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Abstract 

One of the probable causes of fatigue in soccer match-play is depletion of muscle and 
liver glycogen. Other likely causes include dehydration and hyperthermia, especially 
when performed in the heat. The aim of the thesis was to investigate the effect of 
manipulating carbohydrate ingestion and the combined effect of pre-cooling and 
carbohydrate ingestion on the performance of soccer-specific exercise. 

Study 1 was an investigation into the impact on metabolism of altering the timing and 
volume of ingested carbohydrate during soccer-specific exercise. It was demonstrated 
that ingesting a carbohydrate-electrolyte solution significantly increased blood glucose, 
insulin and carbohydrate oxidation, whilst suppressing NEFA, glycerol and fat oxidation. 
In addition, when the total volume of fluid consumed was equal, manipulating the timing 
and volume of carbohydrate ingestion elicited the same metabolic responses. However, 
consuming fluid in small volumes, frequently, reduced the sensation of gut fullness. 

The effect of manipulating the timing and volume of carbohydrate ingestion on power 
output during the sprint portions of soccer-specific exercise was investigated in study 2. 
The experimental trials did not significantly affect power output when sprinting. It was 
also demonstrated that ingesting a carbohydrate solution, compared with placebo, 
significantly increased plasma glucose and carbohydrate oxidation. It was concluded that 
ingesting carbohydrate compared with a placebo during a soccer-specific protocol had no 
impact on peak sprint power output although it significantly altered metabolism. 

In study 3 the effect of ingesting multi-carbohydrate solutions on the metabolic responses 
to soccer-specific exercise in the heat and the subsequent impact on high-intensity 
exercise capacity was examined. The ingestion of a multi-carbohydrate solution did not 
have a significant influence on muscle glycogen utilization, metabolism or exercise 
capacity compared with the ingestion of a glucose solution. This observation suggests 
that intestinal absorption does not limit the oxidation of exogenous carbohydrate during 
exercise of this nature in the heat. In addition, there was not a significant difference in 
muscle glycogen utilization or exercise capacity between treatments. It was concluded 
that an elevated core temperature, and not substrate availability limits exercise capacity 
during soccer-specific exercise in the heat. 

In study 4 it was demonstrated that following 90 min of soccer-specific exercise in the 
heat high-intensity exercise capacity and performance as determined by a psychophysical 
test were significantly improved with the combination of pre-cooling and carbohydrate 
ingestion as was mental concentration during the protocol. Pre-cooling did not influence 
metabolism during exercise. These results suggest that carbohydrate ingestion can 
improve exercise capacity following soccer-specific exercise performed in the heat. Also, 
pre-cooling and the ingestion of carbohydrate can further enhance exercise capacity. 

From these studies it was concluded that volume and timing of carbohydrate ingestion do 
not significantly influence metabolism or performance, providing the total volume is 
equal. In addition, core temperature, and not substrate availability appears to be the 
overall limiting factor to performing soccer-specific exercise in the heat. 
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Chapter 1 
Introduction to the thesis 



1.1. Introduction to the thesis 

During a soccer match players perform a wide variety of activities ranging from walking 

to sprinting, and so the intensity of effort changes frequently. The energy cost of playing 

in a competitive soccer match has been estimated to be approximately 6700 U (Bangsbo, 

1994b). Throughout a match, energy is provided predominantly by aerobic metabolism 

(Reilly et al., 2000), with a rise in circulating free fatty acids as the game progresses 

(Bangsbo, 1994b). However, crucial components of activity e. g. tackling, jumping and 

sprinting, rely on anaerobic energy production and carbohydrate metabolism. Soccer does 

not just require physical effort, it also requires concentration and cognitive awareness in 

order to make the right decisions e. g. when to "make a tackle" or where to pass the ball 

and when and where to run. 

The intensity of exercise associated with a competitive match is high enough to induce 

appreciable heat load, causing players to lose up to 3 litres of sweat in a game (Ekblom, 

1986). Dehydration during exercise has been shown to raise core temperature and 
increase cardiovascular strain, and lead to a decrease in sweat loss (Sawka et al., 1985). 

The elevation in core temperature has been demonstrated to be greater during intermittent 

exercise when compared with continuous exercise at the same average intensity (Ekblom 

et al., 1971). An elevated core temperature (Gonzalez-Alonso et al., 1999c; Nybo et al., 

2001) and a moderate level of dehydration (Walsh et al., 1994) have been shown to limit 

exercise performance. As a consequence it is important that athletes consume fluid during 

prolonged exercise to reduce these adverse effects. It has been demonstrated that the 

addition of carbohydrate to the fluid can improve exercise performance (Wright et al., 
1991), possibly due to the sparing of muscle glycogen and delaying the onset of fatigue 

(Tsintzas et al., 1995). 

Many authors have investigated the impact of carbohydrate ingestion on the performance 

of exercise simulating the work-rate of soccer (Nicholas eta!., 1995; Walton and Rhodes, 

1997; Nicholas et al., 1999) and actual match-play (Kirkendall et al., 1988; Leatt and 
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Jacobs, 1989; Zeederberg eta!., 1996) though the results have been somewhat equivocal. 

The different measurement tools used to assess performance i. e. run to exhaustion 

(Nicholas et al., 1995) or high-intensity sprints and skills (Zeederberg et al., 1996) may 

account for the differences between studies. These studies have focused on the ingestion 

of carbohydrate, and not the hydration strategy i. e. timing and volume of fluid. 

Consequently, there may be opportunities for enhancing performance during a game by 

adopting optimal refuelling and rehydration regimes. 

The position stand of the American College of Sports Medicine (Convertino et a!., 1996) 

is that during exercise, athletes should start drinking early and at regular intervals in an 

attempt to consume fluids at a rate sufficient to replace the water lost through sweating, 

or consume the maximal amount that can be tolerated. However, most advice regarding 

rehydration during exercise has been based on continuous exercise (such as cycling or 

road-running) where -fluid can be ingested during the activity or in sports such as 
American football or basketball where there are opportunities for breaks when fluid can 
be consumed. The rules of soccer coupled with gastric tolerance, and the perception of 

gut fullness do not allow for complete rehydration of players. Due to the continuous 

nature of play, with infrequent, unscheduled brief stoppages, the only two occasions that 

a player is guaranteed to be able to consume fluid is before the game kicks off and at 
half-time. 

Gastric emptying is deemed to be a limiting factor in fluid replacement (Shi and Gisolfi, 

1998) and is an important aspect in determining the rate at which nutrients enter the 

duodenum where glucose and water can be absorbed into the bloodstream (Brouns et al., 
1987). The exponential nature of gastric emptying (Rehrer et al., 1989) highlights the 

importance of the volume of fluid in the stomach in controlling the rate of emptying. As 

fluid empties from the stomach, the volume decreases, as does the rate of gastric 

emptying. Maintaining a large fluid volume in the stomach, by repeated drinking 

maximises the rate of fluid and nutrient delivery to the small intestine (Mitchell and Voss, 

1991; Noakes et al., 1991). In addition, gastric emptying is also influenced by exercise 
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intensity; Leiper et al. (2005) demonstrated that the intensity associated with a soccer 

match is sufficient to slow gastric emptying. 

Soccer matches at major tournaments are often played in temperatures exceeding 30°C 

(FIFA World Cup 2002 and UEFA Euro 2004). An elevated body temperature, along 

with reduced carbohydrate availability, has been demonstrated to be one of the factors 

that can limit endurance performance (Nybo and Nielsen, 2001). Consequently there has 

been an increase in the amount of attention paid to rehydration and energy provision 
during exercise, especially when performed in the heat. Fink et al. (1975) were the first to 

demonstrate that environmental temperature affects intramuscular substrate utilization 

when they observed that 60 min of intermittent exercise at 41°C increased muscle 

glycogen utilization, compared with exercise at 9°C. When the rise in body temperature is 

attenuated by preventing dehydration muscle glycogenolytic rate and carbohydrate 

oxidation are reduced. It has been demonstrated that sports drinks can provide the 

carbohydrate necessary to prevent hypoglycaemia (Coyle et al., 1986) and improve 

exercise performance (Mitchell et al., 1989). However, ingesting too much fluid during 

exercise can lead to hyponatraemia (Speedy et al., 1999; Speedy et al., 2001) 

Jentjens et al. (2002) reported that the oxidation of ingested carbohydrate is reduced in 

the heat compared with a cool environment, and may be due to a reduced absorptive 

capacity of the intestine. Glucose is transported across the intestinal membrane by 

sodium/ glucose cotransporters (SGLT1), which is thought to become saturated at 

glucose ingestion rates exceeding 1 g"min 1(Jeukendrup and Jentjens, 2000), which may 

explain why there is not a linear relationship between glucose ingestion rates and 

oxidation rates. This view is supported by the fact that exogenous carbohydrate oxidation 

rates have not exceeded approximately 1 g"min'1 despite carbohydrate in the form of 

glucose or glucose polymer being ingested at rates of up to 3 g"min-' (Pimay et al., 1982; 

Wagenmakers et al., 1993; Jeukendrup et al., 1996). However, fructose is absorbed from 

the intestine by facilitative fructose transporters (GLUT5). Therefore, because glucose 

and fructose are absorbed by means of separate intestinal transport mechanisms, when a 

solution containing a mixture of glucose and fructose, is ingested, there is less competition 
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for absorption compared with an isoenergetic amount of glucose. As a consequence there 

may be an increase in the amount of carbohydrate entering the bloodstream and 

subsequent availability for oxidation. An increase in exogenous carbohydrate could spare 

muscle glycogen, delay the onset of fatigue and improve performance. 

An elevated core temperature limits exercise performance (Galloway and Maughan, 

1997) and increases carbohydrate utilization (Febbraio, 2001). A number of strategies 

have been shown to be effective in reducing thermoregulatory strain and improving 

performance when exercising in the heat (Kay and Marino, 2000). Pre-cooling before 

prolonged exercise has been previously studied (Lee and Haymes, 1995; Booth et al., 

1997; Booth et al., 2001), and may result in improved performance in terms of endurance 

time (Cotter et A, 2001) and increased work-rate (Hessemer et al., 1984). However, 

relatively little information has been published concerning the effects of pre-cooling prior 

to high-intensity intermittent exercise (Drust et al., 2000a). There is some evidence that 

glycogen depletion is accelerated in the heat as a consequence of an elevated core 

temperature (Hargreaves et al., 1996a), but the impact of pre-cooling on substrate 

utilization and performance of intermittent exercise (i. e. all-out sprints) has not been 

investigated. Also pre-cooling has not been examined in conjunction with hydration 

strategies. This is of interest because a pre-cooling strategy is easily implemented and 

could be used by soccer players (and other athletes) prior to matches to reduce 

thermoregulatory strain and potentially improve performance by sparing muscle 

glycogen. 

In this thesis the potential responses to soccer-specific exercise after altering hydration 

strategies and implementing regimes to cope with performing in the heat are explored in a 

series of experiments. 

1.2. Aims of the thesis 

The overall aim of the thesis is to investigate the effect of altering the timing of 

carbohydrate ingestion, the composition of the ingested carbohydrate and the combined 
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effect of pre-cooling and carbohydrate ingestion on the performance of soccer-specific 

exercise. 

All of the experiments conducted consisted of investigations into the metabolic and 

performance responses to intermittent exercise. The exercise protocol was designed to 

simulate the work-rate observed in competitive soccer match-play. The basis of the first 

two experiments was to manipulate the provision of carbohydrate to subjects so that the 

consequences could be examined: 

1. For its effects on the metabolic responses to fixed exercise on a motorised 

treadmill. 

2. With respect to its influence on performance (reflected in the sprint portion) 

during a soccer-specific protocol of the simulated work-rate on a non-motorised 
treadmill. 

The basis of studies three and four was to examine the effect of strategies for performing 

soccer-specific exercise in the heat by means of: 

3. Investigating the effect of carbohydrate formulation on the performance of 

soccer-specific exercise in the heat. 

4. Investigating the effect of pre-cooling in conjunction with carbohydrate ingestion 

on the performance of soccer-specific exercise in the heat. 
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Chapter 2 
Review of the literature 



2.1. Introduction 

This chapter outlines the energy sources required during exercise and the causes of 
fatigue. Furthermore, the benefits of fluid replacement and carbohydrate 

supplementation, and the factors that influence the effectiveness of these strategies are 

examined. The implications of exercising in the heat will be discussed, as well as 

methods to reduce thermal stress. Finally, these aspects will be discussed in relation to 

the performance of soccer. 

2.2. Energy sources for exercise 

During exercise energy is required for muscle action. The four metabolic pathways, 

phosphagen, anaerobic glycolytic, carbohydrate and lipid aerobic systems for the 

production of adenosi, e triphosphate (ATP) are summarized schematically in Figure 2.1. 
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Figure 2.1: The four metabolic pathways for the production of ATP in muscle cells. 
Abbreviation: CoA = coenzyme A (from Hawley and Hopkins, 1995). 
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2.2.1. The phosphagen system 

In muscle the chemical energy liberated during the breakdown of ATP activates specific 

sites along the contractile element, causing the muscle fibre to contract. The store of ATP 

in the human body is only sufficient to supply energy for 1 or 2 seconds (Hawley and 
Hopkins, 1995), and since it cannot be transported in the blood or from other tissues, 

needs to be resynthesized at the rate of usage. The major sources of energy for ATP 

resynthesis are lipids and carbohydrates, but for rapid resynthesis the energy comes from 

a high-energy compound, phosphocreatine (PCr). Phosphocreatine acts as a temporary 

ATP buffer catalysed by the enzyme creatine kinase in which the phosphate group is 

transferred to adenosine diphosphate (ADP) to yield ATP and creatine (Cr) (Grassi, 

2005). The reaction is also freely reversible and PCr can be rapidly resynthesized during 

periods of rest or low-intensity exercise. 

2.2.2. The anaerobic glycolytic system 

Carbohydrate, especially muscle glycogen, is utilized in anaerobic glycolysis at a rapid 

rate during high-intensity exercise. This is due to the energy demand exceeding the 

oxygen supply or its rate of utilization. Muscle glycogen and blood glucose utilization 
increases with increasing exercising intensity (Romijn et al., 1993). As a consequence, 

muscle glycogen is the major source at intensities of greater than 65 to 70% V02m.. 

Cheetham et al. (1986) reported a significant decrease in muscle glycogen content (25%) 

following a 30-s sprint, with 62.9% of ATP produced being derived from glycolysis. In 

addition, Wootton and Williams (1983) proposed that during intermittent maximal 

exercise of brief duration (6 s) with short rest intervals (30 s) there is an increased 

demand on anaerobic glycolysis to maintain the rate of energy production because of 
incomplete resynthesis of PCr stores. As the duration of exercise increases the 

contribution of energy production from muscle glycogen decreases while that from blood 

glucose increases (Romijn et al., 1993). 
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Lactate is produced when the regeneration of NADH to NADH+ is insufficient to 

maintain the conversion of glyceraldehydes-3-phosphate to 1,3, biphosphoglycerate. This 

reaction typically occurs during periods of intense exercise or when oxidative 

phosphorylation is unable to meet energy production requirements (Stainsby, 1986). 

Once lactic acid is formed it diffuses into the blood, where it is buffered, forming 

hydrogen ions (protons) and lactate. It is then transported in the blood away from the 

muscle, allowing glycolysis to proceed and supply additional anaerobic energy for ATP 

resynthesis. Lactate should not be viewed merely as a "metabolic waste product". Brooks 

(1991) stated that lactate, derived from the anaerobic breakdown of muscle glycogen and 

blood glucose could be an important metabolic intermediate, a gluconeogenic precursor 

and a substrate for oxidative metabolism in both cardiac and skeletal muscle. 

2.2.3. Aerobic energy production from carbohydrates 

The relative amount of carbohydrate and lipid metabolised during exercise is dependent 

primarily on the intensity and duration (Romijn et al., 1993). The preceding diet, training 

status and environmental conditions (especially temperature) can also influence fuel 

selection (Hargreaves, 1991). 

Liver glycogen is predominantly used to maintain homeostasis of blood glucose to ensure 

that there is an adequate supply to the organs that are dependent on glucose for their 

energy needs e. g. brain, central nervous system (CNS), blood cells and kidney. During 

rest these tissues can account for as much as 75% of peripheral glucose utilization 
(Hargreaves, 1991), with resting skeletal muscle using 15 to 20%. Glycogenolysis 

represents 75% of hepatic glucose output, with gluconeogenesis accounting for the 

remaining 25%, although this fraction increases during prolonged exercise and fasting 

(Romijn et a1., 1993). 
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During exercise muscle glycogen is degraded to glucose-1-phosphate using the enzyme 

phosphorylase, and then to glucose-6-phosphate. This "site" of entry into glycolysis is the 

same for glucose entering the muscle, which is immediately phosphorylated by 

hexokinase. Glycolysis results in the production of pyruvate and reduced NAD, which 

can then be oxidized in the Tricarboxylic acid (TCA) cycle and electron transport chain, 

provided there is sufficient oxygen. 

2.2.4. Aerobic energy production from lipids 

For submaximal endurance activities, the utilization of lipids relative to carbohydrate in 

the aerobic pathways increases as the intensity of exercise decreases. This phenomenon 
has been termed the "crossover concept" (Brooks and Mercier, 1994). The major sources 

of lipids are plasma non-esterifed fatty acids (NEFA) mobilized from adipose tissue, and 
intramuscular triglycerides, with a minor contribution from plasma triglycerides. 

Triglycerides can be stored as droplets within the muscle fibres, which places the energy 

source within a short distance of the site of oxidation within the muscle mitochondria. 
Intramuscular triglycerides account for between 8400 and 12600 U of stored energy and 

are therefore a larger source of potential energy than muscle glycogen, which accounts 
for only approximately 6300 U (Coyle, 1997). 

During prolonged exercise, lipolysis in fat depots is increased after 15-20 min of exercise, 
by the stimulation of the beta-receptors in adipocytes by adrenaline (Amer et al., 1990). 

Hormone sensitive lipase is activated, which hydrolyses the triglyceride molecule into 

three NEFA and one glycerol molecule. However, in adipose tissue at rest, as much as 
70% of the NEFA released is reattached to glycerol, forming new triglycerides within the 

adipocytes. During the performance of low-intensity exercise the rate of lipolysis 

increases and as a result NEFA in the plasma increases fivefold (Romijn et al., 1993; 

Klein eta!., 1994). 
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Muscle is also capable of hydrolysing triglycerides, although the contribution to energy 

production from this source is limited (Kiens et al., 1993). Plasma NEFA is utilized most 
during prolonged and low to moderate intensity exercise whereas intramuscular lipolysis 

is stimulated at higher intensities and at the beginning of prolonged exercise when plasma 
NEFA availability may be limited. Romijn et al. (1993) found that the oxidation of 

intramuscular triglycerides was low during exercise at 25% 'W2max compared with at 

65% WD2max, where intramuscular triglyceride represented around half of the total fat 

oxidation (Figure 2.2). It should be noted that fat oxidation increases between 25% and 

65% \%. even though the contribution from plasma NEFA decreases. When 

individuals exercise at 85% /O2., muscle glycogen becomes the predominant energy 

source due to the higher exercise intensity requiring a greater demand for energy that 

cannot be supplied at a high enough rate by the oxidation of lipids. 

0 
25 65 85 

% of V02 max 

Figure 2.2: Contribution to energy expenditure from glucose, NEFA, muscle 

triglycerides and muscle glycogen after 30 min of exercise of different intensities (from 

Romijn et al., 1993). 
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2.3. Fatigue during exercise 

Fatigue can be described as the inability to maintain the required force or power output. It 

can also be viewed as a process that changes the functional state, possibly resulting in 

exhaustion and the termination of exercise or work (Kay and Marino, 2000). The causes 
of fatigue are based upon substrate depletion (Gollnick et al., 1974), neurological 
impairment (Davis, 1995) and hyperthermia (MacDougall eta!., 1974). 

2.3.1. Peripheral fatigue 

Peripheral fatigue is typically thought to occur as a result of impaired skeletal muscle 
function. A limitation in energy supply is the classic hypothesis for the causes of muscle 
fatigue. This view is supported by the findings that fatigue coincides with the depletion of 
intra-muscular carbohydrate stores during prolonged exercise (Berstrom et al., 1967) and 
depletion of PCr during high-intensity exercise (Hirvonen et a!., 1987). 

Ammonia (NH3) is produced by skeletal muscle as a byproduct of the breakdown of 
either ATP or amino acids (Graham et al., 1995). During exercise, there is an increase in 

the release of NH3 from contracting skeletal muscle, increasing circulating NH3 levels. In 

addition, performing intermittent exercise in the heat has been shown to significantly 

elevate plasma ammonia levels (Snow et al., 1993) and reduce sprinting capacity (Mohr 

et al., 2006). As a consequence of NH3 being able to cross the blood-brain barrier, a rise 
in plasma NH3 increases cerebral NH3 uptake, and this has the potential to influence brain 

neurotransmitters and cause central fatigue (Nybo and Secher, 2004). 

Another potential cause of fatigue is the accumulation of potassium in the muscle 
interstitium (Nordsborg et al., 2003). Renaud and Light (1992) demonstrated that 

extracellular potassium levels above 8 mmol. 1"1 reduces contractility and during high- 

intensity exercise, at the point of exhaustion, the interstitial potassium concentration is 

elevated to around 12 mmol. l"1 (Nordsborg et al., 2003), which may be high enough to 
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depolarize the muscle membrane potential and force development (Cairns and Dulhunty, 

1995). 

During high-intensity exercise a high rate of glycolysis is required to maintain power 

output, resulting in the formation of lactate. The consequence is a decrease in 

intramuscular pH, which is associated with a reduction in the release of Ca2+ and a 

decline in muscle contractility. Green (1995) discussed the implications of these 

mechanisms in a comprehensive review. 

2.3.2. Central fatigue 

Muscle fatigue has been attributed to the depletion of substrates, accumulation of 

metabolites, ionic changes and inadequate oxygen delivery. Analogously it has been 

suggested that metabolic, circulatory, neurotransmitter, thermodynamic changes or other 

disturbances of cerebral homeostasis could result in central fatigue (Nybo and Secher, 

2004). 

During exercise the generation of metabolic heat and depletion of carbohydrate have an 

adverse impact on exercise performance and capacity. As discussed earlier, carbohydrate 

depletion is classified as a peripheral cause of fatigue, but an increase in IL-6 release, as a 

consequence of a high rate of glycogenolysis, which acts to increase lipolysis has been 

linked with central fatigue (Nybo et al., 2002a). Furthermore, the release of IL-6 from 

skeletal muscle could be involved in a feedback system, which ultimately decreases the 

central drive to continue exercise (Gleeson, 2000). 

There is also evidence supporting the role of the neurotransmitters serotonin (5-HT or 5- 

hydroxtryptamine) and dopamine in central fatigue (Davis, 1995). During prolonged 

exercise NEFA are released from the adipose tissue, increasing the plasma concentration 

of NEFA and free tryptophan (f-TRP), as NEFA displaces some of the albumin-bound 

tryptophan (TRP) (Curzon et al., 1973). Tryptophan is the amino acid precursor to 
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serotonin, and increased TRP availability is thought to elevate the cerebral serotonin 

level, because the enzyme that converts TRP to serotonin is not saturated under normal 

physiological conditions (Nybo and Secher, 2004). In this way, the cerebral level of 

serotonin increases in rats during prolonged exercise (Bequet et al., 2001). In addition 

Watson et al. (2005) suggested that blood-brain barrier permeability may be altered 

during prolonged exercise in a warm environment, which may disturb normal brain 

function and contribute to the development of central fatigue. Studies have shown that the 

concentrations of 5-HT and its major metabolite, 5-HIAA, increase in several brain 

regions during prolonged exercise, peaking at fatigue (Bailey et A, 1993b). The increase 

in brain 5-HT synthesis and turnover probably results from an increase in plasma f-TRP 

and f-TRP/ branched-chain amino acids (BCAA) ratio (Blomstrand et al., 1989). The 

administration of 5-HT agonist and antagonist drugs can decrease and increase respective 

run times to fatigue in the absence of any peripheral markers of fatigue (Bailey et al., 

1993a). 

The TRP mediated serotonergic activity has been shown to inhibit dopamine release, 
increase prolactin release (De Meirleir et al., 1985), and consequently serum prolactin 

concentration and reduce central drive (Chaouloff, 1997). Carbohydrate supplementation 
has been shown to reduce f-TRP and f-TRP/ BCAA ratio, and fatigue is delayed using 

this strategy (Davis et al., 1992), although it would be difficult to isolate the effects on 

central fatigue from the established benefits on skeletal muscle. However, in humans, it 

appears that the "serotonin-fatigue" hypothesis does not become relevant unless the 

exercise intensity and duration is sufficient to result in marked elevations of the 

circulating levels of NEFA and f-TRP (Nybo and Secher, 2004). 

2.3.3. Hyperthermic fatigue 

During exercise in the heat, or in situations where there is a large level of net heat 

storage, fatigue is probably caused by hyperthermia rather than substrate depletion 

(Febbraio et al., 1996). It has been reported that high core temperature per se can cause 
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fatigue (Gonzalez-Alonso et al., 1999c). Gonzalez-Alonso et al. (1999c) manipulated the 

initial core temperature, and the rate that it increased during exercise (cycling at 60% 

M)2mn). Despite the different initial core temperatures (35.9°C - 37.4°C), all subjects 

fatigued at an identical level of hyperthermia (40.1°C - 40.2°C), and time to exhaustion 

was inversely related to initial core temperature and directly related to the rate of heat 

storage. These findings would suggest that exercise intensity is controlled by a central 

mechanism that forces a reduction in exercise intensity when core temperature reaches a 

critical level (Nielsen and Nybo, 2003). Inadequate hydration strategies have also been 

shown to accentuate thermal stress (Armstrong and Maresh, 1998). 

2.4. Dehydration, fluid replacement and exercise performance 

Water is the main component of the human body, accounting for approximately 60% of 
body mass and 72% of lean body mass in a healthy adult (Sawka and Pandolf, 1990). 

Dehydration during exercise increases core temperature and decreases blood volume, 

venous return, stroke volume, skin blood flow and sweat rate (Nadel eta!., 1980). Studies 

on the effects of dehydration on exercise performance have demonstrated increased 

cardiovascular strain, indicated by a disproportionate increase in heart rate during 

exercise, and a reduced ability of the body to transfer heat from the active muscles to the 

skin surface where it can be dissipated to the environment (Convertino et a1., 1996). 

Dehydration that results in a loss of body mass of 1-2% contributes to an increase in core 

temperature and cardiovascular strain (Hoffman et al., 1994). The magnitude of increase 

in core temperature and heart rate and the decline in stroke volume are graded in 

proportion to the amount of dehydration accrued during exercise (Montain and Coyle, 

1992). The loss of body water can adversely affect exercise performance, although the 

severity depends upon the environmental conditions (Sawka and Pandolf, 1990) and the 

type of exercise. Although it appears that during exercise in temperate environments 

lasting less than 90 min, dehydration by 1-2% of body weight does not significantly 

influence performance (McConell et al., 1999; Bachle et al., 2001). However, exercise 

performance over 60 min has been shown to be impaired by dehydration amounting to 
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1.8% (Walsh et a!., 1994). Therefore, dehydration by 2% body weight during exercise in 

a hot environment (31-32°C) impairs performance, but when exercise is performed in a 

temperate environment (20-21°C), dehydration by 2% has a lesser effect on endurance 

performance (Coyle, 2004), possibly due to reduced cardiovascular strain. However, 

Dehydration does not alter isometric strength and endurance (Greiwe et al., 1998) or 

anaerobic performance (Walsh et A, 1994), but does reduce endurance (Ban et A, 1991; 

Montain eta!., 1998) and maximal aerobic power (Sawka and Pandolf, 1990). 

The ingestion of fluid during prolonged exercise can attenuate the detrimental effects of 

dehydration on body temperature and exercise performance (Montain and Coyle, 1992). 

It is important therefore, that athletes consume fluid during prolonged exercise, especially 
in the heat. However, there can be negative aspects associated with fluid consumption, 
including, gastrointestinal discomfort, reduced pace during competition due to the time 

spent drinking large volumes of fluid (Coyle and Montain, 1992) and hyponatraemia 

(Noakes et al., 2004). 

2.4.1. Carbohydrate ingestion during exercise 

Originally it was considered that fluid replacement alone was of primary importance for 

optimising performance. It was not until commercially-funded scientific research into the 

value of carbohydrate ingestion during exercise did the use of carbohydrate solutions 
during exercise became common practice. Many authors (Table 2.1) have investigated the 

effect of carbohydrate ingestion using a number of modes of exercise and its effect on 

performance, with the majority demonstrating a positive impact on exercise capacity or 

performance. The effect of carbohydrate ingestion on soccer performance will be 

discussed at a later point. 

17 



Table 2.1: Effect of carbohydrate ingestion on exercise. 

Authors Mode of 
exercise 

Intensity Duration 
Performance 

test Improved 
Ball et al. Cycling Time-trial 50 min Wingate test Yes 
(1995) 
Coyle 
(1986) 

et al. Cycling 70% VOA Cycle to 
exhaustion 

Yes 

120 min then Improved 
Davis et al. Cycling Time -trials 

another 30 min 30 min but 
(1988) after 30 min not 120 min 

rest 
Continuous at 

Sugiura and 
75% VO2,., or 90 min (15 min 

Kobayashi Cycling 
intermittent 
65% and 100% rest after 45 40-s Wingate test Yes 

(1998) V02. (5: 1 min) 

ratio) 

Millard- 40 km (35 km 

Stafford et al. Running self-paced, last 
5 km at race 

Last 5 km time Yes 
(1992) 

pace) 
Vergauwen et - Tennis 

Strenuous 120 min 
Leuven tennis 
performance test Yes 

al. (1997) training session 
and shuttle run 

Yaspelki et al. Cycling 
Continuous at 
45% or 75% 190 min 

80% VOA ride Yes (1993a) VO 2max 
to exhaustion 

Coggan and Coyle (1989) demonstrated that even a single feeding of a high-carbohydrate 

solution during a prolonged bout of exercise had a beneficial effect on exercise capacity 
if the consumption occurred approximately 30 min prior to the onset of fatigue. Cyclists 

consumed either a placebo or a 50% solution of carbohydrate at a rate of 3 g-kg'lafter 135 

min of cycling at just below the individual's blood lactate threshold (mean 70% 1O2). 

The decline in blood glucose over the first 135 min was reversed and the time to fatigue 

was 21% longer for the carbohydrate trial. The authors concluded that a single 

carbohydrate feeding late in exercise can supply sufficient carbohydrate to restore 

euglycemia and increase carbohydrate oxidation, thereby delaying fatigue (Coggan and 
Coyle, 1989). 
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The main benefit of carbohydrate ingestion during exercise is thought to be due to the 

increased availability of blood glucose to replace that utilized by the muscle during 

exercise (Coyle et aL, 1986). Some studies have demonstrated a muscle glycogen sparing 

effect during intermittent cycling (Yasplekis et al., 1993a) and prolonged submaximal 

running , but not prolonged submaximal cycling (Coyle et al., 1986). It has also been 

demonstrated that carbohydrate ingestion allows for a higher rate of carbohydrate 

oxidation at a time when muscle glycogen levels are low (Coggan and Coyle, 1987). 

Another potential mechanism for the increased performance associated with carbohydrate 
ingestion is a change in brain neurotransmitter production (Walberg-Rankin, 1995). As 

discussed earlier, the "central fatigue hypothesis" is based on the fact that the production 

of serotonin in the brain is related to the amount of the precursor, tryptophan, in the 

blood. This is because tryptophan and branched-chain amino acids compete for entrance 

to the brain and the exercise-associated reduction in branched-chain can theoretically 

result in a greater production of serotonin, possibly resulting in early fatigue (Blomstrand 

et aL, 1991). Therefore the ingestion of carbohydrate may reduce the decline in branched- 

chain amino acids during exercise and delay centrally mediated fatigue. 

As discussed earlier, the majority of studies have shown that consuming carbohydrate 

during exercise can improve capacity and performance. In contrast, Felig et al. (1982) 

reported that ingesting either 40 or 80g-h" of glucose did not significantly affect times to 

exhaustion when subjects cycled at 60 - 65% ' D2mu. This was despite the ingestion of 

glucose preventing the hypoglycaemia that was found in 37% of the subjects at 

exhaustion after consuming just water. Times to fatigue in subjects who consumed only 

water and had become hypoglycaemic during exercise were not significantly different 

from those who did not develop hypoglycaemia. These results led the authors to conclude 

that exercise can be continued in the presence of hypoglycaemia, which does not support 

the notion that glucose ingestion can improve performance during prolonged exercise 
(Felig et al., 1982) and suggests that carbohydrate ingestion during exercise is only 
beneficial when carbohydrate stores are likely to be depleted due to the exercise. 
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2.5. Gastric emptying 

One factor which affects the effectiveness of fluid replacement strategies is the rate of 

gastric emptying. Gastric emptying, or the rate at which fluid passes from the stomach 
into the small intestine, is considered a limiting factor in fluid replacement and is an 
important aspect in determining the rate at which nutrients enter the duodenum where 

they can be absorbed into the bloodstream (Brouns et al., 1987). Various factors have 

been demonstrated to influence gastric emptying, including the volume of the fluid 

ingested, the carbohydrate content, the osmolality of the fluid and the temperature of the 

ingested fluid. Gastric emptying is also affected by solute acidity, exercise intensity and 

heat stress. Shi and Gisolfi (1998) considered that volume, carbohydrate content and 

osmolality were the most likely regulators of the rate of fluid delivery to the intestine. 

2.5.1. Fluid volume 

The mechanism by which fluid volume influences gastric emptying is related to the 

distension and pressure exerted on the stomach wall, which stimulate receptors in the 

gastric musculature altering the rate of gastric emptying (Costill and Saltin, 1974). 

Increasing the volume within the stomach stimulates the activity of the stretch receptors 
in the gastric mucosa, which increases the intragastric pressure, facilitating a faster rate of 

gastric emptying (Noakes et al., 1991). Contractions move from the proximal to distal 

regions of the stomach, increasing the pressure within the antral region of the stomach. 
Increasing the pressure within the antral region increases the rate of gastric emptying 
(Struntz and Grossman, 1978). It is the total volume in the stomach that is important, 

which includes the volume of the fluid ingested, as well as the volume of gastric 

secretions and swallowed saliva (Leiper, 2001). 

Studies using a single large ingestion (Costill and Saltin, 1974) or repetitive smaller 
ingestions (Duchman et aL, 1997) demonstrate that the maximum rate at which water and 

carbohydrate can be delivered from an ingested solution is influenced by the average 
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volume of fluid in the stomach, which in turn is determined by the volume ingested and 

the drinking pattern. The greater the initial volume of ingested fluid, or gastric volume, 

the greater the initial rate of gastric emptying. As the volume decreases, the absolute rate 

of gastric emptying decreases in proportion. Rehrer et al. (1989) demonstrated that the 

rate of gastric emptying falls exponentially with time. They also found that following a 

single ingestion, the rate of gastric emptying for any solution falls as a logarithmic 

function of the volume of fluid contained in the stomach. This observation means that 

during any equal period of time, a constant percentage of the fluid present in the stomach 

at the start of that period would have been emptied (Noakes et al., 1991). Rehrer et al. 

(1989) reported that approximately 65% of water, 50% of an isotonic 7% carbohydrate 

solution and 25% of a 15% or 18% carbohydrate solution emptied during each successive 

10-min period of exercise at 70% V02m. 

2.5.2. Carbohydrate content 

The rate of gastric emptying decreases as the carbohydrate content of the ingested fluid 

increases (Costill and Saltin, 1974; Murray, 1987; Rehrer et al., 1989). Studies have 

demonstrated an inverse relationship between the glucose concentration of the ingested 

fluid and the rate of gastric emptying (Brouns, 1998). Murray et al. (1999) found that the 

increase in carbohydrate content that decreases gastric emptying can be as little as 2%, 

when the carbohydrate concentration exceeds 6%. Even glucose concentrations of 4 to 

5% produce a small but significant slowing of emptying (Costill and Saltin, 1974; Vist 

and Maughan, 1995). However, it is worth noting that when gastric emptying is 

expressed as the rate at which the energy content is emptied from the stomach 

carbohydrate content has no impact (Brener et al., 1983). In fact, some studies (Hunt et 

al., 1985) demonstrated an increase in substrate availability with increasing carbohydrate 

content. 
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2.5.3. Osmolality 

The effect of osmolality on the rate of gastric emptying is debatable (Shi and Gisolfi, 

1998). It would appear that carbohydrate concentration is more important than osmolality 
for influencing gastric emptying rate. The majority of studies have demonstrated little or 

no difference in the rates of gastric emptying of glucose or maltodextrin solutions, despite 

large differences in osmolality (Brouns et al., 1995; Maughan, 1997). The lack of a 
difference may be as a consequence of the maltodextrins being hydrolysed before 

reaching the small intestinal osmoreceptors (Leiper, 2001). Therefore the osmolality of 
isoenergetic solutions are equal at the point of contact with the regulating osmoreceptors. 

2.5.4. Exercise intensity 

The volume ingested and the formulation of the drink are known to be the major factors 

on the rate of gastric emptying and intestinal absorption. It has been assumed that 

exercise intensity plays a relatively minor role in determining the absorption of ingested 

fluid in most sports (Maughan and Leiper, 1994). Maughan et al. (1990) demonstrated, 

using an isotopic water tracer method, that cycling at an intensity in excess of 40% 

V%max was sufficient to reduce the availability of the ingested fluid, and that this effect 

was proportional to the exercise intensity. However, general opinion appears to be that 

for euhydrated individuals exercising in a temperate environment power output at a 

constant level has to be more than 80% 'D2 before gastric emptying is slowed (Costill 

and Saltin, 1974). It has been assumed that during intermittent exercise, such as soccer, 

there is sufficient time at low-intensity exercise to allow for appropriate amounts of any 
ingested fluid to be emptied form the stomach and absorbed, and that the relatively short 

amount of time spent in high-intensity levels would not have an appreciable inhibitory 

effect on gastric emptying (Leiper et al., 2005). However, the average intensity of an elite 

competitive soccer match has been reported to be around 70% D2,. (Reilly et al., 
2000). Leiper et al. (2001) demonstrated that the pattern and intensity of exercise 

performed during an indoor 5-a-side competitive soccer match were sufficient to cause a 
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significant reduction in the rate of gastric emptying when compared with an equal 
duration of low-intensity walking. The authors concluded that it was the intermittent 

high-intensity sprinting that produced the slowing of gastric emptying. 

2.5.5. Other factors 

Other potential factors influencing the rate of gastric emptying, include fluid acidity, fluid 

temperature and heat stress. It has been demonstrated that when a meal contains a high 

concentration of acid, gastric emptying slows. This observation is considered to be as a 

consequence of the stimulated duodenal receptors. However, the type and concentration 

of the acids, such as citric acid, found in the majority of sports drinks are unlikely to 

affect the rate of gastric emptying (Leiper, 2001). 

Gastric emptying may also be affected by the temperature of the fluid. Costill and Saltin 

(1974) found that the rate of gastric emptying decreased slightly as the temperature of the 

ingested fluid increased. In contrast, Sun et al. (1988) reported that hot (50°C) and cold 
(4°G') isosmotic solutions appeared to empty from the stomach at a slower rate than the 

control solution (37°C). This observation suggests there may be an optimal temperature 

of the ingested fluid to promote gastric emptying. More studies would be required to 

substantiate these findings. 

Heat stress has also been shown to affect the rate of gastric emptying. A number of 

authors (Owen et al., 1986; Neufer et al., 1989) have demonstrated that in a hot 

environment, the rate of gastric emptying slows. Owen et al. (1986) measured gastric 

residue following 2 hours of running (65% V02n) in the heat (35°C) and in moderate 

environment (25°C) after consuming 200 ml of water every 20 min. The gastric residue 

was significantly less after exercise in the cooler condition. The authors suggested that 

the differences may have been due to the reduced splanchnic blood flow or increased 

plasma fl-endorphin levels. 
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2.6. Intestinal transport of carbohydrate 

The rate at which carbohydrate is absorbed from the intestine into the blood also 

influences the effectiveness of carbohydrate supplementation. The time course for the 

appearance of sugars in the blood and subsequent oxidation is dependent on the rate at 

which they are absorbed from the intestinal region. Intestinal sugar transporters are 

responsible for transporting the monosaccharides glucose, galactose and fructose from the 

intestinal lumen to the blood. The intestinal transport of glucose and galactose occurs via 

a sodium-dependent glucose transporter (SGLT1), located in the brush-border or apical 

membrane (Ferraris and Diamond, 1997). Fructose is transported from the lumen to the 

cytosol via GLUT5, a sodium-independent facilitative fructose transporter. GLUT2 is 

basolateral and transports all three monosaccharides from the cytosol to the blood (Figure 

2.3). 

dhiooN 

Na; 

K+ 

Fructos 

Paracellu 

Figure 2.3: Intestinal absorption of carbohydrates (from Ferraris and Diamond, 1997). 

The cotransporter SGLT1 is a high-affinity glucose transporter that is found in both the 

small intestine and kidney. Although transport and ligand-binding experiments suggest 

more than one type of sodium dependent glucose transport system, so far only SGLT1 
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has been identified (Ferraris, 2001). The facilitated transporter GLUTS is a transporter 

which is highly stereospecific for fructose. It has also been suggested that GLUT2 is 

present at the brush border of normal rat intestine (Kellett and Helliwell, 2000), and 

therefore could mediate glucose and fructose transport. 

A potential limiting factor for oxidation of exogenous carbohydrate is the rate of 
intestinal carbohydrate absorption (Jeukendrup et al., 1999; Jentjens et al., 2004b). When 

large amounts of glucose (>1 g"min 1) are ingested during exercise, intestinal absorption 

and/ or disposal by the liver may limit the rate of exogenous carbohydrate oxidation 
(Jeukendrup and Jentjens, 2000). It is thought that SGLT1 transporters are saturated at 

glucose ingestion rates exceeding 1 g"min 1, which may explain why there is not a linear 

relationship between glucose ingestion rates and oxidation rates. This view is supported 
by the fact that carbohydrate oxidation rates have not have been found to exceed 

approximately 1 g"miri 1 despite carbohydrate in the form of glucose or glucose polymer 
being ingested at rates of up to 3 g- min-' (Pimay et al., 1982; Wagenmakers et al., 1993; 

Jeukendrup et a!., 1996). 

As fructose is absorbed from the intestine by a GLUT5, glucose and fructose are 

absorbed via separate intestinal transport mechanisms. When a solution containing a 

mixture of glucose and fructose is ingested, there is less competition for absorption 

compared with an isoenergetic amount of glucose, which may increase the amount of 

carbohydrate entering the bloodstream and subsequent availability for oxidation. 
Furthermore, it has been demonstrated that fructose absorption is stimulated by the 

presence of glucose in a dose dependent fashion (Rumessen and Gudmandhoyer, 1986), 

which may contribute to the faster intestinal carbohydrate absorption rates seen when 

glucose and fructose are ingested simultaneously. 

Jentjens et al. (2004b) demonstrated that during cycling at 50% maximum power output 
(Wmax), ingesting either an 8.7% (1.2 g"min'1) glucose drink, a 13.1% (1.8 groin ) 

glucose drink, an isoenergetic fructose plus glucose (0.6 g"miri 1 fructose and 1.2 g"min 1 

glucose) drink or water resulted in peak exogenous carbohydrate oxidation rates 
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approximately 55% higher during the fructose and glucose trial (1.26 g-min) compared 

with the medium (0.80 g"miri 1) and high glucose (0.83 g"min 1) drinks. This study also 
failed to demonstrate a significant difference in exogenous oxidation rates between the 

two glucose drinks, levelling off at 1.0-1.1 g-min1. Jentjens et al. (2004) suggested that 

the faster rate of carbohydrate absorption could have increased the availability of 

exogenous carbohydrate in the bloodstream, which may account for the higher exogenous 

carbohydrate oxidation rates when glucose and fructose were ingested, compared with a 

solution containing only glucose. Similar results have been reported using other 

combinations, such as, glucose, fructose and sucrose (Jentjens et al., 2004a) and glucose 

and sucrose (Jentjens et al., 2004c). The higher rate of exogenous carbohydrate oxidation 

was accompanied by a decrease in endogenous carbohydrate oxidation, suggesting that 

muscle glycogen utilization was reduced. A reduction in muscle glycogen utilization 

could delay its depletion, and possibly the onset of fatigue with an associated 
improvement in performance. 

2.7. Exercise and the hot environment 

The performance of prolonged continuous cycling (Galloway and Maughan, 1997) 

Parkin et al. (1999) and intermittent, high-intensity running (Morris eta!., 1998) has been 

shown to impaired as a consequence of high ambient temperatures (30-40°C). Parkin et 

al. (1999) reported that reduced exercise time to exhaustion during submaximal cycling 
in the heat (40°C) was associated with increased core and muscle temperature and a 
higher concentration of muscle glycogen at fatigue, suggesting that carbohydrate 

availability was not the cause of fatigue. Furthermore, Galloway and Maughan (1997) 

have shown that that the differences in the performance that occur in higher ambient 
temperatures (31°C compared with environment temperatures between 4°C and 21°C) are 

consistent with an influence of hyperthermia on the development of fatigue. Morris et al. 
(1998) demonstrated a significant reduction in the distance covered during prolonged, 
intermittent, high-intensity shuttle running in the heat (30°C) was as a consequence of 

significantly higher core temperature and heart rate in the heat compared with the trial 

performed in the moderate conditions. The decrement in performance was evident despite 
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blood glucose, lactate, NEFA and ammonia concentrations and RPE being similar 
between both trials. 

2.7.1. Heat stress and metabolism 

In general, the literature on the metabolic responses to exercise in the heat has 

demonstrated a shift towards increased carbohydrate and decreased fat utilization 
(Febbraio, 2001). Fink et al. (1975) were the first to demonstrate that environmental 

temperature affects intramuscular substrate utilization. They found that 60 min of 
intermittent exercise at 41°C increased muscle glycogen utilization, compared with 

exercise at 9°C, and this finding has since been replicated (Febbraio et al., 1994b). Fink et 

al. (1975) also reported a shift in respiratory exchange ratio and a decrease in 

intramuscular triglyceride utilization, although not all studies have shown this change in 

substrate utilization (Nielsen et al., 1990). It appears that during submaximal exercise in 

the heat, if there is a marked (>0.5°C) increase in core body temperature, intramuscular 

carbohydrate utilization is augmented (Febbraio, 2001). If the combined effect of exercise 

and heat stress does not markedly increase core temperature then it is unlikely that 

differences in metabolism will be observed. 

There appears to be two mechanisms responsible for these metabolic changes, adrenaline 

concentration and muscle temperature. Exercise in the heat causes an approximately 
twofold increase in the level of circulating adrenaline (Hargreaves et al., 1996a). 

Febbraio (1998) infused adrenaline into trained men exercising at 71% O2pak at 20°C to 

simulate the sympathoadrenal response at 40°C. The authors concluded that the increase 

in glycogen utilization and lactate accumulation was similar to that observed during 

exercise in the heat. 

Muscle temperature per se appears to play a role in altering substrate metabolism by 

affecting key enzymes (Kozlowski et al., 1985). It is thought that since muscle 
temperature can be approximately 2C higher when exercising in the heat compared with 
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a cooler environment, enzyme reaction rates could be increased by as much as 30 to 40% 

(Febbraio, 2001). Relatively few authors have attempted to increase muscle temperature 

and investigate the effect on metabolism. Starkie et al. (1999) heated one leg whilst 

cooling the other for 40 min before and 20 min during exercise at 70% 'O2pe1 using 

water-perfused cuffs. Both regimes significantly increased muscle temperature. It was 
found that in addition to a higher muscle temperature in the heated leg, there was an 
increased rate of glycogen utilization. The authors concluded that muscle temperature per 

se was involved in the regulation of intramuscular carbohydrate utilization and was 

responsible, in part, for the increase in muscle glycogen utilization frequently observed 
during exercise in the heat. 

An increase in environmental temperature increases core and muscle temperature, 

augmenting the exercise-induced increase. The higher core temperature and perceived 

effort results in a "feed-forward" increase in adrenaline secretion. This elevation in 

adrenaline, in addition to the increase in muscle temperature per se, augments muscle 

glycogen utilization in exercising skeletal muscle in the heat (Febbraio, 2000) (Figure 

2.4). 
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Increased perceived 
exertion as a result of 
increased core body 
temperature stimulating 
the central 
neuroendocrine control Increased core body 

temperature 

Increased 
adrenaline secretion Increased muscle 

temperature 

Increased muscle 
glycogenolysis 

Figure 2.4: Proposed effect of increased environmental temperature on muscle glycogen 

utilization during exercise (from Febbraio, 2000). 

Various other mechanisms have been proposed to explain the increase in carbohydrate 

utilization during exercise in the heat. These include reduced muscle blood flow 

(Gonzalez-Alonso et al., 1999a), alterations in neuromuscular recruitment patterns 

(Sawka et al., 1984) and increased adrenaline levels (Yasplekis et al., 1993b). A decrease 

in muscle blood flow, as a consequence of increased skin blood flow, could alter 

metabolism due to a decrease in oxygen and substrate delivery. However, Gonzalez- 

Alonso et al. (1999b) demonstrated that even when muscle blood flow is reduced during 

exercise in the heat, arteriovenous oxygen difference is increased accordingly so that leg 

oxygen availability is not compromised. It has been hypothesised that exercise in the heat 

leads to a greater recruitment of fast glycolytic muscle fibres, which are more sensitive to 

changes in temperature than slow oxidative fibres (Sawka et al., 1984; Young et al., 
1985). However, Febbraio et al. (1994a) demonstrated that during 40 min of exercise at 
40°C or 20°C, there was no correlation between lactate accumulation and muscle fibre 
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type. It was suggested that slow oxidative fibres were preferentially recruited irrespective 

of environmental temperature. 

2.7.2. Cardiovascular responses to exercise in the heat 

The most notable effect of performing exercise in a hot environment is the increase in the 

amount of fluid lost (Burke, 2001). This increase in fluid loss is due to the evaporation of 

sweat being the main method of dissipating the heat produced by the exercising muscles 

and absorbed from the environment. ff the fluid lost through sweating is not replaced, 

then dehydration occurs. Dehydration during exercise generally occurs because of the 

lack of sufficient fluid intake or there is a mismatch between thirst and body water 

requirements (Sawka et al., 2001). 

Compared with cooler ambient temperatures fatigue is accelerated in the presence of heat 

stress (Kay and Marino, 2000). The reduction in maximal aerobic power is caused by the 

redistribution of blood flow. In the heat, the superficial skin veins reflexively dilate to 

increase skin blood flow, reducing the percentage of cardiac output that perfuses 

exercising muscle and decreases the effective central blood volume and central venous 

pressure, thereby reducing venous return and cardiac output (Sawka and Montain, 2000). 

Dehydration during prolonged exercise causes a reduction in total blood volume and 

stroke volume with a compensatory increase in heart rate (Gonzalez-Alonso et al., 2000). 

This effect has been termed "dehydration induced cardiovascular drift" (Coyle, 1998) and 
due to a greater degree of dehydration, this is more pronounced when exercising in the 
heat. During exercise in hot ambient temperatures the rate of heat production and heat 

gain from the environment is disproportionate to the rate of heat dissipation, consequently 
leading to the development of hyperthermia. The increased requirement to dissipate heat, 

via evaporation, results in a loss of body water and electrolytes (Sawka, 1992). 

Hypovolemia has been associated with impaired cardiovascular function (Sawka, 1992), 
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dehydration (Gonzalez-Alonso, 1998) and further elevations in core temperature 
(Montain and Coyle, 1992). 

The increase in skin temperature and blood flow compounds cardiovascular drift and a 

subsequent decrease in cardiac output and stroke volume occur (Montain and Coyle, 

1992). Gonzalez-Alonso et al. (1997) reported that hyperthermia and dehydration 

independently reduced stoke volume and increased heart rate and the combined effect of 
dehydration hyperthermia during exercise in the heat the decline in stroke volume was 

greater and cardiac output declined synergistically. As a consequence there was a 
decrease in blood pressure impairing the dehydrated athlete's ability to cope with 
hyperthermia. Furthermore, the lowering of stoke volume observed with dehydration 

appears to be related to the increase in heart rate and decrease in blood volume 
(Gonzalez-Alonso et al., 2000). 

2.7.3. Fatigue in the heat 

Another potential cause of the reduced aerobic capacity in the heat is that core 
temperature reaches a "critical temperature". Nielsen et al. (1993) observed that when 

exercising at 60% V02n in either 20°C or 40°C, exhaustion occurred when core 
temperature reached 39.7°C. The authors concluded that core temperature rather than 

circulatory failure is the critical factor limiting exercise capacity in the heat (Nielsen et 

al., 1993). Gonzalez-Alonso et al. (1999c) reported consistent final core and thigh 

temperature (40.1- 40.3°C and 40.7- 40.9°C, respectively) at voluntary exhaustion in 

40°C heat in trained humans, despite differences in starting core temperature, rate of heat 

storage, and final skin temperature. Galloway and Maughan (1997) demonstrated that 

during exercise in the heat (31°C), exercise capacity at 70% V02max was significantly 

reduced compared with lower ambient temperatures (4°C, 11°C and 21°C). Also ' J2 was 
decreased and heart rate elevated in the hot condition. Core temperature at exhaustion in 

this condition was 40.1°C, suggesting that exercise capacity may have been limited by 

hyperthermia and not the depletion of endogenous carbohydrate stores. 
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In addition, it has been suggested that an elevated brain temperature may limit exercise 
duration (Fuller et al., 1998). There is evidence that an elevated brain temperature may 
impair central arousal. Brain activity has been investigated in hot and cool environments, 

with a reduction in the ß brain waves during exercise in the hot environment, increasing 

the ratio of a to ß waves (Nielsen et al., 2001). This observation is similar to what 

happens during sleep, so may reflect a reduced state of arousal in the hyperthermic 

individual (Cheung and Sleivert, 2004). An increase in core temperature has also been 

shown to increase resting metabolic activity in areas of the brain such as the cerebellum 

and hypothalamus (Nunneley et al., 2002), which may lead to a reduced availability of 

cerebral glycogen. 

Low et al. (2005b) reported that an elevated core temperature was the key stimulus for 

prolactin, which may be a marker of central serotonergic activity. An increase in 

serotonin (5-HT) decreases arousal, mood and motivation and increases RPE and in turn 

reduces voluntary activation causing fatigue and impaired exercise capacity (Cheung and 
Sleivert, 2004). Dopamine is another neurotransmitter that is a candidate for modulating 
hyperthermic fatigue, because it plays a role in the control and initiation of movement 

and may also reduce 5-HT production. Levels of dopamine also have been shown to 
increase during exercise, and a decrease in dopamine levels coincide with early fatigue 

(Davis and Bailey, 1997). 

2.7.4. Strategies for improving exercise performance in the heat 

Different strategies have been shown to be effective in reducing thermoregulatory strain 

and improving performance when exercising in the heat (Kay and Marino, 2000). Such 

interventions include acclimatization, part and whole-body pre-cooling using cold air, ice 

jackets or water immersion and fluid ingestion. Some of these strategies have negative 

aspects; heat acclimatization requires between 8 and 13 days before most adaptations are 
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seen (Nielsen et al., 1993), and whole-body pre-cooling can be restrictive in terms of the 

equipment and time required to undertake the procedure (Marino and Booth, 1998). In 

contrast, fluid replacement is an easily implemented for improving the safety, health and 

performance of individuals undertaking exercise in the heat (Kay and Marino, 2000). 

2.7.5. Fluid replacement strategies 

Fluid intake has been shown to attenuate or prevent many of the metabolic, 

thermoregulatory and performance disturbances associated with exercise by reducing the 

degree of dehydration (Walsh et al., 1994; Below et al., 1995; Hargreaves et al., 1996b). 

A number of authors (Below et al., 1995; Hargreaves et al., 1996b; Galloway and 

Maughan, 2000) have investigated the effect of fluid ingestion strategies on the 

thermoregulatory, cardiovascular and metabolic responses to exercise in a hot 

environment and the subsequent effect on performance. The majority of studies 

demonstrating that carbohydrate supplementation or water ingestion can delay the onset 

of fatigue have been conducted in neutral environments (-20°C). Ingesting water has 

been shown to attenuate the increase in core temperature and prevent the decline in stroke 

volume and cardiac output during prolonged exercise in moderate ambient temperatures 

(20-22°C) (Hamilton et al., 1991b; Montain and Coyle, 1992). Also, when fluid is 

ingested in volumes such that body mass losses are replaced, muscle glycogen utilization 
is attenuated (Hargreaves et al., 1996b). Coyle and Hamilton (1990) attributed the delay 

in the onset of fatigue in hot environments to the cardiovascular and thermoregulatory 

benefits of water provision during exercise. In addition, relatively few research groups 
have examined the effect of fluid provision in hot ambient temperatures (-30°C). 

Below et al. (1995) examined the effect of ingesting water, carbohydrate or a 

combination on the cardiovascular and thermoregulatory responses to 50 min of exercise 

at 80% V02 
, followed by a time-trial in the heat (31.2°C). The ingestion of water 

resulted in a 6% improvement in time-trial performance; carbohydrate ingestion also 
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improved cycling performance by 6% and the combination of the two strategies enhanced 

performance by 12% (Figure 2.5). Therefore, the effects were independent and additive 

(Below et al., 1995). This study also demonstrated that ingesting a larger volume (1.3 1, 

79% of fluid losses) improved performance more effectively than a smaller volume (0.21, 

13% of fluid losses). 

Placebo Fluid 
11.34±0.32 min 10.51±0.27 min 

Fluid + 
Carbohydrate Carbohydrate 
10.55±0.29 min 9.93±0.28 min 

No carbohydrate 
10.92±0.32 min 

Carbohydratet 

10.23±0.28 min 

Small fluid Large fluid 
replacement replacement* 
10.93±0.32 min 10.22±0.27 min 

Figure 2.5: Time trial performance in the heat (adapted from Below et a!., 1995). *Large 

volume quicker than small volume, tcarbohydrate quicker than no carbohydrate 

(P<o. 05). 
Despite the differences in exercise performance, no difference in heart rate or core 

temperature was observed between the two carbohydrate trials when compared with the 

`no carbohydrate' trial. However, core temperature was 0.33±0.04°C lower and heart rate 
4±1 beats. min 1 lower during the ̀ large volume' trial compared with the ̀ small volume' 
trial. These results suggest that fluid volume, and not carbohydrate content is more 
important for reducing core temperature and heart rate during exercise when carbohydrate 
is consumed. 
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Galloway and Maughan (2000) investigated the effect of ingesting fluid containing 
different concentrations of carbohydrate on exercise capacity performed in a hot 

environment (30°C). The ingestion of either a dilute (2%) carbohydrate-electrolyte 

solution that replaced 150% of fluid losses or a solution with a high carbohydrate content 

(15%) that replaced 100% of fluid losses was compared with no fluid ingestion. Ingesting 

the carbohydrate-electrolyte solution significantly increased time to exhaustion when 

compared with no fluid (70.9 min). However, time to exhaustion during the trial with 2% 

carbohydrate solution (118.0 min) was significantly longer than during the 15% 

carbohydrate trial (84.0 min). No differences were observed in the thermoregulatory and 

cardiorespiratory responses between trials, although there was a tendency for a lower 

heart rate during exercise after ingesting the 2% carbohydrate solution. The study also 

demonstrated no differences in substrate oxidation rates, suggesting that carbohydrate or 

fluid provision had no impact on substrate oxidation and, in particular muscle glycogen 

utilization (Galloway and Maughan, 2000). These results show that fluid replacement 

with a large volume of dilute carbohydrate solution is effective during exercise in the 

heat, supporting the findings of Below et al. (1995), but the precise mechanisms for the 

improved exercise capacity are unclear. 

There is clear evidence that both water and carbohydrate can improve exercise 

performance in the heat when compared with no fluid ingestion. Furthermore, the 
ingestion of carbohydrate solutions may further improve performance. It appears that 
ingesting a large volume of a dilute carbohydrate solution, which is primarily aimed at 

rapid fluid replacement, is more effective at delaying the onset of fatigue than a smaller 

volume of a more concentrated carbohydrate solution. 

2.7.6. Pre-cooling 

It is well documented that heat stress, as a consequence of an elevated core body 

temperature, is a major cause of reduced exercise performance and heat-related illnesses 

35 



(Gonzalez-Alonso et A, 1999c). The question is whether a reduction in body temperature 

to delay reaching a critical value would benefit exercise performance. 

The principle of the pre-cooling strategy is to reduce core body temperature prior to 

performing exercise. This creates a" heat sink", thereby increasing the margin for 

metabolic heat production, and so offsetting the time before a critical limiting 

temperature is attained when a given exercise intensity can no longer be maintained is 

reached (Nielsen et al., 1993). 

2.7.7. Pre-cooling and exercise performance 

A major problem in evaluating the effectiveness of pre-cooling on exercise performance 
is the type of exercise and pre-cooling strategy protocol used. Various pre-cooling 

methods, such as cold air, water immersion, water perfused suits and ice jackets have 

been employed prior to performing exercise protocols in different environmental 

conditions (Table 2.2). These variations, including different protocols may explain the 
inconclusive results regarding the effects of pre-cooling on exercise performance. 
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Table 2.2: Summary of pre-cooling studies, method and results. 

Author Pre-cooling 
method 

Exercise 
protocol 

Ambient 
Conditions Result 

Arngrimsson et al. Cooling vest 5 km run 32°C Significantly quicker (13 
(2004) 50 rh s) 

Bergh and Ekblom Water immersion (13- Arm and leg 20-22°C Reduced physical 
(1979) 15°C) exercise to performance 

exhaustion 
Booth et aL (1997) Water immersion (23- 30 min self-paced 31.6°C, Distance increased by 

24°C) treadmill running 60% rh 4% (304 m) 

Booth et al. (2001) Water immersion 35 min cycling 34.9°C Limited effect on muscle 
(24°C) (65% V%Pte) 46.4 rh metabolism 

Cotter et al. (2001) Ice vest, with/ without 20 min cycling 33°C Reduced physiological 
thigh cooling and 3°C (65% V02 

pmk) and and psychophysical 
air 15 min strain and increased 

performance endurance performance 

Drust et al. (2000) 60 min cold shower 90 min soccer- 20.5°C No benefit on the 
(26°C) specific protocol 71.6 rh physiological responses 

Duffield et al. Ice cooling jacket (5 80 min 30°C, No significant difference 
(2003) min before, during rest intermittent, 60% rh in work done 

periods, 2* 5i, 1* 10 repeated sprint 
min) cycling exercise 

Gonzalez-Alonso 30 min water Cycling to 40°C Increased performance 
et al. (1999) immersion exhaustion (60% 19% rh time and termination 

V02 
max) 

temperature identical 

Hessemer et aG Double cold air 60 min work-rate 18°C 6.8% increase in work- 
(1984) exposure (0°C) test rate 

Kay et al. (1999) Water immersion Cycle time trial (30 31.4°C Decreased distance (-0.9 
(24°C) min) 60.2 rh km) and increased heat 

storage 

Kruk et al. (1990) Cold air (5°C) Cycling at 50% 5°C Reduced exercise 
W2 0�x (30 min) capacity 

Marsh and Sleivert 30 min water 70 second cycling 29°C Mean power output 
(1999) immersion power test 80 rh increased by 2.7% 

Previous research has indicated that reducing core temperature before exercise can be 
beneficial for the performance of endurance exercise (Lee and Haymes, 1995; Booth et 
al., 1997; Cotter et al., 2001; White et al., 2003; Amgrimsson et al., 2004), although 
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others have demonstrated a negative effect (Kruk et al., 1990; Kay et al., 1999). 

However, limited research has been conducted using high-intensity exercise (Marsh and 

Sleivert, 1999; Cotter et al., 2001; Sleivert et al., 2001) or intermittent exercise (Drust et 

al., 2000a; Duffield et al., 2003). 

Lee and Haymes (1995) used a protocol where subjects ran to exhaustion at 82% V02mu. 

After cold air pre-cooling, exercise duration increased from 22 to 26 min, a 16% increase. 

The effect of pre-cooling on the performance of endurance exercise in the heat (32°C) has 

also been assessed by Booth et al. (1997). Subjects performed a 30-min time-trial on a 

treadmill. After pre-cooling, the distance covered increased from 7250 m to 7550 m, an 

improvement of 4%. When the running speeds were analysed, after pre-cooling the 

subjects were capable of increasing their speed towards the end of the trial, whereas in 

the control condition, at best, speed could only be maintained. These results signify that 

the benefit of pre-cooling may be that the athlete is able to draw on reserves later in the 

performance, rather than just being able to maintain a given speed or intensity (Marino, 

2002). 

The effect of pre-cooling on the performance of intense exercise is equivocal. Bergh and 

Ekblom (1979) used a combined leg and arm exercise protocol designed to exhaust 

subjects within 8 minutes. After pre-cooling, work time was significantly reduced from 

6.24 min to 4.36 and 3.06 min when core temperature was reduced to 35.8°C and 34.9°C 

respectively. The authors speculated that the cause of reduced exercise duration was that 

the lowered muscle temperature impaired anaerobic power as a consequence of depressed 

enzyme activity. Although this study demonstrated that pre-cooling may impair the 

performance of high-intensity exercise, the exercise protocol has limited practical 

applications to actual exercise performance. In contrast, Marsh and Sleivert (1999) 

demonstrated that in warm conditions (29°C), pre-cooling could improve the performance 

of high-intensity cycling over 70 s. It was shown that up to 30 minutes of pre-cooling 

could improve performance by approximately 3.3%. The authors suggested that the 

increase in performance was due to the cold-induced vasoconstriction of the skin 
increasing central blood volume, possibly increasing the flow of blood to the muscle, and 
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metabolite removal allowing for a higher exercise intensity to be maintained. This 

hypothesis relies on muscle blood flow being a limiting factor during exercise, which 

may not be the case. Nielsen et al. (1993) demonstrated that fatigue occurs, even when 

muscle blood flow is not reduced. Given these contradictory findings it is difficult to 

ascertain by what mechanism pre-cooling could enhance short-duration, high-intensity 

exercise (Mamio, 2002). 

Pre-cooling has also been used as a technique before soccer-specific exercise. Drust et al. 
(2000) decreased core temperature by 0.6°C using a cold shower. There were no 

significant differences in the measured physiological variables. The authors concluded 

that there are no significant beneficial effects of pre-cooling on the physiological 

responses to soccer-specific exercise performed under normal environmental conditions. 
However, this protocol was performed in warm environmental conditions (26°C), so there 

may be benefits when performing in the heat. 

The results from previous studies appear to suggest that pre-cooling is only beneficial for 

endurance exercise of a duration between 30 and 40 minutes, rather than intermittent or 

short duration exercise (Marino, 2002). Further research is required using more 

ecologically valid performance protocols before firm conclusions can be made regarding 

the benefits of pre-cooling on exercise performance. 

2.7.8. Pre-cooling and metabolism 

It has been established that pre-cooling can improve endurance exercise (60-80% V02mn) 

as a result of reduced thermoregulatory and cardiovascular strain (Booth et al., 1997; 

Gonzalez-Alonso et al., 1999c). There is also a link between hyperthermia and muscle 

metabolism. Metabolic disturbances are thought to be involved in the fatigue process. For 

example, exercise in the heat has been demonstrated to increase the rate of muscle 

glycogen utilization (Febbraio et al., 1994b) and an associated reduction in lipid 

oxidation (Fink et al., 1975). Other areas include the acceleration of muscle glycolysis, 
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PCr hydrolysis and ATP degradation (Kozlowski et al., 1985). It has also been 

demonstrated that reducing the increase in core temperature the metabolic changes appear 

less pronounced (Fink et al., 1975; Febbraio et al., 1994b). However, to date, the 

metabolic responses to exercise following pre-cooling have not been widely investigated. 

Booth et al. (2001) observed that whole-body pre-cooling did not significantly affect 

muscle metabolism during sub-maximal exercise performed in the heat. Muscle 

glycogen, triglyceride, ATP, PCr or lactate concentration at rest, or following 35 min of 

cycling at 60% 'W2peA at 35°C were unaffected by pre-cooling. The authors concluded 

that cardiovascular, rather than metabolic factors were the most likely mechanism for 

performance enhancement following whole-body pre-cooling. They also suggested that 

muscle temperature may need to exceed a critical level before muscle energy metabolism 

is altered significantly to impact on exercise performance (Booth et al., 2001). In this 

study, the resting muscle glycogen concentrations before exercise were not similar, 

making the findings difficult to interpret. 

2.7.9. The placebo effect of pre-cooling 

There is the potential for pre-cooling to produce a placebo effect, caused by the subject's 

expectation that pre-cooling will improve performance, as it is impossible to blind the 

subject to temperature. This possibly may partially explain the improvements observed in 

the performance of short duration exercise, because core body temperature does not 

increase sufficiently to become a limiting factor. In one study (Yates et al., 1996), 

subjects ingested a coloured water and were informed that it may offer a benefit in 

performance. Another possible method would be to inform the subjects that the 

experiment was designed to test if the lower core temperature improved performance, or 

the lower muscle temperature resulted in decreased performance. 
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2.7.10. Pre-cooling and hydration strategies 

Pre-cooling has not been reported in conjunction with hydration strategies. This 

combination is of interest because a pre-cooling strategy, using a cooling vest is easily 
implemented and could be used by soccer players (and other athletes) prior to matches to 

reduce thermoregulatory strain and carbohydrate utilization, and potentially improve 

performance. 

2.8. Soccer activity 

Soccer is a team sport that that has been physiologically described as intermittent high- 

intensity exercise (Coyle, 1993). As stated previously, soccer players perform a wide 

range of different activities ranging from walking to maximal running, and so the 

intensity of effort alternates frequently. For a player to be successful there is a need to be 

able to perform prolonged intermittent exercise (endurance), high-intensity exercise and 

have the ability to sprint and develop high power output (force) for elements such as 

kicking and tackling. In a study of Danish elite soccer players, Bangsbo et al. (1991) 

found that standing represented 17.1% of the total playing time, 40.4% of the time was 

spent walking, and low-intensity activities (jogging, low-speed running and backwards 

running) accounted for 35.1%, moderate-speed running for 5.3%, high-speed running for 

2.1% and sprinting for 0.7% (Figure 2.6). However, less than 2% of the total distance 

covered is in possession of the ball (Reilly, 1997), the majority of the activity is "off-the- 

ball". 
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Figure 2.6: Activity profile for male elite players during Danish League soccer matches, 

expressed in relation to total playing time (from Bangsbo et al., 1991). 

Bangsbo et al. (1991) reported that Danish elite players had 1179 changes in playing 

activities during a match with each activity lasting for a mean duration of 4.5 seconds. 
These values are similar to the findings of Reilly and Thomas (1976) for English First 

Division players, where there were approximately 1000 changes per match, with each 

activity lasting for between 5 and 6 seconds. The greater number of changes in the 

Danish study was partly due to a larger number of exercise categories in the data analysis 
(Bangsbo, 1994b). 

During a competitive soccer match, players typically cover between 10 and 12 km, with 

midfielders covering slightly more distance than the other playing positions (Withers et 

al., 1982; Van Gool et al., 1988; Bangsbo et al., 1991; Reilly, 1994a). Within this value, 
the distance covered at high-intensity is relatively constant between a number of studies, 
Reilly and Thomas (1976) found that English professional players covered a distance of 
2.8 km of high-intensity running, which is similar to the 2.2 km found by Withers et al. 
(1982) analysing Australian soccer players, and the 2.1 km found in elite Danish players 
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(Bangsbo et A, 1991). In contrast, in a study of Swedish players (Ekblom, 1986) the total 
distance of high-intensity activity was only 0.8 km, possibly due to only two categories 
being recorded (Bangsbo, 1994b). With the exception of Ekblom (1986), these values are 

considerably higher than those found in an earlier study by Winterbottom (1960), who 

estimated that players covered a distance of 3361m, which comprised of 2347 m walking 

and jogging and 1015 m speed running. There is a number of possible explanations for 

these differences, the first being the development of soccer through changes in tactics and 

systems of play, and improvements in the physical capacities of the players. Also 

recording methods and player position would have affected the results. 

The distance that a player covers is not the only activity that is performed during a soccer 

match. Other activities that use energy but do not require any significant distance moved 
include heading, jumping, tackling, getting up, shooting and passing. Ekblom (1986) 

found that the mean number of tackles per game for Swedish soccer players was 13.1 

with 9.9 headers. In addition to these observations, English soccer players jumped on 

average 15.5 times (Reilly and Thomas, 1976). Activities such as accelerating and 

changing pace and direction also involve a large amount of energy utilization. Players 

may accelerate from a stationary position between 40 and 62 times a game (Smodlaka, 

1978) and perform about 1000 changes in movement during a match, for example, 

change direction, with a change of activity occurring approximately 6s (Yamanaka et al., 
1988). A more recent study has indicated about 1500 changes in movement occur, with a 

change of activity occurring every 4s (Rienzi et al., 2000). These differences may be due 

to a change in tactics and the nature of soccer. In addition, it has been shown that 
dribbling a soccer ball significantly increases energy expenditure (Reilly and Ball, 1984). 

2.9. Energy sources during a soccer match 

Due to the intermittent nature of activity in soccer, players need to perform prolonged 
intermittent exercise (endurance), where energy is primarily derived aerobically from 

carbohydrates and lipids. In addition a player needs to be able to perform high-intensity 
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exercise such as sprinting and develop high power output for activities such as kicking 

and tackling. Total energy expenditure during a match is thought to be 5-6 MJ (Shephard, 

1992). Soccer is predominantly an aerobic sport with the majority of energy being 

derived from muscle glycogen (Figure 2.7). 
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Figure 2.7: Energy provision during soccer (from Bangsbo, 1994a). 

2.9.1. Anaerobic energy production 

Bangsbo et al. (1991) reported that during a soccer match an elite male player performs 

around 7 minutes of high-intensity exercise, which includes about 19 sprints lasting on 

average 2.0 seconds. To meet the energy demands of these activities, anaerobic energy 

production is required. The degradation of stored ATP and PCr provides a considerable 

amount of the energy required during periods of high-intensity exercise during a match 
(Bangsbo, 1994b). Phosphocreatine is used for rapid resynthesis of ATP and as this 

reaction is freely reversible and PCr is rapidly resynthesized during periods of rest or 
low-intensity exercise. Therefore, due to the intermittent nature of a soccer match the PCr 

concentration varies during the course of the game when the net utilization of PCr is 

quantitatively small. Figure 2.8 shows that during periods of high-intensity exercise the 

concentration of PCr as determined by nuclear magnetic resonance (NMR) during 

isometric contractions with the calf muscles, decreases (Bangsbo, 1994a). 
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Figure 2.8: Phosphocreatine concentration in the gastrocnemius (upper panel) at 

alternating workloads (lower panel) (from Bangsbo, 1994a). 

Bangsbo (1994b) stated that the lactate producing system probably contributed less than 

10% to the total energy production. Nevertheless, anaerobic energy production is 

important during a soccer match as it necessary to be able to produce energy at a high rate 

to meet the demands of the periods of intense activity associated with soccer. The 

contribution of anaerobic energy production is often determined through measurements 

of blood lactate during match-play. Values have been reported to range from 2.4 mmol"14 

post-match (Carli eta!., 1986) to values greater than 12 mmol"1'' Ekblom (1986). 

The concentration of lactate tends to be lower in the second half compared with the first. 

This is probably due to a reduction in high-intensity running and total distance covered in 

the second half with a shift from carbohydrate to fat utilization (Bangsbo, 1994b). It is 

also worth noting that blood lactate measurements may underestimate lactate production 

45 

01234S6 
Tkm (min) 



since not all the lactate produced in the muscle appears in the blood as it is taken up by 

other tissues (Hermansen and Stensvold, 1972). Therefore, the anaerobic energy turnover 
during an entire soccer match cannot be established from single blood lactate 

measurements taken before, during and after the match (Bangsbo, 1994a). 

2.9.2. Aerobic energy production 

As discussed earlier, soccer is predominantly an aerobic sport with the proportion of time 

spent in aerobic and anaerobic activities being approximately 88% and 12%, respectively 
(Mayhew and Wenger, 1985). Therefore, the majority of a match is spent in lower- 

intensity activities, such as jogging and walking. Direct measures of muscle glycogen 

utilization suggest that glycogen usage amounts to about 155-160 g, providing 

approximately 2.5 MJ of energy (Shephard, 1999). Plasma glucose also provides a source 

of energy, suggesting that a combination of gluconeogenesis and the release of glucose 
from the liver could provide 900 U of energy (Shephard, 1999). 

It had been observed that NEFA concentration increases throughout a soccer match, 

especially the second half (Bangsbo, 1994b). This occurrence is possibly a consequence 

of the more frequent low-intensity exercise observed during the second half of soccer 

matches. In contrast there is only a minor increase in glycerol levels (Bangsbo, 1994b), 

suggesting a high uptake of glycerol in tissues such as the liver. Based on the heart rates 

observed during laboratory-based studies, as much as 40% of the total energy needs can 
be met from the oxidation of NEFA (1.9 - 2.3 MJ) (Bangsbo, 1994a). This fording would 

suggest that there is likely to be utilization of fatty acids derived from adipose tissue and 
intramuscular triglyceride reserves. However, the degradation of carbohydrates, 

especially muscle glycogen, provides the majority of energy during a soccer match 
(Hargreaves, 1994). 
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Protein metabolism may also provide a small proportion of the energy required, 
Wagenmakers et al. (1989) demonstrated that during continuous exercise at a mean work- 

rate and duration equivalent to soccer less than 10% of the energy required was derived 

from the oxidation of protein. 

2.10. Fatigue in soccer 

The causes and impact of fatigue in soccer performance has been studied extensively. 
The distance covered in the second half of a match tends to be less than that during the 

first half (Reilly and Thomas, 1976; Bangsbo et al., 1991; Bangsbo, 1994b) and is a 

manifestation of fatigue (Reilly, 1997). Van Gool et al. (1988) reported that Belgium 

university players, on average, covered 444 m less in the second half compared with the 

first. Similar findings have been replicated with professional players, Bangsbo et al. 
(1991) found that a 5% greater distance was covered in the first half. It has also been 

shown that the amount of high-intensity exercise declines towards the end of a match 
(Reilly and Thomas, 1976; Bangsbo et al., 1991). Rahnama et al. (2003) demonstrated 

after exercise simulating the work-rate of competitive soccer the capacity of the knee 

extensor and flexor muscles to develop force was reduced. These findings suggest that 

performance in the second half is impaired and fatigue occurs towards the end of a match. 

One of the most probable causes for the decline in work-rate is reduced muscle glycogen 

content. Saltin (1973) filmed Swedish club players and found that players with low 

glycogen content in the vastus laterlis muscle covered 25% less distance than the other 

players. A greater effect was observed in the running speed, those players with low pre- 

match glycogen stores covered 50% of the total distance walking and 15% sprinting, in 

contrast the players with high concentrations covered 27% walking and 24% sprinting. 
These findings suggest that the pre-match glycogen content has an important protective 
function against fatigue. Other potential causes include physiological changes in the 

muscle cell such as accumulation of hydrogen ions, lactate and ammonia and potassium 
imbalance (Bangsbo, 1994a), dehydration and hyperthermia as players can lose more than 

3 litres of fluid during a match (Bangsbo, 1994b) and core temperature often exceeds 
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39.5°C (Ekblom, 1986; Mohr et al., 2004). However, it has proved difficult to identify 

any single factor (hydrogen ions, lactate, potassium imbalance, ammonia or glycogen 
depletion) or precise combination of factors that would completely explain the causes of 
fatigue (Reilly, 1997), although it appears that hypoglycaemia is not a cause as blood 

glucose concentration does not reach critical values during a match (Bangsbo, 1994b). 

During a match a player's physical performance appears to be reduced after a period of 

the match with a large amount of high-intensity exercise (Mohr et al., 2003), suggesting 

that fatigue occurs both temporarily during a match following intense periods of activity 

and towards the end of the match. Mohr et al. (2003) found that in the 5-min period 

immediately after the most intense 5-min period recorded during the game, the amount of 

high-intensity running was significantly lower than the average of the entire game. It is 

possible that this was caused by the natural fluctuations in the intensity of the match as a 

consequence of tactical or psychological factors (Mohr et al., 2005). However, Krustrup 

et al. (2003) demonstrated that after periods of intense exercise during the first half, 

sprint performance was reduced, although at half-time the ability to perform repeated 

sprints was unaffected. These results together indicate that players can experience periods 

of temporary fatigue during a match. 

A potential cause for the temporary fatigue may be a disruption in muscle ion 

homeostasis (Mohr et al., 2005) and not an accumulation of muscle lactate, high muscle 

acidosis or low PCr concentration in the muscle. It has been suggested that fatigue during 

high-intensity exercise may be due to an accumulation of potassium in the muscle 
interstitium (Nordsborg et al., 2003). This view is based on the observations that during 

high-intensity exercise, at the point of exhaustion, the interstitial potassium concentration 
is elevated to around 12 mmol. l'1(Nordsborg et al., 2003), which may be high enough to 

depolarize the muscle membrane potential, reducing force development (Cairns and 
Dulhunty, 1995). However, little is known about the turnover of potassium in the muscle 
during intermittent activity such as soccer, and so further research is required to 

substantiate these suggestions. 
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2.11. Soccer and environmental temperature 

The environmental conditions can also influence the work-rate profile of players during a 

match. When matches are played in cool conditions with low ambient temperatures, 

muscle performance can be suboptimal (Shephard, 1999) and the risk of injury increased 

(Reilly, 1994b). Countermeasures include performing an extended warm-up and wearing 

extra layers of clothing, although this could reduce mobility. 

In contrast, many major soccer tournaments are held during the summer months where 

ambient temperatures can reach 30-35°C (FIFA World Cup 2002 and UEFA Euro 2004), 

possibly causing hyperthermia. For example, 34 cases of heat exhaustion occurred in a 2- 

day youth soccer tournament played in ambient temperatures >30°C in the USA 

(Kirkendall, 1993). A high ambient temperature in combination with high humidity will 

affect work-rate due to an increase in core temperature, dehydration and an inability to 

dissipate heat through sweat production (Reilly, 1994b). Core temperatures in excess of 
40°C have been reported during matches played in hot conditions (Ekblom, 1986). 

Playing in hot environment (30-38°C), compared with cool conditions (10-15°C) has been 

shown to increase sweat loss from 1.5-2.0 litres to 3.5-4.0 litres (Bangsbo, 1994b). 

As a consequence playing in a hot environment physical performance during match-play 

may be impaired, possibly due to more rapid muscle glycogen depletion and an earlier 

onset of fatigue. Rico-Sanz et al. (1996) demonstrated that the performance of a soccer- 

specific test was significantly reduced following a match in warm environment (25.3°C). 

It has also been reported that performing in the heat, combined with high humidity can 

result in sprinting distance being reduced by approximately 50% when compared to 

performance at 20°C, 500 m and 900 m respectively (Ohashi et al., 1988) and that this 

reduction is especially evident in the second half (Ekblom, 1986). The impaired 

performance is probably due to factors such as elevated core temperature, dehydration 

and ineffective sweat production. 
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In order to combat the effects of a high temperature on physical performance, adequate 
hydration strategies before, during and after a match are essential (Rico-Sanz et al., 
1996). Other strategies include allowing sufficient time for acclimatisation to the hotter 

environmental temperatures, especially when playing in major tournaments and reducing 

the length of the warm-up. In these conditions, pre-cooling the body prior to exercise has 

not been explored. 

2.12. Soccer simulations 

Due to the acyclic and unpredictable nature of activity in soccer combined with the lack 

of control of pattern and exercise intensity during a game, it is difficult to asses the 

benefits of interventions in a "real match" situation. As a consequence of this problem, 

sports physiologists have been reluctant to examine soccer due to the relative lack of 

experimental models to simulate soccer matches in a laboratory. However, a number of 

laboratory tests have been developed, which simulate the activity pattern and work-load 

associated with competitive match-play (Drust et al., 2000a; Drust et al., 2000b; Nicholas 

et al., 2000). Laboratory tests are performed in a controlled environment to reduce the 

impact of external variables (MacDougall and Wenger, 1991). This type of protocol has 

many research applications, such as evaluating the impact of nutritional interventions and 

has be used to assess the effect of ingesting carbohydrate-electrolyte solutions on 

endurance running (Nicholas et al., 1995), muscle glycogen utilization (Nicholas et al., 

1999), recovery of intermittent endurance running capacity (Nicholas et A, 1997), soccer 

skill (McGregor et al., 1999), muscle function (Gleeson et al., 1998), muscle fatigue 

(Rahnama et al., 2003) and the impact of pre-cooling on physiological responses (Drust 

et al., 2000a). 

2.13. Carbohydrate solution ingestion and soccer 

As discussed earlier, two of the probable causes of fatigue during a soccer match are 

energy depletion in the form of muscle glycogen, and dehydration. The ingestion of 
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carbohydrate-electrolyte solutions, or sports drinks, has been shown to spare muscle 

glycogen during exercise and delay the onset of fatigue, with some studies showing 

performance improvements. Studies of the effect of carbohydrate ingestion and soccer 

performance have been done during actual match-play (Leatt and Jacobs, 1989; 

Zeederberg et al., 1996; Guerra et al., 2003) or soccer-specific exercise simulating the 

work load of a competitive match in a laboratory in a variety of conditions (Nicholas et 

a!., 1995; McGregor eta!., 1999; Welsh et al., 2002; Morris et al., 2003) (Table 2.3). 

Table 23: Effect of carbohydrate ingestion on soccer-specific situations. 

Authors Solution Situation Effect of 
carbohydrate 

6% carbohydrate- Greater amount of time 
Guerra et al. (2003) electrolyte at 15 min Match-play running and number of 

intervals or no fluid sprints 
7% glucose-polymer or 

Leatt and Jacobs (1989) flavoured water before Match-play Not measured 
match and at half-time 

McGregor et al. (1999) 

Morris et al. (2003) 

Nicholas et al. (1995) 

Welsh et al. (2002) 

Flavoured water before 
and at 15 min intervals 
or no fluid 

6.5% carbohydrate- 
electrolyte, flavoured 
water or no fluid before 
and during every 
exercise set and rest 
period (19 min) 
6.9% carbohydrate- 
electrolyte or flavoured 
water before and every 
15 min 
Carbohydrate or 
flavoured water before, 
the end of each quarter 
and at half-time 

90 min intermittent 
exercise protocol 
(LIST) 

30°C, 75 min 
intermittent exercise 
protocol (LIST) 
followed by 60 s run/ 
60 s rest until 
exhaustion 
75 min intermittent 
exercise protocol 
(LIST) followed by 
run to exhaustion 
60 min intermittent 
high-intensity shuttle 
running with physical 
and mental function 
tests 

Quicker 15 m sprint 
times towards the end 
and maintained skill 
performance 

No impact on distance 
covered or 15 m sprint 
times 

No effect on 15 m 
sprint times. 
Significant longer run 
to exhaustion 

Longer time to fatigue, 
faster sprint times, 
improved motor skill 
test performance 

6.9% glucose- No measurable 
Zeederberg et al. (1996) polymer or flavoured 

Match-play benefits on motor skill 
water before match and 

proficiency 
at half-time 

Note: LIST-Loughborough intermittent shuttle test. 

Zeederberg et al. (1996) investigated the effect of ingesting a glucose-polymer solution 
before a match and at half-time. There were no measurable benefits of glucose-polymer 
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ingestion for the motor skill (such as tackling, controlling, passing, dribbling, heading 

and shooting) proficiencies of soccer players during games played in a cool environment. 

In contrast Guerra et al. (2003) reported that ingesting a carbohydrate-electrolyte at 

regular intervals compared with no fluid ingestion resulted in a greater amount of time 

running and performed more sprints during a soccer match. This led to the conclusion 

that ingesting carbohydrate was beneficial by preventing the deterioration in 

performance, possibly as a consequence of reducing the level of dehydration and energy 

depletion. Leatt and Jacobs (1989) also investigated the effect of ingesting glucose- 

polymer solution before a game and at half-time and whilst actual performance was not 

measured, a 31% higher concentration of muscle glycogen was found compared with the 

control group at the end of the match. The authors concluded that carbohydrate ingestion 

may delay fatigue. Whilst field studies provide a more realistic representation, an 

important consideration to make when interpreting the results from field studies is the 

lack of control over work-rate. Also there is probably a significant inter-player variation 

in the amount of work performed during a soccer match (Leatt and Jacobs, 1989). These 

results suggest that ingesting carbohydrate during a soccer match may aid the 

performance in terms of distance covered or sprinting ability. In contrast, individual skills 

such as passing are unaffected. 

High-intensity intermittent protocols have been widely used to examine the effect of 

carbohydrate ingestion due to the greater control over work-rate and environmental 
factors. There appears to be some inconsistencies in the findings regarding carbohydrate 

supplementation during soccer-specific exercise, which is possibly due to the different 

measurement tools employed, whether exercise performance or capacity was measured. 
One of the most commonly used protocols is the Loughborough Intermittent Shuttle Test 

(LIST). Whilst McGregor et al. (1999) did not investigate the effect of carbohydrate 
ingestion, they did demonstrate that water ingestion significantly improved sprinting 

ability towards the end of the protocol and prevented the drop in skill performance 

observed during the no fluid trial. The implication of this study is that by ingesting fluid 

during soccer, dehydration can be reduced or prevented, skill performance an be 

maintained and the onset of fatigue can be delayed due to reduced thermal strain. 

52 

f 



Nicholas et al. (1995) demonstrated that ingesting carbohydrate did not improve sprinting 

ability but did significantly enhance the time to exhaustion after 75 min of the 

intermittent protocol. These findings led the authors to conclude that the improvement in 

exercise capacity was due to the muscle glycogen sparing effect of the ingested 

carbohydrate (Nicholas et al., 1995). Welsh et al. (2002) employed a similar protocol, 

although the duration was only 60 min organized into quarters with a 20-min rest 

between the second and third quarters to represent half-time, a schedule which is not 

representative of soccer. Nevertheless, ingesting carbohydrate significantly improved 

exercise capacity by a similar margin as reported by Nicholas et al. (1995). In contrast to 

the findings of Nicholas et al. (1995), sprint performance was significantly enhanced with 

the ingestion of carbohydrate, as well as improvements in the performance of a motor 

skill test and self-reported perceptions of fatigue. These authors (Welsh et al., 2002) also 

investigated the effects of carbohydrate ingestion on mental parameters, and although not 

significant there was a trend for improvements in the Stroop Color-Word Test with 

carbohydrate ingestion, suggesting that carbohydrate could maintain mental performance. 

This observation is supported by the findings of Reilly and Lewis (1985) who 

demonstrated that carbohydrate ingestion could be beneficial to cognitive performance in 

terms of the number of tasks attempted and fewer resultant errors during 120-min of 

cycling at 60% V02i when compared with water or no fluid ingestion. Whilst the 

protocol used by Welsh et al. (2002) was not soccer-specific, the combined results from 

this, and other studies suggest that carbohydrate ingestion can improve certain aspects of 

soccer performance. 

Morris et al. (2003) examined the effect of carbohydrate ingestion on high-intensity 

intermittent shuttle running performance in the heat. This study failed to show any benefit 

of carbohydrate ingestion, possibly due to hyperthermia being the main fatiguing factor 

and not dehydration or energy. However, all but one subject failed to complete the first 

part of the protocol. It would have also been interesting to have investigated the effect of 

carbohydrate ingestion on heat acclimatised subjects, possibly reducing the impact of 
hyperthermia. 
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The results from these studies suggest that fluid replacement and carbohydrate ingestion 

have an important function during soccer match-play by reducing the level of 
dehydration, sparing muscle glycogen and delaying the onset of fatigue. It is also clear 
that further research is required into the effect of manipulating the timing, volume and 

composition of the fluid ingested, as well as the environmental conditions. 

2.14. Summary 

Carbohydrate depletion, dehydration and hyperthermia are considered to be the some of 

the major causes of fatigue during exercise. It has also been demonstrated that exercising 
in the heat accelerates these processes. A number of strategies aimed at alleviating the 

effects of fatigue have been investigated, including fluid replacement with and without 

carbohydrate ingestion, and pre-cooling. Soccer is considered an intermittent high- 

intensity activity which is played in a variety of environmental conditions. Energy 

production during soccer match-play is provided by a combination of aerobic and 

anaerobic systems, during low and high-intensity contributing exercise periods 

respectively. Fatigue, defined as a reduction in work-rate, has been shown to occur both 

temporarily during the match and towards the end of the match. The ingestion of 

carbohydrate improves performance during match-play and soccer-specific exercise, 

simulating match-play in controlled conditions by delaying the onset of fatigue. 
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Chapter 3 
General methods 

55 



3.1. General methods 

3.1.1. Location of Testing and Ethical Approval 

All procedures and methods contained within this work were conducted in the physiology 
laboratories of the Research Institute for Sport and Exercise Sciences at Liverpool John 

Moores University. All the studies conducted were approved by the University's Human 

Ethics Committee at Liverpool John Moores University. 

3.1.2. Subjects 

All participants were in good health and regularly exercised (at least three times a week). 
Written and verbal information regarding the nature and risks of the experimental 

procedures was provided to all participants (Appendix B). Participation was entirely 

voluntary and subjects signed an appropriate consent form and were free to withdraw 
from the experiments at any time. 

Prior to all experimental sessions subjects were asked to refrain from strenuous exercise 

such as a competitive match and the consumption of alcohol for the previous 24 h and 

caffeine for 12 h. Subjects were also asked to record food intake and physical activity for 

the preceding 3 days prior to their first experimental session in order to replicate their 

dietary and activity behaviour for subsequent sessions to avoid differences in diet and 

physical condition. Fours hours prior to subjects consumed a snack (65% CHO; 20% Fat; 

15% Protein; 117g CHO). Each experimental session was separated by 5-7 days and was 

conducted at the same time of day (approximately 15: 00 hours) to avoid circadian 

variation in any of the measured variables (Reilly and Brooks, 1986). 
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3.1.3. Anthropometry 

Subjects' heights were measured whilst standing in the Frankfurt plane using a 

stadiometer (Seca, Birmingham, U. K). Prior to the commencement of each experimental 

session, and upon completion, subjects weighed themselves nude using precision 

calibrated weighing scales (Seca, Birmingham, U. K) for the determination of body 

weight loss. Changes in body mass loss were calculated from the difference in dry body 

mass between pre- and post-exercise. Values were corrected for the volume of fluid 

ingested, urine excreted and respiratory and metabolic losses (Mitchell et al., 1972) for 

calculating sweat loss. 

3.1.4. Soccer-specific protocol 

The soccer-specific protocol devised for the experimental work in chapters 4,6 and 7 was 

performed on a motorised treadmill (H/P/Cosmos Pulsar 4.0, H/P/Cosmos Sports & 

Medical GmbH, Nussdorf-Traunstein, Germany) (Figure 3.1) and was a modified version 

of the one designed by Drust et al. (2000b). The protocol consisted of the various 

exercise intensities that are regularly observed during competitive soccer matches (i. e. 

walking, jogging, cruising and sprinting). The proportions of these activities were based 

on the observations of Reilly and Thomas (1976), although utility movements (e. g. 
backwards and sideward movements) were not included. The proportions of these 

activities were divided between walking and jogging. Therefore the proportion of time for 

each activity was as follows: static 3.8% walking 27.9%; jogging 38.9%; cruising 19.9%; 

sprinting 9.5%. The duration of each activity was determined by matching the 

proportions observed by Reilly and Thomas (1976) to the total time of the block, after the 

deduction of the total time for the treadmill speed changes had been made (Figure 3.2 and 
Table 3.1). The duration of each discrete bout was as follows: static 8.0 s; walking 27.8 s; 
jogging 38.7 s; cruising 34.8 s; sprinting 9.4 s. Subjects undertook two familiarisation 

sessions, consisting of two blocks of the soccer-specific protocol (i. e. 30 minutes) before 

the first trial. 

57 

0 



Figure 3.1: Subject performing the soccer-specific protocol on a motorised treadmill. 

Table 3.1: Soccer-specific protocol, with corresponding speeds, acceleration time and 
total duration. 

Activity 
Speed 

(km-b-1) 
Acceleration 

time (s) 
Activity 

duration (s) 
Total 

(s) 
Cruise 13 9.75 34.75 44.50 
Jog 10 2.25 38.72 40.97 
Sprint 19 6.75 9.40 16.15 
Stop 0 14.00 8.00 22.00 
Jog 10 7.50 38.72 46.22 
Walk 4 4.50 27.8 32.30 
Sprint 19 11.25 9.70 20.95 
Walk 4 11.25 27.80 39.05 
Cruise 13 6.75 34.75 41.50 
Jog 10 2.25 38.72 40.97 
Sprint 19 6.75 9.40 16.15 
Walk 4 11.25 27.80 39.05 
Jog 10 4.50 38.72 43.22 
Sprint 19 6.75 9.40 16.15 
Stop 0 14.00 8.00 22.00 
Walk 4 3.00 27.80 30.80 
Cruise 13 6.75 34.75 41.50 
Jog 10 2.25 38.72 40.97 
Sprint 19 6.75 9.40 16.15 
Walk 4 11.25 27.80 39.05 
Jog 10 4.50 38.72 43.22 
Sprint 19 6.75 9.40 16.15 
Walk 4 11.25 27.80 39.05 
Cruise 13 6.75 34.75 41.50 
Jog 10 2.25 38.72 40.97 
Sprint 19 6.75 9.40 16.15 
Walk 4 11.25 27.80 39.05 
Stop 0 3.00 11.00 14.00 
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Figure 3.2: Activity profile of one block of the soccer-specific protocol. 

3.2. Card lo-respiratory measures 

3.2.1. Heart rate 

Heart rate was measured continuously at 5s intervals by means of a short-range radio 
telemetry system (Polar S610i, Polar Electro, Kempele, Finland) during all exercise. 

3.2.2. Assessment of respiratory gases during exercise 

Oxygen consumption (V02), carbon dioxide production (VCO2), respiratory exchange 

ratio (RER) and minute ventilation (VE) were recorded using an on-line automated gas 

analyser (Metalyzer3B, Cortex Biophysic GmbH, Leipzig, Germany) after calibration 

with known reference gases. This system has previously been reported to be a reliable 

measurement tool for assessment of respiratory gases during exercise (Meyer et al., 
2001b). 
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3.2.3. Assessment of maximal oxygen uptake (VO2max) 

Prior to each study, all subjects were assessed for aerobic power by determining their 

V02t on a motorised treadmill (H/P/Cosmos Pulsar 4.0, H/P/Cosmos Sports & Medical 

GmbH, Nussdorf-Traunstein, Germany). All subjects started running at 10 km-h-1 and 

increased by 2 km-h"1 every 2 min up to 16 km-h"1. Thereafter, the treadmill was inclined 

by 2% every 2 min until volitional exhaustion. The V02,. was taken as the highest VO2 

value obtained in any 10-s period, and was stated as being achieved by the following end 

point criteria: 1. Failure of heart rate to increase with further increases in exercise 

intensity; 2. RER >1.15; 3. Plateau of oxygen consumption (<150 ml. min') despite 

increased work-load (American College of Sports Medicine, 2000). 

3.2.3. Substrate oxidation rates 

Total carbohydrate and fat oxidation rates (g"min") were calculated by using 

stoichiometric equations of Frayn (1983) with the assumption that protein oxidation 
during exercise was negligible: 

Carbohydrate oxidation (g"mii 1) = 4.55 VCOz- 3.21 V02 (1) 

Fat oxidation (gmiri 1) =1.67(x%-VCO2) (2) 

where V02 and VC02 represent oxygen consumption and carbon dioxide production, 

respectively, in litres per minute. 

3.3. Measurement of core body temperature 

Core body temperature (T, ) was monitored by means of an ingestible temperature sensor 

pill and external data logger (HQ inc., Florida, USA). Approximately 3-4 hours prior to 

testing, subjects swallowed a heat-sensitive telemetry pill to ensure that the sensor had 

passed into the small intestine so that it was unaffected by any exothermic reactions that 
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may have been occurring in the stomach or the ingestion of cold fluid. While inside the 

gastrointestinal tract, the internal crystal sensor vibrated at a frequency relative to the 

temperature of the substance surrounding it, producing a magnetic flux. The sensor 

wirelessly transmitted the core body temperature signal to the ambulatory data logger 

worn on the outside of the body. Each sensor was factory calibrated and supplied with a 

calibration reference correction value, which was programmed into the data logger prior 

to ingestion to ensure that it was operating correctly. The data were subsequently 
downloaded at the end of each trial. This method of TT measurement has been shown to 

be an accurate measure of T. and is comparable to other measures such as rectal and 

oesophageal temperature (Sparling et al., 1993; OBrien et al., 1998; Lee et al., 2000; 

Edwards et al., 2002) and has recently been used to monitor core temperature during 

actual match-play (Edwards and Clark, 2006). 

3.4. Assessment of psychological variables 

3.4.1. Rating of Perceived Exertion (RPE) 

Rating of perceived exertion (RPE) was measured using a 6-20 scale (Borg, 1970). The 

category ratio scale that was used is displayed in Table 3.2. 

Table 3.2: Borg scale used for subjects' RPE during exercise. 

Rating Description 

6 No exertion at all 
7 Extremely light 
8 
9 Very light 

10 
11 Light 
12 
13 Somewhat hard 
14 
15 Hard 
16 
17 Very hard 
18 
19 Extremely hard 
20 Maximal exertion 
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3.4.2. Rating of Thermal sensation 

Subjects reported rating of thermal sensation during exercise according to a 17-point 

thermal sensation scale (Toner et a!., 1986). The category ratio scale that was used is 

displayed in Table 3.3. 

Table 3.3: Thermal sensation scale of Toner et al. (1986). 

Rating Description 

0.0 Unbearably cold 
0.5 
1.0 Very cold 
1.5 
2.0 Cold 
2.5 
3.0 Cool 
3.5 
4.0 Neutral (comfortable) 
4.5 
5.0 Warm 
5.5 
6.0 Hot 
6.5 1 
7.0 Very hot 
7.5 
8.0 Unbearably hot 

3.4.3. Assessment of subjective feelings of gut fullness and thirst 

Gut fullness and thirst were measured using 100-mm visual analogue scales (VAS) 

(Figure 3.3). Unlike a Graphic Rating Scale that contains descriptors placed at equal 
intervals, the VAS allows the individual to rate the feeling of fullness or thirst without 
having to invoke their own descriptive terms and have been shown to exhibit a high level 

of within subject reliability and validity (Stubbs et al., 2000). 
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Gut fullness 

Not at all full 
Thirst 

Extremely full 

Not at all thirsty Very thirsty 

Figure 3.3: Visual Analogue Scale (VAS) used to assess subjective feelings of gut 

fullness and thirst. 

3.5. Urine colour and osmolality 

To ensure hydration status was constant for each trial, a urine sample was obtained pre- 

exercise. The sample was tested for colour (Armstrong et al., 1994) and osmolality 

(Advanced Micro-osmometer Model 3300, Advanced Instruments inc, Massachusetts, 

USA). The principle of the test is based on freezing point osmometry, where the solute 

concentration of a solvent raises the osmotic pressure and boiling point, and reduces the 

freezing point of the sample. These properties change in proportion to the number of 

particles in the sample, which allows the concentration to be calculated. The micro- 

osmometer utilises the change in freezing point to calculate osmolality, by supercooling 

the sample then allowing the temperature to rise to the freezing point. Intra-sample 

coefficient of variations were 0.4 % at 278.5 mOsm-kg" and 2.6 % at 925.5 mOsm-kg"1. 

3.6. Blood procurement and storage 

Venous blood samples were drawn from a superficial vein in the antecubital crease of the 
forearm using standard venepuncture techniques (Vacutainer Systems, Becton, 

Dickinson, Europe) by a qualified phlebotomist (the author was trained in phlebotomy 

prior to the first study, see Appendix C) whilst the subject was standing. Serum was 

obtained by collecting samples in to serum separation tubes. The blood was stored at 
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room temperature for 60 min before being centrifuged at 4°C for 15 min. Plasma was 

obtained by collecting the samples into tubes that had been pre-treated with the anti- 

coagulant lithium heparin or EDTA. These samples were then gently mixed and 
immediately centrifuged at 4°C for 15 min. Once centrifugation was completed the 

plasma or serum was aliquoted into storage tubes (Eppendorf, Hamburg, Germany) and 

stored at -80°C for later analysis. 

3.7. Blood analyses 

All metabolite analysis was conducted using a bench top clinical chemistry analyser 
(ILab 300 plus, Instrumentation Laboratories, Warrington, UK). The analyser was 

calibrated prior to use with the relevant standard solutions supplied with the assay kits 

and samples were tested in duplicate. 

3.7.1. Plasma glucose analysis 

Glucose concentrations were determined in plasma using a commercially available kit (IL 

Test"' Glucose Oxidase kit, Instrumentation Laboratory, Warrington, UK). A summary 

of the enzymatic reactions involved in the determination of plasma glucose concentration 

can be seen below: 

ß-D-Glucose + 02 + H2O Glucose Oxidase Gluconic acid +H202 

2 H202 + phenol + 4-aminoantipyrine Glucose Peroxidase red quinoneimine + 4H2O 

The red quinoneimine dye generated an increased absorbance and is proportional to the 

glucose concentration in the sample. Primary measurements were. recoreded at a 

wavelength of 510 nm and CV was 1.3% at 4.2 mmol"1"1. 
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3.7.2. Plasma lactate analysis 

Plasma lactate concentrations were determined using a commercially available kit 

(Randox Lactate PAP, Randox Laboratories Ltd, Co. Antrim, UK) using enzymatic 

methods. The principle of the test was: 

Lactate + 02 Lactate Ozidase 
pyruvate + H202 

H202 + 4-aminoantipyrine +TOOS Peroxidase purple product + 4H20 

(TOOS = N-ethyl-N-(2 hydroxy-3-sulphopropyl) m-toluidine) 

The purple product generated an increased absorbance and is proportional to the lactate 

concentration in the sample. Measurements were recorded at a wavelength of 550 nm. 

The test is linear up to lactate concentrations of 12.21 mmol"1"1. The coefficient of 

variations were 5.7% at 1.1 mmol"l"1 and 4.6% at 4.5 mmol"l"1. 

3.7.3. Plasma NEFA analysis 

Non-esterified fatty acid was analysed in plasma and determined using a commercially 

available kit (NEFA-C, Wacko Chemicals GmbH, Neuss, Germany). The principle of the 

NEFA measurement was: 

RCOOH + ATP + CoA-SH Acyl-CaA synthase - Acyl-CoA + AMP +Ppi 

Acyl-CoA + 02 Acyl-CoA oxidase , 2,3-trans-Enoyl-CoA + H202 

2H202 + 4-Aminoantipyrine + 3-methyl-N-ethyl-N-(ß-hydroxyethyl)-alanine 

Peroxidase Coloured reaction product + 4H20 
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The concentration of NEFA is proportional to the formation of the coloured product. 
Primary measurements were taken at a wavelength of 500 nm and coefficient of 

variations were 2.3% at 0.2 mmol"l' and 3.1% at 1.1 mmol"1"1. 

3.7.4. Plasma glycerol analysis 

Glycerol concentration was determined in plasma using a direct calorimetric method 

using a commercially available kit (Randox Laboratories Ltd, Co. Antrim, UK). The 

intra-assay CV was 1.9% at 248 µmol-l". The principle of the NEFA measurement was: 

Glycerol + ATP Glycerol kinase Glycerol-3-phosphate + ADP 

Glycerol-3-phosphate + 02 Acyl-CoA oxidase , H2O2 + Dihydroxyacetone-phosphate 

2H202 + 3,5-dichloro-2-hydroxybenzene sulphonic acid + 4-aminophenazone 

Peroxidase n-(4-antipyryl)-3-chloro-5-sulphonate-p-benzoquinoneimine 

3.7.5. Hormone analysis: Enzyme-linked immunosorbent assay (ELISA) 

Catecholamines (Catcombi ELISA, IBL GmbH, Hamberg, Germany), insulin (Insulin 

ELISA, DRG Instruments GmbH, Germany), cortisol (Cortisol ELISA, DRG Instruments 

GmbH, Germany), prolactin (Prolactin ELISA, DRG Instruments GmbH, Germany) and 
IL-6 (IL-6 ELISA, BLK diagnostics, Spain) concentrations were assessed using a 
Microplate reader (Anthos Labtech Instruments, Austria) for the experimental work in 

chapters 4 and 5. A fully-automated Immunoassay system (Triturus, Grifols, Cambridge, 

U. K) was used for the experimental work in chapters 6 and 7. All samples were analysed 
in duplicate in one batch. 
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The ELISA technique utilised an antibody-labelled reaction to determine the 

concentration of a specific antigen in the sample. A monoclonal antibody was attached 
inside a series of plastic wells, forming a microplate, which constituted the solid phase of 

the reaction. After the sample had been added to the well, any antigen present was 

recognised by the antibody and bound to it. After a period of incubation, the wells were 

washed to remove any unbound molecules. This procedure was followed by a second 

period of incubation, where another antibody, which had an enzyme linked to it, 

facilitated a colourless reaction to produce a colour change, which was dependent of the 

antigen concentration. 

3.7.6. Plasma osmolality 

Plasma osmolality was assessed using the same osmometer (Advanced Micro-osmometer 

Model 3300, Advanced Instruments inc, Massachusetts, USA) as described in section 3.5. 

3.7.7. Measurement of haematocrit, haemoglobin and change in plasma volume 

Venous blood was drawn into duplicate haematocrit tubes containing lithium heparin 

(Micro haematocrit tubes, L. I. P Equipment, Yorkshire, U. K) and two ß-haemoglobin 

microcuvettes (Hemocue AB, Angelholm, Sweden). The haematocrit tubes were sealed at 

one end using Critoseal (Gelman-Hawksley Ltd, Sussex, UK) and centrifuged at 13000 

rpm for 5 min (Mikro 12-24 Zentrifugen, Heftich, Tuttlingen, Germany) and the amount 

of haemotocrict was measured (Gelman-Hawksley Ltd, Sussex, UK). The concentration 

of haemoglobin in whole blood was determined using a Hemocue met-Hb Photometer 

system (Hemocue, Angelholm, Sweden). The accuracy of the Hemocue system was 
determined before each measurement using the standard reference cuvette. The 

measurement of haemoglobin (red blood cell volume) and haematocrit (packed cell 

volume as a percentage of the total blood volume) allowed the calculation of changes in 

plasma volume relative to the baseline sample according to Dill and Costill (1974). 
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3.8. Statistics 

All statistical analyses were performed using Statistical Package for Social Science 

(SPSS) for Windows (version 11) (SPSS inc, Chicago, USA). Results were reported 

as the mean t the standard error of the mean (SEM). When Mauchley's test of 

sphericity indicated a minimal level of violation (>0.75) the degrees of freedom was 

corrected using the Huynh-Feldt adjustment and when the sphericity was <0.75, the 
Greenhouse-Geiser correction was used (Field, 2000). Where differences were noted, 

pairwise comparisons (Bonferroni adjusted) were employed to identify where the 

significant differences occurred. A level of P<0.05 was considered statistically 

significant. 
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Chapter 4 
Study 1 
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The present study is the first of two investigations into the metabolic and performance 

responses to soccer-specific exercise The exercise protocol was designed to simulate the 

work-rate observed in competitive soccer match play. The basis of the experiments was to 

manipulate the provision of energy drinks to subjects so that their effects could be 

examined. 

4.1. Introduction 

A significant reduction in the glycogen content of the thigh muscles of players has been 

observed by the end of a match (Jacobs et al., 1982). This decline in glycogen stores is 

reflected in lower running speeds and shorter distances covered during the second half 

(Saltin, 1973). There is evidence supporting the consumption of carbohydrate during 

exercise simulating the work-rate of competitive soccer, but this is somewhat 
inconclusive and may depend upon the measurement tool, such as run to exhaustion or 
high-intensity sprints. Nicholas et al. (1995) established that by ingesting a 6.9% 

carbohydrate solution, exercise capacity in a simulation of exercise equivalent to soccer 

could be improved, whereas sprint performance was not. Zeederberg et al. (1996) 

investigated the effect of ingesting a 6.9% glucose-polymer solution before a match and 

at half-time and found that there were no measurable benefits of glucose-polymer 
ingestion on motor skills of soccer players during games played in a cool environment. 
Their study involved measurement of discrete skills, whereas Nicholas et al. (1995) 

assessed time to exhaustion after a 75-min intermittent exercise protocol. Leatt and 
Jacobs (1989) also investigated the effect of ingesting glucose-polymer solution before a 

game and at half-time. Whilst performance aspects were not measured, a higher muscle 

glycogen concentration was found post-game compared with the control group, which led 

to the conclusion that carbohydrate ingestion does not hinder performance and may delay 

fatigue. 

Another factor that has been linked with fatigue during a soccer match is dehydration. 

The intensity of exercise associated with a competitive match is high enough to induce 

appreciable thermal stress, causing players to lose up to 3 litres of sweat (Ekblom, 1986). 
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In general there are not sufficient opportunities, i. e. breaks in play, during a match for 

players to ingest enough fluid to replace what is lost through- sweating. Another problem 

with fluid ingestion is that gastric discomfort may result from attempting to ingest a large 

volume of fluid at half-time (Reilly and Ekblom, 2005). As a consequence there are 

opportunities for enhancing performance during a game by adopting optimal refuelling 

and rehydration regimes. 

Gastric emptying is considered a limiting factor in fluid replacement (Shi and Gisolfi, 

1998). Studies using a single large ingestion (Costill and Saltin, 1974) or repeated smaller 
ingestions (Duchman et al., 1997) have demonstrated that gastric emptying is strongly 

affected by gastric volume. Gastric emptying is also influenced by exercise intensity, and 
Leiper et al. (2001) demonstrated that the intensity associated with a soccer match is 

sufficient to slow gastric emptying. The drinking strategy employed in the majority of 

studies related to soccer has been to ingest a large volume before the activity and again at 
half-time, despite frequent administration of carbohydrate being shown to be necessary to 

improve performance (Fielding et al., 1985). Nevertheless, the effect of frequent fluid 

ingestion during soccer-specific exercise has not been previously investigated. 

This study was designed to investigate the metabolic and performance responses to 
intermittent exercise. The exercise protocol was designed to simulate the work-rate in 

competitive soccer match-play. The aims of the experiment were to manipulate the 

provision of energy drinks for subjects to: 

1) establish energy provision and hydration strategies for soccer- 

specific exercise; 
2) investigate the effect of consuming a carbohydrate-electrolyte 

drink in a single bolus or frequent ingestion on the metabolic 

responses to soccer-specific exercise. 
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4.2. Methods 

4.2.1. Subjects 

Twelve male university soccer players of age: 24±1 years; height: 1.80±0.1 m; body 

mass: 76.5±3 kg; V02 : 61.1±1 ml"kg71"miri 1 participated in this study. All subjects 

provided written informed consent to participate, in accordance with Liverpool John 

Moores University's ethical procedures. 

4.2.2. Experimental Protocol 

Each subject attended the laboratory on six separate occasions. During the first visit the 

subject's '. D2m was assessed. The subjects also undertook two familiarisation sessions, 

consisting of two blocks of the soccer-specific protocol (i. e. 30 min). 

Subjects completed the full soccer-specific protocol, outlined in section 3.1.4, on three 

occasions in "normal" laboratory conditions (mean temperature 18.4±0.3 °C, relative 
humidity 58.6±2 %, wind speed 0 m. s'1). During one session 7 ml-kg"1 body mass of 

carbohydrate electrolyte solution (Lucozade Sport, GlaxoSmithKline, Gloucestershire, 

UK) was consumed before (mean 538±19 ml) and at half-time (mean 538±19 ml, i. e. 

mean total 1075±38 ml). The emphasis was on volume and hence the treatment was 
designated CHOv. On another occasion a placebo (a similarly coloured, flavoured and 
textured electrolyte solution) (GlaxoSmithKline, Gloucestershire, UK) was consumed at 
the same time points (PLA). During the other session the same total volume of 

carbohydrate electrolyte was consumed but drinking occurred more frequently and in 

smaller volumes (i. e. 179±6 ml) at 0,15,30,45,60,75 min of exercise, during the 

walking phase of the block (CHOP). During the carbohydrate trials the total amount of 

carbohydrate ingested at a rate of 45±0.9 g. h'1. The trials were performed in a counter- 
balanced fashion and where possible were double-blind. 
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4.2.3. Heart rate and RPE 

Heart rate was measured continuously by means of a short-range radio telemetry system 
(Polar S610i, Polar Electro, Kempele, Finland) outlined in section 3.2.1. Data were 

presented as the mean value for each 15-min block. At the completion of each 15-min 

block RPE was measured using a 6-20 scale (Borg, 1970) outlined in section 3.4.1. 

4.2.4. Assessment of respiratory gases during exercise 

Oxygen consumption (V02), carbon dioxide production ("1C02), respiratory exchange 

ratio (RER) and minute ventilation (VE) were recorded for 2 min using an on-line 

automated gas analyser (Metalyzer3B, Cortex Biophysic GmbH, Leipzig, Germany) after 
10 min of each block. Carbohydrate and fat oxidation rates were calculated using the 

stoichiometric equations of Frayn (1983) outlined in section 3.2.2. 

4.2.5. Measurement of core body temperature 

Core body temperature (outlined in section 3.3) was monitored continuously by means of 

an ingestible temperature sensor pill and external data logger (HQ inc., Florida, USA). 

Data were presented as the mean value for each 15-min block. 

4.2.6. Blood procurement and analysis 

Prior to exercise, at half-time and at the completion of exercise venous blood samples 

were drawn from an antecubital vein using standard venepuncture techniques (Vacutainer 

Systems, Becton, Dickinson, Europe). The blood samples were later analysed for glucose, 
NEFA, glycerol, lactate, adrenaline, insulin and cortisol outlined in (described in section 
3.7). 
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4.2.7. Statistics 

All variables were analysed using two-way ANOVAs with repeated measures except for 

sweat loss, which was analysed using a one-way ANOVA with repeated measures. All 

results are reported as the mean t the standard error of the mean (SEM) and a level of 
P<0.05 was considered statistically significant. 
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4.3. Results 

4.3.1. Plasma metabolites 

Pre-exercise plasma glucose concentration was similar for all three trials. There was a 

significant effect of trial of the concentration on plasma glucose (F2,22=12.326; P<0.05; 

Figure 4.1). The plasma glucose concentration was significantly higher at 45 and 90 min 
during CHOf than during PLA. There was also a significant effect of time (F2,22=6.175; 

P<0.05). During trials CHOv and CHOf, plasma glucose concentration was elevated 

significantly above resting levels at half-time and at completion of the soccer-specific 

protocol (P<0.05). The repeated measures ANOVA identified a significant time and trial 

interaction (F4,44 3.114; P<0.05); plasma glucose remained relatively constant during the 

first half of placebo trial, in contrast to during the carbohydrate trials when plasma 

glucose increased markedly. In all trials plasma glucose decreased during the second half 

although no subjects were found to be hypoglycaemic. 
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Figure 4.1: Plasma glucose concentration during the soccer-specific protocol. 
*CHOf significantly greater than PLA. 
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The repeated measures ANOVA revealed that there was a significant trial effect on the 

plasma concentration of NEFA (F2,22=2.691; P<0.05; Figure 4.2). There was a significant 

effect of time on the concentration of plasma NEFA (F2,22=34.679; P<0.05), which 
increased significantly between each time point as exercise progressed. There was also a 

significant (F4,44=3.579; P<0.05) trial and time interaction; after half-time NEFA 

concentration increased markedly more during PLA compared with CHOv and CHOf, in 

which it increased at a steady rate. 

The plasma concentration of glycerol was significantly affected by the trial (F2,22=4.828; 

P>0.05), and the concentration was significantly (P<0.05) higher during the PLA trial 

compared with CHOv (Figure 4.3). Plasma glycerol concentration increased significantly 

between each time point (F2,22=49.141; P<0.05). There was also a significant 

(F4,44=3.067; P<0.05) trial and time interaction; after half-time glycerol concentration 
increased markedly more during PLA compared with CHOv and CHOf. 
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Figure 4.2: Plasma NEFA concentration during the soccer-specific protocol. 
*PLA significantly greater than CHOv. 
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Figure 4.3: Plasma glycerol concentration during the soccer-specific protocol. 

*PLA significantly greater than CHOv. 

The repeated measures ANOVA revealed that there was no significant trial effect on the 

plasma concentration of lactate (F2,22=0.109; P>0.05) (PLA: 3.38±0.45 mmol-1-1,3.9±0.4 

mmol"1-1; CHOv: 3.5±0.3 mmol-1-1,3.9±0.5 mmol"1"1; CHO£ 3.2±0.4 mmol-1-1,3.8±0.4 

mmol-1-1,45 and 90 min respectively). There was a significant effect of time on the 

concentration of plasma lactate (F2,22=74.209; P<0.05), which was significantly higher at 

half-time and post-exercise compared with pre-exercise levels. There was no significant 

difference in plasma osmolality between the three trials (F2,22=2.962; P>0.05) nor by 

completing the soccer-specific protocol (F2,22=1.270; P>005). 

4.3.2. Hormones 

The concentration of adrenaline was found to be similar during all trials (F2,22=0.946; 

P>0.05, Figure 4.4), and increased significantly (F2,22=23.821; P<0.05; ) between each 

time point. The repeated measures ANOVA revealed a significant interaction 
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(F2,26=5.808; P<0.05). Between half-time and the completion of the soccer-specific 

protocol adrenaline concentration increased at a greater rate during PLA (1.78±0.12 

nmol-1"1) compared with CHOv (1.59±0.11 nmoIT) and CHOf (1.61±0.11 nmol"1-1). 
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Figure 4.4: Plasma adrenaline concentration during the soccer-specific protocol. 

There was no significant trial effect of the concentration of plasma cortisol (F2,22=0.263; 

P>0.05; Figure 4.5). The repeated measures ANOVA revealed that there was not a 

significant effect of time (F2,22=0.421; P>0.05) or interaction (F2,22=0.696; P>0.05). 
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Figure 4.5: Serum cortisol concentration during the soccer-specific protocol. 
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There was a significant trial effect on the concentration of serum insulin (F2,22=5.416; 

P<0.05; Figure 4.6). The serum insulin concentration was significantly higher during 

CHOf than during the placebo trial. The repeated measures ANOVA identified a 

significant time and trial interaction (F4,44=3.194; P<0.05) whereby, serum insulin 

concentration increased during the first half of CHOf, whereas it decreased during CHOv 

and more markedly during PLA. All trials demonstrated a decreased insulin response 

during the second half. 
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Figure 4.6: Serum insulin concentration during the soccer-specific protocol. 
*CHOf significantly greater than PLA. 

4.3.3. Indirect calorimetry 

There was a significant difference in RER between the three trials, (F2,22=5.194; P<0.05, 

Figure 4.7). During PLA, RER was significantly lower than during CHOv or CHOf, 

indicating a greater proportion of fat oxidation. There was a significant effect of time on 

RER (F5,55=4.560; P<0.05). Block 6 showed significantly (P<0.05) lower values than the 

previous 75 min, indicating that a greater proportion of fat was oxidized during this 15- 
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min period. There was a significant interaction effect of time and treatment (F3,34=2.717; 

P<0.05). During the carbohydrate trials RER remained relatively constant throughout the 

soccer-specific protocol, whereas during PLA, RER decreased throughout both halves of 

the soccer-specific protocol. 
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Figure 4.7: Respiratory exchange ratio during the soccer-specific protocol. 
*CHOf and CHOv significantly greater than PLA. 

The repeated measures ANOVA showed carbohydrate oxidation was significantly 

(F2,22=4.555; P<0.05) affected by the experimental treatments (Figure 4.8). Carbohydrate 

oxidation was greater during CHOf compared to PLA (P<0.05). There were no 

significant differences between CHOf and CHOv (P>0.05). Carbohydrate oxidation was 

significantly (F23,29=2.421; P<0.05) lower during block 6 compared with blocks 1 and 5. 

No significant interaction was observed (F4,44=1.625; P>0.05). 

80 

3k 



4.2 

4.0 

3.8 

S 3.6 
E 

3.4 
C 
0 

3.2 
V 
x 
0 3.0 
0 Ü 

2.8 

2.6 

-- PL 
-o- CF 
-7- CF 

2.4,, / 
o. o'i 

0123456 

Block 

Figure 4.8: CHO oxidation during the soccer-specific protocol. 
*CHOf and CHOv significantly greater than PLA. 

Repeated measures ANOVA showed that the rate of fat oxidation during PLA was 

significantly higher (F2,2211.295; P<0.05, Figure 4.9) compared with the CHOf and 

CHOv trials but did not identify a significant effect of time (F2,24=1.328; P>0.05) or 

interaction (F4,40=1.328; P>0.05). 
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Figure 4.9: Fat oxidation during the soccer-specific protocol. 
* PLA significantly greater than CHOf and CHOv. 
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4.3.4. Gut Fullness and thirst 

Gut fullness was significantly (F2,22=6.608; P<0.05) less during CHOf compared with 

PLA and CHOv (Figure 4.10). There was also a significant effect of time, (F3,16=13.555; 

P<0.05); pairwise comparisons showed that gut fullness increased significantly after 

fluid ingestion and was significantly higher after fluid ingestion pre-exercise and at half- 

time compared with blocks 3 and 6. There was a significant interaction (F5,51=3.805; 

P<0.05). Gut fullness was relatively constant throughout CHOf; in comparison during 

PLA and CHOv it increased markedly after fluid ingestion and decreased throughout 

each half of the soccer-specific protocol. 
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Figure 4.10: Gut Fullness during the soccer-specific protocol. 

Pre - pre-fluid, Post - post-fluid, HT - half-time, 1-6 soccer-specific protocol block. 
*PLAand CHOv significantly greater than CHOf. 

There was no significant difference in thirst between the trials (F2,22=2.910; P>0.05, 

Figure 4.11). There was a significant difference between time points, (F3,29=15.361; 

P<0.05), and pairwise comparisons showed these differences occurred between post-fluid 
ingestion and the end of the first half. The subjective feeling of thirst was significantly 
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higher (P<0.05) throughout the second half, compared with half-time. A significant 

interaction between time and condition was also identified (F16,176=2.776; P<0.05). The 

feeling of thirst was relatively consistent throughout CHOf, which was in contrast during 

PLA and CHOv, the feeling of thirst decreased markedly after fluid ingestion before 

increasing steadily throughout the subsequent 45 min. 
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Figure 4.11: Subjective feeling of thirst during the soccer-specific protocol. 
Pre - pre-fluid, Post - post-fluid, HT - half-time, 1-6 soccer-specific protocol block. 

4.3.6. Core temperature 

There was no significant trial effect on core temperature (F2,22=1.993; P>0.05, Figure 

4.12). A significant effect of time was observed (F5,55=44.950; P<0.05); pairwise 

comparisons demonstrated these differences occurred between the first block and the 
following five blocks. Core temperature increased significantly (P<0.05) during each half 

of the soccer-specific protocol, but there was no significant difference (P>0.05) between 

the end of the first half and the start of the second, i. e. the half-time fall in core 
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temperature did not reach statistical significance. No significant interaction was identified 

(F5,51=0.716; P>0.05). 
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Figure 4.12: Core temperature during the soccer-specific protocol. 

4.3.7. Heart rate and RPE 

There was no significant trial effect on heart rate (F2,22=0.259; P>0.05, Figure 4.13). 

Heart rate increased significantly (F2,23=41.127; P<0.05) throughout each half of the 

soccer-specific protocol. There was also a significant interaction (F3,37=3.210; P<0.05); 

heart rate increased by a greater margin during the second half of the PLA trial than 
during CHOv and CHOf. 
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Figure 4.13: Heart rate during the soccer-specific protocol. 

There was no significant (F2,22=1.470; P>0.05) difference in RPE between trials (Figure 

4.14). A significant effect of time was detected (F2,19=57.122; P<0.05), with RPE 

increasing significantly throughout each half of the soccer-specific protocol although no 
interaction was observed (Fs, 49=1.202; P>0.05). 
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Figure 4.14: RPE during the soccer-specific protocol. 
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4.3.8. Sweat Loss 

There was no significant difference (F2,22=1.536; P>0.05) in sweat loss between the three 

trials. The mean losses were: PLA (1.43±0.10 kg), CHOv (1.22±0.08 kg) and CHOf 

(1.43±0.12 kg). The absolute weight loss (uncorrected for fluid ingestion) was not 

significantly different between trials (F2,18=1.024; P>0.05); PLA: 0.62±0.1 kg, CHOv: 

0.48±0.1 kg and CHOf: 0.67±0.1 kg. 
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4.4. Discussion 

The main finding of the present study was that altering the timing and ingested volume of 

a carbohydrate-electrolyte solution did not significantly affect metabolism. In addition, 

consuming a carbohydrate-electrolyte solution compared with PLA significantly 
increased plasma glucose concentration and carbohydrate oxidation, whilst NEFA, 

glycerol and fat oxidation were reduced. 

Two of the most probable causes of fatigue during a soccer match are dehydration and 

muscle glycogen depletion (Reilly, 1997). In the present study the ingestion of a 

carbohydrate solution, irrespective of timing and volume, during soccer-specific exercise 

significantly elevated plasma glucose levels. The lack of a difference between the two 

carbohydrate trials may have been as a consequence of the same total volume of 

carbohydrate being ingested. The elevated blood glucose levels associated with 

carbohydrate ingestion also supports previous findings (Coyle et al., 1983; Wright et al., 
1991; Nicholas et al., 1995), that the ingestion a carbohydrate solution during exercise 

can maintain or increase the concentration of blood glucose during exercise. Consuming a 

carbohydrate solution during exercise has also been demonstrated to attenuate the 

exercise induced decrease in plasma insulin (Coyle et al., 1983; Coyle et al., 1986), as 

was observed in the present study. 

Plasma NEFA and glycerol concentrations increased during the soccer-specific protocol, 

with the greater increase occurring during the second half of the PLA trial. This 

observation suggests that consuming carbohydrate solution during exercise suppressed 
the release of NEFA and glycerol during CHOv and CHOf, possibly as an effect of an 

elevated insulin concentration. Coyle et al. (1991) reported that the concentration of 

plasma NEFA is depressed following the ingestion of carbohydrate during cycling, which 
is a consequence of the elevated insulin levels, as was observed in the present study. The 

increase in NEFA supports the findings of Bangsbo (1994b), that the concentration of 
NEFA in the plasma increases during a soccer match, and more so during the second half. 
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Plasma lactate concentrations were similar for all conditions. Previous studies (Coyle et 

al., 1983; Nicholas et al., 1995) have demonstrated that carbohydrate ingestion can alter 
the concentration of blood substrates, but lactate concentration is unaffected. In matches, 
blood lactate tends to be higher at the end of the first half (Ekblom, 1986; Stolen et al., 
2005). This observation may be as a consequence of a reduction in work-rate that occurs 
during the second half. In the present study the work-rate was not reduced in the second 
half and may explain why lactate values continued to rise during this period. 

The adrenaline concentration increased significantly during the soccer-specific protocol, 
but was not significantly different between the trials. However, there was a trend for 

adrenaline levels to be lower at the completion of the carbohydrate trials similar to the 
findings of Coyle et al. (1983). A number of authors (Felig et al., 1982; Fritzsche et al., 
2000) have reported that when carbohydrate is ingested the adrenaline response is 

blunted. This observation may be related to the large increase in insulin concentration 

associated with carbohydrate ingestion (Fritzsche et al., 2000). However, when 

carbohydrate is ingested during exercise and it does not affect insulin concentration, i. e. 

when the carbohydrate dose is low (- 13g CHO-h'1), the adrenaline response does not 

seem to be affected (Mitchell et a!., 1989; Burgess et al., 1991). 

High-intensity exercise has been associated with elevated plasma cortisol concentrations 
in order to maintain blood glucose concentration, and this effect can be attenuated by the 

consumption of carbohydrate drinks (Henson et al., 1998). This was not the case in the 

present study, as the concentration of cortisol was highest in the two carbohydrate trials. 
A possible explanation for the lack of an increase in cortisol is that glucose concentration 
did not fall below resting levels. However, Bishop et at. (1999) concluded that during 

soccer-specific exercise the change in stress hormones was minimal and carbohydrate 

supplementation had a negligible effect. Carli et al. (1986) reported a significant increase 

in plasma cortisol concentration compared with pre-match levels in semi-professional 

players. Although this increase may have been partially due to the increased 

psychological tension associated with a competitive match, a similar trend was observed 
in the present study. 
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Similar patterns of RER, carbohydrate oxidation and fat oxidation were observed when 

carbohydrate was consumed during exercise, irrespective of timing and volume. The 

RER gradually declined during the soccer-specific protocol but was significantly lower 

than in the other conditions during PLA. This observation indicates an increased fat 

oxidation, and consequently decreased carbohydrate oxidation, during the soccer-specific 

protocol, and is reflected in the carbohydrate oxidation rate being significantly lower and 
fat oxidation significantly higher during PLA. This result is similar to the findings of 
Wright et al. (1991), where in the trials in which carbohydrate was consumed, either 
during exercise or as a pre-exercise meal, both RER and carbohydrate oxidation were 

significantly elevated compared to the placebo trial. The higher RER and carbohydrate 

oxidation after carbohydrate feedings were attributed to either greater muscle 

glycogenolysis or glucose uptake and oxidation (Wright et al., 1991), reflected in the 

significantly higher rate of carbohydrate oxidation during CHOf and CHOv compared to 
PLA in the present study. Since it appears that carbohydrate feeding reduces muscle 

glycogen degradation during prolonged exercise, especially in type 1 muscle fibres 

(Tsintzas et al., 1995) and intermittent exercise (Nicholas et al., 1994; Nicholas et al., 
1999), the higher carbohydrate oxidation was most likely caused by increased blood 

glucose uptake and oxidation. 

Plasma osmolality did not increase significantly during the soccer-specific protocol, 

remaining within normal values. This observation indicates that the subjects did not 
suffer from severe dehydration, a conclusion supported by a mean weight loss 

(uncorrected for fluid consumption) of 0.77%. These results suggest that 7 ml"kg71 
ingested at the start of each half is an adequate volume of fluid to consume to prevent 
dehydration during soccer-specific exercise, when performed in a moderate ambient 
temperature. The similar sweat loss values for the trials suggest that it is the total volume 
of fluid that is important in preventing dehydration, more so than the timing and volume. 

Despite the different timings and volume of fluid consumed there were no significant 
differences between trials in the subjective feeling of thirst. This observation is in 

contrast to Ferguson et al. (2005), who reported that. the thirst response was higher when 
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a small volume of fluid was consumed at 15 min intervals during exercise compared with 

a single bolus pre-exercise. Although towards the end of exercise, when similar volumes 

had been ingested for both conditions, thirst was similar. However, this study was 

performed in the heat, which is likely to increase the sensation of thirst due to increased 

sweat loss. In the present study, irrespective of volume, thirst decreased significantly 

following the consumption of fluid at rest, prior to the soccer-specific intermittent 

protocol and at half-time. Gut fullness was significantly lower and relatively constant 

during CHOf compared with PLA and CHOv. In contrast during PLA and CHOv gut 

fullness increased sharply after fluid ingestion and decreased throughout the half. 

Consuming large volumes of fluid increases gut fullness (perceived or actual), which may 

cause discomfort and adversely influence performance. Therefore, a small volume of 

fluid consumed regularly may be a preferable option. This option may not be practical 

during a soccer match, as there are not any scheduled breaks in play where fluid can be 

ingested. 

There were no statistical differences in either heart rate or RPE between trials during the 

soccer-specific intermittent protocol, supporting the findings of Nicholas et al. (1995). 

Core temperature increased significantly during all of the trials, but there was no 

difference between trials. These findings indicate that the physiological stress imposed 

by the protocol was similar in all three conditions. In contrast, previous studies have 

reported lower heart rate (Melin et aL, 1994; Ferguson et al., 2005) and core temperature 

(Melin et al., 1994) following a single bolus compared with intermittent fluid intake, 

although these studies were low intensity (50% V02m. ) and performed in the heat. 

In conclusion, ingesting carbohydrate-electrolyte solution significantly affected plasma 

metabolites and increased carbohydrate oxidation. Also, when the total volume of fluid 

consumed was equal, manipulating the timing and volume of carbohydrate ingestion 

elicited the same metabolic responses. Furthermore, consuming a small volume of fluid 

at regular intervals, compared with a single large volume before and at half-time of the 

soccer-specific protocol, resulted in a reduced sensation of gut fullness. As there are no 

scheduled breaks in soccer matches the results suggest that ingesting carbohydrate in a 
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sports drink before a game and again at half-time is a practical strategy for fluid 

provision. 
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Chapter 5 
Study 2 

92 



The previous study demonstrated that ingesting carbohydrate prior to, and during 

soccer-specific exercise significantly increased plasma glucose and carbohydrate 

oxidation. Increased blood glucose has been demonstrated to maintain carbohydrate 

oxidation during exercise which can improve performance. The effect of manipulating the 

timing and volume of carbohydrate ingestion on sprint power output during soccer- 

specific exercise was the subject of investigation in this study. 

5.1. Introduction 

Soccer players tend to cover less distance in the second half of a match compared with 

the first half (Reilly and Thomas, 1976; Bangsbo et al., 1991; Bangsbo, 1994b), the 

reduction in work-rate being a sign of fatigue. One of the likely causes for the decline in 

distance covered is a reduction in muscle glycogen content. Saltin (1973) demonstrated 

that players with low glycogen content in the vastus lateralis muscle at the start of the 

game covered 25% less distance than the other players with "normal" levels. The lower 

muscle glycogen also altered running speed. Players with low pre-match glycogen stores 

covered 50% of the total distance walking and 15% sprinting, in contrast to the players 

with high concentrations who covered 27% walking and 24% sprinting. 

Another potential cause of fatigue during a soccer match is dehydration and a mild level 

of dehydration (Walsh et al., 1994) can limit exercise performance. It is, therefore 
important that athletes consume fluid during prolonged exercise. Consequently, much 

research has focused on rehydration during soccer matches and soccer-specific exercise 
(Kirkendall et al., 1988; Nicholas et al., 1995; McGregor et al., 1999). The addition of 

carbohydrate to this fluid can further improve exercise capacity (Nicholas et al., 1995), 

possibly due to the sparing of muscle glycogen and delaying the onset of fatigue (Leatt 

and Jacobs, 1989). Therefore, carbohydrate provision and rehydration may be key factors 

influencing performance during a game. Some authors have investigated the impact of 

carbohydrate ingestion on exercise capacity during exercise corresponding to a 

simulation of the intensity of a soccer match (Nicholas et al., 1995; Walton and Rhodes, 

1997) and actual match-play (Kirkendall et al., 1988; Leatt and Jacobs, 1989; Zeederberg 
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et al., 1996) and have reported improvement in terms of endurance time and muscle 

glycogen content. 

Gastric emptying is deemed to be a limiting factor in fluid replacement (Shi and Gisolfi, 

1998) and is an important aspect in determining the rate at which nutrients enter the 

duodenum where glucose and water can be absorbed into the bloodstream (Brouns et al., 

1987). Studies using a single large ingestion (Costill and Saltin, 1974) or repetitive 

smaller ingestions (Rehrer et al., 1992; Duchman et al., 1997) have demonstrated that the 

maximum rate at which water and carbohydrate can be delivered from an ingested 

solution is influenced by the average volume of fluid in the stomach, which in turn is 

determined by the volume ingested and the drinking pattern. The drinking strategy 

employed in the majority of studies investigating fluid provision during soccer-specific 

exercise or competitive matches has been to ingest a large volume before the activity and 

again at half-time, or a large volume at the start with a small volume throughout the 

protocol. This is a strategy that is potentially uncomfortable, as ingesting a large volume 

of fluid during exercise, especially when running, is likely to lead to feelings of 

abdominal discomfort, possibly due to the accumulation of unabsorbed fluid in the small 

intestine or colon (Noakes, 1993). Despite the intensity associated with a soccer match 

being sufficient to slow gastric emptying (Leiper et al., 2001; Leiper et al., 2005), no 

previous study has focused on the effect of consuming small repetitive doses on 

performance of soccer-specific exercise. 

As a consequence of the acyclic nature of activity in soccer, there are no scheduled 
breaks where fluid can be consumed; besides, gastric tolerance and the perception of gut 
fullness do not allow for adequate rehydration for soccer players. Due to play being 

continuous, with infrequent, unscheduled stoppages, the only two occasions that a player 
is guaranteed to be able to consume fluid are before the game and at half-time. In the 

American College of Sports Medicine's position stand on exercise and fluid replacement 
(Convertino et al., 1996) it is stated that during exercise, athletes should start drinking 

early and at regular intervals in an attempt to consume fluids at a rate sufficient to replace 
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the water lost through sweating, or consume the maximal amount that can be tolerated. 
Most advice regarding rehydration during exercise has been based on continuous exercise 
e. g. cycling and road-running or sports where there are opportunities for breaks when 
fluid can be consumed e. g. American Football and basketball. 

The aim of this study was to compare the effect ingesting a large volume of sports drink 

before and at half-time of a soccer-specific protocol with ingesting the same total volume 
but in frequent smaller doses during the protocol on exercise performance assessed by 

measuring power output during repetitive brief sprints. 
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5.2. Methods 

5.2.1. Subjects 

Twelve male university soccer players participated in this study. Mean (±SEM) age: 25±3 

years; height: 1.77±0.1 m; body mass: 74.5±6 kg; VD2mu: 59.4±6 ml-kg-1-min-1. All 

subjects provided written informed consent to participate, in accordance with Liverpool 

John Moores University's ethical procedures. 

5.2.2. Experimental Protocol 

The subjects undertook two familiarisation sessions, consisting of two cycles of the 

soccer-specific intermittent protocol (i. e. 30 minutes). Before the first familiarisation 

session, 500 ml of carbohydrate electrolyte solution (Still Lucozade Sport, (6.35±0.05 

g. 100 ml-1 CHO, 48±1 mg. 100 ml-1 Na) G1axoSmithKline, Gloucestershire, UK) was 

consumed whereas 500 ml of a similarly coloured, flavoured and textured placebo 
(GlaxoSmithKline, Gloucestershire, UK) was consumed before the start of the second 
familiarisation trial. These procedures ensured that there were no adverse gut reactions to 

the volume and composition of the fluid consumed and reliable sprint power outputs were 

obtained (CV = 6.9%) within this 30-min period. The second of the familiarisation 

sessions took place at least 5 days before the first trial. 

During the subsequent sessions, subjects completed a soccer-specific intermittent 

exercise protocol (Drust et al., 2000a) on a non-motorised treadmill (Woodway, Vordem, 

Auf Schrauben, Germany). The soccer-specific intermittent protocol consisted of 90 min 

activity divided into 2x 45 min identical blocks, separated by a period of 15 min, 

representing half-time. Each 45-min block consisted of three 15-min cycles of different 

exercise intensities associated with competitive soccer (e. g. walking, jogging and 

sprinting). The movement categories incorporated in this protocol were walking, jogging, 
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cruising and sprinting. Static periods, where the subject remained stationary on the 

treadmill were also incorporated although due to the technical limitations of the 

equipment, utility movements (sideways and backwards) were not included within the 

protocol. The 15-min cycle of activity consisted of 33 discrete bouts, 9 walking bouts, 9 

jogging bouts, 3 cruises (sub-maximal high-intensity), 3 sprints and 9 static pauses. The 

duration of each bout was as follows: walking 47.3 s, jogging 33 s, cruising 15.3 s, sprint 
3.3 s and static 15.3 s. These durations were determined by matching the percentage of 

the total time observed during match-play to that during each sub-cycle (Drust, 1997). 

The order of these bouts was arranged so that periods of high-intensity activity were 

separated by periods of low-intensity recovery periods and static pauses to simulate the 

acyclical nature of the exercise pattern experienced during soccer (Drust et al., 2000a). 

The treadmill speeds for each activity were designated on the basis of Van Gool et al. 

(1988) with a correction for the intrinsic resistance associated with running on a non- 

motorised treadmill. It has been demonstrated that this resistance can reduce maximal 

velocity by approximately 20%, compared to normal running (Lakomy, 1987). Therefore 

the speeds selected for each activity were as follows: walking 4 km. h71, jogging 8 km. h'1, 

cruising 10 km-h". There were not any speed restrictions placed on sprinting as the 

subjects were instructed to produce maximum effort and this response constituted as a 

performance measure. 
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Figure 5.1: Graphical representation of soccer-specific intermittent protocol. 
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The full soccer-specific protocol was performed on three occasions, and consisted of 90 

min of activity. The 90-min period was divided into two 45-min identical blocks, 

separated by a 15-min half-time break. On two occasions either 7 ml-kg' BM of 

carbohydrate-electrolyte (CHOv) or placebo (PLA) solution was ingested before and at 

half-time (mean 533±11 ml; i. e. mean total 1065±22 ml). On a third occasion the same 

volume of carbohydrate-electrolyte solution was consumed (CHOP) but in smaller 

volumes at 0,15,30,45,60 and 75 min (mean 177±4 ml) during the final walking phase 

of each block. During the carbohydrate trials the total amount of carbohydrate ingested 

was 67.71±1.40 g CHO. Subjects acted as their own controls in a double-blind repeated- 

measures crossover design with the order randomly assigned. The soccer-specific 

protocol was performed in "normal" laboratory conditions (mean temperature 18.9±0.4 

°C, relative humidity 59.3±4 %). A standard 15-min warm up was performed, consisting 

of jogging, sprinting and stretching, before the subject began the 90 min of exercise. 

For the three days prior to the first test session, subjects completed a diet and physical 

activity diary, which provided a dietary template prior to subsequent trials and was 

analysed using Microdiet for Windows Version 1.2 (Downlee Systems Limited, High 

Peak, UK). 

5.2.3. Physiological Measurements 

Ratings of perceived exertion (Borg, 1970), gut fullness and thirst (Wu et al., 2003) were 

recorded during the double static period (10 min) of each 15-min block. Gut fullness and 

thirst were also recorded immediately before and after fluid ingestion prior to 

commencing exercise. Heart rate was measured continuously by means of a short-range 

radio telemetry system (Polar S610i, Polar Electro, Kempele, Finland) and was presented 

as the mean value for each 15-min block. During each sprint phase, the power output was 

recorded to monitor performance and indicate the occurrence of fatigue. Power output 

was calculated using the horizontal component of applied force (the restraining forced, 
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measured using a force transducer) and the treadmill belt speed (Figure 5.2) (Lakomy, 

1987). Peak power output was defined as the maximum value obtained during each 

sprint. 

Figure 5.2: Subject performing the soccer-specific protocol on a non-motorised treadmill. 

To assess the reliability of peak power output during sprinting, twelve university soccer 

players, all of whom were familiar with treadmill sprinting, performed six maximal 3.3 s 

sprints during 30 min of soccer-specific exercise, on two occasions I week apart. Both 

tests were performed on a non-motorized treadmill (Woodway, Vordem, Auf Schrauben, 

Germany), interfaced with a data acquisition system. Using a two-way ANOVA with 

repeated measures, there were no significant differences (P>0.05) between power output 
for repeated trials on the same day or for repeated trials on different days. The coefficient 

of variation for the measure of peak power output was 6.9%. Hence, the treadmill system 

and protocol provided a reliable measure of peak power output. 
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5.2.4. Assessment of respiratory gases during exercise 

Oxygen consumption (VO2), VC02, RER and VE were recorded for 2 min using an on- 
line automated gas analyser (Metalyzer3B, Cortex Biophysic GmbH, Leipzig, Germany) 

after 10 min of each block. Carbohydrate and fat oxidation rates were calculated using the 

stoichiometric equations of Frayn (1983) as described in section 3.2.3. 

5.2.5. Measurement of core body temperature 

Core body temperature was monitored continuously by means of an ingestible 

temperature sensor pill and external data logger (HQ inc., Florida, USA) as described in 

section 3.3 Data were presented as the mean value for each 15-min block. 

5.2.6. Blood sampling and analysis 

Venous blood samples (14 ml) were drawn prior to exercise (0-min), at half-time 

(immediately after the completion of the 45 min) and at completion of each trial (90- 

min). The blood samples were later analysed for glucose, NEFA, glycerol, lactate, 

catecholamines and cortisol as described in section 3.7. 

5.2.7. Statistics 

All variables were analysed using two-way ANOVAs with repeated measures except for 

sweat loss, which was analysed using a one-way ANOVA with repeated measures. All 

results are reported as the mean ± the standard error of the mean (SEM) and a level of 
P<0.05 was considered statistically significant. 
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5.3. Results 

5.3.1. Pre-trial conditions 

The pre-trial conditions were similar for all trials (Table 5.1). There were no significant 

differences in the carbohydrate (F1,11=1.920; P>0.05) or energy (F1,1=0.122; P>0.05) 

content of the participant's pre-trial diet. Pre-trial hydration status was similar for all 

conditions, urine colour F2,22=1.055; P>0.05) and osmolality (F2,22=1.311; P>0.05) were 

not significantly different. 

Table 5.1: Pre-trial dietary and hydration status. 

Diet Urine 

Trial 
CHO 
(%) 

Energ' 
(MJ"d') Colour 

Osmolality 
(mOsm"kg' ) 

PLA 54.6±1.6 7.1±0.4 2.4±0.3 354.8±53.4 

CHOv 53.5±1.7 7.1±0.5 2.1±0.3 299.6±47.2 

CHOf 53.7±1.6 7.1±0.5 2.0±0.3 293.4±58.8 

5.3.2. Power output 

There was no significant effect of the treatments on peak power output during sprinting 

(F2,22=0.133; P>0.05) (PLA: 1080±70 W; CHOv: 1104±66 W; CHOf: 1091±39W) 

(Figure 5.3). Peak power output remained constant throughout each trial (F5,55=1.379; 

P>0.05). 
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Figure 53: Peak sprint power output during the soccer-specific protocol. 

5.3.3. Plasma metabolites 

Plasma glucose concentration (Figure 5.4) was not significantly different between CHOv 

and CHOf pre-exercise, at half-time or post-exercise. However, plasma glucose was 

significantly higher during CHOf compared with PLA (F2,22=4.909; P<0.05) at half-time 

and post-exercise. For all trials plasma glucose was significantly lower post-exercise 

than at half-time (F2,22=21.197; P<0.05). 

The concentration of NEFA was not significantly different between CHOv and CHOf 

(Figure 5.5), although it was significantly higher during PLA at half-time and post- 

exercise compared with CHOv and CHOf (F2,22=22.802; P>0.05). Plasma NEFA 

concentration increased significantly between each time point (F1,13=35.809; P<0.05). 

Glycerol concentration was significantly higher post-exercise following PLA compared 

to CHOv and CHOf (Figure 5.6), and increased significantly between each time point 
(F1.1,13=61.592; P<0.05). 

s 
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Figure 5.4: Plasma glucose concentration during the soccer-specific protocol. 
*CHOf significantly greater than PLA. 
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Figure 5.6: Plasma glycerol concentration during soccer-specific protocol. 

* PLA significantly greater than. CHOf and CHOv. 

Lactate concentration was not significantly different between any of the trials 

(F2,22=0.583; P>0.05), although it increased significantly above resting levels after the 

onset of exercise, with peak values at half-time (PLA: 2.8±0.6 mmol. 1"'; CHOv: 3.3±0.4 

mmol. l''; CHOf: 3.0±0.6 mmol. l'') (FI, 12=10.592; P<0.05). Mean plasma osmolality 
during the soccer-specific protocol was not significantly affected by the trials (PLA: 

279.7±3 mOsm"kgl; CHOv: 278.3±3 mOsm"kg"1; CHOf: 279.6±3 mOsm"kg'') 
(F2,22=0.071; P>0.05). There were no significant differences between trials in plasma 

volume changes (PLA: -1.32±0.3%; CHOv: -1.71±0.2%; CHOf: -1.24±0.3%) 
(F2,22=1.447; P>0.05) or sweat loss (PLA: 1.80±0.2 kg; CHOv: 1.62±0.1 kg; CHOf: 

1.58±0.1 kg) (Fi, 11=0.605; P>0.05). The absolute weight loss (uncorrected for fluid 
ingestion) was not significantly different between trials (F1,11=0.710; P>0.05); PLA: 

0.76±0.3 kg, CilOv: 0.53±0.1 kg and CHOf: 0.60±0.1 kg. 
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5.3.4. Hormones 

Adrenaline levels (Figure 5.7) were found to be similar during all trials (F2,22=0.609; 

P>0.05) with significant increases between each time point (F1., 13=127.216; P<0.05). A 

similar pattern was observed for noradrenaline levels (F2,22=185.51; P<0.05, Figure 5.8), 

with no significant effect of the treatments (F2,22=0.091; P>0.05). 
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Figure 5.7: Adrenaline concentration during the soccer-specific protocol. 
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Figure 5.8: Noradrenaline concentration during the soccer-specific protocol. 
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Cortisol concentration was significantly elevated post-exercise for CHOf (257.9±27.4 

nmol. 1"') compared with PLA (186.4±24.4 nmol. 1-1) (F2,22=4.053; P<0.05; Figure 5.9), 

although no significant difference was identified between CHOv and CHO£ A significant 

effect of time (F2,22=4.937; P<0.05) was observed, values were significantly lower at full 

time, compared with pre-exercise and half-time. 
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Figure 5.9: Plasma cortisol concentration during soccer-specific protocol. 
* CHOf significantly greater than PLA. 

5.3.5. Substrate oxidation rates 

Carbohydrate oxidation (Figure 5.10) was not significantly different between CHOf and 
CHOv (P>0.05), although it was significantly (F2,22=3.759; P<0.05) greater during CHOf 

and CHOv compared to PLA. In contrast fat oxidation was not significantly (F2,22=2.428; 

P>0.05) different between trials (PLA: 0.51±0.03 g. min 1; CHOv: 0.50±0.04 g. min 1; 

CHOf: 0.42±0.04 g. min 1). 
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Figure 5.10: Carbohydrate oxidation during the soccer-specific protocol. 
# CHOv and CHOf significantly greater than PLA. 

* CHOf significantly greater than PLA. 

5.3.6. Perceived thirst and gut fullness 

There was no significant trial effect on the rating of thirst (F2,22=0.573; P>0.05; Table 

5.2). There was a significant (F3,32=25.425; P<0.05) effect of time on rating of thirst. 

Thirst decreased significantly (P<0.05) following the consumption of fluid pre-exercise 
but was significantly (P<0.05) higher during the first half of the soccer-specific protocol 

compared with immediately post-fluid ingestion. Subjective rating of thirst also increased 

steadily throughout the second half of the soccer-specific protocol and during block 6 

(75-90 min) was significantly (P<0.05) higher than at half-time. 
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Table 5.2: Perceived thirst throughout the soccer-specific protocol. 

Trial Pre- Post- Block Block Block Half- Block Block Block 
fluid fluid 123 time 456 
12.7 8.0 10.3 11.0 11.6 8.3 9.3 9.7 11.8 

PIA t0.4*t t0.3 t0.34t *0.4*t t0.5*t ±0.6 ±0.5 ±0.3*t t0.6st 
11.4 7.8 9.6 10.8 11.1 8.0 9.4 10.5 11.3 CHOv 

t0.6$t ±0.2 *0.5$t t0.4*t t0.64t ±0.4 t0.4 ±0.4*t *0.5tt 

CHOf 12.2 9.4 11.1 10.5 10.8 8.9 10.0 10.3 10.3 
t0.9# ±0.8 t0.5tt t0.6$t t0.5*t t0.4 t0.4 t0.5tt t0.5$t 

$ significantly higher than post-fluid, ] significantly higher than half-time 

Table 5.3: Perceived gut fullness throughout the soccer-specific protocol. 

Trial Pre- 
fluid 

Post- 
fluid 

Block 
1 

Block 
2 

Block 
3 

Half- 
time 

Block 
4 

Block 
5 

Block 
6 

7.8 11.6 9.9 9.8 9.5 11.7 10.3 9.7 8.9 
PLA ±0.2 ±0.7* tO. 5*t t0.4$t *0.6*t ±0.8k t0.8t 4. St A. 5t 

8.0 12.3 10.6 10.3 9.8 12.9 10.7 10.7 10.1 
CHOv A. 3 ±1.0* tO. 7*t *0.5*t ±0.5#t t0.9$ *0.7t ±. 7t t0.8t 

8.1 
CHOf 

10.4 9.5 9.5 9.3 11.0 10.3 9.7 9.8 
*0.4 *1.0# ±0.8*t tO. S*t t0.4$t ±1.0* A. 9t t0.7t t0.7t 

$ significantly higher than pre-fluid, 1 significantly lower than half-time 

There was a significant (F2,29=16.445; P<0.05) effect of time on rating of gut fullness 

(Table 5.3), which was lower (P<0.05) immediately prior to fluid consumption pre- 

exercise compared with any stage during the first half or at half-time. Gut fullness 

increased significantly (P<0.05) following the consumption of fluid at the start of the first 

half and was significantly higher at half-time following fluid ingestion, compared with 

any stage of the second half (P<0.05). Subjective rating of gut fullness decreased steadily 
throughout each half of the soccer-specific protocol. There were no significant 
differences (F2,22=1.061; P>0.05) in rating of gut fullness between the three trials. 

5.3.7. Core temperature 

There were no significant differences in core temperature between trials (F2,1o=2.210; 

P>0.05). Core temperature increased steadily throughout each half and decreased during 
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the half-time break (Figure 5.11). The repeated measures ANOVA revealed there was a 

significant (F6,30=15.215; P>0.05) effect of time on core temperature. Core temperature 

was significantly higher during the fifth and sixth blocks, compared with the first 15-min 

period (P<0.05). There was also an increase at the start of the second half, with 

temperature being significantly higher in block 5 than block 4 (P<0.05). 
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Figure 5.11: Changes in core temperature during the soccer-specific protocol. 

5.3.8. Heart rate and RPE 

The repeated measures ANOVA showed that there was a significant (F3,30=611.048; 

P<0.05) effect of time on heart rate. Heart rate was significantly elevated (P<0.05) above 

pre-fluid and post-fluid ingestion resting values throughout the soccer-specific protocol 
(Figure 5.12). Over the half-time interval, heart rate was significantly higher than pre- 

exercise values and significantly below that measured during the soccer-specific exercise 
(both P<0.05). No significant differences in heart rate were observed between the three 

trials (F2,22=0.165; P>0.05). 
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Figure 5.12: Heart rate during the soccer-specific protocol. 

The RPE increased progressively throughout the exercise period for all of the trials 

(Figure 5.13). There was a significant effect of time (F3,33=15.693; P<0.05) on RPE. 

Rating of perceived exertion was significantly (P>0.05) higher at the end of each half 

compared to the start of that half. The repeated measures ANOVA revealed that there 

were no significant differences in RPE between the three trials (F2,22=1.090; P>0.05). 

14.0 

13.5 

13.0 

W 12.5 
a 

12.0 

11.5 

11.0 , 
0.0/1-, -r-, -ý- 

123456 

Block 

Figure 5.13: RPE during the soccer-specific protocol. 
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5.4. Discussion 

The main findings of the present study were that i) consuming a carbohydrate-electrolyte 

solution significantly increased plasma glucose concentration and carbohydrate oxidation 

and suppressed NEFA and glycerol compared to placebo, but had no impact on sprint 

power output during sprinting and ii) altering the timing and volume of carbohydrate 
ingestion did not significantly affect metabolism or sprint power output during CHOv or 
CHOf. 

One of the key factors in sustaining prolonged exercise at intensities ranging from 65 to 

85% V021nu is the concentration of muscle glycogen (Bergstrom et al., 1967). Fatigue 

during exercise of this nature is associated with the depletion of the muscle's limited 

glycogen stores (Nicholas et al., 1999) and a reduction in blood glucose (Coyle et al., 
1986). In the present study, plasma glucose concentration during CHOv and CHOf was 

not significantly affected by manipulating the timing and volume of ingesting a 

carbohydrate-electrolyte solution. This result may have been as a consequence of the 

same total volume being ingested, and the same amount of glucose being made available. 
This study also reaffirmed the fording that consuming carbohydrate during exercise 
increases plasma glucose concentration (Coyle et al., 1983; Nicholas et al., 1995). 

Plasma NEFA and glycerol concentration increased during the soccer-specific protocol, 

with a greater increase occurring during the second half, supporting the findings of 
Bangsbo (1994b). The largest increase occurred during PLA, confirming that consuming 

a carbohydrate solution during exercise suppresses the release of NEFA and glycerol 
during CHOv and CHOf, possibly as an effect of an elevated insulin concentration, which 
has been shown to occur following carbohydrate ingestion during a simulation of the 

exercise intensity of soccer match-play (Nicholas et al., 1995). 

Plasma lactate concentrations were similar for all conditions. This fording is in agreement 

with the majority of studies (Coyle et al., 1983; Nicholas et al., 1995), which have 
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demonstrated that despite significant differences in the concentration of blood glucose, 
the concentration of lactate during exercise remains relatively -constant. 

A similar pattern of carbohydrate oxidation was observed when carbohydrate was 

consumed during exercise, irrespective of timing and volume, possibly due to the total 

amount of carbohydrate ingested being the same during both trials. However, 

carbohydrate oxidation was significantly higher during CHOf and CHOv compared with 

PLA. Previous studies have demonstrated that consuming carbohydrate during exercise 

maintains high rates of carbohydrate oxidation late in exercise (Coyle et al., 1986). The 

higher carbohydrate oxidation after ingesting carbohydrate has been attributed to either 

increased muscle glycogenolysis or elevated glucose uptake and oxidation (Wright et al., 

1991). 

High-intensity exercise has been associated with elevated plasma cortisol concentration 
in order to maintain blood glucose concentration, and this rise can be attenuated by the 

consumption of carbohydrate drinks (Henson et al., 1998). In the present study plasma 

glucose concentration did not fall significantly below resting levels, which may explain 

why plasma cortisol concentration was maintained during the carbohydrate trials. The 

failure of cortisol to increase during PLA may have been due to the overall exercise 

intensity not being high enough (67±1 % V02m) to elicit a cortisol response, although 

this intensity is close to values observed during a match [70% ' O2m (Reilly et al., 

2000)]. Nieman et al. (1994) found that high-intensity exercise (80% W2,. ) produced a 

significantly greater cortisol response compared to moderate-intensity exercise (50% 

VOZf). It has been demonstrated (Mitchell et al., 1989; Burgess et al., 1991) that when 

carbohydrate ingested during exercise fails to affect insulin concentration, the adrenaline 

response does not seem to be affected, and so may explain the lack of a difference 

between the carbohydrate trials and PLA in the present study. Bishop et al. (1999) 

concluded that during soccer-specific exercise the change in stress hormones was 

minimal and carbohydrate supplementation had a negligible effect. 
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The change in plasma volume significantly increased during exercise, although there was 

not a significant difference between trials. Plasma osmolality also increased during all 

experimental trials of the soccer-specific protocol, but remained within normal values,, 
indicating that the subjects did not suffer from severe dehydration. There were no 

significant differences between the trials, suggesting that the overall rate of gastric 

emptying was the same and it is the total volume of fluid ingested rather than the timing 

of ingestion that is important in preventing dehydration during soccer-specific exercise. A 

possible explanation for this occurrence is that the time-course for the volume of fluid 

ingested to be distributed throughout the body after gastric emptying, intestinal 

absorption and osmotic flow is 40-60 min (Noakes et al., 1991; Schedl et al., 1994) and 

within this time scale a similar volume of fluid would have emptied from the stomach. 

Total sweat loss was comparable with previous studies (Nicholas et al., 1995; Bishop et 

al., 1999; Nicholas et al., 2000), in which the exercise intensity of soccer was simulated. 

The value was relatively low, indicating that the volume of fluid intake was appropriate 

for the environmental conditions and fitness of the subjects. 

Despite the different timings and volume of fluid consumed, there were no significant 
differences in either thirst or gut fullness between trials. Irrespective of how the total 

volume was consumed, thirst decreased significantly following the consumption of fluid 

at rest, prior to the soccer-specific intermittent protocol and at half-time. In contrast gut 
fullness increased significantly at these time points. Gastric emptying is affected by the 

volume of fluid ingested, the larger the volume the faster the rate i. e. drinking a large 

volume prior to a match (CHOv). As the volume in the stomach declines the rate of 

gastric emptying decreases proportionally. However, if the volume is maintained by 

repeated ingestion of smaller volumes of fluid i. e. every 15 min (CHOf), the rate of 

gastric emptying remains relatively constant (Rehrer et al., 1990). This may explain the 

small differences, although not significant, in plasma metabolites and carbohydrate 

oxidation between CHOf and CHOv. During the CHOf trial, carbohydrate may have 

passed from the stomach into the small intestine at a constant rate, enabling glucose 

absorption to occur at a constant rate and plasma glucose and carbohydrate oxidation to 

be maintained at higher levels. When fluid was consumed the subjective rating of gut 
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fullness increased significantly, especially during PLA and CHOv. This fording agrees 

with Mitchell and Voss (1991) who demonstrated that ingesting large volumes caused an 
increased frequency of complaints of gastric fullness. 

The increases in blood glucose and carbohydrate oxidation following carbohydrate 
ingestion were not reflected in performance as peak sprint power output was relatively 

constant throughout all of the trials and not significantly different between trials. The 

values obtained for peak sprint power output were consistent with previous studies that 

have employed the non-motorised treadmill (Hamilton et al., 1991a; Tong et al., 2001). 

The finding that substrate availability did not affect sprint performance was similar to that 

of Nicholas et al. (1995) who demonstrated that the ingestion of a carbohydrate- 

electrolyte significantly extended a run to exhaustion following a period of intermittent 

exercise, but had no impact of the performance of high-intensity exercise, 15-m sprints. It 

has also been demonstrated that ingesting carbohydrate during a soccer match has no 
impact on the ability to perform high-intensity skills such as tackling and heading 

(Zeederberg et al., 1996). 

The mean sprint duration in a competitive match is 3.7 seconds (Drust et al., 1998). In the 

present study the duration of each sprint was 3.3 seconds. At high-intensity exercise of 

these durations, PCr is the major energy source, and a reduction in carbohydrate 

availability might increase PCr degradation during exercise (Gaitanos et al., 1993; 

Tsintzas et al., 2001). However, Balsom et al. (1992) demonstrated that forty 15-m 

sprints could be performed at 30-s intervals unimpaired without carbohydrate 

supplementation. Although Balsom et al., (1999b) reported that subjects who had 

consumed a high-carbohydrate diet (65% CHO) were able to perform 33% more high- 

intensity exercise than after a low-carbohydrate diet (30% CHO) and in a trial to fatigue, 

subjects who had consumed a high-carbohydrate diet were able to perform 265% more 6- 

s intervals (-200% W2. 
x) than during a low-carbohydrate diet (Balsom et al., 1999a). 

In the present study 18 sprints were performed separated by approximately 200 s of 
lower-intensity exercise, suggesting there was sufficient time for PCr resynthesis between 

114 



sprints and that the PCr system was able to meet the energy demands during the sprints 

and may explain the relatively constant sprint power output. Also no signs were displayed 

of hypoglycaemia during PLA, this state being associated with fatigue and reduced 

performance (Coyle et al., 1986), suggesting carbohydrate availability was not a factor 

limiting peak sprint power output in the present study. The maintenance of plasma 

glucose levels is possibly a consequence of the exercise intensity induced increase in 

circulating adrenaline promoting hepatic glucose production (Vranic et A, 1984). 

Core temperature and heart rate were similar for all trials, possibly due to the sweat loss 

and changes in plasma volume values being comparable between trials. Therefore, the 

cardiovascular strain appears to be unaffected by manipulating fluid ingestion patterns. In 

contrast, previous studies have reported lower heart rate (Melin et al., 1994; Ferguson et 

al., 2005) and core temperature (Melin et al., 1994) following a single bolus compared 

with intermittent fluid intake. There were no statistical differences in RPE between the 

trials during the soccer-specific protocol. This observation is most likely a consequence 

of core temperature and heart rate being unaffected by the experimental conditions and 

supports the findings of Ferguson et al. (2005). These observations indicate that the 

physiological stress imposed by the protocol was similar in all three trials. 

The general recommendation for fluid ingestion during exercise is that fluid should be 

consumed early, and at regular intervals in an attempt to replace the water lost through 

sweating, or to consume the maximal amount that can be tolerated (Convertino et al., 
1996). This study indicates that if sufficient carbohydrate-electrolyte solution is ingested 

before and at half-time, sprint performance and metabolism are not significantly affected 

when compared to consuming the same total volume ingested at the recommended 15- 

min intervals. The absence of scheduled breaks in soccer prevents players taking regular 
feedings of carbohydrate other than at half-time. These findings indicate that consuming 

a carbohydrate-electrolyte solution before a match and at half-time is a practical strategy 
for fluid provision during soccer at moderate ambient temperatures. When employing 

this strategy, extra fluid could be consumed during a match when the opportunities arise 

as a consequence of the natural breaks that typically occur e. g. during pauses for injuries, 
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as the rules require that players must go to the perimeter lines to avail of any drinks 

provided by support staff during the game. 

In conclusion, ingesting a carbohydrate-electrolyte solution compared with a flavoured 

placebo during a soccer-specific protocol significantly altered metabolism, although it 

had no impact on peak sprint power output. Furthermore, providing that the total volume 

of fluid consumed is equal, manipulating the timing and volume of carbohydrate 
ingestion did not influence periodic all-out exercise performance and elicited the same 

metabolic responses. 
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Chapter 6 
Study 3 
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The previous studies have demonstrated that blood glucose and carbohydrate oxidation 

can be maintained by ingesting carbohydrate during the performance of soccer-specific 

exercise in a thermo-neutral environment. However, international soccer matches and 

tournaments are often played in hot conditions. The aim of the present study was to 

investigate the effect of ingesting sports drinks on metabolism and exercise capacity 
during soccer-specific exercise performed in the heat. 

6.1. Introduction 

Soccer matches at major tournaments are regularly played in temperatures exceeding 
30°C (FIFA World Cup 2002 and UEFA Euro 2004). During prolonged exercise in the 

heat large amounts of water may be lost as a result of sweating. Dehydration during 

exercise has been shown to raise core temperature and increase cardiovascular strain 

(Sawka et al., 1985). An elevated body temperature has been demonstrated to limit 

exercise performance (Nybo and Nielsen, 2001). The ingestion of fluid containing 

carbohydrate has been shown to offset dehydration, minimize disturbances in 

cardiovascular function, improve thermoregulation (Coyle and Coggan, 1984), spare 

muscle glycogen (Nieman et al., 2005), maintain blood glucose concentration and 

improve performance (Davis et al., 1988). 

Performing high-intensity intermittent exercise in the heat has been shown to increase 

muscle glycogen utilization (Morris et al., 2005), fluid loss, cardiovascular stress and 
impair performance (Morris et al., 1998; Morris et al., 2005). In addition, the ingestion of 

a glucose solution during this type of exercise has been reported to be ineffective in 

attenuating the effects of dehydration and delaying the onset of fatigue (Morris et al., 
2003). Previous studies (Davis et al., 1990; Jentjens et al., 2006) have indicated that fluid 

availability during exercise in the heat is lower with a glucose drink compared with a 

combined glucose and fructose drink or water. Shi et al. (1995) also demonstrated that 

the ingestion of a glucose and fructose solution resulted in greater water absorption than a 

glucose solution. These findings suggest that a glucose drink may be less effective for 

fluid replacement during exercise in the heat. Therefore, ingesting a multi-carbohydrate 
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drink may increase the intestinal absorption fluid, thus minimising the impact of 
dehydration. 

A potential limiting factor for the oxidation of exogenous carbohydrate is the rate of 
intestinal absorption of carbohydrate. It is thought that the intestinal glucose transporters 
(SGLT1) are saturated when the rate of glucose ingestion exceeds 1 g"min 1, which may 

explain why there is not a linear relationship between glucose ingestion rates and 

oxidation rates (Jeukendrup and Jentjens, 2000). However, Shi et al. (1995) suggested 

that the inclusion of 2 or 3 carbohydrates (glucose, fructose and sucrose) may increase 

water and carbohydrate absorption despite increased osmolality. This effect was 

attributed to the separate transport mechanisms across the intestinal wall for glucose, 
fructose and sucrose. Therefore, when a solution containing a mixture of glucose and 
fructose is ingested there is less competition for absorption compared with an 
isoenergetic amount of glucose. As a consequence there is the possibility of an increase in 

the amount of carbohydrate entering the bloodstream and its subsequent availability for 

oxidation, which in turn may spare muscle glycogen and delay the onset of fatigue, and 
improve performance. However, the majority of investigations into the effect of multi- 

carbohydrate solutions on carbohydrate oxidation have employed prolonged low-intensity 

exercise protocols (Jentjens et al., 2004a; Jentjens et al., 2004b; Jentjens et al., 2004c; 

Jentjens et al., 2006) and have not studied the impact on exercise capacity or 

performance. The impact of ingesting multi-carbohydrate solutions during high-intensity 

intermittent activity such as soccer-specific exercise and the subsequent effect on 

performance has not been previously examined. 

The aim of this study was to investigate the effect of ingesting a multi-carbohydrate 

sports drink compared with a glucose only solution on metabolism and exercise capacity 
during soccer-specific exercise performed in the heat. 
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6.2. Methods 

6.2.1. Subjects 

Eleven male university soccer players of age: 27±2 years; height: 1.78±0.1 m; body mass: 

76.1±2 kg; W2.: 63.1±2 ml"kg'1"miri 1 participated in this study. All subjects provided 

written informed consent to participate, in accordance with Liverpool John Moores 

University's ethical procedures. 

6.2.2. Experimental design 

Subjects undertook two familiarisation sessions consisting of two blocks of the soccer- 

specific protocol (i. e. 30 minutes) outlined in section 3.1.4. 

Subjects completed the full soccer-specific protocol on a motorised treadmill on three 

occasions in the environmental chamber (30.2±0.5°C and 45±4% relative humidity) 

(Figure 6.1). During one session 228±6 ml of carbohydrate-electrolyte solution [Still 

Lucozade Sport, (6.6 g-100 ml" CHO, 49 mg-100 ml-1 Na, 296±0.5 mOsm. kg71), 

GlaxoSmithKline, Gloucestershire, UK] was consumed at 0,15,30,45,60,75 minutes of 

exercise (GLU). On another occasion 228±7 ml of a multi-carbohydrate (fructose, 

dextrose, maltodextrin) solution (6.6 g-100 ml-1 CHO, 50 mg 100 MI-1 Na, 296±0.5 

31310.6 mOsm. kg"1, GlaxoSmithKline, Gloucestershire, UK) was consumed at the same 

time points (MIX). During the other session 228±6 ml of a placebo (a similarly coloured, 
flavoured and textured electrolyte solution) (<0.5 g-100 ml"1,49.5 mg-100 MI-1 Na, 

6510.3 mOsm. kg71; GlaxoSmithKline, Gloucestershire, UK) was consumed (PLA). 

During the carbohydrate trials the total amount of carbohydrate ingested at a rate of 
60±0.5 g. h'1. The trials were performed in a double-blind, counter-balanced fashion. 
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Figure 6.1: The environmental chamber where the trials were performed. 

6.2.3. Heart rate 

Heart rate was measured continuously by means of a short-range radio telemetry system 
(Polar S610i, Polar Electro, Kempele, Finland) during all exercise (outlined in section 
3.2.1) and was presented as the mean value for each 15-min block. 

6.2.4. Assessment of respiratory gases during exercise 

Oxygen consumption 002), VCO2, RE andVE were recorded for 2 min using an on-line 

automated gas analyser (Metalyzer3B, Cortex Biophysic GmbH, Leipzig, Germany) after 
10 min of each block. Carbohydrate and fat oxidation rates were calculated using the 

stoichiometric equations of Frayn (1983) as described in section 3.2.3. 

6.2.5. Measurement of core body temperature 

Core body temperature was monitored continuously by means of an ingestible 

temperature sensor pill and external data logger (HQ inc., Florida, USA). Data were 

presented as the mean value for each 15-min block. See section 3.3. 
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6.2.6. Ratings of Perceived Exertion (RPE) and thermal sensation 

At the completion of each 15-min block perceived exertion was measured using a 6-20 

scale (Borg, 1970). Subjects also rated their thermal sensation during exercise according 
to a 17-point thermal sensation scale (Toner et A, 1986) as described in section 3.4. 

6.2.7. Blood procurement and analysis 

Prior to exercise, at half-time and at the completion of exercise venous blood samples 

were drawn from an antecubital vein using standard venepuncture techniques (Vacutainer 

Systems, Becton, Dickinson, Europe). The blood samples were later analysed for glucose, 
lactate, NEFA, glycerol, catecholamines, insulin and IL-6 (outlined in section 3.7). 

6.2 8. Cunningham and Faulkner test 

After completing the soccer-specific protocol, subjects performed the Cunningham and 
Faulkner test (Cunningham and Faulkner, 1969), which required the subject to run at a 

gradient of 20% and a speed of 12.8 km-h'1 until fatigue. The time began when the 

subject started running unsupported and stopped when he grabbed the handrails at the 

point of fatigue. This test was a measure of fatigue resistance to high-intensity exercise 

and has been shown to be both valid and reliable as a measurement tool (Thomas et al., 
2002). 

To assess reliability following familiarisation, the subjects performed the Cunningham 

and Faulkner test on six occasions 1 week apart on a motorized treadmill (H/P/Cosmos 

Pulsar 4.0, H/P/Cosmos Sports and Medical GmbH, Nussdorf-Traunstein, Germany). 

There was no significant difference (P>0.05) in time to exhaustion between trials. The 

coefficient of variation for time to exhaustion was 5.2%. Hence, the Cunningham and 
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Faulkner test was deemed to provide a reliable measure of resistance to high-intensity 

exercise. 

6.2.9. Muscle biopsies 

A percutaneous needle biopsy of vastus lateralis has been shown to significantly reduce 
insulin-stimulated glucose uptake (Hoick et al., 1994), although the mechanism of this 

phenomenon is not known. To exclude the possibility that the biopsy procedure per se 
influenced glucose uptake, a basal biopsy was obtained approximately three weeks before 

the first trial. An additional biopsy was taken on completion of the soccer-specific 

protocol during each trial. After local anaesthesia [2 ml 0.5% Bupivacaine Hydrochloride 

(Marcain Polyamp, AstraZeneca, UK)] and incision of the skin and muscle fascia, 

percutaneous muscle samples (-30 mg) were taken from the lateral vastus of the 

quadriceps femoris muscle using an automated procedure (Pro-Mag 2.2 Automatic 

Biopsy System, Manan Medical Products, USA) with a 14 gauge needle (ACN Biopsy 

needles, lnterV, Denmark) in the distal to proximal direction (Figure 6.2). The biopsy 

was immediately frozen in liquid nitrogen and stored at -80°C for subsequent glycogen 

analysis. To determine the concentration of muscle glycogen the tissue was acid 

hydrolyzed allowing the glucose residues to be measured enzymatically (Powerwave 

X340, BioTek Instruments Inc, USA) as described by Lowry and Passonneau (1972) (see 

Appendix D). Glycogen concentrations are expressed as "wet weight". 

Figure 6.2: Muscle biopsy being performed (A) and a sample of muscle (B). 
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6.2.10. Statistics 

All variables were analysed using two-way ANOVAs with repeated measures except for 

muscle glycogen concentration, sweat loss and the time to exhaustion during the 

Cunningham and Faulkner test and the reliability of the Cunningham and Faulkner test, 

which were analysed using a one-way ANOVA with repeated measures. Results are 

reported as the mean t the standard error of the mean (SEM) and a level of P<0.05 was 

considered statistically significant. 

124 



6.3. Results 

6.3.1. Pre-trial hydration status 

Pre-trial hydration status was similar for all of the experimental conditions. Urine colour 

PLA (2.00±0.22), GLU (2.00±0.22) and MIX (2.09±0.24) (F2115=0.476; P>0.05) and 

osmolality PLA (509.86±106.16 mOsm"kg"1), GLU (517.41±107.76 mOsm"kg'1) and 

MIX (567.41±106.21 mOsm"kg'') (F2,17=0.438; P>0.05) did not differ significantly 

between trials. 

6.3.2. Muscle glycogen 

Muscle glycogen concentration was significantly lower following the soccer-specific 

protocol compared with pre-exercise (FI, 7=7.141; P<0.05). The difference between trials 

was not significant (P>0.05): - Pre (127.23±17.36 mmol"kg wet weighf-l), PLA 

(62.99±8.39 mmol"kg wet weight"), GLU (68.62±2.70 mmol"kg wet weighf1) and MIX 

(76.63±6.92 mmol"kg wet weight"). 
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Figure 6.3: Muscle glycogen concentration at pre-exercise (PRE) and after the soccer- 

specific protocol. * significantly lower than pre-exercise. 
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6.3.3. Plasma metabolites 

Pre-exercise plasma glucose concentration was similar for the three trials. There was a 

significant trial effect on the concentration of plasma glucose (F2,16=7.055; P<0.05; 

Figure 6.4), whereby the concentration was significantly higher in GLU compared with 

PLA throughout the soccer-specific protocol. There was also a significant effect of time 

(FZ, »=13.703; P<0.05). In trials GLU and MIX, plasma glucose concentration was 

elevated significantly (P<0.05) above resting levels at half-time and on completion of the 

soccer-specific protocol. The repeated measures ANOVA identified a significant time 

and trial interaction effect (F2,24=2.243; P<0.05); plasma glucose increased during the 

first half in all trials, whereas during the second half plasma glucose was relatively 

constant during GLU and MIX, but decreased during PLA. 
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Figure 6.4: Plasma glucose concentration during the soccer-specific protocol. 
* GLU significantly greater than PLA. 

The repeated measures ANOVA revealed that there was a significant trial effect on the 

plasma concentration of NEFA (F1,13=13.406; P<0.05). The concentration of NEFA was 

significantly (P<0.05) higher during PLA compared with GLU and MIX (Figure 6.5). 

There was a significant effect of time on the concentration of plasma NEFA 

126 



(F1,13=35.663; P<0.05) which increased significantly between each time point as exercise 

progressed. There was also a significant (F2,18=7.759; P<0.05) trial and time interaction; 

after half-time NEFA concentration increased markedly more during PLA compared with 

GLU and MIX. 
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Figure 6.5: Plasma NEFA concentration during the soccer-specific protocol. 

* GLU and MIX significantly lower than PLA. 

The plasma concentration of glycerol was significantly affected by the trial (F2,17=12.472; 

P<0.05), and the concentration was significantly (P<0.05) higher during the PLA trial 

compared with GLU throughout exercise and significantly higher than MIX at 90 min 

(Figure 6.6). Plasma glycerol concentration increased significantly between each time 

point (Fi, 12=61.745; P<0.05). There was also a significant trial and time interaction 

(F2222=9.530; P<0.05); after half-time glycerol concentration increased markedly more 

during PLA compared with GLU and MIX. 
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Figure 6.6: Plasma glycerol concentration during the soccer-specific protocol. 

* PLA significantly greater than GLU and MIX; t PLA significantly greater than GLU. 

No significant trial effect on the plasma concentration of lactate was observed 
(F1,1o=1.051; P>0.05). Plasma lactate concentration increased significantly above resting 

levels after the onset of exercise, with peak values at half-time (F2,16=15.527; P<0.05) 

(Figure 6.7). 
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Figure 6.7: Plasma lactate concentration during the soccer-specific protocol. 
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6.3.4. Hormones 

The concentration of adrenaline was found to be similar when all trials were compared 
(F2,19=0.840; P>0.05, Figure 6.8). The adrenaline values increased significantly 
(F1,11=12.971; P<0.05) between each time point. 
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Figure 6.8: Plasma adrenaline concentration during the soccer-specific protocol. 

A similar pattern was observed for noradrenaline levels (Figure 6.9); there were no 

significant differences between any of the trials (Fz, 15=0.284; P>0.05). The concentration 

of noradrenaline increased significantly (F2,15=73.117; P<0.05) between each time point. 
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Figure 6.9: Plasma noradrenaline concentration during the soccer-specific protocol. 

The concentration of IL-6 was significantly affected by the experimental trials 
(F2,17=16.311; P<0.05), and was significantly (P<0.05) higher during the PLA trial 

compared with GLU and MIX throughout the protocol (Figure 6.10). The values for IL-6 

increased significantly between each time point (F2,20=157.194; P<0.05). There was also 

a significant trial and time interaction (F3,28=8.802; P<0.05); during the first 45 min the 
IL-6 concentration increased markedly more during PIA compared with GLU and MIX, 

although the increase was less pronounced during the second 45 min. 
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Figure 6.10: Interleukin-6 concentration during the soccer-specific protocol. 
* PLA significantly greater than GLU and MIX 

There was a significant trial effect of the concentration of serum insulin (F2,16=12.251; 

P<0.05; Figure 6.11). The serum insulin concentration was significantly higher during 

GLU and MIX than during the PLA condition (P<0.05). Serum insulin concentration 
increased significantly between pre-exercise and half-time (Fits=4.327; P<0.05). The 

repeated measures ANOVA identified a significant time and trial interaction 

(F2,24=4.083; P<0.05). Serum insulin concentration increased during the first half of GLU 

and MIX, whereas in contrast it decreased during PLA. All trials demonstrated decreased 

insulin response during the second half, markedly so during GLU. 
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Figure 6.11: Serum insulin concentration during the soccer-specific protocol. 
* GLU and MIX significantly higher than PLA. 

6.3.5. Plasma osmolality 

There was no significant difference in plasma osmolality (Figure 6.12) between the three 

experimental conditions (Fi, 14=0.011; P>0.05). Plasma osmolality was significantly 
higher (F2, »=5.404; P<0.05) at the completion of the soccer-specific protocol 
(302.73±1.93 mOsm. kg"1), compared with pre-exercise values (295.61±1.08 mOsm. kg"'). 
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Figure 6.12: Changes in plasma osmolality during the soccer-specific protocol. 

6.3.6. Indirect calorimetry 

There was no significant difference in RER between the three trials, (F2,17=3.138; P>0.05, 

Figure 6.13). During PLA, RER was lower than during GLU or MIX, indicating a 

greater proportion of fat oxidation; however, this difference was not significant. There 

was a significant effect of time on RER (F2,21=12.838; P<0.05). Block 1 showed 

significantly (P<0.05) higher values than the subsequent 75 min, indicating that a greater 

proportion of carbohydrate was oxidised. There was a significant interaction (F4,38=4.264; 

P<0.05); RER during MIX remained relatively constant throughout the soccer-specific 

protocol, whereas during GLU it increased sharply after half-time, before steadily 
decreasing during the second half. In contrast, RER decreased throughout both halves of 
the soccer-specific protocol during PLA. 
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Figure 6.13: Respiratory exchange ratio during the soccer-specific protocol. 

Total carbohydrate oxidation (Figure 6.14) was significantly (F2,20=3.556; P<0.05) 

affected by the trials. Carbohydrate oxidation was greater during MIX compared to PLA 

(P<0.05). There were no significant differences between MIX and GLU (P>0.05) or 
GLU and PLA (P>0.05). Carbohydrate oxidation was significantly (F3828=11.883; 

P<0.05) higher during block 1 compared with the rest of the protocol. There was a 

significant interaction between trial and time (F4,37=3.802; P<0.05); carbohydrate 

oxidation was stable during GLU and MIX, in contrast it declined steadily during PLA. 
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Figure 6.14: Carbohydrate oxidation during the soccer-specific protocol. 
* MIX significantly higher than PLA. 

Repeated measures ANOVA showed that the rate of fat oxidation during PLA was 

significantly higher (F2,19=4.112; P<0.05, Figure 6.15) than MIX, and there was no 

significant difference between GLU and MIX (P>0.05) or PLA and GLU (P>0.05). The 

repeated measures ANOVA identified a significant effect of time (F2,22=10.701; P<0.05). 

The Bonferroni corrected pairwise comparisons revealed that fat oxidation was 

significantly lower (P<0.05) during block 1 compared with the remainder of the protocol. 
There was a significant interaction (F3,31=4.440; P<0.05), fat oxidation increased steadily 
during PLA, in contrast with the carbohydrate trials, in particular MIX, during which 

after an initial increase, fat oxidation was relatively constant. 
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Figure 6.15: Fat oxidation during the soccer-specific protocol. 
* PLA significantly higher than MIX. 

6.3.7. Gut Fullness and thirst 

Gut fullness was not significantly (F2,18=0.132; P>0.05) affected by the trials (Table 6.1). 

There was a significant effect of time (F3,31=9.491; P<0.05), pairwise comparisons 

revealed that gut fullness increased significantly post-fluid ingestion prior to completing 

the protocol, and remained significantly (P<0.05) elevated throughout. 

Table 6.1: Subjective sensation of gut fullness during soccer-specific protocol. 

Time point 
Pre- Post- 1 2 3 HT 4 5 6 

PLA 23.014.3 41.313.3 42.7±5.4 43.1±3.7 55.5±5.4 53.5±7.6 57.0±5.8 57.5±6.7 50.9±5.6 
GLU 32.0±8.3 49.5±7.0 45.0±6.1 48.5±8.0 55.3±7.6 54.6±7.6 49.8±7.8 50.3±7.1 56.5±7.1 
MIX 24.5±4.6 41.0±4.7 37.8±6.6 42.6±7.6 51.0±6.5 60.8±6.5 52.1±7.3 56.5±7.2 55.0±7.3 

Note: Pre - Pre fluid ingestion; Post - Post fluid ingestion; 1-6 - Blocks; 1-6, HT - Half-time. 
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There was a significant difference in thirst between the trials (F2,19=4.580; P<0.05, Figure 

6.16); the subjective sensation of thirst was significantly (P>0.05) higher during MIX 

compared with GLU. There was also a significant difference between time points 
(F3131=9.728; P<0.05); pairwise comparisons indicated these differences occurred 
between post-fluid ingestion at half-time and at all time points except following the 

ingestion of fluid before the start of exercise. 
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Figure 6.16: Subjective sensation of thirst during the soccer-specific protocol. 
Pre - pre-fluid, Post - post-fluid, HT - half-time, 1-6 indicates 15-min blocks of the 

soccer-specific protocol. * MIX significantly higher than GLU. 

6.3.8. Core Temperature 

There was no significant trial effect on core temperature (F2, »=0.654; P>0.05; Figure 

6.17). A significant effect of time was observed (F2,24=89.672; P<0.05), pairwise 

comparisons revealed these differences occurred between the first block and the 

following five blocks. Core temperature increased significantly (P<0.05) during each half 

of the soccer-specific protocol, but there was no significant difference (P>0.05) between 
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mean temperature at the end of the first half and the start of the second, i. e. the half-time 

fall in core temperature did not reach statistical significance. 
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Figure 6.17: Core temperature during soccer-specific protocol. 

6.3.9. Thermal sensation 

Thermal sensation (Table 6.2) followed the same pattern as core temperature. There was 

no significant trial effect (F2,17=0.083; P>0.05). There was a significant effect of time 
(F2,22=33.860; P<0.05), thermal sensation increasing significantly (P<0.05) during each 
half of the soccer-specific protocol. Thermal sensation was also significantly lower at 
half-time compared with blocks 3 and 4. 

Table 6.2: Thermal sensation during soccer-specific protocol. 

Time point 
1 2 3 HT 4 5 6 

PLA 5.00±0.1 5.55±0.2 5.95±0.2 4.09±0.2 5.73±0.2 6.27±0.3 6.68±0.3 
GLU 5.18±0.2 5.73±0.2 5.91±0.2 4.36±0.1 5.59±0.3 6.05±0.3 6.36±0.3 
MIX 5.27±0.2 5.82±0.3 5.95±0.3 4.45±0.1 5.64±0.2 6.02±0.2 6.361.0.3 

Note: 1-6 -Blocks; 1-6, HT-half-time. 
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6.3.10. Heart rate and RPE 

There was no significant trial effect on heart rate (F2,18=2.218; P>0.05, Figure 6.18). 

Heart rate increased significantly (F2,15=61.218; P<0.05) throughout each half of the 

soccer-specific protocol. 
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Figure 6.18: Heart rate during soccer-specific protocol. 

There was no significant (F2,19=1.126; P>0.05) difference in RPE between trials (Figure 

6.19). A significant effect of time was detected (F2,23=54.101; P<0.05); RPE increased 

significantly throughout each half of the soccer-specific protocol, following the same 

pattern as heart rate. 
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Figure 6.19: RPE during soccer-specific protocol. 

6.3.11. Cunningham and Faulkner test 

There was no significant trial effect (F2,16=1.982; P<0.05) on exercise capacity (Figure 

6.20) PLA: 73.62±8.61 s; GLU: 77.11±7.17 s; MIX: 83.04±9.65 s. 

100 

90 

I:: 

d 

.2 60 
df 
E_ 

50 

40 
0- IiI1I1 

PLA GLU MIX 

Figure 6.20: 'hme to exhaustion during the Cunningham and Faulkner test. 
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6.3.12. Sweat loss 

There was no significant difference (F2,17=0.019; P>0.05) in sweat loss between the three 

trials. The mean losses were: PLA (2.08±0.06 kg), GLU (2.11±0.16 kg) and MIX 

(2.10±0.11 kg). The absolute weight loss (uncorrected for fluid ingestion) was not 

significantly different between trials (F2,19=0.689; P>0.05); PLA: 1.03±0.1 kg, GLU: 

1.07±0.2 kg and MIX: 1.02±0.1 kg. 
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6.1. Discussion 

The major finding of this study in relation to exercise capacity was that the ingestion of a 

solution containing glucose and fructose did not significantly impact on the rate of total 

carbohydrate oxidation or exercise capacity during a high-intensity exercise test 

compared with the ingestion of a solution containing only glucose. 

Jentjens et al. (2006) recently demonstrated that in non-acclimated athletes exercising in 

the heat the ingestion of a solution containing glucose and fructose resulted in 

approximately 36% greater exogenous carbohydrate oxidation rates compared with the 

ingestion of a solution containing only glucose. However, Wallis et al. (2005) reported 

that whilst the ingestion of carbohydrate significantly suppressed endogenous 

carbohydrate oxidation, there was no significant difference in the sparing of endogenous 

carbohydrate between a maltodextrin drink and an isoenergetic maltodextrin plus fructose 

drink. This observation may explain the lack of difference in exercise capacity between 

GLU and MIX in the present study, as muscle glycogen content, which has been shown 

to limit exercise capacity, was similar at the end of exercise for both of these treatments 

and consistent with values observed post competitive match-play (Rico-Sanz et al., 
1999). In addition, the pre-exercise concentration of muscle glycogen was similar to 

previous studies (Graham et al., 1993; Rico-Sanz et al., 1999; Haff et al., 2000) 

During exercise in the heat, the onset of fatigue is possibly a consequence of 
hyperthermia (Nielsen et A, 1993; Gonzalez-Alonso et A, 1999c). It has been suggested 

that carbohydrate availability is not a limiting factor for exercise in the heat when the heat 

stress is uncompensable (Febbraio, 2001). This hypothesis is based on the observation 

that muscle glycogen concentrations are relatively high at the point of fatigue when 

exercising in the heat (Nielsen et al., 1990; Febbraio et al., 1994b). It also appears that 

the addition of carbohydrate to a solution has no impact on key thermoregulatory 

variables such as core temperature and heart rate (Morris et al., 2003). 
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Nielsen et al. (1993) suggested that when fatigue occurs in a hot environment it is 

ultimately due to an intolerably high core temperature. This observation may explain the 

lack of difference in exercise capacity between treatments, because despite higher blood 

glucose during GLU and MIX than in the placebo trial, core temperature and thermal 

sensation were similar during all conditions. In addition, Nielsen et al. (2001) found that 

alterations in front cortical brain activity correlated with increases in core temperature. 

Therefore, the motivation to continue to exercise may be reduced with increases in core 

temperature beyond a critical point. At no point during any of trials did core temperature 

stabilize, it increased significantly between each time point during the second half of the 

protocol, suggesting a large thermal strain. However, the final value at the completion of 

the 90 minutes was lower than previously reported values during similar exercise 

protocols (Morris et al., 1998; Morris et al., 2003). This observation may be a 

consequence of different sites being used to assess core temperature, rectal as opposed to 

intestinal used in the present study. 

During prolonged exercise in the heat, it has been suggested that fluid containing more 

than 2.5% carbohydrate inhibits fluid delivery (Costill and Saltin, 1974). However, 

Hawley et al. (1991) demonstrated that fluid containing as much as 15% carbohydrate 

was as effective as water in supporting thermoregulation and performance during exercise 
in the heat. Jentjens et al. (2002) reported that the rate of exogenous glucose oxidation 

was reduced by 10% in the heat compared with a cool environment. They, also identified 

that despite a slower rate of exogenous glucose oxidation, total carbohydrate oxidation 

was higher in the heat as a result of increased muscle glycogenolysis. As a consequence 

muscle glycogen utilization was 25% higher during exercise in the heat compared with 

the cooler condition. Previous studies have demonstrated that the rate of glycogen 

oxidation was not significantly different between carbohydrate and water ingestion 

(Angus et al., 2001; Jentjens et al., 2006). Some of the factors that contribute to the 

reduction in exogenous glucose oxidation in the heat include the reduced carbohydrate 

absorptive capacity of the intestine as a result of decreased intestinal blood flow (Jentjens 

et al., 2002), reduced uptake and release of ingested glucose by the liver, decreased 

glucose transport to the muscle due to reduced muscle blood flow as a consequence of 
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impaired hydration status (Gonzalez-Alonso et A, 1999a). The rate of gastric emptying is 

also reduced during exercise in the heat. Studies have shown that hyperthermia and 
dehydration can impair gastric emptying of carbohydrate solutions or water during 

treadmill exercise (Owen et al., 1986; Neufer et al., 1989; Rehrer et al., 1990). In 

addition a negative correlation between final core temperature and the volume emptied 
from the stomach was observed (Neufer et a1., 1989). 

The ingestion of carbohydrate during exercise in moderate temperature conditions has 

been shown to increase blood glucose (Nicholas et al., 1995) and spare muscle glycogen 
(Yasplelds et al., 1993a), enhancing endurance capacity (Nicholas et at., 1995). In the 

present study plasma glucose was significantly higher during GLU compared with PLA. 

This observation was consistent with that of Jentjens et al. (2006) and is possibly a 

consequence of a greater amount of glucose being present in the solution ingested during 

GLU compared with MIX. The lack of improvement in exercise capacity despite elevated 
blood glucose concentrations supports the findings of Morris et al. (2003) and suggests 

that carbohydrate availability was unlikely to be the main factor limiting exercise 

capacity in the present study, especially as there was no significant difference in the 

muscle glycogen concentration after the soccer-specific protocol. 

Recent studies have demonstrated the ingestion of mixed carbohydrate drinks compared 

with a drink containing an isoenergetic amount of glucose can increase exogenous 

carbohydrate oxidation in a thermo-neutral environment (Jentjens et al., 2004a; Jentjens 

et al., 2004b) and in the heat (Jentjens et al., 2006), although total carbohydrate oxidation 
is unaffected. The present study demonstrated that carbohydrate ingestion significantly 
increased total carbohydrate oxidation, although there was no difference between GLU 

and MIX. This observation is consistent with previous studies (Wallis et al., 2005; 

Jentjens et al., 2006). However, carbohydrate was ingested at higher concentrations (1.8- 

2.4 g"min 1) (Jentjens et al., 2004a; Jentjens et al., 2004b) than in the present study. 
Therefore the higher carbohydrate oxidation rates observed when the multi-carbohydrate 

solution was ingested was probably due to the SGLT1 being saturated at these 

concentrations of glucose, limiting the rate of exogenous carbohydrate oxidation. The 
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increase in carbohydrate oxidation observed with carbohydrate ingestion can be attributed 

to the increase in plasma glucose oxidation (Jeukendrup et al., 1999). In contrast, fat 

oxidation was suppressed during the soccer-specific protocol with carbohydrate 
ingestion, although there was no significant difference between GLU and MIX. Insulin 

has been shown to be a powerful inhibitor of lipolysis and the appearance of NEFA in the 
blood (Horowitz et al., 1997). The increased insulin concentration after carbohydrate 
ingestion may have reduced whole-body lipolysis, as indicated by the lower fat oxidation 

and levels of NEFA and glycerol observed during the GLU and MIX trials. The elevated 
insulin concentration observed during GLU and MIX compared with PLA may also 

explain the marginally higher (although not significant: P=0.440) adrenaline level shown 
during PLA. Previous studies (Felig et al., 1982; Fritzsche et al., 2000) indicated that the 

adrenaline response was blunted when carbohydrate was ingested. 

The concentration of serum IL-6 was significantly higher during PLA compared with 
GLU and MIX. Steensberg et al. (2001) demonstrated that IL-6 is released from skeletal 

muscle in response to low glycogen levels and may be linked to the regulation of glucose 
homeostasis may function as a sensor of carbohydrate availability (Pedersen et al., 2004). 

The ingestion of carbohydrate has previously been shown to suppress the release of IL-6 

(Nieman et al., 2003; Nieman et al., 2005). Febbraio et al. (2003) demonstrated that 

carbohydrate ingestion had no impact on the increase in muscle IL-6 mRNA when 

performing semi-recumbent cycling for 2h at approximately 62% V02 
max. Nieman et al. 

(2005) speculated that the process of IL-6 release but not gene expression for muscle IL-6 

is regulated by substrate availability and/ or flux across the contracting muscle. 
Furthermore, adrenaline has been shown to enhance the release of IL-6 in rats (Yu et al., 
2001). These observations would suggest that IL-6 release is dependent on both 

carbohydrate availability and the corresponding adrenaline response. 

Previous studies (Davis et al., 1990; Jentjens et al., 2006) have indicated that fluid 

availability during exercise in the heat is lower with a glucose drink compared with a 

combined glucose and fructose drink or water. Shi et al. (1995) also demonstrated that 

the ingestion of a glucose and fructose solution resulted in greater water absorption than a 
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glucose solution. In addition, Jentjens et al. (2006) reported greater (although not 

statistically significant) changes in plasma volume with glucose compared with a multi- 

carbohydrate drink and concluded that a glucose drink may be less effective for fluid 

replacement during exercise in the heat. This conclusion is not supported by the results of 

the present study, where plasma osmolality and sweat loss were not significantly different 

between treatments. 

Jentjens et al. (2006) suggested that gastric emptying and intestinal absorption were 

lower when a glucose solution was ingested compared with a glucose and fructose 

solution. Whilst neither were measured in the present study, the subjective sensation of 

gut fullness was not significantly different between conditions, suggesting the rate of 

gastric emptying was similar. However, this conclusion is in contrast with the findings of 

Jentjens et al. (2004b) and Wallis et al. (2005) who reported an increase in the number of 

cases of stomach bloating after ingesting a glucose compared with a multi-carbohydrate 

drink. The ingestion of MIX resulted in a significantly higher rating of thirst compared 

GLU. One possible explanation for this occurrence is an increase in plasma angiotensin H 

which has been shown to be elevated following a high fructose diet in rats (Kobayashi et 

al., 1993) and it has been suggested that angiotensin II is a dipsogenic hormone 

(McKinley et al., 2004). 

There were no significant differences in blood lactate concentration, core temperature, 

sweat loss, heart rate or RPE between trials during the soccer-specific protocol, indicating 

a similar level of physiological stress during each trial. These findings are consistent with 
the results of Davis et al. (1988) and Owen et al. (1986) who reported no differences in 

markers of cardiovascular and thermoregulatory stress with and without carbohydrate 
ingestion at concentrations up to 10% glucose. The results of the present study suggest 

that any differences in the rate of gastric emptying or intestinal absorption are not 

sufficient to alter physiological homeostasis during exercise of this nature when 

performed in the heat. 
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In conclusion the ingestion of a solution containing glucose and fructose compared with 

an isoenergetic glucose solution did not significantly influence muscle glycogen 

utilization, the metabolic responses to soccer-specific exercise performed in the heat or 

exercise capacity measured post-exercise. In addition, carbohydrate ingestion did not 

significantly improve exercise capacity as reflected in the anaerobic test. These results 
suggest that core temperature and not carbohydrate availability may be the major 
fatiguing factor during soccer-specific exercise in the heat. 
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The previous study demonstrated that fatigue during soccer-specific exercise in the heat 

may be as a result of elevated core temperature and not substrate availability. Therefore, 

a reduction in core temperature is a possible means of offsetting fatigue in hot conditions. 
The combined effect of reducing core temperature and ingesting carbohydrate during 

soccer-specific exercise and the subsequent impact of exercise capacity was the subject of 
investigation of the study presented in this chapter. 

7.1. Introduction 

Dehydration of approximately 2-3% body mass regularly occurs during intermittent high- 

intensity exercise (activities such as soccer), especially when the ambient temperature is 

high (Stolen et al., 2005). Studies of the effects of dehydration on exercise performance 
have reported an increase in core temperature, cardiovascular strain, but a decrease in 

blood volume, skin blood flow and sweat rate (Sawka et al., 1985; Buono and Wall, 

2000; Gonzalez-Alonso et al., 2000). It has been suggested that these factors, either 
individually or synergistically, contribute to a decreased capacity to perform submaximal 

exercise in the heat (Kay and Marino, 2000). The ingestion of fluid during exercise in a 

warm environment has been shown to attenuate hyperthermia (Wimmer et A, 1997) and 
improve performance (Below et al., 1995). The benefits of fluid ingestion for 

performance include attenuating the rise in core temperature (Wimmer et al., 1997) and 

reducing the physiological stress on the cardiovascular, central nervous and muscular 

systems (Coyle, 2004). 

Ingesting carbohydrate in moderate environmental conditions enhances exercise 

performance and endurance capacity (Coyle et a!., 1986; Ball et a1., 1995; Nicholas et al., 
1995; Vergauwen et al., 1997). The ingestion of glucose has also been shown to enhance 

cognitive performance (Scholey et al., 2001). However, the ingestion of carbohydrate 

solutions during exercise in the heat has produced equivocal results. Some authors (Davis 

et al., 1988; Millard-Stafford et at., 1992) have reported performance benefits, whilst 

others (Febbraio et al., 1996; Morris et al., 2003) have suggested that carbohydrate 

availability is not a limiting factor when exercise is performed in the heat, as observed in 
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the previous study. The effect of ingesting fluid containing carbohydrate during soccer- 

specific exercise performed in the heat has not been extensively investigated (Morris et 
A, 2003). 

Another fatiguing factor during exercise is when core temperature reaches a critical value 
(Nielsen et al., 1993), and a number of strategies have been implemented to reduce 

thermoregulatory strain (Kay and Marino, 2000). The principle of pre-cooling is the 

reduction of core body temperature prior to performing exercise, thereby increasing the 
margin for metabolic heat production and the time before reaching a critical limiting 

temperature when a given exercise intensity can no longer be maintained. Previous 

research has indicated that pre-cooling can improve endurance exercise (Lee and 

Haymes, 1995; Booth eta!., 1997; Cotter et al., 2001; White et al., 2003; Arngrimsson et 

al., 2004), although others have demonstrated a negative effect (Kruk et al., 1990; Kay et 

al., 1999). However, limited research has been conducted using high-intensity exercise 

(Marsh and Sleivert, 1999; Cotter et al., 2001; Sleivert et al., 2001). Pre-cooling has also 

been used as a technique prior to performing soccer-specific exercise (Drust et al., 
2000a). However, pre-cooling was only performed under "normal" laboratory conditions 

(20.5°C, 68.3% relative humidity). Therefore, pre-cooling may be of benefit during 90 

min of soccer-specific exercise in the heat when core temperature would increase at a 
faster rate and reach a higher value. 

Dehydration causes a decrease in the performance of various cognitive abilities such as 
decisional or perceptual tasks (Sharma et al., 1986; Gopinathan et al., 1988; Cian et al., 
2000; Cian et al., 2001). This reduction in cognitive performance has been shown to 

occur irrespective of the dehydration mode (exercise or heat stress) (Cian et al., 2000). 

Furthermore, the reduction is proportionate to the degree of dehydration and becomes 

significant with a loss of 2% body mass (Gopinathan et al., 1988). Cain et al. (2001) 

reported significant improvements in cognitive performance (long-term memory) when 

euhydration was restored following dehydration. Ingesting a carbohydrate-electrolyte 

solution during exercise has also been shown to minimise the negative effect of central 
fatigue on cognitive performance induced by prolonged exercise at intensities greater 

150 



than 60% V02,. (Reilly and Lewis, 1985; Collardeau et al., 2001) and intermittent 

exercise (Winnick et al., 2005). Therefore, reducing the impact of dehydration and 

maintaining blood glucose may aid cognitive performance during a soccer match and 

would be beneficial in terms tactical thought and decision making. 

At present, the metabolic responses to exercise following pre-cooling have not been 

widely investigated and have not examined in conjunction with carbohydrate ingestion 

during exercise. Therefore, the aim of this investigation was to examine the combined 
effect of carbohydrate supplementation and pre-cooling on the metabolic responses to 

soccer-specific exercise and a combination of performance measures. 

/. ý .ý 
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7.2. Methods 

7.2.1. Subjects 

Twelve male university soccer players (mean age: 25±0.68 years; weight: 73.75±2.55 kg; 

height: 1.80±0.02 m; ' 02 : 61.3±1.4 ml-kg"-min 1) participated in this study. All 

subjects provided written informed consent to participate, in accordance with Liverpool 

John Moores University's ethical procedures. The experiment was approved by the 
University's Human Ethics Committee. 

7.2.2. Experimental Protocol 

The subjects undertook two familiarisation sessions, consisting of two blocks of the 

soccer-specific protocol (i. e. 30 minutes) outlined in section 3.1.4. Subjects completed 

the full soccer-specific protocol on a motorised treadmill on four occasions in the 

environmental chamber (30.5±0.1°C and 42.2±0.2% relative humidity). During two 

sessions a carbohydrate electrolyte solution (Lucozade Sport, GlaxoSmithKline, 

Gloucestershire, UK) was consumed at 0,15,30,45,60,75 min of exercise (CHO). 

During the other sessions a placebo (a similarly coloured, flavoured and textured 

electrolyte solution) (G1axoSmithKline, Gloucestershire, UK) was consumed (PLA). 

Table 7.1: Volumes of fluid ingestion. 

Trial Drink Total volume 
volume (ml) (ml) 

PLA 223±7 1339±41 
PLAc 224±7 1344±41 
GLU 223±7 1337±41 
GLUc 222±7 1333±41 

On one occasion for each drink the subject underwent pre-cooling (CHOc and PLAc). 

The volumes of fluid ingested during each trial are presented in Table 7.1. The pre- 

cooling strategy involved the subject wearing a cooling vest (Cool Vest, Jackson 
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Technical Solutions Ltd, Kent, UK) for 60 min prior to exercise (Figure 7.1) and again at 
half-time. All of the trials were performed in a counter-balanced fashion and where 

possible, double-blind. 

Figure 7.1: Subject undergoing pre-cooling before (A) and at half-time (B). 

7.2.3. Mental concentration test 

This test was a measure of how well the subject could concentrate on making simple 

decisions (Hardy and Fazey, 1990) and was performed after 4 min of every 15 min block 

of the soccer-specific protocol. The test grid (Figure 7.2) was projected onto the wall in 

front of the treadmill and the task was to read from left to right across the lines of figures 

and identify each pair of figures that added up to ten. No figure could be used twice, for 

example, 373 could be used as 37 or 73 but not 373. The subject had 90 seconds to scan 

all 16 lines and the task was to complete as many lines as possible whilst performing the 

soccer-specific protocol. When the time was completed the number of "tens" correctly 

identified was recorded as a percentage of those attempted. 
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Figure 7.3: Performing the self-chosen work-rate test (A) and Cunningham and Faulkner 

test (B). 

7.2.9. Blood sampling and analysis 

Four venous blood samples (16 ml; total 64 ml) were taken from an antecubital vein in 

the forearm. A blood sample was taken immediately before and after the donning of the 

cooling vest, at half-time and at the completion of the 90 minutes. The blood samples 

were later analysed for glucose, lactate, NEFA, glycerol, catecholamines, insulin, 

cortisol, IL-6 and prolactin (described in section 3.7). Muscle temperature was 
determined by means of a needle thermistor (Model MKA-A, Ellab, Denmark) inserted 

into the quadriceps muscle to a depth of 30 mm (Figure 7.4) and was measured at the 

same time points as the blood samples. 

ý:; :: -. 

:: `- 

I 

Figure 7.4: Muscle temperature being measured. 
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7.2.10. Reliability 

The subjects, all of whom were familiar with the test, performed the Cunningham and 
Faulkner test on six occasions 1 week apart on a motorized treadmill (H/P/Cosmos Pulsar 

4.0, H/P/Cosmos Sports and Medical GmbH, Nussdorf-Traunstein, Germany). There was 

no significant difference (P>0.05) in time to exhaustion between trials. The coefficient of 

variation for time to exhaustion was 7.3%. Hence, the Cunningham and Faulkner test was 
deemed to provide a reliable measure of resistance to high-intensity exercise. 

After familiarization the subjects performed the psychophysical test on six occasions 1 

week apart on a motorized treadmill (H/P/Cosmos Pulsar 4.0, H/P/Cosmos Sports and 
Medical GmbH, Germany). There was no significant difference (P>0.05) in selected 

running speed between trials. The CV for running speed was 4.7%. Self-selected running 

speed was deemed to provide a reliable measure of psychophysical performance. 

Following familiarisation the 12 subjects performed the mental concentration test twice 

whilst performing 30 minutes of the soccer-specific protocol on a motorized treadmill 

(H/P/Cosmos Pulsar 4.0, H/P/Cosmos Sports and Medical GmbH, Nussdorf-Traunstein, 

Germany) on six occasions 1 week apart. The two-way ANOVA with repeated measures 

revealed no significant differences (P>0.05) in percentage of correct responses within or 
between trials. The CV for the percentage of correct responses was 4.8% and the test was 
deemed to provide a reliable measure of mental concentration. 

7.2.11. Statistical analysis 

All variables were analysed using except for sweat loss, the performance variables and 

the reliability of the Cunningham and Faulkner and psychophysical tests, which were 

analysed using a one-way ANOVA with repeated measures. The Pearson coefficient 

correlation was used to asses the correlation between the self-chosen work-rate test and 

the Cunningham and Faulkner test. All results are reported as the mean ± the standard 

error of the mean (SEM) and a level of P<0.05 was considered statistically significant. 
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7.3. Results 

7.3.1. Pre-trial hydration status 

Pre-trial hydration status was similar for all of the experimental conditions. Urine colour 

PLA (2.34±0.22), PLAc (2.42±0.41), GLU (2.3710.18) and GLUc (2.29±0.23) 

(F2,24=0.468; P>0.05) and osmolality PLA (525.5±109.7 mOsm"kg71), PLAc 

(517.2±115.7 mOsm"kg'1), GLU (527.2±101.6 mOsm"kg71) and GLUc (567.4±106.2 

mOsm"kg'1) (F2,22=0.569; P>0.05) did not differ significantly between trials. 

7.3.2. Core and muscle temperature 

There was a significant trial effect on core temperature (F2,20=13.482; P<0.05, Figure 

7.5). Pre-cooling significantly reduced core temperature; PLAc: 37.2±0.1°C to 

36.6±0.1°C; GLUc: 37.3±0.1°C to 36.6±0.1°C before and after pre-cooling, respectively. 
As a consequence, core temperature during GLUc and PLAc was significantly lower 

prior to the start of exercise compared with PLA and GLU, and this trend remained 

throughout blocks 1 and 2. During block 3 core temperature was significantly lower in 

GLUc and PLAc compared with GLU. During block 4 GLU was significantly higher than 

GLUc. During blocks 5 and 6 core temperature was significantly higher during PLA, 

PLAc and GLU compared with GLUc. A significant effect of time was observed 

(F2,22=186.640; P<0.05), with pairwise comparisons showing that core temperature 

increased significantly (P<0.05) with each block of the soccer-specific protocol and 
decreased significantly during half-time. 
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Figure 7.5: Core temperature during soccer-specific protocol. 
Pre - before pre-cooling; Post - after pre-cooling; 1-6 - Blocks; 1-6, HT- Half-time. 

* PLA and GLU significantly greater than PLAc and GLUc. t PLA, PLAc and GLU 

significantly greater than GLUc. $ GLU significantly greater than PLAc and GLUc. $ 

GLU significantly greater than GLUc. 

Muscle temperature (Figure 7.6) was significantly affected by trial (F2,12=3.749; P<0.05). 

Pre-cooling significantly reduced muscle temperature; PLAc: 36.1±0.2°C to 35.5±0.2°C; 

GLUc: 36.2±0.1°C to 35.5±0.2°C before and after pre-cooling, respectively. Therefore, 

muscle temperature during GLUc and PLAc was significantly lower prior to the start of 

exercise compared PLA and GLU. At half-time and the end of exercise there was no 
difference between trials. There was a significant effect of time (Fi, 15=199.331; P<0.05), 

muscle temperature increasing significantly between each time point during exercise. 

159 



40.0- 

39.5- 
--*- PLA 

39.0 -0- PLAG 
0 38.5 

GLU 
--v GLUc 

38.0 

37.5 

37.0 * 

m y 36.5- 

36.0- 

35.5- 

35.0 ý (ir 
0.0 

Pre 0 45 90 

Time point (min) 
Figure 7.6: Muscle temperature during soccer-specific protocol. 

* PLA and GLU significantly greater than PLAc and GLUc. 

7.3.3. Thermal sensation 

Pre-cooling significantly reduced thermal sensation prior to performing the soccer- 

specific protocol (Table 7.2) (F1, i=45.047; P<0.05). Thermal sensation was significantly 

lower during GLUc and PLAc at half-time compared with GLU and PLA (F3,4=0.721; 

P<0.05), although during the exercise there was not a significant treatment effect. There 

was a significant effect of time (F3,31=61.053; P<0.05), thermal sensation increasing 

significantly (P<0.05) during each half of the soccer-specific protocol. It was also 

significantly lower at half-time compared with blocks 3 and 4. 

Table 7.2: Thermal sensation during the soccer-specific protocol. 

Time point 
Pre- Post- 123 HT 456 

PLA 5.110.1 6.5±0.2 7.1±0.2 7.3±0.2 5.9±0.2 7.0±0.1 7.3±0.1 7.9±0.2 
PLAc 5.0±0.1 3.0±0.20 6.3±0.1 7.0±0.1 7.3±0.1 5.4±0.1' 7.0±0.2 7.1±0.2 7.8±0.2 
GLU 5.1±0.1 6.6±0.2 7.1±0.2 7.2±0.2 5.8±0.1 7.3±0.2 7.4±0.2 7.8±0.2 
GLUc 5.2±0.1 3.3±0.1" 6.3±0.1 7.0±0.1 7.2±0.1 5.3±0.1" 7.1±0.2 7.310.1 7.8±0.2 

Note: Pre- before pre-cooling; Post- aller pre-cooling; 1-6-Blocks; 1-6, HT-Half-time. 

* Significantly lower than PLA and GLU 
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7.3.4. Plasma metabolites 

Pre-exercise plasma glucose concentration was similar for all three trials. There was a 

significant trial effect on the concentration of plasma glucose (F2,17=13.255; P<0.05; 

Figure 7.7). The plasma glucose concentration was significantly higher at half-time and 

the end of the soccer-specific protocol during GLU and GLUc compared with PLA and 

PLAc. There was no significant effect of pre-cooling of plasma glucose concentration. 

There was also a significant effect of time (F2,18=16.653; P<0.05). During trials GLU and 

GLUc, plasma glucose concentrations were elevated significantly (P<0.05) above resting 

levels at half-time and on completion of the soccer-specific protocol. The repeated 

measures ANOVA identified a significant time and trial interaction (F3,30=5.673; 

P<0.05); plasma glucose increased during the first half of all trials, markedly so during 

GLU and GLUc. During the second half, plasma glucose decreased during all of the 

trials, although no subjects were found to be hypoglycaemic. 
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Figure 7.7: Plasma glucose concentration during the soccer-specific protocol. 
* GLU and GLUc significantly greater than PLA and PLAc. 

161 



The repeated measures ANOVA revealed that there was a significant trial effect on the 

plasma concentration of NEFA (F2,26=4.514; P<0.05), although there was no significant 

effect of pre-cooling. The concentration of NEFA was significantly (P<0.05) higher 

during PLA and PLAc compared with GLU (Figure 7.8). There was a significant effect of 

time on the concentration of plasma NEFA (F3,33=166.683; P<0.05), which increased 

significantly between each time point as exercise progressed. There was also a significant 
(F2,25=4.432; P<0.05) trial by time interaction; after half-time NEFA concentration 
increased markedly more during PLA and PLA compared with GLU and GLUc, which 
increased at a steady rate. 
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Figure 7.8: Plasma NEFA concentration during the soccer-specific protocol. 
* PLA and PLAc significantly greater than GLU. 

The plasma concentration of glycerol was significantly affected by the trial (Fi, 15=10.787; 
P<0.05), with the concentration significantly (P<0.05) higher during the PLA trial 

compared with GLU and GLUc throughout the protocol. There was no significant effect 

of pre-cooling. Glycerol concentration was also significantly higher in PLAc than GLU 

and GLUc at 90 min (Figure 7.9). Plasma glycerol concentration increased significantly 
between each time point (Fi, 14=123.866; P<0.05). There was also a significant trial and 
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time interaction (F2,18=15.066; P<0.05); glycerol concentration increased markedly more 
during PLA and PLAc compared with GLU and GLUc. 
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Figure 7.9: Plasma glycerol concentration during the soccer-specific protocol. 
* PLA significantly greater than GLU and GLUc. 

t PLA and PLAc significantly greater than GLU and GLUc. 

The repeated measures ANOVA revealed that there was no significant trial effect on the 

plasma concentration of lactate (F2,24=0.981; P>0.05; Figure 7.10). There was a 

significant effect of time on plasma lactate during the soccer-specific protocol 
(F1,13=48.308; P<0.05), lactate concentration increasing significantly between rest and 

half-time. 
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Figure 7.10: Plasma lactate concentration during the soccer-specific protocol. 

7.3.4. Hormones 

The concentration of adrenaline was found to be similar during all trials (F2,21=2.809; 

P>0.05, Figure 7.11), and increased significantly (F2,19=18.764; P<0.05) between each 

time point during the exercise period. There was also a significant interaction 

(F3,30=3.065; P<0.05); the adrenaline concentration increased markedly during the second 
half of PLA and PLAc, in contrast adrenaline increased during GLU and GLUc at a 

constant rate throughout the protocol. There was a trend for adrenaline to be lower during 

PLAc compared with PLA, although this change was not significant (P=0.086). 
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Figure 7.11: Plasma adrenaline concentration during the soccer-specific protocol. 

The concentration of noradrenaline was found to be similar during all trials (F2,21=2.809; 

P>0.05, Figure 7.12), and increased significantly (Fl, 15=26.172; P<0.05) between each 

time point during the exercise period. There was a trend for noradrenaline concentration 

to be lower during the pre-cooling trials, although this effect was not significant 
(P=0.252). 
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Figure 7.12: Plasma noradrenaline concentration during the soccer-specific protocol. 
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There was not a significant trial effect of the concentration of cortisol (F2,26=0.259; 

P>0.05; Figure 7.13). The repeated measures ANOVA revealed that there was not a 

significant effect of time (F1,16=2.034; P>0.05). Pre-cooling resulted in an increase in 

cortisol concentration, although this effect did not reach statistical significance 
(P=0.073). 
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Figure 7.13: Serum cortisol concentration during the soccer-specific protocol. 

4 

There was a significant trial effect on the concentration of serum insulin (F2,22=21.830; 

P<0.05; Figure 7.14). The serum insulin concentration was significantly higher during 

GLU and GLUc than during the PLA and PLAc (P<0.05). The repeated measures 
ANOVA revealed that there was not a significant effect of time (F1,13=2.723; P>0.05). 

The repeated measures ANOVA identified a significant time and trial interaction 

(F2,25=3.571; P<0.05); serum insulin concentration increased during the first half of GLU 

and GLUc, in contrast it decreased during PLA and PLAc. All trials demonstrated 

decreased insulin response during the second half, markedly so during GLU. 
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Figure 7.14: Serum insulin concentration during the soccer-specific protocol. 

* GLU and GLUc significantly higher than PLAc. 

'ý GLU significantly higher than PLA. 

There was a significant trial effect on the concentration of IL-6 (F2,24=3.731; P<0.05; 

Figure 7.15). At half-time, the IL-6 concentration was significantly higher in PLA and 

PLAc compared with GLU and GLUc (P<0.05). The repeated measures ANOVA 

revealed that there was a significant effect of time (F2,19=233.889; P<0.05), with IL-6 

concentration increasing significantly during both halves of the protocol, although the 

period of pre-cooling had no significant effect (P>0.05). 
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Figure 7.15: Interleukin-6 concentration during the soccer-specific protocol. 
* PLA and PLAc significantly higher than GLU and GLUc, 

There was not a significant trial effect on the concentration of prolactin (F2,27=0.402; 

P>0.05; Figure 7.16). The repeated measures ANOVA revealed that there was a 

significant effect of time (F2,21=42.937; P<0.05); prolactin values increased significantly 
during the first half of the protocol. Pre-cooling resulted in a significant decrease in 

prolactin concentration (F11 11=7.397; P<0.05). 
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Figure 7.16: Serum prolactin concentration during the soccer-specific protocol. 
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7.3.5. Plasma osmolality 

There was no significant difference in plasma osmolality (Figure 7.17) between the three 

trials (F2,20=0.106; P>0.05). Plasma osmolality was significantly higher (F2,22=25.293; 

P<0.05) at half-time and at the completion of the soccer-specific protocol, compared with 

pre-exercise values. There was no significant effect of pre-cooling (F1,11=0.040; P>0.05). 
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Figure 7.17: Changes in plasma osmolality during the soccer-specific protocol. 

7.3.6. Indirect calorimetry 
3 

There was a significant difference in RER between the trials (F2,26=2.254; P<0.05, Figure 

7.18). During GLUc, RER was higher than during PLA or PLAc at block 5, while at 
block 6 both GLU and GLUc were significantly higher than PLA and PLAc (P<0.05). 

There was a significant effect of time on RER (F3,28=23.147; P<0.05); blocks 1 and 2 

showed significantly (P<0.05) higher values than the subsequent 60 min, indicating that a 

greater proportion of carbohydrate was oxidised during this time. There was a significant 
interaction (F5,59=4.174; P<0.05); RER during GLU and GLUc remained relatively 

constant throughout the soccer-specific protocol, whereas during PIA it decreased 

steadily throughout. In contrast during PLAc, RER was consistent for the first 30 min 
(blocks 1 and 2), before decreasing throughout the remainder of the protocol. 
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Figure 7.18: Respiratory exchange ratio during the soccer-specific protocol. 
GLUc significantly higher than PLA and PLAc. * GLU and GLUc significantly higher 

than PLA. 

Total carbohydrate oxidation (Figure 7.19) was significantly (F2,23=1.588; P<0.05) 

affected by the trials. Carbohydrate oxidation was greater during GLU and GLUc during 

block 6 compared to PLA (P<0.05). There were no significant differences between GLUc 

and GLU (P>0.05), or PLAc and PLA (P>0.05). Carbohydrate oxidation was 

significantly (F2,26=26.410; P<0.05) higher during block 1 (1 - 15 min) compared with 

the rest of the protocol (16 - 90 min). There was a significant interaction between trial 

and time (F5,53=5.900; P<0.05); carbohydrate oxidation was stable during GLU and 
GLUc, whereas in contrast it declined steadily during PLA and PLAc. 
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Figure 7.19: Carbohydrate oxidation during the soccer-specific protocol. 
* GLU and GLUc significantly higher than PLA. 

Repeated measures ANOVA showed that the rate of fat oxidation during PLA was 

significantly higher (F2,25=3.380; P<0.05, Figure 7.20) compared with GLUc during 

blocks 4 to 6 (45 to 90 min). There was no significant difference between the other trials 

(P>0.05) The repeated measures ANOVA identified a significant effect of time 

(F2, zi=36.924; P<0.05). The Bonferroni corrected pairwise comparisons showed that fat 

oxidation was significantly lower (P<0.05) during block 1 (1 - 15 min) compared with 

the remainder of the protocol (16 - 90 min). There was a significant interaction effect 
(F15,165=9.691; P<0.05); fat oxidation increased steadily during PLA, whereas during the 

carbohydrate trials, in particular GLUc, fat oxidation was relatively constant. 
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Figure 7.20: Fat oxidation during the soccer-specific protocol. 

* PLA significantly higher than GLUc. 

7.3.7. Gut Fullness and thirst 

Gut fullness was not significantly (F2,2o=0.896; P>0.05) affected by the trials (Table 7.3). 

There was a significant effect of time (F2,27=6.694; P<0.05); pairwise comparisons 
disclosed that gut fullness was significantly greater post-fluid ingestion at half-time 

compared to pre-fluid ingestion at the start of the protocol. 

Table 7.3: Subjective sensation of gut fullness during the soccer-specific protocol. 

Time point 
Pre- Post- 123 HT 456 

PLA 25.6±4.6 34.9±5.4 29.0±5.3 38.9±6.5 36.5±5.1 44.3±6.7 38.6±5.0 39.9±5.3 43.5±5.6 
PLAG 20.0±4.3 29.9±4.3 26.9±2.6 27.2±4.2 31.0±4.7 37.1±5.5 36.3±5.0 36.5±4.7 35.9±6.0 
GLU 21.8±4.7 31.8±4.7 26.5±4.1 33.5±4.2 35.3±4.5 45.1±4.6 32.8±4.4 33.7±4.3 34.7±5.3 
GLUc 21.8±4.7 31.8±4.7 26.5±4.1 33.5±4.2 35.3±4.5 45.1±4.6 32.8±4.4 33.7±4.7 28.3±3.2 

Note: Pre - Before f uid ingestion; Post - Af er f uid ingestion; 1-6 - Blocks; 1-6, HT- Half-time. 

There was not a significant difference in thirst between the trials (F3,32=0.266; P>0.05, 

Table 7.4). There was also a significant difference between time points, (F2,25=12.323; 

172 

ý1 I lýl 



P<0.05); pairwise comparisons revealed these differences occurred between pre- and 

post-fluid ingestion at the start of the protocol. Thirst was also significantly lower at half- 

time compared with pre-fluid ingestion at the start of the protocol. The half-time value 

was also significantly lower than all time points except immediately following fluid 

ingestion before the start of exercise. 

Table 7.4: Subjective sensation of thirst during the soccer-specific protocol. 

Time point 
Pre- Post- 1 2 3 HT 4 5 6 

PLA 54.5±6.4 41.5±5.7 62.1±7.2 58.8±7.6 61.1±7.1 35.9±5.5 51.0±6.2 52.9±6.8 57.2±6.6 
PLAc 55.4±5.2 43.7±5.5 55.1±5.7 52.0±6.2 54.9±7.4 31.0±4.5 50.0±6.3 54.2±6.7 56.7±7.5 
GLU 57.1±6.3 48.0±7.0 58.5±6.7 57.7±6.6 53.4±6.9 34.0±6.8 52.7±7.1 50.0±5.9 52.3±6.7 
GLUc 52.8±5.9 45.5±5.1 58.8±4.7 60.3±6.5 58.3±6.5 33.3±5.7 53.5±5.7 55.3±6.5 55.2±7.0 

Note: Pre - Before f luid ingestion; Post -After fluid ingestion; 1-6 - Blocks; 1-6, HT - Half-time. 

7.3.8. Heart rate and RPE 

There was no significant trial effect on heart rate (F2,22=3.842; P>0.05, Figure 7.21). 

Heart rate increased significantly (F3,28=656.231; P<0.05) between each block of the 

soccer-specific protocol and decreased significantly during half-time. 
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Figure 7.21: Heart rate during the soccer-specific protocol. 
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There was no significant (F3,33=2.392; P>0.05) difference in RPE between trials (Figure 

7.22). A significant effect of time was detected (F1,16=90.721; P<0.05), RPE increased 

significantly between each block of the soccer-specific protocol, with the exception of 
between blocks 3 and 4, before and after half-time. 
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Figure 7.22: RPE during soccer-specific protocol. 

7.3.9. Mental concentration 

Mental concentration was significantly influenced by trial (F6=0.740; P>0.05; Figure 

7.23); in blocks 1,3 and 4 the percentage of correct response was significantly higher 

during GLUc compared with PLA. There was no significant effect of time (F2,20=2.180; 

P>0.05), the percentage of correct answers was relatively constant throughout the 

protocol. 
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Figure 7.23: Mental concentration during soccer-specific protocol. 
* GLUc significantly greater than PLA. 

7.3.10. Self-chosen work-rate test 

The self-chosen speed (F2,22=5.315; P<0.05; Figure 7.24) was significantly higher during 

GLUc compared with the other trials (PLA: 11.3±0.4 km-h-1; PLAc: 11.6±0.5 km-h"1; 

GLU: 11.3±0.4 km"h''; GLUc: 12.5±0.5 km"h''). 
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Figure 7.24: Running speed during the self-chosen work-rate test. 

* significantly higher than PLA, PLAc and GLU. 
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7.3.11. Cunningham and Faulkner test 

There was a significant treatment effect (F2,24=11.171; P<0.05) on exercise capacity 
during the Cunningham and Faulkner test (Figure 7.25); GLU and GLUc were 
significantly higher compared to PLA; PLA: 57.09±5.25 s; PLAc: 70.05±7.74 s; GLU: 

72.06±5.16 s; GLUc: 79.82±6.93 s. There was a trend for performance to be improved 

with pre-cooling during the placebo trials, but this effect was not significant (P=0.072). 

In addition, the Person coefficient revealed a significant correlation between the self- 

chosen work-rate test and the Cunningham and Faulkner test (Speed: r=0.48; P<0.05). 
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Figure 7.25: Time to exhaustion during the Cunningham and Faulkner test. 

* significantly higher than PLA. 

7.3.12. Sweat loss 

There was no significant difference (F2626=1.654; P>0.05) in sweat loss between the four 

trials. The mean losses were: PLA (2.09±0.15 kg), PLAc (2.33±0.12 kg), GLU 

(2.12±0.15 kg) and GLUc (2.23±0.10 kg). The absolute weight loss (uncorrected for fluid 

ingestion) was not significantly different between trials (F2,27=2.177; P>0.05); PLA: 

1.02±0.1 kg, PLAc: 1.29±0.1 kg, GLU: 1.06±0.1 kg and GLUc: 1.22±0.1 kg. 
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7.4. Discussion 

The major findings of this study were i) a1h period of pre-cooling significantly reduced 

core temperature, ii) exercise capacity following 90 min of soccer-specific exercise in the 
heat was significantly improved with the ingestion of carbohydrate, iii) the combined 

effect of carbohydrate ingestion and pre-cooling significantly enhanced self-chosen 

running speed and exercise capacity and iv) the combined effect of carbohydrate 
ingestion and pre-cooling significantly improved mental concentration. 

The present study demonstrated that exercise capacity was significantly improved 

following the ingestion of carbohydrate, supporting the findings of previous studies 
(Nicholas et al., 1995). The increase in exercise capacity, measured using the 
Cunningham and Faulkner test was possibly due to the ingestion of carbohydrate 
increasing blood glucose levels (Figure 7.7) enabling a higher rate of carbohydrate 

oxidation to be maintained (Figure 7.19). Carbohydrate ingestion has been repeatedly 

shown to improve exercise capacity (Coyle et al., 1986; Coggan and Coyle, 1987; 

Millard-Stafford et al., 1992; Yasplekis et al., 1993a), possibly due to increased 

availability of blood glucose to replace that utilized by the muscle during exercise (Coyle 

et aL, 1983). Other potential mechanisms include, sparing of muscle glycogen (Yasplekis 

et al., 1993a), maintaining a higher rate of carbohydrate oxidation at a time when muscle 

glycogen levels are low (Coggan and Coyle, 1987) and reduced central fatigue (Davis et 

al., 1992). Nicholas et al. (1995) concluded that the most probable cause of increased 

exercise capacity was reduced muscle glycogen utilization during exercise when 
consuming carbohydrate. However, in a previous study, Morris et al. (2003) examined 
the effect of carbohydrate ingestion on performance of intermittent exercise in the heat 

and failed to show any benefit of carbohydrate ingestion. The authors concluded that 
hyperthermia may have been the main fatiguing factor and not dehydration or energy 
depletion. In this study, (Morris et al., 2003) all but one subject failed to complete the 
first part of the protocol, so exercise capacity was not assessed. 
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It is worth noting that in the present study the ingestion of carbohydrate significantly 
improved time to exhaustion during the Cunningham and Faulkner test. This observation 
is in contrast to the findings of the previous study. One possible explanation for this 

occurrence is that in study 3 muscle biopsies were performed prior to performing the 
Cunningham and Faulkner test which may have caused muscle soreness and pain which 
then influenced time to exhaustion. However the exact mechanism remains to be 

identified. 

Pre-cooling has previously been reported to improve the performance of endurance 

exercise (Lee and Haymes, 1995; Booth et al., 1997; Cotter et al., 2001; White et al., 
2003; Arngrimsson et al., 2004) and high-intensity exercise (Marsh and Sleivert, 1999; 

Sleivert et al., 2001). In the present study the combined effect of pre-cooling and 

carbohydrate significantly improved self-chosen pace and exercise capacity when 

compared with placebo, placebo with pre-cooling and carbohydrate ingestion. There was 

a trend for self-chosen running speed and high-intensity exercise capacity to be improved 

with placebo and pre-cooling compared with placebo. Pre-cooling has previously been 

shown not to impact on muscle metabolism (Kay et al., 1999; Booth et al., 2001) 

Therefore it is unlikely that the increased exercise capacity and self-chosen running speed 

observed in the present study and exercise performance in previous studies (Booth et al., 
1997) can be explained on the basis of altered muscle metabolism. One possible 

explanation for the faster self-chosen pace during GLUc is the lower core temperature at 
the completion of the soccer-specific protocol as hyperthermia may reduce the central 
drive for exercise by influencing the motor control centre in the brain (Nielsen et al., 
1993). It has also been shown that during hyperthermic exercise cerebral temperature 
increases in parallel with core temperature (Nybo et al., 2002b) and during treadmill 

exercise goats reduce their speed, or refuse to move, when the brain temperature exceeds 
42°C (Caputa et al., 1986). In addition, exercise-induced hyperthermia reduces voluntary 

activation of motorneurons during a sustained maximal muscle contraction in humans 

(Nybo and Nielsen, 2001). 
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Thus far the metabolic responses to exercise after pre-cooling have not been extensively 
investigated. It has been proposed that pre-cooling may enhance exercise performance by 

reducing the metabolic perturbation often observed with increased core and muscle 

temperatures (Marino, 2002). Pre-cooling did not have a significant effect on 

metabolism. One potential explanation for the lack of difference in metabolism in the 

present study is the failure of pre-cooling to affect muscle temperature during exercise. 
Pre-cooling significantly reduced muscle temperature prior to exercise but there was not a 

significant difference at subsequent time points during exercise. Recently, Booth et al. 
(2001) demonstrated that pre-cooling only had a negligible effect on substrate utilization 
during exercise in the heat. Despite lower muscle and core temperatures with pre-cooling, 

muscle glycogen utilization was not significantly different from the control trial. The 

authors suggested that muscle temperature needed to reach a critical value before muscle 

energy metabolism is sufficiently affected to influence exercise performance. The present 

study demonstrated that pre-cooling significantly reduced core temperature but not 

muscle temperature during exercise, suggesting that muscle temperature is an important 

factor in regulating muscle metabolism. 

The lack of a difference in metabolism between trials may have been due to there being 

no difference in muscle temperature, once exercise had began. Starkie et al. (1999) 

suggested that muscle temperature was involved in the regulation of intramuscular 

carbohydrate utilization and was responsible, in part, for the increase in muscle glycogen 

utilization frequently observed during exercise in the heat. Oxygen uptake was unaffected 
by pre-cooling, as demonstrated in previous studies. Most studies (Lee and Haymes, 

1995; Booth et al., 1997; Kay et al., 1999; Drust et al., 2000a) have shown that oxygen 

consumption during exercise remains unchanged with pre-cooling. 

The period of pre-cooling significantly reduced core and muscle temperatures and 

consequently thermal sensation. Core temperature remained significantly lower during 

PLAc and GLUc throughout the first 45 min of exercise. This observation is in contrast to 

a number of previous studies (Kruk et al., 1991; Lee and Haymes, 1995; Bolster et al., 
1999), which demonstrated that core temperature was significantly lower after pre- 
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cooling for between 10 and 26 min. However, Drust et al. (2000a) reported that pre- 

cooling significantly reduced rectal temperature during the first half of soccer-specific 

exercise. One possible explanation for these discrepancies is that a wide range of cooling 
techniques and exercise intensities and durations have been used to assess the impact of 

pre-cooling (Lee and Haymes, 1995). The reduced core temperature associated with pre- 

cooling allows for a greater heat storage before core temperature reaches a level high 

enough to stimulate heat dissipation (Drust et al., 2000a), reducing the physiological 

strain. However, in the present study there was not a significant reduction in the heart rate 

and RPE during the pre-cooling trials. Thermal sensation differed between trials only 

when the cooling vest was being worn, similar to the findings of Bolster et al (1999). Pre- 

cooling did not significantly affect total sweat loss during the soccer-specific protocol. 
This observation may be as a consequence of the amount of heat lost through the 

evaporation of sweat is largely determined by the metabolic heat production (VD2) and 

the environmental heat load (Nielsen, 1996), which was the same for all trials. This 

observation was consistent with the findings of Booth et al. (1997) and Drust et al. 
(2000a). 

Circulating levels of II16 were significantly elevated during the placebo trials at half- 

time. Endurance exercise (Nieman et al., 1998; Suzuki et al., 2003) and repeated bouts of 
high-intensity cycling (Meyer et al., 2001a) have been shown to increase IL-6 levels in 

response to skeletal muscle inflammation. In addition, adrenaline has been shown to 

increase the appearance of IL-6 in rats (Yu et al., 2001), enhancing the stimulation of 
lipolysis. Stouthard et al. (1996) found an increase in circulating NEFA with IL-6 

infusion although it was not possible to establish weather IL-6 acted directly on the 

adipocytes due to the elevated adrenaline levels. The release of IL -6 has been shown to 

be attenuated by the ingestion of carbohydrate during prolonged cycling at 70-75% 

\D2, 
ma (Nieman et al., 2003; Nieman et al., 2005). These findings suggest that the release 

of IL-6 is dependent on carbohydrate availability and the associated diminished 

adrenaline response and may have contributed to the elevated fat oxidation rates observed 
during the placebo trials. 
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The prolactin values at the completion of the soccer-specific protocol observed in the 

present study are similar to those reported by Purvis et al. (2001) following soccer- 

specific exercise in the heat. Despite the absence of a significant difference between 

conditions there was a trend for prolactin levels to be lower during the carbohydrate 
trials. This may have been as a consequence of the increased availability of carbohydrate 
(Chan et al., 2004), or the elevated NEFA concentration observed during the placebo 

conditions. High NEFA concentrations during exercise are associated with increased 

cortisol, serotonin (5-HT) and adrenaline levels, which have been shown to increase the 

synthesis and release of prolactin (Struder and Weicker, 2001b). Prolactin production is 

mediated by the adrenal stimulation of f-TRP, which is released from albumin (Struder 

and Weicker, 2001a). Trytophan further stimulates 5-HT production (Chaouloff, 1997) 

which stimulates the lactotrophic cells within the anterior pituitary (Struder and Weicker, 

2001a). An elevated core temperature (Brisson et al., 1991) and high-intensity exercise 
(Brisson et al., 1981) have also been shown to increase prolactin levels. However, it has 

also been suggested that core temperature regulates in the release of prolactin. Low et al. 
(2005b) reported that core temperature, and not cardiovascular afferents was the key 

stimulus for prolactin and may be a marker of central serotonergic and dopaminergic 

activity relating to central fatigue during exercise in hot environments. Previous studies 
(Brisson et al., 1991; Low et al., 2005a) have indicated that there is a threshold level in 

core temperature above which the release of prolactin increases and this temperature is 

38°C. This threshold for prolactin release would explain the high levels of prolactin 

observed in the present study, as core temperature at the completion of the soccer-specific 

protocol exceeded 38.5°C in all trials, despite differences in carbohydrate availiabilty. 

The present study demonstrated that during the soccer-specific protocol, mental 

concentration was significantly improved following carbohydrate ingestion and pre- 

cooling compared with placebo without pre-cooling. This observation may have been a 

consequence of increased blood glucose availability. Glucose is the predominant energy 

source of the central nervous system (Welsh et al., 2002) and therefore, maintaining 
blood glucose could have beneficial effects in sports such as soccer, which require 
tactical decision-making. Carbohydrate supplementation can maintain blood glucose 
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levels and potentially prevent a decrease in cognitive functioning. A number of authors 
have demonstrated that glucose administration is capable of enhancing cognitive 

performance in healthy young adults at rest (Benton et al., 1994; Kennedy and Scholey, 

2000; Scholey et al., 2001) and after exercise (Reilly and Lewis, 1985; Collardeau et al., 
2001). However, the mechanisms underlying the cognition-enhancing effects of glucose 

are unknown (Scholey et al., 2001). 

The present study also reaffirms previous reports (Coyle et al., 1986; Coggan and Coyle, 

1987; Wright et al., 1991; Millard-Stafford et al., 1992; Yasplekis et al., 1993a) that the 

ingestion of carbohydrate during exercise significantly increases carbohydrate oxidation, 

and glucose and insulin concentrations. Carbohydrate ingestion also suppresses fat 

oxidation, and NEFA and glycerol concentrations during exercise. 

In conclusion, these results suggest that carbohydrate ingestion can improve exercise 

capacity following soccer-specific exercise performed in the heat. In addition, pre- 

cooling in conjunction with the ingestion of carbohydrate during exercise increased 

mental concentration and exercise capacity. Whilst this combination is a suitable strategy 
for soccer players when performing in the heat, the mechanisms for this improvement 

remain to be identified. 
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Chapter 8 
Synthesis of findings 
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8.1. Synthesis of findings 

The studies described in the present thesis were designed to investigate the effect of 
ingesting sports drinks on the physiological, metabolic and hormonal responses to soccer- 

specific exercise. The exercise protocol was designed to simulate the work-rate in 

competitive soccer match-play. The first two studies consisted of investigations into the 

metabolic and performance responses during soccer-specific exercise. In these studies the 

provision of carbohydrate-electrolyte solutions was manipulated so that their effects 

could be examined with respect to their influence on the metabolic responses to soccer- 

specific exercise (motorised treadmill) and on performance during the soccer-specific 

protocol (reflected in the sprint portion of the simulated work-rate on a non-motorised 

treadmill). A further study was conducted to investigate the effect of carbohydrate 
formulation on the metabolic responses and performance of soccer-specific exercise in 

the heat. The effect of ingesting a multi-carbohydrate solution has previously only been 
examined during low-intensity exercise. The final study examined the impact of pre- 

cooling in conjunction with carbohydrate ingestion on the performance of soccer-specific 

exercise in the heat. 

8.1.1. Carbohydrate ingestion and soccer-specific exercise 

The performance of soccer-specific exercise is dependent upon a number of factors 

including substrate availability, hydration status and core temperature. The schematic 

model in Figure 8.1 illustrates the inter-relationship between fluid replacement, core 

temperature, metabolism and substrate availability and oxidation and their subsequent 
impact on the performance of soccer-specific exercise. 
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Soccer-specific Pre-cooling Environmental 
exercise temperature 

Fluid replacement Core temperature 

Volume and composition 

II Rate of gastric emptying 

Intestinal absorption 

Substrate availability and oxidation 

Exercise performance/ 
capacity 

Hydration status 

Metabolic and hormonal responses 

Figure 8.1: Schematic model representing the factors that influence exercise performance 

and individual capacity during and after soccer-specific exercise. 

The ingestion of a carbohydrate-electrolyte solution significantly affected metabolite 

concentration, whereby plasma glucose was significantly increased and the rise in 

glycerol and NEFA levels were attenuated, although lactate levels were not different 

between trials. The elevated glucose levels were associated with significantly increased 

insulin concentrations whilst there was a tendency for the catecholamine and IL-6 

response to be attenuated. 

The alterations in substrate availability had a significant effect on substrate oxidation 

rates. Carbohydrate oxidation was significantly higher when plasma glucose was 
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elevated. In contrast, fat oxidation was suppressed during the soccer-specific protocol 

with carbohydrate ingestion. Insulin has been shown to be a powerful inhibitor of 
lipolysis and the appearance of NEFA (Horowitz et al., 1997). The increased insulin 

concentration after carbohydrate ingestion reduces whole-body lipolysis, as indicated by 

the lower fat oxidation and NEFA and glycerol levels observed during the carbohydrate 
trials. The elevated insulin concentration observed during the carbohydrate trials 

compared with placebo may also explain the higher, although not significant adrenaline 
levels shown during the placebo trials. Previous studies reported that when carbohydrate 

was ingested the adrenaline response was blunted (Felig et al., 1982; Fritzsche et al., 
2000). In addition, adrenaline has been shown to increase the appearance of IL-6 in rats 
(Yu et al., 2001), the consequence of which increase lipolysis. 

One of the most important factors regulating fluid replacement is the rate of gastric 

emptying which is influenced by the volume within the stomach. The larger the volume 

the faster the rate of gastric emptying and as the volume of fluid within the stomach 
declines so does the gastric emptying although the ingested were relatively small. 
Therefore, it would have been interesting to have investigated the impact of consuming 
larger volumes, which may be necessary in order to prevent dehydration. Furthermore, a 
limitation of the presented studies is that a placebo was not ingested at frequent intervals. 

However, altering the timing and volume of carbohydrate ingestion or the carbohydrate 
formulation did not have a significant impact on hydration status, substrate availability 

and oxidation or hormonal and metabolic responses. This result was presumably a 
consequence of the same total amount of carbohydrate and fluid being ingested after 30 

min of each half of the soccer-specific protocol. In addition, it may have been that the 

exercise intensity was the overriding factor controlling the rate of gastric emptying and 
intestinal absorption and not the volume or composition of the ingested fluid. The 

exercise intensity associated with soccer has been shown to be sufficient to slow gastric 

emptying (Leiper et al., 2001; Leiper et al., 2005) and consequently the intestinal 

absorption of carbohydrate and fluid, which in turn influences the appearance of 
substrates in the blood and oxidation rates. The reduced rate of gastric emptying during 

soccer (exercise) is possibly due to vasoconstriction of the gastrointestinal tract, 
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diminishing gastric blood flow. However, ingesting a small volume frequently does 

reduce the discomfort associated with gastric fullness, although this may not be a 

practical strategy as there are not any breaks scheduled into soccer matches where fluid 

could be ingested. 

A possible explanation for the failure of carbohydrate ingestion to influence peak power 

output during sprinting is that during short duration high-intensity exercise, PCr is the 

major energy source. It is the availability of PCr, and its rates of resynthesis, which 
determines maximal sprinting performance (Greenhaff et al., 1994). Therefore reduction 
in muscle glycogen or blood glucose may not influence PCr degradation during exercise. 
Balsom et al. (1992) demonstrated that forty 15-m sprints could be performed at 30-s 

intervals unimpaired without carbohydrate supplementation. In addition Nevill et al. 
(1993) reported that increasing the carbohydrate content of the normal diet did not 
improve sprint performance during 1h of maximal, intermittent exercise. In study 2a 

total of 18 sprints were performed separated by approximately 200 s of lower-intensity 

exercise, suggesting there was sufficient time for PCr resynthesis between sprints and that 

the PCr-phosphokinase system was able to buffer the energy demands during the sprints. 

8.1.2. Carbohydrate ingestion and soccer-specific exercise in the heat 

Jentjens et al. (2002) reported that the rate of exogenous glucose oxidation was reduced 
by 10% in the heat compared with a cool environment. Some of the factors that 

contribute to the reduction in exogenous glucose oxidation in the heat include the reduced 

carbohydrate absorptive capacity of the intestine as a result of decreased intestinal blood 

flow (Jentjens et al., 2002), reduced uptake and release of ingested glucose by the liver, 

decreased glucose transport to the muscle due to reduced muscle blood flow as a 

consequence of impaired hydration status (Gonzalez-Alonso et al., 1999a). Studies have 

also shown that hyperthermia and dehydration can impair gastric emptying of 

carbohydrate solutions or water during treadmill exercise (Owen et al., 1986; Neufer et 

al., 1989; Rehrer et al., 1990). Another potential limiting factor for the oxidation of 
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exogenous carbohydrate and subsequent exercise performance is the rate of intestinal 

carbohydrate absorption. The time course for the appearance of sugars in the blood and 
subsequent oxidation Is dependent on the rate at which they leave the stomach and are 
absorbed from the Intestinal region. Furthermore, increased intestinal solute (i. e. 
carbohydrate) transport has been shown to promote greater fluid absorption (Shi et al., 
1995) which may reduce the Impact of dehydration associated with exercising in the heat. 
However, the intestinal absorption of a 6.6% carbohydrate solution does not appear to be 

a limiting factor in the oxidation of exogenous carbohydrate during soccer-specific 
exercise in the heat as Ingesting a single- or multi-carbohydrate did not significantly 
influence muscle glycogen utilization, carbohydrate oxidation and exercise capacity. 
muscles (McCully et aL, 2002). 

Three of the most regularly cited physiological causes of fatigue are substrate depletion, 

dehydration and hypcrthcrmla. It is unlikely that dehydration was the key factor in the 
development of fatigue as sweat loss was similar for each trial. It is also improbable that 

carbohydrate depiction was the cause as muscle glycogen content was similar for all trials 

after completing the soccer-specific protocol, plasma glucose concentration was above 4 '0 

mmol. l'1 In all conditions, and during the carbohydrate trials, carbohydrate oxidation had 
been maintained throughout the soccer-specific protocol. Therefore, a possible cause of 
fatigue during the Cunningham and Faulkner test was hyperthermia. Nielsen et al. (1993) 

suggested that when fatigue occurs in a hot environment it is ultimately due to an 
intolerably high core temperature being reached based on the observation that muscle 

glycogen concentrations arc relatively high at the point of fatigue when exercising in the 
heat (Nielsen et a!., 1990). Nielsen et al. (2001) found that alterations in front cortical 
brain activity correlated with increases in core temperature. Therefore, the motivation to 

continue to exercise may be reduced when core temperature increases beyond a critical 

point. As with all tests of exercise capacity, motivation plays an important role when 

performing the test of Cunningham and Faulkner, and if the motivation to continue to 

exercise is reduced so will time to exhaustion. This may have been the case in the present 

study as core temperature and thermal sensation were similar during each condition. 
However, the final core temperature values at the completion of the 90 minutes observed 
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in studies 3 and 4 were lower (38.6`°C - 39.1°C) than previously reported values during 

similar exercise protocols in the heat (38.91C - 39.6°C) (Morris eta!., 1998; Morris et al., 
2003). This observation may be a consequence of different sites being used to assess core 
temperature, rectal as opposed to intestinal used in the present study or the fitness of the 

subjects, as a higher level of aerobic fitness is associated with an increased tolerance to a 
high core temperature (Selkirk and McLellan, 2001). 

In study 4 the ingestion of carbohydrate with and without pre-cooling significantly 
improved exercise capacity, possibly due to the higher blood glucose availability. This 

was an unexpected result as exercise capacity was unaffected by carbohydrate ingestion 

in study 3. A possible explanation for this occurrence is that the muscle biopsies 

performed in study 3 influenced the ability to perform high-intensity exercise. There are 
limited data suggesting that the concentrations of stress hormones such as cortisol and 

noradrcnaline may remain elevated after a biopsy (Holck et a!., 1994; Helge eta!., 1999), 

which may hasten fatigue (Davis and Brown, 2001). In addition, a percutaneous needle 
biopsy of vastus lateralis muscle has been shown to significantly reduce insulin- 

stimulated glucose uptake (ilolck et al., 1994). Although the mechanism of this 

phenomenon is not known, the biopsy may have impaired the uptake and subsequent 

oxidation of blood glucose. 

Figure 8.2 the highlights the potential relationships between pre-cooling, carbohydrate 
ingestion, central fatigue and exercise capacity. 
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The ingestion of carbohydrate has been shown to increase blood glucose and exogenous 

carbohydrate oxidation and spare the body's glycogen stores. Furthermore, the ingestion 

of carbohydrate attenuated the exercise induced rise in plasma NEFA concentration, 

preventing a rise in f-TRP. When carbohydrate was ingested without pre-cooling, a lower 

plasma concentration of NEFA was observed, resulting from decreased adrenaline 
(Fritzsche et al., 2000) and increased insulin (Nieman et aL, 1998). When the amount of 
NEFA in the blood is reduced the concentration of f-TRP also declines. As a consequence 

there is less TRP available to be converted into serotonin, which has been associated with 

central fatigue (Davis et al., 1992). Therefore fatigue may be delayed by improved mood 

and motivation, reduced sensation of effort. Carbohydrate ingestion has been shown to 

decrease RPE during exercise (Utter et al., 1999) and increase voluntary activation 
(Nybo, 2003). 

Performing soccer-specific exercise in a hot environment significantly increased core 

temperature. Low et al. (2005b) reported that an elevated core temperature was the key 

stimulus for prolactin, which may be a marker of central serotonergic activity. An 

increase in serotonin (5-HT) has been suggested to decrease arousal, mood and ºý 

motivation and increase RPE and in turn reduce voluntary activation causing fatigue and 
impaired exercise capacity (Cheung and Sleivert, 2004). Watson et al. (2005) suggested 

that blood-brain barrier permeability may be altered during prolonged exercise in a warm 

environment. Therefore, the combined effect of carbohydrate ingestion and pre-cooling 

which significantly reduced core temperature potentially reduced serotonergic activity 
due to decreased serotonin formation. Consequently there may be an increase in arousal 

and a reduction in RPE, resulting in an increase in voluntary activation. These factors 

may delay the onset of fatigue, increasing exercise capacity. In study 3 it was suggested 

that an elevated core temperature may have contributed to fatigue following the 

performance of soccer-specific exercise in the heat. In study 4 the effect of lowering core 

temperature prior to soccer-specific exercise was examined. The results show pre- 

cooling allows for a greater degree of heat storage, with the effect of attenuating the rate 

of the rise in core temperature. Although the mechanisms for the improved exercise 
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capacity associated with pre-cooling are not yet known, it is possible that the lower core 

temperature reduces the effect of central and hyperthermic fatigue. 

8.1.3. Recommendations 

Based on the results of the studies contained within this thesis, some practical 

recommendations for soccer players can be made. The results suggest that carbohydrate 
ingestion may benefit the performance high-intensity exercise, but not short duration 

sprints. The hydration strategy would not appear to influence performance providing that 

sufficient fluid is ingested, although an important factor to consider would be what 

volume and carbohydrate formulation the player finds most comfortable to ingest. 

However, the volume would need to be changed to suit the environmental conditions. If 

too large a volume is ingested the player may suffer discomfort which could adversely 
influence performance. Additionally, the findings from study 4 suggest that when 

matches are played in a hot environment it would be beneficial if core temperature could 
be reduced prior to kick off. 

iM 

Whilst the combination of pre-cooling and carbohydrate ingestion appears to be a 

strategy that could be used by soccer players to improve performance when playing in the 

heat, it seems unlikely that the particular pre-cooling manoeuvre will be employed prior 
to competitive matches. The pre-cooling regime in this study involved the subject 

wearing the cooling vest for 60 min whilst remaining seated. This would not be a 

practical strategy for professional players as they would require a warm up. A 

compromise would be to wear the cooling vest during the warm up. This would have the 

added advantage that muscle temperature would not decrease to the level observed in this 

study. However, this strategy would require further investigation to establish whether it is 

possible to achieve sufficient cooling to produce an advantage. 
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8.1.4. Limitations 

A limitation of the studies presented in the thesis is that the findings may not transfer 

directly to professional soccer where the players operate at a higher tempo than is 

possible in laboratory conditions. Furthermore the pattern of activity in a match is 

dictated by the progress of the contest. In addition it is likely that professional players 

will have higher aerobic and anaerobic power capacities than the current subjects. 

However, the VD2mx of the subjects was close to that displayed among professional 

players and the intermittent exercise protocol simulates the pattern of activity in matches. 
Whilst the soccer-specific protocols employed in the four studies in this thesis were 
designed to simulate the work-rate of competitive soccer, it is not possible to make a 

complete representation. Activities such as tackling, jumping and shooting require 

additional energy to perform, and these activities were not included in the energy 
demands of the protocol. Additional factors that influence energy expenditure during a 

match include the condition of the pitch i. e. waterlogged and environmental factors such 

as wind and rain. Therefore, it is not possible to simulate completely the demands of a 

soccer match on a running treadmill. There is a large amount of psychological factors 

associated with a competitive soccer match. It has been shown that matches increase 

psychological stress as indicated by cortisol and catecholamines (Carli et al., 1986), and 

these increases may depend on the importance of the match. However, it is not possible 

to recreate this level of stress in a laboratory, although the catecholamine responses were 

similar to those observed by Bangsbo (1994b) during competitive match-play. 

One of the advantages of simulating the work-rate that represents that of a competitive 

soccer match on a treadmill in a laboratory is that the external factors such as temperature 

can be set, thereby allowing for controlled experimentation. In addition, if the study was 
field-based there would be an added factor of the opposition, which would not be 

consistent for each trial. Possibly the biggest advantage of using a soccer-specific 

protocol in a laboratory is the fact that more variables can be measured than would be 

possible on a soccer pitch. When the effect of interventions are investigated in terms of 

match-play only a few variables are usually measured i. e. heart rate, total distance 
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covered, distance and number of sprints. Recently core temperature has been measured 
during an amateur match using the temperature pill (Edwards and Clark, 2006). 

However, in the laboratory it was possible to measure these variables and others such as 

substrate oxidation rates, mental concentration and thirst. 
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8.2. Conclusions 

The aims of this thesis have been fully realised and the overall conclusions are that: 

" Altering the timing and volume of carbohydrate ingestion does not: 

  Significantly affect metabolism during soccer-specific exercise 

  Significantly influence peak sprint power output during soccer-specific 

exercise 

" Compared with placebo, ingesting carbohydrate significantly affects plasma 

metabolites and increases carbohydrate oxidation but fails to impact on 

performance of short sprints during soccer-specific exercise. 

" When performing soccer-specific exercise in the heat ingesting a multi- 

carbohydrate solution compared with a single-carbohydrate solution does not 

significantly influence metabolism or exercise capacity 

" Ingesting carbohydrate compared with a placebo during soccer-specific exercise 

performed in the heat significantly alters metabolism and enhances exercise 

capacity 

" Pre-cooling in conjunction with carbohydrate ingestion during soccer-specific 

exercise significantly increases exercise capacity. 
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8.3. Recommendations for future research 

After conducting the research presented in this thesis, and from the comprehensive 

review of the literature, the following recommendations for future research can be made: 

" All of the studies presented in this thesis were conducted in the controlled 

environment of a laboratory. Therefore, a future development would be to 

investigate the effects of manipulating the provision of drinks on actual match- 

play performance. Similarly it would be possible to examine the influence of pre- 

cooling on performance during competitive match-play. 

" One of the factors that limit the effectiveness of hydration strategies is the rate of 

gastric emptying and intestinal absorption. However, this was not measured in any 

of the studies conducted. Therefore, measuring the rate of gastric emptying and 
intestinal absorption would provide a more detailed assessment of the 

mechanisms involved. 

" Study 3 demonstrated that the ingestion of multi-carbohydrate solutions has no 

effect on soccer-specific exercise performed in the heat and it was concluded that 

a high core temperature was a limiting factor for exercise capacity. Therefore, 

investigating the impact of ingesting multi-carbohydrate solutions in temperate 

conditions, where core temperature is less likely to be the limiting factor, would 

establish whether the intestinal absorption of the type of carbohydrate solution 
limits exogenous carbohydrate oxidation during soccer-specific exercise, as has 

been reported during continuous exercise. 

" The combination of pre-cooling and carbohydrate ingestion in study 4 was a novel 
investigation. Therefore, before the strategy could be recommend as suitable 

regime for soccer players the study would need to be repeated to reaffirm these 

results. In addition, study 4 could be repeated using a non-motorised treadmill so 
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that the effect of reducing muscle temperature as a consequence of pre-cooling 

could be assessed in terms of sprint performance during soccer-specific exercise. 

" Study 4 demonstrated that the combined effect of pre-cooling and carbohydrate 
ingestion significantly improved exercise capacity. However, it was not possible 
to establish the mechanisms. Future research could examine the effect of pre- 

cooling and carbohydrate ingestion on muscle glycogen utilization by means of 

using stable isotopes and measuring glycogen content to identify mechanisms for 

the improved exercise capacity. 

" The pre-cooling regime in study 4 involved the subject wearing the cooling vest 

whilst resting. Wearing the cooling vest prior to and during the warm up before a 

match would be more representative of usual practices and may be a more suitable 

strategy in competitive situations. In addition, future research could also focus on 

alternatives to the cooling vest. External pre-cooling of the head, neck or hands 

and internal pre-cooling via ingestion of crushed ice or intravenous administration 

of cool fluids are possibilities. 

" The participants in the studies presented in this thesis were unacclimatized, which 

may have contributed to hyperthermia limiting exercise capacity. Therefore, a 
future investigation could examine the impact of heat acclimatization on the 

performance of soccer-specific exercise and heat shock protein gene expression 

such as HSP70 and HSP72. Such observations would provide information about 
the physiological stress responses to such activities. 

" The effect of performing soccer could be assessed in terms of its impact on mental 

performance and consequently tactical thought could be investigated. Prior to, and 

after the participants complete 90-min of soccer-specific exercise neuro-imaging 
by means of Functional Magnetic Resonance Imaging (fMRI) could be used to 

assess any changes in cerebral activity. 
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Strategies for Hydration and Energy 
Provision During Soccer-Specific Exercise 

N. D. Clarke, B. Drust, D. P. M. MacLaren, 
and T. Reilly 

The aim of the present study was to investigate the effect of manipulating the 
provision of sports drink during soccer-specific exercise on metabolism and per- 
formance. Soccer players (N= 12) performed a soccer-specific protocol on three 
occasions. On two. 7 mL/kg carbohydrate-electrolyte (CHOv) or placebo (PLA) 
solutions were ingested at 0 and 45 min. On a third, the same total volume of car- 
bohydrate-electrolyte was consumed (CHOP) in smaller volumes at 0,15,30,45, 
60. and 75 min. Plasma glucose, glycerol, non-esterified free fatty acids (NEFA), 
cortisol, and Cl 10 oxidation were not significantly different between CHOv and 
Cl 10f (P > 0.05). Sprint power was not significantly affected (P> 0.05) by the 
experimental trials. This study demonstrates when the total volume of carbohydrate 
consumed is equal, manipulating the timing and volume of ingestion elicits similar 
metabolic responses without affecting exercise performance. 

Key Words: fluid, carbohydrate, performance, metabolism 

During a soccer match, players perform a wide range of different exercises ranging 
from standing still to sprinting, and so the intensity of effort alters frequently. The 
energy cost of a competitive soccer match has been estimated to be approximately 
6700 kJ (3). During a match, energy is provided predominantly by aerobic metabo- 
lism (35), with a rise in circulating free fatty acids as the match progresses (3). 
Crucial components of activity, however, e. g., tackling, jumping, and sprinting, rely 
on anaerobic energy production of which carbohydrate is an important fuel. 

Apart from energy expenditure, the intensity of exercise associated with a 
competitive match is high enough to induce appreciable heat load, causing play- 
ers to lose up to 3L of sweat in a game (16). The elevation in core temperature 
is greater during intermittent exercise compared with continuous exercise at the 
same average intensity (17). A mild level of dehydration (40) and an elevated core 
temperature (19,32) can limit exercise performance. It is, therefore, important that 
athletes consume fluid during prolonged exercise. The addition of carbohydrate to 
this fluid can further improve exercise capacity (29), possibly due to the sparing 
of muscle glycogen and delaying the onset of fatigue (23). Therefore, an optimal 

The authors are with the Research Institute for Sport and Exercise Sciences, Liverpool John Moores 
University, Uverpool, D 2Ef, UK. 
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refueling and rehydration regime might be key in enhancing performance during 
a game. 

Some authors have investigated the impact of carbohydrate ingestion on 
exercise capacity during simulated soccer (27,29,41) and actual match-play (21, 
23,44). The drinking strategy employed in these studies has been to ingest a large 
volume before the activity and again at half-time. No previous study has focused 
on the effect of consuming small repetitive doses on performance of soccer-specific 
exercise. 

Gastric emptying is deemed to be a limiting factor in fluid replacement (37) and 
is an important aspect in determining the rate at which nutrients enter the duodenum 
where glucose and water can be absorbed into the bloodstream (8). Studies using a 
single large ingestion (10) or repetitive smaller ingestions (15) demonstrate that the 
maximum rate at which water and carbohydrate can be delivered from an ingested 
solution is influenced by the average volume of fluid in the stomach, which in turn 
is determined by the volume ingested and the drinking pattern. Gastric emptying 
is also influenced by exercise intensity. Leiper et al. (24) demonstrated that the 
intensity associated with a soccer match is sufficient to slow gastric emptying. 

Given the acyclic nature of activity in soccer, there are no scheduled breaks 
where fluid can be consumed; besides, gastric tolerance and the perception of 
gut fullness do not allow for suitable rehydration for soccer players. Due to the 
continuous nature of play, with infrequent, unscheduled stoppages, the only two 
occasions that a player is guaranteed to be able to consume fluid are before the 
game and at half-time. The American College of Sports Medicine position stand 
on exercise and fluid replacement (9) has stated, however, that during exercise, 
athletes should start drinking early and at regular intervals in an attempt to consume 
fluids at a rate sufficient to replace the water lost through sweating, or consume the 
maximal amount that can be tolerated. Most advice regarding rehydration during 
exercise has been based on continuous exercise, e. g., cycling and road-running or 
sports where there are opportunities for breaks when fluid can be consumed, e. g., 
American football and basketball. 

The aim of the present study was to investigate the effect of manipulating the 
provision of sports drink during soccer-specific exercise on the metabolic responses 
and exercise performance. 

Methodology 

Subjects 
Twelve male university soccer players participated in this study. Mean (± stan- 
dard error) age: 25 ±3y; height: 1.77 ± 0.1 m; body mass: 74.5 ±6 kg; maximal 
oxygen uptake (VOA): 59.37 ±6 mL " kg-' " min-'. Before the subjects performed 
any exercise they were screened for contra-indicators to participate, using the 
Physical Activity Readiness Questionnaire (PAR-Q) (38). Subjects were tested in 
a post-absorptive state, having performed no vigorous exercise, i. e., competitive 
match or intense training for 48 h prior to testing. Each subject performed all of 
the exercise sessions at the same time of day (14: 00 to 18: 00 h) to minimize the 
circadian variation of the measured variables (34). All subjects provided writ- 
ten informed consent to participate, in accordance with Liverpool John Moores 
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University's ethical procedures. The test procedures were approved by the Human 
Ethics Committee of Liverpool John Moores University. 

Experimental Protocol 
Each subject attended the laboratory on six separate occasions. During the first 
visit, the subject's VOA was assessed while exercising on a motorized treadmill 
(Woodway, Auf Schrauben, Germany) using a graded exercise test to volitional 
exhaustion. During this session height and body mass were recorded using standard 
laboratory measurement techniques. 

The subjects also undertook two familiarization sessions, consisting of two 
blocks of the soccer-specific protocol (i. e., 30 min). The soccer-specific protocol, 
arranged around a 15-min activity block, incorporated 9 static periods (15.3 s), 9 
walks (46.8 s), 9 jogs (33.0 s), 3 cruises (11.4 s), and 3 sprints (3.3 s) (Figure 1) 
(13), performed on a modified non-motorized treadmill (Woodway, Auf Schrauben, 
Germany). Before the first familiarization session, 500 mL of carbohydrate elec- 
trolytc solution [Still Lucozade Sport (6.35 ± 0.05 g/100 mL CHO, 48 ±1 mg/100 
mL Na) GlaxoSmithKline, Gloucestershire, UK] was consumed whereas 500 mL 
of a similarly colored, flavored, and textured placebo (GlaxoSmithKline, Glouces- 
tershire, UK) was consumed before the start of the second familiarization trial. 
These procedures ensured that there were no adverse gut reactions to the volume 
and composition of the fluid consumed and reliable sprint power outputs were 
obtained (CV = 6.9%) within this 30-min period. 

The full soccer-specific protocol was performed on three occasions, and 
consisted of 90 min of activity. The 90-min period was divided into two identical 
45-min blocks, separated by a 15-min half-time. On two occasions either 7 mLlkg 
ßM of carbohydrate-electrolyte (CHOv) or placebo (PLA) solution was ingested 
before and at half-time (mean 533 ± 11 mL; i. e., mean total 1065 ± 22 mL). On 
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Figure 1- Activity profile of experimental protocol; sprint = maximal effort. 
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a third occasion the same volume of carbohydrate-electrolyte solution was con- 
sumed (CHOf) but in smaller volumes at 0,15,30,45,60, and 75 min (mean 177 
±4 mL) during the final walking phase of each block. During the carbohydrate 
trials the total amount of carbohydrate ingested was 67.71 ± 1.40 g CHO. Subjects 
acted as their own controls in a double-blind repeated-measures crossover design 
with the order randomly assigned. The soccer-specific protocol was performed in 
"normal" laboratory conditions (mean temperature: 18.9 ±0.4 °C; relative humidity: 
59.3 ± 4%). 

For the 3d prior to the first test session, subjects completed a diet diary, which 
provided a dietary template prior to subsequent trials. Subjects arrived at the labora- 
tory approximately 3 to 4h before they were due to commence testing, where they 
consumed a standard snack (65% CHO; 20% fat; 15% protein; 2500 to 3000 kJ). 
At this time a urine sample was collected, and color (1) and osmolality (Advanced 
Micro-osmometer model 3300, Advanced Instruments, Inc., Norwood, MA) were 
measured to ensure constant hydration status for each trial. Thirty minutes before 
the subject was due to commence exercising, a venous blood sample was drawn 
from an antecubital vein in the forearm using the Vacutainer collection system 
(Becton Dickinson Vacutainer Systems Europe, Meylan, France). A standard 15-min 
warm-up was performed, consisting of jogging, sprinting, and stretching before 
the subject began the 90 min of exercise. 

Physiological Measurements 
During the soccer-specific intermittent protocol, heart rate was measured continu- 
ously using short-range radio telemetry (Polar Coach, Polar Electra, Kempele, 
Finland). Between 11 to 13 min, 26 to 28 min, 41 to 43 min, 56 to 58 min, 71 to 73 
min, and 86 to 88 min respiratory gases (VO2 and VCO2) were monitored using an 
on-line automated gas analyzer (Metalyzer3B, Cortex Biophysic GmbH, Leipzig, 
Germany). These data were used to calculate substrate oxidation rates (18). 

Rating of perceived exertion (RPE) (7), gut fullness, and thirst (43) were 
recorded during the double static period of each 15 min block. Gut fullness and 
thirst were also recorded immediately before and after fluid ingestion prior to com- 
mencing exercise. During each sprint phase, the peak power output was recorded to 
monitor performance and indicate the occurrence of fatigue. Peak power output was 
defined as the maximum value obtained during each sprint and was calculated using 
the horizontal component of applied force and the treadmill belt speed (22). 

Blood Sampling and Analysis 
Venous blood samples (14 mL) were drawn prior to exercise, at half-time (immedi- 
ately after the completion of the 45 min), and at completion of each trial. Samples 
were collected in plastic tubes containing EDTA [for analysis of non-esterified free 
fatty acids (NEFA), glycerol, catecholamines, and cortisol) and lithium heparin 
(for analysis of glucose, lactate, and plasma osmolality), centrifuged and frozen at 
-80 °C for later analysis. Plasma samples were analyzed for glucose, lactate (GEM 
Premier 3000, Instrumentation Laboratory Co., Warrington, UK), NEFA (NEFA- 
C, Wacko Chemicals GmbH, Neuss, Germany), glycerol (Randox Laboratories 
Ltd., Co. Antrim, UK), catecholamines (Catcombi ELISA, IBL GmbH, Hamburg, 
Germany) and cortisol (Cortisol ELISA, IBL GmbH, Hamburg, Germany). The 
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change in body mass was calculated from the difference in nude body mass between 
pre- and post-exercise and values were corrected for the volume of fluid ingested 
and urine loss to calculate sweat loss. 

Statistical Analysis 
All variables were analyzed using two-way ANOVAs with repeated measures except 
for body mass loss, which was analyzed using a one-way ANOVA with repeated 
measures. Where sphericity was found to be violated the Greenhouse-Geisser adjust- 
ment was used to determine statistical significance. Where differences were noted, 
pairwise comparisons (Bonferroni adjusted) were used to identify exactly where 
they lay. All statistical analyses were performed using SPSS for Windows version 
11 (SPSS, Inc., Chicago, IL) and a level of P<0.05 was considered statistically 
significant. All results are reported as the mean ± the standard error of the mean. 

Results 
Pre-Trial Conditions 
The pre-trial conditions were similar for all trials (Table 1). There were no sig- 
nificant differences in the carbohydrate [F(1.036,11.400) = 1.920; P>0.05] or 
energy [F(1.108,12.191) = 0.122; P>0.051 content of the participant's pre- 
trial diet. Pre-trial hydration status was similar for all conditions, urine color 
[F(2,22)=1.055; P>0.051 and osmolality [F(2,22) = 1.311; P>0.05] were not 
significantly different. 

Plasma Metabolites 
Plasma glucose concentration (Figure 2) was not significantly different between 
C1lOv and CHHOf pre-exercise, at half-time, or post-exercise. Plasma glu- 
cose, however, was significantly higher during CHOf compared with PLA 
[F(2,22) = 4.909; P<0.05) at half-time and post-exercise. For all trials plasma 
glucose was significantly lower post-exercise than at half-time [F(2,22) = 21.197; 
P<0.05). During all of the trials no subjects were found to be hypoglycemic. 

Table 1 Pre-TrIal Dietary and Hydration Status 

Diet Urine 

Trial CHO Energy Color Osmolality 
(%) (MJ/d) (mOsm/kg) 

PLA 54.58 ± 1.62 7.09 ± 0.39 2.42 ± 0.26 354.75 ± 53.42 

C11Ov 53.49: t 1.67 7.08 ± 0.46 2.08 ± 0.26 299.58 ± 47.19 

CHOf 53.71 ± 1.63 7.14 ± 0.45 2.00 ± 0.33 293.42 ± 58.83 
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The concentration of NEFA was not significantly different between CHOv and 
Cl {Of (Figure 3), although it was significantly higher during PLA at half-time and 
post-exercise [F(2,22) = 22.802; P>0.05]. Plasma NEFA concentration increased 
significantly between each time point [F(1.19,13.04)= 35.809; P<0.05]. Glycerol 
concentration was significantly higher post-exercise following PLA compared to 
C1lOv and CHOf (Figure 4), and increased significantly between each time point 
[F(1.14,12.50)= 61.592; P<0.051. 
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Figure 2- Plasma glucose concentration during the soccer-specific protocol; *CHOf 
significantly greater than PLA. 
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Figure 3- Plasma NEFA concentration during the soccer-specific protocol; a PLA sig- 
nificantly greater than CHOf and CHOv. 
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Figure 4 -Plasma glycerol concentration during soccer-specific protocol; « PLA sig- 
nificantly greater than C}IOf and 01Ov. 

lactate concentration was not significantly different between any of the trials 
[F(2,22) - 0.583; P>0.051, although it increased significantly above resting 
levels after the onset of exercise, with peak values at half-time (PLA: 2.83 ± 0.6 
mM; CllOv: 3.30 ± 0.4 mM; C1lOf: 2.95 ± 0.6 mM) [F(1.10,12.14)= 10.592; 
P<0.051. Mean plasma osmolality during the soccer-specific protocol was not 
significantly affected by the trials (PLA: 279.67 ±3 mOsm/kg; CHOv: 278.31 ± 
3 mOsm/kg; Cl [Of: 279.58 ±3 mOsm/kg) [F(2,22) = 0.07 1; P>0.05]. There 
were no significant differences between trials in plasma volume changes (PLA: 
-1.32 t 0.3%; CHOv: -1.71 ± 0.2%; CHOf: -1.24 ± 0.3%) [F(2,22) = 1.447; 
P>0.051 or change in body mass (PLA: 1.80 ± 0.2 kg; CHOv: 1.62 t 0.1 kg; 
CI 1Of: 1.58 ± 0.1 kg) [F(1,1l)= 0.605; P>0.05]. 

Hormones 
Adrenaline levels were found to be similar during all trials [F(2,22) = 0.609; 
P>0.051 with significant increases between each time point (half-time: PLA: 
1.47 t 0.1 nM; C11Ov: 1.48 t 0.1 nM; C>`HOf: 1.42 ± 0.1 nm; post-exercise: 
PIA: 1.85 t 0.1 nM; CHOv: 1.92 ± 0.2 nM; CHOf: 1.85 ± 0.2 nm) [F(1.14, 
12.55) = 127.216; P<0.05]. A similar pattern was observed for noradrena- 
line levels (half-time: PLA: 12.41 t 0.9 nM; CHOv: 11.61 t 1.0 nM; CHOf: 
12.03 t 0.8 nM; post-exercise: PLA: 15.98 ± 1.1 nM; CHOv: 16.12 ± 1.1 nM; CHOf: 
16.22 ± 0.9 nM) [F(2,22) = 185.51; P<0.05], with no significant effect of the 
treatments [F(2,22)= 0.091; P>0.05]. Cortisol was significantly higher post- 
exercise for C11Of (257.9 ± 27.4 nM) compared with PLA (186.4 ± 24.4 nM) 
[F(2,22) = 4.053; P<0.05]; Figure 5), although no significant difference was 
identified between C11Ov and CHOP. A significant time effect [F(2,22)= 4.937; P 
< 0.051 was observed, values were significantly lower at full time, compared with 
pre-exercise and half-time. 
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Substrate Oxidation Rates 
Carbohydrate oxidation (Figure 6) was not significantly different between CHOf 
and Cl IOv (P > 0.05), although it was significantly [F(2,22) = 3.759; P<0.05] 
greater during CI[Of and CHOv compared to PLA. In contrast, fat oxidation 
was not significantly [F(2,22) = 2.428; P>0.05] different between trials (PLA: 
0.51 ± 0.03 g/min; CHOv: 0.50 ± 0.04 g/min; CHOf: 0.42 ± 0.04 g/min). 

Perceived Thirst and Gut Fullness 
There were no significant differences [F(2,22) = 0.573; P>0.051 in rating of 
thirst between the three trials (Table 2). There was a significant [F(2.92,32.14) = 
25.425; P<0.051 effect of time on rating of thirst. Thirst decreased significantly 
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FIgure 5- Plasma cortisol concentration during soccer-specific protocol; * CHOf sig- 
nificantly greater than PLA. 
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FIgure 6- Carbohydrate oxidation during the soccer-specific protocol; * CHOf signifi- 
candy greater than PEA. 
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(P < 0.05) following the consumption of fluid pre-exercise but was significantly 
(P < 0.05) higher during the first half of the soccer-specific protocol compared with 
immcdiatcly post-fluid ingestion. Subjective rating of thirst also increased steadily 
throughout the second half of the soccer-specific protocol and during block 6 was 
significantly (P < 0.05) higher than at half-time. 

There was a significant IF(2.16,28.79) = 16.445; P<0.05] effect of time on 
rating of gut fullness (Table 3), which was significantly (P< 0.05) lower immediately 
prior to fluid consumption pre-exercise compared with any stage during the 
first half or at half-time. Gut fullness increased significantly (P < 0.05) follow- 
Ing the consumption of fluid at the start of the first half and was significantly 
(P < 0.05) higher at half-time following fluid ingestion, compared with any stage 
of the second half. Subjective rating of gut fullness decreased steadily throughout 
each half of the soccer-specific protocol. There were no significant differences 
IF(2,22) = 1.061; P>0.05] in rating of gut fullness between the three 
trials. 

Power Output 
There was no significant effect of the treatments on peak power output during 
sprinting (F(2,22) = 0.133; P>0.051 (PLA: 1080t 70 W; CHOv: 1104 ± 66 W; 
Cl 101: 1091 ± 39 W) (Figure 7). Peak power output remained constant throughout 
each trial (F(5,55) = 1.379; P>0.05]. 

Discussion 
The main findings of the present study were 1) the timing and volume of carbohy- 
drate ingestion did not significantly affect metabolism or sprint power output during 
C1IOv or C1 10f. and 2) although consuming a carbohydrate-electrolyte solution 
when compared to placebo significantly increased plasma glucose concentration and 
carbohydrate oxidation, and suppressed NEFA and glycerol, there was no impact 
on sprint power output during sprinting. 

One of the key factors in sustaining prolonged exercise at intensities ranging 
from 65 to 85% VO2, 

N, 
is the concentration of muscle glycogen (4). Fatigue during 

exercise of this nature is associated with the depletion of the muscle's limited 
glycogen stores (27) and a reduction in plasma glucose (10). In the present study, 
plasma glucose concentration during CHOv and CHOf was not significantly affected 
by manipulating the timing and volume of ingesting a carbohydrate-electrolyte 
solution. This might have been as a consequence of the same total volume being 
ingested, and the same amount of glucose being made available. This study also 
reaffirmed the findings that consuming carbohydrate during exercise increases 
plasma glucose concentration (12,29). 

Plasma NEFA and glycerol concentration increased during the soccer-specific 
protocol, with a greater increase occurring during the second half, supporting the 
findings of Hangsbo (3). The largest increase occurred during PLA, suggesting that 
consuming a carbohydrate solution during exercise suppresses the release of NEFA 
and glycerol during CilOv and CilOf, possibly as an effect of an elevated insulin 
concentration. which has been shown to occur following carbohydrate ingestion 
during a simulation of the exercise intensity of soccer (29). 
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Figure 7- Peak sprint power output during the soccer-specific protocol. 

A similar pattern of carbohydrate oxidation was observed when carbohydrate 
was consumed during exercise, irrespective of timing and volume, possibly due 
to the total amount of carbohydrate ingested being the same during both trials. 
Carbohydrate oxidation was significantly higher, however, during CHOf and 
CIIOv compared with PLA. Previous studies have demonstrated that consuming 
carbohydrate during exercise maintains high rates of plasma glucose oxidation late 
in exercise (11). The higher carbohydrate oxidation after ingesting carbohydrate 
has been attributed to either increased muscle glycogenolysis or elevated glucose 
uptake and oxidation (42). 

high-intensity exercise has been associated with elevated plasma cortisol con- 
centration to maintain plasma glucose concentration, and this rise can be attenu- 
ated by the consumption of carbohydrate drinks (20). In the present study, plasma 
glucose concentration did not fall significantly below resting levels, which could 
explain why plasma cortisol concentration was maintained during the carbohydrate 
trials. The failure of cortisol to increase during PLA might have been due to the 
overall exercise intensity not being high enough (67 t1% VOZ. ) to elicit a cortisol 
response, although this intensity is close to values observed during a match (70% 
VO2 ) (38). Nieman et al. (30) found that high-intensity exercise (80% VO ,,, ax 

) 
produced a significantly greater cortisol response compared to moderate-intensity 
exercise (50% VO2). It has been demonstrated (5,26) that when carbohydrate 
ingested during exercise fails to affect insulin concentration, the adrenaline response 
does not seem to be affected, and so might explain the lack of a difference between 
the carbohydrate trials and PLA in the present study. Bishop et al. (6) concluded 
that during soccer-specific exercise the change in stress hormones was minimal 
and carbohydrate supplementation had a negligible effect. 

Plasma osmolality increased during all trials of the soccer-specific protocol, 
but remained within normal values, indicating that the subjects did not suffer 
from severe dehydration. There were no significant differences between the trials, 
suggesting that the overall rate of gastric emptying was the same and it is the 
total volume of fluid ingested, and not the timing of ingestion that is important 
In preventing dehydration during soccer-specific exercise. A possible explanation 

I 
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for this occurrence is that the time-course for the volume of ingested fluid to be 
distributed throughout the body after gastric emptying, intestinal absorption, and 
osmotic flow is 40 to 60 min (31,36) and within this time scale a similar volume 
of fluid would have emptied from the stomach. Total sweat loss was comparable 
with previous studies (6,28,29), which have simulated the exercise intensity of 
soccer. The value was relatively low, indicating that the volume of fluid intake 
was appropriate for the environmental conditions and fitness of the subjects. The 
volume consumed, however, might need to be adjusted to match environmental 
conditions, i. e., a larger volume in warmer environments. 

Despite the different timings and volume of fluid consumed, there were no 
significant differences in either thirst or gut fullness between trials. Irrespective of 
how the total volume was consumed, thirst decreased significantly following the 
consumption of fluid at rest, prior to the soccer-specific intermittent protocol, and 
at half-time. In contrast, gut fullness increased significantly at these time points. 
Gastric emptying is affected by the volume of fluid ingested, the larger the volume 
the faster the rate, i. e., drinking a large volume prior to a match (CHOv). As the 
volume in the stomach declines the rate of gastric emptying decreases propor- 
tionally. If, however, the volume is maintained by repeated ingestion of smaller 
volumes of fluid, i. e., every 15 min (CHOf), the rate of gastric emptying remains 
relatively constant (33). This could explain the small differences, although not 
significant, in plasma metabolites and carbohydrate oxidation between CHOf and 
CilOv. During the CIHOf trial carbohydrate might have passed from the stomach 
into the small intestine at a constant rate, enabling glucose absorption to occur at 
a constant rate and plasma glucose and carbohydrate oxidation to be maintained 
at higher levels. When fluid was consumed the subjective rating of gut fullness 
increased significantly, especially during PLA and CHOv. This finding agrees with 
Mitchell and Voss (25), who demonstrated that ingesting large volumes caused an 
increased frequency of complaints of gastric fullness. 

The increases in plasma glucose and carbohydrate oxidation following carbo- 
hydrate ingestion were not reflected in performance as peak sprint power output was 
relatively constant throughout all of the trials and not significantly different between 
trials. This finding is similar to that of Nicholas et al. (29), who demonstrated that 
the ingestion of a carbohydrate-electrolyte solution significantly improved a run 
to exhaustion following a period of intermittent exercise, but had no impact on the 
performance of high-intensity exercise, 15-m sprints. It has also been demonstrated 
that ingesting carbohydrate during a soccer match has no impact on the ability to 
perform high-intensity skills such as tackling and heading (44). 

The mean sprint duration in a competitive match is 3.7 s (14). In the present 
study the duration of each sprint was 3.3 s. At high-intensity exercise of these 
durations, phosphocreatine (PCr) is the major energy source, and a reduction in 
carbohydrate availability might increase PCr degradation during exercise (39). 
13alsom et al. (2) demonstrated, however, that 15-m sprints could be performed at 
30-s intervals without impaired performance without carbohydrate supplementa- 
tion. In the present study, 18 sprints were performed separated by approximately 
200 s of lower-intensity exercise, suggesting there was sufficient time for PCr 
resynthesis between sprints and that the PCr system was able to meet the energy 
demands during the sprints. Also during PLA no signs of hypoglycemia were dis- 
played, which is associated with fatigue and reduced performance (11), suggesting 
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carbohydrate availability was not a factor limiting peak sprint power output in the 
present study. 

The general recommendation for fluid ingestion during exercise is that fluid 
should be consumed early, and at regular intervals in an attempt to replace the 
water lost through sweating, or to consume the maximal amount that can be toler- 
atcd (9). This study indicates that if sufficient carbohydrate-electrolyte solution 
is ingested before and at half-time, sprint performance and metabolism are not 
significantly affected when compared to consuming the same total volume ingested 
at the recommended 15-min intervals. The absence of scheduled breaks in soccer 
prevents players taking regular feedings of carbohydrate other than at half-time. 
These findings indicate that consuming a carbohydrate-electrolyte solution before 
a match and at half-time is a practical strategy for fluid provision during soccer 
at normal, ambient temperatures. When employing this strategy, extra fluid could 
be consumed during a match when the opportunities arise as a consequence of the 
natural breaks that typically occur, e. g., injuries, as the rules require that players 
must go to the perimeter lines to avail themselves of any drinks provided by sup- 
port staff during the game. 

A limitation of the current study is that the findings might not transfer directly 
to professional soccer w here the players operate at a higher tempo than is possible 
in laboratory conditions and are likely to have higher aerobic and anaerobic power 
capacities than the current subjects. The VOA of the subjects, however, was close 
to that displayed among professional players and the intermittent exercise protocol 
simulates the pattern of activity in matches. 

In conclusion, providing that the total volume of fluid consumed is equal, 
manipulating the timing and volume of carbohydrate ingestion does not influence 
exercise performance and elicits the same metabolic responses. Furthermore, ingest- 
ing a carbohydrate-electrolyte solution compared with a flavored placebo during a 
soccer-specific protocol significantly alters metabolism, although it has no impact 
on peak sprint power output. 
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Hydration and energy provision during soccer-specific 
exercise 
N. D. Clarke, B. Drust, D. P. M. MacLaren and T. Reilly 

RISES, Liverpool John Moores University, Liverpool L3 2ET, UK 

During soccer play there is a net depletion of muscle glycogen 
and players may lose 2-3 L of sweat. Therefore there are 
opportunities for enhancing performance during a game by 
adopting refuelling and rehydration regimes. The present aim 
was to manipulate the provision of sports drinks during soccer- 
specific exercise and to investigate the effect on metabolic 
responses and on components of performance. 
Twelve male soccer players of mean (± S. D. ) age 24.5 ( 13) y; 
height 1.77 (± 0.1) m; body mass 74.5 (± 7) kg; V ,,,, 1 59.37 (± 7) ml kg` min-' performed a soccer-specific protocol, 
incorporating 3 s-s sprints on a non-motorised treadmill (Drust 
et al. 2000) after providing written informed consent. On two 
occasions either 7 ml kg-' BM of carbohydrate-electrolyte 
(CHOv) or placebo (PLA) solution was ingested before and at 
half-time (532 ± 38 ml; total 1065 ± 76 ml). On a third occasion 
the same volume of carbohydrate-electrolyte solution was 
consumed (C}HOf) but in smaller volumes at 0,15,30, half-time, 
60,75 min (178 ± 13 ml). Blood samples were collected at rest, 
half-time and full-time, and analysed for glucose and Non- 
esterified Free Fatty Acids (NEFA). Respiratory analyses were 
undertaken throughout to determine the rate of carbohydrate 
oxidation, as was 3-s sprint power. Trials were performed in a 
double-blind counter-balanced manner. Repeated measures 
ANOVAs were used with significance at P<0.05. 
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Plasma glucose (Fig. IA) and carbohydrate oxidation (Table 1) 
were higher (P < 0.05) during CHOf compared with PLA. The 
concentration of NEFA (Fig. 1B) was reduced (P < 0.05) with 
CHOv and CHOf compared with PLA. 

Table 1: Carbohydrate oxidation (g"min-'). 

15 min 30 min 45 min 60 min 75 min 90 min 
PLA 1.91±0.3 1.82±0.4 1.69±0.5 1.59±0.4 1.69±0.3 1.64±0.4 

CHOv 2.08±0.4 1.91±0.3 1.92±0.5 1.96±0.5 2.01±0.5 1.92±0.6 
CHOf 2.09±0.4 2.05±0.4 1.98±0.4 2.10±0.6 2.23±0.6 1.97±0.4 

Mean sprint power was not affected (P > 0.05) by the 
experimental treatments (PLA: 1080.42 ± 241 W; CHOv: 
1103.67 ± 228 W; CHOf: 1090.59 ± 136 W). Ingesting 
carbohydrate-electrolyte solution significantly affected plasma 
metabolites and increased carbohydrate oxidation but failed to 
impact on performance of short sprints during soccer-specific 
exercise. Furthermore, the timing and volume of ingestion did 

not significantly affect metabolism or sprint power. 

Drust B et al. (2000). Eur J Appl Physiol 81,11-17. 
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Effect of wearing protective clothing and self contained 
breathing apparatus on heart rate, temperature and oxygen 
consumption. 
S. S. Bruce-Low, D. Cotterrell and Gareth E. Jones 
Sport and Exercise Science Department; Department of Biological 
Sciences, University College Chester, UK 

Fire fighters must possess the ability to respond to both extrinsic 
stress and stress from wearing protective clothing (PC) and self- 
contained breathing apparatus (SCBA) (White et al, 1991, 
Richardson & Capra, 2001). The effects of wearing PC+SCBA 
(20.42 ± 1.5 kg mean ± S. D. ) on heart rate (HR), temperature 
responses and oxygen cost in six subjects (age 20.3 ± 0.8 years, 
weight 77.7 ± 7.0 kg and height 180.3 ± 4.3 cm) were observed. 
Ethical approval was obtained from the University College 
Chester Ethics Committee and the Health and Safety Officer 
from Greater Manchester Fire Service. 

Table . 1-Mean fIR (bpm) responses to the CST whilst 
dressed In GA WGK and PC+SCBA 

CST 
Level 

Gym Kit Gym Kit and 
Weighted 
Rucksack 

PC+SCBA 

HRbm HRbm HRbm 
1 Low 106: 4 1) 123 (x7 6) 126 (t7 8) 
5 (High) 163 :3 7) 185x6 6) 188 35 6 

There were significant increases in HR when carrying out the 
Chester Step Test (CST) (Sykes, 1995) wearing gym kit (GK), 
gym kit and weighted rucksack (WGK) (weighted to PC+SCBA 
equivalent) and PC+SCBA (thermoneutral conditions) (Table 
1). Data was analysed using a one way ANOVA with post hoc 
Tukey analysis. Significant increases (P < 0.05) at CST level 5 
were observed between GK and WGK for HR (A 23.3 ± 5.8bpm) 
and GK and SCBA+PC for HR (A 25.2 ± 5.2bpm) and for 02 cost (A 6.1 ± 3.8 ml 02 kg'' min-'). Thus, cardiovascular responses 
are elicited both from the workload and weight of the PC+SCBA 
(Table 1). Skin temperature significantly increased (P < 0.05) 
between GK and PC+SCBA (A 3.1 ± 1.3°C) and also WGK and 
PC+SCBA (A 3.5 ± 1.7°C). This may suggest therefore that the 
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Scant difference in gross efficiency (P<0.01) between SFs of 24 
and 32 (P<0.01), and SFs of 28 and 32 (P<0.05) were identified. 
Significant differences in work efficiency between SFs of 24 and 
32 (P<0.01), and between 24 and 28 (P<0.001) were also identi- 
fiidd (Table 1). Significant differences (P<0.05) in heart rate between 
Sis of 24 and 32 were observed. There were no significant differ- 

ences (P>0.05) in plasma lactate levels for power output or SF. 
oxygen consumption, gross and work efficiency are affected by 
ST. To ensure that rowing ergometer tests are reliable, SF must 
remain consistent for all physiological experiments. 

11 
table 1. Mean (is EM) VOp gross and mechanical efficiency during 

iiq min simulated rowing at SF, of 24.28 and 32, with and without 
resistance (*significant difference between 24spm and 32spm, ** 
2Sspm and 32spm, <#% I60>24spm and 28spm) 

qq Ib w 244w 2"m 32spm 

") vo 0 
Wit 1.37" to OD) 160"" (0.03) 1.80 (0.05) 

1 . b+nwr 6.1). (D ob) 4.16'(0.06) 4.29(0.07) 

Coon klficrwry t'H Mwrar 1sP (02e) Is. 7» (0.21) 13.2 (0.20) 

W. A80ktnc7(t) Ist 22.1'(043) 23.11 (0.18) 24.3(0.71) 

Caesser, G and Brooks, G. (1975). J Appi Physiol, 38: 1132-1139. 

Where applicable, the experiments described here conform with 
Physiological Society ethical requirements. 
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Fluid Provision and Metabolic Responses to Soccer-Specific 
Exercise 

N. D. Clarke, B. Drust, D. P. MacLaren and T. Reilly 

RISES, Liverpool John Moores University, Liverpool, UK 

During a competitive soccer match there is a net reduction in 

muscle glycogen, and the exercise intensity is high enough to 
induce appreciable heat load, causing players to lose up to 3 litres 

of sweat. The aim of this study was to manipulate the adminis- 
tration of sports drinks during soccer-specific exercise and to 
investigate the effect on metabolic responses. 
After providing written informed consent and undergoing famil- 
iarisation, 12 male soccer players of mean (±S. D. ) age: 24±4 years; 
height: 1.803: 0.1 m; body mass: 76.5±9) kg; VO2ri,,, 61.08±4 mLkg 
t, mirt't performed asoccer-specific protocol, incorporating static 
periods, walking, jogging, cruising and sprinting on a motorised 
treadmill on three occasions. On two occasions either 7 ml. kgt BM 

of carbohydrate-electrolyte (Cl 1Ov) or placebo (PIA) solution was 
ingested 0 and 45 min (538±66 ml; total 1075± 132 ml). On a third 
occasion the same volume of carbohydrate-electrolyte solution was 
consumed (Cl 101) but in smaller volumes at 0,15,30,45,60,75 
min (179 ± 22 ml). Blood samples were collected at 0,45 and 90 

rein and analysed for glucose, glycerol and insulin. Respiratory analy- 
scs were undertaken throughout to determine the rate of carbohy- 
drate oxidation (Frayn, 1983). Trials were performed in a double- 
blind counter-balanced manner. Repeated measuresANOVAs were 
used to identify differences and significance was accepted at P<0.05. 
Glucose and insulin concentration (Table 1), and carbohydrate 
oxidation (PLA: 3.02±0.7 g. min't; C11Ov- 3.60 ± 0.8 g. min-t; 
CliOf: 3.50 ± 0.6 g. min-t) were higher (P<0.05) during C110v 

and C1IOf compared with PLA and there were no differences 

113P 

between CHOv and CHOf. Glycerol (Table 1) was higher 
(P<0.05) during PLA compared with CHOv and CHOP. 
Ingesting carbohydrate-electrolyte solution significantly affected 
plasma metabolites and increased carbohydrate oxidation. The tim- 
ing and volume of ingestion did not significantlyaffect metabolism. 
Table 1: Glucose, glycerol and insulin concentration (means ±S. D. ) 

........................ ...................... .......... P1 ma glucose (mM) 

0 min 
........................... 

45 mm 
................. ............. 

90 mm 
............................. 

PI. A 5.08±1 5.23±1 4941 

CHO, 5.14±1 5.76±1 56411 

CHOf 5.16± 1 6.521 1 61611 

PWamn glycuol (uM) 

P1. A 67.5327 112.4±44 181.4375 

CHOv 63.7±32 82.1130 114.3132 

CHOP 65.2130 83.8 ± 32 131.5 ±30 

Serum mwln (mIU/1) 

PLA 
...................... CH ...................... 

32.1±I9 
.... -33.4 t 19 ...... 

25.7±15 
...... -. 31.7 3 21...... 

21.4118 
....... 28 63 33....... 

CHOf 32.0±19 373±18 31.9±19 

Frayn, K. N. (1983). J. Appl. Physiol. 55,628-634. 

This study was supported by GlaxoSmithKline 

Where applicable, the experiments described here conform with 
Physiological Society ethical requirements. 
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Human knee-extensors architecture: diurnal rhythmicity 
and torque characteristics 
S. J. Pearson', S. A. Bruce', P. Graham - Smith' and G. Onambele3 
I Directorate of Sport University of Salford, Manchester, UK22School 
of Biomedical Sciences, Kings College, London, UK and 3Department of Exercise & Sport Science, Manchester Metropolitan 
University, Manchester, UK 

Time of day increments in strength have previously been reported 
(Deschenes et al. 1998; Martin et al. 1999), but no attempt to 
study this effect in conjunction with internal muscle structure 
has been made, even though in vivo, muscle architecture (fibre 
pennation angle (0) and muscle size), are determinants of the 
capacity of a muscle to generate torque (Maganaris et al. 2001). 
The aim of the current study was therefore to examine whether 
muscle architecture can account for a) force changes or b) any 
changes in the torque-angle relationship with time of day. Sixteen 
healthyyoung men (aged 23±5.7 years) were tested at 7h45am and 
5h45pm. To prevent order effects, seven subjects were tested in the 
order am to pm, and the rest in the order pm to am. Knee exten- 
sors test angle was randomised and the best of 3 contractions (peak 
isometric extension torque (PIET)) at each angle was used for analy- 
sis. The investigation was approved by the Manchester Metropol- 
itan University Institutional Ethics Committee and all subjects gave 
their written informed consent to participate in the study. 
PIET showed an average 7.0 ± 1.8% (p=0.023) upward shift 
throughout the range (30-90 deg) in the evening compared to 
the morning. The polynomial regressions fitted through the 
torque/angle relationship data showed a 10 deg shift of the angle 
at which PIET occurs (from -80 deg at am to -70 deg at pm) so 



Appendix B 
Example of informed consent form and 

additional information sheet 



Participant Information Sheet 
Project title: The effect of pre-cooling and the ingestion of sports drinks on the 
performance of soccer specific exercise in the heat. 

Researchers: Neil Clarke, Profs. T. Reilly and D. MacLaren and Dr B. Drust. 

The purpose of this study is to investigate the effect of pre-cooling and consuming 
sports drinks on performance on a treadmill during a simulation of the exercise 
intensity equal to a soccer match in the heat (30°C). 

After completing a standard questionnaire about your physical activity you will be 
required to attend the laboratories at the Research Institute for Sport and Exercise 
Sciences, Liverpool John Moores University on 8 occasions. 

First session: You will run on a treadmill at increasing intensities until you cannot 
continue; this will last about 15 minutes and will be no harder than a normal training 
session. During this session your height and weight will also be measured. 
Next session: You will be required to exercise on the treadmill for 30 minutes at 
intensities ranging from standing still to sprinting. This is to ensure that you are 
familiar with running on the treadmill. 

Next 6 sessions: For 3 days before each session you will keep a diary of what you 
have eaten and drunk and it will be necessary that you do not consume caffeine from 
18: 00 onwards the day prior to each trial. The test sessions will take place between 
14: 00 and 18: 00, at your convenience and at least 48 hours after a competitive match 
or hard training. Before testing, it will also be necessary to swallow a pill, which is the 
size of a "cod-liver oil" capsule and will cause no discomfort and is used to measure 
body temperature. Before you start to exercise your body weight will be recorded. 
When you have completed the exercise your body weight will also be recorded. The 
test sessions will involve exercising in repeated 15-minute cycles of activity on a 
motorised treadmill for 90 minutes at intensities ranging from walking through to 
sprinting in the environmental chamber set at 30°C. This entire session is separated 
into two 45-minute halves, with a 15-minute break to represent half-time. During each 
session you will drink either flavoured water or two types of sports drink. On 3 
occasions, before you perform the soccer-specific protocol you will be required to 
wear a cooling vest, that has pockets for ice packs, until your body temperature 
decreases by 0.6°C, this procedure is not unduly uncomfortable. The fluid consumed 
contains a source of phenylalanine and therefore you will not be able to participate if 
you suffer from phenylketonuria. 

Before you start to exercise it will be necessary to collect a urine sample to ensure that 
you are adequately hydrated. It will also be necessary to take four 16 ml venous blood 
samples from an arm vein and measure muscle temperature; these procedures will feel 
like pinprick and will take place at the following times: 
" Before you wear the cooling jacket 
" Before you start to exercise 
" At half-time 
" When you have finished the 90 minutes of exercise 

Also you will be required to wear a heart rate monitor during all exercise sessions. 
During all of the sessions you will need to wear suitable clothes e. g. shorts, T-shirt 
and trainers. 

You will have the discretion to terminate the exercise test at any point should you feel 
the need. 

Thank you very much for your time and assistance 
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LIVERPOOL 301 IN MOORES UNIVERSITY 
FORM OF CONSENT 

The effect ofpre-cooling and the ingestion of sports drinks on the performance of 
soccer specific exercise in the heat. 

I ....................................................... 
(Subject's full name*) agree to take 

part in the above named project/procedure, the details of which have been fully 
explained to me and described in writing and I am free to withdraw at any time 
%%ithout giving a reason and without loss of benefits to which you are otherwise 
entitled 

Signed ........................................................... 
Date................................... 

(Subject) 

I... NEIL CLARKE... (Investigator's full name*) certify that the details of this 
project/procedure have been fully explained and described in writing to the subject 
named above and have been understood by him/her. 

Signed ........................................................... 
Date ................................................... 

(investigator) 

I ...................................................... (Witness' full name*) certify that the 
details of this project/procedure have been fully explained and described in writing to 
the subject named above and have been understood by him/her. 

Signed ........................................................... (Witness) 
Date ................................................... 

Nß The witness must be an independent third party. 

" Please print in block capitals 
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Muscle glycogen analysis 

Glycogen is the storage form of carbohydrate in the body and is a macromolecule of 

glucose residues linked together by alpha 1-4 and 1-6 carbons. The glycogen is 

hydrolyzed in 1 ICI Into it constituent glucose residues and measured enzymatically. The 

method is the hcxokinasc/ glucose-6-phosphate dehydrogenase reaction for measuring 

glucose based on the method developed by Lowry and Passonneau (1972). 

Glucosc + ATP Ilexokinase Glucose-6-phosphate + ADP 

G-6-P + NADP 0-6-P dehydrogemse , 6-phosphogluconic acid + NADPH 

The NAPDii produced can be read on a spectrophotometer at 340 nm if the concentration 

of glucose is high enough, or on a fluorometer at low concentrations. 

The concentrations and volumes of the solutions used in this assay were: 

Tris buffer 
Glucose reagent 
1M NaOii 
1.5 M acetic acid 
0.1 M acetate buffer 

0.02MIHCI 
Amylogucosidasc 
solution 
Hexokinasc 
(0.1 dilution) 
Glucose standard 

0.05 g MgC12 + 1.51 g Trizma in 500 ml H2O (pH 8.1) 
7 mg ATP + 10 mg NADP + 5µl G-6-PDH in 25 m1 Tris buffer 
4gNaOHin100mlH2O 
1.17 ml H2O + 100 µ1 concentrated stock acetic acid 
2.86 ml stock acetic acid + 6.8 g sodium acetate in 1000 ml H2O 
(pH 4.5) 
20 t1 stock HC1 + 11.5 ml H2O 
2 ml acetate buffer + 100 µl stock amylogucosidase (10 µg/ml) 

2 t1 hexokinase + 18 µl Tris buffer 

0.5 mM glucose solution 

AU reagents were obtained from Sigma or Fluka (Sigma-Aldrich Company Ltd, UK). 

F 



Once the muscle was obtained it was immediately frozen in liquid nitrogen and stored in 

an Eppendorf container at -80°C. The frozen samples were ground under liquid nitrogen 

and placed into polypropylene tube. Each tube was weighed before and after the muscle 

was added using an analytical fine balance (Mettler AE 200) and recorded to the nearest 

milligram. The following procedure was followed for measuring muscle glycogen. 

1. The muscle was homogenized on ice in 1 ml of 0.02 M HCi. 

2. The tubes were capped and placed in boiling water for 10 minutes. 
3. Following the addition of 100 µl of 1M NaOH the samples were immersed in 

boiling water for a further 10 minutes. 
4.100 µl of 1.5 M acetic acid and 200 µ1 of 0.1 M acetate buffer were added to the 

samples and mixed. 
5.500 µl of the muscle extract was transferred to an Eppendorf tube. 
6.500 µl of acetate buffer as added to two Eppendorf tubes (blanks) and 500 µl of 

the 0.5 mM glucose solution was added to another two tubes (standards). 

7.100 tl of the amyloglucosidase solution was added to all blanks, standards and 

samples and left to incubate at room temperature for 2 hours. 
8. The tubes were centrifuged at 4°C for 5 minutes at 14,000 revmin71. 
9.200 µl of the supernatant was transferred to another Eppendorf tube. Then 15 t! 

of the 1M NaOH and 400 µl of the glucose reagent were added, mixed and left at 

room temperature for 5 minutes. 
10.200 µl was into the wells of a microplate and absorbance was measured at 340 nm 

(Powerwave X340, BioTek Instruments Inc, USA). 

11.2µl of the hexokinase solution was then added, mixed and the reaction proceeded 
to its endpoint (20 minutes) at room temperature. 

12. After the hexokinase reaction was complete absorbance was again measured and 
the initial value of blank was subtracted from the final value of the samples and 
standards. The following equation was used to calculate the values. 

C 
(A Absimpie/ A Abs,, d) X (mM ConCgid x ml VolMd) x (dilutiongnus, 

a 
) 

m weiht 
X 1000 

$ weight 

= µmoles glucosyl units-gram wet weight" or mmol"kg wet weight-' 


