
SELF-MANAGEMENT MIDDLEWARE SERVICES
FOR AUTONOMIC GRID COMPUTING

Wail M. Omar

A thesis submitted in partial fulfilment of the requirements of Liverpool

John Moores University for the degree of

Doctor of Philosophy

February 06

Abstract

Over the coming years, many are anticipating global (grid) computing infrastructures,

utilities and services to play a major role in expediting the realisation of the long overdue

agile enterprise business model. For which global computing environments will be

required to exhibit self-managing capabilities to reducing cost, complexity and improve

dependability. The realisation of such a vision necessitates the addressing of a host of

socio-technical concerns related to software provisioning, assurance and auditing
including; cost of access and o,, Anership, reliability, dependability, interoperability,

ubiquity, security and complexity.

Many commentators contend that the IBM proposed autonomic computing vision will

offer a crucial paradigm shift to delegating vital functions of self-management systems
including: configuration, healing, tuning and protecting to the software itself, along with

curbing the ever increasing complexity. A prevailing design model of autonomic

computing systems is one of a model-based architecture governed by policies via rule-
based meta-systems [1], which provide autonomic capabilities such as; self-

configuration, self-optimisation, self-tuning, self-protective, self-organising, self-

governance and/or self-healing. Whilst, such a rule-based approach has been successfully

applied to support self-managing systems with inherently stable operating rules (and/or

policies), however, more remains to be done to develop a fundamental understanding of

standards, reference models and generic support for self-managing decentralised systems
including an understanding of associated models for rules (policies) evolution and

management.

Concerned with the autonomic software systems engineering, this work focuses on the
development of a generic reference model and generative approaches for open standard

self-managing global computing system. Such proposed models are underpinned by two

existing models, namely; distributed object programming (middleware) and Viable
System Model (VSM). In addition, the proposed model for the global computing

considered the environment as a collection of clouds (zones), which provides a

middleware partitioning abstraction and structuring of application services for improved

control and management of client applications through custornised cloud area policies.

ii

Furthennore, this research presents the generic requirements for tools, services and
frameworks to facilitate the design and development of self-management systems. For

instance, the Assembly Services and Infrastructures Framework (ASIF) with its allied
description language are developed and implemented to offer a fabric for utilising
different types of resources in open standard format. Monitoring model has been

designed in this research to provide the situated autonomic computing with feedback and

context information, from their environment, including instrumentation and sensor data.

In support of the monitoring and awareness services, a Sensor and Actuator Framework

(SAF), together with its associated description languages, have been developed and

evaluated both quantitatively and qualitatively using a range of scenarios applications
including; On-Demand Services, E-health Monitoring System and Monitoring PlanetLab

Environment.

iii

Acknowledge me nts
At the outset, I would like to express my appreciation to Professor A. Taleb-Bendiab
from the School of Computing and Mathematical Sciences, Liverpool John Moores

University for his advice during my doctoral research endeavour for the past three years.
As my supervisor, he has constantly forced me to remain focused on achieving my goal.
His observations and comments helped me to establish the overall direction of the

research and to move forward with investigation in depth. I thank him for providing me

with the opportunity to work with a talented team of researchers. I also would like to

show gratitude to the director of the School Professor Madjid Merabti for his support
during my stay at Liverpool John Moores University.

I would like to express my sincere thanks and gratitude to my father and mother for their

continued support, and my sincere appreciation to my sister Huda and my brother Basil.

I greatly appreciate Dr. Naeem and Mrs. Widad for their help and assists in writing Us

thesis.

Last, but not least, I would like to dedicate this thesis to my family, my wife Asmaa, my
daughter Aya and my son Faisal, for their love, patience, and understanding-they
allowed me to spend most of the time on this thesis.

Wail M. Omar

iv

Table of Contents

Abstract
...

ii
. Acknowledgements

... ...
iv

Table of Contents
.. v

List of Figures ..
ix

List of Tables .. xii
CHAPTER I ... I INTRODUCTION

..
I

1.1. Motivations
...

1
1.2. Challenges

............. ** *----, ---* *"*"*""*'**'******'*'**"*********"""*'**'*
2

: 1.3. Research Hypothesis .. .3 1.4. Approach
...

3
1.5. Contributions

...
4

1.6. Scope ...
6

1.7. Thesis Structure .. 7
CHAPTER 2 ...

10
PLANETARY-SCALE SYSTEM

.. 10
2.1. Introduction ... 10
2.2. Grid Computing

..
10

2.2.1. Grid Computing Components ... 11
2.2.2. Grid Computing Capabilities

.. 12
2.2.3. Grid Architecture Models ... 14

2.2.3.1. Computational Grid
.. 14

2.2.3.2. Data Grid
... 15

2.2.4. Grid Topologies .. 16
2.3. Open Grid Service Architecture

.. 17
2.4. Planetary-Scale Overlay

.. 19
2.5. Summary

... 20
CHAPTER 3 ... 21
SELF-MANAGEMENT SYSTEM

.. 21
3.1. Introduction

... 21
3.2. Autonomic Computing

.. 22
3.3. Definitions ... 22
3.3.1. Autonomic Computing Characteristics ... 23
3.3.2. Autonomic Computing Capabilities ... 23
3.3.3. Autonomic Computing Standards

... 25
3.3.4. Autonomic Computing Interoperability Standards

................................... 26
3.4. Monitoring and Self-Awareness

... 28
3.4.1. Software Instrumentations .. 28
3.4.2. Intelligent Monitoring System

.. 30
3.5. Summary ... 30
CHAPTER 4

... 31
LITERATURE REVIEW ... 31
4.1. Introduction

... 31

V

4.2. Autonomic Grid Computing ... 31
4.2.1. Reference Models ... 33
4.2.2. Design Models .. 36
4.2.3. Developing Autonomic Utilities ... 38
4.3. Autonomic Middleware .. 40
4.3.1. Self-Management Middleware Services ... 40
4.3.2. Management of Web Services .. 41
4.3.3. Software Instrumentation for Planetary-Scale System 42
4.3.4. PlanetLab Software Instrumentation ... 45
4.4. Summary ... 46
CHAPTER 5 ... 47
SELF-MANAGEMENT REQUIREMENTS ... 47
5.1. Introduction

... 47
5.2. Self-Management Model Requirements ... 47
5.2.1. Description Languages .. 47
5.2.2. Frameworks ... 48
5.2.3. Services and Utilities .. 49
5.3. Self-Management Middleware for Planetary-Scale Systems 52
5.3.1. Self-Organising ... 52
5.3.2. Self-Configuration .. 53
5.3.3. Self-Optimising ... 54
5.3.4. Self-Protective ... 54
5.3.5. Self-Healing .. 55
5.4. Design and Implementation Requirements ... 55
5.5. Summary ... 57
CHAPTER 6 ... 59
MODELLING & DESIGN ... 59
6.1. Introduction ... 59
6.2. Planetary-Scale Architecture and Middleware ... 59
6.2.1. Middleware Layer ... 61

6.2.1.1. Serviceware Layer .. 61
6.2.1.2. Core-Functions Layer ... 63
6.2.1.3. Resources Overlay .. 64

6.3. Self-Management Software Design Pattern .. 64
6.3.1. VSM Model: a Brief Overview ... 65
6.3.2. SM-VSM Pattern for Self-Management System 68
6.3.3. Self-Management Viable System Scenario .. 71
6.4. GoF and SM-VSM .. 76
6.4.1. Illustrative Examples .. 77

6.4.1.1. Abstract Factory .. 77
6.4.1.2. Builder .. 81
6.4.1.3. Factory Method ... 82
6.4.1.4. Prototype ... 83

6.5. Summary ... 84
CHAPTER 7 ... 85
SELF-MANAGEMENT MIDDLEWARE SERVICE ... 85

vi

7.1. Introduction ... 85
7.2. Intelligent Web Services Design 85
7.2.1. Machine Learning Utility 85

7.2.1.1. SOM Implementation 86
7.2.1.2. Classification Method Using SOM 86

7.2.2. Regression Analysis Utility 88
7.3. Framework Design for Self-Management System 90
7.3.1. Resources Deployment Process 91
7.3.2. Resources Discovery Process 94
7.4. Monitoring System Model 98
7.4.1. Sensor & Actuator Framework Design ... 102

7.4.1.1. Sensor & Actuator Framework Scenario .. 103
7.4.1.2. Sensors and Actuators Deploying Process .. 105
7.4.1.3. Sensors and Actuators Discovering Process

....................................... 108
7.5. Summary

... 113
CHAPTER 8 ... 114
DESCRIPTION LANGUAGES FOR SEMANTIC SERVICES

................................... 114
8.1. Introduction ... 114
8.2. Assembly Service and Infrastructures Description Language

............................ 114
8.2.1. Assembly Container Section ... 115
8.2.2. Services Section

.. 116
8.2.3. Infrastructures Section

.. 118
8.3. Sensor and Actuator Description Language

... 120
8.4. Monitor Session Description Language .. 125
8.5. Summary

... 128
CHAPTER 9 ... 130
EVALUATION

... 130
9.1. Introduction ... 130
9.2. Methodology ... 9 2 1 Ob i

130

. . . ject ves ... 131
9.2.2. Approach

... 131
9.2.3. Environment

.. 131
9.3. The Quantitative Evaluation

... 132
9.3.1. Requesting Service without Autonomic Computing Capability

............. 132
9.3.2. Requesting Service with Autonomic Computing Capability

.................. 134
9.4. The Qualitative Evaluation ... 139
9.4.1. On-Demand Service

.. 140
9.4.1.1. On-Demand Service Components ... 141
9.4.1.2. On-Demand Service Scenario ... 144
9.4.1.3. Case Study: On-Demand Service for Intelligent Connected-Home
Machines 147
9.4.1.3.1. Generating Training Data for Connected-Home Application

............. 149
9.4.1.3.2. SOM Implementation for Connected-Home Machine

........................ 152
9.4.1.3.3. Results of SOM Classification for Connected Home Machine

..........
154

9.4.1.3.4. Implementation of Service Reservation Unit and Job Schedule Unit for
Connected-Home Machine ... 157

vii

9.4.2. E-Health Monitoring System .. 158
9.4.2.1. E-Health Monitoring System Components ... 159
9.4.2.2. EHMS Model *'*""*"***"*""******""*""*"*""*"***, 161
9.4.2.3. E-Health Monitoring System Scenario ... 163
9.4.2.4. Prediction Service as Web Service ... 166
9.4.2.5. Case Study: Monitoring Pregnant Women ... 168

9.4.3. Monitoring PlanetLab Environment ... 173
9.4.3.1. System Model ... 174
9.4.3.2. Case Study: Monitoring 'Princeton

-
Codeen'Node 174

9.4.3.3. Self-Healing Capability for the PlanetLab Environment 181
9.5. Discussion ... 182
9.6. Summary

... 183
CHAPTERIO

... 184
CONCLUSIONS

... 184
10.1. Motivations and Approach .. 184
10.2. Achievements and Contributions .. 187
10.3. Thesis Summary .. 189
10.4. Conclusion and Discussion ... 191
10.5. Proposed Further Works ... 193
APPENDIX A ... 195
MIDDLEWARE ... 195
APPENDIX B 200
GANG OF FOUR-STRUCTURAL PATTERNS .. 200
APPENDIX C ... 205
LIST OF ABBREVIATIONS ... 205
APPENDIX D ... 207
PUBLICATIONS BY THE AUTHOR ... 207
References ... 209

viii

List of Figures

Figure 2.1: Structure of Computational Grid [30] .. 15
Figure 2.2: Data Grid Architecture .. . 16
Figure 2.3: Grid Topologies 17
Figure 2.4: Structure of the Open Grid Services Architecture [33]

.................................. 18
Figure 3.1: Functional Details of the Autonomic Manager [44]

...................................... 26
Figure 3.2: Autonomic Computing Interoperability Standards [40]

................................. 28
Figure 4.1: Autonomic Computing Vision [59]

... .
33

Figure 4.2: VSM Model [90]
... . 34

Figure 4.3: Adaptation Framework [911
.. .

35
Figure 4.4 A Systems-Oriented Autonomic Design Process [90]

. 37
Figure 4.5: Relationships of the Patterns [971

... .
38

Figure 4.6: S elf-Management System Model [5 11 .. .
41

Figure 4.7: Sensor and Actuator Framework for WSDM ...
42

Figure 5.1: Services and Tools of the Self-Management System
.................................... .

51
Figure 5.2: Self-Configuration Scenario

.. .
54

Figure 6.1: Layers of the Planetary-Scale System ..
60

Figure 6.2: Middleware Layer
..

61
Figure 6.3: Framework Life Cycle ..

63
Figure 6.4: Self-Management Viable System Model ...

68
Figure 6.5: SM-VSM-UML Use Case Diagram ...

71
Figure 6.6: SM-VSM-UML Sequence Diagram ...

74
Figure 6.7: SM-VSM UML-Activity Diagram ...

75
Figure 6.8: SM-VSM-UML Class Diagram ...

76
Figure 6.9: GoF Abstract Factory Pattern ...

78
Figure 6.10: C# Code for Generating an Abstract Factory for Self-Tuning Capability.. 80
Figure 6.11: GoF Builder Pattern

.. 82
Figure 6.12: GoF Factory Method Pattern .. 83
Figure 6.13: GoF Prototype Pattern .. 84
Figure 7.1: A Bock Diagram of a Basic Hebbian Learning Neural Network (SOM) [138]

... 87
Figure 7.2: Using S OM in Preparation S urvey Cy cle [140] ... 87
Figure 7.3: UML Use Case Diagram for ASIF ... 91
Figure 7.4: UML Sequence Business Diagram From Resources Provider Prospective ... 92
Figure 7.5: UML Sequence Detail Diagram From Resources Provider Prospective

....... 93
Figure 7.6: UML Activity Diagram From Resources Provider Prospective

................. * .. 94
Figure 7.7: UML Sequence Business Diagram From Consumer Prospective

.................. 95
Figure 7.8: UML Sequence Detail Diagram From Consumer Prospective

......................
96

Figure 7.9: UML Activity Diagram From Consumer Prospective
................................... 97

Figure 7.10: Monitoring System-UML Use Case Diagram ... 99
Figure 7.11: Monitoring System-UML Sequence Diagram ... 101
Figure 7.12: Monitoring System-UML Activity Diagram .. 101
Figure 7.13: Sensor and Actuator Framework (SAF)

... 103
Figure 7.14: Sensor and Actuator Framework for Planetary-Scale System

................... 104
Figure 7.15: Use Case Diagram for Sensor and Actuator Framework

...........................
104

ix

Figure 7.16: UML Business Sequence Diagram from Monitor Resources Provider
Prospective .. 106
Figure 7.17: UML Detailed Sequence Diagram from Monitor Resources Provider
Prospective

.. 107
Figure 7.18: UML Activity Diagram from Monitor Resources Provider Prospective... 108
Figure 7.19: UML Business Sequence Diagram from Consumer Prospective 110
Figure 7.20: UML Detailed Sequence Diagram from Consumer Prospective Ill Figure 7.21: UML Activity Diagram from Consumer Prospective 112
Figure 7.22: Running On-Fly Sensors .. 112
Figure 7.23: Graphical Presentation for the Collected Data ... 113
Figure 8.1: Assembly Container Tags .. 115
Figure 8.2: Assembly Services ... 116
Figure 8.3: Service's Tags .. 116
Figure 8.4: Services Example ... 118
Figure 8.5: Infrastructure's Tags ... 119
Figure 8.6: Infrastructure Example ... 120
Figure 8.7: SADL Model .. 121
Figure 8.8: SADL Example for Deploying Memory Sensor .. 124
Figure 8.9: SADL Example for Deploying Actuator .. 125
Figure 8.10: MSDL Model ... 126
Figure 8.11: MSDL Example for Requesting Memory Sensor 128
Figure 9.1: Services Requests by the Consumer ... 133
Figure 9.2: User Interface for Consumer Predict Service Profile 135
Figure 9.3: Predicted Services List for Consumer ID 6 .. 135
Figure 9.4: Predicted Services List for Consumer ID 6 .. 138
Figure 9.5: Comparison of the Two Systems (With and Without Autonomic Computing
Service) ... 139
Figure 9.6: On-Demand Service .. 143
Figure 9.7: ODS UML Use Cases Diagram. ... 143
Figure 9.8: ODS-UML Sequence Diagram for Registered Consumer 145
Figure 9.9: ODS-UML Sequence Diagram for Requesting Services By Registered
Consumer .. 146
Figure 9.10: ODS-UML Activity Diagram ... 146
Figure 9.11: ASIDL Example for Deploying Home Device .. 148
Figure 9.12: Screen Shot for Generating Home-Machine Training Data 150
Figure 9.13: Generating Groups ... 151
Figure 9.14: Generating Devices ... 151
Figure 9.15: Generating Data for Training SOM With 1000 Users 152
Figure 9.16: Parameters That is Required to be Added in the Model 152
Figure 9.17: Saving Generated Data ... 152
Figure 9.18: Edit Generating Data .. 152
Figure 9.19: Implementation of the Map Function ... 154
Figure 9.20: Implementation of KNN Classifier for a Given 'P' Vector 154
Figure 9.21: SOM Visual Classification ... 156
Figure 9.22: U-Matrix Distribution of Labels ... 156
Figure 9.23: U-Map of SOM Maps Resulted Data ... 156

x

Figure 9.24: Probability Distribution Function PDF of the Input Vectors 156
Figure 9.25: Service Reservation Unit .. 157
Figure 9.26: Job schedule Unit and Notification Services .. 158
Figure 9.27: E-Health Monitoring System (EHMS)

... 161
Figure 9.28: EHMS UML Use Case Diagram .. 162
Figure 9.29: Zones for Health Monitoring System

... 163
Figure 9.30: E-Health Monitoring System-UML Sequence Diagram 165
Figure 9.3 1: E-Health Monitoring System-UML Activity Diagram 166
Figure 9.32: VB. Net Code for Multiple Regression Web Service

................................ 167
Figure 9.33: SADL Example for EHMS

... 169
Figure 9.34: The available Sensors In The Sensor And Actuator Container

..................
170

Figure 9.35: MSDL Request for EHMS
... 171

Figure 9.36: Generating MSDL Session by the Consumer (Hospital) for Pregnant ID ' 1'

... 171
Figure 9.37: Discovered Resources for EHMS

... 172
Figure 9.38: List of the Requested Tasks by the Hospital

.. 173
Figure 9.39: SADL Example for PlanetLab Environment

.. 175
Figure 9.40: User Interface For Generating SADL in PlanetLab Environment 175
Figure 9.41: MSDL Example for Requesting Resources Within PlanetLab Environment

... 176
Figure 9.42: User interface for Generating MSDL for PlanetLab Environment

............ 177
Figure 9.43: Logger Example for PlanetLab Environment

.. 178
Figure 9.44: Collected Data Inside the Logger for PlanetLab Enviromnent

.................. 179
Figure 9.45: Resources Usage for the "Princeton_Codeen" Node 180
Figure 9.46: Life Cycle for Self-Healing System ... 182
Figure A. 1: Middleware System

... 196
Figure B. 1: Adapter Pattern [13 6] .. 201
Figure B. 2: Bridge Pattern [136]

.. 201
Figure B. 3: Composite Pattern [136]

.. 202
Figure BA: Decorator Pattern [136]

... 203
Figure B. 5: Fagade Pattern [136]

.. 203
Figure B. 6: Flyweight Pattern [13 6]

... 204
Figure B. 7: Proxy Pattern [136]

.. 204

xi

List of Tables

Table 5.1: Requirements for Survival Self-Management Service for Planetary-Scale
System

... 57
Table 6.1: The Major Systems of Viable Systems Model [86] ... 66
Table 8.1: Assembly Container's Tags

.. 115
Table 8.2: DeWls Service's Tags .. 117
Table 8.3: Infrastructure's Tags .. 119
Table 8.4: SADL Tags .. 121
Table 8.5: MSDL Parameters

. ..
126

Table 9.1: Response Time With Out Using Autonomic Computing Service
.................

133
Table 9.2: Response Time for Requesting Services by Job Schedule Unit

...................
136

Table 9.3: Response Time With Using Autonomic Computing Service
........................

137
Table 9.4: Pregnancy Tests ...

168

xn

CHAPTER 1

INTRODUCTION

I. I. Motivations
Driven by modem needs for open standard, dependable and interoperable computing
infrastructure, the e-business community has been instrumental in the convergence of

a number of technologies namely; web services [21, service-oriented architecture [3],

semantic web [4], grid computing [3] and autonomic computing [5]. In particular,

web services standards and models are continuously extended through the necessity
to underpin fast evolving modem business models characterised by global scale

virtual organisations - Agile Enterprises, for which the next generation Internet is

anticipated to provide overlay mechanisms upon existing global computing
infrastructures providing end-users programming, interaction and control models to
develop, deploy and manage their required applications in a timely and seamless way.
In other word, the next generation of Internet will take further steps beyond the
information sharing service that is available now reaching to resources sharing.

However, such a seductive vision comes at a heavy price bringing with it many
technical challenges (Sec. 1.2). Many of which are already under investigation

including: new theories, computational paradigms, languages and implementation

techniques for the design, development, deployment and management of future global

computing environments. Specific to this work, the autonomic computing community
is exploring and developing models to support lifetime management of distributed

systems' by delegating many of the systems management, maintenance tasks to the

software itself including [6]; resource management, services failure prediction, load-

balancing, QoS, services reservations, and resources deployment and discovery.

I

A prevailing design model of autonomic computing systems is one of a model-based

architecture governed by policies via rule-based meta-systems [1], which provide

autonomic capabilities such as; self-configuration, self-optimisation, self-tuning, self-

protective, self-organising, self-govemance and/or self-healing. Whilst, such a rule-
based approach has been successfully applied to support self-managing systems with
inherently stable operating rules (and/or policies). However, more remains to be done

to develop a fundamental understanding of open standards, reference models and

generic supports for self-managing decentralised systems including an understanding

of associated models for rules (policies) evolution and management. In addition, self-

management middleware service for autonomic computing capabilities is addressed

as a vital for producing survival distributed enterprise applications.

1.2. Challenges
Self-management software services are imperative to manage the planetary-scale

system in order to offer high QoS, reliability, resources availability and security. To

achieve these goals, many theoretical and practical challenges need to be addressed in

order to achieve ultimately a comprehensive model of systems' self-management.
These challenges can be addresses as follows:

* Reference models: including software design patterns, baseline architecture

and/or middleware for developers to design, develop, deploy, manage and

monitor self-management system In doing so, there is a need to take into

account the inherent uncertainty, complexity and scalability issues related to

the planetary-scale systems.

Mechanisms: including utilities for structuring and configuring distributed

components in order to form a trusted environment that can provide
guaranteed services to the consumers. To this end, a variety of services, tools

and a framework need to be designed, developed and implemented providing
a set of utilities including:

Normative description of self-management policies and strategies for sensing,
deliberation and actuations.

2

9 Shared interoperation model and protocols for the interchange of systems'

metamodel between different actors.

e Self-management intelligence and anticipatory behaviour to support

predictable system self-adaptation ensuring stability and survivability.

o Refining self-management rules via machine learning.

* Testbeds to demonstrate the autonomic computing capabilities, services, tools

and framework which are corporate together to form an intelligent unit that

can be embedded into any system in order to carry out self-management

services.

* Interoperation standards: including markup languages to support the design

of open standard self-managing systems.

1.3. Research Hypothesis
To insure the dependability requirements of service-oriented networked applications,

while coping with their design heterogeneity, intrinsic complexity and responsive

adaptation to unpredictable network conditions, a novel set of autonomic middleware

services and self-management reference architectural model are required.

Thus, this work's research hypothesis is based on the assumption that well-
established system theory, software design patterns and semantic middleware
services, which can provide a foundation for the design, development and

management of autonomic global computing system.

1.4. Approach
The work described in this thesis aims to investigate the generic requirements for

self-management system for planetary-scale environment development. Moreover, it

attempts to describe services, tools, and frameworks required to run autonomic

computing capabilities in order to achieve the vision of the self-management system.
For theoretical support this work draws on a number of research results emerging
from related fields including:

3

9 Advanced software engineering: using middleware services to bridge the

gap between the network layer and the application layer. The services offered
by the middleware cover discover, deploy and invoke services.

Self-management systems: using proposed models, requirements and

theories to enable software to use real-time monitoring, diagnosis, repair and

control [71 systems to sort out an automated mechanism for managing the

environment according to the nature and boundaries of applications.

In addition, this work in nature follows an experimental research approach, which

starts by a proposal of a new architectural model of self-managing systems, which is

then rigorously designed, implemented and evaluated using a number of case

examples. Throughout the process the proposed model is iteratively refined leading to

a generalise set of requirements, pattern language, ftamework and middleware

services.

1.5. Contributions
This work makes a number of novel contributions towards a better understanding of

planetary-scale self-management system requirements and architectural models, the
detail of which can be found in Chapter 10, and have been (or are being) peer

reviewed for publications [8-22]. These contributions can be summarised as follows;

* Cloud-Based Model for Planetary-Scale System: which provides an

organisation model for widely distributed systems into hierarchical structures
(clustering or zoning) to partition and localise systems control and

management behaviour along self-similarity principles [23,24]. Such model

assists in containment and overcoming the inherent systems complexity due to

heterogeneity, scalability, the chaotic systems and instability behaviour which
is often triggered by self-management processes.

* Self-Management Architecture and Support: This provides autonomic

systems reference model including middleware supports. For instance, they

are employed to carry out the automated and intelligent behaviour required to

perform the self-management activities and improve the performance and

4

ability of the system in the sense of response to different changes in

environment behaviours. This contribution also covers the description of the

interference between varieties of autonomic computing capabilities. In

addition, this work describes the design, development and implementation of

autonomic computing capabilities based on using intelligent services.

* Interoperability Support:

o Services and infrastructures metamodeL to standardised and

systematize the deployed information that is employed to describe the

usability of resources. The developed metamodel is vital to discover a

common language for interoperable information between the resources

providers and consumers. Moreover, Us metamodel offers the

required information for managing the resources container in order to

provide better QoS, fidelity and availability.

0 Distributed monitoring framework. to assist the planetary-scale

rniddleware as well as its applications to audit, manage and control the

resources in order to track any malfunction in the functions of the

system. The monitoring system depends on planetary-scale overlay in

order to provide the required resources for gathering inforrnation and
perform actions in the monitored targets.

o Sensors and actuators metamodel. to structure a semantic way for

deploying, discovering and invoking monitoring resources. Such

metamodel provides the monitoring system with the demanded

information for perfortning the required tasks of selecting and using

monitoring resources.

Self-Managing Software Design Pattern: To achieve the above goals, this

research is built on middleware core services including: deployment,

discovery and invocation together with more advanced services, including:

o The assembly service: containing the service description,

configuration, parameters and execution functionalities.

5

o 7he monitoring system: conmining the deploying, discovering and
invoking of variety of sensors and actuators, which provide monitoring

and actuation capabilities.

o Resources container: to include all types of resources from services

and infrastructures that deployed with the enviromnent.

1.6. Scope

This research has proposed a new self-management reference model to specify and
design autonomic distributed application. This model is build on Intemetworking five

layers model (application, transport, network, data-link and physical layers) with an

adding new layer (middleware layer) to support the deploy, discover, invoke and

manage the planetary scale resources. The middleware layer is proposed to support

the cloud/zone abstraction in order to partition control and management of virtualised

software applications services.

To achieve this model, this work focuses on:

The development and modifying of the Internet model in order to suitable for

the planetary-scale environment and large-scale enterprise applications.

The development of a generic model for self-management service in order to

specify the life-cycle of requesting self-management capabilities by the

environment as well as its applications.

e The development of a services and infrastructures framework that offers a

number of middleware activities which are required to serve the ultimate goal

of self-management system. These activities are deploy, discovery, invocation

monitoring, recovery, management, etc.

The development of a service description model that assists the client to

obtain significant information ftom. the resources container in order to reduce

the response time by increasing the fidelity in selecting the required resources.

e The development of a monitoring framework that provides a fabric for

deploying, discovering, invoking and managing monitoring resources from

6

sensors, actuators and analysers. Such developed frmnework depends on

planetary-scale overlay for providing monitoring resources.

The development of monitoring description model that helps the consumers
(users/ applications and providers) to deploy and discover variety types of

sensors and actuators depending on standard parameters.

The design and development of description model for requesting monitor

session taking in consideration variety of information regarding the duration

of collecting readings, targets, application and requested resources. This

description model assists the consumers in finding standard method for

requesting monitor resources.

The design, development and implementation of intelligent services as web

service in order to be acceptable in the planetary-scale systern. The research
focuses on adopting more than one technique like machine learning and

mathernatic algorithm to carry out the intelligent stuff.

The merger of more than one autonomic computing capability to offer new

structure of the autonomic capabilities that offers comprehensive functions

and features.

The approach for developing the generic model described in this thesis has been

tested in three different enterprise applications, namely: on-demand services, E-

Health Monitoring System, and Monitoring PlanetLab Environment Ihe developed

models, algorithms, services, tools, and frameworks are tested through these

examples (See. 9.4).

1.7. Thesis Structure
This thesis consists of ten chapters and is organised as follows:

Chapter 1, introduces the main motivations of the work, challenges,

contributions and thesis outline.

Chapter 2, introduces the relevant background theories, principles and
technologies relevant to this work. This covers the basic concepts and

7

principles of planetary-scale system through taking grid computing in details

as an example of such environment. Grid computing components, capabilities,

architectural models, topologies and Open Grid Service Architecture have

been presented in this chapter. Moreover, PlanetLab environment is outlined
here, which will be used in Chapter 9 as an additional evaluation case of

planetary-scale system.

* Chapter 3, provides the relevant background for the self-management system

and autonomic computing capabilities including relevant standards and

reference models for autonomic computing.

Chapter 4, reviews the state-of-the-art and related work covering a range of
fields namely: self-management distributed systems, reference models,

autonomic computing applications and capabilities, self-management

middleware services and existing distributed monitoring system. Finally, the

chapter ends with an outline of the main requirements for the proposed

middleware services and associated frameworks.

Chapter 5, describes the overall requirements for designing self-management

model as well as autonomic computing models for planetary-scale systems.
Autonomic computing capabilities for planetary-scale system are also

presented in this chapter.

* Chapter 6, starts by a proposed extension of the OSI network model to support
the new requirements of the global computing systems. This will be followed

by a detailed description of a self-managing software pattern design which is

based on combination of the managerial design pattern of the Viable System

Model and the Gang of Four software design patter.

Chapter 7, demonstrates the required support utilities for self-management

middleware service depending on using autonomic computing. intelligent

web service design, services and infrastructures framework, and sensor and

actuator framework are described in this chapter.

8

* Chapter 8, documents the required description languages to support self-

management system. Assembly Services and Infrastructures Description

Languages, Sensor and Actuator Description Language and Monitoring

Session Description Language are outlined in this chapter.

Chapter 9, describes the evaluation of this work, gives the assumptions of the

previous chapters and uses example applications such as on-demand service,
E-health monitoring system and monitoring PlanetLab environment.

a Chapter 10, presents a summary, achievement and contribution, concluding

remarks and proposed future work.

9

CHAPTER 2

PLANETARY-SCALE SYSTEM

2.1. Introduction

A Planetary-scale (or global computing) system integrates networking,

communication, computation and information to provide a virtual platform for widely
decentralised enterprise applications [6,25-28]. This chapter outlines the basic

concepts of planetary-scale system through a detailed description of grid computing
including; the basic components of grid computing, and architectural grid models.
Moreover, grid topologies are classified in this chapter into intraGrid, extraGrid and
interGrid. Furthermore, Open Grid service Architecture (OGSA), which is the

convergence of grid technology with web service technology, has been introduced in

this chapter. At the end, Planetary-scale overlay is also presented.

2.2. Grid Computing
Over the coming years, many are anticipating that grid computing infrastructures,

utilities and services to become an integral part of future socio-economical fabric.

The realisation of such a vision will be very much affected by many factors including;

cost of access, reliability, dependability and security of grid computing services.
Hoschek [29] defined grid computing as;

"... collaborative distributed Internet systems characterized by large scale,
heterogeneity, lack of central control, multiple autonomous administrative
domains, unreliable components andfrequent dynamic change

Whereas, Berman et al. [3] defined grid computing as;

10

"... The Grid is the computing and data management inftastructure that will

provide the electronic underpinning for a global society in business,

government, research, science and entertainment... "

From the above definitions, the benefits of grid computing to support enterprise
business application are accrued through collaborative distributed resources and
information sharing including; software, hardware and associated content, to build

one large system serving all subsystems and consumers. On the other hand, such

computing models engenders many research problems and concerns that need to, be

addressed including; heterogeneous and decentralized system, dynamic infrastructure,

sharing of resources, security issues, management issue, using different

network/connection protocols, and absence of a common data representation.

The following sections describe grid computing components, capabilities,

architectures and topologies.

Z 2.1. Grid Computing Components

There are numbers of common components that are proposed be available in every
type of grid computing models and architectures [30]. These components are:

9 Middleware: to enable the interoperation of heterogeneous distributed

systems running on different platform and operating system. In addition,

middleware is in charge of interoperable information between different actors

of the environment. Moreover, middleware offers a fabric for monitoring,

controlling and managing the usability of resources within environment, taken
in consideration the level of security of the system. There are different types

of middleware as shown in Appendix A. In this research, Net is adopted as a

middleware for deploying our services, tools, frameworks and infrastructures.

The reason for selecting Net is its ability in dealing with web services in the

sense of deploying, discovering and invoking.

9 Network Communication and Protocols: to facilitate the interaction and
liaising of information from one node to another node. This includes cables
(guided and unguided media), routers, bridges and other network devices. In

11

addition, this covers the required protocols from Network Model [31] that

insures the transfer of messages between the actors of the system.

Services: to offer a layer of services that can be utilised by the consumers in

order to carry out their activities. Services cover all type of business,

commercial, government, health, sciences and other types of services.
Moreover, services provide the required dependences for running the

enterprise applications.

* Infrastructure: to offer a fabric of resources for running distributed

enterprise application. Such resources cover supercomputer, clusters,

software, storage systems, and others.

Consumer: this is expressed as a user, application and/or auditing system.
The consumer is expected to get remote services from the grid computing

environment in order to execute their demands.

2. Z 2. Grid Computing Capabilities

The following describe the important capabilities of grid computing that assist in

clarifying the expected usability of such technology.

Exploiting Resources: As Ferreira et aL [32] pointed out that the ideal use of

grid computing is to run distributed application on different machines. The

machine on which the application is normally run might be busy due to the

peaks in activity; therefore, it could be run on an idle machine elsewhere on
the grid.

Resources Allocation: availability, reliability, interpretability and Service

Level of Agreement (SLA) still need a lot of investigations to demonstrate the

grid computing competence in performing the process of exploring resources.
Resources allocation competence assists the enterprise application in

increasing its fidelity in discovering the required resources.

Parallel Processing: The potential for massive parallel processing is one of
the most attractive features of a grid computing [33]. Such computing power

12

is driving a new evolution in industries like financial modelling, motion

picture animation, and many others that can be partitioned into independently

running parts to reduce the time of processing by splitting the application

among many CPUs.

Running Large-Scale Enterprise Applications: There are many factors to
be considered in grid-enabling an application. One must understand that not

all applications can be transformed to run in parallel on a grid and achieve

scalability according to the fact that not all the programs can be partitioned
[32]. Therefore, the programming direction of using Web services in grid

computing is increasing rapidly [34] because web services are considered as

classes that can be distributed over the grid environment to get more

processing power [35]. The deploying and using of large-scale enterprise

application through grid environment require more investigations to address
the needs for achieving QoS, reliability, security and intelligence (automated)

of such applications.

9 Virtual Resources Collaboration: Another important capability of the grid

computing contribution is the facilitating and simplifying the collaboration

arnong ýa wider audience to give better services. In the past, distributed

computing promised this collaboration and achieved it to some extent [36].

However, grid computing is often presented as the next step towards resources

virtualisation and sharing for the wider community. This assumption

characterised large virtual computing systems offering a variety of virtual

resources.

9 Resource Balancing: Grid computing consists of a huge numbers of

resources from services, infrastructures and networking collaborate together in

order to offer reliable services to the consumers with high performance [32].

Ibus, resources load balancing is required to enhance the utilisation of grid

computing in terms of resources availability, reliability and QoS [36].

Reliability: Ferreira et al. [32] described the reliability of the grid computing

resources as "... High-end conventional computing systems use expensive

13

hardware to increase reliability The reliability of the resources is

discussed ftom two perspectives; a hardware and networks failure and

software services failure viewpoints. The next, gain in building reliable

systems is now focused on software and software services reliability and

resilience. Therefore grid computing emerged to address [33] the development

of low cost high-performance, high-reliable and high-availability computing.

* Management: The goal of the resources availability on the grid is to disperse

information technology's infrastructure and handle heterogeneous systems
[32]. In such heterogeneous, decentralised and distributed information,

administrators (consumers and/or control system) provide the system with

policies, rules and strategies that handle and manage how the different

organisations might share or compete for the resources after getting real-time
information from the web. In addition, grid computing environment is

expected to manage the resources in a way that improve the critical

parameters such as; reliably, fidelity, QoS and others.

Open Standards: The idea is to convince the community of software

engineers currently developing the grid, including those from major IT

companies, to set common standards for the grid up-front. The open standards

community assists the applications to communicate with infrastructures,

services and tools in formalization and semantic ways in addition to offer a

way for describing the use of resources in standard format.

Z 2.3. Grid Architecture Models

It should be mentioned that grid technologies are still in the development and
implementation period but in general, there are different types of grid architectures
has been proposed to meet the needs of variety of business applications [32]. The

following sections describe the common models of the grid computing.

2.2.3.1. Computational Grid

As listed in the grid capabilities above, computational grid aggregates the processing

power from a distributed collection of systems (Fig. 2.1). Ferreira et aL [321

14

categorized the computational grids by a set of primary characteristics, which can be

summansed as:

" Made up of "clusters of clusters", or in another word clouds or zones.

" Enables CPU scavenging in order to provide better utilised resources.

" Provides the computational power to process large scale jobs.

" Satisfies the business requirement for instant access to resources on-demand.

9 Offers a fabric of resources to provide reliable and high performance system.

Luge Scale Sewing Resou
over Gnd

- iRr-11

ýMo . 01

Instant access to resources on demand

A
V

Figure 2.1: Structure of Computational Grid 1321

2.2.3.2. Data Grid

Ferreira ci al. 1321 defined the Data gnds as the Nvay of providing secure access to

distributed and heterogeneous databases. Grid computing offers a fabric for deploying

and accessing different types ofdatabase in semantic format based on utilising XML,

The big database engines like Oracle, SQL Server, My SQL and others have started

15

implementing database grid. Figure 2.2 demonstrates accessing grid database by the

consumer depending on well known standards like SOAP, OLEDB, ODBC and

others.

forumr

Figure 2.2: Data Grid Architecture

2.2.4. Grid Topologies

Figure 2.3 illustrates the topologies which cover the following spectrum of grids 13,4ý

321:

IntraGrids (Cluster Grid): local cluster/farm deployed on a departmental or

project basis which has one owner. It consists of. a single organisation, no

partner integration and a single cluster.

ExtraGrids (Campus Grid): merging cluster z(:,, rids into one campus or

enterprise grid which has multiple owners. It consists of-. multiple

organizations, partner integration and multiple clusters.

InterGrids (Global Grid): merging campus gnds into multiple projects and

global grid across organization which has multiple sites. It consists of., maný

organizations, multiple partners and many multiple clusters

16

Figure 2.3: Grid Topologies

2.3. Open Grid Service Architecture
IBM [351 defines the Open Grid Services Architecture (OGSA) as:

"... a distributed interaction and computing architecture that is based

around the Grid service, assuring inferoperabilily on heterogeneous

systems so that dýl rent types of systems can communicate and share
iqlbrmation...

OGSA is a convergence of grid computing technology with Web Services
Technologý, and standards 13.41. In that, grid computing provides the specification
I'or distributed computation using shared managed resources. While, the web services
specification provides an open standard distributed object and/or service-oriented
programming model. Hence, OGSA specification bridges the gap between grid
service definition (interface) and service hosting discovery and activation.

Figure 2.4, illustrates the OGSA framework structured into a five layered stack
narnely: applications. OGSA, web services, auditing and servi ices [351,

17

Figure 2.4: Structure of the Open Grid Services Architecture [351

Since the release of the OGSA specifications [35] a range of research works emerged

addressing concerns such as; security, distributed resource management, network

management and fault-tolerance [36]. Ferreira et aL [321 suggested that by merging

the grid with the web services technologies, the OGSA increases the data grid

capability in several ways, which are:

Files or databases can seamlessly cover many systems and thus have larger

capacities than for any stand alone systems. Such range or spanning can
improve data transfer rates via the use of striping techniques.

Data can be rnirrored or replicated throughout the grid to other host in order to

support the backup algoriflm and techniques.

Sharing is not restricted to files/directories, but also might contain many other

resources, such as devices, software, services, licenses, and others resources.
These resources are used to give a more uniform interoperability among
heterogeneous grid consumers. The consurners; of the grid can be part of several

actual and virtual organizations. The grid can assist in applying security rules

among the organizations and implement policies, which can assign priorities for

both resources and consumers.

18

2.4. Planetary-Scale Overlay
PlanetLab is an open platform testbed originally set up by Intel etc. to provide a
research testbed for developing Internet, WAN network and global computing

research [37-39]. PlanetLab model depends on location partitioning or zoning where

each region has a central unit known as a Principal Investigator (PI). The latter is

responsible for all the management, control and monitoring processes of the different

components in the considered region. Each of which can aggregate a number of
computer hosts (nodes), slices, slivers, Virtual Servers (VServer), infrastructures,

communications, applications and users [38,39].

Hence, as detailed in Section 9.4.3, the PlanetLab testbed was used to develop sensor

and actuator overlay for autonomic global computing systems. The PlanetLab

currently distributed over 629 nodes published on 298 sites [38]. The PlanetLab

components are [3 8,40]:

* Site: is a physical location where PlanetLab nodes are nmning.

* Node: is a dedicated server that runs components of PlanetLab services.

* Slice: is a set of allocated resources distributed across the PlanetLab overlay.
To most users, a slice means a UNIX shell access to a number of PlanetLab

nodes. After being assigned a slice, a user may then assign nodes to it, and

then virtual servers for that slice are created on each of the assigned nodes.
Slices have a finite lifetime and must be periodically renewed to remain valid.

* Sliver: is a set of allocated resources on a single PlanetLab node.

Virtual Server (VServer): is a Linux server that separates the user-space

environment into distinct units (sometimes called Virtual Private Servers) in

such a way that each VPS looks and feels like a real server to the processes

contained within. Moreover, VServer supports resource limited with Class-

based Kernel Resource Management (CKRM) [41] , and virtually networked

with VNET.

19

Principal Investigator (PI): is an actor that is responsible for managing

slices and users at each site. Pls are legally responsible for the behaviour of

the slices that they create. Most sites have only one Pl.

9 Technical Contact (rech Contact): is an actor responsible for insUlation,

maintenance, and monitoring of the site's nodes.

9 User: is anyone who develops and deploys applications on PlanetLab. PIs

may also be users.

2.5. Summary
As a summary of what has been discussed in this chapter, planetary-scale systems are

expected to support large-scale enterprise applications. Grid computing and OGSA

are employed in order to improve the high-reliability, QoS, and availability along

with reduction the cost of ownership. To achieve these goals, many services and
infrastructure should be used with this framework. Such resources should be managed

well depending on automated way to reduce the interaction of consumers in order to

improve the feasibility of the use of distributed applications. Next chapter descries the

autonomic computing technology which should be adopted and merged with

planetary-scale environment in order to offer self-management services. The

autonomic computing services should be designed and developed as one of the

middleware functions in order to inherit the security and control polices from the

middleware. Moreover, autonomic computing middleware services should depend on

global computing overlay to perform the expected self-management services.

20

CHAPTER3

SELF-MANAGEMENT SYSTEM

3.1. Introduction

Engendered by modem global economy, agility and dependability imperatives for

decentralised enterprise applications require new methods to support their

development and management. This amongst many other drivers has been a

motivating factor to explore biologically-inspired computational models to deal with

complexity, non-determinism, heterogeneity and uncertainty inherent in the design

and lifetime management of large-scale distributed software.

In particular, autonomic computing research is exploring and developing models to

hide the complexity and reduce administration costs of software systems by

delegating many of the systems' management and maintenance tasks to the software
itself including; resource management, job scheduling, services failure prediction,
load-balancing, QoS, resources allocation, services reservations and discovery. A

prevailing design model of autonomic computing systems is one of the models and

goal-based approach, where the rules are developed through a given domain analysis,
data mining and/or heuristics based rules.

This chapter introduces autonomic computing model including: standards,

architectures and key capabilities such: self-healing, self-tuning, self-configuration,

self-optirnising, self-protective and self-organising. All of these capabilities depend

on elaborate mechanisms to imbue a given system's with accurate introspection

(awareness) of the self and its environments, and a perceptual interpretation and
identification of the need to react in a controllable manner to ensure safety and

predictability of systems' behaviour and impact on its environment.

21

3.2. Autonomic Computing

Over the past two decades, whilst research and development yielded much progress
towards continuous improvements of ICT's cost, reliability, security, adaptation to
change [5,42,43]. However, a recent nature-inspired paradigm shift is now driving

research towards imbuing systems with capabilities to self-manage [44].

Self-management depends on a number of factors that specify the policies, strategies

and rules to achieve the required tasks. For example, self-management utilities can

organise a system execution to provide an optimum fault recovery plan, or execution

scheduling for improved QoS. The following sections provide definitions and
descriptions of the core self-management capabilities.

3.3. Definitions
Ganek and Corbi [45] defined the autonomic computing as

"... Autonomic computing represents a collection and integration of
technologies that enable the creation o an information technology ýf

computing infrastructure for the next era of computing-e-business on
demand... "

Murch [46] defined the successful autonon-Ac systems as:

"... The systems that have the ability to manage themselves and dynamically

adapt to change in accordance with business policies and objectives,

enabling computers to identify and correct problems often before they are

noticed by ITpersonnel... "

Tosi [47] defined the autonomic computing system as:

"... The systems that able to limit hands-on intervention in case of

exceptional situations (such as unexpected workload variation, orfailure in

the system, or introduction ofa new component, or new interactions among

components, or external attacks), and the system must be able to modify

own behaviour to adapt to changes that may compromisefunctional or non-
functional correctness... "

22

3.3. I. Autonomic Computing Characteristics

As indicated in [48,49] the five defining characteristics of an autonomic system can
be summarised as follows:

Introspection and self-awareness: where autonomic system requires

reflective and grounding ability to be aware of self and non self, and
distinguish between normal and abnormal behaviour including its structural,
behavioural models and identity.

9 Situatedness: where autonomic system acts in accordance and react to its

enviromnent.

Intentionality: where autonomic system deliberates and acts in a goal-driven

model to for instance to reconfigure to adapt to any unexpected malfunction.

Immunity: An autonomic computing system must be an expert in protection
itself from unexpected attacks. Moreover, it must detect, identify and protect
itself against various types of insecure behaviour in order to superintend the

system to safe situation.

Optimisation: An autonomic computing system anticipates the optimised

resources needed for keeping its complexity hidden from the user in that
implementatiom [50,51].

3.3. ZAutonomic Computing Capabilities

Many published works have identified and in many cases studies a range of

autonomic computing capabilities [46,47,51-53], which can be described as follows:

o Self-Healing capability: which is defined by Tosi [47] as "... a system's

capability to examine, find, diagnose and react to system maýýnctions
Hence, as proposed by Badr et al. [54,55] to ensure predictability and

governance of self-healing systems, their reaction should be controlled by

policy (or norm) specification [45]. In addition, self-healing process consists

of a number of phases starting by monitoring a given systems behaviour,

which is compared to stored normal system behaviour model [47]. If a

23

deviation or anomaly (such as failure) is observed. This will be followed by a
diagnosis of the symptoms and planning the course of action (repair

strategies). Then enacting and validating the repair plan otherwise the self-
healing process starts again.

e Self-Protective capability: which is a system's mechanisms to detect,

identify, anticipate and/or react to protect itself from internal [311 or external

attacks [45] or mal-function. Chess et aL [50] defined the goal of self-

protective capability as: "... The ability of a system to react consistently and

correctly to situations ranging from benign but unusual events to outright

attacks... " [50,56]. Typically, a self-protective capability is responsible for

managing the authentication, authorization and accounting in accordance with

a given Service Level of Agreement (SLA).

Self-Configuration capability: Which facilitates autonomous arnic

change of a system's structural model for instance to add, remove or replace a

set of components in response to a self-healing process [51,56]. As indicated

in [54,55,57] both triggering and affecting the self-configuration should be

governed (regulated) by a policies [47]. For example, in case of overloaded

system, self-configuration capability is in charge of specifying the policies of

embedding new system in order to perform load balancing technique.

Self-Optimising capability: Which facilitates a system to monitor and

autonomously optimise its operation such as resources utilisation,

performance, or other [45,46]. Self-optimising capability depends on the use

of a variety system's metrics and optimisation policies. For example, if the

reliability of the system is the key parameter, then self-optimising service

organises the system to ensure the availability of the service [46]. Thus, self-

optimising should be integrated with other capabilities in order to specify the

objectives of the running environment.

24

3.3.3. Autonomic Computing Standards

The development of autonomic computing standards is acknowledged as one of the

most important enabler to leveraging the development, deployment and lifetime

management of autonomic services in the heterogeneous planetary-scale system. Such

a standard should facilitate the integration and interoperation of cost autonorruic

components. The United States government's National Institute of Standards and
Technology (NIST) [58] notes:

"... Standardy are essential elements of injbrmation technology-hardware,

sqfiware, and networks. ,
Slandard interfaces, for example, permit disparate

devices and applications to communicate and work together. . S'tandardv also

underpin computer security and infi)rmation privacy, and they are critical

to realizing many widespread henefits that advance in electronic and mobile

commerce are anticipated to deliver... "

Representative standards used by an autonomic manager are described as four

functions that share knowledge system [42,51,59-61], which are:

The monitor function: to provide the mechanisms for collecting, aggregating,
filtering and reporting detwls collected from a managed resource.

The analyse function: to provide the mechanisms that correlate and model

complex situations.

The plan function-. to provide the mechanisms that construct the actions

needed to achieve goals and objectives. The planning mechanism uses policy

information to guide its Nvork.

The execute function: to provide the mechanisms that control the execution of

a plan with considerations for dynamic updates.

As shown in Figure 3.1, these four functions work together to provide the control
loop functionality 142,51,59-611. In addition, the four functions communicate and

collaborate with one another and exchange appropriate knowledge and data. Sensors

are employed in this model to collect information frorn the systern or environment.

25

Effectors are used to carry out an action that is demanded by the autonomic

computing services.

AFWIYZJng

s

N.

ýUll ICY'

. oo, Ex, ý. LAMU
ý V.: Tri

Figure 3.1: Functional Details of the Autonomic Manager 1461

3.3.4. Autonomic Computing Interoperability Standards

As shown in Figure 3.2, Miller 142] outlined a set of interoperability standards

required for information exchange, thus open-standard design and management of

autonomic software svstems. The standards are outlined below:

Web Service Agreement (WS-Agreement): defines a taxonomy and

terminology including concepts, overall agreement structure with types of

agreement terms, agreement template Nvith creation constraints and protocols
for creation. and negotiation and renegotiation of agreements 162] needed to

request monitoring resources from sensors and effectors.

Web Service Policy (WS-Policy): provides a flexible and extensible

granimar for expressing the capabilities, requirements, and general

characteristics of entities in an XML Web services-based system 1631. WS-

26

Policy defines a framework and a model for the expression of these properties

as policies.

Web Service Notification (WS-Notification): provides a terminology,

concepts, message exchanges and the WSDL needed to express the

notification pattern, and to provide a language to describe Topics [64].

Distributed Management Task Force Common Information Model

(DMTF CIM): provides a common definition of management information for

systems, networks, applications and services, and allows for vendor

extensions [65]. CIM's common definitions enable vendors to exchange

semantically rich management information between systems throughout the

network.

Web Services Distributed Management (WSDM): manages resources and
Web services. WSDM is defining two sets of specifications, which are [66]:

e WSDM Management Using Web Services (MUWS): defines how to

represent and access the manageability interfaces of resources as Web

services. It is the foundation of enabling management applications to be built

using Web services and allows resources to be managed by many managers

with one set of instrumentation. This specification provides interoperable,

base manageability for monitoring and control managers using Web services.

WSDM Management Of Web Services (MOWS): defines the manageability

model for managing Web services as a resource and how to describe and

access that manageability using MUWS.

Web Service Framework (WS-Framework): is to define a generic and open
framework for modelling and accessing statefull resources using Web services
[67]. This includes mechanisms to describe views on the state, to support

management of the state through properties associated with the Web service,

and to describe how these mechanisms are extensible to groups of Web

services.

27

f; f

4OW""

.

Figure 3.2: Autonomic Computing Interoperability Standards 1421

3.4. Monitoring and Self-Awareness
As indicated in Sections 3.1 and 3.2, autonomic capabilities depend on gathering

systems state data on the self and the environment to deten-nine the required course of

action when required. Hence, in view of the vital Importance of sensing and actuation

the following section discusses monitoring systems and its constituting components

namely software instrumentations (sensors), analysers and actuators.

3.4.1. Software Instrumentations

Software instrumentation is defined as the process of placing probes into software in

order to record data 141. Originally, instrumentation was employed to debug and test

applications that run on single processor machines and for performance analysis of

real-time systems. The parallel computing community later adopted instrumentation

to debug, diagnose, evaluate and visualize parallel applications. More recently.
distributed application developers have recognized the potentials of instrumentation

for dynamic software analysis monitoring and management of distributed

applications.

28

$:

Probably the earliest documented use of software instrumentation was that of

application analysers for monitoring the performance of FORTRAN programs [68].

These application analysers consisted of-

* An instrumentation system

*A monitoring and display system.

Application analysers were used as part of a more comprehensive test environment
[69], and were closely associated (even integrated) with the compiler, through which
they could be switched On or Off by a compiler directive. Two of the main problems

of application analysers, as noted in [69], were:

relied on source code instrumentation, which was not always feasible when the

program relied on additional pre-compiled libraries.

the instnunentation code often affected program. performance, which presented

problems in real-time applications.

Significant advances in the use of instrumentation came from the parallel computing

community through the development of support tools for debugging, evaluating and

visualizing parallel programs [70]. This community applied instrumentation in a

much more structured manner, which followed a "tools" or 'library" based approach
[71]. Heath and Etheridge [72] listed the visualization tools, which were usually
based on GUIs developed using graphics libraries such as OpenGL, TcM and
X/Motif that provided the user with a consistent view of the application and its

environment. Performance, which is significant in parallel programs, was evaluated

using unobtrusive instrumentation that did not carry an additional computational

overhead. The parallel computing instrumentation tools were capable of

synchronizing with applications and providing limited interaction facilities, but they

were still generally static in nature. Static instrumentations are useful but not enough
to record all changes of the environment. This fact is noticed by many developers and

researchers who have recognised the vital of providing dynamic instrumentations to

support the planetary-scale environment.

29

3.4.2. Intelligent Monitoring System

Most of the monitoring systems nowadays are "dumb" systems that depend on the

monitoring system requester to provide the policies and rules for performing the job.

While such monitoring system should sense and report changes in the environment in

accordance with a given gauge (normal operation specifications), the generation of

new or modified specifications of normal operation and/or monitoring policies are not

supported. Therefore, research is required to address the evolution and intelligence of

autonomic monitoring systems [46,48,51,73].

3.5. Summary

In this chapter, the vital need for self-management system is presented in order to

generate survivable systems that are able to handle unexpected behaviours and/or

activities of the environment. Autonomic computing is anticipated to carry out

automated and intelligent jobs that are required for performing self-management

system. The standard model of autonomic computing has been defined which consists

of four basic functions, which are: monitor, analyse, plan, and execute functions. The

self-management systems and autonomic computing capabilities are adopted in many

enterprise applications, next chapter present literature survey of these applications.

30

CH"-TER 4

LITERATURE REVIEW

4.1. Introduction
The development of the proposed self-management model presented in this thesis was
inspired by previous works and based on a number of techniques emerging from

distributed software engineering. Hence, as a convenient approach to presenting the

landscape of previous and related work the review is structured into four main areas
including:

* Planetary-scale enterprise applications: focusing on the use of grid computing
to support large scale enterprise application.

* Autonomic computing: focusing on the work that addressing the autonomic

computing capabilities.

* Self-management middleware: emphasising on the existing approaches and

models for self-management middleware.

* Software instrumentation: concentrating on the existing monitoring resources
for the Grid computing and PlanetLab environment.

The Chapter concludes with an outline of the main requirements for designing self-

management viable distributed system

4.2. Autonomic Grid Computing
Grid computing has been applied in a number of domains including;

Health informatics; for instance to support not only computation intensive

medical data mining and analysis, but also to enabled healthcare applications

31

to access and store clinical decision making data [74]. The most interesting

benefit for the e-health applications is in the development of business

processes provided by healthcare organizations to improve patient healthcare

[74]. This is employing sensors technology for remote patients' health

monitor. Where planetary-scale system (grid computing) provides a platform
for storing and analysing high dimensional data such as cancer data [75]. Such

projects are the e-Diamond project [75], InSiteOne (Digital Image Storing and
Archive Service) [76] and 2nrich [77].

Bioinformatics: typical bioinformatics databases can reach terrabytes in size,

which lends itself to the application of high performance information storage,

search and retrieval. A number of bioinformatics projects applying grid

computing include; Folding [78], Protein Data Bank (PDB) [79] and Gene

Expression Database (GXD) [80].

Physics and astrophysics: these communities used grid computing to support

computation intensive analysis and experiments. Moreover, such framework

provides tools and services for education and outreach web site is primarily
designed to promote learning into a scientific program of participating physics

and astrologic. Such grid computing projects are GriPhyN [81], Large Hadron

Collider (LHC) [82], iVDGL [83], AstroGrid [84], and VISTA [85].

Evidently, the next maturity step up of most of the above described research-based

grid applications will require high-availability, assurance, security guaranties, which

should require autonomic and self-managing support for instance;

" to fault diagnosis and recovery

" To tune and adjust its performance

" To audit service usage in accordance to customers contract and policies

" To protect the applications from intemal/extemal attacks.

41, Autonomic computing vision has been embraced by many grid computing

research and development communities. For instance, major IT players
including; Sun Microsystems, Hewlett-Packard and IBM reported that the

32

approach is leading to improved high-availability, whilst reducing IT

operation and administration costs [86].

4.2.1. Reference Models

As discussed in Section 3.3.3, the IBM blueprint is one of the widely known

autonorruc computing reference model, NN,, hich is described by Fellenstein [51 as:

"... an overview of the basic strategic prospective, architectural concepts,

technological constructs, and behaviours oj'building autonomic capabilities

into on demand Operating Environment... "

Q-9.0199-1 r-t-I LIp

Figure 4.1: Autonomic Computing Vision 1591

The IBM blueprint has been promoted by the Company itself as a key instrument for

understanding and supporting the requirements of the "on demand business" strategy
151, which will engender a new level of integration between the processes and

applications inside the businesses' applications. Such integration will power e-
business applications and environments (Fig. 4.1).

33

However, IBM blueprint requires further investigation to define a number of aspects

including, (i) how to specify and operate policies-based autonon-uc systems'

governance, and its interplay with systems deliberation (decision-making) [5,15,17].

(11) How to insure interoperability and information exchange between the different

actors of a given systern while ensuring security and pnvacy. (111) How to collecting,

analysing and filtering readings, and enable interaction between autonorrtic

computing components and its environment.

Many other research reference models have been proposed such as, Kinesthetics

eXtreme (KX) Architecture [87] and J-Reference [88]. The latter was an extension of

the managerial cybernetics model -- the Viable System Model [891. The latter

identified the necessary and sufficient communication and control systems that must

exist in any organization in order to survive with a changing in environment. In doing

so. the model did not attempt to specify the activities that must occur in each system.

Instead, activities were typified by a cybernetic rationale to allow either the design of

the activities to match the cybernetic critena or for actual activities to be identified by

their system types and hence assigned to the appropriate element of the model.

Figure 4.2: VSM Model 1901

The six major systems described by the VSM Nvere (Fig. 4.2):

System one (Sl)- Operations

34

9 System two (S2) - Coordination

System three (S3) - Control

System 'Ibree * (S3*) - Audit

System four (S4) - Intelligence

System five (S5) - Policy

Such a generalized approach allows the model to be applied to any organization

regardless of size, structuring and guarantees monitoring, diagnosis and re-planning
to adapt to change - hence, this model as argued by Laws et al. [88,90] provides a

suitable design model for self-managing systems.

Many other research results proved key advancements in the understanding of design

requirements of the different autonomic capabilities. For instance, Garlan et aL [91]

developed another architectural model for self-healing systems, based on monitoring,

problem detection and repair. The use of architectural models as the centrepiece of

model-based adaptation had been explored by a number of other researchers [92].

Figure 4.3: Adaptation Framework 1911
As illustrated in Figure 4.3, this architectural model provided support for runtime

monitoring and software transformation to support self-healing. For instance, the

architecture consists of an executing system (1), which is monitored to observe its run
time behaviour (2). Monitored values are abstracted and related to architectural

35

properties of an architectural model (3). Changing properties of the architectural

model trigger constraint evaluation (4) to determine whether the system is operating

within an envelope of acceptable ranges. Violations of constraint are handled by a

repair mechanism (5), which adapts the architecture. Architectural changes are

propagated to the running system (6).

Badr [7] extended current models of self-adaptive software and reflective middleware

with deliberative control mechanisms, which led to the proposal of a novel autonomic

control middleware. This is to support the design and lifetime management of for

deliberative middleware and application services. The developed approach was used

as a reference model to facilitate a normative self-govemance model that supports the

safe self-adaptation of distributed applications for lifetime application management.

Pereira [93] used the VSM model to describe the fundamental requirements for a

software framework and associated middleware services in order to develop on-
demand application services based on employing self-healing capability. Moreover,

she provided 'better understanding of software self-healing requirements for

autonomic distributed software engineering, where she presented a reference model
for self-healing capability.

4.2.2. Design Models

Bustard et aL [941 proposed an autonomic software design model based on an
integration of Checkland's Soft Systems Methodology (SSM) [90] and Beer's Viable

Systems Model (VSM) [95,96]. The SSM offers a systematic and systemic structure

with which to unravel complex situations using basic principles of system thinking.
As shown in Figure 4.4, the model follows a top-down approach in a number of

stages including;

Environment Design: This is achieved using SSM method, which refined

using the VSM model.

System Design: which is achieved using a combination of methods including

SSM and other computing-oriented modelling techniques such as; UML or

36

Other Design Technique (OD'I). Again this design can be tuned by evaluating
it with respect to VSM in the fourth and final stage.

Figure 4.4 A Systems-Oriented Autonomic Design Process t901.

The proposed model makes reference to the need for appropriate design pattern,

similar to Herring [971, which concentrated on the technical aspects of software

viability. The latter is defined as the quality a software system has if its architecture

can be adapted over time by humans (adaptable at design-time) toward becoming an
"intelligent" control system (adaptive at runtime). The Viable System Model was
described using Alexander's pattern language [98] form and related to software

architecture. This pattern language showed how software may be evolved to be

viable. As illustrated by Figure 4.5, the patterns can be outlined as follows [97]:

Separate Control: is the "redundancy" needed by the system to maintain stability

within the environment.

Operational Control: caters to the immediate needs of the system.

Regulator Centre: maintains schedules of activities and provides for coordination of

system activities with other related systems.

Sporadic Audit: verifies that all is as it should be relative to its directives.

37

Adaptive Control: focuses on the extemal aspects of the system. This function

anticipates future states of the environment in which the system is embedded.

Supervisory Control: it constrains the possible actions of Operational and Adaptive

Control to be consistent with overall, long term purposes.

Alerts: provides a mechanism for "lower" systems to communicate special conditions

and emergencies.

Recursive Composition: is indicated in the inset to the right of the main figure.

Homeostatic Loop: is used to join all elements together.

conw (1)

tay C"nw (6)

Ld

AZda; -ý

Environment %--ý Operatialw
CWjul (2)

Audi

Process
Or

Object of Control

Re=-, qve COTPOOMS (8)

Figure 4.5: Relationships of the Patterns [971

Herrings [97] and Pereira [93] provided a substantial insight into the requirements

and exemplar software design patterns for some autonomic behaviour. However, it is

difficult to assess their coverage and applicability to runtime adaptation issues of

complex systems, that is, for widely distributed and heterogeneous systems.

4. Z3. Developing Autonomic Utilities

Much research is now underway to study the use of machine learning techniques to

support the task of self-management, self-configuration, self-protecting, and other

38

general QoS improvement For instance, M. Chen et aL [99] reported on their

application of the C4.5 decision tree algorithm and data mining to categories causes

of failure in large Internet sites such as eBay. Such failure had been recognized by

many researchers. They showed the importance of using autonomic computing

system for recovering such failure [93]. G. Candea, et aL [100] presented an
Automatic Failure-Path Inference (AFPI) as an application-generic and automatic

technique for dynamically discovering the failure dependency graphs of

componentized Internet applications. They focused on applying AFPI to applications
built on Java 2 Enterprise Edition middleware. AFPI-generated f-maps (fault-routes

map) correctly omitted dependencies that appeared in the static call graph but did not

result in observed fault propagation at runtime.

The accuracy of applying autonomic system using machine learning or data mining

algorithms for large, distributed, and dynamic application environments is one of the

critical problems. M. Chen et aL [1] presented a dynamic analysis methodology that

automates problem determination in these environments by 1) coarse-grained tagging

of numerous real client requests as they travel through the system and 2) using data

mining techniques to correlate the believed failures and successes of these requests to

determine which components are most likely to be at fault. They implemented

Pinpoint, a framework for root cause analysis on the J2EE platform that requires no
knowledge of the application components. In large scale system, 'there is an

expectation for large number of failure services; this produces the demand for failure

management system. M. Chen et aL [101] presented a new approach to manage
failures and evolution in large, complex distributed systems using runtime paths.
They used the paths that requests follow as they moved through the system as their

core abstraction, and their "macro" approach focused on component interactions

rather than the details of the components themselves.

Kumar et aL [102] presented a self-adaptation algorithm that has been designed to

scale efficiently for thousands of streams and aims to maximize the overall business

utility that attained ftorn running middleware-based applications. They were focusing

on the scalability and decentralised factors in designing their algorithm. From self-

reconfigure middleware prospect, V. Kumar et aL [102] presented a self-adaptation

39

algorithm to increase the flexibility of the nuddleware to react for changing in the

network conditions and business policies. The), used hierarchical node partitioning

scheme to deal with the scalability and decentralized system. But according to the
lack of control unit in the existing infrastructure (Internet), this algorithm still has a

gap in the real world of dealing with non-autonomous system.

4.3. Autonomic Middleware
Autonomic middleNvare can be characterised as a specialised middleware, which can

provided autonomic capabilities' to distributed applications including legacy to

exhibit self-managing behaviour 15].

4.3.1. Self-Management Middleware Services

Self-managernent middleNvare service is about shifting the managing burden of

planetary-scale systems from people to technologies 159]. In additioril, many

researchers have highlighted the needs for self-management nuddleware to improve

the systems' reaction to expected and unexpected changes in the planetary- scale

systems. Blair et al. [1031 described the use of self-management in the automatic

(re)configuration of overlay networks, which was achieved using reflective

middleNvare services. Others, Babaoglu et al. [104] described a proposed load-balance

protocol for self-managing distributed systems. This was illustrated via a simple

experiment that consists of injecting components (like monitoring, searching.

clustering, control and sorting) that trigger and test the load-balancing protocol. As

illustrated in Figure 4.6, and concurring with results presented in Kephart et al. [5 1

Wail ef al. 115.171, this work identified a set of mechanisms necessary for self-

management including. control loops, resource management and measure, and 4: 1

analysis and decision making units.

' Capabilities such as scif-healing, management, etc.....

40

........................

De, c. ide
II

mom

Figure 4.6: Self-Management System Model 1511

4.3.2. Management of Web Services

Recent research highlighted the need for interoperation standards and reference

models to support the management of decentrallsed Nveb services and remote

resources 112]. A number of interoperation models already existed in the public

domain including, integration middle laver architecture 11051, data interchange

standards 1106,1071 providing via serviceware which is an integration layer between

systems' managements and managed resources. Hence, Web Services Distributed

Management (WSDM) had been proposed and developed to provide a standard for

distributed Nveb services management 11081. Based on web services protocols and

standards, WSDM enables for instance: the remote resources management and

control. As described by 1109,1101, WSDM consists oftwo specifications, namely;

NN'SDNI Management Using Web Services (MUWS); which defines how to

represent and access the manageability interfaces of resources as Web

services. Moreover, it provides a standard management event format to

improve interoperability and correlation.

WSDNI Management of Web Services (NlOWS), which defines how to

manage Web semices as resources and how to describe and access that

manageability based on using MOWS. In addition, MOWS provides

mechanisms and methodologies that enable manageable Web services

applications to interoperate across enterprise and organizational boundaries.

41

Arguably, WSDM requires a range of sensors and actuators in order to auditing,

analysing and managing remote resources, as shown in Figure 4.7. Though, WSDM

does not define yet a standard for sensing and actuation, or a related framework.

Though, this is a fertile area of research, and many research frameworks for sensor

and actuator already existed 113,14,20,111].

. Manage

WSDM
Request for
Monitoring System

II, (MSDL)
Deploy

resources
(SADL) Sensorand

Actuator
............. Framework

Resources

Sensor & Collect reading
Actuator and provide It to
Providers WSDM

Figure 4.7: Sensor and Actuator Framework for WSDM

4.3.3. Software Instrumentation for Planetary-Scale System

Much \\ork related to systerns monitoring for grid computing is now widely

published 120,1121, describing numerous monitoring models including heart beat

monitoring, on-fly monitoring, and other type ot'd), namic monitoring model . Reilly

and Taleb-Bendiab 11131 described a dynarnic instrumentation framework, which

provided support to monitor and manage Jim 1114] applications based on-the-fly

monitoring model. The framework adopted a service-onented programming model

and the software factory pattern to dynamically generate specific instrument types,

N\hIch were deployed and interfaced to client services via Java's dynamic proxy API

and Jim's remote event. This enabled on-dernand insertion and removal of

instrumentation services. Other types of' monitoring system are presented in the

following typesý

42

visPerf. - is a type of monitoring system for Grid computing in which several

computing entities are used to solve a computational problem with parallel

processing and distributed computing components. Initially, this work was

executed as a simple monitoring capability for a specific system, NetSolve

[115]. But it can be extended to provide a monitor for Globus, Condor,

Legion, Ninf and so forth, on a UNIX operating system [112]. visPerf has

different design for monitoring activities using a Grid middleware's
dependent information via direct and indirect interfaces. visPerf works by

visualizing the activities of the working system and displaying useful
information on the system plus performance information in a simple and

practical way.

e Globus Heart Beat Monitor (HBM): is a monitor component that is to detect

faults of a computing resource involved in Globus [112,116]. It works by

checking the status of a target host and sends it to a higher-level collector

machine. HBM has a level checkpoint mechanism, which is an application
that is also worked as a fault-tolerance mechanism and can be used by other
Grid nýddleware such as NetSolve.

GridMonitor Java Applet: is a kind of monitoring for Globus system [112,

116]. It shows the Grid information and server activities and status for all sites

which registered with Globus Metacomputing Directory Service (MDS) and
Java Agents for Monitoring and Management (JAMM) [117]. JAMM is an

agent-based monitoring system for Grid environments that makes the

automation and execution of monitoring sensors possible and it works to

collect the event data. It supports the system's activities and general

performance including network traffic and hardware resources usage like

CPU. An alert service is also embedded to this type of monitoring in order to

notify the thinking system in case of overloaded.

Grid Monitoring Architecture (GMA): is employed to monitor the

resources usages over the grid, such as: memory, network and applications

usages [4]. The collected data is converted by the 'ýproducer" to data events.

43

GMA is supporting both a subscription model and a request/response model.
The unique feature of GMA is that performance monitoring data travel from

the producers of the data directly to the consumers. The GMA architecture

specification ignores many details that are necessary to build interoperable

monitoring systems. Several researches and projects groups are now
developing monitoring services depending on this technique and architecture,

such as R-GMA (relational OMA, and it called so because it uses a relational

model for all data and uses tables to organize the Grid entities data), Remos,

and TOPOMON [4].

9 Windows Management Instrumentation (WMI): that consist of three parts

which are [I I I]:

o Management Infrastructure: There is an object manager, called
Common Information Model (CIM) which is used by the consumers in

order to do the communication process between management

applications and providers.

o Managed Objects: Management applications get access to manage

objects using the CIM Object Manager.

o RM Proidders: WMI providers are components, which supply
dynamic management data with the required information regarding

managed objects, handle specific object requests, or fire WMI events.

Application Center (AC): is designed specifically for e-site management,

which cover the Web server and Web farm applications, in addition to Web

Services deployment [111].

Microsoft Operations Manager (MOM): is further more of a common

purpose management and monitoring tool. It is used to monitor BizTalk

Server environments, or SQL Server [I 11].

* Enterprise Instrumentation Framework (EIF): is a framework- technology
for monitoring and troubleshooting high-volume systems and distributed

environments for Microsoft Windows environment [111]. OF works with

44

Application Centre (AC) and Microsoft Operations Manager (MOM) hand-

by-hand, providing a standard data for event management, tracing and logs.

4.3.4. PlanetLab Software Instrumentation

PlanetLab environment is designed and developed in order to offer testbed tools for

carrying out research on web development [38,118,119]. Therefore, much work
focused on systems monitoring including; tools and services for PlanetLab in order to

offer a fabric for follow-up the developed services. Different types of sensors"

services and API such as; CoMon [120,121], Ganglia [39], iPerf [122] and IrisLog

[123] are available for this environment. These are used to provide instrumentation

data from the resources such as; processor, process, memory, transmission rate,
bandwidth and other networking services. Other tools, such as; Node List [124],

Trumpet [1251, and SWORD [126] are used to provide the availability guarantied and

status information of available nodes (hosts) that registered with the PlanetLab

environment.

Chun et aL [37] described the initial implementation of PlanetLab, including the

mechanism used to implement virtualization, and the collection of core services used
to manage PlanetLab. While, Matthew et al. [127] presented the design,

implementation, and evaluation of Ganglia, a scalable distributed monitoring system
for high-performance computing systems. Chen et al. [128] tried to employ these

resources for presenting an algebraic approach for adaptive scalable overlay network

monitoring. On the other hand, other works focused on sensors discovery

mechanisms to support fault-tolerance of heterogeneous distributed systems. For

instance, Karuppiah et aL [129] discussed the design of a distributed vision system
that enables several heterogeneous sensors with different processing rates to exchange
information in a timely manner in order to support the tracking of multiple human

subjects and mobile robots in an indoor smart environment.

45

4.4. Summary

This chapter reviewed the current and related research to self-managing global

computing systems including; research relevant to reference models, required
infrastructures and middleware services, and management requirements.

Whilst, much progress has been made towards improved understanding of self-

management system, though much work is still required to support large-scale

(planetary-scale) self-managing systems [31]. For instance, to understanding design

and/or manage planetary-scale system.

This chapter also investigated variety of approaches which are used to implement

autonomic computing capabilities. Ibis led to the definition of generic requirements
for self-management, which will be described in details in Chapter 5.

46

CHAP-TER 5

SELF-MANAGEMENT REQUIREMENTS

5.1. Introduction

A prevailing design model of autonomic computing systems is one of a goal-oriented

and model-based architecture. Wherein, rules elicited from domain expert through

traditional knowledge engineering techniques and/or domain analysis are embedded
in meta-systems to provide self-management behaviour including [130]; self-

protective, self-optimization, self-tuning, self-configuration, self-governance and/or

self-healing. Such a rule-based (or policy-based [1,54]) management approach as

reported by many [5,54,55,93] is appropriate for systems' self-management with
inherently stable operating rules (and/or policies).

This chapter describes the general requirements for designing self-management

system. This will be followed by a description of different autonomic computing

concepts, as well as, tools, services and frameworks which are required to perform the

expected job from self-management middleware system.

5.2. Self-Management Model Requirements
Self-management middleware service is here proposed to imbue heterogeneous

distributed software applications with autonomic capabilities. Such a self-

management middleware service requires the integration and access to a range of

utilities, metamodels and frameworks, each of which are outlined and detailed below.

5.2.1. Description Languages

Different types of description languages are required to facilitate open standard
interoperability and information exchanging between the different components and

47

users of an open large-scale and widely distributed system These types of description

languages are used to exchange information between:

e Different types of middleware

e Consumers and middleware

9 Resources provider and middleware resources conminer

9 Nfiddleware and resources

o Nliddleware services and auditing systems

5.2.2. Fra me wo rks

In this work a set of software frameworks are required to extend the core middleware

services with self-management application services including; dynamic application

services assembly, activation and deployment, and sensing and actuation for self-

awareness and introspection. These frarneworks can be surnmarised as:

Assembly Services and Infrastructure Framework (ASIF): provides the

fabric for deploying, discovering, invocating and managing services and
infrastructures. These resources amalgamate together in order to perform the

required tasks for the consumers taking in consideration the high availability,
fidelity, QoS and reliability of the resources along with reducing cost of

ownership.

Sensor and Actuator Framework (SAF): provides a layer for monitoring

and controlling planetary-scale system by offering variety types of monitoring

resources from sensors, actuators and analysers services which are provided
from different vendors. Moreover, such framework provides standard logger

system, which in its turn represents a fabric for collecting readings in semantic
format in order to be delivered to the constuners.

One of the main objectives of the suggested frameworks is to improve the fidelity of
discovering resources according to the searching parameters. Sensor and actuator
fidelity, robustness and assurance are some of the major concerns considered by the

proposed and developed sensor framework. Such concept are borrowed from those

48

developed by the intelligent systems engineering community including; self-

convergence, self-optimisation, self healing and self-adaptive.

Many critical concerns in the sensors and actuators overlay are the on-demand

selection and access to the correct monitoring resources type for a given monitoring
task. Thus, the SAF is designed in order to assist the consumers in nominating the

most appropriate type of resources according to their requirements. The same idea is

also applied for ASIF, which is to assist the consumers to find the most appropriate

services or infrastructures according to their needs.

At this stage, an integration of autonomic system as a service with the ASIF and SAF

is proposed to generate and develop an intelligent frameworks. These frameworks are

able to augment its QoS and response in electing the demanded resources. Such

intelligent services require a wealth of information in order to carry out the intelligent

matching between consumer request and available sensors take in the account the

nature of the application. Therefore, three types of description languages are proposed
developed and implemented to provide ubiquitous, interoperability and formalised

access to resources metamodel in order to assist in the discovery and selection of

required types of resources. These languages are Assembly Services and Description

Language (ASIDL), Sensor and Actuator Description Language (SADL) and
Monitor Session and Description Language (NlSDL).

5. Z3. Services and Utilities

Several services and tools are necessitated for the self-management service to carry

out the expected jobs from the automated system as well be demonstrated in Chapters

6,7 and 9. Such services are supposed to be one of the core functions of the

middleware to ensure the inheritances of the control policy from the middleware
itself Some of these services and tools are listed below and shown in Figure 5.1:

* Dynamic Sensors: to gather information from the decentralised,

heterogeneous and distributed envirorunents based on generating on-fly

sensors.

49

Logger System: to store the collected readings in profile inside the distributed

logger systern. Moreover, this unit is in charge of delivering the collected

readings to the consumers in open standard format, such as XML.

Analysis Services: to perform the analysis tasks for the collected readings
those are obWned from the monitoring process. Such services adjust/tune the

environment, service, infrastructures and/or middleware to achieve the most
fitted model for each application according to its nature.

Service Level of Agreement (SLA): to manage the contract between

different parties of the system like management services, frameworks, sensors,

consumers and others in order to insure the security level of the system and
define the privilege of each parties.

e Intelligence Services: to execute the automated self-management tasks. Such

services can be extended to carry out the management tasks for different types

of distributed enterprise applications like connected-home machine and e-
health systems. Therefore, such management services should be defined in

semantic way to encourage other applications for adopting such intelligent

services in performing the prediction or clustering processes. The result of the
intelligent services is represented as decisions that are forward to the tuning

and adjustment services.

The core of the autonomic computing service is the methods, algorithms and
techniques which are responsible for looking after analysing and deciding the actions

those are required to be taken from the autonomic services according to the

characteristics of the environment changes. Mathernatic analysis, machine learning

technique and data mining methods are evaluated and measured over many years for

doing variety of reasoning tasks for different applications such as those in business

and market analysis [5], text, image and speech recognition [131], system

management [5], fault-tolerance [129] and other types of applications.

The expected role of the intelligent service in the self-management scenarios is to
leverage the deployment and use of the autonomic computing with different types of

applications leading to the goal of self-management system. Machine learning and

so

mathernatic analysis are tested in order to be used in heterogeneous, distributed and

decentralized system over planetary scale system. These algorithms analyse and

decide the way of monitoring, controlling, managing and adjusting environments'

resources to achieve the goal of high availability, security, optimising, QoS with

increasing the threshold of the system failure. Such services should be designed,

developed, and implemented based on the algorithm of web service technology to

accomplish the Idea of open standard system which makes them compatible with any

platforrn taken in considering the SLA between the services and the system.

Sensor

Decision

Figure 5.1: Services and Tools of the Self-Management System

S el f- management middleware services require an effective monitonng and auditing

utilities to facilitate applications' tuning, reconfiguration and adjusting. This auditing

system requires an on-demand autonomic monitoring system to get information from

the running environments and make scrutiny for the readings. Different types of

sensors are required to cover all the demanded readings from different target of the

grid environment. These monitoring resources are expected to be offered and

deployed by mariy providers. Such resources are used by many consumers and

monitoring system.

The monitoring resources should be managed in a way that guaranties the high

reliability, fidelity, availability and security. Therefore, SAF is proposed through thi's

work to support sensor and actuator generation, deployment, discovery and general

management in order to achieve the above-mentioned goals.

51

5.3. Self-Management Middleware for Planetary-Scale
Systems

This work proposes to provide autonomic behaviour via the use of self-management

middleware services. These autonomic computing concepts and/or capabilities are

presented by self-adaptive, self-configuring, self-healing, self-optimizing, self-

organising, self-governance and self-protective. For example, self-optimising concept

can be viewed as a subset from the self-adaptive since it provides a method to

maintain a required level of services performance stand-in just on system resources

with improve system functionalities and reliability [43]. Moreover, a self-organising

capability can considered as a subset from the self-optimising since it reorganises the

resources in order to improve the performance of the system. On the other hand, self-

protective can be observed as a subset from self-organising system since it offers a
base of dealing between actors of the system depending on SLA to organise the

resources, requests and responses of the system.

The following sections describe some of the terminology and taxonomy for the

autonomic computing concepts and capabilities for the planetary-scale system.

5.3.1. Self-Organising

In the self-organising systern, the resources of the planetary-scale system and

consumers are beneficial from the autonomic computing services by executing variety

of tasks, which can be summarised as:

Services & Infrastructures Management: The self-organising capability is

used in this case to arrange and mange the services and infrastructures fabric in

the planetary-scale model in order to attain the high QoS, reliability, fidelity,

availability of the resources along with least response time. To achieve these

goals, autonomic computing is employed for organiSing the deployment of new

resources and reorganisation the deployed resources.

Consumers' requests management: The autonomic computing services

represented by self-organising capability are suggested to be used in managing
consumer's requests to offer the high accuracy of system's responses and

52

reducing the cost of ownership. The autonomic computing service should taking
in consideration the priority and SLA between the consumers and the system.
This will asset in developing self-protective system which is one of the

autonomic computing capabilities.

5.3.2. Self- Configuration

Self-configuration autonomic computing services are serviceable for the services

and/or infrastructures deployment and discovery processes to fulfil the concepts of

the new enterprise business mental picture of the high availability, QoS and security
in addition to the reduction of the cost of possession. Managing the discovery and
deployment processes in automated way according to environments' policies and

characteristics augment the positive reactions of the system's components against
different dilemmas, which may have an effect on the performance of the system.
Intelligent classification of the services and infrastructures along with other

components of the middleware increase the response and fidelity of the system in

identifying consumers' demands.

Moreover, self-configuration capability is responsible for the configuration of the

deployment of the new components in order to insure the integration or replacement

of the new components with the old components of the system. The scenario starts by

deploying or publishing resources (services and/or infrastructures) with the

middleware, as shown in Figure 5.2. The deployed resources can replace or merge the

existing components in case the autonomic service discovers that the new

configuration offers better service than the old one. All the resources are stored in the

resources container (ASIF) to be available for all consumers. On the other hand, the

consumers' requests pass through the autonomic services to the resources container.
In turn, the autonomic computing service insures higher accuracy and better QoS

depending on the use of the intelligent discovering algorithms inside the autonomic

services such as: ranking algorithm, link state, indexing and others.

53

Figure 5.2: Self-Con figuration Scenario

5.3.3. Self-Optimising

Planetary-scale system requires a range of management processes and services for

making the middleware or broker interact Nvith the services/infrastructures and

applications faster. Self-optimising capability based on auditing system is an

attractive solution to re-manage and re-adjust the system to offer better response in

automated Nvay. SAF is utilised to gather information from the environment in order

to assist the self-optimising capability to execute the required tasks. In this Nvork, self-

optimising capability is utilised to perform the On-Demand Services (ODS), as Nvill
be shown in Chapter 9.

5.3.4. Self-Protective

Sel f-prolecti \e issue focuses on two dimensions. The first dimension is the security of

the systern and the overcoming of the attack from outside and/or inside. The second

dimension is the negotiation and contract processes between the systern and attached

actors to define the pnvilege ofthe actors according to SLA.

54

Ihis research is focusing only on one part of the self-protective issue, that is, the

SLA, which manages the negotiation and contract processes between middleware and

resources provider on one hand, and middleware and consumers on the other hand.

The SLA contract is exchanged between the middleware of the planetary-scale

system in order to transfer the policy of the contract from one middleware to the

other. The self-protective concept is affiliated with other concepts to arrange the

rights and policies for accessing to the systems' resources.

5.3.5. Self-Healing

Self-healing system manifests the system ability to investigate, diagnose and react to

system malfunction [43]. System malfunction can be caused by many reasons, such

as fault tolerance, overloaded, pure quality of services and communications and

others. The corporation between self-healing, self-organising and self-protective

concepts is required to overcome such problems.

Anticipating the load in advance increases the ability of the system to plan for in

advance recovery of the resources (services and/or infrastructures) depending on

different algorithm, like load balance, replication, mirroring and others. Autonomic

computing service in this system is responsible for carrying out load prediction
depending on the information available from the monitoring system taken in

consideration the SLA of the consumers and services. This job is essential for the

fault tolerance services to manage and recover services prior to the failure of the

resources.

5.4. Design and Implementation Requirements

In line with the reference models (Sec. 4.2.1) a set of design requirements are
identified as necessary for the development of the self-management system for the

planetary-scale system based on the use of autonomic computing capabilities. These

requirements are detailed below and summarised in Table 5. I. These requirements are

addressed in the following points:

Self-Management Planetary-Scale Model: to design a model suitable for sharing

and using resources in global environment that able to manage itself based on using

55

middleware layer (R-1). This model is proposed to support the zones/clouds model,

which will assist in improving the managing, auditing and supporting processes. In

addition, this generic model should be able to survive with the unexpected changes

and behaviour in the distributed environment. Therefore VSM is suggested to be

integrated with the self-managing planetary scale model to offer a survival planetary-

scale model (R-2). This survival model will be integrated with a software model, like

Gang of Four (GOF) [132-1341, to make it acceptable in the software community and
define the way of generating services (R-3).

Autonomic Computing Capabilities: to carry out the management process in

automated and intelligent way for the self-management service (R-4). Different

intelligent services are required by the autonomic computing to perform the smart and

automated tasks of predicting and classifying processes which help in, taking

descisions (R-5). These intelligent services are built based on machine learning and

statistical algorithm and should be as web services to be acceptable in OGSA.

Resources Framework: to generate a common container for deploying, discovering

and invoking resources (services and infrastructures) (R-6). This framework is

proposed to enhance the performance, fidelity and robustness of the resources.

Resources Description Language: to find common and semantic language between

resources providers and consumers (users, applications or control systems) (R-7).

Monitoring System Model: to design, develop, and implement an auditing model for

the planetary-scale system (R-8). Such auditing system will be utilised by the

autonomic computing to track the changes in the behaviour of the system.

Monitoring Resources Framework: to create a common container for deploying,

discovering and invoking monitoring resources (sensors, actuators and ahalysers) (R-

9). Such monitoring resources are used by the monitoring system to collect readings
from the monitored targets. This framework is proposed to enhance the performance,
fidelity and robustness of the monitoring resources.

Monitoring Resources Description Languages: to describe the monitoring

resources in semantic and open standard format. These description languages are

56

divided into two types, first to define the deployed monitoring resources (R-10) and
the second to define the consumer's request (R-1 1).

Table 5.1 summarise the requirements for survival self-management service for

planetary-scale system.

Table 5.1: Requirements for Survival Self-Management Service for
Planetary-Scale System

Requirements Ref

Design model for self-management pI anetarý, -scale system that 1
able to manage itself. R-1

2 Design model for survival self-management planetary-scale R-2
svstem.

3 Design software model for generating services for the R-3
I planetarv scale svstem.

4 Designi
.
ng, developing and implementing autonomic R-4

computing capabilities to suppo self-management services.

5 Designing, developing and imple
.
meriting intelligent services R-5

to support the. autonomic computing capabilities.

6 Resources framework for deploying, discovering and invoking R-6 different types of services and infrastructures.
Resources description language to define the resources in 7
semantic and open standard format. R-7

8 Monitoring system model to generate an auditing system for R-8
the global computing.

9 Monitoring resources framework to deploy, discover and R-9
I invoke monitonng resources.

10 Moiwor reSOLirccs descriptioii latiguage to ddhic thc inoriitoring R-10
resourccs in scimuitic aiid opcn standard fonnat.
Monitoring requesting description language to define the
monitoring resources requests by the consumers in sernaritic R-1 I
aiid opcii standard foriiiat.

5.5. Summary

The requirements for building self-management systern for planetary scale system are

discussed in this chapter. Reference models, autonomic computing, description

languages, services and frameworks are considered as the vital requirements for

designing, developing and implernenting self-management model.

Two types of' 1rameNvorks are addressed in this chapter to be the fabric for deploN, Ing,
discovering and invoking resources. These tNvo types are Assembly Services and

57

Infrastructures Framework (ASIF) and Sensor and Actuator Framework (SAF).

Moreover, intelligent service is outlined in this chapter, where it is in charge of doing

intelligent process like prediction, analysing and classification.

To this end, resources which are required to build self-management system for Global

computing are described in order to prepare the material for designing, development

and implemented the model. Next chapter describes the model of planetary-scale

system based on existing Internet model. This model is utilised to build another

model for self-management that able to survive in planetary-scale systern.

58

CHAPTER6

MODELLING & DESIGN

6.1. Introduction

To support the design and management of complexity widely-distributed grid

systems, this work follows the hierarchical structuring, separation of concerns and

self-similarity principles inherent in the Viable System Model (VSM) [95,96]. The

latter has been argued by Laws et al. [88,90] to provide an expressive blueprint for

autonomic computing (Sec. 4.2.2).

This chapter details a proposed Self-Management Viable System Model (SM-VSM)

for global computing, which is based on an extension of the VSM design pattern and

the Gang of Four (GoF) software design pattern. SMNSM provides a reference

model and a generative support for the design of self-managing planetary-scale

applications. An illustrative example of modelling a self-tuning (self-optirnising)

system is here used to detail the proposed SMNSM design pattern (Sec. 6.4).

6.2. Planetary-Scale Architecture and Middleware
In view of the heterogeneity of decentralised global computing, middleware is used to
facilitating interoperability via distributed object-oriented programming. Such that

planetary-scale systems are structured and organised into zones/clouds; where each of

which is a federation of software services, and contain at least one cloud agent

responsible for the following roles:

e Gateway: facilitating the information interchange with other clouds.

* Controller: managing the applications behaviour and this includes tuning the

system to insure the QoS and SLA.

59

Figure 6.1: Layers of the Planetary-Scale System

As shown in Figure 6.1. the extended OSI laver-ing for planetary-scale system can be

summansed as follows 1311:

* Application layer: This layer is playing as a bridge between the user and

planetary-scale model. This layer consists of user interfaces and user agents

which run on the client side. This layer is responsible of generating the request

and response messages between the open system communities.

0 Transport layer: This laver is responsible for end-to-end delivery of the

messages. Depending on the type of planetary-scale applications, different

transport layer protocols are used; like TCP, UDP, and SOAP to provide

vanety ol'ways to deliver the messages depending on the application demands

of'the reliability, QoS, and semantic format.

0 Middleware layer: This layer is responsible for performing the tasks of'
deployment, management, control and discovery of global computing

environment resources. Moreover, it is in charge of arranging the process of

requesting md responding services by and to the consurner.

0 Network Layer: This Layer is responsible For routing and addressing of the

message from one host to the other host.

0 Data-link layer: This layer is responsible of transferring the message from

one node to adjacent node over a link.

60

0 Physical layer: This layer provides a communication system through guided

and unguided media with encoding system to transfer messages between the

nodes of the environment.

6.2.1. Middieware Layer

As indicated above, nuddleware carries out amongst other traditional middleNvare

core services (Appendix A) resources management to provide high-availability,

reliability and QoS management. As illustrated in Figure 6.2, the truddleware layer is
divided into three sub layers namely; Serviceware layer, core-lýnctions layer and

Figure 6.2: Middleware Layer

6.2.1.1. Serviceware Layer

ServiceNvare layer is responsible for a variety of decision tasks and jobs, such as:

0 Managing, monitoring, controlling and adjusting or tuning the resources in

order to provide highest availability, reliability, and QoS.

Managing, nionitonng, and controlling consumers' requests and system's

responses to provide higher security system.

61

rcsources overloy layer

Translating request and response message into semantic format to be

understood by all actors of the system and to achieve the open standard

concept.

a Taking an action in case of resources failure.

Controlling the exchange of information with the other middleware systems in

different clouds.
In addition to the above-mentioned tasks, Serviceware should support service-

oriented programming by offering services such as monitoring, controlling and

managing applications. Serviceware layer depends on variety of services, tools and
frameworks to carry out the aimed tasks. Autonomic computing services are adopted
in Us layer as one of the core components to perform the required tasks depending

on autonomic computing capabilities. Autonomic computing required a number of

services, tools and frameworks that work together to complete the job of the creating
decision, as described in Chapter 5. These tools and frameworks can be surnmarised

as:
Services and Utilities: different services and tools are required to complete the

cycle of the autonomic services. The core services and tools are:

o Lpgger: to provide a container for storing and retrieving sensors'

readings in a standard and semantic format based on the use of the
XML.

o Analysis service: to present a way for analysing data in order to assets
the intelligence services.

o Intelligence services: to act as a brain for other tools, services and
frameworks. Machine learning, data mining and statistics analysis are

used to attach intelligent ability to these services. Other middleware
functions, tools and frameworks offer a precious data and adjustment
tools to the intelligent service. Intelligence services are responsible for

doing intelligent classification, regression, analysis and prediction

processes which help in making decisions.

Frameworks: A variety of frarneworks are required to provide a base for

offering containers, infonnation and recourses to the intelligence services. On

62

the other hand. the benefit to the frameworks from the functions, tools and

services provided by the rruddleware functions and autonomic computing is

expressed through managing their resources. Such frameworks are:

" Assembly Services and 1qfrastructureFramework (AS[F). - to provide an

overlay for intelligence services to do their tasks. It includes different

sections namely. assembly services layer, services layer, and
infrastructure layer.

" Sensor and Actuator Framework (SAF): to provide a foundation for

deploying, discovening, and invoking of variety of software
instrumentations (sensors). actuators and other monitoring resources.

MIDDLEWARE SERVICES
FUNCTIONS &TOOLS

6.2.1.2. Core-Functions Layer

Core-l'unctions laver consists of' three main core functions responsible for Joining the

ServiceNvare and resources overlay layers. This laver is composed of three main core
Functions:

Discovery function: works as a broker between consumers and middleware

resources container. It is responsible for finding the most suitable services

and/or infrastructures taking in consideration consumers requests and SLA.

The response of this function to the consumers' demands can be enhanced by

relying on the collaboration between the autonomic services and discovering

services. The discovering service provides the fabric of the semantic

information, while autonomic service acts as a brain for doing intelligent staff

63

Figure 6.3: Framework Life Cycle

of analysing, deciding and selecting the most appropriate services which

match consumers' requests.

Deployment function: works as a broker between resources providers and

resources container. The providers can deploy variety types of services like

business, research, commercial, government, education and even autonomic

services with resources container. Managing resources inside the resources

container by the middleware is a necessity to reduce the required response
time to accomplish to the demanded resources.

Invocation function: works as a broker for translating consumers' requests to

semantic format understood by services and infrastructures and hence

generated semantic request message. In addition, it is responsible of

translating resources response to format accepted by the consumers' and

generating semantic response message after invoking the resources. This is

valuable in heterogonous system to make all parts of the system talk to each

others in common way. Different standard protocols are used to carry out such

tasks, like WSDL, HTrP, SOAP, TCP, XML and others.

6.2.1.3. Resources Overlay

Resources overlay layer consists of all services and infrastructures required'to serve

the consumers in addition to the resources required to perform the basic tasks of the

system such as networking and communication, monitoring and controlling. The

resources container inside the resources overlay layer is proposed to be distributed

over the systern. Serviceware layer is responsible for providing control and monitor

services to these distributed services. ASIF are proposed t represent the resources

overlay.

6.3. Self-Management Software Design Pattern

The proposed self-management software design pattern language including the design

of the Impromptu Framework [93] have been influenced by the Viable System Model

[95,96] -a general cybernetic management model. Thus it is important to give a

64

brief overview of the model before describing our design pattern language (Sec.

6.3.2).

6.3.1. VSM Model: a Brief Overview

Beer's Viable System Model defines the five systems that must exist for any entity to

survive in a changing environment. The model explicitly incorporates dynamic

planning and self-awareness systems, while the classical cybernetics that underpins
the model is closely related to control systems theory. Beer describes the management

of knowledge as follow [135]:

"... You must learn to manage yourself and your formal and informal

exchanges and interactions with others. 7his must be done in the context of

your understanding of who you are: your goals, your capabilities, your
knowledge ofyour own strengths and weaknesses; andyour appreciation of

your social, technical and business environments. Individuals must be able

to engage in activities in different 'markets, keep them from interfering

with each other, manage them together, focus an eye on the future, and

assess their different aspects from the perspective of the 'big picture' of

their whole life's narrative... "

Although, Beer was talking about individuals, computing systems, which have the

challenge of maintaining continuity and identity over time - sometimes with minimal
infrastructure. They too must integrate and manage their knowledge and information

and their exchanges with their environments to perform effectively. The VSM has

been shown by Laws et al. [88,90] to provide a powerful descriptive and diagnostic

tool to map management capacities to promote viability.

The model identifies the necessary and sufficient communication and control systems

that must exist for any organization to remain viable in a changing environment. In

doing so, the model does not attempt to specify the activities that must occur in each

system, instead activities are typified by cybernetic rational [88,136] to allow either

the designer of activities to match the cybernetic criteria or for actual activities to be

identified by their system type and hence assigned to the appropriate element of the

65

model. Such a generalized approach allows the model to be applied to any

organization regardless of size. The six major systems advocated by the model are

detailed in Table 6.1 below:

Table 6.1: The Major Systems of Viable Systems Model 1881.

System Identifier System Type

System One performs the productive operations of the organization. An 0
Y

organization may be composed of a number System Ones, each providing 6
a distinct product or service. Each S1 consists of an operational element
controlled by a management process and in contact with the operational

System One (Sl) - Operations environment and is in some respects is similar to the plant/management
arrangement adopted by control system theory.

System Two is concerned with coordinating the activities of S1 units. It is
essentially anti-oscillatory in that it attempts to contain or minimize inter-Sl
fluctuations. This is achieved by the provision of stabilizing, coordinating
facilities such as scheduling and standardization information that is

System Two (S2) - disseminated over all System Ones, but tailored locally to suit individual S1
Coordination

needs.

System Three is concerned with the provision of cohesion and synergy to a
st of System One units. The management processes contained within this
system will be concerned with short term, immediate management issues,
such as resource provision and strategic plan production, although

System Three (3) -
strategic in this context refers to planning with existing resources rather

Control than the normally accepted sense.

System Three * provides facilities for the intermittent audit of System One
progress and provides direct access to the physical operations of the
particular S1 allowing immediate corroboration of that progress. This
essentially provides additional data over and above that provided by
normal reporting procedures.

System Three* (S3*) - Audit

66

System Four is concerned with planning the way ahead in the light of
external environmental changes and internal organizational capabilities. S4
'scans' the environment for trends that may be either beneficial or
detrimental to the organization and constructs developmental

organizational plans accordingly. To ensure that such plans are grounded
in an accurate appreciation of the current organization, the intelligence
function contains an up-to-date model of organizational capability.

System Four (S4) -
Intelligence

System Five determines the overall purpose of the organization Le. defines
the activities that are performed by S1 as such S5 represents the policy-
formulation or normative planning function. Policy formulation is informed
by a "world-vieve provided by S4 and models of current organizational
capability populated by data flowing from the lower level systems in the

organization.

System Five (S5) - Policy II
The major systems (SI, S2, S3, S4 and S5) are structured hierarchically and

connected by a central 'spine' of communication channels passing from the higher-

level systems through each of the SI management elements. These provide high

priority communication facilities to determine resource requirements, accounting for

allocated resources, alerts indicating that a particular plan is failing and re-planning is

necessary and the provision of the "legal and corporate requirements" or the policies

of the organization.

The systems described above concern the management structure a one level of the

organization, and consequently specify the communication and control structures that

must exist to manage a set of SI units. However the power of the model derives from

its recursive nature. Each SI consisting of an operational element and it's

management unit is expected to develop a similar SM-VSM structure, consequently,
the structure of the systems is open ended in both directions and may be pursued

either upwards to cover wider encompassing systems or downwards to cover smaller

units. However, at each level the same structure of systems would occur although

their detail would necessarily differ depending on context. This recursively allows

67

each level in the organization relative autonomy bounded by the overall purpose of

the system as a whole.

To make the VSM model appropriate for planetary-scale software modelling and

design VSM is here integrated with the Gang of Four (GoF) software design pattern
[132] to design Seýf-Alfanagcmcnt VSM(SMNSM).

6.3.2. SM-VSM Pattern for Self-Management System

Figure 6.4 illustrates the model for self-management viable system. The system is

structured into five main layers as describes in the following paragraphs.

68

Figure 6.4: Self-Management Viable System Model

9 Policy Layer (S5): This is the top layer of the SM-VSM model. It interacts

with other S5 and generates management policies from Layer 4. It is

responsible for analysing the demands from the lower layer (S4), and defining

system policies and plans of action. Hence, it performs policy setting and

action plan generation related to self-management tasks.

Intelligence Layer (S4): This layer interacts with the environment in order to

address the self-management requirements, which can be detected from

scanning the environment such changing behaviour or anticipated/predicted

need for self-management. These requirements are forwarded to the upper
layer (S5) for generating the policies and planes for the above-mentioned

requirements. In addition to receive the outline plans for performing the job

from S5, S4 is responsible for forming and updating the system capabilities

model. The latter is used for reasoning and forming a plan of action and/or for

controlling and auditing purposes. On the other hand, S4 expects to receive a
feedback from the auditing layer on the behaviour of the proposed

capabilities. Depending on Us feedback, S4 evaluates the performance of the

suggested capabilities. If there is malfunction in executing the job, then S4

searches for other additional capabilities to added to its resources model. If the

feedback returns and indication of resource redundancy, S4 then can request
the release (destroy) the redundancy.

* Control & Auditing Layer (S3 & S3*): 'Ihis layer is divided into two sub-
layers, one for controlling process which is known as S3 and the other for

auditing process which is denoted as S3*. S3 is responsible to propose the

autonomic computing capability's components, which is required to perform
the job. Moreover, S3 is in charge to decide the need for integrating more than

one resources or operations together for executing the required tasks, like the
integration between sensors, logger and analysis services. Messages are

transferred to the coordination layer including the description of the required

operations. S3* is responsible for auditing and monitoring the activities and
behaviour of the running operations. S3* should be intelligent enough to

69

decide the action that is required according to the auditing process. The action

can be represented as feedbacks to S4 or as notify messages to S3 for adding

or deleting operations. In addition, S3* is responsible for monitoring and

controlling the corporation and exchange of information between the

autonomic capabilities services and their components at the operation level.

Coordination Layer (S2): This is responsible for selecting the phase of

operation (deploy, discover, and/or invoke). This can be achieved by

describing the status of each operation as Start, Stop and Wait. "Start" status
indicates to the initiating of the one of the above-mentioned phases for

specific operation. "Stop" status refers to the end of the phase. "Wait" status

refers to the need for waiting another action to be taken before requesting

phase for the specific operation. The requested phase is sent to the lower

layer. III

* Operation and Support Distributed Function Layer (Sl & Sl*): This is

the lower layer of the SMNSM. It is divided into two sub-layers, namely;
Operation (S I) and Support Distributed Function Layer (S I*). This layer is

responsible for performing a given operation, and for middleware/distribution
basic functions respectively. For instance, Sl can represent operational unit to

undertake both functional and non-functional systems requirements including

autonomic computing capabilities. In line with programming constructs each
SI sub layer has its own private and public operations container, which we

refer to as private and public operation containers respectively. The public

operation container includes all the operations deployed by different

providers, while the operations in the private resources container is belong to

one system and can not be employed by other system. S I* is responsible for

implementing the core functions of calling and utilising operations in large-

scale system. This consists of discovering, deploying and invoking operations

as have been described in next sections. Moreover, S I* includes other support

services like sensors, actuator and logger for the auditing process. SI, on the

other hand, executes the operations.

70

* Environment (E)-. This represents the consumer who asks for the self-

management service. The Environment judges the quality of the tasks offered

by SM-VSM. If the environment discovers the QoS is not satisfactory, then it
has the right to ask for another self-management system for executing thejob.

6.3.3. Self-Management Viable System Scenario

The system model for self-management pattern consists of three actors, as shown in

Figure 6.5, namely; environment, public operations container, and private operation

container. Moreover, the model consists of five use cases, which are: policies,

intelligent and strategy, control, coordination and support distributed functions.

These use cases represent the layer of the SM-VSM model.

Private Operations Cortainer

Figure 6.5: SM-VSM-UML Use Case Diagram

'Me process initiates from the environment by requesting a self-management service,

as shown in the sequence and activity diagrams in Figures 6.6 and 6.7 respectively.

Moreover, the self-rnanagement service can be triggered according to the changes in

71

Pnviate opentions catitamen, mcludesautanarniccnirpufing c2pabill
Thcautmimmc compungCapabilittsrepresmt by self-liegling,
wIf tumllo, svlF opbimzlnp,, srlf cullrlg-arahrmý LIC

L,..
ý. -ýý.... - ... ---- --

the environment nature or behaviour. Therefore, the system tries to generate a pattern
that is responsible for recovering the unexpected behaviour. Intelligence layer (S4) is

responsible for receiving the request from the environment or scanning the

environment for detecting any unexpected activities in its behaviours. Then, S4

passes a message with the required requests to S5 in order to find out the required

policies.

The policy layer analyses these parameters (requests or unexpected behaviour) in

order to sort out the way of generating the required patterns and operations. Policy in

Us case represents S5 of the SM-VSM model. S5 commences planning the outline

strategies for performing the requested tasks. These blueprints are forwarded to the
intelligence and strategy layer, (which is S4 in the SM-VSM).

S4 then is in charge of deciding, requesting, and creating the required process for

carrying out the job. Furthermore, S4 oversees the feedback received from the

auditing sub-layer which controls the lower level. If the received feedback indicates

everything is ok, and then S4 inform S5 that the work is going ok, else S4 proposes

and generates new processes to carry out the uncompleted job, or requires that S5

select another strategy or policy.

The control layer receives the process request from S4. The control layer is exhibited

as sub-layer ftom control and auditing layer, which is denoted by S3. On the other
hand, the auditing sub-layer is denoted as S3*. S3 is at the helm of determining the

required autonomic computing capabilities and operations to accomplish the

requested task. After that, a request is sent to the coordination layer in order to

manage the way of calling and utilizing the required services. S3* depends on the

monitoring resources for recording the activities and behaviours of the lower levels to

ensure the quality, fidelity and reliability of services. For this purpose, different types

of sensors, probes, actuator and analyser are employed. A feedback message is sent to

S4 in case of unexpected behaviour of the lower layers, or failure of the demanded

jobs.

At this point, a request of required operations is despatched from S3 to the

coordination layer (represented as S2 in the SM-VSM model). S2 supervises the

72

process of discovering operations in the public operation conWner, deploying the
discovered operations with the private operation container, and tracking the status of

operations. The statuses of operations are indicated by:

o Start: to start the process by the selected operation.

* Stop: to end the process in case of the end session or unexpected behaviour.

e Wait: to wait an action from other operations.

For the above objectives of utilising operations, three support distributed functions

and operations should be accessible for any self-management model. These core
functions or operations are: discovery, deployment and invocation. Therefore, we

presume these operations are at an intermediate level between the coordination and

operation layers. We call this intermediate level the Support Distributed Functions

Layer which we denoted as Sl*. For each requesting operation, three messages
transfer from S2 to Sl* and one message from S2 to S3. These messages are

explained in the following points:

* The first transfer message from S2 to SI* is the request to locate and find

operations in the public operation conminer.

The second transfer message from S2 to Sl* is the request to deploy

operations from the public operation container to the private operation
container. This message is sent after selecting the most appropriate operation
from the discovered operations in the public container.

e The third transfer message from S2 to Sl* is the request for invoking the

operation after transferring it to the private container.

e There is another notify message transfer from S2 to S3. This "notify" message
indicates the success or failure of generating the requested operations.

To this end, the private operations container is populated with the required operations
to carry out the task. Moreover, full information describing the invocation of the

operation and interaction between the operation and enviromnent is available at SI*.

The private operations container is located at the operation layer which is symbolised

73

as SI. ASIF and SAF are designed, developed and implemented to support the

deploying of services and operations in public operation container.

FI,, -Ip NO$W, : xMW: *

Mi

w0s

Cernand for opetor
ID isner, dppkly and I

I Deplong

9 iwoklm ope rstom

I Stv ofte operstod

1ý Aulbnq ope4msmtaind

13. Feet&

Fe, 614

Figure 6.6: SM-VSNI-UML Sequence Diagram

74

D esu ibe o LAIi ne stra
M onitoring

Figure 6.7: SM-VSM UML-Activity Diagram

The class diagram for S2. S I* and SI layers is demonstrated in Figure 6.8. The four

proposed classes are: Coordination, CoreOperation, PublicOperationContainer, and

III-ivateOperationContainer. The coordination class consists of one method which is

olvrationStateo. The Coreoperation class is composed of the three core methods

namely; Discoveryo, Deployo, and Invokeo. The PublicOperation Container is

Formed from three methods namely-, ReceiveDiscoverl? equesto, Disco verOperationo,

and Deployl'ol'rivateConfainero. The last class is PrivateOperationContainer which

includes two methods namelv; ReceiveOperationo, and DoProcesso.

etedback

75

.............
........... ;, t Vv;. W, 4VA, It

............... K . ým
..........

Figure 6.8: SM-VSM-UML Class Diagram

6.4. GoF and SM-VSM
In our research. a mapping between SM-VSM pattern and Gang of Four (GoF)

pattern [132-134] is accomplished to bring the design to the software generation.

Each operation in SI represents one type of GoFStructural Patterns [132-134 1. The

types of GoF structural pattern are narrated in the following points:

0 Adapter: converts the interface of a class into other interface clients expected.

Adapter lets classes Nvork together that couldn't othenvise because of

incompatible interfaces.

0 Bridge: decouples an abstraction from its implementation so that the two can

vary independently.

0 Composite: composes objects into tree structures to represent part-whole

hierarchies. Composite lets clients treat individual objects and compositions of

objects uniformlý.

0 Decorator: attaches additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to sub-classing for extending

I'Linct ion al i ty.

0 Fapde: provides a unified interface to a set of interfaces in a subsystem.

Fapde defines a higher-level interface that makes the subsystem easier to use.

0 Flyweight: uses sharing to support large numbers of fine-grained objects

efficiently.

Proxy: provides a surrogate or placeholder for another object to control
access to it.

The full details ofthe structural pattern are found in Appendix B. Structural patlems

composing classes to form larger structures. Such classes are generated by the

Creational Palfcrns q/'GOF1 132-1341. Creational model makes systems independent

76

of how operations or objects are created, represented, and composed. The five

creational pattems are listed below [132-134].

" Abstract Factory: provides an interface for creating families of related or
dependent objects without specifying their concrete classes. The objects in

this case can be represented as service, infrastructure, control unit, monitor

unit (sensor or actuator), and intelligent service.

" Factory Method: defines an interface for creating an object according to

subclasses demands in which class to instantiate. For example, in sensor case,
the factory method is responsible for defining the required methods for each

type of sensors.

" Prototype: specifies the kind of objects that required to be created using a

prototypical instance, and create new objects by copying this prototype. In our

example, the system specifies the new objects as virtual memory sensor and

creates it by copying depending on prototypical instance.

" Singleton: ensures a class has only one instance and provides a global point

of access to it.

The following section introduces examples of using GoF creational patterns with SM-

VSM model for self-management system.

6.4.1. Mus trative Examples

In this section, varieties of examples are introduced to illustrate the usage of the GoF

creational patterns with SM-VSM model. Self-Tuning (self-optimising) operation as
SI with its required components is selected as examples to show the idea.

6.4.1.1. Abstract Factory

Abstract factory from GoF creational patterns is used to design a pattem. for

requesting self-tuning capability as an example of demanding autonomic computing

capabilities. The abstract factory consists of five main classes as shown in the UML

class diagram in Figure 6.9. Figure 6.10 demonstrates the code in C# for

implementing this operation. The classes are:

77

AbstractFactory (Self-Tuning)

o declares an interface for operations that create abstract products

* ConereteFactory (High QoS, Load Balance)

o implements the operations to create concrete product objects

AbstractProduct (Replication, mirror, load distribution)

o declares an interface for a type of product object

Product (Sensor, Actuator, ML, Discovery, Deploy, Invoke, Logger)

o defines a product object to be created by the corresponding concrete
factory

o implements the AbstraclProduct interface

Client (S I Operation) Coming from structural behaviour

o uses interfaces declared by AbstractFactory and AbstractProduct

classes

The complete code for creating the self-tuning capability is shown in Figure 6.10.

Figure 6.9: GoF Abstract Factory Pattern

78

-------------------- -- ----

79

Console. WriteLine(+ Create Copy +a

..................
....................

c, lass Logger Replication

C,. ' , as,. 3 Sensor LoadDistribution

--on 0. it ot "he pro-,, Lzctzý ronmcz c-

SelfManagement

Replication Replication;
LoadDistribution LoadDistribution;

public-. ý SelfManagement(SelfT-uning factory

Replication = factory. CreateReplicationo;
LoadDistribution = factory. LoadDistributiono;

vo, ýA RUIIH

LoadDistribution. Interact(Replication

ACCapability

Main args)

AbstractFactory QoS now QoSFactoryo

. I; eltManagement SM1 ný-: w SelfManageinent(QoS
"MI. Runo;

AbotractFactory LoadBalance = ,; ew LocidBalanceFactoryo;
ý; elfManagement SM2 = new SeltManagement(LoadBalance
,; M2. Runo;

Figure 6.10: C# Code for Generating an Abstract Factory for Self-Tuning
Capability

90

6.4.1.2. Builder

Builder pattern from GoF creational patterns is used to design a pattern for

demanding sensors from monitor class. The builder pattern is demonstrated in UML

class diagram in Figure 6.11. The components of the builder pattern are:

" Builder (Software Sensor)

o specifies an abstract interface for creating parts of a Product object

" ConcreteBuilder (Load Balance Sensor, Bandwidth Sensor)

" constructs and assembles parts of the product by implementing the
Builder interface

" defines and keeps track of the representation it creates

" provides an interface for retrieving the product

" Director (Monitor)

o constructs an object using the Builder interface

" Product (Memory Sensor, Transmit Rate Sensor)

o represents the complex object under construction. ConcreteBuilder

builds the product's internal representation and defines the process by

which it's assembled

o includes classes that define the constituent parts, including interfaces

for assembling the parts into the final result

81

Figure 6.11: GoF Builder Pattern

6.4.1.3. Factory Method

Factory method from GoF creational patterns is used in this example to create

different types of sensors. I'lie factory method pattern is demonstrated in UML class
diagrarn in Figure 6.12. The components of the factory method pattern are:

e Creator (Load Balance Sensor)

o Declares the factory method, which returns an object of type Product.

Creator may also define a default implementation of the facton,

method that retums a default ConcreteProduct object.

o May call the factor), method to create a Product object.

ConcreteCreator (Memorv Senor, Process SensorJ

o Overrides the factor), method to return an instance of a
ConcreteProduct.

Concretel"roduct (Base memorv. Virtual memory ,
Extended memorý)

0 Implements the Product interface

Product (Memory)

Defines the interface of objects the factory method creates

82

Bu

6.4.1.4. Prototype

Pro duct-FactoryMetho do)

Prototype pattern from GoF creational patterns is used in this example to generate

different types of memory sensors. The prototype pattem is illustrated in UML class

diagram shN%-n in Figure 6-13. The components of the factoty method pattern are:

Prototype (MemoryPrototype)

0 declares an interface for cloning itself

o ConcretePrototype (Memory)

implements an operation for cloning itself

o Client (Meniorý'SensorManager)

o creates a new object by asking a prototype to clone itself

93

Figure 6.12: GoF Factory Method Pattern

P--Protoýpe. clorao

.............

Figure 6.13: GoF Prototype Pattern

6.5. Summary
This chapter detailed a reference model including a design pattern for self-

management soffivare services for autononUc grid systems. The model is built by

extending the Internet model Nvith middleware layer between transport layer and

network layer. The proposed middleNvare layer is in charge of controlling the access

to the distributed resources by the consumers.

Based on the above-mentioned model, another model for viable self-management

system is also presented through this chapter in order to generate a system that able to

face and react to different unexpected changes and behaviour in the environment, take

in the account the nature and boundanes of the environment applications. The

proposed model is merged Nvith a Nvell known software pattern model in order to

generate model accepted in the software community.

Ilie proposed models require number of' support tools to carry out the required

managementjob 1rorn the distributed self-management system. Such support utilities

are: intelligent Nveb services. services and infrastructures framework, monitoring

system and sensor and actuator framework. Next chapter discusses these support

utilities.

84

CHAPTER 7

SELF-MANAGEMENT MIDDLEWARE
SERVICE

7.1. lntro uction
This chapter details the design and implementation of a set of self-management

middleware services, utilities and frameworks (Sec. 5.2.3). In particular, the proposed

self-management utilities are provided to support middleware tasks such as;
intelligent prediction, classification, clustering and machine learning tasks. Such

autonomic computing services are grouped in the Serviceware layer (Sec. 6.2.1), and

are implemented as web services in compliance with the Open -Grid Services

Architecture (OGSA) specifications. In addition, two frameworks are proposed here

to facilitate design-time and runtime assembly and deployment of application services

and infrastructures (grids and/or overlays) together with sensor and actuator overlays
for general monitoring and control services.

7.2. lntelligent Web Services Design

The following sections detail the development of two chosen examples of self-

management n-dddleware utilities namely; a Se? f-Organising Map (SOM) and multiple

regression analysis.

7.2.1. Machine Learning Utility

As discussed in Section 4.2, in addressing the shortcomings of current policy-based

autonomic systems design [15,17,99,1001, that is, the lack of support for policy
(rules) evolution reflecting the most up to date state of a given system's management

and operational model. An unsupervised machine learning algorithm is here used for

85

instance to systems usage prediction, usage classification and conditional triggers for

self-management policies. Such models can then be accessible by the developed

autonomic middleware control services for instance as shown by Badr [7] to control
the self-healing processes.

7.2.1.1. SOM Implementation

SOM service is designed, developed and implemented as a web service to be used by

the autonomic computing capabilities. Hence, it considered in this work as an

autonomic middleware utility. The following sections describe the SOM algorithm.

7.2.1.2. Classification Method Using SOM

Self-Organising Maps (SOM) is one of unsupervised methods [137]. There are two

basic groups of unsupervised learning algorithms related to self-organized neural

networks, namely: (generalized) Hebbian Learning and Competitive Learning [138].

Figure 7.1, illustrates a Hebbian learning algorithm, where Y, W, y and T represent
the input, weight, output and the activation function respectively. The SOM training

and analysis can be summarized in the following steps [139]:

Step 0: Initialise weight wi(t).
Letting topological neighbourhood parameters N, (t).

Letting Learning rate parameters a(t) and h, i(t).
Step 1: For each input vector x(t), do

Finding a BMU 11 x(t)-w, (t) 11 =mini 11 x(t)-wi(t) 11

BMU is the best matching unit
b. Leaming process

Wi(t)+h, i
(t)[X(t) - Wi (t)l I EN,, (t) wi (t + 1) = W, (t)

c. Going to the next unvisited input vector. If there is no visited input

vector left, then going back to the very first one else going to step 2.

Step 2: Incrementally decreasing the learning rate and the neighbourhood size,

and then repeating step 1.

Step 3: keeping doing step I and 2 for a sufficient number of iterations.

86

-X.
r4(va).

Figure 7.1: A Bock Diagram of a Basic Hebbian Learning Neural Network
(SOM) [1391

As shown in Figure 7.2, the SOM is initialising using either random or linear

initialisation. For train the map, SOM uses sequential or batch algorithms. The

resulting visual map exhibits the neighbourhood between the neurons and the input

training samples updating Best Matching Unit (BMU). The quantization error could
be measured using som_quafity [140] (from Matlab SOM toolbox) function which

supplies two measures: average quantization error and topographic error. Figure 7.2

illustrates SOM lifecycle model, which delivers logic decisions from the visual maps

taking benefit from labelling feature in som-autolabel and som-addlabels functions

in Matlab library [140]. Hence we can build a programming model achieving SOM

method and outputting decisions from calculating BMU for a given data vectors using

som-bmus function and other related useful functions provided by the toolbox. The

detail implementation of SOM using Matlab functions is presented in Sec 9.4.1.3.

6

da! 3 41

r-l M.

3nd projec-E-on)

domatc.,

SUMMMMAM
oldusipers

iodel

Figure 7.2: Using SOM in Preparation Survey Cycle 11411

87

7. Z2. Regression Analysis Utility

Multiple regression analysis [142,1431 is here employed along with SOM as an

autonomic middleware utility to predict an output based on a given systeirCs inputs

data. Multiple regression analysis is generally used to ascertain the relationship
between a dependent variable or criterion and a set of independent variables or

predictors. In other words, the usage of multiple regression involves the discovery of

the relationship between the values and then finding an equation that satisfies such

relationship. Multiple regression analysis serves two functions. Firstly, to yield an

equation that predicts the dependent variable or criterion ftorn the various
independent variables or predictors. Secondly, and more importantly, to identify the

independent variables set by controlling the dependant variables. In our model,

multiple regression analysis is developed and implemented as an OGSA compliant

grid service [144,145]. Many applications of the multiple regression analysis

technique can be found in the public domain [142,143,146,147].

The mathematical model of multiple regression analysis is shown in the following

equations:

YVj= 0+ plxl, + P2x2, +.... + P kxkj+Ej (7.2)
IP

Where: i=l, 2 n

Y: is the predicted output

X: is the inputs data

E: is the error

k=number of input parameters

n=number of training data

The above equation can be written as follow:

Yff-PO+ PIXII+ P2X21+--- -+
P kxkl+El

(7.3)

Y27PO+ PIX12+ P2X22+- -- -+ P kxk2+E2
(7.4)

88

Yuý--PO+ P lXln+ P2X2n+.
-- .+P kxk,, +Eý (7.5)

Y, P, and E can be represented as colunm vector. These are:

Y, A F-I
Y2 E2

yE

And X can be represented as

XI 1 x21 x31 Xkl

X12 X22 X32 Xk2

X13 X23 X33 Xk3

Ll xin x2, --ý13, ... Xkn

Then

Y=XO+E
(7.6)

To find the matrix formulation for the least-squares estimates for PO,, PI), P22

Pk, the system is solved as

Xb=y
(7.7)

(XX)b = Xý
.......... (7.8)

Where X' is the X transpose. By multiplying X'Y with the inverse of (X'X), we got:

b= (XX)-'Xý
.......... (7.9)

89

Theoretically, to find the least squares estimates for the model parameters, we simply

compute

,8=b=
(XX)-Xý

(7.10)

B represents the matrix of coefficients that affect the predicted value. These

coefficients are utilised in generating the model for predicting the output. The detail

implementation of multiple regression analysis as web service is demonstrated in Sec.

9.4.2.4.

7.3. Framework Design for Self-Management System

Services and infrastructures are the core units of grid computing environment. Such

resources are provided by the resource providers in accordance to a contract between

the providers and the broker (middleware). Such contracts include rights, privilege

and authorisations associated to a given deploy resources -- node or grid system In

addition, the consUMerS2 access these resources via their broker (middleware

services). Hence, such resources can operate as stand alone services or integrated with

other services and infrastructures. Therefore, these resources should be described

adequately to the consumers to ease their selection. In addition, the broker should

describe how resources can be discovered and invoked.

The middleware naming service is extended with semantic support for improved

service discovery. Hence, service meta description has been developed beyond the

coverage of the WSDL, in that, it covers resources environment, dependencies,

methods, interfaces, required infrastructure, access, Service Level of Agreement

(SLA), and other information. The Assembly Services and Infrastructures Framework

(ASIF) model consists of three main actors, as shown in the use case diagram of
Figure 7.3, which are:

Resources provider: provides the system with the required resources. The

resources in this case represent services or infrastructures. Commercial,

research, scientific, business, and utilities are examples of services. While super

2 The term consumer refers to users, applications, and middleware services like fault tolerance, load
distributed, and autonomic computing services.

90

computers, huge distributed database, communication services, and others are

examples of the infrastructures.

9 Consumer: represents users, applications, middleware senices, or others. The

consumer is responsible for generating the requests that indicate the need for

using the resources.

0 Resources container: contains the deployed resources by the providers.

Moreover, it is responsible for generating the response to the consumers'
requests.

Different autonomic capabilities are adopted in this framexvork when performing

senice discovery. matchmak-in,,,. and binding (assembly), namely: self-regulation,

self-organising. and self-configuration.

R

7.3.1. Resources Deployment Process

The sequence diagrams for deploying resources are show-n in Figures 7.4 and 7.5.

Figure 7.4 demonstrates the business sequence diagram for the interaction between

provider and middleware complex, while Figure 7.5 demonstrates the detailed

sequence diagram for the same scenario.

91

Figure 7.3: UNIL Use Case Diagram for ASIF

RewurcesPinvider 1. RequestIoDeploy Resources

wow

Negotiate and ý, Iihdtwte SLA

3: Manage Rescurres

4: C ateg od rde Re scurce t,

5: Save Resources in Resotuces Contsimer

Figure 7.4: UML Sequence Business Diagram From Resources Provider
Prospective

Figure 7.6 exhibits the activity diagram for deploying resources by the provider. The

associated processes are outlined below:

1. The resources provider sends request for deploying resources to the

middleware system.

The middlexNare checks the SLA of the requesting provider. If the contract is

valid and the consumer has the right to use the rruddleware for deploying its

resources, then the process moves to step three. If not, the negotiation process

starts between the middleware and the consumer. In this case, the autononuic

computing service performs the self-protective concept, which is related to

checking SLA and implementing negotiation process.

3. Autonomic computing service manages the deployment of resources according

to their characteristics, types. functions and SLA. Such management process

enhances the ability of' the system to control, monitor and use the resources.

Moreover, such process is essential to mange the injection of new resources

NNith the existing. In this case, the middleNvare adopts the autonomic computing

capability From Serviceware layer in order to perform the reconfiguration

process.

92

4. Categonse resources is the next stage in the deployment resources lire cycle.

Autonon-flc computing is utilised in this case to perform self-organising system.

The Categorisation of resources in automated way improves the ability of the

system to response to demanded requesting depending on one of the categorised

methods like indexing.

5. The last stage of this process is to store resources and their information in

resources container in semantic format.

"WA
t4 aO

ida

Deploy Resouir-es:

P iowfde i Cottra(A I
i'4

3 r, 43 Mage ALI# holl 32ti-xi and ALA1114nlicatian

4 P&foiln Self-Protoctive(

It NO Valid, Nlgd, (A,!

S. P &Mmi M: snaging Tark

9: 0.4anaguiriRegUR3

I
Managing Ruw>u. ixýj s

11 Save Rew-urcas ahrl Their Informstidn

Figure 7.5: UNIL Sequence Detail Diagram From Resources Provider
Prospective

93

C anti act

idt I SLA

Not "'a hd Vald

clam-Ity jef-jj.: ý ;

Save

Figure 7.6: UNIL Activity Diagram From Resources Provider Prospective

7.3.2. Resources Discovery Process

The sequence diagrams I-or discovering resources by the consumer are shown in

Figures 7.7 and 7.8. Figure 7.7 demonstrates the business sequence diagram for the

interaction between consumer and middleware complex and Figure 7.9 illustrates the

detailed sequence diagram flor the same scenario. Figure 7.9, presents the activity

diagram of'requesting service by the consumer. The associated processes are outlined

below:

-Me consumer initiates the process by sending a request for utilising senices

(resources) to the middleware complex.

The nliddle\\are checks the SLA for the requesting consumer. If the contract is

valid and the consumer has the right to use the middleware deployed services,

then the process moves to step three. It' not, the negotiation process starts
between the nuddleware and the consumer to establish new contract between

die two parties.

3. Middleware analyses the consumer's request to identify the requested services

and their dependencies.

94

The discoverý, function is executed in step 4, which is required to select service
from resources container. Autonornic computing service is used here to

guaranty the fidelity in choosing the resources.

5. The invocation service is utifised in this stage to show the way of accessing and

calling the required service for forwarding the consumer's request in accepted
format.

6. After passing the input parameters, the executing senwe process is triggered to

perform the tasks as demanded by the consumer.

7. The outcome of the execution process is exhibited to the consumer as results or

actions for the requested service.

4d"

týqu es. 4 S er, ý ice

2: Validate SLA

3: Request Analysis

4: Discover Process

5: invoke Process

r 6: E , wctne Requi ie cl Serm cx-

P, 3ofbrrnlng C)utput

Figure 7.7: UML Sequence Business Diagram From Consumer Prospective

95

Consmw

Requmt Ser0ce

ýwx

1 Consink Co*xt

3: Manqr. alithDrisationlmd autherti, *ion accotdnj to SLA.

4. Pen+jmi Self-Protelctive

5: va4data
N

,ý i1tValid) Con-A er Request

ýahd? ý7htdý
im Culract ýIIIIIII

. 9. Serv" Reque! A

9: Requests anagemert

Ili! Peifomi FpIfOrganisNj

I1 11 jDem anded Ser ice Ii

11 14: Tad Resuts I

Figure 7.8: UNIL Sequence Detail Diagram From Consumer Prospective

96

..................

Valickýjf SLA

ý C095umof son qjaý
tor ufiliv,,, ýng re : es Nat Valid Valid

01-1i"MI, "In, "I I
sourl,

31

Dism-.,, Pr

IIIPLA

ýmute tnsk

Figure 7.9: UNIL Activity Diagram From Consumer Prospective

We tried to depend on one of the existing discovery functions in order to do the

above-mentioned processes in automated format. Such discovery functions are UDDI

1149,1491, lookup 11501, and DISC 121. UDDI standard originally developed for web

services deploy and discovery, which now increasingly supported by man),

middleware technologies to cater for business users [148,1491. While WSDL

adopted by WX 115 1,1521 to be standard method for describing services in the

sense of input and output parameters, binding, and operations. We notice however,

that in the context of' sell'-management of service-oriented applications and

infrastructure UDDI data model often do not provide sufficient service finer-grain

information for the consumers and development of autonomic computing middleware

services to reflect, diagnose and decide whether any of the discovered service

components exactly match tile requirements without accessing to the original service.

Tberefore, Assembly Service and Infrastructure Description Language (ASIDL) is

designed and developed above WSDL to build a I-abdc for offering significant C,

information regarding the deployed services and infrastructure for the consumers and

97

discovery services without needs to access to original service. The detail of ASIDL is

described in the following chapter.

7A. Monitoring System Model

Monitoring system model is required in the intelligent Global computing environment
to provide a layer for auditing the components of the environment. This model
includes numbers of auditing processes, which are: deploying monitor resources by

the providers, discovering the deployed resources by the consumers, gathering

readings from the targets, analysing the collected readings, and saving and delivering

the readings in semantic and open format.

Monitoring system model consists of five use cases as shown in Figure 7.10. These

use cases are:

Multi-Purpose Sensors: is utilised for gathering information from the targets.
Multi-purpose sensors cover all types of software and hardware sensors which

are required to execute the task of gathering data. The unit consists of general

sensors, e-health sensors, connected-home machine sensors, and PlanetLab

sensors. Furthermore, this unit is responsible for injecting the sensors in the
targets in order to start the process of collecting readings

Sensor Container: includes the deployed monitoring resources ftom sensors,

actuators and analysis services. This container is employed for saving
information regarding the deployed resources. Therefore, it represents the
layer that is responsible for achieving the fidelity, reliability, availability and
QoS in selecting resources. It is corporate with the autonomic computing

capabilities in order to discover the most appropriate resources for the

requested message. Sensor and Actuation Framework is adopted in Us

system to deploy, discover and invoke monitoring resources in semantic way.

e Logger: provides a container for storing sensors' readings in a standard and

semantic format based on the use of XML.

98

Analyser and Actuator: presents a way for analysing readings. Moreover, it

may propose new sensors to be injected in case of unexpected behaviour from

the consumer according to the collected readings. Information regarding the

proposed sensors is forwarded to the sensor schedule service.

0 Sensor Schedule Service: receives requests for gathenng data from the

consumers or monitoring requestors. The sensor schedule service generates a

profile for each consumer depending on the information that is emergence

from the analyser and actuator unit or from the requester. This profile consists

of information regarding the demanded monitoring resources, targets, contract

and other information. 'Mis profile is forwarded to the sensor container in

order to search and inject the required sensors.

Figure 7.10: Monitoring System-UML Use Case Diagram.

99

Figures 7.11 and 7.12 show the UML sequence and activity diagrams respectively.
The following points describe the scenario of utilising monitor resources based on the

proposed monitoring model.

1. The scenario starts by generating request for using monitoring resources to

audit specific targets by monitor demander. Monitor Session Description

Language (MSDL) is used to pass this information from the requester to the

monitoring system in open standard format

2. The received request is analysed by sensor schedule service to deduce the

required information that assists in selecting the required resources, targets,

duration of gathering data and application. Ibis information is transferred

through a message to sensor container inside SAF.

3. Sensor container starts seek for the required resources incorporation with

autonomic computing. The merge of sensor container with autonomic

computing offers a way for locating the most relevant resources to consumer

requirements. After finding the resources, it moves a copy of the discovered

sensors object to the multi-purpose sensors unit

4. This unit injects these sensors inside the targets, which are specified by the

requesters. The in ected sensors starts collect data and return it to multi-purpose j

sensors unit for saving in the logger.

5. Logger converts it to semantic forniat for submitting to the analyser and

actuator unit. In our approach, XML is used to represent the readings.

6. In its turn, analyser and actuator unit checks the data for any error in the

collecfing process or malfunction in the sensor job. If there, then analyser and

actuator units sends request for injecting another sensors to the sensor schedule

services. Othenvise, it delivers the reading to the requesters.

100

............

RequeaWr

1ý Per4uPct

2 Sesirth

-Y
4. Collect readn

1 5: Save I

U
16, Semoritic data

R collecled ata TSuggest mo[esenwr

Figure 7.11: Monitoring System-UML Sequence Diagram

.......... Ft le! a cA in fj
nAlSirlt-

(............. Ni

F1 tai irc4d empo a. iirc ot ýtw

I AflalYlud
ro ad i rig a

Iff, 1145crt

sa-&-e

, Sc-ýIwl. affwtic clao"

Figure 7.12: Monitoring System-UML Activity Diagram

101

7.4.1. Sensor & Actuator Framework Design

Sensor and actuator framework (SAF) for planetary-scale system is designed,

developed and implemented to support the monitoring and controlling facilities.

Range of sensors and actuators are utilised to detect, record, and adjust various

systems' activities in the planetary-scale environment. The planetary-scale system is

described as scalable, heterogeneous and decentralised system. Therefore,

clouds/zones abstraction is introduced in this research to overcome the problems of

scalability and massively decentralised systems of sensor and actuator networks for

the planetary-scale system, where each cloud/zone has a sensor manager agent, as

shown in Figure 7.13. Such an agent is also responsible for the interaction with other

agents in other zones where it can act as a gateway sensor node to its cloud, as in

sensor networks the zone agent can be hosted by an edge sensor node. For example as

shown in Figure 7.13, an agent in zone 'A' is responsible for offering services for the

sensor providers and consumers who register with zone/cloud W. In addition, sensor

manager agents implement various zone-based policies for instance; information

exchange, access control and self-healing monitoring and actuation. Moreover, agent
'A' is in charge of taking to other agents in other zones, for instance agents 'B' and
'C' in zones V and 'C' respectively.

As shown in Figure 7.13, each deployed sensor in the sensor environment register

with one sensor manager agent. This sensor manager provides on-demand sensors

generation, deployment, lookup and/or publish subscribe services for instance to

provide intelligent matching between the available sensors and consumer

requirements. The consumers can select different types of deploying sensors with a
framework and generate an order to inject them inside the targets. The consumers

access (or subscribe) to more than one target instrumentation data in accordance to a

given SLA and/or a given contract between the sensor consumers and providers.

To this end, a Sensor and Actuator Description Language (SADL) is designed and
developed to provide an open standard description mark-up language for lightweight

access to deploy sensor and actuators (effectors) to meet the required model in any

given zone, which has been described in the following chapters.

102

7.4.1.1. Sensor & Actuator Framework Scenario

The SAF contains four major actors, as shown in the block diagram in Figure 7.14

and UML use case diagram in Figure 7.15, namely:

0 Sensor and actuator services provider: deploys and exposes a specific

sensor and it's nictamodel via the framework in order to be used bv

consumers.

Sensor and actuator container: is responsible for storing and managing the

monitoring resources information,. which is deployed by the sensor provider in

tills framework.

Consumers (requester): generates the request for utilising monitoring

resources, \\hich are required to be injected in the targets. The consumer can

ask for more than one sensor at a time to be injected in more than one target.

The consumer in this case can be sensor schedule service from the proposed

monitoring model.

103

1 111, ý,, k. wNoi aml, kouatoi- franiework(SAF)

0 Targets: is the monitored object which is specified by the consumer.

a PrtMder

Resources Container

Figure 7.15: Use Case Diagram for Sensor and Actuator Framework

104

Figure 7.14: Sensor and Actuator Framework for Planetary-Scale System

7.4.1.2. Sensors and Actuators Deploying Process

Figures 7.16 and 7.17 represent the sequence diagrams for deploying monitoring

resources (from sensors, actuators and analysers) with the proposed monitoring
framework. Figure 7.16 is the business sequence diagram of the deploying process,

while Figure 7.17 is the detailed sequence diagram for the same process. Figure 7.18

presents the activity diagram for deploying resources with the framework. This

process is described in the following points:

1. At the beginning, SAF receives a request for deploying sensors and actuators
from the resources provider.

2. In Us stage, the framework evaluates the contract of the provider to confirm

the privileges of the provider to deploy with this framework. If its SLA is valid,

then the system moves to the next step, otherwise the negotiation process occurs
between the resource providers and framework to get the best deal for both.

Autonomic computing service is adopted here to manage SLA.

3. Next stage of the process is gathering resources information. Semantic way for

exchanging information between resource providers and the framework is

necessity at this stage. Such information includes types of sensors or actuators,

environment application, category of resources, location, etc. Consequently,

SAM is used to present such information in a semantic format.

4. Then, manage and configure resource deployment service is used to manage

and integrate the resources (sensors and actuators) according to specific

characteristics, such as type of resources, applications, and even SLA.

Autonomic computing service is suggested to do the intelligent stuff of self-

configuration which is the second concept of the autonomic computing.

5. Self-organising capability from autonomic computing capabilities is proposed

to be integrated with this framework to carry out the task of management in

automated and intelligent ways. In view of the expected large number of

resources likely to be deployed with the framework, an indexing scheme has

105

been suggested to be used here in order to improve the discovery and selection

of sensors.

6. After that, the resources are stored in a container to be ready for utifisation by

the framework. The sensor and actuator container is distributed over the

planetary-scale system in order to balance the load between the containers. A

sensor manager agent is responsible for monitoring and controlling of these

distributed resources container.

Provider

6: Save resourcas

Figure 7.16: IJMI, Business Sequence Diagram from Monitor Resources
Provider Prospective

and Actimi; r]
Fiairwk

......

foi dei)lovina f OSOUICeS -I

3: R egsfter resoutce intomi ation

4: lils nage resou ", s d eploym ent

5: Categoiise resources

106

Resources Provider

Deploy resm-an

,
5i if not ilo start ne0cstion process

...........

rad

Monage qo1trad

4ý Vali

Resourms inbmiatiT

r ýAanoging requel I

1 81 Managing resuq I

N,

Deooed resources

at ly

11: Cate se resuk

Figure 7.17: UML Detailed Sequence Diagram from Monitor Resources
Provider Prospective

107

valldily of

Coltract Ah I, e. wurces Iý iý: .1 1A

Resources inibmiation

M ana ging pa iann eters

Figure 7.18: UNIL Activity Diagram from Monitor Resources Provider
Prospective

To this end, we have resources container consists of variety types of monitoring

resources, like CPU usage, Memory Usage, Weight, Thermometer, Device sensors,
fault tolerance actuator and others. Such resources are used for different types of

application such as connected-home machine and e-health systems.

7.4.1.3. Sensors and Actuators Discovering Process

The consumers start requesting sensors and actuators to be attached and injected into

their applications to fire up the gathering readings process from the requested targets.

A target in this case is represented by a host, process, node, device, home or others

depending on the application.

108

Figures 7.19,7.20 and 7.21 show UML sequence and activity diagrams for

discovering monitoring resources. The following steps describe the process of

requesting and injecting the monitoring resources in the targets:

1. At the start, consurner initiates connection with the SAF by sending a

resources monitor request. Consumers should provide the framework with

complete information regarding the duration of collecting readings, targets
information, and contract information which represents SLA. Monitor Session

Description Language (MSDL) is employed to send a request from the

consumer in open standard format.

2. Depending on SLA information that is sent by the consumer, the system

checks the contract to decide if the consumer is eligible to utilise resources or

not. If the consumer is eligible, then the system shifts to the next stage.
Otherwise a negotiation process is established between the framework and the

consumer. As described in the resource provider scenario, autonomic service
is integrated to establish self-protective systern.

3. Analyses the consumer request is the next phase of the process. SAF analyses

the consumer request to find out the most appropriate resources suitable for

the consumer's requests and contract between the consumer and the
framework.

Autonomic service starts to perform intelligent searching to identify the well

matched resources for the requested mission. Moreover, autonomic service is

responsible for managing consumers' demands in a way to give better

response, reliability, resources availability and fidelity.

5. After finding the required resources, the system injects them into the targets in

order to start collecting measurement data or performing an actuated action.

6. The collected data are stored in a log file inside the logger to be ready for

delivering to the consumers in XML format after analysing the reading to be

sure from their validly.

109

S Ot And AjQ tot : Rftot

...........
Monitor re wurces request

2: Check SLA

3: Request amlysis

4: Discower rewumes

5: Inject itsources

Kq
6. Gathering readings

7: Save readings in Logger I
I
I
1

8. D el iver read ings as XMLI

Figure 7.19: UNIL Business Sequence Diagram from Consumer Prospective

110

:, pi
SLA

Consumer

Monitor remurces1eq

I vAdalt contrad

Manqge cortrad I

4ý j! sý dit %

Aal negotiibn procass 15 p a% request, ifn ot va Ii ki

qR equ est me sole

B-Managmiresourcestequestl

IIIII --r- - 1.

9--. 1 rfsukg

I It Inject resmods

IG atherin g re,

13: Sen&ngdsasXML

Figure 7.20: UNIL Detailed Sequence magram Irom Uonsurner Prospective

Request
Cordract

Not valid ýRequwst tram the d
consumer

j! re d resoui rves

location

Daia

Figure 7.21: UML Activity Diagram from Consumer Prospective

Figures 7.22 and 7.23, show the use of sensor framework to deploy and discover a

generally on-fly sensors for gathering information regarding processor, niernory,

process, transferring rates and others. The graphical presentation of data is presented

in Figure 7.23.

112

Figure 7.22: Running On-Fly Sensors

Figure 7.23: Graphical Presentation for the Collected Data

7.5. Summary
This chapter presents the required self-management middleware senices, utilities,

and frameworks to support autonomic grid computing. A design model of intelligent

service is used to illustrate the need and use of a machine learning middleNvare service

to support learning and evolution of operating model of self-managing systems.

Moreover, a framework for deploying, discovenng, invoking and managing recourses

is adopted in this research to be the fabric for offering resources to the self-

management systern. This framework is known as Assembly Serices and

Infrastructures Framework (ASIF)

Monitoring systern for global computing is also presented in this chapter. Sensor and
Actuator Framework (SAF) is emploved here in order to provide a monitoring and

ad ustment functionalities. This chapter is ended by discussing the two types of

description languages, which are vital for approving the semantic way in exchange

information.

Next chapter Nvill describe a set of desciription languages for open standard runtime

autonomic grid application assembly, monitoring and management.

113

CHAPTER8

DESCRIPTION LANGUAGES FOR
SEMANTIC SERVICES

8.1. lntro uction
'Ibis chapter describes a semantic support for information exchange between different

actors and components of a planetary-scale system. Extensible Mark-up Language

(XML) is employed to design and develop a set of open standard description

languages namely; (i) Assembly Services and infrastructures Description Language

(ASIDL), (ii) the Sensor and Actuation Description Language (SADL), (iii) Monitor

Session Description Language (MSDL). Each of which will be detailed below.

8.2. Assembly Service and Infrastructures Description
Language

As presented in the previous chapter, there is a need for an open standard semantic

support to facilitate the interoperability between different actors and components of a

given planetary-scale system. Current Common Information Model (CIM) [153] and

others provide some support. For instance, the CIM common definitions enable

vendors and users to exchange semantically wealthy management information

between systems throughout the network. However, CIM metamodel does not

describe deployed resources from grid services and infrastructures beyond what can

be accessed via WSDL and UDDI. This feature is judged essential for planetary-scale

self-managing systems. Hence, this work proposed and implemented an Assembly

Services and Infrastructures Description Language (ASIDL) that assists the user to

select the best match services according to his needs and more importantly provides a

rich and accessible metamodels of a given assembly service (application). ASIDL

114

provides access to three types of metamodel namely; assembly container, services and

infrastructures. Each of which will be detailed in the following sections.

8.2.1. Assembly Container Section

Assembly container is in charge of collecting information regarding the deployed

resources. The resources are expressed as services and infrastructures. Each unit of'

the assembly container includes a number of services and infrastructures, which are

deployed by one owner. Each service or infrastructure has its own specification,

methods, Interfaces, resources, environment and SLA. The detail parameters of

assemblv container are shown in Figure 8.1 and described in Table 8.1. Moreover, an

example of using assembly service for deploying number of general services and

infrastructures are shown in Figure 8.2.

Assembly
Container

Table 8.1: Assembly Container's Tags

Assembly ID Assembly ID should be unique and generated automatically I
by the system.

AssemblyName The name of the assembly.

Any comments, which are added by the provider in order to
AssemblyComments describe the contents of the container.

AssemblyVersion
The version of the assembly. This is valuable for future II
integration of different versions of assembly cont

I

ServiceAggregation The IlDs of the services deployed with this container.

InfrastructureAggregation The IlDs of the infrastructures deployed with this container.

115

Figure 8.1: Assembly Container Tags

Figure 8.2: Assembly Services

8.2.2. Services Section

This section of the ASIDL offers information concerning Nvith the deploying services.

A number offeatures need to be specified by the ser-vice's owner in order to assist the

middleNvare system in managing, categorising, control I ilng,,, and niontoring the

services. Moreover, such features are valuable for the consumer or discover), service,

by providing wealthy information regarding the deployed services in order to decide

the best service selection for the demanded service before the invocation process.

The detail tags are shown in Figure 8.3 and described in Table 8.2. In addition, an

illustrative example for deploying a calculator service Nvith ASIDL is shown in Figure

8.4.

Service

116

Figure 8.3: Service's Tags

Table 8.2: Details Service's Tags

Elements Name Description

Service Information

ServicelD ID of the service.

ServiceName The name of the service.

Service Description The description of the deployed service.

Description

LanguageType

This field describes the type of description language that is used to
describe the service, i. e. WSDL.

ServiceCategory This tag is used to classify each service with specific category. This is
useful in services categodsed or indexing processes.

Servicel-ocation Location of the service.

ServiceType To indicate the type of the service. The type can be considered as
research, government, commercial, etc....

ModifiedDate To indicate the last update for the services. This is useful to make the
consumer knows which version he/she/it has been utilised.

Dependency The required objects, DLLs, platforms and other dependencies to make
the services implement the process.

RequiredInfrastructure Describes the required infrastructures to run the service.

BeInfrastructure This element takes two values, true or false. True means that this
service can be infrastructure for the other services. False means no.

ServiceContainer The container that includes this service.

Authorised If the service required authority to be used by the consumers or not.

Methods Information

ServiceMethod To demonstrate the available methods for each service. This assists the
consumers to decide the required method and get an idea of the
required inputs' types and the type of the output results.

InputParameter The input parameters to the method

InputType The type of each input parameters

OutputParamet The output parameters

OutputType The type of each output parameters

User Interface

117

InterfaceName To describe the available user interfaces or user agent which can be
used to request the service and get the result.

InterfaceLocation

Figure H. 4: Services Example

8.2.3. Infrastructures Section

As described in Chapter 7, infrastructure section provides a fabric for performing the

computation, conimun i call ons, databases, software instrumentations, basic arithmetic

operations and other services. The detail tags of infrastructures are shown in Figure

8.5 and described in Table 8.3. An example of using infrastructure description

language Ior deploying an addition process with ASIDL is shown in Figure 8.6.

119

Infrastructure 1.1.

Table 8.3: Infrastructure's Tags

infrastructure information

InfrID The infrastructure's ID which should be unique.

InfrName The infrastructure name.

InfrDescription The description of the infrastructure.

InfrType The type of the infrastructure. The type is represented as
hardware, software, communication or networking.

InfrContainer The container that includes the described infrastructure.

InfrHost The host that is utilised to deploy the described infrastructure.
The infrastructure can be deployed in more than one host.

InfrServer The type of server that is used to deploy such infrastructure.
The server can be Unix, windows, Novell, etc....

119

Figure 8.5: Infrastructure's Tags

InfrPlatform The type of the platform required to deploy the infrastructure.

InfrMiddleware The type of middleware responsibilities for looking after the
designated infrastructure.

Required Resources

Required Processor The required hardware resources to run the infrastructure at
client side

RequiredMemory
.

RequiredStorage

Figure H. 6: Infrastructure Example

8.3. Sensor and Actuator Description Language

As described in the previous chapter, a semantic way for interoperable information

between the monitor resources providers and the framework is required to make

widely used for such framework in monitoring and control field. Therefore, Sensor

and Actuator Description Language (SADL) is developed and implemented to

interchange information inside the framework and outside with the resource

providers. Different information is required to be published within the framework for

describing the utilisation, behaviour and interfaces of the resources. The information

for the sensors and actuator is categorized into six major categones namely; sensor

120

information, actuator information, contract, interface, required resources and

application as shown in Figure 8.7. The details of the sensor published information

are shown in Table (8.4).

SADL

Table 8.4: SADL Tags

Sensor Information

SensorlD
This ID should be unique for each sensor. The ID is generated I
automatically by the system.

I SensorName I The name of the sensor. I

I SensorDescription I Description of the sensor. I

121

Figure 8.7: SADL Model

SensorType
Type of the sensor such as; performance, security, Load balance,
etc....

SensorDataType Type of collected data such as; string, integer, object, etc....

SensorDataStorageType
This element is utilised to describe the location for storing data. The
storage system can be locally or distributed over the global computing.

SensorHost The host that hold the sensor software.

SensorContainer The name of the container that includes the described sensor.

SensorExecution
Describe the control flow of the sensor, on demand or event driven
type.

SensorStatus Indicate the status of the sensor either online or offline.

SensorCategory
The category of the sensor. This can be research, free, commercial,
military, etc...

Sensorl-ocation The physical location of the sensor.

Actuator Information

ActuatorlD
This ID should be unique for each actuator. The ID is generated
automatically by the system.

ActuatorName The name of the actuator.

ActuatorDescription Description of the actuator.

ActuatorType Type of the actuator such as; fault-tolerance, load-balance, QoS, etc....

ActuatorAction

Describes the action that is expected to be carried out by the actuator
to perform the demanded task. Such actions can be presented as
replication service, re-configure system behaviour, re-manage
resources, analysis, etc....

Actuatorl-lost The host that hold the actuator software or hardware.

ActuatorContainer The name of the container that includes the described actuator.

ActuatorCategory
The category of the Actuator. This can be research, free, commercial,
military, etc...

ActuatorStatus Indicates the status of the actuator either online or offline.

Actuatorl-ocation The physical location of the actuator.

Contract Information

ContractlD Evaluates the contract between the provider and the framework to

122

check the provider privilege in deploying such resources. ContractName

LeaseTime

Interface Information

InterfaceName To describe the available interfaces which can be used to request the
service and get the result Interface Location

Resources Information

ResourcesProcessor
The minimum required resources which are needed to be available for

ResourcesMemory running the monitoring resources.

ResourcesFramework

Application I nformation

ApplicationlD Application ID

ApplicationName
The name of the application, Le. Grid, PlanetLab, E-Health, general,
etc....

ApplicationMiddleware
The required middleware to be available for running the sensors or
actuators.

This describes the maximum number of users that can use the
resources at the same time. This tag is proposed to ensure a high

NoOfUsers performance services by limiting the number of users to the specify
limit.

Platform The required platform to run the resources.

This describes the current users that use the sensor at the requested
CurrentUsers time. This may be changed dynamically by the system according to the

current users.

SADL is utilised to deploy me planetary-scaie sensors overlay witli the developed

SAF. As a paradigm of that, variety types of grid computing sensors are deployed,

discovered and invoked with this framework. In addition, SADL is employed to

deploy the PlanetLab overlay sensor with our sensor framework, and hence gathering

readings from different slices of the PlanetLab. Different types of sensors specialist in

PlanetLab are available to be utilized with such framework to perform the demanded

task such as; CoMon [120,121], Ganglia [39], Node List [124] and others.

Figure 8.8 presents an example of using SADL to deploy a memory sensor for

gathering information from different types of targets. The deployed information

consists of: basic sensor information, contract information, which describes Service

123

Level Agreements (SLA), a user interface for requesting sensors (if possible), t)

environment information, and required resource. Figure 8.9 demonstrates an example

of deploying an actuator with SADL. Actuator information is deployed with SADL in

order to provide an information laver for providing the consumers with the required

knowledge in selecting the resources.

Figure 8.8: SADL Example for Deploying Memory Sensor

124

net

Figure 8.9: SAM Example for Deploying Actuator

8.4. Monitor Session Description Language
Yet another. interaction language is required between the consumers, ServiceNvare

and its components (autonomic computing service) and/or control system in one side

and the SAF in the other side, as described in Chapter 7. This proposed description

language describes the complete information regarding the required monitoring

resources, applications and monitored targets. This language is known as Monitor

Session Descnption Language (MSDL). The required information is generated by the

requesters in order to be sent to the framework for performing target diagnosis and/or

action. The requesters can demand more than one resource at the time to be injected

in one or more targets. The framework analyses the requester's demands to find the

most appropriate resources. The MSDL is categorized into five parts as shown in

Figure 8.10, these parts are:

" Application section: concerns with the type of application. This is important to

assist the framework to prepare resources that are required for each application
like e-health, connected-home machine, Telematics or other applications.

" Resources section: concern with the type of resources demanded by the

consumer.

" Target section: describes the targets which are required for diagnostic or action

execution processes.

125

0 Duration section: describes the time of diagnoses or action.

* Contract section: to exams the privilege of the consumer in utillsing such

resources.
The details of MSDL are illustrated in Table 8.5.

MSDL

Table 8.5: MSDL Parameters.

MSDLID This ID should be unique for each requested session. The ID is
generated automatically by the system.

Duration Information

StartTime Specifies the beginning time for injecting resources in the targets.

EndTime Specifies the time for destroying the injected resources inside the client

126

Figure 8.10: MSDL Model

Duration This parameter describes the interval between process of gathering
reading or carrying out an action and the other process. This parameter
is helpful in reducing the amount of data transfer through the network
by specifying the time required for each process.

Targets Information

Target-ID Specifies the target If the target registered with the framework, then all
its information is retrieved automatically from the stored information.
Else, the framework will add the target information to its database for
future used. The session can include information about more than one
target

HostName Host name of the target (if exist). The target can be a unit integrated
with other system, like a slice in Planetl-ab environment.

WebAddress In this case, it is the IP address.

UserName These are required to give the authority to the framework to invoke the
target With out this authority the framework rejects the request of ,

Password injecting resources.

Resources Information

Resources-ID These tags show the requested resources ID. The session can include
more than one requested resources of sensors and/or actuators The .

ResourcesName parameter of the ResourcesName is optional.

Application Information

Application-ID These parameters indicate the requested application ID and name. The
parameter of the ApplicationName is optional .

ApplicationName

Contract Information

Contract[D These parameters are utilised to evaluate the contract between the
consumer and the framework to check consumer rivile e in requesting p g

ContractName such resources.

LeaseTime

An example of using MSDL with sensor and actuator framework is shown in Figure

8.11. This example demonstrates the utilising of such description language for

requesting memory sensor from sensor and actuator framework. In this example, two

sensors are demanded to be injected in one slice of the PlanetLab with duration of

two rninutes and an interval of 20mSec.

127

Figure 8.11: MSDL Example for Requesting Memory Sensor

8.5. Summary

This chapter introduces three types of descnption languages in order to provide a

semantic utility to support the autonomic middleware interaction model. The first one

is Assembly Services and Infrastructures Description Language (ASIDL) developed

to provide an open standard metamodel interchange between resources providers and

ASIF In addition, ASIDL is used to interchange information between consumer and

middleware complex. The second description language is Sensor and Actuator

Description Language (SADL), which is developed in order to manage the

deployment, discovery and invocation of monitonng and actuation resources with

SAF. 'nie third description language is Monitor Session Description Language

129

(MSDL), which is generated by the consumer in order to specify/define monitoring

request to the sensor and actuator framework.

Overall, this chapter details the developed description languages and their semantic

support for the proposed self-management middleware services. This next chapter test

these designs through a set of quantitative and qualitative evaluations.

129

CHAP-TER 9

EVALUATION

9.1. Introduction
Ibis chapter presents an evaluation of the proposed self-management middleware
services and associated utilities and frameworks. As acknowledged by many [7,93,

154], such an evaluation is a challenging task as there are no known/clear metrics or
accepted benchmarks [154] to evaluate autonomic system.

However, this evaluation adopts both quantitative and qualitative analysis of a set of
implemented self-managing software prototypes, which illustrates either; - the

performance profile of systems with and without the proposed self-managing
features, or demonstrating the generality of the proposed reference model, associated

services, and frarneworks.

The remainder of the chapter outlines the evaluation methodology, followed by

quantitative and qualitative evaluations of the work. Finally, the chapter concludes
with a critical analysis and general discussion of the results.

9.2. Methodology

The evaluation has been designed to demonstrate the use and effect of the developed

and implemented of the autonomic computing capabilities for the self-management
model from both quantitative and qualitative perspectives. In other words, we will
analyse the effect of the autonomic computing behaviour on the prototype software
performance overhead, which is, for convenience restricted to fidelity and processing
time.

130

9.2.1. Objectives

The main objective of the evaluation process is to show the feasibility of using the

developed models and technologies with the distributed enterprise applications. To

achieve this goal, three test example applications have been developed utilising

autonomic computing services, developed frameworks and description languages.

These test applications are: on-demand services, remote e-health monitoring system

and monitoring and controlling PlanetLab environment. These applications represent

the evaluation from a qualitative perspective. As for the quantitative evaluation, an

experiment is set up to measure and compare the response time of the same testbed

application with and without autonomic capabilities. Comparison between the sets of

readings is merely used to exhibit a comparative performance profiling, not full

system performance evaluation study which is out of the scope of this research.

9.2.2. Approach

Although this evaluation is not intended to be a formal performance evaluation of our

self-management model and its associated software, nevertheless, we use elapsed

time as a performance profile metric to outline the effect and overheads of ad-hoc

autonomic computing capabilities on systems' performance.

For calibration purposes, prior to the evaluation, a range of preliminary experiments
have bpen conducted including:

Designing, developing and implementing a number of dummy services for the

purpose of measuring the response time.

Designing, developing and implementing software for generating training data

for the intelligent services training and test phase.

41 Measuring the access time to the service in LAN and WAN environment.

9.2.3. Environment

The evaluation of this system has been performed using Dell 510m, Centrino (trn) -
1.7 GHz processor with 512 MB of memory, and running MS Windows XP

Professional operating system with service pack 2 and connected via Ethernet. The

131

example applications were implemented using VS. Net programming language with

. Net framework 1.1. .

9.3. The Quantitative Evaluation

'The autonomic computing service is employed in the experiment is the advance

reservation and assembly of a set of required services -a kind of reservation of

services. For the experiment a number of services are generated in order to determine

the required response time to invoke these services by the consumers. Such services

can represent calculator, dictionary, accounting service, e-government services and

other types of services. The response time consists of transmission, propagation,

queuing and processing times. The processing time is much higher than the other type

of times according to the use of fast connection with fast transmission devices.

Therefore, in our case we are considering the processing time as a response time.

9.3.1. Requesting Service without Autonomic Computing
Capability

The first phase of the experimental is to request services without utilising the

autonomic computing service. In this stage, the consumer accesses to the required

services directly without preparing in advanced for the aimed services by the

middleware system. In this experimental, we make the consumer requests 20 services
from the resources container. These requests are stored in XML format, as shown in

Figure 9.1, in order to be used later in training the autonomic computing service for

predicting the required services for that consumer. The developed monitoring system
is employed to track the access to the required services and determine the processing
time for accessing them, as shown in Table 9.1. The total response time for requesting
20 services, which is equal to the summation of the twenty's response time, is (209

seconds). In addition, Table 9.1 demonstrates further information that assists later in

training the reservation of the services in advance. This information is: User ID,

sequence of the requested service, service ID and name, Start and end time and

response time.

132

Figure 9.1: Services Requests by the Consumer

Table 9.1: Response Time With Out Using Autonomic Computing Service

User
ID

Seq. Service
ID

Service
Name Start Time End Time Response

Time (Sec)
6 0 5 S5 10/24/2005 8ý 15 53 AM 10/24/2005 8,16.05 AM 12.2

6 1
_

12 S12 10/24/2005 8: 16: 09 AM 10/24/2005 8: 16: 19 AM 10
6 2 9 S9 10/24/2005 8: 16: 24 AM 10/24/2005 8: 16: 36 AM 13
6 3 1 S1 10/24/2005 8: 16: 43 AM 10/24/2005 8: 16: 53 AM 11.4
6 4 17 S17 10/24/2005 8: 16: 58 AM 10/24/2005 8: 17: 08 AM 10
6 5 11 Sil 10/24/2005 8: 17: 19 AM 10/24/2005 8: 17: 26 AM 7.2
6 6 15 S15 10/24/2005 8: 17: 46 AM 10/24/2005 8: 17: 53 AM 6
6 7 2 S2 10/24/2005 8: 17: 56 AM 10/24/2005 8: 18: 06 AM 10
6 8 8 S8 10/24/2005 8: 18: 11 AM 10/24/2005 8: 18: 24 AM 13
6 9 3 S3 10/24/2005 8: 18: 32 AM 10/24/2005 8: 18: 42 AM 11.6
6 10 14 S14 10/24/2005 8: 18: 50 AM 10/24/2005 8: 18: 53 AM 3
6 11 20 J_S20 10/24/2005 8: 18: 59 AM 10/24/2005 8: 19: 06 AM 6
6 12 7 S7 10/24/2005 8: 19: 23 AM 10/24/2005 8: 19: 30 AM 7
6 13 16 S16 10/24/2005 8: 19: 39 AM 10/24/2005 8: 19: 51 AM 12.5
6 14 4 S4 10/24/2005 8: 19: 57 AM 10/24/2005 8: 20: 10 AM 13
6 15 10 S10 1 10/24/2005 8: 20: 13 AM 10/24/2005 8: 20.23 AM 9
6 16 6 S6 1 10/24/2005 8: 20: 42 AM 10/24/2005 8: 20: 55 AM 13.3

133

6 17 18 S18ý ý10/24/2005 8: 21: 08 AM 10/24/2005 8: 21: 21 AM 14
6 18 13 S13 10/24/2005 8: 21: 27 AM 10/24/2005 8: 21: 39 AM 13
6 19 19 S19 10/24/2005 8: 21: 47 AM 10/24/2005 8: 21: 59 AM 13.8

9.3.2. Requesting Service with Autonomic Computing
Capability

In the next stage of the experimental, the autonorruc computing service is adopted to

carry out the job of &rvice Reservation Unit (, S7? U) and. Job . Schedule Unit (JS(-j) in

order to improve the self-management system by providing an automated mechanism

for running the required services prior to the consumers' requests. The developed

system represents an intermediate layer between the consumer and the distnbuted

resource. In this Nvay, the response time is expected to be reduced according to the in

advanced invocation of the services. The autonomic computing service predicts the

required services for each consumer depending on his/her/its requesting history. The

process of predicting and creating a profile for each user is known as Service

Reservation Unit (, ';]? (J). Intelligent classification is assumed to be used in order to

sort out the required services for each consumer. In the coming sections, machine
learning algorithms and mathernatic analysis are presented in order to perfon-n the

prediction and intelligent classification. For the experimental purpose, the same

monitored requested services are considered to be the predicted profile list for the

selected consumer.

Figure 9.2, illustrates a basic user interface for the SRU list, showing a

predicted/leamed list of required software services and their usage sequence for a user

ID number 6 (Fig. 9.3). This interface enables the users to accept or modify the

system predicted services to be reserved and used on-demand. Hence, it assists the

machine leaming service to tune and/or reinforce its predi cted/I earned model.

134

Ege Edit yiew FIvortes 1006 belp

Se-h Fýýt-

Predicted Required Sr"ierw

'U'Ný') 1D f., ", ; "Im I "ik-I

IMMM
---------- --------------------

S4

S

Figure 9.2: User Interface for Consumer Predict Service Profile

, -/Us

Figure 9.3: Predicted Services List for Consumer ID 6

135

After that, the list of the predicted services is fonvard from the SRU unit to the JSU.

The JSU invokes the estimated required services prior to the tirne of consumer's

request. In this experimental, 600 seconds (10 minutes) time is selected to be the start

time for the invocation process. The invocation start time can be re-determined later

by the system taken in consideration, load on the resources, priontv, and the

estimated total response time that is required to run all the requested services for

specific consumer. The response times for invoking the required services bv the JSU

are shown in Table 9.2. The total response time in this case is equal to (218.9

seconds.) which is a little bit greater than that of the first case in Table 9.1 (209

seconds). The reason for this delay is the JSU itself according to the large number of

the registered users which use this unit of the system. In this experimental, around 50

consumers are sending their requests to the JSU. However, this delay will not affect

on the response to the consumer, because the invocation process starts before the

consumer demands.

Table 9.2: Response Time for Requesting Services by Job Schedule Unit

Seq. Service
ID

Service
Name Start Time End Time I)Uration

(Sec)
0 5 S5 10/24/2005 1 1: 11ý35 AM 10/24/2005 11: 11: 48 AM 12.6

1 12 S12 10/24/2005 11: 11: 48 AM 10/24/2005 11: 11: 59 AM 10.8

2 9 S9 10/24/2005 11: 11: 59 AM 10/24/2005 11: 12: 11 AM 12.4

3 1 S1 10/24/2005 11: 12: 11 AM 10/24/2005 11 ý 12: 22 AM 10

4 17 S17 10/24/2005 11: 12: 22 AM 10/24/2005 11: 12: 33 AM 11.8

5 11 Sil 10/24/2005 11: 12: 34 AM 10/24/2005 11: 12: 39 AM 5

6 15 S15 10/24/2005 11: 12: 39 AM 10/24/2005 11: 12: 46 AM 7.8

7 2 S2 10/24/2005 11: 12: 46 AM 10/24/2005 11: 12: 58 AM 12

8 8 S8 10/24/2005 11: 12: 58 AM 10/2412005 11: 13: 13 AM 14.5

9 3 S3 10/24/2005 11: 13: 13 AM 10/24/2005 11: 13: 22 AM 9

10 14 S14 10/24/2005 11: 13: 22 AM 10/24/2005 11: 13: 25 AM 3

11 20 S20 10/24/2005 11: 13: 25 AM 10/24/2005 11: 13: 34 AM 8.3

12 7 S7 10/24/2005 11: 13: 34 AM 10/24/2005 11: 13: 43 AM 9

13 16 S16 10/24/2005 11: 13: 43 AM 10/24/2005 11: 13: 55 AM 11.8

14 4 S4 10/24/2005 11: 13: 55 AM 10/24/2005 11: 14: 10 AM 15.8

15 10 sio 10/24/2005 11: 14: 10 AM 10/24/2005 11: 14: 22 AM 11

16 6 S6 10/24/2005 11: 14: 22 AM 10/24/2005 11: 14: 33 AM 11

17 18 S18 10/24/2005 11: 14: 33 AM 10/24/2005 11: 14: 50 AM 16.7

18 13 S13 10/24/2005 11: 14: 50 AM 10/24/2005 11: 15: 03 AM 12.8

19 19 S19 10/24/2005 11: 15: 03 AM 10/24/2005 11: 15: 16 AM 13.6

Total Response Time 1 218.9 seconds

136

When the consumer starts requesting the services, most of the results are available at

the user profile in the JSU. To be in the safe side regarding the predicted list, we

assumed that 5 of the requested services by the consumer are out of the sequence of

those which are expected by the SRU in the previous stage. Therefore, the JSU needs

to forward the consumer requests which are not match to the predicted profile list to

the original services and get the result and then return back the result to the consumer.

The response times for this process are shown in Table 9.3 and part of the XML file

137

for JSU and requesting services by the consumer is shown in Figure 9.4,

Figure 9.4: Predicted Services List for Consumer ID 6

From table 9.3, the total response time for requesting 20 services is equal to (86.7

seconds), which means the improvement ratio is equal to:

impromentRatio =
(Total ResponseWithoulAC - Total ResponseDmeWAAC)

*1 00
Total Response WithoutA C

impromentRatio =
(209-86.7) * 100 = 58.5%

209

This improvement ratio (58.5%) is a result of utilising SRU and JSU based on

autonomic computing unit Nvith 5 mismatch hits for the consumer requests. Figure 9.5

139

illustrates the differences in response time between the two systems (with and without

autonomic computing). The dashed line represents the system with autonomic

computing capabilities, while straight line represents the system without autonomic

computing. From this figure, 5 peak values are shown for the system with autonomic

computing, which represents the time that the system needs to invoke the onginal

service instead of utilising the ready results.
-. -

Response Time With & Without Autonomic
Computing Service

20 i

1

/
11 13 15 17 19 i

Sequence Order

Figure 9.5: Comparison of the Two Systems (With and Without Autonomic
Computing Service)

9.4. The Qualitative Evaluation

This section describes a general evaluation of the self-management svstem, which is

relving on embedding autonomic computing capabilities and their frameworks and

tools into enterprise distributed applications. The qualitative evaluation is expressed

on the basis of' employing three applications and scenarios. These applications and

scenarios use the autonomic computing in achieving self-management system. On-

Demand Services, remote e-health monitoring system and monitonng and controlling

PlanetLab environment are the three applications which are adopted in this

evaluation. A number of qualitative metrics are proposed in these scenanos, which

are:

139

Functionality: by enabling the distributed application service to be delivered

on-demand, monitored and controlled within self-management middleware

systent

Generality: by designing a general structural capability and model that is not
bounded or limited to any specific system or case study and not tied to any

specific programming language or technology. And this has been done by

using ASIDL, SADL and MSDL with different types of distributed

applications.

Flexibility: by reducing the complexity that could be embedded in any

rum-ýing system such as on-demand service delivery and remote monitoring

system

Extensibility: by referring to the control autonornic middleware, as it can be

combined with the large-scale model to fulfil the requirements for self-

management systern.

9.4.1. On-Demand Service

Grid computing and planetary scale systems necessitate range of management

processes for shrinking the interaction between the consumers and

services/infrastructures. In addition, management processes leverage the QoS in

prospective of response time, fidelity and reliability as mentioned before. On-Demand

Service (ODS) is another way to reduce the interaction between the users and the

resources by adjusting the resources to give superior services to the users. ODS is

build on autonomic computing services to manage the consumers' usages. ODS is

considered as one of the middleware services. Taking benefit of the concept of

service-oriented model for the grid computing, the consumer should consider his

requirements in advance before sending requests to the middleware for invoking

demanded services. The process of creating an advanced ODS requests assesses in

reducing the unnecessary and redundant invocation processes, and hence affects in

reducing response time. A Services Reservation Unit (SRU) is much more agreeable

140

in this case to manage the process of an advanced ODS. 'Iberefore the middleware

needs to be more specific in the provision of the services required.

Self-management system is integrated with ODS to offer an intelligence fabric to the

system. The embedded self-management is expressed through variety of autonomic

computing capabilities, which are: self-configuration, self-organising, self-protective

and self-optimising. These capabilities are offered by serviceware layer as described

in Chapter 6. SOM is utilised here to perform an intelligent stuff of classifying

consumers for ODS. In which, the SOM service is used to classify the types of

consumers according to their respective networked appliances usage model
(classes/features) and services dependencies. The models are accessed by our

experimental self-managing infrastructure to develop an automated mechanism for

deploying and activating the required services. Such processes are occurred in line

with leamt/extracted usage models and baseline architecture of specified services
federations/assemblies and discovering and activating additional services on-demand.
other types of supervised leaming algorithms like regression, decision trees,

Bayesian leaming, reinforced learning and many others demand more analyzing to

achieve prospected goal with minimum error. This would ultimately clairns manual

procedures and testing until reaching those goals, which in return requires managed

centre administration.

ASIDL is adopted here to deploy services and infrastructures with resources container
in semantic format. A case study for connected-home machine is presented in this

section to show the feasibility of embedding ODS with enterprise applications.

9.4.1.1.0n-Demand Service Components

ODS requires an integrations of diversity of components to perform the demanded

jobs. These components are shown in Figures 9-6 and 9-7 and surnmarised in the

following points:

* Consumer: represents software or human agent requesting a given set of the

resources.

141

* Request Services Agent: manages and handles all consumers' requests. A

semantic support for metamodel sharing between consumer and the system is

used to support open standard interoperation.

Discovery Service: supports services discovery within a given virtual or

physical container (host). This provides service for request services container

and job schedule service.

Monitoring Service: audits the consumer behaviour, activities and usage. 'The

collected information is provided to the autonomic computing unit for

intelligence processes.

Autonomic Computing: offers an intelligent layer to the ODS system. This

can provide self-organising, self-configuration, self-protection and self-

configuration capabilities.

Group: defines a number of consumers or members which share the same
behaviour or patterns.

e Service Reservation Unit (SRU): queues and handles all the required

services for a given consumers as soon as they are login to the system and

prior to services requests. The recorded information includes list of required

services, time of operation, and contract information. This unit forwards this

information to JSU.

Job Schedule Unit (JSU): schedules the request of services, according to the

received information from services reservation unit. The requested services or

resources are passed to the discovery unit at the required time of invocation.

* Resource Container: contains all deployed resources from services and

infrastructures by the providers.

142

Results

Request Ask,
New ll-*ý D iscover
user Service

Discovery
Consumer Services Request Services Resources

Container Container
Reoistered

monnorin User

Classify Collected
Consumer \ -. , Data Monitoring Requii

Autonomic system Resou

____Computing

d
Inforination*-.,,, Services

Groups Service Reservation Job Schedule
Unit (SRU) Unit (JSU)

Fitýtjre 9.6: On-Demand Service

ODS

COMEM

143

Figure 9.7: ODS UNIL Use Cases Diagram

9.4.1.2. On-Demand Service Scenario

ODS model consists of three actors and six use cases as shown in Figure 9.7. The

actors are: Customer, Group and Resources Container. While, the use cases are:
Request Service Container, Discovery Services, Monitoring System, Autonomic
Computing, Service Reservation Unit (SRL9 and Job Schedule Unit (JSU).

An advanced on-demand services scenario starts by sending request from the
consumer, as sho%Nn in the sequence and activity diagrams (Figures 9.8,9.9 and 9.10).

The rniddle%vare examines the status of the requested consumer. The consumer status
is defined by the ODS as new consumer or registered consumer.

If the consumer status is indicated as new, then the system analyses the request and

sends it to the discovery service. This service in its turn emerges the discovery

process inside the resources container in order to find the most appropriate services

according to the request parameters. After finding the demanded services, a message
is sent to the invocation service ivith the input parameters to start carrying out the

required task. The result of the performing task is presented to the consumer as results
or actions.

At the same time the monitoring services is working to record all consumers'
demands and save it in the consumer profile inside the logger as shown in Figure 9.8.

Ibis information is used to feed the autonomic computing service inside the

middleware system. The autonornic computing here is responsible for performing an
intelligent classification process. 7be classification service depends on the consumer
activity, behaviour, pattern and services usage to classify him/her or it to one of the

classirted group. 7be classiried group is clustered at the first run of the system
according to the common parameters between the consumers, and then an adjustment
process starts to adjust the groups. In the other words, the group indicates to the

sharing bchaviours or activities between the consumers in the same group. After the

classirication process for the new consumer, the consumer is considered as registered

consumer.

144

Figure 9.8: ODS-UML Sequence Diagram for Registered Consumer

For the registered consumer, the middlev, -are starts gathering the group information of'

the requested consumer. The consumer sends his group ID Nvith his demands of the

required services to help SRU for arranging the demanded services in advance. The

SRU sends a request Nvith all demanded services to the JSU. This request consists of

information regarding the time for executing each service, contract, services

information, and consumer's information.

The JSU manages the execution of the consumers' demanded tasks. This has been

achieved by scheduling the execution of each service. JSU sends the demanded

service to the discovery service for starting invocation process. On the other hand,

JSU provides the systern Nvith in advance infon-nation regarding the expected load on

each service. This information is utilised to anticipate the load on the services. In this

way, the systern has the time to establish his plans, strategies and polici i ies to conquer

fault tolerance problems according to the overload. Load balance, replication, mirror

and other methods can be used in solving such problerns of fault tolerance depending

on the information that is provided by JSU.

To enhance the operation of discovering semces and infrastructures by the

middleware in sense of fidelity, QoS, high availability and response time, autonomic

computing is proposed to be used to perform the concepts of self-configuration and

145

self-organising. The autonomic computing capabilities depend on the ASIDL to get

Nvealthy Information regarding the features, functions and parameters of the services,

which helps in finding the most suitable services.

Registemd
Caivatinwr

IW. I1J

Required servi,:,
inkirmation

3: Required seiviceý,
at fsFled fic tifil Ef Y

scavlar ad selvi M,
in form Mion

5: Resuft

Figure 9.9: ODS-UNIL Sequence Diagram for Requesting Services By
Registered Consumer

ReQUPA 4AWýý c tpl* Old

foup Irtol

Informati-xi of the ioquied salvxes, time

and consumer's address

Os

ay a

Pass consurrier input
fj. ýl "imptel

Passjob Informa6--ml IR-,
sufts to IN consurmv

I-
'r,, wniýc usa. ja information

:, in sumet and regisler
!t &Jttl Lit* (if Chs5irIPLI grQuo

Figure 9.10: ODS-UNIL Activity Diagram

146

9.4.1.3. Case Study: On-Demand Service for Intelligent Connected-
Home Machines

To elucidate the idea of ODS based on user usage classification, connected home

machines scenario is adopted. The intelligent connected home machines or smart
home devices are the next generation of the home devices. The smart home devices

should have the ability to tune themselves in a way that offers a relax environment for

the consumers. Therefore, such devices depend on local and remote services to be

available on-time. Each device has the right to use remote grid services for

performing its task in adequate way. On the other hand, the client can use numbers of
devices. Of-course, there are consumers sharing approximately the same type of
devices each time, or in other word sharing the same behaviours and patterns. We

tried in this research to classify these clients according to their devices' usages. The

benefit after classifying the users to numbers of group sharing the same behaviours is

to anticipate the required devices for each user according to users' monitored
behaviour. The autonomic computing is the intelligent services inside the middleware

that is responsible for doing the automated stuff. Machine learning services inside the

autonomic computing services are in charge to do the intelligent classification

process.

The scenario starts by training the machine learning service with the user usage data.

After the training phase, the machine learning service clusters the users to number of

groups depending on their usages. After the process of group classification, the

system is ready to receive information regarding the new users in order to classify it

to one of the classified groups. To get such information, sensors are utilised to collect
information for the new users and store it inside the logger. The sensors should be

injected inside the consumer's home to register the devices uses. The devices here can

represent TV, Video, Music Centres, Air Conditions, Lights, Heating ýystem and

others. After classifying process, the system replies with his joining group ID to the

new consumer. At the same time, ODS changes the status of the consumer from new

to registered consumer. Then, the process takes place as described above in ODS

scenario. ASIDL is employed for deploying devices with assembly services and

147

infrastructures framework. Figure 9.11 shows an example of deploying devices Nvith

ASIDL.

Figure 9.11: ASIDL Example for Deploying Home Device

Self-Organizing Mal) (SOM) is adopted in this case study to cam, out the

classification process. SOM is selected since it is one of the unsupervised learning

techniques. Such technique is required in this case according to the absence of known

target for the classification process. The data collected from the MiddleNvare

repository has wealthy inl'ormation to be processed, and starting with the definition of

148

SOM method as a vector quantization method, which places the prototype vectors on

a regular low-dimensioned grid in an ordered fashion [140].

9.4.1.3.1. Generating Training Data for Connected-Home Application

An experimental data are required for the automated classification of users and their

home devices' usage models. This data has been employed for training the SOM

model to predict the classified group for connected-home machine. Simulation

software has been developed and implemented using VS. Net and Matlab to generate

training and testing data for SOM model.

Data format for SOM is a main concern. Therefore, we try to prepare the samples in

proper iterations, and then it will be easy to construct them and build the data

structure. Matlab SOM-struct using som
-
data

- struct functions included with the

SOM toolbox [1401 are employed to build the data structure. Data pre-processing are

needed, which can be simple linear transformations, normalization or logarithmic

scaling especially when the divergence of ranges of data is too high. This is

performed using som-normalize function. After that, the scaled data is used to feed

the training system of the SOM.

Different type of users' usages categories are selected to represent the common

features in utilising the home-machine categories. Each one of these category

contains a number of home-machine devices or services. 0 and I are selected to

represent the status of the devices as "OFF" or "ON" respectively. Figure 9.12

illustrates a screen shot for generating training data for connected home machine.

149

I 1
I Ll
0

.3

I

u

I

0

I Ll

2 1
...........

01.............
.0 .9...

0...

...............
1

...................
.1

................. .0
5

:
111 6

*
0 .0 ,,, ** ** 6 0i6 D 6 .1 .1 010

00

..... 1.0..
11 0 1 0
12 0 a 0 0
13
14

00

.
0
6

. -

0
1
' - ... '

0

15 6 i 6 :o
16

....... 17
1

........................... 6
1

...................
1

......

18
19

... 20 a

----- --------- ---

Figure 9.12: Screen Shot for Generating Home-Machine Training Data

The data generation software is developed to be able for generating any types of

training and testing data in standard format depending on utillsing XML. In this

software, user can define the parameters and variables which are required to train the

system. Figures 9.13 and 9.14 demonstrate the Nvay of adding new groups and

services, which in this case is related to connected-home machine. But it can apply

for other types of systern. Figures 9.16-9.19 present the process of generating of the

training data. In this software, the user has the ability to select numbers of training

users, and the way of generating the data, i. e.: the consumer uses all devices or part of

them. Also, the user has the right to select the parameters that can appear in the

training data as shown in Figure 9.17. Then, the user specifies the path to store the

training data. and the format of the data, i. e. row format or column format, as

illustrated in Figure 9.18. The generated training data is shown in Figure 9.19.

150

151

Fi,,, ure 9.13: Generating Groups

Figure 9.14: Generating Devices

Figure 9.15: Generating Data for
Training SOM With 1000 Users.

Figure 9.17: Saving Generated Data

Figure 9.16: Parameters That is
Required to be Added in the Model

4 Ddd
4 cwd
1 Kdh. Kef-
4 uNd
3 Keh. Kýýh.

LNd
Wý. Kýe.

K'Izt.

14 H--

p1.6 Ulý
11 rIe VM-

Hý31,9 by. t

Figure 9.18: Edit Generating Data

9.4.1.3.2. SOM Implementation for Connected-Home Machine

SOM classification comprises efficient, mostly accurate mean as a visual data

analysis for the maps, while in our approach we have to reduce the role of

administration to the minimum. Thus we headed to use other classification algorithms

like K-Nearest Neighbourhood (KNN) [1551, which is suitable for sinular cases, a

special MatLab function would implement KNN classifier using arbitrary distance

matrix. The asymptotic performance of the KNN rule is good and the rule is simple.

152

Given a set of labelled training examples, T, and an unseen test point, x, computing
the squared distance in input space from x to each ofthe examples in T. Discarding

all, training cases except for the K cases which are closest to the test point are
assigning the test point to the most numerous classes amongst this KNN. A

probability distribution over classes is also easily constructed. The probability of class

i (p_i) is simply the ratio:

_j
(pi ý nj /sum nj)

Where nj is the number of nearest neighbours in class j. KNN function Is also

supported in MatLab SOM Toolbox:

IC, Pl=knn(d. Cp, JKJ)

Where 'C' is a matrix of size N*K of integers indicating the class decision for data

items according to the KNN rule for each K. 'P' is a matrix of size N*k*K, which

represents the number of prototypes for each classifier. V is an N*P matrix which is

pre-calculated dissimilarity (distance matrix). 'Cp' is a Pxl vector that contains

integer class labels, in our case (OMAR,
..., TALEB)

The current prototype implementation uses the Matlab SOM toolbox. Two MatLab

m-files implemented to build the classifier. The first file (Fig. 9.19) creates the map

as shown in the following figure. While second m-file (Fig. 9.20) build KNN

class] Fier for input P vector

5. We Shall denormalize the data map

)=som-denormalize(sD);

153

% 6. we shall save the trained map into outputfile

som_write-data(sD, outputfile);

% End

end:

Figure 9.19: Implementation of the Map Function

for prototype vectors

oe matrix

)ul map

narne in neural net path

Figure 9.20: Implementation of KNN Classifier for a Given 'P' Vector

The output of som classijý. m file is a label class, which after training the map

represents the nearest match for the input data P vector. Following our experiment it

can be seen that from 16 features, 10 classes with 1000 training epochs, the resulted

KNN classifier succeeded to achieve 7 out of 10 P input vectors.

9.4.1.3.3. Results of SOM Classification for Connected Home Machine

The results of the experiments are obtained using an implemented machine learning

middleware service. Matlab SOM library 11401 is utilised to implement such

154

experiment. Figures 9.21,9.22,9.23 and 9.24 show SOM-based classification results

of the data set generated from Matlab, which represent a simulation of our self-

managing middleware for intelligent connected-home networks. "Ibe results represent

classification for different types of users and devices. Figure 9.21, shows many

correlations between devices, which are obtained after the training phase which

included 1000 input sample data and 10 trainees. As shown in Figure 9.21, sample of

these correlations are described in the following points:

Lights and PlayStationlI coffelation

9 Video and Coffee Machine correlation

s Video CD and Fans correlation

* Vacuum cleaner and Washing machine correlation

Figure 9.22 represents U-Matrix distribution of labels for the connected home

devices. Figure 9.23 shows shaped U-Matrix with coloured regions exhibiting three

clear clusters of the map. Figure 9.24 demonstrates probability distribution function

(PDF) of the input vectors. The critical analysis of this approach depends on selecting

and scaling the correct data for training the system, because using un-normalised data

might produce inaccurate user classification. Therefore, selecting the adequate

training data is the vital to get right classified model.

At runtime, the machine learning middleware service, along with the training data

(user and device classification) can classify logged users according to known users
(one of the seven classified regions). These classes specify the user types and their

usage model, such as the device usage order and time of usage. This is used in Us

case study to guide the autonomic middleware services for service reservation and

provisioning.

155

Fi I atr I ACs HeatingSystem Mixer
3.23 3.7 2 3.74

f 1'4 1.63 1.91 1,91

025

:0

106 0,0877
ý, hne CofeMachined Dishroachine d TV dd

4 ̀ 4 328 3 59 2.85 3,61

13,7ý
182 1 44

1. St
0 060ý$Wý-- 0.08-4j 0.044: ""::: 0.0358 00231

Lýghts d d Cc) d Receiver Fans
4 4.05 2,71 275 4.17

202 2.06 2.14 1 39

O. C35 ... 0.0646 0.055 0.065d*ý:::: ý":
10.0353

PlayStatiorilld VacumCieanerd Labels ddd
Islamism& 4.28 3.91

YI

21 2

0,076tý 0.0847
dd

SOM 12-Jan-2004

Figure 9.21: SOM Visual Classification

Figure 9.24: Probability
Distribution Function PDF of

the Input Vectors

156

Figure 9.23: U-Map of
SOM Maps Resulted

Data

Figure 9.22: U-NIatrix
Distribution of Labels

9.4.1.3.4. Implementation of Service Reservation Unit and Job Schedule
Unit for Connected-Home Machine

To this end. autonomic computing based on SOM is utilised for classifying the groups

of users according to the shared behaviour, which is expressed by devices' usages.

The new consumer is codified to one of the classified groups and his status is changed

to registered consumer, as mentioned before.

In this case study, two registered consumers ('Wael' and 'Taleb') request services

from the ODS system. They send their classified group ID to the SRU. In which, SRU

requests the behaviour information for the classified group. This information

indicates the required resources, time of operations and other related infon-nation.

Figure 9.25 demonstrates a list of devices required by user 'Wael'. Also it shows tile

two consumers who use the system, in this case Vael' and 'Taleb',

This information regarding the new users Nvith their requirements is sent to the JSU to

manage the execution of such services. For instance, Figure 9.26 presents the

notification of execution service (device) light for user 'Wael'. It also describes the

time of execution for this user. The system predicts the time for the execution for

157

Figure 9.25: Service Reservation Unit

each service based on the prior collected information. Such information is collected
by injecting on-fly sensors, Of course, the user has the right to change tile time ol'

service execution or even the service in order to tune the systern and make it suitable
for his/her or it needs.

'Me soffivare for the SRU, notification systern and JSU for connected home machine

is implemented using VS. Net. Figures 9.25 and 9.26 illustrate screen shots of such

system.

9.4.2. E-Health Monitoring System

Due to the distributed computing environment, such as information systems and

computational Grid, that has been enabled a new generation of applications that are
based on seamless access. aggregation and interaction. E-Health enterprise system is

one of'such applications that can be benefited from the grid computing overlay. Grid

computing Infrastructures, utilities and services can improve efficiency, effectiveness,

access and quality of clinical healthcare industry along with the reduction of the cost

of' ownership. This section presents a way for implementing remote patient

monitoring system based on gnd computing overlay. Self-management system is

158

Figure 9.26: Job schedule Unit and Notification Services

embedded in the E-Heath Monitoring System (EHMS) depending on the self-

configuration, self-prediction and self protective concepts.

SAF with its description language (SADL) are adopted in this design for deploying

variety of medical sensor along with other grid computing sensors and actuators.
Monitor Session Description Language (MSDL) is employed in this scenario for

offering a semantic way to exchanging information between the requester (hospital)

and the e-health framework. Case study for monitoring the situation of the pregnant

women is developed to prove the usability of the autonomic computing capabilities in

managing e-health enterprise application, as has been described in the following

sections.

9.4.2.1. E-Health Monitoring System Components

Remote EHMS is proposed in this research to show the usability of the developed

model with autonomic computing functions to reduce the physical interaction

between the patients and the hospital on one hand, and improve remote control and

monitoring processes on the other hand. Consequently, this approach abbreviates the

unnecessary load on the hospital and assists the far regions to obtain a direct contact

and treatment (if possible) with the specialist in the hospital. To achieve these goals,

many components are necessitated to work together for performing the required tasks

as shown in Figure 9.27. These components are:

Monitoring System: to manage the process of gathering readings from the

patients and save them in the patient profile inside the logger depending on

semantic format, such as XML. The monitoring system for E-Health

environment consists of number of health sensor (ternp, pressure, blood,

etc ...
), analyzer and actuator, logger and schedule services. Monitoring system

runs inside the middleware. The monitoring system model has been explained
in Section 7.4.

Pregnancy Health Monitoring System: gets the reading from the monitoring

system in open standard format. Then, it manages these readings as specified
by the medical schema which define the rule for analyzing the readings, like

159

normal blood pressure. Such schema is provided by the hospital or medical

system.
Autonomic Computing Service: performs number of intelligent stuffs. The
first responsibility is derived from the self-protective capability, which is

expressed by checking the contract of the requesters. Self-organising

capability is the second responsibility of the autonomic computing. Where,

autonomic computing discovers the best appropriate resources from sensor

and services from resources container, which achieves the requesters'
demands. Self-optimising capability is also included in autonomic computing

responsibilifies. Classifying and predicting the personification of the

monitored cases is a paradigm of self-tuning concept.
Alert service: generates and deliver the alert messages to the hospitals and

patients. The alert messages are generated from the predicted personification.

9 Planetary Scale System: offers the domain for performing such large-scale

and enterprise systern. Grid computing is adopted in this scenario according to
its high availability and reliability in utilizing resources from hardware,

networking, autonomic computing and sensors. This system is proposed to be

built depending on employing grid computing overlay.

* Hospital or e-health applications: represents the consumer in this systern. It

is responsible for two main tasks. The first one is generating a request for

starting gathering information from the targets (patients). And the second one
is to generate and provide the medical schema that is utilized for predicting

the case.
o Patient: represents the monitored target in this case.

160

I

Patl

Figure 9.27: E-Health Monitoring System (EHMS)

9.4.2.2. EHMS Model

EHMS model consists of I%vo plavers narnely. patient and hospital as shoNN11 In Figure

9.28. The patient represents the monitored target of the system, N\hile the hospital

symbolized the auditing, control and requester of the system. Moreover, the model is

composed of' seven use cases namelv; Monitor Sývstem, Health Monitor System,

Alfedical S'chema, Autonomic Computing, Personification, Alert 'S'ervice, and
Resources. Middleware represents the fabnic for running monitor system, resources,

and autonomic computing services.

Resources in this model deal Nvith all types of services and infrastructures required for

executing the expected jobs from auditing, predicting, stofing and accessing

information and others. The resources cover all ovpes of general sensors, network

sensor. medical sensor, actuator, logger, intelligent services for autonomic computing,

and communication and networking services.

161

The monitoring system, which is different from health monitoring system, is in

charge of' collecting information from the patients according to the hospital's

requests. Moreover. it is in charge of delivering the data after analysing process in

semantic format to the health monitoring system.

Monitoring system haise information with other monitonng system in another

zone/cloud to achieve the ultimate optimi'sation and increasing of the QoS and

reliability in the process of collecting data from the patients. Sensor manager agent of

one zone or cloud. which was described in chapter 5, is responsible for interacting

with other sensor manger agents in other zones. Each zone can be presented as

hospitals with its patients as shown in Figure 9.29.

162

Figure 9.28: EHMS UML Use Case Diagram

9.4.2.3. E-Health Monitoring System Scenario

The scenario ofthe remote e-health monitoring system is commenced bv
. generating a

request by the hospital in order to monitor patient, as show-n in the UML sequence

and activity diagrams in Figures 9.30 and 9.31. This request includes information

regarding the required sensors, target iril'ormation, and authoritv. This request should

be in standard forniat to be acceptable in all types of system. For this reason, MSDL

is adopted to be used 1`6r dispatch a request from hospital to the EHMS. MSDL has

been described in details in chapter 8.

The MSDL request is received by the sensor schedule service inside the e-health

monitoring system. This unit analyses the requirements from the MSDL message.

These requirements cover the type of duration, targets, required resources, and

contract. In order to find the most appropriate resources, sensor schedule service

incorporates with autonomic computing service to offer self-orgam I ising and self-

163

Figure 9.29: Zones for Health Monitoring System

protective system. The self-organising system interacts with sensor and actuator

container in a way that insures the availability, fidelity, high QoS and reliability along

with reducing the cost of ownership. Such system insures the capability of the system

to find most appropriate resources. On the other hand, self-protective capability is

used to validate the contract of the hospital with the EHMS. If the contract is not

valid, then a negotiation process is established between the system and hospital.

After discovering the required resources, sensor schedule service injects the sensors
in the targets. These sensors start gathering information from the targets taken in the

consideration the duration that is defined by the requester in the MSDL request

message. The readings are stored in a patient log file inside the logger. The logger

converts the format of the readings to open standard format based on using XML file.

Analyzer and actuator unit analyze the reading to find if there is any malfunction in

the process of gathering information without any touch to the medical concepts. If

this unit finds any error in the readings, it sends a request to the sensor schedule

service for injecting other sensors into the targets. After analyzing the readings by this

unit and discovers the data is adequate, it forward the readings to the health

monitoring system. And by this process, thejob of monitoring unit is completed.

Health-monitoring system receives messages from two sources. The first source is the

analyzer and actuator unit in the monitoring system, as described in the previous

paragraph. The second message is received from the hospital which includes the

medical schema. Such medical schema is utilized to describe the medical concepts

that are used in understanding and analyzing the collecting readings, as an example

the blood pressure and pregnant schemas. Autonomic computing service is coming to

the light for carrying out the prediction process. Autonomic computing generates the

personification for the monitored patient depending on the sensors' readings and

medical schema. This personification is sent to the hospital and patient depending on

the alert message service. The deliverer alert message indicates if the case is

dangerous, critical or A

164

.
H ddl

2 ChPdcArA

Y, 3iJatbr, I

dmathrg

9 Dw5w!

9 lqed 11 1

0:, 'Adrpalin

u an other ýasov IA 11 M alid r? 4: 1 tlyal d col! ecle dm J*V&
: r I Y , q ,

16: N edi
lal

Sche ITI a

17: i. 'ojj? cje,
ýfta a mojicsl,

ý!
ma bt ptýdi cn I)rxp%

is pre"Aid

Alct Illemlo

Figure 9.30: E-Ilealth Monitoring System-UML Sequence Diagram

165

MWUMOS

Request foir vali dation of tlw contract

Figure 9.31: E-Health Monitoring System-UML Activity Diagram

9.4.2.4. Prediction Service as Web Service

Prediction service is the intelligent part of the system that is responsible for predicting
the personification from the gathered data at the patient side. Prediction service is
running inside the autonomic computing serývice. Different algorithms can be t)

employed to implement the prediction process, like machine leaming, data mining

and analysis algorithms. Analysis algorithms proved their ability to implement
different types of classification and prediction processes for a huge variety of

applications depending on mathernatic analysis. Therefore, multiple regression

analysis is adopted in this scenario to predict the personifications for the observed

patients.

As mention previously, gnd computing is employed to offer a fabric for deploying,

discovering, and invoking services and infrastructures. Therefore. multiple regression

analysis is developed and implemented as Nveb service to be integrated Nvith the

services ofthe middleware. The mathematical model for multiple regression is shown

in Sec. 7.2.2. Figure 7 demonstrates VB. Net code for implementinp, multiple

regression as web service.

166

Figure 9.32: VB. Net Code for Multiple Regression Web Service

167

9.4.2.5. Case Study: Monitoring Pregnant Women

The technique of EHMS based on using grid computing overlay is applied for

monitoring pregnancy status as a case study of applying such technique. The required

tests for the pregnancy case are categorized into four major categories according to

the interval of the pregnancy. This information regarding the required tests is adopted

according to the standard test specification available at the local hospitals, which have

been approved by the international test standards. Table 9.4 demonstrates the required

pregnancy tests according to the intervals of the pregnancý

Table 9.4: Pregnancy Tests

Pre-Conception First Trimester Second Trimester Third Trimester
Weight Weight Weight Weight
Rubella hCG Rubella Rubella

Hepatitis B Gonorrhea US Urinalysis
Hemoglobin Chlamydia AFID-Maternal HIV Antibody
Sickle Cell Syphilis hCG Group B

Streptococcus
CF Gene Mutation Urinalysis nconjugatedEstriol Hemoglobin

Sweat Chloride Urine Culture inhibin A Platelet Count
IRT Rubella Glucose Gonorrhea

Stool Trypsin IRT GTT Chlarnydia
Pap Smear Stool Trypsin HIV Antibody Syphilis

Pap Smear Urinalysis fFý
H IV Antibody Hemoglobin
Hepatitis B
Hemoglobin
Sickle Cell

CF-Gene Mutation
Sweat Chloride

SADL, as described beiore, is used to deploy medical sensors, networking sensors

and other tvpes of sensors and/or actuators by the monitonng resources providers.

These deployed sensors are used by the EHMS to collect data from the pregnant

women regarding their medical situation. Figure 9.33 illustrates an example of

deploying Flaernoglobin sensor with SADL framework, while Figure 9.34 presents

the screen shot for the available sensor with sensor and actuator framework.

169

169

Figure 9.33: SADL Example for EHNIS

Ek ýdt yiew FrecOes 1AS tj*

x Fa, omes Bad

Figure 9.34: The available Sensors In The Sensor And Actuator Container

Hospital employs MSDL for liaise with sensor and actuator framework for

discovering the most satisfactory sensors for each pregnancy case. An example of

employing MSDL lor requesting medical resources are illustrated in Figure 9,35.

Figure 9.36 demonstrates the screen shoot of generation MSDL message by the

hospital. Sensor schedule service starts looking for the required sensors depending on

the obtainable iril'orniation by SADL and MSDL. Reliability and fidelity of sensor in

addition to the validation of' the contract are the cntenon parameters in searching for

the required sensors. Figure 9.37 illustrates the screen shoot for the process of
discovering sensors by the sensor schedule service.

170

....................

171

Figure 9.35: NISDL Request for EIIMS

Figure 9.36: Generating MSDL Session by the Consumer (Hospital) for Pregnant ID
(1)

f-d. L& Y- Fý. tý

. j..

After that, sensor schedule service injects discovered sensors at the home of the

pregnant woman which represents the target in this case. Smart homes are proposed

to be employed in this scenario to offer a fabric for injecting sensors at the target

home. Subsequently, sensors starts collect information and store them in the patient
log file inside the logger. The logger in this case is assumed to be one of the grid
database services. The logger converts the collected data to semantic format based on
XML. Then. analyser and actuator unit receives the semantic collected data for the

purpose ofchecking the validity of the collected data without touching to the medical

meaning of the collected data. As mentioned previously, if this unit finds there are no

errors in the collected data, then it forwards the readings to the health monitoring

system. At the same time, hospital provides heath monitoring system with the medical

schema ofthe required tests. The medical schema represents the acceptable range for

each tests, dangerous status of the pregnancy, and/or sample training data for

predicting and testing the required case.

Autonomic computing services based on utilising multiple regression analysis web

service starts predict the personification for the required case depending on the

provided medical schema. The personification status is expressed as good, critical or

172

Figure 9.37: Discovered Resources for EHMS

dangerous case. This personification is conveyed to the hospital and pregnant women

via message alert system.

9.4.3. Monitoring PlanetLab Environment

Situated autonomic computing requires systems to possess and/or be able to access
feedback and context information, from their environment, including instrumentation

and sensor data. In this section. we are focusing on one framework that is required to

support the autonomic services which works inside the agent of the cloud. We are

presenting the motivation and development details of a SAF, together with its

associated description languages, developed for widely decentralized software

systems. To portray our proposed approach, this application example uses an

illustrative example taken from an experimental case-study developed using the

PlanetLab overlay 'rhe latter is an open community research testbed and overlay for

Planetary-scale services.

173

Figure 9.38: List of the Requested Tasks by the Hospital

PlanetLab is adopted as an experimental environment for our developed tools and

services. PlanetLab oN, erlay from sensors and services are utilised in order to offer a
fabric for supporting information to the autonon-k computing services. An

introduction of PlanetLab technology and its resources Nvas given in Chapters 2 and 4,

9.4.3.1. System Model

System model for monitoring PlanetLab environment is depending on utilising the

developed monitoring system model, which described in Sec. 7.4. In this model we

are employed PlanetLab overlay for gathenng information frorn the nodes (targets) in

order to sensing the load. Different sensors and actuators are deployed with our

developed SAF Such resources are CoMon [120., 121], Ganglia [39],]Perf 1122] and
IrisLog 11231. A prediction service from autonomic computing is attached to the

system to enhance its functionality in sense of availability, fidelity, reliability and

QoS.

9.4.3.2. Case Study: Monitoring 'Princeton_Codeen' Node

The developed monitoring system is tested over PlanetLab to take readings for

different parameters from variety nodes. 'princeton-codeen' node Nvith IP address

'128.112.139.71' is selected to be the target for our expenmental on PlanetLab

overlay. In this case study, SADL is used to deploy CoMon sensor as show-n in Figure

9.31). The user interface for enerating, SADL is demonstrated in Fi, ", ure 9.40.

174

Figure 9.39: SADL Example for PlanetLab Environment

Fie (dt Tod, H. *

...........

. Qbw.

JMI j - Sm*rNmw - Ccmon
.................... Sensor Deir-ption To V L Anf0r-l n rrom the 0 :

,, PI an c ab C.; I. rding proc NY:
................

Sensor Appkahon Planet Lab
......................

..............

.. -

Typ' Pvf. rm. ncv
Dat&Typc

Da. SiwAge Type x ML

1105t
cambndgv intektosuarch. nul

CýUýr CambrAge
.....

I; xe"ub6fl

StAtus On Ui)v
A 4d kiot lw

Cdtcg. y Memory, ProcAssm, Ban&, idlh

plarvilAl cumbridge olul-r-warch neq

Figure 9.40: User Interface For Generating SAM in PlanetLab Environment

175

After deploying the monitoring resources with the framework, consumer utilises

MSDL to generate and send the request of collecting information from the target

-pnnceton_codeen' to the SAF, as illustrated in Figure 9.41. The consumer in this

case should select PlanetLab as an environment application. The durations tag is set

to 10 minutes and 20 seconds for each trigger of collecting data. The user interface

for creating MSDL is shown in Figure 9.42.

Figure 9.41: NISDL Example I-or Requesting Resources Within PlanetLab
Environment

176

4, Fý* ql- Fpýt. Lxk tjtt

; fi; Wp Vý

4-r Sý:,,
Sew x Zý

sclu ýf sanke

Scns: r
A; pk"m R. t Lab
Cows-t IL

........ ..

j SC-11

-'. *JT(-7 Quffws

VC C Sýý

; nctt

pbowdAb S-5 7

The SAF anakses the NISDL request and starts search for the required sensors.

Autonomic computing is employed in the case to find the best match for consumer's

request. CoNlon in the framework container is selected by the system as the best

choice for our dernands The system injects CoNlon in the target. CoMon begins

gathering inf'orniation on-fly and on run time from 'pfinceton_codeen' node. The

collected data is sa%ed then in the Logger. The logger converts the reading to XML

format to be acceptable in heterogeneous system, as shown in Figure 9.43. The user

interface for editing information in logger is shown in Figure 9.44. The consumer has

the I'Xility to do%%nload the readings as XML format. The data now is ready to be

delivered to the consumers. The collected parameters include:

0 ("I'X: the s lice's context 11). a sort of user number

o I: t, wisnut bmdNý idth in Kb/s over I minute

0 '1 X 15: transmit bmd\\ idth in Kb/s over 15 minutes

177

Figure 9.42: User interface for Generating NISDL for PlanetLab Environment

9 RXI: receive band%Nidth in Kb/s over I rTunute

0 RX 15: recei ve bandwidth in Kb/s over 15 aunutes

0 #PR: tlie number of processes owned by this slice

a KNIENIMB: the amount of physical memoiý, (in MB) used by this slice

VNIENINIB: the amount of virtual memory (in MB) used bN, this slice

0 *: N\ hat fraction of the CPU Is being consumed by this slice

0 '%MENT: Miat fraction of memory is being consumed by this slice, and

9N AN I E: the sl 1 ce's name.

Figtire 9.43: Logger Example for I'lanetLab Environment

178

, >. Zk' .
....................... ...

f
rim

I. ttvv, to

L..
41mp-.,. '. f ,!, ."-- .1 telL

14ý55
I Ivi

......... ?. (I ý 1,210 05
10 i6 67 : 20 17,4:: o 7 -ucsd tcp 12.49: 55

: pm

' ý : ,
2'17! 200ý

: 544) * ;o 10 A j4 1 : 14 9 17,3: o4 cetOL -b ý12,49.55

PM
..............

:
ýIW2005

: 1199 8 116 28 'ý. b

---- ------- ------ - ---------------- -- --
PM

ý5)36 353 2S ý121 4 j1392,0 : 14 : 12 0 imCgl_card

.............

; &M Al I in 1A:, p Q Z,. h - 't

.......................

Figure 9-44: Collected Data Inside the Logger for PlanetLab Environment

F-IgUres 1) 4S a. 1), c wid d demonstrate the CPU. memory, virtual memory and

bandwidth usages respectively for reading time equal to 10 minutes with interval 20

seconds bet%%een reading and the other for node 'princeton-codeen', as mentioned-

abo% e.
CPU Usage I%

18
16

14

12

10

8

6

4

2

OWN

Figure 9.45. a: CPU Usage

179

le eee
pp

e

Figure 9.45. b: Memory Usage
Virtual Memory MB

250

200

i ý, n

100

so

0-- ---- -------------------- ---

'Výý4F "Výofe 'Vý: fýe 'Výopýe 'VýOýpe lvoýple
Figure 9.45. c: Virtual Memory Usage

Figure 9.45. d: Receive Bandwidth
Figure 9.45: Resources Usage for the "Princeton-Codeen" Node

180

9.4.3.3. Self-Healing Capability for the PlanetLab Environment

Self-healing capability is adopted here to overcome the failure in the PlanetLab

services depending on the collected readings. Figure 9.46 illustrates the scenario of
using autonomic computing in solving the problem of services failure which is caused
by request overloading. Replication algorithm is suggested to be employed in this

scenario to structure a fabric of emergency resources for the consumers. In this

scenario, JSU is in charge of record all the resources demands, which can be obtained
from the SAF that explained in the previous section. Each one of the JSUs sends the

schedule tables containing information regarding requested resources and schedule
time of the running services to the autonomic services. In its turn, the autonomic
service estimates the load of each resource in the resources container. Hence, the

system can expect the failure of the resource according to the overload before its

occurrence. After words, the autonomic service sends a request to the replication

service to create a replica of the expected resource failure in the replication resources

container. Subsequently, the replication service creates demanded resources into the

replication resource container. All these processes occur inside the middleware layer

and only the responses to the requested services are passed to the consumers in the

application layer, i. e. the middleware and its services work as a black box in the sight
of the consumers. This method achieves the high availability of resources to the

consumers' requests depending on using autonomic services.

181

MIddleware
LaWr

Application
Layer

Figure 9.46: Life Cycle for Self-Healing System

9.5. Discussion

It is a signihicant challenge to produce conclusive evidence of the I
benefits, ments,

effectiveness, correctness and completeness of the proposed models, framework,

services and utilities. However, both the qualitative and quantitative evaluations

provide positive indications that the proposed models and associated programming

model seem to fulfil the defined requirements, and are genenc and flexible enough to

support the rapid development ofa range of distributed applications. In particular, in

this evaluation, based on a number of expenmental actions, the assembly services

succeeded in deploying, discovering and invoking distributed resources (services,

infrastructures, sensors and actuators). Moreover, the embedding of autonomic

computing services in enterprise applications improves the performance of the self-

managernent system in sense offidelity. reliability, availability and QoS.

The potential benefits of' autonomic computing vision to support planetary scale

enterprise applications have been indicated through a set of examples, namely; (i) the

On-Dernand Services (ODS). (h) Remotely Patient Monitoring in E-Health

Monitoring Svsteni (EIIMS), (iii) Monitoring Testbed for PlanetLab Environment.

192

9.6. Summary

This chapter presented an evaluation of the proposed approach for developing a

software framework offering self-management middleware services. In this

evaluation, we analysed the effect of self-management behaviour on the prototype

software in terms of response time.

The experimental results indicated that the performance profile of a system with self-

management behaviour is more efficient than a system without it. However,

autonomic rniddleware services add additional overhead and point of failure. Though,

this can be improved by the use of improved intelligence services.

183

CHAPTER10

CONCLUSIONS

I O. I. Motivations and Approach

Recent advancements in networking, hardware, and rniddleware technologies have
been a rnýor catalyst for the recent popularity of grid-based applications [331, which
are typically characterized by their high-performance computing requirements and
dynamic resources transparency. To achieve this vision, a huge numbers of services

and infrastructures are required to be invested in such global computing environment.
Therefore, many are anticipating grid computing infrastructure, utilities and services
to grow dramatically in size and functionality and become an integral part of future

socio-economical fabric. 7bough, this vision is predicated on that such grid-based

computing services and infrastructure have to ensure a high-assurance, dependability

guaranties, interpretability, and ubiquitously of resources, whilst lowering

complexity, cost and eases of use.

From the above addressed points, we can conclude the difficulties that can be faced in
developing global computing environment. Such difficulties are heterogeneous

environment, the absence of the centralized system, dynamic infrastructures, sharing
of resources, security policies, management rules and strategies, variety of
network/connection protocols and absence of a common data representation. The

suggested solution for much of these difficulties is the self-management system that is
integrated with planetary-scale system and its applications in order to generate viable

system which is able to survive within the changing in the behaviour and actions of
the environment taking in the consideration the boundaries of the applications' nature.

Such essential requirements for self-management system have brought the attention to
the autonomic computing capabilities as a vital technology to underpin such vision of

184

viable flexible global computing system. Autonomic computing as other similar

initiatives before it [881, advocates the delegation of much of systems adaptation,

management, tuning, and protection to the software itselE

Much of this work investigates the designing, developing and implementing of the

autonomic computing capabilities as one of the middleware core functions. Moreover,

this effort covers the generic models and design and implementation requirements for

the usability of autonomic computing services in planetary-scale system. The merge

of autonomic computing and global computing technologies is proposed in order to

reduce and hide the complexity of the environment from the consumers by reducing

the interaction and move to the automated epoch in carrying out the tasks. Many

tools, services and frameworks are addressed through this research in order to assist

the autonomic computing (intelligent part of the system) to establish self-managing

system that can be embedded %vith the environment and/or applications.

The creation of this kind of system involves a range of technical issues need to be

addressed and developed, %Nhich cover:

e Reference Models: the development of generic design models and

architectures as well as pattems to support software developers and

middleware services to develop systems, which have the feature of self-

awareness (monitors) and runtime self-management facilities. This is based on

a developed method for automated service assembly and deployment.

Experimental Insight: to demonstrate the developed rniddleware services

-Abich can perform number of core functions such as deploy, discovery,

invocation and management.

Open Standard Format: to offer formalise and semantic way in exchanging
information between different actors of the system. Such open standards

provide a common language between the consumers, resources providers and
ftameworks.

In line ivith the above described motivations and associated challenges, this thesis

detailed a proposed soffivare framework that offering a number of middleware

services for: (i) Self-management system (ii) Self-monitoring and diagnostic system.

185

For theoretical support, the research visited a number of fields including:

* Autonomic computing model and approaches: using autonomic computing

capabilities to design and develop the policies and strategies which required
for establishing survival self-management system for planetary-scale system.

e Advanced software engineering: using distributed middleware as a broker to
facilitate the conununication and the coordination between both base services
(users application service) and the meta-services (autonomic middleware

control services), and to bridge the gap between network layer and the

transport and application layers (from the Internet model) according to the
developed network model for the global computing.

Service-oriented developments: using the concepts of components,

connectors, and services to generate a system from number of distributed

components. Moreover service-oriented developments viewing the services as
discoverable logical entities that are defined by published interfaces.

In particular, this work provided support for global computing vision by merging both

practical and theoretical concepts, which can be concluded as:

The practical support: is providing the essential and required services and
infrastructure for developing the computational and programmable model for

autonomic middleware control service leading to the goal of self-management

systern.

Service management: is responsible for the life cycle of the services starting
ftorn deployment phase and ending "ith passing results to the consumers.

System management: outlines the plane, policies (rules) and strategies for

performing automated and self-management services.

Distributed shared space: allows all system' services and infrastructures to

be shared over the network in addition to provide the control and audit system

with the required information.

186

10.2. Achievements and Contributions
This work makes a number of contributions towards a better understanding of

software, self-management requirements for the global computing environment. One

of the main contributions of this work is the generic design model for planetary-scale

environment based on existing Internet networking model. This developed model is

vital for providing a way for managing planetary-scale system by separating the

systems into numbers of clouds/zones managed by an agent that runs the middleware
layer. The later is responsible for performing managing processes.

in addition, the work provided an insight into the design of patterns for the generic

model of viable self-management system for the planetary-scale environment. This

model is designed based on merging the models of two patterns that are accepted in

software engineering community, which are Viable System Model (VSM) pattern and
Gang of Four (GoF) pattern. Moreover, the Self-Management Viable System Model

(SVM-SM) is developed to achieve the general vision of the global computing which
is moving to the next generation of self-govemance distributed system. In addition to

the above contributions, this work had addressed the following point:

" Consolidate of autonomic computing capabilities: varieties of autonomic

computing capabilities are proposed in this research in order to corporate
together for offering a therapy for global computing to perform self-

management and self-governance system (Sec 5.5).

"A mechanism for Implementing Intelligent web services: different

algorithms, approaches and techniques for the predication and classification

processes are surveyed and developed as %veb service to be the core unit of the
distributed autonomic computing %Nithin OGSA environment (Sec 7.2).

" Services and Infrastructures framework: to offer a public container for

storing variety types of resources. This framework is developed in the concept

of offering a manageably fabric that guarantee the QoS and availability of

resources (Sec 7.3).

187

* Services and infrastructures description language: to be a common
language between the resources providers and the consumers. Such formalised

language fit with the requirement of open standard community a long with

providing the tools for supporting the fidelity and assurance of selecting

aimed resources (Sec: 8.2).

Monitoring model: to offer a model for utilising monitoring system that can
be integrated and requested by any components of the auditing system or

enterprise applications (Sec 7.4). This model provides a framework for the

generation, deployment, discovery, invocation and management of monitoring

resources. For this purpose, two description languages are proposed and
developed, namely; Sensor and Actuator Description Languages (SADL) (Sec

8.4) and Monitor Session Description Language (MSDL) (Sec 8.5). These are

used respectively to describe the set of deployed sensors and actuators in a

given self-managing planetary-scale system infrastructure, and to define

monitoring properties and policies of a given monitored target application

services.

Evaluation: Self-management model is tested and evaluated through a

number of quantitative and qualitative evaluation processes in order to provide

a proof-of-concept or evidence of the potential benefits of such autonomic

middleware control services (meta-control model) and associated baseline

architecture to distributed application life-time management and viable self-

management system Tbree practical enterprise applications are used to show
the usability of our model in real world applications. These applications are:

o On-demand services (Sec; 9.4.1): is a way to reduce the interaction

between the users and the resources by adjusting the distributed

resources to give superior services to the users. On-demand service is

implemented based on autonomic computing capabilities in order to

manage the consumers' usages. Service reservation and schedule

service is presented in this application in order to serve the consumers,

requests in automated and smart way.

188

o E-Health monitoring sywtem (Sec 9.4-2): to offer a health monitoring
tools for auditing patients remotely which assist in providing the
hospital (consumer) by online and on-demand follow-up services. E-
health monitoring system depending on autonomic computing
capabilities are adopted in this work to predict the personification for

each case and proposed the required sensors that need to be injected in

patients' side.

o Monitoring PlanelLab envirorunent (Sec 9.4.3): to possess and/or be

able to access feedback and context information that is required by

situated autonomic computing service. PlanetLab overlay from sensors
and analysers are employed for collecting and analysing distinction
information from Virtual Servers, Slices, Nodes and other parts of the
PlanetLab environment.

10.3. Thesis Summary
Grids are emerging as the infrastructure for next generation of the Global computing.
in such environments, resources are heterogeneous and geographically distributed

with varying availability, usage and cost policies. Hence, this thesis has offered a new

vision of lifetime management of distributed application services grounded in a
number of related disciplines such as; self-management patterns and model, software
agent, monitoring system and advanced software engineering. The detailed
description of background theories, methods and the achievements of this work are
presented as follows;

* Chapter I introduced the motivations and technical challenges and outlined
the proposed approach and main contributions of the work.

Chapter 2 introduced the required basic background concepts and principles of
planetary-scale system including the basic definition of the grid computing
followed by its components, capabilities, architectural model and topologies.
Moreover, this chapter presented Open Grid Service Architecture (OGSA) and
PlanetLab environments as parts of the global computing environment.

189

e Chapter 3 described the basic background and concepts of autonomic

computing model. This background covered autonomic computing standards

and architecture, characteristics and capabilities. Moreover, this chapter
introduced the monitoring system which is essential for completing the life

cycle of the self-management systern.

Chapter 4 reviewed the state-of-the-art and related work relevant to the

control and management aspects for the planetary-scale systern. This review
covered autonomic grid computing applications and autonomic computing
models and approaches. Most of such research works have been focused on
self-management middleware system. At the end, this chapter outlined the

existing monitoring resources for the planetary-scale system

Chapter 5 outlined the requirements and models for designing self-

management middleware services. Moreover, requirements and model for

autonomic computing and the interference between autonomic computing

capabilities were demonstrated in this chapter.

Chapter 6 demonstrated the generic model for the planetary-scale systern.
Moreover, this chapter presented Self-Management Viable System Model

(SM-VSM) for the planetary-scale environment, which was introduced from

the modification of the Viable System Model (VSM). SMNSM consists of 5
layers which are policy, intelligence, control and auditing, coordination and
operation. For the purpose of the distributed system, we added another
intermediate layer between the operation and coordination layers. This
intermediate layer is known as support distributed functions layer. In addition
the corporation between SM-VSM and Gang of Four (GoF) patterns were
described in this chapter.

Chapter 7 illustrated the support utilities for designing, developing and
implementing autonon* computing services as one of the core middleware

services. Intelligent web services for autonomic computing were designed

based on utilising of machine learning technique and multiple regression

algorithm. This was followed by description of the sensor and actuator

190

framework Monitoring model was presented in this chapter, which includes

sensor and actuator framework and the required description languages.

Chapter 8 presented our technique for the open standard based on the use of
eXtensible Mark-up description Language (XML). Three types of description
languages were described in this -chapter.

The first description language was
Assembly Services and Infrastructures Description Language (ASIDL), which
was designed for the purpose of providing common language between

consumers and resources providers. On the same concepts two other
description languages were produced to offer a formalised language between

monitoring resources and monitoring requesters. These two languages were
Sensor and Actuator Description Language (SADL) and Monitor Session
Description Language (MSDL).

Chapter 9 presented a qualitative and quantitative evaluation of the main
functionalities of the frarnework services. For the quantitative evaluation we
used three enterprise global application examples namely; on-demand service,
E-Health monitoring system and monitoring PlanetLab, environment.
Experimental results showed that the proposed models and techniques are

efficient and effective in carrying out self-management processes.

* Chapter 10 provided the thesis motivation and approach, achievements and
contributions, summary and suggestions for further work.

10A. Conclusion and Discussion

Internet model has been used in the current Internet environment to offer a method for
describing and analyzing the transfer of messages between end-systems. Between the

many already identified shortcomings of this networking model is the absence of

reliability, fidelity and high availability of resources. Iberefore, this model should be

comprehensive in order to include the description of different methods and functions

that are required for managing and automating the deployment and discovery

processes for distributed resources in order to provide better services and

191

performance. This work adopts Internet model as a start point for developing a new
Network model that can achieve the new needs of global computing.

Nfiddleware layer is proposed in this research to be attached between transport layer

and network layer from the Internet model. The middleware layer is developed in

order to be responsible for managing the consumers request and resources in a way
that assures the interpretability, ubiquitously, and high availability along with

specifying security and ownership polices. Middleware layer consists of three sub
layers namely; Serviceware, core-functions and resources overlay.

Serviceware sub layer is responsible for performing the self-management processes
based on utilising inter functions represented by autonomic computing services. In

this research, we designed a pattern model for self-management system in order to

assist the system in defining and selecting the basic components that are required to

carry out the management task taken in the consideration the nature boundaries of the

environment. Moreover, the developed patterns help the system to survive within
irregular environment such, as grid or other type of planetary-scale system. Viable

System Model is employed in this case after a little modification to be adequate for

the large scale enterprise applications and environment. This model describes the

process of , generating self-management pattern till it reaches to the basic operations.
These operations are represented by autonomic computing capabilities. Therefore,

other patterns are required to describe the fundamental components and operations of
the autonomic computing capabilities. For this purpose, Gang of Four (GoF) patterns

are employed to define the design of these basic components.

The other part of the story is that autonomic computing capabilities which require a

number of services, tools and frameworks in order to perform the task of self-

management. Such utilities are required to collect information from the environment

and perform actions inside the environment. Therefore, monitoring model is

developed, designed and implemented in order to deploy, discover, invoke and

manage the monitoring resources ftom sensors and actuators for the purpose of

collecting wealthy data for the autonomic computing services. Ibis monitoring model
is extended to be suited for embedded with any enterprise applications.

192

Open standards concept is one of the most support concepts for the future global

computing applications. Therefore, three description languages are designed to

provide a fabric for formal exchanging of information between actors of the system.
These description languages, as mentioned before, are Assembly Services and
infrastructures Description Language (ASIDL), Sensor and Actuator Description

Language (SADL) and Monitor Session Description Language (MSDL).

In this research, we applied our development models and approaches on three

enterprise applications in order to be sure that these developing materials are feasible

for managing the future global computing environment and structure. These

enterprise applications are on-demand service, E-Health monitoring system and

monitoring PlanetLab environment. The developed models, services, tools and
frameworks are embedded with these systems without any major changes. This gives

an indication of the feasibility of requesting and using these elements with most of the

enterprise applications.

10.5. Proposed Further Works

This work strived to be comprehensive and novel in providing a model for self-

managing global computing and its applications. However, this work can not cover all

approaches and techniques that can be used in performing the required tasks or the

enterprise applications that can benefit from this model. Iberefore, the following

points outline suggested further works including;

The developed models, services, tools, frameworks and description languages

have been tested and evaluated through three enterprise applications. These

can be extended to include more applications and models, such as:

o ASIF and ASIDL have been used to deploy, discover, invoke and

manage the resources for ODS and EHMS. This framework with its

associated description language can be used and experimented for

deploying different types of resources without depending on the use of
UDDL The intelligence can be annexed to this framework in order to

enhance it ability for interacting with environment.

193

o The use of the ODS technique for overcoming the long processing

time for some of the large enterprise applications.

0 SAF and its description languages (SADL and MSDL) have been

developed for auditing the behaviour of the three selected applications
in this work. These modules can be extended to monitor other type of

environment and applications in a way that would provide a wealth of
information for the administrative services. Such environments and

applications are GridBus [156], distributed educational software, e-
business environment, and bioinformatics applications.

o The use of the developed intelligent services (SOM and Multiple

Regression) as a predictor for variety of autonomic computing

capabilifies.

Design Patterns: to investigate the feasibility of integrating others levels of

GoF patterns Nvith SM-VSM in order to describe, develop and implement the

basic components of the autonomic computing capabilities. These levels of

GoF patterns are represented by behavioural and structural patterns.

Environment Modelling and Monitoring: to investigate environment

modelling, embodiment, scanning including policy-based management and

monitoring. Also, exploring the opportunity to use the developed monitoring

model with its framework, description languages and dynamic resources with

variety types of sensors for different large-scale enterprise applications.

Autonomic Computing Capabilities: to investigate other types of autonomic

computing capabilities to extend the proposed autonomic middleware

services, utilities and frameworks. This can include studies of intelligent

services like support vector machine [131,1571, Neural Network [158,159],

Bayesian network algorithm [160,161].

Sensor and Actuator Description Language: to investigate the integration

of this description language with the Web Services Distributed Management

(WSDM) [162] in order to support the process of managing web services.

194

APPENDIX A

MIDDLEWARE

To achieve the true benefits of distributed systems approach including; peer-to-peer

and client-server, developers must have a set of tools that provide a uniform means

and styles of access to system resources across all platforms (heterogeneous system).
This will enable programmers to build applications that are not only look and feel the

same on various PCs and workstation, but that use the same method to access data

and resources regardless of the location of data and resources.

The most common way to meet this requirement is by the use of standard

programming interface and protocols that lie between the application above and

communication software and operating system below. Such standardised interfaces

and protocol have come at top and be referred as middleware.

There are a variety of middleware solutions ranging from the very simple to the very

complex. All types of middleware share the same concept of hiding the complexity

and disparities of different network protocols and operation systems from the

consumers. Moreover, the concept of the middleware is stretched to include the

management, controlling and monitoring of the environment. The new middleware

types are responsible for managing the processes of deploying resources by the

providers and discovering them according to consumers' requests. As shown in

Figure A. 1, the core functions of middleware include [163]:

* Deployment function: describes the process of deploying resources.

a Discovery function: describes the way of discovering resources according to

conswners' needs.

195

0 Invocation function: describes the way of invoking the discovered resources,
do the process and return the results.

All these core functions require a number of supporting functions in order to lunch in

planetary-scale system. These supporting functions are [163]:

Uniform computing access: makes all computational resources appear to have

a uniform interface to the consumers, while there is heterogeneous in the reality.

9 Uniform data access: is responsible for performing the semantic of the data

before delivering to the consumers.

Authentication, delegation and source communication: assists the systern to

build and mwiage the level of authorisation and authentication.

Identify certificate management: provides the system Nvith the policies for

cariý'Ing out the management tasks.

Figure A. I: Nliddleware System

196

Preliminaries

All types of middleware systems should meet the following specification [164]:

* Ease of use

" Location transparency: the consumer should not be worried regarding the

deploying and discovering of the resources.

" Message delivery integrity: message should not be lost or duplicated.

" Message format integrity: message should not be corrupted.

" Semantic message format: message should be understood by all platforms and

systems.

Applications integrated: distributed applications can be integrated with others

easily.

Middleware types

There are many types of middleware, %Nhich can be surnmarised in the following

types:

Distributed Transaction and Messaging Middleware: this covers variety of

technologies %Nhich can be outlined as follow.

o Remote Procedure Call (RPQ: is described as a protocol that can be

utilised by a program to request a service from other programs located

in another computer in a network without needs for understanding the

network and communication details [3,114,164].

o Microsoft Messaging Queuing (MSMQ): allows applications to

communicate with each other depending on using request and response

queued message [4,114,164,165].

o Distributed Transaction Processing (DTP): is a software architecture

that allows multiple application programs to share resources provided

197

by multiple resource managers, and permits their work to be coordinated
into global transacfions [114,164,166].

o MQSeries: is an IBM software family whose components are used to tie
together other software applications so that they can work together [114,
167,1681.

Object-Oriented AlUddleware: Object middleware is built on the simple
concepts of calling an operation in an object that resides in another system.
Instead of client and server, there is client and object [3,114,164]. This Type of
middleivare covers DOCM and CORBA [3,114,164,169].

Aet Middleware: The Net platform represents an evaluation of the
Components Object Model (COM) [2,3,114,164,1701. It is employed to

create sofhvare components that are completely object based. Net is developed

by Microsoft to support Nveb service technology and employee SOAP [2] as a
way of exchanging messages.

* Java world: this covers a large number of middleware types, such as:

0 Enterprise JavaBeans (EJB): provides a transaction processing (IT)

monitor-like environment for distributed components. The TP monitor
characteristics of the EJB platform allows developers to streamline
development by automatically managing the entire application
environment, including transactions, security, concurrency, load
balancing and failover [3,4,114,150,171].

o Java 2 Platform Enterprise Edition (J2, EE): Sun Nficrosysterns (together

%vith industry partners such as IBM) designed ME to hide the

complexity of requesting remote resources by the thin client They argue
that ME simplifies application development and decreases the need for

programrning and programmer training by creating standardised,

reusable modular components and by enabling the tier to handle many

aspects of programming automatically [3,4,114,172].

198

o Java Messaging SerWce PMS): is an API for sending messages and

events between lhvo or more clients in a formal way [3,4,114,173].

o Java Naming and Directory Interface (JADI): provides a unified
interface to mulfiple narning and directory services. As part of the Java

enterprise API set JNDI enables searnless connectivity to
heterogeneous enterprise narning and directory services [3,4,114,174].

o Jink is a middleNvare developed by Sun to leverage the deployment and

usability in heterogeneous system based on using register and look-up

services [3,4,114,150].

Database-Oriented Afiddleware: is middleware specialist in dealing and
facilitating the transactions of messages with distributed database, whether from

an application or between databases [114,1751.

199

APPENDIX B

GANG OF FOUR-STRUCTURAL PATTERNS

Design patterns are level up from code and typically show how to simplify a problem

into numbers of modules. A design pattern is a pattem-a way to pursue intent-that

uses classes and their methods in an object-oriented language. Patterns are about

design and interaction of objects, as well as providing a communication platform

concerning elegant, reusable solutions to commonly encountered programming

challenges.

The Gang of Four (GoF) patterns are generally considered the foundation for all other

patterns. They are categorized in three groups: Creational, Structural, and

Behavioural patterns. GoF has been a de facto reference for any Object-Oriented

software developer. The creational patterns had been discussed through chapter six,

-, &bile behavioural patterns are out of the scope of this thesis. The structural patterns

are shown below [134,176,177]:

Adapter: allows the system to provide a new interface for a class that already

exists in order to be fitted with the users' requirements. Also it provides the

tools for building a new class which will have "pluggable" adapters tailored

for individual client needs. The UML class diagram for this pattern is shown
below.

200

Figure B. l: Adapter Pattern 11341

Bridge: decouples an abstraction from its implementation so that the two can

vary independently. This means that the system allows the class and its

interface to be changed independently over time which can lead to more reuse

and less future shock. Moreover, this pattern authorizes us to dynamically

switch between implementations at runtime allowing increased levels of

runtime, flexibility. Figure B. 2 demonstrates UML class diagram for bridge

pattern.
Client

Abstfact(cm I jmpjomqt%w I knPlamealtv

E"p-, orr*-
flW. Opvw*ioMmpp4)

Figure B. 2: Bridge Pattern [134]

201

Speck. Reqest()

Composite: A flexible pattern that provides complex and flexible tree

structures. The trees can be built from various types of containers or leaf

nodes, and its depth or composition can be adjusted or determined at runtime.
The client is simplified as it can deal with the tree as a single object as the

Composite pattern can take care of dealing appropriately with all the differing

component parts. Figure B. 3 illustrates the UML class diagram for composite

pattem.
Client I ----------- - --

Component)
A(In COMPOO145, M)

4,1(in ifýdvx, ýot)

Lem II Composite

Add(ýn Cosofvveot)
Remave(in Coffvwont)
GotChild(In Irklox. *. int)

.1

I
loveach child In chlklran

Figure B. 3: Composite Pattern 1134]

Decorator: is utilised for dynamic object modifying at runtime by attaching

new behaviours, or modifying existing ones. Decorators provide a flexible

alternative to sub classing for extending functionality. Therefore, decorator

pattern support the design of the system by "pay as you go" systems where

overhead is incurred only when runtime, or configuration options, require it.

The UML class diagram for decorator pattern is shown in Figure BA

202

CCXa)FPQ)70m

...

0 1-?
-h--. 4violb

I

Figure BA: Decorator Pattern 11341

Faqade: provides a unified interface to a set of interfaces in a subsystem.
Fapde detines a higher-level interface that makes the subsystem easier to use.

-Me potential benefits of this pattern are to sillIP11(y the client,

compartmentalise the client, help future proof of tile applications. or enable

more reuse. The UML class diag
grwii

for Fapde pattern is showl in Figure

B. 5.

Figure B. 5: Faýade Pattern 11341

Flyweight: uses sharing classes to support large numbers of fine-grained
IP

objects efficiently. This can be achieved by optimises memory use when there

is a designed class which is demanded by huge number of clients. Tile pattern

is most applicable if there Nvill be clusters of runtime objects that have similar

203

, ddW

state (data), as it arranges sharing of these instances. Figure B. 6 demonstrates

the UML class diagram for the Flyweight pattern.
flyweightFactwy ftyweighw I Flyl"lght

it fly-welghts(keyl exisis
retuffs ex6alng flyweiVIA

ii-b-A
Ofeats new *)WOlght
add to pool of 9ymWqhvz
mtlwn now "*IgN

Client lufth* concrotoflyweirwill I Conomolywafght

Figure B. 6: Flyweight Pattern 11341

Proxy: This pattern provides a surrogate object that controls access to some

other object Examples include objects upon a remote system, objects that
have client authentication requirements, or objects that are expensive to fully

create so some client purposes may be served Nvith just a cut down

instantiation. Figure B. 7 illustrates Proxy pattern.

client II subject

ftalSubjed. II Proxy

rawl'Subjeat

Figure B. 7: Proxy Pattern [1341

204

APPENDIX C

LIST OF ABBREVIATIONS

ASIDL Assembly Services and Infrastructures Description Language

ASIF Assembly Services and Infrastructures Framework

BMU Best Matching Unit

CIM Common Information Model

DISCO Discovery

EHMS E-Health Monitoring System

GoF Gang of Four

JSU Job Schedule Unit

I KNN I K-Nearest Neighbourhood I

MSDL Monitor Session Description Language

MUWS WSDM Management Using Web Services

ODS on-Demand Service

OGSA Open Grid service Architecture

QoS Quality of Service

SAF

vsm
SOAP Simple Access Description Language

SOM Self Organising Map

SRU Service Reservation Unit

SVm Support Vector Machine

UDDI Universal Discovery, Description and Integration

UML Unified Modelling Language

er
Viable

205

WSDL Web Service Description Language

WSDM Web Services Distributed Management

XML eXtensible Markup Language

206

APPENDIX D

PUBLICATIONS BY THE AUTHOR

1. B. Ahmad, W. Omar, A. Taleb-Bendiab. Intelligent Monitoring Model For
Sensing Financial Application Behaviour Based On Grid Computing Overlay.
in Submitted to 2006 IEEE International Conference on Services Computing
(SCC 2006). 2006. USA.

2. M. Yu, A. Taleb-Bendiab, D. Reilly, W. Omar. Multi-Standard Service
Interoperation Protocol 7hrough Polyarchical Middleware. in 4th Annual
Postgraduate Symposium on The Convergence of Telecommunications,
Networking & Broadcasting (PGlVet2003). 2003. Liverpool, UX

3. M. Yu, A. Taleb-Bendiab, D. Reilly, W. Omar. Ubiquitous Service
Interoperation through Polyarchical Middleware. in IEEE/ WIC
International Conference on Web Intelligence(WI 2003). 2003. Halifax -
Canada.

4. M. Yu, A. Taleb-Bendiab, D. Reilly, R Grishikashvili, W. Omar.
PolyarchicalMiddlewarefor On-Demand and Multi-Standard Services'
Compositionfor Ubiquitous Computing. in UNITN -International Conference
on Service Oriented Computing. 2003. Trento - Italy.

5. W. Omar, A. Taleb-Bendiab, M. Yu. An Open Standard Description
Languagefor Semantic Grid Services Assemblyfor Autonomic Computing
Overlay. in IEEE International Conference on Services Computing (IEEE
SCC 2004). 2004. SHANGHAI-CHINA_

6. W. Omar, A Taleb-Bendiab, Y. Karam. PlanetLab Overlay., Experimenting
With Sensing andActuation Support For SituatedAutonomic Computing
Services For 7he Planetary- Scale System. in UWAS. 2005. Malaysia.

7. W. Omar, A. Taleb-Bendiab, Y. Karam. PlanetLab Overlay. Experimenting
with Sensing andActuation Supportfor Situated Autonomic Computing
Services. in 6th PG net2005 conference. 2005. Liverpool, UK

8. W. Omar, A. Taleb-Bendiab, Y. Karam. A Machine LearningMiddlewarefor
On Demand Grid Services Engineering and Support. in Workshop on
Computer SupportedActivity Coordination (CSAC-2005). 2005. MIAMI
BEACH- FLORIDA-USA.

9. W. Omar, A. Taleb-Bendiab, PlanefLab Overlay. ý Experimenting With Sensing
AndActuation Support For SituatedAutonomic Computing Services.
Submitted to International Journal of Intelligent Information Technologies
(IJIIT) (accepted for extended version), 2005.

207

10. W. Omar, B. Ahmad, A Taleb-Bendiab. Grid Overlayfor Remote E-Health
Monitoring. in Yhe 4th ACS17EEE International Conference on Computer
Systems andApplications (AICC94-06). 2006: IEEE Computer Society.

11. W. Omar, A Taleb-Bendiab, Y. Karam, Autonomic Middleware Servicesfor
Just-In-Time Grid Services Provisioning. Journal of Computer Sciences,
2006.

12. W. Omar, A. Taleb-Bendiab. Self-Management Viable System Modelfor
Planetary Scale Environment (SM- VSM). in Submitted to 3rd IEEE Workshop
on Engineering ofAutonomic System (E4Se 2006). 2006. Columbia, MD,
USA.

13. W. Omar, A Taleb-Bendiab. Service OrientedArchilecturefor Remote E-
Health Monitoring System. in Submitted to 2006 IEEE International
Conference on Services Computing (SCC 2006). 2006. USA.

14. W. Omar, B. Ahmad, A. Taleb-Bendiab, Y. Karam. A Software Framework
for Open Standard Self-Managing Sensor Overlay For Web Services. in 71h
International Conference on Enterprise Information Systems (ICEIS2005).
2005. MIAMI BEACH- FLORIDA-USA.

208

References

1. M. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer. Pinpoint. - Problem
Determination in Large, Dynamic Internet Services. in International
Conference on Dependable Systems and Networks. 2002: IEEE Computer
Society-Washington, DC, USA.

2. M. 'Ihomas, M. Parihar, E. Ahmed, J. Chandler, B. Hatfield, R. Lassan, P.
MacIntyre, D. Wanta, ASP. NET Bible (Paperback). First ed. 200 1: Wit ey.

3. F. Berman, G. fox, A. Hey, Grid Computing. - Making the Global
Infrastructures a Reality. Wiley Series in Communications Networking and
Distributed Systems. 2003, Chichester, West Sussex, England: John Wiley
and Sons Ltd.

4.1. Foster, C. Kess elman, Grid 2 Blueprintfor a New Computing
Infrastructure. Second ed. 2004, San Francisco, USA: Morgan Kufmann.

5. Fellenstein, G., On Demand Computing. Technologies and Strategies. 2005:
IBM press.

6. V. Berstis, L. Ferreira, Fundamentals of Grid Computing. 2002, IBM.
7. Badr, N., An Investigation into Autonomic Middleware Control Services to

Support Distributed Seýf-Adaptive Software, in School of Computing and
Mathematical Science. 2003, Liverpool John Moores University: Liverpool.

8. M. Yu, A. Taleb-Bendiab, D. Reilly, W. Omar. Multi-Standard Service
Interoperation Protocol Through Polyarchical Middleware. in 4th Annual
Postgraduate Symposium on The Convergence of Telecommunications,
Networking & Broadcasting (PGNet2003). 2003. Liverpool, UX

9. M. Yu, A. Taleb-Bendiab, D. Reilly, W. Omar. Miquitous Service
Interoperation through Polyarchical Middleware. in IEEEI WIC
International Conference on Web Intelligence(VI 2003). 2003. Halifax -
Canada.

10. M. Yu, A. Taleb-Bendiab, D. Reilly, E. Grishikashvili, W. Omar.
PolyarchicalMiddlewarefor On-DemandandMulti-Standard Services'
Compositionfor Ubiquitous Computing. in UNNN -International Conference
on Service Oriented Computing. 2003. Trento - Italy.

11. B. Ahmad, W. Omar, A. Taleb-Bendiab. Intelligent Monitoring Model For
Sensing Financial Application Behaviour Based On Grid Computing Overlay.
in Submitted to 2006 IEEE International Conference on Services Computing
(SCC 2006). 2006. USA.

12. W. Omar, A. Taleb-Bendiab, M. Yu. An Open Standard Description
Languagefor Semantic Grid Services Assemblyfor Autonomic Computing
Overlay. in IEEE International Conference on Services Computing (IEEE
SCC 2004). 2004. SHANGHAI-CHINA_

209

13. W. Omar, A. Taleb-Bendiab, Y. Karam. PlanetLab Overlqy. ý Experimenting
With Sensing andActuation Support For Situated'A utonomic Computing
Services For 7he Planetary- Scale System. in ii WAS. 2005. Malaysia.

14. W. Omar, A. Taleb-Bendiab, Y. Karam. PlanetLab Overlqy. ý Experimenting
with Sensing andActuation Supportfor SituatedAutonomic Computing
Services. in 6th PG net2005 conference. 2005. Liverpool, UK

15. W. Omar, A. Taleb-Bendiab, Y. Karam. A Machine Learning Middlewarefor
On Demand Grid Services Engineering and Support. in Workshop on
Computer SupportedActivity Coordination (CEAC-2005). 2005. MIAMI
BEACH- FLORIDA-USA.

16. W. Omar, A. Taleb-Bendiab, PlanetLab Overlay., Experimenting With Sensing
AndActuation Support For Situated Autonomic Computing Services.
Submitted to International Journal of Intelligent Information Technologies
OJIIT) (accepted for extended version), 2005.

17. W. Omar, A. Taleb-Bendiab, Y. Karam, Autonomic Middleware Servicesfor
Just-In-Time Grid Services Provisioning. Journal of Computer Sciences,
2006.

18. W. Omar, A. Taleb-Bendiab. Seýf-Management Viable System Modelfor
Planetary Scale Environment (SM-VSM). in Submitted to 3rd IEEE Workshop
on Engineering ofAutonomic Systems (E4Se 2006). 2006. Columbia, MD,
USA.

19. W. Omar, A. Taleb-Bendiab. Service OrientedArchitecturefor Remote E-
Health Monitoring System. in Submitted to 2006 IEEE International
Conference on Services Computing (SCC 2006). 2006. USA.

20. W. Omar, A-T. -B., Y. Karam. PlanetLab Overlay., aperimenting With
Sensing andActuation Support For SituatedAutonomic Computing Services
For The Planetary- Scale System. in iiWAS. 2005. Malaysia.

21. W. Omar, B. Ahmad, A. Taleb-Bendiab. Grid Overlayfor Remote E-Health
Monitoring. in The 4th A CS17EEE International Conference on Computer
Systems andApplications (AICC&4-06). 2006: IEEE Computer Society.

22. W. Omar, A. T. -B., E-Health Support Services Based on Service Oriented
Architecture. IEEE IT professional j ournal, March/April 2006.8(2).

23. Lizardo, 0. Towards An Impure Sociology. - Formalism, Behavioral Realism
and the Interdisciplinary Challenge in Social Theory. in Philosophy of
Science Association Meetings (P&4). 2004. Austin.

24. White, H. C., Identity and ControLA Structural Theory ofSocial Action
Princeton University Press, 1992: p. 448.

25. F. Xu, M. H. E., D. J. Baker, and S. J. Cox. Tools and Supportfor Deploying
Applications on the Grid. in IEEE International Conference on Services
Computing. 2004. Shanghai, China: IEEE Computer Society.

26. IT:, S. B. a. and T. G. -E. A. Enterprise. 2004, HP, Intel, Oracle.
27. F. Berman, G. f., A. Hey, Grid Computing. Making the Global Infrastructures

a Reality. Wiley Series in Communications Networking and Distributed
Systems. 2003, Chichester, West Sussex, England: John Wiley and Sons Ltd.

28.1. Foster, a. C. K., Grid 2: Blueprintfor a New Computing Inftastructure.
Second ed. 2004, San Francisco, USA- Morgan Kufmann.

210

29. Hoschek, W., Peer-to-Peer Grid Databasesfor Web Service Discovery. 2002.
30. Shankland, S., Grid Computing Luring Mainstream Backers. 2002.
31. J. Kurose, K. Ross, Computer Networking. *. A Top-Down Approach Featuring

7he Internet. Third ed. 2005: Addison Wesley.
32. L. Ferreira, V. Berstis, J. Armstrong, M. Kendzierski, A. Neukoetter, M.

Takagi, I; L Bing-Wo, A. Amir, R. Murakawa, 0. Hernandez, J. Magowan, N.
Bieberstein, Introduction to Grid Computing with Globus. 2003: IBM. 290.

33.1. Foster, C. Kesselman, S. Tuecke, 7he Anatomy of the Grid. 2001.
34. G. Menkhaus, W. Pree, P. Baumeister, U. Deichsel, Interaction ofDcvice-

Independent User Interfaces with Web services. 2002, Software Resaerch Lab.
35. IBM, On Demand Glossary. 2003, IBM.
36.1. Foster, C. Kesselman, J. Nick, S. Tuecke, 7he PhysloloV ofthe Grid- An

Open Grid Services Architecturefor Distributed Systems Integration. 2002.
37. B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak-, M.

Bowman, PlanetLab: An Overlay Testbedfor Broad-Coverage Services.
ACM Computer Communications Review, 2003.33(3).

38. PlanetLab,
39. PlanetLab, 5-2005.
40. PlanetLab: PlanetLabUseesGuide, htfp: 11vvA-, w. planet-

hib. orf ýIcloc. ITJyers Gy ide. ph
41. CKRM, himlIckrin. somad, ra m. na 8-2005. ýmx-

.. 42. Miller, B., TheAutonomic computing edge: 7he "Standard" way ofautonomic
computing. 2005, IBM.

43. K Herrmann, G. MiH, K Geihs, Seý(Manqgement. - The Solution to
Complexity or Just Another Problem? IEEE DISTRIBUTED SYSTEMS
ONLINE 1541-4922C 2005,2005.6(l).

44. G. Lanfranchi, P. Peruta, A. Perrone, D. Calvanese, TowardA. New Landscape
ofSystems Management in an Autonomic Computing Environment. IBM
Systems Journal, 2003.42(l): p. 119-128.

45. A. Ganek, T. Corbi, The Dawning of theAutonomic Computing Era. IBM
Systems Journal, 2003.42(l): p. 5-18.

46. Murch, R., Autonomic Computing, ed. 1. Press. 2004: Prentice Hall.
47. Tosi, D., Research Perspectives in Se? f-Healing Systems. 2004.
48. IBM, Autonomic Computing. 2003.
49. Partners, G. T., 7he Autonomic Computing Report - Characteristics ofSelf

Managing ITSystems. 2002.
50. D. Chess, C. Palmer, S. White, Security in an Autonomic Computing

Environment. IBM Systems Journal, 2003.42(l): p. 107-111.
51. J. Kephart, D. Chess, 7he Vision ofAutonomic Computing. IEEE Computer,

2003.36(l): p. 41-50.
52. T. Cofino, Y. Doganata, Y. Drissi, T. H. Fin, M. J. Kim, L. Kozak-ov, M.

Laker, Towards knowledge management in autonomic system. 2002, IBM T.
J. Watson Research Center, Hawthorne, NY 10562.

53. Paulson, L., Computer System: Heal Theysetf IEEE Computer, 2002.35(8):
p. 20-22.

211

54. N. Badr, A. Taleb-Bendiab, D. Reilly. Policy-BasedAutonomic Control
Service. in Fifth IEEE International Workshop on Policiesfor Distributed
Systems and Networks (POLICY 2004). 2004. New York.

55. N. Badr, A. Taleb-Bendiab, M. Randles, D. Reilly. A Deliberative Modelfor
Setf-Adaptation Middleware Using Architectural Dependency. in 2nd
International Workshop on Setf-Adaptable andAutonomic Computing Systems
(SAACS'04). 2004. Spain.

56. Waldrop, M., Autonomic Computing. The Technology ofSetf-Management.
2003, Woodrow Wilson International Center for Scholars.

57. M. Randles, A Taleb-Bendiab, P. Miseldine, A Laws. Adjustable
Deliberation of Setf-Managing Systems. in Engineering of Computer Based
Systems (ECBS 2005). 2005. Maryland, USA

58. J. Clark, E. Gutentag, D. Satola, How Technical StandardsAffect E-
Commerce. 2003, American Bar Association: San Francisco, California, USA.

59. IBM, An Architectural Blueprintfor Autonomic Computing. 2004.
60. T. Studwell, K Sankar, J. Baekelmans, P. Brittenhan-4 T. Deckers, C. Laet, E.

Merenda, B. Miller, D. Ogle, B. Raj araman, K Sinclair, J. Sweitzer, Adaptive
Services Framework. 2003, IBM.

61. B. Topol, D. Ogle, D. Pierson, J. Thoensen, J. Sweitzer, M. Chow, M.
Hoffmann, P. Durham, R. Telford, S. Sheth, T. Studwell, Automating Problem
Determination: A First Step Toward Setf-Healing Computing Systems. 2003,
IBM.

62. A Andrieux, K Czajkowski, A. Dan, K Keahey, H. Ludwig, J. Pruyne, J.
Rofrano, S. Tuecke, M. Xu, Web Services Agreement Specification (WS-
Agreement). Global Grid Forum (GGF), 2004.

63. S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker, M.
Hondo, C. Kaler, D. Langworthy, A. Malhotra, A. Nadalin, N. Nagaratnam,
M. Nottingham, H. Prafullchandra, C. v. Riegen, J. Schlimmer, C. Sharp, J.
Shewchuk, Web Services Policy Framework (WS-Policy). 2004, BEA Systems
Inc., International Business Machines Corporation, Microsoft Corporation,
Inc., SAP AG, Sonic Software, and VeriSign Inc.

64. S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagaratnam, J. Parikh, S.
Patil, S. Samdarshi, S. Tuecke, W. Vambenepe, B. Weihl, Web Services
Notification (TVS-Notification). 2004, International Business Machines
Corporation, Sonic Software Corporation, SAP AG, Hewlett-Packard
Development Company, Akamai Technologies Inc. and Tibco Software Inc.

65. DMTF, htU.): 1, U-ý+w. dm1f orgstqru1ardv1'c1m4 11-2004.
66. WSDM, Attp. Z), ýL Mjtoasis

open. org1commilteesl'tc home. php?]Eg qbbrev=ivsdfn.
67. WSRF, hit(): 11www. oasis-

oven. orgýcomndtteesltc home. L±p.? u: g abbrey-ws
68. Satterthwaite, E., Debugging Toolsfor High Level Languages. Software

Practice and Experience, 1972: p. 197-217.
69. Sommerville, I., Software Engineering. Fourth ed. 1992: Addison Wesley.

212

70. Rover, T. Performance Evaluation: Integrating Techniques and Tools into
Environments andFrameworks. in Supercomputing. 1994. Washington, D. C.,
United States: IEEE Computer Society Press.

71. A- Waheed, T. Rover. StructuredApproach to Instrumentation System
Development and Evaluation. inA CAFIF-EE Supercomputing Conference
(SC'95). 1995. San Diego California.

72. M. Heath, J. Etheridge, Visualizing the Performance ofParallel Programs.
IEEE Software, 1991.8(5): p. 29-39.

73. R. Want, T. Pering, D. Tennenhouse, Comparing Autonomic andProactive
Computing. IBM Systems Journal, 2003.42(l): p. 129-135.

74. Healthcare Information andManagement Systems Society E-Health Special
Interest Group: Definition ofE-Health. (2002).
75. e-Diarnond, haL). -Ile. -ývcience. o. r. czc.. iikýotiblicle[Lrolcet. vle-

diamondlindex. A7n. 1.10 --- bodiýldiv.]. 6-2005.
76. InSiteOne, ht1v., 1, "-w. 1nsiteone. com.
77.2nrich, 6-2004.
78. Folding, htIL). -IýAvww. stanff. ýrd. eiiL'grout.)k, 7. nziegroul2Lolilin-Qý 2004.
79. PDB, httr). -11wwv4,. rc.. yb. o
80. GXD, hM: /. /w-ww. infiormatics. iac. QEgltncihoiiiel(3. X7L), 1(7boittG,. VL). shfml. 6-

2005.
81. GridPhyn, 6-2005.
82. LHCGrid, h1Lv:, W_cv,,. iveb. cern. ch, 11, CGI. 9-2004.
83. iVDGL, R-w., w. hLdQ1. or . 2005.
84. AstroGrid, htU2. -//wu4v. aFtrQgrid. ac. uk. 6-2005.
85. VISTA, hit(). -Ils4, ww. vi, ýia. ac.. uk.
86. LaMonica, M., IBM draws self-management blueprint. April 2003.
87. R. Sterritta, M. Parasharb, H. Tianfieldc, R. Unlandd, A Concise Introduction

to Autonomic Computing. Advanced Engineering Informatics, 2005.19: p.
181-187.

88. A- Laws, A. Taleb-Bendiab, S. J. Wade, D. Reilly. From Wetware to Software:
A Cybernetic Perspective of Sey-'Adaptive Software. in Second International
Workshop, IWSAS 2001.2001. BalatonfUred, Hungary: Springer.

89. S. Beer, Diagnosing the Systemfor Organizations. 1985, Chichester: John
Wiley & Sons.

90. A. Laws, A. Taleb Bendiab, S. J. Wade. Genetically Modified Software:
Realizing Viable Autonomic Agency. in 2nd GSFCIIEEE Workshop on
RadicalAgent Concepts (WR, 4005). 2005. NASA GSFC Visitor's Center,
Greenbelt, MD.

91. D. Garlan, B. Schmerl. Model-BasedAdaptationfor Self-Healing Systems. in
A CM SIGSOFT Workshop on Self-Healing Systems (WOSS'02). 2002.
Charleston, South Carolina, USA.

92. P. Oriezy, M. M. Gorlick, R. N. Taylor, G. Johnson, N. Medvidovic, A.
Quilici, D. Rosenblum, A. Wol, An Architecture-BasedApproach to Self-
Adaptive Software. IEEE Intellingent Systems, 1999.14.

213

93. Pereira, E., Impromptu: Software Frameworkfor Se? f-HealingMiddleware
Services, in School of Computing andMathematical Science. 2005, Liverpool
John Moores University: Liverpool.

94. D. Bustard, R. Sterritt, A. Taleb-Bendiab, A. Laws, M. Randles, F. Keenan.
Towards a Systemic Approach to Autonomic Systems Engineering. in ECBS
2005.2005.

95. Beer, S., The heart of the Interprise. 1979: Chichester: John Weiley & Sons.
96. Beer, S., Brain of the Firm. 1981: Chichester: John Wiley & Sons.
97. Herring, C. 7he Pattern of the Viable System and its Language. in KoalaPLoP

2001.2001. Melbourne, Australia.
98. C. Alexander, S. I., M. Silverstein, A Pattern Language: Towns, Buildings,

Constructons. Senterfor Environmental Structure. Oxford University Press.
0-19-501919-9,1977.

99. M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, E. Brewer. Failure Diagnosis
Using Decision Trees. in First International Conference on Autonomic
Computing (ICAC'04). 2004. New York, USA.

100. G. Candea, M. Delgado, M. Chen, A. Fox Automatic Failure-Path Inference:
A Generic Introspection Techniquefor Internet Applications. in Third IEEE
Workshop on Internet Applications. 2003.

101. M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, E. Brewer.
Path-Based Failure and Evolution Management. in Network System Design &
Implementation (NSDI '04). 2004.

102. V. Kumar, B. Cooper, KS chwan. Distributed Stream Management using
Utility-Driven Se? f-Adaptive Middleware. in International Conference on
Autonamic Computing (ICAQ. 2005. Newjersy USA.

103. G. Blair, G. Coulson, P. Grace. Research Directions in Reflective
Middleware: the Lancaster Experience. in Workshop on Adaptive and
Reflective Middleware. 2004. Canada.

104.0. Babaoglu, M. Jelasity, A. Montresor. Grassroots Approach to Se? f-
Management In Large-Scale Distributed Systems. in EU-NSF Strategic
Research Workshop on Unconventional Programming Paradigms. 2004.
Mont Saint-Michel, France.

105. J. Joseph, M. Ernest, C. Fellenstein, Evolution of Grid Computing
Architecture and GridAdoption Models. IBM Technical Journal, 2004.

106. Sun, Grid-ComputingArchitecturefor Design Automation in Higher
Education. 2004, Sun MicroSystem.

107. J. Joseph, M. E., C. Fellenstein, Evolution of Grid Computing Architecture and
GridAdoption Models. IBM Technical Journal, 2004.

108. Krill, P., Web Services DistributedManagement spec approved. 2005,
InfroWorld.

109. Tuck, J., Practical Application of the Web Services Distributed Management
Standard. 2004, Web Service Journal.

110. McKendrick, J., 1BMPuts WSDMBehindIT. Automation. 2005, ZDnet.
111. Travis, B., FoodMovers: Building Distributed Applications using Visual

Srudio. NET. 2003, Architag International Corporation.

214

112. D. Lee, J. Dongarra, S. Ramakrishna, visPerf- Monitoring Toolfor Grid
Computing. 2003, University of Tennessee and Kwangju Institute of Science
and Technology.

113. D. Reilly, A. Taleb-Bendiab, Dynamic Instrumentationfor Jint Applications.
2002.

114. Myerson, J., The Complete Book ofMiddlaware. 2002, USA: AuerbaclL
115. N. Satoshi, S. Mitsuhisa, Design and implementations ofnimf- towards a

global computing infrastructure. 1999.
116. Globus, Globus Heartbeat Monitor. 2003,

http: //w-ww. 0obus. org/hbm/heqt1beat.
117. B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee, M. Thompson. A

Monitoring Sensor Management Systemfor Grid Environments. in Ninth
IEEE International Symposium on High Performance Distributed Computing
(HPDC-9 '00). 2000. Pittsburgh, Pennsylvania, USA.

118. K. Getchell, A. Miller, C. Allison. Experiences using PlanetLab to Evaluate
NetworkApplications. in 6th PG net2005 conference. 2005. Liverpool, UK

119. M. Callachan, K. Getchell, A- Miller, C. Allison. Using Virtual Networksfor
Visual Network Topology Discovery. in 6th PG net2005 conference. 2005.
Liverpool, UK

120. CoMon, httmllýomon. cs. lyinceton. etht4 5 -2005. 121. CoMon, Litfp: hýKt (LqCg. f. K-. p _LJ? Zceton, ed; yA 5-2005.
122. IPREF, httL): IAvmv. rjlanet-l(ib. 2r_gLio_-P_sliper 4 5-2005. L
123. IRISLOG, 5-2005.
124. NodeList, http. 11ý, i. výv. plat? et. -lab. org_lýib, "n. ndesl'node-lists. php. 5-2005.
125. Trumpet, hitp: lac? bber. Service. v. 121anet-Itib. orc, 4 5-2005.
126. SWORDRD, hqp. -1Avww. swordrdorg4 5-2005.
127. M. Massie, B. Chun, D. Culler, The Ganglia DistributedMonitoring System:

Design, Implementation, andExperience. Parallel Computing, 2004.30(7).
128. Y. Chen, D. Bindel, H. Song, R. Kat4 An AlgebralcApproach to Practical

and Scalable Overlay NetworkMonitoring. ACM SIGCOMM, 2004.
129. D. Karuppiah, Z. Zhu, P. Shenoy , E. Riseman. A Fault-Tolerant Distributed

Vision System Architecture for Object Tracking in a Smart Room. in
Computer Vision Systems: Second International Workshop, ICV32001.2001.
Vancouver, Canada.

130. K. Herrmann, G. M. a. K. G., SetfManagement. - The Solution to Complexity or
JustAnother Problem? IEEE DISTRIBUTED SYSTEMS ONLINE 1541-
49220 2005, January 2005.6(l).

131. Joachims, T., Text Categorization with Support Vector Machine: Learning
With Many Relevant Features. ECML-98. I Oth European Conference on
Machine Learning, Heidelberg, Germany., 1998.

132. E. Gamma, R. H., Ralph Johnson, John Vlissides, ed. Design Patterns. First
ed. 1995, Addison-Wesley Professional.

133. Viissides, J., GoFi la Java. 2001.

.
ýcto 134. GoF, ht(p: 1Avww. do, 1

. ry. com. 2-2005, Data & Object Factory.
135. Beer, S., Diagnosing the Systemfor Organizations. 1985, Chichester: John

Wiley & Sons.

215

136. Beer, S., The heart of the Interprise. 1979, Chichester: John Weiley & Sons.
137. U. Heuser, J. Goppert, W. Rosenstiel, A. Stevens. Classification ofHuman

Brain Waves using Se? f-Organizing Maps. in INTELLIGENT DATA
ANALYSIS INMEDICINEAIM PHARA14COLOGY (IDAAW). 1996.
Budapest, Hungary.

138. N. S chraudolph, T. S. Competitive Anti-Hebbian Learning ofInvariants. in
NIPS. 1991. Denver, Colorado, USA.

139. White, R. Competitive Hebbian Learning 2. an Introduction. in European
Symposium on Artificial Neural Networks (E&4NN'1999). 1999. Belgium.

140. J. Vesanto, J. Himberg, E. Alhoniemi, J. Parhankangas, Setf-OrganizingMap
in Matlab: the SOM Toolbox. In proceedings of the Matlab DSP Conference
1999, Espoo, Finland, 1999: p. pp. 35-40.

141. Vesanto, J., Using SOM in Data Mining. Thesis for the degree of Licentiate of
Science in Technology, Supervisors: Professor 011i Simula, Professor Samuel
Kaski, Espoo, Finland. 2000.

142. D. Levine, T. K., M. Berenson, Business Statistics. Second ed. 2000: Prentice-
Hall, Inc.

143. OHRING, G., Application ofStepwise Multiple Regression Techniques to
Inversion ofNimbus "IRIS" Observations. Monthly Weather Review, 1972.
100(5): p. 336-344.

144. V. Berstis, L. F., Fundamentals of Grid Computing. 2002, IBM.
145. J. U. a. M., H., A visual tour of Open Grid Services Architecture. 2003, IBM.
146. D. Groebner, P. S., P. Fry, K. Smith, Business Statistics :A Decision Making

Approach. Sixth ed. 2005, New Jersey, USA: Pearson Prentice Hall.
147. J. Milton, a. J. A., introduction to Probability and Statistics: Principles and

Applicationsfor Engineering and the Computing Sciences. Third ed.
Probability and Statistics. 1995: McGraw-Hill, Inc.

148. T. Bellwood, L. C., D. Ehnebuske, A. Hately, M. Hondo, Y. L. Husband, K.
Januszewski, S. Lee, B. McKee, J. Munter, UDDI Version 3.0. UDDI Special
Technical Committee Specification. 19 July 2002.

-specificationfitm/.
149. UDDI,
150. W. Edwards, T. Rodden, Jini Example By Example. 2001: Prentice Hall PTR.
151. WD, ýttp:, *, ww. w3.2=, IRI2,0041ýVl)-vý,, V-choi--inoclc. -I-200-103? 41' 2005.
152. R. Chinnici, M. Gudgin, J. Moreau, S. Weerawarana, Web Services

Description Language (WSDL) 1.2.2002.

,,
Istandardslein 8-2005. 153. CIM, htn7. -1, ivww. dm(f gL: g

154. J. McCann, M. Huebscher. Evaluation Issues in Autonomic Computing. in
GCC 2004 Workshops. 2004: Springer-Verlag Berlin Heidelberg.

155. KNN, htW. -I*-ww. cs. toroi-? Io. etiiiýý-delvelinetho4l, ýlkiln-cla. vs-]IA, -nn-cla. vs-
I. html. 10-2004.

156. GridBus, www-gridbus. o 2005.
157. C. Hsu, C. Chang, C. Lin, A Practical Guide to Support Vector Classification.

2003.
158. J. Principe, N. Euliano, W. Lefebvre, Neural andAdaptive Systems:

Fundamentals through Simulations. 1999: Wiley.
159. Fausett, L., Fundamentals ofNeural Networks. First ed. 1994: Prentice Hall.

216

160. Goldszmidt, N. F. &M., Learning Bayesian Networkftom Data. 1998, SRI
International.

161. B. Baesens, M. Egmont-Petersen, K Castelo, J. Vanthienen. Learning
Bayesian network classifiersfor credit scoring using Markov Chain Monte
Carlo search. in Proceedings of the 16 th International Conference on Pattern
Recognition aCPR'02). 2002: IEEE Computer Society.

162. McKendrick, J., IBMPuts WSDMBehindIT. Automation. July 2005, ZDnet.
163. W. Johnston, J. Brooke, Core Functionsfor Production Grids. 2002, Global

Grid Forum.
164. Britton, C., ITArchitectures and middleware: Strategiesfor Building Large,

Integrated Systems. 2001: Addison-Wesley.
165. MSMQ'

h ttLr Avw w. in icrosoLl. com, `w indmvs 20001tech n oLWesleorn munica, tionvInism,, L1
default. mF 12-2003.

166. DTP,
htt[2: 11"Publib. boiilder. ibni. copLI'tnf! 2c(,, iit-er, ldh2heýi2LiLktiýy, j, yp)n
b2. udb. doc. ladtnirilcOO04558. ht. tti. 2005, IBM.

167. MQSeries, hUL). -IAvww. ync7, verie. v. ne 5-2005.
168. MQSeries,

htIL). -Ilýearc*t4, elý, verviec,, v. leclitcz=i. i. coni, ývDefinitioiVO,, sid, 26i,, ci21452-4,00. ht
nil. 1-2004.

169. Eiinierich, W., OMG/CORBA: An Object-OrientedMiddleware. 2002, John
Wiley & Sons. p. 902-907.

170. NE-rhgp. -IIUiviv. rtzicro, 5oflconzl'net, "default. lltw. x. 12-2002.
171. EJB, htU): &avq. sun. conAýkroduc / -2004. L tsleibi. 3

_q in 172. J2EE, Q, -
Z12eefilhic. -C-isa 10-2003.

173. JMS, hitp. -davi-i. siin. coMlj)roductan-i 3-2004.
174. JNDI, ht1,2: h`qv j v. sun. comLndi. 3-2004, Sun.
175. DBOM, hLýp: ýýrfqnsvvercenter. techta. Lget. comleael

knowledgebaseAnswerlO, 295199, sid63ýgci984423,00. htmL 1-2005.
176. Metsker, S., Design Patterns Java Workbook. Software Patterns Series. 2002:

Addison-Wesley Workbook.
177. E. Gamma, R. Helm, R. Johnson, J. Vlossodes., Design Patterns - Elelments

ofReusable Object-Oriented Software. First ed. 1995: Addison-Wesley.

217

