
Characterisation and Remediation of a Canal 

Sediment Contaminated with Heavy Metals and 

Organic Pollutants 

Anna Royle 

This thesis is submitted In partial fulfilment of the requirements of Liverpool John Moores 

University for the degree of Doctor of Philosophy 

Collaborating Institutions: The University of Liverpool 

4 

October 2005 



ACKNOWLEDGMENTS 

Firstly I would like to acknowledge the help of my supervisors Professor N. M. Dickinson and Dr P. 

Putwain both for offering me the opportunity to undertake this PhD and also for their help during the 

past 3 years. Thanks to Nick for his rapid reading and correcting of chapters. 

A massive thank you also to the staff at CSIRO Land & Water in Australia, especially Mike 

McLaughlin, Annette Nolan (and Brett), Enzo Lombi, TOndi Heinrich, Rebecca Hamon and Daryl 

Stevens for not only the fantastic opportunity which they gave me, but also their help and friendship 

throughout my time there. Without them, Chapters 4 and 6 would not have been possible. 

Dr Ian Pulford has been wonderful and I would like to thank him very sincerely for his help and his 

suggestions. Thank you to Mike O'Connor for help with the fieldwork and provision of photographs. 

Thank you also to the various technical staff (including Mark Blackburn and Vicki Mills) for their 

help with this project. 

On a more personal note I'd like to thank Roz King for not only being a good friend and an 

insufferable optimist, but also for all of the advantages that her powerful personality brought to the 

project. She has been a joy to work with and has made this PhD a truly unforgettable experience. 

I would also like to thank Tony for his unwavering support and for the proof reading of so many 

pages of unfamiliar science. 

Without the support and funding provided by Warrington Borough Council, Peel Holdings Ltd., 

Littlewoods, and the Northwest Development Agency none of this work would have been possible 

and the Woolston New Cut Canal would have retained its secrets to this day. 

Finally, I would like to dedicate this thesis to me, for all my hard work. 



ABSTRACT 

Sediment was dredged from a disused canal site and planted with Safix, Populus and Alnus 

species for the purpose of heavy metal and organic pollutant phytoremediation. Heavy metal 

behaviour during sediment oxidation was studied in laboratory and pot trials using an anoxic 

sequential extraction scheme, isotopic dilution techniques, diffusive gradients in thin films (DGT) 

and a root elongation study. A pot trial investigated the effects of environmental variables on tree 

biomass production. The high organic matter content and the lack of pH buffering carbonate 

minerals in this sediment made it a novel substrate for study. A drop in pH from -6 to - 3.5 

occurred during oxidation of the sediment which, coupled with the increasing redox potential, led to 

increased heavy metal mobility, lability and phytotoxicity. The acidification led to an increase in Zn 

mobility of 1670 % over a 48-day oxidation period in a pot trial. Addition of ameliorants increased 

the pH of the oxidised sediment and decreased mobility and pore water concentrations of heavy 

metals and also reduced heavy metal flux from labile solid phases into solution. Consequently 

there was an increase in biomass production in concorde ryegrass growing in lime-amended 

sediment when compared to unamended sediment, and a decrease in heavy metal 

phytoextraction. Only the lime-containing amendments proved to be effective in ameliorating this 

sediment due to its low pH. The use of DGT techniques yielded a good relationship between the 

effective concentration (CE) and the concentration of heavy metals in plant tissue. In the pot trial 

designed to assess the effect of environmental variables on tree biomass production, biomass yield 

was greatest when the trees were growing in deeper, wetter sediment, and the lowest biomass 

production occurred when the trees were growing in shallower, drier sediment. Heavy metal 

mobility and phytoaccumulation were decreased in the former treatment with respect to the latter. 

Biomass production at the canal site appeared to follow these same trends. Generally, biomass 

production at the canal site was low and phytoextraction was not as high as has been reported in 

the literature. Salix X Calodendron showed the greatest heavy metal phytoremediation potential 

(higher biomass production, lower mortality) of the species tested, coupled with a lower risk of food 

chain transfer (lower foliar concentrations and herbivory rate). Large leaching losses of heavy 

metals (particularly Zn and Cd), and low pH may have led to increased pollution of the surrounding 

canal water. There was some evidence of degradation of organic pollutants but it was slow with 



respect to other reported methods of remediation such as composting. Low biomass yields and low 

phytoextraction at the site, together with the low pH of the sediment and the high mobility of heavy 

metals makes this form of phytoremediation ineffective at this site. It is recommended that the 

sediment be kept submerged and anoxic until a more viable form of remediation can be proved to 

be effective. 



ACKNOWLEDGEMENTS ........................................................................................................................... 
I 

ABSTRACT ............................................................................................................................................ 11 
COLLABORATIVE WORK 

........................................................................................................................ 
X 

LIST OF ABBREVIATIONS 
...................................................................................................................... 

X1 

CHAPTER 1 .......................................................................................................................................... 
I 

An Introduction to the Woolston New Cut Canal ...................................................................... 1 

1.1 Introduction .......................................................................................................................... 
1 

1.1.1 Background and Site History ........................................................................................ 
3 

1.1.2 The Woolston New Cut Canal ...................................................................................... 
4 

1.5 Thesis Aims and Objectives ................................................................................................ 
5 

Objectives ..................................................................................................................... 
6 

CHAPTER 2 .......................................................................................................................................... 
7 

General Introduction to Heavy Metals, Organic Pollutants, Contaminated Land and 

Phytoremediation ......................................................................................................................... 
7 

2.1 Heavy Metals ....................................................................................................................... 
7 

2.1.1 Cadmium (Cd) .............................................................................................................. 
8 

2.1.2 Copper (Cu) .................................................................................................................. 
8 

2.1.3 Lead (Pb) .................................................................................................................... .. 9 

2.1.4 Zinc (Zn) ..................................................................................................................... .. 9 

2.2 Organic Pollutants - Petroleum Hydrocarbons and PAH .................................................. 10 

2.3 Contaminated Land in the UK and the EU ........................................................................ 11 

2.4 Phytoremediation and Bioremediation ............................................................................... 
13 

2.4.1 Hyperaccumulation ..................................................................................................... 
14 

2.4.2 Phytoremediation Using Non-Hyperaccumulator Species ......................................... 15 

2.4.3 Genetic Modification ................................................................................................... 19 

2.5 Canals and Canal Sediments ............................................................................................ 19 

CHAPTER 3 ........................................................................................................................................ 
21 

Heavy Metal Fractionation Change During Drying and Oxidation of a Dredged Canal 

Sediment ..................................................................................................................................... 
21 

3.1 Introduction ........................................................................................................................ 
21 

3.1.1 Fractionation Studies .................................................................................................. 
21 

3.1.2 Anoxic Sediments ....................................................................................................... 
22 

3.1.3 Aims ............................................................................................................................ 
24 

3.1.4 Hypothesis .................................................................................................................. 
24 

3.2 Materials and Methods ...................................................................................................... 
24 

3.2.1 Sediment Collection and Storage ............................................................................... 
24 

3.2.2 Tank Pre-Preparation and Sediment Addition ............................................................ 
24 

3.2.3 Sediment Sampling .................................................................................................... 
25 

3.2.4 Chemical Analysis ...................................................................................................... 
26 

iv 



3.2.5 Sequential Extraction ................................................................................................. 27 
Total Heavy Metal Content .................................................................................................. 31 
3.2.6. Statistical Analysis ..................................................................................................... 31 

3.3 Results and Discussion ..................................................................................................... 31 
3.3.1 Total Heavy Metal Content ......................................................................................... 32 
3.3.2 pH and Carbonate ...................................................................................................... 32 
3.3.3 Leachate ..................................................................................................................... 34 
All depths ............................................................................................................................. 35 
3.3.4 Moisture Content ........................................................................................................ 36 
3.3.5 Dithionite ..................................................................................................................... 36 
3.3.6 Iron ............................................................................................................................. 36 
3.3.7 Chromium ................................................................................................................... 40 
3.3.8 Copper ........................................................................................................................ 42 
3.3.9 Lead ............................................................................................................................ 43 
3.3.10 Zinc ........................................................................................................................... 45 
3.3.11 Residual Metals ........................................................................................................ 47 
3.3.12 Cadmium .................................................................................................................. 50 

3.4 Conclusions ....................................................................................................................... 51 
CHAPTER 4 ........................................................................................................................................ 53 

Changes In Metal Lability During Oxidation of a Contaminated Canal Sediment ............... 53 
4.1 Introduction ........................................................................................................................ 53 

4.1.1 Assessment of Heavy Metal Availability ..................................................................... 53 
4.1.2 E values ...................................................................................................................... 54 
4.1.3 E, Values .................................................................................................................... 55 
4.1.4 Aims ............................................................................................................................ 55 
4.1.5 Hypothesis .................................................................................................................. 56 

4.2 Materials and Methods ...................................................................................................... 56 
4.2.1 Sediment .................................................................................................................... 56 
4.2.2 Slow Oxidation Experiment ........................................................................................ 56 
4.2.3 Rapid Oxidation .......................................................................................................... 57 

4. ý. 3.1 Redox Titration .................................................................................................... 57 
4.2.3.2 Rapid Oxidation Experimental Procedure ........................................................... 59 

4.2.4 Isotopic Dilution Techniques ...................................................................................... 59 
4.2.5 Statistical Analysis ...................................................................................................... 61 

4.3 Results and Discussion ..................................................................................................... 61 
4.3.1 pH ............................................................................................................................... 61 
4.3.2 General Lability .......................................................................................................... 62 
4.3.3 Zinc Lability ................................................................................................................. 62 
4.3.4 Nickel Lability .............................................................................................................. 65 
4.3.5 Copper Lability ............................................................................................................ 65 

V 



4.3.6 Cadmium Lability ........................................................................................................ 66 

4.3.7 Colloidal Occlusion ..................................................................................................... 66 

4.4 Conclusions 
....................................................................................................................... 70 

CHAPTER 5 ........................................................................................................................................ 71 

Root Elongation of Brassica napus L. and Loliurn multiflorum L. Over an Oxidation Series 

on a Contaminated Sediment 
.................................................................................................... 71 

5.1 Introduction ......................................................................................................................... 71 

5.1.1 Root Elongation and Heavy Metals ............................................................................ 71 

5.1.2 Aim ............................................................................................................................. 73 

5.1.3 Hypothesis .................................................................................................................. 73 

5.2 Material and Methods ........................................................................................................ 74 
5.2.1 Sediment .................................................................................................................... 74 
5.2.2 Experimental Set-up ................................................................................................... 74 
5.2.3 Experimental Plants ................................................................................................... 75 
5.2.4 Sediment Physical and Chemical Analysis ................................................................ 76 

5.2.4 Sediment Physical and Chemical Analysis ................................................................ 77 
5.2.5 Statistical Analysis ...................................................................................................... 77 

5.3 Results and Discussion ..................................................................................................... 77 
5.3.1 Root Elongation .......................................................................................................... 77 

5.3.2 Metal Availability Changes ......................................................................................... 83 

5.4 Conclusions ....................................................................................................................... 84 
CHAPTER 6 ........................................................................................................................................ 86 

The Efficacy of Amendments In Counteracting Acidity, Decreasing Metal Lability and 
Reducing Phytotoxicity In Oxidised Canal Sediment . ........................................................... 86 

6.1 Introduction ........................................................................................................................ 86 
6.1.1 Amendments .............................................................................................................. 86 

6.1.2 Diffusive Gradients in Thin Films ................................................................................ 88 

6.1.3 Donnan Dialysis ......................................................................................................... 90 

6.1.4 Alms ............................................................................................................................ 91 

6.1.5 Hypothesis .................................................................................................................. 91 

6.2 Materials and Methods ...................................................................................................... 91 

6.2.1 Sediment 
.................................................................................................................... 91 

6.2.2 Amendments .............................................................................................................. 93 

6.2.3 Plant Growth Trial ....................................................................................................... 93 

6.2.4 Total Plant Metal Uptake ............................................................................................ 94 

6.2.5 Red Mud ..................................................................................................................... 94 

6.2.6 Donnan Dialysis ......................................................................................................... 95 

6.2.7 DGT ............................................................................................................................ 95 

6.2.8 Statistical Analysis ...................................................................................................... 97 

6.3 Results ............................................................................................................................... 97 

vi 



6.3.1 pH ............................................................................................................................... 97 

6.3.2 Plant Biomass and Uptake ......................................................................................... 98 
6.3.3 Pore Water Metals .................................................................................................... 101 
6.3.4 DGT .......................................................................................................................... 105 

6.4 Conclusions ..................................................................................................................... 109 

CHAPTER 7 ...................................................................................................................................... ill 

Phytoremediation of the Woolston New Cut Canal Sediment: An Evaluation of the Efficacy 

of the Phytoremediation Field Trial ........................................................................................ ill 

7.1 Introduction ...................................................................................................................... 
7.1.1 Phytoremediation of Aquatic Sediments .................................................................. 111 

7.1.2 The Canal Site .......................................................................................................... 113 

7.1.3 Aim ........................................................................................................................... 
113 

7.1.4 Hypothesis ................................................................................................................ 114 

7.2 Methods ........................................................................................................................... 114 

7.2.1 Sediment Sampling .................................................................................................. 114 

7.2.2 Tree Sampling .......................................................................................................... 114 

7.2.3 Sample Preparation .................................................................................................. 117 

7.2.4 Sequential Extraction ............................................................................................... 117 

7.2.5 Total Metal Analysis ................................................................................................. 117 

7.2.5.1 Sediment ........................................................................................................... 117 

7.2.5.2 Leaf and Stem Samples .................................................................................... 118 

7.2.5.3 Total Uptake of Elements .................................................................................. 118 

7.2.5.4 Quality Control .................................................................................................. 119 

7.2.5.5 Organics Analysis ............................................................................................. 119 
7.2.6 Statistical Analysis .................................................................................................... 120 

7.3 Results and Discussion ................................................................................................... 120 

7.3.1 pH, Moisture Content and Conductivity .................................................................... 120 

7.3.2 Sediment Heavy Metals ........................................................................................... 122 

7.3.2.1 "Bioavailable" Heavy Metals ............................................................................. 122 

7.3.2.2 Cadmium ........................................................................................................... 122 

7.3.2.3 Copper .............................................................................................................. 125 

7.3.2.4 Lead .................................................................................................................. 125 
7.3.2.5 Zinc .................................................................................................................... 126 

7.3.2.6 General Sediment Metal Summary ................................................................... 126 

7.3.3 Uptake of Metals by the Experimental Trees ........................................................... 128 

7.3.3.1 Biomass ............................................................................................................ 128 

7.3.3.2 Cadmium ........................................................................................................... 130 

Leaves ...................................................................................................................... 130 
Stems ........................................................................................................................ 130 
Total Uptake of Cd ............................... ........................................................... 131 

vil 



7.3.3.3 Copper .............................................................................................................. 133 
Leaves ...................................................................................................................... 133 
Stems ........................................................................................................................ 133 
Total Uptake of Cu .................................................................................................... 134 

7.3.3.4 Lead .................................................................................................................. 134 
Leaves ...................................................................................................................... 134 
Stems ........................................................................................................................ 134 
Total Uptake of Pb .................................................................................................... 137 

7.3.3.5 Zinc .................................................................................................................... 137 
Leaves ...................................................................................................................... 137 
Stems 

........................................................................................................................ 139 

Total Uptake of Zn .................................................................................................... 139 

7.3.4 Phytoextraction Potential .......................................................................................... 142 

7.3.5 Phytoremediation of Organic Pollutants ................................................................... 144 

7.4 General Conclusions 
....................................................................................................... 145 

CHAPTER 8 ...................................................................................................................................... 146 

An Investigation of the Factors Affecting Tree Growth at the Woolston New Cut Canal 

Field Site ................................................................................................................................... 146 

8.1 Introduction ...................................................................................................................... 146 

8.1.1 Differential Growth of Experimental Trees on the Planting Plaff orm ........................ 146 

8.1.2 Aim ........................................................................................................................... 151 

8.1.3. Hypothesis ............................................................................................................... 151 

8.2 Methods ........................................................................................................................... 151 

8.2.1 Preparation of Treatments ........................................................................................ 152 

8.2.2 Sampling and Duration ............................................................................................. 155 

8.2.3 Analytical Methodology ............................................................................................ 155 

8.2.4 Statistical Analysis .................................................................................................... 156 

8.3 Results ............................................................................................................................. 156 

8.3.2 Success of Treatments ............................................................................................. 156 
8.3.3 Biomass Production ................................................................................................. 158 

8.3.4 Heavy Metal Behaviour ............................................................................................ 161 

8.4 Conclusion ....................................................................................................................... 165 

CHAPTER 9 ...................................................................................................................................... 167 
General Discussion and Conclusions ................................................................................... 167 

REFERENCES ................................................................................................................................... 173 

APPENDIX 1 ...................................................................................................................................... 188 

APPENDIX 2 ...................................................................................................................................... 194 

APPENDIX 3 ...................................................................................................................................... 204 
APPENDIX 4 ...................................................................................................................................... 205 

APPENDIX 5 ...................................................................................................................................... 215 

viii 



APPENDIX 6 ...................................................................................................................................... 
219 

APPENDIX 7 ...................................................................................................................................... 
222 

APPENDIX 8 ...................................................................................................................................... 
227 

APPENDIX 9 
...................................................................................................................................... 

230 

APPENDIX 10 .................................................................................................................................... 
231 

ix 



COLLABORATIVE WORK 

This thesis should be considered in conjunction with that of R. F. King, 2005 "Ecological 

Considerations of Phytoremediating a Contaminated Canal Sediment". Due to the nature of the 

funding of this PhD, the work detailed in Chapters 7 and 8 were carried out in collaboration with R. 

King of The University of Liverpool. Collaboration extended only as far as field work and sample 

analysis. 

A placement was also undertaken by the author in CSIRO Land and Water Australia. The work 

detailed in Chapters 4 and 6 of this thesis was undertaken by the author during this time. 

x 



LIST OF ABBREVIATIONS 

Abbreviation Definition 

DEFRA Department of the Environment, 
Fisheries and Rural Affairs 

DGT Diffusive gradients in thin films 

DOC Dissolved organic carbon 
DW Dry weight 
EDTA Ethylene diamine tetraacetic acid 
Ej, Redox potential 
EU European Union 

FC Field capacity 
FW Fresh weight 
GF-AAS Graphite furnace atomic 

absorption spectrometry 
lCP-AES Inductively coupled plasma - 

atomic emission spectrometry 
lCP-MS Inductively coupled plasma - 

mass spectrometry 
1CP-OES Inductively coupled plasma - 

optical emission spectrometry 
LOI Loss on ignition 

MC Moisture content 

no. Number 

Om Organic matter 
PAH Polycyclic aromatic hydrocarbon 

PCB Polychlorinated biphenyl 

SD Standard deviation 

SRC Short rotation coppice 
TPH Total petroleum hydrocarbon 

UK United Kingdom 

V/V Volume to volume ratio 

W/W Weight to weight rato 
WIHIC Maximum water holding 

capacity 
WNCC Woolston New Cut Canal 

Units 

b bredth 
Bq Becquerel(s) 

cm centimetre(s) 
d day(s) 

9 gram(s) 
9 gravity 
h hour(s) 

h height 
ha hectare(s) 
kBq kilo Becquerel(s) 
kg kilogram(s) 
krn kilometre(s) 

L litre(s) 
length 

M molar 
M metre(s) 
mg milligram(s) 

min minute(s) 
mL millilitre(s) 
mm millimetre(s) 
mv millivolt(s) 
0C degrees centigrade 
PIPM parts per million 
rpm rotations per minute 
t ton(s) 

P9 microgram(s) 
pL microlitre(s) 
Jim micrometre(s) 
Y year(s) 

Note Tree names are abbreviated throughout 
this thesis. For full latin names see Royle et 
aL (2003) in Appendix 10. 

xi 



CHAPTER 1 

An Introduction to the Woolston New Cut Canal 

1.1 Introduction 

The field site throughout the duration of the current project was the Woolston New Cut Canal 

(WNCC), located in Woolston, Warrington, in the North West of England (530 23' N, 20 33'W). The 

total length of the WNCC is approximately 2 km. The experimental site constituted a 150 rn stretch 

of the south bank of the canal site, from Paddington Lock (the western-most lock of the canal) to 

the first swing bridge. The WNCC site was identified as potentially contaminated land by a DoE 

survey, carried out in the 1980's. An initial survey of the sediment was undertaken in 1990, 

confirming that the site was polluted. In 2002, funding was acquired to begin the current project. 

In April 2002 the established vegetation was cleared from the 150 m stretch of the south bank of 

the canal and the site was rotivated. Sediment was dredged from the canal channel in April 2002 to 

form a planting platform (Fig. 1.1), upon which the experimental willow, poplar and alder trees were 

planted one month later (May 2002). The platform was divided into 6 experimental blocks. Twelve 

short-rotation coppice species, hybrids and clones of willows, poplars and alders (Table 1), were then 

planted on the raised platform in double rows (0.5 mx0.5 m) of 6 plants of each clone, with 1m 

between rows. Safix and Populds species were planted as pegs, and Alnus species were planted as 

50-70 cm rooted stock (which was pruned back after establishment). The willow clones planted on 

the canal came from the nursery at Ness Botanical Gardens, Neston and details of their metal 

accumulation in this, unpolluted, soil can be found in Nissen and Lepp (1997). Species were 

randomly allocated within each block and empty "control" plots were included in the design. For list of 

species used see Royle et al. (2003) which is presented as an appendix (Appendix 10) to this 

thesis. 

The sediment was a sandy mud containing elevated concentrations of heavy metals. Samples 

were taken from the sediment 2 months after dredging. These samples were sent to external 
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Planting 

platform 

Figure 1.1 The prepared planting platform at the Woolston New Cut 

Canal, spring 2002, still containing a birch tree, which was removed 

prior to planting of experimental trees. 



laboratories for analysis. The results obtained from the laboratories are given in Appendix 1. The 

laboratories which carried out the analysis were: 1) Al-control Laboratories, Templeborough House, 

Rotherham, 2) NRM (Natural Resource Management) Ltd., 21-47 High Street, Feltham, and 3) 

CAS (City Analytical Services) Ltd., 80 Lockhurst Lane, Coventry. 

The clay liner of the canal was expected to act as a barrier to leaching contaminants, thus 

protecting the groundwater. To ensure that this was the case, five boreholes were established to 

the side of the canal to monitor the groundwater quality. 

1.1.1 Background and Site History 

The following information in this section is taken from Royle (2002): 

In the 17 th and 18 th centuries, Liverpool was the main port on the River Mersey, being at its mouth. 

Owing to the poor conditions of the roads, goods travelling from Liverpool to Manchester and the 

towns in between had to pass through the port of Liverpool, and travel beyond Liverpool via the 

Mersey River. The Railway was yet to be invented. The port of Liverpool had a monopoly on the 

Mersey and charged extortionate taxes to all vessels wishing to use the port. Indeed, it was 

cheaper for a merchant to ship goods half way around the world than it was to pass them through 

Liverpool. 

The Mersey estuary had begun to silt up in the early 1600's, increasingly impeding the progress of 

boats to Manchester. There were calls for the river to be dredged as early as 1660. However, 

Liverpool refused to pay for the channel to be dredged as the city did not wish to lose trade to 

Manchester. 

The tidal limit of the Mersey was the bend in the river where the eastern lock of the Woolston New 

Cut Canal now joins it -a few miles east (upstream) of Warrington. Boats relied on wind and tide to 

transport them this far, through the many bends of the river, but progress beyond this point was 

slow and difficult. In 1710 and 1712, Thomas Steers published his idea to dredge and straighten 

the Mersey so that ships could more easily sail from Bank Quay, Warrington, to Hunts Bank, 
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Manchester. Above the tidal reaches of the canal, a series of weirs, locks and towpaths would be 

constructed to take ships to Manchester. Work on this plan was slow due to the shallow and 

winding nature of the river, but began in 1724. By 1734, ships of up to 50 tons could sail to 

Manchester. This system was still not much used so "new cuts" were created prior to 1740 to make 

it a more attractive option. Locks were also enlarged and rebuilt. However, the silted up estuary 

continued to be a problem and in 1804, a canal from Latchford to Runcom was opened, allowing 

trade to prosper along the length of the river from Liverpool to Manchester. This prosperity justified 

the creation of more new cuts to shorten the course of the river still further. In 1821 the Woolston 

New Cut was created to shorten and widen a difficult section of the old course. In total, the Mersey 

canals reduced the distance from the Albert Bridge, Manchester to Old Quay, Runcom, from 38 to 

27 miles. 

The invention of the steam engine and the proliferation of the railways ended the heyday of canals. 

Transportation of goods on the railways was not only faster than along the canal system, it was 

independent of tide and wind. Also the excessive taxes of the port of Liverpool were avoided. 

The Mersey was becoming so silted up at the estuary that even flat-bottomed boats could pass 

only at high tide. The silting led to irregular currents and eddies in the waters and it was not 

uncommon for the horses which pulled the barges, to be dragged into the river and drowned. The 

situation was so bad that a radical and seemingly preposterous idea - to build a large canal all the 

way from Manchester, directly to the Mersey Estuary - eventually won credence. The canal was to 

be called the Manchester Ship Canal and it was completed in 1893. After the opening of the 

Manchester Ship Canal, the River Mersey and its many canals became less important but were still 

active and regularly used to service the towns located between Liverpool and Manchester. 

1.1.2 The Woolston New Cut Canal 

The Woolston New Cut Canal was opened in 1821. Canals were a good source of water and were 

convenient for transport of raw materials and finished products. As a result, industries sprang up 

along their banks. Ordnance Survey maps of the Woolston New Cut Canal show the presence of a 
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"chemical works" on the North bank in 1907, which remained until at least 1937, maybe as late as a 

decade or two ago; from the maps it is not clear. Between 1907 and 1928 a large tannery occupied 

part of the south bank of the canal, but this was gone by 1937 and had been replaced by a 

slaughter house and a tubes and fittings (pipe) works. The pipe works still occupies this site. 

Thelwall Gunpowder Mill gave the eastern lock of the Woolston New Cut (Powder Lock) its name. 

However, this facility does not appear on the maps and the duration of its existence is unknown, 

though it is unlikely to have caused major pollution of the canal as discharge would have consisted 

mainly of soluble salts. Because of the tidal nature of the river up to this point, it is possible that 

pollution from the many tanneries, metal works, gas works and other heavy industries from 

Warrington may have entered the canal when boats were admitted. 

During the 1 9th and 20th centuries, sail power gave way to oil power. Leakage of oil from passing 

canal traffic and the practice of painting canal boat hulls with coal tar, will undoubtedly have led to 

pollution of this watercourse. The Woolston New Cut Canal has been disused by water traffic since 

the mid to late 1940's. During the Second World War it was used for the storage of telegraph poles. 

The canal flowed until 1978, when the aqueduct across the Mersey was demolished. Since then, 

the water level has dropped to a maximum level of approximately 1.5 m. The canal channel has 

become colonised with Typha latifolia and Phragmites austrafis, and the banks with sallow (Safix 

atrocinerea) and other tree species such as birch (Betula pendula) and understorey species such 

as nettles (Urfica didica). 

1.5 Thesis Alms and Objectives 

This thesis examines the Woolston New Cut Canal sediment both as a sediment, and as a medium 

for the growth of experimental trees. Short rotation coppice (SRC) was established on this site with 

the aim of phytoremediation of organic and inorganic pollutants within the sediment. This thesis 

focuses mainly on the contaminants Cd, Cu, Pb and Zn though Ni (Chapter 4) and organic 

pollutants (Chapter 7) are also included. Arsenic was present in the sediment at elevated 

concentrations but is not examined within this thesis. The behaviour of As in the WNCC sediment 
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is discussed in detail in the thesis of R. F. King (2005), as are nutrient levels and ecological factors 

such as colonisation of the sediment by invertebrates. 

In the current thesis, the sediment properties and the efficacy of the phytoremediation field trial are 

examined through a range of aims and objectives (given below). 

Obeectives 

" To investigate the levels of contamination within the WNCC sediment 

" To investigate if or how these contaminant concentrations change post-dredging 

" To specifically investigate changes in heavy metal behaviour during drying and oxidation of the 

canal sediment 

0 To instigate a phytoremediation trial at the WNCC site and monitor its progress over the period 

of 3 years. 

0 To evaluate the viability of the phytoremediation trial 

To make recommendations or suggestions for the future management of the site and the 

pollution therein 

Alms 

To examine heavy metal fractionation change during drying and oxidation of the sediment 

To compare these results to other measures of "availability", "lability" or "extractability" 

" To relate the measures of extractability to phytoavai lability and phytotoxicity 

" To find an amendment which could be applied to the sediment to reduce phytotoxicity without 

negatively impacting on phytoextraction 

To evaluate the efficiency of the phytoremediation field trial 

To isolate factors affecting phytoremediation of the canal site sediment 

To relate experimental laboratory data to the heavy metal behaviour seen at the canal site. 
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CHAPTER 2 

General Introduction to Heavy Metals, Organic Pollutants, Contaminated 

Land and Phytoremediation 

2.1 Heavy Metals 

The term "heavy metal" was originally intended to describe those metals with an atomic density 

greater than that of iron, but is now understood to encompass elements with an atomic density 

greater than 6g CM, 3 or an element with an atomic number > 20 (Alloway, 1995, Phipps, 1981). 

Arsenic is also accepted as being included in this group, even though it is a metalloid. "Trace 

elements" is another term widely applied to this group of elements, thus eliminating the arsenic 

issue, however, the term employed in this thesis will henceforth be "heavy metals". 

Many heavy metals are required by biota at trace levels as essential micronutrients e. g. Co, Cr, Cu, 

Zn (Alloway 1995), serving essential functions such as enzyme co-factors. However, at high 

concentrations, heavy metals become toxic to biota (Alloway, 1995). 

Sources of heavy metals in the environment include: 

" Natural sources e. g. weathering of metalliferous bedrock, volcanic activity. 

" Industrial sources e. g. smelting plants, release of metals in industrial effluents, mining waste. 

" "Domestic" sources e. g. sewage and, previously, lead from the use of leaded petrol. 

" Agricultural sources e. g. cadmium applied to soils through phosphate fertilisation. 

(Modified from Freedman and Hutchinson, 1981) 

The reviews of heavy metals provided by sections 2.1.1 to 2.1.4 have mainly been condensed from 

Alloway (1995). Information from other sources is referenced accordingly. 
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2.1.1 Cadmium (Cd) 

Cadmium is currently thought to have no essential biological function in plants and animals and is a 

highly toxic metal. In humans, Cd accumulates in the kidneys and can cause dysfunction if cortex 

concentrations exceed 200 mg kg" (FW). Cadmium pollution is an increasing problem, especially 

in agriculture, where the application of phosphate fertilisers; and sewage sludge can add significant 

amounts of Cd to the soil, but also from industrial sources such as from smelting and mining. 

Cadmium in soil solution is principally present as the free ion Cd 2+ 
, but is also present as complex 

ions, mainly chlorides and hydroxides, and as organic complexes. Cadmium is more mobile in soils 

than other metals such as Pb and Cu, due to the lower affinity of some soil constituents for this 

metal. Soil pH, organic matter and hydrous oxide contents have been shown to be the controlling 

factors on the specific adsorption (fixation) of Cd. Competition with Ca, Co, Cr, Cu, Ni and Pb ions 

can inhibit the adsorption of Cd. The presence of EDTA has been found to prevent the adsorption 

of Cd over the pH range 3 to 11. Under anoxic conditions, Cd forms CdS, which is less bioavailable 

than oxidised forms of Cd and is thus less of a phytotoxic hazard and also poses less of a threat to 

human health. Cadmium is readily translocated to plant shoots following absorption by the roots. 

2.1.2 Copper (Cu) 

Copper is specifically adsorbed or "fixed" by organic matter in soils, making it one of the least 

mobile heavy metals. The COO" group, which is prevalent in organic matter, forms stable 

complexes with Cu. Under oxidising conditions, CU2+ is the most common form of Cu, although 

under reducing conditions Cu+ and Cuo are more thermodynamically stable. The CU2+ in soils can 

be chemisorbed onto, or occluded in Fe or Al oxides and silicate clays and also occluded as 

carbonates. Most Cu in soils with normal levels of organic matter (11 -8 %) is organically bound, 

and the combined amounts of water-soluble and exchangeable Cu are generally small (11 -2 %). 

Copper in the rhizosphere is almost all organically bound by root exudates or soil humus. Plant 

uptake is a function Of CU2+ activity. The uptake of Cu by plants (along with Zn and P) is modified 

by the presence of vesicular-arbuscular mycorrhizae. The limiting step of transport of Cu across the 

plasmalemma involves the electrochemical gradient relating the activity of Cu2+ in solution outside 
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the root, to that of the cytoplasm of the cortical cells. Translocation Of CU2+ within the plant occurs 

both in xylem and phloem where the metal is bound by organic nitrogen compounds such as amino 

acids. In the shoot, N metabolism controls the binding and transportation Of CU2+. Copper is fairly 

immobile in plants and older leaves may not release Cu to younger leaves, even if they are 

deficient. Hence, deficiency can be a problem in clean soils. However, Cu exhibits higher 

phytotoxic than zootoxicity and thus, in polluted soils, Cu induced phytotoxicity may become a 

problem. 

2.1.3 Lead (Pb) 

As in the case of Cd, Pb is not an essential element and causes toxicity in adults and mental 

impairment in children. Lead tends to accumulate in sediments and soils and, due to their low 

solubility and relative freedom from microbial degradation, lead compounds may remain 

bioavailable for many years. Lead in soils mainly comes from parent material, mining and smelting, 

manure and sewage sludge application and historically, anti-knock (Pb alkyl) compounds in leaded 

petrol. Lead accumulates naturally in surface horizons of soils. The main compartments for lead in 

soils are the soil solution, the adsorption surfaces of the clay-humus exchange complex, 

precipitated forms, secondary Fe and Mn oxides, alkaline earth carbonates, the soil humus and 

silicate lattices. Lead in soil solution is the immediate source for plant roots, but concentrations are 

usually very low. Thus only a small proportion of total Pb is available for uptake. Uptake and 

translocation of lead varies seasonally and is dependant on physiological status. Lead may 

precipitate on cell walls or accumulate at the endodermis and generally only a small to moderate 

percentage of total lead burden is found in leaf tissues. High soil concentrations of Pb can cause 

stunted growth or death of plants. Soil pH seems not to be a major factor affecting plant uptake of 

Pb. 

2.1.4 Zinc (Zn) 

Zinc is an essential heavy metal for human, animal and plant nutrition. Sources of Zn in soils 

include parent material, mining/smelting activities, sewage sludge application, volcanic activity and 
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agrochemicals. In natural soils, the concentration of Zn in soil solution is very low (3 x 163 to 3x 166 

M), however this is much increased in acid soils. Zinc mobility in heavy soils has been shown to be 

lower than in light or medium soils over a range of pH values. Solution complexes of Zn with 

phosphate and sulphate are the most important and may contribute significantly to total Zn in 

solution, though ZnP04 is perhaps more important in neutral to alkaline soils. The most important 

binding phases for Zn are clay minerals, hydrated metal oxides and organic matter. Zinc may 

precipitate as hydroxides, carbonates, phosphates, sulphides, with humates, fulvates and other 

organic ligands. The forms of Zn taken up by plants are Zn 2+, hydrated Zn 2+ and Zn complexes. 

Zinc-phosphate antagonism has been known to occur as has antagonism between Zn-Fe, Zn-Cu, 

Zn-N and Zn-Ca. Zinc acts as a catalytic or structural component in numerous enzymes involved in 

energy metabolism, transcription and translation. Higher plants predominantly absorb Zn as Zn 2+ 
.A 

deficiency in trees can lead to stunted growth and "little leaf" rosette (malformation of stems and 

leaves) due to a lack of indoleacetic acid (IAA). Zinc is readily translocated to plant tops after 

uptake into roots. Zinc-deficient plants express Zn transporter proteins which are involved in Zn 2+ 

and Fe2+ uptake (Meagher, 2000) and may be inhibited by Mn 2+, C02+, and CU2+. The Fe 

transporter protein can also actively and efficiently transport Cd 2+ and Zn 2+ into plant roots 

(Meagher, 2000). 

2.2 Organic Pollutants - Petroleum Hydrocarbons and PAH 

Human activity has caused large quantities of soil to become contaminated with petroleum 

products (Boopathy, 2003, Kaim! et aL, 2004). Pollution of aquatic sediments is also a problem, for 

example, in sediments close to petroleum refineries and petrochemical companies (Adeniyl and 

Afolabi, 2002, Beg et aL, 2003), and as the result of oil spills (Lin and Mandelssohn, 1998). 

Domestic waterways such as canals, rivers and lakes may also be polluted with hydrocarbons that 

have leaked or been released from water traffic. Petroleum hydrocarbons tend to be aliphatic in 

nature, with the shorter chain-length hydrocarbons being potentially volatile. On the other hand, 

polycyclic aromatic hydrocarbons (PAHs) are aromatic in nature e. g. anthracene whose structure is 

a linear formation of 3 benzene rings (Semple et al., 2001). Creosote is one source of PAH 
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contamination in the environment and is used in petroleum refining and for treating telephone poles 

(Blakely et aL, 2002). Both petroleum hydrocarbons and PAHs are hydrophobic and have a 

tendency to sorb to soil particles, exhibiting a low rate of desorption (Bonten et aL, 1999). Most 

degradation of these substances tends to be biological and aerobic, owing to the need for an 

oxidising agent in the early stages of biodegradation (Boopathy, 2003). Therefore, under anoxic 

conditions, if no electron acceptor is supplied, degradation is unlikely to occur. Throughout this 

thesis, "organic" pollution with reference to the Woolston New Cut Canal site will refer to pollution 

with petroleum hydrocarbons and PAR 

2.3 Contaminated Land In the UK and the EU 

The following review is provided predominantly by Christie and Teeuw (1998). Information from 

other sources is indicated: 

All European countries have some amount of contaminated land. Those countries that underwent 

earlier industrial isation are likely to have larger problems than those that underwent later 

industrialisation. Agricultural practices may also have led to the contamination of rural areas. The 

formation of the European Union (EU) brought contaminated land awareness and policy to most 

member states due to the action of "leader" states who "pulled" the rest of the EU forwards on 

these issues. Denmark and the Netherlands were two of these leader states and they were joined 

by Austria and Finland upon their entry into the EU in 1995. 

Contaminated land policy has focussed on two areas: 1) control of polluting activities and 2) 

remediation of land which is already contaminated. The aims of the policies also fall into two 

categories: 1) Safeguarding of human health, the environment and water resources and 2) to 

conserve land as a resource by preserving soil, re-using Brownfield land and setting soil quality 

standards. All member states of the EU have followed the "polluter pays" principle, though the 

actual meaning of this varies between states and in some states substantial amounts of public 

money fund these remediation projects e. g. Germany after reunification. 
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Generally member states have their own legislation controlling contaminated land and remediation 

issues due to the lack of a specific European law on the subject. In England for example, the 

Environmental Protection Act 1990 Part 11 A is the main contaminated land policy instrument. This 

part of the Act became law on 1st April 2000 providing, for the first time, a legal definition of 

contaminated land and a new regulatory regime for its identification and remediation (Freegard, 

2001). The definition of contaminated land given in this act is that, by reason of substances in, or 

under the land that: 

* Significant harm is being caused to specified receptor (targets) or 

0 Significant pollution of controlled waters is being, or is likely to be caused 

This definition was amended to include "significant water pollution" once section 86 of the Water 

Act 2003 came into force (DEFRA 2004). The legislation identifies the source, pathway, receptor 

linkage and states that all three must be present in order for the land to be posing a significant 

threat. Local authorities are given responsibility for identifying contaminated land in their 

administrative area. The Act also introduced a "Contaminated Land Remediation Register" 

(Freegard, 2001), meaning that the UK was no longer the only member state in Europe lacking 

one. 

The UK has chosen to utilise the BATNEEC (Best Available Technology Not Exceeding Excessive 

Cost) principle to remediate contaminated land, whereas some member states prefer BAT (Best 

Available Technology). BAT, though potentially more expensive, is more likely to produce 

sustainable development and tends to lead to remediation of the land to "multifunctionality", where 

contaminants are decreased to background levels. BATNEEC is applied to remediate land to a 

"suitable for use" site and the extent of remediation will depend on the end use of the site. Its 

purpose is to cut the source to target pathway. 

Soil standards and guidelines differ between member states. The Dutch C-values which have been 

extensively referenced across the world were designed for standard Dutch soils (25 % clay, 10 % 

organic matter) and do not claim to have any validity for other soil types, though this has been 
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much ignored by other nations. In addition, such guidelines are not comprehensive. For example, 

the UK ICRCL (Interdepartmental Committee on the Redevelopment of Contaminated Land) trigger 

values contained guideline values for only 10 metal(loids) and took no account of the chemical form 

of the element. The Dutch list was probably the most comprehensive in Europe but still did not 

cover the full range of contaminants. In the UK, the ICRCL guidelines (set out in the document 

ICRCL 59/83) were replaced in December 2002 by the CLEA (Contaminated Land Exposure 

Assessment) computer model (DEFRA 2002) which is intended as a generic assessment of direct 

risks to human health. Where computer generated values are exceeded, further risk assessment or 

remedial action will be triggered. However, the future of these guidelines may perhaps be 

uncertain. Much risk assessment and remediation work is undertaken in response to planning 

controls. Many contaminated sites have planning restrictions on them and in order to remove or 

reduce these, remedial work must be carried out. If the site has a financially profitable end-use, 

then remediation will be economically viable. 

2.4 Phytoremediation and Bloremediation 

If a contaminated site is not of high economic value and/or the polluter is either untraceable or no 

longer in business, the cost of the remediation may be too great to justify the physical or chemical 

methods available such as soil washing (Sikdar et aL, 1998), excavation, incineration, 

electrokinesis (Acar, 1993, Virkutyte et aL, 2002), microwave heating (Jones et aL, 2002) and air 

sparging (Bass et aL, 2000). For general reviews see Hamby (1996) and Mulligan et aL (2001 a), 

Mulligan et aL (2001 b). A cheaper option may then be investigated. Bioremediation is the practice 

of using living organisms to aid remediation of contaminants. Though the term "bioremediation" 

covers all forms of biological organism it is associated more with the utilisation microbial species for 

the remediation of both organic and metal contaminants. This subject has been the focus of many 

review articles such as those by Pollard et aL (1994), Wilson et al. (1993), Romantschuk et al. 

(2000) and Khan (2005). Composting can be a useful and relatively cheap technology for the 

remediation of organic pollutants and explosives (see review by Semple, 2001). Other alternatives 

include the exploitation of oxidative and extra-cellular enzymes (DurAn and Esposito, 2000, 

Gianfreda and Rao, 2004). Phytoremediation is generally used separately from the term 
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"bioremediation" and refers specifically to the use of plants to help to remediate both organic and 

metal(loid) pollution. The major limitations on phytoremediation, compared to chemical remediation 

methods, are that plants are living organisms and will only thrive in conditions which supply them 

with adequate light, water, oxygen, nutrients and appropriate soil conditions (Cunningham et aL, 

1995). Exploitation of mycorrhizae to increase metal uptake during phytoremediation has been 

explored (Meharg and Cairney, 2000, Khan et aL, 2000). General reviews of phytoremediation are 

provided by Cunningham et aL (1995), Ernst (1996), Khan et al. (2000), Macek et aL (2000), 

Alkorta and Garbisu (2001), R6mkens et aL (2002) Williams (2002), McGrath and Zhao (2003), 

Pulford and Watson (2003), Khan (2005), KrAmer (2005), and Meagher (2000). Phytoremediation 

can be arbitrarily divided into two main groupings - the use of hyperaccumulating and non- 

hyperaccumulating plant species. A short summary of the two divisions follows. Though the 

principals of phytoremediation may apply to both, only the principals of phytoremediation using 

non-hyperaccumulating plants are discussed in detail. 

2.4.1 Hyperaccumulation 

Hyperaccumulation of metals by plants is a rare phenomenon and occurs in < 0.2 % of 

angiosperms (McGrath and Zhao, 2003). Hyperaccumulation is generally defined as being the 

accumulation by a plant of metal ions equivalent to > 0.1 -1% of its own dry weight (Meagher, 

2000). The difference is segregated by metal, with hyperaccumulation defined as accumulation of 

10 000 mg kg" dry weight of shoots for Zn and Mn, 1000 mg kg*' of Cu, Co, Ni, As and Se and 100 

mg kg-1 of Cd (McGrath and Zhao, 2003). At these concentrations, the recovery of metals from the 

plant is potentially economical (Meagher, 2000) in the form of "phytomining" (McGrath and Zhao, 

2003). Hyperaccumulators have been used as bio-indicators of mineral deposits for more than a 

century. The majority of hyperaccumulating plants are from the family Brassicaceae (Meagher, 

2000). In some hyperaccumulator species (e. g. Alyssum lesbiacum), chelation with histidine, 

uptake, xylem transport and hyperaccumulation (of nickel and cobalt) appear to be mechanistically 

linked, whereas in other species (e. g. Thlaspi goesingense) histidine may only be involved in 

transport of nickel and zinc from the rhizosphere to the root (Meagher, 2000). Metallothioneins and 

phytochelatins also sequester metals and may be involved in hyperaccumulation in some species 
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(Meagher, 2000). For a review of molecular mechanisms of heavy metal hyperaccumulation and 

phytoremediation see Yang et al. (2005). The list of hyperaccumulators is still growing. The brake 

fern Pteris vittata was reported in 2001 to hyperaccumulate As at levels of up to 22 000 mg kg" 

and more recently several other ferns have also been reported as being As hyperaccumulators 

(McGrath and Zhao, 2003). 

Hyperaccumulating plants generally produce low biomass e. g. Thlaspi caerulescens which typically 

produces 2-5t ha-1 of shoot dry matter. However, fast-growing, high biomass hyperaccumulators 

do exists e. g. the Ni hyperaccumulator Berkheya coddii, (22 t ha") (McGrath and Zhao, 2003). 

These high-biomass hyperaccumulators; have potential for phytomining activities in the future if 

they can be grown effectively on potential mining sites. At the present time there is a lack of 

confirmed high-biomass hyperaccumulators of Cu, Pb and Cr (McGrath and Zhao, 2003). A 

problem with hyperaccumulation is that contaminated biomass, such as leaf fall, needs to be 

removed from the site before it is decomposed and the metals re-released. Transfer of metals to 

the food chain may also be an issue if the plants are eaten by herbivorous animals. 

2.4.2 Phytoremediation Using Non-Hyperaccumulator Species 

The rate of accumulation of metals in non-hyperaccumulator plant species grown on 

uncontaminated soils may be two or three orders of magnitude lower than those concentrations 

found in hyperaccumulating plants (McGrath and Zhao, 2003). However, the greater range of 

species available and their higher biomass production, make them feasible options for 

phytoremediation. Phytoremediation is divided into five categories: 

0 Phytostabilisation - the use of plants and associated rhizosphere effects to precipitate 

pollutants from solution, or absorb/entrap them in either plant tissues or the soil matrix 

(Cunningham etaL, 1995). 

0 Phytoextraction - using plants to extract contaminants from the soil/water. Plants may be 

harvested so that contaminated biomass is removed from the site (Cunningham et aL, 1995). 
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0 Phytodegradation - the presence of a rhizosphere can increase microbial activity within the 

soil, increasing the rate of degradation of organic contaminants into non-toxic materials 

(Cunningham et aL, 1995). Polycyclic aromatic hydrocarbons and petroleum hydrocarbons are 

particularly rapidly degraded (Macek et aL, 2000). 

0 Phytovolatilisation - when plants transform contaminants into volatile compounds (Krdmer, 

2005), thus removing the pollution from the soil. 

0 Rhizofiltration - the use of plant root to absorb and adsorb pollutants, mainly metals, from 

water and aqueous waste streams (Macek et aL, 2000). 

Phytoremediation utilising hyperaccumulating species tends to focus on phytoextraction. 

There have been many studies on the uptake and/or effect of metals on wetland plant species or 

vice versa e. g. Stoltz and Greger (2002), Deng et aL (2004), Jacob and Otte (2004), Matthews et 

aL (2005), and of the use of wetland plants for site phytoremediation (see the review by Weis and 

Weis, 2004). In the present study, the phytoremediation potential of planted trees, rather than 

naturally occurring wetland species, is being examined. In the following short review, the role of 

Safix, Populus and A/der species are examined owing to their relevance to the current project. 

Madej6n et aL (2004) found that Cd and Zn concentrations in leaves of poplars growing on a site 

contaminated by a mine spill, were positively and significantly correlated with soil availability. 

Concentrations of Cd, Cu and Zn were also elevated in the poplar stems with respect to the control 

trees. Laureysens et al. (2005) found significant differences in biomass production and 

phytoremediation potential between six poplar clones in SRC (short rotation coppice) over a two- 

year growing period, highlighting the importance of genotype in phytoremediation. 

Poplar trees have been shown to successfully decrease concentrations of organic contaminants in 

soils and water (Wang et aL, 2004, Widdowson et aL, 2005). However, Widdowson found that 

remediation was limited to naphthalene and several three-ring PAHs. The extent of remediation of 

these compounds was limited by their rate of dissolution from the source. TPEM (two-photon 

excitation microscopy) has recently been used to show that the PAH anthracene translocates from 
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the waxy cuticle of maize plant roots, into the cell cytoplasm, despite having a relatively low 

solubility in water (Wild et aL, 2005). Wild concluded that movement of anthracene within the maize 

roots is dominated by apoplastic flow, but that a low level of symplastic flow to the cellular vacuoles 

is also present. Degradation of the compound was also witnessed within the cortex cells. Meagher 

(2000) reports that the glutathione-S-conjugate pump can recognise glutathione conjugates of 

organic pollutants and thus they can be transported into cell vacuoles, where their subsequent 

degradation should be favoured. The aim of phytoremediation of organic pollutants is complete 

mineralisation to C02 and H20 (Meagher, 2000), though this may not always be fast and efficient. 

Huang et aL, (2005) combined land farming and bacterial additions with phytoremediation and 

found a 100 % increase in TPH (total petroleum hydrocarbon) degradation compared with 

phytoremediation alone. 

Short rotation coppicing (SRC) of willow (Salix) species is potentially a viable source of biomass 

fuel (Perttu, 1999, Perttu et aL, 1997, Vandenhove et aL, 2001) and can be combined with 

phytoremediation as long as the ash and fumes created by incineration are treated appropriately 

(KrAmer, 2005). Keller et aL (2005) confirm that incineration of heavy metal contaminated biomass 

can successfully separate out the heavy metal pollutants. Vandenhove et aL (2001) examined SRC 

on radiologically contaminated land and concluded that energy production by this technique was 

both radiologically and economically sustainable. Willow coppice is also a good habitat and 

provides enhanced biodiversity in comparison to coniferous plantations or agricultural crops 

(Perttu, 1999). Biomass energy from SRC is more environmentally justifiable than the burning of 

fossil fuels as it is a sustainable resource which locks carbon into its biomass during growth and 

releases it again upon combustion and thus is said to be C02 neutral (B6rjesson, 1999, Perttu, 

1999). The carbon locked away by fossil fuels millions of years ago increases the amount of C02 in 

the present day atmosphere during combustion and hence is not C02 neutral in today's world. 

Willow coppice is practiced in Sweden for biomass energy production, phytoremediation and 

organic waste filtration e. g. municipal wastes, sludges and landfill leachate (Mirck et aL, 2005, 

Perttu, 1999). Phytoremediation can overlap with biomass energy production or production of solid 

wood/reconstituted wood products, serving a duel purpose (Licht and Isebrands, 2005, Mirck et al., 
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2005). Dickinson and Pulford (2004) argue that remediation of land contaminated with Cd could be 

achieved within a realistic crop lifecycle using Salix clones. 

Populations of the same Safix clone growing in contaminated compared to uncontaminated areas 

do not seem to show intrinsic metal tolerance or uptake abilities (Landberg and Greger, 1996), 

suggesting that their ability to withstand metal-polluted soils is acquired throughout their lifetime. 

However, when clones with known higher resistance were compared to clones with known lower 

resistance to heavy metals, the more resistant clones were found to have a higher intrinsic activity 

of superoxide dismutase in non-stressing conditions (Landberg and Greger, 2002). The superoxide 

anion (a free radical) can be generated within a plant by the presence of heavy metals. It is a very 

aggressive species and the plant produces superoxide dismutase to convert it to hydrogen 

peroxide, which is then converted to water by catalase (Landberg and Greger, 2002). Therefore, 

the more resistant clones were more resistant to free radical attack than the less resistant clones, 

giving them a competitive advantage when grown on contaminated soils. Punshon et al. (1995) 

also note differences between willow clones, in this case for copper resistance. Bioavailability of 

metals to trees and hence metal accumulation in tree tissues also varies from site to site, 

depending on site conditions and the origin of the contamination (Pulford and Watson, 2003). Thus 

the results gained from studies on phytoextraction of metals from soil polluted by mining activity, 

smelting activity, agricultural activity and sediments containing pollutants are likely to different. 

However, some similarities probably can be drawn. 

Phytoremediation of dredged sediments may be a viable option both for biomass production (for 

biomass energy) or simply for creating biodiverse coppice stands. Salix species have been shown 

to grow well in contaminated dredged sediments despite their high moisture content (Vervaeke et 

aL, 2001), with an average productivity of 13.4 t ha" Y1 (DM). Meers et aL (2005) found that, 

despite good biomass production on contaminated dredged sediments (13 - 18 t ha" )(1), 

phytoextraction of elements was low. However, the clone used by these authors was not a known 

accumulator of heavy metals. The sediment was also calcareous. Willow species have shown 

potential as phytoextractors on sediment-derived soils (Vandecasteele et aL, 2005) and also for 

phytodegradation (Vervaeke et aL, 2003). When alder and poplar species were planted on a 
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brackish, dredged, slightly polluted sediment, the poplar (Populus alba) showed good growth but 

growth of the alder (Alnus glutinosa) was stunted, though heavy metal levels within the foliage were 

not elevated (Mertens et aL, 2004). The poplar accumulated high levels of metals but the time 

scale for the treatment to be effective meant that it was not a viable option for phytoextraction 

(Mertens et al., 2004), and the potential for food chain transfer was also increased. 

2.4.3 Genetic Modification 

Genetic modification techniques have the potential to increase a plant's resistance to the toxic 

effects of heavy metals (BittscAnszky et aL, 2004), increase the (hyper)accumulating potential of a 

species (Thomas et aL, 2002, Bahuelos et al., 2005) or to allow a species to gain new traits such 

as the ability to take up and volatilise organic pollutants (Kramer, 2005). For a review of 

biotechnological advances, see the review by Eapen and D'Souza, 2004. 

2.5 Canals and Canal Sediments 

At their peak, British canals had a total length of more than 6000 km and were used to transport 

more than 40 million tonnes of freight per annum (Sidaway et aL, 1995). Industries commonly 

became established alongside these canals and, though many of these industries have now gone, 

pollution from many years of wastewater discharge and leakage from canal barges may persist. 

Sediments may remain polluted for decades after the pollution input has ceased. These polluted 

sediments may be dredged and deposited onto land, either for remediation purposes or in order to 

keep the waterways open for navigation. Dredging of sediments causes changes in their redox 

state (Caille et aL, 2003), as the initially reduced sediment is exposed to an oxidising environment. 

This redox change can cause changes in metal speciation and availability (Guo et aL, 1997, 

Stephens et aL, 2001 a) and also pH, as the sulphides present can oxidise to sulphates (including 

H2SO4) and other intermediary oxidised sulphur compounds (Tack et aL, 1997). Consequently, 

sediments with low carbonate content and low acid buffering capacity may undergo significant 

acidification (Gambrell et aL, 1991). However, the release of metals can be small as long as the pH 

remains neutral or slightly alkaline (Flyhammar and HAkansson, 1999). Hence the resultant pH and 
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metal release will be a function of oxidisable S content, metal content and pH buffering capacity, 

with the latter being a function of carbonate and clay content/type. Thus the potential pH decline 

and metal release for any sediment will be highly dependant on its chemical composition. 
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CHAPTER 3 

Heavy Metal Fractionation Change During Drying and Oxidation of a 

Dredged Canal Sediment 

3.1 Introduction 

When sediments are removed from their anoxic environments by processes such as dredging and 

are disposed of onto land, such as has happened at the Woolston New Cut Canal Site, they are 

exposed to an oxidising environment. This change in redox conditions may alter the speciation of 

heavy metals within the sediment. This chapter describes a fractionation study that was applied to 

the Woolston New Cut Canal (WNCC) sediment. Fractionation studies yield vital information about 

the strength with which heavy metals are bound in the sediment system and hence, how likely 

these metals are to change speciation and/or mobility, should chemical conditions change. This 

information is of particular significance as it may allow prediction of the viability of the WNCC 

phytoremediation field trial. To the author's knowledge, this study is novel owing to the use of: an 

anoxic sequential extraction procedure, a highly organic sediment which undergoes natural 

acidification upon oxidation and a time series examining the very early to medium-term metal 

fractionation changes at different depths, (particularly in the top 1 cm) of the sediment. 

3.1.1 Fractionation Studies 

Total heavy metal concentrations in soils and sediments are not a good indicator of potential metal 

mobilisation and environmental availability (Tessier et aL, 1979, Davidson et aL, 1994, Clark et aL, 

2000, Gleyzes et aL, 2002). An understanding of the partitioning of heavy metals throughout a soil 

or sediment allows estimations of present and potential future mobility to be made (Clark et aL, 

2000). Sequential extraction (also referred to as sequential leach, selective extraction, or 

fractionation) procedures are utilised to study this partition ing/f ractionation. Perhaps the most well 

known of these was devised by Tessier et aL (1979), for bottom sediments and suspended 
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particulate material. Tessier identified 5 fractions with a mind to the effects of changing 

environmental conditions. Most sequential extraction procedures base their extractable phases on 

this model. The phases/fractions are: 

1. Exchangeable - those metals likely to be liberated by changes in water ionic composition. 

2. Bound to carbonates -a fraction susceptible to pH change. 

3. Bound to Fe and Mn oxides - thermodynamically unstable under anoxic conditions. 

4. Bound to organic matter - oxidising conditions lead to breakdown of organic matter. 

5. Residual - mainly primary and secondary minerals, some more resistant organic matter and 

sulphides. 

Tessier states that "[t]hese [residual] metals are not expected to be released in solution over a 

reasonable time span under the conditions normally encountered in nature" and hence this fraction 

was not quantified in this study. 

Many subsequent studies on metal fractionation in soils and sediments have employed the 

selective sequential extraction procedure of Tessier et aL (1979), or a modification of it (e. g. 

Gauthreaux et aL, 1998, Zoumis et aL, 2001, Pagnanelli et aL, 2004). Others have used different 

procedures to access similarly defined fractions (e. g. Davidson et aL, 1994, Guo et aL, 1997, van 

Ryssen et aL, 1999, Clark et aL, 2000, Stephens et aL, 2001 a+ b). Many different sequential 

extraction procedures exist because no extractant is absolutely specific to a particular pool of 

metals (Clark et aL, 2000) and hence, each fraction extracted is said to be "operationally defined" 

by extractant and procedure (Davidson et aL, 1994, van Ryssen et aL, 1999). 

3.1.2 Anoxic Sediments 

In waterlogged sediments, where biological activity depletes molecular oxygen and generates more 

electrons than can be "mopped up" by available electron acceptors, conditions become reduced 

and the redox potential (Eh) decreases. In general, the higher the organic matter content of a 

sediment, the more rapidly this decrease in redox potential will progress. The reduction process is 
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possible because the biological activity depletes molecular oxygen at a higher rate than it can be 

resupplied, due to its low solubility (8 pg mU') (McBride, 1994). 

Under anoxic conditions, organic matter breakdown will slow significantly, sesquioxides will be 

reduced at Eh values of 50 to -500mV (van Ryssen et aL, 1999), and sulphicles will begin to form at 

Eh -130 mV and below (Guo et aL, 1997). When the sediment is exposed to an oxidising 

atmosphere, such as after dredging, these processes will be reversed: organic matter will be 

broken down more rapidly, potentially releasing heavy metals previously bound within their 

structures; sulphides will oxidise to form sulphates and intermediary oxidised sulphur compounds 

(Tack et aL, 1997), releasing metal sulphates into solution; sesquioxides will form, potentially co- 

precipitating heavy metals, and providing a large surface area for sorption. Thus, heavy metal 

fractionation would be expected to change as the available binding phases change during 

reduction or oxidation. 

Sediments have often been the subject of fractionation studies. However, it is not only the 

extraction methods which vary, but sample handling techniques differ also. For example, sediments 

are sometimes dried before extraction (Tessier et aL, 1979, Stephens et aL, 2001 a, Gauthreaux et 

aL, 1998). This process increases homogeneity of the sediment and makes it a simpler substrate to 

work with. However, if the sediment was anoxic when sampled, drying would alter the redox 

potential of the sediment and may cause chemical changes (Clark et aL, 2000). Gambrell et aL 

(1991) have reported that changes in redox potential of an anoxic sediment can significantly affect 

the solubilities of Cd, Ni, Pb and Zn, even when no change in pH occurs. It is therefore logical to 

assume that the results obtained from extraction of a dried sediment, are those for an oxidised or 

semi-oxidised sediment and thus do not necessarily accurately reflect the fractionation which would 

be found in the anoxic sediment. Furthermore, it is important to understand metal behaviour during 

oxidation, if dredging of a contaminated sediment is to be performed. 
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3.1.3 Alms 

The aims of the current chapter were: 

0 To examine and quantify heavy metal and Fe fractionation change in the WNCC sediment as it 

oxidised in air. 

0 To use this information to comment on any possible implications for the phytoremediation field 

trial. 

3.1.4 Hypothesis 

Oxidation of the sediment will lead to the redistribution of heavy metals from the less available 

sulphide phase into more available phases as the sulPhides oxidise. It is expected that this will 

result in a flush of soluble heavy metals (as metal sulphates), which will then redistribute into the 

less available phases via the natural sediment equilibrium processes. 

3.2 Materials and Methods 

3.2.1 Sediment Collection and Storage 

Sediment was dredged from the Woolston New Cut Canal field site on 301h January 2003 and 

stored in closed black dustbins, covered with a layer of native canal water, for 12 d until the start of 

the experiment. Remaining sediment for use in further experiments, was stored in a large barrel, 

covered with a layer of native canal water, with a lid firmly in place to avoid contamination. 

3.2.2 Tank Pre-Preparation and Sediment Addition 

Twelve identical 'Hyware' 32.5 x 22.5 x 20 cm (I xbx h), plastic tubs were acid washed and 

labelled from 1 to 12. A hole of 5 mm diameter was drilled in each of the short sides at 5-10 mm 

height from the tub bottom, to allow leachate outflow. Leachate collection tubes were then attached 
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and bunged. A2 cm layer of acid-washed gravel was put into the bottom of each tub. On top of this 

was laid a 1.5 cm thick layer of damp, acid-washed sand (Fig. 3.1). 

Se dirn e lit 

Sand layer 

Gravel layer 1., 7 1. ý6ý, VI. Leachate tube 

Figure 3.1. A representation of the tubs of sediment (not to scale). 

Moisture content of the sand was maintained with deionised water, so that it remained in layer and 

did not fragment and fall into the gravel layer. (Both sand and gravel were rinsed thoroughly with 

distilled and cleionised water after acid-washing, to remove all traces of acid). 

Before addition to the tubs, the sediment was thoroughly homogenised. Large pieces of debris, and 

root masses were removed by hand. Approximately 7L of sediment was then added to each of the 

12 pre-prepared tanks. The sediment was poured onto a piece of angled Perspex held above the 

sand surface to reduce its velocity, so that the sand was not damaged, or the layer distorted, upon 

addition of the sediment. The sediment in each tank was then individually homogenised and 

rechecked for debris. Initial samples were taken from each tub and pooled, to be the "0 days" 

sample. The sediment surface was then flattened, for uniform surface area, and the tanks were left 

in a greenhouse to allow the sediment to dry and oxidise. The average daytime temperature in the 

greenhouse over the experimental period was 14 ±5 OC and the average night time temperature 

was 10 ±5 OC. 

3.2.3 Sediment Sampling 

Excluding the initial sampling described above, four tubs were sampled at each sampling event. 

Tubs were selected for sampling by number, using the random number generator of a hand-held 

calculator. Cores were taken using lengths of 4.5 cm diameter plastic drainpipe, which had been 

halved and rejoined with tape. After coring, a rolled acetate, cut to an appropriate height, was 
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inserted into each hole and gently pressed against the sides of the sediment to prevent oxidation of 

the newly exposed sediment. 

In the laboratory, the tape at one side of the soil corer was cut with a scalpel. The corer was 

opened carefully so as to avoid disturbance of the sediment. The core was cut with a sectioning 

knife, as quickly as possible, into 3 sections: 0-1 cm from the surface, 1-3 cm from the surface and 

3 cm depth to the bottom of the core (3-x cm). Each section was delivered into a small polyethylene 

bottle (30 mL for the first section and 60 mL for the other two sections), rapidly homogenised, and 

the bottle was then purged with N2 gas and sealed to avoid oxidation during storage. Core 

sectioning was not carried out in a N2 atmosphere, as Tack et al. (1996) report that exposing an 

anoxic sediment to air for a short period, and then returning it to anoxic conditions, had no 

significant effect on metal behaviour. 

Due to sediment shrinkage during drying, the final depth of the sediment changed with time and the 

final section is henceforth labelled as "3-x cm". Also owing to this shrinkage, the sections cut did 

not necessarily constitute the same material each time. 

Whenever sample bottles were opened for subsampling of the contents, they were purged with N2 

gas and sealed again immediately afterwards. All sediment samples were stored at 4 OC. 

3.2.4 Chemical Analysis 

Dry weight was determined by drying separate subsamples of sediment at 105 OC for 3 days. Loss 

on ignition was carried out at 480 OC for 8 hours. All samples were replicated at least twice. Field 

capacity of the sediment was determined by the method described by Jenkinson and Powlson 

(1976). Sediment pH was measured in a 1: 5 sediment-to-water suspension, which had been 

shaken for one hour and allowed to settle for half an hour. Carbonate content was determined 

using a rapid titration method, modified from Allen (1989) where 10 mL of 0.5 M FICI was added to 

1g dry weight equivalent of sediment. Back-titration was with 0.5 M NaOH. Carbonate content 
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measurement for all samples was carried out in duplicate. For the later samples titrated in this 

manner, 5 mL of acid was used, as reaction was found to be negligible. 

3.2.5 Sequential Extraction 

The sequential extraction procedure used was modified from that described by Clark et aL (2000). 

Clark also described a grainsize normalisation procedure where the < 63 pm fraction was isolated, 

and that alone is used for the extraction. In the current experiment, grainsize normalisation was not 

undertaken as the aim of the thesis is to characterise the sediment as a whole and to use this 

information to examine the viability of phytoremediation of the site. Therefore, to use one size 

fraction of the sediment only, would not have given an accurate representation of the bulk 

sediment. Further evidence of this is provided by the work of Pagnanelli et aL (2004) and Table 3.1. 

Table 3.1 gives the particle size range of each fraction isolated, its percentage abundance in the 

WNCC sediment and the heavy metal concentration (mg kg-1) within that fraction. These data 

represent the sediment 8 months after dredging. The data show that for all of the metals presented, 

similar concentrations of heavy metals existed in all size fractions of the sediment. The < 63 pm 

fraction made up only 12.9 % of the total sediment volume. Different size particles tend to 

represent different binding phases with clay particles mostly found in the < 63 pm fraction. This is 

often where the majority of heavy metals are also found. However, perhaps due to the highly 

organic nature of the sediment, appreciable proportions of the total heavy metals with in the 

sediment were found in all size fractions. 

All of the extractants used in this procedure, with the exception of the HN03 and the H202, were 

thoroughly purged with N2 gas before each use. 
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Table 3.1 The percentage abundance of, and total heavy metal concentrations in, the different 

size fractions of the WNCC sediment. Sizes were separated by sieving of air dried, ground 
sediment. Values are mean (SD), (n = 3). Analysis of variance showed that for all metals, with 
the exception of Pb, the 1000 - 2000 pm and 500 - 1000 pm size fractions contained 
significantly higher concentrations of metal than did the fractions in the range 63 - 500 pm 
(p<0.001 for all except Cd where p<0.005). Total lead was significantly higher in the 
1000 - 2000 and < 63 pm fractions than in the fractions ranging from 63 to 250 pm (p < 0.001). 

Particle 

size (pm) % Fe 

Heavy metal (mg kg") 

Cd Cr Cu Pb Zn 

1000-2000 19.5 51549 (2102) 9.63 (0.75) 880 (28) 653 (20) 1334 (25) 2500 (81) 

500-1000 22.1 47341 (2244) 9.31 (0.77) 825 (78) 603 (56) 1257 (114) 2490 (174) 

250-500 21.2 39887 (1715) 7.51 (0.52) 660 (54) 474(40) 1042(51) 1959(147) 

125-250 15.2 40511(737) 7.91 (0.28) 705 (30) 490(22) 1108(23) 2054(76) 

63-125 9.2 41403(321) 8.10(0.12) 730 (22) 501 (16) 1178(37) 2126(62) 

< 63 12.9 47404 (1133) 8.88(0.25) 823 (30) 544(22) 1327 (39) 2349(112) 
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Steps 1&2 Pore Water and Exchancieable Metals 

Stepl 

For each sample, sediment equivalent to 0.5 g dry weight, was weighed into a 50 mL centrifuge 

tube. The headspace of the tube was purged with N2 gas, and the tube was sealed to prevent 

ingress of oxygen. Once sediment for the whole run had been weighed out, 20 mL of deionised 

water was added to each tube. Headspaces were purged with N2 gas and each tube was then 

manually shaken to disperse the sediment. Samples were shaken at 55 rpm for 1h on an end- 

over-end shaker. After shaking, samples were centrifuged at 3000 g for 20 min. Supernatant was 

filtered through Whatman no. 542 filter papers, retained, and acidified with nitric acid. The 

headspaces of the centrifuge tubes containing the sediment plugs were purged with N2 

immediately after decantation of the supernatant. At the end of this step (Step 1) only, the sediment 

plugs were frozen to halt the extraction process. Freezing of anoxic sediment samples, unlike 

drying, will not greatly alter chemical speciation before or during a sequential extraction process 

(Clark et aL, 2000). 

Step 2 

The sediment plugs were defrosted on the bench top after overnight freezing. When defrosted, 20 

mL of 0.1 M NI-14CI (ammonium chloride) was added to each tube and they were then treated as in 

Step 1, after the addition of the extractant. The supernatant solution was combined with that 

obtained during Step 1. Metals present in this combined extract are henceforth referred to as 

"NH4CI-extractable" and represent the pore water and exchangeable metals. 

Step 3 Carbonate Bound and Adsorbed Metals 

The extractant used in this step was a1M sodium acetate (NaOAc) solution, buffered to pH 5 with 

acetic acid (HOAc). Twenty mL of this solution was added to each tube and they were then treated 
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as in Step 1. The supernatant was acidified and retained for metal analysis and is henceforth 

referred to as the "NaOAc-extractable" fraction. 

Steo 4 Reducible We and Mn Oxide Bound 

The extractant used in this step was an equal v/v mixture of a 30 gL" sodium dithionite solution 

and a 90 gL -1 tri-sodiurn citrate solution. A total of 20 mL of the combined solution was added to 

each tube. Tube headspaces were purged with N2, tubes were sealed and then manually shaken to 

break up the sediment plug. Samples were then shaken for 16 h on an end-over-end shaker at 55 

rpm. After shaking, samples were filtered and centrifuged as described above, except that the 

supernatant was not acidified. Acidification of the reducing dithionite solution with an oxidising acid 

such as HN03 caused massive precipitation, and hence was avoided. Metals from this step of the 

extraction are henceforth referred to as "dithionite-extractable". The solids were retained for 

microwave digestion. 

Step 5 Oxidisible (Sulphide and Orqanic Matter Bound) 

Originally this step was to be a 3: 1 HN03: HCl microwave assisted digestion. However, due to the 

highly organic nature of the sediment and, in most cases, its reduced nature, resistant flocculates 

appeared in the acid extracts whilst they were awaiting analysis. The use of H202 in place of HCI, 

and a digestion program of increased temperature and duration (as directed by the microwave 

manufacturer) eliminated this problem. 

The sediment was washed out of the centrifuge tubes into Teflon microwave digestion vessels with 

10 mL concentrated HN03. A further 3 mL of 30 % H202 solution was added to each, and the 

samples were left to pre-digest for 15 min, or until reaction had subsided. Samples were then 

digested in a MARS 5 (Microwave Accelerated Reaction System) microwave digester (CEM 

Corporation) at 210 OC for 30 min, after a 10 min ramp to that temperature. Digested samples were 

filtered through Whatman no. 542 filter papers and made up to 25 mL with deionised water. Metals 

extracted in this step are henceforth referred to as "HN03IH202-extractable". 
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The solids remaining after this digestion were not saved for any analysis of residual metals (i. e. 

those in residual silicates and oxides and also those in the mineral matrix). 

Metals in all extracts were analysed by Inductively Coupled Plasma Atomic Emission Spectrometry 

(ICP-AES, Perkin Elmer Optima 3300 RL). Due to high sodium concentrations in the extractant 

solutions, NaOAc and dithionite extracts had to be diluted 10 times before analysis. 

Total Heavv Metal Content 

Total heavy metal content was determined by carrying out the microwave-assisted digest described 

above. This procedure was carried out on samples of sediment that had not been extracted in any 

way prior to digestion. 

3.2.6. Statistical Analysis 

Statistical analysis was carried out using the SPSS v1 1 statistical package. Kruskall-Wallis analysis 

was used, as was the General Linear Model (GLM) and Mann-Whitney U tests where appropriate. 

Quoted p-values are derived from these tests. 

3.3 Results and Discussion 

There is a lack of data concerning fractionation changes in canal sediments during the very early 

stages of oxidation. Some authors have analysed sediment depth profiles (Stephens et aL, 2001 a, 

Zoumis et aL, 2001) or distance-from-source or multiple-site studies (Jones and Turk!, 1997, Clark 

et aL, 2000), or studied metal solubilities during oxidation (Gambrell et aL, 1991, Tack et aL, 1996, 

Guo et aL, 1997, Caille et aL, 2003). The study conducted by Stephens et aL (2001 b), is perhaps 

the most similar to current study. However, the first time point in their study was after 2 weeks and 

the top 2 cm of the sediment were examined. Perhaps the most novel feature of the current study 

is that the fresh-water sediment undergoes significant natural acidification during oxidation. Tack et 
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aL (1996) experimented with artificial acidification but this is unlikely to accurately predict actual 

changes which would occur during natural acidification of a sediment, as will be discussed in 

Chapter 4. 

Sequential extraction procedures are designed to access metals in certain phases of the soil or 

sediment. However, no extractant can specifically target one phase only, without also removing 

some metals from non-target phases (F6rstner 1989, Hall et at, 1996 as cited in Clark et at, 2000). 

Hence, metals extracted in fractionation studies should be quoted, not by the phase which they are 

designed to access, but by the extractant used (Clark et at, 2000). 

3.3.1 Total Heavy Metal Content 

The WNCC sediment contained elevated concentrations of heavy metals (Table 3.2). The 

concentrations of Cd, Cr, Cu, Pb and Zn exceeded the available guideline values (ICRCL and 

CLEA) and the sediment is therefore considered to be contaminated and in need of remediation. 

3.3.2 pH and Carbonate 

Carbonate content was found to be negligible (< 0.01 %) in all samples. Thus, the acid neutralising 

capacity of the sediment will be low, leaving the sediment vulnerable to acidification. The lack of a 

carbonate phase also means that those metals extracted by NaOAc cannot be carbonate bound 

and therefore must be adsorbed. 

Oxidation of the WNCC sediment led to significant drying and acidification over time (Table 3.3). 

Sediment pH at each depth in the sediment core is shown for each time point. The unoxidised (0 

day) sediment showed no significant differences in pH with depth. After 4 days of oxidation the 
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Table 3.2 Total heavy metal content and other general properties of the 

Woolston New Cut Canal sediment used in the current experiment, n=6 

Heavy Metal Al Fe Cd Cr Cu Ni Pb Zn 

Mean (mg kg") 

SD 
1 

42976 

4434 
1 

43517 

1415 

21.4 

2.0 

917 

30.3 

639 

76.5 

81 

9.0 

1291 

37.8 

3152 

664 
1 
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sediment was exhibiting significant differences between depths, with the lowest pH in the surface 

layer. Even the pH in the deepest (3-x cm) layer was significantly different from the pH in the 

unoxidised sediment at this time (p < 0.005). The surface layer, which was in direct contact with the 

air, consistently had the lowest pH. The pH in this layer dropped form an initial value of 5.85 to a 

value of 3.67 after 41 days of oxidation. Over this same period, the pH in the middle (1 -3 cm 

layer) dropped to 4.52, and the pH in the bottom (3 -x cm) layer dropped to 4.60. The rapidity of 

the appearance of significant differences in pH in the sediment during even the shortest periods of 

oxidation confirms the findings of the low carbonate content and the low acid buffering capacity of 

this sediment. Although sulphide/sulphate ratios were not measured, the change in pH was almost 

certainly due to the oxidation of sulphides producing H2SO4 (Tack et aL, 1997), coupled with the 

lack of buffering carbonate minerals. The less rapid pH drop in the deeper sediment layers can be 

explained by the lesser exposure of these levels to oxygen. Due to the lack of structure within the 

sediment and the small particle size, oxygen diffusion down the profile will be slow, especially 

whilst the sediment is wet. 

The sediment studied by Gambrell et at (1991) had a negligible carbonate content and also 

underwent significant acidification upon oxidation. The anoxic sediment had a pH of 7 and the 

oxidised sediment, a pH of 3. However, sediments used by other authors (Tack et at, 1996, 

Zoumis et at, 2001 Caille et at, 2003) did have significant carbonate contents and showed little or 

no change in pH during oxidation. It is thus likely that metal fractionation changes in these 

sediments were more a reflection of changes in redox potential than pH. The decrease in pH seen 

in the WNCC sediment was not expected or accounted for in the hypothesis and it likely that the 

decreasing pH will have affected heavy metal behaviour. 

3.3.3 Leachate 

Leachate was only produced up until 4 days of oxidation. Table 3.4 shows that significant leaching 

of exchangeable bases (Ca, Mg, K) was occurring during this time. Iron and Al in solution 

increased by factors of 50 and 137 respectively, between 2 days and 4 days of oxidation. Heavy 

metals also showed an increase in concentrations in the leachate, suggesting oxidation-induced 
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Table 3.3 Change in sediment pH and moisture content during the oxidation 

period. Moisture content was generally not significantly different with depth 

and results are pooled. Values represent means (SD) (n = 4). 

pH 

Core Depth (cm) 
Sig. 

Moisture 

content % 

Days of 0-1 1-3 3-x p-value All depths 
Oxidation 

0 5.85 1.000 140(5.5) 

4 4.57 5.20 5.44 0.036 130(4.1) 

6 4.03 4.44 5.01 0.024 125(7.1) 

16 4.67 5.04 5.13 0.123 127(16.0) 

20 4.28 4.92 4.94 0.019 123(14.1) 

24 3.96 4.76 5.23 0.048 116(4.1) 

36 4.42 5.32 5.54 0.032 103(13.2) 

41 3.67 4.52 4.60 0.029 93(7.9) 

48 80(2.3) 

Sig. 
< 0.001 <0.001 0.004 

(p-value) 

Table 3.4 Concentrations of elements in the leachate collected 
from the tanks. Values represent means (SD) (n = 12) 

After 2 days After 4 days 

of oxidation of oxidation 

vol. (ml-) 90(42) 76(31) 

Element (mg L:, ) (mg L-') 

Ca 288(80) 331(121) 

Mg 48(10) 61 (28) 

K 6.7(1.4) 10.2(62) 

Fe 1.3(3.5) 65(114) 

Al 0.15(0.4) 20.5(38) 

Cd 0(0) 0.01 (0) 
Cr 0(0) 0.08(0.2) 

Cu 0.03(o) 0.09(0.2) 
Ni 0.03(o) 0.09(0.1) 
Pb 0.04(o) 0.14(0.2) 

Zn 0.11 (0.1) 0.57(1.3) 

S 154(48) 194(48) 



mobilisation. After cleconstruction of the tanks, the sand layer was stained orange with Fe oxide. 

The sand showed evidence of Fe (0.6 %) and Al (0.3 %) accumulation, and associated scavenging 

of Cd, Cr, Cu, Ni, Pb and Zn from the leachate (data not shown). 

3.3.4 Moisture Content 

Moisture content of the sediment (Table 3.3) was only found to be statistically significantly different 

at different depths in the sediment at 4 days of oxidation (data not shown), when the deeper 

(3 -x cm) layer of sediment was significantly wetter than the top cm (p < 0.05). After this time, loss 

of water must have been through surface evaporation as leaching ceased. This upward movement 

of water probably prevented large discrepancies within the profile. Significant sediment drying 

occurred over the course of the experiment, from the initial moisture content of 140 %, to 80 % of 

the dry weight of the sediment after 48 days. Field capacity for this sediment was 93 % moisture, a 

value reached at 41 days of oxidation. 

3.3.5 Dithionite 

The "0 day" dithionite extracts were acidified and massive precipitation of elements occurred. The 

samples were misplaced and unfortunately, the precipitate was never digested. As such, results for 

the "d ith ion ite-extractable" metals at day 0 are best estimates, calculated by summing the metals 

present in the other fractions and subtracting this value from the mean of the total metal extracted 

on days 2 to 6. 

3.3.6 Iron 

The percentage of iron extracted with each extractant (out of total Fe extracted) over the 48-day 

oxidation period is shown in Figure 3.2 a and c. Figure 3.2 b gives the concentrations (mg kg") of 

iron in the NI-14CI-extractable and NaOAc-extractable fractions of the 0-1 cm layer (Fig. 3.2 a). A 

large proportion of total Fe was extracted by dithionite (Figs. 3.2 a+ b), even in the highly reduced, 

black sediment. Dithionite-extractable Fe is generally quoted as being Fe oxide-Fe. It is highly 
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Figure 3.2. Iron extracted at each stage of the sequential extraction 

procedure as a percentage of total Fe extracted. Mean recovery of Fe by 

sequential extraction was 88% of total. a) 0-1 cm b) 0-1 cm, NH4Cl and 
NaOAc extractants only c) 1-3 cm. Values are mean, (n = 4). The error bars 

on graph b) represent one standard deviation. 
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unlikely that high concentrations of Fe oxides were present in the reduced sediment. When the 

dithionite-citrate extractant comes into contact with Fe oxides, the dithionite reduces Fe 3+ to soluble 

Fe 2+. The citrate complexes the Fe 2+ to prevent re-precipitation. In the anoxic sediment, the citrate 

would be extracting Fe 2+ species which were naturally occurring under anoxic conditions. Dithionite 

has also been reported to, and not to, dissolve organic forms of Fe (Beckett, 1989) and thus it is 

possible that some of the less strongly organic-bound Fe and trace metals were also being 

extracted in this step. From the data, it appears that the dithionite-citrate was extracting reduced 

forms of Fe which, upon oxidation, form Fe oxides. Hence no very large change in the amount of 

extracted Fe was seen during the experimental period. Unfortunately this means that Fe oxide 

formation in these data cannot be used as an indication of oxidation. To improve the method for 

future use, the addition of a tri-sodium citrate-only extraction step (before the use of the dithionite- 

citrate solution) could possibly allow the removal of Fe 2+ from the sediment. This may enable 

observation of Fe oxide formation as the dithionite step will no longer be extracting reduced forms 

of iron and could be considered to be truly extracting Fe oxide-Fe. 

An indication of oxidation may be given by exchangeable and adsorbed Fe, as extracted by NH4CI 

and NaOAc (Fig. 3.2 b Note that total metal concentrations in each fraction at each time point and 

the statistical significance of changes with time and depth are presented in Appendices 2 and 3 

respectively). Initially 8% (3600 mg kg") of total Fe was extracted with NH4CI. As already 

discussed, oxidation occurred most rapidly in the top 1 cm of the sediment. In this layer, Fe 

redistributed into the HN03/1-1202-extractable fraction over time (p < 0.001) until Day 27. From day 

27 onwards, dith ion ite-extractable Fe increased at the expense of HN03/1-1202-extractable Fe. In 

the deeper layers, a very significant amount of Fe remained in the NH4CI and NaOAc-extractable 

fractions until as late as 41 days of oxidation, when moisture content dropped below field capacity 

and oxygen could reach the lower layers more quickly. The small spike in the NI-14CI-extractable 

fraction at 36 days is not statistically significantly different from the values around it. 
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Figure 3.3. Chromium extracted at each stage of the sequential extraction 

procedure as a percentage of total Cr extracted, at 3 depths within the 

sediment core: a) 0-1 cm b) 1-3 cm c) 3 cm to the core bottom. Mean 

recovery of Cr by the sequential extraction technique was 87 % of total. 

Values are mean, (n = 4). 

HN03/H202 
Dithionite 

ci NaOAc 
NNH4CI 

39 

6 12 18 24 30 36 42 48 

6 12 18 24 30 36 42 48 

6 12 18 24 30 36 42 48 

Days of Oxidation 



3.3.7 Chromium 

Though Cr 6+ is a very toxic species, CP+, dominates in natural systems (McBride, 1994). This 

trivalent chromium tends to be insoluble and does not constitute a toxic hazard. Thus many authors 

exclude Cr from their studies. The high levels of Cr in the canal sediment are likely to have 

occurred from discharge from a tannery and associated chemical works, which were on its banks. 

Wastewater from tanneries may contain CP+ and Crý+ salts (Verma et aL, 2001) and hence it was 

important to investigate Cr at this site. 

The change in the extractability of Cr during oxidation at the tree sediment depths is shown in 

Figure 3.3. Despite the high total concentration of Cr in this sediment, the sequential extraction 

shows that more than 95 % of Cr was bound either by sulphides, organic matter or in the oxide 

fraction (Fig. 3.3). Chromium has a tendency to substitute for Fe 3+ in mineral structures (McBride, 

1994) and had the largest dithionite-extractable phase of all of the heavy metals examined here, 

suggesting a close association with Fe. As with the Fe, the Cr extracted by dithionite in the reduced 

sediment is likely to have consisted of reduced Cr species and Cr more loosely bound to organic 

matter. Due to the large percentage of Cr held in the oxides, acidification and associated 

dissolution of this phase has the potential to liberate a significant amount of Cr. Chromium should 

therefore be regarded as a potential hazard. However, there was no evidence of oxide dissolution 

after 48 days of oxidation (dith ion ite-extractable Fe was rising), despite the pH having fallen below 

3.7 in the top cm of the soil. Below pH 3.5, dissolution may start to occur and so there is potential 

for increased future toxicity of Cr. These Cr data seem to contradict those of Gambrell et aL (1991) 

who studied a sediment very similar in characteristics and pollution levels to this sediment. 

Gambrell reports "no apparent pH or redox potential effects" on soluble Cr. Stephens et aL (2001 b) 

examined Cr fractionation change, though using a rather different sequential extraction technique 

(the BCR extraction). Over a 12-week drying period, Stephens found that Cr held in the residual 

(aqua-regia-extractable) phase decreased from around 95 % to just under 90 %. A small increase 

in Cr was seen in the reducible phase (equivalent to dith ion ite-extractable) and a larger increase 
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Figure 3.4. Copper extracted at each stage of the sequential extraction 

procedure as a percentage of total Cu extracted, at 3 depths within the 

sediment core: a) 0-1 cm b) 1-3 cm c) 3 cm to the core bottom. Mean 

recovery of Cu was 83 % of total. Values are mean, (n = 4). 
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was seen in the oxidisible phase. This appears to disagree in some respects to the results found in 

the current study, as the reducible phase in the sediment studied by Stephens was very small and 

the residual phase was very large. However, the sediment examined by Stephens contained only 

2.6 % organic carbon and only half as much Fe as the WNCC sediment, which may account for the 

some of the observed difference in Cr behaviour. 

3.3.8 Copper 

Copper in this sediment was predominantly associated with organic matter and sulphides and 

hence was mostly extracted by HNO3/H2O2 (Fig. 3.4). This is consistent with work by Jones and 

Turki (11997), Stephens et aL (2001 b) and Clark et aL (2000). Oxidation of the sediment appeared 

to affect Cu fraction most in the 0 -1 cm layer and least in the 1-3 cm layer. The fractionation of 

Cu in the top 1 cm of the sediment appeared to fluctuate with time. An appreciable NaOAc- 

extractable Cu phase only appeared in the 3-x cm layer after the sediment had been oxidising for 

over 36 days. The largest increase in INIH4CI-extractable Cu occurred in the top 1 cm of the 

sediment. Once again, the extraction of a fairly stable proportion of Cu by dithionite/citrate with time 

suggests that reduced Cu is being extracted initially. Copper associated with Fe/Al oxides may well 

be being extracted later. If the method were modified to include a citrate-only step as previously 

mentioned then this distinction could perhaps be made. 

Copper is a phytotoxic metal and hence it is necessary for the success of the phytoremediation 

field trial that available Cu concentrations remain low. However, oxidation led to a shift of Cu into 

the more available phases over time. Caille et at (2003) found that the trend in increasing Cu 

solubility continued over at least an 11 week time period. The rate of Cu release into solution 

increased after 40 days and solution concentrations were still increasing after 80 days. Generally, 

the dith ion ite-extractable fraction remained very stable as a percentage of total Cu, making it likely 

that the NH4CI-extractable Cu was coming directly from the oxidation of sulphides and oxic 

breakdown of organic matter. Copper is strongly complexed by organic matter, more strongly than 

any other transition metal, but it is also a chalcophile, meaning that it has a tendency to form very 

insoluble sulphide minerals (McBride, 1994). Oxidation will result in release of the majority of 
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sulphide-bound Cu, due to the disappearance of the sulphide phase, and also a certain proportion 

of organic-bound Cu. Exchangeable Cu can be expected to increase for as long as sulphide 

oxidation is occurring. The NaOAc-extractable Cu fraction started to appear after the NH4Cl' 

extractable Cu and it is possible that the newly liberated Cu was leaving exchange sites and 

becoming adsorbed onto surfaces of Fe oxides and other cation binding sites, newly-created during 

oxidation. 

The last leachate was collected from the tanks after 4 days of oxidation. In the later stages of the 

experiment, the bottom of the sediment was therefore lying on a dry sand and gravel layer. The 

data showing a larger increase in the adsorbed phase of Cu in the 3-x to the 1-3 cm depth, is then 

evidence that after 36 days, significant oxidation was occurring from both the bottom and the top of 

the sediment (see also Fig. 3.6 and Table 3.3). 

Guo et aL (1997) reduced an oxidised bottom sediment and found that, initially, as Eh fell, more 

soluble Cu was liberated. However, as the Eh dropped below 0 mV, soluble Cu quickly decreased 

by a factor of 10. Gambrell et aL (1991) also found that soluble Cu tended to increase with 

increasing redox potential, though not significantly. If the WNCC sediment followed a similar trend 

to the sediment examined by Guo, then NH4CI-extractable Cu could increase by a factor of 10 

when the sediment becomes more oxidised, and thus pose a significant risk. The natural 

acidification of this sediment will also increase solution concentrations of Cu, as binding sites such 

as Fe/Al hydroxides and clay surfaces have a pH dependant charge, which will tend to be more 

positive at low pH. A longer-term study of Cu fractionation change during oxidation is therefore 

necessary to better characterise the potential risk from this metal. However, if availability continued 

to increase with increasing oxidation then toxicity issues may arise. 

3.3.9 Lead 

Though Pb is thought of as the least mobile heavy metal in soil (McBride, 1994), in the oxidising 

WNCC sediment this appeared not to be the case (Fig. 3.5). From the outset there was a 

significant pool of adsorbed Pb at all depths within the sediment. This increased in the first 2 days 
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Figure 3.5. Lead extracted at each stage of the sequential extraction 

procedure as a percentage of total Pb extracted, at 3 depths within the 

sediment core: a) 0-1 cm b) 1-3 cm c) 3 cm to the core bottom. Mean 

recovery of lead was 83 % of total. Values are mean, (n = 4). 
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of oxidation (p < 0.001). In the top cm, the adsorbed Pb then remained fairly stable (p = 0.772), but 

the NI-14CI-extractable Pb increased (p < 0.01). In the deeper layers, HNO3/1-1202-extractable Pb 

remained at a higher mean percentage than in the top cm, and a smaller increase in NH4CI' 

extractable Pb was seen over time. Other authors (Jones and Turk!, 1997, Clark et at, 2000, 

Stephens et at, 2001 b) have found a higher percentage of Pb in the reducible fraction than was 

present in this sediment, and Stephens found 80% of Pb in this fraction after 3 months of oxidation. 

However, Pagnanelli et at (2004) found that Pb was predominantly in the HN03-digested fraction, 

the residue and the organic matter. Caille et al. (2003) found that soluble Pb consistently 

decreased with increasing oxidation but Gambrell et at (1991) found that Pb solubility increased at 

intermediate Eh values (100 mV) and fell both at highly positive (400 mV) and at negative 

(-150 mV) values. The increase in NI-14CI-extractable Pb was most probably due to the drop in pH, 

a trend also reported by Gambrell et at (1991). However, the contradictions between studies 

highlight the effect that sediment physical properties have on the chemistry of the elements in the 

system. Some of the differences will also be attributable to the extraction procedure used by each 

author. 

3.3.10 Zinc 

Zinc underwent by far the largest redistribution into the NI-14CI-extractable phase, of all of the 

metals studied (Fig. 3.6). There was a lag in the onset of this increase in the deeper layers: the 

increase began at 2 days at 0-1 cm depth, 4 days at 1-3 cm and 6 days at 3-x cm. This lag may 

coincide with the pH falling below 5, with increasing redox potential, or be due to a combination of 

both aspects. In the top cm of the sediment, mean NI-14CI-extractable Zn had doubled by Day 4. It 

doubled again by day 20 and again by day 41. In all, NI-14CI-extractable Zn increased to 1670 % of 

its original value. This increase was highly significant (p < 0.001), as was the differential increase 

between depths (p < 0.001) and there was also a significant interaction between depth and time 

(p < 0.001). Gambrell et aL (1991) found that at pH 5, soluble Zn increased from 0.8 mg kg" to 

415 mg kg-1 as redox potential increased from 100 to 400 mV, illustrating the significant effect 

which oxidation has on Zn speciation. Gambrell also found that increasing the pH to 6.5 reduced 

soluble Zn to 34 mg kg" at 400 mV. The same effects were evident in this sediment. The effect of 
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Figure 3.6. Zinc extracted at each stage of the sequential extraction 

procedure as a percentage of total Zn extracted, at 3 depths within the 

sediment core: a) 0-1 cm b) 1-3 cm c) 3 cm to the core bottom. Mean 

recovery of total Zn was 74 %. Values are mean, (n = 4). 
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pH on NH4CI-extractable Zn is visible in the 0-1 cm layer of the sediment by comparing the data of 

4 and 36 days of oxidation. In the top cm of the sediment at 36 days of oxidation, the pH rose to 

4.42. In this layer, the most comparable pH value is 4.57 and occurred at 4 days of oxidation. The 

proportion of Zn in all extractable fractions was almost identical for both time points, leaving little 

room for a redox effect. However, comparison of the same 36 days of oxidation data in the top cm, 

with the data from the 1-3 cm deep layer of sediment at 6 days (pH 4.44) proves that redox 

conditions do also exert a strong influence on Zn chemistry, as Gambrell concluded. Hence, even if 

there was no pH change, the oxidation process itself would release large amounts of Zn into 

solution. After 48 days of oxidation, NH4CI-extractable Zn was still increasing at all depths in the 

sediment and had reached 1360 mg kg" in the top cm. As with Cu, a longer-term study of Zn 

behaviour is required, especially considering the phytotoxicity of this element. 

3.3.11 Residual Metals 

Residual metals were not quantified in this study as Tessier et aL (1979) state that they are not 

likely to be released into solution over a reasonable time span, under normal, natural conditions. 

However, the results of this study suggest that the residual fraction of an oxidising sediment may 

not be as inaccessible as previously believed. Figure 3.7 shows total recoveries of Pb and Fe in the 

top cm of the sediment over the 48-day oxidation period. The change in total recovery in the Pb 

data could be a result of poor calculation, drift in ICP calibration or differing effectiveness of the 

extraction technique with time. However, if any of these factors were responsible then the same 

pattern would be expected in the results for other metals. The Fe data is provided to prove that the 

differences seen in the Pb data are genuine and not a result of any of the above factors. The total 

Pb content of the WNCC sediment used in this study was 1291 ± 38 mg kg". It is clear that in the 

reduced sediment, half of the total sediment Pb was still in the residual fraction (i. e. that fraction not 

accessed by the microwave digestion step). As oxidation proceeded, some of the residual Pb 

redistributed into the HN03/H202-extractable fraction. This trend was also seen in the Pb 1-3 cm 

fraction, and to a smaller extent in the 3-x cm fraction (data not shown). Copper and Cr showed a 

similar pattern, though less pronounced. The nature of the mobilisible residual phase is unknown. 

The use of the H202 in the digestion step left the sediment bleached of organic matter, therefore it 
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Figure 3.8. Cadmium extracted from the sediment during the sequential 

extraction at a) 0-1 cm, and b) 1-3 cm depths in the sediment core. Values 

represent means (n = 
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is highly unlikely to have been organic in nature. A possible explanation, is that a phase existed 

which became extractable during the natural process of oxidation, acidification and short-term 

weathering, but not during digestion with a strong oxidising acid and a strong oxidising agent. 

Perhaps a sediment component acted as a catalyst for the mobilisation reactions, but was 

destroyed upon the addition of the strong acid or the peroxide. To determine the exact nature of the 

potentially-mobilisible residual phase, further study must be undertaken. However, it is possible 

that the phase constitutes resistant sulphides, as Cd, Cr, Cu and Pb are all chalcophilic. The Pb, 

Cu and Cr data (Figs. 3.3 - 3.5) should be viewed with this increase in total-extracted in mind. 

Though proportions of these metals remained the same, actual concentrations in each fraction 

were increasing with time, until the "total" concentration was reached. The 48-day recovery of Pb 

by the sequential extraction was 97 % of total. 

3.3.12 Cadmium 

The Cd data for the 0-1 cm and 1-3 cm depths are shown in Figure 3.8. Due to the large 

changes in total Cd recovered throughout the experiment in the top 1 cm of the sediment, the 

results have not been represented in the same form as the other metals. The data for the 1-3 cm 

layer are within what would be expected, with an NI-14CI-extractable phase appearing over time. 

Some NH4CI-extractable Cd then redistributed into the NaOAc-extractable phase at 48 days, in line 

with the original hypothesis. In the top 1 cm however, the Cd concentrations in the NI-14CI-extract 

varied considerably between replicates and time points. Total Cd in this sediment was 

21.4 ±2 mg kg" -a value exceeded by up to two times in the NI-14CI-extractable phase alone. 

Disregarding this phase for now, in the top 1 cm of the sediment Cd was initially present in the 

HN03/1-1202-extractable and dith ion ite/citrate-extractable phases only. After the appearance of the 

NI-14CI-extractable phase, an NaOAc-extractable phase began to appear and increased in size over 

time. As hypothesised, this is probably due to the redistribution of NI-14CI-extractable Cd in to less 

available phases through equilibrium processes. 

The NH4CI-extractable Cd in the top 1 cm of the sediment reached very high concentrations as 

previously noted. The standard deviations of these data are large as concentrations were not 
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elevated in all samples. Cadmium is one of the most mobile heavy metals in the WNCC sediment. 

Due to the method of drying which occurred in the tanks (mostly evaporative), it is possible that 

soluble Cd moved from the deeper sediment layers to the surface layer with the sediment moisture 

flow. Thus, metal concentrations in the top 1 cm of the sediment became elevated with respect to 

other layers. The apparent scale of the elevation would be increased due to the smaller sediment 

volume in the top 1 cm of the sediment, compared to the volume of sediment below it. The large 

standard deviation of the data and the decrease in the concentrations of NH4CI-extractable Cd after 

24 days of oxidation suggest that the Cd may be being liberated from localised clusters of Cd- 

bearing sulphides, either at, or below the surface. Lateral diffusion of the soluble Cd would then 

lead to the decrease in NH4CI-extractable Cd seen after 24 days. 

The large release of soluble Cd was an effect of oxidation of the sediment, as shown by the initial 

lack of this phase, and by the 1-3 cm depth data. As Cd is chalcophilic, the oxidation of Cd-bearing 

sulphides is the obvious source of this Cd. Stephens et aL (2001 b) found that oxidation of their 

sediment caused major immobilisation of Cd, though they comment that this is in disagreement 

with other studies, which also describe release of Cd from sulphides. 

3.4 Concluslons 

it was hypothesised that the sediment heavy metals would be released into more soluble forms 

during oxidation and would then re-distribute into less-available phases. Oxidation did lead to an 

increase in the NH4CI-extractable phases of most heavy metals studied but the expected 

redistribution did not occur. This was because of the acidification of the sediment during oxidation, 

due to the lack of a buffering carbonate mineral phase. The low pH of the sediment favoured the 

heavy metals staying in more available forms. This was particularly obvious for Zn and Cd, the high 

NH4CI-extractable concentrations of which would be a pollution concern in an environmental 

system. Due to this oxidation-induced acidification, it was not possible in this experiment to 

differentiate between the effect of oxidation on metal behaviour and the effect of pH on metal 

behaviour. The least mobile metal was Cr and it was not considered to pose a toxic hazard unless 

dissolution of Fe oxides occurred. The chalcophilic metals exhibited redistribution from the residual 
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phase into extractable phases during oxidation, and may have predominantly entered the 

HN03/1-1202-extractable phase e. g. Pb. The residual phase that liberated these metals is not known 

and further investigation is required, though resistant sulphicles are a possibility. 

Monitoring of Cd, Cu, Pb and Zn over a longer time period would be beneficial as the NH4Cl' 

extractable phases are a pollution concern. Perhaps the most serious potential toxicity problems 

were those posed by Zn and Cd availability, and low pH. Due to its phytotoxicity and increasing 

availability, Zn is the metal most likely to lead to failure of the phytoremediation field trial. The 

increase in Cu availability would compound the toxicity of the sediment if concentrations continued 

to increase in the more available fractions overtime. During the early stages of oxidation, the top 1 

cm of the sediment presented the greatest toxic risk. As time goes on, the sediment would oxidise 

to greater depths and it is likely that the sediment at the field site would oxidise in a similar manner. 

Thus, over time, high tree mortality could be expected if nothing was done to counteract the acidity. 

Generally, oxidation of the sediment led to development of a low pH, and increased the availability 

of toxic heavy metals. If the sediment were dredged to the side of the canal, or deposited onto land, 

then rainfall may lead to the production of more leachate than was seen in this study. Leachate and 

run-off therefore have a high probability of containing high concentrations of heavy metals, which 

may pollute the surrounding canal. Leachate would also be expected to have a low pH which would 

also have a detrimental effect on the surrounding canal. Therefore, dredging of the sediment 

converted a relatively inert, stable sediment into a toxic hazard and such activity would not be 

advised on a large scale without the addition of amendments such as lime. 

52 



CHAPTER 4 

Changes in Metal Lability During Oxidation of a Contaminated Canal 

Sediment 

4.1 Introduction 

The results presented in Chapter 3 showed that metal fractionation changed throughout a 48-day 

oxidation period. The measurement of fractionation is operationally defined as it is dependant upon 

the extractants used and the sequence in which they are used. Experimental work presented in the 

present chapter investigates the change in metal lability during oxidation using isotope dilution 

techniques. These techniques do not require harsh chemical methods and thus the sediment 

undergoes much less physical and chemical alteration during the experimental process. Oxidation 

of the sediment was through a "slow" oxidation procedure - in air over a 48-day period - and via a 

"rapid" procedure - by the addition of the oxidising agent hydrogen peroxide. The peroxide 

oxidation procedure was tested to determine its viability as a method for accurately and quickly 

predicting metal lability change with changing pH (and Eh) within the sediment. 

4.1.1 Assessment of Heavy Metal Availability 

Assessment of changes in metal availability has typically been through the use of techniques such 

as sequential extraction schemes (Guo et aL, 1997, Stephens et aL, 2001 a, Clark et aL, 2000, 

Stephens et aL, 2001 b, van Ryssen et aL, 1999, Tack et aL, 1996, Kersten and F6rstner, 1989), 

leaching studies (Stephens et aL, 2001 b), and solubility studies (Caille et aL, 2003). Sequential 

extractions of reduced sediments show that as the sediment oxidises, metals generally move from 

the less available fractions (described as "residual") into the more available fractions, which are 

usually described as "carbonate-bound or adsorbed", "exchangeable" and "Fe/Mn oxide-bound". 

For example, Zn has been found to redistribute from the "residual" phase, probably present as 

sulphides and organic matter, into other, more available phases such as Fe/Mn oxide-bound (van 

Ryssen et aL, 1999, Tack et aL, 1996) and the carbonate-bound/adsorbed fraction (Zoumis et aL, 
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2001, Caille et at, 2003). Nickel has been reported to be present in the carbonate/adsorbed and 

residual fractions when a sediment is reduced and during oxidation it either redistributes into the 

Fe/Mn (oxyhydr)oxide-bound fraction, or remains in the carbonate-bound/adsorbed fraction (Guo et 

at, 1997, Stephens et at, 2001 a, van Ryssen et at, 1999, Tack et at, 1996). 

However, sequential extractions extract an operationally-defined pool of metals and leaching and 

solubility studies fail to include exchangeable metals adsorbed on the solid phases. In this study, 

changes in Cd, Cu, Ni and Zn lability (isotopic exchangeability) were measured using isotope 

dilution techniques (E values), which take into account both solution concentrations and 

exchangeable metals on the sediment solid phases. E values have been used to study metal 

lability in soils by a number of authors (Echevarria et aL, 1998, Young et aL, 2000, Hamon et aL, 

2002 a, Lombi et al., 2003, Tye et al., 2003) but the author knows of no studies to date examining 

an oxidation series of contaminated sediments. 

4.1.2 E values 

The E value technique is used to estimate [ability of metals in a soil or sediment. Only metals which 

have an appropriate isotope i. e. short half-life, safe to work with, or an appropriate stable isotope, 

can be used at present. When radioactive isotopes are used, a spike of a radioactive isotope of the 

metal, with known activity, is added to a soil/sediment suspension and left to equilibrate for a given 

period. The essential assumption of the process is that during equilibration, the isotope acts as the 

native metal would do and partitions between soil components in the same proportions as the 

native metal does (Hamon et aL, 2002 b). After the equilibration period, the activity in solution is 

measured and corrected for decay, enabling calculation of the proportion of added isotope, 

remaining in solution. This in turn gives the proportion of the metal that has exchanged with the 

labile phases of the soil. Once this proportion is known, and using the above assumption, the total 

labile metal in the soil can be calculated from the solution concentration of the native metal. 

However, the general E value technique may overestimate true metal lability due to the presence of 

colloids in soil and sediment systems. A fraction of the metals incorporated into these colloids may 

be non-isotopically exchangeable (Lombi et al., 2003) but will still be incorporated in the E value. 
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This overestimation of lability can be avoided by the addition of a resin step (Lombi et al., 2003), 

giving the E, value. 

4.1.3 E, Values 

The E, value is perhaps a better measure of lability than the E value. It entails the use of an ion 

exchange resin which is added to the supernatant which was used in calculation of the E value. 

The exchange resin sorbs metals onto its surfaces in the same proportions at which they are found 

in the supernatant. However, metals occluded in colloids will not exchange and will therefore not be 

counted in the final measurement of solution concentrations. Extraction of the resin with acid gives 

the true proportion of isotope to native metal and this is used to calculate the E, value. A 

comparison of the E and E, values via the E/Er ratio gives a measure of the metals occluded in 

these colloids. This is important in terms of the biogeochemistry of the metals, as colloids can act 

as vectors for accelerated contaminant movement (Flury et aL, 2002). 

Here, E, values were used to observe changes in metal lability during oxidation in air over a 48-day 

period (hereafter referred to as uslow" oxidation), and to compare these results with those obtained 

using hydrogen peroxide as the oxidising agent (hereafter referred to as "rapid" or "peroxide" 

oxidation). 

4.1.4 Alms 

To determine the change in metal lability with increasing oxidation both in air and via oxidation 

with hydrogen peroxide. 

0 To establish whether the rapid oxidation process accurately reflected changes in metal lability 

during the slow oxidation process. 

0 To compare the lability changes with the fractionation changes reported in Chapter 3. 
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4.1.5 Hypothesis 

The lability of Cd, Cu, Ni and Zn will increase during oxidation. It is probable that the increase in 

lability will be above that reported in the increase of the NH4CI-extractable fraction quantified in 

Chapter 3 as labile metals may not necessarily have been removed by this extractant. The 

proportion of total Zn and Cd which become labile are expected to be higher than the proportions of 

total Cu and Ni which become labile. Using hydrogen peroxide as the oxidising agent is likely to 

lead to the breakdown of organic matter and thus Cu lability may be higher by this method than by 

oxidation in air. Whether or not the peroxide oxidation method will prove to be a useful prediction 

tool uncertain. 

4.2 Materials and Methods 

4.2.1 Sediment 

The sediment used in this experiment was dredged from a disused canal site in Warrington, North 

West England, currently the location of a phytoremediation field trial as described by Royle et aL 

(2003). The sediment was stored in polyethylene barrels covered with a layer of native water (as 

described in Chapter 3). For subsampling for the current experiment, the sediment was thoroughly 

homogenised and a3L subsample was taken. This material was sent by courier to CSIRO Land 

and Water in Adelaide, Australia where the current experiment was conducted. At CSIRO Land and 

Water, the sediment was recombined and stored in a polyethylene tub in a cold room at 4 QC until 

needed. 

4.2.2 Slow Oxidation Experiment 

Forty-eight days before equilibration of the sediment/water suspension was to begin, approximately 

70 g wet sediment (moisture content 162 %) was weighed into a polyethylene container at a layer 

thickness of 1 cm. The lid was loosely fitted to allow oxidation, whilst limiting evaporation. This 
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process was repeated at 12 other consecutive time points (Table 4.1). The containers were kept in 

the dark, at 20 OC throughout the experiment. 

On the final day of oxidation, a sub-sample was taken from each container and also from the "0 

day" sample. Moisture content was determined by drying the sample at 105 ̀ C for 24 h. To prepare 

the samples for addition of the radioisotopes, duplicate 2g dry-weight equivalent sediment 

subsamples from each container was weighed into 50 mL centrifuge tubes and 20 mL deionised 

water was added to prevent further exposure to the air. This was done 3 times - for Zn and Cd 

(combined), Cu, and Ni E value determinations. Two drops of toluene were added to each tube to 

eliminate microbial activity, after which the headspace of each tube was purged with oxygen-free 

nitrogen gas. The tubes were shaken on an end-over-end shaker for 3d to allow equilibrium to be 

reached between the metals in solution and those on the solid phases of the sediment (Hamon et 

al., 2002 a, Lombi et al., 2003). 

4.2.3 Rapid Oxidation 

4.2.3.1 Redox Titration 

Prior to the start of the experiment, a redox titration curve was obtained using a sub-sample of the 

sediment. A 10: 1 ratio of water to sediment was stirred into a constant suspension with a magnetic 

stirrer, ensuring that no vortex was present on the surface of the water. A pH meter and an Eh 

probe were inserted into the suspension to monitor oxidation. Ten pL of 30 % hydrogen peroxide 

solution (pH 2-9) was added to the suspension, which was monitored until the pH and Eh readings 

were stable, at which point another 10 plL of hydrogen peroxide was added. This process was 

continued until the pH remained stable, even after addition of relatively large volumes (100 pL) of 

hydrogen peroxide. The resulting oxidation curve was used to determine peroxide additions for the 

rapid oxidation experiment. The end point of the titration was 24 pL g" after 1h equilibration time. A 

range of addition volumes were chosen between 5 and 40 pL of peroxide per g, and then a further 

4 additions of 125,300,500 and 1000 pL g" were used to ensure that total oxidation was achieved 

and to allow for potential buffering processes during the longer experimental equilibration period. 
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Table 4.1. The change in pH during "slow" oxidation in air, and "rapid" 

oxidation using peroxide addition. Data are for the Zn and Cd jointly 

spiked samples. Any differences in addition between metal treatments are 
indicated with by a *, (n = 2). 

Slow Oxidation Experiment 

Oxidation 

Period (days) 
pH 

Rapid Oxidation Experiment 

Peroxide Addition 
(pl- g-1) 

pH 

0 6.29 0 6.02 

1 5.63 5.0 5.87 

6 5.73 7.5 5.94 

8 5.66 12.5 5.80 

13 5.69 15.0 5.75 

15 5.52 17.5 5.70 

17 4.78 22.5 5.52 

21 5.04 25.0 5.46 

24 5.73 32.5 5.43 

27 4.89 35.0 5.30 

30 5.15 40.0 5.15 

34 4.96 125 4.51 

41 4.25 300 3.97 

48 4.25 500 3.84 
1000 3.20 

Only in the case of Zn and Cd, this addition rate was not used for Ni. 

325 pL g" used for Ni. 

For Cu 50 pL g" peroxide was used. The next 3 additions were not used for Cu. The final 

addition was 1000 pL g"' - 
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4.2.3.2 Rapid Oxidation Experimental Procedure 

For E value determinations, 2g dry weight equivalent of the original wet sediment was weighed 

into 50 mL centrifuge tubes and water (20 mL) and toluene (2 drops) were added. Duplicate 

samples were weighed out for Zn and Cd, Cu, and Ni E value determinations. The tube was swirled 

until the sediment was in suspension, and then the required volume of hydrogen peroxide was 

added. Tube headspaces were purged with oxygen-free nitrogen gas and they were then shaken 

on an end-over-end shaker for 4d to allow complete reaction and equilibration. Those with larger 

additions of peroxide (ý! 125 pL g*') were left to react until the formation of oxygen bubbles had 

ceased (to avoid pressure build up inside the tubes) before shaking. Due to the availability of 

sediment and isotopes, the complete set of peroxide additions (as shown in Table 4.1 as the 

6'5ZnPCd spiked sample data) was not carried out for all isotopes. Those samples spiked with 63 Ni 

received peroxide additions as shown in Table 4.1 with the exception of those addition rates 

marked with a single asterisk. The 300 plL g-1 addition of peroxide was also different for the 63 Ni 

spiked samples, being 325 pL g". Those samples spiked with 64Cu received all peroxide addition 

up to 35 pL g". The next addition rate after this was then 50 pL g"I and the only other addition rate 

received by 64CU spiked samples was 1000 pL g-1. 

4.2.4 Isotopic Dilution Techniques 

All spiking with radioisotopes was carried out simultaneously using the method of Hamon et at 

(2002 a) and Lombi et al. (2003). After the equilibration period, the pH of the 10: 1 water-to- 

sediment suspension was measured. The samples were then spiked separately with 50 PL of a 

solution containing either 63 Ni (1884 kBq mUl), 64Cu (60 MBq mU') or a mixture containing 65 Zn 

(1000 kBq mU') and 109Cd (400 kBq mUl). Headspaces were repurged with N2 gas, and the tubes 

were shaken for a further 3d to allow equilibration between the radioisotope metal and the native 

metal, except in the case of the 64Cu spiked samples. Due to the high activity of these samples, 

spiking was carried out slightly differently. During addition of the 64Cu spike, the lid of the tube was 

lifted just enough to allow the pipette tip to be inserted. The spike was added as quickly as possible 

and the lid was immediately replaced, so as to avoid as far as possible, the introduction of oxygen 

59 



into the tubes. This was done to eliminate the need to repurge the headspace and hence to 

minimise exposure to the high level of activity in these samples. Also, due to the short half-life 

(12 h) and the low efficiency of the gamma counting for the 64Cu isotope, the samples were shaken 

for 1d only. 

At the end of the shaking period, an aliquot of each suspension was taken for the determination of 

pH. The remaining suspension was centrifuged at 3000 g for 30 minutes. The supernatant was 

filtered through a 0.2 pm Sartorius filter and the solids were discarded. The 63 Ni activity was 

determined using a LKB Wallac: 1215 Rackbeta 11 Liquid Scintillation Counter. Two mL of the 

supernatant were pipetted into a scintillation vial and 10 mL of the scintillant Ecoscint A (National 

Diagnostics) was added. The solution was shaken and left to settle before counting. The activity of 

66Zn, 109Cd and 64Cu in 2 mL samples of the filtered supernatant was determined using a gamma 

counter (1480 Wizard, Wallac). 

For determination of E, 10 mL of the original, filtered supernatant was transferred into a 15 mL 

centrifuge tube containing 100 pg of Chelex-100 resin (Bio-Rad Analytical Grade, 100-200 mesh), 

which had been converted into the calcium form. After 12 h of shaking, the supernatant was 

discarded and 10 mL of 0.5 M HN03 was added to elute the chelex resin. The tubes were returned 

to the shaker for 1 h. After settling, 2 mL sub-samples were counted for radioactivity as described 

above. 

Metals in the filtered supernatant and the acid eluant from the resin were analysed using ICP-AES 

(SpectroFlame Modula, Spectro) and, where necessary, GF-AAS (Perkin-Elmer, AAnalyst 600). A 

further sub-sample of the filtered supernatant was retained for determination of dissolved organic 

carbon (DOC). 
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The E values and the resin E values (Er values) were calculated using the following equation: 

E 
Cýl 

xRx 
v 

C*s. i w 
Equation 4.1 

where E or Er represent the labile pool of metal (mg kg-1), C,,, is the concentration in pg mUl of the 

native metal in solution, C%01 is the concentration in Bq mUl of the radioisotope remaining in 

solution after the 3d equilibration period, R is the total activity of the radioisotope that was 

originally added to each sample (Bq mUl), and VM is the ratio of solution to sample (Hamon et aL, 

2002 a, Hamon et al., 2002 b, Lombi et al., 2003). For these experiments, the VM ratio was 10 

mL g". 

4.2.5 Statistical Analysis 

Statistical analysis was carried out using the statistical program SPSS. Analysis of variance was 

used to compare time points and Wests were used to compare 2 points to each other. 

4.3 Results and Discussion 

4.3.1 pH 

Both oxidation methods resulted in a decreasing pH with increasing Eh (Fig. 4.1, Table 4.1). Slow 

oxidation in air resulted in a more oxidised sediment (higher Eh) than rapid, peroxide-induced 

oxidation; yet the rapid oxidation process resulted in a more acidic sediment (Fig. 4.1). Rapid 

oxidation consistently resulted in lower pH values than the slowly oxidised sediment, for equivalent 

Eh values. A likely explanation for this is that the slow oxidation method allowed more time for slow 

sediment processes such as mineral dissolution driven pH-buffering to occur. These slow 

processes may also account for the greater variability observed for the slow oxidation in air data, 

compared to the rapid, peroxide oxidation data (Fig. 4.1). Also, addition of the larger volumes of 

peroxide may have had a direct effect on the pH of the suspension, due its own low pH. 
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4.3.2 General Lability 

Metal lability, as expressed by the E, value is shown for each metal in Figure 4.2. Lability of all 

heavy metals were increased in oxidised sediment samples compared to the initial metal lability. An 

increase in the E, value is indicative of an increase in the C. ýC*. j term of equation 1. Hence the 

native metal in solution is present in a higher proportion with respect to the spiked radioactive 

metal. An increase in E, values over the oxidation series (with respect to the E, value for the 

untreated sediment) means that a pool of metal which was not labile in the reduced sediment, has 

become labile due to the oxidation process. 

4.3.3 Zinc Lability 

The lability of Zn was initially low for both oxidation methods (Fig. 4.2). Slow oxidation over the 

48-day period led to Zn lability increasing linearly with decreasing pH, up to a final maximum value 

of -1600 mg kg", which is ~51 % of total Zn, at pH 4. Peroxide-induced oxidation not only led to a 

much more rapid decrease of pH with Eh, but also a much more rapid rise in the E, value. The Er 

value increased rapidly to a maximum concentration of approximately 1800 mg kg*l (57 % of total 

Zn) and remained at this level despite the further decrease in pH. It is likely therefore that this is the 

maximum potential Zn lability for this sediment. This work shows therefore, that the increase in Zn 

solubility is not merely a desorption of surface adsorbed Zn in response to oxidation-induced 

acidification, but dissolution of an initially non-labile solid phase in the sediment, which may be Zn 

sulphide. The sulphide results presented in Appendix 1 are samples of the WNCC sediment which 

had been oxidising for 2 months. It is therefore likely that the sulphide content of the samples used 

in the current experiment, was higher than those values. Acid volatile sulphide was quantified in the 

WNCC sediment but the data were unfortunately misplaced. 
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4.3.4 Nickel Lability 

The lability of Ni showed a different trend with oxidation (Fig. 4.2). During slow oxidation, Ni lability 

increased with decreasing pH, with large increases in Ni lability observed below pH 4.5. The 

maximum Ni lability observed was approximately 20 mg kg-1 (-25 % of total Ni). Oxidation with 

peroxide led to the maximum Ni lability being reached at a peroxide addition rate of 17.5 PL g-1. 

Nickel lability remained at this concentration despite further oxidation. This suggests that the forms 

of Ni which have the possibility of becoming labile during oxidation are both easily available to, and 

quick to react with, hydrogen peroxide and are thus liberated at relatively small addition rates. It is 

possible that they are organic in nature. 

These maximum lability values for Ni and Zn are not surprising. Tack et at (1996) found similar 

results during a study of changing solubility of metals in sediments with pH and differential 

oxidation. They found maximum solubilities (at pH 1) of -80 % of total Zn and -50 % of total Ni 

(-30 % at pH 3). 

Several studies have found Zn and Ni to partition into the operational ly-def ined carbonate 

bound/adsorbed phase during sequential extraction procedures for oxidising sediments (Guo et aL, 

1997, Stephens et aL, 2001 a, van Ryssen et aL, 1999, Tack et aL, 1996). Carbonate can buffer 

the pH change during oxidation. The carbonate content of the WNCC sediment is negligible, 

eliminating a major binding phase for the metals. This may cause more metals to bind to the 

organic molecules present in the system. The addition of hydrogen peroxide will cause these 

organic phases to be broken down and/or oxidised more rapidly than in the slow oxidation 

experiment and, coupled with the lesser mineral phase buffering, may explain the observed 

differences in labilities between the two methods. 

4.3.5 Copper Lability 

Copper lability increased throughout both methods of oxidation (Fig. 4.2). However, reproducibility, 

though good at the extremes (little or no oxidation, and maximum oxidation), was poor in the 
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intermediate oxidation conditions. The maximum labilities of Cu were similar after slow (30 % of 

total) and rapid (33 % of total) oxidation. As with Zn and Ni, lability seemed to increase more 

rapidly with respect to pH during the rapid oxidation experiment. Maximum lability was reached at 

pH 4.9 in the rapid oxidation experiment, but not until pH 4.2 during slow oxidation. Addition of 50 

pL g" of peroxide was enough to yield maximum lability of Cu. Addition of 1000 pL g" peroxide 

reduced the pH to below 3.5, but did not increase the Cu lability any further. This is very similar to 

the behaviour of Zn during rapid oxidation. 

4.3.6 Cadmium Lability 

it was not possible to calculate E values for the full oxidation range for Cd as, in many cases, the 

solution activity of the '09Cd isotope was too low to be counted above the background Zn activity. 

During the slow oxidation process, E, values were obtained for 41 and 48 d of oxidation only (data 

not shown). At 41 d Cd E, was 11.9 (56 % of total) and at 48 days E, was 12.3 (57 % of total). 

Rapid oxidation with peroxide yielded E, values below about pH 5.5 (Fig. 4.2). Maximum Cd lability 

(~84 %) occurred at around pH 5.5 and dropped steadily with increasing oxidation. This was an 

unexpected trend, but is in agreement with the results presented in Chapter 3. It may be that Cd is 

co-precipitating with iron oxides as they form. 

4.3.7 Colloidal Occlusion 

The four metals showed different behaviour with respect to occlusion by colloids (Fig. 4.3). In 

general, Zn showed little or no occlusion within colloids and the E/Er ratio remained close to 1. The 

untreated sediment used in the rapid oxidation experiment yielded a Zn E/E, value of 2. It is likely 

that this is due to occlusion of Zn in inorganic colloids, which may be Zn sulphides. Nickel however, 

showed some occlusion within colloids for both methods of oxidation. When oxidised slowly in air 

the E/E, ratio dropped slowly down to 1 from an initial value of approximately 1.4. Hence initially, 

approximately 30 % of the labile metals were occluded in colloids. It was observed that natural 

oxidation in air of the supernatant that had been filtered to < 0.2 pm, resulted in the flocculation of 

colloids after a few days of storage. During oxidation of the sediment, these oxidation and 
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precipitation processes will occur in the pore water, hence the associated decrease in DOC 

(dissolved organic carbon) seen in Figure 4.4. Perhaps the decrease of the E/E, ratio down to 1 

occurs as the colloids occluding the Ni flocculate and settle out of solution and therefore are not 

included in the E value measurements. This effect is more pronounced in the Cu slow oxidation 

data (Fig. 4.3), which showed a pattern of changing E/E, with respect to pH, very similar to that for 

DOC during slow oxidation (Fig. 4.4). It is therefore very likely that it is these dissolved organic 

molecules that are occluding the Cu. 

Rapid oxidation with hydrogen peroxide showed colloidal occlusion of Ni only at the lowest pH 

values, and hence the highest addition rates of peroxide. Peroxide addition to the suspension will 

oxidise the organic and inorganic colloids present in anaerobic conditions, causing them to 

precipitate. Subsequent increases in DOC with peroxide addition are likely to be due to the 

breakdown of larger organic molecules present in the sediment. This breakdown could have led to 

the liberation of smaller organic molecules, capable of binding metals in non-exchangeable forms, 

hence the increase in the E/E, ratio at low pH. It is likely that addition of even small volumes of 

peroxide caused a release of metal occluded by the colloids. As the addition of peroxide was into a 

suspension, it is likely that the colloids were amongst the first sediment constituents to react with 

the peroxide. Thus, no occlusion was observed until the peroxide had liberated a large amount of 

organic carbon into solution (Fig. 4.4. Note the different scales on the Y-axes). DOC during slow 

oxidation exhibited the same pattern as the Ni E/E, ratio with pH change. It is therefore probable 

that organic colloids were responsible for occluding Ni, though at the higher pH values inorganic 

colloids may also have been present. It is almost certain that it was organic colloids that were 

occluding Ni in the rapid oxidation experiment, since at such low pH values, inorganic colloids are 

unlikely to be present. 

Due to the difficulties in obtaining E and E, values for Cd, it was not always possible to derive an 

E/E, ratio. The E/E, values, when available, were very consistent throughout oxidation, generally 

being between 1.1 and 1.2. This shows that there is some significant occlusion of Cd by colloids. 
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4.4 Conclusions 

Labilities of the metals after complete oxidation by either hydrogen peroxide addition or oxidation in 

air were similar, but metal behaviour before this end point was different. Rapid oxidation using 

peroxide tended to slightly overestimate the amount of metal which was released upon sediment 

oxidation in air, and could therefore be used as a conservative test to assess potential metal 

release. It is interesting to note that almost two thirds of the total Ni and Cu in the sediment 

remained non-labile, even when fully oxidised and acidified to pH values < 3.5, whilst almost 57 % 

of the total sediment Zn and 84 % Cd was mobilised. This illustrates that total sediment metal 

concentrations are not a good basis on which to assess potential release across all metals. Overall, 

oxidation significantly increased labilities of Zn, Ni, Cd and Cu. These results prove that the 

fractionation changes that were shown in Chapter 3 to occur during oxidation, are leading to an 

increase in lability and hence bioavailability of the heavy metals in the WNCC sediment. 
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CHAPTER 5 

Root Elongation of Brasska napus L. and Lolium multiflorum L. Over an 

Oxidation Series on a Contaminated Sediment 

5.1 Introduction 

Phytotoxicity of heavy metals in soils and sediments depends on their bioavailability. Bioavailability 

is affected by a range of soil/sediment physical (e. g. structure, particle size distribution), chemical 

(e. g. pH, Eh. total concentration, fertility) and biological (e. g. mycorrhizae, bacteria) factors (Ernst, 

1996). The higher the bioavailability of a heavy metal, the greater the phytotoxicity will be. In the 

field, large-scale experiments can be conducted using a wide range of species, such as trees. 

Phytotoxicity of tree species in the field will be discussed later in this thesis (Chapter 7). In the 

present Chapter, the phytotoxicity of the sediment was examined in the laboratory through the use 

of a root elongation study. The root elongation study was carried out on sediment oxidised over a 

period of up to 48 days to quantify the phytotoxicity associated with the heavy metal mobilisation 

described in Chapters 3 and 4. Two experimental species were used: concorde ryegrass (Lolium 

multiflorum) and canola (Brassica napus). 

5.1.1 Root Elongation and Heavy Metals 

Phytotoxicity of pollutants can be measured in a variety of different ways. Laboratory based 

phytotoxicity assays may focus on germination, root elongation, early seedling growth and/or 

life-cycle bioassays (Ernst, 2003). Root elongation assays avoid the difficulties associated with 

germination assays, namely: differing population and species-specific responses, impermeability of 

seed coats, and precipitation or complexation of chemicals in the cell walls (Ernst, 2003). Wong et 

al., (1981) report that root elongation was a more sensitive test than seed germination. Cell division 
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and root elongation are often adversely affected when exposed to increased concentrations of 

chemicals (Ernst, 2003). Many species, both terrestrial and aquatic, have been utilised in 

phytotoxicity testing. Reviews of the use of aquatic plants for phytotoxicity testing are provided by 

Lewis, (1995) and Mohan and Hosetti, (1999). However, the phytotoxicity of contaminants to 

terrestrial plants is of the most interest in the current study as the WNCC sediment was dredged to 

form a planting platform at the field site. Wetland plants were not used in this study as the aim of 

remediation of the WNCC site would be to dredge and dry the sediment and allow it to colonise 

with grasses and local dicotyledenous species. Brassica napus is well represented in the literature 

and Lolium multiflorum was chosen for consistency, as it had been used previously in the 

experiment described in Chapter 6. 

Contaminated sediments may not necessarily have a phytotoxic effect when used as a land 

application. Chen et aL, (2002) report that a sediment acted to improve biomass production in 

Brassica chinensis (Pakchoi) when applied at a rate of < 540 t ha". Application of sediment at 

above this rate however, led to a decrease in biomass production compared to the control, due to 

toxic effects of heavy metals. The organic pollutants present in the WNCC sediment are also likely 

to exert an effect on root elongation (Wong et aL, 1981). Lead can cause significant decreases in 

root elongation and led to shorter, thicker roots in lupins (Ruci6ska et al., 1997). The effect of Cu 

on root biomass of Brassica napus has been reported to be greater than the effect of Zn, though in 

combination, toxicity was synergistically increased (Ebbs and Kochian, 1996). Copper and Zn 

inhibited lateral root development in B. napus, and Zn led to a decrease in lateral root diameter. 

Aqueous sludge extracts have been shown to retard both germination and root elongation in 

Brassica parachinensis (Chinese cabbage) and Raphinus sativus (radish) (Wong et al., 1981). 

Thus it should be borne in mind that leachate from the WNCC planting platform may adversely 

affect surrounding flora (Bedell et al., 2003). Thus, heavy metals can have toxic or inhibitory effects 

on plant growth and metabolism, cell division and root elongation. However, All" can also have 

toxic effects on plants. Roots are the plant organs most sensitive to Al toxicity and experience rapid 

inhibition of main axis elongation and lateral root development in the presence of Al (Barce16 and 

Poschenrieder, 2002). This decrease in root development and elongation can be due to a variety of 

reasons, namely Al-induced inhibition of cell division, root cell elongation, Ca metabolism and 
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phosphate availability (Barce16 and Poschenrieder, 2002). Young seedlings are more susceptible 

to Al toxicity than older plants (Foy et aL, 1978). For this reason, Al has been included within the 

scope of the present study. 

An advantage of using Brassica napus in the current experiment is that, unlike some other families, 

Brassica roots are not infested with mycorrhizal fungi and thus a potentially complicating factor is 

removed. 

5.1.2 Aim 

To determine if changes in metal fractionation and lability over a 48-day oxidation period (as 

described in Chapters 3 and 4) constitute an increase in metal bioavailability and phytotoxicity. 

5.1.3 Hypothesis 

The anoxic sediment will prove fatal to the seedlings as the roots will be unable to respire. 

Sediment that has been partially oxidised to the extent that it is oxic, but still contains a significant 

moisture content, will allow root elongation. The sediment that has been more thoroughly oxidised 

will have high concentrations of heavy metals, liberated by the oxidation process and the 

accompanying low pH. These conditions will prove toxic to the plant species and root elongation 

will decrease with respect to that seen in partially oxidised sediment. It is expected that, after 

oxygen penetration into the sediment has taken place, root elongation in the plant species will 

decrease more with increasing oxidation time until the point of maximum metal lability and 

minimum sediment pH is reached. At this point, death of seedlings may occur. 
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5.2 Material and Methods 

5.2.1 Sediment 

Sediment used in the current study was freshly removed (after homogenisation) from the storage 

barrel from which the sediment used in Chapter 3 and Chapter 4 had also been taken. The 

sediment had been covered with a layer of native canal water to minimise oxidation during storage. 

The sediment sampled for use in the current experiment was stored in a polyethylene tub at 4 OC, 

covered by a layer of native water, until needed. 

5.2.2 Experimental Set-up 

Preparation for the experiment involved allowing sediment samples to oxidise for differing periods 

between 0 and 48 days (Table 5.1). Nine time intervals were used, which coincided with those 

used in previous work (Chapters 3 and 4). At each time point, the sediment in the tub was 

thoroughly homogenised by hand and a1 cm deep layer of sediment (approximately 200 - 210 g 

wet weight) was added to a cling film-lined aluminium tray. Lids were loosely fitted to the trays to 

minimise evaporation, but allow full gas exchange. Time intervals were synchronised so that 

oxidation of all sediment samples finished on the same day i. e. the first sample to be laid out was 

the "48 day' sample, and this was laid out 48 days before the oxidation period finished. The "41 

day"sample was laid out 7 days later, and so on. (The "0 day" sample was not laid out at all before 

the end of the oxidation period, but was weighed directly into petri-dishes). On the final day of 

oxidation, subsamples were taken from each tub for determination of moisture content. The 

sediment was then frozen until needed, to halt oxidation. 

Prior to the root elongation study, sediment samples were defrosted at room temperature overnight 

then homogenised and sieved to <2 mm. Sediment equivalent to 10 g dry weight was transferred 

into petri-dishes. The remaining sediment was re-frozen for future determination of pH and heavy 

metal mobility. Duplicate petri dishes were set up with sediment from each time point and each 

control treatment. Where the moisture content of the WNCC sediment was below field capacity 
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(93 % water), deionised water was added until this value was reached (Table 5.1). Four different 

control treatments were used: an uncontaminated pond sediment dredged from Ness Botanical 

Gardens at field capacity (FC) and at saturation (170 % water), and a compost (John Innes no. 2) 

at FC and saturation (120 % water). Saturated control treatments were used to allow quantification 

of the effect of sediment saturation on root elongation. Thus, adjustment to the WNCC sediment 

results could be made if the effect of the waterlogging itself proved to have a significant effect on 

root elongation. Petri dishes were then left in the dark at 20 OC for 24 hours prior to seedling 

addition. 

5.2.3 Experimental Plants 

The root elongation of Brassica napus and Lolium multiflorum were examined using a modification 

of the method of Crawford and Wilkens (1998). Seeds were left to germinate in the dark at 20 OC, 

on damp tissue paper for 36 hours, in excess of the number required for the experiment. Seeds 

with root radical lengths of between 0.5 and 2.0 mm were selected (henceforth referred to as 

"seedlings"). All seedling root lengths were measured by hand, to the nearest 0.5 mm before 

addition to triple-vented petri dishes. Three seedlings of each species were laid on the sediment 

surface in each petri dish and gently pushed to ensure contact with the sediment. Thus each dish 

contained 6 seeds, and the seeds of both species were subject to the same conditions. The seeds 

were numbered on the lid of the dish and the lid was fixed in place with a small piece of sellotape. 

The lids were attached so as to ensure that vents were open to allow efficient gas exchange. The 

petri dishes were then returned to the controlled temperature environment and left undisturbed for 

72 hours in the dark at 20 OC. A beaker of water was left with the petri dishes to maintain air 

humidity and help prevent desiccation or excessive drying of the sediment and seedlings. Seedling 

addition to all petri-dishes took place on the same day and thus all samples experienced the exact 

same conditions throughout the 72-hour growth period. After 72 hours, all root lengths were re- 

measured to the nearest 0.5 mm. For each time point and control treatment, root elongation data 

had therefore been collected for 6 seedlings of each species. These data were pooled by species, 

and averaged. Observations of the number of roots which had grown, and their degree of 

penetration of the sediment, were recorded before seedlings were removed from the petri dishes. 
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Table 5.1 Moisture content (g 1 OOg", or percentage) and pH of the 

sediment and controls. Sediment with a moisture content below 
field capacity (93 g 100g-) were adjusted to this level. Control 

treatments were made up to field capacity (FC) and saturation from 

air-dried soil/compost. 

Days of 

Oxidation 

Moisture 

Content 

(g 100g" DW) 

Adjusted to 

(g I OOg" DW) 
pH 

0 183 6.16 

6 177 5.69 

17 170 5.59 

21 164 5.52 

28 124 - 5.43 

31 55 93 4.53 

35 56 93 4.57 

42 50 93 4.46 

48 39 93 4.17 

Control 

Ness FC air dry 60 
6.98 

Ness 170 % air dry 170 

Compost FC air dry 67 
6.21 

Compost 120 % air dry 120 
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5.2.4 Sediment Physical and Chemical Analysis 

Sediment moisture content was determined by the drying of subsamples at 105 OC for 24 hours. 

The following procedures were carried out on the sediment which had previously been re-frozen. 

Sediment was allowed to defrost overnight on the bench-top before use. Sediment pH was 

measured in a 1: 5 sediment-to-water suspension, which had been shaken for one hour and 

allowed to settle for half an hour. A two-step water-NH4CI sequential extraction was carried out as 

described in Chapter 3. Metal concentrations in extracts were determined using lCP-AES as 

described previously. 

5.2.5 Statistical Analysis 

Statistical analysis was carried out using the statistical package SPSS. Kruskall-Wallis analysis 

was used for comparing >2 variables. For comparison of 2 variables, Mann-Whitney U tests were 

employed. The p-values quoted in this chapter are derived from these tests. 

5.3 Results and Discussion 

5.3.1 Root Elongation 

Root elongation of Brassica napus and Lolium multiflorum planted on the control treatments are 

shown in Figure 5.1. Neither species exhibited significantly different root elongation between 

control treatments (Oneway ANOVA p>0.05). Therefore, no alteration has been made to the root 

elongation data obtained for the WNCC sediment samples to account for the effect of differing 

moisture content. Root elongation of the experimental plants growing in the WNCC sediment is 

shown in Figure 5.2. These data are expressed as percentage of the mean root elongation of the 

controls for each species, which were 35.22 ± 14.10 mm and 41.01 ± 21.27 mm (mean ± SID) for 

L. multiflorum and B. napus respectively. The roots of B. napus died in sediment that had been 

oxidised for 21 days or less. This is indicated in Figure 5.2 by a negative root elongation, as the 

existing length was lost. Positive root elongation of B. napus roots occurred in sediment that had 
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Figure 5.1 Root elongation in Brassica napus and Lolium multiflorum in the four control 

treatments. FC = field capacity. Values are mean + SE (n = 6). One-way ANOVA shows 

no significant intra-species difference between control treatments (p > 0.05). 
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Figure 5.2 Root elongation in Brassica napus and Lolium multiflorum over 72 hours, in 

sediment which had been oxidising for varying times between 0 and 48 days. Values are 

shown as a percentage of the mean growth of control treatments (Fig. 5.1) for each 

species. Mean elongation of Loflum roots was 35.2 mm and Brassica roots was 41.0 mm. 
Note that sediment oxidation continued during the 72 hours of the root elongation trial. 

Values are mean + SE (n = 6). 
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been oxidised for 28 days or longer. Maximum root elongation (-65 % of the control value) 

occurred at this 28-day point. After that time root elongation decreased with respect to the 28-day 

value. The decrease in root elongation was significant (p < 0.001) between the sediment that had 

oxidised for 28 days and that which had oxidised for 48 days. The maximum root elongation in L. 

multiflorum (~ 65 % of the control value) occurred in sediment that had not been oxidised before 

the 72-hour growth period had begun. In sediment samples that had been oxidised for between 6 

and 21 days, negative or barely-positive root elongation occurred. Root elongation in L. multiflorum 

was next positive in the sediment that had been allowed to oxidise for 28 days prior to the start of 

the growth period. From 28 to 48-days of oxidation there was no significant difference in root 

elongation of the L. multiflorum seedlings. 

In sediment that had oxidised for between 6 and 21 days, a negative root elongation occurred due 

to death of the existing root during the course of the experiment. This was thought to be due to the 

lack of oxygen reaching the roots due to the water-saturated conditions. The two species showed 

different rooting behaviour. B. napus tended to root directly down into the sediment whereas L. 

multiflorum frequently grew roots across, or looping above, the surface of the sediment. This 

difference in behaviour explains the differences in root elongation on the anoxic sediment that had 

experienced no oxidation (0 days). The B. napus roots entered the sediment directly and failed to 

survive in the anoxic, water saturated conditions, whereas the L. multiflorum roots tended to grow 

above the surface, thus avoiding the wet, anoxic sediment. The sediment that had oxidised for 

between 6 and 21 days exhibited the highest phytotoxicity to both species, and the sediment which 

had experienced no oxidation (0 days) was also very phytotoxic to Brassica napus. During this time 

the pH of the sediment was relatively high, and the heavy metal mobility low (Fig. 5.4, Chapters 3 

and 4). The phytotoxicity observed during this time was most probably due to lack of oxygen to the 

plant roots owing to the anoxic nature of the sediment. 

At 6 days of oxidation, the sediment was dry enough to allow formation of an oxidised surface layer 

during the course of the 72-hour elongation period. Below this layer the sediment was still black 

and anoxic. The surface layer is likely to have become more toxic due to the decrease In pH and 

increased heavy metal lability (see results from Chapters 3 and 4). Proof that the surface layer was 
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oxidising is provided by the observation that it became orange in colour. Penetration below this 

layer will probably have resulted in root suffocation and death. Anoxia to the root is therefore still 

thought to be the main cause of root death at this time-point. 

Between 21 and 28 days of oxidation the sediment moisture content decreased by 40 % from 

164 % to 124 % moisture (Table 5.1). This drying would have allowed greater oxygen penetration 

to the deeper levels of the sediment, thus allowing the roots to penetrate the surface layer and 

survive in the deeper layers in the drier sample. The redox potential of the sediment was not 

measured in the current experiment but the results obtained from the experiment described in 

Chapter 4 are shown in Figure 5.3. During that experiment, sediment was also oxidised in a layer 1 

cm thick as in the current experiment. (Redox potential was measured using a redox probe, in a 

suspension of 2g sediment to 20 mL oxygenated MilliQ water with 2 drops of toluene also added). 

Thus the redox potential is expressed in Figure 5.3 as a relative redox potential, rather than as a 

true value for the sediment alone. Redox potentials expressed in Figure 5.3 are likely to be more 

positive than the redox potential in the un-diluted sediment. Throughout the 48-day oxidation 

period, a large increase in redox potential occurred (Fig. 5.3). In the current experiment, the same 

pattern of increasing oxidation with time would be expected, and is confirmed by the associated 

decrease in pH (Table 5.1), which has been discussed previously (Chapter 4, Fig. 4.1). 

The greatest elongation in the roots of B. napus was seen at 28 days. B. napus then showed a 

significant (p < 0.001) decrease in root elongation with time. Elongation in the L. multiflorum roots 

was at no time as great as at 0 days. However, as the roots mostly grew out of the un-oxidised 

(0 day) sediment and looped into the air, this result must be discounted as the root elongation into 

the sediment is of interest in this chapter. L. multiflorum did not show a significant change in root 

elongation (p = 0.506) over the period from 28 to 48 days of oxidation, though roots did penetrate 

and grow into the sediment at all time-points. 
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Figure 5.3 Relative redox potential (Eh) of a suspension of 2g dry 

weight equivalent of sediment in 20 mL oxygenated, MilliQ water 
with a N2 purged headspace after 3d shaking on an end-over- 
end shaker. Values are Chapter 4 experimental data from 

sediment oxidised over a 48 days period in a layer with a 
thickness of 1 cm. 
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Figure 5.4 Heavy metals extracted from the oxidising sediment upon which the root 

elongation study was carried out. Extraction was via a two-step sequential extraction. 

Extracts of the two steps (distilled water and 0.1 M ammonium chloride) were combined 

and acidified before analysis. Values are mean + SID, (n = 3). 
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5.3.2 Metal Availability Changes 

Heavy metal extractability increased with increasing oxidation (Fig. 5.4). This was as expected and 

as discussed in previous chapters. Extractable (in water and 0.1 M ammonium chloride) 

concentrations of Cd, Cu, Pb and Zn were low between 0 and 28 days of oxidation, owing to the 

more reduced conditions and the high percentage moisture content of the sediment (Table 5.1). At 

28 days of oxidation, the sediment moisture content had reached a level which allowed sufficient 

oxidation for the Lolium and Brassica roots to survive and elongate (Fig. 5.2). At this point also, 

extractable Cd, Cu, Pb and Al tended to decrease. Zinc however, became more mobile. 

Extractable Fe concentrations decreased significantly at 28 days of oxidation, suggesting the 

precipitation of Fe oxides in the presence of oxygen. The root elongation of B. napus was at its 

maximum at this time, though only - 65 % of the control. Between 28 and 31 days of oxidation, 

very significant drying of the sediment occurred (from 124 % to 55 % moisture). Associated with 

this drying and increased oxidation was a large and significant increase in extractability of all heavy 

metals and Al, and a decrease in extractable Fe (Fig. 5.4). The precipitation of Fe suggests 

increasing redox potential. Sulphate is reduced at lower redox potentials than Fe, and thus will be 

oxidised at lower redox potentials also. The higher heavy metal mobility increased the phytotoxicity 

of the sediment to B. napus (Fig 5.2). The phytotoxic effects of the sediment on L. multiflorum 

during this time was less certain owing to the differential rooting behaviours of the species. L. 

multiflorum tended to produce multiple side roots, even when death of the main root had occurred. 

Thus the elongation was not as clear-cut as in the Brassica, which produced only one main root. 

The very sudden increase in heavy metal extractability between 28 and 31 days of oxidation and 

the increase again from 42 to 48 days of oxidation, did not mirror the pattern of extractability 

presented in Chapter 3. The most likely explanation for this is the sediment depth. The surface 

evaporation discussed in Chapter 3 may have affected heavy metal behaviour by not only 

"buffering" the moisture content in the top 1 cm of the sediment, but also by bringing soluble heavy 

metals to the surface layer. Neither of these effects could have occurred in the current experiment 

and thus the changes are more defined, and the variability lower. However, after 48 days of 

oxidation, water/NH4CI-extractable concentrations (mg kg") of Pb (53.4 ± 5.3 and 51.7 ± 3-3) and 
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Zn (1359 ± 264 and 1408 ± 35) were very similar for the experiment described in Chapter 3, and 

the current experiment respectively. Extractable Cd was -20 % higher in the current experiment. 

Copper exhibited the least similar 48-day concentrations between the two experiments. Drying of 

the sediment in the current experiment exceeded that of the experiment described in Chapter 3 

(Table 5.1, Table 3.3) and thus the sediment used in the current experiment is likely to have been 

more oxidised. 

It was hypothesised in Chapter 3 that further oxidation may lead to an increase in mobile Cu. The 

current experiment provides evidence that this actually would indeed be the case (Fig. 5.4). 

However, the experiment described in Chapter 3 is perhaps a more realistic model of the canal 

site, where the sediment is more that 10 cm in depth. 

5.4 Conclusions 

The Woolston New Cut Canal sediment was shown to be highly phytotoxic. The maximum root 

elongation of both species was only - 65 % of root elongation in the control treatments. However, 

phytotoxicity also varied with the degree of oxidation of the sediment. Initially the sediment was 

anoxic and waterlogged and death of roots occurred, despite low available concentrations of heavy 

metals. Between 21 and 28-days of oxidation the sediment moisture content fell from 164 to 124 % 

and allowed root elongation. However, further drying and oxidation of the sediment caused a 0.9 

unit drop in pH and large increases in heavy metal availability, which proved to be increasingly 

toxic to B. napus. The rooting behaviour of L. multiflorum made evaluation of phytotoxicity more 

difficult for this species In summary, the sediment was toxic to the seedlings of both species. The 

reason for the toxicity changed with time from anoxia to low pH and high metal availability. 

As the sediment was maintained at field capacity (93 % moisture) throughout the experiment, 

better results could possibly be gained from an experiment such as this by using wetland plants as 

experimental species. These species would be more physiologically adapted to the low-oxygen 

conditions in the root zone and to the presence of sulphides in the sediment. Use of wetland plant 

species may therefore allow the determination of the proportion of toxicity that was due to heavy 
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metals and the portion that was due to the anoxic, water-logged conditions. This may lead to a 

recommendation that wetland plant species be planted on the sediment after it is dredged, rather 

than dredging the sediment and planting it with terrestrial species which may not be able to survive 

the low-oxygen conditions. The use of terrestrial species in this experiment show that the newly 

dredged sediment is likely to be toxic to terrestrial plant species for several weeks after it is 

dredged and planting should not be carried out during this time. 
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CHAPTER 6 

The Efficacy of Amendments in Counteracting Acidity, Decreasing Metal 

Lability and Reducing Phytotoxicity in Oxidised Canal Sediment. 

6.1 Introduction 

The results presented in Chapters 3 and 4 show that heavy metals tend to become more mobile in 

the WNCC sediment as it oxidises. The results presented in Chapter 5 show that this increase in 

metal availability, coupled with the decrease in pH, increased phytotoxicity of the sediment. The 

results presented in this Chapter examine the efficacy of selected ameliorants; in reducing 

phytotoxicity and metal bioavailability and increasing pH in the fully oxidised sediment. The 

amendments tested were lime, red mud and di-potassiurn hydrogen phosphate. 

6.1.1 Amendments 

Estimates of available heavy metal concentrations are arguably a better measure of the toxic risk of 

a contaminated sediment than are total metal concentrations. Differing environmental conditions 

such as acidification or changes in redox state, may change the availability of sediment metals 

(Tessier et aL, 1979). Logically therefore, manipulation of sediment chemical and/or biological 

conditions can be used to reduce the availability of heavy metals. One form of manipulation, with 

an aim to reducing metal availability, is the addition of ameliorant materials here referred to as 

samendments'. Many such amendments have been tested including zeolites (Chlopecka et al., 

1997, Gworek, 1992, Gworek et al., 1991 a, Gworek et al., 1991 b), lime (Berti et al, 1997, Bolton, 

1975, Hamon et al., 2002, Lombi et al., 2003, Lombi et al., 2002), beringite (Lombi et al., 2003, 

Lombi et al., 2002, Mench et al., 1994, Vangronsveld et al., 1995a, Vangronsveld et al., 1995b), 

"red mud", a bauxite residue (Hamon et al., 2002, Lombi et al., 2003, Lombi et al., 2002), K2HP04 

(Berti and Cunningham, 1997, Hamon et aL, 2002) and hydroxyapatite (Boisson et aL, 1999). 

Various other amendments have also been tested by these authors, including basic slags, hydrous 
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Mn oxides, steel shot (Mench et aL, 1994), gypsum, sulphur, organic carbon (Berti and 

Cunningham, 1997) and a kaolin amorphous derivative (Hamon et aL, 2002). 

The amendments are all intended to reduce the concentration of potentially toxic metals in the soil 

solution. This can be achieved by increasing adsorption of metals, entrapment of metals in crystal 

lattices or precipitation of soluble metal species (Hamon et aL, 2002). The mode of action of the 

amendment affects the reversibility of the metal immobilisation and hence the long-term 

effectiveness of the treatment. If the amendment reduces metal availability by increasing the pH of 

the soil, then it is vulnerable to acidification, which is likely to increase metal availability to its 

original value (Hamon et aL, 2002). Ideally, to be effective in the long-term, an amendment will 

immobilise soluble metal species into non-labile forms which will then be more resistant to changes 

in environmental condition such as pH change. 

In this study, the efficacy of lime, red mud and K2HP04 as amendments to the Woolston New Cut 

Canal (WNCC) sediment was tested. Lime was chosen to increase the pH of the sediment and 

thus decrease heavy metal mobility. Red mud is a bauxite residue, created during the production of 

aluminium. It is composed mostly of aluminium hydroxides and may contain trace metal impurities. 

Red mud is typically alkaline with high salinity due to high sodium concentrations. Use of red mud 

as an ameliorant is expected to increase the pH of the sediment and also provide a high-surface 

area binding phase for heavy metals. Di-potassium hydrogen phosphate is used as an ameliorant 

to encourage the production of insoluble metal phosphates. The heavy metals would therefore be 

bound into the mineral structure and would be effectively immobilised. This form of immobilisation 

would be longer lasting than a simple increase in pH or the provision of an aluminiurn hydroxide 

binding phase carrying a pH dependant charge. Lime must be added with the K2HP04 amendment 

to counteract the acidity of the HP04' group, which will further increase the benefits of the 

amelioration. Red mud and K2HP04 were chosen as ameliorants for the WNCC sediment as they 

were previously found to be the most effective amendments in contaminated soils by Lombi et al. 

(2002) and Hamon et al. (2002) respectively. 
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6.1.2 Diffusive Gradients In Thin Films 

Diffusive Gradients in Thin Films (DGT) techniques allow the measurement of element flux in soil 

and aquatic systems. The procedure is explained in Zhang and Davison (1995) and Zhang et aL 

(1995). DGT has been used to measure elements in water systems (Zhang et aL, 1995), at 

sediment surfaces in aquatic systems (Zhang et aL, 1995, Zhang et aL, 2002) and in soils and 

sediments (Fones et aL, 2004, Koster et aL, 2005, Lombi et al., 2002, Naylor et al., 2004, Zhang et 

al., 1995). Metals have been the object of many of these studies, though the technique has also 

been applied to the measurement of sulphide (Naylor et al., 2004) and phosphorous (Zhang et al., 

1998). A representation of a DGT device and its function are shown in Figure 6.1. The device is 

typically constructed of a backing plate, an ion exchange gel layer, a diffusive polyacrylamide hydro 

gel layer, a filter layer (to prevent biological fouling of the gel) and a front plate with an exposure 

window. Different gel types are used to bind different species. Chelex gel is most commonly used 

for heavy metal uptake, Agl (silver iodide) gel has been used to bind sulphide (Naylor et al., 2004), 

and ferrihydrite gel to bind phosphorous (Zhang et al., 1998). DGT devices have been produced 

and deployed in situ to assess effective concentrations, resupply and flux of elements (Denny et al. 

1999, Webb and Keough, 2002, Alfarro-De la Torre et al. 2000). 

The DGT device allows calculation of flux of the ionic species of interest - in this case heavy 

metals in a soil/sediment system. The device is deployed face down on the surface of a saturated 

soil/sediment, ensuring that the membrane filter is in full contact with the soil. Pore water metals 

diffuse through the filter and through the gel layer to the Chelex resin gel binding layer, where they 

are immobilised, reducing the effective concentration to zero. This immobilisation creates a 

concentration gradient through the diffusive gel layer and causes local depletion of metals in the 

pore water surrounding the exposure window (Naylor et aL, 2004). This depletion is counteracted 

by a resupply with metal from the solid phase, which leads to the attainment of a pseudo steady- 

state. This state is maintained until the reservoir of solid phase metal is significantly depleted 

(Harper et aL, 1998). Metal flux is calculated per unit area, using Fick's First Law of diffusion, which 

states that the flux of a diffusing species is proportional to its concentration gradient. For a full 

explanation of the model and calculations used, see Harper et aL (1998). If the DGT-induced flux is 
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Figure 6.1. Assembled DGT devices, and a representation of how the DGT device works. 
Taken with permission from E. Lombi. Cs,,,, is the concentration of metal in solution and 
C1, is the concentration of metal on the labile solid phases and K, and K, represent the 

equilibria between the two. AG represents the thickness of the diffusive layers separating 

the soil solution from the Chelex resin (M). 
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greater than the rate of resupply, then pore water concentrations of metals will fall in the vicinity of 

the DGT device and the DGT-derived concentration will be lower than bulk pore water 

concentrations. However, if resupply can match the DGT-induced flux, then the DGT-derived 

concentration will be equivalent to the concentration in the bulk pore water (Naylor et aL, 2004). 

This DGT-derived concentration is expressed in this study as the value C, C, can also be 

explained as being the "effective concentration" of metal which would have had to have been 

present in the pore water to have allowed the observed accumulation of metals in the Chelex resin, 

with no resupply from the solid phase. Thus, if C, is greater than the observed pore water 

concentration (C), then resupply of metals from the solid phase must have occurred. 

6.1.3 Donnan Dialysis 

Donnan Dialysis is a technique which is used to determine free metal ion species in solution and 

was developed by Cox et aL (1984). This technique minimises errors usually associated with 

dialysis techniques such as large acceptor to donor solution ratios and has the additional 

advantages of being sensitive, multielemental and robust (Nolan et aL, 2003). During Donnan 

Dialysis, soil pore water is referred to as the "donor" solution. The "acceptor solution" is made to 

the same ionic strength as the pore water with strontium nitrate. The ratio of acceptor to donor 

solutions is typically 1: 250 (Nolan et aL, 2003) The donor solution is spiked with a known amount of 

22 Na to allow efficiency of transfer to be determined. The Dialysis equipment is set up as shown in 

Figure 6.2. The acceptor solution (200 pQ is added into a cell at the top of the apparatus and the 

donor (pore water) solution is pumped around the apparatus. Separating the donor and acceptor 

solutions is a permeable, selective cation exchange membrane. Free ions pass through the 

membrane, allowing free metal ions in the donor solution, to exchange with the free Sr ions in the 

acceptor solution. The concentration of heavy metal ions in the acceptor solution can then be 

measured after dialysis. 
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6.1.4 Aims 

* To investigate the efficiency of lime, red mud and K2HP04 as amendments to counteract the 

phytotoxicity of the sediment. 

0 To measure metal concentration in the pore waters of treated sediments. 

a To evaluate metal immobilisation by the amendments, using DGT techniques. 

6.1.5 Hypothesis 

The addition of all amendments will decrease the pore water and free ion concentrations of heavy 

metals. Di-potassium hydrogen phosphate will be the most effective amendment as heavy metal 

ions will be immobilised within phosphate mineral structures. Red mud will be a more effective 

amendment that lime due to the added binding phase. Lime will be an effective amendment but will 

leave the sediment vulnerable to re-acidification. The flux of heavy metals will be reduced most by 

the di-potassium hydrogen phosphate amendment due to its immobilising effect. 

6.2 Materials and Methods 

6.2.1 Sediment 

One hundred and sixty-six sediment cores were taken from along the length of the field site in 

December 2002 as described in Chapter 7. The sediment was air dried, ground and sieved to 

<2 mm. Subsamples of approximately equal weight (-25 g) were taken from each of the 156 

samples which had been taken from the planted plots. The 10 samples taken from the un-planted 

end section of the site were not included. The 156 subsamples were combined into one and 

thoroughly homogenised for use in the current experiment. They were sent to Australia by air. 
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Table 6.1. Proportions of amendments added to the WNCC sediment and the 

associated pH values (n = 3). 

Treatment Code 
Final % red 

mud/ K2HP04 

Final % 

Lime 

Final 

Total % 
pH 

No amendment NA 0 3.6 

1% lime L1 1 1 4.4 

2.5 % lime L 2.5 2.5 2.5 6.2 

5% lime L5 4.8 4.8 7.2 

1% red mud RM 1 1 1 3.7 

2.5 % red mud RM 2.5 2.4 2.4 3.9 

5% red mud RM 5 4.8 - 4.8 4.3 

5% red mud, 5% lime RM 5 L5 4.6 4.6 9.2 7.2 

1% K2HP04,5 % lime K1 L5 1 4.7 5.7 6.9 

2.5 % K2HP04,5 % lime K 2.5 L5 2.3 4.6 6.9 7.2 

5% K2HP049 5% lime K5 L5 
1 

4.6 
1 

4.6 9.2 6.8 
11 

92 



6.2.2 Amendments 

Amendments were added to the WNCC sediment in the proportions shown in Table 6.1. A 350 g 

sample of the homogenised air-dried WNCC sediment was weighed out for each treatment. 

Amendments were added as a w/w percentage of the 350 g of sediment to ensure comparable 

addition between amendments. Therefore the proportion of amendment in the final weight (Table 

6.1) may appear to be less than the proportion stated, as addition of amendment increases the final 

weight of the bulk sediment. The sediment and amendment(s) were put into a bag and mixed 

thoroughly by hand. The bags were then sealed, ensuring the presence of an air space, and they 

were mixed on an end-over-end shaker for 48 h. Replicate pH measurements were taken on 

subsamples of the mixed sediment. To counteract the acidity of the HP04" from K2HP04 addition, 

lime (CaC03) was added to the K2HP04 treatments to raise to the pH to approximately 7 (Hamon 

et aL, 2002), which constituted an addition of 5% CaC03. The lime and the K2HP04 were 

analytical grade reagents. The red mud originated in England. 

6.2.3 Plant Growth Trial 

Polyethylene pots with a top lip radius of 3 cm and a height of 1 Ocm were used as growth vessels. 

The pots were tapered and decreased in diameter towards the bottom of the pot. For each 

treatment, 100 g of the sediment/amendment mix was weighed into the pot and a Rhizon pore 

water sampler (Rhizosphere Research Products, Wageningen, Holland) was inserted into each. All 

treatments were replicated three times. The sediment in the pots was made up to 50 % field 

capacity (FC) with deionised water, and left to equilibrate at room temperature for 5 d. The pots 

were then made up to 100 % FC and left to equilibrate for a further 24 h. Pore water was then 

extracted using the Rhizon samplers and pore water from the three replicate treatments was 

combined to provide sufficient volume for Donnan dialysis. Pore water pH was measured and total 

metal analysis was carried out by ICP-MS. Free ion activities of Cd, Cu, Ni, Pb and Zn were 

determined by Donnan Dialysis on the 5% amendment treatments only due to the cost of this 

technique. The cost of the technique is high due to the dialysis taking place in a clean-room 

environment. 
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Rhizon pore water samplers have several advantages over other techniques such as 

centrifugation. Centrifugation of samples to extract the pore water can lead to alterations of the pH 

of the sample. This is not the case with a Rhizon sampler. The sampler also filters the pore water 

as it extracts it so that the pore water is ready for analysis or use as soon as it is extracted. As it is 

in situ the sampler also allows multiple samples of pore water to be taken during an experiment 

and does not damage any plants which are growing in it. 

Pots were returned to 50 % FC with deionised water and 10mL of Ruakura nutrient solution. 

Twenty seeds of Lolium multiflorum (concorde ryegrass) were then planted in each. The pots were 

transferred to a controlled environment room that maintained a temperature of 20 OC, and a 16- 

hour photoperiod. The seeds were allowed to germinate and grow for 42 days before the aerial 

parts of the plants were harvested. Moisture content of the soil was maintained by weight with 

deionised water over the growth period. Observations of plant health and growth were taken 

throughout the growth period. After harvest, the pots were wetted up to 100 % FC and pore waters 

were again taken. Harvested plant material was dried at 40 OC. 

6.2.4 Total Plant Metal Uptake 

For analysis of metal concentrations in the ryegrass, 0.5 g of oven-dry plant material was digested 

in nitric acid using a hotplate method (Zarcinas and Cartwright, 1983, Zarcinas et aL, 1983). Where 

0.5 g was not available, total mass of grass was digested. Metal analysis was carried out by lCP- 

MS and GF-AAS. 

6.2.5 Red Mud 

The red mud used had a pH of 10.5 according to Lombi et al. (2002), but the pH of the red mud- 

amended canal sediment was not as high as had been expected (Table 6.1). In this experiment the 

red mud treated sediments were not leached to reduce the salinity, in agreement with Lombi et al. 

(2002) but in contrast to Hamon et al. (2002). However, it was postulated that the red mud may 

have previously been washed, as the sample used had been labelled simply as "red mud" whereas 
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another sample of the same material was labelled as "unwashed". Washing reduces the salinity of 

the red mud and may also have led to loss of some of its basic properties. Thus a sample of the 

red mud which was labelled as "unwashed" was added at the 5% level to a new sediment sample 

in the same manner as described above. The pH of this mixture was tested and found to be no 

different to the pH of the original 5% red mud treatment. It is therefore very unlikely that the red 

mud originally used had been washed. To raise the pH of the new 5% red mud amendment, 5% 

lime was added as had been done to the K2HP04 treatments. Due to the late starting of this final 

treatment, pore water samples were not taken. Instead the sediment was wetted to 50 % FC and 

left to equilibrate for 5d before planting. The Lolium was allowed to grow for the same time period 

as in the other treatments (42 d) before harvest. Total metal analysis of the red mud is given in 

Table 6.2. 

6.2.6 Donnan Dialysis 

Donnan Dialysis was carried out on the 5% amendment treatments only, with the exception of the 

5% red mud, 5% lime treatment. The ionic strength of the pore water was determined immediately 

after it was extracted. An "acceptor" solution was then made up to an equal ionic strength with 

strontium nitrate. The pore water was dialysed for 2h and then ion concentrations in both the pore 

water and the acceptor solution were measured by ICP-MS and GF-AAS. From these data, the 

percentage of metal in the pore water that was present as free ions was determined. 

6.2.7 DGT 

Standard cylindrical DGT units (Fig. 6.1) were obtained from DGT Research Ltd. For details of 

production of the gels and the standard DGT protocol, see the review by Davison et al. (2000). 

Assembly of the device was carried out in a clean room in a 100 laminar flow cabinet. The units 

were acid washed and thoroughly rinsed with MilliQ water before assembly. Assembled devices 

were stored in a clean plastic bag in a fridge until needed, and were allowed to reach room 

temperature before deployment. 
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Table 6.2 Total metal content of the red mud extracted by a hot aqua regia digest. 
(From Lombi et al., 2002). 

Metal Cd Cr Cu Mn Ni Pb Zn 

mg kg-' 8.2 449 83.9 4395 246 175 151 
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Separate 20 g samples of the amended soil were weighed in duplicate into small polyethylene pots, 

wetted up to 100 % FC and left to equilibrate for 24 hours. The length of time for which DGT 

devices were deployed differed between treatments and was calculated from the pore water Zn 

concentrations. Higher concentrations gave a lower deployment time so as to avoid the possibility 

of the exchange resin becoming saturated. Deployment times ranged from 2.2 to 24 hours and 

samples were kept in a controlled temperature room at 21 OC during this time. 

After the appropriate time, the devices were removed from contact with the soil and rinsed with 

MilliQ water to remove residual soil particles. Devices were disassembled and the Chelex resin gel 

was carefully removed with acid-washed plastic tweezers, and transferred to 2 mL Epindorff tubes. 

Gels were eluted in 1 mL of 0.1 M HN03 for at least 48 h. For analysis of eluted metals, 700 pL of 

the acid was removed and made up to 7 mL in 1% HN03- Metal analysis was carried out by 

ICP-MS. 

6.2.8 Statistical Analysis 

Statistical analysis was carried out using the statistical package SPSS. Kruskall-Wallis analysis 

was used for comparing >2 variables. For comparison of 2 variables, Mann-Whitney U tests were 

employed. The p-values quoted in this chapter are derived from these tests. 

6.3 Results 

6.3.1 pH 

The addition of lime to the WNCC sediment led to an increase in pH which varied with the 

percentage level of addition. The highest pH (pH 7.2) was attained when 5% lime was added to 

the sediment. Addition of 1% lime led to an increase of pH to only 4.4. All K2HP04-treated 

sediment samples had near-neutral pH due to the associated lime addition. Lombi et al. (2002) 

found that addition of red mud (presumably at the 2% level) to their soils led to an increase in pH 
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greater than observed upon addition of the same dose of either lime or beringite. In the present 

experiment, addition of red mud had very little effect on the pH of the sediment, even at the 5% 

level, and performed poorly in comparison to the lime treatment (Table 6.1). Few treatments 

showed an alteration in pH over the growth period though the 2.5 % lime treatment decreased from 

pH 6.2 to pH 5.9 over this time (data not shown). Thus reacidification may be a future risk for this 

site. 

6.3.2 Plant Biomass and Uptake 

The average biomass of the Lolium multiflorum harvested per pot is shown for each treatment in 

Figure 6.3. From these data it is evident that the unamended sediment is very phytotoxic and 

resulted in minimal Lolium growth. All of the amendments added did increase the biomass 

production, though red mud had the least effect (Fig 6.3). The addition of 1% lime also had only a 

small effect on biomass production. The addition of 5% lime had little more effect on biomass that 

did addition of 2.5 % lime. There was no significant difference in biomass production between the 

2.5 % lime, 5% lime, 5% red mud (with 5% lime), 1% K2HP04 (with 5% lime) and 2.5 % K2HP04 

(with 5% lime) treatments (p > 0.05). The addition of 5% K2HP04 (with 5% lime) however, did 

show a large increase in biomass, perhaps in part due to the high concentrations of phosphate that 

were introduced by this amendment. However, amending the WNCC site with 10 % by weight of an 

amendment mixture is not practical or economical. The biomass data would suggest lime addition 

at the 2.5 % level is the most effective and efficient amendment, but this would leave the sediment 

vulnerable to acidification (Hamon et aL, 2002) and in a longer term trial may not prove to be 

viable. 

Observations taken during the growth period are given in Appendix 5. Values such as the 

percentage of plants displaying a certain feature are estimates and the descriptions of "growth" are 

relative to the other treatments, though height of the tallest plant was measured in each pot. The 

toxicity symptoms observed during growth (Appendix 5) suggest that the reason for the poor 

growth is metal toxicity rather than simply the pH differences. This is further supported by the plant 

heavy metal contents. Figures 6.3 and 6.4 show that metal concentrations in the plant tissues 
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varied greatly between treatments. The 1% lime treatment and the red mud-only treatments, had 

little effect on plant uptake of heavy metals compared to the untreated sediment. Copper 

concentrations in the plant tissues differed little between the treatments containing 2.5 % lime or 

above, and concentrations of Zn in the plant tissues differed little between all of the treatments 

which contained 5% lime. Figure 6.4 shows that Pb, Cr and Cd concentrations in the plant tissues 

were also reduced most effectively by additions of at least 2.5 % lime. Cadmium concentrations in 

the plant tissues appear to be inhibited further by the presence of a second amendment as well as 

the lime, though this appears not to be true for Cr and Pb concentrations. 

Biomass concentrations of metals therefore suggest that amendment with lime alone at the 2.5 % 

level or above, is ample to increase biomass production and decrease metal concentrations in 

plant tissues. Biomass metal concentrations were still very high however. 

6.3.3 Pore Water Metals 

Though amendments may have an immediate effect on metal levels in pore waters, it is important 

in site reclamation that the effect of the amendment lasts in the longer term. In the WNCC 

sediment, growth of ryegrass on the unamended sediment appeared to increase pore water 

concentrations of all of the metals studied (Figs. 6.5 and 6.6). The addition of amendments caused 

an initial decrease in pore water metals compared to the unamended sample, except in the case of 

Pb in the red mud treatments. However, after the growth period, the 1% red mud treatment had 

mobilised more Pb, Cd and Zn than the addition of no amendment. This is again in disagreement 

with the work of Hamon et aL (2002) and Lombi et al. (2002), who report both an increase in pH 

upon addition of red mud, and the fixation of metals in a non-labile, partially acid resistant form. 

This discrepancy may be explained by the low initial pH of the WNCC sediment. It is possible that 

the formation of these non-labile phases requires a near-neutral pH and thus they are not formed in 

the WNCC; hence the extra benefit they would otherwise confer, is lost. 

Treatments containing 2.5 % lime or more, effectively and very significantly reduced pore water 

levels of all metals studied (Figs. 6.5 and 6.6). Table 6.3 shows the percentages of the pore water 
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Table 6.3 The percentage of metal in the pore water present as free ions. Note that 

the 5% K2HP04 treatment also contained 5% lime. 

% Free Ion 

Treatment Cu Zn Cd Pb 

No Amendment 51 57 59 20 

5% Lime 1.6 78 54 8 

5% Red Mud 46 64 48 19 

5% K2HP04 1.6 64 0 0 
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metals that were present as free ions, as determined by Donnan Dialysis. The percentage of Cu 

present as free ions was reduced very effectively by the addition of 5% lime and the 5% K2HP04 

(with 5% lime) treatments. A small reduction was evident with the addition of the 5% red mud 

treatment. The percentage of Zn which was present as the free ion was increased by addition of all 

amendments. The addition of lime alone led to the largest increase. The addition of the 5% lime 

amendment and the 5% red mud amendment had a small effect on the percentage of pore water 

metal which was present as the free ion. The addition of the 5% K2HPO4 (with 5% lime) treatment 

however, entirely removed the free ion component of pore water Cd. The same was true for Pb. 

This is likely to have been due to the reaction of these two metals with the phosphate group, 

forming insoluble metal phosphates. The addition of red mud had little effect on the percentage of 

Pb present as free ions, though addition of lime alone reduced it by a little more than a half. Thus, 

though the differences in pore water concentrations of heavy metals between the 5% lime and 5% 

K2HP04 (with 5% lime) treatments may not be obvious from the Figures 6.5 and 6.6, the extra 

effect of the K2HPO4 in further reducing the free ion concentrations in solution is clear from these 

data. This may reduce the toxicity of the pore water and help to explain the better Lolium growth in 

the 5% K2HP04 (with 5% lime treatment). Despite the negligible concentrations of metals in the 

pore water in the high lime containing treatments, plant uptake of metals was still significant in all 

cases. One reason for this could be that, though pore water concentrations were at a very low 

level, resupply from the solid phase to maintain those concentrations may have allowed uptake of 

significant concentrations of metals over the growth period. 

6.3.4 DGT 

To test the resupply of depleted pore water metals from solid phase sources, DGT techniques were 

employed. The results of the analysis showed that resupply from the solid phase was occurring (i. e. 

C, > C) for all metals studied, with all amendments, with the following exceptions: Zn: 5% lime, I 

% Red mud and 2.5 % Red mud, and Cd: 5% lime (data not shown). The DGT devices were not 

redeployed after plant growth to find out if these dynamics had changed. If they had not and the 

metals had been effectively immobilised for the duration of the growth period then pore water metal 

concentrations could not have risen during this time. Figures 6.5 and 6.6 show that Zn and Cd may 
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have been effectively immobilised throughout growth by the 5% lime treatment as suggested by 

the DGT data, as metal in the pore water decreased to negligible concentrations over the growth 

period. However, this is not true for the red mud treatments, suggesting that the immobilisation of 

metals in this sediment by red mud addition was only temporary. The high uptake of Zn and Cd by 

Lolium is evidence that the low pore water concentrations are in fact being maintained by resupply 

from the solid phase. DGT devices should therefore be deployed throughout an experiment of this 

nature, or at least at the beginning and end, in order to quantify changes in amendment 

effectiveness over the experimental period. 

Figure 6.7 shows C, (the effective concentration) vs. plant uptake. The distribution of the data 

points on the Zn graph is typical also for Cd and thus the Cd data is not shown. The Cd R2 value 

was 0.905. Uptake of Cd, Zn and Cu showed a good correlation with the DGT-derived C, values. 

This means that the effective concentration (Cj of these three metals in solution (maintained by 

resupply from the solid phase) was controlling the concentration of the metals in the plant tissues. 

This was likely to be via controlling phytoavailability of the metals. Due to the high R2 values, in 

future experiments it may be possible to predict Q, from Lolium multiflorum uptake of metals with 

some accuracy. This would be especially true for Cu, for which plant tissue concentrations 

appeared to be almost completely controlled by the effective pore water concentration of Cu. Lead 

showed a poorer correlation and these data could not be used to accurately predict either C, from 

plant uptake or vice versa. The differing chemistry of the elements is likely to be the cause of this 

difference in the predictive capabilities of DGT in this case. 

The DGT data were used to calculate metal flux and the results are shown in Table 6.4. In the un- 

amended sediment the rate of flux of the metals quantified were in the following order (decreasing) 

Zn>Cu>Pb>Cr = Cd. The addition of 1% lime, 1 %, 2.5 % and 5% red mud all reduced the flux of 

Zn by around 50 %. This means that resupply of solution concentrations of Zn, when depleted, 

would be replenished from the labile solid phases at half the rate that they would do in the 

unamended sediment. Addition of 2.5 % and 5% lime reduced the flux by Zn by one and two 

orders of magnitude respectively. The addition of the K2HP04 (with 5% lime) did not reduce the 

flux of metals any more than did addition of the 5% lime alone. Values were in fact slightly 
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increased, most probably due to the reaction of some of the lime with the HP04-, Copper flux was 

decreased most effectively by addition of ý: 2.5 % of lime. Addition of K2HP04 with the 5% lime 

increased flux of Cu, possibly for the reason stated above. Red mud was the least effective 

amendment, though flux of Cu did decrease with increasing percentage additions of red mud. The 

flux of Pb from the labile solid phases was most reduced by the addition of ý: 2.5 % lime or 2.5 % 

K2HP04 (with 5% lime). Red mud was again the least effective amendment at reducing Pb flux and 

increasing additions of red mud appeared to increase Pb flux with respect to the 1% addition. It is 

probable that this effect was due to the mobilisation of some of the Pb within the red mud 

amendment (Table 6.2), under the low pH conditions. The flux of Cr was reduced by a factor of 10 

by the addition of lime, though the level of addition had no significant effect on the flux i. e. the flux 

was no lower after addition of 5% lime that after addition of I% lime. The same was true of the 

K2HP04 amendment. Red mud was once again the least effective amendment. Red mud was also 

the least effective amendment at reducing the flux of Cd from the labile solid phases into solution. 

Lime additions at ý: 2.5 % were again the most effective and addition of the K2HP04 with the 5% 

lime conferred no significant benefit in terms of flux reduction. 

6.4 Conclusions 

All amendments reduced the flux of metals from the solid phase into solution compared to the 

unamended sediment. The 5% lime amendment appeared to do this most effectively. However, it 

should be remembered that the DGT data is a snapshot and the situation may change over time or 

with changing condition such as reacidification of the sediment. The K2HP04 was the next most 

effective amendment, but this should be investigated further to determine whether this is simply 

due to the lime added with this amendment rather than the effect of the amendment itself. The 

metal flux in the WNCC sediment, both amended and unamended, was much higher than that 

reported by Lombi et al. (2002) for a French soil with comparable levels of Zn, Pb and Cd 

contamination. Lombi found no significant difference in metal flux between soil treated with lime 

and red mud, even in the case of Zn. In this study, there were obvious and sometimes very large 

differences in the reduction in metal flux conferred by the amendments, especially in the case of Zn 

(Table 6.4). However, all of the amendments reduced metal flux with respect to the unamended 
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control and overall, lime at the 5% amendment addition level appeared to have the most beneficial 

ef f ect. 

All treatments resulted in a less phytotoxic sediment although the combined 5% K2HP04 and 5% 

lime amendment resulted in the highest biomass production. However, pore water concentrations 

and plant uptake for this treatment were similar to those for the 5% lime only treatment. Addition of 

amendments at the 10 % levels are not economically viable at this site, thus further work is needed 

to determine the efficacy of the K2HP04 amendment with very low percentage levels of lime 

addition complementing it. The red mud did not perform as expected, possibly due to the acidic 

nature of the WNCC sediment, and it has no value for use as an amendment of this sediment. Lime 

at the 2.5 % level or above, proved to be the most effective agent at reducing phytotoxicity of the 

sediment. However, reacidification of the canal sediment with time is likely to completely undo the 

effects of the lime. It can be concluded that, for the amendments used in this study to be effective 

on a field scale, large percentage additions may be required. This may not be economically viable 

on a site with so little economic value. Further testing of the K2HP04 amendment would be needed 

on a laboratory scale before any field testing was carried out, to determine its longevity and if it has 

any benefits above the use of lime alone. Small scale field trials would also be necessary to 

determine the behaviour of the amendments in the sediment under normal environmental 

conditions. 
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CHAPTER 7 

Phytoremediation of the Woolston New Cut Canal Sediment: An Evaluation 

of the Eff icacy of the Phytoremediation Field Trial 

7.1 Introduction 

The experiments described in Chapters 3 to 6 were carried out under controlled laboratory 

conditions. However, the planting plaff orm sediment at the Woolston New Cut Canal (WNCC) site 

was subject to environmental conditions for the duration of the current project. This will 

undoubtedly have altered the behaviour of the pollutants in the system with respect to the 

behaviour described in previous chapters. The results presented in this chapter examine the 

changes in metal availability and total metal concentrations in the planting platform sediment. 

Growth of, and heavy metal uptake in, experimental trees were also examined. Data for the 

degradation of total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH) 

are also presented. Very few studies examine phytoremediation of sediment naturally 

contaminated with both heavy metals and organic pollutants in long-term field trials. A limited 

number of studies have focussed on river sediments, generally with lower pollution levels than the 

present study. However, all of these sediments have had appreciable CaC03 contents and have 

resisted acidification upon oxidation. To the author's knowledge this is the first field trial to examine 

the phytoremediation of a sediment contaminated with both organic and heavy metal pollutants, 

using SRC (short rotation coppice) trees, on a naturally acidifying sediment, over a 3-year period. 

7.1.1 Phytoremediation of Aquatic Sediments 

Aquatic sediments from estuaries, rivers and canals are regularly dredged to allow continued 

navigation along the waterways. Contamination in these sediments is common. These three 

different types of sediment may have different structural and chemical properties as well as varying 

salinity. On top of this, each individual sediment varies in the type and degree of contamination it 

contains. Phytoremediation of aquatic sediments using Salix clones has been undertaken 
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elsewhere. Vervaeke et aL, (2001) report a technique for planting Safix on wet, dredged sediments 

called the SALIMAT technique. This technique is promising for the phytoremediation of large 

lagoons, with above ground biomass production after 4 years reported to be 55.7 DM t ha", 

equivalent to 13.9 t ha" y". Pulford and Watson (2003) report yields of 10 - 15 DM t ha" y" as 

being normal for Safix. However, if tissue concentrations of heavy metals are low, phytoremediation 

of a contaminated site to below guideline levels may take decades, even with reasonable biomass 

production (Pulford and Watson, 2003). If the phytotoxicity of the substrate is too high, biomass 

production will be reduced. Vandecasteele et aL (2005) found that the hydrological regime to which 

Salix cinerea was exposed when planted on dredged sediment, affected metal uptake into foliar 

tissues. At the end of the growing season, the highest foliar concentrations of Zn and Cd were 

reported for S. cinerea growing in plots which had initially been flooded, but had emerged in the 

early part of the growing season. Foliar heavy metal concentrations were also monitored 

throughout the growing season. Cadmium, Fe, S, Mn and Zn concentrations in Salix cinerea leaves 

all increased throughout the growing season, reaching, with the exception of sulphur, maximum 

concentrations at the end of the growing season. Conversely, Cu concentration was reduced at the 

end of the growing season compared to the beginning. The rate of Cd and Zn uptake also 

increased through the growing season (Vandecasteele et aL, 2005). 

Oil is ubiquitous in aquatic sediments (Jonker et aL, 2003). The WNCC site is contaminated with 

organic pollutants, namely TPH (total petroleum hydrocarbons) and PAH (polycyclic aromatic 

hydrocarbons). The presence of oil in a sediment may affect the partitioning and bioavailability of 

hydrophobic organic chemicals. The bioavailability of PAH may be enhanced at low oil 

concentrations and decreased at high oil concentrations (Jonker et aL, 2003). Organic 

contaminants which are bioavailable can be degraded by biota. Plant roots form a rhizosphere 

which can increase microbial activity in general, and also specifically the activity of those bacteria 

which are able to degrade petroleum (Kirk et aL, 2005). However, Vervaeke et al. (2003) reported a 

greater reduction in the concentration of PAH in fallow as opposed to planted plots. They 

hypothesised that this was due to the shrinkage and cracking of the fallow sediment, increasing 

aeration and hence possibly activity of PAH attenuating bacteria. Vervaeke also reports higher 

degradation of mineral oil in the planted, as opposed to the fallow, site. Degradation of PAH is 
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slower in reduced conditions than in aerobic conditions (McNally et aL, 1999). Degradation of PAH 

in an in situ anaerobic sediment will therefore be very slow and dredging to an aerobic environment 

would be needed for effective remediation (Quantin et aL, 2005). 

7.1.2 The Canal Site 

Site preparation has been described previously (Chapter 1, Royle et aL, 2003). In summary, 

naturally occurring vegetation was cleared from a 150 rn stretch of the south bank of the Woolston 

New Cut Canal (WNCC) and a planting platform was created with sediment dredged from the canal 

bottom. This sediment was planted with willow (Safix), poplar (Populds) and alder (Alnus) species, 

as listed in Royle et aL, (2003), at a planting density of 27 000 trees per hectare. The design of the 

experiment consisted of 6 replicate blocks, each containing 13 treatment plots (tree species or no 

trees). These 13 treatments were randomly ordered within each block. Each plot measured 

1.5 x3 rn and each "species" containing plot contained 12 trees, in two rows of 6 trees each, which 

were planted perpendicular to the canal (Appendix 6). One plot per block was not planted with 

trees and was used as a "control" plot. For the remainder of this chapter, for ease of reading, the 

plots where no trees are planted are encompassed in the word "species" when used to describe 

the layout of the canal site and the plots therein. For the plan of the species layout at the WNCC 

site, see Appendix 6. All plots were fully randomised within each block. Owing to the long and thin 

nature of the site, the blocks have had to be arranged in the appendix as individual blocks, shown 

three to a page. At the canal site the blocks ran in a line from east to west with Block A closest to 

the bridge (in the east) and Block F being the closest to the lock at the west end of the site. All plots 

in all blocks ran north/south from the canal wall to the canal water. 

7.1.3 Alm 

0 To evaluate the viability of applying the phytoremediation technique trialled in the current 

project to the entire WNCC site, in order to create a clean soil from a contaminated sediment. 
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7.1.4 Hypothesis 

The trees would establish at the canal site with a low mortality rate and grow evenly along the 

length of the canal. Due to the sediment being dredged onto the bank, no hotspots would be 

expected. However, if they did occur they would be identifiable by an area of high mortality or 

obvious toxicity symptoms. Phytoextraction and biomass production would be good, with the 

biomass Safix clones Tora and Calodendron producing the highest biomass. Due to the low 

economic value of the site, phytoextraction using SRC would prove to be a viable (but slow) option 

and could be applied to the length of the canal site. 

7.2 Methods 

7.2.1 Sediment Sampling 

Sediment was sampled from along the length of the field site at the end of each growing season 

(Table 7.1). A random sampling design was rejected in favour of a modified herringbone design 

(DoE, 1994). The herringbone sampling pattern was applied to the trees so that a tree, and the 

sediment in which it was growing, could be sampled together, thus providing more meaningful 

results. Sediment cores were taken at approximately 10 cm from the tree base, so as to avoid root 

damage. At each sampling location, four 5 cm deep cores were taken using an auger. Two of the 

cores were sampled into polyethylene bags for metal analysis and other physico-chemical 

measures, and the other two were sampled into amber glass jars and stored at approximately 4 OC 

prior to analysis for organic contaminants. 

7.2.2 Tree Sampling 

Safix and Populus trees were coppiced at the end of the second growing season. All trees were 

then harvested at the end of the third growing season (Table 7.1 note that the decreasing number 

of samples taken was due to increased tree mortality). During these three growing seasons, the 

planting platform was weeded of naturally colonising vegetation. After the first growing season 
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Table 7.1 Dates of sampling of the sediment and trees on 
the WNCC planting platform. 

Sampled 
1 

Date 
Months post 

dredging 

No. of 

Samples 

Sediment 17/12/2002 8 166 

16/12/2003 20 166 

09/11/2004 31 166 

Leaves 26/10/2002 6 104 

22/10/2003 18 94 

24/09/2004 29 71 

Stems 26/01/2004 21 80 

24/09/2004 29 76 
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some dead or missing trees were replanted to maintain the planting density. Replanted trees were 

not sampled or analysed for contaminant content. Plots which were originally planted with the 

species Safix atrocinerea, which naturally colonises the WNCC, experienced 70 % mortality in the 

first growing season and the decision was made to abandon the "tree" treatments in these plots 

and allow them to naturally colonise with locally occurring vegetation. Thus weeding of these plots 

was not undertaken during the 2003 or 2004 growing seasons. The high mortality amongst the 

Safix atrocinerea suggests that this clone either grows poorly from cuttings or has no innate 

tolerance to heavy metals and thus may only colonise the site once the sediment has been 

exposed for a certain period of time. 

The trees sampled alternated between tree numbers 4 and 7 and tree number 5 and 8 in 

consecutive plots and are highlighted in Appendix 6. Thus, one tree from near the wall and one tree 

from near the water were sampled from each plot. 

Leaf samples were taken on the dates shown in Table 7.1. Leaves were sampled from the top 1/3 

of the tree, or shoulder height, at all points around the compass where sufficient leaves remained 

(King, 2005). Due to the possibility of changing metal levels in tree leaves over time, it was 

important to standardise the time of year at which the leaves were taken (Vandecasteele et al., 

2002). This was done as far as possible. Tree mortality increased over time, leading to a fall in the 

number of leaf samples which could be collected. Stem samples were taken when the trees were 

coppiced. Fresh biomass was recorded in the field for willow and poplar species at the end of the 

2003 and 2004 growing seasons, and for alders at the end of the 2004 growing season only. 

Branches of different sizes, representing the relative abundance of branch sizes on the tree, were 

taken for determination of dry weight and analysis for heavy metal content. Stem and leaf samples 

were dried at 60 "C until constant weight. Observations of apparent tree health - tree disease, 

herbivory, toxicity symptoms and relative growth were taken, and tree height and mortality were 

recorded on 24 th September 2002 and 2004. 
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7.2.3 Sample Preparation 

Sediment pH and conductivity were determined on subsamples of wet sediment in a 1: 5 sediment- 

to-distilled water suspension, after 1h of shaking and 0.5 h standing. A further subsample weighing 

between 3 and 5g was dried at 105 OC until constant weight for determination of sediment moisture 

content. Loss on ignition was carried out on oven-dry sediment by heating the sediment to 480 OC 

for 8 h. The remaining wet sediment from the polyethylene bags was air-dried, ground, sieved to 

<2 mm and stored in polyethylene bags. 

7.2.4 Sequential Extraction 

A 2-step sequential extraction procedure was applied to the sediment as a surrogate measure of 

"bioavailability" (Quevauviller et aL, 1996 a, Quevauviller et aL, 1996 b, Maiz et aL, 1997, French, 

2005). For the extraction, 3g of the air-dry sediment was weighed into 50 mL centrifuge tubes and 

30 mL of 0.01 M CaC12 was added. Samples were shaken on an end-over-end shaker for 2 h, then 

centrifuged for 15 min at 3000 g. Supernatant was filtered through Whatman no. 542 filter papers 

into 15 mL polyethylene tubes. For the second step, 30 mL of 0.05 M EDTA was added to each 

sediment plug and samples were shaken on and end-over-end shaker for 1h and then centrifuged 

at 3000 g for 15 min. Supernatant was filtered through Whatman no. 542 filter papers into 15 mL 

polyethylene tubes. Metal concentrations in the extracts were determined by ICP-AES. 

7.2.5 Total Metal Analysis 

7.2.5.1 Sediment 

Approximately 0.5 g air-dry sediment was weighed into Teflon microwave vessels. Nine mL 

concentrated HN03 and 3 mL concentrated HCI were added to each sample. Samples were 

subjected to microwave-accelerated digestion in a MARS 5 microwave digester (CEM corp. ). 

Samples were heated to 180 OC over the course of 10 min and held at this temperature for a further 
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10 min. After cooling, samples were filtered through Whatman no. 542 filter papers into 30 mL 

polyethylene tubes and made up to 25 mL with distilled water. 

7.2.5.2 Leaf and Stem Samples 

Dried stem samples were cut into small pieces by hand and further reduced in a blender. Leaves 

were crushed in the bags. Where available, 0.5 g of plant material was weighed into Teflon 

microwave vessels. Where 0.5 g was not available, the entire sample was used. Eight mL of 

concentrated HN03 and 2 mL of H202 were added to each sample. Samples were left to pre-digest 

for 5 min, or until reaction had ceased. Samples were digested and treated as described above. 

7.2.5.3 Total Uptake of Elements 

Total uptake of heavy metals into the biomass of the trees was calculated as follows. The canal site 

was divided in half lengthwise (i. e. into 'lop" and "bottom") (see Appendix 6) for measures of 

biomass (for reasons which will be explained in Chapter 8). One tree had been sampled from the 

"top" of each plot of trees and one from the "bottom" as previously described. The heavy metal 

contents of these sampled trees were multiplied by the dry weight biomass which had been 

collected for that half of the plot. For example, tree A 1.4 and tree A 1.7 were collected from the 

bottom and the top respectively of plot 1 in block A. The metal concentrations in the stems were 

applied to the dry weight of biomass which had been collected from plot A1 bottom and A1 top 

respectively. However, some of the trees which had been marked to be sampled had died and no 

stem was available for sampling although surrounding trees had survived and hence a biomass 

figure was present for that half of the plot. When this was the case, the metal concentrations used 

in the calculation were the mean values derived for that species/hybrid. Hence these data are 

presented as "estimated extra uptake" in Figures 7.3 to 7.5, due to the lack of actual metal 

concentrations. 

Example: top half of plot: biomass = 3.5 t ha"', Zn concentration in stem = 250 mg kg*l 

= 875 g Zn ha" this value is counted as the true uptake of the clone. 
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Bottom half of the plot: biomass = 3.5 t ha7l, Zn concentration in stem = missing. Therefore 

the mean value for that clone is used, which is, for example, 310 mg kg*'. The uptake of Zn for this 

half of the plot is thus calculated as 1085 g Zn ha", though as it is a best estimate it would appear 

on the graph as a component of the "estimated extra uptake" section. 

7.2.5.4 Quality Control 

To ensure accuracy of experimental results throughout the current project, one 0.5 g sample of a 

certified reference material (stream sediment GBW07312) was extracted, as described above, for 

every 24 samples extracted. These certified reference material samples were distributed 

throughout each ICP run. In the case of Cd, recovery was significantly higher than "total" and thus 

the Cd data were all corrected downwards accordingly. The proportion by which the data were 

reduced varied over the course of the experiment and the data from each ICP run were corrected 

according to the reference material recovery of Cd for that run. All other metals of interest here 

gave comparable recoveries over time, and none were above the certified "total" value. Under- 

recovery was difficult to judge as the certified "total" metal values were derived from a HF digest 

and not a HN03/HCI digest. 

7.2.5.5 Organics Analysis 

Sediment designated for organics analysis was sampled from the canal into amber glass jars. 

Samples were stored at <4 OC until they were sent to an external, WAS accredited laboratory 

(ALcontrol) for analysis. For determination of TPH the external laboratory undertook accelerated 

solvent extraction (hexane) with a Florisir'clean-up step. Analysis was carried out by GC-FID and 

the calibration standard was an alkane mixture. For determination of PAH a hexane extraction was 

carried out and clean-up was via the use of a suitable solid phase extraction cartridge. Analysis 

was by GC-FID. A thoroughly homogenised sediment standard was created in-house and sent to 

the laboratory as a sample to be analysed. It was included after every 20 true samples. These 

samples were used as a quality check and the laboratory also carried out internal quality checking 

procedures. 
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7.2.6 Statistical Analysis 

The 2002 data were tested for any "block effects" due to lack of uniformity across the length of the 

canal site. At the end of the 2002 growing season there were no consistent; significant differences 

between the blocks and hence block data has been pooled to form replicates for each 

species/hybrid. Due this initial uniformity, data for 2003 and 2004 have been pooled in a like way. 

Any differences therein are due to the natural variation which the block structure was designed to 

account for and encompass. Results from all experimental blocks were therefore grouped 

according to species and checked for normality of distribution. None of the results presented in the 

current chapter followed normal distributions and hence non-parametric tests (Mann-Whitney U 

tests for 2 samples and Kruskall-Wallis analysis when >2 samples) have been used throughout. 

Quoted p-values have been derived from these tests. 

7.3 Results and Discussion 

7.3.1 pH, Moisture Content and Conductivity 

Sampling of the WNCC sediment from the planting platform was carried out in the winter months 

(November and December) when the sediment was at its wettest. This led to a mean moisture 

content in the WNCC sediment samples which was not significantly different between years 

(p > 0.05) (Table 7.2). The conductivity of the sediment however, decreased significantly between 

2003 and 2004 (not measured in 2002), suggesting loss of soluble species and ions through 

leaching processes. The pH of the sediment was already low (pH 3.8) by the end of the first (2002) 

growing season, suggesting that the fall in pH during oxidation (as described in Chapters 3,4 and 

5) happened within the first 8 months of dredging. The pH did not drop further by 2004, suggesting 

that all of the sulphides exposed to the air had oxidised. When cores were taken from the canal site 

it was obvious that oxygen penetration was not ubiquitous. Only the top 0.5 cm or so of the 

sediment showed signs of oxidation. Below this level, the sediment was still black in colour, 

suggesting that it was reduced. Therefore, when oxidation of the deeper layers does occur, the pH 

would be expected to fall further. Equally, the pH, as determined during the wet winter months, may 
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Table 7.2 Mean pH, conductivity and moisture content of the 

WNCC sediment from 2002 to 2004. The pH of the sediment 
in 2004 was significantly different from the general mean in 

two cases and the identity and mean pH of these samples 

are shown in the footnote. For all other measures n= 166. 

Mean Measure 

pH 

Conductivity (mS) 

Moisture content 

Safix "Calodendron" pH 4.18 

No Trees planted pH 3.59 

End of growing season 

2002 2003 2004 

3.81 3.7 3.92* 

0.43 0.17 

104 101 105 
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not be truly representative of the pH of the canal throughout the course of the year, due to the 

effect of redox conditions on pH. Unfortunately, the pH and moisture content of the WNCC 

sediment during the summer months were not established. 

7.3.2 Sediment Heavy Metals 

7.3.2.1 "Bioavailable" Heavy Metals 

In the WNCC, the addition of the CaC12 and EDTA-extractable fractions did not correlate well with 

plant uptake of heavy metals in the majority of cases. Where correlation was present (e. g. Populus 

Ghoy stem Cd 2003 vs. "bioavailable" Cd, r=0.87), it was not consistent between metals or years 

(e. g. Populds Ghoy stem Cd 2004 vs. "bioavailable" Cd, r=-0.50). Thus extractants are examined 

separately, or in addition, but will not be considered to represent bioavailable metal. Metals 

extracted by CaC12 or EDTA separately, failed to correlate consistently with uptake of heavy metals 

into leaves or stems of the experimental tree species. Therefore, neither of these extractants alone 

accurately predicted bioavailability of heavy metals in this canal sediment. It should be 

remembered that the fraction extracted by EDTA will not be equal to that which would have been 

extracted by EDTA alone, as the sediment had first been extracted with CaC12- 

7.3.2.2 Cadmium 

Cadmium extractable in 0.01 M CaC12 remained at around 1 mg kg*1 over the three growing 

seasons (Fig. 7.1). However, 0.05 M EDTA-extractable Cd decreased significantly between 2002 

and 2003 (p < 0.001), and 2003 and 2004 (p < 0.001). Total Cd in the soil also decreased 

significantly over this time period (p < 0.001). The decrease of total Cd between 2002 and 2004 

was 5.9 mg kg-1. The canal has a length of 2 krn and is thought to contain approximately 40 000 t 

of sediment in need of dredging (Royle et aL 2003). Therefore, should this sediment all be removed 

from the canal bed as proposed, and be treated in the same manner as the sediment on the 

planting plaff orm, the loss of total Cd over a3 year period could be expected to be 236 kg. 

Cadmium as extracted in the 2-step sequential extraction forms a significant fraction of total Cd. In 
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Figure 7.1 Cadmium and copper extracted from the WNCC sediment by 

CaC12, EDTA and HNC3/HCl ("Total"), in 2002,2003 and 2004. Values are 

mean (n = 166). Letters represent significant differences between years, for 

each extractant. 
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Figure 7.2 Lead and zinc extracted from the WNCC sediment by CaC12, 

EDTA and HN03/HCl digest ("Total"), in 2002,2003 and 2004. Values are 

mean (n = 166). Letters represent significant differences between years, for 

each extractant. 
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2002 it accounted for 38 % of total Cd. In 2003 this figure was 26 % and by 2004 it had risen again 

to 30 %. This was a stable proportion when the loss of more that 50 % of total Cd during this time 

period is taken into account. It is suggestive of an equilibrium between the CaCI2/EDTA-extractable 

pools of metals and the more strongly bound pools of metals. The consistency of the CaC12' 

extractable fraction suggests the maintenance of solution concentrations of Cd. It would perhaps 

be arguable that this was due to mobilisation of EDTA-extractable metals alone, as these fall 

significantly with time. However, if this were the case then only 3.1 mg kg*l of total Cd would have 

been lost. Thus, resupply was occurring from the more resistant phases, and hence loss of total Cd 

from the system would be expected to continue. 

7.3.2.3 Copper 

A loss of total Cu occurred between 2002 and 2003, although no further loss had occurred by 

2004 (Fig. 7.1). Conversely, an increase in CaC12-extractable Cu occurred between 2002 and 2003 

and remained at this level until 2004. Because of this, the proportion of total Cu which was 

extractable by CaC12 doubled between 2002 and 2003. EDTA-extractable Cu decreased slightly 

over the 3-year period. Thus there is evidence for the loss of approximately 169 mg kg" Cu which, 

using the above calculations, equates to a potential loss of 6760 kg of Cu in one year, should the 

entire length of the canal be dredged and planted up. The fact that loss of Cu from the system 

occurred only in the first year of the experiment suggests that tree uptake was not responsible for 

the decrease in sediment concentration. During this time the trees were at their smallest, and 

hence they would be expected to have higher Cu uptake in 2003 or 2004 when growth would be 

expected to be more significant. 

7.3.2.4 Lead 

Total Pb in the WNCC sediment was high, but CaC12-extractable Pb reached a maximum of only 

3.3 % of this (Fig. 7.2). EDTA-extractable Pb was much higher, at 55 % of total in 2002, falling to 

41 % of total by 2004. As total Pb did not decrease significantly between 2003 and 2004, it Is likely 

that the decrease in EDTA-extractable Pb was due to Pb immobilisation. However, such high 
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concentrations of total and EDTA-extractable Pb may represent a toxic hazard, not just to the trees 

but also to soil-dwelling biota. 

The decrease in total Pb concentrations from December 2002 to December 2003, though small, is 

significant and would equate to a loss of 5280 kg of Pb during the first year, if the entire canal were 

to be dredged and set up as in the current project. 

7.3.2.5 Zinc 

Total Zinc decreased exponentially between 2002 and 2003 and decreased again from 2003 to 

2004 (Fig. 7.2). This was associated with a drop in both CaC12 and EDTA-extractable metals, 

although the proportion of the total which these constitute remains fairly stable at - 30 % and 

~ 15 % respectively. The sediment on the WNCC planting platform lost 2006 mg of Zn per kg of 

sediment. If all 40 000 t of sediment were dredged and treated in this way, the loss of total Zn over 

2 years would be expected to be 80.24 t. 

7.3.2.6 General Sediment Metal Summary 

Lead and Cu showed some signs of stabilisation after an initial loss of a proportion Of total metal. 

As there were no significant differences between treatments on the canal site, it is unlikely that this 

stabilisation was due to phytostabilisation, as planted plots were not significantly different to 

unplanted plots. Cadmium and Zn showed the largest percentage losses due to their solubility and 

poor retention on sediment exchange sites. It is most probable that oxidation of the sediment led to 

the production of H2SO4 - hence the fall in pH from the original pH of 6.2 - releasing metals into 

more mobile forms as discussed in previous chapters. During wetter weather, the more soluble 

metals may be leached out of the system, thus decreasing total metals and also the more available 

forms. Uptake by the vegetation on the canal is also a likely source of loss of metals from the 

sediment. 
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Table 7.3 Tree biomass (dry weight) produced in the 2002-2003 growing seasons and the 
2004 growing season, and total biomass production. Values are mean with standard 
deviations (SID). Stem density was 27 000 trees ha". 

Biomass t ha- DW 

Total 
Species 2002-03 SD 2004 SD 

2002-04 
SD 

Alnus cordata 5.37 (8.39) 

Alnus glutinosa 7.86 (8.88) 

Alnus incana 3.95 (5.37) 

Populus Ghoy 2.26 (2.09) 1.47 (1.91) 3.73 (1.95) 

Populus Trichobel 4.40 (3.20) 3.20 (3.15) 7.60 (3.15) 

Salix Ashton Stott 6.66 (9.06) 6.62 (10.1) 13.28 (9.41) 

Safix Calodendron 8.70 (5.77) 9.19 (10.3) 17.89 (8.35) 

Salix fragifis 3.95 (3.37) 3.51 (4.93) 7.46 (4.17) 

Salix Jorrun 6.04 (5.28) 6.53 (8.21) 12.57 (6.79) 

Safix Sericans 5.86 (4.00) 3.91 (3.64) 9.77 (3.86) 

Salix Tora 6.44 (4.84) 8.30 (7.10) 14.74 (6.08) 
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7.3.3 Uptake of Metals by the Experimental Trees 

7.3.3.1 Biomass 

The poplar species produced higher biomass yields after the 2002/2003 growing seasons than the 

2004 growing season (Table 7.3). No trees were coppiced at the end of the 2002 growing season 

due to their late planting. However, with the exception of Salix fragilis and Safix Sericans, willow 

clones tended to produce higher mean biomass during the 2004 growing season (Table 7.3). Safix 

Calodendron yielded the highest mean biomass of all of the experimental trees, though even this 

clone produced only 9.19 t ha" in the 2004 growing season (stool density 27 000 ha"). This 

biomass production is below that reported by other authors. Perttu and Kowalik (1997) quote 

normal biomass production of 10 - 12 t ha"' Y1 DW though the stool density is not quantified. Mirck 

et aL (2005) report a stool density of around 20 000 per ha and a biomass production of > 10 t ha". 

Vandenhove et al. (2001) investigated Safix viminalis ("Orm") growth on land contaminated with 

radionuclides on both sandy and loamy soil. Biomass production for season 1 was 10 and 8.5 t ha", 

DW respectively. In season 2 these figures increased to 12.9 and 12.1 t ha". However, planting 

density was equivalent to 52 500 stools ha" in the first growing season and 42 500 stools ha*' in 

the second. Laureysens et al. (2005), established a poplar SRC stand on a former household 

waste site. Biomass production was between 7.8 and 18.1 t ha*1 in 2 years, depending on the 

clone. Populus Trichobel yielded 12.9 ± 3.8 t ha". On the WNCC site, Populus Trichobel yielded 

only 7.6 ± 3.2 t ha" over 3 years. Biomass production on the WNCC site was lower than 

suggested for biomass fuel production (Perttu and Kowalik, 1997), but within the range which has 

been found by other authors. Mean biomass production of Populus Ghoy and Alnus incana was 

low (< 4t ha") though the standard deviation of the A. incana data was high, meaning that Populus 

Ghoy exhibited the poorest growth of all of the species selected (except for the failed S. 

atrocinerea). Most experimental trees exhibited a high degree of variability in biomass production, 

and this phenomenon will be discussed in more detail in Chapter 8. 
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Figure 7.3 Cadmium concentrations in a) experimental tree leaves b) experimental 

tree wood and c) total uptake of metal in tree biomass per hectare of planted canal. 

Values are mean + standard errors, n varies (see Table 7.1). "Estimated extra 

uptake" in c) has been calculated from the mean of uptake for that year and the 

11 remaining" biomass (see text). Alnus species were harvested in 2004 only and 

values for these species represent total uptake over the 3 growing seasons. A"*" 

marks species where metal accumulation in leaves/wood was significantly different 

between years. Values for these species can be found in Appendix 8. 
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7.3.3.2 Cadmium 

Leaves 

Uptake of Cd by the Alnus species was significantly lower than uptake by all other species 

(p<0.001) (Fig 7.3 a). There was no significant difference in mean Cd foliar uptake between 

poplar and willow species (p = 0.405). Safix Tora (5.5 mg kg"), atrocinerea (5.4 mg kg") and 

Sericans (4-2 mg kg") took up significantly more Cd than Safix Ashton Stott (2.1 mg kg*') or 

Calodendron (2-1 mg kg-1). Theses values are between the "normal" (< 2.4 mg kg") and "critical" 

(> 5 mg kg") Cd foliar concentrations quoted by Alloway (1995). Though Alloway's values are 

generalised, they can act as a guide in this case. Vandecasteele et al. (2005) monitored Cd uptake 

in Salix cinerea leaves throughout three growing seasons. The sediment had a total Cd content of 

14.2 mg kg". At the end of the growing seasons, mean Cd concentrations in the Safix leaves were 

generally in the range 20 to 27 mg kg", with the exception of one tree which accumulated between 

37 and 65 mg kg". Compared to these values, uptake into the leaves of the WNCC trees was low. 

Uptake of high levels of Cd into leaf tissue is not desirable at the WNCC unless leaf litter is 

collected and disposed of appropriately, as breakdown of leaf litter may re-release Cd, leading to 

food chain transfer and accumulation (Vervaeke et aL, 2003 and references cited therein). High 

concentrations of metals in leaf material may increase the severity of any food chain transfer which 

may occur if the leaves of the trees are eaten by herbivorous animals or insects. Thus, of the trees 

tested, Alnus species and Safix Ashton Stott and Calodendron may be the most suitable trees to 

grow on the WNCC in order to limit dispersal of Cd into the wider environment. 

Stems 

Of all of the experimental trees, Alnus species had the lowest concentration Of Cd in their woody 

tissues (Fig. 7.3 b). Values expressed in this figure represent metal concentrations In the stems of 

poplar and willow species at the end of each growing season. Alders were not harvested until after 

the 2004 growing season and hence heavy metal concentrations in Alnus stems are cumulative, 

whereas Populds and Safix metal concentrations are not. The lower Cd concentrations in alder 
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stems may be because the trees were not coppiced at the end of the 2003 growing season and 

thus did not undergo the burst of growth experienced by the wil. low and poplar species. Populus 

Ghoy took up significantly more Cd (3.2 mg kg") than Populus Trichobel (1.4 mg kg"') (p < 0.05). 

Contrary to the leaf concentrations of Cd, Salix Ashton Stott and Calodendron took up the highest 

mean concentrations of Cd into their woody biomass. There was no statistical difference between 

stem concentrations of Cd between willow clones. 

These data suggest that Populus Trichobel, Safix fragifis and the Alnus species would be the least 

effective trees for phytoextraction of Cd in this canal sediment. 

Total Uptake of Cd 

Total estimated uptake of Cd by the experimental tree species on the WNCC site is given in 

Figure 7.3 c. Due to the different survivorship and biomass production between species and 

clones, those trees which had the highest concentration of Cd in their woody biomass (mg kg*) did 

not necessarily exhibit the highest total uptake (g ha-1) of Cd. Uptake of Cd by Alnus species was 

very low when compared to uptake by Populus and Salix species. The three trees with the highest 

total uptake of Cd were Safix Calodendron (31 g ha-1), Safix Ashton Stott (26 g ha") and Salix Tora 

(25 g ha"). Safix Calodendron produced higher mean biomass than Safix Tora and Safix Ashton 

Stott (Table 7.3) and, though stem concentrations were not significantly different, foliar Cd 

concentrations were significantly higher in Salix Tora than Safix Calodendron. This would increase 

the potential of food chain transfer of Cd in Salix Tora with respect to Calodendron or Ashton Stott. 

Populus Ghoy was the most effective poplar phytoextractor of Cd, and Alnus glutinosa performed 

best out of the alders. Populus Trichobel grown on the WNCC site over 3 growing seasons 

extracted a total of 6.6 g Cd ha". Laureysens et al. (2005) found accumulation of 12 g Cd ha" In 

populus Trichobel grown on a former household waste disposal site, after 2 growing seasons. 

Trichobel therefore performed poorly on the WNCC site, suggesting unfavourable soil conditions or 

element availability, for phytoextraction. Safix Calodendron extracted a mean total of approximately 

32 g Cd ha" in 3 years, equivalent to 24.6 g Cd from the entire canal site, were it dredged and 
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Figure 7.4 Copper concentrations in a) experimental tree leaves b) experimental 

tree wood and c) total uptake of metal in tree biomass per hectare of planted canal. 

Values are mean + standard errors, n varies (see Table 7.1). "Estimated extra 

uptake" in c) has been calculated from the mean of uptake for that year and the 

"remaining" biomass (see text). Alnus species were harvested in 2004 only and 

values for these species represent total uptake over the 3 growing seasons. A"*" 

marks species where metal accumulation in leaves/wood was significantly different 

between years. Values for these species can be found in Appendix 8. 

! -111 ý -111. - -I,, - , I,, - ý-..... , -"' ý ""'- Species Key 
AC AG Al PG PT SA SAS SC SF SJ SS ST AC = Alnus cordata 

AG = Alnus glutinosa 
------------ Al = Alnus incana 

b) PG Polulus Ghoy 
PT Polulus Trichobel 
SA Salix atrocinerea 
SAS = Safix Ashton Stott 
SC = Salix Calodendron 
SF = Salix fragilis 
SJ = SafixJorunn 
SS = Salix Sericans 
ST = Safix Tora 
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planted as was done in the present project. Total loss of Cd from 40 000 t of sediment as 

calculated in section 7.3.3.2 would be 236 kg. Thus removal of Cd by phytoextraction could only be 

expected to account for 0.01 % of Cd lost from the system. Thus pollution of the surrounding canal 

environment by leaching of Cd from the planting platform is very likely. 

7.3.3.3 Copper 

Leaves 

Alnus species' leaves had, on average, higher concentrations of Cu (14.9 mg kg") in their leaf 

tissues (Table 7.4) than did the Populus (11.0 mg kg") or Safix (11.4 mg kg-1) species (p < O. ooj). 

There was no significant difference in foliar Cu concentrations between the Safix clones 

(p = 0.083). Madej6n et aL (2004) compared foliar and stem concentrations of heavy metals in 

poplar trees affected and unaffected by a mine spillage. Copper concentrations in spill-affected 

poplar leaves appeared not to be elevated above those found in trees unaffected by the spill. Stem 

concentrations however were 1.7 fold higher (6.62 mg kg*') compared to unaffected trees. The 

WNCC poplars both contained higher stem and higher leaf concentrations than those reported by 

Madej6n. However, total Cu concentration of the spill-contaminated soil was lower than the WNCC 

sediment, at only 179 mg kg". Copper concentration in the foliar tissue of all experimental trees 

were in the "normal" range of Cu concentrations as quoted by Alloway (1995) and are therefore not 

likely to be causing any serious toxic effects such as reduced yield or visible toxicity symptoms. 

Stems 

There were no significant interspecies differences between the stem Cu concentrations of Alnus 

and Salix species (p > 0.05). However, it should be remembered that Alnus stem concentrations 

are cumulative and Safix concentrations are not. Populus Trichobel had significantly lower stem Cu 

concentrations than did Populus Ghoy (p < 0.01) and showed the lowest stem Cu concentrations of 

any of the experimental trees. Copper concentrations in the stems of the experimental trees was 

within the "normal" range (Alloway, 1995). 
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Total Uotake of Cu 

Populus species were the least viable for phytoextraction of Cu. The Safix clones showed the 

highest phytoextraction potential, accumulating average Cu concentrations of up to 80 g ha". The 

entire WNCC south bank has an area of 0.77 ha, meaning that maximum mean uptake of Cu, 

should the length of the site be dredged, would be 62 g of Cu over the 3 year period. However, loss 

of Cu from the site over this same period would be 6760 kg (as calculated in section 7.3.3.3). 

Phytoextraction would therefore account for only a tiny fraction of the total Cu which would be lost. 

On the experimental site it is almost certain that the loss in total Cu from the site was not due to 

phytoextraction, but loss by other methods such as leaching. Thus pollution of the canal water and 

environment would be expected to occur. 

7.3.3.4 Lead 

Leaves 

Alnus cordata exhibited the highest mean foliar concentrations of Pb. However the standard 

deviation from the mean was very large (14.6 ± 22 mg kg-1). Populus Ghoy accumulated higher 

concentrations of Pb in its foliar tissue than did Populus Trichobel (Fig. 7.5 a). Salix Sericans and 

Safix Tora had significantly higher Pb concentrations in their leaves than Safix Ashton Stott, Safix 

Calodendron and Safix Jorunn, which together had the lowest concentration of Pb in the leaves of 

all species and clones. The bloconcentration factor (BCF) of Pb in foliar tissue was < 0.01 in all 

species except Alnus cordata (BCF = 0.01) (Table 7.4). All foliar concentrations of Pb were within 

the "normal" range (0.2 - 20 mg kg-1) (Alloway, 1995). 

Stems 

The Alnus species exhibited higher accumulation of Pb in their woody tissues than Populus or Safix 

species (Fig. 7.5 b). However, Alnus values are cumulative as the stems were only harvested in 
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Figure 7.5 Lead concentrations in a) experimental tree leaves b) experimental tree 

wood and c) total uptake of metal in tree biomass per hectare of planted canal. 

Values are mean + standard errors, n varies (see Table 7.1). "Estimated extra 

uptake" in c) has been calculated from the mean of uptake for that year and the 

"remaining" biomass (see text). Alnus species were harvested in 2004 only and 

values for these species represent total uptake over the 3 growing seasons. A"*" 

marks species where metal accumulation in leaves/wood was significantly different 

between years. Values for these species can be found in Appendix 8. 

Species Key 
AC AG Al PG PT SA SAS SC SF SJ SS ST AC = Alnus cordata 

AG = Alnus glutinosa 
Al = Alnus incana 
PG Polulus Ghoy 
PT Polulus Trichobel 
SA Salix atrocinerea 
SAS = Salix Ashton Stott 
SC = Salix Calodendron 
SF = Salix fragilis 
SJ = Sa/ixJorunn 
SS = Salix Sericans 
ST = Salix Tora 
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Table 7.4 The bioconcentration factors of Cd and Zn in the wood and leaves of the experimental 

trees at the end of the 2003 and 2004 growing seasons. 

Bioconcentration Factor 

Wood Leaves 

2003 2004 2003 2004 

Species Cd Zn Cd Zn Cd Zn Cd Zn 

AC 0.05 0.46 0.08 0.69 0.03 0.63 0.04 0.95 

AG 0.07 0.37 0.12 0.56 0.05 0.82 0.09 1.23 

Al 0.05 0.53 0.09 0.80 0.05 0.90 0.08 1.36 

PG 0.35 0.44 0.57 0.67 0.67 1.86 1.10 2.80 

PT 0.15 0.29 0.25 0.43 0.25 0.99 0.41 1.49 

SAS 0.30 0.51 0.48 0.76 0.22 1.28 0.36 1.93 

SC 0.28 0.43 0.46 0.65 0.22 1.15 0.36 1.73 

SF 0.15 0.41 0.24 0.62 0.36 1.29 0.59 1.95 

S. 1 0.25 0.40 0.41 0.61 0.33 1.24 0.54 1.86 

SS 0.22 0.51 0.36 0.77 0.45 2.12 0.74 3.19 

ST 0.28 0.51 0.45 0.78 0.59 1.78 0.96 2.68 

Species Key 
AC = Alnus cordata 
AG = Alnus glutinosa 
A[ = Alnus incana 
PG Polulus Ghoy 
PT Polulus Trichobel 
SAS = Safix Ashton Stott 

SC = Salix Calodendron 
SF = Safix fragifis 
SJ = Sa/ixJorunn 
SS = Salix Sericans 
ST = SafixTora 
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2004. Bioconcentration of Pb in stems was also low with a BCF of :50.01 (data not shown). Lead 

concentrations in stems did not exceed the "normal" values quoted by Alloway (1995). 

Total UDtake of Pb 

The three tree species which exhibited the highest phytoextraction of Pb were Alnus glutinosa 

(59 g ha"', though the standard deviation of these data was large), Safix Sericans (55 g ha*') and 

Safix Tora (55 g ha-1) (Fig. 7.5 c). The highest total uptake of Pb by the experimental trees 

accounted for a negligible portion of the total Pb which was lost from the sediment, again 

suggesting pollution of the surrounding canal environment. 

7.3.3.5 Zinc 

Leaves 

Safix Sericans exhibited significantly higher accumulation of Zn in its foliar tissues than most other 

clones (p < 0.001), with the exception of Safix Tora (Fig. 7.6 a). Leaf concentrations of Zn were 

generally high. Alloway (1995) quotes the following values for mature leaf concentrations: Deficient 

=< 10 - 20 mg kg"; Sufficient = 25 - 150 mg kg"; Excessive or toxic => 400 mg kg*'. It Is therefore 

likely that all of the species on the WNCC site were experiencing Zn toxicity and may have been 

showing toxicity symptoms and experiencing reduced yields (Alloway, 1995). Zinc Is the only metal 

studied in the current chapter, where mean foliar metal contents are classed by Alloway as "critical" 

across all species. It is therefore logical to conclude that the toxicity symptoms visible in the 

experimental trees and quantified in Appendix 7 and Figures 7.7 and 7.8, were an effect of Zn 

toxicity. However, mean foliar concentrations of Cd also reached the lower end of the "Critical" 

range in Populds Ghoy, Safix Ashton Stott and Safix Tora, and so in these 3 tree species Cd 

toxicity may also have been a factor. 

Vandecasteele et aL (2005) report foliar concentrations of between 1000 and 2500 mg kg" Zn In 

the leaves of Safix cinerea grown on seasonally flooded, contaminated sediment. The highest 
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Figure 7.6 Zinc concentrations in a) experimental tree leaves b) experimental tree 

wood and c) total uptake of metal in tree biomass per hectare of planted canal. 

Values are mean + standard errors, n varies (see Table 7-1). "Estimated extra 

uptake" in c) has been calculated from the mean of uptake for that year and the 

"remaining" biomass (see text). Alnus species were harvested in 2004 only and 

values for these species represent total uptake over the 3 growing seasons. A"*" 

marks species where metal accumulation in leaves/wood was significantly different 

between years. Values for these species can be found in Appendix 8. 
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mean foliar concentrations of Zn in the experimental trees in this study were at the lower end of this 

range, despite the higher total Zn concentration in the WNCC sediment. Thus bioconcentration of 

Zn by the trees was higher in the Vandecasteele study than in the present study (Vandecasteele et 

aL, 2005, Table 7.4). 

Stems 

There were no significant interspecies differences in Zn accumulation in the woody tissues of Alnus 

or Safix, though Populus Ghoy accumulated significantly higher concentrations of Zn than Populus 

Trichobel. Mean stem Zn concentrations of the trees were verging on the critical values reported by 

Alloway (1995). Safix Sericans exhibited different accumulation rates of Zn in its woody tissues 

between the two harvests (Appendix 8). Contrary to all other significant differences between years 

for all other species, the Zn accumulation in Safix Sericans was increased during the 2004 growing 

season (531 mg kg") with respect to the 2002/3 growing season (364 mg kg"). If this trend were to 

continue, or if uptake remained at these increased levels in consecutive growing seasons, the 

phytoextraction potential of Safix Sericans may be much increased. 

Total Uptake of Zn 

Though metal uptake into the stems was not significantly different between the experimental tree 

species, total uptake in g Zn ha" showed a much more pronounced variation. Salix clones showed 

much higher total uptake of Zn than either Populus or Alnus species. Salix Ashton Stott, Safix 

Calodendron, Safix Sericans and Salix Tora exhibited the highest phytoextraction potential. 

However, once again, the loss of Zn from the system far exceeded the phytoextraction potential of 

the trees. Laureysens et al. (2005) reported uptake of between 0.6 and 2.4 kg Zn ha*' in poplar 

clones. They report accumulation in Populus Trichobel of 1.0 ± 0.3 kg Zn ha" over 2 growing 

seasons. Trichobel grown on the WNCC accumulated 1.2 kg Zn ha" in 3 growing seasons. 

Vervaeke et al. (2003) estimate that with an annual SAILIMAT biomass production of 

11.5 IDIVI t ha-1, extraction of Zn after 3 years would be 5 kg ha*'. This Is similar to the extraction of 

Zn from the WINICC sediment by Safix Ashton Stott and Safix Tora. 
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between 2002 and 2004. For key, see Appendix 7. 
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7.3.4 Phytoextraction Potential 

The clones with the highest phytoextraction potential from the WNCC sediment were Safix Ashton 

Stott, Safix Calodendron and Safix Tora. However, Safix Tora had significantly higher foliar metal 

concentrations and exhibited higher foliar bioconcentration (Table 7.4) of heavy metals than Safix 

Ashton Stott or Safix Calodendron. Figures 7.7,7.8 and those presented in Appendix 7 are results 

of two visual surveys. Every tree was assessed in September of 2002 and 2004 and the 

percentage of trees exhibiting certain features is plotted in Figures 7.7,7.8 and those presented in 

Appendix 7. There was more evidence of herbivory on the leaves of Safix Tora than Safix 

Calodendron (Fig. 7.7) or Safix Ashton Stott (Appendix 7). However, this evidence was from visual 

surveys taken once a year. Further investigation into herbivory and foodchain transfer would have 

to be carried out to draw any certain conclusions. However, the survey data suggest that the risk of 

food chain transfer of heavy metals would be increased if the canal site were planted with Safix 

Tora as opposed to Safix Calodendron or Safix Ashton Stott. Safix Ashton Stott produced a lower 

mean biomass than Safix Calodendron (Table 7.3) and also experienced a higher mortality rate 

(Appendix 7). Safix Ashton Stott had a consistently higher bioconcentration factor than Safix 

Calodendron but experienced poor growth when experiencing additional stress (as will be 

discussed in Chapter 8). Safix Calodendron plots also experienced an increased pH with respect to 

the rest of the canal site in 2004 (Table 7.2). For these reasons, the recommended SRC clone from 

those tested in the current project would be Salix Calodendron. Mertens et al. (2004) report that 

Alnus glutinosa planted on a saline dredged sediment showed repressed growth and accumulated 

levels of heavy metals which would be classed by Alloway (1995) as normal, suggesting that it 

would be better used for phytostabilisation than phytoextraction. In the current study, Alnus 

giuanosa showed much increased herbivory in 2004 compared to 2002, a higher mortality and the 

presence of disease (Fig. 7.8). These factors will decrease the expected viability of this tree as a 

phytoextractor at the WNCC site. Forty percent of the experimental Populus Trichobel trees were 

also blighted by disease in 2004. Alnus and Populus species exhibited toxicity symptoms in a 

greater proportion of experimental trees than the Safix clones (Appendix 7), though this decreased 

from 2002 to 2004, perhaps due to the decrease in sediment total metal concentrations. 
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The loss of contaminated leachate from the planting platform may adversely affect the germination 

and growth of surrounding vegetation (Bedell et aL, 2003). However, stands of SRC trees can have 

very high transpiration rates thus reducing leachate (Vervaeke et aL, 2001). Licht and Isebrands 

(2005) report figures for water consumption by poplar trees of between 20 and 50 kg of water per 

tree per day, or 69 600 L ha" d-'. A more viable scheme for phytoremediation of the WNCC may 

therefore be to add a surface layer of contaminated sediment to a stand of SRC trees in their 

second growing season. Thus leaching from the site could be reduced and metal uptake may be 

increased in the first year post-dredging with respect to planting willow pegs on newly-dredged 

sediment. Mortality and toxicity may also be reduced. 

7.3.5 Phytoremediation of Organic Pollutants 

The different species treatments planted on the WNCC site did not significantly effect the 

concentrations of TPH or PAH in the sediment in 2002 (p = 0.677 and 0.501 respectively) or in 

2004 (p = 0.261 and 0.702 respectively). Greater losses of PAH from fallow as opposed to planted 

plots have been reported (Vervaeke et aL, 2003), though for this site that was not proved to be 

true. Between 2002 and 2004, TPH concentration on the canal site decreased significantly 

(p < 0.001) (Fig. 7.9). PAH concentration did not decrease significantly between 2002 and 2004 (p 

= 0.067), though the mean PAH concentration did decrease. The rate of disappearance of the 

organic pollutants was slow compared to other methods of degradation such as composting of the 

sediment (Semple, 2001), which may be a more viable option for treatment of this sediment. The 

presence of weathered oil may affect the behaviour of PAH in the sediment system. At 

concentrations of 100 to 1000 mg kg" competitive interactions have been reported (Jonker et al., 

2003) between oil and PAH for adsorption sites on the sediment organic matter. Above these 

concentrations, the presence of oil may enhance the adsorption of PAH, thus reducing PAH 

bioavailability and hence breakdown rate (Jonker et aL, 2003). It is therefore possible that the 

presence of the high concentrations of TPH in the WNCC sediment (- 6500 mg kg*') may have 

caused a reduction in the bioavailability of PAH, leading to the smaller than expected mean 

reduction in PAH concentration in the sediment. 
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7.4 General Conclusions 

The WNCC site underwent significant acidification within the first 8 months post-dredging. It is 

probable that this oxidation and acidification led to increased heavy metal availability and hence 

loss from the planting platform sediment. The winter pH of the sediment then remained fairly stable 

and the less mobile heavy metals (Cu and Pb) experienced no further significant loss in total 

concentration during the course of the current project. However, the more mobile heavy metals (Cd 

and Zn) did continue to leach from the planting platform into the surrounding environment and may 

potentially have polluted this environment. 

The planted trees did not grow as well as expected and growth was very variable across the site. 

Due to the low uptake of heavy metals (compared to values quoted in the literature) 

phytoremediation of the site using phytoextraction is not a viable option. However, of the tree 

species examined, Salix Calodendron would be the most effective tree for phytoextraction of heavy 

metals from the WNCC sediment. 

Phytodegradation of the organic pollutants did occur. However, due to the lack of efficiency of the 

heavy metal phytoremediation, composting may be a more viable option for the removal of organic 

pollutants. Collection of leachate and wastewater from the compost would be necessary to avoid 

pollution of the surrounding environment. 

145 



CHAPTER 8 

An Investigation of the Factors Affecting Tree Growth at the Woolston New 

Cut Canal Field Site 

8.1 Introduction 

Chapter 7 described the set-up and results of the phytoremediation field trial around which the 

current PhD thesis is based. At the field site, it was noticed as early as the end of the first growing 

season (2002), that systematic differences in growth were occurring along the length of the canal 

site. The three factors thought likely to have been causing these differences (sediment moisture 

content, sediment depth and degree of shading) were tested at two levels each. Three tree 

species, and also a "no tree" treatments were also included in the design. These factors were 

tested in all possible combinations. 

8.1.1 Differential Growth of Experimental Trees on the Planting Platform 

As described in Chapter 7, the set-up of the experimental trees on the WNCC planting platform 

was such that, on each planted plot, two rows of trees ran from close to the canal bank (trees 1 and 

7), to the edge of the canal water (trees 6 and 12) (see Appendix 6). At the end of the 2002 

growing season it was noticed that the growth of those trees growing close to the canal bank 

tended to be stunted, with signs of toxicity (Fig. 8.1) but the trees close to the water appeared 

healthier. To quantify this phenomenon, plots were divided laterally In half for the measurement of 

biomass at the canal site i. e. trees 1,2,3,7,8 and 9 were grouped for biomass representing the 

trees close to the bank, and trees 4,5,6,10,11 and 12 were grouped, representing biomass from 

close to the canal water (Appendix 6). The biomass results obtained from the 2004 harvest (Table 

8.1) show that biomass production by trees growing close to the canal bank was consistently lower 

for all species than by those growing close to the water. To determine what could be causing this 

difference, observations of the planting platform environment were made. 
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Figure 8.1 Willow trees at the Woolston New Cut Canal field site exhibiting 

stunted growth and increased toxicity symptoms close to the canal bank 

(bottom of the photograph) but appearing healthy close to the canal water (top 

of the photograph). The photograph was taken from the canal bank by 

Rosalind King in July 2003. 
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Table 8.1 Biomass produced by experimental trees from 

the WNCC planting platform at the end of the 2004 

growing season. Values are mean (SD) (n = 6). Biomass 

production near to the bank and near to the water are 

significantly different p<0.001, Z= -4.49 (Mann-Whitney 

U test). For the definition of "bank" and "water" see 
Appendix 6. 

Biomass (t ha") 

Near Canal Near Canal 
Species 

Bank Water 

Alnus cordata 2.5(4.0) 8.2(10.9) 

Alnus glutinosa 3.1 (4.9) 12.6(9.8) 

Alnus Incana 1.3(2.5) 6.8(6.2) 

Populus Ghoy 1.1 (1.9) 2.2(2.1) 

Populus Trichobel 1.4(1.7) 4.5(3.4) 

Safix Ashton Stott 0.7(0.9) 15.3(10.8) 

Salix Calodendron 2.3(2.4) 16.1 (10.6) 

Safix fragifis 1.5(1.6) 7.2(5.8) 

Sal/xJorrun 1.3(2.0) 12.0(8.6) 

Safix Sericans 1.5(1.7) 6.6(3.1) 

SaIIxTora 3.0(2.0) 13.6(6.3) 
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The factors isolated as potential causes were: 

Sediment moisture content - moisture content of sediment close to the canal water was higher 

than that of sediment close to the canal bank. 

0 Sediment depth - sediment close to the canal water was noticeably deeper than the sediment 

close to the canal bank. 

0 Degree of shading - The hawthorn "hedge" (approximately 5m high) cast shade on only those 

trees close to the canal bank during the summer months, when the sun was high. 

The differences in sediment depth and moisture content may have been due to the slight 

topographic gradient that runs from the bank down towards the centre of the canal. This gradient 

may have led to pooling of the wet sediment when it was originally dredged to form the platform. 

This effect could explain the increased sediment depth close to the water. The shading was caused 

by both the large hawthorn hedge and the canal wall. The trees were planted on the south bank of 

the canal and the hedge was to the south of the site (approximately 4m from the plot), thus it had a 

shading effect on the trees, particularly those closest to the hedge (and wall). This effect was 

compounded close to the wall by the shading effect of the wall itself which is approximately 1m 

high. 

The following discussion as to the effects of water-stress on plants is mainly based on Leopold and 

Kriedeman (1975) and references therein, unless otherwise cited. The most obvious and outwardly 

visible sign of water-stress (due to insufficient water) in plants is wilting. However, even when 

wilting is not visible, the plant will have already undergone physiological reactions to moisture 

stress. Transpiration rate is decreased by partial closure of the stomata, and turgor-dependent 

mechanisms within the plant, such as leaf enlargement, cease. The turgor pressure at which these 

effects occur is dependent upon species, but leaf enlargement will cease at around -4 x 105 N M*2 

and stomata will close between -10 and -15 x 10'5 N M-2. Stomata[ closure, or partial closure, stops 

or reduces gaseous diffusion in and out of the leaves. This negatively affects photosynthesis. 

Water stress has also been shown to affect plant hormone levels. For example, leaf concentrations 

of ABA (abscisic acid)-like inhibitors increase, leading to stomatal closure. Under more severe 

drought they may increase to many times their original levels, thus impeding the return to normal 
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function once the period of drought has passed. High levels of these molecules inhibit synthesis of 

RNA and photosynthetic enzymes. Water stress may also negatively affect root permeability, 

lessening the plant's ability to restore turgor pressure in the leaves after rewatering of the soil. Due 

to the disruption of these physiological systems, growth following water stress can be inhibited. 

Water stress has been shown to significantly reduce the dry mass of Safix viminalis (Martin and 

Stephens, 2005) and Pinus radiata (Watt et aL, 2003). Water stressed Safix viminalis growing in 

clay soils apportioned more dry mass to their roots, and less to their stems, than unstressed trees. 

Stressed trees also showed a decreased ability to utilise available nutrients from the soil. Stress 

resulted in fewer leaves per shoot and smaller average leaf areas in the Safix trees. Water stress 

induced by competition with weeds was the major factor contributing to growth losses during the 

first year of Pinus radiata growth (Watt et aL, 2003). During the second year, growth was mediated 

through light and water availability. 

The following paragraph, discussing the effects of light on plant growth is mainly based on Hart 

(1988) unless otherwise referenced. Some plant species are specially physiologically adapted to 

shaded conditions and some species are "shade avoiders". 

Shade-tolerant species tend to exhibit lower metabolic rates 

and large, thin leaves. Mechanisms to help plants to "avoid 

shade" include enhanced axis elongation, increased internode 

and petiole extension, strong apical dominance and limited leaf 0 

development. This effect is highlighted in Figure 8.2 (modified 

from Hart, 1988). Light has a stimulatory effect on cell division 

and expansion of leaves. This leads to larger, thicker leaves 

Time ol 

with higher cell numbers in those leaves exposed to higher Figure 8.2 Growth of seedlings 

levels of PAR (photosynthetically active radiation) with respect 
in constant darkness (solid line) 

and constant light (dashed line) 

to those exposed to lower levels. Phytochrome detects light 

quality and exists in plants in two photo-convertible states (Pr and Pfr). The former is increased In 

abundance when the plant is exposed to high levels of far red light (- 700 - 800 nm). Conversely, 

the abundance of Pfr is increased by exposure of the plant to high levels of red light (peak 
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absorption 660 nm) (Khattak et aL, 2004). High levels of Pfr lead to inhibition of stem elongation. In 

dense canopies, red light is absorbed more strongly than far red light, which is transmitted down to 

the lower canopy. Thus, trees in the lower canopy exhibit higher concentrations of Pr, and stem 

elongation occurs to aid the plant in light capture (Khattak et aL, 2004). 

Watt et aL (2003) studied the effects of shading by weeds on growth of P. radiata and found 

significant increases in sternwood allocation at the expense of roots and shoots in shaded plants. 

Shading led to a decrease in growth of around 15 % with respect to non-shaded plants. Fownes 

and Harrington (2004) report that Betula papyrifera, B. lenta, Pinus strobus, Acer rubrum, Quercus 

rubra and Tsuga canadensis all exhibited increasing leaf mass per unit area with increasing light 

availability. 

8.1.2 Alm 

0 To determine which environmental, chemical or physical factors were affecting tree height and 

biomass production at the WNCC site. 

8.1.3. Hypothesis 

That the poor biomass production close to the canal wall was due to the shallow sediment depth, 

drier conditions and the shading effect of the hedge and the canal wall. 

8.2 Methods 

The environmental variables observed on the WNCC planting platform were investigated by means 

of a pot experiment, located at The University of Liverpool Botanical Gardens at Ness, in the NW of 

England. The three factors tested were: 

0 High watering regime vs. low watering regime 

0 Deep sediment vs. shallow sediment 

0 Shading vs. not shading 
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The factors were tested together in all combinations using three tree species (an alder, a poplar 

and a willow) and also a "no tree" treatment (Table 8.2), so that the effect of the trees could be 

differentiated from that of the individual treatments. Three replicates of each treatment combination 

were constructed, giving a total of 96 pots. For all combinations used see Table 8.5 and note that 

the same combinations were also present in the "no tree" treatment. Trees were sourced from the 

same stock as those planted at the field site. Placement of treatment combinations within the 

experiment was determined by the use of a fully factorial, randomised block design, as represented 

in Appendix 9. 

8.2.1 Preparation of Treatments 

in order to manipulate sediment depth, whilst maintaining the volume of sediment in both the 

"deep" and "shallow" sediment depth treatments, square white plant pots were ordered with 

differential rim dimensions (39 cm and 28 cm). It had been intended that the deep treatment be 

twice as deep as the shallow treatment. However, the pots were differentially tapered towards the 

base and the difference in sediment depth was not as great as had been intended (Table 8.2). The 

pots and sediment volume were chosen so as to avoid the trees becoming pot-bound during the 

experimental period. 

Sediment was dredged from the WNCC field site and stored in a lined bund for 50 days prior to use 

in the current experiment. After thorough mixing, 11.3 L of sediment was added to each of the pots. 

Each pot had several holes drilled in the bottom to allow free drainage of excess water. Pots were 

then laid out in their places, as dictated by the random design. Shading was applied to three of the 

six blocks via specifically constructed shading structures which consisted of a wooden frame with 

commercial heavy duty orange netting covering the sun-facing side. Strips of heavy-duty black 

plastic were attached to this orange netting, thus forming dappled shade, akin to that experienced 

by the trees on the canal planting platform (Fig. 8.3). Care was taken to ensure that no shade 

extended beyond the boundary of the "shaded" treatments. One tree was planted per pot in the 

tree-containing treatments. Two different watering regimes were applied via the Irrigation pipes 

visible in Figure 8.3. The volume of water applied to pots with the high watering regime was double 
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Table 8.2 The factors and treatment levels used. Treatments were used in all combinations with 
other treatments. 

Factor Tested Different Treatments 

Relative Watering Regime 1 0.5 

Sediment Depth (cm) 20 15 

Shading Yes No 

Species used Alnus gludhosa Populus Trichobel SafixTora No Tree 

* For species names see Royle et at. 2003. 
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Figure 8.3 Set-up of the experimental block design with shade structures. Shaded plots are to 

the right hand side of the shade structures. Photograph taken by Mike O'Connor. 
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that of the pots with the low watering regime. The exact volume of water applied to the pots varied 

throughout the year according to the amount of local rainfall, increasing when rainfall was low and 

decreasing when rainfall was high. Two separate pipes were used to deliver the different watering 

regimes. Both were connected to automatic pumps. Pumps were deactivated in the winter when 

the trees were dormant. The experimental set-up was completed on 6 th June 2003. 

8.2.2 Sampling and Duration 

Initial sediment samples were taken from each pot and bulked by row on 13 th June 2003, giving 12 

samples in total. Sediment was sampled from every pot to a depth of 10 cm, at 7 months, 12 

months and 15 months after this time into polyethylene bags using a trowel. This depth was chosen 

for comparability with the canal site where 10 cm deep cores were taken. 

After a growing period of 21 months, trees were coppiced in March 2005 and final biomass was 

immediately weighed using a field balance. Representative stem samples were taken from each 

tree by cutting a variety of sections from the stem and branches of all sizes. These samples were 

used for determination of heavy metal content. Further stem samples were dried at 60 "C for 

determination of stem dry weight. Two measurements of tree heights had been made during the 

21 -month experimental period. PAR (photosynthetically active radiation) was measured five times 

throughout the experiment at every pot at 1m height and also at the experimental field site for 

comparison. An AVO Multimeter (M2035 mV range with a DeltaT Quantum sensor measuring light 

between wavelengths 400 to 700 nm) was used for PAR measurement. 

8.2.3 Analytical Methodology 

The pH, conductivity and moisture content of the sediment were determined on subsamples of 

fresh sediment. The remaining fresh sediment was dried, ground, sieved to < 2mm and stored In 

polyethylene bags prior to further analysis. The CaC12 and EDTA extraction, acid digests and the 

analyses mentioned above were carried out as described in Chapter 7, Sections 7.2.3 to 7.2.5.2. 
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Standard reference materials were run with all batches of samples as a quality check as described 

in Chapter 7. 

8.2.4 Statistical Analysis 

Three and four-way analysis of variance were carried out on much of the data, using the GLM 

(general linear model). Where appropriate, Kruskall-Wallis (> 2 samples) or Mann-Whitney U tests 

(2 samples) were used due to the non-parametric nature of the data. Quoted p-values have been 

derived from these tests. 

8.3 Results 

8.3.2 Success of Treatments 

Hicih vs. Low Water Recjime 

The high water regime gave rise to a higher average sediment moisture content than did the lower 

watering regime and also resulted in a higher final sediment pH (Table 8-3). It is likely that the 

slightly higher pH under the higher moisture regime was due to a more reduced sediment, owing to 

the presence of water in more of the sediment pore spaces, thus limiting oxygen diffusion into the 

sediment. Occasional waterlogging of some of the high water regime pots was caused by the 

deposition of iron oxide crusts blocking the drainage holes. When waterlogging was noticed, holes 

were unblocked and the pots drained. The mean difference in moisture contents between the 

treatments was 10 % after 15 months. The 15 month samples were the only set of samples taken 

during the growing season. The mean difference between the planting platform sediment near the 

bank and near the canal water at the WNCC site was 16 % and hence the effect of the different 

moisture regimes in the current experiment may not be as pronounced as at the canal site. 

However, samples were only ever taken from the canal site after the end of the growing season 

when local rainfall was increased. 
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Table 8.3 The effects of the different water regimes on the four sediment properties after 15 

months. Values are mean (SD) (n = 48). Statistical significances are derived from Mann-Whitney 
U tests. 

Treatment 

High Water Low Water 
p-value 

Regime Regime 

H20 content (%) 62.8(22.4) 52.2(10.7) 0.018 

pH 3.83 3.66 0.007 

Conductivity (mS) 0.75(0.45) 0.88(0.41) 0.203 

LOI (%) 17.4(7.5) 18.37 (7.84) 
1 

0.323 

Table 8.4 Biomass production by the three tree species in the pot experiment under the different 

regimes. Data are shown in bold where significant differences were observed between treatment 

levels. Statistical significance is indicated by bold numbering and asterisks p<0.05 p<0.01 
( ** ), p<0.001 ( *** ). Values are mean (SID) (n = 42). 

Species biomass (kg tree") 

Treatment Alnus Sig Populus Sig Salix Sig 

High water Regime 0.072 (0.037) 0.120 (0.060) 0.122 (0.030) 

Low Water Regime 0.041 (0.017) 0.067 (0.025) 0.069 (0.024) 

Deep Sediment 0.071 (0.036) 0.108 (0.059) 0.100 (0.042) 

Shallow Sediment 0.047 (0.028) 0.082 (0.045) 0.088 (0.035) 

Shaded 0.063 (0.026) 0.111 (0.062) 0.106 (0.039) 

Non-Shaded 0.055 (0.040) 0.077 (0.036) 0.081 (0.033) 
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Shaded vs. Non-Shaded Treatments, and Sediment Depth 

The shade structures proved to be effective, as shaded treatments received significantly less 

(p<0.001) PAR (0.54 ± 0.26 mmol m" s*') than the non-shaded treatments did 

(1.70 ± 0.11 mmol m-1 s-1). Mean PAR close to the bank and close to the water at the WNCC site 

were 0.30 ± 0.40 and 1.24 ± 0.55 mmol m" s" respectively (n = 78), when measured at the same 

time of year, on a day with similar weather. Thus the levels of light were a little higher during the 

current pot study than at the WNCC site. Measurement of PAR depends very much on the 

conditions of the day, and readings vary throughout the day. Thus, in reality, a direct, accurate 

comparison cannot be made of the degree of shading between the sites. Neither the shading 

treatment nor differential sediment depth, significantly affected any of the measured environmental 

variables presented in Table 8.3, and therefore they are not shown. 

8.3.3 Biomass Production 

Over all treatments, Alnus glutinosa produced lower biomass on average (0.059 ± 0.033 kg tree") 

than did Populus Trichobel (0.094 ± 0.053 kg tree-) or Salix Tora (0.094 ± 0.038 kg tree*'). The 

high- and low-watering regimes had a significant effect on the biomass of all tree species (Table 

8.4) with all species producing higher biomass under wetter conditions. This is in agreement with 

the findings of Watt et aL (2003) and of Martin and Stephens (2005). Indeed, the top 3 yields for all 

species were under wet conditions (Table 8.5). Sediment depth had a significant effect only on 

Alder biomass, and shading only on willow biomass (Table 8.4). The increased biomass in the 

shaded willows is likely to have been due to increased tree height. The final measure of tree 

heights gave the average height of shaded willows as 193 ± 42 cm and of non-shaded willows as 

161 ± 41 cm. However, this effect is not seen at the canal site. This discrepancy suggests that the 

shading effect of the hawthorn hedge on the canal planting platform is not one of the dominant 

factors affecting tree height there. Figure 8.1 shows willows close to the canal bank and close to 

the canal water. Those willows close to the bank do not appear to be exhibiting stem elongation 

and strong apical dominance, as they would be if the phytochrome photoequilibria were dominated 

by Pr. Stem elongation would have been expected due to the shaded conditions, whereas height 
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stunting would be normally occur in a high light intensity environment. Instead willow growth at the 

field site appears to have been stunted by a mechanism other than a response to light. 

Table 8.5 details tree biomass production by treatment combination. Biomass production in Alnus 

glutinosa was significantly different between treatments (p = 0.049, GLM 3-way ANOVA). However, 

owing to the small number of replicates and the non-parametric nature of the data, it was not 

possible to determine which were statistically different using Mann-Whitney U tests. Both the poplar 

and willow produced their highest biomass yields in the treatment combination with a high 

watering regime, deep sediment and shaded conditions. This combination led to the second 

highest biomass production in the alder. The highest alder biomass production occurred under the 

same sediment conditions as willow and poplar, but un-shaded, rather than shaded (Table 8.5). It 

was hypothesised that the conditions at the WNCC site that yielded the highest biomass production 

were wetter, deeper sediment and sunnier conditions. Therefore, the results of the current study 

appear to confirm this hypothesis in the case of Alnus glutinosa. The willow and poplar data are in 

agreement with this hypothesis for water content and sediment depth. The lowest biomass 

production by willow and poplar was in those treatments with low watering regime, shallow and un- 

shaded sediment. That shading did not produce the same results at the canal site as in this study 

has already been discussed. The treatment which led to the highest biomass yield also led to the 

lowest bioaccumulation of Zn and (mean) Cd in the stems of Safix Tora (Fig. 8.4). This pattern was 

not so evident in poplar or alder stems. Sediment depth and watering regime appear to have had 

the largest effect on tree biomass production in the current study. 

8.3.4 Heavy Metal Behaviour 

Lower pH in treatments with the low watering regime (compared to the higher watering regime) 

may have caused higher mobilisation of heavy metals. There were no significant differences In 

extractability of metals between any of the tree species, or with the "no tree" treatment, for any of 

the heavy metals of interest. Thus the data have been grouped, regardless of species. Results of 

the calcium chloride, EDTA and total metal extractions are presented in Table 8.6. When compared 

to Figures 7.1 and 7.2, some differences in element content and behaviour are evident. Sediment 
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Table 8.6 Metal extracted (mg kg"') from the experimental sediment at 
the beginning of the experiment "Initial" in June 2003, and at the final 

sediment sampling time "Final" 15 months later. There were no 
significant differences between species or in the presence or absence 

of a tree. Thus the data has been pooled for all pots. For details of 
extraction processes see Chapter 7, as referenced in section 8.2.3. 
Loss of total metal is due mostly to leaching loss from the free- 

draining pots. Values are mean (SID), for "Initial" samples n= 12, for 
"Final" samples n= 96. 

Metal Time 
CaC12 

Extractant 

EDTA Acid 

Cd Initial 1.81(1.01) 2.24(1.12) 7.50(1.79) 

Final 0.57(0.51) 0.32(0.47) 3.51 (1.46) 

Cu Initial 9.20(17.3) 110(26) 395(112) 

Final 35.1 (14.5) 95(23) 309(69) 

Pb Initial 3.96(5.68) 381 (117) 693(195) 

Final 19.6(8.6) 292(84) 7.5(166) 

Zn Initial 823(392) 735(340) 2116(691) 

Final 121 (162) 547(112) 411 (529) 

162 



used for the current study had lower initial total pollutant concentrations than the planting platform 

sediment, which may partly explain the lower incidence of toxicity symptoms in the experimental 

trees in the current study relative to those at the field site. Zinc toxicity was highlighted as the most 

likely cause of toxicity symptoms in the experimental trees at the WNCC site (Chapter 7). Initial and 

final concentrations of total Zn were roughly comparable between the two experiments, though 

EDTA-extractable Zn was higher in the current study, and CaC12-extractable Zn lower. Loss of total 

Zn and Cd occurred over time (due to the free-draining pots) during the current study, as at the 

canal site. For a discussion of this trend see Chapter 7. 

When sediment metals were extracted with CaC12 at the end of the first growing season, Cd was 

significantly (p = 0.050), and Zn almost significantly (p = 0.052), different between high and low 

water regimes. Cadmium concentration was higher in the low water regime treatment (1.81 ± 0.71 

mg kg-1) when compared with the high water regime treatment (1.58 ± 1.03 mg kg*'). The same 

pattern was evident for the Zn concentrations (421 ± 221 mg kg-1 and 333 ± 163 mg kg", 

respectively). This may be due to increased oxidation in the low water regime treatments, leading 

to increased Cd and Zn lability (See the discussion of this in Chapter 3 and Chapter 4). 

Fifteen months after establishment of the experiment, total concentrations of Cd and Zn In the 

sediment exhibited significant differences between the shallow and deep sediment treatments 

(p < 0.05). The shallow sediment treatment retained higher total Cd and Zn concentrations than the 

deep sediment treatments (Fig. 8.5). There had been no significant difference between these 

treatments before 15 months and the reason for the difference is unknown. None of the other 

treatments caused significant differences in total metal concentration. 

Calcium chloride extractable concentrations of Cu, Pb and Zn at the sampling time of 15 months 

were significantly different (p < 0.05) between the deep and shallow sediment treatments 

(Table 8.6). Calcium chloride-extractable Cd concentration was not significantly different between 

these treatments (p = 0.096) due to high variation within the data. Higher mean concentrations of 

CaC12-extractable Zn and Cd were present in shallow sediment than the deep sediment treatments. 

The converse was true for Pb and Cu. 
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No chemical method of measuring heavy metal extractability correlated well with biomass 

production, and no severe toxicity symptoms were observed in the pot experiment. However, 

Figure 8.4 shows that heavy metal bioavailability and hence bioaccumulation, were lower in the 

treatment which produced the highest willow biomass. Also, mean uptake of Cd and Zn into willow 

stems was lower than uptake rates seen at the canal site (Chapter 7). Uptake of Zn into alder and 

poplar stems was respectively - 9% and 20 % lower in the current experiment than at the canal 

site (data not shown). Uptake of Cd for the latter two species was comparable between the 

experiments. Thus, though no extractants accurately predicted metal bioavailability in the current 

study, Cd and Zn bioavailability of heavy metals may also have had an effect on biomass 

production. 

During the 2004 growing season, it was very clear that the decreased biomass production at the 

field site was occurring along a path of compacted sediment, which had been unintentionally 

formed along the site over the course of the field trial. This pattern had not been evident at the start 

of the current study. However, it is likely that soil compaction also affected biomass production at 

the experimental site. In previous studies, soil compaction has been found to reduce biomass 

yields in Salix viminafis (Martin and Stephens, 2005). Soil compaction has negative effects on root 

growth, with roots mechanically impeded by the compacted soil. Reduced root length, increased 

root diameter and alteration to lateral rooting patterns can adversely affect the function of root 

systems (Scott et aL, 2005). 

8.4 Conclusion 

The two factors tested in the pot experiment which had the largest effect on biomass production 

were moisture regime and sediment depth. Lower sediment moisture content and shallower 

sediment produced the lowest biomass yields in the experimental trees. As well as having the least 

beneficial physical conditions, these treatments had the highest CaC12, extractable concentrations 

of Cd and Zn of their treatment level pairs. Heavy metal toxicity and low sediment pH may have 

been the major causes of toxicity to the experimental trees both in the pot experiment and at the 

WNCC canal field site (Chapter 7). Total concentrations of Cd and Zn were higher in the shallow 
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sediment after 15 months. Biomass production at the WNCC field site was also lower in the drier, 

shallower sediment close to the bank, than in the deeper, wetter sediment close to the canal water. 

Shade appeared not to be a factor affecting the low biomass production close to the bank at the 

canal site as, in the current study, shade tended to increase willow biomass production. Treatment 

combination appeared to affect Cd and Zn bioavailability to Safix Tora, with the lowest 

bioaccumulation occurring in the wetter, deeper, shaded sediment. However, this was not true for 

Populus Trichobel or Alnus glutinosa. It can therefore be concluded that, of the factors tested, 

sediment depth and moisture content had the largest effects on biomass production in this 

experiment. Biomass production was highest both in the current study, and at the canal site, when 

the sediment was deeper and had a higher moisture content. Therefore, to increase biomass 

production near the canal bank and reduce the possible toxic effects of metals, the sediment depth 

and moisture content should be increased. However, a decrease in heavy metal bioavallability may 

also reduce the viability of phytoremediation at the site. 
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CHAPTER 9 

General Discussion and Conclusions 

The Woolston New Cut Canal sediment is a novel substrate for study. It is high in organic carbon, 

contains relatively high concentrations of both organic and inorganic pollutants, and undergoes 

very significant acidification during oxidation owing to the lack of a carbonate mineral phase. Both 

this acidification and the change in redox potential itself, caused large changes in both the 

fractionation and the lability of heavy metals within the sediment. There is an almost total lack of 

literature regarding sediments which readily acidify upon oxidation. Sediments containing 

significant carbonate phases have been the focus of many studies (Caille et aL, 2003, Tack et aL, 

1996, Tack et aL, 1998, Tack et aL, 1999), whereas information pertaining to sediments lacking this 

phase is limited (Gambrell et aL, 1991). 

The use of an anoxic sequential extraction procedure appeared to approximately estimate Zn 

lability during oxidation, though not the lability of Cu (Chapters 3 and 4). Labile and NH4CI- 

extractable Zn both underwent massive increases as the sediment became more oxidised. These 

results suggest that the labile forms of Zn in the oxidising WNCC sediment were also readily 

extracted by weak extractants such as water or 0.1 M NH4CI solution. Zinc Is a phytotoxic heavy 

metal and such high concentrations of labile Zn could pose a significant toxic hazard to species 

growing in oxidising sediment. Little increase in NH4CI-extractable Cu occurred during oxidation, 

though labile Cu increased very significantly. Therefore, labile forms Of Cu are not necessarily 

extractable with weak extractants, and as a result, a sequential extraction technique alone may 

underestimate Cu lability in this sediment. Copper is also a phytotoxic metal and to underestimate 

lability may be to underestimate phytotoxicity of the sediment. 

Waterlogging and anoxia may cause terrestrial plant mortality in the sediment when it Is first 

dredged, though available heavy metal concentrations would be very low. This may benefit those 

flood-tolerant species such as Salix, by reducing weed competition. Drying of the sediment, 

oxidation, decreased pH and increased heavy metal lability led to increased phytotoxicity, 
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especially to the broadleaved species Brassica napus in the root elongation assay. Lolium 

multiflorum exhibited different rooting behaviour to B. napus making determination of phytotoxicity 

difficult. 

The severe phytotoxicity associated with the oxidised sediment can however be abated via the use 

of amendment materials. The addition of lime to raise the pH, and thus decrease heavy metal 

phytoavailability, proved to be very successful in increasing biomass, though phytoaccumulation 

decreased (Chapter 6). Addition of K2HP04 in combination with lime, reduced the proportion of soil 

solution heavy metals present as free ions compared to the addition of lime alone. The effect of the 

extra phosphate addition may have been responsible for improved plant biomass production, and 

plant uptake of heavy metals was also decreased further. 

Addition of amendments to the WNCC would be a possibility to increase the sediment ph and 

decrease the toxicity of heavy metals. Lime was not an effective amendment at the 1% level and 

thus addition of 2.5 % lime would be necessary to control heavy metal mobility. However, this 

would probably not be an economically viable option on a field scale. Even the addition of lime at 

the 2.5 % level may not have been sufficient to reduce heavy metal availability in the long-term as, 

for this treatment, the pore water concentrations of Cd, Cr and Zn post-growth of Loffum multiflorum 

were higher than the pro-growth concentrations, suggesting increased mobilisation over the 

growing period. The addition of lime at the 5% level was sufficient that no increase in mobility 

occurred during the experimental period (Chapter 6). However, addition at this rate would mean 

total addition of 2000 t of lime to the Woolston New Cut Canal site, were all of the sediment 

(40 000 t) to be dredged, which would certainly not be economically viable. 

The equilibrium concentration (Cj of heavy metals, as calculated using DGT techniques, 

correlated well with plant uptake of Cu, Zn, and to a lesser extent Pb. Linear regression showed 

that this technique could be used to accurately predict uptake of Cu (ý = 0.979) and Zn (e = 0.908) 

by Lolium multifidnim in this sediment, for a range of amendments. The discrepancy between C, 

and the actual sediment solution concentrations of heavy metals was evidence for resupply of 

solution heavy metals from solid-phases. Analysis of flux data proved that this was Indeed the 
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case. The addition of the lime and lime/K2HP04 amendments reduced the flux of metals from the 

sediment solid phases into the solution phases. This reduced not only the solution concentrations 

of heavy metals, but also the rate at which they could be replenished when depleted. Flux of heavy 

metals in the WNCC sediment was much higher than soil fluxes reported by Lombi et al. (2002). 

The sediment also reacted differently to the red mud amendment than did the soil studied by 

Lombi. The red mud amendment, which Lombi had reported as being the most efficient in a near- 

neutral soil, was the least effective in this acidic sediment. This result highlights the need for further 

study of acidifying sediments and proves that results reported for soils and pH-buffered sediments 

are not necessarily transferable to naturally-acidifying sediments. 

Under field conditions, the sediment displayed phytotoxicity below what would have been expected 

from the results of the laboratory studies due to the slower rate of drying (rainfall) and the open 

system allowing metal leaching. Eight months after dredging, the pH of the sediment at the field. 

site had dropped to 3.8. As discussed, this decrease in pH will have led to increase availability of 

heavy metals. Rainfall at the field site appeared to lead to leaching of heavy metals from the 

sediment to the surrounding canal environment. Of all metals, loss of total concentrations of Zn 

was most pronounced over the 3-year period, and was perhaps the most significant, duo to its 

phytotoxicity. Such massive losses of total heavy metal concentrations were far above the 

observed phytoextraction which occurred over the same time period. The data also suggest that 

little phytostabilisation was occurring. Despite the high concentrations of available heavy metals, 

phytoextraction was relatively low compared to that reported in the literature (Vandecasteele ot at, 

2005, Laureysens et al., 2005). Mean biomass production was also low. However, both biomass 

production and phytoextraction differed significantly between species. Safix clones performed best 

for phytoextraction of Cd, Cu, Zn and Pb, though the Alnus species extracted high concentrations 

of Pb. Salix Tora and Salix Calodendron both produced high biomass and exhibited high 

phytoextraction potential compared to the other species. However, Safix Tora displayed a higher 

potential for food chain transfer of heavy metals than Safix Calodendron due to higher leaf metal 

concentrations. Thus, of those tested, Calodendron would be the recommended SRC clone. The 

results presented in Chapter 6 suggest that addition of an amendment to reduce the acidity of the 

sediment would not only reduce loss of heavy metals through leaching (and thus reduce 
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environmental pollution), but may also increase biomass production at the experimental site. This 

may increase the viability of phytoremediation of the site. However, a balance would have to be 

reached between reduction of phytotoxicity and heavy metal leaching, and phytoavailability for 

phytoextraction. 

Differential growth of trees at the canal site led to an investigation into factors affecting biomass 

production, and thus phytoremediation, at the site. The pot experiment in which moisture regime, 

sediment depth and shading were investigated is presented in Chapter 8. The pot experiment 

appeared to fairly well model heavy metal behaviour at the canal site in terms of loss of total heavy 

metal content, acidification of the sediment and differential biomass production. The results 

highlight the need for control of physical as well as chemical conditions during phytoremediation to 

optimise biomass production and phytoextraction. Shading of the experimental trees at the canal 

site did not produce the expected stem elongation (which did occur during the pot experiment). 

This suggested that shade was not a dominant factor affecting tree biomass at the field site. 

Sediment depth and moisture content appeared to be having the dominant effects on biomass 

production, both at the field site and in the pot experiment. Higher biomass production occurred In 

wetter, deeper sediments than in shallower, drier sediments. Coupled with the physical conditions, 

the wetter, deeper sediment exhibited lower heavy metal availability and a higher pH. Thus, 

physical and chemical sediment properties were not independent of each other and must be 

considered in conjunction when managing the sediment. Continued dredging and planting of the 

sediment in the manner described in Chapter 7 and Royle et at (2003), without further 

management or treatment, would not be recommended owing to the inability of the current 

phytoremediation scheme to control leaching losses of heavy metals from the site. 

Phytoremediation of the WNCC sediment also included the phytodegradation of organic pollutants 

(TPH and PAH). Total concentrations of TPH in the field-site sediment decreased over the 3-year 

time period, though levels of PAH did not. This was possibly due to an Interaction between the TPH 

and the PAH, reducing the bioavailability of the PAH and thus its degradation. The presence of 

TPH in the sediment may also have affected heavy metal bioavailability in a similar manner. It was 

more difficult to re-wet dry sediment from the WNCC, than from The University of Liverpool Botanic 
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Gardens at Ness. This was most probably due to the sorption of hydrophobic compounds onto 

sediment particles during drying (Jonker et aL, 2003). If organic matter and other sediment 

exchange sites were occupied by organic contaminants, then the number of heavy metal binding 

sites would be reduced. Thus, the dual contamination of this sediment may alter its metal sorbing 

properties with respect to sediments free of organic contamination. Once again, this would make 

the sediment a novel subject for study. Other reported methods of remediation of organic 

contaminant pollution such as composting (Semple et aL, 2001) and landfarming (Huang et aL, 

2004) would be faster and more effective treatments for the organic contamination in this sediment 

than the phytoremediation scheme employed in the current study. 

In conclusion, oxidation of the anoxic sediment led to a decrease in pH and large increases in 

heavy metal mobility and lability. This in turn led to high phytotoxicity and heavy metal leaching 

potential. Leaching under field conditions led to significant decreases in total heavy metal 

concentrations and thus most probably to the pollution of the surrounding environment. Extraction 

of metals by trees tended to be lower than that reported in the literature, but could possibly be 

improved by manipulating the physical and chemical aspects of the sediment at the site. Dredging 

of the sediment would not be recommended unless control of pH and heavy metal lability upon 

oxidation could be controlled and effectively managed in the long term. Features already discussed 

make this sediment a novel substrate for study. 

The data presented in this thesis show that dredging of the relatively inert anoxic sediment caused 

immobilised heavy metals (bound as sulphides) to mobilise. The pH of the sediment was 

significantly decreased, further increasing the problem of mobile heavy metals. Leaching led to loss 

of heavy metals form the sediment into the canal water, and thus pollution of this medium. The 

amendments tested proved to be ineffective at economically viable addition rates. Owing to the low 

economic value of the site and the lack of a pathway for the metals In the anoxic, submerged 

sediment to affect human receptors, the best option for the site at the current moment would be to 

leave it as a wildlife corridor. For as long as the sediment is submerged it poses minimum risk to 

human health or ecosystem health. It would therefore be recommended to ensure that there Is at 

least 1m depth of water in the canal channel at all times so that the sediment is continuously 
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submerged. The canal currently contains many species including tree species, reeds, grasses, 

rushes, frogs, water fowl and small rodents as well as invertebrates. Any large-scale remediation 

strategy would have to cause significant damage to the ecosystem in order to try to remediate the 

sediment, only to try and re-store the ecosystem afterwards. Considering the lack of the pathway 

link when the sediment is submerged, the cost and benefits of this kind of work are not obvious. 

Therefore the recommended course of action in this case is the continued submergence of the 

sediment. 
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APPENDIX 1 

Concentration of elements and contaminants in the Woolston New Cut Canal sediment as reported 

by three WAS accredited laboratories. 
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APPENDix 2 

Mean values and relative standard deviations (RSD) for heavy metal concentrations in the 

sequential extraction samples (Chapter 3). 
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APPENDix 3 

The General Linear Model derived p-values and F statistics for date and depth during the 

sequential extraction (Chapter 3). Degrees of freedom of date = 11, df of depth = 2. 

Metal Factor NH4Cl 

pF 

NaOAc 

p 

Extractant 

Dithionite 

FP F 

Acid 

p F 

Cd Date 0.005 2.65 0.002 2.99 < 0.001 10.58 < 0.001 6.32 

Depth < 0.001 10.42 0.283 1.28 0.001 7.33 0.039 3.33 

Cr Date < 0.001 7.77 < 0.001 27.59 < 0.001 33.15 < 0.001 12.12 

Depth 0.005 5.59 0.510 0.68 0.270 1.32 0.479 0.74 

Cu Date 0.005 1.44 < 0.001 4.69 < 0.001 4.83 < 0.001 6.74 

Depth 0.342 1.08 0.040 3.32 0.097 2.38 0.573 0.56 

Fe Date < 0.001 10.04 0.006 3.51 < 0.001 3.90 < 0.001 14.19 

Depth < 0.001 13.38 0.001 7.97 < 0.001 13.63 0.399 0.93 

Pb Date < 0.001 3.37 0.076 1.43 < 0.001 3.40 < 0.001 7.09 

Depth < 0.001 18.94 0.069 2.73 0.480 0.74 0.566 0.57 

Zn Date < 0.001 11.87 < 0.001 7.98 0.004 2.73 0.006 2.58 

Depth < 0.001 44.46 0.193 1.67 0.025 3.82 < 0.001 10.96 
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APPENDIX 4 

ANOVA on pore water data (Chapter 6) showing significant differences between treatments on 

pore water heavy metal concentrations. 

Sum of 
Squares df Mean Square F Sig. 

Cu Between 
45936.584 7 6562.369 278.451 . 000 

Groups 
Within 

1484.745 63 23.567 
Groups 
Total 47421.329 70 

Zn Between 22255479. 
7 3179354.151 125.103 . 000 

Groups 059 

Within 1601080.3 
63 25413.973 

Groups 30 

Total 23856559. 
70 

389 

Cr Between 
47.167 7 6.738 205.287 . 000 

Groups 
Within 

2.068 63 . 033 
Groups 
Total 49.235 70 

Pb Between 
180.132 7 25.733 268.857 . 000 

Groups 
Within 

6.030 63 . 096 
Groups 
Total 186.161 70 

Cd Between 
289.657 7 41.380 129.480 . 000 

Groups 
Within 

20.134 63 . 320 
Groups 
Total 309.791 70 

Below: 
Heavy metal concentrations in pore waters pre and post growth. Values are mean (SID). Below that 

are the results of an ANOVA on the data and a Tamhamne posthoc test to show significiant 
differences between the treatments. 
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ANOVA 

Sum of 
S uares df Mean Square F Sig. 

Cu Between 

F45936.584 

7 6562.369 278.451 . 000 Groups 
Within 1484.745 63 23.567 
Groups 
Total 47421.329 70 

Zn Between 22255479. 7 3179354.151 125.103 . 000 Groups 059 
Within 1601080.3 63 25413.973 
Groups 30 
Total 23856559. 70 389 

Cr Between 47.167 7 6.738 205.287 . 000 
Groups 
Within 2.068 63 . 033 
Groups 
Total 49.235 70 

Pb Between 180.132 7 25.733 268.857 . 000 
Groups 
Within 6.030 63 . 096 
Groups 
Total 186.161 70 

Cd Between 289.657 7 41.380 129.480 . 000 
Groups 
Within 20.134 63 . 320 
Groups 
Total 1 309.791 1 70 1 1 1 
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Multiple Comparisons 

Tnmh, qnp 

Dep 
ende 
nt 
Vari 
able 

(1) 
Ame 
ndm 
ent 

W 
Ame 
ndm 

(J) (J) 
me m 

ent 

E 

Mean 
Difference (I-J) Std. Error Sig. 95% Confidence Interval 

I 

_ 

I Lower Bound Upper Bound 
Cu 12 58.62111 2.66115 . 000 46.5448 70-6975 

5 7.77111 4.17092 . 908 -7.8892 23.4314 
6 33.63778(*) 3.10925 . 000 21.5746 45.7010 
7 56.36000(*) 2.74856 . 000 44.4775 68-2425 
8 65.99778(*) 2.65086 . 000 53.8887 78.1068 
9 65.69472(*) 2.65100 . 000 53.5861 77-8033 
10 65.89444(*) 2.65083 . 000 53.7853 78.0036 

21 -58.62111 (*) 2.66115 . 000 -70.6975 -46.5448 
5 -50.85000(*) 3.22875 . 000 -65.5331 -36.1669 
6 -24.98333(*) 1.64186 . 000 -32.3563 -17.6104 
7 -2.26111 . 76344 . 341 -5.5059 . 9837 
8 7.37667(*) . 23516 . 000 6.3076 8.4457 
9 7.07361 (*) . 23671 . 000 6.0091 8.1381 
10 7.27333(*) . 23488 . 000 6.2034 8.3432 

51 -7.77111 4.17092 . 908 -23.4314 7.8892 
2 50.85000(*) 3.22875 . 000 36.1669 65.5331 
6 25.86667(*) 3.60702 . 000 11.4589 40.2744 
7 48.58889(*) 3.30117 . 000 34.0892 63.0886 
8 58.22667(*) 3.22027 . 000 43.5164 72.9370 
9 57.92361 (*) 3.22039 . 000 43.2137 72.6335 
10 58.12333(*) 3.22025 . 000 43.4130 72.8337 

61 -33.63778(*) 3.10925 . 000 -45.7010 -21.5746 
2 24.98333(*) 1.64186 . 000 17.6104 32.3563 
5 -25.86667(*) 3.60702 . 000 -40.2744 -11.4589 
7 22.72222(*) 1.78005 . 000 15.4799 29.9646 
8 32.36000(*) 1.62513 . 000 24.9369 39.7831 
9 32.05694(*) 1.62535 . 000 24.6346 39.4793 
10 32.25667(*) 1.62509 . 000 24.8335 39.6799 

71 -56.36000(*) 2.74856 . 000 -68.2425 -44.4775 
2 2.26111 . 76344 . 341 -. 9837 5.5059 
5 -48.58889(*) 3.30117 . 000 -63.0886 -34.0892 
6 -22.72222(*) 1.78005 . 000 -29.9646 -15.4799 
8 9.63778(*) . 72675 . 000 6.3196 12.9560 
9 9.33472(*) . 72726 . 000 6.0182 12.6513 
10 9.53444(*) . 72666 . 000 6.2159 12.8530 

81 -65.99778(*) 2.65086 . 000 -78.1068 -53.8887 
2 -7.37667(*) . 23516 . 000 -8.4457 -6.3076 
5 -58.22667(*) 3.22027 . 000 -72.9370 -43-5164 
6 -32.36000(*) 1.62513 . 000 -39.7831 -24.9369 
7 -9.63778(*) . 72675 . 000 -12.9560 -6.3196 
9 -. 30306(*) . 03692 . 000 -. 4537 -. 1524 
10 -. 10333(*) . 02235 . 009 -. 1877 -. 0189 

91 -65.69472(*) 2.65100 . 000 -77.8033 -53.5861 
2 -7.07361 (*) . 23671 . 000 -8.1381 -6.0091 
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5 
6 
7 
8 
10 

10 1 
2 
5 
6 
7 
8 
9 

-57.92361 (*) 

-32.05694(*) 
-9.33472(*) 

. 30306(*) 

. 19972(*) 

-65.89444(*) 
-7.27333(*) 

-58.12333(*) 
-32.25667(*) 
-9.53444(*) 

. 10333(*) 
-. 19972(*) 

3.22039 
1.62535 

. 72726 

. 03692 

. 03514 
2.65083 

. 23488 
3.22025 
1.62509 

. 72666 

. 02235 

. 03514 

. 000 

. 000 

. 000 

. 000 

. 007 

. 000 

. 000 

. 000 

. 000 

. 000 

. 009 

. 007 

-72.6335 
-39.4793 
-12.6513 

. 1524 

. 0492 

-78.0036 
-8.3432 

-72.8337 
-39.6799 
-12.8530 

. 0189 
-. 3502 

-43.2137 
-24.6346 
-6.0182 

. 4537 

. 3502 

-53.7853 
-6.2034 

-43.4130 
-24.8335 
-6.2159 

. 1877 
-. 0492 

Zn 12 557.49667(*) 80.85170 . 001 222.1108 892.8825 
5 -245.79778 111.60245 . 706 -662.5074 170.9119 
6 155.00778 112.74516 . 997 -266.2607 576.2762 
7 474.44111 (*) 86.85938 . 003 134.2934 814.5888 
8 1240.60222(*) 75.30252 . 000 896.6157 1584.5888 
9 1241.36889(*) 75.30168 . 000 897.3796 1585.3582 
10 1241.30444(*) 75.30169 . 000 897.3152 1585.2937 

21 -557.49667(*) 80.85170 . 001 -892.8825 -222.1108 
5 -803.29444(*) 87.47239 . 000 -1170.5002 -436.0887 
6 -402.48889(*) 88.92571 . 031 -776.6732 -28.3046 
7 -83.05556 52.35326 . 983 -283.3893 117.2782 
8 683.10556(*) 29.44116 . 000 548.6309 817.5802 
9 683.87222(*) 29.43900 . 000 549.3905 818.3540 
10 683.80778(*) 29.43902 . 000 549.3261 818.2895 

51 245.79778 111.60245 . 706 -170.9119 662.5074 
2 803.29444(*) 87.47239 . 000 436.0887 1170.5002 
6 400.80556 117.58355 . 096 -37.5938 839.2049 
7 720.23889(*) 93.05360 . 000 350.8599 1089.6178 
8 1486.40000(*) 82.37045 . 000 1110.1255 1862.6745 
9 1487.16667(*) 82-36968 . 000 1110.8897 1863.4437 
10 1487.10222(*) 82.36969 . 000 1110.8252 1863.3792 

61 -155.00778 112.74516 . 997 -576.2762 266.2607 
2 402.48889(*) 88.92571 . 031 28.3046 776.6732 
5 -400.80556 117.58355 . 096 -839.2049 37.5938 
7 319.43333 94.42106 . 142 -56.4404 695.3071 
8 1085.59444(*) 83.91218 . 000 702.2770 1468.9119 
9 1086.36111 (*) 83.91143 . 000 703.0412 1469.6810 
10 1086.29667(*) 83.91143 . 000 702.9768 1469.6166 

71 -474.44111 (*) 86.85938 . 003 -814.5888 -134.2934 
2 83.05556 52.35326 . 983 . 117.2782 283.3893 
5 -720.23889(*) 93.05360 . 000 -1089.6178 -350.8599 
6 -319.43333 94.42106 . 142 -695.3071 56.4404 
8 766.16111 (*) 43.29361 . 000 568.4010 963.9212 
9 766.92778(*) 43.29214 . 000 569.1628 964.6927 
10 766.86333(*) 43.29215 . 000 569.0984 964.6282 

81 -1240.60222(*) 75.30252 . 000 -1584.5888 -896.6157 
2 -683.10556(*) 29.44116 . 000 -817.5802 -548.6309 
5 . 1486.40000(*) 82.37045 . 000 -1862.6745 -1110.1255 
6 -1085.59444(*) 83.91218 . 000 -1468.9119 -702.2770 
7 -766.16111 (*) 43.29361 . 000 -963.9212 -568.4010 
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9 
10 

91 
2 
5 
6 
7 
8 
10 

10 1 
2 
5 
6 
7 
8 
9 

. 76667 

. 70222 

-1241.36889(*) 
-683.87222(*) 

-1487.16667(*) 
-1086.36111 (*) 

-766.92778(*) 
-. 76667 

-. 06444 

-1241.30444(*) 
-683.80778(*) 

-1487.10222(*) 
-1086.29667(*) 
-766.86333(*) 

-. 70222 

. 06444 

. 35657 

. 35841 
75.30168 
29.43900 
82.36968 
83.91143 
43.29214 

. 35657 

. 03633 
75.30169 
29.43902 
82.36969 
83.91143 
43.29215 

. 35841 

. 03633 

. 842 

. 917 

. 000 

. 000 

. 000 

. 000 

. 000 

. 842 

. 966 

. 000 

. 000 

. 000 

. 000 

. 000 

. 917 

. 966 

-. 8622 

-. 9208 

-1585.3582 
-818.3540 

-1863.4437 
-1469.6810 
-964.6927 

-2.3955 
-. 2304 

-1585.2937 
-818.2895 

-1863.3792 
-1469.6166 
-964.6282 

-2.3253 
-. 1015 

2.3955 
2.3253 

-897.3796 
-549.3905 

-1110.8897 
-703.0412 
-569.1628 

. 8622 

. 1015 

-897.3152 
-549.3261 

-1110.8252 
-702.9768 
-569.0984 

. 9208 

. 2304 
Cr 12 2.10111 (*) . 11258 . 000 1.6129 2.5893 

5 
. 61222(*) . 16108 . 044 . 0108 1.2136 

6 1.57333(*) . 11556 . 000 1.0882 2.0585 
7 2.15111 (*) . 11072 . 000 1.6593 2.6429 
8 2.23444(*) . 10882 . 000 1.7373 2.7316 
9 2.23444(*) . 10882 . 000 1.7373 2.7316 
10 2.23111 . 10887 . 000 1.7342 2.7281 

21 -2.10111 . 11258 . 000 -2.5893 -1.6129 
5 . 1.48889(*) . 12222 . 000 -2.0228 -. 9550 
6 -. 52778(*) . 04843 . 000 -. 7113 -. 3443 
7 . 05000 . 03536 . 996 -. 0847 . 1847 
8 

. 13333(*) . 02887 . 047 . 0015 . 2652 
9 

. 13333(*) . 02887 . 047 . 0015 . 2652 
10 

. 13000 . 02906 . 053 -. 0013 . 2613 
51 -. 61222(*) . 16108 . 044 -1.2136 -. 0108 

2 1.48889(*) . 12222 . 000 . 9550 2.0228 
6 . 96111 (*) . 12497 . 001 . 4309 1.4914 
7 1.53889(*) . 12051 . 000 1.0014 2.0764 
8 1.62222(*) . 11876 . 000 1.0797 2.1648 
9 1.62222(*) . 11876 . 000 1.0797 2.1648 
10 1.61889(*) . 11881 . 000 1.0765 2.1613 

61 -1.57333(*) . 11556 . 000 -2.0585 -1.0882 
2 

. 52778(*) . 04843 . 000 . 3443 . 7113 
5 -. 96111 (*) . 12497 . 001 -1.4914 -. 4309 
7 

. 57778(*) . 04392 . 000 . 4034 . 7522 
8 . 66111 . 03889 . 000 . 4835 . 8388 
9 

. 66111 . 03889 . 000 . 4835 . 8388 
10 

. 65778(*) . 03903 . 000 . 4806 . 8350 
71 -2.15111 (*) . 11072 . 000 -2.6429 -1.6593 

2 -. 05000 . 03536 . 996 -. 1847 . 0847 
5 . 1.53889(*) . 12051 . 000 -2.0764 -1.0014 
6 -. 57778(*) . 04392 . 000 -. 7522 -. 4034 
8 

. 08333 . 02041 . 094 -. 0099 . 1766 
9 

. 08333 . 02041 . 094 -. 0099 . 1766 
10 . 08000 . 02068 . 114 -. 0125 . 1725 

81 . 2.23444(*) . 10882 . 000 -2.7316 -1.7373 
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2 -. 13333(') . 02887 . 047 -. 2652 -. 0015 
5 -1.62222(*) . 11876 . 000 -2.1648 -1.0797 
6 -. 66111(') . 03889 . 000 -. 8388 -. 4835 
7 -. 08333 . 02041 . 094 -. 1766 . 0099 
9 . 00000 . 00000 . 0000 . 0000 
10 -. 00333 . 00333 1.000 -. 0186 . 0119 

91 -2.23444(*) . 10882 . 000 -2.7316 -1.7373 
2 .. 13333(*) . 02887 . 047 -. 2652 -. 0015 
5 -1.62222(*) . 11876 . 000 -2.1648 -1.0797 
6 -. 66111(') . 03889 . 000 -. 8388 -. 4835 
7 -. 08333 . 02041 . 094 -. 1766 . 0099 
8 . 00000 . 00000 . 0000 . 0000 
10 -. 00333 . 00333 1.000 -. 0186 . 0119 

10 1 . 2.23111 (*) . 10887 . 000 -2.7281 -1.7342 
2 -. 13000 . 02906 . 053 -. 2613 . 0013 
5 -1.61889(*) . 11881 . 000 -2.1613 -1.0765 
6 -. 65778(*) . 03903 . 000 -. 8350 -. 4806 
7 -. 08000 . 02068 . 114 -. 1725 . 0125 
8 . 00333 . 00333 1.000 -. 0119 . 0186 
9 . 00333 . 00333 1.000 -. 0119 . 0186 

Pb 12 . 69889 . 18281 . 060 -. 0191 1.4169 
5 -1.22889(*) . 18877 . 000 -1.9574 -. 5003 
6 . 31000 . 18313 . 967 -. 4084 1.0284 
7 1.03222(*) . 22653 . 009 . 1877 1.8768 
8 3.36222(*) . 16022 . 000 2.6379 4.0866 
9 2.81486(*) . 17486 . 000 2.1038 3.5259 
10 3.35667(*) . 16401 . 000 2.6411 4.0722 

21 -. 69889 . 18281 . 060 -1.4169 . 0191 
5 -1.92778(*) . 13543 . 000 -2.4341 -1.4215 
6 -. 38889 . 12745 . 193 -. 8640 . 0863 
7 . 33333 . 18445 . 938 -. 3923 1.0590 
8 2.66333(*) . 09153 . 000 2.2579 3.0688 
9 2.11597(*) . 11524 . 000 1.6788 2.5531 
10 2.65778(*) . 09801 . 000 2.2577 3.0578 

51 1.22889(*) . 18877 . 000 . 5003 1.9574 
2 1.92778(*) . 13543 . 000 1.4215 2.4341 
6 1.53889(*) . 13586 . 000 1.0311 2.0466 
7 2.26111 . 19035 . 000 1.5253 2.9970 
8 4.59111 . 10292 . 000 4.1324 5.0498 
9 4.04375(*) . 12448 . 000 3.5671 4.5204 
10 4.58556(*) . 10872 . 000 4.1340 5.0371 

61 -. 31000 . 18313 . 967 -1.0284 . 4084 
2 . 38889 . 12745 . 193 -. 0863 . 8640 
5 -1.53889(*) . 13586 . 000 -2.0466 -1.0311 
7 . 72222 . 18476 . 052 -. 0039 1.4483 
8 3.05222(*) . 09216 . 000 2.6439 3.4606 
9 2.50486(*) . 11574 . 000 2.0656 2.9441 
10 3.04667(*) . 09860 . 000 2.6438 3.4496 

71 -1.03222(*) . 22653 . 009 -1.8768 -. 1877 
2 -. 33333 . 18445 . 938 -1.0590 . 3923 
5 -2.26111(') . 19035 . 000 -2.9970 -1.5253 
6 -. 72222 . 18476 . 052 -1.4483 . 0039 
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8 2.33000(*) . 16209 . 000 1.5971 3.0629 
9 1.78264(*) . 17656 . 000 1.0634 2.5019 
10 2.32444(*) . 16583 . 000 1.6003 3.0486 

81 -3.36222(*) . 16022 . 000 -4.0866 -2.6379 
2 -2.66333(*) . 09153 . 000 -3.0688 -2.2579 
5 -4.59111 (*) . 10292 . 000 -5.0498 -4.1324 
6 -3.05222(*) . 09216 . 000 -3.4606 -2.6439 
7 . 2.33000(*) . 16209 . 000 -3.0629 -1.5971 
9 -. 54736(*) . 07438 . 002 -. 8900 -. 2047 
10 -. 00556 . 04309 1.000 -. 1806 . 1695 

91 -2.81486(*) . 17486 . 000 -3.5259 -2.1038 
2 -2.11597(*) . 11524 . 000 -2.5531 -1.6788 
5 . 4.04375(*) . 12448 . 000 -4.5204 -3.5671 
6 -2.50486(*) . 11574 . 000 -2.9441 -2.0656 
7 -1.78264(*) . 17656 . 000 -2.5019 -1.0634 
8 . 54736(*) . 07438 . 002 . 2047 . 8900 
10 . 54181 (*) . 08222 . 001 . 2059 . 8778 

10 1 -3.35667(*) . 16401 . 000 -4.0722 -2.6411 
2 -2.65778(*) . 09801 . 000 -3.0578 -2.2577 
5 -4.58556(*) . 10872 . 000 -5.0371 -4.1340 
6 -3.04667(*) . 09860 . 000 -3.4496 -2.6438 
7 -2.32444(*) . 16583 . 000 -3.0486 -1.6003 
8 . 00556 . 04309 1.000 -. 1695 . 1806 
9 -. 54181 (*) . 08222 . 001 -. 8778 -. 2059 

Cd 12 2.42000(*) . 25005 . 000 1.4328 3.4072 
5 -. 99667 . 41723 . 601 -2.6132 . 6199 
6 

. 82556 . 33097 . 495 -. 4117 2.0628 
7 1.84778(*) . 27288 . 000 . 8133 2.8823 
8 4.54111 (*) . 22047 . 000 3.5409 5.5413 
9 4.39153(*) . 22588 . 000 3.4041 5.3789 
10 4.50778(*) . 22204 . 000 3.5120 5.5035 

21 -2.42000(*) . 25005 . 000 -3.4072 -1.4328 
5 -3.41667(*) . 37440 . 000 -4.9998 -1.8336 
6 -1.59444(*) . 27503 . 003 -2.7004 -. 4885 
7 -. 57222 . 20140 . 298 -1.3357 . 1912 
8 2.12111 (*) . 12128 . 000 1.5793 2.6629 
9 1.97153(*) . 13084 . 000 1.4376 2.5055 
10 2.08778(*) . 12411 . 000 1.5516 2.6240 

51 . 99667 . 41723 . 601 -. 6199 2.6132 
2 3.41667(*) . 37440 . 000 1.8336 4.9998 
6 1.82222(*) . 43266 . 023 . 1719 3.4726 
7 2.84444(*) . 39002 . 000 1.2627 4.4262 
8 5.53778(*) . 35533 . 000 3.9189 7.1566 
9 5.38819(*) . 35871 . 000 3.7792 6.9972 
10 5.50444(*) . 35630 . 000 3.8886 7.1203 

61 -. 82556 . 33097 . 495 -2.0628 . 4117 
2 1.59444(*) . 27503 . 003 . 4885 2.7004 
5 -1.82222(*) . 43266 . 023 -3.4726 -. 1719 
7 1.02222 . 29593 . 105 -. 1158 2.1602 
8 3.71556(*) . 24844 . 000 2.5868 4.8443 
9 3.56597(*) . 25325 . 000 2.4495 4.6824 
10 3.68222(*) . 24983 . 000 2.5576 4.8068 
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91 
2 
5 
6 
7 
8 
10 

10 1 
2 
5 
6 
7 
8 
9 

The mean differencc 

-1.84778(*) 
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2.66000(*) 
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-2.12111 
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-. 14958 
-. 03333 

-4.39153(*) 
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. 14958 

. 11625 
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-. 11625 
is significant at tl 
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-2.8823 
-. 19121 

-4.4262 
-2.1602 
1.9569 
1.8199 
1.9289 

-5.5413 
-2.6629 
-7.1566 
-4.8443 
-3.4297 
-. 3966 
-. 1832 

-5.3789 
-2.5055 
-6.9972 
-4.6824 
-3.2676 
-. 0975 

-. 1326 

-5.5035 
-2.6240 
-7.1203 
-4.8068 
-3.3911 
-. 1165 

-. 3651 

-. 8133 
1.3357 

-1.2627 
. 1158 

3.4297 
3.2676 
3.3911 

-3.5409 
-1.5793 
-3.9189 
-2.5868 
-1.9569 

. 0975 

. 1165 
-3.4041 
-1.4376 
-3.7792 
-2.4495 
-1.8199 

. 3966 

. 3651 

-3.5120 
-1.5516 
-3.8886 
-2.5576 
-1.9289 
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APPENDIX 6 

How biomass was measured at the canal site (Chapter 7) and the canal map plan, with sampled 

trees/sediment marked. The bank/wall end of the plot is nearest to the species name (i. e. at the 

top). The bottom of the plot bordered the water 

Sampling points for 

trees and sediment 
Popu/us 

Trees harvested to represent 
biomass "near to the canal bank" 

Trees harvested to represent biomass 

"near to the canal water" 

I/ 
Tree 6 

Trees near 
to the canal 

water 

Tree 3 
Trees near 

to the canal 
bank 

Tree 7 

- Tree 1 
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APPENDix 7 

Observations of experimental trees during the late 2003 and 2004 growing seasons at the canal 

site (Chapter 7). 

Appendix Key 

Dead Trees which were found to be dead at the time of the survey. 

Eaten Trees whose leaves showed some signs of herbivory, Le. some holes In some leaves. 

v. Eaten = Trees whose leaves showed signs of herbivory Le. many holes In many leaves. 

v. v. Eaten = trees whose leaves showed signs of very significant herbivory Le. Many holes In 

many leaves and some leaves eaten back to the spine. 

Toxicity = Trees whose leaves show mild toxicity symptoms Le. slight chlorosis. 

v. Toxicity = Trees whose leaves show worse toxicity symptoms, i. e. more severe chlorosis. 

v. v. Toxicity = Trees whose leaves show even worse toxicity symptoms Le. chlorosis In all 

leaves, and smaller leaf size. 

v. v. v. Toxicity = Trees whose leaves show signs of severe toxicitiy Le. severe chlorosis In all 

leaves, and necrosis at leaf edges, twisted leaves etc. 

v. v. v. v. Toxicity = Trees whose leaves are extremely chlorotic and experiencing leaf necrosis In 

most leaves, with a significant percentage of the leaf being dead. 

Diseased = Trees whose leaves exhibited obvious symptoms of disease e. g. mottling with 

red/orange spot in the case of Populds Trichobel. N. B. Only measured In 2004. The poplar 

Trichobel was diseased in 2003 also, but no survey of the percentage of trees suffering from 

disease was noted. 

N. B. Diseased, eaten and "toxicity" trees are not mutually exclusive and a tree may exhibit any 

combination of these symptoms. However, different degrees of "toxicity" or *eaten' are exclusive 

from other degrees of the same symptom. 
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APPENDIX 8 
Iý 

Heavy metal concentrations in experimental tree leaves and stems from the field site, where they 

were found to be significantly different between years (Chapter 7). 

Leaves 

Metal Species Year Mean SD Differing Years P-Value 

Cd SAS 2002 

2003 

2004 

1.67 

3.00 

1.56 

0.58 

1.10 

0.75 2003/2004 0.032 

Cu AC 2002 10.1 4.8 2002/2003 0.017 

2003 15.6 4.6 2002/2004 0.031 

2004 14.5 4.6 

SA 2002 10.1 2.0 200212003 0.042 

2003 7.9 2.0 

2004 

Sc 2002 12.93 3.19 200212003 0.021 

2003 9.96 2.51 

2004 13.2 6.3 

si 2002 12.0 2.0 2002/2003 0.005 

2003 8.0 1.9 

2004 10.8 5.7 

ST 2002 13.2 3.0 

2003 10.4 3.9 2002/2004 0.043 

2004 10.9 2.2 
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Leaves 

Metal Species Year Mean SD Differing Years p-value 

Pb PG 2002 8.2 5.1 2002/2003 0.027 

2003 3.1 3.3 

2004 3.2 3.0 

SA 2002 6.2 3.0 2002/2003 0.042 

2003 2.1 2.6 

2004 

SAS 2002 3.9 1.7 

2003 2.5 1.0 2002/2004 0.018 

2004 1.8 1.4 

Si 2002 3.3 1.0 

2003 4.0 2.4 2002/2004 0.015 

2004 2.0 0.6 2003/2004 0.020 

Zn PT 2002 616 190 2002/2003 0.028 

2003 1216 598 

2004 755 173 
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Stems 

Metal Species Year Mean SID p-value 

Cd SAS 2003 4.00 1.58 
0.004 

2004 1.52 0.80 

SC 2003 3.59 3.40 
0.020 

2004 1.66 0.73 

SF 2003 2.50 1.51 
0.036 

2004 0.20 0.10 

Cu PT 2003 5.1 1.1 
0.010 

2004 2.5 2.7 

SF 2003 10.7 4.1 
0.036 

2004 2.7 2.0 

Si 2003 7.8 1.3 
0.033 

2004 4.4 4.1 

Pb Si 2003 2.7 1.9 
0.041 

2004 1.3 1.6 

Zn ST 2003 364 80 
0.043 

2004 531 139 
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APPENDIX 10 

Text for Royle et aL, (2003) with the spelling mistake "Poplus" corrected to "Populus" in Table 1 

Phytoremediation of a contaminated dredged canal sediment 

A. Royle, N. M. Dickinson 
School of Biological and Earth Sciences, John Moores University, Byrom Street, 

Liverpool L3 3AF, England 

P. D. Putwain, R. King 
School of Biological Sciences, University of 
3BX, England 
E. Gray-Jones 
Environment and Regeneration Department, 
House, Palmyra Square North, Warrington WAI 

Liverpool, Jones Building, Liverpool, L69 

Warrington Borough Council, Palmyra 
MN, England 

ABSTRACT: Sediments in a derelict section of canal in Warnington consist of a wet, 
black, odorous and oily mud containing a wide range of elevated contaminants including 
Cu, Zn. Ni, As, Pb, Cd, Cr, mineral oils, TPHs, PAHs and sulphides. Recognition of the 
high level of contamination and associated costs of disposal have been a constraint for 
restoration of the canal, which has been out of use for 50 years or more. We are 
investigating the feasibility of using in situ phytoremediation as a low-cost alternative to cart 
and dump. Our objectives are to demonstrate that metals can be rendered immobile and non- 
hazardous in soils and biomass, whilst plant roots and developing biota optimise conditions 
for the natural attenuation of organics. In the present paper, the rationale of this approach to 
reclamation and the first year of establishment of the project are described. 

INTRODUCTION 

Phytoremediation 

Phytoremediation is receiving 
considerable attention as a low-cost 
treatment technology for land and 
groundwater contaminated with heavy 
metals (Chaney et al., 1997, Glass, 1999, 
Pulford et al., 2002, Vangronsveld et al., 
2000) and organic compounds 
(Campanella et al., 2002, Carman et al., 
1998, Meagher, 2000, Susarla et al., 
2002). One strategy is to use fast- 
growing trees, particularly Salix and 
Populus species, to remove, stabilise or 
enhance the volatalisation of polluting 
chemicals (Greger and Landberg, 2000, 
Jones et al., 1999, Pulford et al., 2002, 
Vervaeke et al., 2002). There is a real 

possibility that plants can be used to 
reclaim contaminated land and restore 
sustainable and healthy soils (Dickinson, 
2000, Kearney and Herbert, 1999). 

Contaminated canal sediment 

Environmental improvement of a derelict 
section of canal in Warrington was 
prohibitively expensive due to the cost of 
disposal of some 40,000 t of 
contaminated sediment. From an earlier 
survey it was known that the canal 
sediment consisted of a wet, black, 
odorous and oily mud (up to 1.5-1.7 m 
depth) containing a wide range of 
elevated contaminants including Cu, Zn, 
Ni, As, Pb, Cd, Cr, phenols, mineral oils 
and S. The proportion of bioavailable 
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metals in this type of sediment may be as 
much as 40% of total, even after 60 years 
without disturbance. This may present a 
considerable hazard of dispersal to the 
wider environment if wet, reduced 
sediments are disturbed or dredged for 
land disposal. 
The 2 krn section of canal at Woolston 
was excavated in 1821 to improve 
navigation along the river Mersey by 
cutting out a large, looping section and 
hence straightening its course. A weir just 
after the upstream end of the canal marks 
the limit of the tidal reaches of the river 
and hence the downstream end of the 
canal is under tidal influence. Water flow 
into and out of the canal was controlled 
by lock gates and an aqueduct took 
overflow water across the river to feed 
into another nearby canal. Historical 
industrial development along the 
Woolston New Cut Canal appears to have 
been limited to a chemical works (active 
for at least 40 years, maybe as much as 
70 or 80 years), a gunpowder mill, a 
tannery (only operational for perhaps a 
decade), an abattoir, a brick works and a 
piping and tubing works. These industries 
will have discharged into the canal and 
left their mark in the composition of the 
sediment. The original sailboats and 
barges which used the canal gave way to 
oil power and this is undoubtedly another 
source of pollution via leaks and 
spillages. Adjoining sections of the river 
Mersey have supported various industrial 
and engineering works including many 
metal works, more tanneries and a gas 
works. 
Rail and road transport came to outdo 
canal transportation and the canal was 
allowed to fall into disrepair. It has not 
been used since the late 1940's. Perhaps 
associated with the demolition of the 
aqueduct in 1978, the canal appears to 
have ceased to flow. Water levels 
gradually dropped and the standing water 
and wet sediment has now been colonized 
by vegetation, dominantly Typha latifolia 

(Reedmace), with SaILx atrocinerea 
(Sallow) at the edges. 
Modem developments along the canal 
include housing estates, an industrial 
estate and a green waste recycling 
facility. 

Aims of the research project 

The project described in this paper is a 
case study of the feasibility of using 
phytoremediation in situ in the 
contaminated sediment as a low-cost 
alternative to cart and dump. By 
modeling this ecosystem, the objectives 
are to investigate whether metals can be 
rendered immobile and non-hazardous in 
soils and biomass, whilst plant roots and 
developing biota 
optimise conditions for the natural 
attenuation of organics as well as 
transforming the sediment into a soil. 

METHODS 

Site preparation 

Established vegetation was cleared from 
a 150 m section of the New Cut Canal 
south bank and from shallow sediment on 
that side. The south bank is the shallow 
side of the canal, the deep side being the 
north side with the towpath running along 
the bank. 

A raised platform (3.5 rn wide) above 
existing water level was then created 
through dredging and transfer of 
sediment from the towpath side to the 
shallow side of the canal (Figure 1). The 
platform was divided into 6 experimental 
blocks. Twelve short-rotation coppice 
species, hybrids and clones of willows, 
poplars and alders (Table 1), were then 
planted on the raised platform in double 
rows (0.5m x 0.5 m) of 6 plants of each 
clone, with Im between rows. Salix and 
Populus were planted as pegs, and Alnus 
was planted as 50-70 cm rootcd stock 
(which was pruned back after 
establishment). Control plots were also 
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included in the design. Species were 
randomly allocated within each block. 
Three sediment samples (0-15 cm) were 
taken with an auger between each row, 
and then bulked for each of the 6 blocks. 
The samples were thoroughly mixed and 
then evenly divided into four. One set 
was sent to each of three national UKAS 
accredited laboratories for analysis and 
the forth set was kept in house. 
Five boreholes were established to the 
side of the canal to monitor groundwater 
in case of contamination. Due to the 
canal having a clay liner, any 
contaminants which may leach from the 
sediment bank should remain within the 
bounds of the canal and not cause 
contamination. Establishment of growth 
of the trees was monitored during the first 

year, and invasive plants were controlled 
by hand weeding. 

Table 1. Tree species and clones planted on 
the raised platform of sediment within the 
canal. 

Salix vitninalis 'Jorunn' * 
Salix viminalis x schwerinii 'Tora' 
Salix caprea x cinerea x viminalis 'Calodendron' 

Salix viminalis x butiatica 'Ashton Stott' 
Salix viminalis x caprea 'Sericans' 
Sellix. fragilis * 
Salix atrocinerea 
Populus deltoides x nigra 'Ghoy' 
Popidits trichocal-pa 'Trichobel' 
Almaglutinosa 
Allnus incana 
Alims cordata 

* Recommended for SRC use in FC 
Information Note 17. " From cuttings of 
trees that had naturally colonized the canal. 

CURRENT PROGRESS 

Contamination levels 

Results of sediment analyses showed 
considerable variation between the three 
laboratories (Table 2). Pail of' the 

explanation for these differences concern 
different analytical methodologies - the 
details of which were not automatically 
provided in full detail by any of the 
laboratories. Whilst the three laboratories 
were UKAS accredited, standard methods 
for sample preparation, extraction and 
analysis vary (Dickinson et al., 2000). 
Although there is a general consensus in 
the determinands that exceed existing 
thresholds, significant differences existed Z-- between the laboratories for most 
determinands. The only exception was 
for sulphide where data were very 
variable between samples which prohahly 
masked differences between laboratories. 

Table 2. Mean values (pg g -1) fOr sediment 
contaminants, its provided by separate 
UKAS accredited laboratories Values are 
means of 7 samples. Shaded values are those 
exceeding standard thresholds of, 
contamination. 

Deter in i nand 
A 

Laboratorv 
It C 

Sulphate ('Y( 0.53 6022 0.97 
S04/SO3) (Wlal) 
Sulphide 1078 3ý4 84.0 
Arsenic 349 682* 416 
Boron 69.0* 3.5 1.0 
Cadmium 12.7 13.6 1 S. I 
Chromium 790* 147 1 977* 
Copper 567* 1076* 730* 
Lead 1221 2150* 1443* 
Nickel 67 78 783.1 
Mercury 3.8 7.5 4.8 
Zinc 3631 5835* 4286 
Cyanide I (),; 1 10 (1 
Total PAI 1 216* 141 121 
TI'll 7636* 5671* 

. 1. )() 11 
WO ('40) 

* Significantly diffelclit 14) le'sull" (11 ()Illcf 
laboratories. 
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Tree establishment 

Tree establishment was very successful, 
with only 25% mortality in the first year. 
The least successful species was S. 
atrocinerea (mortality 67%). Although 
this species had naturally colonized the 
canal, it appeared to be a difficult species 
to root from cuttings. Survival of all other 
species was good. 

Further research 

During the course of the project we will 
be studying various aspects of the 
functioning of the ecosystem. At present 
a pot experiment is underway to assess 
the effects of various amendments on the 
rate of remediation. Soil fauna will be 
studied and its 
composition monitored and related to soil 
health. 
Laboratory experiments will determine 
the changes in the sediment and its 
contaminants during drying and 
oxidation. The bioavailability of the 
metals in the sediment will also be 
monitored over the course of the project. 
We will look at the transfer of foliar 
metals to herbivorous animals in a 
laboratory 
environment as a model for food chain 
transfer. 

DISCUSSION 

The sediment of the canal, whilst 
waterlogged, provides an anoxic, reduced 
environment. Metals will be in reduced 
forms and breakdown of organic 
contaminants will be minimal. After 
dredging, dewatering and exposure to air, 
the sediment will start to oxidise. 
Oxidation will induce a host of chemical 
and biological changes in the sediment and 
the contaminants contained within it. 
Sediments deposited on land following 
dredging have been the subject of previous 
studies in Belgium (Tack. et al., 1996, 
Tack. et al., 1998,1999, Tack and Verloo, 

1999) and the UK (Stephens et al., 2001). 
Most metals show a redistribution from 
residual to mobile phases during drying 
and oxidation that is also associated with 
decreasing sulphide/sulphate ratio. Metal 
bioavailability may be particularly high in 
the early stages, but long-term prediction 
of metal migration is uncertain. 

In the present project, the sediment 
was retained within the canal and it is 
likely that migration of metals to the wider 
environment will be controlled to a large 
extent by the clay liner of the canal. 
However, disturbance of the bottom 
sediment and leaching from the dredged 
sediment may affect contaminant 
concentrations in the water column of the 
canal. Hence, before this can be seriously 
considered as a treatment technology, it is 
important to demonstrate that 
contaminants are not quickly dispersed to 
the wider environment. Another potential 
source of dispersion is through food chains 
(Vandecasteele et al., 2002,2003) and this 
will be assessed over the next two years. 

I. CONCLUSION 

Manipulating the processes of 
contaminant dispersion or immobilisation 
offers a real possibility of treating 
contaminated sediment without removal, 
whilst contributing to a healthy, 
sustainable, non-hazardous landscape of 
high ecological and amenity value. If 
successful, this will provide a realistic, 
generic and transferable methodology 
with wide application for cost-effective in 
situ reclamation of contaminated 
sediments. 

REFERENCES 

Campanella, B. F., Bock, C. and Schroder, P., 
2002, Phytoremediation to increase the 
degradation of PCBs and PCDD/Fs. Potential 
and limitations. Environmental Science and 
Pollution Research International 9, pp. 73-85. 

234 



Carman, E. P., Crossman, T. L. and Gatliff, E. G., 
1998, Phytoremediation of No. 2 fuel oil- 
contaminated soil. J. Soil Contam. 7, pp. 455- 
466. 

Chaney, R. L., Malik, M., Li, Y. M., Brown, S. 
L., Angle, J. S. and Baker, A. J. M., 1997, 
Phytoremediation of soil metals. Current 
Opinion in Biotechnology 8, pp. 279-284. 

Dickinson, N. M., 2000, Strategies for sustainable 
woodlands on contaminated soils. 
Chemosphere 41, pp. 259-263. 

Dickinson, N. M., MacKay, J. M., Goodman, A. 

and Putwain, P., 2000, Planting Trees on 
Contaminated Soils: Issues and Guidelines. 
Land Contamination and Reclamation 8, pp. 
87-101. 

Glass, D., 1999. International activities in 
phytoremediation. In: Leeson, A. and 
Alleman, B. C. (Eds. ), Phytoremediation and 
innovative strategiesfor specialized remedial 
applications Battelle Press, Columbus, pp. 95- 
100. 

Greger, M. and Landberg, T., 2000, Use of 
willows in phytoextraction. Intemational 
Joumal of Phytoremediation 1. pp. 115-123. 

Jones, S. A., Lee, R. W. and Kuniansky, E. L., 
1999. Phytoremediation of trichloroethene 
(TCE) using cottonwood trees. In: Leeson, A. 
and Alleman, B. C. (Eds. ), Phytoremediation 
and innovative strategies for specialized 
remedial applications Battelle Press, 
Columbus, pp. 101-108. 

Kearney, T. and Herbert, S., 1999. Sustainable 
remediation of land contamination. In: 
Leeson, A. and Alleman, B. C. (Eds. ), 
Phytoremediation and innovative strategies 
for specialized remedial applications Battelle 
Press, Columbus, pp. 283-288. 

Meagher, R. B., 2000, Phytoremediation of toxic 
elemental and organic pollutants. Current 
Opinion in Plant Biology 3, pp. 153-162. 

Pulford, L D., Riddell-Black, D. and Stewart, C., 
2002, Heavy metal uptake by willow clones 
from sewage sludge-treated soil: the potential 
for phytoremediation. International Journal of 
Phytoremediation 4, pp. 59-72. 

Royle, A. 2002. "Site History: The Woolston 
New Cut Canal". Internal publication. 

Stephens, S. R., Allowy, B. J., Parker, A., Carter, 
J. E. and Hodson, M. E.. 2001, Changes in the 
leachability of metals from dredged canal 
sediments during drying and oxidation. 
Environ. Pollut. 114, pp. 407-413. 

Susarla, S., Medina, V. F. and McCutchcon, S. 
C., 2002, Phytoremediation: An ecological 
solution to organic chemical contamination. 
Ecological Engineering 18, pp. 647-658. 

Tack, F. M., Callewaert, 0. W. J. J. and Verloo, 
M. G., 1996, Metal solubility as a function of 
pH in contaminated dredged sediment affected 
by oxidation. Environmental Pollution. 91, pp. 
199-208. 

Tack, F. M., Singh, S. P. and Verloo, M. G., 
1998, Heavy metal concentrations in 
consecutive saturation extracts of dredged 
sediment-derived surface soils. Environmental 
Pollution. 103, pp. 109-115. 

Tack, F. M., Singh, S. P. and Verloo, M. G., 
1999, Leaching behaviour of Cd, Cu, Pb and 
Zn in surface soils derived from dredged 
sediments. Environ. Pollut. 106, pp. 107-114. 

Tack, F. M. G. and Verloo, M. G., 1999, Single 
extractions versus sequential extraction for the 
estimation of heavy metal fractions in reduced 
and oxidised dredged sediments. Chemical 
Speciation and Bioavailability 11, pp. 43-50. 

Vandecasteele, B., De Vos, B. and Tack, F. M. 
G., 2002, Cadmium and zinc uptake by 
volunteer willow species and elder rooting in 
polluted dredged sediment disposal sites. The 
Science of The Total Environment 299, pp. 
191-205. 

Vandecasteele, B., Lauriks, R., De Vos, B. and 
Tack, F. M. G., 2003, Cd and Zn 
concentration in hybrid poplar foliage and leaf 
beetles grown on polluted sediment-derivcd 
soils. Environ. Monit. Assess. in press, pp. 

Vangronsveld, J., Ruttens, A., Mench, M., 
Boisson, J., Lepp, N. W.. Edwards, R., Penny, 
C. and van der Lelie, D., 2000. In situ 
inactivation and phytoremediation of metal- 
and metal loid-contaminated soils: field 
experiments. In: Wise, D. L. and Trantolo, D. 
J. (Eds. ), Bioreinediation of Contaminated 
Soils Marcel Dekker, Inc., New York, pp. 
859-885. 

Vervaeke, P., Luyssaert, S., Mertens, J., Meers, 
E., Tack, F. M. 0. and Lust, N., 2002, 
Phytoremediation prospects of willow stands 

235 



in contaminated sediment: a field trial. 2002, pp. 
Environ. Pollut. Reviewed manuscript July 

236 


