Web.......ccvvviiivnneniienininiiiiiiieeessssssssssessssssss 44
2.5.1 ONIOIOZY ovtiiiierirrrnrinririeeeeesrreesessssssesrsssisssesissassiossssnssssssnssssnesssssasssassases 46
2.5.1.1 Weakly Defined Ontology .........cccoveusmmeivisrinsuensmnirsssinssssesessesessenens 47



2.5.1.2 Strongly Defined Ontology.......c.ccoeivvviiiiniiviiciieeceeireecrireeeeseeeseennes 48
2.5.1.3 Ontology SpecifiCations.........ccccvvevreeienienrenriniereeeereeereeeeeereeseeseerennes 51
2.5.1.4 Consensus ONtolOZIES........coevverecrvrinerninieriieee et sesee e saeseenns 52
2.5.1.5 Ontology EVOIULION........ccoveirminiciiiinrennnienssessesesseeeesseessennrseseenens 54

2.5.2 Semantic Web SeIVICES.....ccevveerierverierienieriintiiteciereieeerisreeresaeerecnessesessessenes 55
2.6 SUIMMATY ....cvrviriiriererienreneeesesaestesestessesteesseestaseessersessessessessesessssssssassessassersans 56
2.6.1 Challenges.........cecceveereereeierieieirieereee ettt ve vt ae s seaeeseseas 60

3 Networked Appliance Service Utilisation Framework ............cccevievenrereeereeinnnen, 62
3.1 INtrOAUCHION. .....eveteireceriirereie st ts et sera e neb e s s ess s ebebenserensreesens 62
3.2 Framework OVETVIEW ........cccovuririririririeiiniiesesessssssssssesssssssssssssssesssesesesesesenns 62
3.3 Distributed Semantic Unstructured Services (DiSUS) .......ccooeuvrvmervrerererennene. 64
3.3.1 The DiSUS Protocol REQUITEMENLS .......c.ccverevereeeririeerieeeeensssseessseressesess 65
3.3. 2 DiSUS OVEIVIEW .....cciririrriririrrnnieieieinininneisseensesssesessssssssssssesessssssssssssesens 65
3.3.3 The DiSUS Protocol DeSign ........cceeveirreveresireererereneressesessesessssssesssenesssessses 66
3.4 SUMMATY ....covtiuinrininiieiennineesereeseesresressessessesssesesssessssrsssessestessessessssessessessasses 72
4 Framework Secondary SEIVICES........ocvviriirniniireiieenenrieiesicsrerestessessessesssssesssssesses 74
4.1 INTTOAUCHION......c.cveeritrreicicenite ettt asse e s b s esebe e se e nesebenebensone 74
4.2 Distributed Emergent Semantics (DiStrES) ......ccccceveereiriririirieieenirecreneeens 74
4.2.1 The DistrES Algorithm Requirements...........cccocevceevrerrrererereerereneinensnennne 76
4.2.2 The DistrES Algorithm OVEIVIEW .......ccccverevervirennininrensnenneneereneensesseseenes 78
4.2.3 The DistrES Algorithm Design.........cccccveriveevinienienensnnenrennnereseesesessesenne 81
4.3 The Device Capability (DeCap) ServiCe.......cccecererrercrrrerverrrenenerieriessessessesenses 86
4.3.1 The DeCap Service ReqUIrements..........c.covveeuevninineciesnssesennennensssrsesesseses 87
4.3.2 The DeCap Design........ccccvirrereeiinierrrereenrrsnrrececenersrssesssesessessssseesessessnans 88
4.4 Semantic Interoperability and Signature Matching (SISM) Service ................. 92
4.4.1 The SISM Service ReqUIrements...........c.cocccevereveesnrerecnssesesssssnssssessssssssens 93

vi



4.4.2 The SISM SEIVICE OVEIVIEW ..vevvvrreeiireeiiiiieiiriieessssisesasirerieseestseessssssssssssnses 94

4.4.2.1 The IOPE Matching Process.........cccveveiiinviinnicniiciinncinnenninneineinens 94
4.4.2.2 The Signature Matching Process ........cccocevvvinivnirnecninnininnnecnne 96
4.4.2.3 The Extended Interface (EI) SEIVICE ....cccoeevieirierveerreireeeceeeceeeveeeeeneen 99
4.4.3 The SISM Service Design.......covcvvieiinieinieiierireeneecessessreesseesesssecessnenns 101
4.5 SUMIMATY ....oourerreieeeieeirreeesestesesesieeesresseseessessesaessenaessesessesssnsesessosesssorseneons 111
5 Case Study: Intelligent Home Environment .........coo.cciviveennennncnnnncnniiiineinn 113
5.1 INErOUCTHION. ......eeiieiteiceieteetet ettt ettt e sresan et ea 113
5.2/CaS€ STUAY ...ovoveiiiciecriee ettt et st et e e e eree e s e et e re e s te e s e baea et e sareneesre e 113
5.2.1 Characteristics Of this StUAY .....ccoevireeiieeiriereerrceee e eeeeseseennis 118
5.2.2 Using our Framework for an Intelligent Home Environment.............c.e.. 118
5.2.3 Anomalies in this Case StUAY .......ccoceriirireniniinecierrserce s cteeeeeans 120
5.2.4 Positive aspects of this Case Study ........cccceeverrirriininiecrennenienniieenesenn 120
5.3 Other Application Domains ..........cccivirvereenirenerinnininnneeseerseseesssscsesssessssenss 121

5.3.1 Emergency Installations - Ad-Hoc Integration and Service Utilisation ...121

5.3.2 Medical Installations — Emergent Functionality ..........ccccocevvvninnivinncnnenn. 122
5.4 SUMMATY ....ovieieeteteieeece et et et se et e et e s e e s e sen st ebesbens s e besesnes 123
6 System Implementation ...........cocceveriecininineniieeeeere s 125
6.1 INITOAUCHION....cevereererereenreerenresrrrssesstee et ser e ss e esstsassabsassresnnsraeaseraesnsassanas 125
6.2 Service-Oriented ATChItECTUTE ......ccoevririerinnriiieriiiiiiineeiesresesrsesnennssssssess 125
6.3 FrameworK SEIVICES.......cceiuiiieriiersiereneisiiecsnenninnesestessessssnssessesssssesnsnsssssness 125
6.3.1 The JXTA Peer-to-Peer NetWork........ocvveriirinniniennsnnninniimie. 126
6.3.2 Secondary and Application Specific Services .....cocwvcnniiiniiriinniinenes 127
6.3.3 Serialisation and Machine-Processable Semantics.........cocceceeisisinicinins 128
6.3.3.1 Describing Services Semantically.........cocoveuiviiiiniiinniieiiiininncne 130
6.3.3.2 Evolving ontological structures using general CONSensus...........c...... 131

vil



6.3.4 Dynamically composing services using ontology.............c.eeeeevverurnuennes 131

6.3.5 Formally describing device capabilities using MAUT .........oooecvueivenenne, 131
6.3.6 Self-adaptive middIEWAre .........ccocoveireneeectiicirteece e ese e 132
6.4 The Framework PrOtOtYPe ..........ccccvreeriereriieieniiesrescseecests e seesssosenesessaens 132
6.4.1 Technical DesCriPtion.........ccoccvveeininiinieienc ettt seeanaean 135
6.4.2 Prototype Configuration..........cecvueereeueenreeiieisisseseeeseseeessesssssesessesesssens 141
6.4.3 System OPeration...........ccccereeerrieeririniiinrerereenieeseesesssssesissssssessresssssessans 142
6.5 SUINMATY .....uooveririiriieireseeee ettt e se st e e e eaeeeesesaestsesssnsseenes 143
T EVAIUAHON ...ttt seesssseses st ssss st s b b saes s s ssssssssassesassssssssessone 146
7.1 INOQUCHON........cuveirrceeecrireceesteet et s st s s sne b 146
7.2 Service-Oriented ATCRItECIUTE .....c..vvvrvevvereieerereie et sessensessessenns 146
7.3 SemMANtiC DISCOVETY ....crrerurrrrrirrrereineeinnnnsnsnesessssesesssessssssesesessssessssssessssess 151
7.4 Device Capability MatChing .........cocoeveeiiunteienrireientiiesssresesseseessessessssesssesssness 154
7.5 Dynamic Service COMPOSILION .....cc.euvrveveeienrireirererereeresereressssesessesevassesesssssses 156
7.6 SElf-AdAPLation........ccciiviniiinieiirteciesrerenee e be s esessanesa e sessanas 157
7.7 Comparison with existing APproaches ..........c.cccevereeineenesessveseesseeseens 158
7.7.1 Universal Plug and Play ...........ccoevvverneeernvirenieeeneererer e esseenenenas 158
7.7.2 Open Services Gateway INItiatiVe.........cccooeveeeeeerneerenieie e 160
7.7.3 Reconfigurable Ubiquitous Networked Embedded Systems.................... 161
7.8 SUIMIMATY ...ocovviiiirrnrrnrireeeieneieieeieessessessessessessessessassesssessestessessassaessssssssessssaeses 163
8 Conclusions and Future Work ...........ccceceuvienenivcnnnininiiinnnnniennenesssns 165
8.1 INPOQUCLION. ..ottt ettt st sesae e st e e sessenssasbens 165
8.2 Thesis SUMMATY...........cocivieiiieiirireerienrierreeneesressessesesessesseessessnessessasssesnsosss 166
8.3 Contribution to KNOWIEAEE .........c.coccrrirennenrmeneiinniiicesnsensssssesenis 168
8.3.1 Service-Oriented NetWorKing .........ccccveereeesniercsisesnecsiisussesesssssssnnenns 168
8.3.2 ServICE DISCOVEIY .cvvevvruirrreeriiiriiirsneeeseerssessssenssssaesissssssaesesssressessssaesses 168



8.3.3 Device Capability Matching .........cceevereenveriniennennneeninncresins e sesnennes 169

8.3.4 Dynamic service composition and self-adaptation ...........ccccevevrereernennens 169
8.3.5 Ubiquitous COMPULING......cceveereeeeirrenterientineeesieisieenseeereesaressessessessesees 170

8.4 FUther WOrK.....ocoiiiieee ettt 171
8.4.1 Semantic Annotation and Processing ISSUES.............cccuvvevvevimieereesvereenens 172
8.4.2 SECUIILY ....cviirciircririeerctc ettt n e esaenesbonean 172
8.4.3 Feature INteraction ........c.ceeceecvivenminicinenicnniecnencireseeseseeeessessesseresnennen 173
8.4.4 Service and Device Composition ISSUES ..........cccecvvririevenrivcrenecccnnennieinnes 173
8.4.5 Transport Protocol Interoperability..........oecvvcernerenieereresieniereennsesrenences 173

8.5 Concluding RemMarks..........ccevevivvineitiiisireseseseseeeesreeseesessesseeresssessssssvessens 173
REFERENCES ...ttt ssbet st s s ssansass st sesssionsssaensns 176
APPENDIX A:  NASUF USE CASE DIAGRAMS .......ccovrirmiernievinieninenienns 190
APPENDIX B:  NASUF CLASS DIAGRAMS ..ot 198
APPENDIX C:  NASUF ACTIVITY DIAGRAMS ......cooveriirincininisinenenes 212
APPENDIXD:  NETWORKED APPLIANCES ONTOLOGY ......cccoovvvvmnieninnes 230
APPENDIXE: PUBICATIONS RESULTING FROM THIS THESIS.............. 234

ix



LIST OF FIGURES

Figure 1.1 Networking home appliances ......cvvveveveneevrieeniiiinecisene e sieeesesesnssnenes 3
Figure 1.2 Information SPace .........ccceveererrieniiiniinnieneercestecne et eaeas 5
Figure 1.3 Proposed Framework.........ccccuviririniinieniieeciece et saseressesseenens 9
Figure 3.1 NASUF Framework........ccccouevuievmimnniieieeecececececeseccsecr e 63
Figure 3.2 Distributed Semantic Unstructured Services.......c.oeerveeveeeeciesrvcrresecsennens 66
Figure 3.3 Start DEVICE ....c.coeviireeiiienreniinctin et ettt erenens 67
Figure 3.4 Create Device Capability Model .......c.ccooveeiviviiincrirccrecrerecseeeenesrennens 68
Figure 3.5 PubliSh SeIVICe ......ccovieiiiiiieiiciciecectcrc ettt et et s senessaeassrenanen 69
Figure 3.6 Create Peer Service AAVEItiISEMENLS ........cevevevivvieevirrerireeiierereresreresesseseane 70
Figure 3.7 DiSCOVET PEEr SEIVICE.......cuvierireerritiireeiscieceeir et sveest s b eneanene 71
Figure 3.8 Create Semantic MOelS......cccveevrvenrieiriiiiinnicriiceeeseneescteressereensssesensenes 72
Figure 4.1 Evolving Knowledge Structures over Time ...........cccveeiveererreeneeeeresennens 75
Figure 4.2 Statistical Pattern EXtraction ENgine...........ccoeevveveeeeeveivicveseneerresnesressessens 79
Figure 4.3 Semantic Interoperability .........cccoveeviiniiiiiiiceicec e seeterreee st eeseesresaresans 82
Figure 4.4 Extracting Ontological StrUCTUIES ...........ocveeiviriveieirineennineeereressessssenesnes 83
Figure 4.5 Evolving Ontological StrUCIUIES .........ccocvuvvreveiriiieenrenrereeereresesessssseenes 84
Figure 4.6 Merging Ontological SIrUCIUIES ........c.ceceverrireniarernneennnrerieererenereneeresseneseens 85
Figure 4.7 Device Capability Matching Service.......ccccvvvvinivnrecrnennernieenennenesnennene 87
Figure 4.8 Device Capability Matching..........cocceeviiiinninnecninnenionnenesoneniesnne 90
Figure 4.9 Device Capability AdVertiSEment..........c.cocvivvercerrrnicecnesnnsencsenssssneessenss 91
Figure 4.10 Device Capability Matching Algorithm ..........cocoivvivivinnnnivcnnninnnnns 92
Figure 4.11 Dynamic Service Compositions between Devices .........c.ooveenruciininninns 93
Figure 4.12 IOPE Matching performed by SISM.........cccovnniinnninncivnieieniinninnns 94
Figure 4.13 Dynamic Service Composition using SISM........cecveiivvnnnninnninineees 98



Figure 4.14 Extended Interfaces for the Visual SErvice ... 100
Figure 4.15 Process Service ReqUEST.......cveeiivccinminiiiiiiniiiiii e 101
Figure 4.16 IOPE Class Diagram.......cccouveverineeisccnincinmnensinineiissnssssssssss s 102
Figure 4.17 Perform Abstract MatCh .......coeveiviiiiciiciceen 103
Figure 4.18 AtOMIC ProCess.......coeueueeumcacctnenciieneiitciia s 104
Figure 4.19 Perform Concrete Match .......oveiieenineiiiniiiiiisenes 105
Figure 4.20 Service Grounding Model .......covueninieeiininncnniiniseces 106
Figure 4.21 Service Interface Model ..o 107
Figure 4.22 Build SigNature .........ccovereueretrersrenninceeiismeeeitessnsinssnsnsssssssssens 108
Figure 4.23 Find Intermediary SEIVice .......ocoiinveriiinniiniiinesniseenssesssnes 109
Figure 4.24 Invoke Peer SEIVICE.....couvvirrmmmeiiniiniiiiitinssces i sasesses 111
Figure 5.1 Function UtiliSatION .........eeueenmniereinistienesinnesissiisssnsssssssssesstisass 115
Figure 5.2 Virtual APPHANCe ........coeieeiiiereninistscsnnecneesiiniiisssssssssssnsassnsisess 116
Figure 5.3 Dynamic Service COmPOSItION.......c.ccoeueuiicueiniimiininiiiininsssssssesssseens 117
Figure 6.1 NASUF FIramewWorK........cocoenrnrririnninencrniensinencnsisnssiisiississsssses s 126
Figure 6.2 NASUF User INterface .........covvvevmininmenennninecnccninseninenisnsnsenne 133
Figure 6.3 NASUF Service Request MOdelS .....couininirnniiescnniniiinininiinniin, 136
Figure 6.4 Joining the P2P Network using JXTA ... 137
Figure 6.5 Binding to Secondary SErvices........c.couivuimieiiininisesissenessnns. 138
Figure 6.6 RDQL QUETY €XECULION.....c.evrmesensiersnsiistssisnssnssssnsnsisnsssssssisnssssassnsissens 138
Figure 6.7 DistrES Networked Appliances Ontology.......coueiieinmmsesecsinssissensscnnes 139
Figure 6.8 Extracting the TOp n Classes ........ovcienineiinmnmmnsnscsnniniinmsiinnnenes 140
Figure 6.9 Reasoning over the domain ontology .......ccoeumeerscercimsninsinsnnsssmsnissens: 140
Figure 6.10 Selecting the Best SEIVICe .......ccovcvnimmmnsrinrssiseissecnsisiininisessieees 141
Figure 7.1 Serial Service ReHability.........cooovneercciniinsiimsnissiissenssnsiisinssnisennse 147

xi



Figure 7.2 Parallel Service Reliability .........ccccocvuviueeiirieirieiicsieise e e seeseesreneens 148

Figure 7.3 Probability of find 0 in S€t M...ccceecuieririiiiiiieeieeeeeeeeee e e 152
Figure 7.4 Find a concept in a global ontology ..........c.ceeeeeevevrveeeeeereeererereresesesnns 152
Figure 7.5 Finding one or more concepts in a global ontology .............cceeeevreeeneae.. 152
Figure 7.6 Percentage of resource required ..........o.eeeeeevevererereieeoneoseeeeseesesssssenans 154
Figure 7.7 Calculate device capability SCOTE .........ovovveveeremrereererereeeeesereoseesesessesenes 155
Figure 7.8 Extended MAUT fOrmula.........cc.c.coviimiuiveiereeeeeeeseseeeesesessesesesessenesenns 155
Figure A.1T Start DEVICE ......c.covuvureuieirirereteerececetee e eeeeeeseses e e e ses s ses e sesssens 190
Figure A.2 Connect Device t0 NEtWOTK .......c.cucviveeeeeeeerieeeieeeeeeses e ereeeeseeresseenns 190
Figure A.3 Create Device Capability MOdel ...........couveeeeveeereresressreesesseessesesssssssenns 191
Figure A.4 Publish Create Device Capability Model ..........co.vvuereererverrersreresseessnenes 191
Figure A.5 Create Peer Service AAVErtiSement ..............oooovvueeeeveeuevessereseresesseseenns 192
Figure A.6 Publish Peer ServiCe ........ovuiuiiiniuiriieiieieee e eeeeseeveses s s sesnnenas 192
Figure A.7 Create Semantic Service MOdelS...........o.ouuceeeeereveeeruerrereseseserssesssessessenns 193
Figure A.8 Find COre SEIVICES........ccvuvirerireerirenreriiisieiteieeeseenseesesssssessssesssssssssees 193
Figure A.9 DiSCOVET PEET SEIVICE........c.cucrurevrererereriiireeteecieeeeeee e ssesessesessesensesssseans 194
Figure A.10 INVOKE PEET SEIVICE......ccevieviierreeiiieiseeeseeeeee e seesnesesesesesessesesenssenns 194
Figure A.11 Process Service REQUESL .........coeceuirvereeremiineerereernessseseseresesesesesssssssnssenes 195
Figure A.12 Perform Semantic Interoperability .........cccccevueeeeririiireirernrereeeenenenas 195
Figure A.13 Perform Abstract Match ..........ccvvveeereenecreenenieiennnenereneesessssesessesessesenes 196
Figure A.14 Perform Concrete Match ...........cccoceceveceeveniiinnnnenssieerenesesreceeesesenes 196
Figure A.15 Build Signature.............ccceeeveererereeierennicnenenseetensnsensenssessssesessessesesesesss 197
Figure A.16 Find Intermediary Service .......c.coevvrennnninnncininencnneien. 197
Figure B.1 Distributed Semantic Unstructured Services Manager..........c.coovercuenenens 198
Figure B.2 PEEr SEIVICE ....covuvurmereiririiiennienrsnnncssinienniiescnsssesssssssssssssssssssens 199

Xii



Figure B.3 Endpoint.......ccooeriiiiiiiiiiirssnsnncsnee e 199

Figure B.4 Endpoint LIStENET.......c.corvviviniiiiiviiiiennenieesissnisnnneisssesssesessesesees 200
Figure B.5 Service AdVErtiSEMeNt......ccccvereereireiieniniiriiiieiisiiniieeeeeseeseesesssesesnens 200
Figure B.6 Service Class AdVertisement ..........ccceovuemrinniiiniinineinnennesessssesoneenns 200
Figure B.7 Service Specification Advertisement..........cocceieinnnenieninicniiniiesennn. 201
Figure B.8 Service Implementation AdVertiSement..........ccoceveevvvvinninnninsnneseneenes 201
Figure B.9 Service Ontology Model ..o 202
Figure B.10 Service Model.....cc.coveiurimrieninicniinicnninisisssissiseeseeseseessesssnsiesnesssens 202
Figure B.11 Service Profile Model.........ccoivrveiiiniiininicnninonne e, 203
Figure B.12 Service Process Model.........ccievieviiieninnieninecnnninnenncscenennnnneeneon 203
Figure B.13 AtOMIC PIOCESS .....ccvevirvriimrieeiireeieeerreteineceessetesaresseesessessnsvessasansanssens 204
Figure B.14 Parameter .........ccoccvveiivieviniinriiiniinirenircsissiiesiiciesesseseeenssssssssessesssanse 204
Figure B.15 Service Grounding Model........c.ccocvivniivinviininiiennnennniceeesnsnnesseesens 205
Figure B.16 Atomic Process Grounding...........coeeevevcienrerireviceennennrsssssrennssssssessesens 205
Figure B.17 Service Input/Output Parameter..........c.ccoeeiriiineninenenennenninnseseecnnnes 206
Figure B.18 Service Interface Model...........ccooviviiininnicinniccnnrnninsnnrescensnens 207
Figure B.19 Device Capability Model ...........cocevevmieniiirescvennnse e 208
Figure B.20 Device Capability SEIVICE .......cccocvrurmmrenimsnirisesieinrereeien e cresesenne 208
Figure B.21 Device Capability Algorithm..........cccocvvnvevvniinnveiceecee e, 208
Figure B.22 Distributed Emergent Semantics Service .......c..cccevvvvunvnnncriesvnnnnenennen. 209
Figure B.23 Extraction Engine ..., 209
Figure B.24 Evolutionary Pattern Extraction Engine .........cccccocceeevnnnnvnreiniverenneas 210
Figure B.25 DistrES Ontology.....cooeiiiiviiiiiniiiiinccinissesnesesesens 210
Figure B.26 SISM SeIVICE ....cccvurmirmniiiiennisisiscienssesssessasssesssssssensssesssasesssasesns 211
Figure B.27 Abstract Matcher Algorithm.........c.occouveecvccvcnninnenininnenecesseecennens 211



Figure B.28 Concrete Matcher Algorithm...........cocvvvieniiniieniineiie e 211
Figure C.1 Start DEVICE.....ccceoveurreerrnrieniereniniesiesiessesissessesseseessensessesssseesseseesessessens 212
Figure C.2 Connect device to the network........ccceeeirnininnciiniiccinececce e 213
Figure C.3 Create device capability model........cccoeevuivieiierrvricieriiiceeecreenre e 214
Figure C.4 Create Peer Service advertisements............cc.veeeveieiviieconvieeeienreenesseens 215
Figure C.5 Publish Peer SErviCes......cocoiiiiniiriniiiiitici ettt eesresneenas 216
Figure C.6 Create Semantic ModelS .......ccccoeiviiiiiieiiinineiiieicre e evseesieens 217
Figure C.7 Find COre SEIVICES.......cvvvrviereriirrerierienieriesviinsieeeseesseseeiesssssesssssessessessens 218
Figure C.8 DiSCOVEI PEEr SEIVICE .....cciiiveriiirienietiee ettt e svesbeerenessenaessens 218
Figure C.9 INVOKE PEET SEIVICE ..c.vivviveieerriieniiniiricinneresrireesessiseessesaessesssssessenseseons 219
Figure C.10 Process Service REQUESE .......ccueveciriiriiievineiineerereeereessesessnssesessssssenees 220
Figure C.11 Perform Semantic Interoperability..........ccccceverviiienieninenrinenesenesnenn 221
Figure C.12 Extract ontological StrucCtures ..........c..coceeverieireeenienienneereeceecreesensennes 221
Figure C.13 Evolve ontological StruCtures........cccoouivvertiemirenrenenesiiieeessenesssessessenns 222
Figure C.14 Merge ontological StIUCIUIES .......cccceevvererieeirirernriieeririnereesesveseeesessessonns 223
Figure C.15 Perform ADbStract MatCh........ccceevveveriiiniininenieeneneeieensessnensesssssessesssess 224
Figure C.16 Perform Concrete MatCh........cccoccvvverviiniiniineniieirieecreesvenessnesssssnesens 225
Figure C.17 Build Si@nature ........c..ccccevererrtenineeneererrernrsensesienessessesnessessssssessessesns 226
Figure C.18 Find Intermediary SeIVICe .......ccovvviiiniiiinininnnircnnnisnninnieceesnnnes 227
Figure C.19 Device capability matching ..........cocoevvvvniinviinnniinnniniiniinnnnnen 228
Figure C.20 Device capability matching algorithm.........ccccoovvvenrevinnnnnniennnene 229
Figure D.1 Household Appliance Ontology POrtion..........ccoceueeiieiieineniiirennnees 230
Figure D.2 Physical Device Ontology Portion .........ccceevevmverevnmnnieeeniisnenncininenns 230
Figure D.3 Electronic Household Appliance Ontology Portion..........cccoersecesevsinenn. 231
Figure D.4 Recording of Wave IBT Ontology POrtion........ccuieveveeriisiscscscususnanns 231

Xiv



Figure D.5 Electrical Device Ontology Portion

........................................................

Figure D.6 Self-Powered Device Ontology Portion ..........cceeveeeevveeeenneceeseevesreennens

Figure D.7 Powered Device Ontology Portion.

XV

........................................................



LIST OF TABLES

Table 2.1 P2P Models.......ccccoevvecvrrurrnnnen.
Table 4.1 Semantic Interoperability Table

Table 6.1 Scenario Parameters..................

xvi



API
Appliance
CC/pP

CE

DeCap
DHWG
DistrES
DiSUS

DL

EPG
GENA
HES
HTTP
IOPE

IP

JAR

JVM
JXTA
MAUT
Middleware
NASUF
Networked Appliance
Ontology
0SGi

OSI

OWL
OWL-S
P2P

PC
Pervasive
QoS

RDF
RDFS
RDQL
Reasoner
ROI

RPC
Service
Signature
SSDP
Structured Service
SISM
SOA
Vocabulary
Ubiquitous
UDP
Unstructured Service
UPnP

URI

XML
WSDL

LIST OF ACRONYMS AND TERMS

Application Program Interface

A device or instrument designed to perform a specific function
Composite Capabilities/Preferences Profile

Consumer Electronics

Device Capability matching service

Digital Home Working Group — Home networking middleware
Distributed Emergent Semantics — evolves semantic structures
Distributed Semantic Unstructured Services — P2P implementation
Description Logics

Electronic Program Guides

General Event Notification Architecture

Home Electronic System

Protocol used to transmit and receive files

Inputs, Outputs, Preconditions and Effects

Internet Protocol

Java Archive File — contains java resources to support the service
Java Virtual Machine

Set of Peer-to-Peer Specifications

Multi-Attribute Utility Theory

Software that mediates between an application and a network
Networked Appliance Service Utilisation Framework

A dedicated device with an processor and a network connection
Formal specification for representing objects and relationships
Open Services Gateway Initiative

Open System Interconnection

Web Ontology Language

Web Ontology Language for Services

Peer-to-Peer

Personal Computer

Manifested throughout; penetrating or affecting everything
Quality of Service

Resource Description Framework

Resource Description Framework Schema

RDF Query Language

Something that can find new facts from existing data

Regions of Interest

Remote Procedure Call

A unit of work done by a service provider for a service consumer
A method name including its associated parameters

Simple Service Discovery Protocol

Use third party software to register and advertise functions
Semantic Interoperability and Signature Matching
Service-Oriented Architecture

All the words of a language

Being or seeming to be everywhere at the same time; omnipresent
User Datagram Protocol

Provides services independent of any kind of third party
Universal Plug and Play — Home networking middleware
Universal Resource Indicator

Extensible Markup Language

Web Service Description Language

Xvii



Chapter 1

1 Introduction

1.1 Preamble

In recent years, with the growth of personal computer usage and the Internet, networked
computers have become more widely used in more diverse applications. As this trend
continues, we can expect ordinary everyday appliances to become part of these networks, and

networked devices will become pervasive and often invisible to the users.

As connectivity at broadband speeds becomes an integral part of our household infrastructure,
it is envisaged that every device will have a network interface that allows it to be accessed
and controlled from anywhere in the world. This idea is generating a great deal of interest and
a number of research initiatives have been proposed that include on-demand multimedia
services [France Telecom 2005], home automation through wireless sensor networks and
remote control of home appliances through immersive technologies and global
communications [Koumpis 2005]. Sound business models are being developed to realise such
applications based on market and user needs that will map the future direction of Internet and

home technologies.

We are already seeing this transition in home entertainment systems, allowing for a greater
level of sophistication in how users interact with multimedia service subscriptions and the
devices they have installed. The provision to monitor and control the home using TV sets and
set-top boxes has advanced rapidly in recent years because the TV is considered as the central
appliance within a typical home environment [Evans 2001, Marshall 2001, Bhatti 2002].
Interactive-TV and real-time communication during live broadcasts using advances in global
communications and mobile devices have become common place. The ability to pause live
TV and personalise multimedia services has given users greater control over how and when
they interact with digital entertainment. Furthermore we are seeing a convergence between
personal computing and home entertainment systems. The advent of media centre set-top
boxes allow users to connect the devices they own and access a plethora of on-line
multimedia services, via their broadband connection, such as digital radio, electronic
programme guides (EPG), on-demand Internet TV, on-line gaming, including services

associated with modern day computing such as email and instant messaging. However, this



said, we are at a crossroads whereby configuring and managing next generation networked
appliances and home networks will become increasingly more complex. As we will argue in
this thesis existing approaches lack scalability and sound business models to fully utilise new

technological shifts and as such alternative mechanisms are required.

In the remainder of this chapter we provide an overview of the challenges that need to be
addressed and discuss their importance. A brief introduction is provided about the research
fields considered within this thesis and all concepts relating to its construction are clearly
defined, which includes networked appliances, home networking, service-oriented
architectures, service discovery, dynamic service composition and self-adaptation. Current
techniques and research practices are described and their associated strengths and weaknesses
are highlighted. Finally we conclude this chapter by defining the scope of this thesis, the key
requirements that this thesis addresses, the novel contributions we have made and an

overview of the remaining chapters.

1.2 Networked Appliances and Home Networking

For more than a decade, home and building automation and networking have received much
consideration by homeowners, industry and academic researchers [Dutta-Roy 1999, Siuru
2000]. This includes the introduction of a wide spectrum of wired and wireless infrastructures
and network protocols such as LonWorks, CEBus, SmartHouse, VHN, HomePNA,
HomePnP, IEEE1394 (Firewire), X-10, IrDA, IEEE802.11b, Bluetooth and HyperLAN/2
[Rose 2001]. However despite the long list of advantages they provide, several challenges that
need to be considered, most notably, interoperability [Abuelma'atti 2002a, Zahariadis 2002]
and the difficulties associated with the integration of combined functionalities. In Figure 1.1 a
typical home environment is illustrated; the challenge is to combine devices from different
domains, i.e. broadcast, internet and mobile, and disperse their operational functions within

the network so that they can be used by any device within those domains.



Figure 1.1 Networking home appliances

Many industry efforts have evolved to create interworking solutions, which include the Home
Electronic System (HES) [Pattenden 2001], Home Audio-Video Interoperability (HAVi)
[HAVI 2003], Universal Plug and Play (UPnP) [Miller 2001, Microsoft Corp. 2005] and it’s
Intel Digital Home implementation [Intel 2003] and the Open Services Gateway Initiative
(OSGi) [Marples 2001]. Additionally, research efforts within networked appliances and
service discovery disciplines are trying to provide solutions, which define scenarios for new
and emerging network configurations [Cheng 2000, Minoh 2001]. For example, the provision
of home monitoring and control systems from within TV sets and set-top boxes has advanced
rapidly in recent years because the TV is considered the central appliance within a typical

home environment [Evans 2001, Marshall 2001, Bhatti 2002].

The main goal is to ensure user acceptance and provide flexible systems that will become
integrated within the household infrastructure. This transition mirrors the evolutionary
process undertaken within personal computing and wide area communications, whereby it is
now difficult to imagine using a computer without Internet access. Given the success of this
transition, home networking platforms aim to achieve the same level of acceptance whereby it

will be impossible to imagine home appliances without Internet access.

Many research initiatives are trying to move away from bespoke solutions by combining
embedded systems with the Internet allowing more complex solutions to be developed. The
complexity itself is a by-product of heterogeneity and the dynamic nature associated with
networks that resist any form of control. However putting complexity aside there is still a

need to promote this integration because bespoke development is too expensive and too

3



limiting for innovative applications. This is clearly a trade off between inflexible, but reliable,
and flexible but unreliable systems. The end goal must be flexibility based on sound
engineering principles that produce self-adaptive middleware frameworks that enable

heterogeneous networks, devices and services to be seamlessly interconnected.

Although there are many solutions that allow devices to be interconnected within the home
environment, diminutive advances have been made to abstract the complexity away from this
process. Technology is evermore pervasive and effectively managing it is not an easy task.
Advances made in global communications and service-oriented architectures promise to
provide a platform that realises a seamless integration between heterogeneous devices,
however few solutions have produced any convincing results. The challenge is get different

appliances built to different specifications, to work together.

1.3 Structured and Unstructured Services

Visualise a high street shopping area, which is a simple outdoor environment. The street is
full of shops, restaurants, street vendors and other people. We pop in and out from one shop to
another, buy a quick snack from a street vendor — here today gone tomorrow — and greet
people we know. All of these activities happen within our focal view. Devices within real-
world environments have to work the same way as this shopping area analogy. This provides
devices, with the ability to interact and use services in the same way people interact with

shops within real-world environments.

What emerges from this analogy for service usage is defined as an Information Space
[Mingkhwan 2002] and illustrated in Figure 1.2. Information Space is the cdncept of
integrating information and services from the environment a device has access to. By
considering the device as the centre of surrounding information and services we find that, in
reality, the environment that the device moves into provides services. The ability to select and

use these services to offer the maximum flexibility for the device is of paramount importance.

The need for an integrated information space requires the unification of wired and wireless
networks and their services. In particular, the challenge is to bring together services within ad
hoc networks such as Bluetooth and infrastructure networks like the Internet [Mingkhwan
2003]. Devices provide services throughout the Information Space using middleware that

interconnects infrastructure networks and ad hoc networks together.



/7

Information Space

Information From Nearby
Terminal

Figure 1.2 Information Space

Services within an Information Space can be described as structured and unstructured and are

defined as follows:

e  Structured Services use third party software to register and advertise functions the
peer provides, e.g., Directory, Proxy and Naming Services. These kinds of services
typically have complex structures, such as network connectivity, database access and

multimedia functions.

o  Unstructured Services provide services independent of any kind of third party
intervention. This concept is based on a simple service definition, such as a kiosk that
provides quick information, a TV remote control that simply changes the channel or a

file-sharing application that exchanges digital content.

There are an increasing number of structured services available to users over the Internet and
ad hoc networks, yet unstructured services remain far behind. Internet-based structured
services like JINI [JINI Technology 2005] and UDDI [Paolucci 2002b, WebMethods 2003]
are already well defined; however they are incapable of providing services within
dynamically changing network environments. This limitation can be simplified by situating
services within the Information Space, using decentralised networking concepts

[Parameswaran 2001].

The challenge is to distribute services within the network and discover them without having to
rely on third party registries. This requires mechanisms to dynamically discover and utilise
what services are available within the devices immediate and extended environment. This is

important if we are to ensure flexibility and provide mechanisms for true zero-configuration.



1.4 Improving Service Discovery

Although services will become an important enabling technology several other difficulties
need to be overcome. The problem is that current service-oriented solutions ignore the fact
that the service space will become increasingly large. As such existing approaches fail to
discover services based on what a service is capable of doing. Consequently selecting the
correct service to satisfy our needs will become increasingly more important and lessons need
to be learnt from the problems experienced within the Web in terms of accurately finding
content. As such the challenge is to describe services better so that devices can reason over

what they require and what services are available.

Although several standards exist to describe and discover services, they fail to address
interoperability between open standards and the vocabularies used. Their efforts strive to
develop universally agreed vocabularies that describe services homogeneously however this is
a very difficult challenge, if not impossible. Researchers within the Semantic Web community
are trying to address this limitation by developing an alternative approach that enables
semantic interoperability between different vocabularies using machine-précessable
semantics. However the major difficulties that still need to be addressed are how semantic

structures are created, distributed, managed, and evolved over time.

As such, environments need to support mechanisms that enable knowledge to emerge
whereby each device is treated as a self-governing knowledge node that is free to share and
discover ontological structures. The challenge is to enable a distributed environment that

provides the following functions:

¢ A mechanism that enables the representation and discovery of semantic information.
e A mechanism that captures the general consensus within responses received from
devices in terms of ontological structures.

e Algorithms that evolve and merge semantic knowledge over time.

Several research initiatives are trying to create techniques for “intelligent” information
gathering [Heflin 2000, Stephens 2001, Fensel 2002, Siebes 2002, Stephens 2003] to allow
devices to share knowledge in a distributed network analogous to the way people learn and
acquire new knowledge through communication. However mechanisms still need to be
developed that codify this human activity and provide knowledge management solutions that
distance themselves from ontology construction mechanisms based on the opinions of small
centralised ontology consortiums. Devices need to evolve their internal knowledge structures
to conceptually understand the vocabularies used within the network in order to better

discover services that are semantically described. This will allow rich ontological structures to



emerge over time as fragmented knowledge structures are discovered and merged by devices

within the network.

The challenge is to semantically discover and evolve ontological structures within distributed
environments based on localised ontology structures and general consensus. The key
technique needs to focus on merging information based on general consensus, found within
all responses received from the network, for a particular query. As such techniques to
determine the general consensus need to be devised, i.e. techniques based on evolutionary

programming [Langton 1996], or statistics.

1.5 Composing Networked Appliances Automatically

It is apparent that connecting networked appliances is becoming increasingly more difficult
because their associated configuration is more complex. The challenge is to automate the
process and enable devices to perform any required configuration or management themselves.
Many research initiatives are trying to address this using a number of different approaches,
which include manual, semi and automated device and service composition techniques
[Mcllraith 2001, Narayanan 2002, Chakraborty 2003, Chen 2003, Medjahed 2003, Sirin 2003,
Sycara 2003, Fujii 2004, Madhusudan 2004, Milanovic 2004]. These solutions are human-
centric where services, designed to abstract device functions as network components, are

composed via user defined interfaces.

These solutions lack scalability and it is quickly becoming apparent that alternative
mechanisms are required that allow networked appliances to be dynamically composed based
on user requirements. The goal is to create value-added operational functionality that, when
combined, produce functions that could not be performed by one device alone. These research
initiatives are firmly embedded within the Networked Appliance and Semantic Web Service
community where services can be discovered, composed and executed using service
ontologies. Although these research initiatives have produced some interesting results, there is
no one solution that truly allows devices to be dynamically composed devoid of any human
intervention. Users can discover and integrate services using workflows languages such as
BPEL4WS and WSFL, however mechanisms that allow services to be dynamically

discovered and composed in an ad hoc fashion, are far from a reality.

Alternative mechanisms need to be developed that overcome the inherent restrictive nature of
workflow standards that allow service descriptions to semantically describe what devices
require and what they provide. The challenge is to combine service technologies with
machine-processable semantics to automatically interconnect devices using high-level

semantics that loosely bind devices together. This will enable true zero-conﬁguration,



whereby devices automatically integrate themselves within the environment and link together

using conceptual information about what the device does and what it needs.

1.6 Flexible Networked Appliances and Self-Adaptation

Currently, connecting and managing device configurations, is inherently a manual process,
and as highlighted in this chapter it is becoming increasingly more difficult for IT specialists
and home users alike. It is no longer acceptable to just accept this problem because we are
reaching a point whereby the effort required will surpass the need to buy networked

appliances and implement home networking solutions.

Self-adaptive mechanisms need to be developed that allow devices to automatically form
relationships with each other with little or no human interaction. For example, in the future
when you buy a DVD player and take it out of the box, it will automatically integrate itself
with existing device configurations, once it has been switch it on. When you put a movie into
the player and press play it automatically displays on your TV and outputs sound via your
surround sound speaker system. Extending this idea further the player may only process
MPEG-2 media formats. If you try to watch a movie that uses an Xvid encoding, (a format
your machine does not support) the player will try to resolve this conflict by automatically
discovering and downloading the appropriate codec or using an intermediary service to
transcode the data into MPEG-2, via its Internet connection. This will allow devices to extend
their functionality beyond what they where initially designed to do by forming relationships

with other devices and services within the network.

Such a vision provides considerable benefits to the consumer by allowing networked
appliances to be automatically integrated and evolved. However, currently devices and
middleware solutions do not provide any mechanism to achieve this. The challenge is to
develop new mechanisms capable of automatically integrating devices and managing any
conflicts within device configurations that may occur. The underlying implementation details
need to be abstracted, thus enabling all devices and services to appear homogeneous within

and across different domains.

1.7 Scope of the research

The aim of this thesis is to develop a new framework, as illustrated in Figure 1.3 that allows
the operational functions provided by different appliances to be dispersed within the network
and used to create high-level applications. The framework will use a service-oriented
middleware to discover and combine devices using machine-processable descriptions that

allow devices and functions to be selected based on application requirements. This framework



will take into account the capabilities devices support and provide self-adaptation

mechanisms to manage device configurations automatically.

Although security and transport protocol interoperability are important requirements they are
not seen as pertinent to proving the ideas presented in this thesis. The framework is a flexible
platform that can allow any additional requirements to be plugged in as and when they are
needed. As such the Networked Appliance Service Utilisation Framework, as illustrated in

Figure 1.3 is only considered within the remainder of this thesis.

Security Transport Protocol
Interoperability

Networked Appliance Service
Utilisation Framework

Network

Devices

Figure 1.3 Proposed Framework

Using this framework several key requirements are addressed within this thesis, which
encompass advances made in the areas of service-oriented networking, networked appliances,
service discovery, dynamic service composition and self-adaptation. It does not consider the
aforementioned disciplines in isolation but rather investigates how they can be combined and

extended to create a new type of framework capable of seamlessly interconnecting devices.

1.8 Project Requirements

This section presents six main requirements used to design and implement a new framework
and to realise the challenges described in this chapter.

e The functions offered by complex devices need to be published as independent
services so that they can be discovered and utilised by other devices within the
network.

e Devices must have the ability to offer zero or more framework services. If a service is
not hosted by the device then it must be capable of discovering and using the service
remotely within the network. Framework services must be discovered and bound to
before the device is rendered fully functional.

e It is fundamental that services offered by devices are discovered without forcing the

device or the services it provides to register with centralised authorities. Once devices



are switched on they must be capable of offering their services without being
constrained by a third-party service registry.

Service descriptions and service requests must be based on machine-processable
semantics to successfully determine what services are relevant and what are not. This
brings with it additional challenges. The vocabularies used by different device
manufacturers will be different and the structure of the concepts themselves will vary.
Therefore mechanisms need to be developed that allow devices to dynamically create
a semantic interoperability bridge between terms that are syntactically distinct but
semantically equivalent. This mechanism must allow devices to discover other
devices and services within their environment and dynamically learn the different
terminologies they use. During the learning process vocabularies must be evolved
based on general consensus, whereby common terms are reinforced and unique terms
de-emphasised.

Services provide an interface to functionality offered by devices, which can be
discovered, composed and used by other devices within the environment. This
requires mechanisms that enable a device to determine what services, offered by other
devices, it can use. Services need to be discovered based on their capabilities and
compositions need to be formed by processing and using service interfaces that match
required service capabilities. Typically service interfaces describe the operations the
service supports including the parameters (and their associated data types) they take
and the values they return. Devices need to automatically process these signatures and
determine if they can be composed with signatures supported by the devices local
services.

Devices must self-adapt to extend the functions they provide beyond what they were
initially designed to do. They must also detect and rectify any conflicts as and when
they occur within device configurations. Devices will automatically form
relationships with each other based on what services devices provide and what
services devices require. In this instance devices and/or services will connect too and
disconnect from the network over time potentially rendering the composité solution
incomplete. If a device or service is lost, an alternative must be found automatically

with minimum disruption.

1.9 Novel Contributions to Knowledge

This thesis proposes a new framework we have developed for integrating networked

appliances within device and service-rich environments so that high-level applications can be

automatically created. Our proposed framework provides services that discover and

10



interconnect devices within the network; enable operational functions to be discovered and
composed using semantic matching; select devices based on the capabilities they support; and
allow device configurations to self-adapt to environmental changes. Each of the novel

contributions we have made are discussed in turn in the following subsections.

1.9.1 Service-Oriented Networking

Currently applications are developed and deployed as one-off solutions — any application
changes thereafter appear in subsequent releases. Although such applications provide
considerable benefits it is becoming increasingly apparent that these solutions are inflexible.
Alternative mechanisms are needed that allow application functionality to be embedded
within the environment as network services. This will allow new frameworks to utilise these
services to create complex business processes more quickly. We have developed such a
framework that allows the operational functions provided by devices to be dispersed within
the network as services that can be combined to create high-level applications [Fergus 2003a,
Mingkhwan 2004, Fergus 2005a, Mingkhwan 2005]. Each contribution we have made is
listed below:

o Typical home appliances do not have the ability to provide their functions as
independent services that can be utilised, simultaneously, by other devices within the
environment. We have developed mechanisms to achieve this that allow devices to
dynamically integrate themselves within any environment and disperse the functions
they provide as independent services. Services may be pre-determined (middleware
services that comprise our framework) as well as application specific (services
wrapped around operational functions provided by devices) {Fergus 2003a], which
can be simultaneously discovered and used by other devices within the network
[Mingkhwan 2004, Mingkhwan 2005].

o Devices are manually connected and configured to work together in current home
environments. It is becoming increasingly more complex to manage this process and
therefore alternative mechanisms need to be developed to automate this. We have
developed mechanisms within our framework that help achieve this that allow

devices and services to be more accurately matched and integrated [Fergus 2005a].

1.9.2 Service Discovery

It is envisioned that application development will encompass the principles of service-
oriented computing. As such it is important mechanisms are developed to accurately discover
appropriate services. Current techniques are reliant on attribute-value pair matching, which is
inherently restrictive since no universal taxonomy exists to describe services homogeneously.

We have developed mechanisms that discover services based on semantic metadata that

11



describe what services do and what devices require [Fergus 2003a, Fergus 2003b, Fergus

2003c, Fergus 2005a]. Our novel contributions are listed below:

Composing services in current implementations is based on carefully choreographed
workflows or manual configuration. These approaches are inflexible and are difficult
to implement in ad hoc environments. We have overcome this limitation by providing
mechanisms within our framework that allow services to be described and discovered
based on semantic metadata. This allows devices to dynamically discover, compose
and execute services based on peer collaborations, devoid of any human intervention
[Fergus 2003a, Fergus 2005a).

As discussed, current implementations describe services using attribute-value pairs.
This means that successful matches are only found if the service request exactly
matches the service description. If the two differ syntactically but are equivalent
semantically current approaches fail to find a match. This is inflexible and excludes a
large number of services because of syntactic differences. In our framework we
provide mechanisms that serialise service descriptions using high-level semantics that
provide rich conceptual information about the individual functions devices provide
[Fergus 2003b, Fergus 2003c]. Even if service requests and service descriptions are
syntactically distinct but semantically equivalent our framework can find a match.

It is difficult to get different device manufacturers to create and use a single standard
for the terminology used to describe services. Consequently our framework uses high-
level semantics to resolve the inherent ambiguities between service requests and
service descriptions [Fergus 2003b].

Applications that use semantic metadata rely on centralised knowledge sources
managed by a consortium of knowledge engineers. Embedding heterogeneous devices
within ad hoc environments makes it difficult to implement any kind of centralised
solution. Devices need to host and manage their own knowledge, as such mechanisms
need to be developed that allow devices to share and maintain this knowledge over
time. In our framework semantic metadata resides on individual devices and the total
knowledge within the network is the sum of all devices and their associated semantic
information. No centralised servers are used to store this information, thus semantic
information is distributed within the network, which ensures flexibility, fault-
tolerance and fair concept creation and evolution [Fergus 2003b].

Distributing knowledge within an ad hoc network makes it difficult to determine what
knowledge is correct. Typically the consortium determines this however this is
difficult when knowledge is embedded within devices that may not have a user

interface. As such our base assumption is that knowledge needs to be managed

12



without any human intervention. Our framework allows semantic information to be
dynamically evolved devoid of any centralisation using general consensus. Concepts
that are more commonly represented are emphasised whilst less common concepts are
removed from the network over time. This is an automated process that requires no

human intervention [Fergus 2003b].

1.9.3 Device Capability Matching

One of the main features with service-oriented architectures is that functionality can
redundantly co-exist. The difficulty is selecting the best service that meets the required
configuration requirements. It may be acceptable to stream DVD content to a plasma TV,
however the same is not true when a mobile phone is being used. As such service
compositions must be based on the capabilities individual devices have [Mingkhwan 2004,
Mingkhwan 2005]. The novel contributions we have made in addressing these challenges are
listed below:

o Current service-oriented architectures rely on the user to determine which service(s)
to select. The user determines what the best configuration should be in order to
provide the best solution. Although this may not be too taxing on the user this is set to
become increasingly more complex as networked appliances and home networks
become common place. We have developed mechanisms that allow devices to
automatically determine which device is better equipped to execute a given service
[Mingkhwan 2004, Mingkhwan 2005]. This helps devices dynamically compose to
create the solutions that provide the best quality of service.

» Existing capability specifications provide base solutions for describing device
capabilities however they do not provide any quantitative mechanisms to make
accurate comparisons. In our framework we extend existing specifications to include
capability scoring which not only assesses individual device capabilities but also
provides overall capability scores that assess the device as a whole. So even if a
device is weak in one particular area, its overall capability score may still infer that it
is the best device to use [Mingkhwan 2004, Mingkhwan 2005].

1.9.4 Dynamic service composition and self-adaptation

At present it is possible to implement networked appliances, however configuring and
managing such an environment is problematic. It is becoming increasing more difficult for IT
specialists and home users alike to install and configure next generation solutions.
Consequently the base premise must be to target users with limited or no technical
experience. As such mechanisms need to be developed that remove as much burden from the

user as possible. Devices need to automatically integrate themselves within the environment

13



and manage themselves over time. Our framework provides several mechanisms that allow
devices to automatically connect to each other to create high-level applications. Application
solutions are managed by devices in compositions using our framework ensuring a given
configuration is maintained [Fergus 2005a). Again each novel contribution is listed below:

e Current middleware solutions provide mechanisms to disperse devices and services
within the network however they do not provide any mechanisms that allow device
configurations to automatically emerge. Device configurations are manually created
by the user and thereafter managed. Again as we have argued above, as networked
appliances and their associated configurations become more complex so will the
integration and management tasks. This process needs to be automated. In our
framework mechanisms are provided that allow devices to automatically form
compositions with other devices to produce value added functions and aid zero-
configuration [Fergus 2005a].

o Existing approaches do not provide mechanisms to detect conflicts and change
configurations accordingly. Our framework allows devices to self-adapt to
environmental changes as and when devices or services become unavailable to ensure
that device compositions are maintained [Fergus 2005a].

e In existing approaches devices are interconnected, more often than not using wired
solutions, by the user. Again the tasks associated with this are set to become
increasingly more complex. Our framework provides mechanisms that allow
relationships between devices to be automatically created to create high-level
applications. This ensures that the user’s defined quality of service is either surpassed

or maintained [Fergus 2005a).

1.9.5 Ubiquitous Computing

Conventional computing is said to change as we see technology becoming more entwined
within the fabric of our surrounding environment. However, current approaches favour
enterprise solutions which exclude smaller devices with limited capabilities. By utilising
service-oriented computing our framework avoids this restriction by allowing operational
functions to be dispersed within the network. Our framework provides minimal functions that
allow any device to be connected to the network irrespective of their capabilities. Any
remaining functions the device is not capable of implementing can be discovered and used
remotely within the network. We have made several novel contributions, which again we
have published in [Fergus 2004, Fergus 2005b].

o Some devices, such as sensors will have limited capabilities and as such middleware

solutions need to accommodate this. Many existing approaches fail to provide

14



mechanisms to achieve this, consequently such devices are excluded. Our framework
can be implemented on devices with limited capabilities, for example sensors in a
sensor network, which allows devices to be controlled using biofeedback [Fergus
2004][Bianchi 2003].

e Our framework allows the operational functions provided by devices to be dispersed
within networked environments, which harnesses the power of wireless and mobile
technologies, thus reducing the wires and cables that are part and parcel of all modern

day appliances [Fergus 2005b].

These novel contributions extend current advances in networked appliance and home
networking research initiatives and have helped create a framework that is highly flexible,
extensible and self-adaptive. Our framework moves us closer to seamlessly interconnecting
devices and realising zero-configuration. Several open standards have been enhanced to
provide additional functionality that surpasses the functions these standards provide. These
extensions fit more efficiently within new and emerging intelligent network architectures to
embrace ubiquitous and pervasive computing environments. Furthermore, our framework
provides highly adaptive mechanisms that allow any device, irrespective of its capabilities, to

function within the network and decide how the framework services are used.

1.10 Thesis Structure

Chapter 1 of this thesis provides an overview of the problem domain, namely the
inefficiencies associated with current networked appliances and home networking approaches.
It highlights that little work has been carried out within ad hoc home network environments,
and mechanisms for enabling devices and the services they provide to automatically form
relationships. This Chapter argues that device integration and the management of device
configurations needs to be automated to free the user as much as possible from the inherent
complexities this process incurs. In doing so the challenges are presented, which include
service-oriented networking, service discovery, device capability matching, dynamic service
composition, self-adaptation and ubiquitous computing. This Chapter also describes a
framework we have developed that addresses these challenges. Finally the Chapter is
concluded by defining the scope of the research project, the novel contributions made and an
outline of the thesis structure.

In Chapter 2 we begin by presenting the background and related work within the field of
networked appliances. This discussion defines the key concepts used within this thesis and
describes the limitations associated with current approaches. This Chapter also discusses how
networked appliances relate to home networking and describes current middleware solutions

that aim to interconnect devices within home environments. A discussion is presented

15



regarding how this integration is being performed using peer-to-peer (P2P) techniques, where
several P2P models are presented. Each P2P model is discussed in terms of their associated
functions, merits and limitations and an argument is presented regarding how P2P techniques
can be used to loosely connect devices within ad hoc network environments. In this Chapter
we also describe how techniques used within the Semantic Web and ontology engineering
domains can be adopted to address several limitations within current service-oriented
middleware architectures. The discussion argues that current service discovery mechanisms
are inherently restrictive given that they are based on proprietary descriptions that dictate how
services must be described and discovered, thus ignoring the semantics of information and the
inherent vocabulary differences. As such an argument is presented pertaining to the use of

semantics to better describe what services devices provide and what they require.

A detailed discussion of our new framework is presented in Chapter 3 and the core module
each device must implement is presented. This Chapter includes the design models for the
framework functions needed to connect the device to the network and communicate with
other devices within the environment. A detailed design is presented using UML, which

describes each of the design decisions made.

Chapter 4 is a continuation of Chapter 3, and describes in detail the UML design for all the
remaining secondary services that comprise our framework. This Chapter describes the
secondary services that do not need to be explicitly implemented by every device. The
discussion focuses on the services used to perform semantic interoperability and ontology
management; device capability matching; semantic service matching; and device self-

adaptation.

In Chapter S, an Intelligent Home Environment case study is presented which describes how
the new framework implementation can be used to automatically discover and compose
devices and the services they provide within the home environment. The case study also
describes how devices within the home environment self-adapt as and when configuration
changes occur. Several other application scenarios are presented in this Chapter illustrating
how flexible the new framework is and examples are presented indicating how the framework

can be applied to other problem domains.

Chapter 6 presents a detailed discussion on how the new framework is implemented. This
Chapter discusses the toolsets used and highlights their merits and shortcomings. It presents
the specifications the framework conforms too and discuses the implementation details. This
includes an explanation of which tools where used to address the key requirements within the
framework, how they have been extended to include new functionality and what functions and

tools where problematic.

16



An evaluation of the framework implementation is presented in Chapter 7. Within this
Chapter the framework and each of the secondary services and their associated functions are
evaluated and discussed. The framework is also compared with existing middleware standards

and each novel contribution made is discussed.

The thesis is concluded in Chapter 8, which provides a summary of each chapter and re-
iterates the contributions made within this research project. Finally the future work is

presented before concluding with some final remarks.

17



Chapter 2

2 Networked Appliances, P2P Networking and Semantics

2.1 Introduction

This section provides an overview of the work carried out in the main research areas relevant
to this thesis, which includes networked appliances, home networking, peer-to-peer (P2P)
technologies, and matching processable semantics. Cutting edge research initiatives are

highlighted including their associated limitations, which are addressed within this thesis.

2.2 Networked Appliances

Devices are moving towards an increased reliance on interconnection. Games consoles, set-
top boxes such as TIVO™ are extending the capabilities of conventional appliances to include
networked communications. This provides the ability to play online games and tailor how and
when we watch our favourite television programmes. Mundane tasks associated with general
household maintenance such as vacuuming, security and mowing the lawn will be performed
remotely by controlling devices using the Internet [Brooks 2002]. In this sense many devices
of varied complexity will be a Web server. Researchers within the home automation industry
believe that conventional household appliances such as the ones described above will form a

major part of the future Internet as more and more devices become network-enabled.

There are several definitions of networked appliances, consequently it is difficult to provide a
clear and decisive description of their key characteristics. From a hardware perspective,
Moyer et al. [Moyer 2000] define networked appliances as “a dedicated function consumer

device with an embedded processor and a network connection”.

When trying to define networked appliances we also need to consider Internet appliances and
make a distinction. Gillet et al. [Gillett 2000] explain that Internet appliances are the result of
market pushes and consumer pulls. Mobile phones and Personal Digital Assistants (PDAs)
have now become commonplace, whereby Internet access is either gained via the Wireless
Application Protocol (WAP), Bluetooth and 802.11b wireless interfaces respectively.
Consequently the intersection of functions provided by these devices leads to duplication. As
a result, market and consumer demands are pressurising manufacturers to integrate these

devices to create Internet appliances. Gillet et al. argue that although there is no clear

18



definition regarding what an Internet appliance is, a definition can be defined based on how
such devices are marketed instead. They state that an Internet appliance is a consumer device
that is not a PC; something that connects to the Internet; and something that does not make
sense in a non-networked world. Driving such appliances is the need to reduce the complexity
of PCs, which is being driven by three types of people; people with less disposable income;
people who want to use the Internet, just not from a PC; and people who are happy using the
PC, but want to extend the functions around the home [Gillett 2000, Gillett 2001]. In contrast
a networked appliance differs from this definition, albeit it is a question of semantics, in that a
networked appliance has a network interface, however it is not required to connect to the
Internet — it could function perfectly well within a LAN. There is a fine line between these
definitions, however the subtlety lies in the fact that a networked appliance could also be an
Internet appliance (it could gain access to the Internet via its network connection, i.e.
broadband), however an Internet appliance could not necessarily be a networked appliance,
because it may only have the capabilities to connect to the Internet, but not interact within the

local network.

Within our research we agree with the definitions presented above, however we place more
emphasis on the software interfaces networked appliances provide. In this instance we
therefore define networked appliances as devices that publish the functions they provide as
independent services that can be discovered and used by other networked appliances in the
network (LAN or Internet) to control, monitor, manage and extend the functionality they

support beyond what they where initially designed to do.

2.3 Interconnecting Home Networked Appliances

In the following sub-sections we discuss some of the more common standards being used

within industry and academia alike to interconnect networked appliances within the home.

2.3.1 Open Services Gateway Initiative (OSGi)

A well established middleware standard used to realise the digital home is the Open Services
Gateway Initiative (OSGi) [OSGi Alliance 2005]. This standard has considerable industrial
and academic backing from organisations that include Telcordia, Panasonic Technologies,
Philips, Siemens and BMW. The alliance is composed of device manufacturers and service
providers and its mission is to create open specifications for an end-to-end solution that
enables the delivery of multiple services over Wide Area Networks (WANs) to home
networks. OSGi was founded in 1999 by Alcatel, Cable and Wireless, Enron
Communications, Ericsson, IBM, Lucent Technologies, Motorola, Nortel Networks and many

more.

19



The framework incorporates three logically separated entities: the service and network
provider, services gateway, and the in-home network. Service providers enable the provision
of value added services to the residential customer via the services gateway. Whilst service
operators, manage and maintain the services gateway and its services. Network providers
offer the necessary network infrastructure to enable communications between the services

gateway, the gateway operator, and the service provider.

Initially OSGi was designed as a mechanism to allow multimedia services to be provided
within home networks via a set-top box. However as it has evolved the alliance has extended
the capabilities of OSGi to surpass the functions provided by current set-box solutions. The
services gateway protocol stack specifies standard APIs for the platform execution
environment based on a Java Virtual Machine (JVM). The service framework itself sits on top
of the JVM and provides a general purpose, secure, managed, service framework. Using the
framework, applications known as bundles can be downloaded. Bundles are compressed Java
archives files (Jar), which contain the resources to support the service (Java classes),
including any dependency resources. Using Jar files for service deployment allows any
service to be downloaded and controlled in a uniform way. The services gateway is controlled
via a HTTP service on the gateway device. This service defines an API that allows service
operators to configure the server as well as publish static and dynamic content. Access to the
gateway is controlled using a device access service. This service allows service providers to
communicate with and control devices connected to the home network, via the gateway. One
of the important requirements from a user’s perspective is to make the gateway transparent
allowing users to view information in the gateway, modify its configuration, process
notifications and interact with services. The configuration itself is performed using the
Configuration Data Service, whilst the Persistent Data Service allows information generated
by services to be stored. A generalisation of this service is the Logging Service, which allows
monitoring data to be recorded pertaining to the gateway, the services and user interaction.
The combination of these services forms the OSGi framework [OSGi Alliance 2005] and is a
mechanism that allows devices within the home network to be accessed and controlled from

external sources via the services gateway.

Configuring the OSGi framework is inherently human centric and in most cases managed and
controlled via centralised service providers. Services are discovered and composed based on
proprietary communication and middleware protocols. This is somewhat restrictive since
distributed computing and service models are becoming increasingly more pervasive. As such
devices and services are become more heterogeneous in nature. Consequently managing such
a framework will be more complex. As technologies become more pervasive the amount of

control placed on device and service integration becomes more difficult. Different device and

20



service providers will use different communication, middleware and service standards. As
such interoperability is a problem that will require a more effective solution. New
architectures need to be developed that overcome the restrictive proprietary nature of OSGi
and provide a framework for more innovative solutions — the current OSGi standard does not

have the ability to achieve this.

2.3.2 Digital Living Network Alliance (DLNA)

This in part has begun and research initiatives such as the Digital Living Network Alliance
(DLNA) [DLNA 2004] formally known as the Digital Home Working Group (DHWG)
[DHWG 2003] are developing interoperability standards. DLNA is also currently being used
to realise the Intel Digital Home implementation [Intel 2003]. The primary goal of DLNA is
to provide a framework that enables interoperability between devices that reside within three
domains currently in existence within the home — these being the Internet, broadcast and

mobile domains. They argue that consumers want the devices they own to work together

within these domains.

DLNA advocates that the key to successful integration is to address customer demands where
the devices they own work together within and across these domains. In order to achieve this,
products designed for the home should be easy to install, must provide value, be cheap to
purchase and interoperate with all other devices within the home. From a technical
perspective DLNA argue that this requires design choices constrained through. industry
consensus that enable better interoperability. Currently open standards are too flexible and
consequently interoperability between different vendors fails. However, such standards in
conjunction with proprietary manufacturing are used because this is somewhat easier and in
most cases reduces the time taken to deliver the product to high-street stores. The downside

however is that such products have no effect on solving the interoperability problem.

The primary focus of DLNA is to move away from proprietary manufacturing and create a
framework that interconnects the Internet, broadcast and mobile domains. The framework is
based on a common approach which focuses on three key elements; industrial collaboration,
standards-based interoperability frameworks and compelling products. From an industry
perspective many Consumer Electronics (CE), mobile and PC industries have developed
innovative consumer products, however this has been achieved very much independently of

each other. No one single technology has the ability to guide interoperability alone.

This said each industry has made complementary contributions and offers unique capabilities
and attributes. DLNA aims to incorporate these contributions into a standard that addresses
interoperability. Through collaboration, standards form the basis for the creation Qf design

guidelines that enable device manufacturers to develop devices that support a common

21



baseline for the set of required standards used. Standards developed by the consortium are not
one-shot solutions but are continually evolved to support technological advances and the

emergence of new and improved standards, where interoperability is the main driver.

Building on this vision, the current version of the DLNA framework addresses several key

interoperability requirements. The building blocks include:
o Transparent connectivity between devices
e A unified framework for device discovery, configuration and control
o Interoperable media formats and streaming protocols
¢ An interoperable media management and control framework
e Compatible quality of service mechanisms

e Compatible authentication and authorisation mechanisms for users and devices

A number of design decisions have been made in the current specification and several existing
standards are used. At the physical network layer wired and IEEE 802.11 wireless standards
[IEEE Standards Association 2005] are supported using the IP network protocol. In the
current specification this is based on IPv4, however future versions will include IPv6. Device
discovery and control is achieved using Universal Plug and Play (UPnP) [Microsoft Corp.
2003], which is described below. The media transport protocol used is HTTP and several
media formats are supported, which fall into two categories, required and optional. The
required formats are JPEG, LPCM, MPEG2 and the optional formats are PNG, GIF, TIFF,
MP3, WMA9, AC-3, AAC, ATRAC3plus, MPEG], MPEG4 and WMV?9. In the current
version Digital Rights Management (DRM) and Content Protection (CP) are still under

consideration.

The consortium aims to address interoperability and their base assumption is interoperability
using agreed standards. Although it is not impossible it is not clear whether a single standard
is capable of addressing all interoperability issues. The goal must be to utilise existing open
standards as much as possible and interoperability mechanisms should be developed that
abstract the underlying implementation details allowing any standard to be used and

seamlessly integrated.

DLNA incorporates OSGi and as such it inherits the limitations associated with OSGi as
described above. It is not clear how DLNA proposes to address the complexities associated
with highly pervasive ad hoc environments. DLNA provides a base solution that is proprietary

in nature; however it is not clear how scalable or flexible their architecture is.

22



2.3.3 Universal Plug and Play (UPnP)

A further standard that also has considerable industrial and academic support is Universal
Plug and Play (UPnP) [Microsoft Corp. 2003]. This standard is in fact used by DLNA [DLNA
2004] to discover and control devices within the network. This standard is somewhat simpler
than DLNA and OSGi because its sole purpose is to automatically interconnect, discover and
control devices within the local home network. UPnP is a higher-layer protocol stack that
aims to extend the simplicity of auto-configuration features of device Plug and Play (PnP) to
the entire network enabling discovery and control of networked devices and services. UPnP is
built on top of existing standards such as IP, HTTP and XML, which are used to enable
devices to join the network dynamically, convey its own capabilities and learn the capabilities

of other devices connected to the network.

The Home API working group and UPnP merged in 1999 to unify specifications for the
development of home-control software. The specifications define an open network
architecture based on well-defined principles, protocols and applications currently used in
Local Area Networks (LANs). By utilising the benefits of the IP protocol, UPnP can be used
over a number of physical media, which includes radio frequency (RF, 802.11x), phone line,
power line, coaxial, IrDA, Ethernet, and IEEE 1394 (Firewire) [Poltavets 2005].
Consequently any medium used to connect two devices together can be used to implement
UPnP. The UPnP standard is flexible and, although it is IP based, other technologies such as
the Home Audio/Video Interoperability (HAVi) specification [HAVI 2003], CEBus and their
associated Home Plug and Play (HPnP) standard [CEBus 2005], LonWorks [Chemishkian
2002] and X10 as demonstrated in the FP5 6Power project [Palet 2004a, Palet 2004b], can be
used using UPnP bridges, proxies or residential gateways. For example, OSGi is often used in
conjunction with UPnP. In this instance UPnP allows devices to be discovered and controlled
within the LAN, whereas OSGi allows devices to be accessed and controlled via external

sources.

The UPnP specification is comprised of four local node categories. Nodes can be control
points, which are UPnP devices containing a set of software modules used to communicate
with and supervise controlled devices. For example, a PC, PDA or set-top box may act as a
control point. Controlled devices are less intelligent than control points. They are passive in
nature and typically respond to control point commands and perform specific actions. A DVD
or a VCR could be a controlled device. The UPnP working group realise that the specification
will be used in conjunction with new and existing standards and as such the spepification
defines a UPnP bridge. This is a multi-protocol, multi-technology UPnP device that allows
the UPnP network to be bridged with other technologies such as HAVi [HAVI 2003] and X10

as well as legacy devices. Such bridges may be requested if some devices are not UPnP

23



compliant, they do not have sufficient hardware resources or because the underlying

communications medium does not support TCP or HTTP protocols.

UPnP [Microsoft Corp. 2003] achieves interoperability by leveraging existing mature
standard protocols currently used on the Internet and LANSs. A decision to use IP was adopted
because it is seen as the de facto standard and has the ability to span different physical media
allowing mature protocols like TCP, UDP, HTTP, DHCP and DNS to be used [Dean 2005]. It
provides flexible mechanisms that can either use existing addressing schemes such as DHCP
or AutolP functions best suited to simple ad hoc networks [Dean 2005]. Devices and the
services they provide are discovered using the Simple Service Discovery Protocol (SSDP)
[Microsoft Corp. 2003]), which enables home-network clients to discover networked
resources. SSDP allows devices to announce their existence and for control points to locate
the resources on the network. SSDP also allows devices to leave the network gracefully
taking its services with it. The Generic Event Notification Architecture (GENA) [Microsoft
Corp. 2003] is used for eventing. This mechanism allows devices to send and receive
notifications to subscriber entities using the HTTP protocol over TCP/IP and UDP. Typically
control points subscribe to event sources — GENA creates presence announcements which are
sent to registered control points using SSDP. Any changes that occur with service states are
also reported using GENA. Controlling the services provided by devices is achieved using the
Simple Object Access Protocol (SOAP) [W3C 2005]. SOAP defines the use of XML and
HTTP to execute services over the network using a form of remote procedure call (RPC).
Using the existing standards defined above coupled with the UPnP specification protocols,
UPnP defines a mechanism that allows devices and services to be discovered and controlled

within local area networks.

The main limitation associated with UPnP is that it is human centric and does not provide any
mechanisms that allow devices to automatically discover and compose devices and services
without any human intervention. Discovery is based on attribute-value pair matching, which
is restrictive and a poor mechanism for accurate device and service discovery. Compositions
are carefully choreographed and control is based on application specific serialisations, i.e.
predetermined SOAP messages. Furthermore devices can only be used that conform to the
specification. This is somewhat restrictive and may isolate a large number of other networked
appliances using different standards. Consequently the current version of UPnP, on its own,
only provides controlled interoperability which is restrictive and again leaves little room for

innovation.

24



2.3.4 Home Audio/Video Interoperability (HAVi)

Taking a more focused approach to interoperability is the Home Audio/Video Interoperability
(HAVi) specification [HAVI 2003]. The HAVi architecture is a set of APIs, defined by a
consortium of audio-visual electronics manufacturers who have developed a common,
openly-licensable specification for networking digital home entertainment systems. HAVi
uses a dedicated network based on the IEEE1394 standard [Poltavets 2005], which has a
bandwidth capability up to 800 Mb/s. Such bandwidth capabilities enable isochronous
communication and can simultaneously accommodate multiple real-time digital AV streams.
HAVi facilitates multi-vendor interoperability between consumer electronics and computing
devices and simplifies the development of distributed applications on home networks [Lea
2000, Nikolova 2003].

The HAVi architecture strikes a balance between the demands of consumers and vendors by
facilitating both device interoperability and the introduction of new features or refinements. A
key feature of HAVi is that each physical device has an associated software proxy. Adding
new proxies to a home system makes new features or devices accessible even to applications

running on older devices.

The software elements that comprise HAVi include the 1394 Communication Media
Manager, Messaging System, Registry, Event Manager, Stream Manager, Resource Manager,
Device Control Module, Functional Component Module, Device Control Module Manager

and Applications.

HAVi supports inter-relationships between other networking standards; however this is from
an audio/video perspective. The HAVi consortium sees this as an important aspect and aims
to build bridges to offer additional consumer benefits. Using the HAVi specifications, the
software APl and the HAVi bridges, consumer electronics manufacturers can allow
audio/video devices to operate within and across different networks irrespective of the
underlying hardware or implementation details. This specification is designed to address
interoperability and plug-n-play capabilities for audio and video systems; consequently this is

a specialised standard that does not address wider interoperability issues.

2.3.5 Versatile Home Network (VHN)

Another home networking architecture is the Versatile Home Network (VHN) [CEA 2000,
Ungar 2000] [Zahariadis 2003]. It was started in 1995 as the Video Electronics Standards
Association (VESA) [Chen-Mie 1995, VESA 2005] Home Network. It was later transferred
to the Consumer Electronics Association (CEA) and standardised by EIA as the (EIA/CEA-
851) standard that defines a home intranet. VHN ties together home LANSs, such as Ethernet

25



or IEEE 802.11a, allowing any device on a home network to communicate with any other
device. The VHN architecture implements a whole home backbone, using IEEE 1394b, a long
distance version of IEEE 1394a (FireWire). Local area networks, such as Ethernet or IEEE
1394a, connect to the backbone in each room, and IP is used to tie everything together.
Version 2 of the VHN standard, was designed to incorporate UPnP for device discovery and
control, SIP (Session Initiation Protocol)-based telephony [IETF 2004], network management,
and security. It is compatible with OSGi [OSGi Alliance 2005] and HAVi [Williams 2001].
Another project that has adopted the VHN architecture is that of the Home Electronic System
(HES) standard [ISO/IEC 2001]. This project attempts to define an architecture to standardise
the use of available standards and protocols across the whole OSI layers from the physical

layer to software applications [HES 2005].

The VHN architecture encompasses several existing home and middleware standards, such as
UPnP, OSGi and HAVi, which have several limitations. As such the problems described
above are evident within VHN. This architecture does not provide mechanisms for automatic
service discovery and composition. Like other middleware standards VHN interoperability is
carefully configured when the backbone is implemented. This requires high maintenance
costs and lacks scalability. Each new standard used within the home must be carefully
integrated into the VHN backbone. Mechanisms need to be developed that perform this
process automatically. Devices must automatically adapt and integrate themselves within the
environment irrespective of the underlying communication or middleware protocol being
used. Again this requires a level of abstraction that hides the underlying implementation

details. To date the VHN architecture does not provide any mechanism to achieve this.

2.3.6 Power Line Communication (PLC)

Matsushita Electric Industrial Co., Ltd (Panasonic), Mitsubishi Electric Corporation and Sony
Corporation have joined forces to create a new alliance to define a new high-speed power line
communication (PLC) standard. The consortium, aim to provide an interface standard
between different devices, using electrical power lines for audio, video and data networking.
This new alliance is called the Consumer Electronics Powerline Communication Alliance
(CEPCA) [CEPCA 2005] and will promote PLC home networking worldwide by convincing
CE manufacturers and the Information Technology sector to collaborate with device

interoperability over power lines as the driving force.

The consortium believe that bi-directional PLC is a communication channel capable of
supporting home networking using existing electrical power lines installed in home
environments, which will enable high-definition video transmissions and the use of IP

telephony. Through the consortium and the PLC-based standards it defines, interoperability

26



can be addressed between devices provided by different device manufacturers. Through the
combined efforts of the consortium members, common standards will be developed for
different PLC-based products.

Again like DLNA interoperability is addressed through common standards. As previously
stated this is in theory possible, however in practice creating one single standard to address all
interoperability issues is difficult. The PLC standard like many other interoperability
standards is inflexible and requires carefully developed solutions. The cost of maintaining

such solutions will be expensive and again restricts true innovation.

2.3.7 ePerSpace

Globally there are a number of research initiatives that are trying to address key requirements
for next generation networked appliances and home networking. The ePerSpace [France
Telecom 2005] project aims to develop an end-to-end solution for personalised value-added
audiovisual services contained within the home and external environments that will increase
user acceptability of such systems. ePerSpace provides distributed multimedia services which
are accessed via an open access network (OAN) based on the details defined in
personalisation profiles that allow content and user devices to be dynamically adapted to
specific users. The approach taken by ePerSpace is to create a trusted and interoperable
integrated framework to seamlessly interconnect heterogeneous audio and visual devices.
This also includes home platforms that define generic business models for mass-market
adoption. This framework aims to address interoperability problems and the management of

service platforms including service and context adaptation using personalised data.

The ePerSpace framework provides Global Network Integration and Interoperability
mechanisms that allow audio and video content to be transmitted between distributed services
using secure shared user profiles. Through this framework environments are dynamically built
to include networked appliances that can be controlled by content creators using Rich Media
Object Management tools. Currently, aspects of the ePerSpace research initiative are being
used by the BT Extract project on consumer vehicle telematics [Millar 2004], investigating

the continuity of home-car services, with a particular focus on personalisation.

This standard attempts to move us one step further than the standards described above to add
a level of “intelligence” that provides context adaptation mechanisms based on user profiles.
However, again this is a carefully choreographed solution, based on proprietary standards that
will be difficult to implement in pervasive ad hoc environments. Contexts are serialised using
common standards and context adaptation is achieved by reasoning over these standards. This
solution assumes a close-world view and as such maintaining and managing this solution is

costly. New standards, devices or services integrated within the environment have to either

27



conform to the ePerSpace specification or adaptation mechanisms need to be developed that
integrate new device and service types. It is not clear at this stage how this can be achieved.
Although ePerSpace talks about adaptation this appears to only be between predetermined
profiles. Adaptation must filter down to the device and service layer whereby automatic
device and service compositions self-adapt based on environmental changes. The ePerSpace

literature does not suggest that this is the case.

2.3.8 MediaNet

MediaNet [Travert 2004] also aims to develop an end-to-end solution for multimedia content
distribution. The project aims to create a framework that provides multimedia
communications for content distribution services for residential markets. The framework
takes into account the complete supply chain to manage the collaboration between content

owners, network providers and middleware services.

The underlying principle adopted by MediaNet is to provide an open architecture that
provides common access mechanisms for interworking home networking platforms. The open
architecture is achieved using pre-defined standards, common interfaces and well understood
business models. The framework will provide mechanisms that allow content to be distributed
and accessed, interworking, multimedia content to be stored, digital rights management and
high-quality audio and video distribution between wired and wireless devices. Application
developers, service providers and equipment manufactures can use MediaNet to implement
new applications compatible with common infrastructures and interfaces, including

networked devices.

MediaNet extends existing In-Home networking technologies to include In-Home
management that enables interoperation between services provided by external service
providers and In-Home application services and also provides mechanisms for deploying and
controlling networked services in a user-friendly way. MediaNet is currently researching how
this can be achieved using existing standards like OSGi [OSGi Alliance 2005] and UPnP
[Microsoft Corp. 2005]. As such MediaNet also experiences the same limitations described
for OSGi and UPnP above. It is not clear from the literature whether MediaNet aims to
address these issues. However the interoperability standards being developed for multimedia
content could be integrated into different interoperability middleware solutions to solve

specific interoperability problems.

2.3.9 RUNES

As well as multimedia content, other research initiatives are concerned with the actual internal

and external control of household appliances. Playing a key role in this will be sensor

28



networks, which are said to become entwined within the fabric of home environments. One
such project investigating this is the European funded Reconfigurable Ubiquitous Networked
Embedded Systems (RUNES) [Koumpis 2005] project. RUNES claims that embedded
systems and the Internet will begin to merge to create truly pervasive networked computer
systems. This combination will result in complexity due to heterogeneity and the dynamic
nature associated with networks that resist any form of control. In spite of this, there is a need
to promote this integration because bespoke development is too expensive and too limiting for

innovative applications.

The RUNES project aims to address this complexity using a scalable middleware framework
including application development tools that will allow users, designers and programmers the
flexibility to interact with services, devices and sensors and ease the overall application
development process. This framework claims to be adaptive, robust and self-organising. The
project is in its early stages and it is not clear whether a middleware architecture can be
created to enable the creation of a large-scale, distributed, heterogeneous network system that

can seamlessly interoperate and dynamically adapt to environment changes.

2.3.10 Semantic HiFi

A new area of research, seen as a key enabling technology within home networking, is the
ability to effectively describe and discover multimedia services using ontological structures.
The Semantic HiFi [Jacob 2004] project falls under this category and aims to address the
limitations associated with attribute-based audio processing. The Semantic HiFi framework
allows users to discover music stored on a particular device or on another device that may

reside within the home network or the Internet.

Semantic HiFi uses a peer-to-peer network to distribute and discover music and meta-data
provided by home users, music labels, and amateur musicians. The framework provides a set
of libraries, semantic description schemes, specifications and guidelines that enable
interoperability between different applications. Each Semantic HiFi application contains a
metadata repository which is used to store audio fingerprints including metadata for

individual tracks, which are shared within the peer-to-peer network.

Semantic HiFi supplements semantic descriptions to include hash functions and audio
fingerprinting to standardise how files and musical content are identified. This provides a
more robust identification mechanism which is independent of the file type, audio encoding,
amplitude, and silence header. Applications use audio fingerprints to query the Semantic HiFi
network for metadata. The metadata itself is standardised in order to ensure interoperability
between metadata descriptions used by other devices within the network. This project

addresses an important requirement and as we see a large number of services and multimedia

29



content becoming common place within home networking platforms, selecting the correct

content will be paramount and a key factor for user acceptance.

2.3.11 Future Home

Connecting appliances using a wired building infrastructure is far more expensive and may
only be available for new buildings. In a typical ubiquitous environment, users need their
complex networked appliances to be capable of communicating anytime and anywhere, and
more significantly this must be done seamlessly and wirelessly. A wireless connection does
not need any rewiring and the full system can be up and running within minutes. The
European funded Future Home Project [Future Home 2005] is trying to address this issue by
creating a solid, secure, user friendly home networking concept with an open, wireless
networking specification. The project uses [Pv6 and Mobile IP protocols in the wireless home
network. It also uses a generic device interface to make it easy and cost effective to insert

intelligence and communication capabilities in home appliances.

The ability to monitor and control appliances and consumer electronics remotely has
interested users for decades. Whether it is through mobile and land-based phones, digital
keypads or over the Internet via Web and WAP interactive sites, mobile users are becoming
more demanding in terms of monitoring and controlling the status of their homes and their
appliances. The HomeOnAir project [Barba 2005] has proposed the provision of advanced
home control services using wireless remote access based on WAP technology. It provides a
description of the services, architecture and human-machine interfaces and provides a
complete HomeOnAir system that is available for installation. A platform, that can manage

Lonworks and X-10 home automation networks, has also been provided.

Researchers are also looking at how existing technologies can be used to realise different
applications. This is becoming more popular in the area of patient care within residential
homes. For example, extending the concept of peer-to-peer chat programs homes can be
equipped with bi-directional communications between health centres and patients to perform
on-demand care. Furthermore, utilising advances within biofeedback, appliances can be
controlled and information can be sent to medical practitioners who could then interact with

the patient and the home to control networked appliances.

A project investigating this is the HomeTalk project [HomeTalk 2005]. This project has
proposed a voice-enabled, residential automation and networking platform to allow the
capability of communicating with the residents via a natural voice interface. It creates
technology for a human-centric, fully automated home with built-in intelligence and natural
language capabilities. The full implementation proposes to embed the voice interface

capability in the residential gateway/controller (RG) and support local interaction via any

30



indoor/outdoor network through ordinary telephone lines, wireless microphones or emerging

voice-over-broadband and the Internet.

23.12 WCAM

Similarly, the WCAM project [Meessen 2004] is an initiative to develop a system for audio-
visual content delivery over a wireless, seamless and secured network by exploiting the
technology convergence between video surveillance and multimedia streaming over the
Internet. It proposes an integrated solution for smart delivery of video surveillance data. This
includes smart video coding based on automatic scene analysis and understanding.
Specifically, the segmentation results are used for encoding regions of interest (ROI) in
Motion JPEG 2000 guaranteeing good quality for the semantically relevant objects while
keeping a low average data rate. By linking image analysis, such as segmentation and object
tracking for both vehicles and people to the video encoding the method is proposing to
reference images and segmentation using shape, colour or texture analysis. This process will
output active frames and ROI that need to be encoded with better quality and described by
means of metadata. The video content can also be secured using a Digital Rights Management
(DRM) system and privacy issues are addressed by selective protection of sensitive frame

regions.

2.3.13 BETSY

Wireless multimedia streaming on handheld, mobile or other battery-operated devices is a
major technology underlying the next generation information and entertainment appliances.
Today it is not possible, even at design time, to make well-founded system trade-offs between
network and terminal resource consumption, energy consumption of the terminal and
timeliness of the streaming data. The BETSY [BETSY 2005] project is aiming to deliver the
theory, models and design methodologies to make this possible during design time. It is also
devising a framework implementation that makes dynamic adaptations, in this trade-off,
possible at run-time. The project proposes to combine the research results of several domains,
such as networking, device resource management, real-time processing and stream
processing, to achieve a holistic view of the dependencies between bandwidth, delay,
schedules, and the power and energy consumption for this specific application domain. The
aim is that the results will lead to reduced product cost by eliminating pessimistic and large

safety margins or improved system performance with equal resource demands.

2.4 Peer to Peer Networking

Peer-to-peer (P2P) computing dates back to the first networks developed during early Internet
research projects such as ARPANET. ARPANET was carried out by Bolt, Beranek and

31



Newman (BBN) Technologies [BBN 2004] and was funded by the Advanced Research
Projects Agency (ARPA), which was changed to the Defence Advanced Research Projects
Agency (DARPA) in March 1972 [DARPA 2003]. This was the first large-scale network to
be developed and was based on packet-switching within a Wide Area Network (WAN). The
early developers of ARPANET envisaged that computers would be connected throughout the
world in a peer-to-peer fashion, whereby resources could be shared, thus the term peer-to-peer
emerged. In fact the early Internet was a P2P network and every node had a permanent IP

address.

In this model Computers were connected via a pre-determined communication protocol called
the Interface Message Processor (IMP). The IMP acted as a digital interface on each computer
and performed the functions of dial up, error checking, retransmission, routing and
verification. Roberts [Roberts 1967] describes the combination of the telephone lines, the
IMPs’ and the data sets as the message switching network. The first IMP installation took
place during 1969 and by the middle of 1972 there where twenty three connected computers,
which were located in San Francisco, Utah, Michigan, Illinois, Pittsburgh, Boston,

Washington and Los Angeles.

The ARPANET was decommissioned at the end of 1991 and was classed as the forerunner of
today’s Internet. Although ARPANET no longer exists in its original form, many of its parts
have progressed into the current Internet, including the TCP/IP protocol [Murhammer 1998] —-
TCP/IP replaced the Network Control Program (NCP) protocol in 1978 [Murhammer 1998] —
which was developed as part of the ARPNET project [Feibel 2000]. With the advent of the
Internet and more recently the World Wide Web (WWW) [Berners-Lee 1989] the client-
server model has become one of the most common business models for distributed computing
and as the number of interconnected computers increased, so sparked the problem associated
with the number of available IP addresses. It soon became clear, based on IPv4, that there was
not enough IP addresses to accommodate every machine connected on the Internet.
Consequently, it has become impossible to connect every device in a true P2P fashion

whereby each device has its own IP address.

This problem has been addressed in part using the Network Address Translation (NAT)
protocol, which allows public IP addresses (the range of addresses available under IPv4) to be
mapped onto internal private IP addresses. Thus computers in the centre of the network are
used as a means of connecting the organisation to the outside world, which themselves are
connected to all computers in the internal network using private IP addresses. The process of
allowing internal computers to communicate with the outside world, via the organisations
public IP address, is achieved using NAT. Although efforts in IPv6 are well underway, this

model still remains the dominant model to date.

32



P2P however is re-inventing itself and is once again becoming the distributed computing
model of choice. Although P2P is still seen as a disruptive technology, industrial and
academic institutions are beginning to view these networks as real enablers for new and
innovative applications. These networks are scalable and highly adaptive and provide
considerable benefits over current client-server solutions. As such, many P2P
implementations exist today, and many more are being created. Many of these applications
support their own proprietary protocols and P2P models, categorised as hybrid, pure,
unstructured and structured. The P2P applications considered within this thesis are listed in

Table 2.1.

Hybrid  Pure Unstructured Structured

Napster Gnutella Napster Chord
JIXTA Gnutella CAN
Pastry

Table 2.1 P2P Models

Each P2P protocol listed in Table 2.1 is discussed in more detail in the following subsections.

2.4.1 Napster

One of the earliest P2P implementations that brought P2P computing to the forefront and
which sparked a large amount of media attention was Napster [Oram 2001]. Napster was
created purely for the distribution of MP3 audio files (an MPEG-1 Layer 3 audio encoding)
[Brandenburg 1999], and as such it was swamped with negative press because people where
downloading digital content illegally, subsequently ignoring content copyright. Each Napster
node downloads and installs the client software used to connect the peer to the centralised
Napster server. Once connected, peers share MP3 files stored locally on their hard drives,
which are then indexed by the Napster server. Clients submit queries to the Napster servers
for a particular audio file. This results in a list of files that match, which includes the
connection information, username, IP and port address the querying client must use to
connect to the peer that has the file. Once the querying peer has this information it attempts to
connect to the peer and transfer the target content in a P2P fashion. At this point the Napster

server is no longer required [Gradecki 2002].

Although Napster proved successful and is said to be the grandfather of modern P2P
computing models it suffered from a number of limitations. The major limitation was the fact
that it could only share MP3 content. The other limitation lay in the fact that it was a hybrid
model reliant on client-server technology - if the server becomes unavailable then the
discovery mechanism used to find content is lost. This marked the demise of Napster when it

was ordered to switch off its servers in 2001.

33



2.4.2 iMesh

Another hybrid protocol, similar to Napster called iMesh [iMesh Inc 2005] uses a centralised
server, which clients connect to and search for content. However the iMesh model differs
somewhat to Napster in two main areas. Firstly it allows any content to be shared including
MP3 audio files. Secondly, and the reason why iMesh has not been subjected to the same

legal problems as Napster, it has a mechanism to remove copyrighted files from the network.

2.4.3 Gnutella

Computational expense and scalability issues associated with the above mentioned models are
well documented, which has resulted in new P2P networks devoid of any centralisation. The
most popular being the Gnutella protocol [Gnutella 2001]. Like iMesh is provides a generic
file sharing mechanism that allows any digital media content to be shared. However it differs
from iMesh and Napster because the Gnutella protocol uses a purely decentralised model,
which is not reliant on any centralised authority. Another distinguishing feature is its use of

the HTTP protocol to transfer information. In effect a Gnutella node is like a Web server.

The search mechanism used by Gnutella adopts a different approach to Napster in that it does
not require any centralised server to manage the location of content within the network.
Search packets are used with predefined TTL values, the default value being 7, which
corresponds to the number of hops the message can take. The packet is passed to all the
immediate peers’ the querying peer is connected to, which in turn is passed to all the peers the
peer is connected to. The Horizon as defined by Kan [Oram 2001}, given a TTL of 7
encompasses about ten thousand nodes. If a node is found that contains the file, the
information is routed back to the querying peer, which can then be downloaded directly from

the target node.

Unlike Napster, it is difficult to disrupt the network because no one single node is responsible
for creating it. If any given node is lost it does not affect the overall search mechanism of the
Gnutella network. The worst case is that you only lose the content provided by that node.
Consequently Gnutella provides mechanisms to counteract some of the limitations associated
with Napster. As such many Gnutella clients have been developed since the protocoliwas first
released in 2000, which include Bearshare [Free Peers 2005], Shareaza [Shareaza 2005] and
Limewire [Lime Wire LLC 2005].

2.4.4 FastTrack

The FastTrack protocol claims to be better than Gnutella and its variants. Unlike Gnutella this
protocol is proprietary, consequently specification details are difficult to find. A number of
popular applications such as Kazaa [Morle 2003], Morpheus [StreamCast Networks 2005]

34



and Grokster [Grokster 2005], use the FastTrack protocol which divides users into two group
types. The first group contains supernodes and the second contains ordinary nodes.
Supernodes are defined as computers with significant computation, network and bandwidth
capabilities. Supernodes are automatically selected, and typically owners do not know that
there machines are acting as a supernode. All supernodes are connected together to create an
overlay network that acts like a hub and processes all data requests received from ordinary
nodes within the network, which are inherently less capable nodes. Each supernode may serve

between 60 and 150 ordinary nodes at anyone time.

Initially when applications such as Kazaa are installed it uses pre-coded supernode addresses,
which act as bootstrapping nodes. When Kazaa is started it is registered with the “central
server” and chooses a supernode from a list of supernodes on that server. When a node wants
to share or search for a file a request is submitted to the supernode, which in turn submits it to
all other supernodes, which in turn propagate the request to the ordinary nodes it is servicing.
Like Gnutella, messages are configured with a TTL value of 7, ensuring that message

propagation is terminated once seven hops have been reached.

Once the content has been found it is transferred directly from the target node to the querying
node using the HTTP protocol, without using the supernode. There is a subtle distinction
between the FastTrack model and that of Napster in that the Napster server managed an index
of audio file information, which includes information about the peer sharing the file.
According to copyright laws this was deemed illegal and a copyright infringement even
though the file did not physically reside on the Napster servers or even facilitate in the
physical transportation of the file. The FastTrack protocol avoids this problem because it only
manages a list of supernodes and not information regarding the content itself. Supernodes are
ad hoc in nature and are free to join and leave the network at any time. So information about
supernodes held by the FastTrack servers continually changes. This abstraction detaches the
FastTrack protocol, including the applications that use the protocol, from media content and

thus some believe that FastTrack-based applications do not aid copyright infringement.

2.4.5 Chord

P2P network topologies are typically defined as hybrids, such as Napster, which use both
client-server and P2P techniques or pure as is the case with Gnutella. However further
distinctions have emerged as P2P systems have evolved which classify P2P networks as
unstructured (as is the case with Napster and Gnutella) or structured (as is the case with
Distributed Hash Table (DHT) based P2P implementations such as Chord [Dabek 2001],
CAN [Ratnasamy 2001] and Pastry [Rowstron 2001].)

35



Chord is a structured P2P network that allows order to emerge using its DHT routing
algorithm. Its basic structure forms a ring topology, whereby each node only has to establish
one connection. The protocol describes how peers join the ring, how data is stored and how
the network deals with failures [Dabek 2001, Eberspacher 2004].

Chord uses a hashing function, such as SHA-1, to generate node and object identifiers known
as keys. The node identifier is created using the IP address and port, whilst the object
identifier, which can be any kind of shared content, is created using the data to be shared
within the ring. Node identifiers are arranged in a circle modulo 2", where m is the length of
the hash value. Every key £ is assigned to the node whose identifier » is larger than or equal to
the hash value of k. The node the key belongs to is called the successor. In Chord, node
identifiers increase clockwise and keys are assigned to the first nodes that reside closest to
them clockwise. In this instance Chord is a hashing function, designed to distribute keys

evenly throughout the ring topology, whereby all nodes roughly receive the same number of

keys.

Finding nodes that map to the key is performed with little routing. Every node is aware of
their successor and as such queries are passed from successor to successor. When a node is
reached that has a hash value bigger or equal to the hash value of the key, then a node has
been found that can map the query to the key. Although this mechanism works, it would
however be inefficient in large rings because every node needs to be traversed. Chord
addresses this problem using a finger table. Each node has a finger table that is capable of
indexing ¢ entries, where ¢ is the number of bits in the identifier — if SHA-1 is used this would
be 160. Each entry of index i points to a node s that succeeds node n by at least 2. The node
s is known as the i finger of node n. Using this mechanism the first finger within the table is

always the nodes immediate successor.

In order to overcome the need to traverse every node, a node can use the entries contained in
the finger table to try and find the predecessor of some key k. Node n achieves this by
searching its finger table for some node x that immediately precedes some key k. If it finds
node x then it queries the node to determine which node is closet to x. By repeating this

process n moves the query closer and closer to k. In Chord this is called iterative routing.

As with any other P2P network, nodes will continually connect and disconnect from the ring.
As such the successor and predecessor relationships between nodes and keys, including the
finger tables will change. Chord addresses this problem using a stabilisation scheme designed
to repair the ring when new nodes arrive and existing nodes leave. Each node pefiodically
runs the stabilisation function to correct incorrect successor and predecessor entries. When

node 7 runs the stabiliser it asks its successor s for its predecessor p. Under normal conditions

36



this will be n. However if a new node enters the ring and its hash value falls between the hash
values for n and s then n has to update its successor entry to now point at the new node that
has joined. The old successor used by » is notified about the change so that it can update its
predecessor entry. Lastly the stabiliser notifies n’s successor, which is the newly added node,
about its existence so that the new node can enter » as its predecessor. Although there are
additional features supported by Chord, this overview describes the basic functionality
[Dabek 2001, Eberspacher 2004].

2.4.6 Content-Addressable Network (CAN)

Another similar protocol to Chord is the Content-Addressable Network (CAN) protocol
[Ratnasamy 2001] which uses the DHT concept. CAN comprises a number of nodes that form
a overlay P2P network that store chunks, known as zones, of the hash table. Each node also
contains information about the adjacent zones in the hash table. Requests, which may be
insert, lookup and delete, for a particular key are routed towards the CAN node whose zone
contains the key. Like, Chord, CAN is a decentralised P2P network, which requires no

centralised server to index and discover content.

The central idea surrounding the CAN protocol is based on a virtual d-dimensional Cartesian
coordinate space. The space is dynamically partitioned among all the nodes in the system.
This means that every node owns its own zone within the global coordinate space. This space
stores key-value pairs where k; is mapped onto a point p in the space using a uniform hashing
function. The key-value pairs are stored on the node that owns the zone in which p resides. To
discover the values of some key k; any node can use the hash function to map k; onfo point p
and retrieve the contents from p. This may be the content or a pointer to the content. If the
point p is not owned by the querying node or its neighbour, then the request is routed towards

the node where point p resides.

CAN nodes perform this type of routing using information about the zone and coordinate
information of its neighbouring nodes. The neighbouring nodes in the space server have a
coordinate routing table that allows information to be routed between any two nodes. Each
node maintains its own routing table, which contains information about IP addresses and zone
coordinates for all its neighbouring nodes. Two nodes are classed as neighbours if their
coordinates overlay around d-/ dimensions, i.e. in a two dimensional space two nodes are
neighbours if either the X or Y coordinates share the same value. In this instance, node (0, 1)
would be a neighbour of node (1, 1) because the Y coordinates for both nodes are the same.
Messages sent within the CAN network contain the coordinates for the destination. Using its

neighbours coordinate set, a node routes a message towards its destination using a mechanism

37



called greedy forwarding in CAN, which forwards messages to neighbouring nodes with

coordinates closest to the destination coordinates.

There may be many routes that exist between any two nodes within the CAN network,
consequently if neighbouring nodes fail or leave the network, the message can be routed
along an alternative route. In more severe instances where all the neighbouring nodes fail and
the repair mechanism has not rebuilt the mesh then greedy forwarding will temporarily fail.
The CAN protocol makes provisions for such an eventuality using a technique called
expanded search, which locates a node closer to the target node — when a node is found, the

greedy forwarding mechanism continues.

New nodes can join and leave the CAN network over time, which dynamically changes the
mesh configuration. In the instance when a new node joins it discovers an IP address of any
node within the CAN network. No constraints are placed on how this is achieved, however
bootstrap servers are used within CAN. Once a node has been found, the new node selects a
random point p in the coordinate space and sends a JOIN message. The message is forwarded
to the node whose zone contains point p. This node upon receiving the JOIN messége splits

its zone in half and assigns one half to the new node.

Once the new node receives its zone the node uses the IP addresses of its neighbours, whilst
the previous owner of the zone updates its neighbour entries in its routing table — nodes that
are no longer neighbours are purged. The old and new node neighbours are notified of the
change, which results in each node updating its routing table. As well as update messages
each node periodically sends refresh messages to its neighbours containing the node’s current
zone coordinates. The neighbours use these messages to update their routing table. The
procedure described here is localised so that newly added nodes only affect nodes which are
its direct neighbours. How many neighbours a node has is dependent on the dimensionality

used in the coordinate space.

In the case where nodes leave the space, either voluntarily or because of node or network
failure, zones are automatically reallocated. In controlled situations a node hands over its zone
and its associate key-value pairs, to one of its neighbours who have the smallest zone.
Conversely, there will be instances when a controlled handover is not possible, for example
when the node suddenly fails. Using a takeover algorithm a neighbouring node takes over the
zone. However the key-value pairs are lost until the state is refreshed by the holders of the
data.

As mentioned earlier nodes send update messages. The prolonged absence of messages
indicates that a node has failed. Once a neighbour determines that a node has failed it initiates

a takeover procedure. The node with the smallest zone should take over the available zone.

38



Determining the neighbour with the smallest zone is achieved by each neighbour starting a
timer — when the timer expires, a takeover message is sent to all the neighbours and when
these messages are received the node cancels its timer if the zone size in the message is less
than its own zone size. Alternatively the node responds with its own takeover message. This
mechanism allows neighbouring nodes to determine which node has the smallest zone and
thus provides a node selection mechanism to choose which node will perform the takeover.
This section describes the basic functionality of the CAN protocol, however for a more

detailed description including the enhancements to this protocol see [Ratnasamy 2001].

2.4.7 Pastry

The Pastry protocol is also similar to Chord and CAN, which is a self-organised overlay
network of nodes, where each node routes client requests. Pastry nodes are identified in the
network space using a 128 bit identifier, known as the nodeld. The nodeld indicates a node’s
position in the circular nodeld space. The nodelds themselves are assigned randomly when
the node first connects to the Pastry network. Several mechanisms can be used to derive the
nodeld, however typical implementations use the nodes public key or IP address to create a
hash. In Pastry nodelds are thought of as a sequence of digits in base 2°. Using this
mechanism messages are routed towards the nodeld that is numerically closest to the message
key. For example a node uses its routing table entries to forward the message to one of its
neighbours whose nodeld shares with the key a prefix that is a least one digit longer than the
prefix that the key shares with the present nodeld. If no such node is known, the message is
forwarded to a node whose nodeld shares a prefix with the key that is as long as the current

node, but is numerically closer to the key than the present node is.

Nodes within Pastry maintain their own routing table, which is organised into 128/2°
columns. For example, b could be 4 consequently there would be 8 rows and 16 columns. The
16 entries in row n contain the IP addresses of nodes whose nodeld share the first n digits
with the present nodes nodeld. Furthermore the nth + 1 nodeld digit in the candidate nodeld
has one of the 2° possible values other than the nth + I digit in the present nodeld. Entries in

the routing table are left empty if no node with the appropriate rnodeld suffix is known.

Determining the value of & is a trade-off between the size of the populated portion of the
routing table and the maximum number of hops required to route a message between any two
nodes. The size of the populated portion of the table is logsN * (2° — 1) where b is the base

and N is the number of nodes. The number of hops required can be calculated as logzN.

As well as the routing table, each node also maintains a neighbourhood set M, which contains
nodelds and IP addresses of the M nodes that are closest to the local node. The set is not used

for routing, but rather for maintaining locality properties [Rowstron 2001].

39



Nodes also maintain a leaf set L which contains a set of nodes with the numerically closest
larger nodelds and numerically smaller nodelds, relative to the present nodes nodeld. The leaf
set is used when messages are routed. When a node receives a message it first checks to see if
the key falls within the range of nodelds covered by its leaf set. If it is, the message is
forwarded directly to the destination node. If the key is not covered by the leaf set, the routing
table is used and a message is forwarded to the node that shares a common prefix with the key
by at least one more digit. In certain cases, it is possible that the appropriate entry in a table is
empty or the associated node is not reachable, in which case the message is forwarded to a
node that shares a prefix at least as long as the current node and is numerically closer to the

key than the current nodeld.

Pastry provides mechanisms to self-organise and adapt to network changes. In the case where
a node arrives, it needs to initialise its state tables and inform other nodes of its presence. An
assumption is made that the node knows about a nearby Pastry node 4. This could be
achieved using multicasting. The new node asks node 4 to route a special join message with a
key equal to the new nodeld. Messages used to join a node to the Pastry network are like any
other Pastry message, consequently Pastry routes the join message to a node Z whose nodeld
is numerically closest to the new node. In response to the join request nodes 4, Z and all
nodes en-route send their state table to the new node, which are used to initialise the new
node’s state table. Lastly the new node informs any nodes of its arrival. This procedure
ensures that the new node initialises its state with appropriate values, and that the state in all

other affected nodes is updated [Rowstron 2001].

Nodes will depart and even fail over time without warning. In Pastry nodes can determine
whether neighbouring nodes have failed if communication can no longer be established. A
failed node in the leaf set is replaced by contacting its neighbour in the nodeld space and
asking that node for its leaf set. Using this leaf set the current node updates its own leaf set to

replace the failed node.

Failed routing table entries are repaired lazily, whenever a routing table entry is used to route
a message. Pastry routes the message to another node with a numerically closer nodeld. If the
downstream node has a routing table entry that matches the next digit of the message key, it

automatically informs the upstream node of that entry.

If a numerically closer node can be found in the routing table, it must be an entry in the same
row as the failed row node. If that node supplies a substitute entry for the failed node, its
expected distance from the local node is therefore low, now all these nodes are part of the
same nearby nodes with identical nodeld prefixes. If a replacement node is supplied to the

downstream, a routing table maintenance mechanism is triggered to find a replacement entity.

40



DHT-based P2P implementations are said to provide considerable benefits over previous
generations and provide emergent behaviours that support order and increased performance.
There is however a trade off between performance and maintenance costs. For instance the
cost associated with maintaining a consistent distributed index in DHT-based solutions is high
because most time is spent updating indices. It is generally agreed that DHT provides an
efficient mechanism for data access however costs are exponential as the number of peers that
continually connect and disconnect increases. The converse of this problem is that not having
a DHT requires an exhaustive traversal of the network, which results in network flooding.
Using this technique removes the maintenance costs associated with keeping the network

topology consistent, however it is penalised in terms of network congestion.

Whilst implementations like Chord, CAN and Pastry may work well in structured network
environments like organisational P2P networks (where the network structure remains largely
the same) they are not as effective in unstructured environments (as is the case with Gnutella
and FastTrack). This is because these networks are inherently ad hoc in nature and highly
unstructured. The network topology is continually changing and consequently managing a

consistent DHT across such networks requires considerable effort.

2.4.8 JXTA

New P2P initiatives, more specifically JXTA (Juxtapose), have tried to create a balance by
creating a hybrid system that uses a loosely consistent DHT [Traversat 2003]. JXTA in this
sense is similar to other implementations such as Chord by virtue of using DHT. However the
way in which a table is managed differs. Whilst Chord relies on more costly mechanisms to
keep the network view consistent, JXTA uses a less costly mechanism that ensures the
network view is only loosely-consistent. The advantage with this approach is that it is less
expensive to maintain, however the disadvantage is that it may be temporarily or permanently

inconsistent.

The JXTA architecture consists of three layers; the core layer; the services layer and the
application layer. The core layer provides the main services required for P2P computing such
as peer discovery, peer creation, groups, security and mechanisms for mobile devices, such as
mobile phones and personal digital assistants (PDA) [Gong 2001, JXTA 2001, Qu 2001,
Waterhouse 2001, Halepovic 2002, Oaks 2002, Traversat 2002, Wilson 2002, Arora 2003,
Sun Microsystems Inc. 2005a, Sun Microsystems Inc. 2005c]. The service layer provides
services that are deemed desirable, for example file sharing, protocol translation and
authentication. The application layer contains any number of P2P applications, built on top of
the services layer, to perform some given function, for example solutions provided by DLNA,
OSGi or UPnP.

41



The JXTA protocols allow any device to discover and communicate with each other and
provide mechanisms to perform interoperability between heterogeneous devices. Devices may
implement JXTA in any programming language and form bindings with any underlying

transport protocol on any platform.

Devices are known as peers in JXTA which are nodes that sit inside the network.
Communications take place between peers, which may reside within and across different
networks, by sending XML messages along communication channels called pipes. Peers are
dynamic in nature and are free to connect and disconnect at any time. This behaviour means
that peers dynamically reconfigure as network changes take place. Peers connect to form peer
groups, which emerge through inter-peer connections, known as relationships. Peer groups are
a logical grouping of peers that share a set of common services. Many peer groups may co-
exist, which can be identified using globally unique IDs. Peers are free to create or join
existing groups and may belong to several groups simultaneously. Constraints can be placed

on peer groups to implement security policies that control how and which peers may join.

Peer groups are designed to address several requirements, the first being security. The second
is to provide an effective scoping mechanism that split the network into specialised domains,
known as abstract regions which control the search space. Peers, within the network, share
several peer group services which include the Discovery Service, Membership Service,
Access Service, Pipe Service, Resolver Service and the Monitoring Service. The collective

use of these peer group services provides the core functionality most P2P applications require.

The central idea behind JXTA is the concept of services, which are referred to as modules.
JXTA supports two types of services called Peer Services and Peer Group services. Peer
services are implemented and used by a single device. If the device is disconnected then the
Peer services it provides are lost. Peer Group services are implemented on numerous peers
and shared within the group. When a single peer in the group is disconnected you only lose
the services provided by that device and devices are free to re-discover the same service

provided by another device.

Services are abstractions, which can be used to hide the underlying implementation details
regarding how the service is created. For example the implementation could be a Java class,
or a jar file. At an abstract level services are described in a standard way and the
implementation details are left to the device manufacturer. Each service is known as a
network behaviour, which can be discovered and used by any other device within the group.
JXTA services provide a flexible means of addressing interoperability between different

implementations.

42



Pipes are one of the main mechanisms for sending messages between devices, which support
both asynchronous and unidirectional communications. The message object can support any
arbitrary data such as binary code or Java objects serialised as XML. Pipes are known as
endpoints which may be input and output pipes mapped to network interfaces such as TCP/IP.

This is dynamically performed at runtime.

XML advertisements are used to advertise networked resources such as peers, services and
pipes. One of the key benefits of advertisements is that they are language neutral XML
documents, which means that they can describe and advertise the existence of any resource
irrespective of the programming language it was developed in or the underlying platform or

transport protocols it uses.

Discovering resources is achieved by searching for advertisements. If a local advertisement is
found then the device can use it otherwise JXTA searches for the advertisement remotely.
Advertisements have a lifetime that specifies the availability of the resource. Using TTL
values, resources can be deleted without having to use centralised control. Extending the
lifetime of a resource can be achieved by republishing an advertisement before the previous

advertisement expires.

Each resource within the JXTA network is identified using a globally unique ID, which is
created using the JXTA J2SE binding. In the current JXTA specification there are six entities
that use JXTA IDs. These are the Peer, Peer Group, Pipe, Content, Module Class, and the
Module Specification. JXTA IDs are represented as Universal Resource Indicators (URISs)

which are persistent location-independent identifiers.

IDs provide a level of abstraction that allow every network resource to be discovered and
referenced in a standardised way without having to consider the underlying implementation
details. This provides a unified addressing scheme that allows devices with different
addressing schemes to interoperate. For example devices that use IEEE 802.15.4 (Zigbee)
[IEEE Standards Association 2005] can communicate with devices that use 802.11x using the
unified JXTA ID mapped to the underlying transport protocols being used — the conversion

between standards is invisible to the device.

The JXTA specification has matured, and has considerable support from industry and
academia alike. It is generating a great deal of interest within the ubiquitous and pervasive
computing domains and research initiatives are currently assessing how it can be used in the

digital home.

JXTA provides several discovery specifications, however they are somewhat restrictive
because services are not discovered based on the capabilities individual devices or the

services they provide support. The discovery process is based on pre-determined syntactic

43



descriptions. This technique is efficient when using pre-determined core framework services,
however it becomes more problematic when discovering application specific services that are
ad hoc in nature. These types of services are non-standard services that provide access to the
devices underlying functions. As such these functions will be numerous. The current version
of JXTA does not provide any mechanisms to discover services based on semantic
descriptions that describe the behavioural aspects of the service. Additional core services need
to be developed that extend the existing JXTA specification to address this requirement. This
will enabled devices to automatically compose devices and services without any human

intervention.

Other variants of P2P computing exist that are converging with home computing such as
Instant Messaging (IM) [Shigeoka 2002], which has seen a significant growth in recent years.
Instant Messaging follows a similar path as P2P in that the concepts have been around for
some time. Mechanisms that allow one-to-one and group chatting have been around long
before current IM solutions. Examples of such systems are Unix talk [Burk 1998] and Internet
Relay Chat (IRC) systems [Douglas 2004], which are extensions of Unix talk. P2P is also
being used to extend the gaming experience through distributed on-line game play. A

technology generating a great deal of interest within this area is Jabber [Lee 2002].

2.5 The Semantic Web

The term ‘Semantic Web’ was coined by the inventor of the WWW, Tim Berners-Lee
[Berners-Lee 2000). Berners-Lee had a two stage view of the WWW. The first stage was to
create a collaborative medium that allows authors to develop and host interconnected Web
pages using HTML and the concept of hyperlinking. The second stage was to make the Web
understandable in order to make data processable by machines as well as humans — this

second stage will result in a ‘Semantic Web’.

There is nothing mystical about the Semantic Web and people often frown upon the idea of

making a machine intelligent and thus threatening. Berners-Lee clarifies the term by stating:

“4 Semantic Web is not Artificial Intelligence. The concept of machine-understandable
documents does not imply some magical artificial intelligence which allows machines to
comprehend human mumblings. It only indicates a machine’s ability to solve a well-defined
problem performing well-defined operations on existing well-defined data. Instead of asking
machines to understand people’s language, it involves asking people to make the extra effort
[Berners-Lee 1998].”

Daconta [Daconta 2003] makes reference to where the ‘Smarts’ in data resides. Traditionally

data is propriety, which means it can only be accessed and understood by a purpose built

44



application. The data itself is not transitive and can only be accessed by pre-defined functions,
exposed by the application — if you do not have the software, then you cannot access the data.
Daconta states that in propriety data the ‘Smarts’ reside in the application and not in the data
itself.

The introduction of XML has overcome this limitation and made information accessible
within a single domain. The data itself resides outside the application and as a result the
‘Smarts’ reside within the data and not in the application. Doconta defines this type of data as
application independent, which is smart enough to be transferred between applications within
a single domain. The XML paradigm can be further extended to ensure that data is
incorporated within and across multiple domains and is structured using taxonomies and
classification hierarchies. The true power of taxonomies becomes evermore apparent when
the data adopts the principles of ontology, and incorporates rules that enable information to be
inferred from existing data using logical definitions. The word ontology derives from the
Greek words ‘onto’ (being) and ‘logia’ (written or spoken discourse). There are many theories
of ontology dating back to Aristotle ranging from ‘concepts of being’ to ‘knowledge
representation and information reuse.” A more detailed discussion on ontology is presented in

Section 2.5.1 on page 46.

The Semantic Web is widely scoped and it is said that applications will be employed in
various guises. The technologies surrounding the Semantic Web are not solely designed for
the WWW, but rather define a set of tools and ontological languages that address the problem
of semantic interoperability. These tools are becoming more widespread and are used within
the areas of Sales Support, Strategic Vision, Marketing, Decision Support, Corporate

Information Sharing and many more [Daconta 2003].

The fundamental issue the Semantic Web addresses is semantic interoperability. XML paved
the way for syntactic interoperability, however it is important that this is extended to
incorporate semantic interoperability to ensure that information is not just dumped in files and
databases. The idea is to dress up this information and put the ‘Smarts’ in the data itself and

enable syntactic and semantic interoperability within and across different domains.
Heflin [Heflin 2003] states:

“the goal driving the Semantic Web is to automate Web-document processing. To that end,
researchers are developing languages and sofiware that adds explicit semantics to XML's
content structuring aspects. A Semantic Web language lets users create ontologies that
specify standard terms and machine-readable definitions. Information resources (such as
Web pages and databases) then commit to one or more ontologies, thus specifying which sets

of definitions are applicable to a specific resource. For example, an ontology about animals

45



might explicitly state the class ‘Dog’ is a subclass of ‘Mammal’ and that the classes
‘Mammal’ and ‘Fish’ are disjoint. Logical reasoning systems can use these statements to

deduce additional information that was not explicitly stated about the terms in the resource.”
He further highlights the main challenges facing the Semantic Web:

“although a standardised Web ontology language will be a major step forward, several
challenges need to be addressed before the Semantic Web can become a ‘Pragmatic Web’ —
an online environment that not only helps computer systems find information, but also helps
ordinary people accomplish tasks and get practical work done. The challenges include:

o  Getting information into the appropriate format

¢ Scaling Semantic Web technology to handle ‘Web size’ data

¢ Creating, maintaining and integrating ontologies

o Using the Semantic Web to describe and compose Web Services

o Handling inconsistent data and

o  Determining what to trust.”

Heflin highlights some interesting challenges, more notably the idea that we need to get
information into an appropriate format as well as creating, maintaining and integrating
ontologies; and determining what to trust. He describes a “chicken and egg” problem whereby
if semantic web content was available then more systems and agents would use the Semantic
Web for search tasks and if it were used in more searches, more content providers would be

willing to provide information in the specified format. This is an interesting challenge.

2.5.1 Ontology

A brief definition of ontology was presented above and we highlighted that many theories
have been presented ranging from ‘concepts of being’ to ‘knowledge representation and

information reuse.’ Decker et al [Decker 2000] define ontologies as:

“a shared formal conceptualisation of a particular domain which provides a common

understanding of topics that can be communicated between people and application systems.”

Whilst Gruber [Gruber 1993] states “an ontology is an explicit specification of a

conceptualisation.”
Following a similar description Uschold and Gruninger [Uschold 1996] define an ontology as:

“a shared understanding of some subject area which helps people or processes achieve better
communication, interoperability and effective reuse. The Ontology embodies a
conceptualisation — definitions of entities, their attributes and relationships that exist in some

domain of interest. The conceptualisation is explicitly represented.”

46



In the technical view of ontological engineering, ontology is the vocabulary for expressing the
entities and relationships of a conceptual model for a general or particular domain, along with
semantic constraints on the model that limits what the model means. Both the vocabulary and
the semantic constraints are necessary in order to correlate that information model with the
real-world domain it represents. Complex ontologies far exceed the capabilities of simple
ontologies such as taxonomies and catalogues, in that they are capable of consistency
checking, providing completion, interoperability support, validation and verification,
comparative and customised search, and exploiting generalisation and specialisation
information. The following sections explain this distinction by defining weak and strong

ontology representations.

2.5.1.1 Weakly Defined Ontology

Taxonomy is based on classification, which ensures that things are organised into logical
hierarchies. The hierarchy itself is represented as an upside down tree. Branches within the
tree are defined as nodes, with the top node being the most general. As nodes move further
down the tree, they become more specialised. For example, a ‘Dog’ is a more specialised
concept than an ‘Animal’ concept therefore the node ‘Dog’ will appear under the node
‘Animal’. The links between nodes are referred to as subclassification and superclassification.
For example the node ‘Dog’ appears as a subclassification of ‘Animal’ whilst ‘Animal’

appears as a superclassification of ‘Dog’.

Taxonomies have proved to be a powerful tool for classifying information semantically (in
terms of taxonomies, this is usually defined as weak semantics or meta-data). By definition
this means that they are directly associated with technologies that focus on knowledge
representation such as thesauri, conceptual models and ontologies. Taxonomies are often
referred to as semantically weak representations because of their inability to express
information using rich modelling primitives. At the very best taxonomies can only provide a
simple model capable of making simple distinctions between objects, which primarily focus

on browsing and navigating information structures.

There is a subtle distinction between semantically weak representations and semantically
strong representations. Something is a subclassification or a superclassification of an object
within a taxonomy, however semantically strong representations enable us to define nodes
using richer model constructs such as disjointTo, equivalentTo as well as using properties to
describe the individual characteristics a class supports. Subclassification and
superclassification make the taxonomy structures ill-defined and semantically weaker than
other structures such as conceptual models and ontology. McGuinness [McGuinness 2001]

clarifies this point by stating:

47



“In these organisation schemes, it is typically the case that an instance of a more specific
class is also an instance of the more general class but that is not enforced 100% of the time.
For example, the general category Apparel includes a subcategory Woman (which should
more accurately be titled Women’s Apparel) which then includes subcategories Accessories
and Dresses. While it is the case that every instance of a Dress is an instance of Apparel (and
probably an instance of Women's dress), it is not the case that a Dress is a woman and it is
also not the case that a Fragrance (an instance of a Women'’s accessory) is an instance of
Apparel.” She further states “Without true subclass (or true “isa”) relationships, we will see

that certain kinds of deductive uses of ontologies become pragmatic.”

The Thesaurus is probably one of the most common classes of taxonomy. It is classed as a
semantically weak classification that enables information to be structured and ordered in a
known way so that equivalence, homographic, hierarchical and associative relationships
among terms can be displayed clearly and identified by standardised indicators. A thesaurus is
primarily used to aid information retrieval based on the rough associations between any terms.
This ensures that concepts are described in a consistent way and provides a tool for users

which enables them to drill down until required information is found.
McGuinness [McGuinness 2001] classifies thesauri as simple ontologies and states:

“thesauri are controlled vocabularies. These types of ontologies prove useful and common
term usage provides a starting point for interoperability. They are used for Web site
organisation and navigational support. In this sense they are a generalised hierarchy of terms
which can be further exposed to reveal relevant subcategories. Using hierarchical tree
structures provides the user with a realistic expectation of the site and enables the user to
quickly determine if the site contains the information they are looking for. This type of
functionality can be viewed as a browsing tool, which tags content to aid browsing and

searching.”

2.5.1.2 Strongly Defined Ontology

Conceptual models extend the capabilities of taxonomies by modelling a particular domain to
form a complex knowledge representation. The domain consists of entities, which have
relationships with other entities, and possess attributes with associated values. Conceptual
models extend the capabilities of typical taxonomies by fully implementing the ability to
capture the subclass relationships between parent and child classes. These models use the
object-oriented paradigm to construct complex knowledge domains which consist of the
meta-level and the object-model level. The meta-level defines the classes, the relationships
and the properties, whereas the object-model level defines content models. Ontologies can be

seen as conceptual models and more specifically logical models. Logical models are defined

48



as the combination of axioms, inference rules, and theorems. Axioms and inference rules are

used to prove theorems about the domain represented by a particular ontology.

The Resource Description Framework (RDF) [Decker 2000, W3C 2005] is a simple model
and is based on XML syntax, which has been a W3C recommendation since February 1999.
Its primary function is to describe resources using URLs. RDF differs from XML in several
different ways. The main difference relates to how the formats apply meta-data. XML applies
meta-data to the internal structures of an XML document whilst and RDF document focuses
on providing meta-data about the external information associated with a document such as

‘Author’ and the date the document was created.

The RDF Model is based on a collection of triples. A triple is the name given to RDF
statements, which contain three parts — the subject, predicate and object. The subject is a
resource, which can be either an electronic source such as a Web page or it can be a concept
like ‘Car’. A resource can be identified as anything that can be given an identity [Daconta
2003]. The predicate is a verb that links the subject and the object together. For example the
predicate in the following sentence “John throws the stick” is throws, which links the subject
(John) to the object (Stick). The object is a value associated with the subject via the predicate.
The object may be another subject or resource or it may be a literal value such as a string or a

numerical value.

The RDF structure itself can be represented using three different formats; RDF/XML, a triple
notation called N3 or a graph-triple notation. In addition to the simple triple model, RDF
contains two further features which deal with collections, more formally known as a Bag
object and Reification. The Bag feature is self-explanatory and allows groups of resources or
values to be combined. Reification is rarely used and focuses on high-level statements used to

describe other statements.

Although RDF offers distinct advantages over raw XML, it has not been widely accepted and
its uptake has been slow. This can be attributed to three reasons. It is difficult to embed RDF
within XML and as a result it is not easy to validate it. A second reason is that parts of RDF
are complex which make the development process significantly more difficult than XML
development. RDF allows metaphors to be mixed, which means that RDF documents are
capable of using terms from difficult representations provided by different organisations such
as linguistics, object-oriented concepts and relational data [Daconta 2003]. This is
advantageous in one sense because it provides for a more integrated environment that

promotes knowledge sharing; however this also causes a great deal of confusion.

The third problem can be directly related to the hierarchical constructs of RDF. It proves

difficult for document authors to arrange triples into a hierarchical structure using RDF in its

49



raw form. The document soon becomes unwieldy and difficult to follow or maintain —

however tools do exist, that abstract the complexities away from the user.

RDF provides a model capable of linking resources together in a directed graph format;
however it is too simplistic to capture the true semantics of information. RDF Schema
(RDFS) was developed to extend RDF and enable information to be represented as classes
and properties of classes with associated values. This allows class definitions to be
represented as inheritance hierarchies. RDFS can also further constrain the model by placing
domain and range restrictions on properties [Fensel 2003]. RDFS, like RDF is a simple
model, which provides a set of simple standardised resources and properties that enable
authors to create ontology-based vocabularies, and is based on an object-oriented paradigm.
Whereas RDF describes information at the instance level, RDFS extends this to represent
information at the class level. It allows the author to model information using object-oriented
principles, which is restricted to the development of classes and data that captures object
behaviours — RDFS is concerned with modelling data not behaviours and enhances the
modelling capabilities of RDF or XML not only to include classes, and properties of classes
but to also define complex relationships between classes and properties, such as subClassOf

and subPropertyOf, making classes and properties transitive.

Another specification for describing data is that of Topic Maps (TM) [Le Grand 2001]. Topic
Maps are defined as a context-oriented index which sits above a set of documents. This
indexed-based overlay enables content based navigation over resources, which acts like a
taxonomy that describes, classifies and indexes a desired information space. TMs are not new
and appeared before XML. They were based on the Standard Generalised Markup Language
(SGML) [Goldfarb 2002] representation and became an ISO Standard (13250), which today
has two interchangeable syntaxes — XML and SGML. The more common representation is
XML and current TMs are usually referred to as XML Topic Maps (XTM). The key concepts
surrounding TMs are topic, association, occurrence, subject descriptor and scope. A topic is
defined as anything that can be a distinct subject of interest — the topic itself usually acts as a
proxy for a particular subject. Capturing subjects within a TM enables us to make assertions
about the subject. An occurrence is defined as a resource that provides us with some
information about a topic. The occurrence is described using a URI and has an associated data
value, which can be of different types, however unlike RDF, the value may not be another
resource. This is one of the fundamental limitations of TM and where RDF provides a more
complex form of linking. An association is defined as a relation between one or more topics.
A subject descriptor is defined as something that can be a resource, which has an associated

information representation called a topic. The scope is defined as the context of the topic, its

50



occurrences, resources and associations. The concept of scope is the same as a namespace

used in current markup languages.

In formal languages there is a vocabulary, which can be defined as a language that has a
syntax and associated semantics for the objects of that syntax. The primary function of
ontologies is to reduce the models of interpretation of specified vocabularies in order to
remove as much ambiguity as possible. No other model type, for example taxonomies, does
this. Consequently these models rely on the human to understand the semantics and resolve
any ambiguities that may exist. The view is that machines should be responsible for this level

of processing so the reliance on human intervention can be minimised.

2.5.1.3 Ontology Specifications

Many ontology specifications have been developed over the last twenty or thirty years. The
Simple HTML Ontology Extensions (SHOE) [Heflin 1998] specification was one of the first
languages that used ontologies for direct use on the World Wide Web (WWW) and was
viewed as the blueprint for the Semantic Web [Berners-Lee 2001]. SHOE combines the
features of mark-up languages and borrows the characteristics from both predicate logic and
frame-based systems. SHOE is designed directly in HTML and XML documents, however it
provides more benefits if it is embedded in XML because the extensive tools available, such
as the Document Object Model (DOM) [Goldfarb 2002], which can be used to perform
validation at the XML level. The SHOE syntax however still has to be parsed by SHOE-

aware software.

SHOE attempts to enhance interoperability between distributed Internet agents, by using
shared ontologies, prefix naming, prevention of contradictions, and locality of inference rules
[Fensel 2003). Before SHOE can be used, an ontology needs to be located in a centralised
repository, which may consist of a number of Web pages that categorise ontologies, or the
repository itself may be more complex and enable the ontology to be annotated with meta-
data indicating key characteristics. This is said to provide a better search mechanism, however

if no ontology exists then a new ontology needs to be constructed from scratch.

In SHOE the Web page or the XML document is annotated. This means that SHOE-based
tags are inserted into the document. These documents are published on the Web and
discovered and used by SHOE-based proprietary software capable of understanding the
SHOE language. Documents are harvested using the SHOE Web Crawler called Expose,
which searches Web pages with SHOE syntax and stores these documents in the knowledge
base. The documents themselves can be used and the SHOE syntax extracted and processed
using a reasoner such as RACER [Haarslev 2001].

51



The XML Ontology Language (XOL) [Karp 2005] is a language for ontology exchange,
inspired by Ontolingua [Farquhar 1997] and the Ontology Markup Language (OML)
specification [Kent 2005]. Ontolingua defines ontologies using the LISP programming
language and OML uses conceptual graphs. The initial XOL specification is based on a
Document Type Definition (DTD) schema [W3C 2005], however this was updated to the
XML Schema specification [W3C 2005] by Dimitrov [Dimitrov 2000]. The main difference
between XOL and its predecessors is its use of data definition syntax. Other research
initiatives such as the Darpa Agent markup Language (DAML) [DAML 2003a], DAML-
ONT, MCF, OntoBroker, On-To-Knowledge and OIL [Fensel 2001], where also developed in

an attempt to create a de facto ontology standard.

OIL is a Web-based language and inference layer for ontologies, which combines primitives
from frame-based languages with the formal semantics and reasoning services provided by
description logics. OIL was the first ontology language to fully incorporate standards from the
W3C (RDF/RDFS as well as XML and XML-Schema). However, OIL extends RDFS by
adding additional language primitives not present in the RDFS specification. OIL marked a
significant advance and boosted superior capabilities not evident in languages such as CycL
[CyCorp 2002], KIF [Genesereth 1991], Ontolingua {Farquhar 1997] or any of the ontology
languages described above. It unifies three important aspects provided by different
communities; epistemological modelling primitives as provided by the frame community,
formal semantics and efficient reasoning support as provided by description logics, and a

standard proposal for syntactical exchange notations as provided by the Web community.

Instead of continuing with different languages for the Semantic Web a group of researchers
created the joint US/EU ad hoc Agent Markup Language Committee to create a new ontology
language called the Darpa Agent Markup Language + Ontology Inference Layer
(DAML+OIL) [DAML 2003a], built on both OIL and DAML-ONT. DAML+OIL constituted

the most semantically expressive language available for WWW documents.

The DAMLA+OIL specification was submitted to the W3C, which became the basis for the
Web Ontology Language (OWL) [Smith 2005] specification, which to date is considered the

de-facto specification for describing ontologies on the Web.

2.5.1.4 Consensus Ontologies

Stephens el al. [Stephens 2001] describe the problems associated with information retrieval
and illustrate that although some sophisticated techniques exist that use ontologies, to date
there is no comprehensive ontology that can solve the problems associated with information
retrieval. Even if you could create such an ontology it would be so eclectic that no one would

adhere to it. Web developers could use a common terminology with agreed semantics,

52



however this solution is highly improbable. Web developers could use there own terminology
and explicitly provide translations to a global ontology, however this is difficult and as a

result highly unlikely.

A possible solution provided by Stephens et al. describes how Web developers could use
small, localised ontologies related indirectly with the assistance of agents. The solution is
based on the multiplicity of ontology fragments, representing the semantics of the
independent sources that can be related to each other automatically without using a global
ontology. Direct relationships between a pair of ontologies can be determined indirectly using
a semantic bridge. The resultant merged ontologies provide a semantic characterisation of the
set of sources and their domains, and effectively create a single large ontology to serve as a

global hub for interactions.

Stephens et al. further argue that a consensus ontology is perhaps the most useful for
information retrieval by humans because it represents the way most people view the world

and its information. He makes the following statement:

“If most people wrongly believe that crocodiles are a kind of mammal, for example, then most
users would find it easier to locate information about crocodiles located in a mammals

grouping, rather than in reptiles where it factually belongs.”

The precision and recall of information retrieval measures are based on some degree of match
between a request and a response. The length of a semantic bridge between two concepts can
provide an alternative measure of conceptual distance and an improved notion of information
relevance. Previous measures relied on the number of properties shared by, or the number of
links separating two concepts within the same ontology. These measures not only require a
common ontology, but also fail to account for the density or paucity of information about a

concept.

Although this is an interesting approach it is not clear how easy it is to develop agents to
perform mappings to create semantic bridges. Ontologies will be serialised using different
specifications so interoperability between different serialisations is paramount. It is not clear
how Stephens et al. propose to address this problem. An assumption needs to be made
regarding the serialisation whereby the representation is standardised, however the .concepts
themselves remain totally unconstrained. Extending this further it is difficult to determine
how effective there algorithms are in terms of performing mappings using rich complex
ontological constructs such as those evident in the OWL specification. Typically ontology
engineers use real-world knowledge to create, merge or align ontology fragments, which takes
considerable effort. Trying to automate this process is not easy. However they do argue this

point above based on precision and recall.

53



Furthermore it is not clear how computationally expensive there approach is or how easy it is
to maintain the process. Localised ontologies will be subject to continual change,
consequently agents will need to maintain every semantic bridge it is responsible for. This is
somewhat simplified because there will be numerous agents which are only concerned with a
small proportion of the global ontology. This is analogous to the concepts used in P2P
computing whereby routing tables are managed for neighbouring peers only. Consequently
these systems are scalable; however they are computationally expensive in ad hoc
environments where continual change is the norm. Maintaining a global view may be easier
within controlled environments such as organisational LANS, however maintaining a global

view in ad hoc environments is more costly.

2.5.1.5 Ontology Evolution

It is generally agreed that describing information using ontologies provides a better solution
to discovery than attribute-value pair matching. Ontologies provide a semantic bridge
between different concepts providing mechanisms that help systems to proactively understand
and learn the relationships between different terminologies. This allows systems to
communicate with each other and understand terms that are syntactically different but

semantically equivalent.

Using ontologies for semantic interoperability proves successful in controlled environments,
however there are a number of challenges that need to be addressed such as semantic
interoperability, ontology heterogeneity, ontology merging and alignment and global
agreement on what constitutes a concept including how it should be described. An approach
used by Aberer et al., [Aberer 2003] is to capture knowledge through gossiping. Their
approach aims to interconnect peers within a P2P network via user-defined schemas to share
and incrementally evolve the search capabilities within the network. Their approach assumes
a large amount of data exists and that they have been organised and annotated according to
local schemas, which is not always the case in distributed networks. This technique primarily
focuses on creating mappings between ontologies based on the similarities found between
terms and relationships. This process requires an experienced knowledge engineer to have an
understanding of all the ontologies being mapped which must be continually maintained as

and when concepts are disproved, links are broken or new links added.

Noy et al. [Noy 2000] describe an algorithm they have developed called PROMPT that
provides a semi-automatic approach to ontology merging and alignment. It performs some
tasks automatically and guides the user through other tasks by taking two simple ontologies as
input and attempting to merge them into a single ontology. The algorithm merges the

ontologies based on similarities between classes, slots and bindings between slots. This

54



presents an interesting solution, however the merging process is based on the subjective
opinions of the user merging the two ontologies and suggests the person merging the

ontologies is an experienced knowledge engineer capable of creating the correct mappings.

The same problems are experienced in the Chimaera system developed by McGuinness et al.
[McGuinness 2000], which provides assistance with the task of merging knowledge bases
(KBs) produced by multiple authors. This is a web-based ontology editor that merges two or
more ontologies together based on identical terms and subsumption relationships between
terms. Again this approach experiences the same short-comings as PROMPT in that an

assumption is made that experienced knowledge engineers will carry out the merging process.

ONION [Mitra 2000] combines two separate ontologies to form an articulated ontology.
Rather than merging, ONION performs an alignment between two ontologies by capturing the
semantic gap between the two. This approach is similar to Aberer’s approach in that the
technique acts like a mapping between two different representations. The process of creating
the semantic gap involves semantically relating classes and creating and managing semantic
bridges. ONION uses a semi-automatic approach, which relieves the user from having to
maintain the bridges; however this approach assumes that a domain expert, knowledgeable of

both structures, creates the semantic bridges.

All these approaches require human intervention during the ontology construction phase and
although there are semi-automated tools that aid the knowledge worker there are no
mechanisms to completely automate this process. The challenge is to allow knowledge to be
distributed and discovered using advances made in global communications and distributed
systems technology, which enable ontologies to be evolved based on general consensus

without any human intervention.

2.5.2 Semantic Web Services

Mcllraith et al. [DAML 2003b] highlight that there is a need to describe Web Services in
terms of their capabilities in an unambiguous, computer-interpretable language. Advances
made in Web Service technologies and research carried out by the Semantic Web community
could provide a means to achieve this vision by combining these technologies together to
produce Semantic Web Services. Mcllraith et al. describe how the DAML for services
(DAML-S) upper service ontologies can be used to describe Web services in terms of their
capabilities. They illustrate how DAML-S builds on the complementary technologies used by
Web Services such as WSDL and SOAP to enable dynamic service discovery, composition
and execution. Mcllraith et al. provide a clear justification for using DAML-S to describe the
capabilities of services using machine-processable semantics, which WSDL alone is

incapable of doing.
55



Paolucci et al. [Paclucci 2002a, Paolucci 2003] describe a matching engine that determines
the similarity between a service request and a service description by evaluating the inputs and
outputs they define. They use a term called “sufficiently similar”; in its strongest sense a
service description and a service request are sufficiently similar when they describe exactly
the same service. They state that this is too restrictive, because advertisers and requesters have
no prior agreements on how a service is presented. A restrictive criterion on matching is
bound to fail to recognise similarities between service descriptions and service requests. To
accommodate a softer definition of “sufficiently similar” Paolucci et al. explain that there is a
need to allow matching engines to perform flexible matches based on the degree of similarity

between the service request and the service description.

One of the main problems with the work carried out by Paolucci et al. is that it only performs
matches using the service profile. It does not process the remaining service ontologies to
determine if the information provided in the service request can be directly mapped onto
bindings described in the WSDL file associated with a particular service. Their research
clearly indicates that semantic searches provide a better alternative to attribute-value pair

matching, however they provide no mechanisms for automated service composition.

Maedche et al. [Maedche 2003] provide an assessment of service-driven systems and describe
the need to converge three separate technologies — Web Services, P2P technologies and the
Semantic Web. They argue that combining these technologies will allow services to be
identified, located and invoked. This new paradigm is important to the development of
service-enabled systems, however this is no easy task and the integration process itself gives
rise to new complexities such as locating and integrating services on the fly, semantic
interoperability, data heterogeneity and process mediation. Maedche et al. make a strong case
for combining several active areas of research and explain the importance and difficulties

with the integration process itself.

In this thesis we describe how our work is heavily reliant on distributed services within P2P
networks and illustrate how we aim to capitalise on the efforts made within the research
disciplines discussed in this chapter to better describe, discover and automatically compose
networked appliances based on semantic descriptions that describe the capabilities of service

requests and service descriptions.

2.6 Summary

There are many solutions that allow devices to be interconnected within the home
environment, however little advance has been made to abstract the complexity away from this
process. Technology is becoming more pervasive, consequently trying to manage solutions

and their associated configurations is becoming more difficult. Several research initiatives in

56



the area of communications and service-oriented architectures promise to provide solutions
that realise a seamless integration between heterogeneous devices, however to date few

solutions have produced any convincing results.

Frameworks such as OSGi, UPnP, DLNA and HAVi, including new projects such as VHN,
MediaNet, RUNES, ePerSpace, VisNet and Future Home are attempting to integrate devices,
however they are are managed and controlled via centralised providers. Services are
discovered and composed based on proprietary communication and middleware protocols.
Interoperability issues are addressed using agreed standards and although this is not
impossible it is not clear whether a single standard is capable of addressing all issues. The
goal must be to utilise existing open standards as much as possible and interoperability
mechanisms must be developed that abstract the underlying implementation details allowing

any standard to be used and seamlessly integrated.

Furthermore the solutions described in this chapter do not provide any mechanisms to enable
devices to automatically discover and compose devices and services. Compositions are
carefully choreographed and control is based on application specific serialisations. Some
solutions require separate hardware adapters to convert appliances into networked appliances.
This is somewhat restrictive since distributed computing and service models are becoming
increasingly more pervasive. As such devices and services are becoming more heterogeneous
in nature. Consequently managing such a framework will be more complex where the amount
of control placed on device and service integration becomes more difficult. Different device
and service providers will use different communication, middleware and service standards. As
such interoperability is a problem that will require more effective solutions. As such new

architectures need to be developed.

The P2P networking model is seen as a key enabling technology that will extend the reach of
devices connected to each other via global communications. As well as sharing digital
content, devices will be able to share and discover network behaviours provided by other
devices connected to the network. This in effect enables devices to share hardware resources
and services. Like home networking middleware solutions, P2P also supports several
techniques that have both strengths and weaknesses. Early P2P implementations such as
Napster proved successful, however these early solutions suffered from a number of
limitations, which include single content type sharing; and a reliance on client-server
technology. The primary difficulty with solutions such as Napster is it’s central point of
control — switching off the Napster servers in effect disables the search mechanism and as

such content cannot be shared or discovered.

57



DHT-based P2P implementations adopted a more decentralised model. Unlike Napster, these
new P2P models are more difficult to control because no central server is used. However
these solutions are not without their own problems. Maintaining a consistent distributed index
in DHT-based solutions is expensive because most time is spent updating indices. DHT-based
solutions provide an efficient mechanism for data access, however costs are exponential as the
number of peers that continually connect and disconnect increases. If a DHT approach is not
used then computational costs are reduced however an exhaustive traversal of the network is
required, which results in network flooding. This said these solutions work well in structured
networks whereby control can be placed over the network topology. For example an
organisational network could be controlled to ensure that the frequency in which nodes join
and leave the network is kept to a minimum ensuring that DHT table updates are negligible.
However these solutions are not as effective in unstructured networks, such as global P2P
networks, whereby devices will continually come and go. Environments that are highly ad
hoc and mobile in nature are subject to continued change resulting in node DHT table update

algorithms continually managing all changes that occur.

All the above mentioned P2P models primarily focus is on sharing digital multimedia files
such as MP3 and AVL None of these solutions provide any mechanisms to publish and
discover services. As distributed computing models move towards service-oriented
architectures, it is becoming more important for P2P implementations to support service
technologies. A new set of specifications called JXTA has realised this and is a new: breed of
P2P that supports the discovery of both digital content and services. This marks a significant
advance in P2P technology. It is not sufficient to just host services but to also effectively
discover and use them. Services that are deterministic as is the case with JXTA core services
are easy to discover and use, however custom services are more problematic. We envisage
that there will be a large number of different services. Consequently it is impossible to

predetermine all the interfaces these services provide.

The current JXTA specifications allow custom services to be hosted, however the discovery
specifications provided by JXTA are somewhat restrictive because the discovery process is
based on predetermined syntactic descriptions. This technique is efficient when using pre-
determined core framework services, however it becomes more problematic when discovering
application specific services that are ad hoc in nature. The current version of JXTA does not
provide any mechanisms to overcome these limitations. Additional services are needed that

extend the existing JXTA specification to provide better service discovery mechanisms.

Services and the requests for services themselves need to utilise advances made within the
Semantic Web and Semantic Web Service communities. Alternative mechanisms are required

that overcome the inherent limitations associated with simple syntactic matching such as

58



attribute-value pair matching. This will allow devices to discover and use services based on
rich ontological descriptions that describe the behaviours of services, thus providing better

matching mechanisms for service discovery.

Several approaches within the Semantic Web, ontology engineering and Semantic Web
Services communities are trying to address this issue. We began by arguing that although the
thesaurus is probably one of the most common classes of taxonomy, it is classed as a
semantically weak classification that only enables information to be structured and ordered in
a known way so as to aid information retrieval based on the rough associations- between
terms. Although thesauri have proved useful they are somewhat restrictive because they use
limited modelling primitives to describe concepts, the properties they support and the

relationships they have with other concepts.

Another serialisation is RDFS and standards built on top of RDFS, include TM, XTM,
DAMLAOIL and OWL. All these are classed as ontology languages with distinguishing
features being in their ability to describe concepts. OWL is the most descriptive ontology
specification allowing complex knowledge structures to be modelled. OWL is designed to
reduce the models of interpretation within different domains, which aims to remove as much
ambiguity as possible making it easier for information to be processed by machines and

humans alike.

Serialising ontologies is a manual process. Research carried out by Stephens et al.v, suggest
that this is restrictive and it would be better if this process could be automated using agents.
There approach is interesting and will become increasingly more important. However it is not
clear how easy it is to develop agents capable creating and managing semantic data.
Ontologies will be serialised using different specifications so interoperability between
different serialisations is paramount. It is not clear how Stephens et al. propose to address this
problem. It is difficult to determine how effective there algorithms are in terms of performing
mappings using rich complex ontological constructs such as those evident in the OWL
specification. Typically ontology engineers use real-world knowledge to create, and merge or

align ontology fragments, which takes considerable effort.

Aberer et al. use an approach that assumes a large amount of data already exists and that they
have been organised and annotated according to local schemas. This process requires an
experienced knowledge engineer to have an understanding of all the ontologies being mapped
which must be continually maintained as and when concepts are disproved, links are broken
or new links added. This is costly and somewhat problematic because the knowledge engineer

is seen as the bottleneck; his opinions are subjective and he is susceptible to human fallibility.

59



Noy et al., Chimaera and ONION also propose similar approaches; consequently the same

limitations are apparent.

Several researchers are developing semantic service solutions, which use OWL and
DAMLAOIL serialisations, however the matching process is limited and does not support
automatic discovery and composition of ad hoc services within highly disruptive network
configurations. Paolucci et al. have developed a semantic matching algorithm; however it
only performs matches using an abstract service profile as provided by the OWL-S
specification. This is adequate for service discovery; however it does not aid dynamic service
composition. It does not process the remaining service ontologies to determine if the
information provided in the service request can be directly mapped onto signatures described

in the service interface.

There are several other industry lead initiatives such as the Business Process Execution
Language for Web Services (BPEL4WS) [Andrews 2005], the Component Service Model
with Semantics (CoSMoS) [Fujii 2004], the Anamika [Chakraborty 2003] framework, and the
Integrated Service Planning and Execution (ISP&E) [Madhusudan 2004] framework, which
provide standards to compose Web Services in controlled environments. The major limitation
with these standards, however, can be directly attributed to the inability to compose services
on-demand where the location of services are not known or if they exist [Sirin 2003]. The
plethora of mobile devices is on the increase and the number of services they expose will be
numerous, therefore it is paramount that we develop mechanisms that discover, compose and
execute services on demand, without having to carefully choreograph the composition and

execution process beforehand.

It is paramount that ontologies are used to better describe what services require and what
services provide if we are to develop frameworks capable of automatically discovering and
composing devices within ad hoc environments. Services need to be described semantically to
describe their capabilities in an unambiguous machine-interpretable language that allows
networked appliances to automatically form compositions with each other based on the
available functions within the environment at any given moment. This will allow devices to
manage the integration process and self-adapt to environmental changes as and when they

occur, whilst minimising the amount of disruption.

2.6.1 Challenges

This Chapter has described the key research within the areas of Networked Appliances, Home
Networking, P2P technologies and the Semantic Web. We have identified several key

challenges pertinent to this thesis that have not been addressed in the above mentioned

60



approaches. Each of these challenges are listed below and addressed throughout the remainder

of this thesis.

1.

Interoperability mechanisms need to be defined that allow any device to be
seamlessly integrated. Different device and service providers will use different
communication, middleware and service standards. As such interoperability is a

problem that requires a more effective solution.

A global view is paramount whereby devices and services can be discovered and
integrated into new and existing configurations irrespective of where they reside
within the global Internet. The challenge is to disperse the operational capacity of
devices within the network by utilising P2P technologies so that functions can

redundantly coexist and be discovered with local and global scope in mind.

Services and the request for services need to utilise advances made within the
Semantic Web and Semantic Web Service communities. The challenge is to develop
mechanisms that overcome the inherent limitations associated with simple syntactic
matching such as attribute-value pair matching, to allow devices and services to be

more accurately discovered and composed.

It is paramount that we develop mechanisms that discover, compose and execute
services on-demand, without having to carefully choreograph the composition and

execution process beforehand.

We can extend challenge three to define mechanisms that allow knowledge to be
distributed, discovered and evolved based on general consensus without any human
intervention. This will help support interoperability and ensure services and devices

are more accurately matched.

We can also extend challenge four to allow devices to manage the integration process
and self-adapt to environmental changes as and when they occur, whilst at the same

time minimising the amount of disruption.

61



Chapter 3

3 Networked Appliance Service Utilisation Framework

3.1 Introduction

In Chapter 2 we argued that current networked appliance and home networking platforms are
restrictive because they are heavily reliant on human intervention and carefully
choreographed vocabularies. Such approaches lack flexibility and do not scale in ad hoc
environments where little control can be placed on devices within the network or the services
they provide. They do not provide any mechanisms to effectively disperse services within the
network or discover those services using high-level semantics. The configuration process
itself is inherently human centric and there are no mechanisms to allow the configuration and

management of device configurations to be automated with little or no human intervention.

In this chapter we present our design for a Networked Appliance Service Utilisation
Framework. This framework addresses the challenges discussed in Chapter 1 on page 1,
which include service-oriented networking; service discovery; device capability matching;
dynamic service composition, self-adaptation; and ubiquitous computing. The framework
allows operational functions provided by devices to be dispersed within the home network;
devices can interconnect with other devices over time to form high-level compositions; and
devices can resolve terminology differences between vocabularies used to describe service
interfaces and service requests. We begin this chapter by proving an overview of our

framework.

3.2 Framework Overview

Our Networked Appliance Service Utilisation Framework (NASUF) is a Service-Oriented
Middleware (SOM), which allows ad hoc services [Fergus 2003a] offered by service-enabled
networked appliances [Mingkhwan 2004] to be dynamically discovered and composed within
a P2P network devoid of any centralisation. Each device implements the core and secondary
services that comprise NASUF as well as application specific services that disperse the
functions devices provide as independent services within the network. For example a TV
could have three application specific peer services; a visual service; an audio service; and a

terrestrial TV receiver service.

62



NASUF services allow devices to be connected to the network to form relationships with

other devices and self-adapt when environmental changes are detected. These services are the

Distributed Semantic Unstructured Services (DiSUS) Manager, the Device Capability

(DeCap) service, the Distributed Emergent Semantics (DistrES) service and the Semantic

Interoperability and Signature Matching (SISM) service. Our framework is illustrated in

Figure 3.1 and each service is described in turn below.

NASUF
. Web
DistrES LO“I Service
Service Ontology

[, il

| Ontologies | |

CORBA |

b

v
DiSUS Manager -
*
v v v iy v
JXTA .NET JINI OSGi UPnP

Figure 3.1 NASUF Framework

The Semantic Interoperability and Signature Matching (SISM) Service performs
dynamic service compositions between networked appliances in the P2P network
based on device and service capability matching [Fergus 2005a]. This service is used
to semantically match service requests with service descriptions. Any ambiguities
found are resolved using the DistrES service, which is described below.

The Distributed Emergent Semantics (DistrES) Service [Fergus 2003b] allows
ontological structures, used to describe devices and the services they provide, to be
evolved within the network based on general consensus. One of the key requirements
within our research is to address the inherent terminology differences that will exist
between different vocabularies used by different device manufacturers to describe the
services their devices provide. The DistrES Service achieves this by evolving the
knowledge structures provided by devices to create explicit mappings between terms
that are syntactically distinct but semantically equivalent.

The Device Capability (DeCap) Service [Fergus 2005a] determines the quality of the
capabilities provided by devices, which include the hardware, software and network

capabilities needed to execute services. The DeCap service is designed to ensure that

63



an overall quality-of-service (QoS) for a particular service composition is equal to or
greater than the capability requirements defined within the service request.

¢ Devices will support zero or more application specific peer services (PS), designed to
publish the functionality they provide as independent services. Peer services provide a
level of abstraction that may map onto any service technology used, thus enabling
service interoperability. Devices will discover and form compositions with services
that reside locally on the device or remotely within the network to produce value-
added services that yield functions that could not be performed by one single service
alone.

e The DiSUS Manager [Fergus 2003a)] is a core component that is implemented on
every device. It manages all services and provides several interfaces that allow the
device to be connected to any Service-Oriented Middleware (SOM) implementation,
irrespective of the underlying network protocol. It provides mechanisms for device-

to-device messaging, service discovery and mechanisms that allow devices to self-

adapt based on environmental changes.

The DiSUS Manager is the core service each networked appliance must implement. This is a
minimum requirement designed to enable networked appliances, independent of the
capabilities they support, to effectively interact within the NASUF network. The remaining
secondary services (DistrES, DeCap and SISM) must be either implemented locally on the
device itself or discovered remotely within the network and bound to before the device is
rendered fully functional. A device may implement some secondary services and outsource
the remaining secondary service functionality to other more capable devices within the
network. This feature provides a level of flexibility that allows interconnection between
devices that support varied capabilities. For example a mobile phone may only implement the
DiSUS Manager because the memory and processing constraints typically associated with this

type of device and discover the remaining services within the network.

In the following subsections we present our framework design before concluding this chapter.

The remaining secondary services provided by our framework are presented in Chapter 4

3.3 Distributed Semantic Unstructured Services (DiSUS)

One of the key requirements within NASUF is to enable devices to automatically connect to
the network without having to register themselves or the services they provide with any third-
party authority. When a device is switched on it must dynamically integrate itself and publish
the services it provides. In addition, at any point, it must be free to disconnect and withdraw
its services from the network. This section describes how this is achieved using a protocol

developed within this research called Distributed Semantic Unstructured Services (DiSUS)

64



[Fergus 2003a). This protocol implements mechanisms to distribute services within a P2P
network and contributes additional knowledge to this area by enabling peers to semantically

discover them dynamically based on device capability matching.

3.3.1 The DiSUS Protocol Requirements

Within this work, one of the challenges is to allow devices to exist within ad hoc networks
and effectively publish the functions they provide as independent services. In order to
achieve this it is paramount that the protocol addresses a number of key requirements,
namely:

o Interoperability: The protocol must support interoperability between different service
technologies, middleware architectures and underlying protocols.

e Decentralisation: Devices and the services they provide must be decentralised; every
device that joins the P2P network must be capable of reaching any other device or
service without using any centralised third party registry.

e Structured and Unstructured services: Services must be described and discovered
using pre-determined and non-determined vocabularies and interfaces.

o Dynamic environments: Devices and the services they provide must be able to work
in dynamically changing environments [Wilson 2002]. The base assumption is that
devices and services will come and go over time.

o Intelligent Discovery: Services must be described and discovered using semantic
descriptions and processed using toolsets that have inferential capabilities [Mcllraith
2001, Maedche 2003, HP Labs 2004].

o On-demand Services: Services must be discovered and invoked as and when they are
required; irrespective of location [WebMethods 2003].

o Device Independence: Any device, irrespective of its capabilities, must be capable of

joining the network, which may range from high-end personal computers to resource-

limited sensors.

The following section describes how these requirements have been addressed using the
DiSUS protocol.

3.3.2 DiSUS Overview

The DiSUS protocol implements three main components: the P2P interface; SISM and
application specific peer services. Using these components DiSUS enables devices to publish
and discover services and evolve and learn the different vocabularies used by different device
and service manufacturers. Irrespective of the device’s capabilities each device must

implement the P2P interface, however they may chose to implement any, all or none of the

65



remaining components depending on its capabilities. Figure 3.2 illustrates two types of device
— a Specialised Networked Appliance, defined as a device that supports high-end capabilities
such as a personal computer; and a Simple Networked Appliance defined as a device with

limited capabilities such as a sensor.

APS t}?lllllll[ APsn§

S 7’
5 ’

Service Interface

Service Interface

I

i

N
Data P2P Interface
Simple-NA-C
/
AP
Service Interface

-——’

Specialised-NA-B

Figure 3.2 Distributed Semantic Unstructured Services

A Specialised Networked Appliance has the ability to host services, store and evolve semantic
information used to describe and discover services, as well as propagate service requests
within the P2P network. A Simple Networked Appliance by definition does not have these
capabilities. This type of device joins the network, propagates queries and invokes discovered
services without having to provide any services of its own. This is an important requirement
that enables any device, irrespective of its capabilities, to effectively interact within the
environment. Figure 3.2 illustrates two extremes that describe both devices that are highly
capable and those that have limited capabilities, however it is envisaged that there will be a
myriad of other possibilities between these extremes. In the following section, UML models
are presented to illustrate how the key functions provided by the DiSUS protocol operate.

3.3.3 The DiSUS Protocol Design

The Activity Diagrams presented in this section illustrate the DiSUS protocol in NASUF.
These models describe how devices execute the start-up procedure; how device capability and
semantic models are created; and how peer advertisements are created, published and

discovered within the network.

66



When a device is initially switched on it executes a start-up procedure to connect it to the

network. The start-up procedure is illustrated in Figure 3.3.

Create Device
Capability
Model

- - - = DC Model

Description Lacally

Discover Service

Re
Servic Exists .y

Logally
( Publish Service ’

1
beme e - > Service
Create Service S Service
Listener Listener

\A Listener is an
end-point that can
be bound to other
|devices.

Figure 3.3 Start Device

The device is initially connected to the P2P network and a device capability model is created.
The capability model captures four main capabilities used within NASUF - these are
Bandwidth, Memory, CPU usage and Power. However custom capabilities may be added that
are deemed important to the device manufacturer, such as screen resolution and dichotomous
variables like “display in use”. This model is defined using a profile, which contains several
components relating to each capability. Within each component a set of attribute-value pairs
are used to rank the capability defined as the Status Rating, Status Assessment, Importance
Rating and Importance Ranking — a more detailed description of these are presented in

Section 4.3 on page 86.

Each device publishes the capabilities it supports in order to allow devices to first determine
whether it can effectively execute the services it provides. Figure 3.4 illustrates how

capability models are created in NASUF.

67



!

Create New Device
Capabilty Model

Device Capabilty
Model

Col

mpond
Get Capabity Attribute

Attribute does
not Exist

Figure 3.4 Create Device Capability Model

Once the capability model has been created each of the peer services the device uses are
added to the DiSUS Manager and a listener for each service is created. If a device explicitly
implements a service locally, then it is used otherwise an attempt to discover the service
remotely is made. This feature is implemented on Specialised Networked Appliances only,
because Simple Networked Appliances do not offer any services of their own. A device only
needs to describe its capabilities to the outside world if it provides a service. Each service is
created and started, before its advertisement is published — there is no point publishing the

service if it cannot be started. This process is illustrated in Figure 3.5.

68



Create Peer 'PeerA
Service - - =21 Service Binding

Start Peer
Service

Peer Service
Not Started

Peer Servite Started

Create Peer
Service Advertisements

on the device

Publish Peer Locally in this
Service Advertisements |- - - |-[S&NS€ Means

Locally

Publish Peer
Service Advertisements
Remately

Figure 3.5 Publish Service

Peer service advertisements are created and published locally and remotely within the
network. Locally, in this context, means advertisements are published on the device — this
allows a generic discovery mechanism to be used that can find services either on the device
itself or within the network. This enables NASUF to move away from centralised registries
such as JINI [JINI Technology 2005] and UDDI [Oasis 2005] and ensures that there is no
central point of failure — if a device becomes unavailable you only lose the services that

device provides.

Within NASUF services are described using three advertisements — the Service Class
Advertisement, the Service Specification Advertisement and the Service Implementation
Advertisement. The Service Class Advertisement contains high-level information such as
service provider and device information. It also contains the Service Profile, which describes
the capabilities the service provides using semantic ontological structures, which are used for
semantic service discovery. The Service Specification Advertisement describes the service
bindings supported by the device. It also contains the Service Process Model, which groups
the capability descriptions described in the Service Profile into Atomic Processes, which are
used as semantic wrappers that map to signatures defined within the service interface. This is

discussed in more detail in Section 4.4 on page 92. The Service Implementation Class defines

69



the implementation details for a particular Service Specification Advertisement. This
advertisement contains the Service Grounding, which contains Atomic Processes that link the
Atomic Processes in the Service Process Model with implementation specific signatures
defined in the service interface. Each advertisement is linked using a unique ID. The process

used to create these advertisements is illustrated in Figure 3.6.

Service Class

Create Service Class  \__ _ _ _ > Advertisement
ertiseme

Advertisement

Add Service Profile
to Service Class
Advertisement

Service Specification
does not Exist

Service Specification Exists

Create Service Specification - > Service Specification
Advertisement Advertisement

Add Service Process

Service Implementation

Add Service Grounding
to Service Implemenrtation
Advertisement

Add Service nterface

Figure 3.6 Create Peer Service Advertisements

70



Services are discovered and used by devices in NASUF using two methods. The first method
relates to the secondary services that comprise the framework. Secondary services are pre-
determined and the vocabularies used to discover these services are known by devices
beforehand. The name of the service is matched against the advertisements stored within the
device’s advertisement cache. In this instance the name element contained within the
advertisement is extracted and compared with the name defined in the service request. The

process used to discover service advertisements is illustrated in Figure 3.7.

Discover Peer
Service Locally

Can't find
Service Locally \/ Discover Service
Ndvertisement Remotely
Seryice
Advertisenjent Exists d
Service
Advertisement Exists
( Auherticate )

Service N

/ Cant| find

Service Remotely

S . Peer
( R e e )- s Service Binding

Figure 3.7 Discover Peer Service

The second method relates to application specific services. This type of service is ad hoc and
the service name or its capabilities are not known beforehand. Within this project we address
this problem using semantic descriptions to describe service requests and service descriptions

in terms of the capabilities they support. This process is illustrated in Figure 3.8.

71



3.4 Summary

Create Service _) Service
Profile Profile
Get Next IOPE
IOPE does not Exist
IOPE Exists
Add |OPE to rede Service -> Service Process
Service Profile Process Model Mode|
Get Next

Atomic Process

Atomic Process
does not Exist

Add Atomic
Process to
Process Model

Atomic Progess Exists

t‘

Create Service
Grounding

(.

)o>

Service Grounding

Atomic Progess Exists

Add Atomic
Process to
Grounding

Map Atomic Process
to Service Interface

Get Next
Atomic Process

Figure 3.8 Create Semantic Models

72

The service request is matched against semantic descriptions contained in the service
advertisements and a match is found if the capabilities described in the service request match
the capabilities described in the service advertisements. For a full list of UML diagrams for
the DiSUS Manager in NASUF see Appendix A, B, and C.

This chapter presented our framework. It provides an overview of all the services that

comprise NASUF and describes the minimum requirements needed to allow devices of varied




capabilities to join the network and interact with other connected devices. It describes how
our framework is capable of allowing devices to be dynamically distributed and discovered

within a P2P network to form high-level compositions.

In the following chapter our framework is extended to include the secondary services that
comprise the NASUF middleware architecture, which were presented briefly in Section 3.2.
Secondary services sit on top of the DiSUS Manager. This section explains that devices do
not have to explicitly implement these services, however if a device chooses not to they must
be discovered remotely and bound to before the device is classed as a fully operational
NASUF device. In the following chapter we describe how this is achieved and what

functionality each secondary service provides.

73



Chapter 4

4 Framework Secondary Services

4.1 Introduction

In the previous chapter we presented our framework that each device must implement. In this
chapter we describe the optional secondary services devices choose to implement. These
secondary services allow application specific services, such as audio and video, to be
semantically described and provide mechanisms to automatically resolve terminology
differences between vocabularies used. Secondary services also provide mechanisms to
enable devices to self-adapt and allow application specific services to be dynamically
composed. This allows application specific services to be discovered and combined with other
services based on the “what” part of the composition rather than the “how”. Furthermore
secondary services provide mechanisms to determine how well a device can execute a service

before it commits to using it, providing a rudimentary cost metrics.

In this Chapter we present the Distributed Emergent Semantics (DistrES) service, the Device
Capability (DeCap) service and the Semantic Interoperability and Signature Matching (SISM)
service. These are services provided by the NASUF framework that allow device functions to
be semantically described and discovered, the capabilities of devices to be assessed in terms
of how effectively devices can execute services; and services that allow devices to be

automatically composed, managed and self-adapted based on environmental changes.

4.2 Distributed Emergent Semantics (DistrES)

Within this thesis one of the main contributions is the use of ontologies for the purpose of
service descriptions and dynamic service composition. This approach brings with it additional
challenges because it is difficult to constrain how different device manufacturers develop and
use ontological structures. Through peer collaborations devices need to understand the
different terminology used by different devices and dynamically evolve localised knowledge
structures to extend or reify concepts they already have [Fergus 2003b]. This being the case
mechanisms need to be developed that can evolve such structures and bridge the gap between
concepts that are semantically equivalent but syntactically distinct. Such mechanisms enable
semantic interoperability between different concepts and provide a high-level of flexibility

that does not constrain how services are described [Fergus 2003b].

74



The DistrES algorithm is designed to discover semantic information provided by devices
connected to the network and merge the results with existing knowledge structures. Devices
initially have knowledge that support the vocabularies used to describe their own services,
however knowledge structures are extended over time to include the vocabularies used by

other devices to describe similar concepts. A simple scenario is illustrated in Figure 4.1.

K ; Ky

) f : .:

KAO KA1 KA2
e i e e 2
To ETz TN

Figure 4.1 Evolving Knowledge Structures over Time

The basic assumption is that a device will have a limited amount of information and will
evolve its internal knowledge structures over time by interacting with devices in the network
— Ko, represents a device with limited knowledge. At T, two information structures are
presented to the device, labelled Ky, and Ky. The device determines that Ky is a knowledge
structure that matches a query it has propagated within the network. The Ky structure is
identified as the most successful structure based on several responses received from the
network. The success of this structure is determined by statistically evaluating all response
knowledge structures received after T, and extracting the common patterns found within those

responses to produce the Ky structure. This new structure is merged with K, to become K.

At T,, the device propagates a query to the network. During this cycle Kz represents a
structure that matches the query. In this case, the structure Kz is identified as the best
information structure based on the number of common patterns found in all the responses

received after t = 1. This new structure is merged with Ka, and becomes K».

75



It is possible that this process leads to isolated information structures within the device’s
knowledge base, which are detached from the root node. However over time these structures
will form connections to other knowledge structures as the device’s information evolves. This
is illustrated at t = 2 in Figure 4.1. When K is merged with the current information structure a
relationship is found between the information structure at t = 0 and the information structure
merged at t = 1. As a result this technique is able to determine relationships between
fragmented information structures and perform appropriate merges to connect them to the
main structure. This is possible because of the classification mechanisms used to construct
ontologies where classes may have many relationships with other classes — explicitly placing
a relationship between two concepts automatically links them together. How information is
structured will be the deciding factor as to whether concepts are linked with main structures
or remain isolated. This will be dependent on the general consensus, i.e. if the majority
believe that a concept dog is a subclass of another concept reptile then these will be explicitly
linked, however if the majority correctly believe that the concept dog is not a subclass of the
concept reptile then dog may remain isolated from the concept reptile. It depends on the

scope of the domain being modelled and how concepts are generally constructed.

This mechanism is designed to enable a device’s ontology to be evolved as it moves through
time and interacts with other devices within its environment. The following section describes
the requirements needed to implement the DistrES algorithm and explains in detail the sub

processes it uses.

4.2.1 The DistrES Algorithm Requirements

In this thesis conceptually merging information structures is based on general consensus. For
example if nine out of ten people state that a concept Alsatian is a subclass of another concept
Dog then these terms including their associated relationships will be described in the optimal
structure because there is a general consensus agreement. The success of concept proliferation
is dependent on the consensus percentage. For example if 51% of devices believe that
Alsatian is a subclass of Dog then these concepts will form part of future structures because
the majority believe that this ontological structure is true. The converse of this is that if for
example only 30% of devices believe this to be true then the chance of this structure
appearing in future structures is decreased and the structure will eventually vanish.
Quantifying this is difficult because how successful an ontology structure is will be dependent
on the number of concepts that exist; the number of devices there are within the network; and
the global consensus on how structures are created. The DistrES algorithm is a mechanism
that embraces this uncertainty and enables ontological structures to be evolved based on the

environmental conditions at any given time. It can adapt to ontological and general consensus

76



changes. In order to achieve this, the DistrES algorithm is required to create, extract and

merge information within an ad hoc network environment. Consequently the algorithm must

address the following requirements:

Knowledge Structure: Knowledge structures must be nodes sub-classed
taxonomically from some root node. However, fragmented structures may exist but
must be merged into existing structures as the device’s ontology evolves over time.
The structure of information must be represented in an open standard format
(electronically readable) and must be searchable (in knowledge base) and be fully
editable.

Targeted Knowledge Discovery: Devices must have the ability to evolve existing
information structures by propagating queries within the network about subsections of
their ontology they wish to extend, e.g. “Movie”. It is the DistrES algorithm that
determines when and what structures to evolve based on any ambiguities that may be
encountered.

Extraction Engine: When a device processes a query and determines that it has
relevant information structures, it has to extract this information from its ontology
and return it back to the querying device. Although this is the function of the
knowledge base, DistrES must define what subsection of the concept needs to be
extracted. This is an application specific function, which will be dependent on the
device and how rich the ontological structure should be. For example a mobile phone
may only require a concept that has a depth of three or less (subclasses), whilst a PC
may require a richer representation that has a depth of ten. This is important because
the depth of the concept will determine its size — the bigger the structure the more
memory and processing is required. Consequently the Extraction Engine must have
the ability to control this process.

Statistical Pattern Extraction: Within the network a querying device may receive
several responses and the structure of the information within these responses will
differ. There is no centralised control and no assumptions can be made about the level
of expertise creators of knowledge will have. As such information structures need to
be evolved based on general consensus, which must be determined by evaluating
ontological structures in all responses received. This is achieved using statistical
analysis [Rumsey 2003], which extracts patterns from ontological structures being
processed until an optimal solution is created and merged within the device’s local

ontology.

77



e Merge Engine: When a device receives an optimised response from the Statistical
Pattern Extraction Engine, this information needs to be merged with the device’s

existing ontology.

4.2.2 The DistrES Algorithm Overview

The DistrES algorithm extracts and merges information from ontologies and evolves
information structures to produce best solutions based on a general consensus. This is
achieved using the Extraction Engine (EE), the Statistical Pattern Extraction Engine (SPEE)
and the Merge Engine (ME).

Extraction Engine: Devices process queries propagated within the network and extract the
name of the concept. The concept name is used to query the device’s ontology to see if the
concept exists. If it does the process begins by extracting all the dependents and for each
dependent found, the Extraction Engine retrieves all the relationships that exist between the

concept and all its dependents.

Statistical Pattern Extraction Engine: Devices propagate queries containing concepts they
wish to evolve, to other devices within the network. This may result in the device receiving
several responses which contain ontological structures that are subjective based on the
creator’s own point of view. This leads to structural and possibly lexical variation between all
responses received. This research aims to address this problem using the Statistical Pattern
Extraction Engine (SPEE). The SPEE extracts structural patterns based on commonalities
found within all responses and produces an optimal ontological structure that is said to

capture the general consensus.

Figure 4.2 illustrates a subset of a device’s ontology (C1) and three responses (R1 — R3)
representing the results the device has received from the network based on a query it

submitted.

78



Information Structures Fitness Functions After SPE

c1 R1 i ?
[ Travel Itinerary I [ Travel Itinerary l m
;| Travel Itinerary 4
Transport [ Transport || Accommodation |:| Mobile Caravan 2 :
| Rcenspon - Result
Accommodation | [ . Caravan :|_Entertamment 1
1| Insurance 1 Travel Itinerary
R2 | car Rental 1
Location 1 : Transport
' |LAccommodation 3 :
I?ansport I l Insurance I :> ' > Accommodation
R3 _l' T NiitieCamis I 5 Mobile Caravan
Travel Itinerary ; | Travel Itinerary, Transport 4 1
|| Travel Iti Accommodation | 2
[ocation ] [ car Renta || Transport | | Mobile Caravan, Transport | 2
TR ;| Mobile Caravan, Accommodation| 1
obile Caravan e A Sati 1

Accommodation |

Figure 4.2 Statistical Pattern Extraction Engine

It is clear that although structurally R1 — R3 are different, there are commonalities within the
structures that are apparent in them all. For example, the nodes “Travel Itinerary” and
“Transport” have a direct relationship between each other in all the structures. The SPEE
determines that this is a common pattern by calculating the number of times this relationship
occurs in all structures being processed — if there are four structures and four occurrences of
the relationship then it is said to be common to all structures, i.e. 100% consensus, and based

on the general consensus it should appear in the optimal structure.

In contrast Figure 4.2 also illustrates that the nodes “Entertainment”, “Insurance”, “Car
Rental” and “Location” are low scoring nodes because each node appears in one structure
only. The SPEE classes these low-scoring nodes as uncommon, i.e. 25% occurrence, and the

probability of these nodes appearing within the optimal structure is greatly reduced.

Initially all the unique terms, including the relationships that exist between terms are derived
from the device’s extracted concept (C1) and all the responses (R1 — R3). Using two fitness
functions, the SPEE decides which terms and which relationships will appear in the optimal
structure — terms and relationships with the highest fitness values are extracted and used to
rebuild the optimal structure. Fitness functions are configurable. The higher the fitness
function the more specific the extraction process is. The lower the fitness function the more
general the optimal structure will be. In this sense low fitness functions will enable optimal
structures to be created that have low-scoring nodes, whilst high fitness functions provide a
mechanism that filters concepts and relationships that are not generally used. Setting fitness

functions may be dependent on a number of factors such as accuracy, concept size and

79



processing time. For example a mobile phone, which is process and memory restrictive, may
require specific information to ensure that less common information is not included. This will
enable the device to minimise the size of the ontological structures that need to be stored.

Furthermore it will also decrease the amount of processing required.

The first fitness function places all the unique nodes, found within all structures, into a

collection, e.g.
[Travel Itinerary,
Mobile Caravan,
Transport,
Entertainment,
Insurance,
Car Rental,
Location,
Accommodation]

These nodes are given a fitness value based on the number of times a node appears within all
structures, which we call term frequency. For example, the node “Travel Itinerary” is given a
fitness value of four because it appears once in all structures. The second fitness function

places all the possible relationships into a collection that may exist between any two nodes,
e.g.

[Travel Itinerary|Mobile Caravan,

Travel Itinerary|Transport,

Travel Itinerary|Accommodation,

Mobile Caravan|Transport,

Mobile Caravan|Accommodation,

Transport|Accommodation]

The fitness value of each relationship is calculated based on the number of times a
relationship appears within each structure, which we call relationship frequency. For example
the relationship between “Transport” and “Accommodation” is given a fitness value of one

because the relationship appears in only one of the four structures.

Once the SPEE has a list of ranked nodes and relationships, it extracts the top scoring nodes

and the top scoring relationships and uses them to rebuild the optimal structure. For

80



illustration purposes the ‘Result’ structure in Figure 4.2 is generated by using the top four
nodes and using the top three relationships. These are arbitrary values, which in a real-world
situation, will be application specific. As described above, several factors decide what these
values should be, i.e. accuracy, concept size and processing time. This means that the most

optimal structure would be represented by the following nodes:
[Travel Itinerary,
Mobile Caravan,
Transport,
Accommodation]

And the following relationship collection:
[Travel Itinerary|Transport,
Travel Itinerary|Accommodation,
Mobile Caravan|Transport]

These are used by the SPEE to construct a new ontology structure, which is then merged with

the devices existing ontological structures using the Merge Engine.

Merge Engine: The Merge Engine iterates through the ontological structure produced by the
SPEE and attempts to merge the nodes and relationships with existing knowledge structures.
This process begins by iterating through all the nodes found within the structure and
determining whether the node already exists in the device’s knowledge base - if the node does
not exist, a new node is created and inserted into the knowledge base. Once this is complete
the process is repeated for all the relationships that exist between the nodes in the structure.

This is explained in more detail below.

4.2.3 The DistrES Algorithm Design

This section presents several UML Activity Diagrams that illustrate how the DistrES
algorithm has been designed. These models describe how concepts are searched for,

extracted, evolved and merged with existing knowledge structures.

When a device is trying to determine if a relationship exists between two terms the DistrES
algorithm begins by trying to find a semantic relationship. For example an Alsatian is a
subclassOf Dog, consequently these terms could be used interchangeably and we could infer
that they, to a certain extent, mean the same thing. In this instance the two terms are Alsatian
and Dog and the relationship is subclassOf. If a subclassOf, relationship can be found

between the two terms then the concept surrounding the terms and the relationships that link

81



them are extracted and returned to the service requester. Any ambiguities between terms,
triggers the evolutionary process and in this instance the ambiguity could be because the
device does not have enough knowledge to relate the concepts. Thus the device tries to evolve
its existing knowledge structures in an attempt to determine whether a relationship exists in
other knowledge structures provided by devices in the network. This process is illustrated in

Figure 4.3.

Check For Semantic
Relationship

Relationship

Return Semantic
Relationship

&

LR, Semantic Interoperability
Request

Evolved

Evolved staus is False

Create Semantic
Interoperability
Request

v
(w\vm>
(oo ci:cm )
«c c:;c.m.)
—((eowna s T )

Figure 4.3 Semantic Interoperability

If a relationship cannot be found and the two terms have not been evolved then DistrES
creates a semantic interoperability request that contains the two terms and propagates it within
the network. This request is processed by other DistrES services within the network and used
to determine if the device’s ontology has a relationship that links the two terms together. This

process is illustrated in Figure 4.4.

82



Get
Relationship[
term[1] term[2]]

Extract Concept

Add Concept to
Response Object

Return Response

$

Figure 4.4 Extracting Ontological Structures

If at least one relationship is found the concept surrounding the terms is extracted and added
to a response object, which is then returned to the querying device. Any responses returned to
the querying device are evolved using the SPEE to produce an optimal structure. This process

is illustrated in Figure 4.5.

83



Extract LocalConcept
[Terms(]]

Create Term
Collection[LocalConcept,
ResponseConcepts(]]

Extract Next
Term

Calculate Term
Frequency

Create Rel.
Collection[LocalConcept, |«
ResponseConcepts(]]

Relationship
does not Exist

Calculate Relationship
Frequency
CreateOptimalStructure
[topTerms, topRel ]

Figure 4.5 Evolving Ontological Structures

All the unique terms in the concept, including all the responses received from other devices
within the network, are extracted and placed into a collection. This process loops through the
collection and for each term it checks how many times it appears within all the structures
being processed. This results in a term frequency value. Once all the terms have been
assigned a corresponding fitness value the same process is performed for all the unique
relationships that exist between the nodes. Again the relationship frequency is calculated
resulting in a relationship frequency value. Once this process is complete, the top n fittest
nodes and the top » fittest relationships are used to create an optimal structure. In this instance

n is an application specific value defined by the device depending on its capabilities. This

84



value is used to constrain the size of the optimal structure created, which is merged with the

devices existing knowledge structure. This process is illustrated in Figure 4.6.

Get Next
Term from
Optimal Stucture

Term Exists

Term|does

Add Term to
KB

Get Next
Relationship From
Optimal Structure

Add Rel. to
KB

Figure 4.6 Merging Ontological Structures

Each of the terms that exist in the optimal ontology structure is checked to see if it already
exists in the device’s local ontology. If the term does not exist it is added to the device’s local
ontology. This iteration process continues until all of the terms have been processed. When
this occurs the process is repeated for each of the relationships that exist within the optimal
structure. If a relationship does not exist in the device’s local ontology a new relationship is
created. Again this process continues until all the relationships in the optimal structure have

been processed.

85



Once the structure has been merged the status of the evolution process is set to true — this
stops the algorithm from continually looping as we only want to try and evolve a set of terms

once at any give time.

4.3 The Device Capability (DeCap) Service

When services are discovered and matched this may result in several candidate services that
provide the same functionality. Services provided by devices that best match the device
capability requirements, as described in the service request, must be selected. For example a
typical home environment may provide several ‘Visual’ display services capable of
processing streamed data — typically devices that provide the best quality of service will be
selected, i.e. a ‘Visual’ service provided by a TV may be selected instead of a ‘Visual’ service
provided by a mobile phone to view a DVD Movie. However, if the mobile phone is the only
device available, then an intermediary service may be discovered to transcode the DVD

movie into a format that can be readily processed by the mobile phone.

Consequently each device that joins the network within NASUF must describe the hardware,
software and networking capabilities it supports, including any other capabilities deemed
important to the device manufacturer. Figure 4.7 illustrates the process used that matches the
Device Capability Profile (DCP) described in the service request, with the Device Capability
Model (DCM) used to describe a particular device’s capabilities [Mingkhwan 2005].

In this example a multimedia player begins by creating a DCP and adding it to a service
request before propagating it within the network. An audio device receives the message and
begins by checking to see if it provides a service matching the requirements defined in the
service request. If a service is found, the device determines if its DCM equals or surpasses the
DCP.

86



Figure 4.7 Device Capability Matching Service

This is achieved by extracting the DCP from the service request and the DCM from the
devices persistent storage. Using the Device Capability (DeCap) service, the two models are
passed to a matching algorithm that calculates the overall capability of the device — if the
result of the DCM is equal to or greater than the result calculated for the DCP then the device
is said to satisfy the capability requirements defined by the service requester. In this instance
the device returns the service advertisement to the multimedia player. Again like service
requests and service descriptions, NASUF does not place any constraints on the vocabularies
used to describe quality of service parameters. If the terms found in the DCM and the DCP
differ the matching algorithm uses the DistrES service to determine if a semantic relationship

exists that links the terms together.

4.3.1 The DeCap Service Requirements

Device capabilities are determined by calculating the sum of all quality of service parameters
used that capture the software, hardware and networking properties supported by the device,
including custom defined parameters. In order to achieve this, an algorithm is required to
calculate the quality of service capabilities described in service requests and device capability

models that address the following requirements:

e Process QoS Parameters: Quality of service parameters must be used to capture the
software, hardware, networking and custom capabilities a device supports. These

parameters must be defined and inserted into the service request before it is

87



propagated within the network. These parameters must also be used to describe the

capabilities the device actually supports and inserted into the DCM.

e Assign Parameter Rating and Status: For each parameter defined in the DCP, an
importance rating must be assigned indicating how important it is in relation to all the
parameters being used. Furthermore a status rating to indicate how well the device
conforms to that parameter, such as 100 for excellent, 50 for average and 0 for poor.
The importance rating and the status rating must be multiplied to give a weighting
value for a particular parameter being processed. The weighting value is created and
used by the DeCap service and indicates how well a device supports a parameter.
This value is added to the overall capability score, which is used to determine
whether the score produced for the DCM is equal to or greater than the capability
score calculated for the DCP.

e Calculate Overall Quality Rating: Each of the parameter weightings must be added

together to give an overall weighting for the capabilities the device supports.

These requirements enable devices to determine whether a device that provides a particular
service is capable of executing the service in conformance with the requirements defined in
the DCP.

4.3.2 The DeCap Design

The matching algorithm used within the DeCap service uses two calculations to calculate the
current resource load and the load required to execute the service. DeCap begins by
calculating the resource expense incurred when the service is executed by adapting the
formulas defined in [Kumar 2003, Liu 2004]. The formula defined in (1) calculates the
percentage of a resource required, where a resource r offers a service s that requires ac;, , units

of some total resource value t7,.

ac
resc, = tr” (1)

r

This formula allows the DeCap service to determine what percentage of some resource will be
used given the total value of the resource available. For example, if a service requires 1
megabyte of RAM and the device provides a total of 32 megabytes, then the service is said to
require 3.1% of that total. .

However it is not enough to only calculate the value for the resources needed to execute a
service. The DeCap service needs to determine if the device is overloaded by calculating how
much of the available resources on average are used by the device. For example, if the device

on average has 75% CPU utilisation, we can infer that the device may struggle to take on the

88



increased computational overhead if our service is to be executed. The cut-off value used to
determine when a capability is no good is application specific and dependent on the task in
hand. For example if the service is a transcoding service then the application may state that
CPU utilisation should be no more than 10% because the CPU required to perform the
transcoding will be approximately 90%. Conversely a service that processes simple
commands such as “Light switch on” may require minimal computation thus a device that has
75% CPU utilisation will be capable of incurring the additional computational overhead

without causing adverse effects.

Furthermore it is possible that the quality of service will be affected because the computation
may be shared across a large number of processes. When this is the case, DeCap calculates
the overhead for each resource the service requester deems important and compares it to the
desired capability defined in the service request. The DCS achieves this using a technique
called the Multi-Attribute Utility Theory (MAUT) [Kumar 2003, Liu 2004]. This algorithm is
implemented in DeCap and is used to produce an overall capability score for some device D

given the attributes defined in the device’s DCM. This formula is defined as,

DCScore(D,DCM) = i cw,(DCM) - D(v,) (@)
i=1

where DCScore is the overall capability score for device D according to the device capability
model DCM, d is the number of capabilities for the type of device, cw(DCM) is the
importance rating of attribute i according to devices DCM, and D(v;) is the status rating for
attribute i. The importance rating describes how important a given attribute is in relation to all
the attributes used, e.g. the CPU attribute may be the second most important attribute with an
importance rating of 30, which means that the CPU is considered three times more important
than an attribute with an importance rating of 10. The status rating describes how well the
device supports a particular attribute, e.g. a device may have “Excellent” for its CPU attribute,
which may equate to a value of 75 — therefore calculating a capability score for CPU, could be

achieved by multiplying 30 * 75 which is equal to 2250.

Given the two formulas, the device calculates the service ratings programmatically by
estimating the average attribute values from the operating system itself and assigning the
appropriate status rating. For example, if the device uses on average 25% of its CPU when the
required service is executed we may assign the CPU_Load a status assessment of “Excellent”

with a status rating of 75.

The equation defined in (3) amends the MAUT formula to take into account the current

resource load and the load required to execute a service. In this instance the DCScore and the

89



rescs , are added to give a combined resource load value, indicating whether the device can

effectively execute a service it provides.

DCScore(D,DCM) = i ew,(DCM)-D(v,)-(1-resc,, (3)
i=1
When the terms in the DCP and the DCM are processed any ambiguities that are encountered
are resolved using the DistrES algorithm. When the formula in (3) is used to calculate the
score for the DCM, it is compared with the score generated for the DCP. If the DCM score is
equal to or greater than the score for the DCP then the device is said to be capable of
effectively executing the service, whilst ensuring the quality of service is maintained. In this

instance the service details are returned to the service requester.

The following models describe how the DCP is matched with the DCM. This process is

!

Extract Device
Capability M odel

illustrated in Figure 4.8.

Extract Device
Capability P rofile

(MICh[DCM, DCP])

( Return True >

Figure 4.8 Device Capability Matching

This process begins by extracting the DCM from the device currently processing a received
service request. DCMs and DCPs are Device Capability Advertisements that capture all the
key hardware, software and network capabilities. The Device Capability Advertisement
Object contains a device capability profile, which in turn contains a collection of component

objects. Each component object contains a collection of attribute objects that describe a

90



capability including its associated value. The class diagram for Device Capability

Advertisements is illustrated in Figure 4.9.

IDeviceCapabilty Advertisement Component
wqetDeviceCapabiltyProfile() : IDeviceCapabiltyProfile _ _ _ pattribute : |Attributef]
ksetDeviceCapabiltyProfile(profile : IDeviceCapabilityProfile) : void

)
DeviceCapabilty Advertisement
LdeviceCapabiltyProfile : IDeviceCapabilityProfile

|
|
}
|
|
|
|
|
I
’ | Attribute
| Ldescription : String
|
|
|
|

DeviceCapabilityProfile tname : String
[component : IComponent]] @ Lvalue : String

Ldefault : String ‘
1

s 2 b SORG N | i

IDeviceCapabilityProfile \"4
|Attribute

|
|
I

LqetComponent() : IComponent _ :

+setComponent(component : IComponent) : void | - qetDescription() : IAttributeDescription
: +qetName() : String
|
]
|
|
]

+qetValue() . Object
wisDefault() : boolean
+setDescription(desc : String)

IComponent

kgetAttribute(index . int) . |Attribute
getAttributes() : |Attribute(] +setName(name : String) : void
raddAttribute(attrib . IAttribute) - void = +setValue(value : String) : void
kremoveAttribute(index : int) : |Attribute setDefault(default * String) : void

Figure 4.9 Device Capability Advertisement

Once the DCMs have been loaded, the DCP is extracted from the service request and loaded.
They are passed to the DeCap Service, which returns a value of true or false indicating
whether the device has the required capabilities to execute the service it provides, based on

the requirements defined in the DCP.

The matching process as illustrated in Figure 4.10 loops through all the quality of service
parameters used and for each parameter extracted this process retrieves the importance rating
from the DCP. If the rating does not exist then the next parameter is extracted and the process
is repeated. If it does exist the status rating is retrieved from the DCM. Again if the rating
does not exist the next parameter is retrieved and processed. The importance rating and the
status rating are multiplied together and added to the overall quality of service result. Once all
the parameters have been processed the result is returned. If the returned value fro the DCM
score is equal to or greater than the score for the DCP then the device is said to be capable of

executing the service is provides.

91



Inttialise Result = 0
Get
r) QoS eter

Next
Param
. does not Exist

Result = Result +
Muttiply[IR, SR)

.
®

Figure 4.10 Device Capability Matching Algorithm

4.4 Semantic Interoperability and Signature Matching (SISM)
Service

Within this thesis one of the key requirements is to enable devices to self-adapt and form
compositions with ad hoc services. Current home networking platforms perform
interoperability between heterogeneous devices by standardising the interfaces devices
implement imposing pre-determined vocabularies. This technique is restrictive and is difficult
to implement within uncontrolled environments. We address this limitation using a service we
have developed called the Semantic Interoperability and Signature Matching (SISM) service
[Fergus 2005a, Mingkhwan 2005].

SISM works by processing metadata used to describe the service and the service request,
including the signatures described in the service interface. Service descriptions and service
requests are described at an abstract level in terms of the Inputs, Outputs, Preconditions and

Effects (IOPE) they describe, which are more commonly referred to as IOPEs [DAML

92



2003c]. SISM allows highly independent services offered by appliances to be dynamically
composed without any human intervention. A high-level description of the possible

compositions performed using SISM, is illustrated in Figure 4.11.

Service Compositions
Intercom Hi-Fi Music Theatre

P TT TP T S T Y W Y1 v

Figure 4.11 Dynamic Service Compositions between Devices

This diagram illustrates that by using NASUF the individual functions provided by networked
enabled devices can be selected and composed to create high-level functions. For example by
discovering all the audio services in the network, and using a microphone provided by either
the laptop or camcorder, a composition of services can be combined to create an intercom
system. Processing the high-level semantic descriptions of services forms the basis for this

approach and is described in more detail in the following sub sections.

4.4.1 The SISM Service Requirements

Composing services poses a difficult challenge. This section describes the key requirements
to be addressed in order to enable SISM to automatically achieve this without any human

intervention. An algorithm is required to automatically compose services using semantic
descriptions thus:
e Mechanisms need to be developed that allow the services offered by devices to be
automatically discovered and dynamically composed.
e Services need to be described semantically in order to expose the capabilities they

support.
e Devices must be selected to ensure a high quality of service is maintained.

The remainder of this section describes how these challenges are addressed using the SISM

Service developed within this thesis.

93



4.4.2 The SISM Service Overview

The SISM algorithm matches IOPEs and signatures described in the service interface, which
supports direct matches, indirect matches and conflict resolution. Using this algorithm,
services can be matched and the service interface can be dynamically extended beyond what it

was initially designed to do.

4.4.2.1 The IOPE Matching Process

The SISM Service can determine if any two terms match using a number of techniques. One
possible match occurs when any two terms are equivalent, which is illustrated in Figure 4.12.

Digital Camcorder

DistrES Ontology

subClassOf

equivalentTo equivalentTo

subClassOf

5. equivalentTo

a1
SeCEn 4. getRelationship(Movie, Film) 1 i
1 1 (Movie, Film)
1
1

|
3. Service Request, |

Service Profile 6. gﬁ:os':r;'ei?
pasiusae ot~ - - ~E. -0
7. Extended
Interface

1. SERVICE REQUEST
Input: [Movie sved]
Output: [Movie ved]
Precondition: Real-time
Effect: converted

2. SERVICE PROFILE
Input: [Film sved], Output ved
Precondition: Real-time, Effect: Converted

-

DVD Player

e
1

- -

8. Extended Interface

Figure 4.12 IOPE Matching performed by SISM

In this example the precondition ‘Real-time” in the service request is equal to the precondition
‘Real-time’ in the service description. Another possible match can be achieved via
subsumption. For example an input in the service request may be called “Movie” and an input
in the service description may be called “Film” - if “Movie” is either a ‘subclass’,

‘superclass’ or ‘equivalent’ to “Film” then a conceptual relationship has been found that links

94



the two terms together. However this example is problematic because the term “Film” could
mean “Movie” or “Slideshow”. In this instance the name of the inputs and the outputs are
used to help determine the context in which the term is being used. This matching process is
described below:

e If the IOPE in the service request is the same as the IOPE in the service description
then this constitutes an exact match.

o If the IOPE in the service request has an ‘equivalentTo’ relationship with the IOPE in
the service description then this constitutes an exact match.

e If the IOPE in the service request is a subclass of the IOPE in the service description
then this constitutes an exact match.

¢ If the IOPE in the service description subsumes the IOPE in the service request then
this constitutes a plug-in match, i.e. if concept 4 is a sub-concept of a concept B this
is called a plug-in match. This is a useful matching process that loosely relates
concepts that exist in the same hierarchy path. However, the distance between the two
concepts need to be determined in order to establish how closely related they are. If
concepts are closely related then it may be possible to interchange these concepts
without altering the meaning. In this type of match concepts in the service request are
typically more general than concepts in the service description. This may result in
service descriptions being too specific for the service request [Paolucci 2002a].

e If the IOPE in the service request subsumes the IOPE in the service description then
this constitutes a subsumption relationship. For example if concept 4 is a super-
concept of concept B then concept B is subsumed by 4. This type of match is weaker
than a plug-in match in that concepts in the service request are more specific than the
concepts in the service description. Although matches may occur, again it comes
down to the distance between concepts — in some cases the match may be too general
[Paolucci 2002a].

¢ Anything else fails.

If a relationship cannot be found, the unknown term is passed to the DistrES Service [Fergus
2003b) and propagated within the network. This results in zero or more semantic structures
being returned that describe how the term is defined. Using statistical programming
techniques, such as term and relationship frequency analysis, the structures are evolved until
an optimal solution has been produced and merged into the DistrES ontology [Fergus 2003b].
Once the structure has been merged the above matching process is repeated. This process
continues until all the IOPEs in the service request have been processed — if all the IOPEs are
matched this constitutes an abstract match. This could potentially be time consuming.

Depending on the number of responses and the size of individual concepts devices may

95



choose to perform this as a backend process. Consequently devices may choose to evolve
concepts offline. This may ensure that the next time a device processes a service request it can

better match the IOPEs in the service request and the service description.

When abstract matches are found, SISM retrieves the service ontologies [DAML 2003c],
along with the service interface object and creates a table containing the matching IOPEs

from the service request. A sample table may look like the one illustrated in Table 4.1.

Service Request Term  Device DCM Term

Movie Film

TV Television
Speaker AudioDevice
MPEG-2 DVD

Table 4.1 Semantic Interoperability Table

The matched IOPEs act as keys in the table and have corresponding values, which represent
the names of the IOPEs used in the service ontologies. SISM uses the DistrES ontology to
resolve terminology differences, therefore the service request may refer to an input as
‘Movie’, whilst the input in the service ontologies may be referred to as ‘Film’ — the table of
key-value pair IOPEs creates a semantic mapping between the different terms used. The

following section describes how abstract matches are used to find concrete matches.

4.4.2.2 The Signature Matching Process

The signature matching process tries to determine if the IOPEs in the service request can be
directly mapped onto concrete bindings in the service interface by processing all the service
ontologies. SISM processes the Service Profile [DAML 2003c] and retrieves the values
associated with each IOPE. These values specify which ‘Atomic Process’ [DAML 2003c]
each TOPE belongs to in the Service Process Model. The IOPEs may have been matched at an
abstract level, however they may belong to different atomic processes, therefore SISM needs
to determine if a single atomic process exists that supports all the IOPEs in the service
request. If an atomic process is found this means that an operation in the service interface
exists. In this instance SISM extracts the operation name from the Service Grounding and
retrieves the parameter order and the endpoint address from the service interface, which are
used to describe how the service is invoked. During this process the table of matched IOPEs
are used to bridge between the different terminologies used in the service request and the
service ontologies. If SISM maps the IOPEs in the service request to IOPEs in the Service
Process Model it tries to determine if the type information supported by both sets of IOPEs
match. SISM supports two types of matches at the concrete level: direct matches and indirect

matches. These are described below:

96



Direct Matches: The following tests are performed by SISM to determine if a direct match
has been found. If all the tests are true then the service can be invoked without the help of any

intermediary services, which is discussed later in this section.

o Test 1: An ‘Atomic Process’ in the service process model for ‘Service A’ has
associated input elements that conceptually match the inputs described in the service

request.

e Test 2: The type information associated with the ‘Atomic Process’ input ‘range’

elements for ‘Service A’ conceptually match the type information for inputs

described in the service request.

e Test 3: The ‘Atomic Process’ in the service process model for ‘Service A’ has an

associated output element that conceptually matches an output described in the

service request.

e Test 4: The type information associated with the ‘Atomic Process’ output ‘range’
element in the service process model for ‘Service A’ conceptually matches the type

information for the output described in the service request.

A direct match allows the querying device to directly invoke a service without the help of any

intermediary services. An indirect match is more complex and is explained below.

Indirect Matches: If a direct match cannot be found, SISM performs the following tests to

determine if the service can be invoked using one or more intermediary services.

e Test 1: An ‘Atomic Process’ in the service process model for ‘Service A’ has

associated input elements that conceptually match the inputs described in the service

request.

e Test 2: The type information associated with an ‘Atomic Process’ input ‘range’
element for ‘Service A’ is incompatible with the type information for an input

described in the service request.

e Test 3: An intermediary service exists’ called ‘Service B’ that has an ‘Atomic
Process’ input element that conceptually matches the input described in the service
request. The type information associated with the ‘Atomic Process’ input ‘range’
element conceptually matches the type information for the input described in the
service request. ‘Service B’ has an ‘Atomic Process’ output ‘range’ element that
conceptually matches the conflicting input described in the ‘Atomic Process’ for
‘Service A’. The type information associated with the ‘Atomic Process’ output

‘range’ element in the Atomic Process for ‘Service B’ conceptually matches the type

97



information for the conflicting ‘Atomic Process’ input ‘range’ element in the ‘Atomic
Process’ for “Service A’. This process is recursive and can potentially involve several
intermediary services before a solution is found, i.e. ‘Service B’ may need to use

‘Service C’ and ‘Service C’ may need to use ‘Service D’.
e Test 4: Anything else fails.

The challenge is to enable devices to form compositions between services either directly or
indirectly. For example in Figure 4.13 “DVD Player 17 reads the data from a movie disk the
user has inserted into the player. The ‘Player’ service discovers that the media format is Xvid,
which it cannot process because it only has a MPEG-2 decoder. If the data format had been
MPEG-2 then “DVD Player 1” could have decoded the data using its “MPEG-2 Codec” and
transmitted the decoded data to the ‘Visual® service provided by the Television. However in
this instance the data format is Xvid, consequently the SISM Service implemented in “DVD
Player 17 tries to resolve the conflict using an intermediary service, which takes as input an

Xvid data stream and generates an ‘MPEG-2’ output stream.

DVD Player 1 DVD Player 2

—

s
,,,,,

Figure 4.13 Dynamic Service Composition using SISM

Finding an intermediary service is achieved by propagating a reformulated service request to
the network describing the IOPE requirements. In our simple example “DVD Player 17 finds
«pVD Player 2", which can indirectly stream an Xvid movie into a ‘MPEG-2’ media format

using a service provided by a Laptop. “DVD Player 2” uses the Laptop to convert the Xvid

98



format into a DivX format, which it can then process and convert into MPEG-2. When this
composition is executed, the Xvid data is transcoded and the resulting MPEG-2 stream is
decoded by “DVD Player 1” and streamed to the ‘Visual’ service provided by the Television.
This allows “DVD Player 1” to extend the interface to the ‘Player’ service it hosts to
accommodate the new ‘Xvid’ movie format. “DVD Player 1” is not aware of the composition
between “DVD Player 2” and the Laptop and is only concerned that “DVD Player 2” can
successfully convert the ‘Xvid’ data into ‘MPEG-2°.

The SISM service achieves this using an Extended Interface Metadata Object (EIMO). The
EIMO describes how signatures are constructed to transcode data and indicates whether the
intermediary service itself can be directly invoked or whether it also requires intermediary
services. This process allows services to dynamically discover and resolve IO conflicts that

may occur and proactively establish compositions with intermediary services.

When intermediary services are discovered this may result in several candidate services that
provide the same functionality. In this instance the services that best match the device
capability requirements as described in section 4.3.2 on page 88, which are defined in the

service request, will be added to the EIMO.

In the following section we describe how the EIMO is invoked using the Extended Interface

Service.

4.4.2.3 The Extended Interface (EI) service

The EI service, as illustrated in Figure 4.14, is invoked when a service provided by the device

does not directly support a method invocation.

99



| DivX/ 1 1 Binary

Xvid

Xvid

I Xvid
Bt 5
s Ein_ary

Figure 4.14 Extended Interfaces for the Visual Service

This service has a fixed operation name called ‘EI' which takes two parameters — the first
parameter is the EIMO and the second parameter is an object array which contains all the
parameters required to invoke the intermediary service. The EI service processes the EIMO,
which provides information about the operation name for the intermediary service, the
parameters it takes, including the associated data type information, and the order in which the

parameters appear in the signature.

The EIMO also specifies the connection mode supported by the service. If the connection
mode is ‘direct’, the EI service uses the metadata for the intermediary service to construct the
required signature using the parameters in the object array, before binding with it and
executing the required method. In this instance ‘direct’ means that device 4 can directly use a
service S; provided by device B without having to use any intermediary services. If the
connection mode is ‘composite’ then the EI service processes the EIMO for the intermediary
service it needs to use before connecting to its EI service and passing it the metadata and the
parameters. In this instance ‘composite’ means that device 4 indirectly uses a service S
provided by device B via service S, provided by device C. This process continues until a

direct connection with a service in the composition is made.

This mechanism ensures that the service interface evolves over time to accommodate
numerous other inputs it was not initially designed to process. For example a DVD Player that

only implements an MPEG-2 codec can read a number of different media formats and interact

100



with the “Visual® service by first transcoding the data it reads from the disk into binary data
by discovering and using data adaptation services. The following section describes how the

SISM Service has been designed.

4.4.3 The SISM Service Design

The following models describe how service requests are processed and how abstract and
concrete matches are performed. They also describe how signatures are built, how

intermediary services are discovered and how peer services are invoked.

Figure 4.15 illustrates how service requests are processed by the SISM service. The service
request is matched at an abstract level and if a match is found the service ontologies for the
service, including the service interface are retrieved and passed to the concrete matching
algorithm. This algorithm uses the service ontologies and tries to map the semantic metadata
to concrete signatures contained within the service interface. If a match is found the service
advertisement for the current service being processed is returned to the service requester. If a

match cannot be found the matching process fails and a null value is returned.

!

Extract Service
Request

—)C Get Next Service )
S Description Locally

No

Service Description

Perform Abstract
Match

Perform Concrete
Match

No Match Found

Concrete Majch is Found

Return Service Advertisement
To Service Requester

‘ No match can
be found so
return null

Figure 4.15 Process Service Request

101



The abstract matching process itself begins by iterating through the IOPEs described in the
service request and extracting each IOPE in turn. IOPEs are used in the Service Profile to
capture the inputs and outputs service signatures support within the Service Interface
including any preconditions that must be satisfied and any effects that result when the service
is executed. Figure 4.16 illustrates the class diagram for the IOPEs which describe the class

variables used and the methods supported.

Input IParameter Effect
+getName(name : String) : void
+setRestrictedTo(restriction : String) : void
+setRefersTo(refersTo : String) : void
+setDomain(domain : String) : void
+setRange(range : String) : void
+setParmeter Type(type String) : void
+getName() : String

+getRestrictedTo() : String
+getRefersTo() : String
+aetDomain() ; String

1
—_— Parameter <—
-name : String

-restriction : String
Output -refersTo : String Precondition
=>{-domain ; String <

-range : String

Figure 4.16 IOPE Class Diagram

The IOPE in the outer loop (service request) is compared with each IOPE extracted in the
inner loop (service description) to determine if an exact match can be found — this being the
case the service request IOPE status is set to true. If an exact match cannot be determined this
process calls the semantic interoperability process to determine whether any ontologies within
the wider network have a relationship that links the two terms together semantically. If a
semantic relationship is found then the service request IOPE status is set to true, again
indicating a match has been found via some semantic relationship. When all the IOPEs in the
service request have been processed, this process checks to see if all the service request
[OPEs statuses are set to true. If this is the case then an abstract match has been found. This

process is illustrated in Figure 4.17.

102



Extact IOPE From
L Service Request

No

IOPE Exists

Extrad IOPE From )\ _
Service Description /\

No

IOPE Exists

Geck ifIOPEs exactly Mlth No

I1E xact Matg!

Set Matched
Statusto True

Abstract M atch is False
If All |IOPE

()
&<

Figure 4.17 Perform Abstract Match

If an abstract match is found the service ontologies including the service interface are passed
to the concrete matching algorithm. This process begins by iterating through the IOPEs
(inputs, outputs, preconditions and effects) in the Service Profile Model and tries to find a
corresponding Atomic Process in the Service Process Model as illustrated in Figure 4.18.
Atomic Processes are used in the Service Process Model to logically group inputs, outputs,
preconditions and effects to form abstract semantic signatures. This is a key technique used to
map high-level semantics to low-level service interfaces. When all the IOPEs in the Service
Profile have been processed a check is made to determine whether a single Atomic Process

exists in the Service Process Model that subsumes all the IOPEs contained in the Service

Profile.
103



Input

|AtomicProcess

Output

hasinput() : boolean

hasOutput() : boolean

+hasPrecondition() : boolean

+hasEffect() : boolean

raddinput(input IParameter) @ void
Haetinput(index : int) : IParameter
kaetinputs() : IParameter(]
Hremovelnput(index : int) | IParameter
addOutput{output : IParameter) : void
Hgetinput(index : int) : IParameter
Haetinputs() : IParameter|]
Hremovelnput(index : int) | IParameter
addPrecondition(precondtion : IParameter) : void
+getPrecondition(index : int) ; IParameter
+getPreconditions() : IParameter(]
HremovePrecondtion(index : int) : IParameter
taddEffect( effect ; IParameter) : void
getEffect(index : int) : IParameter
HgetEffects() : IParameterf]

removeEffect(index : int) : IParameter

"—‘-input : IParameterf] -

Precondition

If an Atomic Process is found the Build Signature process is called to determine if the Afomic
Process can be mapped onto a concrete signature described in the Service Interface. If the
Build Signature process returns a Service Advertisement then this constitutes a concrete

match and the advertisement is returned to the service requester. This process is illustrated in

Figure 4.19.

A

]
AtomicProcess

Loutput : IParameter(]

———@@prhrecondtion : IParameter] | qp————

reffect : [Parameter(]

Figure 4.18 Atomic Process

104

Effect




‘{Gq Next 'RefersTo' EIement)
For IOPE in Service P rofile
—>

Element does

(e )

Set IOPE IOPE
Status

Process Next
IOPE

All IOPE shave
No

Processed

All IOPE s belong to
Single Atomjic Process

Cem)
v

Return Service Advertisement
to Service Requester

Figure 4.19 Perform Concrete Match

An important design requirement within this framework is to resolve matching conflicts that
occur. If the Concrete Matching Algorithm successfully maps the IOPEs in the service request
with signatures in the Service Interface but encounters data type conflicts it must try to
resolve these conflicts using intermediary services that can explicitly provide data type
conversions. Contrary to this requirement there may be instances when converting the data
type is insufficient and rather the software to achieve this must be downloaded. For example a
device may choose to download a particular codec, from an intermediary service, to process
some media format rather than converting the data stream in real-time to increase or maintain
a high quality of service. However less capable devices may choose to outsource the
processing to a more capable device. How intermediary services are discovered to resolve

IOPE conflicts is discussed later in this section.

The build signature process illustrated in Figure 4.22 is the core component within the
concrete matching algorithm and is used to determine if a concrete match is found. If the

signature can be built this means that the IOPEs including their data type information can be

105



mapped onto a signature contained in the Service Interface. The build signature process
begins by trying to find an Atomic Process in the Service Grounding Model using the Aromic
Process extracted from the Service Process Model. The Service Grounding describes how the
service can be accessed and controlled. The grounding contains one or more
AtomicProcessGroundings, which contain Service Input objects, Service Output objects,
Service Operation objects, Service Input Message objects and Service Output Message
objects. These objects allow the IOPEs in the Atomic Process Grounding object to be mapped
onto concrete signature bindings in the Service Interface. The class diagram for the Service

Grounding Model is illustrated in Figure 4.20.

IGrounding |AtomicProcessGrounding
kaddAtomicProcessGroundina(atomicProcess : |AtomicProcessGrounding) : void raetServicelinput() : IServicelOParameter
LgetAtomicProcessGroundinalindex : int) : IAtomicProcessGrounding +setServiceinput{serivcelnputs ; IServicelOParameter) : void
kremoveAtomicProcessGroundina(index : int) : IAtomicProcessGrounding waetServiceOutput() : [ServicelOParameter

A rrsetServiceOutput( serviceOutput : :IServicelOParameter) : void

. taetServiceOperation() : IServiceOperation

i t+setServiceOperation(serviceOperation : IServiceOperation) : void
| traetServicelnputMessace() : IServicelnputMessage
rrsetServicelnputMessage(message : [ServiceinputMessage) : void

taetServiceOutputhi ): IServiceM
setServiceOutputiv : IService ): void
|
1
1SarviceOperation :
haetPort Type() : String
L setPortType(portType : Strina) : void | pylServiceOperation : , AN
hqetOperation() : String reortType : String AtomicProcessGrounding
ksetOperation(operation : String) : void roperation . String | kservicelnput : IServicelOParameter

Servicelnputiessag Servicelessage @50 vicelnputhlessage : IServicellessaae

- P
@

= |ServicelOParameter

[raetServicel ): IServi
setServicel

Figure 4.20 Service Grounding Model

If an Atomic Process is found the operation name associated with the Grounding Atomic
Process is extracted, otherwise it is terminated. The operation name may be part of the
Service Grounding Atomic Process or it may be extracted from the Service Interface. The
Service Interface describes the signatures a particular service supports. Each signature is
known as a binding and a Service Interface may support several bindings. Each binding
contains a portType, which contains an operation. An operation contains input message
objects that describe all the inputs the signature supports and an output message object that
describes the output the signature returns (if a return value is used). Each message contains
the name of the message and one or more message parts. Each message part contains the

partName, the parameter and parameterType. The class diagram for the Service Interface is

illustrated in Figure 4.21.

106



|Servicelnterface Servicelnterface
addBinding(binding : IBinding) : void q """"""" rbindings : 1Binding[]
HaetBindinas() : IBindinall
HaetBinding(index : integer) : IBinding
IPortType Binding
setOperation(operation : String) ; void Py ortType : PortType
HqetOperation() : |[Operation
A |
: A
: PortType . IBinding
-operation ; IOperation | ksetPort(portType : IPortType) : void
’ taetPort() : IPortType
Operation Py
- pe, 2 rqetinputMessaqe() : IMessage
Hinbutilessage : IMessaqe - - Pptsetinputilessage(message : IMessage) : void
routputMessace : Message +qetOutputMessaqe() : IMessage
coperationName ;. Strin +setOutputMessage(message : IMessaqe) : void

t+qetOperationName() : String
+setOperationName(name : String)

IMessage

Message HaetName() : String
= - - - PyfraddVessagePart(part : IMessaqgePart) : void
Fhame - Slring ' +gethlessaqePart(index : int) : IMessagePart
E! e +getMessaqeParts() : IMessagePart(]
HremoveMessagePart(index : int) : IMessaqgePart

IMessagePart

+qetPartName() : String
+setPartName(name : String) : void

e e R S S aetParameter() : String
+partName : String setParameter(param : String) : void
Hparameter : String +qetParameter Type() : String
-parameterType : String | +setParameter Type(type : String) : void

Figure 4.21 Service Interface Model

Once the operation name has been extracted this process iterates through the IOPEs in the
service request and extracts each IOPE in turn. When an IOPE has been extracted it is used to
extract the corresponding IOPE in the Service Grounding Atomic Process. Once these two
IOPEs have been extracted the data type information for each IOPE is matched and if a match
is found the IOPE data type status in the service request is set to true. If a data type conflict is
discovered then the conflict is resolved using an intermediary service — if the conflict is
resolved the IOPE data type status in the service request is set to true, otherwise the next
IOPE in the service request is extracted. When all the IOPEs in the Service Process Model
have been processed, this process checks to see if all the IOPEs, including there
corresponding data type information, have been matched — in this instance all the data type
status values should be true. If this is the case then the service endpoint is extracted from the
Service Interface and the Signature Built status is set to true to indicate a concrete match has
been found. In this instance the metadata is returned to the service requester. If any status

values are false then no concrete match has been found and this process terminates. This does

107



not mean that a service does not exist, it just means that the device processing the request
cannot provide the service. In reality numerous devices will process the service request, as
such it is envisaged that in a large P2P network as least one device will be able to satisfy the

request. This process is illustrated in Figure 4.22.

Find Atomic Process
In Service Grounding

Extract Operation
Name From Service
Grounding

Conflict Not
Extract Required |OPE From | Resolved
Service Request j\

xtract Required IOPE From
Service Grounding
Atomic Process

Resolve |IOPE
Conflict Using
: Intermediary
Match i
Service

Set IOPE Type Status ‘
to True
Conflict

Resolved

Processed

Extract Service Endpoint
From Service | nterface

Set Signature Buit )

to True

Figure 4.22 Build Signature

One of the important requirements within this research is to develop a mechanism that allows
conflicts within signatures to be resolved using intermediary services. This means that

conflicting parameters are converted into the expected data type using a service discovered

108



within the network. This is achieved by extracting the conflicting IOPE name and data type
from the signature, including the required IOPE name and data type and inserting them into a
newly created service request. This service request is used to discover an intermediary service
that can convert the conflicting data type into the required data type. If a service cannot be
found then this process terminates. If a service is found an Extended Interface file is created
and the extracted IOPEs are added. The service advertisement for the intermediary service
being used to resolve conflicts is also added and once this has been done the Extended

Interface file is returned to the service requester. This process is illustrated in Figure 4.23.

Extract Conflicting IO
Name and Data Type

Extract Required 10
Name and Data Type

Create Service
Request

Discover Peer
Service Locally

Create Extended
Interface File

Add Confliting 10
Name and Data Type

Add Required 10
Name and Data Type

Append Intermediary
Service Advertissment

Return Extended
Interface File

Figure 4.23 Find Intermediary Service

109



When Extended Interface Objects are returned to the service requester, they are used to
determine how the service can be connected to and invoked. First the required Extended
Interface file is retrieved and the service advertisement is extracted. Once the service
advertisement has been extracted, the service invocation mode is extracted and used to
determine whether the service can be directly invoked or invoked via an intermediary service.
If the connection mode is direct then the direct endpoint is extracted else the composite
endpoint is extracted. The endpoint is used to bind to the service. If a connection mode cannot
be established then this process terminates. If a direct connection is established with the
service then the required signature is built by extractiné the method name, the required
parameter names, including the data type information, and the order in which the parameters
must appear in the signature. This information is then used to build the signature and invoke
the required method. If a composite connection is established with the service, the service
advertisement along with the parameters is sent to the composite endpoint for further
processing. This involves extracting the information regarding the intermediary service being
used, again as illustrated above, the connection mode is determined and the intermediary
service is either, directly bound to and invoked, or the metadata is sent to the intermediary
service. When the intermediary service is invoked the conflicting data is substituted with the

value the service has returned. This process is illustrated in Figure 4.24.

110



Extract Service
Advertisement

Check Invocation
Mode

Mode is Composite

Mode I Direct

Extract Composite Extract Direct
Endpoint Endpoint

S

Bind To
EndPoint

Send Service
Advertisement
And Paramater
Array

Invoke Service

BUSLERILY |

Figure 4.24 Invoke Peer Service

For a full list of UML diagrams for all the secondary services that comprise NASUF see
Appendix A, B, and C.

4.5 Summary

This Chapter describes the high-level design requirements considered within this thesis for the
secondary services that comprise the NASUF architecture (detailed UML models can be
found in Appendix A, B, and C). It describes how services are semantically described in terms
of their capabilities using ontological structures and dynamically composed to extend devices
beyond what they where initially designed to do. This included a detailed discussion
regarding how semantic interoperability is addressed between the inherent terminology
differences used by different device manufacturers. Devices continually evolve local ontology
structures to reflect these changes, ensuring that devices learn and map the terminology they

use with terminology used by other devices based on general consensus.

111



This chapter also argued that semantic descriptions themselves help solve the interface
problem and the design decisions used within our framework illustrate that this approach can
form compositions between other services based on the capabilities services describe using

semantic metadata, without having to know the concrete interface bindings beforehand.

Devices support different capabilities and as such some devices will be better equipped to
provide a given service than others. Consequently, the design considerations illustrate that

services are selected based on how effectively the device can execute the service.

Device configurations are automatically managed using the framework services, which
provide self-adaptation mechanisms that detect and make compensatory changes when
environmental changes are detected. This abstracts the underlying complexity associated with
device composition and network configuration, from the user, which is a feature not present in

existing approaches discussed in Chapter 2.

Chapter 3 and Chapter 4 provide formal design models that describe how our framework
addresses the requirements, and overcomes the challenges, described in Chapter 1. High-level
use cases, algorithms and data models illustrate how each service operates and what data
structures are used. Our design puts forward a viable solution that goes far beyond current
solutions such as OSGi, UPnP and DLNA.

It is hard to show how one set of services alone (presented in Chapter 3 and this chapter)
could provide a consumer much benefit, however when coupled together they provide value-
added functions that surpass existing middleware architectures described in Chapter 2. There
is a coupling (dependency) in our services but this is enabled via P2P which makes for a more
robust and redundant latent capacity within the entire network. Again this is a feature not

present in solutions such as OSGi.

Our design shows how machine-processable semantics can be used to overcome the inherent
limitations associated with attribute-value pair matching which is a technique used in OSGi,
UPnP and DLNA. Furthermore the design formalises how devices can be composed and self-
adapted to make compensatory changes to device configurations based on environmental

changes.

In the next chapter we discus a case study used to demonstrate the services provided by our

framework, which is used as a bases for our implementation discussed in Chapter 6.

112



Chapter 5

5 Case Study: Intelligent Home Environment

5.1 Introduction

In this chapter a case study is presented that is used to demonstrate the functions provided by
our framework, which has been implemented as a prototype — this is discussed in more detail
in Chapter 6. The case study describes an intelligent home environment capable of seamlessly
integrating networked appliances, such as TVs, Media Players, Surround Sound Speakers, and
Hifi Systems. It illustrates how our framework can be used to dynamically compose services
provided by these devices such as Visual, Audio and Player services. The successes and
failures found during the development of the case study are also presented as well as other

possible application areas that our framework can be used for.

5.2 Case Study

In this section an intelligent home environment is proposed that allows networked appliances
to automatically interconnect and dynamically form relationships with devices connected to
the network. This system allows devices to self-adapt and continually provide the best quality
of service based on devices and services within the current environment. If devices or services
fail, alternative solutions are automatically composed without any human intervention, with
minimal disruption to the user. The case study developed automatically interconnects the
audio/video and player devices within a typical home environment. Each device publishes the
functions it provides as independent services. For example a TV publishes the visual, audio
and RF-Receiver functions as independent services that can be simultaneously discovered and

used within the home environment.

This case study was selected to: (i) test the design decisions presented within this thesis and
illustrate how an Intelligent Home Environment can be created that addresses several
limitations found with traditional home networking solutions; (ii) demonstrate how devices
and services can be utilised by publishing and using functions provided by devices
simultaneously without disrupting devices and services currently in use; and (iii) highlight the
flexibility associated with the service-oriented architecture used in NASUF which allows

devices irrespective of their capabilities to be interconnected.

113



Imagine your home environment, more specifically your living room, and the devices it
contains. It is more than likely that it has a DVD player, VCR, Widescreen or Plasma TV, a
surround sound speaker system, and a HiFi. Now imagine the time you bought your DVD
Player and tried to integrate it with you existing device configuration. Like most people, you
may have taken the DVD player out of the box and attempted to connect the wires to your TV
and surround sound system and one hour later decided that maybe you need to look at the
instructions. After a further hour trying to understand the instructions, tune in your TV and
configure your surround sound system you finally succeeded in viewing the DVD movie you

bought.

These kinds of experiences are becoming increasingly more common because devices and
their associated configurations are becoming more complex, thus requiring considerable effort
from specialists and home users alike. This is set to become more difficult as the growth of
personal computer usage, the Internet and networked appliances become more widely used in
more diverse applications than ever before. We can expect ordinary everyday appliances to
become part of these networks, and networked devices will become pervasive and often

invisible to the users.

Now imagine a future environment whereby you take the DVD player out of the box, switch
it on and it just works. You put your DVD movie into the player, press play and the video is
displayed on your Plasma TV and the sound is streamed to your surround sound speaker
system. No manual configuration was required to integrate the DVD player and you did not
have to tune in your TV or configure your surround sound system. When the DVD player is
switched on it automatically communicates with all the other devices within the home via its
wireless network interface. These devices automatically form relationships with other devices
in the home based on what data the device outputs and what inputs devices process. This is
analogous to a jigsaw puzzle whereby the shapes of the individual pieces act as interfaces that

can be directly composed with corresponding interfaces provided by other jigsaw pieces.

Taking this vision one step further, devices will be highly flexible and will encompass
mechanisms that allow them to self-adapt based on conflicts during the integration process or
changes within compositions. In the former case devices will not simply fail but rather
proactively attempt to rectify the problem. Returning to our DVD example, imagine if you put
a movie into the player, which is encoded in a format your player does not have a codec for.
In this instance the DVD player could do one of two things. It could automatically discover an
intermediary device capable of processing the unknown movie format, which transcodes the
data into a format the DVD player is able to process. Alternatively the player could
automatically locate the codec internally within the home network or via the Internet,

download it and use it to play the movie. Making devices network-enabled in this way opens

114



up a number of possibilities that will not only become more important in the future, but which

will allow devices to be proactive.

Mechanisms will also allow devices to sense its own internal changes including changes
amongst devices it has direct relationships with. Again returning to our DVD example, if the
player determines that the surround sound system has become unavailable for some reason,
this change will be sensed and the player will automatically try to discover an alternative set
of speakers capable of processing the audio stream. In this instance the player could use the
speakers provided by the Plasma TV screen or the speakers provided by the HiFi and continue
streaming the audio with minimal disruption to the user’s viewing experience. If the surround
sound system becomes available again the player will again sense this change and determine
that the surround sound speakers provide a better multimedia experience and as such stop
streaming the audio to the Plasma TV speakers and begin streaming the data to the surround

sound system.

The Intelligent Home Environment has the provision to provide any number of visual, audio
and player services. Once devices have been switched on, they all form relationships with
each other based on what devices want and what devices provide. For example the audio and
visual services offered by a TV appliance could be combined with the player service offered
by a DVD appliance to form a ‘Home Theatre System’. Alternatively, the audio service
offered by a Hi-Fi appliance could be combined with the visual service offered by a TV
appliance and the player service offered by a DVD appliance. This is defined as Function

Utilisation and is illustrated in Figure 5.1.

Display Watch TV
i Program

*-..., Teletext RF-Receiver,~"

; DVD Movie 3

.
L)
.,
.,
.,
e,

Audio

Figure 5.1 Function Utilisation

115



This provides additional advantages to the home environment, which enables devices and
services to be composed to create applications that do not explicitly need to be installed, but
rather can emerge based on device composition. The emergent functionality created is
dependent on what devices exist within the environment and the services they provide at any
given time. One example of an emergent function may be a virtual intercom system, which is
comprised of all the available speakers within the environment and a microphone provided by

a mobile phone as illustrated in Figure 5.2 Virtual Appliance

/,

S\

Figure 5.2 Virtual Appliance

In this instance the intercom system does not explicitly exist, but rather emerges when devices
are composed. The NASUF middleware ensures that devices are not carefully manufactured,
but rather are an emergent property directly attributed to how devices are connected within
that environment and the functions they support. How devices are used and composed at
higher levels is application specific and is dependent on the application requirements, which
when executed are controlled for the duration of the task and then released. Consequently
solutions are not bespoke and compositions are not dependent on pre-determined
configuration rules. The integration process is based on how well the capabilities provided by
devices map onto the user requirements for the task in hand. Depending on the application

domain, networked devices are combined in any number of ways to perform some function.

Demonstrating the self-adaptive nature of NASUF devices can automatically select alternative
devices or services that provide a better quality of service. One possible example as illustrated

in Figure 5.3 is the redirection of audio and video from a video-enabled mobile phone.

116



Figure 5.3 Dynamic Service Composition

During a video call you enter your home environment and your phone automatically
integrates itself within the network and discovers the devices and services it has relationships
with. In this instance the phone discovers a visual service provided by a television and an
audio service provided by a surround sound speaker system. Based on the capabilities of the
mobile phone and the newly discovered devices, the phone can automatically self-adapt and
redirect the video and audio content to the more capable devices. The user still uses the
microphone provided by the phone except the video is displayed on the TV and the audio is

processed by the surround sound speakers.

NASUF provides the flexibility to combine any of the services available into a specified
configuration to form device compositions within the home. The composition process itself is
based on device capability matching, so although many devices form relationships based on
the behaviours they support, active compositions are constructed based on the overall quality
of service devices provide. Initially a composition may consist of a DVD player, a surround
sound speaker system and a 48inch Plasma screen, which the middleware has composed to
give the user the best viewing experience. However one of the features offered by NASUF is
that in the event of one of the devices becoming unavailable, for example the surround sound
speaker system, it can automatically adapt and select alternative speakers, i.e. speakers
offered by the Plasma screen, to process the audio stream. Furthermore the middleware can
revert back to a previous configuration if and when better services come back on line or are
newly installed. So for example, if the surround sound speaker system comes back online the

current audio service is stopped and the surround system is selected as the best solution and

started.

117



5.2.1 Characteristics of this study

Several characteristics are demonstrated within this case study that validates how the NASUF

prototype works. These characteristics are described as follows:

a) Devices join the network and automatically form compositions with other devices within
the network.

b) Devices can be used to perform some composite function. For example when the DVD
player’s play button is pressed the player automatically selects and connects to the best
audio/visual services it is aware of.

c) Devices are selected that provide the best quality of service based on what devices and
services are available within the home network.

d) Device and service compositions can automatically self-adapt in the advent of device or
service failure by selecting the next best service, connecting to the device that provides it
and continue the composite execution.

e) Services provided by devices can be used in conjunction with other services being used
without affecting current service compositions. For example if the visual service provided
by the TV is being used to watch a DVD movie, the RF-Receiver can be simultaneously
used to display a terrestrial TV channel on the PC located elsewhere in the home, without
disrupting the persons viewing experience.

f) Virtual appliances can be automatically discovered and composed to create applications
that have not explicitly been installed. For example the microphone provided by a mobile
phone could be used to broadcast a message throughout the home by using all the
available audio services. This results in a virtual intercom system that has not been
explicitly installed.

These characteristics demonstrate how an intelligent home environment can be used which

utilises the available operational functions provided by devices; creates virtual appliances and

dynamically composes devices and services to create some high-level value added function

not provided by one single device or service alone.

5.2.2 Using our Framework for an Intelligent Home Environment

Several steps need to be taken to configure NASUF to implement the Intelligent Home

Environment. These are described within this section.

Step 1: Creating the Device objects — in this case study Audio, Video, Player and Controller
objects are created and are implemented on multiple machines within the experimental
environment, which is discussed in more detail in Chapter 6. These device objects implement
the secondary services that comprise NASUF, which may be explicitly implemented on the

device itself or used remotely within the network. The Controller device is a special device

118



used to discover and control devices and services within the network. Using the Controller,
devices can be stopped, started and invoked. The Controller also allows services provided by
a device to be stopped and started. When devices are discovered, the associated devices and
services used by that device are also displayed, which can also be controlled. When a device
is executed, the composite services it uses are automatically controlled via devices that use

these services.

Step 2: Creating NASUF Secondary Services — Depending on the device’s capabilities the
secondary services are explicitly implemented on the device. In the case study each device
implements the DeCap, DistrES and SISM services. Although devices such as audio speakers
may not be capable of implementing all these services in a real-world setting they have been
implemented to evaluate how devices function when secondary services are added and
removed. The idea is that even if only one device provides the secondary services they can be
shared and used by all other devices within the network, however overall performance will

decrease because multiple devices are trying to use the same secondary services.

Step 3: Creating the Application Specific Peer Services -~ Device objects implement
application peer services which expose the device’s functions. The Audio and Video devices
use a Multimedia Receiver peer service configured to either receive audio or video streams
dependent on the device implementing the service. The Player device uses a Multimedia

Transmitter peer service configured to transmit audio and video multimedia streams.

Step 4: Starting Devices — When the Audio, Video, Player and Controller devices have been
created and their associated secondary and application specific peer services started, the
device itself is started. At this point the device and the services it provides can be used by the

device and any other device within the network.

Once these steps have been completed a combination of devices and services can be
combined to provide high level functions. For example the Player device can combine one or
more of the Audio and Video devices to create a Home Theatre System. Compositions are
constrained based on the semantic queries propagated within the network and the semantic
descriptions used to describe services. In this instance Video devices will not form
compositions with Audio devices because they do not share any functional relationships. Both
devices process multimedia streams, consequently these devices receive input but do not
provide output. Typically compositions are formed based on what data devices output and

what inputs they receive, including any preconditions and effects that need to be considered.

In a typical home environment multiple services of the same type will co-exist. For example
the 43inch TV located in the living room and the 3G mobile phone you have will both provide

a visual service. Consequently compositions take into account devices that will provide the

119



best quality of service. For example the Player device will discover and use the 43inch TV
rather than the 3G mobile phone to watch a movie because it will provide a better quality of
service. However in the event that the 43inch TV becomes unavailable for some reason,
alternative TV visual services will be automatically selected, with the 3G mobile phone being
one possible choice. In the case study this functionality is achievable using the NASUF

framework.

Using the Controller device the user can discover any device or service within the network.
Although individual control can be placed on devices and services, base compositions will
already be in place. This is performed when devices are initially switched on. As described
above devices automatically determine which devices and services they have relationships
with. Using the Control device the user can execute compositions and individually change
services within the composition. If device and service failures occur the Control device is
automatically updated to reflect these changes. This case also applies to devices and services

that re-register themselves within the network.

5.2.3 Anomalies in this Case Study

The service interface file used to describe the signatures the service supports is attached to the
service advertisements however only the operation names are extracted whilst the parameters
operations supported are disregarded. In this instance operation names such as “Play”,
“Listen”, and “Stop” have been used, which typically do not contain any parameters.
Discovering and more accurately matching services that contain parameters is the focus of

future work.

5.2.4 Positive aspects of this Case Study

This case study provides a number of advantages over other home network solutions. Devices
can be automatically deployed and composed without any human intervention. This case
study illustrates how zero-configuration can be realised using the secondary services provided
by NASUF. Many home middleware architectures are human centric and rely on human
expertise to glue devices and services together. In NASUF this process has been automated
and devices form loosely coupled relationships between each other based on device capability
and peer service capability matching techniques. Typically it is the user that decides what
devices to use in order to provide the best composition possible. This is not the case in
NASUF, which is capable of automatically determining what devices to use dependent on the

services they provide and how effective they can execute those services.

The case study illustrates how device configurations can automatically self-adapt in the event

of device or service failure. Using NASUF the home environment continually tries to

120



interconnect devices and create solutions that provide the best quality of service. In this
instance no matter how bad the solution is NASUF will always produce a solution that allows
devices to be composed. The self-adaptive nature of NASUF provides additional benefits to
home networking solutions that surpass current middleware standards such as OSGi and

UPnP. A description of the case study implementation is discussed in more detail in Chapter 6

5.3 Other Application Domains

NASUF has been designed as a generic middleware architecture that can be used by a large
number of application domains. We have presented an Intelligent Home Environment solution
however it can be used within large networked environments whether they are based on
infrastructure networks such as LANs and WANs or ad hoc networks whereby structural
change is dynamic and frequent. Consequently this section describes some of the application

domains in which our framework could be used.

5.3.1 Emergency Installations - Ad-Hoc Integration and Service Utilisation

Emergency installations (fire, ambulance, police and rescue services) are becoming more ad
hoc in nature and are adopting technologies that lend themselves to fast. moving
intercommunications where the topological structure is continually changing shape as and
when devices and services are present. As such our framework allows the following
requirements to be realised.

e NASUF can provide an ‘intelligent’ middleware that allows devices and services to
be dynamically integrated. As emergency installations move through the environment
the network is maintained and automatically adapted as new devices and services
arrive and existing devices and services disconnect from the network.

¢ Independent emergency installations (ad hoc networks), can automatically join and
leave other sub-emergency installations as and when different sections occupy the
same location, to form one single network, i.e. the fire, ambulance, police and rescue
services can form a network and share services at an accident scene. This allows
services and information within this single network to be shared — when an
emergency installation re-locates it takes its devices, services and information with it.
This allows for automatic network configuration, information transfer, and device and
service utilisation.

¢ No maintenance or pre-configuration of networks, devices or services is required. The
ad hoc nature of decentralised networks ensures that devices within a panicular

location are automatically interconnected into one logical network. Whilst the

121



middleware discovers and composes services/functions provided by devices

depending on particular functions requested.

5.3.2 Medical Installations — Emergent Functionality

Medical installations such as hospitals require a considerable amount of equipment, as is the
case of intensive care units. Such equipment is costly and in most situations the total
functionality provided by all devices remains largely redundant because only parts of the
functions provided by a device are used. As such costs can be reduced and equipment
requirements can be minimised by utilising functions more efficiently. Devices that are
typically bought can be created by combining existing functions within the hospital
environment, which can be defined as emergent functions. One example could be an
observation system used to monitor the patient’s heart, temperature, and blood pressure.
Instead of having an appliance located within the patients’ room small wireless sensors, which
implement NASUF, could be used to send data to monitoring services provided by devices
located elsewhere in the hospital [Fergus 2004]. The data received could be streamed to a
dumb visual display located within the patient’s room, however all processing is performed

by devices designed to process the data received from the patient.

Technological advances are moving at a fast pace and as such constant upgrades to the
existing equipment owned are required. In these instances only small changes are required
such as new networking interfaces or media codecs, whilst the core functionality remains the
same. For example a device may exist within some installation capable of processing
multimedia content in a particular format because it has the required codec. However if a new
device is integrated into the environment that uses a different multimedia encoding then this
content cannot be processed by legacy devices, consequently requiring a device upgrade.
Instead of replacing the device a better alternative would be to allow the device to extend the
functions if provides beyond what it was designed to do. When a conflict is encountered, i.e. a
multimedia format it does not have a codec for, it can either discover the codec within the
network, download it and process the content or it could find an intermediary service
provided by some device that can transcode the format into a format the device can readily
process. This is an automated process, which the user is not aware of. Using NASUF this
functionality can be performed, reducing costs by automatically extending device
functionality beyond what they were initially designed to do. This provides the following
features:

o Integrate the large number of services provided by devices to resolve device conflicts

as and when they happen.

122



¢ Reduce the costs associated with constantly upgrading hardware solutions, when all
that is required is a slight extension to the functions the device already provides.

e Devices do not have to have all the required functions, but rather can integrate and
utilise third party functions provided by other devices. In this instance custom devices
may be installed that provide some given function, ie. information transcoding,
protocol interoperability, data aggregation, or intelligent processing and reasoning,.

o Devices can choose to be as thin or fat as they want and at the same time perform
complex functions by loosely coupling remote services provided by other devices.
This means that devices, irrespective of their capabilities (sensors, PDAs or PCs), can

participate within any environment and provide and/or use the functions available.

5.4 Summary

This chapter demonstrates how our framework can be used to implement an Intelligent Home
Environment, capable of interconnecting networked appliances. The case study explains how
zero-configuration can be achieved and how device and service compositions can self-adapt
in the advent of device or service failure. The core functions highlighted within the case study
can be adapted and applied to different home networking scenarios allowing virtual
appliances to be created and enabling service utilisation. Numerous configurations can be
automatically created dependent on the devices and services available and the richness of the
semantic service capability descriptions provided by devices. Extending the application
domain further this chapter also highlights several other application domains in which
NASUF can be applied.

Many lessons have been learnt through our case study with the most important being that our
framework is highly flexible and portable across many different problem domains. It
highlights a completely new and novel way of interconnecting and using devices that to date
surpasses existing middleware solutions. By breaking the individual functions provided by
devices and dispersing them within the network results in distributed networked behaviours
that can be discovered and used in parallel with any other functions the device provides. It can
lead to a reduction in the amount of equipment required as is the case in our medical example
described above. It can also prolong the life of appliances by allowing them to extend the
functions they provide beyond what they are initially designed to do. This will provide
significant cost savings to consumers and forge a closer relationship between people and
technology.

Technological change is about innovation. Our framework breaks operational functions down
into constituent networked behaviours creating a promising foundation that aids innovation

and allows new and novel solutions to be created. For example networked behaviours can be

123



selected and combined irrespective of what devices provide them, and new solutions can be
created that could not be provided by any individual device alone, i.e. all the speaker
functions within the network could be combined to create a virtual intercom system. The
device does not explicitly exist but rather emerges for as long as the audio functions are held
in an intercom configuration.

Our framework aims to solve a number of difficult challenges and although we have
successfully achieved this there is still considerable room for improvement. The following

Chapter provides a detailed discussion on how we implemented our framework design to

realise the Case Study.

124



Chapter 6

6 System Implementation

6.1 Introduction

In this chapter we present the implementation for our framework described in Chapters 3 and
4, This chapter begins by describing the goals of our framework in relation to networked
appliances. The framework is an example of a service-oriented architecture and thérefore it
addresses the same objectives. The individual services our framework provides are described
in detail, which also includes a description of the prototype we have developed to evaluate our

framework design.

6.2 Service-Oriented Architecture

NASUF is a service-oriented architecture. It provides mechanisms that allow networked
appliances to be seamlessly interconnected and offer the services they provide. Chapter 2
introduced the common concepts used within home networking, networked appliances, peer-
to-peer computing and the semantic web. Throughout this chapter these concepts will be used
to describe how the services that comprise NASUF realise the novel contributions detailed in

Section 1.9 on page 10.

6.3 Framework Services

The following subsections discuss the implementation details for each of the services used to
implement the NASUF framework. A discussion is presented on the technologies used to
achieve this, which includes the benefits they provide, the difficulties we encountered and
how they have been extended to incorporate our novel contributions. The framework
illustrated in Figure 6.1 shows the services used within NASUF and the relationships that

exist between them.,

125



NASUF

DistrES Local
Service Ontology

Service

CORBA

JINI

[ DISUS Manager |
*

¥ ¥ v I
| JxTA | | NET | | JNI| | OsGi | | UPnP

Figure 6.1 NASUF Framework

The remaining subsections discuss the key techniques used to implement NASUF which
includes the JXTA peer-to-peer network; secondary and application specific services;
serialisation and semantic interoperability; dynamic service composition; device capability

matching; and self-adaptation.

6.3.1 The JXTA Peer-to-Peer Network

NASUF integrates heterogeneous devices; enables seamless communications; and allows
services provided by devices to be shared. Within NASUF this integration is achieved using
the JXTA protocols [Sun Microsystems Inc. 2005a]. These protocols allow any device to be
connected to the network independent of the platform, programming language, or the
transport protocols devices implement. Devices are inherently heterogeneous therefore
NASUF provides abstractions that hide the underlying implementation and transport details,
thus creating a logical layer whereby all devices appear homogeneous in nature. The findings
of this research are that of all the current toolsets, JXTA provides the best mechanisms to

achieve this (as argued in Section 2.4.8 on Page 41).

The NASUF secondary services we have developed exist within the service layer of JXTA.
This allows devices to perform device capability matching; semantic service discovery;
semantic interoperability; ontology evolution; dynamic service composition and self-
adaptation. The NASUF secondary services extend the JXTA specifications too include these

additional capabilities.

A multidisciplinary approach has been taken for inter-device communications within NASUF.
The services that comprise NASUF are pre-determined and each device understands how to

discover and invoke them. Pre-determined pipe advertisements are used to discover secondary

126



services. All devices that offer a particular secondary service use the same pipe
advertisement. This ensures that devices do not continually create and publish new
advertisements each time the device is connected to the NASUF network. This technique is
used to minimise discovery overheads and ensure that the advertisement cache does not

continually inflate over time.

Unlike secondary services, application specific services, (which are designed to publish the
functions provided by devices) are numerous and the pipe advertisements used by these
devices are not necessarily known by devices beforehand. As such semantic metadata is used
to discover application specific services based on the behaviours they support. NASUF-
enabled devices propagate messages to all devices within peer groups using the JXTA
ResolverService protocol. This protocol allows messages to be propagated within the network,
which are processed by ResolverService listeners implemented on devices — this provides an
effective messaging system for ad hoc service discovery. Devices discover application
specific services using a query containing the handler name, routing information and the
message digest. We have extended the query object provided by JXTA for ResolverService
communications to include additional XML tags that describe both the required capabilities

the candidate device must support and the service behaviours the querying device requires.

The device capability tags are used to describe CPU, memory, and networking capabilities for
example. This is an important requirement because the same type of service, for example an
audio service, could potentially be provided by multiple devices within the NASUF network.
As such the device capability model is used to select the device that can execute the service
most effectively. Devices that receive query objects use the device capability tags to
determine whether the capabilities it supports match or surpass the actual capabilities the
device requires. Device capability models in NASUF are serialised using the CC/PP
specification [Klyne 2004].

The service capability model, used in conjunction with the device capability model,
semantically describes each of the functions the service provides. This allows devices to
overcome the limitations associated with attribute-value pair matching to describe services in
more detail. Service capability models in NASUF are serialised using the OWL-S
specifications. These specifications have been used to extend the current discovery

specifications provided by JXTA to enable services to be matched semantically.

6.3.2 Secondary and Application Specific Services

All the services within NASUF, whether they are secondary, such as DistrES, or application
specific such as Audio or Video, are created and published as advertisements using JXTA.

We have developed a service factory, which acts as a wrapper around existing JXTA services

127



which includes our NASUF services. Discovering these services simply requires the device to
search for the service advertisement by name and extract the pipe advertisement it contains
before binding to and using it. This differs from application specific services because such
services are plugged into the framework by device manufacturers in order to allow access to
the functions provided by devices. Consequently, equipping a device with every variation of
the services contained within the network is not practical. As such application specific

services are discovered using semantic discovery mechanisms provided by NASUF.

We have extended the JXTA service advertisements to include the Peer ID. This could have
been overcome using the JXTA Peer Advertisement specification, however to reduce the
number of discovery requests made a decision was made to place the Peer ID in the service
advertisements. This allowed us to make one single discovery request for all the required
information needed. If we did not do this we would have had to develop the software to find
Peer advertisements as well as the service advertisements. This would require making two
advertisement requests, resulting in increased network traffic and computation. Our rationale
was that devices of varied capabilities will use the NASUF framework, consequently
minimising the amount of traffic and the computation required would ensure that devices with

limited capabilities are not over taxed.

Using the Peer ID is an important design decision, which ensures that, although more than
one service may exist of the same type, devices only bind and use the service initially
discovered when a connection request to the service is made. This makes sure that other pipe
listeners for a pipe advertisement do not receive and process messages not destined for them.
The decision to adopt this technique was based on a number of undesirable results we
encountered within our implementation, whereby connection requests could be made to any

pipe at the same time irrespective of the initial device and service discovered.

6.3.3 Serialisation and Machine-Processable Semantics

NASUF provides mechanisms that enable zero-configuration between devices based on
capability matching. Ontological structures are used to describe what devices want and what
they provide. Again a number of approaches have been considered for ontological processing
and several working prototypes have been developed within this research using OpenCyc,
XOL, RDF, RDF-S DAMLAOIL, OWL, Jena and the Protégé-OWL APIL Although,
ontologically, OpenCyc provides considerable inferential capabilities it is very resource heavy
to implement (120 megabyte API). Furthermore the underlying knowledge base uses a
propriety language called CycL, which is somewhat restrictive because it is not considered an
open standard. XOL is considered a legacy ontology language, thus is has little support in

terms of tools and usage. RDF and RDF-S are W3C recommendations, consequently there is a

128



great deal of support and a large number of tools exist for RDF-based processing. However
the expressiveness of RDF-based serialisations is limited and in most cases inferior to other
ontological languages such as OWL. Within NASUF the goal is to enable devices to reason
over expressive ontology serialisations and deduce not only explicit, but implicit concepts
derived from atomic and complex concept compositions. In NASUF the OWL-DL
sublanguage of OWL has been adopted to achieve this because a large number of reasoners
exist capable of processing DL-based ontologies. This version of OWL also provides a
constrained, but expressive, language that can describe rich ontological structures and at the

same time support formal reasoning, consequently every device within NASUF creates and

evolves OWL-DL serialisations.

OWL-DL serialisations are processed using the Protégé-OWL API [Stanford University
2005a], which overcomes the proprietary nature of OpenCyc by supporting open standards.
The Protégé-OWL API is an open source project, designed to provide tools capable of
processing language-neutral ontologies. This API fully supports the OWL-DL specification
and is a well developed tool that has a large number of academic and industrial supporters.
The API is comprehensive and progressing at a fast pace. In our implementation the Protégé-
OWL Reasoner API [Stanford University 2005b] is also used, which supports several DIG
compliant reasoners such as Racer [Haarslev 2001], FaCT [Horrocks 2005] and FaCT++
[Tsarkov 2005]. We have used the Racer reasoner because of its adoption within the wider

research community, thus more support, tools and usage scenarios are available.

We have also carried out extensive research using the Jena API, which provides several
internal and external reasoner interfaces, however a number of performance problems where
encountered. For example when an inferred model is created using internal and external
reasoners, out of memory errors occur. Through experimentation this limitation was
overcome using the Protégé-OWL API and Racer. Jena is however used to perform simple
querying on OWL-S serialisations because they are not DL compliant. This is achieved using

the ontology models provided by Jena and RDQL.

Our DistrES service has been developed in Java and is used to determine if semantic
relationships exist between different vocabularies. It performs hierarchical analysis via
subsumption as well as equivalence and restriction checking between different concepts. The
DistrES service is capable of determining whether any two concepts are disjoint from each
other and can perform classification based on the properties a particular class supports. This
means that the reasoner can determine what concept(s) a particular individual or class belongs
to by analysing the properties it supports. This is an important requirement because services
are dynamically composed by matching signatures contained in the service interface, i.e. the

inputs and outputs used to represent a signature. This service provides a flexible abstraction

129



layer that enables open standard serialisations, such as OWL, to be processed and reasoned
over within our NASUF implementation. DistrES uses custom algorithms we have developed
in Java that utilise the functions provided by the Protégé-OWL and Racer APIs. The DistrES
service extends the discovery mechanisms provided by JXTA, to enable semantic service
discovery. This allows devices to more accurately discover and use services based on
semantic mappings between high-level semantic descriptions of what the service does and

low-level service interfaces used to bind to and invoke the service.

6.3.3.1 Describing Services Semantically

NASUF uses semantic information for service descriptions and service requests. These
descriptions are serialised using OWL-S. OWL is used to serialise domain knowledge and
help perform interoperability between different terminologies used in service requests and
service descriptions. The OWL-S specification is in the early stages and to date is not a
recommended standard. It still has a number of issues, most importantly it does not conform
to OWL-DL, which makes it difficult to use with the Racer reasoner. However, the
specification provides an effective and promising mechanism for describing services

semantically and building a foundation on which to build.

Each application specific service within NASUF is described using OWL-S. The Service
Profile is used to describe both the service request and the high-level semantics of the service.
Semantically matching service requests with service advertisements is performed using the
SISM service which we have developed in Java and plugged into the JXTA service layer.
This service uses the AbstractMatcher algorithm we have developed to match the IOPEs in
the service request with IOPEs described in the service advertisement. Ambiguities‘ between
different terms are resolved using the DistrES service. In conjunction with the
AbstractMatcher algorithm the ConcreteMatcher algorithm we developed maps the high-level
semantic descriptions defined in the Service Profile to concrete bindings within the service
interface. NASUF uses WSDL to syntactically describe low-level service signatures,
irrespective of the service technology being used. Through experimentation WSDL provides a
specification, which is a well understood standard recommended by the W3C. This
specification is flexible and extensible, allowing any service interface to be described at the
syntactic level. However WSDL does not address the semantics of information. Consequently
it is difficult to assess the capabilities services provide by looking at the interface alone. As
such WSDL is used in conjunction with OWL-S and embedded within JXTA service
advertisements to enable syntactic and semantic analysis. This extension allows devices to
process service advertisements and reason about service capabilities to determine if the

service provides the required behaviour.

130



6.3.3.2 Evolving ontological structures using general consensus

We have developed custom algorithms in Java to evolve ontological structures over time,
which we have implemented in the DistrES service. The Evolutionary Pattern Extraction
(EPE) algorithm allows concepts of various depths to be extracted from a device’s domain
ontology. The EPE extracts conceptual information from separate ontological structures using
statistical analysis. Ontological structures themselves are discovered within the network using
JXTA and custom queries that define the concept required. The EPE extracts commonalities
from » ontological structures, where n is the number of ontology structures returned from the
network, to produce an optimal structure based on general consensus. Optimal structures are
merged with the device’s local ontology using the Merge Algorithm (MA) that we have
developed. An assumption has been made that small device specific ontologies with be
developed by device manufacturers, however once the device is deployed, ontologies will be

evolved and managed by NASUF using the EPE and the MA.

6.3.4 Dynamically composing services using ontology

The SISM service we developed has been implemented within NASUF allowing devices to
determine what services they can form relationships with. Device manufacturers can retrieve
predefined semantic descriptions and use them to find any dependency services the device
requires. Service requests are described in terms of the inputs the service requires, the outputs
it generates, the preconditions that must be satisfied and the effects that happen as a result of
executing the service. All service requests are propagated within the network using DiSUS.
Devices capable of processing requests extract the semantic information and match it against
the semantic descriptions used to describe each application specific service the device

provides. SISM uses the AbstractMatcher and ConcreteMatcher algorithms to achieve this.

6.3.S Formally describing device capabilities using MAUT

A number of experiments have been performed using the MAUT formula and the CC/PP
standard to calculate capability scores. Initial prototypes demonstrate that using MAUT
allows NASUF to effectively evaluate device capabilities. The CC/PP specification is used as
a base device capability model, which we have extended to include the MAUT constructs.
The DeCap service implements the MAUT algorithm we have developed, which is used to
provide an overall evaluation of the device’s capabilities in conjunction with the device
capability model embedded in the service request. If the device capability model score is
equal to or greater than the score calculated for the device capability model extracted from the
service request, then the device is said to be capable of executing the service in conformance

with the querying device’s requirements.

131



Based on several prototypes we have developed, the CC/PP specification and the MAUT
algorithm provide an effective mechanism for selecting devices and services. The DeCap
service is plugged into the service layer of JXTA and is used to extend the current JXTA
specification to consider how capable devices are before selecting a service it provides. For
example, several devices may provide “visual” services, however some devices may be more
capable of processing video content than others. The current version of JXTA does not

provide any mechanisms to achieve this.

6.3.6 Self-adaptive middleware

NASUF provides mechanisms that allow devices to form relationships with other devices and
services within the network. When a device is initially switched on it automatically discovers
the dependency services it requires. This may result in several services that provide the same
functionality. Devices store each response received from within the network and use a control
mechanism to adapt a particular service composition during execution. In NASUF,
mechanisms are provided that allow device manufacturers to decide how service
advertisements are stored and managed. In our implementation advertisements are processed
in memory, consequently when the device is switched off the advertisements are lost and
must be re-discovered again. However in real-world implementations some backend store, for
example a database system, may be used. This may not always be the case as the

environments in which these appliances exist are highly transient.

NASUF always picks the services that provide the best quality of service. If a service fails the
next best service is selected and plugged into the composition. In the advent of the failed
service becoming available again, it is used to replace the existing service in the composition
if it improves the overall quality of the composition. This is achieved using a custom control
mechanism we developed, which is implemented in the Device abstract class. This
functionality was required because JXTA does not provide any control mechanisms to allow
devices to automatically reconfigure in the event that services become unavailable. Our self-
adaptation mechanism has addressed this limitation to allow compositions between devices
and services to be automatically reconfigured without any human intervention as and when

service failures occur.

In the remaining sections the implementation details for each of the services that comprise the
NASUF architecture are discussed in more detail.

6.4 The Framework Prototype

In order to evaluate our framework design presented in Chapter 3 and 4, a prototype has been

developed. This is in accordance with the case study presented in Chapter S, which is an

132



Intelligent Home Environment. The prototype uses four wirelessly connected computers to
simulate two televisions, a Media player and two audio speaker systems. The televisions host
“Visual’ services, which process visual data streams. The Media player hosts a ‘Player’
service which outputs MPEG!] multimedia data, and finally the audio speaker systems host

‘Audio’ services, which process audio data streams.

Communication between devices is achieved using the wireless 802.11g standard and OWL-S
service requests are propagated between devices in the network using the JXTA
ResolverService. Each device implements DiSUS and either implements the SISM, DistrES
and DeCap services or discovers and uses these services remotely within the network. When
devices are initially switched on and have published the services they provide they
automatically try and discover devices within the environment they have a relationship with.
For example when the Media player is switched on it tries to discover devices capable of
processing audio and video streams outputted by the player. Using a simple control interface,
as illustrated in Figure 6.2, users can discover, use and control any device connected to the
network and the services it provides. Note in this instance devices themselves may control
other devices they have relationships with without any human intervention. For example if the
user sends a “Play” command to the Media player, the player interacts and controls the

speaker system and television automatically.

Using the user interface users can select the device and service capability models describing
the quality of service factors the device must support and the service functionality required.
These models are serialised as XML and are appended to a service request before being

propagated within the network using the “Send Query” button.

Figure 6.2 NASUF User Interface

133



Three tests have been developed to evaluate NASUF. The first test demonstrates that NASUF
can allow devices to form relationships with other devices in the network without any human
intervention. The second demonstrates that conflicts within signature mappings can be
resolved using intermediary services and the last demonstrates that devices can self-adapt in
the event of any device or service becoming unavailable. In the first test the Media player is
started and two service requests are created using the OWL-S Service Profile. These service
requests are used to find devices capable of processing audio and video streams. The Media
player propagates the requests within the network using the DiSUS Manager and adds any
responses to a table of candidate services, categorised according to the type of device or

service discovered.

In the second test the user sends an IncreaseVolume or DecreaseVolume command to the
speaker system (this is a dependency service used by the Media player as illustrated in Figure
6.2). To demonstrate parameter conflicts volume values are sent to the speaker system as
strings, however the parameter should be of type integer. We set up a simple service on the
network that performs data type conversions. Initially the speaker system receives the service
request and determines that the IOPE in the service request (IncreaseVolume) can be matched
with the IOPE in the service description (IncreaseVolume) however when the data types
associated with the IOPEs are processed, the SISM service determines that the data type
associated with the IncreaseVolume parameter in the service request is of type String and that
the parameter IncreaseVolume in the service description is of type Integer. In this instance
SISM tries to find an intermediary service capable of performing the conversion. SISM
reformulates a service request, which defines two IOPEs — the first IOPE is the conflicting
Input (string) found in the service request and the second IOPE is the required output needed
to resolve the conflict (integer). SISM then propagates the service request using DiSUS,
which is received and processed by the data type conversion service. This service takes as
input a StringValue of type String and outputs an IntegerValue or type Integer. The service
matches the IOPEs at an abstract and concrete level and successfully creates the _extended
interface metadata file and returns it to the audio speaker system. The audio speaker system
stores the metadata file along with a unique ID and creates its own extended interface
metadata file that links to the extended interface metadata file for our data type conversion

service using the unique ID, which is then returned to the Media player.

We where able to invoke the IncreaseVolume command and demonstrate how the speaker
system uses our intermediary data type conversion service to convert the String value into an
Integer value, by substituting the conflicting parameter with the result before invoking the

IncreaseVolume command on the audio speaker system. This is a simplistic demonstration

134



that only considers one parameter and simple data types however the mechanisms illustrate

how conflicts can be resolved.

The third test case demonstrates how devices adapt to device and service failure. When the
user sends a Play command, the player instructs the audio speaker system and the television
to begin processing the media streams sent from the player. For demonstrative purposes the
current audio speaker system being used was removed from the network to test NASUFs self-
adaptation capabilities. In this instance the Media player senses this change and automatically
uses a previously discovered audio service. The player binds to the audio service and instructs
it to begin processing the audio data outputted by the player. To further demonstrate the
adaptation mechanisms in NASUF, the previous audio speaker system used was re-published
within the network. The Media player successfully senses this change and compares the
device capability model for this speaker system with the device capability model for the
current speaker system being used. It discovers that the newly published speaker system
provides a better auditory experience than the speakers currently being used and as such it
instructs the audio speaker system being used to stop processing the audio stream and

instructs the newly published audio speaker system to begin processing the audio stream.

6.4.1 Technical Description

Each device publishes its functions as JXTA Peer services and allows devices within the P2P
network to discover and use them. The services have been developed as JXTA Peer services,
however any service technology could be used such as GLUE-STD [WebMethods 2003],
which are W3C compliant Web Services.

A typical device and service capability model used to discover a device capable of processing
an audio stream is illustrated in Figure 6.3 (a) and (b). The device capability model describes
the capability parameters, which also includes the MAUT values. The peer service capability
model describes two inputs which are stop and listen used to turn the speaker system on or
off. It has one output which is a RadioWave indicating the type of data this device outputs. It
has one effect which states that when the device is in use it is receiving a digitised wave and
one precondition which states that the device should be an 4udioSpeaker. The device and

peer service capability models, in part, form the basis for service requests in NASUF.

135



<?xml version="1.0"?>
<rdf:RDF>

<rdf:Description rdf:about="http://www.livjm.ac.uk/dcm#power">
<dcm:importanceRating>40</dcm:importanceRating>
<dcm:statusAssessment>Average</dcm:statusAssessment>
<dcm:statusRating>50</dcm:statusRating>
<dcm:importanceRanking>4</dcm:importanceRanking>

</rdf:Description>

<rdf:Description rdf:about="http://www.livjm.ac.uk/dcm#MyProfile">
<ccpp:component>http://www.livim.ac.uk/dcm#Memory</ccpp:component>
<ccpp:component>http://www.livim.ac.uk/dem#Bandwidth</ccpp:component>
<ccpp:component>http://www.livim.ac.uk/dcm#CPU</ccpp:component>
<ccpp:component>http:/www.livim.ac.uk/dem#Power</ccpp:component>

</rdf:Description>

<rdf.Description rdf:about="http://www.livjm.ac.uk/dcm#Power">
<ccpp:defaults>power</ccpp:defaults>
<rdf:type>HardwarePlatform</rdf:type>

</rdf:Description>

<rdf:Description rdf:about="http://www.livjm.ac.uk/dcm#cpu_load">
<dcm:importanceRanking>4</dcm:importanceRanking>
<dcm:statusRating>50</dcm:statusRating>
<dcm:statusAssessment>Average</dcm:statusAssessment>
<dcm:importanceRating>40</dcm:importanceRating>

</rdf:Description>

</rdf-RDF>

<profileHierarchy:ServiceRequest rdf:ID=
“AudioServiceRequest">
<profile:hasInput rdf:resource=
"http://www.livjm.ac.uk/ServiceRequest.owl#RadioWave"/>
<profile:haslinput rdf:resource=
"http://www.livim.ac.uk/ServiceRequest.owl#Stop"/>
<profile:hasinput rdf:resource=
"http://www.livjm.ac.uk/ServiceRequest.owl#Play"/>
<profile:hasOutput rdf:resource=
"http://www _livjm.ac.uk/ServiceRequest.owl#RadioWave"/>
<profile:hasEffect rdf:resource=
"http://www.livjm.ac.uk/ServiceRequest.owl#ReceivingAWave"/>
<profile:hasEffect rdf.-resource=
"http://www.livjm.ac.uk/ServiceRequest.owl#PropagatingAWave"/>
</profileHierarchy:ServiceRequest>

Figure 6.3 NASUF Service Request Models

When a service is matched and the device providing the service has the required capabilities
to effectively execute it, the service advertisement is added to the devices collection of
matched services. Once all the required services have been found the device remains in an
idle state until it is controlled by the user via the user interface illustrated in Figure 6.2. In this
instance the user selects the required command from the drop down box located next to the

Send Command button, which is extracted from the service interface (in this case a WSDL file

_ WSDL files are processed using GLUE-STD [WebMethods 2003]).

Service requests are propagated between devices in the P2P network using the JXTA Resolver

service and processed using two event handlers called processQuery and processResponse.

136




All devices have a JXTA interface that allows them to join the default peergroup called
NetPeerGroup. The code to achieve this is illustrated in part in Figure 6.4.

public void startJxta(){
try{
peerGroup = PeerGroupFactory.newNetPeerGroup();
AbstractService.setPeerGroup(peerGroup);

resolverSvr = peerGroup.getResolverService();
resolverSvr.registerHandler(handlerName,
(QueryHandler)ResolverMsgHandlerFactory
.createDISUS_Handler(this));
Jcatch(PeerGroupException e){
if(NASUF Logger.isEnabledFor(Level. ERROR))
NASUFLogger.error("DiSUS: startJxta: " + e.toString());
System.exit(1);
}
}

Figure 6.4 Joining the P2P Network using JXTA

Once a device joins the peer group and registers a message handler with the Resolver service
it can send and receive messages. Each device in the prototype registers to receive DiSUS
messages, which are encapsulated using JXTA-defined messaging objects called
ResolverQueryMsg and ResolverResponseMsg. Along with other information, OWL-S service
requests we developed are wrapped in JXTA message objects and propagated within the P2P

network.

Devices communicate with secondary services such as SISM and DistrES using bidirectional
pipes called BiDiPipes in JXTA. Figure 6.5 illustrates in part how DiSUS binds to BiDiPipes
in NASUF. All the queries used to process the service ontologies are performed using the

RDQL API provided by the Jena 2.3 APL

Using a sample service request as illustrated in Figure 6.3 above, the RDQL query defined in
Figure 6.6 (a) can be executed using the sample code illustrated in Figure 6.6 (b), using Jena
to extract the defined inputs. The common keywords found in SQL such as Select, Where, For
and Using as illustrated in Figure 6.6 (a) are also used in RDQL. Jena provides a

comprehensive API that makes querying any RDF-based model, an easy process.

137



public void run() {
pipe = disus
.bindToService(disus.discoverCoreService(
DistrESConstants. DISTRES_SPEC).toString(), this);

if(!pipe.isBound()){
if(NASUFLogger.isEnabledFor(Level. INFO))
NASUFLogger.info("Failed to Connect to Pipe");
}
return;

}

Message demMsg = new Message();
demMsg.addMessageElement(ServiceDescriptionConstants. NASUF_NAMESPACE,
new StringMessageElement("DistrESRequestType", "SemInterop”, null));

d ddM El t(ServiceDescriptionConstants. NASUF_NAMESPACE,
new SmngMessageElement(DlstrESConstantsX TERM, srTerm, null));

demMsg.addMessageElement(ServiceDescriptionConstants. NASUF_NAMESPACE,
new StringMessageElement(DistrESConstants.Y_TERM, spTerm, null));

f(NASUFLogger.isEnabledFor(Level.INFO))
NASUF Logger.info("Sending DistrES Message");
try(
pipe.sendMessage(dcmMsg);
Thread.sleep(5000);
pipe.close();
Jeatch(Exception e){
if(NASUF Logger.isEnabledFor(Level. ERROR))
NASUF Logger.error("AMatcher_DECAP_Handler: run: " + e.toString());

pipe.close();
Jeatch(Exception ioe){
if(NASUFLogger.isEnabledFor(Level. ERROR))
NASUFLogger.error("AMatcher_DECAP_Handler: run: " + ioe.toString());
}

)

Figure 6.5 Binding to Secondary Services

SELECT ?input WHERE (?x profileHierarchy:ServiceRequest ?y),
(?y profile:hasinput 7z),

USING profile FOR
“<http://www.daml.org/services/owl-s/1.0/Profile.owl>"

public QueryResults executeQuery(OntModel ontModel, String queryString){
Query query = new Query(queryString);
query.setSource(ontModel);
QueryExecution ge = new QueryEngine(query);
QueryResults result = ge.exec();
return result;

Figure 6.6 RDQL query execution

In the prototype RDQL is used extensively to extract IOPEs and information that link the
service ontologies together. The SISM algorithm uses RDQL queries in conjunction with the
DistrES ontology to determine the relationships that exist between different terms. The
service request IOPEs and the service description IOPEs are extracted using RDQL queries
and relationships between the terms are determined using the DistrES ontology providing an

effective mechanism for semantic interoperability.

138



When a service request is received from a device, DiSUS attempts to match the service

request against the Service Profiles for each application specific service it provides. This is

achieved using the SISM service. Resolving ambiguities between terms that are syntactically

distinct but semantically equivalent is achieved using the DistrES service which uses an OWL

ontology [W3C 2004] we developed for networked appliances as illustrated, in part, in Figure

6.7 — more example models of the ontology can be seen in Appendix D on Page 230.
CableDescrambler

L
Bloctricanlousotnldkvplima
Recordl’layer Seitibivtea

\/ X~/
TelevisionSet _

ElectronicHouseholdippliance

B S, T ¢
MediaPlayingDevice
... B
DVDPlayer Joplifier
v \ /
CompactDiscPlayer psnSisctlger Audiofmpli fierComponent
\ Consumer AudioVideoComponent
——
CDPlayer -AudioComponent \\
-/ SatelliteTVRecei
HomeCDPlayer by “t\
Rad:l.ol!cce:.ver
VideoCassetteRecorder Receiver-AudioComponent
/ \Hﬂuluﬂiolhceiver
VisualInformationRecordingDevice ;wov“umaceivg;munt

Figure 6.7 DistrES Networked Appliances Ontology

The ontology itself conforms to the OWL-DL language [W3C 2004] and currently has about
500 concepts that semantically describe common household appliances and their associated
properties such as inputs outputs and events. The ontology was developed using the Protégé
3.1 ontology editor and the OWL plug-in [Horridge 2004]. The domain ontology allows
devices to determine if any terms are conceptually related. In the implementation the Protégé-

OWL API is used to load and process the ontology.

Domain knowledge is evolved using the DistrES service based on general consensus. Figure
6.8 provides, in part, the code used to extract the top » nodes, where 7 is the number common
nodes that exist within all ontology structures received from the P2P network. This is a
configurable feature that is dependent on the application. Class and relationship selection can

be based on manual configuration or using some automatic feedback mechanism implemented

as a service in NASUF.

The Protégé-OWL API provides all the common methods required to reason over OWL-DL

serialisations. It also provides methods that allow the properties of concepts to be reasoned

139



over and it allows inferred knowledge structures to be calculated. Figure 6.9 illustrates some

of the code used in SISM to determine if a subclass or subsumption relationship exists

between two concepts.

private Object getTopClasses(int topClasses){
Object tempKey = null;
Object tempValue = null;
Map topClassesCollection = new TreeMap();
if(topClasses < classF .size(){
for(inti = 0; i < topClasses; i++){
int count = 0;
Iterator iter = classF.keySet().iterator();
while(iter.hasNext()){
Object cls = iter.next();
int value = ((Integer)classF.get(cls)).intValue();
if(value > count){
tempKey = cls;
tempValue = classF.get(cls);
}

if(tempKey != null && tempValue != null){
classF.remove(tempKey);
topClassesCollection.put(tempKey, tempValue);

}

}
return topClassesCollection;
Jelse{
return classF;
}
}

Figure 6.8 Extracting the Top n Classes

/IThis method returns a true or false value depending on whether
liclass1 is a subclass of class2.
public boolean isSubclassOf(Object class1, Object class2){
Collection col = this.getSubclasses(class2);
if(col.contains(
distresOntology
.getOWLNamedClass(
(String)class 1))
return true;
Jelse{
return false;
}
}

public boolean isSubsumedBy(Object class1, Object class2) {
try{
return reasoner
.isSubsumedBy(
distresOntology
.getOWLNamedClass((String)class1),
distresOntology
.getOWLNamedClass((String)class2), null);
Jeatch(Exception e){
if(NASUF Logger.isEnabledFor(Level. ERROR))
NASUFLogger.error("getDescendentClasses Error: " +
e.toString()):

return false;

b.

Figure 6.9 Reasoning over the domain ontology

140



Devices self-adapt using the DiSUS manager, the registered dependency services the device
has and the DeCap Service. The code in Figure 6.10 illustrates, in part, how the best service in

a composition is selected when conflicts are encountered.

protected String selectBestService(List serviceCollection){
IDataObject bestService = null;
|DataObject tempService;
double dem_score = 0.0;
Iterator iter = serviceCollection.iterator();

while(iter.hasNext()){
tempService = (IDataObject)iter.next();
if((Double.valueOf(tempService.getDecapValue()).doubleValue()) > dem_score){
bestService = tempService;
dem_score = Double.valueOf(tempService.getDecapValue()).doubleValue();

}
Jeatch(Exception e){
if(NASUFLogger.isEnabledFor(Level. ERROR))
NASUFLogger.error("Device: selectBestService: " +
e.toString();
}
return bestService.getModuleSpec();

Figure 6.10 Selecting the Best Service

The application specific services used in the prototype have been developed using Java and
allow audio and video to be transmitted and received between devices. These media
processing services have been implemented using the Java Media Framework (JMF)

Performance pack for Windows, based on version 2.1.1 [Sun Microsystems Inc. 2005b].

The NASUF implementation comprises around 120 Java classes. This totals around 15
thousand lines of Java code (15 KLOC). The implementation uses several open source Java
APIs, consequently these must also be bundled with the NASUF APIs at deployment. The
implementation is portable and runs on different platforms. NASUF is a service-oriented
framework so depending on what secondary services devices implement also affects the size
of the deployment package. For example if a device does not implement DistrES then the
reasoner and ontology processing APIs do not need to be deployed on the device. This
ensures that devices irrespective of there capabilities can use and operate within the NASUF
network. The NASUF application was deployed using ANT [Hightower 2002], which is a

tool used to create and set-up deployment configurations.

6.4.2 Prototype Configuration

In order to evaluate the NASUF implementation, a prototype was set-up within the School of
Computing and Mathematical Sciences at Liverpool John Moores University. This prototype
was set-up as a distributed service-oriented architecture on top of a wireless network. The

configuration consisted of the following off-the-shelf components:
e A Cabletron Smart Switch Router 2000

¢ Entrasys Roamabout Access Point

141



e RoamAbout 802.11g PCMCIA network cards

e Four wirelessly connected Intel Pentium 4 — 1.8 GHz machines running Windows XP

Professional, Service Pack Two, with 500 megabytes of RAM.

Several environment parameters where considered to run a real-world test and demonstrate

the key functions the NASFUF framework provides. These scenario parameters are detailed

in Table 6.1.
Network
Transmitter Range 100 Meters
Bandwidth 54 Mbps
Number of Nodes 4
Pack Size 2048 bytes
Environment Size  100x100 Meters
Software
oS Windows XP Service Pack 2
Java 1.4.2_06-b03
JMF 2.1.1e
JIXTA 231
OWL-S 1.0
Jena 2.0
Protégé-OWL API 2.1
Prototype
Running Time 4 Minutes
Protocols 802.11g

Media Transmitted MPEG]I Video (JPEG/RTP)

Table 6.1 Scenario Parameters

All the machines used within the prototype test-bed where connected using the standard
TCP/IP protocol. The 1.4.2_06-b03 version of the Java Development Kit was used on all
machines within the network. Several decisions where made regarding this network
configuration. The first decision being that all devices must be connected using wireless
communications. The second decision was that the 802.11g standard should be used to enable
multimedia streams to be processed more efficiently. The third decision was to enable devices
to join and leave the network without having to inform any third party — this was designed to

allow any device at any time to join or leave the network using ad hoc networking principles.

6.4.3 System Operation

To test the operational capabilities, all devices implemented and published all the secondary
services that comprise the NASUF framework. Each device also publishes the application
specific services it provides. For example, the television device publishes audio and video
services. Devices that require dependency services begin by trying to discover services based
on the behavioural functions they require. For example, the Media player begins by trying to

find audio and video services provided by devices capable of processing the multimedia

142



streams the Media player outputs. Once devices have published and run all services they

remain in an idle state until they are controlled via the NASUF user interface.

Using the user interface we tested whether our prototype could discover devices and services
using a number of device and service capability models. For example, we tested the discovery
of television services by manipulating the details described in the device capability model, i.e.
specified that devices must have low, medium and high capabilities. We also tested that our
prototype could pin-point application specific services using the semantic descriptions
contained in the service capability model. Our implementation illustrated that this could be

effectively achieved.

When all devices where in an idle state, using the user interface we discovered a Media player
and instructed it to play a movie. Using the quality of service features supported within
NASUF, our framework was capable of selecting the best visual and audio services within our
network configuration. We further demonstrated that devices could self-adapt when
environmental changes where encountered. We achieved this by removing devices from the
network during execution to see if alternative devices could automatically be discovered and
plugged into the composition with minimal disruption. For example, when we removed the
visual service from the composition, the Media player automatically discovered and invoked
an alternative visual service. The prototype also demonstrated that when the better visual
service came back on-line again it could successfully revert to this previous service to
improve the composite solution. Overall the operational functionality exhibited by our
prototype illustrated that secondary and application specific services could be seamlessly

integrated and removed from the network without disrupting service compositions.

Furthermore, the secondary services that comprise NASUF are optional, i.e. devices are not
required to implement them. We tested our implementation to determine whether devices
could remain functional even though minimal secondary services where available. Initially,
all devices implemented and ran all the required secondary services. We began to de-register
secondary services from the network provided by each device. Our prototype illustrates that
even when a device de-registers its secondary services it can automatically discover the
required secondary service provided by another device within the network and use it. The
prototype demonstrated that all our devices could operate effectively when only one device
provides a set of secondary services. Consequently this makes our implementation highly

fault-tolerant whereby devices only fail to function when no secondary services are available.

6.5 Summary

This chapter has described the main implementation details used to evaluate our NASUF
framework. It discussed and argued the tools and standards that we have used and highlighted

143



where existing tools have been extended to realise our novel contributions. Although devices
are required to implement the DiSUS manager they are free to explicitly implement the
remaining secondary services or discover and use these services provided by other devices
within the network. This provides considerable fault-tolerance through secondary service
replication. This chapter also illustrated how annotating service descriptions and service
requests using semantic serialisations provides a more effective mechanism for matching

services more accurately.

Many aspects of the design have been implemented, which includes the service-oriented
architecture and mechanisms to publish secondary and application specific peer services.
Services can be discovered based on semantic descriptions and ambiguities between domain
knowledge can be resolved using distributed device ontologies based on general consensus.
Services can be discovered based on capability matching rather than attribute-value pair

matching, which allows for greater flexibility and a more inclusive range of query

possibilities.

Devices can form dynamic compositions between services contained within the network using
semantic service descriptions and can self-adapt as and when services either become
unavailable or re-register themselves within the network. This chapter has also argued that
devices support different capabilities and as such some devices will be better equipped to
provide a given service than others. Our implementation illustrates how services are selected

based on how effectively the device can execute the service.

The goal of our implementation was to demonstrate an idea and ensure that the requirements
and challenges described in Chapter 1 could be addressed. It was not about delivering a final
product and as such the overall performance of the implementation was not a consideration.
What we have learnt from the implementation is that we are trying to solve very difficult
problems, for example dynamic service composition and ontology evolution. However our
goal was to address these problems head on and attempt to create a foundation on which to
build. We believe that we have successfully achieved this. We have a fully working prototype

that demonstrates the key novel contributions made within this thesis.

We have learnt that there are several grey areas within our research that are dependent on
numerous factors. As with P2P implementations, whether or not particular content can be
found is dependent on the number of nodes connected within the network and how many
people hold the content sought after. This is the same with our approach whereby success is
dependent on the number of devices connected to the network and the total number of
services and semantic data used to describe and discover services. This said, P2P is becoming

a networking model of choice and it is envisaged that networked appliances will be firmly

144



embedded within such a networking model. Sound business models and user acceptance will

be the deciding factors. The following Chapter provides a qualitative evaluation of our design.

145



Chapter 7

7 Evaluation

7.1 Introduction

Chapter 1 described the requirements needed to address some of the limitations with current
networked appliances and home networking approaches. These requirements detail what is
needed to enable flexible appliances and middleware solutions that will allow networked
devices to automatically configure and re-configure and self-adapt over time. Each of these

requirements forms the basis for the qualitative evaluation of our proposed framework.

7.2 Service-Oriented Architecture

The key requirement was to provide an open middleware architecture that utilises open
standards, promotes interoperability and disperses the operational functions devices provide
within the network as independent services. In doing so flexibility is seen as paramount, and
as such, our framework ensures that functionality is readily available through secondary
service replication. This idea is based on current file sharing principles whereby popular files
are distributed, shared and discovered within a P2P network. Our framework adopts the same
principle, however as well as content, services are also replicated. This means that even if
secondary services become unavailable there may be an alternative service within the network
that can be discovered and used that provides the same functionality. This makes our
framework robust and highly fault-tolerant, which ensures that device and service

compositions are more reliable.

This can be justified using two mathematical proofs, which illustrate serial and parallel
system reliability when services are composed. In this context services are carefully
choreographed in series using workflow standards [Andrews 2005] whereas parallel
compositions are performed using distributed P2P techniques.

P(ANB)=P(A-B) a

146



R, =P(4)=p, @

0, =P(4)=1-p, =q, 3)

R, =P(4,-4,...4,)
=P(A)P(A4, | 4)...P(4,| 44,...4, )
= P(4,)P(4,)... P(A,),if independent 6]

=[124)

= I’LI R',
i=1

n

0,=1-R, =1-[[& =1-[]-0) )
i-1 i=1

Figure 7.1 Serial Service Reliability

In Figure 7.1 equation (1) defines the set theory representation for sequential reliability of
service compositions. In this instance the probability of 4 intersection B is equal to the
probability of 4 multiplied by the probability of B. Equation (2) describes the reliability of
individual services, where R; is an individual reliable service within the service space and p; is
the probability value indicating how reliable the service is. Equation (3) describes the
unreliability of an individual service, where Q; is an individual unreliable service within the
service space and g; is the probability value describing how unreliable the service is. Equation
(4) describes the system reliability, which is the joint probability of all services in the

composition. Finally equation (5) describes the unreliability of the system.

To take an example, assume we use three services and each service has a reliability value of

90% then the following probabilities can be calculated.

Individual service reliability: P(A;)) =R;=p=0.90

Unreliability of individual service: Q;=1 - R;=0.10

System Reliability: R;= 0.90 * 0.90 * 0.90 = 0.729

System unreliability: Q=1 -R;=1-p’ =1-(0.90)’ = 1-0.729 = 0.271

Now that we have values for the reliability of serial service composition we can compare this
with the reliability of a system that uses parallel service composition, as is the case with
service-oriented architectures based on P2P concepts.

P(AUB)=P(A+B) )

147



R =P(4)=p, @

0, =P(4)=1-p, =q, 3)

R,=P(A4+A4,+..+4)
=1=(P(A1)* P(4,)*---* P(4n))
=1=P(4)P(42)...P(4»),if independent B0

-1-T]PGE)

=1_l-"-[Qi

n

o, =112 )

i-1
Figure 7.2 Parallel Service Reliability

In Figure 7.2 equation (1) defines the set theory representation for parallel reliability of
service compositions. In this instance the probability of 4 union B is equal to the probability
of A plus the probability of B. Equation (2) describes the reliability of individual services,
where R; is an individual reliable service within the service space and p; is the probability
value indicating how reliable the service is. Equation (3) describes the unreliability of an
individual service, where O, is an individual unreliable service within the service space and gi
is the probability value describing how unreliable the service is. Equation (4) describes the
system reliability, which is the joint probability of all components. Finally equation (5)
describes the unreliability of the system.

Again, taking an example, assume service 4 has a reliability value of 90% and Service B has a
reliability value of 80%

P(A) = 0.90 and P(B) = 0.80. If this is a parallel system them

P(A + B) = P(4)+ P(B)- P(4-B)
= P(A)+ P(B)- P(A)- P(B)
=0.90+0.80—0.90-0.80
=17-0.72
=0.98

System Reliability: R, = 0.98

148



System unreliability: 0, =1- R, =0.2

P

The redundancy of the parallel system allows either-or services to function. This results in a
system that remains operational with a higher probability than individual services acting in
series. In this instance, redundancy increases reliability. Successful operation of each service
is independent or at least pluggable. This means that in the event of a service becoming
unavailable the functionality can be automatically discovered and plugged into the

composition with minimal disruption.

This level of flexibility ensures that our framework allows devices to use service functionality
discovered within the network provided by either it or other devices. In order to achieve this it
is important that devices are broken down into their constituent parts whereby individual
functions can be replicated, accessed and used via the network. This requirement allows
devices to participate with and create service-oriented applications by picking and

constructing individual services to form high-level compositions.

Using parallel service composition and P2P techniques to redundantly replicate services is a
new and novel approach within networked appliance and home networking research [Fergus
2003a). Research initiatives such as OSGi, UPnP, DLNA, HAVi, VHN, PLC, ePerSpace,
MediaNet and Runes to name a few primarily focus on carefully choreographing solutions
using different workflow standards such as WSFL and BPEL4WS. As long as all services in
the composition are available and the locations within which they reside remain the same
operation remains reliable. However if any service changes in anyway, ie. becomes
unavailable or moves location then the whole composition may be rendered inoperable. In our
framework an alternative service would be automatically discovered and plugged into the

composition with minimal disruption.

Our framework differs in its ability to not only discover and use secondary services which are
pre-determined, but to also discover application specific services that abstract the individual
functions devices provide [Fergus 2005a]. Our framework demonstrates this using peer
service capability matching algorithms, that process semantic metadata wrapped around
services allowing devices to reason over what functions devices provide. High-level
semantics [DAML 2003c] are mapped onto concrete signatures defined in the service
interface. The signature itself is the method name along with its associated parameters and
data type information. Devices use these descriptions to reason in any direction, i.e. from the
signature to the high-level semantics or vice versa, and select functions based on the
capabilities the semantic description and service interface describes. Our implementation
supports this functionality and effectively performs this mapping [Fergus 2005a]. Devices

propagate service requests containing the semantics that define the required behaviours a

149



candidate service must support. These high-level semantics are matched against semantic
descriptions used to describe a service using our framework, which links semantic
information in the service request with parameters contained in service signatures. Our
framework services can match any service request with any service behaviour in the network
as long as that behaviour exists. One possible downside relates to environments that are more
ad hoc in nature. Because no control can be placed over how and what services are hosted, it
could be more difficult to exactly match service request semantics with parameters in a given
signature. The probability of no match occurring could be reduced by defining methods with
required and optional parameters, i.e. create multiple methods with different parameter
lengths whereby the simplest method only contains the absolute required parameters, whilst

more specialised versions contain additional optional parameters.

Our framework hosts all the secondary and application specific services within the network
and as such is a pure service-oriented architecture. We have extended the JXTA specification
to overcome the restrictive syntactic matching algorithms used in JXTA to discover and host
services. Additional services have been added to the service layer to enable devices to
discover services semantically based on how capable the device is of providing the service.
Another distinct feature supported by our framework and which has been demonstrated in the
implementation is the ability to enable devices to automatically form compositions between
devices and services without any human intervention. Again the JXTA specifications have
been extended to include zero-configuration mechanisms that utilise current P2P concepts and
the semantic matching capabilities provided by our framework. Services are selected based on
how capable the device is. To date current service-oriented specifications do not support these

functions.

Furthermore we have extended the concepts surrounding P2P, whereby we not only focus on
multimedia content sharing but also on the idea of distributing and sharing services. P2P is
typically associated with file-sharing, however these overlay networks can offer much more
by sharing networked behaviours as services. We have clearly made novel contributions
within this area and demonstrated how P2P can be used to enhance and extend networked
appliances and home networking configurations [Fergus 2003a, Fergus 2003b, Mingkhwan
2004, Fergus 2005a, Mingkhwan 2005]. To our knowledge our framework is the first to use
P2P techniques to disperse operational functions provided by networked appliances. We have
demonstrated that this approach is feasible using our prototype, which has shown that key
functions, described in this thesis and which are not provided by other approaches such as
OSGi, can be realised.

150



7.3 Semantic Discovery

We have argued that multiple application-specific services will co-exist, albeit with different
syntactic descriptions. However conceptually they may provide the same functionality. Many
researchers believe that lessons must be learnt from the World Wide Web, where we are
drowning in information but starved of knowledge [Naisbitt 1991]. This is directly attributed
to the representation used to describe content, which is primarily human centric.
Consequently developing software to read and understand Web pages is difficult. This
problem has transferred itself to Web Services whereby using and composing services is
primarily a human activity. Mcllraith et al. [Mcllraith 2003] state there is a need to describe
Web Services in terms of their capabilities in an unambiguous, computer-interpretable
language. Combining Web Service technology with the Semantic Web will allow services to
be more accurately discovered, composed and executed. Only when this is achieved will we

see the true potential of service technologies.

Paolucci et al. [Paolucci 2003] also believe the way forward for service technologies is to add
semantics. They argue that we need to move away from syntactic service descriptions and
discovery and instead discover services based on their capabilities. They use a term called
“sufficiently similar”, which, in its strongest sense states that a service description and a
service request are sufficiently similar when they describe exactly the same service. They
state that this is too restrictive, because advertisers and requesters have no prior agreements
on how a service is presented. A restrictive criterion on matching is bound to fail to recognise
similarities between service descriptions and service requests. To accommodate a softer
definition of “sufficiently similar” Paolucci et al. explain that there is a need to allow
matching engines to perform flexible matches based on the degree of similarity between the

service request and the service description.

In further support of machine-processable semantics, linking all the salient headings within
this section, is the work carried out by Maedche et al. [Maedche 2003]. They provide an
assessment of service-driven systems and describe the need to converge three separate
technologies — Web Services, P2P technologies and the Semantic Web. They argue that
combining these technologies allow services to be identified, located and invoked. Maedche
et al. point out that this new paradigm is important to the development of service-enabled
systems, however they also state that this is no easy task and the integration process itself
gives rise to new complexities such as locating and integrating services on the fly, semantic

interoperability, data heterogeneity and process mediation.

Our framework presented in this thesis demonstrates that irrespective of how services are

described, conceptual mappings can be determined allowing services to be selected that

151



support descriptions that are syntactically distinct but semantically equivalent. This is
dependent on the total number of concepts shared between devices within the network. In a
real world scenario, concepts will be numerous and globally distributed between millions of
devices connected within the network. As such the more concepts that exist within the

network the more likely semantic interoperability may be performed [Fergus 2003b].

Our framework ensures that all service descriptions and service requests are described using
rich ontological constructs and ontologies are evolved over time using general consensus
[Fergus 2003b]. The following formula can be used to determine the probability of selecting a

concept from some sample concept space, where n is the number of successful outcomes and

m is the number of possible outcomes.
n
P(E)=— ¢y
m

Figure 7.3 Probability of find n in set m

For example if the concept space, which may be distributed amongst numerous devices within

the network, is defined as follows:

Q={cl,c2,c3,c4,c5,c6,c7,c8,c9,c10}

The probability of finding the following concept in the global ontology

E ={c5}
can be defined as:
0<P(E)<] )
P(E)= L =0.1 3)
10 :

Figure 7.4 Find a concept in a global ontology

If the concept c3 and c4 define the same concept, i.e. ‘Audio’ then the probability of finding

the concept ‘Audio’ can be defined as
0<SPE)<] 4

1 1
P(E)=—+—=02 5
(E) 10 10 ©)

Figure 7.5 Finding one or more concepts in a global ontology

Determining the critical mass for finding any given concept in the global concept space is
dependent on the concept being searched for and the concepts contained within the concept

space. If the search concept does not exist in the concept space the probability of finding the

152



concept is 0. If every concept in the concept space is equal to the concept being searched for
then the outcome will be 1. Our framework creates a rich distributed ontology space which
allows concepts to be distributed, evolved and used to aid semantic interoperability. This has
been achieved using P2P concepts that utilise the replication functions. Concepts are
distributed and duplicated between devices in the network. Much like current P2P

implementations the more popular a particular concept is the more times it will be replicated.

Using semantic descriptions, our framework accurately discovers services by matching the
capability descriptions described in both the service description and the service request. Each
IOPE in the service request is matched with each IOPE contained in the service description
and if all IOPEs are matched this constitutes an abstract match. Using the case study the
inputs describe the media formats devices support, whilst outputs describe the type of
multimedia output, dependent on the device. Preconditions are used to further constrain the
type of device/service selected. For example if a multimedia player is looking for a device to
process audio then the Precondition may be set as “AudioSink™. Effects are used to further
constrain the selected device and describe the types of effects the device/service is susceptible
to. For example the effect of sending audio data to an “AudioSink™ results in rad'io waves
being outputted by the device. Conversely devices use IOPEs to describe similar services,
albeit the terminology may be different, which is demonstrated in the prototype developed for
the case study, where IOPEs are described syntactically different whilst retaining the same
semantics. As such it becomes important to resolve any ambiguities that appear. Our
framework achieves this by performing semantic interoperability between IOPEs using the
device’s local ontology and ontologies provided by other devices within the network [Fergus
2005a).

The semantic interoperability mechanisms within our framework provide a base solution and
illustrate that high-level semantics can be mapped to low-level signatures. Our framework has
the ability to evolve ontological structures without having any centralised authority. Through
device-to-device communications these structures are evolved based on commonalities that
exist between all concepts, relating to the structure to be evolved, within the network [Fergus
2003b]. If the device contains the concepts then differences between terms can be resolved.
However, if the device needs to query the P2P network to discover the concept then this may
result in delays. The factors affecting this are the number of concepts and devices that exist,
and the density of the concepts themselves, i.e. how may classes and relationships exist within
the concept. As such our framework allows device manufacturers to perform this function as a
backend management task carried out when the device is idle. This feature of our framework
illustrates that using P2P technologies in conjunction with general consensus mechanisms,

ontological structures can be automatically evolved and managed. Consequently concepts are

153



not subjective because they conform to the general consensus not the subjective opinions of a
single ontology engineer - the more devices that support the concept, the more prominent the
concept becomes, whilst less common concepts are de-emphasised over time. This provides
considerable advantages over existing ontology evolution approaches and will become

increasingly more important as devices and services become more ubiquitous and ad hoc in

nature.

The way our framework processes semantic data is novel. Current approaches such as
PROMPT, Chimaera, and ONION rely on knowledge consortiums and to date are incapable
of automating the evolution and management of ontologies. They adopt a more centralised
approach whereby a single ontology is developed which all systems reference or multiple
ontologies are used and connected through manual links. Our framework completely
automates this process where every device is treated as a self-governing knowledge node. Our
prototype demonstrates that our approach works whereby we can distribute concepts and
evolve them over time without any human intervention. We have demonstrated that this
works, however to date this has only been tested on simple ontology structures. To the best of
our knowledge our approach is novel and is a new way of distributing and managing

ontological structures devoid of centralised repositories or any human intervention [Fergus
2003b]. ’

7.4 Device Capability Matching

As networked appliances become more widespread it will become increasingly more
important to not only discover required functionality but to also select devices that can best
execute that functionality. NASUF supports this requirement and ensures devices that provide
the best quality of service are selected to execute a particular service. Using high-level
interfaces device manufacturers can specify the key capability parameters used to assess what
capabilities the device must have including their associated capability value. Our framework
uses an adaptation of the Multi-Attribute Utility Theory (MAUT) [Kumar 2003] algorithm
and the implementation illustrates that functionality can be selected which takes into account
the devices that best execute a given service. The formula defined in Figure 7.6 calculates the
percentage of a resource required, where a resource 7 offers a service s that requires ac; , units

of some total resource value t7,.

ac

s,

resc,,=

tr

r

Figure 7.6 Percentage of resource required

154



This formula allows the DeCap service to determine what percentage of some resource will be
used given the total value of the resource available. The DeCap service also determines if the
device is overloaded by calculating how much of the available resources on average are used
by the device, i.e. CPU usage. Furthermore it is possible that the quality of service will be
affected because the computation may be shared across a large number of processes. When
this is the case, DeCap calculates the overhead for each resource the service requester deems
important and compares it to the desired capability defined in the service request. The DCS
achieves this using MAUT. The MAUT algorithm is implemented in DeCap and is used to

produce an overall capability score for some device D given the attributes defined in the

device’s DCM. This formula is defined as,

d
DCScore(D,DCM) =" cw,(DCM)-D(v,)

i=}
Figure 7.7 Calculate device capability score

where DCScore is the overall capability score for device D according to the device capability
model DCM, d is the number of capabilities for the type of device, cw,-(DCM) is the
importance rating of attribute i according to device DCM, and D(v)) is the status rating for
attribute i. The importance rating describes how important a given attribute is in relation to all
the attributes used, e.g. the CPU attribute may be the second most important attribute with an
importance rating of 30, which means that the CPU is considered three times more important
than an attribute with an importance rating of 10. The status rating describes how well the
device supports a particular attribute, e.g. a device may have “Excellent” for its CPU attribute,
which may equate to a value of 75 — therefore calculating a capability score for CPU, could be

achieved by multiplying 30 * 75 which is equal to 2250.

Given the two formulas, the device calculates the service ratings programmatically by
estimating the average attribute values from the operating system itself and assigning the
appropriate status rating. For example, if the device uses on average 25% of its CPU when the
required service is executed we may assign the CPU_Load a status assessment of “Excellent”
with a status rating of 75. The equation defined in (3) illustrates that the MAUT formula has
been amended to take into account the current resource load and the load required to execute a
service. In this instance the DCScore and the resc;, , are added to give a combined resource

load value, indicating whether the device can effectively execute a service it provides.

d
DCScore(D,DCM) =Y cw,(DCM)- D(v,)-(1 - resc,,)

inl

Figure 7.8 Extended MAUT formula

155



When the terms in the DCP and the DCM are processed, any ambiguities that are encountered
are resolved using the DistrES algorithm. When the formula in Figure 7.8 is used to calculate
the score for the DCM, it is compared with the score generated for the DCP. If the DCM score
is equal to or greater than the score for the DCP then the device is said to be capable of
effectively executing the service, whilst ensuring the quality of service is maintained. In this

instance the service details are returned to the service requester.

Our framework enables devices to create compositions with other devices within the network
and takes into account how well the device is capable of executing the service it provides
[Mingkhwan 2005]. This technique provides a mechanism that always ensures the best
possible composition is available based on those devices and services that are available at any

given time. This function is currently not implemented in any other middleware standards.

7.5 Dynamic Service Composition

Trying to dynamically compose services is an area of research that has received a
considerable amount of interest because of the benefits it can bring [Fujii 2004]. In the Web
Services community similar research is being carried out to facilitate dynamic on-the-fly
service composition. This is seen as a key step towards scalable and robust Web Service
frameworks. At present, current approaches to composite Web services assume a closed
world; consequently all services within the composition must be predetermined. The difficulty
in a real-world setting is that Web services may become unavailable and the lack of control
makes it difficult to predetermine service and network capabilities. As such this may result in

unpredictable results and even composite service failure.

Because of the difficulties associated with dynamic service composition, manual and semi-
automated approaches still receive considerable consideration [Chakraborty 2003, Chen 2003,
Sirin 2003, Sycara 2003]. This thesis opposes these approaches because they are too
inflexible for innovative solutions and we argue that devices and services need to be
dynamically composed on the fly based on what is available to the device at any given time.
This keeps with the visions provided by Fujii et al. and Madhusundan et al. where devices in
our framework dynamically discover, compose and execute services as and when they are
required without using templates or carefully choreographed composition scripts such as the
ones defined in [Leymann 2004, Andrews 2005]. In our framework devices are pre-
configured with service capability requests containing the IOPE descriptions for each service
the device requires. For example in our case study on Page 113 of this thesis, the Media
player has two service requests — one for an audio service and one for a video service. When
the device is initially switched on these service requests are propagated within the network

and any matching services are found. This provides a base solution and demonstrates that our

156



framework can dynamically discover and loosely bind to any service within the network using
pre-defined service requests. In the current implementation we have assumed that invocation
methods provided by devices are operations with no parameters such as “stop”, “play” and
“listen”. So although the Inputs and Qutputs describe the data received and outputted by
devices this in effect describes the type of information passed or received from endpoints. To
enable true dynamic service composition more descriptive service ontologies need to be used
and detailed signature matching needs to be performed that allows high-level semantics to be
mapped to signatures in the service interface. This functionality is provided by our framework
[Fergus 2005a] which maps the service ontologies to service interfaces and enables devices to

dynamically compose services on the fly.

What we have found is that it is possible to automatically discover, bind to and invoke
services using high-level semantics [Fergus 2005a]. The prototype demonstrates that using
semantic descriptions to process services in terms of their capabilities is a viable approach and
to date this is a new strand of research within networked appliances and home networking

research.

Coupled with our service-oriented architecture and use of semantic metadata, our framework
provides robust mechanisms that improve the overall execution of service compositions
surpassing existing service-oriented architectures that use carefully choreographed

composition plans.

7.6 Self-Adaptation

One of the key factors within our framework is to enable devices to form compositions and
correct problems that occur automatically with minimal human intervention. Utilising
advances within the area of self-adaptive software research, the vision of self-healing
software forms part of our framework architecture. This is becoming an increasingly
important feature of software development, Laddaga et al. state

“The goal of self adaptive software is the creation of technology to enable programs to
understand, monitor and modify themselves. Self adaptive software understands: what it does;
how it does it; how to evaluate its own performance; and thus how to respond to changing
conditions.” ‘

To further strengthen this definition the DARPA Broad Agency Announcement on Self-
Adaptive Software provide the following definition

“self-adaptive software evaluates its own behaviour and changes behaviour when the
evaluation indicates that it is not accomplishing what the software is intended to do, or when

better functionality or performance is possible.”

157



Our framework implements this functionality by automatically enabling devices to form
relationships with other devices when they come online [Fergus 2005a]. The effect of this is
that the device is self-aware of breaks in the relationships it has with devices it has previously
discovered. Any problems encountered within compositions are sensed, i.e. data or control
pipes become unavailable — determined by periodically sending heartbeat messages to devices
and services. Devices also perform cleanup procedures which inform other devices within the
network when the device or any of its services become unavailable. These messages are
received by devices and used to determine whether the device or the service affects the
composition it is in. Furthermore these messages are processed and used to determine whether
the composition of devices and services can be improved to improve the overall performance.
This being the case, our framework allows devices to promote and demote services
automatically as changes occur. These functions allow devices to automatically make
compensatory changes as and when required and thus provide effective mechanisms for self-
adaptation within networked appliance networks. This functionality is not evident in existing

approaches such as OSGi, UPnP and DLNA.

7.7 Comparison with existing Approaches

In this section we compare our framework with three state-of-the-art networked appliance and
home network approaches. We use our novel contributions (service-oriented networking,
service discovery, device capability matching, dynamic service composition, and self-
adaptation) as a basis for our comparison and compare them to the corresponding features
provided by these architectures, which are Universal Plug and Play, the Open Services
Gateway Initiative, and the Reconfigurable Ubiquitous Networked Embedded Systems

framework.

7.7.1 Universal Plug and Play

e Service-Oriented Networking — UPnP is a service-oriented architecture that provides
mechanisms to disperse device functions within the network in the same way our
framework does. The main limitation with UPnP however is its inability to provide or
access services outside a local area network. Our framework utilises P2P techniques,
which allows devices to function within the Internet with global scope in mind. The
communication protocols used in UPnP are IP based and messages are sent between
services using SOAP. Although these standards are open our framework abstracts the
use of standards allowing interoperability between any open standards, not just IP and
SOAP.

158



Service Discovery — UPnP uses the Simple Service Discovery Protocol (SSDP) to
discover services in the network. This is achieved by matching attribute-value pairs
that allow pre-determined services such as printers and scanners to be discovered. The
UPnP specification highlights that SSDP does not consider advanced querying. This
is a major limitation of UPnP in that service descriptions and service requests must be
pre-determined and in a format defined by the SSDP specification. If attribute-value
pairs differ syntactically but mean the same thing semantically then service discovery
fails. In our framework we provide a more advanced querying mechanism that allows
service descriptions and service requests to be described using rich ontological
structures. This significantly improves the matching process by allowing service
descriptions and service requests to be matched not only at the syntactic level but at
the semantic level as well. If the vocabularies are syntactically different but
semantically equivalent our framework automatically resolves any terminology
differences. This allows services to be more accurately matched within our

framework than UPnP.

Device Capability Matching — In UPnP devices provide a URL, which points to a
UPnP description used to describe the device and the services it provides. When
control points discover devices they use this URL to extract the description, which is
then used to determine the devices capabilities. UPnP descriptions primarily focus on
describing high-level information about the device and its services rather than the
individual properties used to determine how resourceful the device is in terms of
memory and processing power for example. Consequently it is difficult to use the
UPnP standard to automatically determine what is the best device or service available
within the network. In our framework we overcome this by using an adapted version
of the CC/PP specification, which also uses our modified MAUT formula to provide
an overall assessment of how well the device can execute the service it provides. This
allows devices to select the best devices dependent on what is available within the

network at any one time. This is a feature the UPnP specification does not provide.

Dynamic Service Composition — There are no mechanisms within the UPnP
specification to address dynamic service composition. Services are manually
discovered and used via user interfaces. There are no mechanisms that allow devices
to automatically discover ad hoc devices and services and compose them into high
level compositions. In our framework we have addressed this limitation by providing
semantic matching services that allow devices to query the network and form

compositions, automatically with other devices and services within the network,

159



without any human intervention. Again this is a feature not supported in the UPnP

specification.

Self-Adaptation — There are no mechanisms within the UPnP specification to allow
device configurations to be automatically composed or self-adapted based on
environmental changes. Solutions are carefully choreographed and remain functional
as long as all services in the solution remain operational. If a service fails then the
whole solution may fail. In our framework services that provide the same
functionality redundantly co-exist. If a service fails or a better service becomes
available, device configurations are automatically adapted to ensure that the
composition is maintained and that the best quality of service is provided. This marks

a significant advantage over UPnP.

7.7.2 Open Services Gateway Initiative

Service-Oriented Networking — OSGi is a service-oriented architecture, however the
way services are hosted and served differs from our approach. OSGi service providers
host services in the OSGi service container, which are controlled by service operators.
These services can then be served via the internet to home networks using the OSGi
gateway. This is an inherently centralised approach that provides services much like
typical set-top box solutions in existence today. In our approach we have selected a
less restrictive approach that utilises P2P technologies allowing for a greater number
of services and increased flexibility to enable better and more innovative solutions.
Any service within our framework can be used by any other device within the
network without having to register with third-party registries. This allows services
that provide the same functionality to redundantly co-exist and thus makes our

framework far more flexible, scalable and fault-tolerant than OSGi.

Service Discovery — OSGi provides service discovery mechanisms that allow services
to be discovered that are contained in the OSGi Service Platform. Discovery is based
on searching for services with pre-determined properties and a simple query language
is used to select the required services needed. Again like UPnP services need to be
described using predetermined vocabularies. As such discovering services that are
syntactically distinct but semantically the same results in failure. In our framework
we provide a more advanced service discovery mechanism than OSGi that allows
devices to describe and discover services more accurately using high-level semantics.
Furthermore devices discover services with global scope in mind using P2P

technologies. We do not restrict services to proprietary service containers such as

160



OSGi, although our framework could accommodate this. This is a feature that OSGi

does not support.

Device Capability Matching — The OSGi specification (Version 3) does not address
capability matching. Using services in OSGi is a manual process performed by the
service provider, service operator and the user. We have argued that device
compositions need to be created based on what devices and services within the
network provide the best solution. In our framework services are provided that enable
the device to determine how effectively the device can execute the service before it
commits to using it. This is a feature not provided by OSGi. This feature is important

for ubiquitous computing and services that reside within ad hoc environments such as
P2P.

Dynamic Service Composition — The OSGi specification does not provide any
mechanisms to dynamically compose services without any human intervention. We
have argued that managing device configurations is problematic and a better strategy
is to develop mechanisms that allow devices themselves to do this. In our framework
mechanisms allow devices to automatically discover and compose devices and

services without any human intervention. This is a feature not supported by OSGi.

Self-Adaptation — There are no self-adaptation mechanisms in OSGi. Service
configurations are manually created and controlled. Like workflows service
compositions remain operational as long as all services in the composition remain
operational. Any faults that occur need to be manually corrected. In our framework
any problems encountered within the composition are automatically corrected by
discovering alternative services within the network and plugging them in without any

human intervention. Again this is a feature not supported by OSGi.

7.7.3 Reconfigurable Ubiquitous Networked Embedded Systems

Service-Oriented Networking — In RUNES device functions are abstracted as software
services, which can be discovered and used within the network. This makes RUNES a
service-oriented architecture that provides mechanisms to integrate services within
the network. Services are plugged into RUNES using carefully created API interfaces.
As such this is a proprietary protocol, much like USB, that provides a solution but ties
device manufacturers into their protocol. It is not clear whether pre-defined interfaces
can accommodate all device functionality. It is a question of granularity, which means
that complex functions must be adapted to implement the interface methods provided
by the RUNES APL In our framework we have tried to overcome this restriction

using ontological structures to describe what services provide and how they can be

161



combined. In our framework devices propagate service requests that describe the data
the candidate service must be capable of processing. Certain data may be defined as
optional to make the matching process more flexible, as such our framework provides
more scalable and flexible mechanisms to host and discover services that are not

currently supported in RUNES.

Service Discovery — The service discovery mechanism in RUNES, at present, is not
clearly defined. They provide a generic interface method called Advertisable, which
could support UPnP discovery. However restricting service discovery to the interface
methods devices support is inflexible. It is based on pre-defined vocabularies that are
syntactically matched. This solution will work in controlled environments, however
applying the same service discovery technique within ad hoc networks that host
heterogeneous devices is not possible. In our framework we overcome this limitation

using flexible matching algorithms that are less restrictive than RUNES.

Device Capability Matching — The RUNES specification does not define any
mechanisms for selecting devices or services based on how capable they are or how
effectively they can execute the services they provide. We have argued that in order
to enable true ubiquity it is important to allow devices and services that provide the
same functions to co-exist. As such mechanisms need to be provided that allow
devices to decide what devices or services they use in order to create compositions
that provide the solution. In our framework we have overcome this limitation and
provided services that allow this to be achieved. Using these services devices can
reason over what devices and services to include in final compositions based on how

well they match the overall quality of service requirements.

Dynamic Service Composition — RUNES supports dynamic service composition by
allowing devices to discover advertisements containing pre-defined interfaces
provided by the RUNES API. This is a restrictive form of dynamic service
composition that works well in controlled environments but in true ubiquitous
environments that are more ad hoc in nature, it would be difficult. In our framework
we have foreseen this problem and provided better services capable of dynamically
composing devices using rich ontological data. Devices can formulate semantic
requests and propagate them within the network, which can be matched against the
semantic descriptions of services. This makes our composition technique far more
flexible, scalable and less restrictive than the approach adopted in RUNES.
Consequently our framework can embrace ad hoc and infrastructure networks, which
RUNES cannot.

162



o Self-Adaptation — The RUNES project supports self-adaptation. Through its carefully
defined interfaces service compositions can detect and discover alternative services.
As is the common theme with RUNES, self-adaptation is based on pre-determined
interfaces, and as such it works well in controlled environments but not in ad hoc
environments. Self-adaptation is closely interlinked with how devices and services are
composed, and as such, restrictions in the higher levels filter through to the lower
layers. Devices and services will be heterogeneous in nature and different middleware
standards will be used. Consequently alternative mechanisms need to be developed
that accommodate this uncertainty. Our framework has been developed with
heterogeneity in mind and as such can self-adapt to changes between heterogeneous

devices and services. This is something that RUNES cannot do.

7.8 Summary

Our framework has performed as expected and it has demonstrated that the challenges
highlighted in Chapter 1 have been addressed. The overall performance of our prototype
needs to be improved; however our primary focus was to demonstrate our ideas. This has

been successfully achieved and provides a base solution on which to build.

Our evaluation shows that our framework surpasses current research initiatives within
networked appliances and home networking and addresses a number of difficult problems.
Many approaches adopt a human centric approach to interconnecting and managing
networked appliances. We have argued that such models are inappropriate because it raises
the question of who will perform these configuration and management tasks. It is becoming
increasingly more difficult for home users and IT specialists alike to perform these tasks.
Furthermore these approaches are too restrictive for innovative solutions. We have argued
that alternative approaches are needed to automate this process. Our framework is such an
approach and to the best of our knowledge is the first to address these issues within the field

of networked appliances, which OSGi, UPnP and RUNES to name a few do not.

This Chapter was about evaluation, which grouped the key requirements of this thesis under
five headings that our Networked Appliance Service Utilisation Framework must support.
The opinions of key researchers have been quoted and linked to the requirements defined in
Chapter 1. We have provided an evaluation of our framework and identified its strengths and
weaknesses. This thesis presents a clear and viable design that allows networked appliances to
exist within ad hoc networks and automatically discover semantically described services
provided by other devices, based on device capability matching, which provides a basis for
zero-configuration. It crosses several research disciplines and pulls together a number of key

technologies such as networked appliances, home networking, P2P, ad hoc nefworking,

163



Semantic Web technologies and device capability matching. Where appropriate existing

functionalities have been extended to include the secondary services provided by our

framework.

164



Chapter 8

8 Conclusions and Future Work

8.1 Introduction

In this thesis we have stated that the proliferation of home appliances and the complex
functions they provide make it ever harder for a specialist, let alone an ordinary home user, to
configure and use them. To re-iterate the scenario described at the beginning of this thesis.
Imagine your home environment, more specifically your living room, and the devices it
contains. It is more than likely that it has a DVD player, VCR, Widescreen or Plasma TV, a
surround sound speaker system, and a HiFi. Now imagine the time you bought your DVD
Player and tried to integrate it with your existing device configuration. Like most people, you
may have taken the DVD player out of the box and attempted to connect the wires to your TV
and surround sound system and one hour later decided you needed to look at the instructions.
After a further hour trying to understand the instructions, tuning in your TV and configuring
your surround sound system you finally succeeded in viewing the DVD movie you bought.
We have argued that these kinds of experiences are becoming increasingly more common and
that it is no longer acceptable to burden the user, thus alternative mechanisms are required to

abstract this complexity.

In this thesis we have focused on how to get different appliances, built to different
specifications, to work together without having to change their original characteristics or
protocols. Our research is about freeing users from the constraints imposed by physical
machines. It’s about breaking down machines and dispersing their operational capacity
throughout our homes. Rather than severing ties between user and machines, we are actually

forging a more intimate relationship between people and technology.

In trying to achieve this many challenges have had to be addressed, which include service-
oriented networking; semantic service discovery; device capability matching; dynamic service
composition, self-adaptation; and ubiquitous computing. We have argued that these
challenges have been successfully addressed using our Networked Appliance Service
Utilisation Framework. We have discussed in detail the core service-oriented middleware that
comprises our framework, which integrates devices and the combined functions they provide.

We have argued that our framework takes into account the capabilities devices support and

165



self-adapt and manage device configurations automatically. A case study is presented and a

prototype solution has been developed that implements our framework.

In the remainder of this Chapter a summary of the thesis is presented, including the
contributions made and the future work that needs to be carried out. This encompasses the
difficulties encountered and the improvements required within the framework. This chapter is

then concluded with final remarks.

8.2 Thesis Summary

Chapter 1 of this thesis provided an overview of the problem domain, namely the
inefficiencies associated with current networked appliances and home networking middleware
standards. It identified that little work has been carried out within ad hoc home network
environments, which take into account flexible mechanisms that enable devices and the
services they provide to automatically form relationships, thus moving towards true zero-
configuration. This chapter then briefly detailed a framework we developed that addresses
these limitations enabling devices and services to be automatically integrated using flexible
algorithms that perform the integration process using high-level semantic descriptions that
describe the ‘what’ part of the composition rather than the ‘how’. This chapter concluded by

defining the scope of the research project, the novel contributions we have made and an

outline of the thesis structure.

In Chapter 2 the background and related work was presented, which includes a discussion on
the state of the art approaches within the field of Networked Appliances. This discussion
defined the key concepts used within this thesis and described the limitations associated with
current approaches and how they are addressed within this thesis. This chapter also discussed
how networked appliances relate to home networking and described current middleware
solutions that aim to seamlessly interconnect devices within home environments. A discussion
was presented regarding how this integration is being performed using P2P techniques, where
several P2P models where presented. Each P2P model was discussed in terms of their
associated functions, merits and limitations and an argument was presented regarding how

P2P techniques can be used to loosely connect devices within ad hoc network environments.

In this chapter we also looked at how techniques used within the Semantic Web could be used
to address several limitations within current service-oriented middleware architectures, which
included a discussion on service discovery and ontology evolution. The discussion afgues that
current service discovery mechanisms are inherently restrictive because they are based on
proprietary descriptions that dictate how services must be described and discovered, which do
not take into account the semantics or inherent vocabulary differences. As such an argument

was presented pertaining to the use of semantics to better describe what services devices

166



provide and what they require. This Chapter also discussed current research relating to how
ontologies can be used to describe services semantically, perform semantic interoperability

and to dynamically compose devices and services.

A detailed discussion and the UML design models for our framework was presented in
Chapter 3. This Chapter provides a high-level overview of our framework and briefly
introduces the secondary services, which are discussed in more detail in Chapter 4. This
Chapter then discusses the core service every device is required to implement, which allows

the device to connect to the network.

Chapter 4 described in detail the UML design models for all the remaining secondary services
that comprise our framework. These services allow devices to disperse their operational
functions as independent services. They allow these services to be described and discovered
using high-level semantics. These services also enable devices to determine how well a device
is capable of executing a service it provides before committing to using it. They also manage
device configurations and self-adapt when environmental changes are detected. We concluded

this chapter by providing a summary and discussing what we have learnt and achieved during

the design phase of this project.

In Chapter 5 an Intelligent Home Environment case study was presented which described how
our framework could be used to automatically discover and compose devices and the services
they provide, whilst at the same time providing the best quality of service. The case study also
described how devices within the Intelligent Home Environment self-adapt based on
environmental changes. Several other application scenarios where also presented indicating
how our framework can be applied to other problem domains. We finally concluded this
chapter with a summary and discussed what we have learnt from the case study and more

importantly about our overall approach.

Chapter 6 presented a detailed discussion on how our framework was implemented. It
discussed the toolsets used and highlighted the merits and shortcomings of several toolsets
considered during the production of this thesis. It also presented the specifications that our
framework conformed to and discussed how these specifications have been extended to
realise our novel contributions. This included a detailed discussion about the technical details
and explains how the prototype was developed. We concluded this chapter by providing a

summary and discussing what we have learnt during the development of the prototype.

A qualitative evaluation of the NASUF implementation was presented in Chapter 7, which
discussed the novel contributions the framework provides and how it was realised using our

Intelligent Home Environment prototype system.

167



8.3 Contribution to knowledge

This thesis has presented a framework we have developed for integrating networked
appliances within device and service-rich environments. The challenges we have overcome in
order to achieve this include: service-oriented networking, semantic service discovery,
dynamic service composition and device self-adaptive. We have addressed these challenges
using our framework and made several novel contributions [Fergus 2003a, Fergus 2003b,
Fergus 2003c, Fergus 2004, Mingkhwan 2004, Fergus 2005b, Fergus 2005a, Haggerty 2005,
Mingkhwan 2005]. Our framework provides services that discover and interconnect devices
within the network, enable operational functions to be discovered and composed using
semantic matching, select devices based on the capabilities they support and mechanisms that
allow device configurations to self-adapt to environmental changes. Each of these novel

contributions is discussed in turn in the following subsections.

8.3.1 Service-Oriented Networking

In the area of service-oriented networking we have made several novel contributions, which
we have published in [Fergus 2003a, Mingkhwan 2004, Fergus 2005a, Mingkhwan 2005].
Each contribution is listed below:

e Devices can dynamically integrate themselves within any environment and publish
and dynamically discover services. Services may be pre-determined (middleware
services that comprise our framework) as well as application specific (services
wrapped around operational functions provided by devices) [Fergus 2003a], which
can be simultaneously discovered and used by other devices within the environment
[Mingkhwan 2004, Mingkhwan 2005].

e Our framework provides enhanced functions that allow devices and services within

networked environments to be more accurately matched and integrated [Fergus
2005a].

8.3.2 Service Discovery

In the area of service discovery we have made several novel contributions, which we have
also published in [Fergus 2003a, Fergus 2003b, Fergus 2003c, Fergus 2005a]. These
contributions are listed below:

o Services are described and discovered based on their capabilities and mechanisms
have been developed that perform better service matching than current attribute-value
pair matching techniques — this allows devices to dynamically discover, compose and
execute services based on peer collaborations, devoid of any human intervention
[Fergus 2003a, Fergus 2005a].

168



e Service descriptions are serialised using high-level semantics that provide rich
conceptual information about the individual functions devices provide [Fergus 2003b,
Fergus 2003c].

¢ Device manufacturers are free to describe services using unconstrained vocabularies.
Consequently, high-level semantics are used to resolve the inherent ambiguities
between service requests and service descriptions [Fergus 2003b].

e Semantic service descriptions reside on individual devices and the total knowledge
within the network is the sum of all devices and their associated semantic
information. No centralised servers are used to store this information, thus semantic
information is distributed within the network, which ensures flexibility, fault-
tolerance and fair concept creation and evolution [Fergus 2003b].

e Semantic information is dynamically evolved devoid of any centralisation using
general consensus. Concepts that are more commonly represented are emphasised
whilst less common concepts are removed from the network over time. This is an

automated process that requires no human intervention [Fergus 2003b].

8.3.3 Device Capability Matching

In the area of device capability matching we have also made several novel contributions,
which have been published in [Mingkhwan 2004, Mingkhwan 2005]. These contributions are
listed below:

e Devices and services that are similar in nature can redundantly co-exist within the
framework and as such the same service can be provided by multiple devices. Device
capabilities will vary so mechanisms have been developed that determine which
device is better equipped to execute the given service [Mingkhwan 2004, Mingkhwan
2005].

o Existing device capability specifications have been extended to include capability
scoring which not only assess individual device capabilities but also provide overall
capability scores that assess the device as a whole. So even if a device is weak in one
particular area, its overall capability score may still infer that it is the best device to
use [Mingkhwan 2004, Mingkhwan 2005].

8.3.4 Dynamic service composition and self-adaptation

In the area of dynamic service composition we have made several novel contributions, which
we have published in [Fergus 2005a]. Again each contribution is listed below: .
e Devices can automatically form compositions with other devices to produce value

added functions and aid zero-configuration [Fergus 2005a].

169



¢ Devices can self-adapt to environmental changes as and when devices or services
become available or unavailable to ensure that device compositions are maintained
[Fergus 2005a].

e Devices can form relationships with each other to create the best solution as specified
in the capability models defined by each device. This ensures that the user’s defined

quality of service is either surpassed or maintained [Fergus 2005a].

8.3.5 Ubiquitous Computing

Lastly in the area of Ubiquitous Computing we have demonstrated that the new framework
can be implemented on devices with limited capabilities. We have made several novel
contributions, which again we have published in [Fergus 2004, Fergus 2005b].

o The framework is designed to work with devices with limited capabilities and has
been implemented in a sensor network, which allows devices to be controlled using
biofeedback [Fergus 2004]. Sensors connected to the body interact with sensors
within the environment and when certain biological conditions are met, the devices
are controlled [Bianchi 2003].

e The operational functions provided by devices are dispersed within networked
environments using our framework, which harnesses the power of wireless and

mobile technologies, thus reduce the wires and cables that are part and parcel of all

modern day appliances [Fergus 2005b].

These novel contributions extend current advances in networked appliance aﬁd home
networking research initiatives and provide a framework that is highly flexible, extensible and
self-adaptive. Our framework moves us closer to seamlessly interconnecting devices and
realising zero-configuration. Several open standards have been enhanced to provide additional
functionality that surpasses the functions these standards describe. These extensions fit more
efficiently within new and emerging intelligent network architectures to embrace ubiquitous
and pervasive computing environments. Furthermore, our framework provides highly
adaptive mechanisms that allow any device, irrespective of its capabilities, to function within

the network and decide how the framework services are used.

Our evaluation demonstrates that our framework provides a viable solution. It highlights that
using a distributed service-oriented architecture based on the peer-to-peer paradigm provides
a better solution than existing workflow based approaches such as WSFL and BPEL4WS in
that our framework allows numerous services, that provide the same functionality, to
redundantly exist within the network — if a service fails an alternative service can be
automatically discovered and used. This feature has been fully implemented and demonstrates

that our framework is highly robust.

170



Our evaluation also shows that creating a single standard for describing and discovering
services is highly unlikely. Device manufacturers and service providers will inherently use
different vocabularies consequently our framework provides mechanisms capable of
performing semantic mappings between vocabularies that are syntactically distinct but
semantically equivalent. We show that using ontologies aids this mapping process and
provides a highly flexible mechanism for service discovery that can accommodate a broader
range of queries that surpasses existing service discovery mechanisms currently being using
in frameworks such as OSGi, UPnP and DLNA.

Again utilising peer-to-peer networking our implementation has demonstrated how devices
are treated as individual knowledge nodes that can share and evolve ontological structures
using our framework services. Devices contain their own knowledge used to describe the
services they provide, which can be shared with other devices within the network. We have
shown that these knowledge structures can be evolved over time using peér-to-peer

techniques and aid semantic interoperability between different vocabularies.

Our evaluation argues that typically compositions are inherently human centric and as such
the overall quality of device configurations is determined by the user. In our framework
device configurations and compositions are automated, as such our framework provides a

service that selects devices that provides the best quality of service.

We have found that dynamically composing devices and services is a difficult problem and as
such most research initiatives base their solutions on manual or semi-automated techniques.
In our framework however we have tried to address this challenge using techniques used
within the Semantic Web. Our evaluation illustrates that our matching process is more
flexible than existing approaches, such as OSGi, UPnP and DLNA and provides a base

solution.

Little work within the area of networked appliances and home network has been done in the
area of self-adaptation and as we have argued in this thesis it is becoming increasing more
difficult to manage device configurations. Our framework aims to relieve the user from the
management tasks associated with interconnecting devices using a self-adaptation service that
allows devices to form relationships with devices in the network as soon as they have been

switched on and self-adapt to any environment changes that may occur.

8.4 Further Work

The implementation and case study evaluation demonstrate that a contribution to knowledge
has been made and that the research carried out addresses several research problems.

However, our work has also encountered difficulties along the way and has raised a number

171



of interesting questions. As such this section provides details of the questions raised, which
are the subject of future research within the Networked Appliances Laboratory at Liverpool

John Moores University.

8.4.1 Semantic Annotation and Processing Issues

We still need to look at the co-existence of correct and incorrect information within device
ontologies. We do not make any assumptions that the information created by device
manufacturers will be correct or consistently represented in a pre-determined knowledge
structure. Consequently different device manufacturers will classify concepts differently and
in some cases incorrectly. Furthermore the ontology evolution process is problematic and
time consuming. The semantic matching algorithm needs to be optimised in order to speed up

the evolutionary process.

8.4.2 Security

One of the key functions that NASUF does not address is that of security. Ad hoc
environments raise an important question regarding trustworthiness of service providers. The
middleware must ensure that the content received from services is authenticated and that data
streams are not intercepted and altered during transmission. In this way, trust between
network entities may be maintained. This becomes an important requirement within ad hoc
environments, which resist any form of centralised control. To address this challenge a
lightweight trust mechanism needs to be developed which guarantees the data transferred
between services has not been altered or redirected during transmission and which
accommodates different levels of integrity dependent on what type of data is being
transferred. For example transmitting payment details or documents between devices will
require that the highest level of integrity is maintained by encrypting every packet that is sent,
whilst streaming multimedia data may require less integrity where only every 100™ packet
needs to be encrypted. The trust mechanisms must also be lightweight and capable of being
installed on any device irrespective of its capabilities.

In future work a lightweight mechanism for maintaining trust in ad hoc multimedia networks
will be developed, which will prevent the modification of data in transit. Development will
ensure that the computational overhead incurred by the posited scheme is minimal, whilst
ensuring that the content received by devices is free from modification. Our contribﬁtion will
be to extend existing authentication mechanisms to ensure trust is continually maintained

whilst data streams are being transmitted between different services [Haggerty 2005].

172



8.4.3 Feature Interaction

Another key requirement that needs to be addressed relates to Feature Interactions. Services
may operate well when used in isolation or within small compositions, however problems will
occur when trying to interwork a large number of services at the same time. A body of work
is currently being carried out elsewhere [Kolberg 2002, Kolberg 2003] to address the
challenges associated with Feature Interactions and it is envisaged that these research efforts
could be integrated into NASUF. '

8.4.4 Service and Device Composition Issues

The concrete matching algorithm needs to be fully implemented. This will allow high-level
semantics to be mapped to low-level service interfaces. In the prototype we demonstrate this
using a simple test case, however a more complex mechanism is required. Work has begun

within this area [Fergus 2005a], however further research is required before this feature can
be fully functional within NASUF.

8.4.5 Transport Protocol Interoperability

At present the NASUF implementation is mapped onto the TCP/IP protocol because it is the
most common networking protocol currently used. However in the future interoperability
between different transport protocols will be investigated. The P2P implementation used
within NASUF is JXTA and at present the Java and C bindings only consider TCP/IP. The
documentation states that future bindings will be developed, consequently a future project
will interlink with current interoperability research being carried out [Abuelma'atti 2002a,
Abuelma'atti 2002b] to bridge between different wireless technologies such as 802.11x,
Bluetooth and RF. This research will look at creating software adaptors as services that can be
dynamically discovered and integrated within NASUF. These adapters will automatically

form bindings with JXTA so as to maintain a unified addressing scheme.

8.5 Concluding Remarks

We are currently seeing the convergence of several key technologies whereby devices are
becoming more interconnected. Advances in global and wireless communications have
opened up the possibility for new and novel solutions that are changing the way we use and
interact with the devices we own. User demands and these technological advances are moving
us closer to the pervasive computing vision. The home of the future will include networked
appliances that disperse their operational functions as middleware services providing flexible,
intuitive and zero-maintenance mechanisms for dynamic service composition, deployment,

extensibility, management and usage. Whilst much work exists relating to service-oriented

173



frameworks, this typically relies on attribute-based service matching and discovery, which is
inherently restrictive since no universally agreed service description or taxonomy is available
to describe services homogeneously. Device manufacturers inadvertently use different

vocabularies to describe services and therefore ambiguities between terminologies are likely.

In this thesis these requirements have been successfully addressed by designing and
developing a new framework called NASUF. This framework allows services to be described
using machine-processable semantics. This enables devices to make informed decisions
regarding service compositions. The framework is self-adaptive and is capable of resolving

device or service failures within compositions as and when they occur.

Through peer collaborations devices successfully form dynamic compositions with other
devices and the services they provide by processing ontological contextual descriptions,
which guide the composition process. These descriptions describe the high-level concepts that
relate to the “what” part of the service composition rather than the “how”. Consequently each
device provides ontological descriptions, which are dynamically evolved over time. Services
are composed based on the low-level signatures each service provides devoid of any human
intervention, which are not known beforehand. Mechanisms to achieve this give rise to the
true potential of service-oriented architectures by creating value-added services, whereby
global functionality cannot be produced by one single device or service alone. As such this
framework successfully provides mechanisms that allow services to be composed based on
the semantic similarities between the capabilities they support. High-level semantic
descriptions are developed and mapped onto the syntactic signatures used to describe
services, which form explicit mappings between the inputs one service requires and the

outputs another service produces.

Our framework successfully incorporates devices of varied capabilities using mechanisms that
perform capability matching. Before services provided by devices are composed, the
framework determines if the device providing the service has the required hardware, software

and networking capabilities to effectively execute it.

In this thesis we have provided a detailed overview of the background and related work and
discussed the influential factors. Developing our framework has been muiti-disciplinary
which has utilised and extended existing research initiatives and open standards to ﬁroduce a
flexible open middleware architecture that allows devices and services to be seamlessly
interconnected, which abstracts the underlying implementation details. Thus this thesis

provides a broad platform on which to integrate next generation networked appliances.

We have successfully illustrated that we have made several novel contributions that extend far

beyond existing networked appliance and home networking architectures. We have allowed

174



devices to redundantly disperse framework and operational functions within the network; we
have allowed services to be more accurately discovered using high-level semantics; we have
allowed devices to automatically select devices that best execute the services they provide;
and we have provided mechanisms to manage device configurations and allowed them to

automatically self-adapt to any environmental changes that occur.

We have successfully impiemented our framework and produced a prototype that suécessfully
demonstrates how our framework services work. The prototype implements our case study,
which is an intelligent home environment, and illustrates how individual functions provided
by devices can be dispersed within the network and used to create high-level applications.
Our approach is novel, which is reflected in the number of papers we have published (a full
list can be founding Appendix E). We have published papers on how to embed device
functions within the network as individual services; semantic discovery mechanisms; device

capability matching; and self-adaptation.

Our framework is designed to reduce costs. Currently we are required to upgrade and replace
devices to support new and emerging standards even though a large percentage of the
functions provided by new and old devices alike remain the same. Our framework allows
devices to evolve over time to include new functions that they where not initially designed to
do. For example a DVD player can automatically download a required codec when it is
presented with a media format it cannot process. Devices to date do not work in this way — if
you wish to use a multimedia format your player does not support then you have to buy a new
player. This is inefficient and costly to the consumer. Using our framework, conflicts like this

can be automatically detected and rectified. No other framework provides this functionality.

Overall this has been a successful project and has generated a lot of interest. It has allowed us
to explore how technological advances will progress and we believe that we are ahead of
current solutions. Although it is difficult to predict how technology will change it is clear that
networked appliances and home networking is becoming more sophisticated and it is
reasonable to say that IT will play a major role in how it is managed. Our framework provides
a viable solution that can be used to reduce the inherent complexity this will bring and

automatically mange the device configuration and management tasks.

175



REFERENCES

[Aberer 2003] Aberer, K., Cudre-Mauroux, P., Hauswirth, M., "The Chatty Web: Emergent
Semantics Through Gossiping,” In Proceedings of The 12th International World Wide
Web Conference, pp.197-206, Budapest, Hungary, Springer, (May 2003).

[Abuelma'atti 2002a] Abuelma'atti, O., Merabti, M. Askwith, B., "Interworking the Wireless
Domain," In Proceedings of Third International Symposium in Communication
Systems, Networks and Digital Signal Processing (CSNDSP), pp.344-347,
Staffordshire, UK, (July 2002).

[Abuelma‘atti 2002b] Abuelma'atti, O., Merabti, M. and Askwith, B., "A Wireless Networked
Appliances MAC Bridge," In Proceedings of 5th IEEE International Workshop on
Networked Appliances, pp.96-101, Liverpool, IEEE Computer Society, (October
2002).

[OSGi Alliance 2005] OSGi Alliance, "The OSGi Service Platform - Dynamic services for
networked devices," http://www.osgi.org/, (Accessed: 2006).

[Andrews 2005] Andrews, T., et al., "Business Process Execution Language for Web Services
Version 1.1,"  http://www-128.ibm.com/developerworks/library/specification/ws-
bpel/, (Accessed: 2006).

[Arora 2003] Arora, A. C., Pabla, K. S., "JXTA for J2ME (JXME) Project,"
http://jxme.jxta.org/, (Accessed: 2006).

[IEEE Standards Association 2005] IEEE Standards Association, "IEEE Standards
Association," http://standards.ieee.org/, (Accessed: 2006).

[Barba 2005] Barba, A., "HomeOnAir: WAP Access for a Home Automation Server,"
http://icadc.cordis.lu/fep-
cgi/srchidadb? ACTION=D&CALLER=PROJ_IST&QF EP_RPG=IST-1999-20138,
(Accessed: 2006). .

[BBN  2004] BBN, "The ARPANET: Forerunner of Today's Internet,"
http:

(Accessed: 2006).

[Berners-Lee 1989] Berners-Lee, T., "Information Management: A Proposal,"
http://www.w3.org/History/1989/proposal.html, (Accessed: 2006).

[Berners-Lee 1998] Bemners-Lee, T., "What the Semantic Web can répresent,"
http://www.w3.org/Designlssues/RDFnot.html, (Accessed: 2006).

[Berners-Lee 2000] Berners-Lee, T., "Weaving The Web," Texere Publishing Limited,
London, ISBN: 1-58799-018-0, (2000).

[Berners-Lee 2001] Berners-Lee, T., Hendler, J. and Lassila, O., "The Semantic Web,"
Scientific America, vol.284 (5), pp.34-43, (May 2001).

176



[BETSY 2005] BETSY, "BEing on Time Saves energY: Continuous Muitimedia Experiences
on Networked Handheld Devices,"
http://www.extra.research.philips.com/euprojects/betsy/index.htm, (Accessed: 2006).

[Bhatti 2002] Bhatti, G., Sahinoglu, Z., Peker, K. A., Guo, J. and Matsubara, F., "A TV-

Centric Home Network to Provide a Unified Access to UPnP and PLC Domains," In
Proceedings of IEEE Fourth International Workshop on Networked Appliances
(IWNA), pp.234-242, Gaithersburg, USA, IEEE Computer Society, (January 2002).

[Bianchi 2003] Bianchi, L., Babiloni, F., Cincotti, F., Arrivas, M., Bollero, P. and Marciani,
M. G., "Developing wearable bio-feedback systems: a general-purpose platform,”
IEEE Neural Systems and Rehabilitation Engineering, vol.11 (2), pp.1-3, (2003).

[Brandenburg 1999] Brandenburg, K., "MP3 and ACC Explained," In Proceedings of The
Proceedings of the AES 17th International Conference on High-Quality Audio
Coding, Florence, Italy, (September 1999).

[Brooks 2002] Brooks, R. A., "Robot: The future of flesh and machines," Penguin Books,
London, ISBN: 0140297189, (2002).

[Burk 1998] Burk, R., "Unix Unleashed," Sams Publishing, Indianapolis, Indiana, USA, Third
Edition, ISBN: 0672314118, (1998).

[CEA 2000] CEA, "VHN Home Network Specification," EIA/CEA-851, Consumer
Electronics Association, (2000).

[CEBus 2005] CEBus, "Bringing Interoperability to Home Networks," http://www.cebus.org,
(Accessed: 2006).

[CEPCA 2005] CEPCA, "Consumer Electronics Powerline Communication Alliance
(CEPCA)," http://www.cepca.org/home, (Accessed: 2006).

[Chakraborty 2003} Chakraborty, D. and Joshi, A., "Anamika: Distributed Service
Composition Architecture for Pervasive Environments," In Proceedings of The Ninth
Annual International Conference on Mobile Computing and Networking (MobiCom),
pp.38-40, San Diego, California, USA, ACM Press, (September 2003).

[Chemishkian 2002] Chemishkian, S., "Building smart services for Smart Home," In
Proceedings of IEEE 4th International Workshop on Networked Appliances (IWNA),
pp.215-224, Gaithersburg, Maryland, USA, IEEE Computer Society, (January 2002).

[Chen 2003] Chen, L., Schadbolt, N. R., Goble, C., Tao, F., Cox, S. J., Puleston, C. and
Smart, P., "Towards a Knowledge-based Approach to Semantic Service
Composition," In Proceedings of 2nd International Semantic Web Conference
(ISWC2003), pp.319-334, Florida, USA, Springer, (October 2003).

[Cheng 2000] Cheng, L. and Marsic, 1., "Lightweight Service Discovery for Mobile AdHoc
Networked Appliances," In Proceedings of Second International Workshop on
Networked Appliances, Rutgers University, New Jersey, USA.

177



[Chen-Mie 1995] Chen-Mie, W., Dah-Jyh, P., Wen-Tsung, C. and Jian-Shing, H., "A high-
performance system for real-time video image compression applications," IEEE
Transactions on Consumer Electronics, vol.41 (1), pp.125 - 131.

[CyCorp 2002] Cycorp, "Writing Efficient CycL: Some Concrete Suggestions," Web Site,
OpenCyc.org, http://www.opencyc.org/doc/tut/?expand_all=1, (Accessed: 17-11-
2005).

[Dabek 2001] Dabek, F., Brunskill, E., Kaashoek, F. and Karger, D., "Building Peer-to-Peer

Systems with Chord, a Distributed Lookup Service," In Proceedings of The Eighth
Workshop on Hot Topics in Operating Systems, pp.81-86, Germany, IEEE Computer
Society, (May 2001).

[Daconta 2003] Daconta, M. C., Obrst, L. J. and Smith, K. T., "The Semantic Web - A Guide
to the Future of XML, Web Services, and Knowledge Management," Wiley
Publishing Inc., Indianapolis, Indiana, ISBN: 0471432571, (2003).

[DAML 2003a] DAML, "DAMLA+OIL," Web Site, http://www.daml.org, (Accessed: 2006).

[DAML 2003b] DAML, "DAML-S: Semantic Markup for Web Services," Web Site, DAML
Org, http://www.daml.org/services/daml-s/0.9/daml-s.pdf, (Accessed: 17-11-2005).

[DAML 2003c] DAML, "OWL-S 1.0 Release," http://www.daml.org/services/owl-s/1.0/,
(Accessed: 2006).

[DARPA 2003] DARPA, “"Defence Advanced Research Projects Agency,"
http://www.darpa.mil/, (Accessed: 2006). '

[Dean 2005] Dean, T., "Network+ 2005 in Depth," Thomson Course Technology PTR,
Boston, USA, ISBN: 1592007929, (2005).

[Decker 2000] Decker, S., Melnik, S., van Harmelen, V., Fensel, D., Klein, M., Broekstra, J.,
Erdmann, M. and Horrocks, L., "The Semantic Web: The Roles of XML and RDF,"
IEEE Internet Computing, vol.4 (5), pp.63-74, (September/October 2000).

[DHWG 2003] DHWG, "Digital Home White Paper,"
http://www.dhwg.org/resourcessDHWG_WhitePaper.pdf, (June 2003).

[Dimitrov 2000] Dimitrov, M., "XML Standards for Ontology Exchange," In Proceedings of
Proceedings of OntoLex 2000: Ontologies and Lexical Knowledge Bases, pp.153-
188, Sozopol, Bulgaria, (September 2000).

[DLNA 2004] DLNA, "DLNA: Overview and Vision," Portland,
http://www.dlIna.org/about/DLNA_Overview.pdf, (June 2006).

[Douglas 2004] Douglas, S. and Douglas, K., "Linux Timesaving Techniques for Dummies,"
John Wiley & Sons Publishing, New York, USA, ISBN: 0764571737, (2004).
[Dutta-Roy 1999] Dutta-Roy, A., "Networks for Homes," IEEE Spectrum, vol.36 (12), pp.26-

33, (December 1999).

178



[Eberspacher 2004] Eberspacher, J., Schollmeier, R., Zols, S. and Kunzmann, G., "Structured
P2P Networks in Mobile and Fixed Environments," In Proceedings of 2nd
International Working Conference on Performance Modelling and Evaluation of
Heterogeneous Networks, West Yorkshire, UK, (July 2004).

[Evans 2001] Evans, D., "In-home wireless networking: an entertainment perspective," JEEE
Electronic and Communication Engineering, vol.13 (5), pp.213-219, (October 2001).

[Farquhar 1997] Farquhar, A., Fikes, R. and Rice, J., "The Ontolingua Server: a tool for
collaborative ontology construction," International Journal of Human-Computer
Studies, vol.46 (6), pp.707-727, (June 1997).

[Feibel 2000] Feibel, W., "The Network Press Encyclopaedia of Networking," Sybex,
London, 3rd Edition, ISBN: 0782122558.

[Fensel 2001] Fensel, D., van Harmelen, F., Horrocks, I, McGuinness, D. L. and Patel-
Schneider, P. F., "OIL: An Ontology Infrastructure for the Semantic Web," IEEE
Intelligent Systems, vol.16 (2), pp.38-45, (March/April 2001).

[Fensel 2002] Fensel, D., Staab, S., Studer, R. and van Harmelen, F., "Towards the Semantic
Web: Ontology-driven Knowledge Management," John Wiley & Sons, Ltd,
Chichester, West Sussex, England, ISBN: 0470848677, (2002).

[Fensel 2003] Fensel, D., Hendler, J., Lieberman, H. and Wahlster, W., "Spinning the
Semantic Web: Bringing the World Wide Web to Its Full Potential,"” MIT Press,
London, England, ISBN: 0262062321, (2003).

[Fergus 2003a] Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M., "DiSUS: Mobile
Ad Hoc Network Unstructured Services," In Proceedings of (PWC'2003) Personal
Wireless Communications, pp.484-491, Venice, Italy, Springer, (September 2003).

[Fergus 2003b] Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M, "Distributed
Emergent Semantics in P2P Networks," In Proceedings of (IKS'2003) Information
and Knowledge Sharing, pp.75-82, Scottsdale, Arizona, USA, ACTA Press,
(November 2003). |

[Fergus 2003c] Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M., "Capturing
Tacit Knowledge in P2P Networks," In Proceedings of (PGNET'2003)The 4th EPSRC
Annual Postgraduate Symposium on the Convergence of Telecommunications,
Networking and Broadcasting, pp.159-165, Liverpool, UK, (June 2003).

[Fergus 2004] Fergus, P., Merabti, M, Hanneghan, M. B. and Taleb-Bendiab, A,
"Controlling Networked Devices in Ubiquitous Computing Environments using
Biofeedback," In Proceedings of The Sth Annual PostGraduate Symposium on The
Convergence of Telecommunications, Networking and Broadcasting, pp.91-96,
Liverpool, UK, John Moores University, (June 2004).

179



[Fergus 2005a] Fergus, P., Merabti, M., Hanneghan, M. B., Taleb-Bendiab, A. and
Minghwan, A., "A Semantic Framework for Self-Adaptive Networked Appliances,"
In Proceedings of (CCNC'05) IEEE Consumer Communications & Networking
Conference, pp.229-234, Las Vegas, Nevada, USA, IEEE Computer Society,
(January 2005).

[Fergus 2005b] Fergus, P., "Welcome to the Wireless Age," In Proceedings of Review, pp.34 -
35, Liverpool John Moores University, (November).

[Fujii 2004] Fujii, K. and Suda, T., "Dynamic Service Composition Using Semantic
Information," In Proceedings of 2nd International Conference on Service Oriented
Computing, pp.39-48, NY, USA, ACM Press, (November 2004).

[Genesereth 1991] Genesereth, M. R., "Knowledge Interchange Format," In Proceedings of
2nd International Conference on Principles of Knowledge Representation and
Reasoning (KR'91), pp.599-600, Cambridge, Massachusetts, USA, (April 1991).

[Gillett 2000] Gillett, S. E., Lehr, W. H., Wroclawski, J. T. and Clark, D., "A Taxonomy of
Internet Appliances," In Proceedings of (TPRC2000) Telecommunications Policy
Research Conference, Alexandria, VA, USA, (September 2000).

[Gillett 2001] Gillett, S. E., Lehr, W. H., Wroclawski, J. T. and Clark, D., "Do Appliances
Threaten Internet Innovation?," IEEE Communications Magazine, vol.39 (10), pp.46-
51, (October 2001).

[Gnutella  2001]  Gnutella, "The Gnutella Protocol  Specification v0.4,"
http://www9.limewire.com/developer/gnutelia_protocol_0.4.pdf, (Accessed: 2006).

[Goldfarb 2002] Goldfarb, C. F. and Prescod, P., "XML Handbook," Prentice Hill PTR,
Upper Saddle River, NJ 07458, 4th Edition, ISBN: 0130651982, (2002).

[Gong 2001] Gong, L., "JXTA: A Network Programming Environment," IEEE Internet
Computing, vol.5 (3), pp.88-95, (May/June 2001). '
[Gradecki 2002] Gradecki, J. D. "Mastering JXTA: Building Java Peer-to-Peer
Applications," Wiley Publishing, Inc., Indianapolis, Indiana, USA, ISBN:

0471250848, (2002).

[Le Grand 2001] Le Grand, B., Soto, M. and Dodds, D., "XML Topic Maps and Semantic
Web Mining," In Proceedings of 12th European Conference on Machine
Learning/5th European Conference on Principles and Practice of Knowledge
Discovery in Databases (ECML/PKDD -2001), Freiburg, Germany, (September
2001).

[Grokster 2005] Grokster, "Grokster," http://www.grokster.com/, (Accessed: 2006).

[Gruber 1993] Gruber, T. R,, "A translation approach to portable ontology specifications,"
Knowledge Acquisition, vol.5 (2), pp.199-220, (June 1993).

180



[Haarslev 2001] Haarslev, V. and Moller, R., "Description of the RACER System and its
Applications," In Proceedings of International Workshop on description Logics,
pp.131-141, Stanford, USA, (August 2001).

[Haggerty 2005] Haggerty, J., Shi, Q., Fergus, P. and Merabti, M., "Data Authentication and
Trust within  Distributed Intrusion Detection System Inter-Component
Communications,” In Proceedings of (EC2ND'05) Ist European Conference on
Computer Network Defence, pp.197-206, University of Glamorgan, UK, Springer,
(December 2005).

[Halepovic 2002] Halepovic, E. and Deters, R., "Building a P2P Forum System with JXTA,"
In Proceedings of Second International Conference on Peer-to-Peer Computing
(P2P'02), pp.41-48, Linkoping, Sweden, IEEE Computer Society, (September 2002).

[HAVI 2003] HAVI, "HAVL, the A/V digital network revolution," San Mamon, CA,
http://www.havi.org/pdf/white.pdf, (2003).

[Heflin 1998] Heflin, J., "Semantic Search - The SHOE Search Engine," Web Site,
http://www.cs.umd.edu, http://www.cs.umd.edu/projects/plus/SHOE/search/,
(Accessed: 04-08).

[Heflin 2000] Heflin, J. and Hendler, J., "Dynamic Ontologies on the Web," In Proceedings of
Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pp.443-449,
Austin, Texas, U.S.A., AAAVMIT, (July 2000).

[Heflin 2003] Heflin, J. and Huhns, M. N., "The Zen of the Web," IEEE Internet Computing,
vol.7 (5), pp.30-33, (September/October 2003).

[HES 2005] HES-Standards, "Home Electronic System Standards," ISO/IEC JTC 1/SC
25/WG 1, www.hes-standards.org, (Accessed: 2005).

[Hightower 2002] Hightower, R. and Lesiecki, N., "Java Tools for Extreme Programming:
Mastering Open Source Tools Including Ant, JUnit, and Cactus," John Wiley & Sons,
Inc., New York, ISBN: 0-471-20708-X, (2002).

[Future Home 2005] Future Home, "The Future Home Project," http:/future-home.org,
(Accessed: 2006).

[HomeTalk 2005] HomeTalk, "The HomeTalk Project,”" Web Site, http://www.hometalk.org/,
(Accessed: 2006).

[Horridge 2004] Horridge, M., Knublauch, H., Rector, A., Stevens, R. and Wroe, C., "A
Practical Guide To Building OWL Ontologies Using the Protege-OWL Plugin and
CO-ODE Tools Edition 1.0," Tutorial, University of Manchester, Univérsity of

Stanford, Manchester, http;://Wwww.co-
ode.org/resources/tutorials/ProtegeO WL Tutorial. pdf, (August 2004).
[Horrocks 2005] Horrocks, L, "The FaCT System,"

http://www.cs.man.ac.uk/~horrocks/FaCT/, (Accessed: 2006).
181



[HP Labs 2004] HP Labs, "Jena - A Semantic Web Framework for Java,"
http://jena.sourceforge.net, (Accessed: 2006).

[TETF 2004] IETF, "Session Initiation Protocol (SIP)," http://www.ietf.org/html.charters/sip-
charter.html, (Accessed: 2006).

[iMesh Inc 2005] iMesh Inc., "iMesh Professional 5.0," http://www.imesh.com/, (Accessed:
2006).

[Sun Microsystems Inc. 2005a] Sun Microsystems Inc., "JXTA v2.3.x: Java Programmer's

Guide," http://www.jxta.org/docs/JxtaProgGuide_v2.3.pdf, (Accessed: 2006).
[Sun Microsystems Inc. 2005b] Sun Microsystems Inc., "Java Media Framework,"

http://java.sun.com/products/java-media/imf/, (Accessed: 2006).

[Sun Microsystems Inc. 2005¢c] Sun Microsystems Inc., "JXTA 2.3.1," http://www.jxta.org/,
(Accessed: 2006).

[Intel 2003] Intel, "Intel Digital Homes," http://www.intel.com/technology/digitalhome/,
(Accessed: 2006).

[ISO/IEC 2001] ISO/IEC, "Interconnection of Information Technology Equipment: Home
Electronic System," ISO/IEC JTC 1/SC 25/WG 1, (2001).

[Jacob 2004] Jacob, M., "RDF in the Semantic Hifi European project,” In Proceedings of /st
Italian Workshop on Semantic Web Applications and Perspectives (SWAP), pp.50-54,
Ancona, Italy, (December 2004).

[JXTA 2001} JXTA, "Project JXTA: An Open, Innovative Collaboration,"
http://www.jxta.org/project/www/docs/Openinnovative.pdf, (2001).

[Karp 2005] Karp, P. D., Chaudhri, V. K. and Thomere, J., "XOL: XML-Based Ontology
Language," http://www.ai.sri.com/pkarp/xol/, (Accessed: 2006).

[Kent 2005] Kent, R. E., "Ontology Markup Language,"
http://www.ontologos.org/OML/OML%200.3.htm, (Accessed: 2006). |

[Klyne 2004] Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M. H. and
Tran, L., "Composite Capability/Preference Profiles (CC/PP): Structure and

Vocabularies 1.0," http://www.w3.0rg/TR/2004/REC-CCPP-struct-vocab-20040115/,
(Accessed: 2006).

[Kolberg 2002] Kolberg, M., Magill, E., Marples, D. and Tsang, S., "Feature Interactions in
Services for Internet Personal Appliances,” In Proceedings of (ICC'02) IEEE
International Conference on Communications, pp.2613-2618, New York, USA, IEEE

Computer Society, (April 2002). g

[Kolberg 2003] Kolberg, M., Magill, E. H. and Wilson, M., "Compatibility Issues between

Services Supporting Networked Appliances," IEEE Communications Magazine,

vol.41 (11), pp.136 - 147, (November 2003).

182



[Koumpis 2005] Koumpis, C., Hanna, L., Anderson, M. and Johansson, M., "Beyond wireless
cable-replacement for industrial control and monitoring: The RUNES approach,” In
Proceedings of Profibus International Conference, Warwickshire, UK, (June 2005).

[Kumar 2003] Kumar, R., Poladian, V., Geenberg, 1., Messer, A. and Milojicic, D., "Selecting
Devices for Aggregation," In Proceedings of (WMCSA'03) Fifth IEEE Workshop on
Mobile Computing Systems and Applications, pp.150-159, Monterey, California,
USA, IEEE Computer Society, (October 2003).

[Langton 1996] Langton, C. G., "Artificial Life," "The Philosophy of Artificial Life." Edited
by M. A. Boden. New York, Oxford University Press Inc.: 39-93.

[Lea 2000] Lea, R., Gibbs, S., Dara-Abrams, A. and Eytchison, E., "Nefworking home
entertainment devices with HAVi," IEEE Computer, vol.33 (9), pp.35 - 43, (2000).

[Lee 2002] Lee, S. and Smelser, T., "Jabber Programming," M&T Books, Hungry Minds
Inc.,, 909 Third Avenue, New York, NY 10022, ISBN: 0-7645-4934-0, (2002).

[Leymann 2004] Leymann, F., "Web Services Flow Language (WSFL) Version 1.0,"
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, (Accessed:
2006). ’

[Liu 2004] Liu, J. and Issamny, V., "QoS-Aware Service Location in Mobile Ad-Hoc
Networks," In Proceedings of (MDM'04) IEEE International Conference on Mobile
Data Management, pp.224-235, Berkeley, California, USA, IEEE Computer Society,
(January 2004).

[Lime Wire LLC 2005] Lime Wire LLC, "LimeWire,"
http://www.limewire.com/english/content/home.shtml, (Accessed: 2006).

[Madhusudan 2004] Madhusudan, T. and Uttamisingh, N., "A declarative approach to
composing web services in dynamic environments," Decision Support Systems, vol.In
Press.

[Maedche 2003] Maedche, A. and Staab, S., "Services on the Move - Towards P2P-Enabled
Semantic Web Services," In Proceedings of The 10" International Conference on
Information Technology and Travel & Tourism, pp.124-133, Helsinki, Springer,
(January 2003).

[Marples 2001} Marples, D. and Kriens, P., "The Open Services Gateway Initiative: An
Introductory Overview," IEEE Communications Magazine, vol.39 (12), pp.110-114,
(December 2001). |

[Marshall 2001] Marshall, P., "Home networking: a TV perspective," IEEE Electronic and
Communication Engineering, vol.13 (5), pp.209-212, (October 2001).

[McGuinness 2000] McGuinness, D. L., Fikes, R., Rice, J. and Wilder, S., "An Environment
for Merging and Testing Large Ontologies," In Proceedings of Proceedings of the

Seventh International Conference on Principles of Knowledge Representation and

183



Reasoning (KR2000), pp.483-493, Breckenridge, Colarado, USA, Morgan Kaufmann
Pubishers, (April 2000).

[McGuinness 2001] McGuinness, D. L., "Ontologies Come of Age," "The Semantic Web:
Why, What, How." Edited by. London, England, MIT Press.

[Mcllraith 2001] Mcllraith, S. A., Son, T. C. and Zeng, H., "Semantic Web Services," I[EEE
Intelligent Systems, vol.16 (2), pp.46-53, (March/April 2001).

[Mcllraith 2003] Mcllraith, S. A. and Martin, D. L., "Bringing semantics to Web services,"
IEEE Intelligent Systems, vol.18 (1), pp.90-93, (Jannuary/February 2003).

[Medjahed 2003] Medjahed, B., Bouguettaya, A. and Elmagarmid, A. K., "Composing Web
Services on the Semantic Web," The International Journal of Very Large Data Bases,
vol.12 (4), pp-333-351, (November 2003).

[Meessen 2004} Meessen, J., Parisot, C., Lebarz, C., Delaigle, J. F. and Nicholson, D., "IST
WCAM Project : Smart and Secure Video Coding Based on Content Detection,” In
Proceedings of European Workshop on the Integration of Knowledge, Semantics and
Digital Media Technology, London, U.K., (November 2004).

[Microsoft Corp. 2003] Microsoft Corp., "UPnP Device Architecture 1.0: Service
Description," http://www.upnp.org/resources/documents/CleanUPnPDA101-
20031202s.pdf, (December 2003).

[Microsoft Corp. 2005] Microsoft Corp., "UPnP Forum," http://www.upnp.org/, (Accessed:
2006).

[Milanovic 2004] Milanovic, M. and Malek, M., "Current Solutions for Web Service
Composition," Internet Computing, vol.80 (6), pp.51-59, (Nov/Dec 2004).

[Millar 2004] Millar, W., Collingridge, R. J. and Ward, D. A., "Consumer vehicle telematics -
an emerging market where web Services offer benefits," BT Technology Journal,
vol.22 (1), pp.99-106, (March 2004).

[Miller 2001] Miller, B., Nixon, T., Tai, C. and Wood, M. D., "Home Networking with
Universal Plug and Play," IEEE Communications Magazine, vol.39 (12), pp-104-109,
(2001).

[Mingkhwan 2002] Mingkhwan, A., Merabti, M. and Askwith, B., "Interoperability of
Structured and Unstructured Services in Personal Mobility Information Space," In
Proceedings of European Wireless 2002, Florence, Italy, (2002).

[Mingkhwan 2003] Mingkhwan, A., Merabti, M., Askwith, B. and Hanneghan, M., "Global
Wireless Framework," In Proceedings of European Personal Mobile Communications
Conference (EPMCC'03), Glasgow, Scotland, (2003).

[Mingkhwan 2004] Mingkhwan, A., Fergus, P., Abuelma‘atti, O. and Merabti, M., "Implicit
Functionality: Dynamic Services Composition for Home Networked Appliances," In

184



Proceedings of (ICC'2004) IEEE International Conference on Communications,
pp.43-47, Paris, France, [EEE Computer Society, (June 2004).

[Mingkhwan 2005] Mingkhwan, A., Fergus, P., Abuelma'atti, O., Merabti, M., Askwith, B.
and Hanneghan, M., "Dynamic Service Composition in Home Appliance Networks,"
(MTAP) Multimedia Tools and Applications: A Special Issue on Advances in
Consumer Communications and Networking, vol.31 (1), (December 2006).

[Minoh 2001] Minoh, M. and Kamae, T., "Networked Appliances and their Peer-to-Peer
Architecture AMIDEN," IEEE Communications Magazine, vol.39 (10), pp.80-84,
(2001).

[Mitra 2000] Mitra, P., Wiederhold, G. and Kersten, M. L., "A Graph-Oriented Model for
Artriculation of Ontology Interdependencies," In Proceedings of 7th International
Conference on Extending Database Technology, pp.80-100, Konstanz, Germany,
Springer, (March 2000).

[Morle  2003] Morle, P., Morris, A. and Hemming, N., "KaZaa'"
http://www.zeropaid.com/kazaalite/, (Accessed: 2006).

[Moyer 2000] Moyer, S., Marples, D., Tsang, S. and Ghosh, A., "Service Portability of
Networked Appliances," IEEE Communications Magazine, vol.40 (1), pp.116-121,
(January 2000).

[Murhammer 1998] Murhammer, W., et al., "TCP/IP Tutorial and Technical Overview," IBM
Redbooks, Research Triangle Park, NC, 27709-2195, 6th Edition, ISBN:
0738412007.

[Naisbitt 1991] Naisbitt, J. and Aburdene, P., "Megatrends 2000: New directions for
tomorrow," Avon Books, Inc., New York, ISBN: 0380704374, (1991).

[Narayanan 2002] Narayanan, S. and Mcllraith, S. A., "Simulation, Verification and
Automated Composition of Web Services," In Proceedings of Proceedings of the
eleventh international conference on World Wide Web, pp.77-88, Honolulu, Hawaii,
USA, ACM Press, (May 2002).

[StreamCast Networks 2005} StreamCast Networks, "Morpheus,” http://morpheus.com/,
(Accessed: 2005).

[Nikolova 2003} Nikolova, M., Meijs, F. and Voorwinden, P., "Remote mobile control of
home appliances,” IEEE Transactions on Consumer Electronics, vol.49 (1), pp.123 -
127, (2003).

[Noy 2000] Noy, N. F. and Musen, M. A., "PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment," In Proceedings of The Seventeenth National
Conference on Artificial Intelligence (AAAI'00), pp.450-455, Austin, Texas, USA,,
AAAI Press/The MIT Press, (July 2000).

185



[Oaks 2002] Oaks, S., Traversat, B. and Gong, L., "JXTA in a Nutshell," O'Reilly Associates,
ISBN: 0-596-00236-x, (2002). ‘

[Oasis 2005] Oasis, "UDDL" http://www.uddi.org, (Accessed: 2006).

[Oram 2001] Oram, A., Minar, N. and Hedlund, M., "Peer-to-Peer: Harnessing the Power of
Disruptive Technologies," O'Reilly, 1005, Gravenstein Highway North, Sebastopol,
CA 95472, ISBN: 0-596-00110-X, (2001).

[Palensky 2000] Palensky, P. and Sauter, T., "Modular Software Architecture for Networked
Appliances," In Proceedings of (IWNA'02) 2nd International Workshop on Networked
Appliances, Rutgers University, IEEE Computer Society.

[Palet 2004a] Palet, J., "6Power: How to reach all the planets with IP," In Proceedings of
IEEE International Symposium on Applications and the Internet Workshop (SAINT),
pp-120-126, Tokyo, Japan, IEEE Computer Society, (January 2004).

[Palet 2004b] Palet, J., Bano, L., Herandez, F. J., Marin, 1., Manzano, D. M. and Moreno, J. J.
P., "PLC-Based Home  Automation System  Completed,"  Spain,
http://www.6power.org/open/6power_pu_d4_10_v1_4.pdf, (February 2004).

[Paolucci 2002a] Paolucci, M., Kawamura, T., Payne, T. R. and Sycara, K, "Semantic
Matching of Web Services Capabilities,” In Proceedings of The First International
Semantic Web Conference (ISWC), pp.333-347, Sardinia, Italy, Springer, (June 2002).

[Paolucci 2002b] Paolucci, M., Kawamura, T., Payne, T. R. and Sycara, K., "Importing the
Semantic Web in UDDL" In Proceedings of Web Services, E-Business, and the
Semantic Web - CAIiSE 2002 International Workshop (WES'02), pp.225-236, Toronto,
Ontario, Canada, Springer-Verlag, (May 2002).

[Paolucci 2003] Paolucci, M., Sycara, K. and Kawamura, T., "Delivering Semantic Web
Services," In Proceedings of The Twelfth International World Wide Web Conference,
pp.-111-118, Budapest, Hungary, (May 2003).

[Parameswaran 2001) Parameswaran, M., Susarla, A. and Whinston, A. B., "P2P Networking:
An information-Sharing Alternative.," IEEE Computer, vol.34 (7), pp.31-38, (2001).

[Pattenden 2001] Pattenden, S., Colebrook, P., Ungar, S., Borghese, F., Francon, C. and
Ambrosio, R., "Architecture for HomeGate, the residential gateway (AHRG),"
http://hes-standards.org/doc/SC25_WG1_N0912.doc, (2001).

[Free Peers 2005] Free Peers, "BearShare," http://www.bearshare.com/, (Accessed: 2006).

[Poltavets 2005] Poltavets, Y., Part, Y. and Kim, D., "IEEE1394 to UPnP Software Bridge
Structure," In Proceedings of IEEE International Conference on Consumer
Electronics (ICCE), pp.375-376, Las Vegas, Nevada, USA, IEEE Computer Society,
(January 2005).

186



[Qu 2001] Qu, C. and Nejdl, W., "Exploring JXTASearch for P2P Learning Resource
Discovery," Learning Lab Lower Saxony, Hannover,
http://citeseer.ist.psu.edu/qu0 1 exploring.html, (November 2001).

[Ratnasamy 2001] Ratnasamy, S., Fancis, P., Handley, M. and Karp, R., "A Scalable Content-
Addressable Network," In Proceedings of ACM SIGCOMM annual conference of the
Special Interest Group on Data Communications, pp.161-172, San Diego, California,
USA, ACM Press, (August 2001).

[Roberts 1967] Roberts, L. G., "Multiple Computer Networks and Intercomputer
Communication," In Proceedings of Proceedings of the ACM symposium on
Operating System Principles, pp.3.1-3.6, ACM Press, (January 1967).

[Rose 2001] Rose, B., "Home Networks: A Standards Perspective," IEEE Communications
Magazine, vol.39 (12), pp.78-85, (December 2001).

[Rowstron 2001] Rowstron, A. and Druschel, P., "Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems," In Proceedings of IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware), pp.329-
350, Heidelberg, Germany, ACM Press, (November 2001).

[Rumsey 2003] Rumsey, D., "Statistics for Dummies," Wiley Publishing, Inc., Hoboken, NJ,
07030, ISBN: 0764554239.

[Shareaza 2005] Shareaza Development Team, "Shareaza,” Web Site, Shareaza Open Source
Development Team, http://www.shareaza.com/, (Accessed: 2006).

[Shigeoka 2002] Shigeoka, L, "Instant Messaging in Java - The Jabber Protocols," Manning
Publications Co., 209 Bruce Park Avenue, Greenwich, CT 06830, ISBN: 1-930110-
46-4.

[Siebes 2002] Siebes, R. and van Harmelen, F., "Ranking Agent Statements for Building
Evolving Ontologies," In Proceedings of Workshop on Meaning Negotiation, in
conjunction with the Eighteenth National Conference on Artificial Intelligence,
Emonton, Alberta, Canada, (July 2002).

[Sirin 2003} Sirin, E., Hendler, J. A. and Parasia, B., "Semi-automatic Composition of Web
Services using Semantic Descriptions,” In Proceedings of (WSMAI'03) Proceedings
of the Ist Workshop on Web Services: Modelling, Architecture and Infrastructure,
pp.17-24, Angers, France, ICEIS Press, (April 2003).

[Siuru 2000} Siuru, B., "Appliances on the Internet," Poptronics, vol.l, pp.41-44, (June
2000).

[Smith 2000] Smith, E., Dominguez, M. and Merabti, M., "Component Support Services for
Heterogeneous Networked Appliances," In Proceedings of (IWNA'02) 2nd IEEE
International Workshop on Networked Appliances, Rutgers University, IEEE

Computer Society.

187



[Smith 2005] Smith, M. K., Welty, C. and McGuinness, D. L., "OWL Web Ontology

Language," http://www.w3.org/TR/owl-guide/, (Accessed: 2006).

[Stephens 2001] Stephens, L. M. and Huhns, M. N, "Consensus Ontologies - Reconciling the
Semantics of Web Pages and Agents," IEEE Internet Computing, vol.5 (5), pp.92-95,
(Sep/Oct 2001).

[Stephens 2003] Stephens, L. M., Gangam, A. K. and Huhns, M. N., "Constructing Consensus
Ontologies for the Semantic Web: A Conceptual Approach," Klewers Academic
Publishers, (2003).

[Sycara 2003] Sycara, K., Paolucci, M., Ankolekar, A. and Srinivasan, N., "Automated
discovery, interaction and composition of Semantic Web services," Web Semantics,
vol.1 (1), pp.27-46, (December 2003).

[JINI Technology 2005] JINI Technology, "JINI Technology," Web Page,
http://www.jini.org/, (Accessed: 2006).

[France Telecom 20035) France Telecom, "ePerSpace: Towards the era of personal services at
home and everywhere," http://www.ist-eperspace.org/, (Accessed: 2006).

[Traversat 2002] Traversat, B., Abdelaziz, M., Duigou, M., Hugly, J., Pouyoul, E. and
Yeager, B., "Project JXTA Virtual Network," 901 San Antonio Road, Palo Alto, CA

94303, USA, http://www.jxta.org/project/www/docs/JIX TAprotocols_01nov02.pdf,
(October 2002).

[Traversat 2003] Traversat, B., Abdelaziz, M. and Pouyoul, E., "Project JXTA: A Loosely-
Consistent DHT Rendezvous Walker," http://www.jxta.org/docs/jxta-dht.pdf, (2003).
[Travert 2004] Travert, S. and Lemonier, M., "The MediaNet Project," In Proceedings of 5th

International Workshop on Image Analysis for Multimedia Interactive Services,

Lisboa, Portugal, (April 2004).

[Tsarkov 2005] Tsarkov, D. and Horrocks, I., "FaCT++," http://owl.man.ac.uk/factplusplus/,
(Accessed: 2006).

[Ungar 2000] Ungar, S. G, "The VHN Network," In Proceedings of IEEE Second
International Workshop on Networked Appliances, IWNA'2000, Rutgers University,
(2000).

[Stanford University 2005a] Stanford University, "Protege OWL Plugin APL"
http://protege.stanford.edu/plugins/owl/api/index.html, (Accessed: 2006).

[Stanford University 2005b] Stanford University, "Using the Protege-OWL Reasoning APL"

http://protege stanford.eduw/plugins/owl/api/ReasonerAPIExamples.html, (Accessed:
2006).

[Uschold 1996] Uschold, M. and Gruninger, M., "Ontologies: Principles, Methods and

Applications," The Knowledge Engineering Review, vol.11 (2), pp.93-155, (June
1996).

188



[VESA 2005] VESA, "Video Electronics Standards Association,” http://www.vesa.org,
(Accessed: 2005).

[W3C 2004] W3C, "OWL Web Ontology Language Guide," Web Site, W3C,
http://www.w3.org/TR/owl-guide/, (Accessed: 2006).
[W3C 2005] W3C, "World Wide Web Consortium," http://www.w3c.org, (Accessed: 2006).

[Waterhouse 2001] Waterhouse, S., "JXTA Search: Distributed Search for Distributed
Networks," hitp://search.jxta.org/JXTAsearch.pdf, (Accessed: 2006).

[WebMethods 2003] WebMethods, "GLUE,"
http://www.webmethods.com/meta/default/folder/0000005452, (Accessed: 2006).

[Williams 2001] Williams, L. V., "CEA-851 versatile home network (VHN)-a home intranet
backbone for inter-cluster connectivity using IEEE 1394 and IP," In Proceedings of
International Conference on Consumer Electronics, ICCE2001, pp.230 - 231, (2001).

[Wilson 2002] Wilson, B. J., "JXTA," New Riders Publishing, 201 West 103rd Street,
Indianapolis, Indiana 46290, ISBN: 0734712344,

[Zahariadis 2002] Zahariadis, T. and Pramataris, K., "Multimedia home networks: standards
and interfaces," Computer Standards and Interfaces, vol.24 (5), pp.425-235, (2002).

[Zahariadis 2003] Zahariadis, T. B., "Home Networking Technologies and Standards," Artech
House, Inc., Boston - London, ISBN: 1580536484, (2003).

189



APPENDIX A: NASUF USE CASE DIAGRAMS

Start Device
—> Publish Peer
Services
Peer
Connect Device
to the Network

Publish Device
e Capabilty
Advertisement
Device

Figure A.1 Start Device

Description:

This Use Case illustrates a typical scenario when a Device is initially switched on within this
framework.

Connect Device To
The Network
Authentication
User
y
| <<include>>
1
_— Login To sy S Publish Public
Network Key
Device :
E <<includes>
U
Certificate
Authority

Figure A.2 Connect Device to Network

190



Description:

This Use Case illustrates how a device is connected to the network within this framework.

Create Device Capability
Advertisement

Figure A.3 Create Device Capability Model

Description:

This Use Case illustrates how the capabilities of the device are described in terms of the
devices hardware, software and network capabilities within this framework.

Publish Device Capability
Advertisement

Create Device
Capability
Advertisement

<<includess

Context

Manager
Service

Figure A.4 Publish Create Device Capability Model

Description:

This Use Case illustrates how a device publishes a capability advertisement locally and
globally within this framework.

191



Creste Pesr Service

Advertisement

b - - o o

-

Figure A.5 Create Peer Service Advertisement

Description:

This Use Case illustrates how Peer Service Advertisements are created within this framework.

Publish Peer

Context

Service

Figure A.6 Publish Peer Service

Description:

This Use Case illustrates how peer services are published locally and remotely within the P2P
network in this framework.

192



Create Semantic Service
Description

Create
Service
Profile

Create
Service
Process
Model

Device

Create
Service
Grounding

<<include>> !

Map Service
Interface

Figure A.7 Create Semantic Service Models
Description:

This Use Case illustrates how semantic service descriptions are created by devices, which are
explicitly mapped to service interfaces.

Find Core Services

Get Core Service

Figure A.8 Find Core Services
Description:

This Use Case illustrates how a device finds core service advertisements located on the device
and distributed within the P2P network.

193



Discover Peer Service

<<include>>

Digcover Peer
Service Locally

.
]
]
.
'
“
4

—>
Peer
s Bind to Peer
Service
Device
Figure A.9 Discover Peer Service
Description:

This Use Case illustrates how peer services are discovered within this framework.

Invoke Peer Service
Extract Service
Advertisement Build Signature
Device
Figure A.10 Invoke Peer Service
Description:

194



This Use Case illustrates how peer services are invoked within this framework.

%_

Process Service

Figure A.11 Process Service Request

Description:

This Use Case illustrates how a device processes a service request received from the P2P
network within this framework.

Perform Semantic
Interoperabiity
Find Concept.  J__..S Encrypt Data
<<include>>
E <<include>>
<<include>>
) Evolve Concept ) ==-==-23 Merge Concept
Matching
Algorthm
Check Relationship
Between Terms
Figure A.12 Perform Semantic Interoperability

Description:

This Use Case illustrates how the matching algorithms perform semantic interoperability
between terms that are syntactically different but semantically equivalent.

195



Abstract Match

<<inciude>>»

|

i

89 |--
33

Peer 1

Add to Unknown
Term Table

Figure A.13 Perform Abstract Match

Description:

This Use Case illustrates how the abstract matching algorithm matches the Inputs, Outputs,
Preconditions, and Effects (IOPEs) found within both the service request and the service
description within this framework.

Concrete Match

Concrete =5 _sdnclude>> R 0 sdnchiies
Matching : Signature \
Algorthm 1 '

: : |

' ! edncludes> '

' | '

' 1 |

' ' |

0 | )

Perform Semantic Extract “refersTo" Find Atomic
Interoper abiity Element for IOPE Process
Figure A.14 Perform Concrete Match
Description:

This Use Case illustrates how the concrete matching algorithm matches the Inputs and
Outputs found in the service request with concrete bindings found in the service interface
within this framework.

196



Buld Signature
@
Perform Semantic
Interoperability
Extract Parameters
| <<includes>
Concrete
Matching
Match Type Information
- Extract Parameter Order ype
<dincludes> .*
"'
""
Create Signature S YIPR. Find Sl:rer:::uy
<<includes>> v
Figure A.15 Build Signature
Description:

This Use Case illustrates how signatures are built to determine if a concrete match has been
found within this framework.

Find Intermediary Service

Extract Conflicting 10
Name and Type

Concrete

Figure A.16 Find Intermediary Service

Description:

This Use Case illustrates how intermediary services are found and how extended interface
files are created within this framework.

197



APPENDIX B: NASUF CLASS DIAGRAMS

IDiSUSManager
+addApplicationPeerService(service : |AbstractService) : void
+addCoreService(service : |AbstractService) : void
+bindToService(serviceSpec : String, listener : [EndPointListener) : IEndPoint
+changePeerGroup(peerGroup : [PeerGroup) : void
+cleanUp() : void
+discoverApplicationPeerService(id : int, dem : String, pscm : String) : void
+discoverApplicationPeerService(msg : IQueryMsg) : void
+discoverCoreService() : |IAbstractService[]
+getApplicationPeerServices() : |AbstractService(]
+getDependentServices() : |AbstractService[]
+getPeerGroup() : IPeerGroup
+getCoreServices() : |AbstractService[]
+getDCM() : String
+registerService(serviceName : String) : void
+removeAlApplicationPeerServices() : void
+removeAllCoreServices() : void
+removeApplicationPeerService(service : |AbstractService) : void
+removeCoreService(service : |AbstractService) : void
+sendCommand(command : String, endPoint : IEndPoint) : void
+sendResolverQuery(id : String, meg : IQueryMsg) : void
+sendResolverResponse(source : String, response : IQueryMsg) : void
+setDecapResutt(result : IQueryMsg) : void
+startCoreServices() : void
+startServices() : void
+stopManager() : void
+unregisterService(serviceName : String) : void

|

v

DiSUSManager
-coreServices : |AbstractService(]
-applicationServices : [AbstractService[]
-peerGroup : IPeerGroup
-resolverService : |AbstractService

Figure B.1 Distributed Semantic Unstructured Services Manager

Description:

This Class Diagram illustrates the classes used to implement Distributed Semantic
Unstructured Services within this framework.

198



|Advertisement lAbstractService
+getAdvertisementType() : String +cleanUp() : void
+getDescription() : String +getServiceClassAdvertisement() : |Advertisement
+getModulelD() : IModulelD +getServiceSpecAdvertisement() : |Advertisement
+getName() : String +getServicelmplAdvertisement() : |Advertisement
+setAdvertisementType(advType : String) : void +getServiceDescription() : void
+setDescription(description : String) : void +publishService(service : Object) : void
+setModulelD(modulelD : IModulelD) : void +removeService(service : Object) : void
+setName(name : String) : void +startService() : void
+oString() : String +stopService() : void

5 x

AbstractService |
.serviceClassAdv : IClassAdvertisement |~~~ "~ °°° a
-gervicelmplAdy : IServicelmplAdvertisement
-serviceSpecAdy : [ServiceSpecAdvertisement

e

DistrESService SISMService DECAPService

Figure B.2 Peer Service

Description:

This Class Diagram illustrates the required Peer Service class, including its associated
subclasses which must be used within this framework.

IEndPoint IEndPointListener
+close() : boolean +endPointMsgEvent(msgEvent : IEndPointMsgEvent) : void
+getAdvertisement() : |Advertisement
+getName() : String ¢------
+getiD() : String

OutputEndPoint EndPoint Inputinput

U
|
|
v v
10utputEndPoint linputEndPoint
+isClosed() : boolean +poli(interval : int) : EndPointMessage
S v

¢ ; ’ +waitForMessage() : IEndPoint
+send(message : EndPointMessage) : boolean | | o pginthisgEvent(msgEvent : EndPointMsgEvent) : void)

Figure B.3 Endpoint

Description:

This Class Diagram illustrates the classes required for the Endpoints used within this
framework.

199



IEndPointListener EndPointMsgEvent
+endPointMsgEvent(msgEvent : [EndPointMsgEvent) : void

N |

| I
: v
e IEndPointMsgEvent
InputEndPointListener

’___ +gethMessage() : IEndPointMessage
+getiD() : IEndPoirtiD

Figure B.4 Endpoint Listener

Description:

This Class Diagram illustrates the classes required for implementing input endpoint message
listeners within this framework.

IAdvertisement ServiceSpecAdvertisement
+getAdvertisementType() : String
+qgetDescription() : String
+getModulelD() : IModulelD
+getName() : String
+setAdvertisementType(advType : String) : void
+setDescription(description : String) : void
+setModulelD(modulelD : IModulelD) : void ServicelmplAdvertisement
+getName(name : String) : void
+oString() : String

A

Advertisement q_—‘

-advertisementType : String 4
-description : String

-modulelD : IModuleClassID
=

DeviceCapabilityAdvertisement ServiceClassAdvertisement

Figure B.5 Service Advertisement

Description:

This Class Diagram illustrates the required classes to create Service Advertisements within
this framework.

1ServiceClas sAdvertisment

hgetServiceProfileOntoloay() | IProfileiodel
st ServiceProfieOntoloay(profike : IProfileiodel) : void

Figure B.6 Service Class Advertisement

Description:

200



This Class Diagram illustrates the classes required to create a Service Class Advertisement
within this framework.

[ServiceSpecAdvertisement

s getCreaton() . Strina

b aetEndPoirt Advertisement() | IAdvertisement

- qetSpecURK) © String

eaetVersion) | String

+qetihoduleClassiD() | IModuleClassiD

e aetServiceProcessModelOntoloay() : IProces sModelModel
+setCreator(creator : String) © woid

e setEndPointAdvertisement{endPoirntAdvertisement | IAdvertisemet) : void
+setSpecURKur : String) © void

e setVersion{version : String) © void

- setServiceProcessiModelOntology(pm : IProcessModelvodel) : void
- sethboduleClassiDimciD : ModuleClassiD) : void
-addServiceimplementation(si : IModulelmpliD) : boolean

e removeServicelmplement ationdsi | IModulelmpliD) : IModulelmpliD
Ja\

ServiceSpecAdverisement
PEETT T B T R o e Sl
mmmm lAdvertisement V

Figure B.7 Service Specification Advertisement

Description:

This Class Diagram illustrates the required classes to create a service specification
advertisement within this framework.

IServicelmplAdvertisement

qetCode() : String
). IDocument
) © IModulehmpliD
) - String
oundinaiModel() : IServiceGroundinaMode!
setCode(code : String) ; void
ompat{compat : IDocument) : void
moduleSpeciD : IModulelmpliD) : void
uri : String) : void
viceGroundingiModel(model : IServiceGroundinaMode!) : void

- g e . D 1Groundingiodel
: :
M '
ServicelmplAdvertisement
[code - Strina e
: v
IServicelnterface

Figure B.8 Service Implementation Advertisement

Description:

This Class Diagram illustrates the required classes to create a service lmplementatlon service
within this framework.

201



1ServiceOntologyhiodel
eset\Version(version ; String) : void

e setComment{comment : String) : void
getVersion() : String

getComment() : String

toStrinal) : String
praetServiceModel() : 1Servicelodel

Ja)

ServiceModel

Servicelnterface

ProfileModel ProcessModel GroundingMode|

Figure B.9 Service Ontology Model
Description:

This Class Diagram illustrates the required classes to create a Service Ontology Model within
this framework.

1ServiceModel
setPresentsipresents ; IProfileModel) ; void
setDescribedBy(describedBy : IProcessiModel) : void
setSupports(supports : IGroundinaModel) : void
ofileModel() : IProfileModel
etProcessModel() : IProcessModel
oundinaModel() : IGroundinaModel

a

|
|

ServiceModel
LprofileMode! | IProfileModel
LprocessModel : IProcessModel

caroundinaiodel : Groundinatdodel |

Figure B.10 Service Model

Description:

This Class Diagram illustrates the required classes needed to create a Service Model within
this framework.

202



IProfileiode! |Actor
waetinputs() | IParameter(] wsetName(name : String) : void
qetinput(index | inteqer) | Parameter eset Title(title © String) ; void
hetOutputs() ; IParameterf) +setPhone(phone : String) : void
b aetOutput(index | integer) : IParameter setFax(fax . String) : void
wqetPrecondtions() : IParameter(] st Email(email | String) : void
b getPrecondttion(inde x : integer ) : IParameter +setPhysicalAddress(address : String) : void
waetEffects() : IParameter(] setWeblURL(uUr : String) : void
raetEffect() : IParameter qetName() | String
rgetContactinfo( ) : 1Actor raet Title() © String
et TextDescription() : String +aetPhone() : String
et Type() @ String aetFax() : String
kaddinput(input : IParameter) : void aetEmail() : String
raddOutput(output : IParameter) : void raetPhysicalAddress() : String
addPrecondtion({precondition : IParameter) : void aet\WebURL() : String
raddEffect(effect ;. Parameter) : void A
sremovelnput(index : int) : IParameter
rremoveOutput{index : int) : IParameter .
+removePrecondtion(index : int) : IParameter .
wremoveEffect(index : int) ; IParameter 1
bsetContactinfo( descriptor : 1Actor) : void |
setTextDescription{description ; String) : void -
setType(type : String) : void Actor
Emmwv(wvicm : IServicehodel) : void Chame - Sring

Ltitle : String
) Lphone : String
- Lfax : String
ProfileModel _email : String
mg_._lAﬂg__‘ LphysicalAddress : String

Figure B.11 Service Profile Model

Description:

This Class Diagram illustrates the required classes need to create a Service Profile Model
within this framework.

Processiodel

esetDescribes(describes ; IServiceModel) : void
omicProcess(process | IAtomicProcess) ; void
AtomicProcesses() : IAtomicProcessf]
AtomicProcess(index ; integer) ; IAtomicProcess
emoveAtomicProcess(index : inteqer) : LAtomicProcess

A

Processiodel
atomicProcesses : atomicProcessf] |

Figure B.12 Service Process Model

Description:

This Class Diagram illustrates the classes required to create a service process ontology model
within this framework.

203



Input IAtomicProcess Output
#hasinput(y : boolean

rhasOutput() | boolean

hasPrecondtion() | boolean

hasE ffect() : boolean

+addinput(input IParameter) : void
+aetinput(index : int) - IParameter
qetinputs() | IParameter(]

remo velnput(index : int) ; IParameter
HaddOutput(output : IParameter ) : void
aetinput(index : int) : IParameter

aetinputs() - IParameter(]

+remo velnput{index : int) ; IParameter

- addPrecondtion(precondition : IParameter) : void
+qetPrecondtion(index : int) : IParameter

- getPrecondtions() ;. IParamete(]

remo vePreconditionindex : int) : IParameter
v addE ffect(effect  IParameter) : void
raetEffect(index : int) : IParameter
HqetEffects() | IParameterT]
removeEffect(index : int) : IParameter

Py

AtomicProcess

S FR R — gl

Precondition LOl.tDLl : IParameter|] Effect

_’-preconwon : IParameter]] .___
Leffect  IParameter(] |

Figure B.13 Atomic Process

Description:

This Class Diagram illustrates the classes required to create an Atomic Process within this
framework.

Input IParameter Effect
s etName(name | Strina) © void
hsetRestrictedTo(restriction : String) : void
setRefersTol(refersTo ! String) @ void

-rm&:'tbn : String
HefersTo : String
Output Ldomain : String Precondition

H>Hange : String <H
tbarameter Type ; String

Figure B.14 Parameter

Description:

This Class Diagram illustrates the classes required to create a Parameter within this
framework.

204



IGroundingidode!
setSupportedBy( supportedBy IServiceModel) : void
addAtomicProcess{atomicProcess | lAtomicProcessGrounding) | void
AtomicProces s(atomicProcess | 1atomicProcessGrounding) : 1Grounding
AtormicProcesses() | |AtomicProcessGroundinall
emoveAtomicProcess(atomicProcess : IAtomicProcessGrounding) : l1AtomicProcessGrounding

Figure B.15 Service Grounding Model

Description:

This Class Diagram illustrates the classes required to create a service process ontology model
within this framework.

1GH oundry Lasorm: Proces 3G ourvding
o XX ALOMICRT OCmE S ouNaNGl atomicPTocess | LtomicProcwssGrounding) - void et S VICINOLL ) | IS viceiOPar armeter
- Pr G dnalndex : it) Py o ey et S 23 ) voud
P oCm3EH herx : o) cProcesstnoundng -t ServiceOUREAR() | ESer viceiOP o anwter
A b-setSarvicaOutmut( servicaOutput | BarvicslOParametar ) | void
-t Seor vicaOperationd ) © ISer vicaOpwer ation
-~ St Ser viceOper hond Ser viceOper sion | IServiceOperation) - void
. et Sev viceinpathe {) Bervioekhoutih
= St Ser Vicainpatile - | [Sarviceinpatiessace) | vosd
oy roﬁ-m’ viceMes so0e
HemicProcessCroundings . IAtemicPy ocessGroundinall Gt v e OURIAR) - Bar vicehh ) - vod
4
)
[ServiceOpers ation ;
rgetPortTypel) | Sing
L setPoType(porType - Sinad - vold | gl ServiceOperation v
eetOperation() | String Loot Type - Sting roc
LserviceOutiut * [arvicelOP s mwter
Servicekput Medsdge Cervicelle 50 ﬁ‘mm

T :
e, ) ! Ser viceMe ssage

Figure B.16 Atomic Process Grounding

Description:

This Class Diagram illustrates the classes required to create an Atomic Process Grounding
within this framework.

205



1ServicelOPar ameter ServicelOParameter
mmmmwm: int) : IMessageMap }____bmmm:mmm

IGroundingParameter A

eqetGroundinagParameter() : String -
:
1]
]
]
)
i
]
:
]
1
|

b setGroundinaParameter(param - Strina) : void
T

v
GroundingPar ameter Messagehlap
W___’.me : IServiceParameter
%

v

IMessageltap
oundingParameter() : IServiceParameter
viceParameter() . [Servicelnter face AtomicGrouncling FServicePar ameter
setGroundinaParameter(parameter : IServiceParameter) : void wgetServiceParameter() : String
setServiceParameter(parameter : |ServiceParameter) - void e setServiceParamter(param | String) : void

Figure B.17 Service Input/Output Parameter

Description:

This Class Diagram illustrates the classes required to create a Service Input/Output Parameter
within this framework.

206



Servicelnterface Servicelnterface
e addBindinabinding : BInding) : void  [Q -~ === =====~7 [bindings - IBindingl] |
aetBindinas() : Bindinall

qetBinding(index ; integer) : IBinding

PortType Bindling
setOperation{operation | String) : woid LportType : IPortType |
ation() : I0peration
A |
L \"4
_PortType IBinding

Loperation | I0peration +setPort(port Type : IPortType) : void

? HQetPort() : IPortType

- 1Opesr ation
Spea aetinput
" - Message() : IMessage
Hnputhlessage © IMessage - = DhsetinputMessage(message : IMessage) : void

-wpuMessaoe: IMessaqe Message() : Message

setOutputiles sage(mes sage | IMessaqge) : woid
ationName() : String
setOperationName{name : String)
_Message
) ! String
- sm:” =i | _ _ pyhaddMessaqePart(part : MessaqePart) : void
TS - : sacePart(index : irnt) : IMessaaePart
saqeParts() : IMessagePartf]

emovelessagePart(index @ int) | IMessaaePart

IMessagePart
dPutName(): String) id
s name : : VO
] O R sqetParameter() : String
-partName : String +setParameter(param : String) : void
-parameter : String waetParameter Type() : String
3 a +setParameter Type(type : String) : void

Figure B.18 Service Interface Model

Description:

This Class Diagram illustrates the classes required to create a service interface model within
this framework.

207



DeviceCapabilty A dvertisement Component
wqetDeviceCapabiltyProfile() | IDeviceCapabiltyProfile _ _ _ |attribute ; Attributel] |
hsetDeviceCapabiltyProfile( profile : IDeviceCapabiltyProfile) | void

A
s

Aftribute
-description : String
DeviceCapabiltyProfile Lname : String
: . = Fvalue ; String
B R R e IR I T N i e . i | |
\ 4 |
IDeviceCapabiltyProfile \"4
Component() : IComponent |Attribute
setComponent(component : IComponent) : void b qetDescription() - IAttribute Description

+qetValue() © Object
=~ .l risDefault() : boolean
qetAttribute(index : int) : |Attribute hsetDescription(desc : String)

E!lAttrwee() - |Attributel] +setNamel(name : Strina) ; void

1
|
|
|
)
|
: rgetName() : String
1
]
|
|

addAttribute(attrib : [Attribute) : void g --- setValue(value : String) : void
premoveAttribute(index | int) : |Attribute rsetDefaultdefault : String) : void

Figure B.19 Device Capability Model

Description:

This Class Diagram illustrates the classes required to create a device capability model within
this framework.

IDeCapService
+getDeCapAlgorithm() : |Algorithm
+setDeCapAlgorithm(algorithm |Algorithm) : void

I
v
DeCapService IDeCapAligorithm
-demAlgoirthm : [Algorithm (@ ——

Figure B.20 Device Capability Service

Description:

This Class Diagram illustrates the classes required to create the DeCap Service within this
framework.

IDeCapAlgorithm
+checkCapability(params : Object, deviceDeCap : Object, clientDeCap : Object) : Object
i\
|
|
DeCapAlgorithm

Figure B.21 Device Capability Algorithm

Description:

208



This Class Diagram illustrates the classes required to create the DeCap Service within this
framework.

IDistrESService
+getEEAlgorithm() : 1Algorithm
+getEPEAlgorithm() : |Algorithm
+getDistrESOntology() : |IOntology
+setDistrESOntology(ontology : [Ontology) : void
+getUnknownTermTable() : lUnknownTermTable
+setUnknownTermTable(table : lUnknownTermTable) : void
+setEEAlgorithm(algorithm : |Algorithm) : void
+setEPEAlgorithm{algorithm ; 1Algorithm) : void

A

|
1
DistrESService IEPEAIgorithm
-epedlgorithm : IAlgorithm
-eeAlgorithm : |Algorithm
-distresOntology : IOntology
-unknownTermTable : IUnKnownTermTable

A UnknownTermTable
-term : IOntologyClass(]

A

1
IUnknownTermTable

|

I

|

|

|

|

|

|

|
v - -index : int
EEAigorithm +addUnknownTerm(term : IOntologyClass)
+getTerm(index : int) : |OntologyClass

Figure B.22 Distributed Emergent Semantics Service

Description:

This Class Diagram illustrates the classes required for implementing distributed emergent
semantics within this framework.

IEEAIgorithm
+getConcept(term : [OntologyClass) : |Ontology
+getRelationship(x : IOntologyClass, y : I0ntologyClass) : String(]

lUnknownTermTable EEAlgorithm 10ntology |

Figure B.23 Extraction Engine

Description:

This Class Diagram illustrates the classes required for the extracting concepts from the
knowledge base within this framework.

209



IEPEAIgorithm
+evolveConcepts(concepts : 10ntology(]) : IOntology
+mergeConcept(concept : I0ntology) : boolean

A
EPEAIgorithm > 10ntology
v
IMergeAlgorithm

+mergeConcept(concept : IOntology) : boolean

Figure B.24 Evolutionary Pattern Extraction Engine

Description:

This Class Diagram illustrates the classes required to extract common patterns and evolve
knowledge structures within this framework.

. OntologwClass:
sY : IOntoloqyClass - -
Mr waetClass Y() : OntoloayClass

]
L
+getClass Y{class | IOntoloavClass) : void
ClassPropesty - .

Figure B.25 DistrES Ontology

Description:

This Class Diagram illustrates the classes required to describe ontologies within this
framework.

210



ISISMService

+getAbstractMatcherAlgorithm() : 1Algorithm
+getConcreteMatcherAlgorithm() : 1Algorithm
+setAbstractMatcher Algorith(algorithm : |Algorithm) : void

+setConcreteMatcherAlgorithm(algorithm : |Algorithm) : void

A

SISMService

IAbstractMatcherAlgorithm

-abstractMatcher : |Algorithm
-concreteMatcher : |Algorithm

-

'

IConcreteMatcherAlgorithm

Figure B.26 SISM Service

Description:

This Class Diagram illustrates the required classes for performing semantic interoperability.

IAbstractMatcherAlgorithm

+getDistrESService() : |Advertisement
+setDistrESService(service : |Advertisement) : void
+abstractMatch(serviceRequest : IProfieModel, serviceProfile : IProfileModel) : hoolean

Ji

|
AbstractMatcherService

-distres : |Advertisement

IProfileModel

Figure B.27 Abstract Matcher Algorithm

Description:

This Class Diagram illustrates the classes required to abstract match service requests with

service descriptions.

IConcroteMatcherAlgorithm

+getDistrESService() . |Advertisement

+setDistrESService(service : |Advertisement) : void
+concreteMatch(serviceRequest : IProfileModel, serviceClassAdvertisement : |[Advertisement) : |Advertisement

A

A
ConcreteMatcherService

aatre’ Aliverimaint = 1T ETI S TN RET Eg e T TR nEeTe >

IServiceOntologyModel

Figure B.28 Concrete Matcher Algorithm

Description:

This Class Diagram illustrates the required classes to concrete match service descriptions with

signatures in service interfaces.

211



APPENDIX C: NASUF ACTIVITY DIAGRAMS

v

Connect Device
to the Network

Create Device
Capability -——— DC Model
Wodel

Get Service
Deseription

No SQNP')Lls«viee Exists
©<Descnwon Locally Discover Service
S ) Remately
Servicg Exists

-
i3

t

ally

( Publish Service >

1
'
'
A Listeneris an :
end-point that can :
R suns s ether 1 [mTT st ST e Eas
devices,

Figure C.1 Start Device
Description:

This Activity Diagram illustrates what happens when the device is initially started within this
framework.

212



Autherticate User

If Authepticated

Get Certificste |-~ ~ —>>| Certificate

icagte 1= null

Check if Key

; FiA=t
Exists If Key Exists T
|
]
Y
Persist Key Create Key e Key
; Create Key - =>| Advertisement
Sign Key Advertisement
Publish bl
O) Advertisement

Figure C.2 Connect device to the network

Description:

This Activity Diagram illustrates how devices connect to the network within this framework.

213



Create New Device | ) Device Capabilty
Capability Model Model
Create Capability
Profile
| >' Get Capability Componea

Component does
not Exist

Compongnt Exists

(Get Capabiltty Attribute )ﬁ

Attribute does
not Exist

Attribute Exists

Append Attribute
And Value to
Component

Append Componet
to Profile

Append Pofile to
Model

Publish Device
Capabilty Model

Figure C.3 Create device capability model

Description:

This Activity Diagram illustrates how a Device Capability Model is created within this
framework.

214



Y

Create Service Class | _ _ _ _ > Service Class
Advertisement Advertisement
Add Service Profile
to Service Class
Advertisement

Get Service Specification
I Descriptor

Service Specification Exists

Service Specification
does not Exist

Advertisement Advertisement

6“0 Service Specification ). - Service Specification

Service Class

Add Service Process
Model to Specification
Advertisement

Get Service krpbmemmiom [
Descriptor B

Create Serv'lce Service imp 2
Implementation - - = e -
Advertisement

Add Service Grounding
to Service Implementation
Advertisement

Add Service Interface
to Service Implementation
Advertisement

Figure C.4 Create Peer Service advertisements

Description:
This Activity Diagram illustrates how Peer Service Advertisements are created within this
framework.

215



?

Create Peer Peer
bl -~ =21 Service Binding
Start Peer
Service

Peer Service
Not Started

Peer Service Started

Create Peer
Service Advertisements
e )
Service Advertisements |- -~~~ 16 ding
Locally onthe device

Publish Peer
Service Advertisements
Remotely

"R

Figure C.5 Publish Peer Services

Description:

This Activity Diagram illustrates how Peer Services are published within this framework.

216



Create Service _> Service
Profile Profile

Get Next IOPE

IOPE does not Exist

IOPE Exists
Add IOPE to Create Service = > Service Process
Service Profile Process Model Model

Get Next
Atomic Process

Atomic Process
does not Exist

Add Atomic
Process to
Process Mode|

Create Service ! ;
L)( Grolndos } Service Grounding
Get Next
Atomic Process

Atomic Prog¢ess Exists

Add Atomic
Process to
Grounding

Map Atomic Process
to Service Interface

Figure C.6 Create Semantic Models

Description:

This Activity Diagram illustrates how semantic models are created within this framework.

217



Get Core Service
Descriptor File
If Descriptol| File Exists

‘ Get Next Core
Service Descriptor

If Core Service Qescriptor Exists

Discover Peer
Service Locally

Figure C.7 Find Core Services

Description:

This Activity Diagram illustrates how core services are discovered within this framework.

Discover Peer
Service Locally

Cant find
Service Localy _ /” Digcover Service
’deeniaement Remotely
Seryice
Advertisenent Exists :
Service
Advertisement Exists

( Autherticate \ 0
Servi T
rvice J - il

Service Remotely

( Bind To Service - - e

Service Binding

Figure C.8 Discover Peer Service

Description:

This Activity Diagram illustrates how Peer Services are discovered locally and remotely in
the P2P network within this framework.

218



Extract Service
Advertisement

v

Check Invocation
Mode

Mode is Composite

Mode Ig Direct
Extract Composite Extract Direct
Endpoint Endpoint
Bind To
EndPoint
Encrypt Data '
Mode is Composite
Mode ig Direct
Build Signature i
Send Service
Advertisement
And Paramater
Array
Invoke Service )

8

Figure C.9 Invoke Peer Service

Description:

This Activity Diagram illustrates how peer services are invoked within this framework.

219



Extract Service
Request

Get Next Servios )
D ion Locall
——}( i L

No

No M atch F ound

Apstract M isFound

G

No Match Found

Concrete M is Found

=
;

No match can
be found sO
return null

Figure C.10 Process Service Request
Description:

This Activity Diagram illustrates how service requests, received either locally or from within
the P2P network are processed in this framework.

220



Check For Semantic
Relationship

Relationship
Return Semantic
Relationship

Evolved %

e _) Semantic Interoperabilty
Request

Evolved stagus is False

Create Semantic
Interoperability
Request

Propagate Request

Evolve Concepts

Merge Concepts

Evolved Status = True

Figure C.11 Perform Semantic Interoperability
Description:

This Activity Diagram illustrates how semantic interoperability is performed within this
framework.

Get
Relationship(
term([1] term(2]]

Extract Concept

Add Concept to
Response Object

Return Response

Figure C.12 Extract ontological structures

221



Description:

This Activity Diagram illustrates how ontological structures are extracted within this
framework.

Extract LocalConcept
[Terms(]]

Create Term
Collection[LocalConcept,
ResponseConcepts(]]

Extract Next
Term

Term does

Create Rel.
Collection[LocalConcept,
ResponseConcepts(]]

CreateOptimalStructure
[topTerms, topRel |

Figure C.13 Evolve ontological structures

Description:

This Activity Diagram illustrates how ontological structures are evolved within this
framework.

222



Get Next
Term from

Optimal Stucture

Term does
not Exist

Check if Term
Exists in KB

Term Exists

Add Term to
KB

Get Next
Relationship From
Optimal Structure

Relationsihip Exists

Check if Rel.
Exists in KB

Relationship
Exists

Relationship Exists

Add Rel. to
KB

Figure C.14 Merge ontological structures
Description:

This Activity Diagram illustrates how ontological structures are merged within this
framework.

223



Extact IOPE From
> Service Request

|OPE E xats

Extract IOPE From )\
Service Description /‘

‘ Check ifIOPEs exactly MncD No

Perform Semantic
Interoperability

I1E xact Matgh is Found

SetMatched
Statusto True 5 il

B il
I Semantic Relationship is Found

No

AIIOPE s have Processed

Abstradt MatehisFalee
If AN IOPE

()
i

Figure C.15 Perform Abstract Match

Description:

This Activity Diagram illustrates how Abstract Matching is performed within this framework.

224



%GﬂNﬁ'RMTo‘E'm«! )
For 10PE in Serv
s or 10PE in Service P rotle

=

Figure C.16 Perform Concrete Match

Description:
This Activity Diagram illustrates how Concrete Matching is achieved within this framework.

225



Crmmoch

In Service Grounding

\l Confict Not
Extroct Required IOPE From Resolved
Service Request J‘

wroct Required IOPE From

Figure C.17 Build Signature

Description:
This Activity Diagram illustrates how signatures are built within this framework.

226



Extract Required 1O
Name and Data Type

Create Service
Request

Discover Peer
Service Locally

1P eer Service Found

Figure C.18 Find Intermediary Service
Description:

This Activity Diagram illustrates how intermediary services are found within this framework.

227



!

Extract D evice
Capability Model

Extract D evice
Capability P rofile

(mamcm,ocm)

Figure C.19 Device capability matching
Description:

This Activity Diagram illustrates how device capability profiles contained in service requests

are matched with device capability advertisements located on the device, within this
framework.

228



Initialise Result = 0

; Get Next
QoS Parameter
>

O)

Figure C.20 Device capability matching algorithm

Description:

This Activity Diagram illustrates how the device capability matching algorithm works within
this framework.

229



APPENDIX D: NETWORKED APPLIANCES ONTOLOGY

ElectronicHouseholdippliance

ElectricalHouseholdippliance

ol

Householdippliance

ElectricalDevice
l’hy51ca1])evice
Poweredl)e\n.ce
2]
/ Recording0 fWaveIBT
B
SelfPoweredDevice
ComputauonalSystm

Figure D.1 Household Appliance Ontology Portion

Description:

This ontology portion describes the HouseholdAppliance concept within the DistrES
ontology.

Audi, VisualInformationRecordingdevice  Recording0 av-IB'l'

AU S S L eiena Bae wulSystem
ElectricalDevice
RudioTapeDeckMechanism

\\ ’ mmmmmnnco'

muu
nformationRecordingDevice ¥ MagneticDevice
PoveredDevi
WirelessCommunicationDevice Soll i
TelevisionSet ,
____MovieReel
CommunicationDevice s

\I//

E-rﬂst‘tl L Sty Senaniy
Macsurng-bﬁ- e
I 1 't a
m-:-u.ux \

ComputerDisk
lltom
pmxuﬂnwmm hrlou.movu:c Phonogr aphRecord
loxtd:ld.l:)oct ] I\
InformationBearingThing
InformationStore \
Specitication
/ PersonalDigitaliissistant
\

Pager 11DigitalAudioPlayer

Figure D.2 Physical Device Ontology Portion

Description:
This ontology portion describes the PhysicalDevice concept within the DistrES ontology.

230



Ele(:t.rit:a].l{ouselmld.limalia.m:ell

1%

TelevisionSet

[ 3]
\ ElectronicDevice

ElectronicHouseholdippliance

CahleDescrambler \

&)
RecordPlayer

ConsumeriudioVideoComponent

Figure D.3 Electronic Household Appliance Ontology Portion

Description:

This ontology portion describes the ElectronicHouseholdAppliance concept within the
DistrES ontology.

ElectncalDe\n.ce
Householdhppliance
\ Sel trmrednence
__ PhysicalDevice i
PoweredDevice
CmutatxonlSystem

RecordedVideoProduct / /

Recor (llnqﬂﬂhu IBT

. VideoRecordedObject //

L]
MusicVideoCopy
InformationBearingObject

/ /\Jn;coruumo i
MovieReel RAudioRecordedObject

B
InformationStorageMedia \\
RudioClip

Iltomtiomenrimnim“
Rm:or:dmlSoumil'mdnctIi
Figure D.4 Recording of Wave IBT Ontology Portion

Description:

This ontology portion describes the RecordingOfWavelBT concept within the DistrES
ontology.

231



]
PortablehudiocEquipment

Recording0 f‘ihvem-
e ]
& L

SelfPoweredDevice PERPSAGLLAIS e
/ /

Bat termeredDence . PhysicalDevice

Pcmeredbence
Hcme‘l'heaterSystm
Videoscreen “”h"l g Ammoe
lmO’l‘apoDecmachamm Flmu“d_u)e“w
\ Elect ncal}louseholdlpp11ance

1'“’1031'““‘ - ElectricalCmrponent

Antenna
Elect cHo hold.lpp
Headphones Electromchonent ec mm b .
Electroucl)o\nce
// \wmmm
MediaPlayingDevice H‘irelessCmumicationDevice
VideoCamera 'n‘“menm Device
Figure D.5 Electrical Device Ontology Portion
Description:

This ontology portion describes the ElectricalDevice concept within the DistrES ontology.
5]
PortablehudioEquipment
MagmeticDevice

BatteryPoweredDevice

/

- MechanicalDevice — __pm : .
MovieReel SelfPoweredDevice
ElectricalDevice

(.

Physicalbence

Pmredbence

/ \ ){nuseholdlppllam:e-

Recordlnmmavem'l‘ ltationAISystem
Figure D.6 Self-Powered Device Ontology Portion

Description:

This ontology portion describes the SelfPoweredDevice concept within the DistrES ontology.

232



. __BDeviceOn
CommunicationDevice ¥y

PersonalDevice ControlDevice

DiscStorageMediun
\-\ Ilterlet_Lilk-
InformationRecordingDevice —

" PhysicalDevice
|
owl : Thing
MechanicalDevice
AudioRecordedObject
L]
ComputerNetwork
SelfPoweredDevi PoveredDe vl ¢ e
ComputationalSystem
\ / —~——
Recording0 t_ihvem'r\ Router-Network
"""””}m“‘:"" InformatioaBeariagibioct.
BatteryPoweredDevice
Electricallouseholdippliance =
— r 1
ElectricalDevice VideoRecordedObject
/.
ElectronicDevice / \ 8
l:loctx:ical(.‘upomnt

HomeTheate """

Figure D.7 Powered Device Ontology Portion

Description:

This ontology portion describes the PhysicalDevice concept within the DistrES ontology.

233



APPENDIX E: PUBICATIONS RESULTING FROM THIS THESIS

Merabti, M., Fergus, P., Abuelma'atti, O. and Yu, H., "Networked Appliances and Home
Networking," submitted to IEEE Multimedia Magazine, 2006.

Merabti, M., Fergus, P. "A Framework for Self-Adaptive Networked Appliances," submitted
to IEEE Communications Magazine: Special issue on Consumer Communications
and Networking, 2006

Fergus, P., Merabti, M., “Welcome to the Wireless Age,” Review, November 2005, pp.34—
35, Liverpool John Moores University, Liverpool, UK, (November 2005)

Fergus, P., Merabti, M., Hanneghan, M. B. and Taleb-Bendiab, A., "Controlling Networked
Devices in Ubiquitous Computing Environments using Biofeedback," In Proceedings
of The 5th Annual PostGraduate Symposium on The Convergence of
Telecommunications, Networking and Broadcasting, pp.91-96, Liverpool, UK John
Moores University, (June 2005).

Fergus, P., Merabti, M., Hanneghan, M. B., Taleb-Bendiab, A. and Minghwan, A., "A
Semantic Framework for Self-Adaptive Networked Appliances,” In Proceedings of
(CCNC'05) IEEE Consumer Communications & Networking Conference, pp.229-234,
Las Vegas, Nevada, USA, IEEE Computer Society, (January 2005).

Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M., "DiSUS: Mobile Ad Hoc
Network Unstructured Services," In Proceedings of (PWC'2003) Personal Wireless
Communications, pp.484-491, Venice, Italy, Springer, (September 2003).

Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M., "Capturing Tacit Knowledge in
P2P Networks," In Proceedings of (PGNET'2003)The 4th EPSRC Annual

Postgraduate Symposium on the Convergence of Telecommunications, Networking
and Broadcasting, pp.159-165, Liverpool, UK, (June 2003).

Fergus, P., Mingkhwan, A., Merabti, M. and Hanneghan, M., "Distributed Emergent
Semantics in P2P Networks," In Proceedings of (IKS'2003) Information and

Knowledge Sharing, pp.75-82, Scottsdale, Arizona, USA, ACTA Press, (November
2003). '

Merabti, M., Abuelma'atti, O. and Fergus, P., "Networked Appliances and Home
Networking," In Proceedings of The First International Workshop on the Ubiquitous
Home, Kyoto University, Japan, (March 2004).

Mingkhwan, A., Fergus, P., Abuelma'atti, O. and Merabti, M., "Implicit Functionality:
Dynamic Services Composition for Home Networked Appliances," In Proceedings of
(ICC'2004) IEEE International Conference on Communications, pp. 43-47 Paris,
France, IEEE, (June 2004).

Mingkhwan, A., Fergus, P., Abuelma'atti, O., Merabti, M., Askwith, B. and Hanneghan, M.,
"Dynamic Service Composition in Home Appliance Networks," (MTAP) Multimedia
Tools and Applications: A Special Issue on Advances in Consumer Communications
and Networking, vol.31 (1), (December 2006).

Haggerty, J., Shi, Q., Fergus, P. and Merabti, M., "Data Authentication and Trust within
Distributed Intrusion Detection System Inter-Component Communications," In
Proceedings of (EC2ND'05) Ist European Conference on Computer Network
Defence, pp.197-206, University of Glamorgan, UK, (December 2005).

234



