
SUIDS: A RESOURCE-EFFICIENT INTRUSION

DETECTION SYSTEM FOR UBIQUITOUS COMPUTING

ENVIRONMENTS

Bo Zhou

A thesis submitted in partial fulfilment of the

requirements of Liverpool John Moores University

for the degree of Doctor of Philosophy

June 2007

ABSTRACT

The background of the project is based on the notion of ubiquitous computing.

Ubiquitous computing was introduced as a prospective view about future usage of

computers. Smaller and cheaper computer chips will enable us to embed

computing ability into any appliances. Along with the convenience brought by

ubiquitous computing, its inherent features also exposed its weaknesses. It makes

things too easy for a malicious user to spy on others.

An Intrusion Detection System (IDS) is a tool used to protect computer

resources against malicious activities. Existing IDSs have several weaknesses that

hinder their direct application to ubiquitous networks. These shortcomings are

caused by their lack of considerations about the heterogeneity, flexibility and

resource constraints of ubiquitous networks. Thus the evolution towards

ubiquitous computing demands a new generation of resource-efficient IDSs to

provide sufficient protections against malicious activities.
SUIDS is the first intrusion detection system proposed for ubiquitous

computing environments. It keeps the special requirements of ubiquitous

computing in mind throughout its design and implementation. SUIDS adopts a

layered and distributed system architecture, a novel user-centric design and

service-oriented detection method, a new resource-sensitive scheme, including

protocols and strategies, and a novel hybrid metric based algorithm. These novel

methods and techniques used in SUIDS set a new direction for future research and

development. As the experiment results demonstrated, SUIDS is able to provide a

robust and resource-efficient protection for ubiquitous computing networks. It

ensures the feasibility of intrusion detection in ubiquitous computing

environments.

1

ACKNOWLEDGEMENTS

My thanks go to the School of Computing and Mathematical Sciences,

Liverpool John Moores University for their funding of this project. I would like to

thank my supervisors, Dr. Qi Shi and Prof. Madjid Merabti for their help and

`fishing' me out from many applicants. In particular, I would like to thank Dr. Qi

Shi for his trust, support, friendship, encouragement, inspiration and patience to

correct my `perfect' Chinglish. I would like to thank Prof. Madjid Merabti for his

friendship and belief in me as a researcher.
My thanks go to the researchers and staff at Liverpool John Moores

University for their support over the past years. I would like to thank (in no order):

Steph Hogan, Carol Oliver, David Llewellyn-Jones, Mengjie Yu, Sareer Badshah,

Tom Bailey, Gurleen Arora, Humayun Bakht, Bob Askwith, John Haggerty,

Faycal Bouhafs, Henry Chang, Paul Fergus, Kashif Kifayat, Jennifer Tang, Ruth

Thompson, Catherine Watts, Yuanyuan Shen, and Denis Reilly. In particular, my

thanks go to David Llewellyn-Jones for his help and advice on Latex and Mengjie

Yu for his friendship.

Finally, and by far most importantly, I would like to thank my family for their

care, support, and trust over the years. Thanks to mum and dad. They created the

opportunity for their son to study overseas. They kept belief in their son even

when he was at the darkest moment. Thanks to my girlfriend, Daisy, for her

patience and comfort despite my fussy temper under pressures. Without her

understanding and care, this project would have never been completed.

11

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION

1.1 Background 1

1.2 Project aims and objectives 2

1.3 Novel contribution of this project 3

1.4 Project achievements 4

1.5 Thesis organisation 5

1.6 Summary 9

CHAPER TWO: THE ROAD TOWARDS UBIQUITOUS COMPUTING

2.1 A brief history of computer networks 10

2.2 Network architectures 12

2.3 Concept of ubiquitous computing 15

2.4 Summary 18

CHAPTER THREE: NETWORK SECURITY AND

INTRUSION DETECTION SYSTEMS

3.1 Network security 19

3.2 Intrusion detection systems 24

3.2.1 Signature-based and anomaly-based IDS 26

3.2.2 Host-based and network-based IDS 27

3.3 Summary 28

CHAPTER FOUR: LIMITATIONS OF CURRENT IDSS

FOR UBIQUITOUS COMPUTING

4.1 Cost-efficient solutions 29

4.2 Hierarchically distributed solutions 31

4.3 Cooperative solutions 33

4.4 Mobile agent based solutions 35

4.5 Summary 38

CHAPTER FIVE: SUIDS AND ITS SIMULATION

5.1 Design of SUIDS 40

5.1.1 Application scenario 40

111

5.1.2 Nodes classification 42

5.1.3 System architecture 43

5.1.4 Service-oriented intrusion detection 44

5.1.5 Concept of a user-centric model 46

5.2 Simulation of SUIDS 49

5.2.1 A simulation scenario 49

5.2.2 Service nodes classification 52

5.2.3 User scenario 53

5.2.4 Intrusion auditing 54

5.3 Summary 55
CHAPTER SIX: REAL-TIME INTRUSION DETECTION WITH A

STRING-BASED APPROACH

6.1 Detection methods 56

6.1.1 Structure of event record 56

6.1.2 Mathematical model 57

6.1.3 Historical statistics: representation of long-term behaviours 58

6.1.4 String: representation of short-term behaviours 58

6.2 Experiments and results 59

6.3 Summary 62

CHAPTER SEVEN: IMPROVED CHI-SQUARE STATISTIC TEST

7.1 Detection methods 63

7.1.1 Chi-square statistic test 64

7.1.2 Case study: monitor Mike's usage on a printer 65

7.2 Experiments and results 68

7.3 Summary 74

CHAPTER EIGHT: ACHIEVING ENERGY-EFFICIENCY IN SUIDS

8.1 Energy-efficiency in SUIDS 75

8.1.1 Energy consumptions in SUIDS 76

8.1.2 Save computing energy by using head nodes 76

8.1.3 Save communication energy by splitting user profiles 77

8.1.4 Choose proxy nodes based on a hybrid metric 78

8.2 Experiments and performance analysis 80

8.2.1 Modified simulation environment 80

8.2.2 Effect of the hybrid metric 83

iv

8.2.3 Head nodes' density and distribution 84

8.2.4 User nodes' mobility 86

8.3 Summary 88

CHAPTER NINE: BALANCING INTRUSION DETECTION

RESOURCES IN SUIDS

9.1 Selecting a proxy node based on additional factors 90

9.1.1 Remaining energy and storage space 91

9.1.2 Available computing ability 91

9.1.3 Trust 92

9.2 The protocol 94
9.3 Experiments and performance analysis 97

9.3.1 Effect of the hybrid metric on network lifetime 97

9.3.2 Enhanced security policy under attacks 99

9.4 Summary 101

CHAPTER TEN: SUIDS EVALUATION

10.1 Requirements on IDSs in ubiquitous computing 102

10.2 Evaluation of SUIDS 105

10.2.1 System architecture 105

10.2.2 Resource efficiency 107

10.2.3 Detection effectiveness 108

10.3 Summary 110

CHAPTER ELEVEN: CONCLUSIONS AND FUTURE WORK

11.1 Conclusions 111

11.2 Future work 116

11.3 Summary 117

REFERENCES 119

APPENDIX A 135

APPENDIX B 152

V

LIST OF FIGURES

Figure 2.1 Number of Internet hosts. 11

Figure 2.2 ISO OSI 7-layer reference model. 13

Figure 2.3 Nested layer headers. 15

Figure 3.1 Attack types related to computer networks. 20

Figure 3.2 Examples of attack types and system targets. 22

Figure 3.3 Examples of security countermeasures at
different network layers. 24

Figure 3.4 A basic model of IDS. 25

Figure 4.1 A conceptual model for an IDS Agent. 34

Figure 5.1 Example of Mike's smart home. 41

Figure 5.2 System hierarchy for Mark's smart home. 44

Figure 5.3 High-level operation of the user agent. 47

Figure 5.4 System structure of the user-centric model. 49

Figure 5.5 Initial state of the simulated environment. 50

Figure 5.6 A snapshot of the simulated environment during executions. 51

Figure 7.1 The decay effect with 2, set to 0.3. 66

Figure 7.2 Values of X2 for normal data. 69

Figure 7.3 Values of X2 for anomalous data with all the results for

events 1-2596. 71

Figure 7.4 Values of X2 for anomalous data with partial results for

events 1501-1600. 71

Figure 7.5 Values of X2 for mixed data. 73

Figure 8.1 Three metrics will work out different proxy nodes. 80

Figure 8.2 Modified simulation environment with GTSNetS. 82

Figure 8.3 Impact of the proposed hybrid metric. 84

Figure 8.4 Use of head nodes from one to five. 85

Figure 8.5 Four head nodes with different distribution patterns. 86

Figure 8.6 Effects of users' velocities. 87

Figure 8.7 Effect of users' thinking times. 88

V1

Figure 9.1 Process for the selection of a proxy node. 95

Figure 9.2 Impact of the proposed hybrid metric. 99

Figure 9.3 Proxy selection distributions before attacks. 100

Figure 9.4 Proxy selection distributions under attacks. 101

vii

LIST OF TABLES

Table 4.1 A summary of the introduced IDSs. 39

Table 6.1 Increment of Q decreases as the string length increases
. 60

Table 6.2 False positive rate (String length = 80, Ne = 854). 61

Table 6.3 Hit rate (String length = 80, Ne' = 181). 62

Table 7.1 Observation values for vectors of {Xo, Xi, ..., X9). 66

Table 7.2 False alarm rates and hit rates (by both records and sessions)
for a combined data set. 73

Table 10.1 Comparing SUIDS with other IDSs in respect of

system architectures. 106

Table 10.2 Drawbacks of current resource efficient solutions for IDSs. 108

Table 10.3 Comparison of two detection methods. 109

viii

CHAPTER ONE

INTRODUCTION

With the continuous growth and development of computer networks, the

notion of ubiquitous computing introduced by Mark Weiser has received
increasing attention. However, this evolution faces a barrier. On the one hand,

people want to construct a ubiquitous network to make the best use of computers;

on the other hand, they must secure their network in order to cope with a number

of security threats from malicious entities. One solution for this is to use an

Intrusion Detection System (IDS). This chapter is organized as follows. First, the

topic of the thesis is presented with its aims. Second, the novel contribution of the

new approach posited in the thesis is presented. Third, an overview of the chapters

of the thesis is presented. Finally, the chapter is summarized.

1.1 Background

With the wide spread of computers, our daily lives are highly computerised

and closely connected with computer networks. In the near future, one will be

able to open a door by simply sending an order to the electric door lock from

his/her PDA, or read news on a computer embedded "e-paper" with the content

updated through wireless connections [52]. The trend towards a computerised

smart space is part of the conception of ubiquitous computing [1,155]. In the era

of ubiquitous computing, devices with computing and communicating abilities

will surround us all over. Eventually it will achieve the non-intrusive availability

of computers throughout physical environments. For example, hundreds of little

appliances (e. g. computer embedded notes, pens and coffee machines) in a smart

1

office will be seamlessly integrated into a work environment, gently enhancing an

occupant's everyday activities [47].

Just like other networks, one of the main prerequisites for a ubiquitous

network is adequate security [32,90,142]. The network has to be properly

secured so that it can be relied upon. Intrusion Detection Systems [4,5,31] are

widely used to protect computer networks. If an intrusion is detected quickly

enough, the intruder can be identified and ejected from the system before any

damage is done or any data are compromised. Moreover, an effective intrusion

detection system can even serve as a deterrent, acting to prevent intrusions.

Traditional IDSs, which were originally developed for wired networks, are

not suitable for ubiquitous computing due to the unique characteristics and
inherent vulnerabilities of the environemnt. This unfitness directly compromises

the effectiveness and efficiency of existing IDSs. For example, with the concept

of ubiquitous computing, there must be some small-size devices in order to

achieve unaware deployment. Inevitably, they will have limited energy supplies

and storage spaces. An obvious issue is how to implement an IDS in a

resource-effective way [94]. This is a big challenge since one of the most

desirable features for an IDS is real-time detection and response, which is

extremely energy consuming. Another key issue is related to the system

architecture. Current host-based IDSs do not fit for ubiquitous computing due to

the nodes' capacity constraints, while network-based IDSs simply cannot capture

inside users' activities as the network's infrastructure tends to be heterogeneous.

In chapter four these limitations are discussed in depth.

1.2 Project aims and objectives

The above discussion indicates that the evolution towards ubiquitous

computing demands a new generation of resource-efficient IDSs to provide

sufficient protections against malicious activities [105]. The aim of the project is

to design such an IDS, which is able to minimize the use of system resources such

as energy consumptions and communication overhead. It should have an

appropriate system architecture and detection strategy to be flexible and scalable.
The IDS must also be able to detect intrusions effectively, e. g. with a high hit rate

2

and a low false alarm rate.
The objectives of this project are:

" To provide a background to ubiquitous computing and demonstrate the

unfitness of existing IDSs when applying them to ubiquitous computing

environments.

" To posit the requirements for an appropriate IDS that is associated with

resource-sensitive design and distributed modules' deployment.

" To present the design of a system (i. e. SUIDS, standing for

Service-oriented and User-centric Intrusion Detection System) that detects

attacks at the service layer and builds a defence wall against malicious

users.

" To propose an original set of mechanisms, strategies and protocols that

together achieve resource-efficiency in SUIDS.

To prototype the SUIDS system in order to provide proof-of-concept for

proposed work and perform an assessment in relation to the proposed

requirements, where possible.

1.3 Novel contribution of this project

The key points of novelty of this project include:

A layered and distributed system architecture, which is seamlessly

embedded into ubiquitous computing environments. By categorizing

system nodes into three major groups, SUIDS is more scalable and

adaptable in order to fit for various network scenarios.

"A novel user-centric design and service-oriented detection method. By

giving mobility to detection modules, SUIDS is able to react to malicious

activities in real-time. It detects anomalies at the service level rather than

relying only on the information from network layer.

"A new resource-sensitive scheme, including protocols and strategies. By

allowing delegation of intrusion detection tasks to proxy nodes, SUIDS

provides satisfactory intrusion detection service coverage to those nodes

that are incapable of running IDS independently.

A novel hybrid metric based algorithm. In order to balance system

3

resources such as CPU usage, network overhead, storage space, and

energy consumption, SUIDS uses a hybrid metric to measure these factors

together for the dynamic determination of cost-effective intrusion

detection deployment. A node's trustworthiness is also considered in this

hybrid metric to enhance the system's security policy.

" Critical assessment methods to evaluate the effectiveness and efficiency

of the proposed IDS model. The effectiveness of SUIDS is reflected by its

high hit rates on anomalies and low false alarm rates. Its efficiency is

shown on deducted energy consumptions.

1.4 Project achievements

SUIDS is among the first intrusion detection systems proposed for ubiquitous

computing environments. It keeps the special requirements of ubiquitous

computing in mind throughout its design and implementation. The methods used

in SUIDS set a new direction for future research and development. Practically, it

ensures the feasibility and realization of intrusion detection in ubiquitous

computing.
The outcomes of our research have generated the following conference and

journal papers:

" B. Zhou, Q. Shi, and M. Merabti. Intrusion detection in ubiquitous

computing environments. Proceedings of EPSRC Sixth Annual Network

Symposium on the Convergence of Telecommunications, Network and

Broadcasting (PGNet'05), Liverpool, UK, Jun. 2005, pp. 344-9.

" B. Zhou, Q. Shi, and M. Merabti. A novel service-oriented and

user-centric intrusion detection system for ubiquitous networks.
Proceedings of TASTED International Conference on Communication,

Network and Information Security (CNIS'05), Phoenix, Arizona, USA,

Nov. 2005, pp. 76-81.

9 B. Zhou, Q. Shi, and M. Merabti. A framework for intrusion detection in

heterogeneous environments. Proceedings of IEEE Consumer

Communications and Networking Conference (CCNC'06), v2, Las Vegas,

USA, Jan. 2006, pp. 1244-8.

4

9 B. Zhou, Q. Shi, and M. Merabti. Real-time intrusion detection in

ubiquitous networks with a string-based approach. Proceedings of IET

International Conference on Computational Science and its Applications

(ICCSA 2006), Part4, LNCS 3983, Glasgow, UK, May 2006, pp. 352-9.

" B. Zhou, Q. Shi, and M. Merabti. A survey of intrusion detection

solutions towards ubiquitous computing. Proceedings of 1st conference on

Advances in Computer Security and Forensics, Liverpool, UK, Jul. 2006,

pp. 31-40.

" B. Zhou, Q. Shi, and M. Merabti. Intrusion detection in pervasive

networks based on a chi-square statistic test. Proceedings of 30th IEEE

Annual International Computer Software and Applications Conference

(COMPSAC06), Chicago, USA, Sept. 2006, pp. 203-8.

" B. Zhou, Q. Shi, and M. Merabti. Balancing intrusion detection related

energy in ubiquitous computing networks. Journal of Information

Assurance and Security, vol. 1, issue 4, Dec. 2006, pp. 275-80.

" B. Zhou, Q. Shi, and M. Merabti. Resource-efficient intrusion detection in

pervasive computing. Proceedings of IEEE International Conference on

Communications (ICC 2007), Glasgow, UK, Jun. 2007, in press.

" B. Zhou, Q. Shi, and M. Merabti. Balancing intrusion detection resources

in ubiquitous computing networks. Journal of Computer Communications,

under review.
The simulation environment created in this project could be used as a primary

testbed for other researches related to ubiquitous computing.

1.5 Thesis organisation

Chapter two: Chapter two reviews the history of computer networking and

presents its future direction. Since the first set of computers connected together in

the late 1960's, millions more computers have joined the network and formed an

enormous cyber-world - Internet. Based on a layered architecture and well

designed communication protocols, various computers on different platforms are

able to communicate with one another under the same standard. In the near future,

with the continuous growth and development of computer and network

5

technologies, it will enter the next stage of information era - ubiquitous

computing. Smaller and cheaper computer chips will embed computing ability
into any appliances, from a greeting card to a smart home. People's daily lives

will be closely connected with computers and beneficially become ever

convenient. Finally, along with the benefits, vulnerabilities of ubiquitous

computing are discussed. Security is one of the major concerns for any computer

network, including ubiquitous computing.

Chapter three: This chapter briefly introduces some attacks and

countermeasures involved in computer security. In computer security, intrusions

are defined as any malicious activities that could compromise the integrity,

confidentiality, or availability of networks and information sources. There are

many types of attacks on computer systems. As a second line of defence, IDSs

play an important role in computer security, especially in the fight against attacks
launched inside a network. The principles and classifications of IDSs are
introduced in this chapter.

Chapter four: This chapter presents a critical survey on existing IDSs and the

state of the art in intrusion detection related to ubiquitous computing. Although

the research in intrusion detection started decades ago, its application to

ubiquitous computing is new. Limitations and drawbacks of current IDSs are

discussed. In particular, they cannot fulfil the special requirements of ubiquitous

computing in respect of resource-efficiency and system architecture. An IDS in

ubiquitous computing should not require transmitting or processing a large

amount of audit data or attacking signatures. It should have a distributed or

cooperative detection scheme instead of a centralized system architecture. In order

to provide all-sided protection, resource constrained nodes in ubiquitous

computing networks need special considerations for the design of an IDS. This

chapter demonstrates the demand for a resource-efficient and robust IDS in such

networks.
Chapter five: In this chapter, the system architecture and framework of our

novel solution SUIDS are introduced. SUIDS is an adaptive and resource-efficient
intrusion detection system with a novel service-oriented auditing mechanism and

flexible user-centric design. In SUIDS network nodes are classified into three

categories: head nodes, user nodes and services nodes. By working together with

service-oriented (software) agents, SUIDS is able to reliably and effectively detect

6

malicious activities of inside users. It is suitable for heterogeneous environments

such as ubiquitous computing networks. The simulation work of SUIDS is also

provided in this chapter. As a research scenario, a smart home is simulated by

using the Georgia Tech Network Simulator (GTNetS).

Chapter six: SUIDS is an anomaly-based intrusion detection system. Its

detection algorithm and experiment results are presented in this chapter. To detect

anomalies, SUIDS builds a profile for each user. The user's profile consists of the

user's long-term behaviour, represented by his/her usage of service nodes. To

achieve real-time detection, a string is utilized in the user profile to represent the

user's short-term behaviour in due course. Every time a new event record arrives,

the user profile is updated and the deviations between long-term and short-term
behaviours are calculated. An appropriate string length and threshold value work

together to balance the system's false alarm rate and detection effectiveness. With

a carefully selected string length and threshold value, SUIDS can achieve a high

hit rate while keeping the false alarm rate low.

Chapter seven: This chapter refines the detection method of SUIDS in order

to improve its performance in terms of both detection effectiveness and efficiency.

Instead of using a string, an exponentially weighted moving average (EWMA)

technique is used to smooth out the observation value for the variables being

tracked. In this way, the observation reflects the `most recent past' characteristics

of variables in an online fashion. It applies the smoothing constant in a user

profile to represent the user's short-term behaviour in real-time. The deviations

between a user's short-term behaviour and long-term profile are measured by

using a chi-square statistic test. This method can measure not only the probability
distributions of variables, but also their occurrence patterns.

Chapter eight: The inherent features of ubiquitous computing request SUIDS

to give special concerns about the issue of resource-efficiency. This chapter

presents a comprehensive analysis of energy consumed in SUIDS and proposes a

profile splitting technique in order to reduce the energy consumptions. The energy

consumed in SUIDS is categorized into two parts: computing-related and

communication-related. Head nodes are used to save the computing-related

energy. User profiles are managed in a distributed pattern to reduce the

communication-related cost. A hybrid metric is used to measure multiple

energy-related factors: transmission power, remaining energy, and energy

7

consumption rates. In order to balance energy consumptions among network

nodes, proxy nodes can be selected based on the hybrid metric to share intrusion

detection burdens with service nodes. In this way, the SUIDS achieves better

performance in respect of energy-efficiency, so the network lifetime is

beneficially extended.
Chapter nine: This chapter extends the work of chapter eight and takes more

system resources into account during the selection of proxy nodes. Specifically,

three deciding resources are considered in this chapter: energy, computing ability

and trust level. A node's computing availability is measured by correlating with its

energy usage. A faster energy consumption rate of the node means less computing

ability available to intrusion detection. And its trust level is estimated based on

multi-factors including its energy consumption pattern and `safe time'. A new

conditional hybrid metric is proposed in order to balance these limited resources

together. The system's security policy is beneficially enhanced due to the

consideration of nodes' trustworthiness.

Chapter ten: In this chapter, the requirements on IDSs in ubiquitous

computing networks are reviewed. The performance of SUIDS is evaluated

against these requirements. A successful IDS operating on ubiquitous computing

networks must have the following five features: real-time detection, scalability

and adaptability, full coverage, resource efficiency, and detection effectiveness.

Comparing with existing solutions, SUIDS is the first IDS keeping the special

requirements of ubiquitous computing in mind before its design and

implementation. Specifically, SUIDS achieves real-time detection by giving

mobility to its detection modules. The classification of network nodes and usage

of lightweight agents make it scalable and adaptable. SUIDS considers capacity

constrained nodes by adopting proxy nodes. Its novel hybrid metric balances

multiple system resources, and in the meantime, it achieves high detection

effectiveness while keeping the false alarm rate low. SUIDS provides a robust and

resource-efficient protection for ubiquitous computing networks.
Chapter eleven: This chapter presents conclusions and future work.

8

1.6 Summary

This chapter has presented an overview of this thesis. In the near future,

computing is becoming ubiquitous. Tiny embedded processes with the abilities of

computing and communication will spread everywhere for the purpose of sensing,

control and information display. Security protection, as an inevitable and critical

issue, must be provided properly before the large-scale implementation and

deployment of ubiquitous computing. Traditional IDSs are not fit for such an

environment due to the resources constraints and heterogeneous infrastructure of

ubiquitous computing. Therefore, this thesis provides a new and novel solution to

the problem: SUIDS. This system adopts a flexible and adaptive system

architecture to provide resource-efficient security protection against malicious

activities. In the next chapter, the history of computer networks and the trend

towards ubiquitous computing are introduced.

9

CHAPTER TWO

THE ROAD TOWARDS UBIQUITOUS COMPUTING

Many years after the invention, computers were supposed to work alone,

running their own programs locally. This situation has changed in the late 1960's.

A set of computers were connected together to allow remote access to computer

resources. Since then, the world witnessed one of the greatest miracles in human

history - Internet. In this chapter, we first introduce the history of computer

networks, and then talk about the network structure underneath. Just like a

language in human society, TCP/IP enables various computers and network

hardware and software to communicate with each another under the same standard.

Soon, with the continuous growth and development of computer and network

technologies, we will enter the next stage of information era - ubiquitous

computing.

2.1 A brief history of computer networks

In computer science, a network can be defined as a system for connecting

computers by using transmission technology [23]. In the early time, computers

were huge and expensive. They were hardly moved due to their large footprint.

The computers' computing abilities were also limited. Programs took a long time

to run. At that time, computers were `luxuries' and only deployed in the top

research labs.

In late 1960's, ARPA (Advanced Research Projects Agency) initiated a

project aiming to connect researchers with computers [129]. The objective of the

project was to enable researchers to remotely access to expensive computer

10

resources. As a result, ARPAnet - child of the ARPA project - became the first

prototype of modern networks. Although it used a connection of only 50 kbits/s,

ARPAnet brought a fundamental change from centralized to distributed

computing and incorporated features of reliability and robustness, e. g. multiple

links and distributed routing.

Computer networking is very complex. Before ARPA, there were many

different hardware and software technologies from wired to wireless and from

undersea optical fibber to home used infrared. No one technology is appropriate

for every scenario. The occurrence of TCP/IP protocol glues together networks of

many dissimilar technologies with routers [24,146]. TCP/IP were developed in

late 1970s and ARPAnet switched to TCP/IP in early 80's. The first switchover

occurred in 1983 and it is regarded as the start of one of the greatest inventions -
Internet.

Internet is defined as a set of networks connected by routers that are

configured to pass traffic among any computers attached to networks in the set

[23]. The global Internet is growing exponentially since its advent [22]. Initially

the Internet had only a few hundred computers and a few dozen sites. Today,

millions of computers and thousands of networks world-wide are connected

together. No one knows the exact size of the Internet [34]. The recent ISC

(Internet Systems Consortium) domain survey shows the growth of Internet in the

past decade.

500,000.000

450,000,000

400,000,000

350,000,000

300,000,000

250,000,000

200,000,000

150,000,000

100.000.000

50,000.000

0

v, e

Fig. 2.1: Number of Internet hosts (Source: www. isc. Orq).

11

LO UD (XD S) ONn4 LC1 CO

. 15
--ö .5 oj 0&gg 915

Internet also brought a new industry. Companies like Cisco [21], IBM [71]

and Microsoft [104] continuously work out new products on networking hardware,

computers and relevant software. Today, Internet has become a new phenomenon

that networks are an important part of everyday activities. Through Internet, we

can do shopping at home, finish a degree without going to an university, and make
friends with people from anywhere of the world ... In many ways, it changes the

way we live.

2.2 Network architectures

Hardware alone can't solve all computer communication problems. Software

for Local Area Network (LAN) and Wide Area Network (WAN) systems

provides high-level interface to applications. Standards have been adopted to

allow a heterogeneous group of computers using a multitude of operating system

software to communicate with one another. The layering model is a well known

structuring solution to organize the complex networking software design and

implementation. A layer on one machine communicates directly with the

corresponding or peer layer on another machine to which it is connected. The

rules and conventions which allow this communication to take place are enforced

through layer protocols. They specify the format and meaning of messages

exchanged between computers across a network. The set of protocols used in the

communication between systems provides a network architecture.
The International Standards Organization's (ISO) Open Systems

Interconnection (OSI) 7-layer reference model is the most widely-used model [30].

It is a guide to the design of a network protocol suite. Layers are named and

numbered from bottom to top as shown in Fig. 2.2. Each layer fulfils specific

functions in the communications between the two computers. The application
layer consists of a number of protocols that are commonly needed, for example,

File Transfer Protocol (FTP) [117] and Simple Mail Transfer Protocol (SMTP)

[116]. The presentation layer defines the common formats for the representation

of data. The session layer manages sessions such as login to a remote computer.
The transport layer is designed to let computers carry on a conversation and is the

12

heart of the whole protocol hierarchy [149]. Two types of transport service, i. e.

the connection-oriented Transmission Control Protocol (TCP) and the

connectionless User Datagram Protocol (UDP), work at this layer to ensure the

reliable delivery of data between computers [24,25,146,149]. The network layer

is in charge of address assignment and data delivery across a physical network by

using the Internet Protocol (IP). The data link layer formats data in frames and
delivers frames through a network interface. The physical layer includes basic

network hardware such as RS-232 or Ethernet [24,25,146,149].

Sender computer

Layer 7 Application

Receiver computer

Application

Identical
----------- ----------- message

Layer 61 Presentation Presentation

Identical
----------- ----------- message

Layer 51 Session Session

Identical
----------- ----------- message

Layer 4 Transport Transport

Identical
----------- ----------- message

Layer 31 Network Network

Identical
----------- ----------- message

Layer 21 Data Link Data Link

Identical
----------- ----------- message

Layer 1 Physical (network hardware)

Fig. 2.2 ISO OSI 7-layer reference model.

IP is an unreliable, connectionless delivery service, so there are no guarantees

that an IP datagram will reach its destination [24,91]. In IP, data are transmitted

in small and independent pieces, i. e. packets or datagrams. Each packet placed on

13

the network will be automatically routed through a number of networks until it

reaches its destination. Packets travel independently and may follow different

paths based on the network's status. The source divides outgoing messages into

packets and the destination reassembles received packets to get the original data.

Packets may be delivered out of order, especially in systems that include multiple

networks. It can be detected and corrected through sequencing. The sender

attaches a sequence number to each outgoing packet and the receiver uses the

sequence number to put packets in order and detects missing packets. Lost packets

perhaps are the most widespread problem. Any error such as a bit error or network

congestion may cause a packet to be discarded or undelivered. Protocols use

positive acknowledgments with retransmissions to detect and correct lost packets.
The packet receiver sends a short message acknowledging receipt of packets. The

sender sets a timer for each outgoing packet and infers lost packets from missing

acknowledgments. If a timer expires before the acknowledgment is received, the

sender will retransmit the lost packets.
The flexible layered architecture allows multiple networks and computers to

connect in a seamless way, irrespective of the requirements demanded by various

applications. Software implemented from the layered design has layered

organization. The software for each layer depends only on the services of the

software provided by lower layers. The software at layer n at the destination

receives exactly the same protocol message sent by layer n at the sender (Fig. 2.2).

It means the protocols can be tested independently and replaced within a protocol

stack. The software at each layer communicates with the corresponding layer

through information stored in headers. Each layer adds its header to the front of a

message from the next higher layer. Headers are nested at the front of the message

as the message traverses the network (Fig. 2.3). On the sender side, each layer

accepts an outgoing message from the layer above, adds a header and other

processing information, and passes the resulting message to the next lower layer.

On the receiver side, each layer receives an incoming message from the layer

below, removes the header for that layer, performs any other processing, and

passes the resulting message to the next higher layer.

14

Original user data

Layer 7 header
Layer 6 header
Layer 5 header
Layer 4 header
Laver 3 header
Layer 2 header

Fig. 2.3 Nested layer headers.

2.3 Concept of ubiquitous computing

The term of ubiquitous computing was brought out by Xerox PARC (Palo

Alto Research Center) in 1991. It was first mentioned in Mark Weiser's article

"The Computer for the 21S` century" [155]. The author explained that the most

powerful and successful technologies are those that naturally blend into our world

until they are effectively invisible. These technologies become human's second

nature due to their usefulness and wide availability. People stop thinking of

themselves as using a technology; instead, they just consider themselves capable

of doing whatever the technology enables. A good example is the telephone [32].

If people say "I spoke to my brother in London this morning", we understand

implicitly that they used the telephone networks to do so. We would never hear

someone saying like "This morning I used the telephone networks to speak ... "

Just like the telephones, computing is becoming ubiquitous as well. Five

trends indicate the technical feasibility of this change [102,147]. The first trend is

given by Moore's law [106]. It states that the number of transistors on the same

chip area doubles every eighteen months. Thus, the price of computer chips are

getting lower and their sizes are getting smaller. It makes integrating computer

chips into daily items become possible. The second trend is the emergence of new

materials. Smart paper [40][45] for example provides a new interaction scheme

with IT systems: a thin and flexible plastic foil contains the electronic ink that can

display information as well as be used as an input device with a special pencil.
Progress in communication technologies dominates the third trend. Except for

15

higher bandwidth, mobile networks like mobile phones or mobile ad-hoc

networks have been widely deployed in recent years. No matter sitting in a cafe or

airport lounge with a small PDA, people can easily be kept updated of their

business. Progress in sensor technology is the fourth trend: like computer chips,

sensors are getting smaller and cheaper, so that they can be integrated into

everyday items to observe surrounding environments. A milk bottle for example

could calculate its expiry date depending on its current temperature: the colder the

milk bottle, the later the expiry date. The last trend refers to new concepts that

model the infrastructures for these smart everyday items. People reinforce existing

devices with computers because they are more effective, well-understood, and

reliable. Actually we always choose the most comfortable technologies even when

alternatives exist. That is why lights and doorbells are all operated by electricity

now.
An online medicine cabinet is a good illustration to understand the notion of

ubiquitous computing [47]. Imagine that you are walking into the bathroom in the

morning. Your medicine cabinet recognises you and tells you that you should take

your allergy medicine since it is a high pollen day. Because the cabinet knows

your needs, it will gently warn you if you pick up a wrong drug. If you are almost

out of pills, the cabinet will automatically order them online and refill it.

Several components form such an online medicine cabinet:

"A basic computer system. The cabinet must be able to store information

such as the user's health condition and the functionalities of medicines.

"A context-aware mechanism. The cabinet must be able to recognise the

user and sense the type and availability of the medicines.

9A communication network. The cabinet should be able to receive the

information related to the medicine (in this case it is the weather) and

order the medicine automatically online.

The components listed above already exist, but they are typically conceived

and operated independently in the context of their own restricted view of the

world. Current research is focused on the problem of combining them together

and creating integrated ubiquitous computing systems. Many devices will be

networked together to provide portable, effortless access to a global information

infrastructure. The concept of computing will no longer imply a workstation with

a single display screen demanding its user's attention; rather, there will be a

16

collection of displays everywhere allowing casual, low-intensity use. Computing

power, including data storage and retrieval, will be everywhere in the

environment and the devices needed to access that power will be freely available
like ball point pens, which you pick up to use as needed and then leave behind

when you're done with them.

Additionally, ubiquitous computing will also have a great impact on today's

business processes. When companies plan to adopt a new technology, they want

to know business impacts in advance. These impacts are mainly characterized by

costs and benefits. We already mentioned that the costs for computer chips are

getting lower and lower. The benefits can be concluded as: the avoidance of

media breaks between the real world and the digital world, the awareness of
"smart objects", and the support for mobility.

The avoidance of media breaks means the potential to improve the efficiency

and quality of business processes through automation. A high level of process

automation leads to reduced cost since less human intervention is required and

more human errors are eliminated. For example, all the goods in a supermarket

can have an embedded small chip on their tags. It can record necessary

information such as the price of the product and be sensed by exit doors.

Customers can check out immediately without queuing at the casher and the stock

count could never be easier and more accurate. The awareness means that objects

are able to provide data about their current and past context. Decisions that affect

an object can be made at the object itself. For example, a milk bottle can decide

and be asked whether it was stored always at the right temperature. In a traditional

process it must be ensured that thermometers are always around for external

monitoring. These thermometers must be checked every time the milk bottle

changes its location. This process is laborious and error-prone, and does not

provide an appropriate means to measure the actual quality of the milk bottle.

However, along with the benefits, ubiquitous computing also brings

numerous vulnerabilities. It makes things too easy for malicious people to build a

system to spy on others. A basic concern about any information stored in a

computer is who can access and modify the contents. Where are the bits? Are they

secure? And more questions will be asked especially if the information is

collected from environments and transmitted over networks. Although issues

surrounding the appropriate use and dissemination of information are as old as the

17

history of human communication, specific concerns stem from the fact that

ubiquitous computing makes information more generally available. Imagine,

when a visitor uses your bathroom, you will not expect your medicine cabinet to
leak your health condition out to him; when the cabinet buys the pills online, you

will need it to keep your personal/financial information secure. The situation

could become even more worrying if your medicine cabinet already has been

compromised. What will happen if the cabinet advises you with wrong doses?

And what will happen if the cabinet changes the medicines without your

awareness?

The above discussion clearly suggests that a strong security mechanism is

necessary to ubiquitous computing. In this thesis, we particularly pay attention to

one of the most important security solutions - intrusion detection.

2.4 Summary

In this chapter, we introduced the history of computer networks. Since the

first network project carried out in later 1960's, computer networks never stop

growing. Till now, millions of computers have joined together forming the biggest

cyber-society: Internet. The notion of ubiquitous computing was introduced as a

prospective view about the future usage of computers. Smaller and cheaper

computer chips will enable us to embed computing ability into any appliances,
from a piece of paper to a racing car. People's daily activities will be closely

connected with computers and beneficially become ever convenient. However, the

great features of ubiquitous computing inevitably expose its inherent

vulnerabilities. A ubiquitous network must be properly secured so that it can be

relied upon. In the next chapter, we will present the work related to network

security. As a defensive countermeasure, IDSs will be introduced.

18

CHAPTER THREE

NETWORK SECURITY AND INTRUSION DETECTION

SYSTEMS

In computer security intrusions are defined as any malicious activities that

could compromise the integrity, confidentiality, or availability of networks and
information sources. For example, an attacker may compromise the availability of

an information system by flooding a server with an overwhelming number of

service requests over a short period of time or deliberately wasting the server's
CPU time simply with a paragraph of malicious code. Another attacker may

compromise the integrity and confidentiality of an information system by gaining

the privileges of an authorized user and then modifying or stealing information. In

this chapter, we briefly introduce possible attack types and countermeasures
involved in computer security. As an effective tool against inside threats, the

principles and classifications of intrusion detection systems are specifically
discussed.

3.1 Computer security

Computer security is a subfield of computer science, regarded as the control

of risks related to computer usage. A traditional approach to coping with this issue

is to specify and enforce a security polity on a computer system to restrict the

actions an entity (user or program) can perform. There is no universal standard
defining what secure action is. A university may have a very different notion of

security from a military base. Thus security here is a property that is unique to

each situation and so must be overtly defined by a security policy.

19

A secure system should still permit authorized users to carry out legitimate

and useful tasks. One might be able to secure a computer beyond misuse using

extreme measures such as those noted by author Eugene H. Spafford: The only

ti-uh, . secure system is one that is powered off cast in a block of concrete and

sealed in a lead-lined room with armed guards - and even then I have my doubts

[35]. However, this would not be regarded as a useful secure system. There is

aINN a% sa trade-off between the security and utility of computer systems.

Source Destination

Normal flow
&-*

Interruption &--]

Interception

Modification

Fabrication

Fig. 3.1 Attack types related to computer networks.

20

With the advent of the Internet, tens of thousands of networks are connected

together through routers. These routers forward packets from their sources to the

destinations. It gives legitimate users, as well as malicious users, easier

accessibility to the computer systems. And since then, computer security is no
longer only about computer consoles, but also their connections with the outside

world. Fig. 3.1 illustrates the possible attack types regarding computer networks
[143].

A recent FBI survey (2005) suggests that the vast majority of organizations
(87%) experienced some type of computer security incident [26]. More than 79%

said they'd been affected by spyware and almost 84% were affected by a virus

attack at least once a year, despite the almost universal use of antivirus software.
The target of an attack could be any part of a computing system. Fig. 3.2 shows

some examples of targets and attacks related to a computer system. Basically, a

working security policy should include [59]:

" Data accessibility - the contents are accessible to legitimate users.

" Data integrity - the contents are not modified by unauthorized entities.

" Data confidentiality - the contents are not revealed to unauthorized

entities.

" Accountability - responsible for tracking who has accessed the data.

" Authorization - responsible for who is allowed to access the data.

21

Virus

Integrity
(forgery)

Modification
(of data)

Interception
(theft)

Interruption
(denial of service)

Interception

Modification

HARD DRIVE

E-MAIL

Interruption
(denial of service)

Fig. 3.2 Examples of attack types and system targets.

Interception
(of passwords)

Countermeasures against security breaches work together at different network
layers as shown in Fig. 3.3 [143]. Some of them are briefly explained here:

" CRC (Cyclic Redundancy Check): A type of hash function used to

produce a checksum -a small, fixed number of bits - against a block of

data, such as a packet of network traffic. The checksum is used to detect

errors after transmission. A CRC is computed and appended before

transmission, and verified afterwards by the recipient to confirm that no

changes occurred on transit.

" Encryption: A mathematical procedure of rewriting contents so that they

cannot be read without the corresponding decryption key. The encrypting
function produces an encrypted message, while the decrypting function

extracts the original message from the encrypted one. An encryption key

is a parameter that controls encryption/decryption. A message sender and

a receiver share a secret key for symmetric encryption/decryption. Key

management is the crucial part of the encryption.
Digital signatures: A public-key/asymmetric cryptographic method used
for message authentication and integrity checking to deter fraudulent

22

Masquerade
(IP address forgery)

activities. A sender encrypts a message with its private key and a receiver

decrypts the encrypted message with the public key linked to the sender's

private key. As this pair of keys should be uniquely associated with their

owner and certified by a certification authority, the encrypted message

can only be generated by the key owner. This guarantees that the message

must be originated from the key owner.

" Firewall: A device located at the edge of networks to permit or deny data

connections. Firewalls can be hardware and/or software based. A

firewall's basic task is to control traffic between computer networks with

different zones of trust and it is configured based on the organization's

security policy.

" IPSec (IP Security): A framework operates at the network layer by

extending the IP packet header (using additional protocol fields, not

options). This gives it the ability to encrypt packets from any higher layer

protocol, including arbitrary TCP and UDP sessions, so the information

cannot be captured and understood by outsiders. It is widely used between

two private networks over the Internet to support virtual private

networking (VPN).

" Kerberos: A secure method for authenticating a request for access to a

service in a computer network. Kerberos issues a user an encrypted

`ticket' in an authentication process, so the user can use the `ticket' to

request a particular service from an application server. The user's

password does not have to pass through the network.

" PGP (Pretty Good Privacy): A free and widely used encryption program

that lets user protect files and electronic mails. PGP uses both

conventional and public key cryptography so it can be used to

authenticate messages, protect their integrity, and keep them secret.

23

Applications I, E-commerce protocols Applications

E-mail I S/MIME, PGP I Email

Higher level SSL, TLS, SSH, Kerberos Higher level
10 net protocols net protocols

TCP/IP IPSec, Firewall TCP/IP

Data link Hardware link encryption Data link

Physical CRC, Message digest Physical

Internet

Fig. 3.3 Examples of security countermeasures at different network layers.

All the methods mentioned above are used to protect against attacks from the

outside of an organization. However, the same FBI survey (2005) reported that

44% organizations had experienced intrusions from within their organizations.

Further, the average cost of a successful attack by a malicious insider is much

greater than the cost of an external attack. It emphasizes the needs for another type

of security tool - Intrusion Detection System.

3.2 Intrusion detection systems

An IDS detects and makes alarms when intrusions have taken place or are

taking place in a network being monitored. It achieves detection by continuously

monitoring unusual activities happening in the network [4,31]. The basic

hypothesis of IDS is that there must be some trails connected with intrusions, at

least traceable for a certain period. Unlike firewalls which are designed to prevent

the occurrence of intrusions, an IDS only works after intrusions have occurred or

24

even succeeded. That is why an IDS is thought as the second line of defence. The

main advantage of IDSs over firewalls is that IDSs can detect not only the attacks

launched outside a network, but also inside attacks.

DATABASE CONFIGURATION

----------------------------------- 11

1

ALARMS
DETECTOR - COUNTERMEASURE

PROBES AUDITS A

SYSTEM

Fig. 3.4 A basic model of IDS. Note: The arrow thickness represents the

amount of information flowing between components.

A basic model of an IDS is shown in Fig. 3.4 [4]. It includes quite a few

components. Basically, intrusion detection decisions are made based on collected

audit data. Audit data come from diverse sources, which could cover all the

network layers and operating system states. The volume of traffic and required

storage space for audit data can be huge, especially for long-term auditing.

Detectors monitor the audit trails and execute one or more detection algorithms to

find the evidence of suspicious actions. The database is used to store signatures

(for signature-based detection, termed as known attacks or system vulnerabilities)

or profiles (for anomaly-based detection, termed as reference models of usual

behaviour). If any intrusion has been detected, the IDS will take certain response,

for example, alert the system administrator or disconnect the suspected session.

The IDS is controlled by the configuration of system settings that would specify

how and where to collect audit data, how to respond to intrusions, and so on.

Configuration is crucial because attackers could take advantage of improper

configuration to bypass the intrusion detection. The system administrator is in

25

charge of setting an effective configuration.
There are two basic requirements for all IDSs: effectiveness and efficiency.

Effectiveness means that an IDS must be able to correctly identify malicious

activities from normal usage. Both false positive (indicating normal activities as

malicious) and false negative (skipping malicious activities) are unwanted and

must be kept under certain level. Efficiency means that an IDS must run in a

cost-efficient way. Overhead introduced by an IDS on CPU usage, storage space

and network resources confines its usability. The implementation of an IDS

should not disturb others systems carrying out their normal activities.

3.2.1 Signature-based and anomaly-based IDS

According to the detection methods used, IDSs can be divided into

signature-based detection and anomaly-based detection. Signature-based (also

called knowledge-based or misuse-based) detection compares audit data with the

knowledge accumulated about specific attacks and system vulnerabilities. General

techniques include state modelling, expert systems, string matching and simple

rule-based checking [31]. For example, a signature rule for a "guessing password

attack" can be "there are more than 4 failed login attempts within 2 minutes". The

main advantage of signature-based detection is that it can accurately and

efficiently detect instances of known attacks. The main disadvantage is that it

cannot detect unknown intrusions and a regular update is needed.
Anomaly-based detection builds a reference model of the usual behaviour of

the system being monitored and looks for deviations from the normal usage [57,

88,99]. Statistical methods have been used to detect anomalous network activities.

For example, the normal profile of a user may contain the averaged frequencies of

some system commands used in his or her login sessions. If for a session being

monitored, the frequencies are significantly lower or higher than the normal usage,

an anomaly alarm will be raised. Instead of simply measuring the means or

variances of variables, SRI's NIDES [99] developed a more sophisticated

statistical algorithm by using an X2-like test to measure the similarity between

short-term and long-term profiles. Neural networks are also widely considered as

an effective approach to classify anomaly patterns. The paper [10] uses BP neural

networks to detect anomalous usage of programs. The main advantage of anomaly

26

detection is that it does not require prior knowledge of intrusions and can thus

detect new intrusions. The main disadvantage is that it may have a relatively
higher false alarm rate.

Additionally, a number of IDSs adopt a hybrid system design, i. e. combine
both signature-based and anomaly-based detection modules together. For example,
in NIDES [99] a statistical model and an expert system were both used to detect

intrusions.

3.2.2 Host-based and network-based IDS

According to the locations of audit sources, IDSs can also be categorized as
host-based IDSs (HIDSs) and network-based IDSs (NIDSs) [4,31]. HIDSs audit
data are mainly from local operating systems, e. g. system log files. On the one
hand, host audit sources are the only way to gather information about the activities

of users on a given machine; on the other hand, they are also vulnerable to

alterations in the case of a successful attack. This creates an important real-time

constraint on HIDSs, which have to process the audit trail and generate alarms

before an attacker taking over the machine can subvert either the audit trail or the

intrusion detection system itself. HIDSs put higher requirements on individual

nodes. The nodes in HIDSs have to dedicate a certain amount of resources to

intrusion auditing, e. g. maintaining a large number of historical log files. Besides,

the reliability of HIDSs is, to a great degree, determined by the accuracy of audit

sources, but some devices may not be able to provide sufficient audit trails due to

their oversimplified operating systems.
NIDSs overcome those issues by auditing network packets instead of system

log files. NIDSs audit network packets between nodes or the Simple Network

Management Protocol (SNMP) information. They do not require extra efforts

from normal network nodes except for those running detection modules. However,

the efficiency of NIDS is under suspicion [119] and the allocation of detection

modules also became a controversial issue [13,105,161]. Most existing NIDSs

are implemented on network devices such as routers and switches. They adopt a

sniffer-based technique to gather the network traffic they need. Sniffers placed in

front of a switch or router will see all the IP packets on a subnet. However,

considering the increasing diversity of network infrastructures, a user's activities

27

within the network may not be noticed by the network devices. For example,

when a user opens an electric door, he might use his PDA to send a login request

to the door lock. It is very likely that the request will not be captured by any

network devices due to its limited propagation range. This could give the inside

user opportunities to bypass the network intrusion detection. Recent researches
have already shown that the primary threat comes from individuals inside

organizations as inside attacks are more damaging than attacks launched outside
[16,26,150].

Hybrid approaches have also been developed using both network-based and
host-based intrusion detection tools in a multi-host environment, i. e. a network of

workstations. For example, DIDS [138] detects local attacks as well as monitors

the network. Both components report to the DIDS director, where the final

analysis is done.

3.3 Summary

This chapter has demonstrated the diversity of possible attacks involved in

computer systems. There are many countermeasures working at different network

layers to protect networks against intrusions. As a second line of defence, an IDS

plays an important role in computer security, especially in the fight against attacks

launched inside networks. The two principal classifications of IDSs have been

discussed. Signature-based IDSs focus on known attacks and vulnerabilities, and

anomaly-based IDSs work alone with a reference model. Host-based IDSs collect

local data, and network-based IDSs monitor network traffic through audit data. In

the next chapter, we present a critical survey on current IDSs and discuss their

specific limitations against the requirements of ubiquitous computing.

28

CHAPTER FOUR

LIMITATIONS OF CURRENT IDSS FOR UBIQUITOUS

COMPUTING

Traditional IDSs were developed for wired networks. To our knowledge,

there is no IDS yet, which has been particularly proposed to meet the special

requirements of ubiquitous computing. However, with the continuous
development of IDSs, especially the progresses made on wireless ad hoc networks

and distributed IDSs, we believe that some existing solutions could be extended
for intrusion detection in ubiquitous computing. In this chapter, we give a critical

review of existing solutions that have been utilized in intrusion detection. Their

benefits and limitations are discussed.

4.1 Cost-efficient solutions

As we discussed earlier, many appliances in ubiquitous computing have

limited resources. For those battery-powered devices, an apparent issue is how to

implement an IDS efficiently. A natural idea is to disable the IDS when it is not

needed. This is not as straightforward as it sounds since one of the most desired

features for an IDS is real-time detection. An improper deactivation of the IDS

might be exploited by attackers and cause severe consequences.
Yi-an Huang proposed a cooperative IDS for ad hoc networks [68]. He

assumes the hosts are organised into clusters. The nodes in the same cluster

periodically choose a cluster head as an agent to execute intrusion detection tasks.

Since only the cluster head needs to implement the detection module, this method

alleviates the overall CPU usage and network overhead compared with running

29

the IDS at each individual node. All the nodes in a cluster have the possibility to

be chosen as the cluster head, so it is necessary to pre-install the IDS modules on

them. This method requests the nodes in an ad hoc network are powerful enough

to carry out the IDS tasks independently. It is difficult to meet this requirement in

ubiquitous computing due to different resource characteristics. However, the idea

of a cluster-based IDS did inspire us during the initial design of SUIDS.

Wenke Lee and his colleagues tried to reduce IDS costs from another aspect
[46,94]. They divide the costs of an IDS into three parts: operation cost, response

cost and damage cost. The damage cost is quantified based on an intrusion's type

and its target. A multiple model cost-sensitive machine learning technique is

proposed to produce models that are optimized for user-defined cost metrics. In

other words, the optimized model reduces the detection costs by intelligently

rearranging detection rules. The fundamental is that an IDS's operation cost is

proportional to the number of rules that have been examined. A similar technique

was also used in the paper [108]. It suggests improving the IDS performance by

ranking and selecting detection features according to their criticality. All these

works try to reduce the detection costs from the inside mechanism of an IDS.

However, quantifying the IDS cost is a complicated and costly work. In different

scenarios the same attack may cause unequal losses. The main problem is the lack

of a common standard.

Most network-based IDSs identify intrusions by packet analysis. With the

continuous growth of network infrastructures, network traffic has exploded during

the past decade. To achieve real-time intrusion detection and reaction, the

network-based IDSs need more efficient strategies. The paper [93] copes with the

IDS overload problem by running performance monitoring on each node. Similar

to current QoS techniques used in network devices [114], this performance

monitoring system puts the most crucial event in front of others. Available

techniques include rule selection and scenario analysis (predicting the

forthcoming attack). Although in some ways the performance of IDS has been

improved, it cannot solve the overload problem thoroughly. That is one reason we

think host-based IDSs are favoured in ubiquitous computing.
From the respect of intrusion reaction, an adaptive response strategy can

reduce the overall IDS costs as well. Although directly disconnecting or shutting
down a system being attacked can immediately prevent a threat from malicious

30

opponents, it could also be seen as a success of a denial-of-service attack. The

paper [133] proposed an adaptive response mechanism by quantifying the IDS's

parameters such as the false alarm rate, detection confidence and damage cost.
The system will choose a suitable response strategy based on the calculations of

these parameters. Once again, the procedure of quantification is too complicated

and lacks a common standard.

4.2 Hierarchically distributed solutions

The Distributed Intrusion Detection System (DIDS) is the first distributed

IDS [138]. It brought a new dimension to intrusion detection by facilitating the

correlation and analysis of data from multiple sources. In DIDS the monitoring

and analysis functions are distributed among several components. These

components are a central manager, a single host monitor per host, and a single
LAN monitor for each broadcast LAN segment in the monitored network. The

host and LAN monitors are primarily responsible for detecting single events and

known attack signatures which are relevant to the security of an individual system.

The central manager has access to the distributed audit data gathered by the

various monitors. It is responsible for analyzing and correlating the events

reported by the host and LAN monitors. It is worth noticing that DIDS can

potentially protect the hosts without monitors since the LAN monitor can report

on the network activities of them. The LAN monitor checks traffics on its LAN

segment and creates a profile. In particular, it audits host-host connections,

services used and the volume of traffics. This is an important feature because in

ubiquitous computing some nodes may not be able to afford a host monitor but

will still need IDS coverage.

However, due to the following reasons the DIDS cannot be applied to

ubiquitous computing directly:

" In ubiquitous computing the network infrastructures are heterogeneous. It

simply may not be IP-based. We have to redeploy the LAN monitors to

cover the entire network.

" DIDS requires that all hosts run C2 or higher rated computer systems
[153]. The systems must have certain level of access control ability, so

31

users are individually accountable for their activities through their login

sessions. In ubiquitous computing devices are heterogeneous and some of

them may not fulfil this requirement.

" DIDS still relies on a central manager. It may not scale well in a

ubiquitous network with tens of thousands active nodes.

The Graph Based Intrusion Detection System (GrIDS) is concerned with

detecting intrusions such as worms that involve connections between many nodes

[145]. It builds activity graphs to represent host activities in a network. The

system being observed is divided into domains. In the graphs nodes represent

network domains and edges represent network traffic between them. In GrIDS

each domain builds its own graph and passes the graph and summary information

up to its parent domain. This pattern makes the system scale better. Obviously, as

the information passes up the hierarchy, the graphs become coarser. GrIDS uses a

rule set to determine how to construct the graphs based on incoming and previous

information. Rules are also applied to decide whether or not a graph is suspicious.

The main problem of GrIDS for ubiquitous computing is that GrIDS was

designed for static wired networks. It is not suitable for topology-varying

environments. In ubiquitous computing many nodes are featured with mobility. It

is difficult to construct an activity graph for such a large-scale network with

dynamic topology.

EMERALD (Event Monitoring Enabling Responses to Anomalous Live

Disturbances) is also proposed to monitor distributed networks [115]. As

concluded in [82], EMERALD uses a three-layered hierarchy to realize intrusion

detection in a large-scale system. Each of the three layers consists of monitors.

Each monitor may have its own anomaly and misuse detectors. The layers are

named as: service (lowest), domain-wide, and enterprise-wide (highest). The

service layer monitors a single domain. The monitors at the domain-wide layer

accept input from the service layer and attempt to detect intrusions across multiple

service domains. Likewise, the enterprise-wide monitors accept input from the

domain-wide layer and attempt to detect intrusions that cross the entire system.

Monitors may subscribe to information from other monitors at the same level and

lower.

There are some limitations about EMERALD:

The cooperation between monitors at the same layer is achieved by

32

subscriptions. This mechanism will introduce additional overload into the

network. In ubiquitous computing system resources are crucial.

9 The aim of EMERALD is to detect inter-domain attacks. It is not enough

to have only EMERALD as an IDS in a ubiquitous computing

environment. It has to collaborate with other host-based IDSs to provide
integrated protection.

" The separation of domains is a remaining issue in a topology-varying

environment like ubiquitous computing. In some cases it is hard to

maintain the hierarchy of monitors.

4.3 Cooperative solutions

The IDSs mentioned above all have a hierarchical architecture. This

architecture relies on a central controller. In a ubiquitous computing environment

sometimes it may not have such a central point. This issue has already been

noticed in wireless ad-hoc networks.
The paper [160] proposed a cooperative model for an IDS in a mobile ad-hoc

network. In this model every node participates in intrusion detection and response.

Each node has an IDS agent that is in charge of local data collection and local

detection. A local detection engine runs independently. When an anomaly is

detected in local data or there is inconclusive evidence, neighbouring IDS agents

will be required to participate in global detection by using a cooperative detection

engine. A local response module triggers local actions, e. g. alerting the local user,

while the global module coordinates actions among neighbouring nodes, e. g.

determining a remedial action. A secure communication module provides a

high-confidence communication channel among IDS agents. The components are

structured as shown in Figure 4.1.

33

IDS agent

Local response II Global response

Local detection Cooperative
engine detection engine

Local data II Secure
collection communication

System calls, Neighbouring
communication activities,

other traces... IDS agents

Fig. 4.1 A conceptual model for an IDS Agent.

The main contribution of this work is that it presents a distributed and

cooperative intrusion detection architecture. The design of actual detection

techniques, their performance as well as verification, however, were not addressed

in the paper. Similar to paper [41], although their architectures are fully

distributed, applying them to ubiquitous computing still requires further research.

It is because in ubiquitous computing not all the nodes are guaranteed the ability

to implement a local IDS agent independently. This model does not consider how

to protect those incapable nodes.

Indra is a distributed scheme based on sharing information between trusted

peers in a network [75]. It guards the network as a whole against intrusions. Indra

brings a proactive and P2P approach to intrusion detection. The goal of Indra is to

distribute intrusion attempt information (gathered by an intended victim) among

all interested peers in a P2P network. Each interested peer runs a special Indra

daemon. It watches out for intrusion attempts and also enforces access control

based on its memory of earlier attempts. The chance that at least one of the peers

34

does notice an attack to which it is not itself vulnerable can be improved in

relation to the number of peers, the heterogeneity of the peers (operating systems

and/or applications), and the currency level of the applied security patches. The

P2P network has to be reliable and trustful. This is achieved by applying a trust

management scheme like the Web of Trust as known from PGP [144].

Indra is independent of a central controller. Because the ubiquitous

computing is a heterogeneous environment, the idea for at least one machine to

find an intrusion attempt, to which it is not itself vulnerable, is quite attractive.

However, Indra has certain level of requirements on individual nodes as well.

Each node has to implement the Indra daemon independently. The management

and communication overload introduced by the P2P scheme hinders its

application.

4.4 Mobile agent based solutions

A mobile agent is a software entity, which is capable of continuously and

autonomously moving throughout networks and intelligently implementing

certain tasks. The development of distributed IDSs and software agents has led to

the idea of using mobile agents in intrusion detection. Mobile agents offer several

advantages when applied to IDSs [77]. These advantages include:

" Reducing Network Load - Mobile agents can carry about intrusion

detection algorithms with themselves. This mechanism can avoid

transferring huge amounts of data (e. g. audit files) to data processing

points.

" Overcoming Network Latency - Since mobile agents can operate locally

on compromised hosts, they can react faster than the detection modules

coordinated by a central point in a hierarchical IDS.

Autonomous Execution - Because mobile agents are independent units,

they can operate offline and autonomously. Even if portions of the IDS get

destroyed or separated, the mobile agents will remain functional. This

feature increases the fault tolerance of the overall system.
Platform Independence - The agent platform allows agents to travel in a
heterogeneous environment and inserts an OS independent layer between

35

the hosts and the IDS agents. This is important in ubiquitous computing.

" Dynamic Adaptation - The mobility of agents can be used to reconfigure

the system at run-time by letting special agents move to a location where

an attack currently takes place to collect additional data.

" Static Adaptation (Upgradeability) - It is important for an IDS, especially

a misuse-based IDS, to update its attack signature database and detection

algorithms properly. It is simpler to write updated agents and send them

on duty while the IDS keeps running when new signatures are available.

" Scalability - Using distributed mobile agents can divide the

computational load between different machines and reduce the network
load. This enhances the IDS scalability and additionally supports
fault-resistant behaviour.

The biggest concern over mobile agents is the security of themselves.

Researchers are still working on protecting mobile agents against malicious hosts

[44,64,130]. However, due to their unique advantages remarked above, we still

see an increasing trend of applying mobile agents into IDSs.

Autonomous Agents For Intrusion Detection (AAFID) is featured by

autonomous agents [140]. An AAFID system can be distributed over any number

of hosts in a network. Each host contains a transceiver, filter (optional) and any

number of agents. Agents implement specific functions and monitor interesting

events happening at the host. They may use filters to obtain data in a

system-independent manner. The agents cooperate in a client-server fashion by

sending their findings to the transceiver where it is further processed. A

transceiver is a per-host entity that oversees the operation of all the agents running

on the same host. It has the ability to start, stop and send configuration commands

to the agents. The transceivers report their analysis results to one or more

monitors. Each monitor oversees the operation of several transceivers. Monitors

have access to network-wide data, and therefore they are able to perform

higher-level correlation and detect intrusions that involve several hosts.

Eventually, a particular monitor is responsible for providing information and

getting control commands from a user interface.

Comparing with DIDS, GrIDS, and EMERAND, AAFID is more flexible and

adaptive due to the usage of autonomous agents. But it still relies on a central

entity (monitor) where events are collected and related. Moreover, AAFID did not

36

consider how to cope with the heterogeneous issue of ubiquitous computing.
Sparta is another mobile agent based IDS [89]. In Sparta a single event is

described by specifying appropriate values for its attributes. A number of events

can be connected by defining temporal or spatial relationships between them or
imposing certain constraints on their attributes (creating patterns). Interesting

events are locally collected and stored. The collection of all local information can
be considered as a distributed database. A user may issue queries in an Event

Query Language (EQL) to search for a set of events that fulfil his/her desired

constraints [29]. The mobile agents in Sparta can correlate distributed events and
deduce knowledge from different hosts in a fully decentralized manner. It starts its

task by contacting the directory service to obtain a list of hosts that match the

constraints given in the FROM clause. These hosts are then visited in arbitrary

order. Eventually the mobile agents will return results to the user.
The implementation of Sparta is very complicated. Its special requirements on

the directory service and event query language constrain its application to a
large-scale network. In ubiquitous computing nodes are free to join or leave the

network. A directory service can hardly guarantee network updates in due course.

Furthermore, functional mobile agents in Sparta put even higher requirements on

individual nodes.
Except for the two systems mentioned above, other researches utilize mobile

agents in a quite similar way. We deem them as a function-based solution because

in these systems mobile agents are classified based on their particular functions.

Normally such an IDS includes surveillance agents (data collection agents),
decision-making agents and response agents. Each type of agent implements

specific functions. In paper [83] the author distributes these agents into a

cluster-based ad-hoc network. An elected cluster head is in charge of monitoring

the network traffic within its cluster and making decisions. In paper [107] the

surveillance agents roam around to find any suspecting event. If any anomaly is

detected in the network, the surveillance agents will call for further checks.

Because there are hundreds of identified attacks and system vulnerabilities, a

mobile agent cannot be sensitive to all of them. The papers [8,61,87,101,164]

use lightweight mobile agents to overcome this issue. In their systems the

detection work is distributed by asking each agent to prevent one particular threat

only. A central manager dispatches different kinds of agents into the network. If

37

an alarm is raised, the manager will inject more related agents into the network to

further help. The difficulty is to effectively distribute those agents in relation to

when, where and what kind of intrusion will take place.
Basically, function-based solutions also need a central controller. It provides

the services like agent initialization, agent distribution, and user interfaces. These

IDSs can effectively distribute the processing workload throughout the network
being monitored. They have better adaptability and flexibility, though the reliance

on the central controller may limit their scalability. Besides, like any other
immature techniques, mobile agents introduce additional weaknesses especially in

respect of trustworthiness.

4.5 Summary

We have summarized the aforementioned IDSs and compared them together

in Table 4.1. The following points were boiled down to:

. Most existing IDSs did not consider resource constraints. The reason is

that they were designed for wired networks or ad hoc networks (laptop or

PDA based). The requirements for IDSs in these environments are not as

strict as those in ubiquitous computing environments. The resource

consumptions on IDSs need to be further reduced.

" An IDS in ubiquitous computing environments should be characterized by

a distributed auditing scheme followed by distributed intrusion detection

analysis. Conventional hierarchical architectures are not suitable due to

the dynamic features of ubiquitous computing. Cooperative architectures
have relatively higher resource requirements on individual nodes. A

mobile agent based IDS is very promising, but a crucial issue needs to be

considered - enhancing the security of the mobile agents to avoid
introducing new flaws.

. Last but not the least, it is important to protect the nodes that lack abilities

to implement an IDS module independently. Within our knowledge, only
DIDS and GrIDS provide a solution for those incapable nodes. From this

aspect, a network-based IDS is advantaged. A LAN or cluster manager is

needed to take care of the incapable nodes. Remaining issues include what

38

are appropriate audit data sources and how to cope with a heterogeneous

environment.

In this chapter we presented the state of the art in intrusion detection related

to ubiquitous computing. To realize ubiquitous computing, further efforts are still

needed in the areas of both hardware and software. A carefully designed security

scheme can ensure that all the work shall be done in the right way. Although the

research in intrusion detection started decades ago, its application to ubiquitous

computing is still fresh. As discussed earlier, existing solutions on

resource-efficiency and system architectures cannot fulfil the special requirements

of ubiquitous computing. Specifically, an IDS in ubiquitous computing should not

require to transmit or process a large amount of audit data or attack signatures; a

centralized detection scheme should be replaced by a distributed or cooperative

system architecture; host-based and network-based approaches should work

together to provide all-sided protection. In the next chapter we will introduce the

framework of our proposed SUIDS based on this analysis.

Table 4.1 A summary of introduced IDSs.

Introduced

IDSs

Resource

efficiency

Independence

of central point

Consideration of
incapable nodes

System

scalability

Overhead

introduced

DIDS No No Yes Yes Low

GrIDS No No Yes Yes Low

EMERLAND No No No Yes Low

IDSs for

Ad Hoc
No Yes No Yes High

Indra No Yes No No High

AAFID No No No Yes Low

Sparta No No No No High

Function

based MA
Yes No No Yes LOW

39

CHAPTER FIVE

SUIDS AND ITS SIMULATION

Most IDSs strive to be general purpose and able to detect attacks and

anomalies in any environment. This is clearly a very hard challenge, and as we

presented earlier, it causes problems in ubiquitous computing. In this chapter, we

introduce the framework and simulation of our proposed SUIDS, an adaptive and

resource-efficient intrusion detection system with a novel service-oriented

auditing mechanism and flexible user-centric design. By working together with

service-oriented agents, it can reliably and effectively detect malicious activities

of inside users. SUIDS is suitable for heterogeneous environments such as

ubiquitous networks. It has the following features: a reliable auditing mechanism,

a resource-efficient intrusion detection scheme, and a flexible system architecture.

5.1 Design of SUIDS

5.1.1 Application scenario

Ubiquitous computing still is an ongoing research. As a prospective view of

future direction, further efforts on both hardware and software are needed [102].

Although there are only few prototypes implemented in research labs [54,142],

we believe that a smart space is an appropriate case as our research scenario. Fig.

5.1 illustrates Mike's smart home in which two PCs on the network backbone are

connected with a domain management node. Mike's PDA is equipped with

wireless connection and able to operate some appliances such as an electric door

lock and a smart refrigerator. He could open the home door by sending a login

message to the door lock, or check the food information stored in the smart

40

refrigerator through his PDA. A wall screen is used to display any message,
document, picture or video clips taken by a camcorder. A broadcast service point

regularly sends him newsletters based on his subscription status. All these devices

are seamlessly connected together through wired or wireless connections and

provide services to Mike.

Smart Camcorder Slave part
Refrigerator of MA

1O 1ý
1\\

Wall PDA
Screen -i ---. __ 1--

PC I Master part
PC2

of MA "

Network Backbone

Q Head node

Service node

Wired connection

'"'""" Wireless connection

Broadcast
Point

Electric
Door-lock

Domain
management

node

Q User node

Fig. 5.1 Example of Mike's smart home.

In this case several attacks could take place against Mike's smart home:

" Confidentiality Attack: Unauthorised access to system resources and the

information stored within these resources. Example: Mike's friend, Paul,

uses a fraudulent ID to access Mike's folder on one of the PCs to gain

some confidential information.

" Integrity Attack: Unauthorized modification to the state of the system and

to the information stored within the system. Example: Paul alters the data

about the food stored in the smart refrigerator. The modified information

41

may cause Mike unnecessary waste or threaten his health.

" Availability Attack: Unauthorized possession of the system resources in

order to interfere with authorised users' normal access. It is well known as

a Denial of Service (DoS) attack. Example: Paul tries to open Mike's

home door by continuously sending login requests to the door-lock. Thus

Mike cannot open it as the door-lock is always in a busy state or simply

has turned off due to too many failed attempts.

5.1.2 Nodes classification

Nodes in Mike's smart home have diverse capabilities as they play different

roles. For example, PCs are preferred for faster computing ability and higher

network bandwidth in order to complete complex tasks in due course; camcorder

and PDA emphasize smaller sizes to be easily carried about. Therefore we cannot

treat all the nodes in the same way during the design of SUIDS. Before presenting

the system architecture, some terms and a necessary classification of network

nodes are explained first:

" Domain management node: Domain management nodes are in charge of

the system management. They manage users' profiles and generate

appropriate mobile agents for each user. Dividing the system into domains

makes the system more scalable. There is one domain management node

in each domain. Domain management nodes may cooperate together. For

example, an individual company may form a single domain; the

employees of the company register with the domain's management node;

a visitor to the company needs to register with it first before he/she can

use the system resources; the visited domain may contact the visitor's

home domain to require necessary information such as the user's profiles.

" Cluster: A domain is composed of clusters. Each cluster has a PC-based

central controller and all clusters are connected together. In a smart space

a possible way of dividing clusters is based on rooms. This model is

consistent with the viewpoint that ubiquitous computing is an

evolutionary result of developing available techniques and integrating

them together. Nowadays, one hardly finds an office with no PC in our

department.

42

" Head node: Head nodes form a key part of the whole system. They are

organised by clusters. There could be more than one head node in a

cluster. The PCs in Mike's smart home are examples of head nodes. Head

nodes are allocated on the network backbone with higher connection

speeds and advanced operating systems. Head nodes take the most

computing burdens of intrusion detection.

" Service node: Service nodes such as a smart refrigerator, camcorder and

electric door lock are used to store information or provide specific

services only. These nodes have very predictable running processes, open

ports and traffic patterns. Sometimes service nodes are controlled by or

provide services through head nodes. For example, a wall screen needs to

get the content from a PC for the purpose of display.

" User node: User nodes are defined as those portable devices such as a

user's PDA or smart phone. They have relatively powerful computing

ability and advanced operating systems. Although user nodes usually were

ruled out from intrusion detection, we have a different viewpoint since

these devices start to offer application tools and are quickly becoming

necessities in today's business environments [76]. In our design user

nodes play an important role and they could be used to share the detection

burden with the head nodes. It makes the system more scalable and

resource-sensitive.

5.1.3 System architecture

SUIDS is a distributed application, dynamically deployed based on the

classification of network nodes. The system is organized hierarchically with

several tiers. Different tiers correspond to different network scopes that are

monitored by intrusion detection modules.

For the case of the smart home shown in Fig. 5.1, SUIDS is divided into three

tiers. Tier 3 consists of service nodes and user nodes. Detection modules running

on tier 3 monitor system processes and network activities of these service nodes

and user nodes. They generate service-oriented event records for the upper tier

based on the monitored service usages and system operations. Tier 2 mainly

consists of head nodes. Detection modules running on tier 2 analyze the event

43

records received from service nodes and user nodes that are within their

corresponding clusters. They infer the status of the system, make decisions and

take actions based on the collected event records. Tier 1 is in charge of the domain

management. It holds users' profiles and generates appropriate mobile agents for

Domain
Tier 1 Management

Node

Tier 21 PC III PC 2

Electric

RefriTier
3 Ci)/1

Wall Camcorder
Broadcast

Point
Screen

Fig. 5.2 System hierarchy for Mark's smart home.

each user. The system hierarchy for the smart home example is shown in Fig. 5.2.

There are two small clusters on tier 2. The smart refrigerator and wall screen

belong to PCi's cluster. The electric door-lock and broadcast point belong to

PC2's cluster. The user's PDA and camcorder are portable devices. They are

temporarily in cluster 1 and might move to cluster 2 later.

5.1.4 Service-oriented intrusion detection

Currently there are only a limited number of services offered publicly by

computer networks, for example the HTTP, DNS and FTP services [88].

Normally these services are provided by specific network servers. However, with

the trend of computerizing existing devices, the pattern of service providing will

become highly distributed. More and more services will be available through the

44

networks and provided by specific devices (here referred as service nodes). Just

like Mike's smart home, he can open his electric door by sending an order to the

door-lock. In ubiquitous computing, users' activities carrying through computer

networks will not only be limited to certain services, but extend to daily routines.

Our intention is to provide a distributed IDS for heterogeneous networked

appliances that possibly have limited capacities. In current work, the protection of

services relies on the powerful computing ability and enormous storage space of

network servers for intrusion detection. For example, HIDSs require a server be

able to monitor and store a wide range of audits, and NIDSs require the server be

able to collect substantive network traffic. Unfortunately, these requirements are

hardly fulfilled by some devices in ubiquitous networks. Although some

researchers try to use lightweight mobile agents to ease the burden on a target

system being protected, most of them are designed for homogeneous

environments [41,61]. Mobile agents in such an environment are normally

signature-oriented, blindly trying to find specific flaws in any target system. A

single device may have to execute tens or even more such lightweight agents in

order to gain an all-sided protection. Obviously it is not an effective solution for

ubiquitous computing.

SUIDS overcomes this issue by generating service-oriented mobile agents for

each kind of devices. Integrating with service specific knowledge, it decreases the

system complexity and makes it more practical and resource-efficient. In SUIDS,

the service nodes are required to remember their corresponding head nodes and

send event records to them during executions. To achieve it the service nodes need

to register with head nodes first. This is a reasonable requirement for ubiquitous

networks as the service nodes must let people notice their existences before

providing services. The head nodes will ask the domain management node to send

specific mobile agents for the service nodes within their clusters.
One obstacle confronting us is the high diversity of service nodes in terms of

different functionalities and capacities on computing ability, storage space,

communication bandwidth, and energy supply. If we look at today's market,

different types of product are produced by hundreds of manufactures. In

ubiquitous computing, these products have to seamlessly work together and

provide services to users. Currently some research efforts focus on service

broking in ubiquitous computing [50,54]. The purpose is to establish a

45

mechanism to make the services provided by networked appliances (service nodes)

effectively available to the users. We assume there is such a service broking

mechanism semantically available to SUIDS, though the detail of service broking

is beyond the scope of this thesis. Thus the domain management nodes can

abstract necessary information about the service nodes, for example their OS and
YO mode, to generate appropriate service-oriented mobile agents. The mobile

agents have better understanding of the service nodes on both hardware and

software levels and are able to react correspondingly to each kind of them. The

mobile agents should be platform-independent. Sun Java [78] is widely used in

similar environments as a development tool.

5.1.5 Concept of a user-centric model

Based on each user's daily activities, SUIDS generates a service-oriented

profile for the user. It is used to identify any abnormal usage of the services under

a certain user ID. Notice again that the definition of `service' in our system is not

the same as the conventional applications offered by network servers. It could be

any service provided by networked appliances.
We use another type of mobile agent to follow users around and connect them

to the system's Tier 2 and 3. To distinguish these agents from those for service

nodes, we call them user agents and service agents, respectively. Each user agent

has two components: detection modules and user profiles. Service agents on Tier

3 (service nodes) collect information about a user's activities and send event

records to the user agents. The user agents on Tier 2 (head nodes) analyse the

records sent by the service agents and take the corresponding actions. In this way,

the detection module is kept away from the audit module so as to increase the

robustness of SUIDS and release burdens on the service nodes. Comparing with

head nodes, service nodes are much constrained by their capacities such as power

supplies. By allowing a designated user agent to follow a user, the SUIDS design

can save lots of network resources since the user agent follows the user around

and always tries to find the closest head node to the user. By giving mobility to

the detection modules, SUIDS can achieve better performance in respect of

resource-efficiency. The operation of the user agent and its data flows are shown

in Fig. 5.3. The details of detection methods will be explained in the next chapter.

46

Profile
Updater

I
No

I

C
Yes To system Anomaly'9

administrator

User Anomaly
profile Detector

Event
Processor

Event records
from service

agents

Fig. 5.3 High-level operation of the user agent.

In addition, the service nodes, which have received service requests from

users, will dynamically form a defence wall against malicious inside users. As we

discussed earlier, traditional NIDSs give an inside user opportunities to bypass the

network intrusion detection. In SUIDS, service agents send event records to user

agents according to their system states and real-time operations. This

event-triggered design will let the user agents notice any user's activities within

the networks. Therefore, intrusion detection in SUIDS is more reliable and the

nodes outside the defence wall are beneficially released from burdensome

intrusion detection surveillances. The service agents only need to monitor and

record essential activities of users, depending on the system security policy. For

example, if an authorized user asks for the information about the food stored in a

47

smart refrigerator, it may be allowed and not be recorded, depending on the given

security policy; but if someone wants to login and change the system settings, it

will be recorded and sent to the corresponding head node immediately.

The system structure of the proposed user-centric model is shown in Fig. 5.4.

Comparing with existing solutions, the user-centric SUIDS has following

advantages:

" In a ubiquitous network the number of users is much fewer than the

number of service nodes. The user-centric model can remarkably decrease

the system complexity in comparison with implementing the IDS on each

node.

" Most services are requested by and then provided to users. The

user-centric model can effectively collect network activities inside the

ubiquitous networks.

" By separating the detection module from the audit module, risks

stemming from the weak security features of mobile agents are reduced.

"A mobile user profile and detection agent can save more network

resources.

48

User-centric
IDS

Service
AgUser ents Event Records Agents

Service-oriented Detection Network
user profile H module traffics

. ----------------.
Anomalies

System
logs

Fig. 5.4 System structure of the user-centric model.

5.2 Simulation of SUIDS

In order to test the feasibility and applicability of SUIDS, we created a

simulation environment by using the Georgia Tech Network Simulator (GTNetS)

[58]. GTNetS is a fully-featured network simulation environment that allows

researchers in computer networks to study the behaviour of moderate to large

scale networks under a variety of conditions. The programming language used is

C++.

5.2.1 A simulation scenario

The first step is to define a proper simulation scenario. For research purposes,

we first created a small smart home with fourteen nodes. Among these fourteen

nodes, there are two head nodes, two user nodes, and ten service nodes. Fig. 5.5

shows the initial state of the simulated environment. The desktop icons represent

49

the head nodes; the PDA icons represent the user nodes; and the rest are service

nodes.

I Head Node } User Node Service Node

The user nodes in our experiments are mobile. Fig. 5.6 shows another

snapshot of the simulation during its execution. Comparing with Fig. 5.5, we can

see that the positions of the user nodes have clearly changed. The mobility pattern

used here is the Random Waypoint (RWP) model [109], which is a commonly

used synthetic model for mobility. Briefly, in the RWP model:

Each node moves along a zigzag line from one waypoint to the next.

" The waypoints are uniformly distributed over the given area. In our

simulation it is a 50 x 50 m2 space.

At the start of each leg a random velocity is drawn from the velocity

distribution. In our simulation the human velocity is set to be uniformly

50

Fig. 5.5 Initial state of the simulated environment.

distributed between 0-2 meters/second.

" Optionally, the nodes may have so-called "thinking times" when they

reach each waypoint before continuing on the next leg. The duration is

also an independent and uniformly distributed variable. In our simulation

it is between 0- 10 seconds. Obviously, it is unlikely that people will

continually move around within every 10 seconds. This assumption aims

to reduce the simulation time.

CS Head Node ý User Node Service Node

11

0

Fig. 5.6 A snapshot of the simulated environment during executions.

In current experiments we assume that all the nodes in our simulation are

connected and communicate with each other through wireless connections, i. e. in

an Ad Hoc pattern. The default routing protocol is DSR [81,126].

51

/

5.2.2 Service nodes classification

Once a network topology is defined, the simulation must then introduce the
flow of data through the defined network topology. In GTNetS, it is done by

creating applications at various nodes, which in turn generate data demands on the

network based on the application behaviour. In our simulation these applications

are equal to the services provided by the service nodes. It is easy to understand

that most network traffic is introduced by users' requests for services and the

corresponding responses.
Instead of defining and creating service nodes one by one, we categorize them

into several types based on their functionalities and characteristics. This

classification could be extended in the future.

" The first type is the service nodes with only an on-off operation, e. g. a

room light or an electric door lock. This kind of node receives orders from

a user and executes the corresponding operations. In SUIDS we take the

operation time, duration and frequency as auditing data. An authentication

process might be involved before each session of data transmission.

" The second type is the service nodes with an on-off operation and an

adjustable parameter, e. g. an adjustable central heating, a

temperature-keeping kettle or a smart refrigerator. Authorized users are

allowed to adjust the parameter as they want. In this case we take the

operation time/duration and the value of the parameter as auditing data. If

a device has more than one parameter, we only take the most

security-related one into account in the current simulation. Our work can
be extended to consider multitude parameters in the future.

" The third type of service node has an on-off operation together with a
display function, e. g. a wall screen or a TV monitor. The definition of
`display' here has a wider meaning. For example, a printer will also be

classified into this category since we consider the operation `print' as a
kind of `display'. This type of node is used to `display' images,

documents or video clips. They are quite similar to the second type of

service node discussed above. The difference is that one parameter is not

enough to determine the effect of the operation. For example, printing
high quality images requires a very different amount of system resources

52

from printing the same number of pages for a text file. Therefore, we use

both the amount of received data and the number of displayed/printed

pages as auditing data.

" The last type of service node is based on a client-server enquiry pattern.

This pattern includes various possible operations. For example, a smart

refrigerator may provide an enquiry service to allow a user to ask for the

information about the stored food. And a camera may also provide a

picture downloading service to the user. In this study we only simulate the

two most common operations: Downloading and Enquiry. For both of

them we monitor the operation time, duration and the amount of traffic in

both directions as auditing data.

Most service nodes have a predictable traffic pattern and running process.

The traffic patterns depend on both functions of the service nodes and behaviours

of the users. For example, a broadcast service may either send updates regularly

or be triggered by a request from a user. There are several types of traffic

generators supported by GTNetS:

9 CBR Application: An application that generates constant bit rate data

between two nodes.

" On-Off Application: An application that offers an on-off operation. The

durations of the on and off states are exponentially distributed.

TCP Server: A simple model of a request/response TCP server. The server

binds to a specified port, and listens for connection requests from TCP

peers. The data received from the peers specifies how much data to send

or receive.

5.2.3 User scenario

Normally services are triggered by users. A usage pattern, including the time,

duration and frequency, depends on its user's behaviour. The user's behaviour is a

dynamic result and hard to be simulated. We defined two simplified scenarios for

the simulation of normal usage patterns.

Random choosing scenario: There are three random variables in this

scenario: a random node, a random busy duration and a random idle

duration. In this scenario a user will randomly pick a service node to

53

activate its service (start transmitting data) for a random duration. Then

the user will turn into idle for another random duration. We assume a user

will only communicate with one service node at any given time.

" Nearest choosing scenario: In this scenario a user will choose the nearest

service node to communicate. Comparing with the random choosing

scenario, the nearest choosing scenario does not need the variable of a

random node anymore. Which service node will be activated depends on

how far it is away from the user. Actually it is related to the user's

mobility pattern.

5.2.4 Intrusion auditing

With the assistance of the GTNetS tracing ability, we can get the system's

trace file. In this trace file all packets are recorded. In addition, we embedded a

recording function in each service node. The purpose is to generate event records

according to node activities. We selected three of the most common activities for

our research. Actually, no matter what kind of service the service nodes provide,

we can always abstract three basic operations from a user's point of view: PROBE,

GET, and SET. PROBE represents the process of communication negotiation and

the setting up of connections. PROBE could be used as the first step of an attack.

GET represents the process of receiving data from service nodes. For service

nodes GET means the operation of `data out'. GET could cause a denial of service

attack since the unauthorised possession of the system resources might interfere

with legitimate users' normal access. SET represents the process of sending data

to or configuring the service nodes. For the service nodes SET means the

operation of `data in'. SET could change the status of some service nodes and take

them into unwanted conditions.

In the collected audit data, the corresponding time (including the occurrence

time and duration), involved parameters, and amount of data (including both

directions) of each operation are recorded by SUIDS. The final step is to

investigate the collected trace files and event records, analyze the service usages

and create user profiles. This is done by using the Java programming language, to

enable its migration from the simulation to the real world. The detection methods

and simulation results are reported in the next few chapters.

54

5.3 Summary

In this chapter we focused on the new system architecture and detection

mechanism of SUIDS. The simulation of SUIDS is made by using GTNetS. In

conclusion, we list the key novelties of SUIDS:

" Portability and Reliability: The usage of portable user profiles makes

SUIDS able to detect intrusions without a priori knowledge of security

flaws in a target system. This mechanism is highly portable and consistent

with the mobility feature of ubiquitous networks. The service-oriented
detection method protects service nodes from malicious inside users.

Service nodes spontaneously form a defence wall against a malicious user.

Any activities carried by the user through the network will be recorded

and analyzed by head nodes afterwards.

" Heterogeneity: There are thousands of diverse devices in ubiquitous

computing environments. The classification of network nodes could help

us effectively organise the entire system. Moreover, by cooperating with a

service broking system, SUIDS will generate service-oriented mobile

agents for specific devices. The service agents have better understanding

of the service nodes on both software and hardware levels, and thus

overcome the blindly roving problem caused by the homogeneous design

of other mobile agent based IDSs.

Resource-efficiency: Resources are crucial in ubiquitous networks,

especially for those resource limited service nodes. In SUIDS, the

classification of network nodes helps to effectively balance intrusion

detection and resource consumption. The novel user-centric design can

reduce the extra resource consumptions of intrusion detection on

communications. More efforts had made on it and will be explained

further in chapters eight and nine.

55

CHAPTER SIX

REAL-TIME INTRUSION DETECTION WITH A

STRING-BASED APPROACH

SUIDS is designed for ubiquitous computing environments like a smart

home/office. It adopts a novel auditing mechanism and flexible system

architecture to meet the special requirements of ubiquitous networks. In this

chapter we explain in detail about the detection methods used and experiments

carried out during the implementation of SUIDS. Specifically, it shows how a

string-based method is used in a user profile to represent the user's short-term

behaviour in due course; and how an appropriate string length and threshold value

are determined in order to balance the system's false alarm rate and detection

effectiveness. As a result, SUIDS achieves real-time intrusion detection in

ubiquitous networks with a lightweight and adaptable detection model.

6.1 Detection methods

6 1.1 Structure of event record

As a research scenario to demonstrate the design, we assume Mike lives in a

smart home. He uses his PDA to open the home door, adjusts the temperature of

the home central heating, and send documents to a printer in the house. In SUIDS,

all these tasks carried out by Mike or on behalf of him will be recorded and

connected to his account. For example, when Mike comes into a room A, two

event records will be sent to the corresponding head node:
{Mike, Door Room_A, open, 07: 28: 35am}

(Mike, Door Room A, close, 07: 28: 42am}

56

The head node may calculate the duration of this operation by using the time item

in these records.
If a device has other security-related parameters, they will also be recorded.

For example, when Mike uses a printer, two event records will be generated:
(Mike, Printer, print, 16pages, 11: 12: 23am)

(Mike, Printer, logout, 3.4Mb, 11: 13: 45am)

Here `16pages' indicates that Mike has printed 16 pages of documents in this

session and `3.4Mb' indicates the amount of data that has been transferred during

the same session. They are all security-related parameters. For example, a burst of

requests on the printing service may indicate a denial-of-service attack or waste of

the system resources. And it will be reflected by either a large number of print

pages or a large amount of data transmission (e. g. printing one page of a high

resolution picture may have the same effect as printing multi-pages of a text file).

Eventually, these event records will be used to create Mike's profile.

6.1.2 Mathematical model

We use the statistical component of SRI's NIDES as our mathematical model
[99,162]. Instead of simply measuring the means or variances of variables,
NIDES developed a more sophisticated statistical algorithm by using an X2-like

test to measure the similarity between short-term and long-term profiles. In

NIDES, user profiles are represented by a number of probability density functions

(PDFs). Assume S is the sample space of a random variable and events El, E2, ...,
Ek are a mutually exclusive partition of S. Let P; denote the expected probability

of the occurrence of the event E;, P; ' denote the actual probability of the

occurrence of E; during a given time interval. The similarity between the expected

and actual distributions is determined by the statistics:

Q-l
(P1'-P)2

(6-1)
I=1

P

If the cumulated value of Q exceeds a pre-determined threshold during a

given time interval, an alarm will be raised. To utilize this statistical component

we have to define a new model to specify the service-related factors, which can

effectively represent a user's both long-term and short-term behaviours.

57

6.1.3 Historical statistics: representation of long-term behaviours

In SUIDS, a user's long-term behaviour is represented by probability

distributions. They indicate the possible results and corresponding probabilities of

a user's each kind of action. For example, statistical results may suggest that the

typical time for Mike to open his home door during a day is between 8-9am and

5-6pm. This action rarely happens during other time. Thus we can get the

following probability distributions for the action of opening the home door:

{Door, open, 1-2,3%, 8-9,48%, 17-18,45%, 22-23,4%}

Where `1-2' represents the door opening time, i. e. between 1-2am; and `3%'

represents the statistical probability for opening the door during this period.

Similarly, we can also represent Mike's behaviour regarding his usage of a

printer. Assume the recorded largest number of pages Mike had ever printed in

one transaction is 200. Thus we can divide it into 10 possible groups: 1-20,

21-40, ..., 181-200. The occurrence probability for each group is:

PE (6-2)

Where E is the total number of records, E; is the number of records for the it'

group.
Assume the expected probability distributions in turn are 38%, 36%, 20%,

1%, 0%, 0%, 3%, 0%, 1%, 1%. If Mike prints 30 pages in the current transaction,

the partial similarity factor Q2 is:

Qz =
(P2'-36%)2 (6-3)

36%

Where P2' denotes the actual occurrence probability of E2 (i. e. printing 21-40

pages) during a given time interval.

Except for the printed page number, other parameters such as the amount of

data transferred and processing time occupied by each session are also monitored

and taken into account in a similar way.

6.1.4 String: representation of short-term behaviours

The remaining problem now is to get the value of each actual probability Pi'.

Some IDSs use a time interval to determine a detection window, i. e. each event

only makes effect during a certain period. Because SUIDS is a distributed and

58

mobile system, the time-based detection window will introduce the

synchronization issue and make the system more complicated.
Thus in SUIDS we proposed a string-based method to determine the detection

window. The `string' is used to indicate a user's short-term behaviour. For

example, if the last 100 printing operations can effectively represent Mike's

short-term behaviour regarding his usage of the printer, a string with the length of

100 will be set to follow the printing probability distributions in his profile. Each

character of the string represents one of his historical printing operations. The

format of his profile becomes:

{Printer, print, 1-20,38%; 21-40,36%; ...; 181-200,1%. 19 082031012... 15001)

10 pairs 100 digits

The last item here records Mike's last 100 printing operations. We use number 0-9

to represent the 10 groups, i. e. number 0 indicates printing 1-20 pages, number 1

indicates printing 21-40 pages and so on. Every time when a new record comes,

the earliest record will be discarded. The value of P; ' can be calculated

immediately from this string by applying the following equation:

P'= `L (6-4)

where E; ' is the number of occurrence of the it' group in the string, and L is the

length of the string.

The length of the string is variable. It depends on the system's requirement

and characteristics of each event. As will be explained in the next section, longer

strings may decrease the false positive rate, but at the same time the false negative

rate will be increased and more system resources will be used.

6.2 Experiments and results

As we explained earlier in chapter five, we created a simulation environment
by using the Georgia Tech Network Simulator (GTNetS) [58]. All the nodes in

our simulations are connected and communicate with each other through wireless

connections in an Ad Hoc pattern. The default routing protocol is DSR [81,126].

Fig. 5.6 shows the snapshot of the simulated environment. User nodes in our

59

experiments are mobile. The mobility pattern is based on the Random Waypoint

(RWP) model [109]. Several types of service nodes were also specified according

to their traffic patterns and parameter characteristics.
The first experiment we carried out is to examine the false positive rate of

SUIDS and see how the string length affects it. We set the string length from 10 to

100, respectively, and divide the audit data into two parts. The first half is used to

create a user profile and the second half is used to test. Because the audit data is

generated and collected under a normal circumstance, any alarm raised during this

test will be considered as a false alarm. To get a low false alarm rate, the value of
Q needs to be small. To investigate each factor's exact influence on Q, we only

take the processing time into account at this stage.
Table 6.1 shows the increment of Q after loading the test data into the system,

with a different string length. We can see that the increment of Q decreases as the

string length increases. As expected, it indicates that a longer string is more

accurate to represent the user's short-term behaviour. However, because the

longer string also uses more system resources, we chose the length of 80 as our
investigation sample. Actually other parameters such as a threshold value also

play important roles in the determination of the false alarm rate.

Table 6.1 Increment of Q decreases as the string length increases.

Length Q

20 89.5758

40 42.6789

60 28.7096

80 19.1924

100 13.4959

We use a set of threshold values from 0.5 to 3.0 to calculate the system's false

alarm rate. Once the cumulated value of Q exceeds a predefined threshold, an

alarm will be raised and Q will be set back to zero. The false positive rate is

calculated by:

R= N°
N e

(6-5)

60

where Rfp is the false positive rate, Na is the number of false alarms that have been

raised, and Ne is the total number of events that have been checked. There are total

854 event records in the testing data set. The results are listed in Table 6.2.

Table 6.2 False positive rate (String length = 80, Ne = 854).

Threshold Na Rfp

0.5 32 3.75%

1.0 18 2.11%

1.5 12 1.05%

2.0 9 1.41%

2.5 7 0.82%

3.0 6 0.70%

As we can see, the false positive rate of SUIDS is quite low. A bigger

threshold value shows a less `sensitiveness' to the deviations from the user's
long-term behaviour. However, we cannot use Table 6.2 to decide an appropriate

threshold value yet as it is also related to the next experiment.
The second experiment is to examine the system's effectiveness on detecting

anomalies. We generated another set of audit data. This set of data introduces

anomalies or attacks by extending the processing time beyond the normal extent.

The effectiveness of the system is represented by a hit rate. If an alarm is raised in

connection with an event record, this record is regarded as being `hit'. A high hit

rate on anomalous event records is preferred. The equation to calculate the hit rate

is:
N'

a h=N, (6-6)

where Na' is the number of genuine alarms and Ne' is the number of malicious

events. There are total 181 anomalous records in this data set. Table 6.3 shows the

experiments results.

61

Table 6.3 Hit rate (String length = 80, Ne' =181).

Threshold Na' Rh

0.5 172 95.03%

1.0 165 91.16%

1.5 159 87.85%

2.0 157 86.74%

2.5 151 83.43%

3.0 149 82.32%

In most cases, the hit rate must be kept as high as possible since any ignored

attack may cause serious damages to the entire system. A tolerable false alarm

rate depends on the system's security requirements/policies. Normally, it is

acceptable to have a false alarm rate less than 5%. So combining Tables 6.2 and

6.3, we think in this case when the threshold value is set to 0.5, SUIDS can

achieve the best performance regarding both measures.

6.3 Summary

SUIDS is proposed for ubiquitous computing environments. It takes the

limited capability and high heterogeneity of service nodes and high mobility of

user nodes into account. In this chapter, we introduced the detection details of

SUIDS. It adopts a string-based method to represent a user's short-term behaviour

in real-time. The experimental results show that with a carefully selected string

length and threshold value, i. e. length = 80 and threshold = 0.5, SUIDS can

achieve a hit rate of 95.03% with only a false alarm rate of 3.75%. The problem

with the string-based method is that it may need more system resources if the

length of strings is set too long or there are too many different types of events.

Consequently the size of user profiles might be too large to be transferred

frequently. In the next chapter, we will introduce a chi-square statistic test to

further improve the performance of SUIDS.

62

CHAPTER SEVEN

IMPROVED CHI-SQUARE STATISTIC TEST

In chapter six, we presented a string-based approach for SUIDS to detect

anomalies. In this chapter, we refine the detection method of SUIDS in order to

improve its performance in terms of both detection effectiveness and efficiency.

An exponentially weighted moving average (EWMA) technique is used to smooth

out observation values for the variables being tracked. In this way, the observation

reflects the `most recent past' characteristics of the variables in an online fashion.

The technique applies a smoothing constant to a user profile to represent the

user's short-term behaviour in real-time. The deviations between a user's

short-term and long-term behaviours are measured by using a chi-square statistic

test. As a result, SUIDS can measure not only the probability distributions of

variables, but also their occurrence patterns.

7.1 Detection methods

In the last chapter we introduced a string-based method to determine a

detection window. A `string' is used to indicate a user's short-term behaviour in

an online fashion. For example, if the last 100 printing operations can effectively

represent Mike's short-term behaviour regarding his usage of the printer, a string

with the length of 100 will be set to follow the printing probability distributions in

his profile. Each character of the string represents one of his historical operations.

There are two problems with this string-based approach. Firstly, it might cost

more system resources if the length of the string is set too long or there are too

many different types of events. Consequently, the size of a user's profile might

become too large to be transferred frequently. Secondly, it does not consider the

63

possible correlations between historical records. The most recent and past records

are treated equally. Some hidden patterns regarding a user's behaviour might be

carelessly ignored.

7 1.1 Chi-square statistic test

In the papers [158,159], the authors use a multivariate distance test to

determine anomalies. Let M= {M1, M2i ..., MN} denote a set of N measures from a

process; MO) =(M, (j), M2(j), ..., MN(j)) denote the jt' observation of these N

measures. The distance from an observation to the mean estimate of the

multivariate normal distributions is measured based on a chi-square statistic test:

_
(11'ri(J)-M,)Z

(7-1)
M I==1 ;

where is the expected value of the ith variable. D is small if an observation of

the variables is close to the expectation. An alarm will be raised if D exceeds a

pre-determined threshold.

In its previous applications, the chi-square statistic test is used to measure the

correlations between the commands at a sole host. It monitors and records the

invocations of these commands. In contrast with the sole machine environment,

there will be a large number of possible event types in a ubiquitous network.

Examining the correlations between all these events will be a

computation-exhausting and time-consuming task. Moreover, because most of the

events contain one or more security related parameters, simply measuring the

occurrences of these events will be insufficient to identify some intrusions. Hence,

in this chapter we apply this chi-square statistic test within each type of event by

analyzing their quantified parameters. It focuses on a user's behaviour on each

specific service. In this way, the chi-square statistic test can be beneficially used

in a distributed system like a ubiquitous network rather than a single host.

Additionally, to add a time characteristic into an observation, we use an

exponentially weighted moving average (EWMA) technique [56] to smooth out

an observation value for the variables being tracked. The observation thus reflects

the `most recent past' characteristics of the variables. Assume S is the sample

space of a random variable X, and X1, X2, ..., XN are a mutually exclusive partition

64

of S. Every time when an observation of X arrives, a vector of (X1(j), X2(j), ...,
XN(j)} will be generated as follows:

if the f observation of X falls into partition Xi
X, (j)=ß, x1+(1-A) xX, (j-1)

otherwise
X; (j)=ß, x0+(1-, %)xX, (j-1) (7-2)

where j is the index of the current observation, ? is a decay rate. The most recent

observation, i. e. the jt' observation, receives a weight of ?; the (j-1)`h observation

receives a weight of a , (1-?.); and the (j-k)`h observation receives a weight of %(, _%)
k.

In the next subsection we will give an example about how to use this EWMA

technique and chi-square statistic test to create user profiles and detect anomalies.

7.1.2 Case study: monitor Mike's usage on a printer

We can monitor Mike's behaviour regarding his usage of a printer by using

this chi-square statistic test. Assume that the recorded largest number of pages
Mike had ever printed in one transaction is 200. Thus we can divide it into 10

possible groups: 1-20,21-40,..., 181-200, and use numbers 0-9 to represent these

groups, i. e. number 0 indicates printing 1-20 pages, as described in section 6.1.4.

We initialize X, (0) to 0 for i=0,1,
..., 9. The decay rate X is usually set to 0.3

[127]. Fig. 7.1 shows its decay effect.

65

0.35

0.3

0.25

0.2
L

0.15

0.1

0.05

0
0 5 10 16 20 25 30

k

Fig. 7.1 The decay effect with k set to 0.3.

For each printing operation, we obtain a vector of {X0, X1,
...,

X9} based on

equation (7-2). Given the following stream of printing events, we get the

observation value as recorded in Table 7.1:

j=0,1,2,3,

Print 34 pages, Print 172 pages, Print 8 pages,

Table 7.1 Observation values for vectors of {Xo, Xi,
...,

X9}.

xo x XZ X3 X,
`l5

x6 X7 x8 x9

0 0 0 0 0 0 0 0 0 0 0

1 0 0.3 0 0 0 0 0 0 0 0

2 0 0.21 0 0 0 0 0 0 0.3 0

3 0.3 0.147 0 0 0 0 0 0 0.21 0

Note: At j=1, '34 pages' falls into group 1 (21-40 pages); at j=2, '172

pages ' falls into group 8 (161-180 pages); at j=3, '8 pages 'falls into group 0

(1-20 pages).

66

Mike's long-term profile of normal activities is represented by the estimated

vector of (T. -, X, , ..., X9 }. It is obtained from the training data by averaging all

observed vectors of (Xo, X1, ..., X9). Considering that events in a distributed

system actually do not arrive at once but sequentially, we use the following

recursive formula to incrementally update x, after each observation [159]:

-1)X i-l, l + xi',
(7-3)

J

where j is the index of the current observation. Eventually, the format of Mike's

profile is like:

{Printer, print, (0,0.055,0.301), (1,0.144,0.254), (2,0.104,0.038), (3,0.054,

0.001), (4,0.164,0.025), (5,0.076,0.001), (6,0.111,0.094), (7,0.099,0.266), (8,

0.110,0.019), (9,0.056,0.001), 3.231758}

As we can see, each group is composed of three variables, e. g. (0,0.055,

0.301). They represent the group number, expected value and current observed

value, respectively. The last item in his profile, 3.231758, indicates the threshold

value for his printing operation. We will explain it in the following part. For each

printing event in the testing data and the corresponding observed vector of {X0,

X1, ..., X9}, we compute X2 (i. e. Din equation (7-1)) as follows:

XZ=
(X' X')2

(7-4)
=o X,

The computed X2 is small if the observed vector is close to the expected vector.

Similar to the paper [158], in our study we use XZ +3SX2 as the threshold

value. We use the training data to estimate the average (X2) and the standard

deviation (Sx,) respectively, and then load the testing data into the system. If for

an event record the calculated value of X2 is higher than the threshold, we signal

this event as an anomaly. Let N denotes the number of records in the training data.

The standard deviation SX, is calculated by:

1N
SXi 2

-X22 (7-5)
N-Imý1

It is possible that some audit events do not appear in the training data but

occur in the testing data. For example, Mike may print 300 pages in his future

67

operations. Hence, the expected value for such an event is zero after the training.

To avoid having a zero at the denominator of equation (7-4), we use the recorded

smallest value of 0.001 to replace zero.
Apart from the printed page number, other parameters such as the amount of

data transferred and processing time occupied by each session are also monitored

and taken into account in a similar way.

7.2 Experiments and results

Again, we use the same simulation environment built with the Georgia Tech

Network Simulator (GTNetS) [58], as defined in section 5.2.1. Fig. 5.6 shows the

snapshot of the simulated environment.

The first experiment is to examine the false positive rate of SUIDS. We

divide the collected audit data into two parts. The first half is used for training, i. e.

creating a user's profile. The second half is used for testing. During the test, once

the calculated value of X2 exceeds the threshold, an alarm will be raised. Because

the audit data is generated and collected under normal circumstances, any alarm

raised during this experiment is considered as a false alarm. The false positive rate

is calculated by:

Na
Rfp

e

(7-6)

where R1 is the false positive rate, Na is the number of false alarms that have been

raised, and N. is the number of events that are generated by the legitimate sessions

and checked by SUIDS.

There are 3047 records in the training data and 3028 records in the testing

data. After the training, we got the value of the average (X2) and standard

deviation (SX,) for each type of event. Fig. 7.2 shows the calculated X2 for the

3028 testing records. We can see that 10 of them have extraordinarily higher

values than the others. They are the events that only appear in the testing data. In

the end there are total 99 false alarms raised during the test. So the false positive

rate of SUIDS is 3.27% (= 99/3028* 100%).

68

100

90

80

70

60

50
X

40

30

20

10

0
500 1000 1500 2000 2r0n nnnn ýA1

Event Number

Fig. 7.2 Values of X' for normal data.

0

The second experiment is to test the system's effectiveness on detecting

anomalies. The effectiveness of SUIDS is represented by a hit rate. If an alarm is

raised in connection with an event record, this record is regarded as being 'hit'. A

high hit rate on anomalous event records is preferred. The equation to calculate

the hit rate is:

N'
Rh = v`,

(7-7)

where Rh represents the hit rate, Na' denotes the number of genuine alarms that

have been raised, and Ne' denotes the number of events that are generated by

malicious sessions and examined by SUIDS.

It is worth noticing that the definitions of Ne and Ne' in equations (7-6) and

(7-7) are slightly different from other IDSs. Normally people distinguish event

records into normal and abnormal ones based on their characteristics, but we

found that on some occasions it is a controversial issue to assert if a record is

anomalous. For example, a malicious user always needs to do some preparation

work before launching an attack. Although these preparations are closely related

69

to the attack, its event records could appear normal, as long as they are not against

any detection rule. To clarify this issue, we categorize event records based on the

nature of the sessions they belong to. A session starts with a service request from

a user node, and ends when the service thread is terminated. In this case, all

records from a legitimate session will be classified into those counted for Ne.

Actually, because in reality we do not know whether a record is anomalous in

advance, this generalized classification could be more practical for post-analysis

such as tracing the behaviour of an attacker.

We collected another set of data as anomalous data. Two types of anomalies

or attacks are introduced into this data set. The first type is a denial-of-service

attack, which is generated by deliberately occupying the CPU time of a service

node. The second type is a SYN flood attack [143]. In the SYN flood attack the

attacker sends TCP/IP SYN (synchronize/initialization) packets, with erroneous

return IP address information, to the target. Each SYN packet is a request to open

a TCP connection. The victim responds with a SYN/ACK (synchronize/

acknowledge) packet and waits for a response. Soon it will get slowed down as

more traffic floods in. In both cases the attacker randomly picks up a service node
from the simulated environment as a victim. There are total 2596 records in the

anomalous data set.

Fig. 7.3 shows the values of X2 for the entire anomalous data set, and Fig. 7.4

picks part of the results in order to give a clear view. There are 1199 alarms raised

during this experiment. The hit rate is quite low, just 46.19% (_

1199/2596* 100%). As we explained earlier, it is caused by the fact that not all the

records in a malicious session act against the rules being checked by SUIDS. A

specific attack will only show anomalies in certain aspects, e. g. an anomalous

traffic pattern or processing time. Actually, if we measure the system's hit rate by

excluding the accessory records, we will get a so-called `key anomaly' hit rate.

The key anomalies are identified according to each attack's main influence on the

system being protected. For example, in our experiments the DoS attack directly

affects the CPU processing time and the SYN flood attack introduces unusual

traffic patterns. We addressed 982 key anomalous records from the anomalous
data set, and 924 of them triggered an alarm. So the key anomaly hit rate of

SUIDS is 94.09% (= 924/982*100%).

70

N
X

Fig. 7.3 Values ofX for anomalous data with all the results for events 1-2596.

100

90

80 -

70

60

N 50
X

40 -

30 -

20 -

10

n 1480 1500 1520 1540 1560 1580 1600
Event Number

Fig. 7.4 Values of X for anomalous data with partial results for events
1501-1600.

71

0 500 1000 1500 2000 2500 3000
Event Number

To further prove the effectiveness of SUIDS, we also measured the system's

hit rate by sessions other than records. Similar to the definition of the hit rate by

records, if there is an alarm triggered in connection with an intrusion session, we

signal this session as being `hit'. The result is calculated by dividing the number

of signalled malicious sessions by the total number of them. As long as no

malicious session has been ignored by SUIDS, we can regard the system as being

secured. This measurement will not affect the real time feature of SUIDS as the

detection mechanism still works based on the stream of event records. 2596

anomalous records are generated by 789 intrusion sessions. After the experiment,

all these 789 sessions have been signalled. The system's hit rate by sessions

achieved 100% (= 789/789* 100%).

Instead of using the pure normal or pure anomalous data set, in the last

experiment we tested SUIDS with a mixed data set by combining normal

activities and anomalies. The audit data we used here are the same as those used

in experiments 1 and 2. We chop the anomalous data into several portions and

insert them into normal data stochastically. The false alarm rates and hit rates (by

both records and sessions) are calculated in the same way. Fig. 7.5 shows the

calculated values of X? for the mixed data and Table 7.2 shows the experimental

results. We can see from Table 7.2 that the false alarm rate here is little higher

than in experiment 1. It indicates that introducing anomalies into normal data do

affect the final result of Rfp. However, the malicious session hit rate still keeps

100%.

72

1 OL:

, C: U

70

60

N 60
X

40

30

20

10

0
0 1000 2000 3000 4000 5000 6000

Event Number

Fig. 7.5 Values of X'` for mixed data.

Table 7.2 False alarm rates and hit rates (by both records and sessions) for a

combined data set.

False Alarm Number (Na) 120

Normal Record Number (Ne) 3028

False Alarm Rate (Rfp) 3.96%

Genuine Alarm Number (Na') 1171

Anomalous Record Number (Ne') 2596

Hit Rate by Records (Rh) 45.11%

Signalled Key Anomalous Record
919

Number
982

Key Anomalous Record Number
93.58%

Key Anomaly Hit Rate

Signalled Malicious Session Number 789

Malicious Session Number 789

Hit Rate by Session 100%

73

In most cases, we want to keep a high hit rate on anomalous records/sessions

since any ignored attack may cause severe damages to the entire system. The

system's tolerance on the false alarm rate depends on individual requirements.
Because the false alarm rate of SUIDS is very low (< 3.96%), we can conclude

that SUIDS can achieve a good performance by applying this altered chi-square

statistic test.

Comparing with the string-based approach proposed in chapter six, the

detection effectiveness of the chi-square statistic test shows little improvement.

The chi-square statistic test has a better false alarm rate, while the string-based

approach has a slightly better hit rate. Both of them are lightweight and able to

detect anomalies in real-time. However, because the user profile used for the

string-based approach is bigger than that for the chi-square statistic test, the

former requires more system resources. Furthermore, since the string-based

approach is based on a cumulated result, it needs an extra process to identify a

malicious event record. Thus we think the chi-square statistic test is a better

solution in general.

7.3 Summary

In this chapter, we presented an improved detection method for SUIDS. It

adopts a chi-square statistic test to calculate the deviations between a user's

short-term behaviour and his long-term profile. The experiment results

encouragingly show that SUIDS can achieve a high hit rate on anomalous

records/sessions with a maximum false alarm rate of only 3.96%. Based on this

effective detection method, in the next chapter, we will investigate the

possibilities to make SUIDS more resource-efficient. A resource-efficient

detection scheme will help reducing the usage of CPU and storage space. More

importantly, for ubiquitous networks which may contain many battery powered

devices, reduced energy consumptions will extend the lifetime of the entire

network.

74

CHAPTER EIGHT

ACHIEVING ENERGY EFFICIENCY IN SUIDS

In the last two chapters we examined two different detection methods for

SUIDS. The inherent features of ubiquitous computing request SUIDS to give

special concern to the issue of resource-efficiency. In this chapter, we present a

comprehensive analysis of energy consumed in SUIDS and propose a profile

splitting technique in order to reduce the energy consumption. Specifically, it

shows how a head node can be utilized to save the computing-related energy; how

a user profile can be managed in a distributed pattern to reduce the

communication-related cost; and how a hybrid metric is used to balance both of

them in order to extend the network lifetime.

8.1 Energy-efficiency in SUIDS

System resources are crucial in ubiquitous networks. Ideally, during its

implementation, SUIDS needs to balance many factors such as CPU processing

speed, storage space, trustworthiness and etc. In the past decades, the CPU

processing ability and storage space of computer systems keep fast growing, by

obeying Moore's Law [106]. Battery capacity becomes a bottleneck for most

battery-powered devices. We think in the foreseeable future, the energy issue will

remain as a crucial hurdle on the road towards ubiquitous computing. Hence, in

this chapter we particularly focus on saving energy. We analyze the energy

consumed by SUIDS and present a new approach to reduce it. Other factors will

be considered in the next chapter.

75

8.1.1 Energy consumptions in SUIDS

The energy consumed by SUIDS can be classified into two categories:

communication-related energy and computing-related energy.

Communication-related energy refers to the energy used by the radio

transceiver of a node to communicate with others. The contents of the

communication include transmitted/received event records and user profiles. An

approximation of energy consumption when transmitting or receiving r bits

between two nodes nl and n2 with a distance of d(ni, n2) is given in [111] as:

E, = (a� +a2d(n,, n2)")r (8-1)

E,., = a12r (8-2)

where Ea denotes the transmitting energy and E, denotes the receiving energy.

all, a2 and a12 are constants, and their typical values are all = 45nJ/bit, a12 =

135nJ/bit, a2 = IOpJ/bit'm2 (for n= 2) and O. 00IpJ/bit/m4 (for n= 4). n is the

attenuation factor and in this study we use n=2.

The computing-related energy refers to the energy used to implement the

intrusion detection modules. It is mainly dedicated to monitor network status and

user activities, execute intrusion detection algorithms, maintain and update user

profiles. The calculation of the computing-related energy is a very complex task.

A more detailed definition and simulation model are needed. In this thesis, we

assume this part of the consumption is proportional to the number of event records.

That means the more users' activities are observed, the more computing-related

energy will be consumed. For each record, processing it is a fixed charge (5mJ),

regardless where detection modules are.

8.1.2 Save computing energy by using head nodes

As we explained in chapter five, the network nodes in our system are

categorized into head nodes, service nodes and user nodes. Head nodes, for

example PCs, normally have no constraints on energy when they serve as fixed

workstations. In our original design, a user profile in SUIDS follows the user

around and stays at the nearest head node to the user. Head nodes are in charge of

receiving event records from service nodes and detecting anomalies. In this way,

most of the computing-related energy is consumed at head nodes and can be

omitted since the head nodes have unlimited power supplies.

76

However, just like today's ad-hoc networks, the great feature of `anytime and

anywhere' inevitably constrains the availability of head nodes in ubiquitous

networks. Sometimes we may not be able to find a suitable head node to host a

user profile. And even if a head node is available, more energy could still be

consumed on communications if it is too far away from service nodes. In order to

extend the lifetime of a ubiquitous computing network and cope with the situation

where no head node is available, in the next subsection we will present a
distributed profile splitting technique to replace the centralized model defined in

chapter five.

8.1.3 Save communication energy by splitting user profiles

To save the energy and time spent on communications, service nodes need to

participate in intrusion detection in a more proactive way. In this chapter we try to

achieve energy efficiency by arranging the detection modules and user profiles of
SUIDS in a distributed pattern. Obviously, if event records are processed locally

instead of sending them to head nodes, energy consumed on data transmission

will be reduced.

A user's profile in SUIDS is constructed by a list of entries. Each entry

records a user's behaviour regarding his usage of a particular service. The

structure of an entry is like:

{Service-ID, Action-Type, (Parameter Sample Spaces, Estimated Value,

Observed Value), Threshold)

We are inspired to split the user profile into smaller parts based on the

Service-ID and distribute them to the corresponding service nodes. Because the

entries in a user profile are independent of each other (according to the detection

method of SUIDS), splitting the user profile will not affect the result of intrusion

detection. When a user requests a service, the related service node will get the

corresponding entries from the user profile. The service node will calculate the

value of X? (the measurement of similarities between the expected and observed

values linked to the node) locally and send the updated entries back to the head

node when the user moves to other domains. In this way, only a small part of the

user profile needs to be transmitted between the service node and its head node.

77

8.1.4 Choose proxy nodes based on a hybrid metric

Processing event records locally means that the detection algorithm of SUIDS will
be executed at service nodes. The prerequisite for this method is that the service

nodes are able to afford this extra load. Unfortunately, in ubiquitous networks it is

not always the case. A service node might be constrained by its limited battery

capacity. The overuse of the service node may cause battery exhaustion and

shorten the service lifetime. Hence, another process is needed to choose the most

suitable place to allocate the split user profile and execute the intrusion detection

algorithm. We will use the term `proxy node' to denote a dedicated place/node for

this purpose.
Possible choices of proxy nodes for a service node include the service node

itself and other nodes around it within one hop. Although no solution has been

proposed yet to address the same issue in the area of intrusion detection, we

realized that, to some extent, our work can benefit from existing research in the

area of energy-efficient routing in mobile ad-hoc networks [95,136,151]. In this

chapter we use the following metrics to choose a proxy node:
1. Minimum transmission power Et,. This metric tries to find the most

efficient proxy node in terms of saving communication energy. Because

for the same amount of data, the energy consumed on receiving (En) is

unchanged, we only have to compare different amounts of transmission

energy (Eu) related to possible proxy nodes. Equation (8-1) shows that

E, consumed between a service node and a proxy node depends on d (d

is the distance between the service node and proxy node). As a feature of

ubiquitous computing, the physical positions of service and proxy nodes

can be used as available information. Obviously, for a service node, this

metric will always lead to the proxy node that is closest to but different

from the service node (with the minimum d).

2. Maximum residual energy B. Although the minimum transmission power
E, may reduce the total energy consumption, it does not reflect directly

on the lifetime of each node. If a service node chooses a node with less

residual energy, the selected node will die of battery exhaustion sooner.
Therefore, the remaining battery capacity of each node is a more accurate

metric to describe their lifetimes. This metric prefers the proxy node with

78

the maximum residual energy at time t (BI). The target of this metric is to

evenly distribute energy consumptions among network nodes and extend

the network lifetime.

3. Minimum energy consumption rate (Bo-Bt)/t. Residual energy Bt

represents a node's current condition at time t. It cannot reflect the node's

past and future usage trend. Because the intrusion detection module of

SUIDS introduces extra burdens on both communication and computing,

an energy consumption rate is also an important metric to be considered.

Let Bo denote the initial battery capacity of a proxy node, and Bt denote

its residual energy at time t. Assuming the energy consumption rate is a

constant value, (Bo-Bt)/t represents how busy/active this node is in the

network. This metric can be regarded as a complement to the second

metric.
The above three metrics are not consistent with each other. For example, in

Fig. 8.1 service node 1 will work out different proxy nodes when applying these

three metrics respectively. Metric 1 will choose node 2 as the proxy node of node

1 since it consumes the least transmission power. Metric 2 will choose node 3

because it has the most residual energy. And metric 3 will choose node 4 since it

consumes energy at the lowest rate. It is worth to notice that metrics 2 and 3 do

not necessarily mean a longer network lifetime. In some cases it might even get

the opposite result if they pick up a proxy node that consumes too much

transmission power.

79

- --- ---
B, =1800mJ
(Bo-Br)/t=0.8mJ/s

A=1300mJ
d, 3=25m

(Ba-B)/t=0.5mJ/s

d12=12m ,
21

Radio range=30m, " d, 4=25
%

,"4, %
`

ý1=1500mJ

(Bo-Bi)/t=0.3mJ/s

Fig. 8.1 Three metrics will work out different proxy nodes.

In order to balance these three metrics, in this chapter we use a new

conditional hybrid metric. Basically, from all the candidate nodes, the one with

the maximum value of

M
B,. - ß1

(8-3) h
(B°

B`
+ ß2)x E,

t

will be chosen as the proxy node. Mh is referred to as the conditional hybrid

metric. Parameters f1 and P2 are the conditions. 6 works as a threshold to rule out

a set of nodes with less residual energies. P2 sets a minimum expectation of the

energy consumption rate. By adjusting the values of ßl and ß2i we will be able to

prevent some extreme cases. For example, if a node keeps idle for a long time and

has very little energy left, without fl and /32 (set to 0), it might be undesirably

selected as a proxy node. In this study we set Q1= 20mJ and ß2 = 0.05mJ/s.

8.2 Experiments and performance analysis

8.2.1 Modified simulation environment

Because GTNetS does not provide the functionality for measuring energy

consumption, we chose another simulator - Georgia Tech Sensor Network

80

Simulator (GTSNetS) [111] - to prove the effectiveness of our method. GTSNetS

is a fully-featured sensor network simulation tool based on the GTNetS. The main
difference is that it provides each sensor node with a simulated battery in order to

measure its energy consumption. Because GTSNetS was dedicated to sensor

networks, we have to modify the source of the simulator in order to make it fit for

our experiments. The major modifications we made include:

" Inherit and transform basic sensor network applications to CBR and TCP

applications. The CBR application is used to generate constant bit rate
data between two nodes. The TCP application creates a simple model of a

request/response based TCP session. A TCP server is bound to a specified

port, and listens for connection requests from TCP peers. The data

received from the peers specifies how much data to send or receive.

" Disable the sensing function of sensor nodes and transform the simulated

environment of a sensor network into that of a simple wireless ad hoc

network. Along with the alterations to applications and network nodes, the

routing protocol used has also been changed from Directed Diffusion [73]

to DSR [81].

" Generate our own trace files by using a timer variable to check node states

every 1.5 seconds. If a node's residual energy is less than 1mJ, the node

will be considered as dead due to its battery exhaustion. To simplify the

issue, we assume that if the number of dead nodes exceeds half of the

total node number, the network will be considered as dead too.

81

'N Head Node User Node Service Node

 "

"

"

"

""

 ý.

a

",

"
 ""

 "
"

"

 U

Fig. 8.2 Modified simulation environment with GTSNetS.

The simulated network has total 51 nodes in a 120x120m2 area. Initially, there

is one head node. ten user nodes and forty service nodes. All the nodes in our

simulations are connected and communicate with each other through wireless

connections, i. e. in an Ad Hoc pattern. The default routing protocol is DSR. Fig.

8.2 shows a snapshot of the simulated environment. We assume the signal

transmission medium is homogeneous, i. e. fixed ai 1, a- and ail with n=2 in

equations (8-1) and (8-2), and all the nodes have the same radio range (30m).

There are some factors that will affect the performance of SUIDS in terms of

energy-efficiency. In the next few subsections, we analyze each of them and

demonstrate their influences on the network lifetime.

82

8.2.2 Effect of the hybrid metric

The first experiment is to examine the effect of the hybrid metric defined

earlier. We created three scenarios. In the first scenario, all event records will be

processed locally at the service nodes. In this way, the communication-related

energy is much reduced. In the second scenario, the service nodes will always

choose the head node as a proxy node. All the event records will be analyzed at

the head node. Thus the computing-related energy can be reduced. In the last

scenario, once a service node has been activated, all nodes within its radio range,
including itself, will be examined against the hybrid metric. The node with the

highest value of the metric will be chosen as its proxy node. The event records of

the service node will be sent to the proxy node and processed there. The TTL

(time to live) field of the request message sent by service node set to 1 (hop) in

order to reduce the amount of communications. Only a small amount of data (the

value of hybrid metric) needs to be sent back to the service node during the proxy

selection phase.

In all these three scenarios, the communication-related energy is calculated
based on equations (8-1) and (8-2). The computing-related energy is shared by the

service and proxy nodes. We assume the energy consumed at a service node is

proportional to the length of an event record it generated, and that at its proxy

node is a fixed cost for the record reception and processing (5mJ). The simulation

will end after the network has died (i. e., over half of the service nodes are battery

exhausted). The purpose for this is to examine how the introduction of the hybrid

metric will affect the network lifetime.

We tested each scenario with different user nodes and took mean values as

the final results. Fig. 8.3 shows their differences. The horizontal axis denotes the

number of dead nodes and the vertical axis denotes their death time. At the node

number equal to 20, the network is dead. Not surprisingly, with our hybrid metric,

the system has the best performance compared with simply using a service node

or head node as a proxy for event record processing. The impact of the hybrid

metric gradually improves as the simulation proceeds. The average node lifetime

is increased from 4488.525s (scenario one) and 4563.89s (scenario two) to

5845.595s (increased 30.23% and 28.08%, respectively). The network lifetime is

83

extended on average from 6314.6s (scenario one) and 7042s (scenario two) to

8736.1s (increased 38.35% and 24.06%, respectively).

10000

9000

8000

7000

6000
m

5000
ü

4000

3000

2000

1000

0
0 5 10 15 20 25

Number of dead nodes

Fig. 8.3 Impact of the proposed hybrid metric.

8.2.3 Head nodes 'density and distribution

In the first experiment, we assume that there is only one head node available

in the simulated environment. Certainly, if more head nodes are deployed in the

network, the result could be different. In the second experiment we examine how

the existence and deployment of head nodes will affect our system.

We increased the number of head nodes from one to five and reran the

simulations, respectively. To keep the total node number unchanged, we reduced

the number of user nodes correspondingly. In the case of five head nodes, only six

user nodes are left. In order to ensure a fair comparison, all the results are

obtained by using the same set of user nodes. The head nodes are randomly

located and one of them will be chosen as a proxy node. Because they all have

unlimited power supplies, the hybrid metric cannot be used here. In this

experiment we use the distance from a service node to a head node as a metric to

measure its suitability as a proxy node. Normally, the closer a head node to an

activated service node, the less energy consumed on the communication between

- Hybrid letric

- Service Node

-- Head Node

84

them. Hence, a service node will always choose the closest head node as its proxy

node. Experiment results are shown in Fig. 8.4. Basically, since the additional

head nodes are deployed, the network lifetime is generally extended. The

averaged node lifetimes are 4368.958s, 4618.675s, 4782.65s, 4744.051s, and

5387.984s for the number of head nodes from one to five, respectively. However,

even with the five head nodes (almost 10% of the total node number), the

performance of using the head nodes is still no better than using our hybrid metric

which has the averaged node lifetime of 5449.575s (re-calculated by using the

same set of user nodes as well).

12000

10000

8000

6000

4000

2000

0

Head Nodes

" Head Nodes

Head Nodes

Head Nodes

-ý 5 Head Nodes

23456789 10 11 12 13 14 15 16 17 18 19 20

Number of dead nodes

Fig. 8.4 Use of head nodes from one to five.

Apart from the number of head nodes, their locations also play an important

role. If a head node is easy to reach from a service node, the energy consumed on

their communication could be reduced. In the last test, we choose the case of four

head nodes and deploy them uniformly instead of stochastically. The network is

equally divided into four squares and the head nodes are deployed at the center of

the squares. The experiment results are shown in Fig. 8.5. Although the network

lifetime is dramatically increased in the case of uniform distribution, in reality the

deployment pattern of head nodes is different from case to case. As we mentioned

earlier, because the availability of head nodes is not guaranteed in ubiquitous

85

networks, we think our hybrid metric still has a greater and more generalized

usefulness.

Note that in Fig. 8.5 the random distribution overperforms the hybrid metric

around 10 dead nodes. It could happen at the early stage of an experiment if there

are relatively more head nodes. However, the case with the application of the

hybrid metric still has a longer average node lifetime for a long-term observation.

14000

12000

10000

8000

w
6000

4000

2000

Fig. 8.5 Four head nodes with different distribution patterns.

8.2.4 User nodes ' mobility

User nodes in our experiments are mobile. The mobility pattern used here is

the Random Waypoint (RWP) model [109]. The RWP model is widely used in the

simulations of Ad Hoc networks. There are two factors in the RWP model: a

user's velocity and thinking time. Basically, in the RWP model, each node moves

along a zigzag line from one waypoint to the next. The waypoints are uniformly

distributed over a given area. At the start of each leg a random velocity is drawn

from the velocity distribution (in a basic case the velocity is constant I). The

nodes may have so-called 'thinking times' when they reach each waypoint before

continuing on the next leg. We cannot control a user's mobility, but the

86

0
05 10 15 20 25

Number of dead nodes

correlations between the users' mobility patterns and the network lifetime may
help us to adjust our strategies.

We first examine the effect of a user's velocity. Let the thinking time be fixed

to 600 seconds. Four velocities have been tested: Im/s (Walk), 5m/s (Bicycle),

lOm/s (Motorcycle), and 15m/s (Car). The network lifetimes under the different

velocities are shown in Fig. 8.6. We can see that at a low speed (1-5m/s), the

network lifetime is shorter than that at a higher speed (10 m/s). It can be explained

that with a fixed thinking time, a higher speed scenario covers a wider area during

the same period. It tends to give the service nodes more choices on a proxy node

and helps the system to distribute its residual energy evenly. However, if the

speed continues growing (15 m/s), the extra energy consumed on the dynamic

routing will partly leverage the benefit brought by the wider coverage. The

network lifetime will be shortened.

10000

9000

8000

7000

6000

5000
ü

4000

3000

2000

1000

0
0 5 10 15 20 25

Number of dead nodes

Fig. 8.6 Effects of users' velocities.

Similarly, in the next experiment we tested different thinking times from 300s

to 1500s. The velocity is fixed to the most common scenario lm/s (Walk). The

experiment results can be found in Fig. 8.7. Basically, a shorter thinking time has

better performance than a longer thinking time. It can be explained that under the

I m/s
5 m/s
10 m/s
15 m/s

87

same speed, a shorter thinking time can cover a wider area during the same

period.

10006

9000

8000

7000

6000
m

5000

4000

3000

2000

1000

0
0 5 10 15 20 25

Number of dead nodes

Fig. 8.7 Effect of users' thinking times.

It is worth noticing that in both of figures 8.6 and 8.7, the network lifetime

lines are flatter than those in the 'still' case (without mobility). It further proved

that though user nodes' mobility may require more energy on routing, it can also

help to distribute the energy consumptions evenly among the nodes and extend the

network lifetime eventually.

8.3 Summary

In this chapter, we analyzed the energy consumptions in SUIDS for a

ubiquitous computing network and categorized them into two parts:

computing-related and communication-related. The computing-related part can be

reduced by taking advantage of head nodes' unlimited computation supplies; and

the communication-related part can be reduced by splitting user profiles and

implementing the detection modules of SUIDS locally. To balance these two, we

proposed a conditional hybrid metric. By taking various energy-related factors

into account, the hybrid metric helps SUIDS achieve better performance in terms

l

-300s

-9005

-1500s
- non-mobility

88

of energy-efficiency. As a result, the network lifetime is beneficially extended. It

has to be pointed out that our method is designed for those battery powered
devices. Some service nodes such as a smart refrigerator may also have an

unlimited energy supply. In this aspect, their capacities are equal to those of head

nodes. A combined consideration about the density, distribution and mobility of
head nodes may help to deploy the network more effectively in the future. In the

next chapter, more factors such as a node's processor speed and available storage

space will be considered. Especially, we take the trustworthiness of nodes into

account during the selection of a proxy node. In this way, SUIDS is enhanced

with stronger security assurance.

89

CHAPTER NINE

BALANCING INTRUSION DETECTION RESOURCES IN

UBIQUITOUS COMPUTING NETWORKS

Resource-efficiency is regarded as a key objective for all applications in

ubiquitous computing. In the last chapter, we used an energy-related hybrid metric

to reduce the energy consumptions of SUIDS. It balanced the transmission power,

residual energy, and energy consumption rate of a node during the selection of a

proxy node. Based on this work, in this chapter we present a comprehensive

analysis of the resource constraints in SUIDS and propose a new method in order

to take other factors such as computing ability, storage space and trust levels into

account. Specifically, it shows how a node's computing availability is measured

in relation to its energy usage; how a node's trust level is estimated based on

multi-factors; and how a hybrid metric is used to balance these concerns together.

As a result, SUIDS achieves better performance in terms of resource efficiency

together with enhanced security assurance.

9.1 Selecting a proxy node based on additional factors

Overcoming the barriers of limited resources in ubiquitous computing is

always one of our main objectives. In this section, we present a new approach to

improve the performance of SUIDS regarding its usage on system resources. We

use the same profile splitting technique mentioned in chapter eight and an

enhanced hybrid metric to select a proxy node. The proxy node is used to perform

delegated burdensome intrusion detection tasks. During the selection of the proxy

node, there are four key resources to be considered: energy, storage space,

90

processor speed (busy/idle ratio), and trust. Among them, the energy, storage

space and processor speed are quantified metrics. It is possible to compare them

directly by knowing their numerical values. In contrast, to measure the

trustworthiness of a node, an extra process is needed to evaluate its level first.

However, it is important to take the trust into account as the delegation of
detection tasks should not introduce new threats or vulnerabilities into the system.
In this section, we propose a new approach to measure these resources together.

This method exploits the hidden correlations among the resources.

9.1.1 Remaining energy and storage space

A node's remaining energy and storage space are variables. Their values

change all the time, depending on the node's current condition as well as the

surrounding environment. Sufficient remaining energy and storage space are

prerequisites for a node to be chosen as a proxy node. In contrast with consumable

energy, occupied storage space can be released once its use is completed. Hence

remaining energy is a more crucial factor during the selection of a proxy node.
To simplify the issue, in this study we assume that all the nodes are powered

by batteries. It is more like a mobile Ad Hoc network. As we explained in chapter

eight, although in reality some devices, such as head nodes, may have unlimited

energy supplies, simply relying on them may cause quick battery exhaustion for

other nodes. Because remaining energy is just one aspect of the issue, to use the

energy smartly and reduce its total consumption, other energy related factors also

need to be considered. Here we use the same three factors mentioned in chapter

eight: minimum transmission power Ea, maximum residual energy Bt, and

minimum energy consumption rate (Bo-Bt)/t. The final metric regarding a node's

energy is:

E
B- Br-ßl

(9-1)
(otI +Q2)xE.,

9.1.2 Available computing ability

The processor speed of a node/device is a constant. It denotes the node's

computing capability. The processor speeds of different nodes vary from several

91

MHz to several GHz. Normally small devices such as sensors have limited

computing abilities as their sizes are confined. However, the availability of a

node's actual computing ability is a variable. Its processor speed needs to be

considered together with its busy/idle ratio. If the node is always in a busy status,

its actual computing ability dedicated to IDS will be limited. During the selection

of a proxy node, we prefer a node with both a fast processor speed and low

busy/idle ratio.
To reduce the intrusion detection work on each node, in this study we find a

new way to measure the busy/idle ratio of a node. This ratio, to some extent, is

reflected by the node's energy consumption rate. If the node is always busy, its

energy consumption rate will be fast, and vice versa. Thus the energy

consumption rate can denote the node's condition in the network. To simplify the

issue, we set only two statuses here: busy and idle. Each node has its own energy

consumption rates for the busy and idle statuses. The idle consumption rate should

be more stable than the busy one. Because most service nodes provide specific

services to users, they have very determined traffic/operation patterns. Thus in

this study we can assume the energy consumption rates for both statuses are

constant. Suppose that the initial energy is Bo, the current energy at time t is Br, tb

is the node's total busy time for duration t, t, is the total idle time for the same

duration, Rb is the energy consumption rate for the busy status, and R, is the

consumption rate for the idle status. Based on these factors, the following

equations can be deduced:

Rb x tb + R, x t, = Bo - B, (9-2)
t+ +t, =t

Thus the node's busy/idle ratio C can be represented as:
Bo -B,

-R
C __b

rB-B (9-3)
it R t, or

bt

9.1.3 Trust

Trust, as we mean it in this thesis, is about the confidence a service node has

to delegate its intrusion detection tasks to a specific proxy node. It is important

that a proxy node is trustworthy due to the security nature of intrusion detection.

92

An improper delegation may put the entire system in danger as a compromised

proxy node might leave a backdoor to intruders. However, just like in real society,

trust is a very subjective metric. A node's trust level may not be the same when

measuring it from different angles. In order to be able to compare different nodes'

trust levels, the first step is to establish a quantitative trust model.

There are many research results on establishing trust in computer networks

[15,80,134]. The information sources used to build trust normally are reputation

(evidence from observations of previous interactions), delegation or

recommendation from a third party. Trust has its own lifecycle. It depends on the

procedures of how trust is maintained. A typical lifecycle includes collecting

information, evaluating trust, making decision, monitoring, and updating. Trust

evaluation and decision-making include risk analysis. There is always a trade-off

between risks and benefits. To make the final decision, a pre-defined security

policy is essential. For example, it might set a threshold to decide at which level

of trust a node can be selected as a proxy node. In the end, the trust must be

revocable if a node's trust level is changed or erroneously estimated. It needs to

be updated in time.

Because ubiquitous computing is a highly distributed environment, it will be

a problem to estimate the trust level for a newly joined node. It is hard to decide

where to get recommendations for a totally unknown node. Furthermore, flooding

is not an appropriate way to collect recommendations in ubiquitous networks as it

may consume more energy.

The paper [74] proposed an intrusion detection method based on the usage of

batteries. The principle is that if a node's energy is consumed unusually, it is very

likely that the node is under attack. It gave us the idea that the correlations

between trust and energy could be measured. In addition, we believe that a node's

trust level is also related to its "safe time" (duration without known abnormal

activities) in the network. A node with a longer safe time could have a higher trust

level. Thus the final estimation of trust is also a coexistence result of multi-factors.

We use Tto denote a node's trust level. It can be represented as:

A(i')
T= (9-4)

A(
Bn - Bi2

)
(t2 -t,)x(Rb xS+R, x(1-S))

93

where fQ is the function about the safe time and f2Q is the function about the

short-term energy consumption rate. In f Q, t, denotes the node's safe time and to

is an adjustable threshold. In f2Q, Bt, and Bt2 denote the remaining energies at

times 11 and 12. Rb and R; are the aforementioned energy consumption rates for the

busy and idle statuses, respectively. S represents the node's status between times

t1 and t2 with S=1 if the node was busy and S=0 otherwise. If the node's

short-term energy consumption rate (Btl-Bt2)/(t2 -tl) is over the conventional value
Rb or R;, the node's trust level will decline. Based on the definitions of f, Q and f2Q

listed below, T is confined between 0 and 10 and will be updated every time when

the node's status changes.

f, _x
ifx510

) W (ý
10 otherwise

(9-5

x ifxzl
zx) ()

1 otherwise
(9-6

Because not all attacks can be traced by monitoring the usage of energy, this

method is not one hundred percent accurate in reflecting a node's trust level.

Other factors such as the node's historical security records and functionalities may

give different views on its trustworthiness. More trust related factors will be

considered in our future work.

9.2 The protocol

Eventually, to balance these three metrics discussed in section 9.1, we adopt a

conditional hybrid metric. Basically, from all the candidates meeting certain

prerequisite requirements of a proxy node, the one with the maximum value of

M_ExT
C

(9-7)

will be chosen. Here, Mdenotes the hybrid metric, E represents the energy related

metric, C is the node's busy/idle ratio, and T is the trust level.

There are two main steps in the selection of a proxy node. The first step is to

choose a set of nodes which are capable of taking over the intrusion detection

tasks. To become a candidate, a node must have enough processor speed,

remaining energy and storage space. The second step is to choose the most

94

suitable node from the remaining candidates. The decision is made based on the

hybrid metric M.

User node

Service node

Neighbors of
service node

3

4Service node

Head node

5

s
Selected Service node proxy node

7

Head node

Fig. 9.1 Process for the selection of a proxy node.

The entire process for the selection of a proxy node is depicted in Fig. 9.1,

and its steps are explained below:

1. A user requests services from a service node.

2. The service node sends a broadcast message to its neighbours. The TTL

(time to live) field of the message is set to I (hop) in order to reduce the

amount of communication. It contains pre-set minimum requirements on

95

the three conditional metrics (processor speed, remaining energy and

storage space). A threshold value for the next step's hybrid metric is also

included to further reduce the communication cost.

3. Every neighbouring node fulfilling the minimum requirements defined in

the message received calculates its hybrid metric M, which reflects a

combined estimate of the deciding metrics (energy, busy/idle ratio and

trust level). If a node's hybrid metric exceeds the threshold set in the

message, it sends the result of M to the service node.

4. The service node appoints its proxy node as the one with the highest

hybrid metric value among those received, and informs its head node of

the decision.

5. After passing an authentication and verification process with the head

node, the proxy node retrieves the user's partial profile and the

corresponding detection modules from the head node.

6. The service node provides services, while the proxy node updates the

user profile based on the event records provided by the service node and

monitors anomalies.

7. Before the user leaves the current domain, the updated user profile will

be sent back to the head node by the proxy node.

It is worth noticing that in step 5, a verification process is necessary. It is used

to prevent a compromised node from winning the position of the proxy node by

giving a false hybrid metric value. The winner node has to provide certain details

to the head node for verification. Based on equations (9-1), (9-3) and (9-4), a

malicious node could modify its remaining energy (Bt) to get a higher hybrid

metric value. The modification of other parameters such as the conventional

energy consumption rates (Rb and R;) or safe time (ts) could be easily identified by

the head node to expose the node's malice. As a countermeasure against the

illegitimate modification of Bt, we may use a mobile agent to collect the value of

Bt directly through the node's UO interface. To ensure that the mobile agent is not

manipulated by the malicious host node, techniques such as obfuscated code [64]

and an expiration timer [44] could be used together. The obfuscated code makes

the mobile agent code hard to understand in short time so as to prevent its

meaningful alteration. The expiration timer requests that a mobile agent must be

returned back to its associated head node within certain time interval. If a node

96

does not return the mobile agent in time, the head node will reject any request for

its appointment as a proxy node, and notifies the requesting service node of going

back to step 4 for the node with the second highest hybrid metric value. Further

actions may also be taken against the suspected node. In this way, even if a node

is compromised by an intruder, it cannot gain the access to the intrusion detection

modules easily. The implementation of the mobile agent is beyond the scope of

this thesis and will be addressed in our future work.

9.3 Experiments and performance analysis

Similar to chapter eight, we use the same simulation environment created by

the Georgia Tech Sensor Network Simulator (GTSNetS) [111]. As stated in

chapter eight, the simulated network has total 51 nodes in a 120xl2Om2 area.

There are one head node, ten user nodes and forty service nodes. All the nodes in

our simulations are connected and communicate with each other through wireless

connections, i. e. in an Ad Hoc pattern. The default routing protocol is DSR [81].

We assume that the signal transmission medium is homogeneous, i. e. fixed al i, a2

and a12 with n=2 in equations (8-1) and (8-2), and all the nodes have the same

radio range (30m).

9.3.1 Effect of the hybrid metric on network lifetime

The first experiment is to examine the effect of the hybrid metric defined in

equation (9-7). We created three scenarios. The first scenario demonstrates our

previous design, i. e. all event records are sent to and processed at the head node.

The distances between the service nodes and the head node are calculated based

on their randomly deployed positions. In the second scenario, the service nodes

process the event records locally without any help from proxy nodes. Thus the

communication-related energy consumption can be reduced. In the last scenario,

once a service node has been activated, all the nodes within its radio range,

including itself, will be examined against the hybrid metric. The node with the

highest hybrid metric value will be chosen as its proxy node. The event records

will be sent to the proxy node and processed there.

97

In all these three scenarios, the communication-related energy is calculated

based on equations (8-1) and (8-2). The energy consumed on implementing

intrusion detection tasks is shared between the service nodes and their proxies.

We assume that the energy consumed at a service node is proportional to the

length of an event record it generates, and the energy consumed by its proxy node

is a fixed cost (5m.) for the record reception and processing. To get the hybrid

metric, we need to know the nodes' conventional energy consumption rates (Rb

and R;) in prior. They have been calculated through a training process. We pre-ran

the simulation several times with different active user nodes. A node's energy

consumption rate at the busy status (Rb) is calculated by dividing the energy

consumed during its active sessions by the total busy time. And similarly, Ri is the

result of dividing the energy loss during other times by the total idle time. In the

end we use the means as the conventional rates. The simulation stops after the

network is dead (i. e., half of the service nodes are battery exhausted).
We tested each scenario with different user nodes and took the mean values

as the final results. Fig. 9.2 shows their differences. As with the previous

experiments, the horizontal axis in the figure denotes the number of dead nodes,

and the vertical axis denotes their death time. At the node number equals to 20,

the network is dead. Not surprisingly, with our hybrid metric, the system has the

best performance comparing with simply using a head node or service node itself

to process the event records. The impact of the hybrid metric gradually improves

as the simulation proceeds. The average node lifetime is increased from

4284.445s and 4650.8s to 5116.775s (increased 19.42% and 10.02%, respectively).

The network lifetime is extended on average from 5862.9s and 6048.4s to 7165.3s

(increased 22.21% and 18.47%, respectively).

98

8000

7000

6000

5000

4000

.ä

3000

2000

1000

oý
0

"

f
-*-Process Remotely

-Process Locally

-ý Process at Proxy Node

5 10 15 20 25
Number of dead nodes

Fig. 9.2 Impact of the proposed hybrid metric.

9.3.2 Enhanced security policy under attacks

In the second experiment we monitor the reaction of the hybrid metric to

attacks and see how the system's security can be enhanced. We simulated two

types of anomalies or attacks in this experiment. The first type is a

denial-of-service attack. which is generated by deliberately occupying the CPU

time of a service node. The second type is a SYN flood attack. In both cases the

attacker randomly picks a victim from the first half of the service nodes. After

each attacking session, the safe time (t,) of the victim node will be reset to zero.

Ideally, the attacked node should have a lower trust level and less chance of being

selected as a proxy node in short time. In this way, the system is enforced with

stronger security assurance.

Fig. 9.3 and 9.4 show the different proxy node selection distributions before

and under attacks. The horizontal axis denotes the node number and the vertical

axis denotes how many times a node has been selected as a proxy node during the

simulation. Among these nodes, node I is the head node, nodes 2 to 11 are the

user nodes, and the rest are service nodes. As we mentioned earlier, the first half

99

of the service nodes (numbers 12-31) are the victims of the attacks. We can see

that before the attacks, the selection distributions are similar for the different

groups of nodes. Afterwards, the chance for the victim group to be chosen as

proxy nodes has fallen down significantly and the others have increased their

chances accordingly. Specifically, the average selection time for the victim group

of nodes is down from 5.05 to 2.5 and the average lost selection percentage is

46.3%.

30

25

m
0

20
x
0

m ed 15

0 X_
10

0

to
5

6

0

-5

13579 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Node number

Fig. 9.3 Proxy selection distributions before attacks.

100

35

30

0 25

x 0
0' 20

a ll

15
0
U

1U

O

Ä5

I. -
0

-5

13579 11 13 15 17 19 21 23 25 2T 29 31 33 35 37 39 41 43 45 47 49 51

Node number

Fig. 9.4 Proxy selection distributions under attacks.

9.4 Summary

SUIDS is an anomaly-based intrusion detection system proposed for

ubiquitous computing environments. It meets the special requirements of

ubiquitous networks by taking resource constraints into account. In this chapter,

we analyzed the requirements on resources in SUIDS and proposed a profile

splitting technique to achieve resource efficiency. Instead of sending event records

to a fixed node for processing, a proxy node is selected based on the availability

of its resources. Three deciding resource factors have been considered: energy,

computing ability and trust. In order to balance these three factors, we proposed a

novel conditional hybrid metric. Our experiment results show that by applying the

hybrid metric, SUIDS achieves better performance in terms of resource-efficiency,

and also its security assurance is beneficially enhanced.

101

CHAPTER TEN

SUIDS EVALUATION

In this chapter, we review the requirements of intrusion detection systems in

ubiquitous computing and evaluate the performance of SUIDS against them. A

successful intrusion detection system in ubiquitous computing must have the

following five features: real-time detection, scalability and adaptability, full

coverage, resource efficiency, and detection effectiveness. Comparing with

existing solutions, SUIDS addressed all these issues from the start of its design.

Specifically, it achieves real-time detection by giving mobility to its detection

modules. The classification of network nodes and usage of lightweight agents

make SUIDS scalable and adaptable; SUIDS considers capacity constrained nodes

by adopting proxies; a novel hybrid metric balances the system resources; and in

the meantime, SUIDS achieves a high detection rate while keeping its false alarm

rate low.

10.1 Requirements on IDSs in ubiquitous computing

Before listing the requirements on an IDS, we first look at what need to be

protected in ubiquitous networks. Conventionally, IDSs are used to protect

computers and computer networks against any malicious activities that could

compromise the integrity, confidentiality, or availability of the network or

information sources. According to the definition of ubiquitous computing,

computer embedded devices will eventually spread throughout physical

environments. For example, our TV, refrigerator, and even door lock might be

equipped with computer processors and connected together. The question is

whether an IDS has to protect all the nodes within a network, or we can just leave

102

some of them alone. Actually the answer depends on the network/system's

security policy. The same device might need protection in certain scenarios but the

other way round in other situations. There is always a trade-off between the level

of security and the usage of resources needed for the security protection.

Imagine there is a smart refrigerator, which is able to notify a user about what

kind of food and how much is left inside and what their `use by' dates are. The

user might be allowed to set the temperature he/she wants the refrigerator to keep

and decide the period of refilling the refrigerator with fresh food, to make sure

that the food inside the refrigerator is always adequate and healthy. All these

enquiries and settings could be completed through wireless connections by using

the user's PDA. Some people might feel that there is nothing to do with security

and intrusion detection. Then think about what will happen if someone modifies

the data about the temperature the refrigerator should keep and thus makes the

food become inedible, or orders the refrigerator keeping food which is already

beyond the `use by' date. Surprisingly we can conclude that in ubiquitous

computing a malicious user may threaten not only our information resources, but

even our finance and health by simply controlling a smart refrigerator.

What makes the security situation in ubiquitous computing sound worse? If

we look back to the developing history of computers and intrusion detection

systems, we might find the answer. Actually the scope of intrusion detection was

always growing with the popularization of computers. In the early period the only

benefit a hacker could obtain from attacking was just making free phone calls. But

today, they can certainly benefit much more since computers are applied to

various areas. It is predictable that in ubiquitous networks hackers can do even

more as long as computer embedded devices are manipulatable. It is ironic that we

introduce computers into our lives to make things easier, but at the same time give

hackers opportunities to take advantage of it.

As computers become ubiquitous, intrusion detection will be closely

connected with our daily lives. For example, an IDS may need to monitor who is

using a smart refrigerator, for how long and how often, and who is trying to open

electric doors. The border between intrusion detection and user surveillance will

become obscure. It is difficult to distinguish them as totally separated. The issue

of user surveillance is related to privacy protection. It cannot be solved by only

technical means. A proper security policy and privacy policy are both needed.

103

Such policy issues are beyond the scope of our research.

The above discussion clearly indicates that the evolving infrastructure of

networks to support ubiquitous computing requires the development of a new

generation of resource-efficient IDSs to provide appropriate protections for

ubiquitous computing environments. Such an IDS must minimise the use of
devices or network nodes with limited resources (e. g. energy and communication

resources) for intrusion detection while being able to achieve high detecting

efficiency (e. g. a high hit rate and a low false alarm rate). The new IDS needs an

appropriate system architecture and strategy to make it flexible and scalable.

There are two key requirements for all IDSs: effectiveness and efficiency. The

effectiveness refers to that the IDSs must be able to distinguish malicious actions
from normal actions correctly. Both false positive (label normal activities as

malicious) and false negative (overlook malicious activities) decisions are

undesirable and must be kept under certain level. The efficiency means that an

IDS must run in a cost-effective way. Excessive overhead introduced by the IDS

on CPU usage, network resources and storage space confines the wide

deployment of the IDS. The implementation of the IDS should not disturb existing

systems doing their normal activities.

Keeping these two basic requirements in mind, we now expand in detail what

is exactly required for IDSs, especially considering the impact of the

characteristics of ubiquitous computing on intrusion detection.

9 Real-time detection: An IDS must run continuously, or at least

periodically, to detect intrusions and make the corresponding responses. A

delayed monitoring may cause crucial losses and give intruders chances to

hide or remove their trails. As we explained earlier, in ubiquitous

computing, the consequence of a successful attack could harm physical

environments, so real-time detection becomes especially important.

Scalability and Adaptability: An IDS should be scalable. The IDS in

ubiquitous computing must be able to cope with hundreds, or even

thousands, of network nodes. An IDS must be adaptable as well. System

and user behaviours are changing over time. The topologies of networks

are also varying. In ubiquitous computing, the situation is even more

complicated as some hosts are capable of mobility. The IDS must be able

to adapt to these changes.

104

" Full coverage: In ubiquitous computing, an IDS needs to consider those

nodes that are incapable of implementing the IDS by themselves.

Effectively deploying the IDS in an environment with such a diverse

range of devices/nodes is a big challenge. An IDS should be organized in

a distributed manner. Balancing the computing load and diagnostic burden

of intrusion detection among network nodes can increase the

network/system's fault-tolerance, scalability and security protection

coverage.

" Resource-efficiency: An IDS should require as little system resource

usage as possible to alleviate extra burdens on CPU usage, network

overhead, storage space and battery consumption. In ubiquitous

computing, many devices may have very small physical sizes to achieve

their unaware/invisible deployment. Although manufactures keep working

on enhancing the capacity of their products, many appliances/devices will

still face limitations on system resources, especially for those

battery-powered.

" Detection effectiveness: An IDS must be able to detect malicious

activities effectively. It must keep both false positive and false negative

alarm rates under acceptable levels.

" Low administration burden: Because ubiquitous computing is related to

people's daily lives, an IDS must keep the administration burden low.

Normal users cannot be expected to have many security expertises.

10.2 Evaluation of SUIDS

10.2.1 System architecture

Among the five requirements stated earlier, real-time detection, scalability

and adaptability, and full coverage are related to system architectures. We have

compared SUIDS with other IDSs mentioned in chapter four with regard to these

three requirements, and list the comparison results in Table 10.1. For conventional

hierarchically organized IDSs such as GrIDS and EMERLAND, they were

proposed for static wired networks and do not fit for topology-varying network

105

environments such as those for ubiquitous computing. Newly emerged IDSs

which were proposed for mobile ad hoc networks overcame this problem by using

a cooperative architecture or software agents. However, they did not consider

those nodes that lack abilities to implement an IDS module independently,

because current ad hoc networks mainly utilize relatively powerful devices such a
laptop or PDA. SUIDS is featured by a distributed auditing scheme followed by a
lightweight intrusion detection analysis. It can adapt intrusion detection tasks to fit

the operational characteristics of service and user nodes in a network, process

event records in real-time, and use proxy nodes to balance the network resources
for the intrusion detection coverage of resource poor small devices/nodes. Thus

SUIDS is the only intrusion detection system that fulfils all these three

requirements.

Table 10.1 Comparing SUIDS with other IDSs in respect of system architectures.

Introduced Real-time Scalability and Full coverage IDSs detection adaptability
Yes. The layered Yes. Use proxy

Yes. User profiles structure, network nodes to balance
and detection node classification, network resources.

modules are mobile and Resource
SUIDS and lightweight. service-oriented constrained nodes

Anomalies are user-centric design can delegate
detected in an help effectively intrusion detection
online fashion. organise the entire tasks to proxy

system. nodes.
Delayed as event

require that all No
reports need to be Only work in , hosts be or DIDS sent and processed IP-based higher rated at the central environments. computers [153].

manager.
Need to wait a

monitor Yes detection window No, proposed for ,
connections and GrIDS before the conventional static not need all nodes' s' aggregation of wired networks.

participation. network activities.
Yes, each monitor No, its subscription No consideration,

EMERLAND may own anomaly mechanism proposed for
and misuse introduces high powerful PC-based
detectors. network overload. networks.

106

Yes, each IDS No consideration,
IDSs for

agent has a local Yes, totally every node needs
Ad Hoc detection engine.

distributed. to run an IDS agent
independently.

May be delayed, No, introduce high
Indra depending on the trust management No consideration.

size of a network. overload.

Yes, network
No consideration,

latency reduced as Yes, but still rely each host contains
AAFID its IDS agents on a central entity. a transceiver, filter

operate locally. and any number of
agents.

Depend on network
No, its directory

service is not
No consideration,

Sparta sizes and mobile suitable for a
its complex mobile

agent roaming large-scale agent is too heavy
patterns. network.

for small nodes.

Depend on network
No consideration,

Function based sizes and mobile
Yes, fully but the requirement

MA agent roaming
distributed system for running an IDS

patterns. architecture. agent is much
lowered.

10.2.2 Resource efficiency

Resources are crucial in ubiquitous computing. Any applications designed for

ubiquitous computing should set resource-efficiency as one of the main objectives.

However, most existing IDSs did not consider the resource constraints in their

design. The reason is that they were proposed for either wired networks or ad hoc

networks (laptop or PDA based). The requirements on resources in these

environments are not as strict as those in ubiquitous computing. Current resource

efficient techniques which were proposed as complements of existing IDSs do not

fit for ubiquitous computing. Table 10.2 summarises their drawbacks. The

resource efficiency issue must be carefully considered before the implementation

of an IDS in ubiquitous computing environments.

SUIDS uses a profile splitting technique to achieve resource efficiency.

Instead of sending event records to a fixed node for processing, a proxy node is

selected dynamically based on the availability of network resources. Three

deciding factors have been considered for the proxy node selection: energy,

computing ability and trust. In order to balance these three factors, we proposed a

107

novel conditional hybrid metric. As demonstrated in chapter nine, our experiment

results showed that by utilizing the hybrid metric, SUIDS achieves better

performance in terms of resource-efficiency. The average node lifetime in our

experiments was increased by at least 10% and the network lifetime was extended

on average by at least 18%. Besides, because SUIDS took the nodes' trust level

into account before delegating intrusion detection tasks, its security assurance is

beneficially enhanced. The methodology used in SUIDS could benefit the further

development of IDSs for ubiquitous computing networks in the future.

Table 10.2 Drawbacks of current resource efficient solutions for IDSs.

Resource efficient solutions Drawbacks

Choose a cluster head for Require all nodes pre-install IDS

implementing an intrusion detection modules and be able to carry out

module at any given time. intrusion detection tasks independently.

Quantify damage costs based on an The quantification of attack costs is

intrusion's type and its target. An complicated and costly. It lacks a

optimized model reduces detection common standard, as in different

costs by intelligently rearranging scenarios the same attack may cause

detection rules. unequal losses.

Address NIDSs overload problems
Cannot solve the overload problems

by running the most crucial event in
thoroughly without any help from

front of others for performance
HIDSs.

monitoring.

Apply an adaptive response

mechanism by balancing parameters Need a quantification process similar to

such as a false alarm rate, detection the second method above.

confidence and damage cost.

10.2.3 Detection effectiveness

In this thesis we presented two detection techniques, a string-based approach

and a chi-square statistic test, in chapters 6 and 7, respectively. We now compare

108

their performances based on the experiment results discussed in these two

chapters. Table 10.3 summarises the comparison outcomes. For detection

effectiveness, the experiment results are close. The string-based approach has a

slightly better hit rate, while the chi-square statistic test has a lower false alarm

rate. Both of them are lightweight and can detect anomalies in real-time. A user

profile used for the string-based approach (with a string length of 80) is bigger

than that for the chi-square statistic test. Considering that we only set ten service

nodes in the experiments, the difference between them will definitely grow in a

larger network. Besides, because the string-based approach is based on a

cumulated result, it needs an extra process to identify a malicious event record.

Thus we think the chi-square statistic test is a better solution in general.

Table 10.3 Comparison of two detection methods.
String-based Chi-square

approach statistic test

False Alarm
3.75% 3.27%

Rate (R fp)
Hit Rate by

95.03% 94.09%
Records (Rh)

Hit Rate by
100% 100%

Session

Real-time
Yes Yes

detection

User profile size
6.22 5.25

(KB)

In conclusion, SUIDS adopts a layered and distributed system architecture,

which is seamlessly embedded into the ubiquitous computing environments. By

categorizing the system nodes into three major groups, SUIDS is more scalable

and adaptable in order to fit for various network scenarios. SUIDS has a novel

user-centric design and service-oriented detection method. By giving the mobility

to detection modules, SUIDS is able to react to malicious activities in real-time. It

detects anomalies at the service level rather than relying on a one-sided network

109

layer. SUIDS also equips a new resource-sensitive scheme, including protocols

and strategies. By allowing the delegation of intrusion detection tasks to proxy

nodes, it provides satisfactory intrusion detection service coverage to those nodes
that are incapable of running IDS independently. A novel hybrid metric based

algorithm is used in SUIDS in order to balance the system resources such as CPU

usage, network overhead, storage space, and energy consumption. This hybrid

metric can measure these factors together by exploiting their hidden correlations.
A node's trustworthiness is also considered in this hybrid metric to enhance the

system's security policy. The effectiveness of SUIDS is reflected by its high hit

rates on anomalies and low false alarm rates. Its efficiency is shown on the

deducted energy consumptions. All these novelties and characteristics make
SUIDS well fit for ubiquitous computing environments.

10.3 Summary

System evaluation is an important consideration in any system development.

In previous chapters, we presented the system architecture design, detection

methods, and resource-efficient solutions of SUIDS. This chapter evaluated the

entire system in relation to the requirements stated in section 10.1. The evaluation

demonstrated the novelty of SUIDS in its architecture design. To the best of our

knowledge, SUIDS is the first intrusion detection system that took the special

requirements of ubiquitous computing into account during its design. It adopted

proxy nodes in intrusion detection and used a novel hybrid metric to balance

multiple system resources such as energy, computing ability, and trust information.

The detection algorithms of SUIDS were tested with a number of parameters such

as a hit rate, false alarm rate, and user profile size. As the test results demonstrated,

SUIDS provides a robust and resource-efficient protection for ubiquitous

computing networks.

110

CHAPTER ELEVEN

CONCLUSIONS AND FUTURE WORK

This chapter revisits the themes recurrent in this thesis and details future work.
The notion of ubiquitous computing was introduced as a prospective view about

the future usage of computers. Smaller and cheaper computer chips will enable us

to embed computing ability into any appliances. Existing IDSs have several

weaknesses that hinder their direct application to ubiquitous networks. These

shortcomings are caused by their lack of considerations about the heterogeneity,

flexibility and resource constraints of ubiquitous networks. As demonstrated

earlier, to overcome these problems, we proposed a novel service-oriented and

user-centric intrusion detection system - SUIDS. SUIDS is an adaptive and

resource-efficient intrusion detection system with a novel service-oriented

auditing mechanism and flexible user-centric design. By working together with

service-oriented agents, SUIDS can reliably and effectively detect malicious

activities of inside users. SUIDS comprises the following main components: a

reliable auditing mechanism, a resource-efficient intrusion detection scheme, and

a flexible system architecture. Our future work will focus on the further

examination of SUIDS and the refinement of its models.

11.1 Conclusions

This thesis first introduced the history of computer networks. For many years,

computers were supposed to stand alone, run programs and provide computing

resources for local usage only. This situation changed with the advent of

ARPANet in the late 1960's. A set of computers were connected together in order

to allow remote access to computer resources. Since then, millions of computers

111

joined the network forming the biggest computer society - Internet. By enabling

us to shop, work and study remotely, the Internet changes our daily lives in many

ways.
Soon, with the continuous growth and development of computer and network

technologies, we will enter the next stage of information era - ubiquitous

computing. The concept of ubiquitous computing was introduced as a prospective

view about the future usage of computers. Smaller and cheaper computer chips

will enable us to embed computing ability into any appliances, e. g. a cup, lighter,

and even a piece of paper. People's daily activities will be closely connected with

computers and beneficially become ever convenient. For example, in ubiquitous

networks, one can open a door by simply sending an order to the electric door

lock from his/her PDA, or read news on a computer embedded "e-paper" with the

content updated through wireless connections.

However, the great features of ubiquitous computing inevitably expose its

inherent vulnerabilities. The convenience brought by ubiquitous computing could

also be taken advantage of by intruders. It makes things too easy for malicious

people to build a system to spy on others. For example, an intruder may

compromise the integrity and confidentiality of an information system by using a

stolen ID to modify or access valuable information, or compromise the

availability of an information system by possessing the system resources in order

to interfere with authorised users' normal access. Like any other computer

systems, one of the main prerequisites for the wide adoption of a ubiquitous

network is security. The network has to be properly secured so that it can be relied

upon.
IDSs are widely used to protect computer networks. In computer security,

intrusions are defined as any malicious activities that could compromise the

integrity, confidentiality, or availability of networks and information sources. If

an intrusion is detected quickly enough, the intruder can be identified and ejected

from the system before any damage is done or any data are compromised.

Moreover, an effective IDS can even serve as a deterrent, acting to prevent

intrusions. As a second line of defence, IDSs play an important role in computer

security, especially in the fight against attacks launched inside networks.

Two principal classifications of IDSs have been explained in this thesis.

According to the detection methods used, IDSs can be divided into

112

signature-based detection and anomaly-based detection. The signature-based
detection compares audit data with the knowledge accumulated about specific
known attacks and system vulnerabilities. The anomaly-based detection builds a

reference model of the usual behaviour of the system being monitored and looks

for deviations from the normal usage. According to the locations of audit sources,

IDSs can also be categorized as host-based IDSs and network-based IDSs.

Host-based IDSs audit data mainly from local operating systems, e. g. system log

files, and network-based IDSs audit network packets between nodes or the Simple

Network Management Protocol information.

Although the research in intrusion detection started decades ago, its

application to ubiquitous computing is new. This thesis provided a critical survey

on existing solutions. As concluded, they do not fulfil the special requirements of

ubiquitous computing in respect of resource-efficiency and system architecture.

Specifically, an IDS in ubiquitous computing should not require to transmit or

process a large amount of audit data or attack signatures; a centralized detection

scheme should be replaced by a distributed or cooperative system architecture;

host-based and network-based approaches should work together to provide

all-sided protection. Within our knowledge, there is no IDS yet, which has been

particularly proposed to meet these special requirements of ubiquitous computing.

As a solution to address this issue, we proposed an adaptive and

resource-efficient IDS with a novel service-oriented auditing mechanism and

flexible user-centric design - SUIDS. SUIDS handles the heterogeneity issue of

ubiquitous computing networks by classifying network nodes into three major

categories (head nodes, service nodes, and user nodes) and integrating intrusion

detection with service specific knowledge. SUIDS is a distributed and

dynamically deployed system based on this classification.

Unlike existing network-based IDSs, SUIDS integrates service specific

knowledge with intrusion detection and thus focuses on the service level instead

of burdensome packet analysis. Agents on service nodes monitor system

information across the system layers, e. g. from the network layer such as an open

port to the application layer such as a device operation. The information

eventually converges to the service level. In this way, the SUIDS detection

modules on head nodes can reliably and effectively detect malicious activities of

inside users and only need to analyze event records instead of a bundle of packets.

113

Two anomaly-based detection methods have been tested with SUIDS. The

first one is a string-based approach. Some IDSs use a time interval to determine a
detection window, i. e., each event only makes effect during a certain period.
Because SUIDS is a distributed and mobile system, the use of a time-based

detection window will introduce synchronisation issues and make the system

more complicated. Hence in the string-based approach, a `string' is used to

indicate a user's short-term behaviour in an online fashion. For example, if the

last 100 printing operations can effectively represent a user's short-term behaviour

regarding his usage of the printer, a string with the length of 100 will be set to

follow the printing probability distributions in the user profile. Each character of

the string represents one of his/her historical operations. Every time when a new

record comes, the earliest record will be discarded. The length of the string is a

variable, depending on the system requirements. Generally, a longer string could
have a lower false positive rate but with the possibility of increasing the false

negative rate at the same time and consuming more system resources.

The second detection method is based on a chi-square statistic test. Instead of

using a string, an exponentially weighted moving average (EWMA) technique is

used to smooth out observation values for the variables being tracked. It applies a

smoothing constant in a user profile to represent the user's short-term behaviour

in real-time. In this way, the most recent and past records have different weight

indexes. The observation reflects the `most recent past' characteristics of the

variables. The deviations between a user's short-term and long-term behaviours

are measured by using a chi-square statistic test. Comparing with the string-based

approach, this method can measure not only the probability distributions of the

variables, but also their occurrence patterns and hidden correlations. As a result,

SUIDS achieves real-time intrusion detection in ubiquitous networks with a

lightweight and adaptable detection model.

According to the definition of ubiquitous computing, many embedded

computer chips must be physically small in order to achieve unaware deployment.

Inevitably, they will have limited system resources such as energy supplies and

storage spaces. Hence SUIDS has to give special concerns over the issue of

resource-efficiency. To further improve the performance of SUIDS, we presented

a comprehensive analysis of energy consumed in SUIDS. The energy

consumptions in SUIDS are categorized into two parts: computing-related and

114

communication-related. The computing-related part can be reduced by taking

advantage of head nodes' unlimited power supplies; and the

communication-related part can be reduced by having user profiles distributed and
implementing the SUIDS detection modules locally. To balance these two parts,

this thesis proposed a profile splitting technique and a new hybrid metric. Instead

of sending event records to a fixed node for processing, a proxy node is selected
based on the calculation of the hybrid metric. The hybrid metric considered three

energy-related factors on a node: its transmission power, residual energy, and

energy consumption rate. Our experiments indicated that this method successfully

distributed the energy consumptions of intrusion detection among network nodes

and extended the network lifetime.

Based on the above results, we extended our work in order to take other

system resources into account to enhance the resource efficiency of SUIDS. In the

latest scheme, four key resources have been considered during the selection of a

proxy node: its energy, storage space, processor speed (busy/idle ratio), and trust.

Among them, the energy, storage space and processor speed are quantified

metrics. It is possible to compare them directly by knowing their numerical values.

In contrast, an extra process is used to evaluate the trust level of the node. This

process calculates the node's trust level based on its energy consumption pattern

and its safe time in the system. In order to balance these four resources together,

we proposed a new conditional hybrid metric. This metric effectively exploited

the hidden correlations among the resources.

System evaluation is an important consideration in any system development.

In the previous chapter, we reviewed the requirements on IDSs in ubiquitous

computing and evaluated the performance of SUIDS against them. A successful

IDS in ubiquitous computing must have the following five features: real-time

detection, scalability and adaptability, full coverage, resource efficiency, and

detection effectiveness. Comparing with existing solutions, SUIDS addressed all

these issues from the start of its design. Specifically, it achieves real-time

detection by giving mobility to its detection modules. The classification of

network nodes and usage of lightweight detection agents make it scalable and

adaptable. SUIDS offers the intrusion detection coverage of capacity constrained

nodes by adopting proxies. The novel hybrid metric of SUIDS balances multiple

system resources to achieve optimal efficiency. Moreover, SUIDS can achieve

115

high detection effectiveness while keeping its false alarm rate low.

In conclusion, SUIDS is the first intrusion detection system proposed for

ubiquitous computing environments. It keeps the special requirements of

ubiquitous computing in mind throughout its design and implementation. SUIDS

adopts a layered and distributed system architecture, a novel user-centric design

and service-oriented detection method, a new resource-sensitive scheme,
including protocols and strategies, and a novel hybrid metric based algorithm.
These novel methods and techniques used in SUIDS set a new direction for future

research and development. As the experiment results demonstrated, SUIDS is able

to provide a robust and resource-efficient protection for ubiquitous computing

networks. It ensures the feasibility of intrusion detection in ubiquitous computing
in the first place. This work has been recognised by many international academic

organizations. In total, eight papers have been published and one more paper is

under review.

11.2 Future work

This thesis has posited the weaknesses of current intrusion detection solutions,

and the requirements for a new generation of intrusion detection that protects

ubiquitous computing networks in a resource-efficient way. As presented in this

thesis, SUIDS provides a resource-efficient, scalable, and effective approach.

Future work includes several main directions:

" Refinement of the SUIDS model and detection techniques for improved

defence against attacks. For example, exploring more complex algorithms

such as neural networks may further reduce the false alarm rate of SUIDS

and increase its detection effectiveness.

. Improvement of resource measurements for higher accuracy. For example,

the computing-related energy is referred to the energy used to implement

the SUIDS intrusion detection modules. It is mainly dedicated to monitor

network statuses and user activities, execute the intrusion detection

algorithms, maintain and update user profiles. This thesis used a simple

model to calculate this part of energy consumption, assuming it is

proportional to the number of event records. A more detailed definition

116

and simulation model may increase the accuracy of the energy

consumption measurement.

" Extension of the trust measurement model. Currently the trust

measurement model in SUIDS considers only two factors: energy

consumption pattern and safety time. It works as a draft model rather than

the final solution. Trust management itself is an area where many

attentions have been attracted to. We pointed out one possible solution

and a refined model could be expected to appear in future research.

" Creation of a prototype of SUIDS in a laboratory for further examination.
This thesis has demonstrated the effectiveness and efficiency of SUIDS in

a simulated environment by using GTSNetS. Implementing a small

ubiquitous computing network such as a smart home will help us to

explore the applicability of SUIDS and get more convincing results. For

example, we can investigate a user's behaviour and monitor the resource

consumption of SUIDS in runtime.

" Cooperation with other information security countermeasures and

non-security factors such as law enforcement and privacy protection

strategy. An intrusion detection system alone cannot solve all the security
issues. It has to work closely with other defence mechanisms such as

cryptographic support, security policy enforcement, and access control. In

different application scenarios, system conditions and requirements are

not the same. SUIDS must take other available security countermeasures
into account in its future utilizations.

11.3 Summary

Nowadays our economy relies heavily on networked computer information

systems for commerce, communications, energy distribution and transportation, as

well as a host of other critical activities. One of the key security issues requiring

urgent attentions is about how to protect system resources against malicious

activities. A recent FBI survey suggests that 44% organizations had experienced

intrusions from within their organization. The average cost of a successful attack

by a malicious insider is much greater than the cost of an external attack. It

117

emphasizes the needs for one type of security tool - Intrusion Detection Systems.

The SUIDS project has highlighted the problems of current intrusion detection

solutions in ubiquitous computing environments and provided a resource-efficient

solution as an important first step toward meeting the special requirements of

ubiquitous computing networks.

118

REFERENCES

[1] Abowd, G., and Mynatt, E., Charting past, present, and future research in

ubiquitous computing. ACM Transactions on Computer-Human

Interaction, v 7, n 1, Mar. 2000, pp. 29-58.

[2] Aime, M., Calandriello, G., and Lioy, A., Dependability in wireless

networks: Can we rely on WiFi? IEEE Security and Privacy, v 5, n 1,

JanJFeb., 2007, pp. 23-9.

[3] Alampalayam, S., and Kumar, A., An adaptive and predictive security

model for mobile ad hoc networks. Wireless Personal Communications, v

29, n 3-4, Jun. 2004, pp. 263-81.

[4] Axelsson, S., Intrusion detection systems: A taxonomy and survey.

Technical Report 99-15, Department of Computer Engineering, Chalmers

University of Technology, Sweden, Mar. 2000.

[5] Bai, Y., and Kobayashi, H., Intrusion detection systems: technology and

development. Proceedings of 17th International Conference on Advanced

Information Networking and Applications (AINA 2003), Xi'an, China,

Mar. 2003, pp. 710-5.

[6] Balachandran, A., Voelker, G., and Bahl, P., Wireless hotspots: current

challenges and future directions. Mobile Networks and Applications, v 10,

n 3, Jun. 2005, pp. 265-74.

[7] Balasubramaniyan, J., Garcia-Fernandez, J., Isacoff, D., Spafford, E., and

Zamboni, D., An architecture for intrusion detection using autonomous

agents. Proceedings of 14th Annual Computer Security Applications

Conference, Scottsdale, USA, 1998, pp. 13-24.

[8] Bemardes, M., and dos Santos Moreira, E., Implementation of an intrusion

detection system based on mobile agent. Proceedings of International

Symposium on Software Engineering for Parallel and Distributed Systems,

Limerick, Ireland, 2000, pp. 158-64.

[9] Bhuse, V., and Gupta, A., Anomaly intrusion detection in wireless sensor

networks. Journal of High Speed Networks, v 15, n 1,2006, pp. 33-51.

119

[10] Bonifacio, J., Cansian, A., de Carvalho, A., and Moreira, E., Neural

networks applied in intrusion detection systems. Proceedings of IEEE

International Conference on Neural Networks, v 1, IEEE World Congress

on Computational Intelligence, Anchorage, USA, 1998, pp. 205-10.

[11] Bononi, L., and Tacconi, C., A wireless intrusion detection system for

secure clustering and routing in ad hoc networks. Proceedings of 9th

International Conference on Information Security, ISC 2006, LNCS, v
4176, Samos, Greece, 2006, p 398-414.

[12] Briscoe, R., The implications of pervasive computing on network design.

BT Technology Journal, v 22, n 3, Jul. 2004, pp. 170-90.

[13] Brutch, P., and Ko, C., Challenges in intrusion detection for wireless

ad-hoc networks. Proceedings of Symposium on Applications and the

Internet Workshops (SAINT 2003 Workshops), Orlando, USA, 2003, pp.
368-73.

[14] Bull, P., Limb, R., and Payne, R., Pervasive home environments. BT

Technology Journal, v 22, n 3, Jul. 2004, p 65-72.

[15] Cahill, V., Shand, B., Gray, E., and et al, Using trust for secure

collaboration in uncertain environments. Pervasive Computing, v 2, n 3,

Jul. -Sep. 2003, pp. 52-61.

[16] Carter, D., and Katz, A., Computer crime: An emerging challenge for law

enforcement, FBI Law Enforcement Bulleting, Dec. 1996, pp. 1-8.

[17] Chalmers, R., and Almeroth, K., A security architecture for

mobility-related services. Wireless Personal Communications, v 29, n 3-4,

Jun. 2004, pp. 247-61.

[18] Chang, R., Defending against flooding-based, distributed denial-of-service

attacks: A tutorial. IEEE Communications Magazine, v 40, n 10,2002,

pp. 42-51.

[19] Chen, H., Finin, T., Anupam, J., Kagal, L., Perich, F., and Chakraborty, D.,

Intelligent agents meet the semantic Web in smart spaces. IEEE Internet

Computing, v 8, n 6, Nov: Dec. 2004, pp. 69-79.

[20] Cicirello, V., Peysakhov, M., Anderson, G., Naik, G., Tsang, K., Regli, W.,

and Kam, M., Designing dependable agent systems for mobile wireless

networks. IEEE Intelligent Systems, v 19, n 5, Sept. -Oct. 2004, pp. 39-45.

[21] CISCO Company. URL: http: //www. cisco. com

120

[22] Coffman, K., and Odlyzko, A., Growth of the internet. Optical Fiber

Telecommunications IVB, I. P. Kaminow and T. Li, Eds, San Diego, CA:

Academic, 2002, pp. 17-56.

[23] Comer, D., Computer networks and internet. Upper Saddle River, N. J.

Prentice Hall, 1999. ISBN: 0130836176.

[24] Comer, D., Internetworking with TCP/IP: Vol. I -principles, protocols, and

architecture. Englewood Cliffs, NJ: Prentice Hall, 1988.

[25] Comer, D., and Stevens, D., Internetworking with TCP/IP Vol. II: design,

implementation, and internals. Prentice-Hall, Inc. Upper Saddle River, NJ,

USA, 1994.

[26] CSI/FBI Computer Crime and Security Survey, Computer Security

Institute (2005).

[27] Da Silva, A., Loureiro, A., Martins, M., Ruiz, L., Rocha, B., and Wong, H.,

Decentralized intrusion detection in wireless sensor networks. Proceedings

of the First ACM International Workshop on Quality of Service and

Security in Wireless and Mobile Networks, Montreal, Canada, 2005, pp.

16-23.

[28] Dasgupta, D., Immunity-based intrusion detection system: A general

framework. Proceedings of the 22nd National Information Systems

Security Conference, Arlington, USA, 1999, v 1, pp. 147-60.

[29] Date, C., An introduction to database systems. Addison-Wesley Longman

Publishing Co., Inc. Boston, MA, USA, 1999.

[30] Day, J., and Zimmerman, H., The OSI reference model. Proceedings of the

IEEE, v 71, n 12, Dec. 1983, pp. 1334-40.

[31] Debar, H., Dacier, M., and Wespi, A., A revised taxonomy for

intrusion-detection systems. Annales des Telecommunications, v 55, n 7-8,

Jul: Aug. 2000, pp. 361-78.

[32] Demers, A., Research issues in ubiquitous computing. Proceedings of the

Thirteenth Annual ACM Symposium on Principles of Distributed

Computing, Los Angeles, USA, 1994, pp. 2-8.

[33] Demirkol, I., Alagoz, F., Delic, H., and Ersoy, C., Wireless sensor

networks for intrusion detection: packet traffic modeling. IEEE

Communications Letters, v 10, n 1, Jan. 2006, pp. 22-4.

121

[34] Denning, P., Electronic Commerce, in Internet Besieged. D. Denning and
P. Denning Ed., ACM Press, USA, 1998, pp. 377-88.

[35] Dewdney, A., Computer recreations: Of worms, viruses and core war.
Scientific American, Mar. 1989, pp. 110.

[36] Diaz, A., Merino, P., Rivas, F., Kulkarni, U., Vadavi, J., Joshi, S., and
Yardi, A., Mobile and ubiquitous objects. IEEE Pervasive Computing, v 5,

n 3, Jul. -Sep. 2006, pp. 57-9.

[37] Dourish, P., Grinter, R., de la Flor, J., and Joseph, M., Security in the wild:

user strategies for managing security as an everyday, practical problem.
Personal and Ubiquitous Computing, v 8, n 6,2004, pp. 391-401.

[38] Dousse, 0, Tavoularis, C., and Thiran, P., Delay of intrusion detection in

wireless sensor networks. Proceedings of the Seventh ACM International

Symposium on Mobile Ad Hoc Networking and Computing

(MOBIHOC'06), Florence, Italy, 2006, pp. 155-65.

[39] Dritsas, S., Gritzalis, D., and Lambrinoudakis, C., Protecting privacy and

anonymity in pervasive computing: trends and perspectives. Telematics

and Informatics, v 23, n 3, Aug. 2006, pp. 196-210.

[40] Du, W., Fang, L., and Peng, N., LAD: Localization anomaly detection for

wireless sensor networks. Journal of Parallel and Distributed Computing, v

66, n 7, Jul. 2006, pp. 874-86.

[41] Du, Y., Wang, H., and Pang, Y., Design of a distributed intrusion

detection system based on independent agents. Proceedings of

International Conference on Intelligent Sensing and Information

Processing, Chennai, India, 2004, pp. 254-7.

[42] Edwards, W., Discovery systems in ubiquitous computing. IEEE Pervasive

Computing, v 5, n 2, AprJJun., 2006, pp. 70-77.

[43] English, C., Terzis, S., and Nixon, P., Towards self-protecting ubiquitous

systems: monitoring trust-based interactions. Personal and Ubiquitous

Computing, v 10, n 1,2006, pp. 50-4.

[44] Esparza, 0., Soriano, M., Munoz, J., and Forne, J., A protocol for

detecting malicious hosts based on limiting the execution time of mobile

agents. Proceedings of Eighth IEEE International Symposium on

Computers and Communication, v 1, Kerner-Antalya, Turkey, Jun. -Jul.
2003, pp. 251-6.

122

[45] E-Ink hornepage - Technology,

URL: http: //www. eink. com/technology/index. html

[46] Fan, W., Lee, W., Salvatore, J., and Miller, M., A multiple model

cost-sensitive approach for intrusion detection. Proceedings of the
Eleventh European Conference of Machine Learning, Barcelona, Spain,

May 2000, pp. 148-156.

[47] Fano, A., and Gershman, A., The future of business services in the age of

ubiquitous computing. Communications of the ACM, v 45, n 12, Dec.

2002, pp. 83-7.

[48] Farkas, K., and et al, Real-time service provisioning for mobile and

wireless networks. Computer Communications, v 29, n 5,6 Mar. 2006, pp.
540-50.

[49] Feng, Z., Mutka, M., and Ni, L., A private, secure, and user-centric
information exposure model for service discovery protocols. IEEE

Transactions on Mobile Computing, v 5, n 4, Apr. 2006, pp. 418-29.

[50] Fergus, P., Merabti, M., Hanneghan, M., Taleb-Bendiab, A., and
Minghwan, A., A semantic framework for self-adaptive networked

appliances. Proceedings of IEEE Consumer Communications &

Networking Conference (CCNC'05). Las Vegas, USA, 2005, pp. 229 - 34.

[51] Fu, P., Zhang, D., Wang, L., and Duan, Z., Intelligent hierarchical

intrusion detection system for secure wireless ad hoc network. Proceedings

of the Second International Symposium on Neural Networks, ISNN 2005,

LNCS, v 3498, n 3, Chongqing, China, 2005, p 482-7.

[52] Fujitsu e-paper: Changing the way we read,

URL: http: //www. fujitsu-com/global/about/rd/200509epaper. html

[53] Fukase, M., Akaoka, R., Liu, L., Cheng, T., and Sato, T., Hardware

cryptography for ubiquitous computing. International Symposium on
Communications and Information Technologies 2005, Tetuan, Morocco,

2005, pp. 478-8 1.

[54] Gaia: Active spaces for ubiquitous computing. The Gaia homepage,

URL: http: //choices. cs. uiuc. edu/ActiveSpaces/index. html

[55] Galanxhi, H., and Nah, F., Privacy issues in the era of ubiquitous

commerce. Electronic Markets, v 16, n 3,2006, pp. 222-32.

123

[56] Gan, F., Joint monitoring of process mean and variance using

exponentially weighted moving average control charts. Technometrics, v
37, n 4,1995, pp. 446-53.

[57] Ghosh, A., Wanken, J., and Charron, F., Detecting anomalous and

unknown intrusions against programs. Proceedings of the 1998 Computer

Security Applications Conference, IEEE CS Press, Los Alamitos, USA,

1998, pp. 259-67.

[58] GTNetS: Georgia Tech Network Simulator,

URL: http: //www. ece. gatech. edu/research/labs/MANIACS/GTNetS/
[59] Haggerty, J., DiDDeM: A system for early detection of denial-of-service

attacks. Ph. D. thesis, Liverpool John Moores University, 2004.

[60] Han, Q., Gutierrez-Nolasco, S., and Venkatasubramanian, N., Reflective

middleware for integrating network monitoring with adaptive object

messaging. IEEE Network, v 18, n 1, Jan. fFeb., 2004, pp. 56-65.

[61] Helmer, G., Wong, J., Honavar, V., Miller, L., and Wang, Y., Lightweight

agents for intrusion detection. Journal of Systems and Software, v 67, n 2,

Aug. 2003, pp. 109-22.

[62] Hengartner, U., and Steenkiste, P., Access control to people location

information. ACM Transactions on Information and Systems Security, v 8,

n 4, Nov. 2005, p 424-56.

[63] Hijazi, A., and Nasser, N., Using mobile agents for intrusion detection in

wireless ad hoc networks. International Conference on Wireless and

Optical Communications Networks, Dubai, UAE, 2005, p 362-6.

[64] Hohl, F., Time limited Blackbox security: Protecting mobile agents from

malicious hosts. Mobile Agents and Security, Lecture Notes in Computer

Science, v 1419, Springer, Berlin, 1998, pp. 92-113.

[65] Holz, T., Marechal, S., and Raynal, F., New threats and attacks on the

World Wide Web. IEEE Security & Privacy, v 4, n 2, Mar. -Apr. 2006, pp.

72-5.

[66] Hong, J., Minimizing security risks in ubicomp systems. Computer, v 38,

n 12, Dec. 2005, pp. 118-9.

[67] Hsieh, W., Lo, C., and Chiu, Y., The proactive intrusion prevention for

Wireless Local Area Network. International Journal of Mobile

Communications, v 4, n 4,2006, pp. 477-96.

124

[68] Huang, Y., and Lee, W., A cooperative intrusion detection system for

ad-hoc networks. Proceedings of the Ist ACM Workshop on Security of
Ad Hoc and Sensor Networks (in association with 10th ACM Conference

on Computer and Communications Security), Washington, DC, USA,

2003, pp. 135-47.

[69] Hung, J., Wang, C., Hung, L., Chang, A., and Liao, Y., A smart IDS and

response system for the Internet malicious worm. International Journal of
Wireless and Mobile Computing, v 1, n 1,2005, p 70-7.

[70] Hung, L., Giang, P., Zhung, Y., Phuong, T., Lee, S., and Lee, Y., A

trust-based security architecture for ubiquitous computing systems.
Proceedings of IEEE International Conference on Intelligence and
Security Informatics, ISI 2006, LNCS, v 3975, San Diego, USA, 2006, pp.
753-4.

[71] IBM Company. URL: http: //www. ibm. com

[72] Iheagwara, C., Blyth, A., and Bennett, M., Architectural and functional

issues in systems requirements specifications for wireless intrusion

detection systems implementation. Systems Communications 2005,

Montreal, Canada, 2005, pp. 434-41.

[73] Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., and Silva, F.,

Directed diffusion for wireless sensor networking. IEEE/ACM Trans.

Networking, v 11, n 1, Feb. 2003, pp. 2-16.

[74] Jacoby, G., and Davis, N., Battery-based intrusion detection. Proceedings

of IEEE Global Telecommunications Conference, v 4, Dallas, USA,

Nov. -Dec. 2004, pp. 2250-5.

[75] Janakiraman, R., Waldvogel, M., and Zhang, Q., Indra: a peer-to-peer

approach to network intrusion detection and prevention. Proceedings of

the Twelfth IEEE International Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises, Linz, Austria, Jun. 2003, pp.
226-31.

[76] Jansen, W., Karygiannis, T., Gavrila, S., and Korolev, V., Assigning and

enforcing security policies on handheld devices. Proceedings of the

Canadian Information Technology Security Symposium, Ottawa, Canada,

May 2002.

125

[77] Jansen, W., Mell, P., Karygiannis, T., and Marks, D., Applying mobile

agents to intrusion detection and response. NIST Interim Report (IR) -
6416,1999.

[78] Java Technology, URL: http: //java. sun. com/

[79] Ji, Y., Zhang, P., Hu, Z., Wang, X., Li, Y., and Tang, X., Towards mobile

ubiquitous service environment. Wireless Personal Communications, v 38,

n 1, Jun. 2006, pp. 67-78.

[80] Jbsang, A., Ismail, R., and Boyd, C., A survey of trust and reputation

systems for online service provision. Decision Support Systems, v 43, i 2,

Mar. 2007, pp. 618-44.

[81] Johnson, D., and Maltz, D., Dynamic source routing in ad-hoc wireless

networks. In T. Imielinski and H. Korth, editors, Mobile Computing,

Kluwer Academic Publishers, 1996, pp. 153-81.

[82] Jones, A., and Sielken, R., Computer system intrusion detection: A survey.
University of Virginia, Computer Science Department, Tech. Rep., 1999.

[83] Kachirski, 0., and Guha, R., Intrusion detection using mobile agents in

wireless ad hoc networks. Proceedings of IEEE Workshop on Knowledge

Media Networking, Kyoto, Japan, 2002, pp. 153-8.

[84] Kasahara, Y., and Yamada, K., NEC's activities for developing business

solutions and technology needed for a ubiquitous society. NEC Journal of
Advanced Technology, v 1, n 3, Summer 2004, pp. 167-75.

[85] Khoshgoftaar, T., Nath, S., Zhong, S., and Seliya, N., Intrusion detection

in wireless networks using clustering techniques with expert analysis.
Proceedings of Fourth International Conference on Machine Learning and
Applications, Los Angeles, USA, 2005, pp. 120-5.

[86] Kim, S., Tomar, S., Vijaykrishnan, N., Kandemir, M., and Irwin, M.,

Energy-efficient Java execution using local memory and object co-location.
IEE Computers and Digital Techniques, v 151, n 1,15 Jan. 2004, pp.
33-42.

[87] Krugel, C., and Toth, T., Flexible, mobile agent based intrusion detection

for dynamic networks. Euro. Wireless, Italy, Feb. 2002.

[88] Krugel, C., Toth, T., and Kirda, E., Service specific anomaly detection for

network intrusion detection. Proceedings of the ACM Symposium on
Applied Computing, Madrid, Spain, 2002, pp. 201-8.

126

[89] Krugel, C., Toth, T., and Kirda, E., Sparta-A mobile agent based intrusion

detection system. Advances in Network and Distributed Systems Security.

IFIP TC 1 WG 11.4. First Annual Working Conference on Network

Security, Leuven, Belgium, 2002, pp. 187-98.

[90] Lamsal, P., Requirements for modelling trust in ubiquitous computing and

ad hoc networks. Research Seminar on Telecommunications Software,

autumn 2002. URL: http: //www. tml. tkk. fi/StudiesfF-110.557/2002/papers/

pradip_lamsal. pdf

[91] Landwehr, C., and Goldschlag, D., Security issues in networks with
Internet access. Proceedings of the IEEE, v 85, n 12,1997, pp. 2034-51.

[92] Lee, H., Lightweight wireless intrusion detection systems against DDoS

attack. Proceedings of International Conference on Computational Science

and Its Applications, ICCSA 2006, LNCS, v 3984, Part V, Glasgow, UK,

2006, pp. 294-302.

[93] Lee, W., Cabrera, J., Thomas, A., Balwalli, N., Saluja, S., and Zhang, Y.,

Performance adaptation in real-time intrusion detection systems.
Proceedings of Recent Advances in Intrusion Detection, Lecture Notes in

Computer Science, Springer-Verlag, v 2516,2002, pp. 252-73.

[94] Lee, W., Fan, W., Miller, M., Stolfo, S., and Zadok, E., Toward

cost-sensitive modelling for intrusion detection and response. Journal of
Computer Security, v 10, n 1-2,2002, pp. 5-22.

[95] Li, J., Cordes, D., and Zhang, J., Power-aware routing protocols in ad hoc

wireless networks. IEEE Wireless Communications, v 12, n 6, Dec. 2005,

pp. 69-81.

[96] Liu, Y., Tian, D., and Wei, D., A wireless intrusion detection method
based on neural network. Proceedings of the Seventh IASTED

International Conference on Advances in Computer Science and
Technology, Puerto Vallarta, Mexico, 2006, pp. 207-11.

[97] Liu, Y., Comaniciu, C., and Hong, M., Modelling misbehaviour in ad hoc

networks: a game theoretic approach for intrusion detection. International

Journal of Security and Networks, v 1, n 3-4,2006, pp. 243-54.

[98] Long, M., and Wu, C., Energy-efficient and intrusion-resilient

authentication for ubiquitous access to factory floor information. IEEE

Transactions on Industrial Informatics, v 2, n 1, Feb. 2006, pp. 40-7.

127

[99] Lunt, T., Tamaru, A., Gilham, F., Jagannathan, R., Neumann, P., Javitz, H.,

Valdes, A., and Garvey, T., A real-time intrusion detection expert system
(IDES) - final technical report. Computer Science Laboratory, SRI

International, Menlo Park, California, USA, Feb. 1992.

[100] Manoj, B., Sekhar, A., and Siva Ram Murthy, C., On the use of limited

autonomous mobility for dynamic coverage maintenance in sensor

networks. Computer Networks, v 51, n 8, Jun, 2007, pp. 2126-43.

[101] Marks, D., Mel!, P., and Stinson, M., Optimizing the scalability of network
intrusion detection system using mobile agents. Journal of Network and
Systems Management, v 12, n 1, Mar. 2004, pp. 95-110.

[102] Mattem, F., The vision and technical foundation of ubiquitous computing.
Upgrade, v2n5, Oct. 2001, pp. 2-6.

[103] McQuillan, J., Richer, I., and Rosen, E., The new routing algorithm for the

ARPANET. IEEE Transactions on Communications, v COM-28, n 5, May

1980, pp. 711-9.

[104] Microsoft . NET, URL: http: //www. microsoft. com

[105] Mishra, A., Nadkarni, K., and Patcha, A., Intrusion detection in wireless

ad-hoc networks. IEEE Wireless Communications, v 11, n 1, Feb. 2004,

pp. 48-60.

[106] Moore, G., Cramming more components onto integrated circuits,
Electronics, v 38,1965, pp. 114-7.

[107] Moskowitz, I., Kang, M., Chang, L., and Longdon, G., Randomly roving

agents for intrusion detection. Proceedings of the IFIP Fifteenth Annual

Working Conference on Database and Application Security, Ontario,

Canada, 2001, pp. 135-49.

[108] Mukkamala, S., and Sung, A., Artificial intelligent techniques for intrusion

detection. Proceedings of IEEE International Conference on Systems, Man

and Cybernetics (SMC'03). Conference Theme - System Security and

Assurance, v 2, Washington, DC, USA, 2003, pp. 1266-71.

[109] Navidi, W., and Camp, T., Stationary distributions for the random

waypoint mobility model. IEEE Transactions on Mobile Computing, v3n
1, Jan. -Mar. 2004, pp. 99-108.

128

[110] Ohkubo, M., Suzuki, K., and Kinoshita, S., RFID privacy issues and

technical challenges. Communications of the ACM, v 48, n 9, Sept. 2005,

pp. 66-71.

[111] Ould-Ahmed-Vall, E., Riley, G., Heck, B., and Reddy, D., Simulation of
large-scale sensor networks using GTSNetS. Proceedings of the 13th IEEE

International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS'05), Atlanta,

USA, 2005, pp. 211-8.

[112] Peddireddy, T., and Vidal, J., Multiagent network security system using
FIPA-OS. Proceedings of IEEE SoutheastCon, South Carolina, USA, 2002,

pp. 229-33.

[113] Petrovic, S., Vulnerabilities in wireless networks and intrusion detection.

Telektronikk, v 101, n 1,2005, pp. 86-91.

[114] Pitts, J., and Schormans, J., Introduction to ATM design and performance:
With applications analysis software. John Wiley & Sons, Inc. New York,

NY, USA, 1996.

[115] Porras, P., and Neumann, P., EMERALD: Event monitoring enabling

responses to anomalous live disturbances. Proceedings of 20th

NIST-NCSC National Information Systems Security Conference, National

Institute of Standards and Technology, 1997, pp. 353-65.

[116] Postel, J., Simple Mail Transfer Protocol (SMTP). STD 10, RFC 821,

USC/ISI, Aug. 1982. URL: http: //www. ietf. org/rfc/rfc0821. txt

[117] Postel, J., and Reynolds, J., File Transfer Protocol (FTP). STD 9, RFC 959,

USC/ISI, Oct. 1985. URL: http: //www. ietf. org/rfc/rfc0959. txt

[118] Power, R., and Forte, D., Wireless, PDA and instant messaging: Achilles'

heel? Computer Fraud & Security, v 2005, n 10, Oct. 2005, p 7-9.

[119] Ptacek, T., and Newsham, T., Insertion, evasion, and denial of service:
Eluding network intrusion detection. Technical report, Secure Networks,

Inc., Jan. 1998.

[120] Qian, L., Song, B., and Li, X., Detection of wormhole attacks in

multi-path routed wireless ad hoc networks: A statistical analysis approach.
Journal of Network and Computer Applications, v 30, n 1, Jan., 2007, pp.
308-30.

129

[121] Qin, X., Lee, W., Lewis, L., and Cabrera, J., Integrating intrusion

detection and network management. Proceedings of IEEE/IFIP Network

Operations and Management Symposium. Management Solutions for the

New Communications World, Florence, Italy, 2002, pp. 329-44.

[122] Ragsdale, D., Carver, C., Humphries, J., and Pooch, U., Adaptation

techniques for intrusion detection and intrusion response systems.

Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, Nashville, USA, Oct. 2000, pp. 2344-9.

[123] Riley, G., The Georgia Tech network simulator. Proceedings of Workshop

on Models, Methods, and Tools for Reproducible Network Research

(MoMeTools), Karlsruhe, Germany, Aug. 2003, pp. 5-12.

[124] Roman, R., Zhou, J., and Lopez, J., Applying intrusion detection systems

to wireless sensor networks. 3rd IEEE Consumer Communications and
Networking Conference, CCNC 2006, v 1, Las Vegas, USA, 2006, pp.
640-4.

[125] Roussos, G., and Moussouri, T., Consumer perceptions of privacy,

security and trust in ubiquitous commerce. Personal and Ubiquitous

Computing, v 8, n 6,2004, pp. 416-29.

[126] Royer, E., and Toh, C. -K., A review of current routing protocols for

ad-hoc mobile wireless networks. IEEE Pers. Commun., Apr. 1999, pp.
46-55.

[127] Ryan, T., Statistical methods for quality improvement (2nd Ed, Wiley,

2000). ISBN: 0471197750.

[128] Sagara, K., Nishiki, K., and Koizumi, M., A distributed authentication

platform architecture for peer-to-peer applications. IEICE Transactions on
Communications, v E88-B, n 3, Mar. 2005, pp. 865-72.

[129] Salus, P., Casting the net: From ARPANET to INTERNET and beyond.

Reading, MA: Addison-Wesley, 1995. ISBN: 0201876744.

[130] Sande, T., and Tschudin, C., Protecting mobile agents against malicious
hosts. Mobile agents and security. Lecture Notes in Computer Science, v
1419, Springer-Verlag, 1998, pp. 44-60.

[131] Sang, K., and Choon, S., Security threats and their countermeasures of

mobile portable computing devices in ubiquitous computing environments.
Proceedings of International Conference on Computational Science and Its

130

Applications, ICCSA 2005, LNCS, v 3483, Part IV, Singapore, 2005, pp.
79-85.

[132] Schmidt, M., and Arnett, K., Spyware: a little knowledge is a wonderful

thing. Communications of the ACM, v 48, n 8, Aug. 2005, pp. 67-70.

[133] Schmoyer, T., Yu, X., and Owen, H., Wireless Intrusion detection and

response -A case study using the classic man-in-the-middle attack.

Proceedings of IEEE Wireless Communications and Networking

Conference, v 2, Atlanta, USA, Mar. 2004, pp. 883-8.

[134] Shand, B., Dimmock, N., and Bacon, J., Trust for ubiquitous, transparent

collaboration. Wireless Networks, v 10, n 6, Nov. 2004, pp. 711-21.

[135] Shin, M., Ma, J., Mishra, A., and Arbaugh, W., Wireless network security

and interworking. Proceedings of the IEEE, v 94, n 2, Feb. 2006, pp.

455-66.

[136] Singh, S., Woo, M., and Raghavendra, C., Power-aware routing in mobile

ad hoc networks. Proceedings of ACM MobiCom'98, Dallas, USA, 1998,

pp. 181-90.

[137] Sluzek, A., Annamalai, P., and Islam, M., A wireless sensor network for

visual detection and classification of intrusions. WSEAS Transactions on

Circuits and Systems, v 4, n 12, Dec. 2005, pp. 1855-60.

[138] Snapp, S., Brentano, J., Dias, G., Goan, T., and et al, A system for

distributed intrusion detection. COMPCON Spring 1991. Digest of Papers,

San Francisco, USA, 1991, pp. 170-6.

[139] Sobh, T., Wired and wireless intrusion detection system: Classifications,

good characteristics and state-of-the-art. Computer Standards & Interfaces,

v 28, n 6, Sept. 2006, pp. 670-94.

[140] Spafford, E., and Zamboni, D., Intrusion detection using autonomous

agents. Computer Networks, v 34, n 4, Oct. 2000, pp. 547-70.

[141] Srinivasan, T., Seshadri, J., Jonathan, J., and Chandrasekhar, A., A system

for power-aware agent-based intrusion detection (SPAID) in wireless ad

hoc networks. 19th Annual IFIP WG 11.3 Working Conference on Data

and Applications Security, LNCS, v 3654, Storrs, USA, 2005, pp. 153-62.

[142] Stajano, F., Security for ubiquitous computing. Wiley, 2002. ISBN

0470844930.

131

[143] Stallings, W., Cryptography and network security: principles and practice.

Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1998.

[144] Stallings, W., Pretty Good Privacy. ConneXions, v 8, n 12, Dec. 1994, pp.

2-11.

[145] Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J.,

Hoagland, J., Levitt, K., Wee, C., Yip, R., and Zerkle, D., GrIDS-A graph

based intrusion detection system for large networks. Proceedings of the

19th National Information Systems Security Conference, v 1, National

Institute of Standards and Technology, Oct. 1996, pp. 361-70.

[146] Stevens, W., TCP/IP Illustrated, Volume 1: The Protocols.

Addison-Wesley, 1994.

[147] Strassner, M., and Schoch, T., Today's impact of ubiquitous computing on

business processes. Proceedings of the First International Conference on

Pervasive Computing, Zurich, Switzerland, 2002.

[148] Takizawa, 0., Ubiquitous communications technology for disaster

mitigation. Journal of the National Institute of Information and

Communications Technology, v 52, n 1-2, Mar. -Jun. 2005, pp. 235-58.

[149] Tanenbaum, A., Computer networks, 4th Ed. Pearson Education

International, Upper Saddle River, NJ, USA, 2002.

[150] Thompson, H., Whittaker, J., and Andrews, M., Intrusion detection:

Perspectives on the insider threat. Computer Fraud & Security, Jan. 2004,

pp. 13-5.

[151] Toh, C. -K., Maximum battery life routing to support ubiquitous mobile

computing in wireless ad hoc networks. IEEE Communications Magazine,

v 39, n 6, Jun. 2001, pp. 138-47.

[152] Tseng, H., and Culpepper, B., Sinkhole intrusion in mobile ad hoc

networks: The problem and some detection indicators. Computers and

Security, v 24, n 7, October, 2005, pp. 561-70.

[153] USA Department of Defense. Trusted computer system evaluation criteria.

National Computer Security Center, DOD 5200.28-STD, Dec. 1985.

[154] Vogt, H., Small worlds and the security of ubiquitous computing.

Proceedings of Sixth IEEE International Symposium on a World of
Wireless Mobile and Multimedia Networks, WoWMoM 2005, Taormina,

Greece, 2005, pp. 593-7.

132

[155] Weiser, M., The computer for the 21" century. Scientific American

(International Edition), v 265, n 3, Sept. 1991, pp. 66-75.

[156] Wilder, A., and Shanmugasundaram, V., An introduction to intrusion

detection in the wireless environment. Proceedings of the 20th

International Conference Computers and their Applications, New Orleans,

USA, 2005, pp. 109-14.

[157] Yamada, S., and Kamioka, E., Access control for security and privacy in

ubiquitous computing environments. IEICE Transactions on
Communications, v E88-B, n 3, Mar. 2005, pp. 846-56.

[158] Ye, N., and Chen, Q., An anomaly detection technique based on a

chi-square statistic for detecting intrusions into information systems.
Quality and Reliability Eng. Int'l, v 17, n 2,2001, pp. 105-12.

[159] Ye, N., Chen, Q., Emran, S., and Noh, K., Chi-square statistical profiling
for anomaly detection. IEEE Systems, Man, and Cybernetics Information

Assurance and Security Workshop, West Point, USA, Jun. 2000.

[160] Zhang, Y., and Lee, W., Intrusion detection in wireless ad-hoc networks.
Proceedings of the Sixth Annual International Conference on Mobile

Computing and Networking, Boston, USA, 2000, pp. 275-83.

[161] Zhang, Y., Lee, W., and Huang, Y., Intrusion detection techniques for

mobile wireless networks. Wireless Networks, v 9, n 5, Sept. 2003, pp.

545-56.

[162] Zhang, Z., Manikopoulos, C., and Jorgenson, J., Architecture of

generalized network service anomaly and fault thresholds. Proceedings of

4th IFIP/IEEE International Conference on Management of Multimedia

Networks and Services, (MNS 2001), Chicago, USA, Oct. - Nov., 2001, pp.

241-55.

[163] Zhong, S., Khoshgoftaar, T., and Nath, S., A clustering approach to

wireless network intrusion detection. Proceedings of 17th IEEE

International Conference on Tools with Artificial Intelligence (ICTAI'05),

Hong Kong, China, 2005, pp. 190-6.

[164] Zhong, S., Song, Q., Cheng, X., and Zhang, Y., A safe mobile agent

system for distributed intrusion detection. Proceedings of International

Conference on Machine Learning and Cybernetics, v 4, Xi'an, China,

2003, pp. 2009-14.

133

[165] Zhou, S., Qin, Z., Luo, X., Zhang, X., Zhang, F., and Liu, J., Cost-based

intelligent intrusion detection and response: design and implement.

Proceedings of the Fourth International Conference on Parallel and
Distributed Computing, Applications and Technologies, Chengdu, China,

2003, pp. 166-70.

[166] Zincir, I., Furnell, S., and Phippen, A., Intrusion detection via behavioral

profiling on mobile and wireless networked devices. Eleventh Annual

Scientific Conference on Web Technology, New Media Communications

and Telematics Theory Methods, Tools and Applications

(EUROMEDIA'05), Toulouse, France, 2005, pp. 67-71.

134

APPENDIX A

SIMULATION CODE

This Appendix provides the code used for network simulation. The simulated

environment is described in chapter nine. It is written in C++ programming
language under GTSNetS.

smartspace normal. cc

! 'Written by Bo Zhou, Liverpool JMU, 2006

Simulation of a smart space with one head node, ten user nodes and forty

service nodes. Energy consumptions are recorded.

#include "simulator. h"

#include "node. h"

#include "wlan. h"

#include "ratetimeparse. h"

#include "application-cbr-sn. h"

#include "udp. h"
#include "routing-dsr. h"

#include "routing-nvr. h"

#include "routing-aodv. h"

#include "wireless-grid-rectangular. h"

#include "trace. h"

#include "application-sntest. h"

#include "mobility-random-waypoint. h"

#include "servicenode-CBR. h"

#include <sstream>
#include <fstream>

#include "trace-sn. h"

#include "battery. h"

#include "sensors. h"

135

#include "sensor. h"

#include "node-sn. h"
#include "interface-wireless. h"

#include "ratetimeparse. h"

#define ANIMATION_ON

#define XWIDTH 150

#define YWIDTH 150

#define NO NODE 51

#define NO_HNODE 1
#define NO UNODE 10

#define NO SNODE 40

#define NO SNODECBR 20

#define NO_SNODECBR_P 20

#define RADIORANGE 30

#define SIM TIME 20000
#define UNODETIME 3000

#define INIT_ENERGY 2000 //Initial energy of 2 Joules (2000 mJ)

#define ROUTING_DNVR 1

#define ROUTING_DSR 2

#define ROUTING_AODV 3

using namespace std;

// Simple timer class for random choose scenario

class RandomChoose : public Timer {

public:

virtual void Timeout(TimerEvent*); // Called when timer expires

RandomChoose(Node**, ServiceNodeCBR*, ServiceNodeCBR*, Node*,

double*, double*, Time_t*, Time_t*, Energy t*);

int ActiveNode();

void ProcessRecord(string, Node*, Node*, Portld t);

Node* getMidNode(Node*);

Portld_t getMidPort(Node*);

string status;
Node** AIINode;
double* si; llenergy consumption rate at idle status
double* sb; //energy consumption rate at busy status

136

Time_t* st; //safetime since last known abnormal activities
Time_t* pt; //previous time since last status changed
Energy_t* pe; //previous energy left since last status changed

private:
ServiceNodeCBR* CBRNode;

ServiceNodeCBR* CBRNode_P;

Node* UserNode;

int rNumber,
Node* midNode;
Portld_t midPort;
Uniform urvNodeNumber, urvBusyTime, urvidleTime, attackTime, CBRRate;

Uniform urvCBRP[NO_SNODECBR P];

//parameter range of CBR nodes
bool nwkdied, unodeEnergyRecorded;

ofstream eventRecords; //recorder for entire system

};

RandomChoose:: RandomChoose(Node** n, ServiceNodeCBR* cbrnode,

ServiceNodeCBR* cbrnodep, Node* usernode, double* Si,
double* s2, Time_t* t1, Time_t* t2, Energy_t* e)

{
urvNodeNumber-Uniform(0, NO_SNODE);

urvBusyTime=Uniform(3,10); //How long the user will use the service node.

attackTime=Uniform(20,30); //During of launched attack

urvldleTime=Uniform(5,10); //idle time between services. similar to busytime

CBRRate=Uniform(1,10); //CBR rate is randomly generated too.

urvCBRP[0]=Uniform(18,25);

urvCBRP[1]=Uniform(30,50);

urvCBRP[2]=Uniform(65,95);
AIINode=n;

UserNode=usernode;
CBRNode=cbmode;

CBRNode_P=cbmodej;
UserNode->SetTrace(Trace:: DEFAU LT);

sb=sl;
si=s2;

st=tl;

137

pt=t2;
pe=e;

nwkdied=false; //network is not died yet

unodeEnergyRecorded=false; //user node's energy consumption rate is

//calculated during the process, only once.

//open events file

eventRecords. open("events. t(r', ios:: app);

if (! eventRecords){

cerr«"File could not be opened"«endl;

exit(1);
}

}

int RandomChoose:: ActiveNodeO{

int nNum;
int m=0;
while (m < 2*NO_SNODE){

nNum=(int)floor(urvNodeNumber. Value()); //make it 0-5

if(! static cast<NodeSN*>(AllNode

[nNum+1+NO_HNODE+NO_UNODE])->IsDead()) break;

else m++;
}

if (m==2*NO_SNODE) nNum=NO_SNODE+1;

return nNum;

}

Node* RandomChoose:: getMidNode(Node* n){
Node" node=n;

Meters
-t

dist;

int nodeNum=O;
double B=O; //energy

double T=O; //trust level

double R=0; //busylidle ratio

double tempMetric=0;

double maxMetric=0;

Energy j initEnergy=INIT_ENERGY; //currently we use the same configure
Energy_t curEnergy;
Timet now = Simulator.: NowO;

138

for (int i=1; i <= NO NODE; i++) (

dist=node->Distance(AIINode[i]);
if ((dist<RADIO RANGE))

curEnergy=static cast<NodeSN">
(AIINode[i))->getSNBatteryp->GetRemainingEnergyp;

if (i<=(NO HNODE+NO_UNODE)) initEnergy=INIT ENERGY"2;
//head node and user node have double battery capacity

else initEnergy=lNIT ENERGY;

cout<<"node ID: "<<AIINode[i]->IdO«" "«i«"remainEnergy: "

<<curEnergy<<" pt: N«pt[i-l]«" pe: "«pe[i-l]«" now: "

<<now«endl;

double errate=(initEnergy-curEnergy)/now;
B=curEnergylecrate; // currently do not need to consider d2 and t

//since the radio rang didn't really change
B=B/1000; //to confine the range of B to double figures
//note: prevent choosing node which has remaining energy less than 0

//but bigger tempMetric(caused by square).

R=(ecrate-si[i-1]l(sb[i-1]-ecrate);
if ((ecrate<=si[i-1])li(R<0.1)) R=0.1; //avoid too small and minus value

else if ((ecrate>=sb[i-1])IR(R>10)) R=10; //avoid too big and minus value
double x=ceil((now-st[i-1])/1000);

if (x>10) x=10;
double y=((pe[i-1]-curEnergy)/(now-pt[i-1]))/si[i-1];

if (y<1) y=1;
T=x/y;

tempMetric=(B1 R;

cout<<" ecrate: "«ecrate«" idle: "«si[i-1]«" busy: "«sb[i-1]

«" x: "«x«" y: "«y«endl;

cout «" B: "<<B<<" R : "<<R<<" T: "«T

«" tempMetnc: "«tempMetric«endl;

if ((curEnergy>1)&&(tempMetric>maxMetric)){

//1 used to ensure the node is not died

maxMetric=tem pM etric;
nodeNum=i;

}
//energy cost on distribution of the hybrid metric

e= (static cast<NodeSN">(AIINode[i])->getPerBitEnergy())*5;

139

static cast<NodeSN*>(AIINode[i])->updateComputingEnergy(e);
}

}

cout«"chosen node ID: "«AIINode[nodeNum]->Id()

«" number i: "«nodeNum«endl;

if (nodeNum==O){ /lall neighbour nodes are died, e. g. network died

if(nwkdied==false){

Timet now=Simulator:: NowO;

ofstream deathRecords;
deathRecords. open("death. txt", ios:: app); //open mode is append.
if (! deathRecords){

teer«"File could not be opened"«endl;

exit(1);

}
deathRecords«now«" network is died"«endl;

nwkdied=true; //network is already died
}

return node;
}

else return AllNode[nodeNum];

}
Portld_t RandomChoose:: getMidPort(Node* n){

Node" node=n;
Portld_t p=1000+node->Id();

return p;
}

void RandomChoose:: ProcessRecord (string s, Node* sn, Node* mn, Portld_t mp){

string status=s;

Node" snode=sn;
Node* mnode=mn;
//mnode=AHHNode[1]; //use head node as proxy node

//mnode=snode; //use service node itself as proxy node

Portld_t mport=mp;

mport=1000+mnode->Id();
Size

_t
ssize=status. length(};

IPAddr t mdst=mnode->GetlPAddr();
Energy_t e;
cout<<status«" size of s is: "«ssize«endl;

140

cout<<" middle node is: "<<mnode->Ido;

cout<<" midle port is: "<<mport«endl;

L4Protocol* 14Proto=static cast<NodeSN*>(snode)->
GetApplicationSNQ->GetL4();

I4Proto->SendTo(ssize'2, mnode->GetIPAddro, mport);
if (! static cast<NodeSN*>(snode)->IsDeadO) {

e= (static cast<NodeSN">(spode)->getPerBitEnergy()*ssize;

e=e'500; //process ids event needs extra processing power.

static cast<NodeSN*>(snode)->updateComputingEnergy(e);
}

if (! staticcast<NodeSN*>(mnode)->IsDead()) {

e=5; //process ids event needs extra processing power.

static cast<NodeSN'>(mnode)->updateComputingEnergy(e);
}

}

void RandomChoose:: Timeout(TimerEvent* ev){
Timet now = Simulator.: Nowo ;
if ((now>UNODETIME)&&(! unodeEnergyRecorded)){

unodeEnergyRecorded=true;
eventRecords«"-----------------------============"«endl; -----------------------------------
for(inti=0; i<NO_UNODE; i++){

eventRecords«"node "«AIINode[2+i]->Id()«"

«static cast<NodeSN*> (AIINode[2+i])

->getSNBattery()->GetRemainingEnergy(«endl;

}
}
double busyTime;

busyTime=urvBusyTime. Value();

double idleTime=urvldleTime. Valueo ;
if (now<(SIMTIME-100)){

rN umber=ActiveNode();

cout <<"Progress"<< now « endl;

cout<<"Randomly selected node is: node "

«1+rNumber+NO_HNODE+NO UNODE«endl;

cout<<"Random busy period is: "«busyTime«" seconds"«endl;

cout«"Random idle period is: "«idleTime«" seconds"«endl;
if (rNumber<NO_SNODECBR){

141

CBRNode[rNumber]. GetAppO->SetRemoteNode(UserNode);

int ratelndex=(int)CBRRate. Value();

CBRNode[rNumber]. GetApp()->cbrRate=
(Rate_t)Rate("4.096Kb") * ratelndex/5.0;

status=CBRNode[rNumber]. SetStatus("on", now);

midPort=getMidPort(midNode);
ProcessRecord(status, CBRNode[rNumber]. GetNode(), midNode,

midPort);
CBRNode[rNumber]. GetAppO->StartAppO;

CBRNode[rNumber]. GetAppo ->Stop(busyTime);
status=CBRNode[rNumber]. SetStatus("off', now+busyTime);

ProcessRecord(status, CBRNode[rNumber]. GetNode(), midNode,

midPort);
pt[rNumber+NO HNODE+NO UNODE]=now+busyTime;

pe[rNumber+NO_HNODE+NO UNODE]=static cast<NodeSN">
(AIINode[1+rNumber+NO_HNODE+NO_UNODE])->

getSNBatteryO->GetRemainingEnergy(;

else if (rNumber<NO SNODECBR+NO_SNODECBR_P){

rNumber=rNumber-NO_SNODECBR;
double ranPara=urvCBRP[(rNumber%3)]. ValueO;

CBRNode_P[rNumber]. GetAppO->SetRemoteNode(UserNode);

int ratelndex=(int)CBRRate. Value();

CBRNode P[rNumber]. GetApp(->cbrRate=

(Rate_t)Rate("4.096Kb") * ratelndex/5.0;

status=CBRNode P[rNumber]. SetStatus("on", now);

midNode=getMidNode(CBRNode_P[rNumber]. GetNode());

midPort=getMidPort(midNode);
ProcessRecord(status, CBRNode_P[rNumber]. GetNodep, midNode,

midPort);

status=CBRNode P[rNumber]. SetStatus("set", now, ranPara);
ProcessRecord(status, CBRNode_P[rNumber]. GetNodep, midNode,

midPort);

CBRNode P[rNumber]. GetApp()->StartApp();
CBRNode P[rNumber]. GetAppO->Stop(busyTime);

status=CB RNode_P[rNumber]. SetStatus("off', now+busyTime);
ProcessRecord(status, CBRNode P[rNumber]. GetNode(, midNode,

midPort);

142

pt[rNumber+NO_HNODE+NO_UNODE+NO_SNODECBR]=
now+busyTime;

pe[rNumber+NO_HNODE+NO_UNODE+NO_SNODECBR]=
static cast<NodeSN">(AIINode[1+rNumber+NO_HNODE

+NO_UNODE+NO SNODECBR])->getSNBatteryo ->GetRemainingEnergy();
)else(//all nodes are died

Timet now=Simulator:: Now();

ofstream deathRecords;

deathRecords. open("death. txt", ios:: app);
//open mode is append.

if (! deathRecords){

cen«NFile could not be opened"«endl;

exit(1);
}
deathRecords«now«" all nodes are died"«endl;

idleTime=SIMTIME-now-100;

//make it ends now. no more random choose procedure

}//end of else
Schedule(ev, busyTime+idleTime);

} else {// start record all actions to trace file.

for (int i=0; i< NO_SNODECBR; i++) {

eventRecords«CBRNode(i]. GetRecords();

}
for (int i=0; i< NO_SNODECBR_P; i++) {

eventRecords<<CBRNode_P[i]. GetRecords();

}
eventRecords. closeO;

}

class RecordDeath : public Timer {

public:

virtual void Timeout(TimerEvent*); //Called when timer expires

Record Death(N ode**);

private:
Node" AIINode;
bool ndied[NO_NODE+1];
Timet deathTime[NO NODE+1];

143

Timet totamime;
Timet meanTime;
ofstream deathRecords; //recorder for entire system

int diedNum;

};
RecordDeath:: RecordDeath(Node*' allnode){

AIINode=allnode;

//open events file

deathRecords. open("death. b(t", ios:: app); //open mode is append.

if (! deathRecords){

cerr«"File could not be opened"«endl;

exit(1);
}

deathRecords«"___________________________________"«endi;
for (int i=0; i <= NO_NODE; i++) ndied[i]=false;
diedNum=O;
totalTime=O;

meanTime=O;
}

void RecordDeath:: Timeout(TimerEvent* ev) {
Timet now = Simulator.: Now();

if (now<(SIMTIME-50)) {

for (int i=0; i< NQ-NODE; i++){
if ((! ndied[1+i]) && (static_cast<NodeSN*> (AIINode[1+i])->IsDeadO)){

deathRecords«now«" node "<<AIINode[1+i]->IdO«" is died"«endl;

ndied[1+i]=true;
deathTime[1+i]=now;

diedNum++;

}
}
if(diedNum<(NO_NODE/2)) Schedule(ev, 1.5);

else (

deathRecords«now«" The network(half Nodes) is died "«endl;

for (int i=0; i< NO_NODE; i++){

if(ndied[1+i]) totalTime=totalTime+deathTime[1+i];
}
deathRecords«"Total life time is: "«totalTime«endl;

deathRecords«"Died node number is: "«diedNum«endl;

144

meanTime=totalTime/diedNum;
deathRecords«"Everage life time is: "«meanTime«endl;

//standard=maybe calculate standard deviation later

Schedule(ev, SIMTIME-now-40);

}
}else deathRecords. close();

}

int main(int argc, char** argv)
{

/' parameters setting
1. ad hoc routing protocol type

2. seed

int routingProto = ROUTING_DSR;
Seed

_t seed = 1;
if (argc > 1) {

if (! strcmp("dnvr", argv[1])) routingProto = ROUTING_DNVR;

else if (! strcmp("aodv", argv[1])) routingProto = ROUTING_AODV;
}
if (argc > 2) seed = atoi(argv[2]);

Random:: GlobalSeed(seed, seed, seed, seed, seed, seed);

Simulator s;

s. HasM ob il ity(tru e);

H trace file

Trace* gs = Trace:: Instance();

gs->Open("smartspace_normal. txt");

TraceSN* is = TraceSN:: Instance();

is->OpenC'smartspace_normal_sn. txt");

ts->OnSN();

gs->IPDotted(true);

//TC P:: Log Flag sText(true);
// Log flags in text mode, e. g. show 'SYN' insteadof'0x02'
//TCP:: TC PHeader->DetailOff(TCP:: FI D);

145

II Increase detail of L3 trace messages
IPV4:: Instancep->DetailOn(IPV4:: TOTALLENGTH);

//packet total Iength, inc. data
IPV4:: Instanced->DetailOff(IPV4:: TTL); //disable time to live column
IPV4:: Instance()->DetailOff(IPV4:: VERS ION); //disable version column IP4 or 6

IPV4:: InstanceO->DetailOff(IPV4:: UID); //packet unique ID. default ON

IPV4:: InstanceO->DetailOff(IPV4:: PROT000L); //disable protocol number
//IPV4:: Instance()->DetailOn(IPV4:: FRAGMENTOFFSET); Default off
IPV4:: Instanceo->SetTrace(Trace:: DEFAULT);

// routing protocol
if (routingProto == ROUTING DSR)

Routing:: SetRouting(new RoutingDSR); // set DSR to default routing

else if (routingProto == ROUTING_DNVR) {
Routing:: SetRouting(new RoutingNVR); // set NVR to default routing

Energy_t initEnergy =INIT ENERGY;

Timet reclnterval = 500;

WirelessLink wlink((NO_NODE), IPAddr("192.168.0.0"), MASK ALL,

reclnterval, initEnergy, MODEL1);

Uniform urvx(O, (XWIDTH-RADIO_RANGE)),

urvy(O, (YWIDTH-RADIO RANGE));

llCreate Grid to allow random waypoint mobility,
//+-1 to make sure the mobile node virtually will not move out of grid
Uniform borderx(O, XWIDTH-RADIO RANGE-1),

bordery(O, YWIDTH-RADIO RANGE-1);
WirelessGridRectangular g(Location (1,1), Constant(NO_NODE), borderx,

bordery, IPADDR_NONE, false);

Node* n[NO_NODE+1];
Portld_t rPort[NO NODE+1];

Portld_t IPort[NO NODE+1];

InterfaceWirelessSN" iface[NO_NODE+1];

for (int i=0; i <=NO_NODE; i++) {

n[i] = wlink. GetNode(i);

n[i]->SetRadioRange(RADIO_RANGE);

n[i]->SetLocation(urvx. ValueO, urvy. ValueO);

146

rPort[i]=1000+i;
(Port[i]=1000+i;
if (i==0){

/linitialize node n0. It is a sink node automatically generated by wlink.

n[i]->SetRadioRange(O);

n[i]->SetLocation(XWIDTH, YWIDTH);

n[i]->SetTrace(Trace:: DISABLED);

static_cast<NodeSink*> (n[i])->TraceSNOff(NodeSink:: SINKNODE_ID);

static cast<NodeSink"> (n[i])->
TraceSNOff(NodeSink:: NOD E_SENSING_EN ERGY);

static cast<NodeSink"> (n[i])->

TraceSNOff(NodeSink:: NODE_RELAY[NG_ENERGY);

static cast<NodeSink"> (n[i])->

TraceSNOff(NodeSink:: NODE_COMPUTING_ENERGY);

static cast<NodeSink*> (n[i])->
TraceSNOff(NodeSink:: NODERELAY OVERHEAD_ENERGY);

static cast<NodeSink*> (n[i])->

TraceSNOff(NodeSink:: NODE_COMP OVERHEAD_ENERGY);

static cast<NodeSink*> (n[i])->

TraceSNOff(NodeSink:: NETW TOTAL_ENERGY);

static cast<NodeSink*> (n[i])->
TraceSNOff(NodeSink:: NETW SENSING_ENERGY);

static_cast<NodeSink*> (n[i])->
TraceSNOff(NodeSink:: NETW RELAYING_ENERGY);

static cast<NodeSink"> (n[i])->

TraceSNOff(NodeSink:: NETW_COMPUTING_EN ERGY);

static cast<NodeSink"> (n[i])->
TraceSNOff(NodeSink:: NETW RELAY OVERHEAD_ENERGY);

static cast<NodeSink'> (n[i])->

TraceSNOff(NodeSink:: NETWCOMP OVERHEAD_ENERGY);

static cast<NodeSink*> (n[i])->

TraceSNOff(NodeSink:: NETWLIFETIME);

static cast<NodeSink*> (n[i])->TraceSNOff(NodeSink:: SENSED
_DATA);

static cast<NodeSink*> (n[i])->TraceSNOff(NodeSink:: NODE X);

static cast<NodeSink*> (n[i])->TraceSNOff(NodeSink:: NODE_Y);

static cast<NodeSink*> (n[i])->TraceSNOn(NodeSink:: TIME);
static cast<NodeSink*> (n[i])->TraceSNOn(NodeSink:: SENSNODE_ID);

147

else{

//static cast<NodeSN*> (n[i])->SetApplicationSN (app[i]);

static cast<NodeSN*> (n[i])->getSNBattery()->SetMinEnergy(1);

static cast<NodeSN*> (n[i])->setSize(32);

static cast<NodeSN*> (n[i])->setPerBitEnergy(O. 0002);

//parameter to define how much energy are used for each packet
//processed. kind of at application layer. The physical layer cost is

//defined by interface initialization.

static cast<NodeSN*> (n[i])->setComputePower(0.00001);

iface[i] = static cast<lnterfaceWirelessSN*>(static cast<NodeSN*>
(n[i])->GetSNIface());

iface[i]->setTxPower(0.000001);

iface[i]->energyModel = MODELL;

iface[i]->SetPerBitTxEnergy(O. 000045);

iface[i]->SetPerBitM2TxEnergy(0.00001);

Min micro Joules : 10 pJ/bit/m2 for attenuation factor of 2
iface[i]->SetAttenuationFactor(2);
iface[i]->SetPerBitRxEnergy(0.000135);

CBRApplicationSN" app[NO_HNODE+NO UNODE+1];

//Initiate array of Head Nodes

for (int 1=0; i< NO_HNODE; i++) {

n[1+i]->Color(Qt:: blue);

app[1+i]=new CBRApplicationSN(n[O], rPort[1+i], IPort[1+i], 0,512, UDPO);

static cast<NodeSN"> (n[1+i])->SetApplicationSN (app[1+i]);

static cast<NodeSN*>(n[1+i])->getSNBatteryO->
SetRemainingEnergy(INIT ENERGY*2);

//Initiate array of User Nodes

for(inti=0; i<NO UNODE; i++)

n[1+NQ_HNODE+i]->Color(Qt:: red);

n(1+NO_HNODE+i]->Shape(Node:: CIRCLE);

n[1+NO_HNODE+i]->AddMobility(RandomWaypoint(g, Uniform(1200,1500),

Uniform(0,1))); //first is the thinking time, second is the velocity

148

app[1+NO_HNODE+i]=new CBRApplicationSN(n[O], rPort[1+NO_HNODE+i],
IPort[1+N0 HNODE+i], 0,512, UDPO);

static cast<NodeSN'> (n[1+NO_HNODE+i])->
SetApplicationSN (app[1+NO_HNODE+i]);

static cast<NodeSN*>(n[1+NO_HNODE+i])->getSNBattery()->
SetRemainingEnergy(INIT ENERGY"2);

//Initiate array of CBR service node without parameter only on off
Ratet cbrratefl = {(Rate_t)Rate("4.096Kb") * 0,

(Rate_t)Rate("4.096Kb") * 0, (Rate_t)Rate("4.096Kb") * 0);

Size
_t

cbrpsizefl={512,512,512};
ServiceNodeCBR cbmode[NO SNODECBR];

for (int i=0; i< NO_SNODECBR; i++) {

cbmode[i]=ServiceNodeCB R(n[O],

wlink. GetNode(1+N0 HNODE+NO UNODE+i),

rPort[1+NO HNODE+NO_UNODE+i],

IPort[1+NO_HNODE+NO_UNODE+i], cbrrate[(i%3)], cbrpsize[(i%3)]);

//Initiate array of CBR service node with one parameter on off and set
Ratet cbrrate_pf _ {(Rate t)Rate("4.096Kb") * 0,

(Rate t)Rate("4.096Kb") * 0, (Rate t)Rate("4.096Kb") * 0);
Size j cbrpsizejE={512,512,512};

double cbrý-para[]={20,40,80}; //default parameter value

ServiceNodeCBR cbrnode p[NO SNODECBR_P];

for (int i=0; i< NO_SNODECBR_P; i++) {

cbmode_p[i]=ServiceNodeCBR(n[0],

wlink. GetNode(1+NO_HNODE+NO_UNODE+NO_SNODECBR+i),

rPort[1+N0 HNODE+NO_UNODE+NO_SNODECBR+i],

IPort[1+NO HNODE+NO_UNODE+NO SNODECBR+i],

cbrrate_p[(i%3)], cbrpsize_p[(i%3)], cbrý_para[(i%3)]);

llread energy consumption rate from ecr. txt
ifstream ecr("ecr. t(t", ios:: in);

if (lecr){
cerr«"File could not be opened"«endl;

149

exit(1);

}
double Si[NO_NODE];

double Sb[NO NODE];

int nnum=0;
double temps;

while (! ecr. eofp){

char temp[256];

ecr. getline(temp, 256);

if (temp[o]=='E'){

char * pch;

pch=strrchr(temp, '); //get the pointer on last appreance of space.
//It will get the last token in the line.

if (temp[3]== i') Si[nnum] = atof (pch);

//convert string to double. consumption rate during idle

else {
Sb(nnum] = atof (pch); I/consumption rate at busy
if (Sb[nnum]<Si[nnum]){

temps=Sb[nnum];

Sb[nnum]=Si[nnum];

Si[nnum]=temps;

}

nnum++;
}

}
}
//an array used to record node's safe time

Timet safeTime[NO_NODE];
for (int i=0; i< (NO NODE); i++) safeTime[i]=0;
//an array used to record nodes' previous status change time

Timet pTime[NO NODE];

for (int i=0; i< (NO_NODE); i++) pTime[i]=0;
/Jan array used to record nodes' previous energy at last status change time

Energy_t pEnergy[NO_NODE];

for (int i=0; i< (NO_NODE); i++){

if (i<(NO HNODE+NO_UNODE)) pEnergy[i]=INIT_ENERGY*2;

else pEnergy[i]=INIT ENERGY;

}

150

//Start call user scenario

gs->On(4); l/allowed trace on layer 4

gs->On(3); l/allowed trace on layer 4

gs->TimePrecision(3); //set bit number after dote

int activeu= 1;

static cast<NodeSN*>(n[1+NO_HNODE+activeu])->getSNBattery(->
SetRemainingEnergy(IN IT ENERGY*2);

RandomChoose t(n, cbmode, cbmode_p, n[activeu+l+NO_HNODE], Sb, Si,

safeTime, pTime, pEnergy);
t. Schedule(new TimerEvent, 1.5);

Record Death t1(n);

ti. Schedule(new TimerEvent, 1.0);

//s. Progress(1.0);

s. StopAt(SIM TIME);

//s. AnimationUpdatelnterval(Time("l ms"));

//s. StartAnimation(0, true);

s. Runo;

gs->CloseO;

cout <<"Simulation complete" « endl;

for (int i=0; i< NO_NODE; i++)

cout<<" node "<<n[1+i]->IdO«" "« static_cast<NodeSN*>
(n[1+i])->getSNBatteryO->GetRemaining EnergyQ«endl;

151

APPENDIX B

DETECTION ALGORITHM

This Appendix provides the code used for intrusion derection. The detection

algorithm is the chi-suqare statistic test described in chapter seven. It is written in

Java programming language.

DetectionAlgorithm. java

r Written by Bo Zhou, Liverpool JMU, 2006

Detect anomalies by reading event records and calculating the anomalous index

x2.
I

import java. io. *;

import java. math. *;

import java. util. ";

public class DetectionAlgorithm {

public static void main(String args[J)

{
File pDistribution = new File("distribution. txt");

File mRecords= new File ("records. txr');

//format of event record should be

//service id, user id, action, time, duration, parameter, packet in, packet out
int NO_SNODE=10;
int S TIME=1200;

int STEPS=10;
int NONNUM=5;

//difference between node number and last digital of IP addr
double DECAY=0.3; //decay rate
java. textDecimalFormat df2 =new java. text. DecimalFormat("#. 00");
java. text. DecimalFormat df4 =

new java. text. Decimal Format("#. 0000");

152

if (pDistribution. existsO&& mRecords. exists())

System. out. print(
pDistribution. getName() +" exists\n" +

(pDistribution. isFile() ? "is a file\n" :
"is not a file\n")+

(pDistribution. isDirectory() ? "is a directory\n" :
"is not a directory\n") +

(pDistribution. isAbsolute() ? "is absolute path\n" :
"is not absolute path\n") +

"Last modified: "+ pDistribution. IastModified() +

"\nLength: "+ pDistribution. Iength() +

"\nPath: "+ pDistribution. getPath() +
"\nAbsolute path: "+ pDistribution. getAbsolutePath() +
"\nParent: "+ pDistnbution. getParent() +"\n\n");

if (pDistribution. isFileO && mRecords. isFile()) {

try {

RandomAccessFile pdistribution =

new RandomAccessFile(pDistribution, "rw");
RandomAccessFile mrecords=

new RandomAccessFile(mRecords, Y');

String record e, recorder/individual event records
Strings detail e, detail p;

StringE detail IP;

Tonga node_p=new long[NO_SNODE];

doublep X2=new double[3000];

//record all X2 to calculate mean and Sx2. i. e. threshold
int nodeNum=O; //number of current activated service node
int recordNum=O; //number of records has been processed
int alarmNum=O; l/recoed how many alarms have been raised

int rareNum=O; //record number of rare events

int falseNum=O; //record alarms raised without connection with
I/ rare events. i. e. number of false alarms.

//record starting position of each node's related records
// in distribution. txt file

while((recorder = pdistribution. read Line())! =null){
if (recordp. startsWith("node")){

153

node p[nodeNum]=pdistribution. getFilePointer();
nodeNum++;

}
}
//process each record

while((record -e = mrecords. readLine()) 1= null){
detail

-e = record e. split('Ms"); //split recrod by spaces
if (detail e[2]. equalslgnoreCase("on")){

double slime=Double. parseDouble(detail_e[3]);

detail_IP = detail_e[O]. split("W');
int node num=lnteger. parselnt(detail IP[3]);

nodeNum=node num-NONNUM;

pdistribution. seek(node_p[nodeNum]);
long tempStart=pdistribution. getFilePointero ;

//start position of off session
record. rpdistribution. read Lineo ;
detail_p=record_p. split('1\s"); //split pdf by spaces
double stimeminrDouble. parseDouble(detail_p[O]);
double slime ele=Double. parse Double(detail_p[l

int elenum=(int)Math. round
((stime-stime_min)/stime_ele);

String eleNum=lnteger. toString(elenum);

double ave=0.0;

double currentQ=0.0;
boolean match=false;

boolean rare=false;

for (int i=2; i<detailp. length; i=i+3)

ave=Double. parseDoub! e(detail p[i+1]);

if (details[i]. equa! slgnoreCase(e! eNum)){
detail_p[i+2]=Double. toString

(Doub! e. parseDoub! e(detail_p[i+2])"(1-DECAY)+DECAY);
if (ave==O) {

ave=0.001;
System. out. print("Rare event! ");

154

rareNum++;
rare=true;

}
match=true;

}else detaiI p[i+2j=Double. toString
(Double. parseDouble(detail p[i+2])*(1-DECAY));

if (ave! =0){

currentQ=currentQ+Math. pow
((Double. parseDouble(detail_p[i+2])-ave), 2)/ave;

}
}
if (match==false){ //the eleNum apprears for the first time

ave=0.001;

System. out. print("Rare event! ");

rareNum++;
rare=true;

currentQ=currentQ+Math. pow((DECAY-ave), 2)/ave;

}
String tempString=detailp[0]+" "+detail p[1]+" ";

pd istribution. seek(tempStart+tem pString. Iength());

for (int i=2; i<detail p. Iength; i=i+3){

pdistribution. writeBytes(detail_p[i]+" "+detail p[i+1]+
" "+df2. format(Doub! e. parseDoub! e(detail. p[i+2]))+"

}

recordNum++;
if ((currentQ>2.34)){//calculate from first time run this data set

System. out. print("Alarm! "+"X2="+df4. format(currentQ)+

" Record num="+recordNum+"\n");

alarmNum++;
if(rare==false) falseNum++; //this is a false alarm

}
}
else if (detail e[2]. equalslgnoreCase("off')){

double stime=Double. parseDouble(detail_e[3]);
double ptime=Double. parseDouble(detail_e[4]);
int ipacket=lnteger. parselnt(detail e[5]);
int opacket=lnteger. parselnt(detail e[6]);

155

detail_IP = detail_e[O]. split("\\. ");
int node_num=lnteger. parselnt(detail_IP[3]);

nodeNum=node_num-NONNUM;

pdistribution. seek(node_p[nodeNum]);

record_p=pdistribution. read Line();

long tempStart=pdistribution. getFilePointer();
//start position of off session

record_p=pdistribution. read Line();
//read twice to get PDs about'off related info

detail=record_p. split("\\s"); //split pdf by spaces
double ptime_min=Double. parseDouble(detail_p[O]);
double ptime ele=Double. parseDouble(detail_p[1]);

int elenum=(int)Math. round ((ptime-ptime_min)/ptime_ele);
String eleNum=lnteger. toString(elenum);
double ave=0.0;
double currentQ=0.0;
boolean match=false;
boolean rare=false;

for (int i=2; i<detail_p. length; i=i+3){

ave=Double. parseDouble(detailp[i+1]);
if (details[i]. equalslgnoreCase(eleNum)){

detailp[i+2]=Doub! e. toString

(Double. parseDouble(detail_p[i+2])*(1-DECAY)+DECAY);
if (ave==O) {

ave=0.001;
System. out. print("Rare event! ");

rareNum++;

rare=true;
}

match=true;
} else detail_p[i+2]=Double. toString

(Double. parseDouble(detail p[i+2])*(1-DECAY));
if (ave! =O){

currentQ=currentQ+Math. pow(
(Double. parseDouble(detailp[i+2])-ave), 2)/ave;

}

}

156

if(match==false)//the eleNum apprears for the first time {

ave=0.001;
System. out. print("Rare event! ");

rareNum++;

rare=true;
currentQ=currentQ+Math. pow((DECAY-ave), 2)/ave;

}

String tempString=detailp[O]+" "+detailj[1]+" ";

pdistribution. seek(tempStart+tempString. lengthO);
for (int i=2; i<detail p. length; i=i+3){

pdistribution. writeBytes(detail_p[i]+" "+detaiij[i+l]+

" "+df2. format(Double. parseDouble(detail p[i+2]))+" ");

}

recordNum++;
if ((currentQ>2.34)){// calculate from first time run this data set

System. out. print("Alarm! "+"X2="+df4. format(currentQ)+
" Record num="+recordNum+"\n");

alarmNum++;
if(rare==false) falseNum++; //this is a false alarm

}
//calculate input packets

pdistribution. seek(node p[nodeNum]);

record=pdistribution. read LineO;

record=pdistribution. read Lineo ;
tempStart=pdistribution. getFilePointer();
record. =pdistnbution. read Lineo ;

//read twice to get PDs about'off related info
detail=recordp. split("\\. s"); //split pdf by spaces
double ipacket min=Double. parseDouble(detailp[O]);
double ipacket ele=Double. parseDouble(detail_p[1]);

elenum=(int)Math. round ((ipacket-ipacket min)rpacket ele);

eleNum=lnteger. toString(elenum);

ave=0.0;

currentQ=0.0;

match=false;

rare=false;
for (int i=2; i<detailp. length; i=i+3){

ave=Double. parseDouble(detailp[i+1]);

157

if (details[i]. equalslgnoreCase(eleNum)){
detailp[i+2]=Double. toString(

Double. parseDouble(detail_p[i+2])"(1-DECAY)+DECAY);
if (ave==O) {

ave=0.001;
System. out. print("Rare event!

rareNum++;

rare=true;
}

match=true;
)else detail_p[i+2]=Double. toString(

Double. parseDouble(detail_p[i+2])"(1-DECAY));
if (ave! =0){

cu rrentQ=currentQ+Math. pow
((Double. parseDouble(detailj[i+2])-ave), 2)/ave;

}
}

if(match==false){//the eleNum apprears for the first time

ave=0.001;

System. out. print("Rare event! ");

rareNum++;
rare=true;
currentQ=currentQ+Math. pow((DECAY-ave), 2)lave;

}
tempString=detail_p[O]+" "+detail p[l]+"

pdistribution. seek(tempStart+tem pString. lengtho);

for (int i=2; i<detailp. length; i=i+3) {

pdistribution. writeBytes(detail. p[i]+" "+detailp[i+1]+

"+df2. format(Double. parseDouble(detailp[i+2]))+"
}

recordNum++;
if ((currentQ>2.34)){// calculate from first time run this data set

System. out. print("Alarm! "+"X2='+df4. format(currentQ)+

" Record num="+recordNum+"\n");
alarmNum++;
if(rare==false) falseNum++; //this is a false alarm

}

158

//calculate output packets

pdistribution. seek(node p[nodeNum]);

recorder=pd istribution. read Line();

record=pdistribution. read LineO;

record=pdistribution. read Lineo ;
tempStart=pdistribution. getFilePointer();

record=pdistribution. read LineO;

//read more lines to get PDs about'off related info

detail p=record_p. split('\1s"); //split pdf by spaces
double opacket min=Double. parseDouble(detailp[O]);

double opacket ele=Double. parse Double(detail_p[1]);

elenum=(int)Math. round((opacket-opacket min)/opacket ele);

eleNum=lnteger. toString(elenum);

ave=0.0;

currentQ=0.0;
match=false;
rare=false;
for (int i=2; i<detailp. Iength; i=i+3){

ave=Double. parseDouble(detailp[i+1]);

if (detailp[i]. equalslgnoreCase(eleNum)) {

detail_p[i+2]=Double. toString

(Double. parseDouble(detail_p[i+2])"(1-DECAY)+DECAY);
if (ave==O) {

ave=0.001;
System. out. print("Rare event! ");

rareNum++;

rare=true;
}

match=true;
)else detail p[i+2]=Double. toString(

Double. parseDouble(detail p[i+2])*(1-DECAY));
if (ave! =O){

currentQ=currentQ+Math. pow

((Double. parseDouble(detail p[i+2])-ave), 2)/ave;

}
}
if(match==false){ //the eleNum apprears for the first time

ave=0.001;

159

System. out. print("Rare event!

rareNum++;

rare=true;
currentQ=currentQ+Math. pow((DECAY-ave), 2)/ave;

}
tempString=detailp[O]+" "+detail p[l]+" ";

pdistribution. seek(tempStart+tempString. IengthO);

for (int i=2; i<detail p. length; i=i+3){

pdistribution. writeBytes(detail p[i]+" "+detail_p[i+1]+

" "+df2. format(Double. parseDouble(detailp[i+2]))+" 'I);
}

recordNum++;
if ((currentQ>2.34)){// calculate from first time run this data set

System. out. print("Alarm! "+"X2="+df4. format(currentQ)+

" Record num="+recordNum+"\n");
alarmNum++;
if(rare==false) falseNum++; //this is a false alarm

}
} else if (detail e[2]. equalslgnoreCase("set")){

double stime=Double. parseDouble(detail e[3]);
double para=Double. parseDouble(detail e[4]);
detail_IP = detail e[O]. split("\L. ");

int node_num=lnteger. parselnt(detail IP[3]);

nodeNum=node_num-NONNUM;

pdistribution. seek(node_p[nodeN um]);

record. =pdistribution. read Line();

record=pdistribution. read Line();

record_p=pd i stributi on. read Li neQ;

record=pdistribution. read Line();

long tempStart=pdistribution. getFilePointer(;

record_p=pdistribution. read Line();

detail=record_p. split("\\s"); //split pdf by spaces
double para_min=Double. parseDouble(detail p[O]);
double para_ele=Double. parseDouble(detail p[1]);
int elenum=(int)Math. round ((para-para_min)/para_ele);
String eleNum=lnteger. toString(elenum);
double ave=0.0;
double currentQ=0.0;

160

boolean match=false;
boolean rare=false;
for (int i=2; i<detail p. length; i=i+3){

ave=Double. parseDouble(detailp[i+1]);

if (details[i]. equa! slgnoreCase(eleNum)){

detailp[i+2]=Double. toString(

Double. parseDouble(detailp[i+2])*(1-DECAY)+DECAY);
if (ave==0) {

ave=0.001;
System. out. print("Rare event! ");

rareNum++;

rare=true;
}

match=true;
)else detailp[i+2]=Double. toString

(Double. parseDouble(detail_p[i+2])*(1-DECAY));

if (ave! =0){

currentQ=currentQ+Math. pow
((Double. parse Double(detail p[i+2])-ave), 2)/ave;

}
}
if(match==false){//the e! eNum apprears for the first time

ave=0.001;
System. out. print("Rare event! ");

rareNum++;

rare=true;
currentQ=currentQ+Math. pow((DECAY-ave), 2)/ave;

}
String tempString=detailp[O]+" "+detail_p[l]+"';

pdistribution. seek(tempStart+tempString. Iengtho);

for (int i=2; i<detail p. iength; i=i+3){

pdistribution. writeBytes(detail_p[i]+" "+detail p[i+1]+

""+df2. format(Doub! e. parse Doub! e(detailj, [i+2]))+" ");

}

recordNum++;
if ((currentQ>2.34)){ //calculate from first time run this data set

System. out. print("Alarm! "+"X2="+df4. format(currentQ)+

" Record num="+recordNum+"\n");

161

alarmNum++;
if(rare==false) falseNum++; //this is a false alarm

}
}

}//end of while

pdistribution. closeo;

/! save Q value in a file for later analysis

File Q_all = new File("Q. txt");

RandomAccessFile q_all =new RandomAccessFile(Qall, "rw");

q_all. seek(q_all. lengthO);

//calculate false alarm rate
double far, hr, //far=false alarm rate //hr-hit rate

if (recordNum==rareNum) far=(falseNum+0.0)/1.0;

//to avoid dividing 0 at denominator;

else far-(false Num+0.0)/(recordNum-rareNum+0.0);
if (rareNum==O) hr=(alarmNum-falseNum+0.0)/1.0;

//to avoid dividing 0 at denominator;

else hr-(alarmNum-falseNum+0.0)/(rareNum+0.0);

System. out. printC1nToatlAlarmNum="+alarmN um+
" FalseAlarmNum="+falseNum+" Record N um="+(record N um)+

" RareEventNum="+rareNum+" FalseAlarmRate="+df4. format(far)+
" HitRate="+df4. format(hr));

q_all. writeBytes("1nToatlAlarm N um="+alarm N um+
" FalseAlarmNum="+falseNum+" Record N um="+(record N um)+

" RareEventNum="+rareNum+" FalseAlarmRate="+df4. format(far)+
" HitRate= +df4. format(hr));

//calculate mean and Sx2
double totalX2=0;
double SX2=0;

double meanX2, Threshould;

int halfNum=recordNum/2;

for (int i=0; i<(halfNum); i++){

totalX2+=X2[i];

}

meanX2=totalX2/halfN um;
for (int i=0; i<halfNum; i++){

SX2+=Math. pow((meanX2-X2[i]), 2);

}

162

SX2=Math. sgrt(SX2/halfNum);
Threshould=meanX2+3`SX2;
System. out. print("\nmeanX2="+meanX2+" SX2="+SX2+

catch(IOException e2){

System. outprintC'FILE ERROR"+"fin");

}else if (pDistribution. isDirectoryo){
String directory[] = pDistribution. Iisto ;

System. out. print("\n\nDirectory contents: \n");
for (int i=0; i< directory. length; i++)

System. out. print(directory[iJ+ "\n"

else {

System. out. print(" Does Not Exist\n"+" FILE ERROR\n");

163

