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ABSTRACT

Technical trading rules have been used in financial markets for decades, and

are still one of the most popular forecasting techniques in financial markets.

Among these, technical trending systems are quite popular, but are known to

perform poorly in volatile markets. In addition, the presence of transaction

costs in the financial markets is an important factor in making investment

decisions. For both active asset trading and dynamic portfolio optimsation, the

benefits from switching market positions at very high frequency may hardly

compensate for the transaction costs incurred.

The primary motivation of the thesis is to explore and utilise the relationships

between underlying volatilities and technical trending rules as well as other

alternative trading strategies. What is more, the existence of international

contagion among major financial markets suggests a covariance matrix regime

change between "normal", Le. quiet times and times of financial instability. This

provides an opportunity to introduce a rebalancing scheme where the dynamic

portfolio is only rebalanced when the underlying volatility regime changes.

The major contribution of this thesis is to investigate the performance of

different trading strategies in different volatility regimes. The thesis then

proposes the use of volatility filters to enhance the performance of these

trading strategies. In addition, the thesis also develops a dynamic portfolio

optimisation scheme where the underlying market volatility functions as a

timing device for portfolio reallocation and the portfolio is only rebalanced

when the underlying volatility regime changes.

In conclusion, some of the most widely used trading strategies are found to

perform poorly when the markets are highly volatile, and adaptive strategies

like the volatility filters proposed in this thesis should be adopted during such

periods to enhance trading performance. In addition, correlations between
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international financial markets change significantly with changes in these

markets volatility regimes. Volatility filters based on these volatility regime

changes can playas an effective timing device for dynamic portfolio

optimisation.
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CHAPTER 1

General Introduction

1.1 Scope

While numerous techniques have been proposed to forecast financial

markets, they fall into two main categories: fundamental analysis and

technical rules. Compared to most fundamental quantitative methods which

require financial variables to be transformed to stationary series first,

technical trading rules are generally applied directly to the price level. In

addition, while the process of finding the right parameters for fundamental

models can be both cumbersome and indecisive, there are several technical

trading rules parameters which are commonly accepted by market

practitioners and have been proven to perform well. It is for these reasons

that technical trading rules have been used in financial markets for decades,

and are still one of the most popular forecasting techniques in financial

markets. Billingsley and Chance (1996) mention that 70% of the Commodity

Trading Advisors (CTAs) are trend followers and tend to trade in a similar

manner. The strategies proposed based on technical trading rules which

partially replicate the behaviour of investors can thus have both academic

and industry significance.

However, financial markets are not always moving in trends which are just
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one of the basic elements of price movement, the other being range trading

situations or cycles. As a matter of fact, Hurst (1997) notes that 23% of all

price motion is oscillatory in nature. If this assumption is true, there is no

reason to trade solely on the basis of technical trending rules at all times and

it is important to identify market cyclical properties and to trade accordingly

when the underlying markets display strong cyclical properties. In addition,

the rejection of the simple risk-neutral efficient market hypothesis in the

foreign exchange (FX) market opens the possibility of the profitable use of a

carry model taking full advantage of interest rate differentials to trade

currencies. Largely known (and implemented) as "carry trading" by currency

fund managers, this carry strategy entails to always hold the high yield

currency and short the corresponding low yield currency in a currency pair.

Market volatility has an impact on trading, for instance, Pan et al. (2003)

study the influence of volatility on futures trading and find that an increase in

volatility motivates traders to engage in more trading in futures markets. It is

also well known that trend-following systems perform poorly when markets

become volatile and volatility filters have been proposed to improve the

overall performance of these systems. Roche and Rockinger (2003) explain

that high volatility periods often correlate with periods when prices change

direction, and therefore propose to reverse the technical signals generated

when market volatility is forecast to be higher than a chosen threshold. Dunis

and Chen (2005) argue that moving average convergence and divergence

(MACD) models perform poorly in volatile markets, precisely because volatile

markets imply frequent direction changes, and thus introduce a volatility filter

which stops trading at times of high volatility. Apart from technical trending
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rules, there is no academic study on whether underlying volatility regimes

have similar impacts on other alternative trading strategies that are

commonly adopted by market practitioners, such as the carry trading strategy

in the foreign exchange markets.

Many now accept that financial markets are inefficient to some extent, and

the presence of transaction costs is another important factor in making

investment decisions. Most financial modelling techniques require large

numbers of observations to keep the model statistically efficient. Statistically

this requires models use frequent data at least on a daily frequency, which in

turn generates daily forecasts and signifies market position changes at

almost the same high frequency. But practically, in some markets, trading on

daily basis is not feasible simply because of transaction costs. In a word,

although the statistical nature of most forecasting techniques requires data to

be at high frequency, real world trading in financial markets is a longer term

decision. From the perspective of portfolio optimisation, although the success

of modelling the so-called conditional variance and covariance makes it

possible to optimise portfolios dynamically with an updated forecast of the

covariance matrix, the question is whether a dynamic rebalancing scheme

accounting for the variability of the covariance matrix can outperform a

portfolio with constant weights after transaction costs are deducted.

1.2 Motivations

Therefore, the motivations of this thesis are as follows.

3



Firstly, technical trading rules are one of the most popular forecasting

techniques in financial markets.Among these, technical trending systems are

quite popular, but are known to perform poorly in volatile markets, which

suggests that adaptive strategies should be used during these volatile

periods. In addition, financial markets are not always moving in trends and

alternative trading strategies adopted by market practitioners can also be

affected by the level of underlying market volatilities. It is therefore important

to explore and utilise the relationships between underlying volatilities and

different trading strategies.

Secondly, the presence of transaction costs makes the trading frequency or

holding period an important factor in determining investment strategies.

Although the holding period is seen as an important factor affecting financial

decisions, there are no articles, to the best of our knowledge, focused on

finding the optimal holding period for active asset management. With

technical trading rules using daily or more frequent data, different trading

frequencies or holding periods can be achieved with the selection of

parameters and possibly with the addition of certain filters.

Thirdly, dynamic portfolio rebalancing utilizing conditional variance and

covariance matrices involves a frequent modification of asset weights, thus

the benefits from dynamic rebalancing can be quickly erased by transaction

costs. The existence of international contagion among major financial

markets suggests a covariance matrix regime change between "normal"

times and times of financial instability. This provides an opportunity to

introduce a rebalancing scheme where the dynamic portfolio is only

4



rebalanced when the underlying volatility regime changes.

1.3 Contributions to Know/edge

The contribution of the thesis can be broken down into three areas.

Firstly, the thesis investigates the performance of trend-following moving

average convergence and divergence (MACD) systems in different volatility

regimes and proposes volatility filters to enhance performance. Based on the

performance of such trending systems which are commonly used by market

practitioners, the thesis identifies the optimal trading frequency for different

assets in the context of active asset management.

Secondly, the thesis explores whether alternative trading strategies behave

differently in volatile markets. Specifically, the thesis studies the performance

of a simple passive carry model in periods of different volatility regimes and

justifies the use of volatility filters applied to the carry model. Moreover, the

thesis studies the existence of cyclical properties in foreign exchange

markets with the use of spectral analysis. The thesis then proposes

confirmation filters on a trading model based on spectral analysis.

Finally, the thesis develops a dynamic portfolio optimisation scheme where

the underlying market volatility functions as a timing device for portfolio

reallocation and the portfolio is only rebalanced when the underlying volatility

regime changes. In addition, the traditional Markowitz mean variance (MV)

optimisation can lead to an "inefficient frontier" with wrong expected returns.
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The thesis also proposes a risk-adjusted expected return (RAER) approach

where expected returns are expressed as a linear function of the risk incurred

through a risk-aversion coefficient.

1.4 Structure

The thesis is composed of three parts: in the first part (chapters 2, 3 and 4),

we start to investigate the performance of trend-following systems in different

volatility regimes, and then propose volatility filters to improve trading

performance of such systems. We also compare the performance of these

volatility filters using alternative volatility forecasts. In the second part

(chapters 5 and 6), we apply the volatility filters proposed to alternative

trading models other than trend-following systems. In the third part (chapter

7), volatility filters are further extended to asset allocation, where volatility

regime changes are used as a timing device to optimise portfolio rebalancing.

Investigating and evaluating alternative filter rules in asset management

being the main "theme line" of the thesis, each chapter also has its own

objective. Each of these chapters represents a distinct academic paper and

thus includes sections covering literature, methodology, empirical application

and conclusion.

More specifically, in chapter 2, we investigate the performance of

trend-following MACD systems in different volatility regimes. We then

propose volatility filters, namely a "no-trade" filter where all market positions

are closed in volatile periods, and a "reverse" filter where signals are

6



reversed in volatile periods. We also introduce a model switch strategy where

signals from different technical rules are adopted at different levels of market

volatility. Our results show that the addition of the two volatility filters and the

introduction of a model switch strategy add value to the MACD models

studied. Finally, we investigate the optimal trading frequency for active

tradings in futures and currency markets.

In chapter 3, we relate the findings from chapter 2 to the real world business:

two portfolios, which are highly correlated with a managed futures index and

a currency traders' benchmark index are formed to replicate the performance

of typical managed futures and managed currency funds. We then study

whether the addition of volatility filters can improve the performance of these

two portfolios with the hope that the proposed techniques will then have both

academic and industrial significance.

In chapter 4, moving from the previous 2 chapters where RiskMetrics is used

to measure market volatility and volatility filters, we investigate whether

alternative volatility forecasts can further improve models performance with

the proposed volatility filters.

In chapter 5, we investigate whether a simple passive carry model can

outperform a typical currency fund manager replicated by dynamic MACD

models. We further investigate the performance of the carry model in different

volatility regimes and study whether the addition of volatility filters can also

improve the carry model performance.

In chapter 6, we study the existence of cyclical properties in foreign exchange

7



markets with the use of spectral analysis. Inspired by findings from previous

chapters, we also study whether the performance of the spectral model is

affected by different market volatility regimes. Finally, we study the economic

value of a trading model based on spectral analysis compared with

benchmark technical trending MACD models in the FX markets.

In chapter 7, we propose a dynamic rebalancing scheme utilizing the

underlying market volatility which functions as a timing device for portfolio

reallocation and the portfolio is only rebalanced when the underlying volatility

regime changes. In addition, the traditional Markowitz mean variance

optimisation can lead to an "inefficient frontier" with wrong expected returns.

We propose a risk-adjusted expected return (RAER) approach where

expected returns are expressed as a linear function of the risk incurred

through a risk-aversion coefficient.

Finally, chapter 8 concludes the dissertation, followed by an appendix and

references.

The thesis has already generated 6 academic papers, all of which have been

published, presented at international conferences or accepted for publication

in refereed academic journals:

Chapter 2: "Optimal Trading Frequency for Active Asset Management:

EVidence from Technical Trading Rules" has been

• Presented at the Forecasting Financial Markets Conference held in

Paris 4th - 6th of June 2004.
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• Published by the Journal of Asset Management, 2005, 5, 305-326.

Chapter 3: "Volatility Filters for Asset Management: An Application to

Managed Futures" has been

• Accepted by the Journal of Asset Management, forthcoming.

Chapter 4: "Volatility Filters for FX Portfolios Trading: The Impact of

Alternative Volatility Models" has been

• Accepted by the Applied Financial Economics Letters, forthcoming.

Chapter 5: "Trading Foreign Exchange Portfolios with Volatility Filters: The

Carry Model Revisited" has been

• Accepted by the Applied Financial Economics, forthcoming.

Chapter 6: "Advance Frequency and Time Domain Filters for Currency

Portfolio Management" has been

• Accepted by the Journal of Asset Management, forthcoming.

Chapter 7: "Volatility Filters for Dynamic Portfolio Optimisation" has been

• Presented at the Forecasting Financial Markets Conference held in

Marseilles 1st
- 3rd of June 2005.

• Published by the Applied Financial Economics Letters, 2005, 1,

111-119.
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1.5 Performance Evaluation

Traditional statistical performance measures are not appropriate for financial

applications simply because the model with minimum forecasting errors in

statistical term does not necessarily guarantee maximised trading profits,

which is often deemed as the ultimate objective of a financial application. The

best way to evaluate alternative financial models is therefore to evaluate their

trading performance by means of a trading simulation. In this thesis, the

following trading performance measures are used.

The asset return ft at time t is calculated as the percentage change of the

underlying asset price p. The cumulative return fe is the overall return for a

certain period of time studied.

"r = (PI - PI-I)
PI-I

(1.1 )

n
r = ~r
c L..J I

1=1
(1.2)

The cumulative return is usually annualised as the annualised return fa. The

risk exposure measured by the standard deviation is transformed to the

annualised volatility o; in a similar way. For annualised measures, m=252 for

daily data, m=52 for weekly data and m=12 for monthly data.

n

r. = m*(lln)Lrl

1=1
(1.3)
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a =a
1=1

n -1
(1.4 )

Under the standard deviation approach of measuring risk exposure, both

upside and downside volatility are penalised in the same way. In reality, a

fund manager is mostly concerned with the downside risk. The maximum

drawdown (MD) measures the maximum downside risk a certain trading

strategy can suffer if the investor enters the market at the worst time.

(1.5)

Higher returns are usually associated with higher risks, and the evaluation of

models' performance can be biased if assessed merely on the basis of return.

The risk-adjusted information ratio (IR) is a measure dealing with the trade-off

between risk and return.

(1.6)
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PART ONE

Volatility Filters for Technical Trading Rules
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CHAPTER2

Optimal Trading Frequency for Active Asset Management:

Evidence from Technical Trading Rules

Chapter Overview

Despite the fact that technical trending rules have long been applied in

financial markets, these rules are known to perform poorly when the

underlying markets are highly volatile. The primary motivation of this chapter

is to study whether the addition of volatility filters adds value to the

performance of these trading rules. In addition, the presence of transaction

costs makes trading frequency or holding period an important factor in

determining investment strategies. With the study of technical trading rules,

this chapter attempts to identify the optimal trading frequency for different

assets in the context of active asset management.

Two volatility filters were proposed, namely a "no-trade" filter where all market

positions are closed in volatile periods, and a "reverse" filter where signals

from the original trading strategies are reversed if market volatility is higher

than a given threshold. Our results show that the addition of the two volatility

filters has significantly improved the performance of trend-following MACD

systems at both the single asset and portfolio level.

13



2. 1 Introduction

Most financial modelling techniques require large numbers of observations to

keep the model statistically efficient. This suggests that models should use

more frequent data, which in turn generates forecasts and implies market

position changes at almost the same high frequency. But practically, in some

markets, trading on a high-frequency basis is not feasible simply because of

transaction costs. Transaction costs are less crucial in foreign exchange (FX)

markets where transaction costs are quite low, but they become a more

important factor when investing in markets like the stock and bond markets,

where the benefits from switching market positions at almost daily frequency

can hardly compensate for the transaction costs incurred.

Active asset management then involves a holding period longer than a daily

frequency. While being neglected in the academic literature, the so-called

optimal trading frequency is important in making practical investment

decisions. In the case of active asset management, the optimal trading

frequency or holding period, which determines a specific trading strategy

(possibly with certain cut-off points identified), represents how actively I

frequently investors should trade to maximize post-transaction-cost profits.

In a word, although the statistical nature of most financial series requires high

frequency data, real world financial investment is a longer term decision.

Therefore investing in financial markets involves answering the following

question: how long is the optimal holding period for active asset management

14



or, more specifically, how frequently should a specific financial asset be

traded?

While numerous techniques have been proposed to forecast financial

markets, they fall into two main categories: fundamental analysis and

technical rules. Most fundamental quantitative methods require financial

variables to be transformed to stationary series first, whereas technical

trading rules are generally applied directly to the price level. In addition, while

the process of finding the right parameters for fundamental models could be

both cumbersome and indecisive, there are several technical trading rules

parameters that are commonly accepted by market practitioners, which have

been proven to perform well. Moreover,with trading rules using daily or more

frequent data, different trading frequencies can be achieved with the

selection of parameters and possibly with the addition of certain filters. Finally,

technical trading rules have been used in financial markets for decades, and

are still one of the most popular forecasting techniques in financial markets.

Studying the performance of technical trading rules can thus partially

replicate the behaviour of investors, and the optimal trading frequency

derived from the study of technical trading rules can be a valuable and

meaningful input, especially to those who rely on technical rules for making

investment decisions.

Therefore, the motivation of this chapter is as follows. Firstly, despite the fact

that technical trending rules have long been applied in financial markets,

these rules are known to perform poorly when the underlying markets are

highly volatile. Continuing previous studies on technical trading rules, we

15



study whether the addition of volatility filters adds value to the performance of

these rules. Observing the inconsistent performance of different technical

rules at different levels of market volatility, we also introduce a model switch

strategy, where technical trading rules are selected based on the level of

intrinsic market volatility.

Secondly, many now accept that financial markets are inefficient to some

extent, and the presence of transaction costs makes the trading frequency or

holding period an important factor in determining investment strategies.

Although the holding period is seen as an important factor affecting financial

decisions, there are no articles, to the best of our knowledge, focused on

finding the optimal trading frequency or holding period for active asset

management.

Thirdly, albeit less importantly, technical trading rules have been heavily

studied in stock markets and FX markets, and less attention has been made

to commodity and bond markets. In this chapter, we apply technical rules to a

wide variety of financial assets. Furthermore, we also investigate the

performance of technical trading rules in the context of portfolio performance.

Our results show that the addition of the two volatility filters and the

introduction of a model switch strategy add value to the models performance

in terms of annualised return, information ratio and maximum drawdown.

Significant improvement has been found at both the single asset and portfolio

levels. Although our results for the optimal trading frequencies differ for

different assets, similar results have been achieved between the two stock
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indexes S&P500 and STOXX50 and between FX currency rates. In the case

of stock indexes, the optimal trading frequency is about 2-4 trades per year,

while for the FX currency rates, it is about 10-20 trades per year.

The rest of the chapter is organized as follows: section 2.2 presents a brief

review of the relevant literature, section 2.3 describes data used and section

2.4 explains the methodology employed in this study. Section 2.5 presents

the empirical results, focusing on the models performance during different

periods, followed by concluding remarks in section 2.6.

2.2 Literature Review

2.2.1 Holding Period and Data Frequency

An investor's anticipated trading frequency, or investment period, is often

seen as the most important single factor affecting the asset allocation

decision for financial asset holdings (Douglas Van Eaton and Conover, 2002).

Although the importance of the holding period is commonly recognized, it is

surprising to find that most articles arbitrarily set the investment horizon to

one specific time period, and so far there is no literature attempting to find the

optimal trading frequency for a financial asset or a portfolio.

While the data sampling frequency is a fundamental aspect of empirical

finance, there is no consensus on the selection of the data frequency relative

to the expected holding period. Statistically, most econometric and time

series models require more than 2000 observations for estimation purposes,
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which suggests using sample data of at least daily frequency. Andersen et al.

(1999) show that using high-frequency intraday data may produce a quite

significant improvement in terms of the volatility forecast errors. However,

Mian and Adam (2001), among others, argue that the appropriate sampling

frequency depends on the particular context: if long-term forecasts are

needed, an appropriate model would be one estimated with low frequency

data. In the case of using high frequency forecasts to make long-term

decisions, Leung et al. (2000) use a cut-off point trading strategy to screen off

the number of forecasts. Terui and van Dijk (2002) examine the use of

time-varying weights in combining forecasts from alternative models. Roche

and Rockinger (2003) use trading rules of exponential moving average (EMA)

trading models with volatility filters.

2.2.2 Technical Trading and Filter Rules

Technical trading rules have been used in financial markets almost since the

beginning of the markets. Nowadays it is still one of the most popular

forecasting techniques in financial markets and many of the market

commentaries published by financial firms and media are based on technical

analysis. Apart from its popularity among market practitioners, technical

trading receives less academic support and the results from academic

literature about the profitability of technical trading rules are conflicting. Much

of the earlier work1 concludes that it is not possible to outperform the market

with technical trading rules. Recent empirical studies show evidence of

profitability from using technical trading rules. Brock et al. (1992) provide

1 See, for instance, Alexander (1961) and Fama and Blume (1966).
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strong support for technical strategies, where returns from their technical

trading strategies outperform four popular null models: the random walk, the

AR(1), the GARCH-M and the EGARCH. Blume et al. (1994) show that the

sequence of data for both past prices and trading volume improve the

predictability of equity returns within the "noisy rational expectation"

framework. Kwon and Kish (2002) indicate that technical trading rules add

value to capture profit opportunities over a buy-and-hold strategy, while the

results are weaker in the last sub-period they consider. Sullivan et al. (1999)

show however that the results of Brock et al. (1992) are substantially

weakened when the survivorship bias is corrected. Ready (2002) argues that

the apparent success of the Brock et al. (1992) moving average rules is a

spurious result of datasnooping, which occurs when a given set of data is

used more than once for purposes of inference or model selection. Chiarella

et al. (1992) set out to analyze the impact of long run MA rules on the market

dynamics and find that within a market maker scenario, an increase of the

window length of the MA rule can destabilize an otherwise stable system.

It is well known that trend-following systems tend to perform poorly when

markets become volatile. Different filters have been proposed to tackle this

problem, attempting to improve the overall performance of trend-following

systems. Roche and Rockinger (2003) explain that most of the time, high

volatility periods correlate with periods when prices change direction, so they

use a volatility filter, which reverses the signals from the original EMA system

when the market volatility is high. Dunis and Chen (2005) argue that moving

average convergence and divergence (MACD) models perform poorly in

vOlatile markets, precisely because volatile markets imply frequent direction
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-
changes, and thus introduce a volatility filter, which stops trading at times of

high volatility.

2.3 Data

We apply technical trading rules in the stock, bond, commodity and FX

markets to test for their respective optimal trading frequencies. The FX data

bank covers 9 spot FX currency rates from 02/01/1995 to 30/03/2004. The 9

currency rates are EURIUSD, USD/JPY, GBP/USD, USD/CHF, USD/CAD,

AUD/USD, EURlGBP, EUR/JPY and EURICHF, those rates that are most

heavily traded in the foreign exchange market (BIS 2004)2. We use the

futures data for the other three markets covering the period from 02/01/1998

to 30/03/2004. The exact time series are S&P500 (CME) and Euro STOXX50

(EUREX)3 for the stock markets, 30-year T-Bond (CBT) and 10-year Bund

(EUREX)4 for the bond market, and Copper (LME), Aluminium (LME) and

Brent Oil (IPE) for the commodity markets. The financial datasets used are

daily data obtained from Datastream, the spot rates for the 9 exchange rates

considered and the continuous futures contracts for the other markets.

The daily asset returns r in time period t are calculated as the percentage

2 Si~ce the EURIUSD exchange rate only exists from 04/01/1999. we follow the approach of
Dunls and Williams (2002) to apply a synthetic EURIUSD series from 02/01/1995 to
31/12/1.998 combining the spot USD/DEM and the fixed EURIDEM exchange rate. The
~ynthetlc EUR/GBP. EURlJPY and EURICHF are created following the same approach.
The EURO STOXX50 traded on EUREX is only available from 22/06/1998. so we use the

ca~h ~arket rate return from 02/01/1998 to 22/06/1998 as our futures return and generate an
~rtlficlal STOXX50 futures series in that period.
The Bund futures traded on EUREX available in Datastream starts on 05/10/1998. so we

us~ the Bund future price on LlFFE from 02/01/1998 to 02/10/1998 to retrapolate the EUREX
senes.
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r
change of the daily closing value p:

r = (PI - Pt-I)
1+1

PI-I
(2.1 )

2.4 Technical Trading Rules: the Methodology

2.4.1 MAce

Technical trading rules have long been applied in financial markets, and the

fact that technical trading rules are still one of the most popular techniques

applied by market practitioners is deemed significant. The basic assurnpuon

of a technical trending system is that "everything is in the rate and the market

moves in trend". Then the major task of such a trend-following system is to

define the prevailing trend and identify early reversals.

One of the most widely used technical trending systems is investigated in this

chapter: the moving average convergence and divergence system (MACO).

An MACO system consists of two moving averages (MA), a short-term MA

and a long-term MA, of the underlying asset. We use "s 0 - I 0" to refer to a

specific MACO, where s and I are the number of days in the short-term and

long-term MA respectively. In such a system, the long-term MA is to identify

the prevailing trend, and the short-term is the market timing device. The

trading strategy based on an MACO system is to go long (or short) when the

short-term MA is above (or below) the long-term MA5. The idea behind MA is

5 In this thesis, once a signal is received, a trade is initiated. That position is kept until a
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r
to smooth out a volatile time series and there are different ways to compute

MA. We use the simple MA where all past observations in the MA are

assigned with equal weights as";

n

MA(I) =(lln)LPI_;
;=1

(2.2)

2.4.2 Trend-Following Technique and Market Volatility

It is well known that trend-following systems tend to perform poorly when

markets become volatile. To study how volatility affects model performance,

we first need an accurate measure of market volatility. While there are

numerous models proposed in the literature to measure and forecast

financial market volatility, the two most popular ones are the simple variance

or standard deviation and Bollerslev (1986) GARCH (1,1) model. Since we

are interested in the changes in market volatility, the time varying GARCH

(1,1) model is more appropriate. For the sake of simplicity, we use

RiskMetrics volatility model, which can be viewed as a special case of

GARCH model. RiskMetrics was developed by JP Morgan (1994) for the

measurement, management and control of market risks in its trading,

arbitrage and own investment account activities. The RiskMetrics volatility is

calculated using the following formula:

(2.3)

contrary signal is produced, in which case the existing position is closed and a new opposite
~ositio.n is taken.

In this chapter, all MAs are calculated using price level of the underlying assets, except for
Brent Oil futures where the natural logarithm of the price level is used.
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r
where a 2 is the volatility forecast of a specific asset, (2 is the squared return

of that asset, and J1 = 0.94 for daily data as computed in JP Morgan (1994f.

We then study the relationship between the performance of different MACDs

and periods of different market. volatility. Five MACD models have been

applied to the two time series of EUR/USD and S&P500 futures from

17/12/1998 to 30103/2004. For simplicity, all the short-term MAs in the five

MACDs are the prices level itself and the long-term MAs span from as short

as 30 day to as long as 250 day". The whole period is split into 6 sub-periods,

ranging from periods with extremely low volatility to periods experiencing

extremely high volatillty". The performance of the five MACDs, in terms of

average daily returns, in different periods of market volatility can be found in

table 2.1 for the EURIUSD and in table 2.2 for the S&P500 futures.

For the EURIUSD series, the MACDs perform poorly in all cases when the

market volatility is high compared to their performance when the market is

less volatile. What is more, all MACDs produce negative returns in different

periods of high market volatility. This is even more obvious for the S&P500

7 The assumption is that the mean of asset return, is zero so that r(t) represents the latest
~ariance. In addition, at the beginning to initiate the computation, we set cr2(o) = ,2(0)

32, 61 and 117 day MAs have been proved successful in currency markets, so we use
these three MAs instead of 30, 50 and 100 day MAs for the EURIUSD rate (see Lequeux and
Acar, 1998).
9 Periods with different volatility levels are classified in the following way: we first calculate
the rolling historical average volatility and its "volatility" (measured in terms of standard
deviation 0), those periods with volatility forecasts between the average volatility (Avg. vol.)
and average plus one 0 of the volatility (Avg. Vol + 1 0) are classified as "Lower High Vol.
Periods". Similarly, Medium High Vol. (between Avg. Vol. + 10 and Avg. Vol. + 20) and
Extremely High Vol. (above Avg. Vol. + 20) periods can be defined. Periods with low volatility
are also defined following the same 10 and 20 approach, but with a minus sign. The average
volatility and its ''volatility'' used to classify different volatility regimes in table 2.1 and 2.2 are
calculated over the entire sample period. Appendix 2.1 shows the average volatility and its
"volatility" computed over different sample periods. It can be seen that except for the falls in
volatility in the two stock markets over the last half-year period, the numbers calculated over
the entire sample period can be a good approximation for these variations.
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futures market, where all MAGOs generate large negative returns when the

market is extremely volatile. This suggests that MAGO trading rules behave

differently in highly volatile markets and therefore a different strategy should

be adopted when the volatility regime changes. It is also found that no single

MAGO performs best in all periods, and in general MAGO systems with

crossover between the price level and short-term MAs perform better when

the market volatility is low and MAGOs containing long-term MAs tend to

outperform when the market is more volatile. All these findings help us to

adjust our trading strategy, namely with the addition of volatility filters and the

introduction of a model switch strategy, with an attempt to improve overall

model performance.

Table 2.1 The average daily returns of MACDs in EURIUSD market

* 6-year period 17/12/1998 to 30103/2004

Extremely Medium Low Lower Low Lower High Medium Extremely

Low Vol. Vol. Vol. Vol. High Vol. High Vol.

# of Days 7 215 482 434 193 35

1D - 32 D 0.35% 0.03% 0.03% 0.01% 0.01% -0.04%

1D - 61 D 0.35% 0.06% 0.05% 0.01% 0.01% -0.04%

1D-117D 0.35% 0.05% 0.04% -0.03% -0.03% 0.02%

1D - 150 D 0.20% 0.06% 0.05% -0.02% -0.03% 0.00%

1D - 250 D 0.20% 0.05% 0.04% 0.01% -0.01% -0.08%

24



Table2.2 The average daily returns of MACDs in S&P500 futures

market

* 6-year period 17/12/1998 to 30103/2004

Extremely Medium Low Lower Low Lower High Medium Extremely

Low Vol. Vol. Vol. Vol. High Vol. High Vol.

# of Days 13 161 577 456 130 42

10 - 30 0 0.42% 0.04% 0.00% 0.04% -0.09% -0.53%

10 - 50 0 0.05% 0.03% 0.01% 0.03% -0.15% -0.75%

10 -1000 0.05% -0.02% 0.02% -0.08% -0.10% -0.62%

10 -1500 0.05% 0.02% 0.04% -0.03% 0.00% -0.62%

10 - 2500 0.05% 0.01% 0.12% 0.01% 0.01% -0.62%

2.4.3 Volatility Filter Rules

In this chapter, we use the symbol MA(p) (t+1.t) to denote the trading signals

from an MACD model at time t for time t+1, where p is the volatility filter

imposed on that model: p takes the value of 0 if there is no volatility filter, it

takes the value of 1 when a "no-trade" filter is used and 2 when a "reverse"

filter is in use.

2.4.3.1 "No-trade" Strategy

Since MACD models are found to perform poorly in volatile markets, following

Dunis and Chen (2005) the first filter rule is simply to stop trading when the

market volatility is forecast to be higher than a certain threshold T10. The

10
In table 2.1 and 2.2, we have shown that MACO models perform poorly in volatile markets

globally over the entire sample periods, for simplicity, the threshold of the volatility filters T is
therefore set at the cutoff points that split the sample period into high and low volatility
regimes as explained in footnote 9.
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previous MACO trading rules are thus combined with the following "no-trade"

strategy:

{
MA(O) (t+1,t) a 2(t+1,t) < T

MA(1) (t+1,t) =

0 2 >Ta (t+1,t)

2.4.3.2 "Reverse" Strategy

When a market experiences high volatility, MACO models produce negative

returns most of the time. Roche and Rockinger (2003), who explain that high

volatility periods often correlate with periods when prices change direction,

propose the following filter, which is to reverse the signals generated when

the market volatility is forecast to be higher than the chosen threshold. We

use this strategy as the second filter to our MACO trading rules:

{
MA(O) (t+1,t) a 2(t+1,t) < T

MA(2) =(t+1,t)

- ( MA(O) (t+1,t)) a2
(t+1,t) > T

2.4.3.3 Model Switch Strategy

We find previously that it seems impossible to identify an MACO model as the

"best" over all sub-periods, and not surprisingly, different MACOs perform

best in periods of different market volatility. In general, MACO systems with

crossover between the price level and short-term MAs perform better when

26



the market is in a low volatility regime and MACD containing long-term MAs

tend to outperform when the market is more volatile. It seems that certain

MACD only perform well in a certain volatility regime, and their performance

deteriorates when market volatility changes significantly. This leads us to

introduce a new "combined trading rule", which we call the model switch

strategy. The strategy is to take the signals from one MACD when the

volatility forecasts are higher than a threshold T' and to take the signals from

another MACD when the forecasts are lower than the threshold 1'. Since the

threshold T' for the model switch strategy is chosen to be always lower than

the previously determined threshold T, the trading signals from a model

switch strategy with a "reverse" filter can be expressed as:

SWitch(2) (1+1.t) = {

MA 1(0) (t+1.t) 2 < T'a (t+1.t)

MAiO) (t+1.t)

-(MA2(0) (t+1.t»)

2.4.4 Filter Rules: An Illustration

Figure 2.1 gives a simple illustration on how the model switch strategy works

in the EURIUSD market. Figure 2.1.a graphs the spot rate and the two MAs

(61D and 250D) of the series. The market experiences an obvious downward

trend in the period from 17/12/1998 to 25/10/2000, and it then reverses to an

upward trend until the end of the sample period. Both the 61D and 250D MAs

are able to identify this trend and the two MACDs based on the crossover

between the spot rate and MAs generate satisfactory results in terms of

cumulative returns as shown in figure 2.1.c. The 1D-61 D MACD outperforms
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Figure 2.1 An illustration of how the model switch strategy works in

EURIUSDspot market
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the 10-2500 MACO in that the former is able to catch the reversal more

quickly and thus able to better profit from short-term market movements. For

instance, during the long-term upward trend from 27/05/2003 to 03/09/2003,

there is a short-term reversal. While the 10-2500 MACO still give a long

position signal, the 10-610 MACO is able to signal a short position on

07/07/2003, and close that position on 12/09/2003 with a profit of 0.29%. But

the short-term MACO has the problem of over-reacting by giving "whipsaw"

signals: taking another example, 10-610 MACO takes a short position on

17/03/2003 and closes it on 28/03/2003 with a loss of 0.59% and extra

transaction costs. Our remedy to this problem is to use the market volatility

forecasts as an indicator to pick the right signals. Depending on the volatility

forecasts, the positions taken are "switched" between the signals from the

two MACOs. With such a switch strategy, the overall cumulative return is

increased to 2.93% for the first example and makes no loss in the second

example. Overall the switch model is able to consistently outperform both

MACOs in the entire sample period shown in figure 2.1.c 11.

2.5 Empirical Results

We assess the performance of technical rules at both the single asset and

portfolio level. The first portfolio formed is an FX portfolio consisting of the 9

FX currency rates that are most heavily traded in the market, and the weights

11
To make model performance comparable, the cumulative performances shown in figure

2.1.c are the performances of the 3 trading strategies, Le. the 10-610, 10-2500 and the
model switch strategy, with the addition of the "reverse" volatility filter.
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are allocated based on their trading volume in the FX market. We obtain the

market trading volume from the recent BIS triennal report 2004 (BIS 2004)12

(they represent over 78% of the USO 1.8 trillion daily FX turnover reported for

April 2004), and weights are shown in table 2.313. The entire data period is

split into 4 periods to see if the models performance is consistent over

different periods. The FX portfolio performance is shown in table 2.6 and 2.7.

In the long run currency returns can be seen as zero, and therefore a

traditional passive benchmark, for example the buy-and-hold strategy is not

appropriate. Lequeux and Acar (1998) introduce a dynamic currency index

(AFX index) using 3 simple MACO (namely 10-320, 10-610 and 10-1170)

strategies with each MACO taking the same weight in generating trading

signals. They find that the AFX index has high correlation with and low

tracking error to currency traders' performance. Following the same 10-320,

10-610 and 10-1170 MACO combination strategy, we form a dynamic FX

benchmark portfolio using the 9 FX currency rates mentioned above. It

should be noted that for simplicity in this chapter all FX currency returns are

exclusive of interest income or payments for holding a specific currency:

these could further enhance the models performance displayed throughout,

but as our objective in this chapter is to compare the relative performance of

MACO models with and without volatility filters, the exclusion of interest

income or payments can be ignored.

12 We use the notation of the International Organisation for Standardisation (lOS) for all the
exchange rates considered.
13 "!"he asset allocations set for all the portfolios in this chapter remain unchanged for the
e~tlre data sample period. For example, for EURIUSD series in table 2.3, the trading
Simulation assumes that 35.76% of the total investment is used to either long or short the
EURIUSD rates. The same remark also applies to portfolio 2 and 3 formed in the chapter.
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Table 2.3 Portfolio 1(FXportfolio) currency allocation

Currency
EUR USD GBP USD USD AUD EUR EUR EUR

IUSD IJPY IUSD ICHF ICAD IUSD IGBP IJPY ICHF

Weights 35.76% 21.13% 17.49% 5.57% 5.07% 6.42% 3.07% 3.64% 1.85%

Two more portfolios are formed. Both portfolios consist of 5 assets, with each

asset taking equal weight in the portfolio. The assets are so selected that

each portfolio has at least one stock, one bond, one exchange rate and one

commodity. Except for FX rates which are spot rates, all assets are

exchange-traded futures contracts 14. Like the FX portfolio, the entire sample

period for these two portfolios is split into 4 periods to measure the

consistence of the trading performance over different periods of time. Model

performance for portfolio 2 and 3 is shown in table 2.8 and table 2.915.

Table 2.4 Portfolio 2 asset allocation

Assets S&P500 EURIUSD COPPER BRENT OIL BUND

Weights 20% 20% 20% 20% 20%

Table2.S Portfolio 3 asset allocation

Assets USD/JPY GBP/USD ALUMINIUM STOXX50 T-BOND

Weights 20% 20% 20% 20% 20%

14 This is done to replicate the situation of small or medium-size investors who can ill afford
to trade cost efficiently the cash stock, bond and commodity markets.
15 In table 2.8 and 2.9, the "Combined MACD" strategy is to take the best combinations of
MACDs in different markets. The "Optimal" strategy is to select the best models in different
markets. More specifically, for portfolio 2, the "Optimal" strategy adopts the model switch
strategy in SP500, EURIUSD and Bund markets, and takes "Combined MACD" Strategy in
the Copper and Brent Oil markets. For portfolio 3, the "Optimal" strategy takes the model
switch strategy in USD/JPY, Aluminum and T-bond markets, and the "Combined MACD" in
the other two markets.
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The level of transaction costs is important to the trading frequency. Usually

the higher the transaction costs, the less frequently an asset should be

traded. In this study, for the FX currency portfolio, we follow Lequeux and

Acar (1998) and set the transaction cost as 0.03% per round-trip transaction

for all currency rates in this portfolio. While for portfolio 2 and 3, to reflect the

real world fund management, transaction costs are set as 0.01% for

EUR/USO and GBP/USO, 0.02% for USO/JPY, 0.06% for Bund and T-Bond,

and 0.12% for all other futures contracts.

In addition to the single MACOs, we also combine 2 or 3 MACOs to form a

"combined MAcon, with each MACO taking equal weight (see, for instance,

table 2.7)16. For each asset traded, a benchmark is formed. The benchmarks

for all bonds, stock indexes and commodity futures are passive buy-and-hold

strategies, and the benchmark for currency rates is the joint performance of

the 10-320, 10-610 and 10-1170 MACOs as suggested by the AFX index.

For the portfolio, the benchmark is the combined performance of these

individual benchmarks.

The performance of different trading rules is assessed in terms of

post-transaction-cost annualised return, post-transaction-cost information

ratio and maximum drawdown. Performance statistics for the 3 portfolios can

be found in the 4 tables from table 2.6 to table 2.9, with their cumulative

performance in figure A.1 in appendix. Performance statistics for all single

16 With a "combined MACD" strategy, the final trading signal equals the sum of the signals
generated by each individual MACD strategy. For example with a trading strategy consisting
of two MACDs, if one MACD gives a signal to go long and the other to go short, the final
trading strategy will be stay out of the market until both signals agree. This combination rule
applies to all the "combined MACD" strategy in the thesis.
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assets can also be found in table A.6 to A.15 in appendix.

2.5.1 Results for Portfolio 1 (FX portfolio)

The addition of either the "no-trade" or the "reverse" filter seems to work well

for the currency markets. In most cases, the "reverse" strategy performs

better than the "no-trade" strategy in terms of annualised return and

information ratio. However, the "no-trade" strategy has the lowest maximum

drawdown. This result is obvious as the "no-trade" strategy takes the more

prudent altitude to withdraw from market exposure when the volatility is

expected to be high rather than the aggressive "reverse" strategy, which

takes the opposite position from the prevailing one. Also with a "no-trade"

strategy, investors are able to free funds out of the high volatility market and

invest them in other markets for short-term profits. So there is no

overwhelming outperformance of one filter over the other, and it is up to

investors to choose the right strategy based on their risk tolerance in volatile

markets. But it is obvious that the market behaves differently at high volatility

levels and prompt action should be taken taking account of the volatility

change.

In the longer-term (Le. the overall performance for the 5 and 1a-year periods),

it looks that the 1D-61 D works the best among all single MACDs. But since

trades rarely rely on one single MA, we also measure the performance for the

combination of several MAs and find that 1D-61 D and 1D-250D are the best

overall in combined MACDs, they outperform other combinations of MACDs,

including the 1D-32D/1 D-61 D/1D-117D combination used by the AFX in
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terms of return, information ratio with an acceptable level of maximum

drawdown. Although the performance of this combination is not always the

best in different sub-periods, it produces the most consistent results over the

sample periods. So we retain the 1D-61D and 1D-250D as our best model for

the FX currency portfolio.

W.e then look at the more recent performance: 2003 and the recent half-year.

Although several other single MACDs produce great results with some

information ratios above 2 in the recent half-year period, the 1D-61D and

1D-250D combination keeps performing the best among all combined

strategies. The reason for the stunning performance for some single MACDs

could be either the result of datasnooping that are documented in previous

studies on technical trading rules or the result of USD depreciation against all

major currencies since early 2002 as the USD is the most heavily traded

currency, with 91.44% of the FX portfolio currencies being "dollar related". An

MA that is able to capture this depreciation in one currency rate works well in

other currency rates as well.

As far as trading frequency is concerned, the addition of the "reverse" filter

increases the number of trades compared to the original MACD strategy with

no filters as expected. The "no-trade" strategy generally decreases the trades

by exiting the market at high volatility levels. But if the number of trades from

a simple MACD is already low, this strategy will inversely increase the

number of trades. Overall, although the trading performance very much

depends on the models and strategies employed, with the study of MACD,

the optimal is around 11 trades per year for a passive "no-trade" strategy and
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around 16 trades per year for a more aggressive "reverse" strategy. This

suggests that even for an active currency trader, a trading frequency of about

1 or 2 times per month seems optimal. It implies that an investor should

establish a currency position with an expectation, on average, to hold this

position at least half a month before closing it out. Practically, this information

is meaningful when building a trading system: for example, a 1O-day forecast

horizon or a 10 or 15 day time delay filter can be added".

In this study, we follow Lequeux and Acar (1998) and set the transaction cost

as 0.03% per round-trip transaction for all currency rates in the FX portfolio.

However, there has been a fall in transaction costs in recent years, so we

measure the MACD model performance with lower transaction costs to see

whether it will affect the results reached above. Different levels of transaction

costs at 0.025%, 0.02%, 0.015% and 0.01% are applied". We find that

although lower transaction costs tend to benefit more on the performance of

MACD strategy with short-term MAs than long-term MAs, the combination of

the 1D-61 D and 1D-250D produces the most consistent results across

different periods. The optimal trading frequency for the FX currency rates

obtained from this strategy is therefore unchanged. As far as the impact on

volatility filters is concerned, the models with "no-trade" strategy incur less

transaction costs since it generates fewer trades than the "reverse" strategy

(see table A.2-A.5 in appendix). Also the "no-trade" strategy implies being out

of the market at times, thus translates overall into lower transaction costs. But

17 A time delay filter requires the buy or sell signal to remain valid for a pre-specified period
of time before action is taken.
18 Model Performance with transaction costs at 0.02% and 0.01 % are shown in appendix,
while performance with transaction costs at other level can be obtained upon request.
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differences between the performances of the two filter strategies are still

marginal.

2.5.2 Results for Portfolio 2 and 3

Generally speaking, similar results have been reached for portfolio 2 and 3:

firstly, the addition of the two volatility filters keeps adding value to the trading

performance with few exceptions, and the "reverse" strategies are able to

outperform the "no-trade" strategies in most cases. Secondly, it is still hard to

discriminate between the two filters. Overall the "reverse" filter performs well

in terms of information ratio, but the "no-trade" filter performs better in terms

of maximum drawdown. This is particularly important for stock and

commodity futures markets where average market volatility is high and the

maximum drawdown could be intolerably high for long periods. Thirdly,

combining two simple MACDs can improve the performance from a single

MACD, in terms of both the information ratio and the maximum drawdown.

Generally, technical trading rules seem to work better in stock and currency

markets than they do in bond and commodity markets. This is a quite

interesting finding since there is no previous paper, to the best of our

knowledge, which compares the predictability of technical trading rules in

different markets. Besides, the model switch strategy proposed works well,

and it is interesting to find that in markets where the MACD strategy works

well, the model switch model outperforms the regular MACD combination

models in most cases.
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Overall the technical trading rules, especially with the addition of volatility

filters, have outperformed the relative passive benchmarks in all markets 19.

This is more obvious looking at portfolios, where our optimal model (named

as "Optimal" in table 2.8 with the addition of a "reverse" filter) chosen for

portfolio 2 can generate a 16.69% annualised post-transaction-cost return

and information ratio at 1.88 with merely -6.12% maximum drawdown for a

6.-year period, compared to 9.86%, 1.06 and -22.16% for the benchmark

respectivello,21. For portfolio 3, although not as good as portfolio 2, the

9.80% annualised return and 1.39 information ratio with -5.99% maximum

drawdown are way above the benchmark.

In the stock futures markets, results for both S&P500 and Euro STOXX50

suggest that the optimal trading frequency is around 2-4 times per year when

applying a prudent "no-trade" strategy. In the currency markets, as suggested

by the FX portfolio, the optimal trading frequency for single currency rates like

EURIUSD, USD/JPY and GBP/USD remains between 10-20 trades per year

depending on the filter chosen. It is not surprising to find that results are

similar between stock indexes and between different currency rates, but the

optimal trading frequencies vary much between different commodity futures,

as the latter are very different assets. In the commodity markets, the optimal

periods for Aluminium, Copper and Brent Oil are 12-18, 6-7 and 32-42 trades

respectively.

19 For all currency rates, the benchmark is based on an active trading rule, which combines
the performance of the 10-320,10-610 and 10-1170 MACOs suggested by AFX currency
index.
20 Again the "Optimal" strategy in table 2.8 and 2.9 is to select the best models, among
"combined MACO" and "Model Switch" strategies, in different markets.
21 The benchmark for the portfolio is the combined performance of the benchmarks for each
single asset in the portfolio.
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As for the bond, the optimal trading frequencies are 5-8 trades per year for

3D-year T-bond and 11-18 trades per year for the 1D-year Bund.

Finally, the performance tables presented above show that the profitability of

technical trading rules before the addition of volatility filters are inconsistent

across different sample periods. This phenomenon of inconsistence was also

documented in the literature22. This may be due to the fact that markets may

trend for varying time periods in various markets (Lequeux and Acar 1998).

2.6 Concluding Remarks

Technical trading rules have been used in financial markets for decades, and

are still one of the most popular forecasting techniques in financial markets.

But technical trending systems are known to perform poorly in volatile

markets. The primary motivation of this chapter was to investigate the

performance of technical trending systems in different volatility regimes. We

then proposed volatility filters to enhance the performance of these trading

rules.

We applied different technical trading rules to a variety of financial assets in

the stock, bond, FX and commodity markets. It is found that technical trading

rules perform poorly in periods when market volatility is high, and therefore

two volatility filters were proposed, namely a "no-trade" filter where all market

positions are closed in volatile periods, and a "reverse" filter where signals

22 See, for instance, Brock et al. (1992) for stock markets and LeBaron (1991, 1992) for the
foreign exchange market.
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from a simple MACO are reversed if the market volatility is higher than a

given threshold. Compared with previous papers focusing on the

performances between MACOs with different window lengths, in this chapter,

we also compared the impact of volatility regime changes on MACOs with

different window lengths. We found that MACOs consisting of short-term MAs

tend to outperform those MACOs with long-term MAs when the market is

relatively stable, while the latter performs better in more volatile periods. We

then proposed a model switch strategy, where signals from different MACO

systems are taken depending on the prevailing market volatility.

Our results show that the two volatility filters added have significantly

improved the models performance in most cases during the sample periods.

The strategy with "reverse" filters performs best overall in terms of

post-transaction-cost annualised return and information ratio, while the

strategy with "no-trade" filters perform best in terms of maximum drawdown.

The model switch strategy we proposed has performed well, especially in the

stock, currency and bond markets, where it produces the best and most

consistent performance in most cases. While some performance of these

technical trading rules are not persuasively "good" when applied to single

assets, the performances at portfolio levels are overwhelmingly good:

portfolio 2 generates a 16.69% annualised post-transaction-cost return and

an information ratio of 1.88 with a mere -6.12% maximum drawdown for a

6-year period, and 9.80%, 1.39 and -5.99% respectively for portfolio 3, way

above the performance statistics of their respective benchmarks.

Finally, although our results for the optimal trading frequencies differ for the
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different assets under review, similar results have been achieved for the two

stock indexes (S&P500 and STOXX50) and for the FX currency rates. In

case of the stock indexes, the optimal trading frequency is about 2-4 trades

per year, while for the FX rates, the optimal frequency is 10-20 trades per

year. But for very different assets such as the commodities studied in this

chapter, the optimal trading frequencies are understandably different.
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CHAPTER 3

Volatility Filters for Asset Management:

An Application to Managed Futures

Chapter Overview

Technical trading rules are known to perform poorly in periods when volatility

is high. Different from previous studies on technical trading rules which base

their findings from an academic perspective, this chapter relates the findings

from chapter 2 to the real world business: two portfolios, which are highly

correlated with a managed futures index and a currency traders' benchmark

index are formed to replicate the performance of the typical managed futures

and managed currency funds. The primary motivation of this chapter is to

study whether the addition of volatility filters can improve model performance

of these two portfolios with the hope that the proposed techniques will then

have both academic and industrial significance.

Two volatility filters are proposed, namely a "no-trade" filter where all market

positions are closed in volatile periods, and a "reverse" filter where signals

from a simple moving average convergence and divergence (MACD) are

reversed if market volatility is higher than a given threshold.

Our results show that the addition of the two volatility filters adds value to the

models performance, which confirms the findings from chapter 2.
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3. 1 Introduction

Financial forecasting has always been a main focus of the financial and

economic literature. Many articles proposing numerous simple or more

sophisticated forecasting techniques have claimed that a trading strategy

based on their forecasts can outperform that of a buy-and-hold strategy or

some other benchmark forecasting techniques. These trading strategies

usually require the underlying assets to be traded actively, while in practice

trading on a high-frequency basis in some markets is not feasible simply

because of transaction costs. In markets like the stock and bond cash

markets, the benefits from switching market positions at high frequency can

hardly compensate for the transaction costs incurred. Transaction costs in

most futures markets and foreign exchange (FX) cash markets are much

lower compared to other financial markets. The low transaction costs along

with the ability to "go short" easily in these markets make it possible to profit

from active trading strategies. As a matter of fact, the managed futures and

managed currency traders are the most active market players.

Despite the fact that technical trading rules have been extensively studied,

most of these articles build their findings from an academic perspective, while

few of them relate their results to the real world of investment. This chapter

tries to relate our findings from the previous chapter to the real business

world by forming two portfolios that are highly correlated with a managed

futures index and a currency traders' benchmark index, and which replicate

the performance of the typical managed futures and managed currency

46



funds.

The major motivation for this chapter is to extend our previous findings and

study whether the addition of volatility confirmation filters, based on the

underlying market volatility, can help to improve the performance of the

typical managed futures and managed currency funds. The proposed

techniques are expected to have both the academic and industrial

significance.

Of the two portfolios formed, the futures portfolio is highly correlated with the

CSFB/Tremont managed futures index and is built to mimic the performance

of typical managed futures funds. Following Lequeux and Acar (1998) who

create a dynamic currency futures index (AFX), we also form an FX portfolio

using the 9 most heavily traded FX spot rates replicating average currency

managers. The specifications of the moving average convergence and

divergence (MACD) used in the two dynamic portfolios are the ones applied

by Lequeux and Acar (1998) who show that a combination of time spans of

32, 61 and 117 days provide the best balance between diversification and

simplicity while at the same time reproducing well the performance of

currency fund managers.

Two volatility filters are proposed, namely a "no-trade" filter where all market

positions are closed in volatile periods, and a "reverse" filter where signals

from a simple MACD are reversed if the market volatility is higher than a

given threshold.

Our results show that the addition of the two volatility filters adds value to the
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portfolios performance in terms of annualised return, maximum drawdown

and risk-adjusted information ratio in all the 3 periods considered. As for the

two filters applied, the "reverse" strategy seems to outperform the "no-trade"

strategy for most performance measures most of time.

The rest of the chapter is organized as follows: section 3.2 presents a brief

review of the relevant literature, section 3.3 explains the methodology and

section 3.4 describes the data used. Section 3.5 presents the empirical

results, focusing on the models performance during different periods,

followed by concluding remarks in section 3.6.

3.2 Literature Review

The results from literature about the profitability of technical trading rules are

conflicting. Much of the earlier work23 concludes that it is not possible to

outperform the market using technical trading rules. However Brock et al.

(1992) provide strong support for technical strategies, with returns from their

technical trading strategies outperforming four popular null models: the

random walk, theAR(1), the GARCH-M and the EGARCH. Blume etal. (1994)

show that the sequence of data for both past prices and trading volume

improve the predictability of equity returns within the "noisy rational

expectation" framework. Kwon and Kish (2002) find that technical trading

rules add value to capture profit opportunities over a buy-and-hold strategy.

Sullivan et al. (1999) show however that the results of Brock et al. (1992) are

23 See, for instance, Alexander (1961) and Fama and Blume (1966).
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substantially weakened when the survivorship bias is corrected. Ready (2002)

argues that the apparent success of the Brock et al. (1992) moving average

rules is a spurious result of datasnooping, which occurs when a given set of

data is used more than once for purposes of inference or model selection.

Despite the academic controversy over the merits of technical trading rules,

they are one of the most widely used forecasting techniques among market

practitioners as mentioned by Billingsley and Chance (1996) who note that

70% of the Commodity Trading Advisors (CTAs) are trend followers and tend

to trade in a similar manner. The heavy use of technical trading rules by

futures and currency funds has also been documented from a technical

perspective. For instance, Jensen (2003) replicates, with a 75% correlation,

the typical managed-futures hedge fund (represented by the CSFBlTremont

managed futures index) with a basic 1-month and 3-month moving average

trading strategy applied to the major futures markets. Lequeux and Acar

(1998) form a dynamic currency index (AFX), based on the performance of 3

simple moving averages, which exhibit similar performance to currency

traders' benchmarks.

Market volatility has an impact on futures trading, for instance, Pan et al.

(2003) study the influence of volatility on futures trading and find that an

increase in volatility motivates traders to engage in more trading in futures

markets. In addition, volatility filters have been proposed to improve the

overall performance of trend-following systems because trend-following

systems are known to perform poorly when markets become volatile. Roche

and Rockinger (2003) explain that high volatility periods often correlate with
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periods when prices change direction, and therefore propose to reverse the

technical signals generated when market volatility is forecast to be higher

than a chosen threshold. Dunis and Chen (2005) argue that MACD models

perform poorly in volatile markets, precisely because volatile markets imply

frequent direction changes, and thus introduce a volatility filter which stops

trading at times of high volatility.

3.3 Technical Trading Rules: the Methodology

3.3.1 MACD

Technical trading rules have long been applied in financial markets, and

these rules are still one of the most popular techniques applied by market

practitioners. A technical trending system is built based on the basic

assumption that "everything is in the rate and the market moves in trend".

Then the major task of such a trend-following system is to define the

prevailing trend and to identify early reversals.

One of the most widely used technical trending systems is the moving

average convergence and divergence system (MACD). An MACD crossover

system consists of two moving averages (MA), a short-term MA and a

long-term MA, of the underlying financial series. For the daily data, we use "s

D - I D" to refer to a specific MACD, where s and I are the number of days in

the short-term and long-term MA respectively, while for the monthly data it is

"s M - I M" accordingly. In such a system, the long-term MA is to identify the
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prevailing trend, and the short-term functions as the market timing device.

The trading strategy based on an MACD system is to go long (or short) when

the short-term MA is above (or below) the long-term MA. The idea behind

MAs is to smooth out a volatile time series and there are many ways to

compute MAs. We use the simple MA where all past observations are

assigned equal weights as:

n

MA(I) = (lln)LPI-i
i=1

(3.1 )

3.3.2 Trend-Following Technique and Market Volatility

Following chapter 2, we use the time-varying RiskMetrics volatility model to

measure the conditional market volatility and amend our trend-following

models when a given level of conditional volatility has been breached.

RiskMetrics is calculated using the following formula:

(3.2)

where a 2 is the volatility forecast of a specific asset, r2 is the squared return

of that asset, and Ji = 0.94 for daily data and 0.97 for monthly data as

computed in JP Morgan (1994)24.

24 The assumption is that the mean of asset return r is zero so that r2(t) represents the latest
variance. In addition, at the beginning to initiate the computation, we set cr2(o) = r2(0)

51



3.3.3 Volatility Filter Rules

As described in the previous chapter, we use the symbol MA(p) (t+1,t) to denote

the trading signals from an MACD model at time t for time t+1, where p is the

volatility filter imposed on that model: p takes the value of 0 if there is no

volatility filter, it takes the value of 1 when the "no-trade" filter is used and 2

when a "reverse" filter is in use.

3.3.3.1 "No-trade" Strategy

Since MACD models are found to perform poorly in volatile markets, following

chapter 2, the "no-trade" volatility filter rule proposed is to stay out of the

market when the underlying volatility is forecast to be higher than a certain

threshold T. The previous MACD trading rules are thus combined with the

"no-trade" strategy:

{
MA(O) (t+1,t) a 2(t+1,t) < T

MA(1) (t+1,t) =

0 a 2(t+1,t) > T

3.3.3.2 "Reverse" Strategy

As in chapter 2, a "reverse" filter is proposed to reverse the signals generated

when market volatility is forecast to be higher than a chosen threshold:
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{

MA(O) (t+1,t)

MA(2) (t+1,t) =

- ( MA(O) (t+1,t))

0' 2(t+1,t) < T

0' 2(t+1,t) > T

3.4 Data and Dynamic Portfolios

The entire sample period is from 02/01/1998 to 31/12/2004 (1814

observations for daily data and 84 observations for monthly data) and all

datasets used are daily and monthly closing prices obtained from Datastream.

We use data of the first year of the databank for MACD calculation and

volatility measurement initialisation, and we just select those MACD

parameters that are popular in the market without making the effort to use a

lot of "in-sample" data to optimise model parameters, the whole period for

performance measurement purposes is from 04/01/1999 to 31/12/2004 (1556

observations for daily data and 72 observations for monthly data). To

measure the consistency of those performance measures, we split the entire

performance period into 3 periods: i.e. the full 6-year period (04/01/1999 -

31/12/2004), the last 4-year period (02/01/2001 - 31/12/2004) and the last

2-year period (02/01/2003 - 3111212004).

The daily (monthly) asset returns r in time period t are calculated as the

percentage change of the daily (monthly) closing value p:

rt = (Pt - Pt-I)
r.: (3.3)
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3.4.1 Futures Portfolio

The major objective of this chapter is to apply volatility filters to two portfolios

that replicate the performance of average futures and currency traders.

Table3.1 Asset allocation and dynamic MACD strategy for the

futures portfolio

Assets

(Futures)

EUR$

(CME)

T-Note S&P500 EURIUSD USD/JPY GSP/USD Copper

(CST) (CME) (CME) (CME) (CME) (COMEX)

Weights 14.29% 14.29% 14.29% 14.29% 14.29% 14.29% 14.29%

MACD Strategy
1D - 250D 1D - 250D 3D - 250D 1D - 61D 1D - 61D 1D - 61D 1D - 250D

(daily data)

MACD Strategy
1M - 12M 1M - 12M 1M - 12M 1M - 3M 1M - 3M 1M - 3M 1M - 12M

(monthly data)

Jensen (2003) replicates the typical managed futures hedge fund with a basic

1-month by 3-month moving average trading strategy applied to Eurdollar

(EUR$), S&P500, US T-note, EUR/USD and USD/JPY futures markets, while

in this chapter we add two more assets, GSP/USD and Copper to expand the

asset coverage while at the same time retaining a high correlation level. The

contracts included in the futures portfolio are EUR$ (CME), T-Note (CST),

S&P500 (CME), EURIUSD (CME), USD/JPY (CME), GSP/USD (CME) and

Copper (COMEX) as shown in table 3.1. The 7 futures assets are all U.S.

contracts with reasonably similar closing times. The equally weighted

portfolio has been constructed on a trial and error basis to highly correlate

with the CSFS/Tremont managed futures performance index.

For daily data, the MACD specifications are those MACDs that are widely
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used by market practitioners. The futures portfolio formed in this way is highly

correlated with the CSFB/Tremont managed futures index. Calculated from

January 1994, the CSFB/Tremont hedge fund index is the industry's leading

asset-weighted hedge fund index. There are also 10 sub-indices that

represent the performance of the 10 primary hedge fund subcategories

based on their investment style. CSFB/Tremont analyses the percentage of

assets invested in each subcategory and selects funds for the index based on

those percentages. For our purpose here, we analyse the CSFB/Tremont

managed futures sub-index. Since all CSFBlTremont indices are computed

on a monthly basis, we also use monthly data with monthly MACD

specifications. Bearing in mind that the lowest time span with monthly data

will be 1 month, we try to replicate the time span of the daily MACD for the

longer term moving average: for instance, a 10-610 daily MACD for the

EUR/USD series is approximated by a 1M-3M monthly MACD. Daily and

monthly MACD specifications as well as asset allocation weights for the

futures portfolio can be found in table 3.1. With this approach, both the daily

and monthly dynamic futures portfolios are highly correlated with the

CSFB/Tremont managed futures index for the 6-year, 4-year and 2-year

periods. This futures portfolio is then able to replicate the typical managed

futures funds in the market (see figure 3.1).

Table 3.2 suggests consistency across the different periods under review25.

The fact that the dynamic portfolio represents the performance of managed

25 Since the CSFBlTremont managed futures index is only available on a monthly basis, to find the
correlation between the index and the futures portfolio with daily data, we sum the daily returns in
each month to form a series of aggregated monthly returns with which the correlation to the index is
calculated.
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futures funds is not only supported by its consistent and high correlation to

the CSFB/Tremont managed futures index correctly over time. It is also

confirmed by the closeness of both risk-adjusted information ratios (see table

3.4), even if the dynamic portfolio has a lower return and a lower volatility

compared to the CSFB/Tremont index, and this is due to the fact that most

futures funds are leveraged.

Figure 3.1 Correlation between CSFBlTremont managed futures index

and the futures portfolios
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Table 3.2 Coefficient of correlation between CSFBlTremont managed

futures index and the futures portfolios

6-year Period 4-year Period 2-year Period

Futures Portfolio

(aggregate monthly return with daily data)
0.68 0.71 0.64

Futures Portfolio (monthly data) 0.62 0.69 0.58
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3.4.2 FX Portfolio

Lequeux and Acar (1998) introduce a dynamic currency index (AFX index) to

replicate the performance of the typical currency fund managers. The index

consists of 7 currency futures rates using 3 simple MACO (namely 10-320,

10-610 and 10-1170) strategies with each MACO taking the same weight in

g~nerating trading signals. They find that the AFX index has high correlation

with and low tracking error to currency traders' performance. Following the

same 10-320, 10-610 and 10-1170 MACO combination strategy, we form

the FX portfolio using currency spot rates since trading volumes in the FX

spot market are much bigger than those in the futures market. We also

expand the portfolio composition to include the 9 most heavily traded major

exchange rates according to the recent BIS FX trading survey26 (they

represent over 78% of the USO 1.8 trillion daily FX turnover reported for April

2004) and update the portfolio-weighting scheme using the data from this

survey (BIS 2004)27.

Table 3.3 FX portfolio currency allocation

EUR USD GBP USD USD AUD EUR EUR EUR
Currency

IUSD IJPY IUSD ICHF ICAD IUSD IGBP IJPY ICHF

Weights 35.76% 21.13% 17.49% 5.57% 5.07% 6.42% 3.07% 3.64% 1.85%

Both the asset combination and weights of the FX portfolio are shown in table

3.3. It should be noted that for simplicity in this chapter all FX currency

26 We use the notation of the International Organisation for Standardisation (lOS) for all the
exchange rates considered.
27 As for chapter 2 (see footnote 13). the asset allocations set for all the portfolios in this
chapter remain unchanged for the entire data sample period.

57



returns are exclusive of interest income or payments for holding a specific

currency: these could further enhance the models performance displayed

throughout, but as our objective in this chapter is to compare the relative

performance of the FX portfolio with and without volatility filters, the exclusion

of interest income or payments can be ignored.

3.5 Empirical Results

The entire performance period for both the futures and FX portfolio is split

into 3 periods to measure the consistency of the trading performance over

different periods of time. Model performance statistics for the 2 portfolios can

be found in table 3.4.

3.5.1 Results for the Futures Portfolio

Not only does the futures portfolio with the dynamic daily MACD strategy

highly correlate with the CSFBlTremont managed futures index, but it also

produces similar information ratios to those from the index for all the 3

periods, which confirms that this portfolio can consistently replicate the

performance of the typical managed futures funds. For the futures portfolio

with daily data, the addition of either the "no-trade" or the "reverse" filter

brings a significant improvement in terms of annualised return and the

risk-adjusted information ratio in all the 3 periods. In the longer term 6-year

period, the "reverse" strategy increases the annualised return from 3.06% to

5.47%, while on the other hand the "no-trade" strategy lowers the maximum
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drawdown successfully with improving the annualised return at the same time.

More such significant improvements on major performance measures are

also found over the recent 4-year and 2-year periods. The risk-adjusted

information ratios obtained from strategies using the filters are also high,

which suggests that the performance results obtained with the volatility filters

are not only good when compared to the portfolio without filters, they are also

actionable in a trading environment. As far as the two filters are concerned,

the "reverse" filter strategy performs better than the "no-trade" filter strategy

in terms of annualised return and risk-adjusted measures. With a "no-trade"

strategy, investors are able to free funds out of a highly volatile market and

into other less turbulent markets (for instance, short-term money deposits)

which might further increase yield and reduce risk. From this perspective

there is no real "winning" filter and it is up to investors to choose the right

strategy based on their risk tolerance. But it is obvious that markets behave

differently at high volatility levels and adaptive strategies like the ones

suggested should be adopted during those periods.

Since the CSFB/Tremont index is computed on a monthly basis, we also

apply the same asset composition and weighting scheme using monthly data

with the MACD strategies approximated as mentioned before: Le. a 1D-61D

daily MACD for the EUR/USD series is approximated by a 1M-3M monthly

MACD. It is found that the portfolio with monthly data is highly correlated with

the CSFBITremont index as well. Again the addition of the two filters adds

value to the models performance in terms of annualised return and

risk-adjusted information ratios. The "reverse" strategy seems to outperform

on most performance measures most of time, while the "no-trade" strategy
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performs only marginally better in terms of information ratio for the more

recent 2-year period. Not surprisingly, with fewer trades (as a matter of fact,

the strategy with monthly data assumes that trades are only executed at the

end of each month), the portfolio with monthly data has lower annualised

return and annualised volatility. As far as trading frequency is concerned, for

EUR/USD and Bond futures, where the same MACD specifications are

adopted, the trading frequencies on average for both series are about 14

times a year for daily data and 7 times a year for monthly data. In addition,

with longer time spans in the MACD specification, the trading frequency for

S&P500 futures is lower, about 3 times a year for daily data and twice a year

for monthly data. When transaction costs are taken into account, the portfolio

with daily data significantly outperforms the one with monthly data most of the

time in terms of risk-adjusted measures. This suggests that a close watch on

the markets and active trading may pay back in the futures market.

3.5.2 Results for the FX portfolio

Similar results have been found for the FX portfolio performance, with the

addition of either filters adding value to model performance on all major

measures for the 3 periods considered. In the longer 6-year period,

improvements on both the return and risk in terms of annualised return and

maximum drawdown are found with the addition of either filter. What is more,

the "reverse" strategy is very successful in generating returns from taking

opposite positions to the original signals in volatile markets, so it prevails over

the "no-trade" strategy in all cases in terms of risk-adjusted measures.
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3.6 Concluding Remarks

Technical trading rules are known to perform poorly in periods when volatility

is high. The objective of this chapter was to relate our findings from chapter 2

to the real business world and to study whether the addition of volatility filters

can improve model performance of average market players. Two portfolios,

which are highly correlated with a managed futures index and a currency

traders' performance benchmark, were formed to replicate the performance

of the typical managed futures and managed currency funds. The volatility

filters proposed were applied directly to the two portfolios with the belief that

the proposed techniques which perform well on these portfolios have both

academic and industrial significance.

The specifications of the MACDs used in the two dynamic portfolios are the

ones commonly applied in the market instead of any other number arbitrarily

selected. The futures portfolio, which is highly correlated with the

CSFB/Tremont managed futures index, is devised to mimic the performance

of the typical managed futures funds. Following the Lequeux and Acar (1998),

we also form an FX portfolio using the 9 most heavily traded FX spot rates to

replicate typical currency funds. Two volatility filters were proposed, namely a

"no-trade" filter where all market positions are closed in volatile periods, and

a "reverse" filter where signals from a simple MACD are reversed if market

volatility is higher than a given threshold.

Our results show that the two volatility filters significantly improve the

performance of both portfolios in terms of all major performance measures in

62



all the 3 periods considered. For instance, in the longer 6-year period, the

"reverse" strategy increases the annualised return from 3.06% to 5.47% for

the futures portfolio using daily data and from 1.60% to 4.63% for the

currency FX portfolio. Significant improvements on market risk in terms of

annualised volatility and maximum drawdown are also found with the filters

imposed. The results are believed to be consistent as significant

improvements are also found over the more recent 4-year and 2-year periods.

These results confirms with the findings from chapter 2. In addition, the

information ratios obtained from strategies using the filters are also high,

suggesting that the performance results obtained with volatility filters are not

only good in relative terms when compared to the portfolios without filters,

they are also actionable in a trading environment.

Although the "reverse" strategy outperforms in terms of risk-adjusted

measures most of the time, investors following a "no-trade" strategy are able

to free up funds out of highly volatile markets and invest into other markets for

short-term profits. In this respect, there is no "winning" of one filter against the

other and it is up to investors to choose the right strategy based on their risk

tolerance. But it is obvious that markets behave differently at high volatility

levels and adaptive strategies like those proposed need to be adopted during

such periods.

Finally, with fewer trades the futures portfolio using monthly data has low

annualised returns and annualised volatility. The portfolio with daily data

significantly outperforms the one with monthly data most of the time in terms

of risk-adjusted measures even when transaction costs are taken into

63



account. This suggests that a close watch on the markets and active trading

may pay back in the futures market.
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CHAPTER4

Volatility Filters for FX Portfolios Trading:

The Impact of Alternative Volatility Models

Chapter Overview

In both chapter 2 and 3, we find that the addition of volatility filters with

RiskMetrics forecasts can improve the performance of moving average

convergence and divergence (MACD) models. The motivation of this chapter

is to test whether alternative volatility models forecasts can further improve

the MACD models performance with such filters.

The two alternative volatility forecast models used in this chapter are GARCH

model as in Bollerslev (1986) and stochastic volatility model with Markov

switching (MS) based on Hamilton (1994) and Roche and Rockinger (2003).

Our results show that volatility filters using alternative volatility models fail to

enhance the performance of the simpler filters using RiskMetrics forecasts in

terms of annualised return and information ratio.
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4. 1 Introduction

The volatility of foreign exchange (FX) rates has always been of particular

interest to both academic researchers and market investors since the

breakdown of the Bretton Woods system in 1971-73. With the introduction of

currency derivatives, modelling and forecasting FX volatility, which is the key

variable in option pricing, has become even more important. An accurate

valuation of currency options from the best prediction of FX volatility is crucial

to hedge FX exposures and/or speculate in currency markets.

Before the seminal paper by Engle (1982), the uncertainty of FX rates was

measured by the sample variances and covariances calculated over a recent

sample period. This traditional measure of volatility is challenged as the

returns exhibit leptokurtosis and volatility is known to be clustering. Engle

(1982) ARCH model and Bollerslev (1986) GARCH model are designed

specifically to model these changes in volatility. There are many papers

supporting the use of GARCH modef". Alternatively, the so-called conditional

volatility may also be modeled as an unobserved component following a

stochastic process. The resulting stochastic volatility models have also

encountered great success (See Taylor 1994, Breidt et al. 1998, Roche and

Rockinger 2003, Billio and Sartore 2003).

Most of fund managers in the currency markets are technical traders, and

28 See, among others, Akgiray (1989), Bollerslev et al. (1992), Pagan and Schwert (1990),
West and Cho (1995) and Chong et al. (1999)
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Billingsley and Chance (1996) mention that 70% of the Commodity Trading

Advisors (CTAs) are trend followers and tend to trade in a similar manner.

Trend-following systems are known to perform poorly when markets are very

volatile. We find previously that the addition of volatility filters can improve the

performance of the moving average convergence and divergence (MACD)

models that replicate typical currency fund managers as introduced by

t.equeux and Acar (1998). In the previous 2 chapters and Miao and Dunis

(2005), RiskMetrics is used to model and forecast the time-varying volatility.

The motivation of this chapter is to test whether using alternative volatility

models forecasts can further improve the model performance using volatility

filters.

The two alternative volatility forecast models used in this chapter are the

GARCH model of Bollerslev (1986) and a stochastic volatility model with

Markov switching (MS). Following chapter 2 and 3, two volatility filters are

proposed, namely a "no-trade" filter where all market positions are closed in

volatile periods, and a "reverse" filter where signals from a simple model are

reversed if the market volatility is higher than a given threshold.

Our results show that in the out-of-sample period, addition of either a

"no-trade" or a "reverse" volatility filter using alternative volatility forecasts

fails to outperform the model with such volatility filters using RiskMetrics

forecasts. However, whatever volatility forecasts are used, the addition of

volatility filters can significantly outperform the original MACD model in both

the in-sample and out-of-sample periods, which confirms the findings from

the previous 2 chapters.
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The rest of the chapter is organized as follows: section 4.2 describes the data

used and the FX portfolio formed, and section 4.3 explains the volatility

models and the volatility filter rules. Section 4.4 presents the empirical results,

focusing on the out-of-sample models performance, followed by concluding

remarks in section 4.5.

4.2 Data and the FX Portfolio

Lequeux and Acar (1998) introduce a dynamic currency index (AFX index) to

replicate the performance of typical currency fund managers. The index

consists of 7 currency futures rates using 3 simple MACD strategies (namely

1 and 32-day, 1 and 61-day and 1 and 117-day) with each MACD taking the

same weight in generating trading signals. They find that the AFX index has a

high correlation and low tracking error with the performance of typical

currency fund managers. Following the same MACD combination strategy,

we form our benchmark FX portfolio using currency spot rates since trading

volumes in the FX spot market are much higher than those in the futures

market. We also expand the portfolio composition to include the 9 most

heavily traded major exchange rates according to the recent BIS FX trading

surve/9 (they represent over 78% of the USD 1.8 trillion daily FX turnover

reported for April 2004) and update the portfolio-weighting scheme using the

data from this survey (BIS 2004). Both the asset combination and weights of

29 We use the notation of the International Organisation for Standardisation (lOS) for all the
exchange rates considered.
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the FX portfolio are shown in table 4.130
•

Table 4.1 FX portfolio currency allocation

Currency
EUR USD GBP USD USD AUD EUR EUR EUR

IUSD IJPY IUSD ICHF ICAD IUSD IGBP IJPY ICHF

Weights 35.76% 21.13% 17.49% 5.57% 5.07% 6.42% 3.07% 3.64% 1.85%

The entire sample period is from 02/01/1998 to 31/05/2005 with 1921 days of

observations and all datasets used are daily closing prices in London

obtained from Datastrearn ". The entire sample period is divided into 2

periods: the dataset from 02/01/1998 to 31/05/2004 with 1660 days of

observations as the in-sample period, and the remaining 261 observations as

out-of-sample period.

The daily currency returns r in time period t are calculated as the percentage

change of the daily currency rate p:

r, = (Pt - Pt-I)
Pt-I

(4.1 )

4.3 Volatility Models and Volatility Filter Rules: the

Methodology

30 As for chapter 2 (see footnote 13), the asset allocation set for the FX portfolio in this
chapter remains unchanged for the entire data sample period.
31 Since the EUR/USD exchange rate only exists from 04101/1999, we follow the approach
of Dunis and Williams (2002) to apply a synthetic EURIUSD series from 02/01/1998 to
31/12/1998 combining the spot USDIDEM and the fixed EUR/DEM exchange rate. The
synthetic EUR/GBP, EUR/JPY and EUR/CHF are created following the same approach.
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4.3.1 GARCH Models

The ARCH model of Engle (1982) has been seen as a revolution in modelling

and forecasting volatility. It was further generalised by Bollerslev (1986) as

the GARCH model. The GARCH type models assume that volatility changes

over time in an autoregressive manner.

hi = w+ Iaiel~i +t»:
i=1 j=1

(4.2)

where h, is the conditional variance which is expressed as a function of a

constant, the previous periods squared random component of the return and

the previous periods' variance. In our study, we tried alternative models for

in-sample fitting, and the model parameters are selected based on AIC/SBC

criteria. The GARCH models estimation output tables can be found in

appendix A.16-A.24, where it can be seen that all ARCH and GARCH

coefficients are statistically significant.

4.3.2 RiskMetrics Model

The RiskMetrics volatility can be seen as a special case of Bollerslev (1986)

GARCH model with pre-determined decay parameters, and it is calculated

using the following formula:

(4.3)

where a 2 is the volatility forecast of a specific asset, ,2 is the squared return
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of that asset, and J.i = 0.94 for daily data as computed in JP Morgan (1994)32.

4.3.3 Stochastic Volatility with Markov Switching

One of the main findings of empirical studies on volatility is that the volatility

of asset returns tends to change stochastically over time (Psychoyios et al.

2003). Hamilton (1989) proposes a stochastic volatility model with Markov

switching, which has received great attention. With such a model, asset

returns are assumed to be a mixture of distributions and the regime changes

between these distributions follow a Markovian process. The stochastic

volatility model we use in this model is based on Hamilton (1994) and Roche

and Rockinger (2003): the model only allows the variance to switch, and it

assumes returns are a mixture of normal distributions as in equation (4.4)

below.

(4.4)

where Et are independent and identically distributed normal distributions with

mean 0 and variance 1. S, is a Markov chain with values 0 and 1 and with

transition probabilities p=[Poo, P01, P10, P11] such that:

P11 = Pr[St=1/St-1 =1]

P01 = Pr[St=0/St-1 =1]

P10 = Pr[St=1/St-1 =0]

POO = Pr[St=0/St-1 =0]

32 The assumption is that the mean of asset return r is zero so that r« represents the latest
variance. In addition, at the beginning to initiate the computation, we set cr2(O) = r(O)
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where P11+ P01=1 and P10+ Poo=1

If we assume that et follow normal distribution, the density function of R,

conditional on regime St, f (Rt / St) can be written as:

(4.5)

The likelihood function to be maximized is:

(4.6)

Moreover:

I

f(R, / R,_pS,)= Lf(R"S,)Pr[S, / R,_I]
S,=o

(4.7)

I

Pr[S, / R,_I] = L Pr[S, / S,_I ]Pr[SH' R,_I]
SI-I=O

(4.8)

Pr[S'_1 / R,_I] = ((RH / S,_I )Pr[S'_1 / R,_2]
Lf(RH / S,_I )Pr[S'_1 / R,_2]

S,_I=O

(4.9)

It is now quite simple to compute Pr[St / Rt-1] from equation (4.8) and equation

(4.9) for all time t following a recursive approach. It should be noted that the

starting value of Pr[St =1] and Pr[St =0] can be either estimated directly as

additional parameters, or approximated by the steady state probabilities as:

Pr[S, = 1]= 1- POD

2 - PII - POD

(4.10)
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Pr[St = 0]= 1- Pll
2 - Pll - Poo

(4.11 )

The estimation of the MS model is programmed using Maximum Likelihood

Objects with Eviews. Within the program, the corresponding coefficients are:

0"1 = C(1)

0"0 = C(2)

f.J = C(3)

C(4) 33

Pll=I+C(4)

C(5)
Poo = I+C(5)

The MS models estimation output tables can be found in appendix A.2S-A.33,

where it can be seen that all coefficients are statistically significant except for

the mean J.1.

4.3.4 MACD and Volatility Filter Rules

4.3.4.1 MACD Trading Strategy

A MACD system consists of two moving averages (MAs), a short-term MA

and a long-term MA, of the underlying asset. In such a system, the long-term

MA is used to identify the prevailing trend, and the short-term is a market

timing device. The trading strategy based on a MACD system is to go long (or

short) when the short-term MA is above (or below) the long-term MA. The

idea behind the use of MAs is to smooth out a volatile time series and there

33 The use of Logit equation is to ensure that P11 and Poo lie between [0,1].
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are different ways to compute MAs. We use the simple MA where all past

observations in the MA are assigned an equal weight as:

n

MA(tl =(1ln)LPt_;
;=1

(4.12)

Following Lequeux and Acar (1998), we generate the MACD trading signals

using 3 simple MACD strategies (namely 1 and 32-day, 1 and 61-day and 1

and 117-day) with each MACD taking the same weight.

We find above in chapter 2 and 3 that returns generated from MACD signals

become negative most of the time when a market experiences high volatility.

This suggests that a different strategy might be adopted when the volatility

regime changes. We use the symbol MA(p) (t+1,t) to denote the trading signals

from an MACD model at time t for time t+1, where the superscript p is the

volatility filter imposed on that model: p takes the value of 0 if there is no

volatility filter, it takes the value of 1 when a "no-trade" filter is used and 2

when a "reverse" filter is selected.

4.3.4.2 "No-trade" Strategy

Since MACD models are found to perform poorly in volatile markets, following

chapter 2, the "no-trade" volatility filter rule proposed is to stay out of the

market when the underlying volatility is forecast to be higher than a certain

threshold T. A simple trading rule combined with a "no-trade" filter can be

expressed as:
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{
MA (0) (t+1,t) er2(t+1,t) < T

MA (1) (t+1,t) =

0 er 2(t+1,t) > T

4.3.4.3 "Reverse" Strategy

As in chapter 2, a "reverse" filter proposed is to reverse the signals generated

when market volatility is forecast to be higher than a chosen threshold:

{

MA (0) (t+1,t)

MA (2) (t+1,t) =
- ( MA (0) (t+1,t))

4.4 Empirical Results

In this study, we follow Lequeux and Acar (1998) to set the transaction cost

as 0.03% per round-trip transaction for all currency rates in the portfolio.

Performance measures after the deduction of transaction costs are shown in

table 4.2. It should be noted that for simplicity in this chapter all FX currency

returns are exclusive of interest income or payments for holding a specific

currency: these could further enhance the models performance displayed

throughout, but as our objective in this chapter is to compare the relative

performance of volatility filters using different volatility model forecasts, the

exclusion of interest income or payments can be ignored.

In the out-of-sample period, when the "no-trade" filter is imposed, the model
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with volatility filters using RiskMetrics forecasts outperforms the other two

models using GARCH and MS volatility forecasts in terms of annualised

return and risk-adjusted information ratio. Similar results can be seen when

the "reverse" filter is imposed. This suggests that the use of RiskMetrics can

well capture the advantage of volatility filters, and using different volatility

model forecasts does not really improve the models performance. This better

performance of the RiskMetrics approach may be linked to its general

applicability, whereas the GARCH and MS model parameters have been

estimated over a 6-year period and then used for out-of-sample simulation for

a whole year without re-estimation. In addition, models performance with

GARCH forecasts seems better than that with MS volatility forecasts. It is

Table 4.2 Performance statistics for FX portfolio

In-Sample Performance (02/01/98-31/05/04)

Without

Filter
No-Trade Filter Reverse Filter

RiskMetrics GARCH MS Model RiskMetrics GARCH MS Model

Annualised Return 3.03%

Annualised Volatility 5.49%

Information Ratio 0.55

3.50%

4.11%

0.85

3.33% 4.97%

4.51% 4.86%

0.74 1.02

3.69%

4.65%

0.79

3.38% 6.71%

4.49% 4.92%

0.75 1.36

Out-of-Sample Performance (01/06/04-31/05/05)

Without

Filter
No-Trade Filter Reverse Filter

RiskMetrics GARCH MS Model RiskMetrics GARCH MS Model

Annualised Return -5.32%

Annualised Volatility 4.96%

Information Ratio -1.07

-4.30%

4.88%

-0.88

-4.54% -5.25%

4.68% 4.95%

-0.97 -1.06

-3.38%

4.87%

-0.69

-3.91% -5.20%

4.64% 4.95%

-0.84 -1.05
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worth noting that all strategies recorded losses over the out-of-sample period.

Yet, this was also the case of the AFX dynamic currency index which

recorded a loss of 3.19% over the same period before the deduction of

transaction costs.

Our results also show that in both the in-sample and out-of-sample period,

the addition of volatility filters using alternative volatility forecasts improves on

the original MACD models without filters in all cases. It is also found that the

performance differences between the "no-trade" and "reverse" filters are

marginal, implying that neither filter is significantly prevailing over the other.

4.5 Concluding Remarks

The major objective of this chapter was to compare the performance of

volatility filters using different volatility forecasts when such filters are

imposed on dynamic MACD models that replicate typical currency traders as

in Lequeux and Acar (1998). Our results show that alternative volatility

models to RiskMetrics fail to enhance performance in terms of annualised

return and information ratio. In addition, in both in-sample and out-of-sample

periods, the addition of the two volatility filters retained using the three

volatility forecasts improves on the original MACD models studied.

Empirically, this confirms the findings from chapter 2 and chapter 3.
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PART TWO

Volatility Filters for Alternative Trading Rules
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CHAPTER 5

Trading Foreign Exchange Portfolios with Volatility

Filters: The Carry Model Revisited

Chapter Overview

The rejection of the simple risk-neutral efficient market hypothesis in the

foreign exchange (FX) market opens the possibility of the profitable use of a

carry model taking full advantage of interest rate differentials to trade

currencies. A first motivation for this chapter is to study whether a simple

passive carry model can outperform a typical currency fund manager

replicated by dynamic technical moving average convergence and

divergence (MACD) models as in Lequeux and Acar (1998). Secondly,

following the findings from chapter 2 and 3 that volatility confirmation filters

can improve performance of MACD models which perform poorly in times of

volatile markets, we study whether the addition of such volatility filters can

help to improve the carry model performance.

We consider the period starting from the introduction of the Euro (EUR) on

04/01/1999. Our results show that the simple carry model performs much

better than the benchmark MACD model, while a combined carry/MACD

model has the lowest trading volatility. Moreover, the addition of two volatility

filters adds significant value to the performance of the three models studied.
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5. 1 Introduction

Under the simple risk-neutral efficient market hypothesis, the forward rate is

the best unbiased forecast of the future spot rate and equivalently the forward

premium (resp. discount) is the optimal predictor of a currency appreciation

(rasp. depreciation). Numerous articles have tested this hypothesis and there

is now a wide consensus that the simple risk-neutral efficient market

hypothesis can be rejected (see, for instance, Clarida and Taylor 1997). Yet a

parallel finding in the foreign exchange (FX) literature is that empirical

exchange rate models cannot outperform a simple random walk forecast (see,

for instance, Meese and Rogoff 1983a, b).

If the actual exchange rate change is not equal to the interest rate differential

as suggested by the simple risk-neutral efficient market hypothesis, and the

future spot exchange rates are not forecastable, a simple trading strategy

would therefore be just to take advantage of interest rate differentials. Largely

known (and implemented) as "carry trading" by currency fund managers, this

carry strategy entails to always hold the high yield currency and short the

corresponding low yield currency in a currency pair.

The motivation for this chapter is thus twofold. Firstly, we study whether a

simple passive carry model (Le. where new positions are solely triggered by

reversals in interest rate differentials) can effectively outperform a typical

currency fund manager replicated by dynamic moving average convergence

and divergence (MACD) models as in Lequeux and Acar (1998). Moreover,
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we combine the passive carry model with dynamic MACD models, where the

latter operate as a confirmation filter to the former, with an attempt to further

enhance performance measures.

Secondly, following the findings from chapter 2 and 3 that volatility

confirmation filters can improve performance of MACD models which perform

poorly in times of volatile markets, we study whether the addition of such

volatility filters can help to improve the carry model performance. Two

volatility filters are proposed, namely a "no-trade" filter where all market

positions are closed in volatile periods, and a "reverse" filter where signals

from a simple model are reversed if market volatility is higher than a given

threshold.

Our results show that in all the 3 periods considered, when taking transaction

costs into account, the simple carry model performs much better than the

benchmark MACD model in terms of annualised return, information ratio and

maximum drawdown, while the combined carry/MACD model has the lowest

trading volatility. Moreover, the addition of the two volatility filters suggested

adds significant value to the performance of the three models studied.

The rest of the chapter is organized as follows: section 5.2 briefly reviews the

relevant literature, section 5.3 describes the data used and the FX portfolio

formed, and section 5.4 documents the carry model and the volatility filters

retained. Section 5.5 presents the empirical results, focusing on the models

performance during different periods, and is followed by concluding remarks

in section 5.6.
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5.2 Literature Review

Whether the forward exchange rate is an optimal forecast of the future spot

exchange rate is a longstanding question in international finance. In his

seminal work on exchange rate theory, Frenkel (1976) notes that "the

fundamental relationship that is used in deriving the market measure of

inflationary expectations relies on the interest parity theory [which] maintains

that in equilibrium the premium (or discount) on a forward contract for foreign

exchange for a given maturity is (approximately) related to the interest rate

differential. [ ... J The variations of the forward premium on foreign exchange

[ ••• J may be viewed as a measure of the variations in the expected rate of

inflation (as well as the expected rate of change of the exchange rate)" (p.

210). Amongst others, Frenkel and Johnson (1978) find empirical evidence

that this parity holds. Yet, numerous articles have since shown that the

forward rate is not an optimal predictor of the future spot exchange rate (see,

for instance, Frankel 1980, Bilson 1981, Taylor 1995 and Wolff 2000). Though

rejecting the simple risk-neutral efficient market hypothesis, more recent

studies such as Clarida and Taylor (1997) suggest that the term structure of

forward premia contains valuable information for forecasting future spot

exchange rates.

The predictability of exchange rates has also been the main focus of financial

forecasting. So far, a large consensus in the academic literature suggests

that exchange rate models cannot outperform a random walk forecast

(Clarida et al. 2003). For instance, Meese and Rogoff (1983a, b) have clearly
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shown that predictions of a simple random walk dominate those of standard

empirical exchange rate models. Allowing nonlinearity in the exchange rate,

Engle and Hamilton (1990) find that out-of-sample forecasts from their

segmented-trend models underperform the random walk with drift. More

recently, Caporale and Spagnolo (2004) find that for the out-of-sample point

forecast results, a nonlinear Markov regime-switching model fails to dominate

the random walk model.

This may not mean that small pockets of predictability cannot be extracted

successfully with the proper technical tools. Noting that market volatility has

an impact on trading, and models like trend-following systems tend to

perform poorly when markets become volatile, Roche and Rockinger (2003)

explain that high volatility periods often correlate with periods when prices

change direction, and therefore propose a successful volatility filter to reverse

the technical trading signals generated when market volatility is high. Dunis

and Chen (2005) argue that MACD models perform poorly in volatile markets

precisely because volatile markets imply frequent direction changes, thus

proposing to stop trading at times of high volatility. This chapter relates to this

body of literature in the context of the highly liquid FX markets.

5.3 Data and Benchmark FX Portfolio

The entire sample period covers from the introduction of the EUR on

04/01/1999 to 31/03/2005 when all existing positions were closed (1620 daily

observations). The exchange rates and 1-month interest rates used are daily
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closing prices obtained from Datastream. To measure the consistency of

performance, we split the entire sample period into 3 periods: the full 6-year

period (04/01/1999 - 31/03/2005), the last 4-year period (02/01/2001 -

31/03/2005) and the last 2-year period (02/01/2003 - 31/03/2005).

The daily currency returns r for time period t are calculated as the percentage

change of the daily exchange rate p:

r
l
= (PI - PI-I)

PH (5.1 )

Lequeux and Acar (1998) introduce a dynamic currency index (AFX index) to

replicate the performance of typical currency fund managers. The index

consists of 7 currency futures rates using 3 simple MACD strategies (namely

1 and 32-day, 1 and 61-day and 1 and 117-day) with each MACD taking the

same weight in generating trading signals. They find that the AFX index has a

high correlation and low tracking error with the performance of typical

currency fund managers. Following the same MACD combination strategy,

we form our benchmark FX portfolio using currency spot rates since trading

volumes in the FX spot market are much higher than those in the futures

market. We also expand the portfolio composition to include the 9 most

heavily traded major exchange rates according to the recent BIS FX trading

survey" (they represent over 78% of the USD 1.8 trillion daily FX turnover

reported for April 2004) and update the portfolio-weighting scheme using the

data from this survey (BIS 2004). Both the asset combination and weights of

34 We use the notation of the International Organisation for Standardisation (lOS) for all the
exchange rates and interest rates considered.
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the FX portfolio are shown in table 5.1 below".

Table 5.1 Benchmark FX portfolio currency allocation

EUR USD GBP USD USD AUD EUR EUR EUR
Currency

IUSD IJPY IUSD ICHF ICAD IUSD IGBP IJPY ICHF

Weights 35.76% 21.13% 17.49% 5.57% 5.07% 6.42% 3.07% 3.64% 1.85%

5.4 Carry Model, Conditional Volatility and Filter Rules

5.4.1 Carry Model

The trading strategy for a carry model is to go long in the high yield currency

and to short in the low yield currency. For example, following a simple carry

model, investors will be long the EURIUSD rate (Le. long EUR and short USD)

if the EUR interest rate is higher than the corresponding USD interest rate,

and short the EURIUSD rate if the USD interest rate is higher.

The carry model generates trading signals solely depending on the

corresponding interest rate differentials, which do not change very often. The

downside of such a passive trading strategy is that it ignores all other current

market information, which can possibly result in intolerable drawdowns. As a

matter of fact, all major currency market players watch the market closely and

trade actively. Therefore we propose a combined carry/MACD strategy where

the MACD combinations retained function as confirmation filters to the carry

35 As for chapter 2 (see footnote 13), the asset allocation set for the FX portfolio in this
chapter remains unchanged for the entire data sample period.
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model signals. We use the symbol S; (t+1.t) to denote the trading signals from a

specific model at time t for time t+1, where the subscript n points to a given

model: n takes the value of 1 for the benchmark MACD model, it takes the

value of 2 for the carry model, and 3 for the combined carry/MACD model, so

the trading strategy for a carry/MACD model is defined as":

{
S2 (t+1.t) S1 (t+1.t) * S2 (t+1.t) >0

S3 (t+1.t) =

0 S1 (t+1.t) * S2 (t+1.t) < = 0

5.4.2 Conditional Market Volatility

Following chapter 2, we use the time-varying RiskMetrics volatility model to

measure conditional market volatility and different trading decisions are

adopted when a given level of conditional volatility has been breached.

RiskMetrics is calculated using the following formula:

(5.2)

where a 2 is the volatility forecast of a specific asset, ,2 is the squared return

of that asset, and Jl = 0.94 for daily data as computed in JP Morgan (1994)37.

We find in chapter 2 and 3 that MACD models produce negative returns most

of the time when the underlying market volatility is high. We study whether

36 Note that the combined MACD signal S1 is either long (+1) or short (-1), while the carry
signal S2is either long (+1), short (-1) or square (0) in the case where both interest rates are
equal.
37 The assumption is that the mean of asset return r is zero so that r« represents the latest
variance. In addition, at the beginning to initiate the computation, we set cr2(O) = reO)
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the performance of the carry model is also affected by market volatilities. The

entire sample period is split into 6 volatility regimes, ranging from periods with

extremely low volatility to periods experiencing extremely high volatility". The

performance of the carry model for different volatility regimes is given in table

5.2 for the 9 currency markets under review, in terms of average daily returns.

Table 5.2 The average daily returns of the carry model in periods of

different volatility regimes

* Full 6-year period 04/01/1999 to 31/05/2005

Extremely Medium Lower Lower Medium Extremely

Low Vol. Low Vol. Low Vol. High Vol. High Vol. High Vol.

EUR/USD 0.015% 0.025% 0.038% 0.113% 0.007% -0.101%

USD/JPY 0.030% 0.013% 0.002% -0.010% -0.040% 0.010%

GBP/USD 0.021% 0.073% -0.005% 0.011% 0.029% -0.042%

USD/CHF -0.062% 0.003% 0.004% 0.010% -0.038% -0.003%

USD/CAD 0.012% -0.009% 0.018% 0.044% 0.001% -0.030%

AUD/USD -0.032% 0.036% 0.037% 0.075% -0.015% -0.053%

EUR/GBP 0.060% 0.003% 0.022% -0.021% 0.026% -0.115%

EUR/JPY 0.056% 0.038% -0.038% 0.028% 0.012% -0.018%

EUR/CHF 0.025% -0.012% 0.004% 0.002% -0.021 % -0.005%

While the carry model performs reasonably well overall when FX markets are

stable, it performs poorly, except for the USO/JPY, when underlying market

volatility is extremely high. It also produces more negative returns for most of

the markets when volatility is classified as "medium high" compared with

38 Periods with different volatility levels are classified in the following way: we first calculate
the rolling historical average volatility and its "volatility" (measured in terms of standard
deviation 0), those periods with volatility forecasts between the average volatility (Avg. Vol.)
and average plus one 0 of the volatility (Avg. Vol + 1 0) are classified as "Lower High Vol.
Periods". Similarly, "Medium High VoL" (between Avg. Vol. + 10 and Avg. Vol. + 20) and
"Extremely High VoL" (above Avg. Vol. + 20) periods can be defined. Periods with low
volatility are also defined following the same 10 and 20 approach, but with a minus sign.

87



more tranquil periods.

5.4.3 Volatility Filter Rules

As both the MACD and carry models behave differently in highly volatile

markets, a different strategy needs to be adopted when the volatility regime

changes. Again, we use the symbol Sn(P)(t+1,t) to denote the trading signals

from a specific model at time t for time t+1, where the superscript p is the

volatility filter imposed on that particular model n: p takes the value of 0 if

there is no volatility filter, it takes the value of 1 when the "no-trade" filter is

used and 2 when a "reverse" filter is implemented.

5.4.3.1 "No-trade" Strategy

Since both the MACD and carry models tend to perform poorly in volatile

markets, following chapter 2, the "no-trade" volatility filter rule proposed is to

stay out of the market when the underlying volatility is forecast to be higher

than a certain threshold T. A simple trading rule combined with a "no-trade"

filter can be expressed as:

{
S; (0) (t+1,t) (]"2(t+1,t) < T

s, (1) (t+1,t) =

0 a 2(t+1,t) > T
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5.4.3.2 "Reverse" Strategy

As in chapter 2, a "reverse" filter proposed is to reverse the signals generated

when market volatility is forecast to be higher than a chosen threshold:

{
Sn (0) (t+1,t) (72(t+1,t) < T

S; (2) (t+1,t) =

- (S; (0) (t+1,t)) (72(t+1,t) > T

5.5 Empirical Results

Both the benchmark MACD and the combined carry/MACD models generate

more trading signals than the passive carry model, so a performance

comparison can reach biased results without taking account of the

transaction costs incurred. In this study, we follow Lequeux and Acar (1998)

to set the transaction cost as 0.03% per round-trip transaction for all

exchange rates in the portfolio. Traditional performance measures after the

deduction of transaction costs are shown in table 5.3. It should be noted that

in this chapter, all currency returns are exclusive of interest rate gains

generated by holding a specific currency: including such interest rates gains

could further enhance the models performance displayed in table 5.3. Such

effects can be more significant in the case of a simple carry model, which

always holds a high yield currency. For instance, trading EUR/USD with the

simple carry model, the annualised return for the whole 6-year period is

14.78% inclusive of interest rate gains compared to 10.88% exclusive of

those gains. The risk-adjusted information ratio is 1.49 for the former
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compared with 1.09 for the latter.

For the 3 periods and the 3 basic trading strategies considered, the simple

carry model performs much better than the averaged performance of

currency fund managers replicated by the benchmark MACD models.

Compared to the MACD benchmark, the carry model not only generates

higher returns, but also it reduces the investment risk with lower trading

volatility and maximum drawdowns. As expected, the combined carry/MACD

model, by generating more active trading signals further reduces investment

volatility consistently across the different periods. Overall the carry model

significantly outperforms the other two models in terms of annualised return

and risk-adjusted information ratio.

For each trading strategy, the addition of the two volatility filters further

enhances the performance of the three models. As far as the two filters are

concerned, the "reverse" filter strategy performs better than the "no-trade"

filter strategy in terms of annualised return, information ratio and maximum

drawdown, while, not surprisingly, the "no-trade" filter strategy prevails in

terms of trading volatility. It is hard to select a real "winning" volatility filter: on

the one hand, the "no-trade" strategy enables investors to free funds out of a

volatile FX market into other less turbulent financial markets which might

further increase overall returns and reduce risk; on the other hand, the

"reverse" filter strategy delivers higher returns that can only be met by the

"no-trade" strategy in FX markets by the application of leverage with the

associated higher transaction costs. It is therefore up to investors to choose
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the right strategy based on their risk tolerance and investment universe in

terms of asset classes. But it is obvious that markets behave differently at

high volatility levels and adaptive strategies like the ones suggested here

should be adopted during those periods.

What is more, the risk-adjusted information ratios obtained from strategies

using the filters proposed are also high in absolute terms, which suggests

that the performance results obtained with the volatility filters are not only

good when compared to the FX portfolio without filters, they are also

attractive as such and actionable in a trading environment.

5.6 Concluding Remarks

The first motivation for this chapter was to study whether a simple passive

carry model can outperform typical currency fund managers as replicated by

dynamic MACD models following Lequeux and Acar (1998). Our results show

that, for the 3 periods considered and for the 9 most heavily traded exchange

rates, the simple carry model performs significantly better than the

benchmark MACD model in terms of annualised return, annualised volatility,

information ratio and maximum drawdown. Our empirical findings confirm

previous results from the literature (such as, for instance, Frankel 1980,

Bilson 1981, Taylor 1995 and Wolff 2000) that reject the simple risk-neutral

efficient market hypothesis that the forward premium/discount is an optimal

predictor of future exchange rate appreciation/depreciation.

Our results also show that a carry model performs poorly when market
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volatility is high and the model performance is significantly enhanced with the

addition of volatility filters either to close market positions in volatile periods

(with a "no-trade" filter), or to reverse the original trading signals if market

volatility is higher than a given threshold (with a "reverse" filter).

While it is difficult to distinguish which volatility filter is superior to the other,

the information ratios obtained from trading strategies using either filter are

high, suggesting that such strategies are indeed attractive and actionable in a

trading environment.
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CHAPTER 6

Advanced Frequency and Time Domain Filters

for Currency Portfolio Management

Chapter Overview

The first motivation for this chapter is to study the existence of cyclical

properties in foreign exchange (FX) markets with the use of spectral analysis.

Previous chapters show that volatility filters add value to alternative trading

model performance in FX markets. We then study whether the performance

of the spectral model will also be affected by alternative market volatility

regimes.

Secondly, we study the economic value of a trading model based on spectral

analysis compared with technical trending models replicating the

performance of typical currency managers as in Lequeux and Acar (1998).

We find that both spectral models and moving average convergence

divergence (MACD) technical trending models fail to perform satisfactorily

when markets display cyclical properties. There is no evidence that the

performance of this model is affected by volatility regime changes. Yet, a

trading strategy combining volatility and spectral filters significantly improves

the performance of traditional technical trading models for active currency

portfolio management.
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6. 1 Introduction

Most of fund managers in the foreign exchange (FX) markets are technical

traders, who mostly follow technical trending systems as evidenced by the

high correlation of their performance with a portfolio of such systems (e.g.

Lequeux and Acar, 1998). Billingsley and Chance (1996) mention that 70% of

the Commodity Trading Advisors (CTAs) are trend followers and tend to trade

in a similar manner. But markets are not always moving in trends which are

just one of the basic elements of price movement, the other being range

trading situations or cycles. As a matter of fact, Hurst (1997) notes that 23%

of all price motion is oscillatory in nature. If this assumption is true, there is no

reason to trade solely on the basis of technical trending rules at all times

even when the underlying markets display strong cyclical properties.

The motivation for this chapter is twofold. Firstly, we study the existence of

cyclical properties in FX markets. Specifically, we investigate the use of

spectral decomposition with periodogram analysis to identify the cyclical

properties of FX time series. Previous chapters show that volatility filters add

value to alternative trading model performance in FX markets. We then study

whether the performance of the spectral model will also be affected by

alternative market volatility regimes.

Secondly, we study the economic value of a trading model based on spectral

analysis. Once the underlying markets are found to be in cyclical mode, we

compare the performance of the model utilizing spectral properties with the
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performance of technical trending models replicating the performance of FX

fund managers, as in Lequeux and Acar (1998). As neither model provides

satisfactory results, we then propose alternative trading strategies for when

the markets studied are in cyclical mode.

The rest of the chapter is organized as follows: section 6.2 describes the data

used and the FX portfolio formed, section 6.3 explains the methodology of

spectral decomposition with the use of periodogram analysis. The following 2

sections illustrate the two filters proposed: namely volatility filters that are

imposed on the trend-following models in section 6.4 and spectral filters

proposed for trading in periods when markets are in cyclical mode in section

6.5. Section 6.6 presents the empirical results, focusing on the models

performance during different sample periods, followed by concluding remarks

in section 6.7.

6.2 Data and FX Portfolio

The entire sample covers the period from 04/01/1999 to 31/05/2005 with

1663 days of observations and all datasets used are daily closing prices in

London obtained from Datastream. To measure the consistency of the

performance measures, we split the entire sample period into 3 periods as:

the full 6-year period (04/01/1999 - 31/05/2005), the last 4-year period

(02/01/2001 - 31/05/2005) and the last 2-year period (02/01/2003 -

31/05/2005).

The daily currency returns r for time period t are calculated as the percentage
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change of the daily currency rate p:

rt = (Pt - Pt-I)
r.: (6.1 )

Lequeux and Acar (1998) introduce a dynamic currency index (AFX index) to

replicate the performance of typical currency fund managers. The index

consists of 7 currency futures using 3 simple MACD (namely 1 and 32-day, 1

and 61-day and 1 and 117-day) strategies with each MACD taking the same

weight in generating trading signals. They find that the AFX index has a high

correlation with and low tracking error to currency managers performance.

Following the same MACD combination strategy (henceforth the MACD

model), we form the FX portfolio using currency spot rates since trading

volumes in the FX spot market are much higher than those in the futures

market". We also expand the portfolio composition to include the 9 most

heavily traded major exchange rates according to the recent BIS FX trading

survey" (they represent over 78% of the USD 1.8 trillion daily FX turnover

reported for April 2004) and update the portfolio-weighting scheme using the

data from this survey (BIS 2004). Both the asset combination and weights of

the FX portfolio are shown in table 6.1 below".

39 The use of these preset parameters implies that we do not need a calibration period for
in-sample model optimization and consequently all performance computations are
out-of-sample.
40 We use the notation of the International Organization for Standardization (lOS) for all the
exchange rates considered.
41 As for chapter 2 (see footnote 13), the asset allocation set for the FX portfolio in this
chapter remains unchanged for the entire data sample period.

97



Table 6.1 FXportfolio currency allocation

Currency
EUR USD GBP USD USD AUD EUR EUR EUR

IUSD IJPY IUSD ICHF ICAD IUSD IGBP IJPY ICHF

Weights 35.76% 21.13% 17.49% 5.57% 5.07% 6.42% 3.07% 3.64% 1.85%

6.'3 Spectral Analysis: the Methodology

In this study, we use spectral analysis to measure market cycles. Compared

to alternative methods measuring market cycles, spectral analysis is the only

way to obtain a high resolution cycle measurement using only a short amount

of data (Ehlers, 1999). Spectral decomposition analysis is carried out using

periodogram analysis (see, amongst others, Chatfield 1994 and Judge et al.

1985). The spectral periodogram analysis is able to extract from a time series

its spectral properties which include the maximum amplitude, its

corresponding cycle length and phase angles of the observations. Specifically,

the periodogram decomposition searches the largest amplitude and assumes

that this amplitude dominates over the other amplitudes. This amplitude and

its associated frequency are then used to estimate the original time series.

The phase angle of each observation can then be estimated. For example, a

time series Xt can be represented by a finite Fourier series as:

(N~l

X, = ao + L rap cos(2nptl N)+hp sin(2nptl N)]+apNI2 cos(m) (6.2)
p=l

and coefficients in equation (6.2) are defined as:
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(6.3)

N

aN/2 = L(-IYx1 / N
1=1

(6.4)

2 N ]a p =-L [xp cos(2JqJt / N)
N 1=1

(6.5)

b; =~i:~psin(27Zpt/N)] withp=1, ... ,(N/2)-1,
N 1=1

(6.6)

The amplitude Rp and phase (/Jpof the pth harmonic is then given by:

(6.7)

(6.8)

The assumption is that the harmonic of the maximum amplitude Pmax is

sufficient to estimate the series, i.e.

(6.9)

First, the series Xt should be detrended, otherwise a noticeable trend in the

data will be interpreted as the dominant cycle (Kaufman 1998). The presence

of a deterministic trend is confirmed in all the 9 currency rates studied (see

appendix A.34-A.42 for the test output tables). In this chapter we demean and

detrend the series using a simple linear regression to remove any trend

element within the series. As explained above, the spectral periodogram
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analysis can extract its spectral properties from a time series, including the

maximum amplitude, its corresponding cycle length and phase angles of the

observations. In this study, we apply a multiple window frame approach to

best extract these spectral properties: three fixed rolling windows of 30, 60,

120 days are used, with the longer window a multiple of the shorter window".

Each window will have its own spectral properties so that, if at least two of

these three windows exhibit the same cycle length and maximum amplitude,

one can assume that the time series under review shows some general

cyclicality. The resulting cycle length is then computed as above, while the

resulting phase angle and amplitude are the average computation from the

two windows.

Figure 6.1 Ranging markets and their trigonometric circle

representation

Sine

Sell at 90'

(9 = phase angle)

·1
Buy at 270'

With these spectral properties identified, it is now possible to derive

corresponding trading strategies. An investment model based on spectral

42 The selection of 30-, 60- and 120-day window size also corresponds roughly to the
specifications of the MACO models retained (10-320, 10-610, 10-1170). See also our
comments in footnote 39 above.
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decomposition (henceforth the spectral model) utilizes the spectral properties

of the cycle lengths and phase angles identified. Having determined the

dominant cycle over a given time window, the model extracts the phase angle

across the cycle. Over an entire cycle length and starting from a median

position (Le. the middle of the trading range), the phase angle will move to

90°, the top of the cycle and of the trading range, upto 270°, the bottom of the

cycle and of the trading range. This is illustrated in figure 6.1.

Table 6.2 Statistics and models performance for cyclical periods

* Full 6-year period 04/01/1999 to 31/05/2005

Periods when Market in Cycle Cumulative Return when Market in Cycle

# of Observations % Percentage Spectral Model MACD Models

EURIUSO 464 27.90% -1.65% -7.51%

USO/JPY 612 36.80% 23.24% -17.92%

GBP/USO 493 29.65% -1.53% -1.69%

USO/CHF 434 26.10% -9.08% -7.29%

USO/CAO 437 26.28% -14.18% 1.58%

AUO/USO 482 28.98% -1.39% -5.56%

EURlGBP 465 27.96% 9.65% -18.02%

EURlJPY 584 35.12% 0.01% 1.86%

EUR/CHF 380 22.85% 7.19% -7.06%

Average 483 29.07% 1.36% -6.85%

The chosen trading strategy is to go long the underlying asset if the resulting

phase angle at the end point of the time series is moving from 270° to 90°,

the upward part of the cycle, and to short the asset if the resulting phase

angle is moving from 90° to 270°, the downward part of the cycle. We apply

the spectral periodogram analysis and its associated trading strategy to the 9

exchange rates studied. Periods when markets are in cyclical mode and
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performance comparison between the spectral model and the MACD model

during such time can be found in table 6.2.

Table 6.2 shows that FX markets display cyclical properties on average about

29% of the time. This is in line with Hurst (1997) statement that 23% of all

price motion is oscillatory in nature. Besides, the MACD model performs so

poorly that 7 out of the 9 markets considered generate negative returns when

these markets are in cyclical mode. Although the spectral model performs

better for 6 out of the 9 exchange rates under review with an average

cumulative return of 1.36%, this performance, which is very much due to the

excellent results for the USD/JPY, is not convincingly good with 5 of the 9

exchange rates being negative.

6.4 Conditional Volatility and Volatility Filter Rules

6.4.1 Conditional Market Volatility

Following chapter 2, we use the time-varying RiskMetrics volatility model to

measure conditional market volatility. RiskMetrics is calculated using the

following formula:

(6.10)

where a 2 is the volatility forecast of a specific asset, r 2 is the squared return
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of that asset, and Ji = 0.94 for daily data as computed in JP Morgan (1994)43.

Table 6.3 Spectral model average daily returns when in cyclical

mode and in periods of different volatility regimes

* Full 6-year period 04/01/1999 to 31/05/2005

Extremely Medium Lower Lower Medium Extremely

Low Vol. Low Vol. Low Vol. High Vol. High Vol. High Vol.

EURIUSD 0.06% 0.14% -0.07% -0.02% -0.06% 0.02%

USD/JPY 0.03% 0.06% 0.03% 0.01% 0.10% -0.03%

GBP/USD -0.05% -0.01% -0.01% 0.06% -0.07% 0.00%

USD/CHF -0.10% -0.01% -0.02% -0.06% -0.02% 0.30%

USD/CAD 0.20% 0.00% -0.06% -0.06% 0.02% -0.10%

AUD/USD 0.00% -0.05% -0.02% 0.00% 0.07% 0.07%

EURlGBP 0.06% -0.03% 0.02% -0.08% 0.17% 0.14%

EURlJPY -0.13% 0.03% 0.03% 0.01% -0.35% 0.12%

EURICHF -0.04% 0.02% 0.02% 0.04% -0.08% 0.04%

In chapter 2 and 3, we find that MACD models produce negative returns most

of the time when the underlying market volatility is high. We study whether

the performance of the spectral model will also be affected by alternative

market volatility regimes. The entire sample period is split into 6 sub-periods,

ranging from periods with extremely low volatility to periods experiencing

extremely high volatlllty". The performance of the spectral model in the 9

currency markets, in terms of average daily returns, for different volatility

43 The assumption is that the mean of asset return r is zero so that ~(t) represents the latest
variance. In addition, at the beginning to initiate the computation, we set 0-2(0) = ~(O)

44 Periods with different volatility levels are classified in the following way: we first calculate
the rolling historical average volatility and its "volatility" (measured in terms of standard
deviation 0), those periods with volatility forecasts between the average volatility (Avg. Vol.)
and average plus one 0 of the volatility (Avg. Vol + 1 0) are classified as "Lower High Vol.
Periods". Similarly, Medium High Vol. (between Avg. Vol. + 10 and Avg. Vol. + 20) and
Extremely High Vol. (above Avg. Vol. + 20) periods can be defined. Periods with low volatility
are also defined following the same 10 and 20 approach, but with a minus sign.

103



regimes can be found in table 6.3.

Generally, the spectral model performs poorly across the different volatility

regimes, and there is no evidence that the performance of this model is

affected by volatility regime changes.

6.4.2 Volatility Filter Rules

In pervious chapters we find that MACD models produce negative returns

most of the time when the underlying market volatility is high. We then

propose two volatility filters, namely a "no-trade" filter and a "reverse" filter to

improve model performance. In this chapter, we apply the same volatility

filters on the MACD model and use the symbol MA(P) (t+1,t) to denote the

trading signals from an MACD model at time t for time t+1, where the

superscript p is the volatility filter imposed on that model: p takes the value of

o if there is no volatility filter, it takes the value of 1 when the "no-trade" filter is

used and 2 when a "reverse" filter is in use.

6.4.2. 1 "No-trade" Volatility Filter Strategy

Since MACD models are found to perform poorly in volatile markets, following

chapter 2, the "no-trade" volatility filter rule proposed is to stay out of the

market when the underlying volatility is forecast to be higher than a certain

threshold T. A simple trading rule combined with a "no-trade" volatility filter

can be expressed as:
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{ MA(O) (t+1,t) (1'2(t+1,t) < T

MA(1) (t+1,t) =

0 a2
(t+1,t) > T

6.4.2.2 "Reverse" Volatility Filter Strategy

As. in chapter 2, a "reverse" filter proposed is to reverse the signals generated

when market volatility is forecast to be higher than a chosen threshold:

{ MA(O) (t+1.t) a2
(t+1,t) < T

MA(2) (t+1,t) =

- ( MA(O) (t+1,t)) a 2(t+1.t) > T

6.5 Spectral Filter Rules

Since neither the spectral model nor the MACD model perform well when

currency markets are in cyclical mode, different trading strategies should be

adopted during such times. We propose to further impose a spectral filter q

onto the above MACD signals (MA(P) (t+1,t)) which then generates the new

trading signals marked as MA(p,q) (t+1,t): q takes the value of 0 if there is no

spectral filter, it takes the value of 1 when the "no-trade" spectral filter is used

and 2 when a "reverse" spectral filter is in use.

6.5.1 "No-trade" Spectral Filter Strategy

Since both the spectral and MACD models are found to perform poorly when
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markets are in cyclical mode, the first spectral filter rule proposed is to stay

out of the market when the underlying market is found to be cyclical. This

spectral filter can be combined with any of the volatility filters explained

above. For instance, a model with a "no-trade" volatility filter combined with a

"no-trade" spectral filter can be expressed as:

__{ 0
MA (1,1) (t+1,t)

MA(1,O) (t+1,t)

Market in Cycle

Else

where MA(1,O) (t+1,t) is the same as MA(1) (t+1,t) in section 6.4.2.1.

6.5.2 "Reverse" Spectral Filter Strategy

We saw in section 6.4 that MACD models generate significant negative

returns for most exchange rates when they are in a cyclical mode. We

therefore propose to reverse the signals from the MACD models when

markets are cyclical and a model with a "reverse" volatility filter combined

with a "reverse" spectral filter can be expressed as:

__ { - ( MA(O,O) (t+1,t))

MA (2,2) (t+1,t)

MA(2,O) (t+1,t)

Market in Cycle

Else

where MA(2,O) (t+1,t) is the same as MA(2) (t+1,t) and MA(O,O) (t+1,t) is the same as

MA(O) (t+1,t) in section 6.4.2.2.
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6.6 Empirical Results

In this study, we follow Lequeux and Acar (1998) to set the transaction cost

as 0.03% per round-trip transaction for all exchange rates in the portfolio.

Transaction costs and performance measures after deduction of these costs

are shown in table 6.4 (note that these results do not include interest income

orpayments for holding a given currency).

In all scenarios, after accounting for transaction costs, the addition of the two

spectral filters significantly improves the performance of the MACD models

replicating typical currency managers, both with and without volatility filters.

As far as the two spectral filters are concerned, the "reverse" filter strategy

performs better than the "no-trade" filter strategy in terms of annualized return,

and, as could be expected, the "no-trade" filter strategy prevails in terms of

trading volatility. Although the "reverse" filter produces significantly higher

risk-adjusted information ratio than the "no-trade" filter, in the latter case the

investments are out of the market for considerably long periods (29% of the

time on average for the data period considered), during which investors are

able to free funds and invest into other less turbulent markets or adopt

alternative profitable FX trading strategies which might further increase yield

and reduce risk45. In addition, the "reverse" filter strategy delivers higher

returns that can only be met by the "no-trade" strategy in FX markets by the

application of leverage with the associated higher transaction costs.

Accordingly, there is no real "winning" spectral filter and it is up to investors to

45 For instance, when the market is in cyclical mode, investors can select to use a carry
model which is shown to be profitable in FX markets (see chapter 5 or Dunis and Miao 2006).
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choose the right strategy based on their risk tolerance. But it is obvious that

markets behave differently when FX markets are in cyclical mode and

adaptive strategies like the ones suggested should be adopted during those

periods.

Figure 6.2 Model performance comparison in terms of net information

ratio

* Full 6-year period 04/01/1999 to 31/05/2005I~~----~----~~-----------
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Finally, our results show that volatility filters improve the performance of

trend-following MACD models, which confirms the results from previous

chapters. They also demonstrate, as evidenced in figure 6.2 on net

information ratios which is a good summary of our findings, that volatility

filters combined with spectral filters further improve the performance of such

technical trading models.
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6.7 Concluding Remarks

In this chapter, we set out to investigate the existence of cyclical properties in

FX markets and the use of spectral decomposition to identify the cyclical

properties of FX time series. We then studied whether the performance of the

spectral model would also be affected by alternative market volatility regimes.

Generally, the spectral model performs poorly across the different volatility

regimes, and there is no evidence that the performance of this model is

affected by volatility regime changes.

We further analysed the economic value of trading models based on spectral

analysis, comparing the performance, once underlying markets are found to

be in cyclical mode, of models using spectral properties with the performance

of traditional technical trending models replicating the performance of FX

fund managers, as in Lequeux and Acar (1998).

As neither model provides satisfactory results, we then proposed alternative

trading strategies based on a combination of frequency and time domain

filters for when the markets studied are in cyclical mode. The strategies

proposed show that, for the exchange rates and the period concerned, this

combination of volatility and spectral filters significantly improves the

performance of traditional technical trading models for active currency

portfolio management.
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PART THREE

Volatility Filters for Dynamic Portfolio
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CHAPTER 7

Volatility Filters for Dynamic Portfolio Optimisation

Chapter Overview

It is well known that volatilities and correlations of international stock markets

tend to increase in times of financial instability. In this chapter, we extend

volatility filters to asset allocation and propose a dynamic portfolio

rebalancing scheme where the underlying market volatility functions as a

timing device for portfolio reallocation and portfolio is only rebalanced when

the underlying volatility regime changes.

In addition, the traditional Markowitz mean variance (MV) optimisation can

lead to an "inefficient frontier" with wrong expected returns. We propose a

risk-adjusted expected return (RAER) approach where expected returns are

expressed as a linear function of the risk incurred through a risk-aversion

coefficient.

Our results show that the addition of volatility filters adds value to the portfolio

performance in all the periods considered. Moreover, the proposed RAER

approach produces most consistent performance with and without the

constraint on short-selling compared to other dynamic rebalancing

approaches and a constant equally weighted portfolio.
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7. 1 Introduction

An accurate estimation of the covariance matrix is a key input to traditional

Markowitz (1952) mean-variance (MV) portfolio optimisation. Apart from early

works where variance and covariance were assumed to be constant over

time, more recent studies show that variance and covariance are actually

time-varying and can be forecast, to some extent, accurately. Numerous

approaches have been introduced to model the so-called conditional

variance and covariance, and development in information technology makes

most of these techniques easy to implement. The success of these

quantitative models therefore provides an opportunity for optimising portfolios

dynamically with an updated forecast of the covariance matrix. The question

is whether a dynamic rebalancing scheme accounting for the variability of the

covariance matrix can outperform a portfolio with constant weights after

transaction costs are deducted.

One important feature of time-varying variances and covariances among

international stock markets has been well documented in the literature (e.g.

Erb et al. 1994 and Solnik et al. 1996): the so-called contagion where

correlations between global stock markets tend to increase in times of

financial instability. Besides, bonds can offer effective diversification in time of

instability since its correlation with stocks temporarily changes to negative

during such times. The traditional MV optimisation ignoring international

contagion thus tends to underweight bonds at times of financial instability and

overweight them at other times.

113



While it is generally accepted that volatility can be forecast to some degree,

there is still a controversy over whether asset returns are forecastable. The

optimal portfolio asset weights are so sensitive to the expected return that

portfolio optimisation using inaccurate expected return can result in poor

portfolio performance. Michaud (1989) states that MV optimised portfolios are

"estimation error maximisers", since the MV optimisation significantly

overweights securities with high estimated returns and underweights those

with low estimated returns.

The motivation for this chapter is twofold. Firstly, dynamic portfolio

rebalancing using conditional covariance involves a frequent modification of

asset weights, thus the benefits from dynamic rebalancing can be quickly

erased by transaction costs. Furthermore, the existence of international

contagion suggests a covariance matrix regime change between "normal", i.e.

quiet times and times of financial instability. We propose a dynamic

rebalancing scheme where the underlying market volatility functions as a

timing device for portfolio reallocation and the portfolio is only rebalanced

when the underlying volatility regime changes.

Secondly, MV optimisation is very sensitive to the covariance matrix and

return input assumptions. Contrary to expected returns, conditional variance

and covariance can be estimated accurately to some extent. Therefore using

the dynamic forecast of the covariance matrix as one of the inputs, we

propose a risk-adjusted expected return (RAER) approach where expected

returns are expressed as a linear function of the risk incurred through a

risk-aversion coefficient. This risk-aversion coefficient is set as time-varying
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and follows an AR(1) process. The proposed RAER approach is

benchmarked against other commonly used dynamic approaches as well as

a constant equally weighted portfolio.

Our results show that the addition of a volatility filter onto the dynamic

portfolio rebalancing scheme adds significant value to portfolio performance

in .terms of annualised return, maximum drawdown and risk-adjusted

information ratio over the entire review period and all the 3 sub-periods.

Moreover, the proposed RAER approach produces a more consistent

performance with and without the constraint on short-selling compared to

other dynamic rebalancing approaches and a constant equally weighted

portfolio.

The rest of the chapter is organized as follows: section 7.2 presents a brief

review of the relevant literature, section 7.3 describes the data and section

7.4 explains the methodology. Section 7.5 presents the empirical results,

focusing on the portfolio performance during different sub-periods, followed

by concluding remarks in section 7.6.

7.2 Literature Review

International equity market correlation has been widely studied. Previous

studies" conclude that international correlations are much higher in periods

of volatile markets. Traditional MV portfolio optimisation technique using the

46 See, for instance, Erb et al. (1994), Solnik et al. (1996), Ramchmand and Susmel (1998)
and Longin and Solnik (2001 ).
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full covariance matrix thus fails to work during periods of financial instability

when volatility and correlations tend to increase. Among others, Michaud

(1989) states that the estimation risk increases even more in times of

financial instability when both volatilities and correlations tend to temporarily

shift away from their long-run averages.

The increase of volatilities and correlations among stocks markets in volatile

markets reduces the benefits of portfolio diversification when they are most

needed. Nevertheless, Gulko (2002) states that the positive correlation

between the returns of U.S. stocks and Treasury bonds temporarily changes

to negative during times of financial instability, which means that U.S.

Treasury bonds offer effective diversification during such times. The

presence of regimes with different volatilities and correlations provides an

opportunity for portfolio optimisation using regime-switching models deriving

from the seminal work of Hamilton (1989) to allow data to be drawn from two

or more regimes. Chow et al. (1999) show that there is a significant difference

in terms of optimal weights between the MV model using the full covariance

matrix and one that distinguishes volatility regimes. But they do not provide

the performance and risk of their portfolio. Using the approach of Chow et al.

(1999), Bauer et al. (2004) form a global portfolio and find that, after

accounting for transaction costs, the benefits from portfolio optimisation using

regime-switching disappear.

7.3 Data
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The global portfolio studied in this chapter takes the perspective of a U.S

investor with component assets drawn from stock, bond and commodity

markets. The five assets retained are MSCI USA, MSCI Europe, MSCI Japan,

Lehman Brother U.S. Aggregate Bonds (LEHM Bond) and Goldman Saches

Commodity Index (GSCI). The two foreign stock assets (MSCI Europe and

MSCI Japan) are also dollar denominated, implying that the portfolio is

immune from foreign exchange risk.

The weekly data used in this study are Wednesday closing prices. When

Wednesday is a holiday, we use the closing price of the preceding working

day. The weekly asset returns r at time period t are calculated as the

percentage change of the weekly price p:

~ = (Pt - Pt-! )
Pt-I

(7.1 )

The entire sample period is from 02/01/1989 to 29/12/2004 with 835 weeks of

observations and all datasets used are obtained from Datastream. We use

data of the first three years, from 02/01/1989 to 25/12/1991 with 156 weeks of

observations, for in-sample purpose. More specifically, data for this period

are used for conditional variance and covariance initialisation and volatility

filter threshold optimisation. The rest of the datasets, from 01/01/1992 to

29/12/2004 with 679 weeks of observations, are for out-of-sample

performance evaluation. To measure the consistency of portfolio performance,

the entire review period is further split into 3 sub-periods of equal length.

Full Review Period: 01/01/1992 to 29/12/2004 (679 observations)
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Performance Sub-Period 1:

Performance Sub-Period 2:

Performance Sub-Period 3:

01/01/1992 to 24/04/1996 (226 observations)

01/05/1996 to 23/08/2000 (226 observations)

30/08/2000 to 29/12/2004 (227 observations)

7.4 Dynamic Portfolio Rebalancing and Filter Rule: the

Methodology

7.4.1 Expected Variance and Covariance

An accurate estimation of the covariance matrix is an important input to the

MV optimisation process. In this chapter we use two approaches to compute

the conditional variance and covariance of the underlying assets: the

RiskMetrics approach and the rollover historical covariance matrix approach.

Jobson and Korkie (1981) use Monte Carlo simulations to estimate expected

returns and find that the average of the simulated optimal portfolios

significantly underperforms an equally weighted portfolio. All dynamic

optimised portfolios are then assessed not only in terms of performance

measures but also compared to the performance of an equally weighted

portfolio.

7.4.1.1 RiskMetrics Approach

The time-varying RiskMetrics variance and covariance model was developed

by JP Morgan (1994) for the measurement, management and control of

market risks in its trading, arbitrage and own investment account activities.

The RiskMetrics conditional variance model can be seen as a special case of
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Bollerslev (1986) GARCH model with pre-determined decay parameters, and

it is calculated using the following formula:

(7.2)

where 0' 2 is the variance forecast of a specific asset, r2 is the squared return

of that asset, and fJ = 0.96 for weekly data as computed in JP Morgan (1994).

Similarly, the RiskMetrics conditional covariance model is calculated using

the following formula:

0'2 - 11*0'2 +(1- 11)*r *r
1,2 (1+1/1) - r: 1,2 (//1-1) r: 1(I) 2 (I) (7.3)

where 0'1~2 is the conditional covariance between asset 1 and asset 2, r1 and

tz are the returns of the two assets, and u = 0.96 for weekly data.

7.4.1.2 Rollover Historical Covariance Matrix Approach

It is popular among market practitioners to use historical unconditional

covariance as a forecast for the future. From a dynamic perspective, this

involves the use of rollover approach where the rolling one step ahead

forecast is the mean over a certain period (rolling window). The problem with

such an approach is the choice of the rolling window, with the appearance of

the so call "ghost features" (see Bentz 2003). The other problem with these

measures is that they are unconditional with no sense of market timing. In

this study, we set the rolling window size at 12 weeks so that the 1-week

out-of-sample forecast roughly represents 10% of the estimation period.

119



7.4.2 Expected Returns

Best and Grauer (1991) show that the main source of randomness in the MV

efficient zone is related to the expected return component. Expected returns

are difficult to estimate, and two approaches were previously proposed in the

context of MV optimisation. The historical average approach assumes that

the expected return equals its historical average over a given period. The

problem is that historical average is a very poor estimate of future returns and

portfolio optimisation can further maximise estimation error as mentioned by

Michaud (1989). In view of the difficulty of estimating expected returns one

can implement, the minimum variance approach assuming that expected

returns for all the underlying assets are the same so that one optimises the

portfolio by minimising the portfolio variance utilising only the estimated

covariance matrix regardless of the expected returns. Since the expected

returns for low risk assets like bonds are significantly lower than expected

returns for high risk assets like stocks, this minimum variance approach will

tend to overweight low risk assets and underweight high risk assets.

We propose a risk-adjusted expected return (RAER) approach which

assumes that the expected return over one asset is highly correlated to that

asset's expected volatility: if the volatility estimate is high for one asset,

investors should also expect a high return. Investors will accept a low return

only if the associated risk is low as well. Under such assumption, expected

returns are expressed as a linear function of the risk incurred through a

risk-aversion coefficient. This risk-aversion coefficient is not constant over

time since investors' expectations are adaptive: if the risk-adjusted return is
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low over the most recent period, investors will expect a low risk-adjusted

return in the future and vice versa. Therefore the multiplier is assumed to be

time-varying and it follows an AR(1) process as:

r (1+11 I)= f3 (1+11 I)*a (1+11 I)

f3 (1+1/1)= JL * f3 (1/t-J)+ (1- JL) * f3 (I)
(7.4)

where the multiplier {3 is the expected trade-off between return and risk.

Specifically, (3(t+1,1t) is the one step ahead forecast of {3, while (3(t) is the realised

(3 at time t, which is the underlying asset return r(t) divided by the

corresponding volatility. This trade off multiplier (3 follows an AR(1) process

with the decay factor f.J = 0.96 for weekly data. Equation (7.4) can also be

seen as a special case of a GARCH(1,1)-M equation with time-varying

parameters.

7.4.3 International Contagion

It is well known that there is contagion among international stock markets,

and the volatilities and correlations tend to increase in times of financial

instability. On the other hand, bonds can offer effective diversification in times

of instability since its correlation with stocks temporarily changes to negative

during such times. The traditional MV optimisation ignoring international

contagion thus tends to underweight bonds in times of financial instability and

overweight them at other times. The effects of contagion are exhibited in

table 7.1 where covariance matrices for different volatility regimes are

displayed. Since the portfolio is established from an U.S. investor's

perspective, we arbitrarily set the volatility forecast of MSCI USA as an
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Table 7.1 Correlation matrix for different volatility regimes

* The underlying market volatilities are placed on top of the correlation matrix
to illustrate the change of volatility regimes.

Full Review Period CorrelationNolatility Matrix

MSCI USA MSCI EUROPE MSCI JAPAN LEHM BOND GSCI

Volatility 16.03% 16.65% 23.03% 3.93% 17.10%

MSCIUSA 1

MSCI EUROPE 0.618 1

MSCI JAPAN 0.267 0.357 1

LEHM BOND 0.156 0.129 -0.012 1

GSCI 0.027 0.020 0.053 -0.059

CorrelationNolatility Matrix in times of financial instability

MSCIUSA MSCI EUROPE MSCI JAPAN LEHM BOND GSCI

Volatility 20.70% 21.16% 24.68% 3.83% 19.98%

MSCIUSA 1

MSCI EUROPE 0.701 1

MSCI JAPAN 0.342 0.370 1

LEHM BOND -0.130 -0.109 -0.062 1

GSCI 0.023 -0.001 0.050 -0.095

CorrelationNolatility Matrix during "normal times"

MSCIUSA MSCI EUROPE MSCI JAPAN LEHM BOND GSCI

Volatility 12.05% 12.89% 21.89% 3.99% 14.93%

MSCIUSA 1

MSCI EUROPE 0.565 1

MSCI JAPAN 0.218 0.348 1

LEHM BOND 0.342 0.284 0.020 1

GSCI 0.029 0.034 0.055 -0.035

indicator to classify different regimes and periods when volatility forecasts are

higher than a certain threshold are classified as times of financial instability
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with the remaining periods considered as "normal" times".

The effect of contagion can be well observed from table 7.1, volatilities and

correlations between the stocks increase significantly in times of financial

instability compared to those in normal times. On the other hand, LEHM bond

and GSCI commodity's correlations to the stocks decrease significantly

during volatile periods, which suggests that both bond and commodities can

offer effective diversification during these periods. Such benefits are more

obvious in the case of bonds where all correlations between LEHM bond and

stocks change from positive in normal times to negative during instability. The

full covariance matrix, ignoring the effects of volatility regimes on the

variability of correlations, thus underestimates correlations between stocks

and overestimates correlations between bond / commodity and stocks when

markets are instable. This confirms that the traditional MV optimisation using

the full covariance matrix tends to underweight bonds in times of financial

instability and overweight them at other times.

7.4.4 Volatility Filter Rule

The underlying correlations are so different between volatility regimes that

they can significantly affect the optimal weights at different times. We

propose a dynamic rebalancing scheme where the underlying market

volatility functions as a timing device and the underlying global portfolio is

only rebalanced when the underlying volatility regime changes. The global

47 The volatility threshold is determined using in-sample data (02/01/1989 - 25/12/1991). We
calculate the mean and standard deviation of the RiskMetrics volatility forecasts of MSCI
USA during the in-sample period, and the volatility threshold is set as the mean plus one
standard deviation.
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portfolio is formed from an U.S. investor's perspective, so we arbitrarily set

the volatility forecast of the MSCI USA as an indicator to classify different

volatility regimes: periods when volatility forecasts are higher than a certain

threshold T are classified as times of financial instability with the remaining

periods being "normal times". Let dUSA
) (t+1,t) be the one step ahead forecast of

MSCI USA volatility, a filtered portfolio rebalancing scheme can be described

as:

if (USA) T and (USA) Rebalance portfolio with new weights

{
1 (J (t+ l,t) > (J (t,t-l) < T:

if (USA) T and (USA) Rebalance portfolio with new weights1 (J (t+ l,t) < (J (u-t) > T:

Else: No rebalancing

7.4.5 Portfolio Rebalancing Strategies

In this chapter, we devise 4 dynamic and 1 static strategies to optimise

portfolio weights based on the methodologies described above for empirical

application. The portfolio weights of all the 4 dynamic rebalancing strategies

are optimised every week in the review period (01/01/1992 to 29/12/2004)

within the MV framework using one-week ahead return/covariance forecasts.

i.) The first 3 dynamic rebalancing strategies use RiskMetrics forecasts

of conditional covariance as expected variance/covariance. Their

respective return assumptions are:

• The RAER strategy expresses the expected return as a linear

function of the risk incurred through a risk-aversion coefficient as

in equation (7.4).
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• The historical mean strategy uses the period return (in our case

the previous week's return) as the expected return for the next

period (week).

• The minimum variance strategy does not include any constraints

on expected return and the optimal weights are those with the

minimum expected portfolio variances.

ii.) In addition to the RiskMetrics approach, we also use the rollover

approach to estimate the unconditional covariance matrix. This

approach utilises the rolling historical mean and covariance. In this

chapter, we set the rolling window size at 12 with the reason explained

before, and the mean-variance forecasts for next period are the mean

and variance estimated with the data of the previous 12 weeks".

iii.) A constant weighting scheme is also built and the equally weighted

strategy does not change asset weights over time. For simplicity, this

strategy assigns weights equally (20%) to each component asset.

We apply both the unconstrained and constrained strategies with respect to

short-selling to the above rebalancing schemes. Since the equally weighted

strategy retains the same weights at all times, which is to be long each asset

at 20%, the short-selling constraint is irrelevant in this case.

48 Except the minimum variance strategy, where the optimal weights are those with the
minimum expected portfolio variance, the other 3 dynamic strategies calculate optimal
maximizing the expected Information ratios. The weekly forecasts and allocations are
programmed with Excel VBA to loop the procedure.

125



7.5 Empirical Results

Table7.2 Portfolio performance statistics without volatility filters

before transaction costs

* Full review period 01/01/1992 to 29/12/2004

Historical Minimum Equally

Weighted
RAER Rollover

Mean Variance

CONSTRAINED AGAINST SHORT-SELLING

Annualised Return

Annualised Volatility

Maximum Drawdown

Information Ratio

7.40% 0.61% 0.59% 6.42% 5.26%

8.99% 12.54% 3.69% 9.68% 9.46%

-19.98% -48.47% -11.64% -23.07% -37.02%

0.82 0.05 0.16 0.66 0.56

UNCONSTRAINED

11.86% -9.12% 0.11% 9.39% 5.26%

15.74% 17.84% 3.71% 16.81% 9.46%

-24.10% -156.39% -14.26% -38.63% -37.02%

0.75 -0.51 0.03 0.56 0.54

Annualised Return

Annualised Volatility

Maximum Drawdown

Information Ratio

Table 7.2 shows the portfolio performances for the full review period from

01/01/1992 to 29/12/2004. The proposed RAER dynamic rebalancing

approach has provided the best performance in terms of annualised return

and risk-adjusted information ratio, while the minimum variance approach, as

expected has the lowest risk features in terms of volatility and maximum

drawdown. Dynamic rebalancing schemes with traditional minimum variance

and historical mean approach fail to outperform the simple equally weighted

portfolio, this result is in line with previous research such as Jobson and

Korkie (1981) claiming the poor ex-post performance of MV optimisation.

Nevertheless, both the RAER and rollover approaches outperform the
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equally weighted portfolio significantly for the 13-year period in terms of

information ratio, which suggests that the dynamic approach with accurate

forecasts potentially adds value.

But dynamic portfolio rebalancing involves frequent transformation of asset

weights, and the benefits from dynamic rebalancing can be quickly erased by

transaction costs. Following Pesaran and Timmermann (1995), we set

transaction costs as 0.5% per round trading on stocks and 0.1% on bonds".

To measure the consistency of performance, the entire review period is

further equally split into 3 sub-periods. All performance measures after

deduction of transaction costs are displayed in appendix table A.43. As

expected, all measures for dynamic schemes deteriorate after transaction

costs are included. As a matter of fact, all dynamic rebalancing approaches

then underperform the equally weighted portfolio. Among these dynamic

approaches, the proposed RAER approach prevails over others and the

constrained RAER is the only portfolio producing positive returns and

information ratios in all periods considered.

Simple dynamic rebalancing schemes are shown as costly. The existence of

international contagion suggests a covariance matrix regime change between

normal times and financial instability. This provides an opportunity to use a

volatility filter to screen off unnecessary weight changes and the portfolio is

only rebalanced when the underlying volatility regime changes. Table 7.3

shows the performance measures when the volatility filters described in

49 For simplicity, transaction costs for commodities are set the same level as that of stocks at
0.5% per round trip, while in reality much lower transaction costs can be obtained in the
futures markets.
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section 7.4.4 above are superimposed on the simple dynamic rebalancing

approaches.

Table7.3 Portfolio performance statistics with volatility filters after

transaction costs

CONSTRAINED AGAINST

SHORT SELLING
UNCONSTRAINED

01/01/9201/01/9201/05/96 30/08/00 01/01/92 01/01/92 01/05/96 30/08/00

29/12/04 24/04/96 23/08/00 29/12/04 29/12/04 24/04/96 23/08/00 29/12/04

RAER

Information Ratio 1.06 1.21 1.22 0.69 0.62 0.11 0.84 0.85

Maximum Drawdown -13.32% -8.77% -8.79% -13.32% -39.77% -39.37% -39.77% -14.19%

Historical Mean

Information Ratio 0.37 0.40 0.00 0.74 -0.19 -0.14 -1.11 0.62

Maximum Drawdown -43.04% -35.51% -43.04% -22.29% -128.21% -45.13% -89.92% -18.63%

Minimum Variance

Information Ratio 0.12 -0.13 0.04 0.49 0.05 -0.33 0.05 0.49

Maximum Drawdown -12.15% -12.15% -6.35% -4.81% -13.76% -13.76% -6.81% -4.81%

Rollover

Information Ratio 1.08 1.21 1.30 0.64 0.40 -0.04 1.04 0.76

Maximum Drawdown -8.90% -8.82% -8.90% -6.56% -84.41% -84.41 % -24.83% -7.40%

Equally Weighted

Information Ratio 0.56 0.90 0.85 0.07

Maximum Drawdown -37.02% -8.62% -11.03% -36.97%

For simplicity, table 7.3 only presents the information ratios and maximum

drawdowns. Further performance measures for portfolios with volatility filters

can be found in appendix table A.44. It is obvious that the addition of a

volatility filter adds significant value to portfolio performance in terms of

annualised return, maximum drawdown and risk-adjusted information ratio in
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the entire review period as well as the 3 sub-periods chosen. With the

addition of a volatility filter, the proposed RAER approach produces the most

consistent performance with and without the constraint on short-selling

compared to other dynamic rebalancing approaches. Both the filtered RAER

and rollover approaches, with the constraint on short-selling outperform the

equally weighted portfolio. Moreover, the information ratios obtained from the

constrained RAER and rollover approaches using the filters are also

consistently satisfactory, suggesting that the performance results obtained

are not only good in relative terms when compared to alternative models,

they are also actionable in a trading environment.

As far as short-selling constraint is concerned, though all unconstrained

portfolios increase volatility by going short albeit moderately in some cases,

we do not find that to go short contributes a significant return enhancement,

as in most cases performances with short-selling are lower in terms of

risk-adjusted measures. In reality, to short sell stocks in cash markets will

incur higher transaction costs, and we therefore conclude that MV

optimisations with short-selling constraints are more favourable than

unconstrained ones.

7.6 Concluding Remarks

Volatilities and correlations of international stock markets are known to

increase in times of financial instability. In this chapter, we proposed a

dynamic rebalancing scheme where the underlying market volatility functions
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as a timing device for portfolio reallocation and the portfolio is only

rebalanced when the underlying volatility regime changes. Significant

improvements on portfolio performance in terms of annualised return,

maximum drawdown and risk-adjusted information ratio have been found

with the addition of such filters in the entire review period and all the

sub-periods. Among all the portfolio rebalancing strategies studied, the

proposed RAER approach produces the most consistent performance with

and without the constraint on short-selling.

Overall unconstrained portfolios underperform portfolios with the constraint

on short-selling. Considering the higher transaction costs incurred to short

sell stocks in cash markets, we conclude that MV optimisations preventing

short-selling are more favourable than the unconstrained ones. Of course,

due to their flexibility, it is also possible and easy for market practitioners to

include other constraints, for instance, to set a minimum weight for a specific

asset.

Finally, the information ratios obtained from the constrained RAER and

rollover approaches using the filters are satisfactory suggesting that these

strategies are also actionable in a trading environment. The method studied

in this chapter is also easy to implement, and has therefore significant merits

in helping fund managers who need to rebalance their portfolios regularly.
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CHAPTER 8

General Conclusion

Technical trading rules have been used in financial markets for decades, and

are still one of the most popular forecasting techniques in financial markets.

Among these, technical trending systems are quite popular, but are known to

perform poorly in volatile markets. The primary motivation of the thesis was to

investigate the performance of technical trending systems and other trading

strategies in different volatility regimes. The thesis then proposed volatility

filters to enhance the performance of such strategies.

Two volatility filters were proposed, namely a "no-trade" filter where all market

positions are closed in volatile periods, and a "reverse" filter where signals

from the original trading strategies are reversed if market volatility is higher

than a given threshold.

Our results show that the addition of the two volatility filters has significantly

improved the performance of trend-following MACD systems at both the

single asset and portfolio level. Besides, similar results have been found

when volatility filters are applied to two portfolios which are highly correlated

with a managed futures index and a currency traders' performance

benchmark. When the two volatility filters are concerned, although the

"reverse" strategy outperforms in terms of risk-adjusted information ratio most

of the time, investors following a "no-trade" strategy are able to free up funds
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out of highly volatile markets and invest into other markets for short-term

profits. In this respect, there is no "winning" of one filter against the other and

it is up to investors to choose the right strategy based on their risk tolerance.

Based on the findings from above study, the optimal trading frequencies for

some most heavily traded currency and futures products have also been

identified.

In addition, we have also found some interesting results for the first time

regarding the predictability of trend-following systems. Firstly, with no

previous articles comparing the predictability of technical trading rules in

different markets, our results showed that technical trading rules seem to

work better in stock and currency markets than they do in bond and

commodity markets. Secondly, departing from the previous literature, which

compares the performances between MAGOs with different window length,

we also compared the impact of volatility regime changes on MAGOs with

different window length. We found that MAGOs consisting of short-term MAs

tend to outperform those MAGOs with long-term MAs when the market is

relatively stable, while the latter perform better in more volatile periods. We

then proposed a model switch strategy, where signals from different MAGO

systems are taken depending on the prevailing market volatility.

As for the alternative trading strategies studied in this thesis, our results show

that a carry model performs poorly when market volatility is high and the

addition of volatility filters then enhances the performance of the carry model,

which also outperforms a benchmark dynamic MAGO model. Generally, a

spectral model built on the cyclical spectral properties of exchange rates
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performs poorly across different volatility regimes, and there is no evidence

that the performance of this model is affected by volatility regime changes.

Yet, a trading strategy combining volatility and spectral filters significantly

improves the performance of traditional technical trading models for active

currency portfolio management.

Finally, the thesis proposed a dynamic rebalancing scheme where the

underlying market volatility functions as a timing device for portfolio

reallocation and portfolio is only rebalanced when the underlying volatility

regime changes. Significant improvements on portfolio performance in terms

of annualised return, maximum drawdown and risk-adjusted information ratio

have been found with the addition of such filters in the entire review period

and all the sub-periods. Among all the portfolio rebalancing strategies studied,

the proposed RAER approach produces the most consistent performance

with and without the constraint on short-selling. This is the first time that the

well-known phenomena of international contagion and volatility regime

changes are applied in the context of dynamic portfolio rebalancing.

The results of this thesis open a number of potential areas for future research.

A natural extension of the thesis is to study whether underlying volatility

regimes have a significant impact on other contemporary quantitative

forecasting models or trading techniques. In addition, the availability of

intraday data has generated a lot of concerns in the area of empirical finance.

Since intraday data on securities and exchange rates provide a rich testing

ground for the study of microstructural effects of information flows on prices

and trading activities (see, among others, Low & Muthuswany 1996), it would

UVEf.:-;_
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be interesting to investigate the relationships between market volatilities and

alternative trading strategies at a microstructure level.

In conclusion, some of the most widely used trading strategies are found to

perform poorly when markets are highly volatile, and adaptive strategies like

the volatility filters proposed in this thesis should be adopted during those

periods to enhance trading performance. In addition, correlations between

international financial markets change significantly with changes in these

markets volatility regimes. Volatility filters based on these volatility regime

changes can playas an effective timing device for dynamic portfolio

optimisation and rebalancing.
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TableA.1 Statistics of market volatility in different subperiods

6-year Period 3-year Period Year 2003 Half Year

(17112/98 - 30103104) (02/01101 - 30103104) (02/01103 - 31112/03) (01109103 - 30103104)

Average
Std. Dev.

Average
Std. Dev.

Average
Std. Dev.

Average
Std. Dev.Vol. Vol. Vol. Vol.

SP500 19.98% 6.27% 20.00% 7.19% 16.25% 4.51% 11.03% 1.60%

EURIUSD 9.84% 1.92% 9.80% 1.96% 9.28% 0.97% 10.27% 1.58%

COPP. 17.43% 4.42% 16.75% 3.86% 15.74% 1.82% 19.27% 5.92%

OILB 35.97% 8.87% 34.34% 9.24% 33.90% 7.36% 30.31% 2.91%

BUND 5.39% 1.41% 5.23% 1.31% 6.24% 1.12% 5.43% 1.17%

6-year Period 3-year Period Year 2003 Half Year

(17112/98 - 30103104) (02/01101 - 30103104) (02/01103 - 31112/03) (01109103 - 30103104)

Average
Std. Dev.

Average
Std. Dev.

Average
Std. Dev.

Average
Std. Dev.Vol. Vol. Vol. Vol.

USD/JPY 9.90% 2.32% 9.17% 1.68% 8.63% 1.18% 8.26% 1.97%

GBP/USD 7.42% 1.66% 7.48% 1.72% 7.51% 1.18% 8.40% 2.49%

ALUMINUM 14.20% 3.41% 13.31% 3.52% 11.81% 1.47% 13.08% 2.52%

STOXX50 27.16% 10.58% 29.83% 12.08% 29.08% 10.39% 17.37% 4.08%

T-BOND 9.89% 2.30% 10.83% 2.23% 12.01% 2.53% 12.34% 2.28%
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FigureA.1 Net cumulative return and maximum drawdown of the

"optimal" strategy with the addition of the "reverse" filter
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Table A. 16 GARCH model estimation output for EURIUSD
Dependent Variable: EURUSD
Method: ML - ARCH (Marquardt)
Date: 06/29/05 Time: 11:42
Sample: 1 1659
Included observations: 1659
Convergence achieved after 16 iterations
Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

C 0.014692 0.014471 1.015263 0.3100

Variance Eguation

C 0.003610 0.001673 2.157676 0.0310
ARCH(1) 0.022654 0.006041 3.750060 0.0002
GARCH(1 ) 0.968534 0.008747 110.7305 0.0000

;

R-squared -0.000102 Mean dependent var 0.008418
Adjusted R-squared -0.001915 S.D.dependentvar 0.620534
S.E. of regression 0.621128 Akaike info criterion 1.859237
Sum squared resid 638.4993 Schwarz criterion 1.872290
Lo~ likelihood -1538.237 Durbin-Watson stat 1.937738
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Table A.17 GARCH model estimation output for USDIJPY
Dependent Variable: USDJPY
Method: ML - ARCH (Marquardt)
Date: 06/29/05 Time: 11:54
Sample: 1 1659
Included observations: 1659
Convergence achieved after 13 iterations
Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

C 0.002096 0.016187 0.129455 0.8970

Variance Esuation

C 0.007976 0.002015 3.959200 0.0001
ARCH(1) 0.049828 0.006824 7.301699 0.0000
GARCHp~ 0.934984 0.008933 104.6626 0.0000

R-squared -0.000194 Mean dependent var -0.008141
Adjusted R-squared -0.002007 S.D.dependentvar 0.735053
S.E. of regression 0.735790 Akaike info criterion 2.085608
Sum squared resid 895.9960 Schwarz criterion 2.098662
Lo~ likelihood -1726.012 Durbin-Watson stat 1.900225
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Table A.1B GARCH model estimation output for GBP/USD
Dependent Variable: GBPUSD
Method: ML - ARCH (Marquardt)
Date: 06/29/05 Time: 11:50
Sample: 1 1659
Included observations: 1659
Convergence achieved after 10 iterations
Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

C 0.012205 0.011193 1.090464 0.2755

Variance E9uation

C 0.005117 0.001932 2.649036 0.0081
ARCH(1) 0.039903 0.009196 4.339034 0.0000
GARCH(1) 0.938807 0.015747 59.61978 0.0000.

R-squared -0.000080 Mean dependent var 0.007868
Adjusted R-squared -0.001893 S.D.dependentvar 0.484593
S.E. of regression 0.485052 Akaike info criterion 1.348308
Sum squared resid 389.3802 Schwarz criterion 1.361362
Loa likelihood -1114.422 Durbin-Watson stat 1.862527
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Table A.19 GARCH model estimation output for USDICHF
Dependent Variable: USDCHF
Method: ML - ARCH (Marquardt)
Date: 06/29/05 Time: 12:07
Sample: 1 1659
Included observations: 1659
Convergence achieved after 21 iterations
Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

C -0.003354 0.016149 -0.207721 0.8354

Variance Esuation

C 0.478594 0.014173 33.76918 0.0000
ARCH(1) -0.005634 0.002031 -2.774527 0.0055
GARCH(1) 0.913917 0.002622 348.5323 0.0000
GARCH~2~ -0.992180 0.002369 -418.9016 0.0000

R-squared -0.000034 Mean dependent var -0.007247
Adjusted R-squared -0.002453 S.D.dependentvar 0.664055
S.E. of regression 0.664869 Akaike info criterion 2.013639
Sum squared resid 731.1523 Schwarz criterion 2.029956
Log likelihood -1665.313 Durbin-Watson stat 1.982360
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Table A.20 GARCH model estimation output for USDICAD
Dependent Variable: USDCAD
Method: ML - ARCH (Marquardt)
Date: 06/29/05 Time: 12:05
Sample: 1 1659
Included observations: 1659
Convergence achieved after 12 iterations
Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

C 0.003474 0.008876 0.391397 0.6955

Variance Esuation

C 0.001389 0.000576 2.411976 0.0159
ARCH(1) 0.042552 0.006733 6.320078 0.0000
GARCH~1} 0.949681 0.007995 118.7876 0.0000

R-squared -0.000168 Mean dependent var -0.001808
Adjusted R-squared -0.001981 S.D.dependentvar 0.408177
S.E. of regression 0.408581 Akaike info criterion 0.933531
Sum squared resid 276.2827 Schwarz criterion 0.946585
Lo~ likelihood -770.3643 Durbin-Watson stat 1.945313
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Table A.21 GARCH model estimation output for AUDIUSD
Dependent Variable: AUDUSD
Method: ML - ARCH (Marquardt)
Date: 06/29/05 Time: 11:57
Sample: 1 1659
Included observations: 1659
Convergence achieved after 12 iterations
Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

C 0.015460 0.016438 0.940483 0.3470

Variance Eguation

C 0.006997 0.002315 3.022023 0.0025
ARCH(1) 0.038822 0.007068 5.492350 0.0000
GARCH~1~ 0.947743 0.010105 93.78656 0.0000

R-squared -0.000104 Mean dependent var 0.008182
Adjusted R-squared -0.001917 S.D.dependentvar 0.715163
S.E. of regression 0.715848 Akaike info criterion 2.107396
Sum squared resid 848.0843 Schwarz criterion 2.120450
Lo~ likelihood -1744.085 Durbin-Watson stat 1.938276
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Table A.22 GARCH model estimation output for EURlGBP
Dependent Variable: EURGBP
Method: ML - ARCH (Marquardt)
Date: 06/29/05 Time: 12:01
Sample: 1 1659
Included observations: 1659
Convergence achieved after 19 iterations
Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

C 0.004078 0.011239 0.362798 0.7168

Variance Equation

C
ARCH(1)
GARCH(1)

0.003280 0.001400
0.032052 0.007875
0.953563 0.011945

2.343666
4.069948
79.83118

0.0191
0.0000
0.0000

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood

-0.000026
-0.001839
0.479647
380.7515
-1098.271

Mean dependent var
S.D.dependentvar
Akaike info criterion
Schwarz criterion
Durbin-Watson stat

0.001614
0.479207
1.328838
1.341892
1.919548
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Table A.23 GARCH model estimation output for EURlJPY
Dependent Variable: EURJPY
Method: ML - ARCH (Marquardt)
Date: 06/29/05 Time: 12:02
Sample: 1 1659
Included observations: 1659
Convergence achieved after 18 iterations
Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

C 0.021311 0.017818 1.196018 0.2317

Variance Esuation

C 0.001753 0.000919 1.907767 0.0564
ARCH(1) 0.079456 0.022448 3.539551 0.0004
ARCH(2) -0.059589 0.023109 -2.578622 0.0099
GARCH~1l 0.977428 0.004593 212.8259 0.0000

R-squared -0.000719 Mean dependent var -0.000408
Adjusted R-squared -0.003139 S.D.dependentvar 0.810099
S.E. of regression 0.811369 Akaike info criterion 2.325287
Sum squared resid 1088.862 Schwarz criterion 2.341604
Lo~ likelihood -1923.826 Durbin-Watson stat 1.863591
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Table A.24 GARCH model estimation output for EURICHF
Dependent Variable: EURCHF
Method: ML - ARCH (Marquardt)
Date: 06/29/05 Time: 11:59
Sample: 1 1659
Included observations: 1659
Convergence achieved after 16 iterations
Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

C 0.001233 0.005126 0.240515 0.8099

Variance Esuation

C 0.001962 0.000418 4.690314 0.0000
ARCH(1) 0.121778 0.015543 7.834886 0.0000
GARCH(1 ) 0.539250 0.163472 3.298735 0.0010
GARCH~2l 0.308072 0.148177 2.079084 0.0376

R-squared -0.000199 Mean dependent var -0.002026
Adjusted R-squared -0.002618 S.D.dependentvar 0.231145
S.E. of regression 0.231448 Akaike info criterion -0.230381
Sum squared resid 88.60147 Schwarz criterion -0.214064
Lo~ likelihood 196.1009 Durbin-Watson stat 1.861126
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Table A.25 MS model estimation output for EURIUSD
LogL: EURUSDMS
Method: Maximum Likelihood (Marquardt)
Date: 06/09/05 Time: 22:18
Sample: 1 1659
Included observations: 1659
Evaluation order: By observation
Estimation settings: tol= 1.0E-05, derivs=accurate numeric
Initial Values: C(1 )=0.40000, C(3)=0.00000, C(2)=0.30000,

C(5)=0.40000, C(4)=0.60000
Convergence achieved after 18 iterations

Coefficient Std. Error z-Statistic Prob.

C(1 ) 0.465461 0.018486 25.17883
C(3) 0.006503 0.014770 0.440271
C(2) 0.692390 0.015721 44.04244
C(5) 4.957915 0.491121 10.09511
C(4) 4.379202 0.467438 9.368526

Log likelihood -1531.475 Akaike info criterion
Avg. log likelihood -0.923132 Schwarz criterion
Number of Coefs. 5 Hannan-Quinn criter.

0.0000
0.6597
0.0000
0.0000
0.0000

1.852291
1.868608
1.858339
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Table A.26 MS model estimation output for USDIJPY
LogL: USDJPYMS
Method: Maximum Likelihood (Marquardt)
Date: 06/09/05 Time: 22:39
Sample: 1 1659
Included observations: 1659
Evaluation order: By observation
Estimation settings: tol= 1.0E-05, derivs=accurate numeric
Initial Values: C(1 )=0.60000, C(3)=0.00000, C(2)=0.20000,

C(5)=0.20000, C(4)=0.80000
Convergence achieved after 36 iterations

Coefficient Std. Error z-Statistic Prob.

C(1 )
C(3)
C(2)
C(5)
C(4)

1.460411 0.064999
0.006338 0.016135
0.594996 0.012696
4.207500 0.305246
1.937530 0.328712

22.46831
0.392786
46.86401
13.78398
5.894309

0.0000
0.6945
0.0000
0.0000
0.0000

Log likelihood
Avg. log likelihood
Number of Coefs.

-1716.587
-1.034712

5

Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.

2.075452
2.091769
2.081500
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Table A.27 MS model estimation output for GBP/USD
LogL: GBPUSDMS
Method: Maximum Likelihood (Marquardt)
Date: 06/09/05 Time: 22:41
Sample: 1 1659
Included observations: 1659
Evaluation order: By observation
Estimation settings: tol= 1.0E-05, derivs=accurate numeric
Initial Values: C(1 )=0.60000, C(3)=0.00000, C(2)=0.20000,

C(5)=0.20000, C(4 )=0.80000
Convergence achieved after 22 iterations

Coefficient Std. Error z-Statistic Prob.

C(1)
C(3)
C(2)
C(5)
C(4)

0.602187 0.020267
0.007858 0.011250
0.381519 0.012803
3.888702 0.395877
3.542546 0.383915

29.71314
0.698523
29.79826
9.823000
9.227433

0.0000
0.4848
0.0000
0.0000
0.0000

Log likelihood
Avg. log likelihood
Number of Coefs.

-1111.636
-0.670064

5

Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.

1.346156
1.362473
1.352204
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Table A.28 MS model estimation output for USDICHF
LogL: USDCHFMS
Method: Maximum Likelihood (Marquardt)
Date: 06/10105 Time: 11:24
Sample: 1 1659
Included observations: 1659
Evaluation order: By observation
Estimation settings: tol= 1.0E-05, derivs=accurate numeric
Initial Values: C(1 )=0.40000, C(3)=0.00000, C(2)=0.30000,

C(5)=0.40000, C(4 )=0.60000
Convergence achieved after 32 iterations

Coefficient Std. Error z-Statistic Prob.

C(1 )
C(3)
C(2)
C(5)
C(4)

Log likelihood
Avg. log likelihood
Number of Coefs.

0.501763 0.023581
-0.002260 0.015651
0.737183 0.019347
4.496765 0.477744
3.873535 0.493800

21.27849
-0.144426
38.10382
9.412493
7.844348

-1654.024
-0.997001

5

Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.

0.0000
0.8852
0.0000
0.0000
0.0000

2.000029
2.016346
2.006077
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Table A.29 MS model estimation output for USDICAD
LogL: USDCADMS
Method: Maximum Likelihood (Marquardt)
Date: 06/10105 Time: 11:26
Sample: 1 1659
Included observations: 1659
Evaluation order: By observation
Estimation settings: tol= 1.0E-05, derivs=accurate numeric
Initial Values: C(1 )=0.60000, C(3)=0.00000, C(2)=0.20000,

C(5)=0.20000, C(4 )=0.80000
Convergence achieved after 13 iterations

Coefficient Std. Error z-Statistic Prob.

C(1 ) 0.580034 0.021362 27.15228
C(3) 0.001365 0.008845 0.154324
C(2) 0.319720 0.007026 45.50576
C(5) 5.283828 0.457886 11.53961
C(4) 4.373056 0.435604 10.03905

Log likelihood -765.6142 Akaike info criterion
Avg. log likelihood -0.461491 Schwarz criterion
Number of Coefs. 5 Hannan-Quinn criter.

0.0000
0.8774
0.0000
0.0000
0.0000

0.929011
0.945328
0.935059
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Table A.30 MS model estimation output for AUDIUSD
LogL: AUDUSDMS
Method: Maximum Likelihood (Marquardt)
Date: 06/10105 Time: 11:28
Sample: 1 1659
Included observations: 1659
Evaluation order: By observation
Estimation settings: tol= 1.0E-05, derivs=accurate numeric
Initial Values: C(1 )=0.60000, C(3)=0.00000, C(2)=0.20000,

C(5)=0.20000, C(4 )=0.80000
Convergence achieved after 80 iterations

Coefficient Std. Error z-Statistic Prob.

C(1 ) 0.913639 0.019000 48.08510
C(3) 0.019584 0.016310 1.200727
C(2) 0.568263 0.013630 41.69116
C(5) 4.804987 0.418926 11.46978
C(4) 4.400473 0.427572 10.29178

Log likelihood -1735.974 Akaike info criterion
Avg. log likelihood -1.046398 Schwarz criterion
Number of Coefs. 5 Hannan-Quinn criter.

0.0000
0.2299
0.0000
0.0000
0.0000

2.098823
2.115140
2.104871
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Table A.31 MS model estimation output for EURlGBP
LogL: EURGBPMS
Method: Maximum Likelihood (Marquardt)
Date: 06/10105 Time: 11:30
Sample: 1 1659
Included observations: 1659
Evaluation order: By observation
Estimation settings: tol= 1.0E-05, derivs=accurate numeric
Initial Values: C(1 )=0.60000, C(3)=0.00000, C(2)=0.20000,

C(5)=0.20000, C(4 )=0.80000
Convergence achieved after 13 iterations

Coefficient Std. Error z-Statistic Prob.

C(1 )
C(3)
C(2)
C(5)
C(4)

0.575673 0.019024
-0.003484 0.011029
0.355347 0.013732
3.599420 0.378195
3.619656 0.374510

30.26033
-0.315865
25.87702
9.517375
9.665034

Log likelihood
Avg. log likelihood
Number of Coefs.

-1091.953
-0.658200

5

Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
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0.0000
0.7521
0.0000
0.0000
0.0000

1.322427
1.338744
1.328475



Table A.32 MS model estimation output for EURlJPY
LogL: EURJPYMS
Method: Maximum Likelihood (Marquardt)
Date: 06/10105 Time: 11:31
Sample: 1 1659
Included observations: 1659
Evaluation order: By observation
Estimation settings: tol= 1.0E-05, derivs=accurate numeric
Initial Values: C(1 )=0.60000, C(3)=0.00000, C(2)=0.20000,

C(5)=0.20000, C(4)=0.80000
Convergence achieved after 28 iterations

Coefficient Std. Error z-Statistic Prob.

C(1 ) 1.185628 0.040567 29.22672
C(3) 0.011680 0.017657 0.661477
C(2) 0.611180 0.017024 35.90005
C(5) 3.613068 0.298489 12.10453
C(4) 2.590070 0.290974 8.901394

Log likelihood -1914.740 Akaike info criterion
Avg. log likelihood -1.154153 Schwarz criterion
Number of Coefs. 5 Hannan-Quinn criter.

0.0000
0.5083
0.0000
0.0000
0.0000

2.314334
2.330651
2.320382
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Table A.33 MS model estimation output for EURICHF
LogL: EURCHFMS
Method: Maximum Likelihood (Marquardt)
Date: 06/10/05 Time: 11:34
Sample: 1 1659
Included observations: 1659
Evaluation order: By observation
Estimation settings: tol= 1.0E-05, derivs=accurate numeric
Initial Values: C(1 )=0.30000, C(3)=0.00000, C(2)=0.1 DODO,

C(5)=0.20000, C(4 )=0.80000
Convergence achieved after 23 iterations

Coefficient Std. Error z-Statistic Prob.

C(1)
C(3)
C(2)
C(5)
C(4)

0.321018 0.005519
-0.000233 0.004678
0.148521 0.004165
3.471758 0.263559
2.976897 0.251599

58.17121
-0.049740
35.65636
13.17260
11.83193

0.0000
0.9603
0.0000
0.0000
0.0000

Log likelihood
Avg. log likelihood
Number of Coefs.

221.0632
0.133251

5

Akaike info criterion -0.260474
Schwarz criterion -0.244157
Hannan-Quinn criter. -0.254426
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TableA.34 Test output on the presence of a deterministic trend for
EURIUSD
Dependent Variable: EURUSD
Method: Least Squares
Date: 02/08/06 TIme: 22:41
Sample: 1 1663
Included observations: 1663

Variable Coefficient Std. Error t-Statistic Prob.

C 116.9671 0.385366 303.5222 0.0000
TREND -0.002695 0.000402 -6.710396 0.0000

R-squared 0.026394 Mean dependent var 114.7279
Adjusted R-squared 0.025808 S.D.dependentvar 7.964580
,S.E. of regression 7.861132 Akaike info criterion 6.962940
Sum squared resid 102645.5 Schwarz criterion 6.969454
Log likelihood -5787.685 F-statistic 45.02942
Durbin-Watson stat 0.008409 Prob~F-statistic ~ 0.000000
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TableA.35 Test output on the presence of a deterministic trend for
USDIJPY
Dependent Variable: USDJPY
Method: Least Squares
Date: 02/08/06 Time: 22:42
Sample: 1 1663
Included observations: 1663

Variable Coefficient Std. Error t-Statistic Prob.

C
TREND

1.445805 0.005733 252.1728 0.0000
0.000197 5.97E-06 33.04157 0.0000

R-squared
Adjusted R-squared
.S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat

0.396602
0.396239
0.116956
22.72041
1210.030
0.004813

Mean dependent var
S.D.dependentvar
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)

1.609840
0.150519
-1.452832
-1.446318
1091.746
0.000000
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TableA.36 Test output on the presence of a deterministic trend for
GBP/USD
Dependent Variable: GBPUSD
Method: Least Squares
Date: 02/08/06 Time: 22:41
Sample: 1 1663
Included observations: 1663

Variable Coefficient Std. Error t-Statistic Prob.

C
TREND

0.888257 0.005343 166.2535
0.000197 5.57E-06 35.32667

0.0000
0.0000

R-squared
Adjusted R-squared

. S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat

0.429008
0.428664
0.108988
19.73011
1327.370
0.003615

Mean dependent var
S.D.dependentvar
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic )

1.051689
0.144190
-1.593950
-1.587436
1247.973
0.000000
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TableA.37 Test output on the presence of a deterministic trend for
USDICHF
Dependent Variable: USDCHF
Method: Least Squares
Date: 02/08/06 Time: 22:42
Sample: 1 1663
Included observations: 1663

Variable Coefficient Std. Error t-Statistic Prob.

C 1.723203 0.006191 278.3591 0.0000
TREND -0.000288 6.45E-06 -44.64288 0.0000

R-squared 0.545428 Mean dependent var 1.483900
Adjusted R-squared 0.545154 S.D.dependentvar 0.187245
. S.E. of regression 0.126282 Akaike info criterion -1.299390
Sum squared resid 26.48839 Schwarz criterion -1.292876
Log likelihood 1082.443 F-statistic 1992.986
Durbin-Watson stat 0.006116 Prob{F-statistic ~ 0.000000
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TableA.38 Test output on the presence of a deterministic trend for
USDICAD
Dependent Variable: USDCAD
Method: Least Squares
Date: 02/08/06 Time: 22:42
Sample: 1 1663
Included observations: 1663

Variable Coefficient Std. Error t-Statistic Prob.

C 1.579868 0.004152 380.5146 0.0000
TREND -0.000156 4.33E-06 -36.04861 0.0000

R-squared 0.438947 Mean dependent var 1.450268
Adjusted R-squared 0.438609 S.D.dependentvar 0.113039
S.E. of regression 0.084696 Akaike info criterion -2.098302

. Sum squared resid 11.91495 Schwarz criterion -2.091788
Log likelihood 1746.738 F-statistic 1299.502
Durbin-Watson stat 0.005296 Prob~F-statistic~ 0.000000
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Table A.39 Test output on the presence of a deterministic trend for
AUDIUSD
Dependent Variable: AUDUSD
Method: Least Squares
Date: 02/08/06 Time: 22:39
Sample: 1 1663
Included observations: 1663

Variable Coefficient Std. Error t-Statistic Prob.

C 0.542951 0.003599 150.8476 0.0000
TREND 9.70E-05 3.75E-06 25.86298 0.0000

R-squared 0.287092 Mean dependent var 0.623557
Adjusted R-squared 0.286663 S.D.dependentvar 0.086933
S.E. of regression 0.073423 Akaike info criterion -2.383946
. Sum squared resid 8.954441 Schwarz criterion -2.377432
Log likelihood 1984.251 F-statistic 668.8939
Durbin-Watson stat 0.003452 Prob~F-statistic ~ 0.000000
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Table A.40 Test output on the presence of a deterministic trend for
EURlGBP
Dependent Variable: EURGBP
Method: Least Squares
Date: 02/08/06 Time: 22:40
Sample: 1 1663
Included observations: 1663

Variable Coefficient Std. Error t-Statistic Prob.

C 0.617579 0.001388 444.9140 0.0000
TREND 4.01E-05 1.45E-06 27.75129 0.0000

R-squared 0.316780 Mean dependent var 0.650934
Adjusted R-squared 0.316368 S.D.dependentvar 0.034247
S.E. of regression 0.028316 Akaike info criterion -4.289593

. Sum squared resid 1.331762 Schwarz criterion -4.283079
Log likelihood 3568.797 F-statistic 770.1343
Durbin-Watson stat 0.011044 ProbW-statistic ~ 0.000000
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TableA.41 Test output on the presence of a deterministic trend for
EURlJPY
Dependent Variable: EURJPY
Method: Least Squares
Date: 02/08/06 Time: 22:41
Sample: 1 1663
Included observations: 1663

Variable Coefficient Std. Error t-Statistic Prob.

C
TREND

104.6849 0.494814
0.018473 0.000516

211.5640
35.82894

0.0000
0.0000

R-squared
Adjusted R-squared
S.E. of regression
. Sum squared resid
Log likelihood
Durbin-Watson stat

0.435938
0.435599
10.09379
169230.2
-6203.417
0.007128

Mean dependent var
S.D.dependentvar
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic )

120.0361
13.43569
7.462919
7.469433
1283.713
0.000000
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Table A.42 Test output on the presence of a deterministic trend for
EURICHF
Dependent Variable: EURCHF
Method: Least Squares
Date: 02/08/06 Time: 22:39
Sample: 1 1663
Included observations: 1663

Variable Coefficient Std. Error t-Statistic Prob.

C 1.565084 0.002114 740.3810 0.0000
TREND -3.70E-05 2.20E-06 -16.78147 0.0000

R-squared 0.144968 Mean dependent var 1.534367
Adjusted R-squared 0.144453 S.D.dependentvar 0.046620
S.E. of regression 0.043122 Akaike info criterion -3.448385

. Sum squared resid 3.088578 Schwarz criterion -3.441871
Log likelihood 2869.332 F-statistic 281.6177
Durbin-Watson stat 0.006095 Prob{F-statistic} 0.000000
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TableA.43 Portfolio performance statistics without volatility filters

after transaction costs

CONSTRAINED AGAINST
UNCONSTRAINED

SHORT SELLING

01/01/9201/01/9201/05/96 30108/00 01/01/92 01/01/92 01/05/96 30108/00

29/12/04 24/04/96 23/08/00 29/12/04 29/12/04 24/04/96 23/08/00 29/12/04

RAER

Annuallsed Return 4.89% 1.78% 7.33% 5.55% 6.55% 4.23% 16.43% -0.98%

Annualised Volatility 9.00% 8.61% 10.42% 7.78% 15.75% 13.57% 18.97% 14.12%

Information Ratio 0.54 0.21 0.70 0.71 0.42 0.31 0.87 -0.07

Maximum Drawdown -26.63% -26.63% -12.62% -7.88% -37.23% -21.59% -28.18% -21.69%

Historical Mean

Annualised Return -13.96% -16.95% -16.27% -8.69% -44.20% -47.47% -45.83% -39.31%

Annualised Volatility 12.62% 10.38% 13.57% 13.65% 17.92% 14.91% 18.81% 19.74%

Information Ratio -1.11 -1.63 -1.20 -0.64 -2.47 -3.18 -2.44 -1.99

Maximum Drawdown -208.38% -78.83% -71.76% -65.02% -580.14% -205.52% -198.55% -177.22%

Minlmun Variance

Annualised Return 0.37% -0.28% -0.05% 1.43% -0.27% -1.15% -0.80% 1.15%

Annualised Volatility 3.69% 3.94% 3.64% 3.48% 3.72% 3.97% 3.65% 3.53%

Information Ratio 0.10 -0.07 -0.01 0.41 -0.07 -0.29 -0.22 0.32

Maximum Drawdown -11.94% -11.94% -7.02% -5.25% -16.93% -14.94% -8.16% -5.88%

Rollover

Annualised Return 2.19% 1.93% 6.31% -1.65% -0.19% 2.33% 2.87% -5.75%

Annualised Volatility 9.71% 9.16% 10.43% 9.50% 16.85% 15.71% 20.13% 14.18%

Information Ratio 0.23 0.21 0.61 -0.17 -0.01 0.15 0.14 -0.41

Maximum Drawdown -31.39% -12.54% -10.83% -31.39% -62.15% -27.88% -39.12% -41.84%

Equally Weighted

Annualised Return 5.26% 7.01% 8.05% 0.74%

Annualised Volatility 9.46% 7.79% 9.43% 10.91%

Information Ratio 0.56 0.90 0.85 0.07

Maximum Drawdown -37.02% -8.62% -11.03% -36.97%
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TableA.44 Portfolio performances statistics with volatility filters after

transaction costs

CONSTRAINED AGAINST
UNCONSTRAINED

SHORT SELLING

01/01/9201/01/9201/05/96 30/08/00 01/01/92 01/01/92 01/05/96 30/08/00

29/12/04 24/04/96 23/08/00 29/12/04 29/12/04 24/04/96 23/08/00 29/12/04

RAER

Anriualised Return 10.13% 11.89% 13.38% 5.15% 10.29% 1.56% 18.52% 10.79%

Annualised Volatility 9.52% 9.83% 10.97% 7.44% 16.66% 13.57% 22.05% 12.75%

Information Ratio 1.06 1.21 1.22 0.69 0.62 0.11 0.84 0.85

Maximum Drawdown -13.32% -8.77% -8.79% -13.32% -39.77% -39.37% -39.77% -14.19%

Historical Mean

Annualised Return 6.20% 8.57% -0.06% 10.08% -3.26% -3.07% -16.38% 9.60%

Annualised Volatility 16.73% 21.25% 14.36% 13.55% 17.58% 21.47% 14.82% 15.60%

Information Ratio 0.37 0.40 0.00 0.74 -0.19 -0.14 -1.11 0.62

Maximum Drawdown -43.04% -35.51% -43.04% -22.29% -128.21% -45.13% -89.92% -18.63%

Minimun Variance

Annualised Return 0.45% -0.50% 0.15% 1.70% 0.19% -1.34% 0.18% 1.72%

Annualised Volatility 3.68% 3.92% 3.63% 3.49% 3.78% 4.10% 3.71% 3.49%

Information Ratio 0.12 -0.13 0.04 0.49 0.05 -0.33 0.05 0.49

Maximum Drawdown -12.15% -12.15% -6.35% -4.81% -13.76% -13.76% -6.81% -4.81%

Rollover

Annualised Return 9.84% 11.95% 14.49% 3.09% 7.67% -1.16% 19.46% 4.71%

Annualised Volatility 9.06% 9.91% 11.17% 4.81% 19.17% 26.69% 18.76% 6.19%

Information Ratio 1.08 1.21 1.30 0.64 0.40 -0.04 1.04 0.76

Maximum Drawdown -8.90% -8.82% -8.90% -6.56% -84.41% -84.41% -24.83% -7.40%

Equally Weighted

Annualised Return 5.26% 7.01% 8.05% 0.74%

Annualised Volatility 9.46% 7.79% 9.43% 10.91%

Information Ratio 0.56 0.90 0.85 0.07

Maximum Drawdown -37.02% -8.62% -11.03% -36.97%
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