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MET A. RY 

One of the basic unsolved problems in the theory of spatial mechanisms 

is the algebraic displacement analysis of single-loop, one-degree-of-freedom 

linkages, of which the 7R (consisting of sever. links connected by seven 

turning pairs, whose axes are arbitrarily orientated in space) is the most 

general. The required algebraic manipulation becomes complex for mechanisms 

having more than four links, and it is difficult to avoid obtaining extraneeuss 

roots in the derived displacement equations. The development of a trified 

theory for the analysis of spatial mechanisms, however, is a signii'icant and 

worthwhile aim since an algebraic (as opposed to a numerical) approach can 

illuminate many basic aspects of linkage behaviour, such as, for example, the 

necessary proportions for overclosure, the criteria. for rotability, the 

determination of type, the transmission characteristics, etc. 

Thus, the major objective is the derivation of input-output displacement 

equations free of extraneous or unwanted roots and this becomes the central 

problem. Generally, for a particular mechanism, it is necessary first to derive 

loop equations and then to eliminate unknown angular displacemcnt: s. Usually, 

performing more than one elimination procedure produces a final eliminant 

which contains the required input-output equation multiplied by an extra eous 

factor (which is, practically, impossible to find and extract). 

The theory presented in Part I of this thesis has been the foundation 

for the development of unified procedures for the analyses of spatial five-link. 

3R-2C (Chapter 6) and six-link 4R-P-C (Chapters 7,8 and 9) mechanisms 

(R, C and P denote respectively revolute, cylindric and prismatic pairs). 

The input-output equations for these linkages must be derived by eliminating 

a single angular displacement from two simultaneous equations in one operation. 

In addition to this, the theory is used to obtain sixteenth degree input-output 

equations for spatial six-link 5R-C, mechanisms (Chapter 10), by eliminating 



two unknown angular displacements, from four simultaneous equations, 4_n a 

single operation. These results are particularly significant as they hold 

promise for the eventual solution of the general 7R linkage. 

A contributing factor to the difficulties encountered in the derivation 

of input-output equations appears to be the presentation of the loop equations 

themselves. Little attention has been given to devising a general, efficient 

and compact notation. In the past, it has not been understood which loop 

equations can be considered to be basic or fundamental, how they are inter- 

related and how they may be classified. 

In this dissertation, loop equations are derived for spherical polygons 

simply by adding a series of spherical triangles together in succession and 

using the existing trigonometrical laws for the triangle (Chapter 4). A 

natural unified notation is evolved, and it is established that, in analogy 

with the case of the triangle, there are only three fundamental loop equations 

for any spherical polygon, namely, the sine, sine-cosine and cosine laws. 

All other loop equations (which fall naturally into groups of subsidiary sine, 

subsidiary sine-cosine and subsidiary cosine laws) may be derived from these 

three basic laws. In addition, novel half-tangent laws (Chapter 5) are 

derived which are expressions for the common root of pairs of sine and sine- 

cosine laws and are linear in the half-tangent of at least one angular 

displacement. 

These real spherical equations are extended to corresponding dual loop 

equations (applicable to spatial polygons), without further derivation, by 

means of the important Principle of Transference (Chapter 3), and in Part II 

the appropriate spatial polygons and dual equations are used to model and 

describe various five and six-link spatial linkages. The unified notation, 

the grouping of loop equations into sine, sine-cosine and cosine laws and 

especially the existence of the half-tangent laws, greatly facilitate the 

formation of proper sets of simultaneous algebraic equations for these linkages, 

from which input-output equations must then be derived in a single operation. 



Finally, an intuitive geometrical procedure is described (Chapter 2) 

which enables one to attach a physical significance to the number of closures 

of a given spatial mechanism, and hence to pr^dä. ct the. correct degree of its 

input-output equation in advance. The preliminary results obtained in this 

way, for the mechanisms dealt with here, are verified algebraically in 

Part II. 
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1.1 Introduction. 

For many years now a number of researchers have applied themselves to the 

problems encountered in the field of mechanisms. This is especially true in 

the case of planar mechanisms, where great inroads have been made in both the 

analysis and synthesis of such devices. However, the same cannot be said for 

spatial mechanisms, especially in the area of analysis where only recently 

have any significant results been obtained. 

The aim of this dissertation is to present a unified theory for the 

displacement analysis of spatial mechanisms and, to this end, it would be 

advantageous to define certain basic concepts. 

1.2 Mechanisms. 

For the purposes of kinematics a mechanism may be defined as an assemblage 

of rigid bodies mutually connected by non-rigid connections, in such a way as 

to transform one motion into another. Of all such possible devices there exists 

a class which deserves special attention, as its members are able to convert 

uniform motion into non-uniform motion. In particular, the set of linkages 

belongs to this class. 

1.3 Li" 

A lid is a collection of rigid members (also known as links) connected 

together by a number of lower-pair connector; that permit a restricted relative 

motion between adjacent links, and in such a way that all pairs are complete, 

thereby ensuring that the kinematic chain be closed. Henceforth in this work 

the words 'linkage' and 'mechanism' will be considered as being synonymous and 

as having the meaning of 'linkage'. 

Linkages may be classified into three basic types: - planar, spherical and 

spatial linkages. They are categorized thus according as their constituent 

parts (links) move in parallel planes, on the surface of concentric spheres, 

or exhibit a more general spatial motion. 

In order to identify and distinguish linkages in each class, it is necessary 

to understand the concepts of connectivity and mobility. 



4. 

1.4 Connectivity. 

When two rigid bodies are connected by a pair connector or joint, the 

resultant number of degrees of freedom which one of the bodies has relative 

to the other is defined as the connectivity of the joint (see Waldron [39]). 

If this connectivity is denoted by the integer, f, then it is clear that, for 

spatial motion, 0<f*: '. 6* When fw0, the pair forms a rigid coupling between 

the bodies and no relative motion can take place, whilst if f=6 unconstrained 

relative spatial motion exists. For the pairs considered here the strict 

inequalities hold and 0<f<6. 

1.5 Mobility. 

The mobility, or overall number of degrees of freedom, of a linkage is 

defined as the number of independent variables required to specify completely 

the position of each link relative to a fixed reference link called the frame. 

it may be denoted by the integer, F, so that for linkages with one degree of 

freedom (referred to as constrained mechanisms), Fs1. 

1.6 Mobility Criteria. 

There exist., various criteria by which the mobility of a linkage or 

mechanism may be determined. in general terms, the mobility depends on several 

factors which include the connectivities of the joints in the linkage, the number 

of joints and constraints and the number of links involved. 

Now for an a. semblage of n unconnected links there are k. n degrees of 

freedom, where k (assumed to be the same for each link) is the number of degrees 

of freedom of a single free link. However, in the case of a mechanism, one link 

is held fixed, as the frame, thereby reducing the number of degrees of freedom 

to k. (n - 1). Furthermore, since each joint removes (k - f) degrees of freedom, 

it is possible to express the mobility of a mechanism by the following formula: - 

Fm k(n - 1) - 

it 
(k 

- Cpl) 
(1.1) 

ls1 
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where: F= mobility of the mechanism* 
n= number of links. 
g= number of joints. 
fz* connectivity of the ith joint. 
kl= number of degrees of freedom of a single free link. 

For planar linkages each link is restricted to move in a plane and hence 

two position co-ordinates and one angular co-ordinate are required to define 

the position and orientation of a free link. There are thus three degrees of 

freedom for a single free link and hence k=3. Equation (1.1) then reduces 

to the Grübler criterion [18]s- 

i=g 

.F- 3(n - 1) - (3 - fi) (1.2) 
ia1 

In a similar manner one obtains the lutzbach criterion t27J, for spatial 

mechanisms (where k= 6): - 

F°6(n-1)-11 (6-fi) (1.3) 
ia1 

For spherical linkages it is clear that ke3 and equation (1.2) applies. 

1.7 Single-Loop Linkages. 

A single-loop mechanism is a mechanism, each link of which is connected to 

two other links (i. e. it is a binary link), and each joint of which connects 

two links (i. e. it is a second degree joint). For single-loop planar or 

spherical mechanisms of mobility one, it is apparent that the number of links 

and joints must be equal (i. e. na g) and tIis implies from equation (1.2) 

that: - 
. i= 

fi ex F+ 3e4 (1.4) 
i=1 

Now from the definition of fi it is clear that, mathematically, fi >1 and 

hence equation (1.4) implies that n<4. Physically, however f1 1 for planar 

and spherical pairs and so ns4. 

We are thus restricted to a few four-link mechanisms which satisfy 

equation (1.4). 
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For single-loop spatial mechanisms with mobility one, however, equation 

ý1.3} becomes: - 

n 
F+6 s'J 

i-1 
(1.5) 

For fi a1 this implies that the maximum permissible number of links, n, 

must be seven. However, for spatial mechanisms, it is possible to have joints 

for which fi >1 and consequently a large variety of single loop mechanisms, of 

mobility one, exists, in contrast with the planar and spherical cases. This 

variety stems from the existence of six types of lower pair as defined by 

Reuleaux [303, a great many combinations of which will yield mobility one 

spatial mechanisms. These six pairs are listed in Table I. with their syiibols 

and connectivities. 

Throughout the remainder of this dissertation these symbols will be used 

without further reference. 

1.8 Inversion. 

A particular linkage will be derived from a closed kinematic chain by 

fixing the reference co-ordinate system to a chosen link and hence treating all 

motions as being absolute, relative to this 'stationary' link, which is 

designated as the frame. Now, for a given arrangement and combination of joints 

in a kinematic chain, it is possible, in general, to obtain a number of 

distinct linkagesby selecting a succession o? different links as the frame. 

This process of fixing different links of a kinematic chain to create 

different mechanisms is referred to as kinematic inversion and the distinct 

mechanisms obtained are termed inversions of one another. 

1.9 Notation. 

Of the many notations which have been employed for the description and 

specification of linkages, that Of Yang [443 will be employed throughout this 

work, being the most appropriate for present purposes. This dissertation will 

deal almost exclusively with single loop spatial mechanisms of unit mobility 

which may be treated, therefore, as continuously deformable spatial polygons. 
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The latter are defined by a nw-nber of pair axes (these, in general, will. be 

non. -parallel and non-intersecting), together with a set of common perpendiculars 

between adjacent axes. 

Figure 1.1 illustrates a six-sided spatial polygon, where the six axes are 

labelled S1,..., S9 the common perpendicular distance and projected angle 

between two adjacent axes, Si 
and Sj, 

are denoted by aij and aij , and the offset 

distance and projected angle between two adjacent common perpendiculars, ä.. 

and ýk, are denoted by Si and A3 respectively. 

Following Yang [44] 
, when representing a spatial mechanism by a spatial 

polygon, it is necessary to choose certain parameters (the ocij's and ai3's) 

as being constant together with some of the St's and/or 0 PIs in order to 

accurately model the required joints. When this is done, it will prove convenient 

to label those SiIs and APIs that are constant with double subscripts (i. e. 

Sii or Aid). Thus all constant parameters will be represented by a symbol with 

two suffices, whilst variables will have a single suffix. 

The above system of notation is quite adequate for the purposes of this 

work since only three of the possible six lower pairs will appear in various 

combinations in the spatial mechanisms analysed. These are the revolute (R), 

prismatic (P) and cylindric (C) pairs. 

Henceforth, it will prove convenient to represent a linkage by a sequence 

of such symbols denoting the order of the constituent joints in the kinematic 

chain, starting with that pair between the frame and input link and finishing 

with that between the output link and the frame. Thus the spatial four-link 

mechanism having one revolute and three cylindric pairs would be represented as 

RCCC, where the input angular displacement takes place about the revolute pair 

axis. Sometimes this notation is shortened even further to RC3 or R-3C, but 

in certain circumstances this may lead to confusion over which inversion is 

being considered, particularly in the case of spatial mechanisms with more than 

four links. 
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it is clear £ro; n equatirn (1.5) that any such combination of joints i 

possible provided that the connectivities of the pairs total seven. i! Fc: h "z . sip 

which satisfy this condition and which contain only 12, P and C joints, include 

the five-link RCRCR and RRCCR, the six-link RCRPRR and RRRRCRg and the seven-link 

RPRRPRR and RRRRRRR linkages. 

Finally it must be noted that two similar groupings of such symbols may 

either represent two inversions of a particular mechanism or else two completely 

different mechanisms. Thus the RCRRC is an inversion of RCRCR, whereas neither 

of these is an inversion of the RRCCR, although all three niechani. s; s contain 

three revolute and two cylindric pairs and are sometimes classified collectively 

as 3R-2C mechanisms. Consequently, it can be seen that the order of the 

symbols is normally very important in the description of a mechanism. 

1.10 Displacement Relationships. 

For a single loop spatial mechanism of mobility one, there are, in gene_". tl, 

seven variables remaining, once the fixed parameters have been selected, Of 

these, only one can be independent, since the linkage has but a single degree 

of freedom, and hence algebraic relationships must exist between each of the 

other six variables and the chosen independent one. Thus, once the latter has 

been specified, there can only be a finite number of values for each of the other 

six. 

Such relationships are referred to as displacement relationships m eq-tations 

and it is clear'that there must exist six equations of this type for each 

variable chosen as input. For the purposes of a displacement analysis of a 

particular linkage, two adjacent pairs are designated as input and output, 

respectively, and a variable associated with the input pair (usually chosen 

as a revolute) is selected as the independent variable. The link between the 

input and output pair axes is then the fixed link or frame. 

The relationship that exists between the input and output variables is 

referred to as the input-out At relationship or equation.. It is possible to 
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express this equation as a polynomial in the output variablq whose coeffic_iant: 

depends on all of the constant purvaeters and the iopui va :L a& v. 'i } deg, ̂ er 

of this polynomial plays an important role in the analysis since it represents 

the number of closures that a mechanism has. In other words, if the input 

variable is specified the degree of the input-output polynomial must be equal 

to the maximum possible number of real values that the output variable can 

assume. This topic will be pursued further in Chapters 2 and 5. 

Now, although it is possible to reach certain general conclusions about the 

form and complexity of input--output relationships, they are extremely difficult 

to obtain for the great majority of spatial mechanism:, and no gendral method 

has yet been presented, to the author's knowledge, that can be applied 

successfully to the solving of this problem. 

The main difficulty that one is presented with is that of the elimination 

of all but the input and output variables from the loop equations selected, 

without obtaining a final eliminant (i. eo input-output equation) of too high 

a degree. 

1.11 Eliminations 

In the analysis of spatial mechanisms one iss often able to derive numerous 

loop equations relating two or more linkage variables. The major problem is 

then to derive the unique input-output relationship fron these sets of loop 

equations, and this must relate only the input and output variables. Furthermore, 

this eliminant must not contain any extraneous or unwanted roots, for it is a 

relatively simple task to obtain a relationship of too high a degree, but 

difficult to obtain the correct eliminant, in general. 

A relationship involving only the input and output variables can be derived 

in many ways from combinations or the loop erua. tions, but usually such a 

relationship will not be the desired e: liminant and will possess extran: oos 

solutions. 

In the past several researchers have evolved various diverse methods for 

obtaining the correct eliminant in certain special cases but most of these methods 
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lack any sort of generality and only work well for particular <; patial mtýchonisin . 

It is the intention of the present author in this investigation to develop a 

general unified theory for the analysis of spatial mechanisms which may be applied 

to the problem of determining the input-output relationship of all single-loop 

spatial mechanisms of mobility one. The problem of eli. )Anatiori will be examined 

in greater detail in Chapter 5. 

However, it was considered desirable to devise some means of predicting 

the degree of the input-output equations initially for the various spatial 

five, six and seven-link mechanisms. In Chapter 2a geometric method is 

developed for this purpose. 

L 



11'. 

KINE2, IATIC 
PAIR SYNt3OL CONNECTIVITY REPRESENTATION 

SCREW H 1 

REVOLUTE R 1 

PRISMATIC P 1 

CYLINDRIC C 
"2 

SPHERICAL S 3 

PLANAR E 3 

Table I. The six lower pairs as defined by Reuleaux. 
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CONSIDERATIONS 
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2.1 Introduction. 

In recent years many researchers have attempted to solve soi: ie of ne 

difficult problems associated with the derivation of closed-form displacement 

equations for spatial mechanisms with more than four links. The results 

appearing in the literature are discussed in detail later in this Chapter. 

The central problem has been one of algebraic elimination and the avoidance 

of the introduction of extraneous or unwanted roots into the analysis. This 

problem is enhanced by the fact that at the outset the correct degree of the 

input-output equation for any particular mechanism is not known. Hence, at 

present, it is necessary to devise and perform an elimination procedure in 

order to derive an input-output equation, without prior knowledge of its 

correct degree. 

This requires a considerable amount of algebraic manipulation and, in 

addition, the final equation must be tested for extraneous roots by numerical 

computation. The latter procedure is in itself a problem since it is difficult 

to select a set of mechanism proportions for which a range of values of the 

input variable will yield all real solutions to the input-output equation. 

Thus, for example, the correct sixteenth degree polynomials for the 

RRRRCR and RRCRRR mechanisms are derived in Chapter 10, whereas in [16] a degree 

128 polynomial is presented for the latter mechanism, without any verification 

of this result. Clearly, this polynomial is of little use since it contains 112 
' 

extraneous roots which have no direct physical significance. It is necessary, 

therefore, to determine which real roots of a particular input-output equation 

lead to closure of the mechanism, in addition to performing the excessive labour 

involved in the algebra, programming and computer running time. 

The aim of this chapter is to present an intuitive geometrical approach 

to the problem of predicting the correct degree of input-output equations. 

2.2 Basic Considerations. 

The mobility criterion for single loop spatial mechanisms has been discussed 

in Chapter 1. (see equation (1.5)). Here, s atial structures are examined, 
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for which: - 
i=n 

£. ý6 (2.. ) 
i=1 1 

Thus in the present context a spatial structure is an immovable or rigid 

assemblage of links and kinematic pairs, forming a single closed loop in 

three-dimensional space, for which the total connectivity is six. Although 

a structure is not continuously movable, in general, as is a mechanism, it 

can be assembled in a finite number of distinct configurations without altering 

the constant parameters defining the relative orientations of its adjacent 

skew axes. Each distinct configuration will be termed an assembly- configuration 

or assembly, and a structure must be disconnected at a pair axis and reassembled 

in a different orientation in order to change from one such assembly configura- 

tion to another. In general, the angular displacements at a revolute or 

cylindric pair and the sliding displacements at a cylindric or prismatic pair, 

assume distinct values for different assemblies. 

Now clearly# by derinition, a mechanism is a continuously deformable 

polygon and hence the term "assembly configuration" is not directly applicable. 

Nevertheless, there is an analogous concept which is applicable to mechanisms 

and this is the idea of closure. 

Thus the number of closures of a particular mechanism is defined as the 

maximum possible number of real values that the-output variable can assume 

for a given value of the input variable, and it will now be demonstrated that 

the closures of a mechanism can be directly related. to the assembly configura- 

tions of a corresponding structure. 

Consider the planar four-linnk RRRR mechanism shown in Figure 2.1(a). For 

any arbitrary specified value of the input angular displacement, 010 the "input 

frame triangle"p 124, is completely dAfined and for convenience may be replaced 

by a single rigid link, a24, in the plane. The original four-link mechanism 

has now been eFFectively reduced to a three-link RRR planar structure which 

can be assembled in two distinct positions (234 and 23'4). These two assembly 
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configurations for the RRRR structure give the two dist. i nct 9nr a! 1cl P! 
1, 

for the output angular displacement. Consegi; ently, the Humber of' closures of 

the planar four-link RRRR mechanism is in direct one-one correspondence with 

the number of assembly configurations of the related three-link RRR planar 

structure. 

A similar procedure can be applied to single loop spatial mechanisms with 

revolute input joints, since the "input frame spatial triangle" is again uniquely 

defined in space for any specified value of the input angle, in this case. The 

purpose of this chapter is to verify and utilize the following hypothesis: - 

The maximum number of closures of a single loop n. 4ink mechanism with unit 
mobility, and with a revolute pair connecting the input link to the frarie, is 
equal to the maximum number of assembly configuration5 of a corresponding 
(n - 1)-link structure obtained by holding the input a. qular displacement 
constant, and replacing the input link and frame (referred to as the input frame 
triangle) with a single link. 

Thus, consider the spatial four-link RCCC mechanism illustrated by 

Figure 2.2, which shows the constant mechanism proportions and the seven 

mechanism variables in accordance with the notation introduced in Chapter 1. 

The input frame spatial triangle defined by the three skew pair axes, 
S'5 

and is uniquely defined in space for any specified value of the input angle, 

61 (see also Yang [44] ). For convenience this spatial triangle can be replaced 

by a single rigid link, of length, a42, (the common perpendicular distance 

between and S? ) and relative twist angle cx42" 

The number of closures of the tour-link RCCC mechanism is now identical 

to the number of assembly configurations of the resulting spatial three-link 

CCC structure (defined by 2, 
$3 A 

and 
4). 

This situation is analogous to the planar case described above, and the 

procedure is applicable to any single loop, mobility-one spatial mechanism, 

provided that the input joint is a revolute pair. 

The determination of the maximum number of closures (and hence the degree 

of the input-output equation) for a single loop spatial, mechanism has now been 

reduced to the somewhat easier problem of determining the number of assembly 

configurations for a structure with . 
Fewer links. 
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1=Y1 

The number of assembly configurations for the structures (with 
i. ý1 

listed in column 1 of Table II* will now be determined, since they are related 

to the corresponding mechanisms listed in column 3. For each mechanism 

considered the input pair is a revolute joint and hence the hypothesis stated 

in the previous section is valid. 

However, before proceeding with the CCC structure, it is useful to consider 

briefly how the two assembly configurations mentioned above for the planar RRR 

triangle (i. e. 234 and 23'4, see Figure 2.1) are obtained. The approach is 

illustrated by Figure 2.1(b), (the triangle 234, from Figure 2.1(a), is 

considered here in isolation). Disconnecting the revolute joint at vertex 3, 

reduces the structure to two cranks, a23 and a34, which clearly generate 

circular arcs. In general, the latter intersect in two points, 3 and 31, and it 

is only at these points that reassembly of the RRR structure may be achieved. 

Thus the three-link planar structure has two assembly configurations. 

The above simple example illustrates and suggests the following general 

procedure for determining the assembly configurations of any structure: - 

(i Disconnect the structure at a suitable pair axis. 
(ii Examine the motion of the two open kinematic chains 

thus produced. 
(iii) Reconnect the pair in as many positions as possible 

(the number of such possible positions will be 
dictated by the nature of the motions produced at (ii)). 

Clearly the motions of open spatial chains, for various combinations of 

links and pairs, is more complex than the planar case dealt with above and, 

in addition, the method of reassembly is not as straightforward since one must 

reconnect at a pair axis rather than at a point. Thus in order to fully 

appreciate the difficulties involved, it is advantageous to examine the spatial 

CCC structure and obtain its assembly configurations. It is then the author's 

intention to determine the motions of those spatial chains relevant to the 

structures listed in Column 1� of Table II. 
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2.4 The 3p-ti: al CCC Tilree-Lin: K St o; Acture. 

In Figure 2.3, which is a representation of the sp; Atial CCÜ ti : e^-lint: 

structure (i. e. spatial triangle), the directions and positions in space, or 

the three skew axes of the spatial triangle are denoted by the unit line vectors 
Sj, S2 and 

ýS3, 
which represent the pair axes of three cylindric pairs. The 

common perpendicular distances between the adjacent pair axes are a12, a23 and 

a31 (measured along the unit line vectors ä12' 23 and a31, between 'S1 and 1SZ, 

S2 and 
S3, 

and S3 and S1 respectively). These are taken as the link lengths. 

The length of the offset distance between the adjacent links a- and ajk (taken 

as positive in the direction of 
ý) is denoted by S. The orientation of say 

S2 
relative to Sý is given by the twist angle or angle of rotation, oc12 required 

by a right-handed screw (advancing along the common perpendicular from from S} 

to S2) to align 
S 

with 
52. In a similar manner the orientation of say ä12 

relative to äa3 is defined, and denoted by 9 2. 

The maximum number of assembly configurations for this structure is 

determined by disconnecting the second cylindric pair 
S2 

and labelling the pair 

elements attached to ä12 and3 as 2 and t respectively. It is clear that the 

link a12 (a23) can now both slide along and rotate about 11 (S 
3) and therefore 

generates a right circular cylinder. This cylinder has a tangent unit line 

vector defined at every point of its surface by S (32), and Figure 2.4 

illustrates the two cylinders, and their attendant line vector fields, thus 

produced. I 

One must now reassemble the two open spatial chains in as many vays as 

possible. Unlike the planar case, however, it is not sufficient to consider 

just the coincidence of the end points of the two free chains as determining an 

assembly. Here an assembly configuration must be defined by the coincidence of 
n the pair elements S2 and 4ý. In other words the two open spatial chains may 

only be reconnected at positions where t and 9f are equal. (Unit line vectors 

are equal when they are Collinear and have the same sense. They are opposite 

when they are collinear and have opposite senses). 
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From Figure 2.5 it can be seen that, in general, . or the CCC structure 

the line vectors 
S2 

and S2 
are equal. in two positions (axes 2 and 'I) . Arid 

opposite in two positions (axes 1 and 3). (Note: -The proportions oc12 - oc23 

= 90 deg* have been selected in Figure 2.5 and the link a11 has been omitted 

for greater clarity, without loss in generality). The magnitudes of the offsets 

along the assembly axes 2 and 4 need not be specified in order to determine 

a configuration since the structure has been disconnected at a cylindric pair. 

In particular these offsets clearly need not be the same for each assembly 

configuration. However, if a spatial structure were disconnected at a revolute 

pair then the offsets at each assembly axis must all have the same specified 

value. 

it is interesting to note that for each assembly axis along which 
S2 

and 

S2 
are equal, there is a corresponding axis along which these line vectors 

are opposite and this phenomenon occurred for each structure considered here. 

However, in subsequent illustrations those axes along which the pair elements 

are opposite will be omitted since they would tend to obscure the acceptable 

assembly axes. 

Finally, one may list the following two observations which are relevant 

in determining the number of assembly configurations for structures that can be 

disconnected at a cylindric pair; - 

(i) In general an open spatial chain generates a surface (this 

surface may, for certain cases, degenerate into a space 
curve or alternatively the chain may describe a volume). 
However, the important factor is that a unit line vector 
is defined at each point of the surface by one element of 
the disconnected pair, and it is this family of directed 
lines that is of greatest importance when considering the 
reassembly of two chains. 

(ii) The acceptable assembly configurations are defined by those 
lines common to the two open chains, but along which the 
line vectors, representing the two pair elements (for example 22 and ü2 in Figure 2.5), are e ual.. 

With these considerations in mind, it is now possible to investigate in 

detail the line ensembles generated by various relevant spatial chains. 
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2-5 0 F. n Spatial. Chains. 

Six spatial chains are of interest here, arid they may hei listed as 

follows: - Rc, Cc, RRc, CRc, PRc and RPc. Here, the cylindric pair at the end 

of the chain is denoted by a lower case letter to suggest that it is only one 

element of a disconnected pair from a spatial structure. Chains such as, RRr, 

which terminate in a revolute pair element, will be discussed later since they 

pose difficult problems of reassembly. 

2.5.1 The Rc Chain. 

The Rc spatial chain is illustrated by Figure 2.6(a). The single link, 

a12, is free to rotate about the line vector 
S' 

representing a revolute joint 

and hence its free end will describe a circle in a plane perpendicular to 5. 
ý. 

Attached to the free end of a12 is the line vector 
22- 

representing an element 

of a disconnected cylindric pair, and inclined at a fixed angle, (x12, relative 

to S1. Consequently, there is a line-vector field defined on the circumference 

of' the circle, and this system of lines generates a ruled surface (the hyperboloid 

OP one sheet) in this case. 

Now if oc12 were chosen as 0 or Tr radians the hyperboloid would degenerate 

to the special case of a cylinder, as shown in Figure 2.6(b). Similarly with 

the choice a12 ='R%2 or 3Tr/2 the situation illustrated by Figure 2.6(c) would 

exist where the line vectors all lie in the plane of the circle. 

2.5.2 The Cc Chain. 

The Cc spatial chain is illustrated by Figure 2.7., where the link a12 

is now free to both slide along and rotate about the line vector ý,. Hence the 

free end of a12 will generate a right circular cylinder, attached to every point 

of which will be a single tangent line vector 
t2 inclined at a 'Fixed twist 

angle, oc12, relative to S10 In other words there exists a helical tangent 

vector field of line vectors enveloping a cylindrical surface with axis 
S 

If a12 is chosen as Tr/2 or 31T/2 the tangent line vectors lie in planes 

perpendicular to the central axis 51 as shown in Figure 2.5. 
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2 . 5.3 Th, R2c CrA i 11 . 

The RRc spatial chain is (un 
.. 
Lke the previous two considered) aG!: i., _ 1 

dyad consisting of two spatial links in series. Figure 2. $ is a representation 

of the chain. The link a12 can rotate about the line vector 
5I 

and hence the 

point, Al, will describe a circle as shown. The point, A2, attached to the line 

vector 
S2 

will also describe a circle in a plane perpendicular to aj but of m- -1 
larger radius than a12. Now the link a23 is free to rotate about 

S2 in a 

circular path and hence the point, A 3, at the free end of a23 will generate the 

surface of a skew torus in general, with central axis (possibly intersecting 

itself), Attached to every point of this surface will be a line vector R^ ,ý as 

shown. (The line vector does not lie in a tangent plane in general). 

If the parameters are chosen as, ac12 cx23 Tr/2 or 3Tr/2º a23< a12 

and S22 _ 0, the torus becomes right circular of circular cross-section and the 

vector field on its surface, defined by S3 
, becomes tangential. hach line 

vector, 
S3, then also lies in the same plane as 

ti. This is illustrated by 

Figure 2.9. 

2.5.4 The CRc Chain. 

This dyad is illustrated by Figure 2.10(a). The situation is identical with 

that for the previous RRc chain except that the link, a12, has the additional 

freedom of being able to slide along as well as rotating about it. Hence 

the free end of a23 generates a volume which is that of a hollow right circular 

cylinder (central axis Ste, ) with finite wall thickness, as shown. A line vector, 

1531 is defined at every point throughout this volume. 

If a23 a 1T/2 or 311/2 and S22 a 0, the volume may be thought of as being 

swept out by a torus of elliptical cross-section, sliding along the central axis 

S1. This is illustrated by Figure 2.10(b). 

2.5.5 The PRc Chain. 

The PRc spatial dyad is illustrated by Figure 2.11. Here the link a12 is 

free to slide along the line vector S1 
whilst the link a23 is able to rotate 
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about S2. The free end of the chain therefore gerierates a cy1 incler with 

n 
elliptical cross-section in general. Again, there is a line vector S� üc . 

ii. iied 

at each point of this surface. 

If the parameters are selected as cc12 =0 or n- , and a23 = TT/2 or 3 TI'/2 

then the cylinder becomes right circular and 
S3 

will lie in a plane perpendir: ular 

to S2 (and ) at all points on the surface. This is illustrated by Figure 2.5. 

2.5.6 The RPc Chain. 

Figure 2.12 is a representation of the spatial RPc dyad. The link a12 is 

free to rotate about 1, and the link a23 is free to slide along S-* Thus the 

free end of the chain generates a hyperboloid of one sheet as shown, and 
S3 

defines a line vector at every point of the surface. The line vectors, 523, ät 

the free end of the chain do not generate the hyperboloid, as is the case for 

the Rc chain discussed above, but the surface does have a line vector associated 

with each of its points. 

If one chooses the parameters to be oc12 =0 or TT and 0023 = n/2 or 3 rr/2 

then the hyperboloid degenerates into a right circular cylinder with central axis 

and with 53 lying in a plane perpendicular to ýj, at each point on its surface. 

This is again illustrated by Figure 2.5. 

The systems of lines generated by the above six open spatial chains reduce 

to the envelopes of either a cylinder, a torus or a plane circle for a suitable 

choice of parameters, without any loss of generality (in the sense that there 

is no reduction, in the number of common lines between various pairs of chains). 

These simpler models are used for greater ease of visualisation in the following 

sections. 

2.6 Spatial Structures and their Assembly Configurations. 

The six structures that are of interest may be listed: - CCC, RCRC, RRCC, 

RRCRR, RRCRP and RPCRR. 

2.6.1 The CCC Three-Link Spatial Structure. 

It has already been demonstrated above that the number of assembly 

configurations for the CCC structure is two. This is because the two Cc chains, 
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produced after ( ].: -, CCY117P. Cting a cylindric pair, jencrate r. i. g}. ý Ccti ti"r i ýý:; E:; ' 

(Figure 2-4) rund these- have two line veo or. 'i in Cc. mIon. Fi p; rC' 

the assemblies and has been drawn for the choice of propozrtiorls a: 12 =c c23 = 112. 

2.6.2 The RCRC Four___ Link Spatial Structure. 

The number of assembly configurations for the RCtiC structure, Whit;:!: is 

illustrated by Figure 2.13 may be determined for a given set of parameters by 

disconnecting the cylindric pair 
S2, thereby producing the two free chains Rc 

and CRc. Selecting the proportions o `x23 ° n/2' °t34 = rx41 2 a23 and 

S33 = 0# the chains generate respectively a circle and a torus w!, -. ich is free to 

slide along the cylindric pair axis A. Generally, there exist four common line 

vectors (i. e. 
S2 

and 
S2 become equal in four positions) to the two syste-ns, and 

this is shown in Figure 2.14, where the torus adopts three positions ('J. abeli. ed 

A, B, C) along S4. The broken lines each represent two assemblies, as shoirn. 

Thus the RCRC spatial structure has a maximum of four assembly configurations. 

2.6.3 The RRCC Four-Link Spatial Structure. 

The number oP assemblies of. the RRCC structure shown in Figure 2.15 can be 

determined by disconnecting the structure at the cylindric pair %. This reduces 

the structure to the two free chains RRc and Cc, which, for the choice of 

parameters oc12 a a23 = a; 34 = n/2, a23 < a12 and 5u , 0, generate respect=. vc1y 

a right circular torus with circular cross-section and a right circular cylinder 

as shown in Figure 2.16. 

Generallyp'the line vectors 
$3 

and 
S3 are equal in eight positions (shown 

in Figure 2.17) and opposite in eight positions (not shown but symmetrically 

positioned). Therefore the RRCC structure has a maximum of eight assembly 

configurations. 

2.6.4 The RRCR? t Five-Link Spatial Structu. re.. 
ter. ... ý-. .. _ 

To determine the number of assemblies for the RRGRR structure, illustrated 

by Figure 2.18, the cylindric pair, 
S39 is disconnected, producing two RRc open 

chains, which generate skew torii, in general, with central axes S1 and. 
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For ease of visualisation it is desirable to select the proportion. s: 1 

aaa_a_. 11 /2 aü .`aý. t ýa)i"! 32_0. °t12 23 34 45 51 ' 23 3ý} 12 45' 22 
Sr 5'" 

For these proportions the two chains generate identical rijht circular tori. i 

whose central axes (51 and S5) intersect at right angles, as shown by Figure 2.19. 

Generally, the line vectors S3 and S3 are equal in sixteen positions (sho"m 

by broken lines in Figure 2.20) and opposite in sixteen positions (not shown). 

The two broken lines numbered 9-12 and 13-16 in Figure 2.20 each represent four 

possible assemblies since 
S3 

and 53 may be either both at the same point or at 

opposite points of the torii (giving four combinations). 

Hence the RRCRR structure has a maximum of sixteen assembly configurations. 

2.6.5 The RRCRP Five-Link Spatial Structure. 

This structure is illustrated by Figure 2.21. By disconnecting at the 

cylindric pair 
S3 

the two open chains RRc and PRc are produced. Upon select- 

ing the proportions ai 2= C23 = 0C34 = cc5} = 111/2, a23 < al 2, ocA5 =0 and S22 = 09 

the chains generate respectively a right circular torus and a right circular 

cylinder (Figure 2.16) and hence the RRCRP structure has eight assembly configura- 

tions in general. (Figure 2.17 illustrates these for a cylinder and torus). 

2.6.6 The RPCRR Five-Link Spatial Structure. 

This structure is illustrated by Figure 2.22. Again disconnecting at the 

cylindric pair 
3, 

produces the two open chains RPc and RRc which generate 
% 

respectively a right circular cylinder and right circular torus with the choice 

of proportions IX12 = 01 oc23 = a34 = a45 0 oc51 = TT/2, a34 < a45 and S-44 '- 00 

(Figure 2.16). Thus the RPCRR structure has eight assembly configurations in 

general. (Figure 2.17 illustrates these for a cylinder and a torus). 

The number of assembly configurations for, the six structures analysed 

above is summarised in column 2 of Table II. With the exception of the RCRC 

structure the problem was reduced to that of determining the number of conunon 

directed lines between various combinations of cylinder and torus. Hence, in 

general, two cylinders have two such lines in common, a cylinder and a torus 

have eight common lines, whilst tiro torii have sixteen directed lines in co: nion. 
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2.7 The Closures of Spatial Mechiaism5. 

It is evident by comparing columns 1 and 3 of Table IT. that a larae nwnber 

of spatial mechanisms can be reduced to the above structures, for the purpose of 

deriving the number of closures. The derivation of the two closures for the 

spatial four-link RCCC mechanism (which reduces to the CCC spatial triangle) has 

already been given in a previous section and this explains the quadratic input- 

output equation obtained by Yang and Freudenstein [46] (see also chapter 6) for 

this mechanism. 

In the following sections the nwnber of closures for various spatial Ave- 

link 3R-2C mechanisms is derived. These mechanisms exhibit the interesting 

property that certain kinematic inversions differ from one another in the number 

of their closures. Also the number of closures of those spatial six-link 

4R-P-C (Chapters 7,3 and 9) and 5R-C (Chapter 10) mechanisms analysed by the 

author are derived. (The derivation for other six-link mechanisms is similar). 

Finally, the problems of determining the number of closures of spatial seven- 

link mechanisms are discussed. 

2.7.1 The 3R-2C Five-Link Spatial Mechanisms. 

The RRCCR five-link spatial mechanism with frame, a51, and input and output 

angular displaceiaents, 81 and 05, respectively, is illustrated by Figure 2.23. 

For the RRRCC mechanism (the only other inversion of the RRCCR with a revolute 

input), the frame is a23 and the input and output angular displacements are 

82 and 93 respectively. 

In both these cases, holding the respective input angles constant, reduces 

the mechanism to the RRCC structure as shown. Thus the RRCCR and RRRCC mechanisms 

both have a maximum of eight closures, corresponding to the eight assemblies of 

the RRCC structure, and hence their input-output polynomials are both of the eighth 

degree, in the half-tangents of their respective output angular displacements. 

In addition they are also of degree eight in the input angles since, for a given 

value of the output angular displacement, the RRCCR again reduces to the RRCC 

structure, whilst the RRRCC reduces to the five. -link RRRCP structure (which has 

eight assemblies). 
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The RCRC:? Z mechanism (representing the other class of 3? --2C 

which have the two cylindric pairs separated by a revo). ute pair) i: '_ tz atcd 

by Figure 2.24. There are three distinct inversions ir: this class. RCRCR 

has frame a51 and input and output angular displacements A1 and a5 rc-ý.; iectively. 

For the RRCRC the frame is a12, the input is A1 and the output is 92, whilst 

the third inversion, the RCRRC, has frame a`3 and input and output angular 

displacements A3 and A2 respectively. 

In the case of the RCRCR and RRCRC, holding the input ang. J. ar dispiacemcnt 

(A1 for both mechanisms) constant, reduces the mechanisms to the RCRC four-link 

structure (Figure 2.13). Thus both of these inversions of the RCRCR have a 

maximum of four closures (the number of assembly configurations for the RCRC 

structure). However, for the third inversion, the RCRRC, holding the input, C3, 

constant, reduces the mechanism to the RRCC structure which has eight assembly 

configurations. Thus the RCRRC has eight closures and it can be seers that two 

inversions of the same spatial mechanism need not have the same number of 

closures. This is an unexpected result which has been verified algebraically [13]. 

Finally it must be noted that, for a constant output angle the RCRCR, RRCRC 

and RCRRC mechanisms reduce to the RCRC, RRCRP and RCMP structures respectively. 

The first of these has four assemblies whilst the other two each have eight. 

Thus the input-output equations for the RCRCR, RRCRC and RCRRC are of degrees 

four, eight and eight respectively in their input angular displacements. 

(Notice that the RRCRC input-output equation is of degree eicht in the input, 

but of degree four in the output). 

2.7.2 The 4R-P-C Six-Link Spati al Mechanisms. 

The three distinct six-link RCRPRR, RCRRPR and RRRPCR spatial mechanisms are 

illustrated by Figures 2.25,2.26, and 2.27, respectively. Holding either their 

respective input angular displacements (01 in each case) or their output angles 

(e6 in each case) at a constant value, reduces these three mechanisms to the 

RRCRP, RRCRP and RPCP. R five-link structures, respectively. Since the latter all 

have eight assemblies, the three 4R-P-C mechanisms each have eight closures. 

Consequently one would expect to obtain input-output equations of degree eight 
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in input and output variables for e. -; ch of t ßc<ý;: six--link mechanisms, Furthermore, 

any inversion of the latter, with a revolute input, will reduce to either the 

five-link RRCRP or RPCRR structure and hence will have eight closures. 

2.7.3 The 5R-C Six-Link Spatial t"feChani Srns. 

The 5R-C spatial mechanisms are illustrated by Figure 2.28. There are 

three inversions of these mechanisms, with revolute input. Thus the RRRRCR 

mechanism has frame a61, input angle A1 and output angle 9 o. For the RRCRRR 

the frame is a12 and the input and output angular displacements are A1 and 92 

respectively. Finally, the third inversion, the RRRRRC mechanism, has frame 

a56, input angle Q6 output angle A5 and output sliding displacement S5. 

Holding the respective input angles constant, in all three cases, reduces 

the mechanisms to the RRCRR five-link structure which has sixteen assembly 

configurations. Hence the three 5R-C mechanisms with revolute inputs all have 

a maximum of sixteen closures and hence input-output polynomials of degree 

sixteen in the output angular displacements. In addition, if the output is held 

fixed, for the two inversions with revolute output (RRRRCR and RRCRRR), one again 

obtains the RRCRR structure. Consequently, for these two inversions, one wo»ld 

expect input-output equations of degree sixteen in both the input and the output 

angular displacf-ments, and this is a novel result. It is confirmed algebraically 

in Chapter 10. 

2.7.4 The 5R-2P, 6R-P and 7R Seven-Link Spatial Mechanisms. 

There are three distinct 5R-2P seven-link mechanisms: - the RPPRRRR (Figure 

2.29) the RPRPIRR (Figure 2.30) and the RPRRPRR (Figure 2.31). Holding the 

input angular displacement constant for each of these, or any of their inversions 

(with revolute inputs), reduces the mechanism to one of the three 4R-2P six-link 

structures shown in Table II. (i. e. RRRRPP, RRRPRP, RRPRRP). 

Similarly the RRRRRPR seven-link mechanism shown in Figure 2.32, and all of 

its inversions, reduces to the six-link RRRRRP structure if its input angular 

displacement is held constant. Finally the RRRRRRR mechanism illustrated by 

Figure 2.33 reduces to the RRRRRR (or 6R) six-link spatial structure for a 
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constant input value. 

All of the structures discus ed so f. ýr have been culalysed by dis; con: '1ec. ti; ig 

at a cylindric pair and determining the number of line vectors which are common 

to two vector fields. In order to analyse 4R-"2P, 5R-P and 6R six-link spatial 

structures, it is necessary to disconnect at a revolv. te or at a prismatic pair, 

since there are no cylindric pairs present. Thus, in addition to obtaining 

common line vectors between the free chains produced, it is necessary to introduce 

into the analysis either the magnitude of the fixed offset distance, Sii, of a 

revolute pair, or the magnitude of the constant angular displacement, 9ii, or a 

prismatic pair. 

The introduction of these additional constraints presents a formidable 

problem which may be well suited to solution by the sophisticated analogue 

techniques developed by Torfasson and Crossley C37a 

Nevertheless it is possible to categorise all seven-link mechanisms into 

sets which have the same number of closures, as is illustrated by Table II. Thus 

if the RRRRPP six-link structure has n, (a positive integer) assembly conf. iguration4j 

then the group of four seven-link mechanisms listed in column 3 of Table II. 

(i. e. RPPRRRR, RRRRRPP, RRPPRRR and RPRRRRP), must have n, closures, from the 

hypothesis, since they all reduce to the RRRRPP structure for a fixed value of 

their input angular displacements. A similar situation occurs for the remaining 

structures and mechanisms in Table II. 

2.8 Predicting the Closures of Spatial Mechanisms Algebraically. 

The geometrical procedure developed in this chapter has proved to be an 

invaluable aid in the derivation of input-output equations. In addition to 

providing the analyst with the number of closures of a multitude of spatial 

mechanisms, the method has led to the discovery of certain interesting and 

unexpected phenomena (for example, two inversions of the RCRCR have differing 

numbers of closures). However, the author considers that it is desirable to 

devise a more rigorous approach (based on a firm mathematical Foundation) For 

predicting the number of closures of spatial mechanisms. It is suggested that an 
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investigation, "used on algebraic and projective geonetry and, in p<:.. rticul.:. 3r, 

of line ensembles, may produce the der, . red results. Aj elimi. nvkry OL., tl. i. ne ): 

a possibly fruitful approach is given in Appendix I. 

2.9 Discussion and Comparison of Results. 

The spatial mechanisms considered in this chapter have been grouped in 

column 3 of Table II. according to the basic spatial structure frorn which their r 

maximum number of closures has been derived. Mechanisms labelled with the same 

superscript (e. g. RCRCRI and RCRRC1) are inversions of one another althoc. igh chFy 

do not necessarily occur in the same group (since they may not have the same 

number of closures). 

The Table is divided into two main columns. The Pint contains the 

physical results and predictions of this chapter whilst the second contains the 

results obtained algebraically by various authors (referenced). Columns 2 and 

4 must contain the same number for each group of mechanisms and its related 

structure, since the hypothesis discussed earlier establishes such a direct 

correlation. 

The maximum number of closures of each mechanism is listed in column 4 and. 

this should compare directly with the degree of its input-output equation, as 

obtained algebraically by various researches [6,7,11,12,13,14,16,17,22, 

33,45,46,47,48,49] and presented in column 5. There is considerable agree- 

ment although, in a number of cases, there are discrepancies which imply that 

the input-output displacement equations, presented by a number of researchers, 

contain extraneous or unwanted roots. 

2.9.1 R-3C Mechanism. 

It has been well established by Denavit [6] and Yang and rreudenstein [46J 

that the input-output equation for the RCCC four-link spatial mechanism is 

quadratic in the half-tangents of the input and output angular displacements. 

2.9.2 3R-2C Mechanisms. 

Dimentberg C7J derived an eighth degree input-output equation for the RC}CRS 

mechanism using the algebra of screws. However, a quartic equation was 
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subsequently first derived by Yang [. 15] using i11atriCc. S with dual-nlzlýilwl 

This quartic equation was corrected by Yuan [4; ] u4hi7 lire g . ometry anü b 

Duffy and Habibolahi [11] using spherical triconometry. The latter authors a! -Lo 

derived eighth degree and then quartic input-output equations for the RRCRC1 

mechanism [12,14], an inversion of the RCRCR1. Again, a degree-eigLt equation 

was derived by Duffy and Habibolahi [13] for the RCRRC1 mechanism, which one 

would expect at the outset to have a quartic input-output equation, since it is 

an inversion of both the RCRCR1 and RRCRCý mechanisms. As explained in this 

chapter however, this is the first example of the phenomenon that common. irversitjnr! 
j 

of the same spatial mechanism can have input-output equations of a differeart 

degree. Table He illustrates that this is not, after all, an unexpected result., 

since the maximum number of closures of the RCRCR1 and RRCRC1 mechanisms is equal 

to the maximum number of assembly configurations of the RCR:; structure (4 as! --. cw,, b-- 

lies), whilst the number of closures for the RCRRC1 is given by the number or 

assemblies for the RRCC structure (8 assemblies). Thus they reduce to different 

structures. 

2.9.3 4R-P-C Mechanisms. 

There are three distinct 4R-P-C six-link mechanisms labelled with super- 

scripts 4,5,6. Table II, illustrates that the maximum number of closures and, 

therefore, the degree of the input-output equation of any 4R-P-C mechanism with 

revolute input must be eight, since they all reduce to either the RRCRP or 

the RPCRR five-link structures (which both have eight assemblies) for fixed 

input angles. An inversion of each of the three types (i. e. the RCRPRR4 

RCRRPR5 and RR. RPCR6 mechanisms) will be analysed in detail, in Chapters 7v 8 and 

9 of this dissertation, where degree eight, input-output polynomials are obtained 

algebraically (agreeing with the physical results shown). Table Ile also 

suggests that the sixteenth degree equation derived by Yuan [49] for the RPRcZR4 

mechanism must contain an extraneous factor of the eighth degree. This vas in 

fact, suggested by Yuan; since he failed to obtain all real solutions to the 

polynomial he had derived. 



;1.. 

ý: 

C'C; Ilri r 
_ 

Yll_ýlýS" 2.9.4 5'11-r 

Table IL illustrates that all three ýR-f; IiiF. C}]i1n15)11s kith revolute in p1). 1: '; 

have input-output equations of degree sixteen in the half--tangent of the output 

angular displacement and this result will be derived algebraically in Chapter 10 

for the RRR! OR and RRCRRR mechanisms. The input-output equations for the latter 

two inversions must be also of degree sixteen in the half-tangent of the input 

angular displacement since they both have revolute output joints and, for a fixed 

output angle, again reduce to the RRCRR five-link structure. 

Recently, however, Dukkipati and Soni. E16] derived a degree 128 equation 

for the six-link RRRCRR and RCRRRR mechanisms and, most recently, the same 

authors obtained a degree 64 equation for the six-link RRRCRR and RRRRRC 

mechanisms E17] with general proportions. It now seems clear from this chapter 

and Chapter 10 that these equations must contain 112 and 48 extraneous roots 

respectively. The above authors did in fact fail to obtain more than six real 

solutions in reference [17] 

2.9.5 5R-2P Mechanisms. 

Although it has not been possible to derive the maximum number of assembly 

configurations for 4R-2P structures, using simple models, much useful and 

valuable information can be obtained from Table II. There are clearly three 

distinct 5R-2P mechanisms, which are labelled with the superscripts 7,8 and 

9, and the various inversions are grouped according to the three different basic 

structures (RROPP, RRRPRP and RRPRRP) to which they reduce for fixed values of 

their input angular displacements. It follows that all the (5R-2P)7 mechanisms 

and one (5R-2P) 8 
mechanism have the same degree, nj, input-output equations, 

whilst the other three (5R-2P)8 and two (5R-2P)9 mechanisms also have the same 

degree, n2, input--output equations. The remaining two (5R-2P)9 mechanisms have 

input-output equations of degree n3. (It is possible that n, = n2 a n3 but this 

need not necessarily be so). 

Recently Keen [22] obtained input-output equations of degree eight, twelve 

and sixteen for spatial seven-link RPPRRRR1, RPRPRRR3 and RPRRPRR9 mechanisms, 
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respectively. These results, which are obtained algebraically without prior 

knowledge of Table II., imply that ri1 = 8, n2 :n 12 and n, :- 16. Furthermore, 

as for the case of some five-link 3R-2C mechanisms presented verlier, certain 

common inversions (labelled with superscripts 8 and. 9) must have input-output 

equations with different degrees, 

2.9.6 6R-P, 7R and Other Seven-Link Mechanisms. 

As far as the author is aware, there is no information available on the 

6R-P mechanisms. However, Wallace and Freudenstein [41] succeeded in obtaining 

quartic displacement equations for spatial five-link RRSRR and RRERR mechanisms 

which may be considered to be special cases of spatial RRtFRMR and RR PP ' R7 

(or RR RPRR 
ß) 

mechanisms, respectively, obtained by amalgarnating combinations of 

either three revolute pairs or two prismatics and a revolute. He achieved this 

by developing a novel geometric configuration method and in addition explained 

some of the difficulties of obtaining a displacement equation for the spatial 

7R mechanism by using dual-number methods. 

Recently Duffy and Keen [15,23] have derived quartic equations for the 

RERRR and RSRRR spatial mechanisms using spherical trigonometry and dual. nwnbers. 

Other contributions, incorporating dual numbers, have been made by Wdrle CID 

and ieler [24,25]. 

Finally various reasearchers [14,22,48,49] have reported difficulties 

in employing computer-aided search techniques to find mechanism proportions which 

will give all-real solutions to input-output equations. Clearly, simple geometrica 

models (with the proportions given), such as those described in this chapter, can 

be used to overcome this problem, since, if the mechanism can be physically 

assembled, there must exist a corresponding real solution to the input-output 

equation. Keler 253 has, in fact given some consideration to the checking of 

closures by subdividing spatial mechanisms into spatial triangles. (see Yang [44]) 

2.10 SuMMa_rY of Rý esults. 

Thus, in summary, one may list the following four points: - 

(i) it has been estoblished that: - The maximum number of 
closures of a single loop n--link mechanism with unit 



w, obiiity, and with a revolute pair corrr; ccriiw; tlhe 
inpu',: li. nk. l4 tirtLý i'ra n e, ii to the 
number of. assembly configurations of a corresponding 
(n 

- 1)-link structure. 

(ii) The maximum number of closures has been derived for 
spatial four-link R-3C, five-link 3R-2C, six-link 
4R-P-C, and six-link 5R--C mechanisms. 

(iii) A physical explanation has been given of the unexpected 
phenomenon that two distinct inversions of the same 
spatial mechanism may have input-output displacement 
equations of a different degree. 

(iv) By using mechanism proportions based on those used 
here for ease of visualisation, it is possible to 
obtain all-real solutions to input-output equations, 
i. e. to design mechanisms with all-real closures Or 
ranges of values of their input angular displacements. 

In the following three chapters (3,4 and 5) a unified theory for analysing 

spatial mechanisms is developed using spherical trigonometry and dual numbers. 
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PHYSICAL RESULTS ALGEBRAIC RESULTS 

Basic Maximus( Mechanism Maximum Degree of Reference 
Structure number of number of Input/ 

Assembly Closures Output 
Configurations Equation 

CCC 2 RCCC 2 2 [6,45] 

RCRC 4 RCRCRI 4 8 [7] 

4 46,47,11] 
RRCRCI 4 8 [12] 

4 [14] 

RRCC 8 RRRCC2 8 8 [14] 

RRCCR2 8 8 [48,33] 

RCRRC1 8 8 [13] 

RRCRR 16 RRRCRR3 16 128 [16] 

64 [17] 
16 Chapter 10. 

RRRRCR 
3 16 128 [163 

16 Chapter 10. 

RRRRRC3 46 64 [17] 

BRCR? 8 RPRCRR4 8 16 [49] 

RCRPRR4 8 8 Chapter 7" 

RCRRPR5 8 8 Chapter 8. 

RRRCRP4 8 

RRRPRC4 8 

RRPRRC5 8 

RRCRRP5 8 

Table It. Comparison of Physical and Algebraic Results 

obtained for various Spatial Mechanisms. 
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PHYSICAL RFSiULTS ALGEBRAIC RESULTS 

Basic Maximum Mechanism Maximum Degree of. Reference 
Structure number of number of Input/ 

Assembly Closures Output 
Configurations Equation 

RPCRR 8 RRRPCR6 8 8 Chapter 9. 

RRCPRR6 8 

RRRCPR6 8 

RRRRCP6 8 

RPRRRC4 8 

RCRRRP4 8 

RRRRPC6 8 

RRRRPP n1 RPPRRRR7 n1 8 [223 

RRRRRPP7 n 

RRPPRRR7 n1 
RPRRRRP8 n 

RRRPRP n2 RPRPRRR8 n2 12 [22] 

RRRRPRP8 n2 

RRPRPRR8 n2 

RPRRRPR9 n2 

RRPRRRP9 n2 

RRPRRP n3 RPRRPRR9 n3 16 [22] 

RRRPRRP9 n 3 

RRRRRP n4 RRRRRRP10 n4 
RPRRRRR10 
RRPRRRR10 

N 

n 

RRRPRRR10 
4 

n 4 

RRRRRR n5 RRRRRRR n5 

Table II. (Continued). 



36. 

fixed) 

(a) Representation of, the Planar Four-Link RRRR Mechanism, 

\ 

4 
2 

(b) The two Assemblies of the Planar Three-Lih% RRR Structure. 

Figure 2.1 The Closures of the Planar Four-Link RRRR Mechanism. 

3f el 

/\ 



37. ' 

C 
C 

Cý 

"", yam 1 23 

12 23 

C2 

J /a12 °C42 

"5 A3 
42 

ýy 
S 

ý -2 
A -1 as4 

ial 

a 11 / °C3 . 
S4 

41 
a41 rý 

R A4 

` 

Figure 2.2 Representation of the Four-Link RCCC Mechanism. 
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Figure 2.3 Representation of the Three-Link CCC Structure. 
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Figure 2.4 The Two Right Circular Cylinders Produced by the CCC Spatial Structure. 
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Figure 2.5 The Two Acceptable Assemblies (defined by the broken 
lines labelled 2 and 4) and the Two Unacceptable 
Assemblies (broken lines 1 and 3) Derived from the 
Four Common Lines between the Two Cylindrical Line 
Vector Fields Produced by the CCC Spatial Structure. 
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(a) The Hyperboloid of one Sheet Generated by the Rc Open 
Spatial Chain. 
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(b) Reduction to a Cylinder. (c) Reduction to a Plane. 
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Figure 2.6 Representation of the Rc Open Spatial Chain. 
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Figure 2.7 Representation of the Cc Open Spatial Chain 
and the Right Circular Cylinder that it Generates. 
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Figure 2.8 Representation of the RRc Open Spatial Chain 
and the Skew Torus that it Generates. 
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Figure 2.9 The Right Circular Torus with Circular Cross-Section 
Produced by the RRc Open Spatial Chain with Special 
Proportions. 
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(b) Volume Swept out by Torus of Elliptical 
Cross-Secticrn. 

Figure 2.10 Representation of the CRc Open Spatial Chain. 

(a) Volume Generated by the CRc Chain. 
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Figure 2.11 Representation of the PRc Open Spatial Chain and 
the Cylinder with Elliptical Cross-Section that 
it Generates. 
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Figure 2.12 Representation of the RPc Open Spatial Chain and 
the Hyperboloid of One Sheet that it Generates. 
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Figure 2.13 Representation of the Four-Link RCRC Structure. 
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Figure 2.14 The Four Assemblies (broken lines 1-4) of the RCRC 
Spatial Structure. 
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Figure 2.15 Representation of the Four-Link RRCC Structure. 
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(b) Side Cross-Section. 

Figure 2.16 The Right Circular Torus with Circular Cross-Section 
and the Right Circular Cylinder Produced by the RRCC 
Spatial Structure. 
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(b) Side View Showing Second Four Assemblies. (Part of the 
torus is cut away for clarity). 

Figure 2.17 The Eight Assemblies (broken lines 1-8) Derived Prom the 
Eight Common Directed Lines between the Cylindrical and 
the Toroidal Line Vector Fields Produced by the RRCC 
Spatial Structure. 
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Figure 2.18 Representation of the Five-Link RRCRR Structure. 
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Figure 2.19 The Two Right. Circular Torii with Circular Cross- 
Sections Intersecting at Right Angles Generated 
by the RRCRR Spatial. Structure. 
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(b) Side View Showing Second Eight Assemblies. 
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Figure ?. 20 The Sixteen Assemblies (broken lines 1-16) of the RRCRR 
Spatial Structure Derived from the Sixteen Common Directed 
Lines between Two Torii. 
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Figure 2.21 Representation of the Five-Link RRCRP Structure. 
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Figure 2.22 Representation of the Five-Link RPCRR Structure. 
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Figure 2.23 Representation of the Five-Link RRCCR and RRRCC 
Mechanisms. 
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Figure 2.24 Representation of the Five-Link RCRCR, RRCRC 
and RCRRC Mechanisms. 
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Figure 2.25 Representation of the Six-Link RCRPRR Mechanism. 
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Figure 2.26 Representation of the Six-Link RCRRPR Mechanism. 
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Figure 2.27 Representation of the Six-Link RRRPCR Mechanism. 
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Figure 2.28 Representation of the Six-Link 5R-C Mechanisms. 
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Figure 2.29 Representation of the Seven-Link RPPRRRR Mechanism. 
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Figure 2.30 Representation of the Seven-Link RPRPRRR Mechanism. 
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Figure 2.31 Representation of the Seven-Link RPRRPRR Mechanism. 
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CHAPTER 3 

DUAL NMV3ERS 

AND 

DUAL VECTORS 



? 1: 

3. ', I; itrodizcticn. 

Tr: the previous chapter the concepts of ' line' and ' line vector' were i tsccj 

in an intuitive and geometrical sense to represent the pair axes of spatial 

mechanisms and structures. However, in order to define such terns rigorously 

and to develop a proper algebraic representation for such quantities, it is 

necessary to investigate the nature of vectors in general. Thus the distinction 

between a line vector and a geometric (or free) vector must be appreciated, and, 

in addition, an understanding of the concepts of dual number, dual angle and 

dual vector is required. 

Because a single comprehensive treatise on these subjects does not appear to 

be available in the literature, the author has correlated much relevant information, 

on the matter and presented this, together with his own tho+4ghts in the follow- 

ing sections. This work has led to a novel and concise proof of the Principle 

of Transference, amongst other interesting properties and representations of the 

dual plane. 

3.2 Arrows. 

A free vector is a quantity having both magnitude and direction but no 

specific location in space. In this respect it is not identified with any 

Particular line segment but represents the collection of all line segments with 

the same direction and magnitude. Thus, following reference C29]ß one can 

define an arrow as a quantity having both magnitude (length) and direction, 

but also having, a definite position. It can be represented by a fixed directed 

line segment with an arrow-head defining its direction. The length of the 

segment then represents the arrow's magnitude, whilst the 'blunt-erid' defines 

its position. This is illustrated by Figure 3.1(a) which shows several arrows 

with various magnitudes, directions and positions. (They may represent the 

velocity at different points in a fluid, for example). 

An arrow may be denoted by the symbol, ä, and two such arrows, ä and F, 

are considered to be equal if and only if they have the same length, direction 

and position. Thus any two of the arrows shown in Figure 3.1(b) are distinct, 



7, 

although they have the same length and direction. 

It may be noted that there are (C6 possible arrows in three--Oijnensioria. l_ 

Euclidean space, since there is a possible CD3 at each point, and an G)3 of 

points. Clearly, therefore, arrows are not the familiar quantities known as 

geometric vectors and can only be combined when at the same point" 

3.3 Geometric Vectors. 

The set of all arrows having the same magnitude and direction, but with 

different positions, is of considerable interest in describing, say, the 

displacement of a body in space (i. e. a translation), since all the points of 

that body will be displaced an equal distance in the same direction by the 

translation and their individual motions can be represented by arrows. This 

set is termed a geometric vector, and any member (arrow) of the set will 

determine the same geometric vector. In other word., a geometric vector has 

only direction and magnitude, and hence is also referred to as a free vector. 

It is conventional to select an arrow positioned at the origin to represent 

a free vector although this choice is not an essential one and it depends 

largely on the circumstances. Thus the geometric vector, v, in Figure 3.1(b) 

(which is the set of all arrows v1, v2, ... etc. ), is represented by the 

arrow, v, positioned at the origin. 

Since the collection of all possible geometric vectors is in one-one 

correspondence with the set of all possible arrows at the origin, it can he 

seen that there are m3 free vectors in all, and hence they can be put into 

one-one correspondence with the poir*ts of three-dimensional space. This 

natural correspondence is an extremely useful one and, as a consequence, 

geometric (free) vectors are employed universally as position vectors. 

3.4 Geometric Vectors as Equivalence Classes of Arrows. 

A geometric vector can be described more concisely by means of the 

mathematical concept of equivalence class, as followss- (See Appendix 11). 

Thus the relation, "has the same magnitude and direction as", is an 
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e uiyale_nce relation on the set of all arrows, since. ii*.: 0at_i_. r ti,, -- txu' '- 

defining properties of reflexivity, symmetry and transitivity. As a 

consequence of this, it partitions the original set of all arrows into 

non-overlapping subsets, (i. e. equivalence classes) which are nothir,. g more 

than geometric vectors. In other words, any two geometric vectors, v and u. 

for example, are either identical or else they do not have any e1 ment (arr-): i) 

in common. (In Figure 3.1(b) the geometric vector, v, is the equivalence 

class which contains the elements v, v1, v2, 
... etc. ) 

Henceforth, the word 'vector' will refer to the familiar 'geometric 

vector'* 

3.5 Line Vectors. 

In the study of a spatial mechanism the concept of a line vector is of 

paramount importance, since at any particular instant each pair axis of tY'e 

mechanism defines a unique directed line in three-dimensional Euclidea1i . pace. 

Of the many ways of representing such lines algebraically, the most , tsef'u' 

for present purposes is by means of unit line vectors. 

Unlike a free vector, a line vector, as defined by Brand [d], is a 

quantity which is restricted to lie in a definite straight line, although it 

does possess a magnitude and direction. However, it can be freely located at 

any point on the defining line. In the terminology of the previous section, 

a line vector is an equivalence class of arrows which share a common magnitude 

and direction, änd lie in the same straight line. As with any equivalence 

class, a line vector may be represented by any one of its constituent arrows 

although it is sometimes convenient (see also Yang [44] ) to use that arrow 

whose position (i. e. 'blunt-end') is closest to the origin. Thus, in Figure 3.2, 

the two distinct line vectors, v and ü, are represented by the arrows, v and u, 

rather than by v' and ü'. A unit line vector is ä line vector whose arrows are 

of unit magnitude and clearly any line vector, V, of length, A, may be written 

as, 
w=%v, 

where v is a unit line vector. 
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It is clear that each line vector is a collection of 
I 

arrows (one 

for each point of the defining line) and since there are CD6 a. rroars in all, 

there must therefore be OD5 line vectors in three-dimensional Euclidean 

space. Now, since each unit line vector generates a single infinity of these 

(see above equation') there must be an OD4 distinct unit line vectors in space. 

Thus it is possible to put the totality of unit line vectors in one-one 

correspondence with the OD 4 lines of space. in other words it is legitimate 

to represent a line (or pair axis), in three-dimensional space, by a unit 

line vector. 

3.6 Dual. Vectors. 

In contrast with free vectors, which require three independent 

co-ordinates to specify them (two for a unit free vector), line vector. in 

sýecifiýar1 general require five independent quantities and unit line vectors are 

by four such co-ordinates.. In practice however, a line vector, V, is nor-naTly 

represented by itsPlücker co-ordinates which are two vectors, v and where 

y is the free vector with the same magnitude and direction as 
V, 

and YO 

represents the moment of 
ý 

about the origin, 0 (see Brand [4] and Yang [44] 1, 

This is illustrated by Figure 3.3 from which it can be seen that: - 

rxvavo 

and r. v=d 

(3. la) 

(3.1b) 

Equation (3.1a) is that of the line to which 
9 is bound, referred to the 

origin, 01 and one may obtain r (the position vector of a point on the line) 

uniquely from equations (3.1) in the following form (see Brand C3] ): - 

(v x yo +d ! )/(v 
. y) (3.2) 

From (3.1) it is clear that v and v0 are perpendicular in general and if 

A 
v is a unit line vector then the following conditions apply: - 

v_. v=1, v-0=0 (3.3) 

Equations (3.3) confirm that there are only four independent co-ordinates 

amongst the six components of the two Plucker co-ordinates (v and vO)p in the 

case of a unit line vector. Following Brand [4]p it is possible to amalgamate 
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the free vectors, v and va, into a (bull. vector; - 

V =v+e (3.4) 

2 
where, by definition, 8=0. 

However, in general, dual vectors are not subject to the restrictions 

(3.3) and hence require six independent real scalars for their specification. 

Such quantities are then referred to as rotors. Clearly there are an G)6 

motors in all and therefore they stand in one-one correspondence with the 

totality of arrows in three-dimensional space. 

3.7 Dual Numbers. 

In the previous section a dual vector was defined in a rather arbitrary 

and imprecise manner by equation (3.4). It is the author's intention to 

define the concept rigorously in order to more easily understand and 

manipulate dual vector representations. For this purpose it is necessary to 

investigate the properties of dual numbers as introduced. by Clifford [5] 
. 

Basically a dual number is a rather similar quantity to a complex number 

and the two have much in common. In fact, it is possible to construct three 

distinct types of 'complex' number from the points of the Cartesian planet by 

defining three different multiplication rules. These three 'complex nunber' 

constructions are characterised by their respective 'imaginary' units 

(i, E and j) which have properties: - " 

i2 -1 
e2 o 

3= +1 
2 (3.5) 

The first type is simply the familiar complex number, which has wide 

application throughout many disciplines. The second type was introduced by 

Clifford [53 and referred to as a dual number. (Here, the word 'dual' has no 

connection with the concept of 'dual space' as used in the treatment of vector 

spaces). Its use has so far been restricted to applications in mechanics and 

recently r10,44,45,46 etc. it has been used to considerable advantage in 

the study of spatial linkages. 
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The third type of complex number has not, in the author' ; ;: roý,. ýlý ciga r 

been used to any great extent in applied mathematics as yet. 

For the purposes of this dissertation a good understanding of the second 

type (the dual number) is essential. Thus, the set ID, of dual numbers may 

be considered to be the set, 2 
2, 

of ordered pairs, (a, a0), of rein l neu tiers, 

on which are defined two binary operations: -'addition' and 'multiplication', 

These operations are represented by the usual symbols (+ and x), although they 

combine two dual numbers rather than two reals. Thus addition is defined 

component-wise, as is usual, and subtraction is defined as the inverse 

operas. Iorý to addition. Hence for two dual numbers, (a, a0) and (b, b0) one 

has: - 

(a, a0) + (b, b0) = (a + b, a0 + b0) 

and (a, a0) - (b, b0) = (a - b, a0 - b0) (3.6) 

Here the addition and subtraction symbols on the L. H. S. of the equations re er 

to these operations in the dual plane, whereas those on the R. H. S. refer to 

the normal addition and subtraction on the real line. Two dual n nbers, 

(at a0) and (bg b0), are considered to be equal if and only if a=b and 

a0 = b0. 

}lultiplication on the dual plane is defined as follows: - 

(a, a0) x(b# b0) = (axbp axb0+a0xb) 

= (a. b, a. b0 + a0. b) (3.7) 

Finally, scalar multiplication can be defined as for all ordered 

n-tuples of real numbers. Thus: - 

oc. (a, a0) - (oca, aca0) 

where ocis any real number, 

(3.8) 

It is clear from these definitions that, as with the complex numbers, 

there is an isomorphism (i. e. a one-one correspondence) between dual numbers 

of the form, (a, o), and the real numbers. Hence a dual number may be 

represented as follows: - 
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(a, a0) = (a, o) + (0, a0) 
(a, o). (i, o) + (a0, o). (Ot 1) 

= a. (1,0) + a0. (0,1) (3.9) 

If one now defines 8= (0,1) (3.10) 

and identifies (1,0) with the real unit, 1, then from (3.9), a dual number 

may be written in the following "Gaussian" form: - 

(a, a0) =a+9 a0 (3.11) 

where 'a' is termed the real or primary part, 'a0' is called the secondary 

part and 6 is referred to as the dual unit. (or, sometimes, dual) 

Equation (3.11) is the usual representation of a dual number and it can 

be seen from definition (3.7) that 6=6= 64 _ ... = Of since 
23 

82 = (ot 1). (0,1) = (0t 0) (3.12) 

The dual conjugate or conjugate of a dual number may also be defined. 

Thus the conjugate of (aq a0) =a+8 a0 is denoted and defined by: - 

(a, a0) _a -- 6 a0 (°. 13) 

from which it is clear that, (a, aa). (a , a0) 
= a2, and that (a, a0) and 

(a, a0) are mirror image points in the real axis. 

It is now possible to define an operation of division (inverse to 

multiplication) in the following way, with the proviso that division by a 

pure dual number (of the Poren 6 ap) is excluded. 

Thus: - 
(a, a. ) (a +Fa 
(b, b0) (b +6 b0) 

(a +6 a0). (b -8 b0) 

b+6bß b-6bp 

a (ae. b - a. b, 
)) 

(3.14) 
+6-. r .. -7 b b.. 

This operation is not a true multiplicative inverse, since it cannot be 

defined for all non-zero dual numbers. However, it is possible to obviate 

these difficulties somewhat, as will be seen later. 
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For manipulative purposes it is wore convenient to use the 

notation, (a +6 a0), rather than, (a, a0), to repr sen+* a rýuai nvrr, bcer 

since the usual commutative and distributive laws of real algebra then apply, 

together with the property, 62 = 0. Thus multiplication may be carried out, 

for example, as follows: - 

(a +e a0). (b +6 b0) = a. b +6 a0. b +8a. bp + 22 a0. b0 

= a. b + ¬(a0. b + a. b0) (3.15 

It has been customary in the past to represent the unique dual number, 

a+¬ a0, by the symbol, ä, where: - 

a+6 a0 
(3.16a) 

(the circumflex over a letter is termed the dual symbol). However, this 

representation is not an entirely satisfactory one since it does not determine 

the secondary part of the dual number. Thus, from definition (3.16a), the 

dual number 1T/2, for example, is taken to be: - 

TT 2= TT/2 +e aý (3,16b) 

where a0 is arbitary, and hence does not strictly represent a single dual 

number, but the set of such numbers with real part, 1T/2. Nevertheless, the 

dual symbol is widely used in the literature and fortunately no confusion occurs. 

This apparent ambiguity in the notation will be discussed later in connection 

with the Principle of Transference. 

3.8 Argand Representation of Dual Numbers. 

Since a dual number is an ordered pair of real numbers, it is possible 

to represent the set of duals geometrically by the points of an infinite 

Euclidean plane. This is in complete analogy with the familiar representation 

of complex numbers on an Argand diagram and Figure 3.4 (which is a comparison 

between the complex plane, C, and the dual plane D) illustrates this 

correspondence. As with complex numbers, there are three possible algebraic 

representations for dual numbers, which may be outlined in the following 

sections. 
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3.8.1 C ussian or Cartesian ReprC'. 5tntat: l. ori. 

If in Figure 3.4 the points of the dual plane, ID' are represented by 

Cartesian co-ordinates, x and y, then one has the Gaussian representation 

already described above, and the notation used there applies. The 

operation of addition can then be thought of in terms of the parallelogram 

rule for the addition of two-dimensional vectors. Thus the dual number, 

a=a+6 a0, behaves in exactly the same way as the complex number, z=x+ iy, 

for the purposes of addition and subtraction. 

3.8.2 'Polar' Representation. 

It proves of no advantage to represent dual numbers in terms of the 

usual polar co-ordinates, r and 8, as is done for complex numbers, since such 

a representation does not yield a simpler multiplication rule (i. e. for 

complex numbers, if zý = r1 . 
(cosQ1 +i singt) and z2 = r2. (cosQ2 +i snA2) 

then: - zj. z2 = r1. r2.1cos(A1 + A2) +i sin(81 + Q2)J ). However, it is 

possible to represent a dual number in a 'pseudo-polar' form which does lead 

to a simpler product rule. The co-ordinates used arc 
,, 
P and t where: - 

p=a (the real part of ) 

and t= a/a = tang (307) 

referred to as 'pseudo-polar' co-ordinates. 

Figure 3.5(a) illustrates the co-ordinate lines for various constant 

values of P (straight lines parallel to the dual axis) and t (straight lines 

passing through, the origin, with slope It'). 

From equations (3.17) it is clear that: - 

a=p 

and a0 

is the inverse co-ordinate transformation and hence: - 

ä=a+6 a0 =p + r3 JOt 

. p(i . yet) 
(3.19) 

Equation (3.19) is the 'pseudo-polar' form of a dual-number and is analogous 

to the polar representation of a complex number. 
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The product of two dual numbers can now be expressed in a very 

forrn. Thus if: - 

ä=a+S 
a0 

'p 1(1 +6t 1) 
and t=b+e bo P2(1 +8 t2) (3o20) 

then ä. b =/D1(1 +E3 t1). p2(1 +6 t2) 

) 1., 02[1 + 8(t1 + t2)J (3.21) 

In other words the product can be written down immediately. 

(CF: r1 . r. 
Ecos(01 +9 2) +i sin(A1 + 02)' for complex numbers). By induction 

it is clear from equation (3.21) that: - 

(ä)n = Cp (1 +@ t)Jn 

P/_ n(1 +8 nt) (3.21) 

for positive integral 'n'. Equation (3.21) is an equivalent expression to 

De I4oivre's Theorem, for complex numbers, and holds true for rational value: -- 

of n provided that ä is not a pure dual number (i. ee of the form 8 a0), since 

division and extraction of roots may then be defined. 

Figure 3.5(b) illustrates how the product of two dual numbers, a and 
b, 

may be obtained graphically using the 'pseudo-polar' representation. 

3.8.3 Exponential Representation. 

Assuming that the power series expansion for eX is valid for dual 

number arguments, it 

siniilar to the ident 

i6 (i. e. e= cose +i 

et 
=1+ (et) 

=1+ et 

34 
since e2 =e=e=..... = o. 

3.22) 

Ifs in addition, the rules for indices are assumed to be valid here, then: - 
e= 

e(a + ea. ) 

ea"eSao 

is possible to derive, For the duals, expressions 

ities obtained by Euler for the complex numbers 

sing, and e _'Q = cosQ -i sing). Thus one has: - 

+ et 2+ St 3+........ 

2 31 

= ea. (l +6 ao) (3.23) 



ou. 

and p (1 +0 t) = elnP . 
(1 +E t) 

` elnp e 
Et 

e(lnp + Et) 

p est ( 3.2, j) 

Hence, every dual number has an exponential representation. 

3.9 The Dual Numbers as an Algebraic Structure. 

Since dual numbers may be represented by geometric (position) vectors 

in the dual plane, they form a vector space over the real numbers under the 

operation of addition. This can be verified by the fact that the vector space 

axioms presented in Herstein 203 are satisfied for the set, ID! of dual 

numbers (see Appendix II). 

In addition to its vector space structure, ID also forms -gyn, associative 

ring under the two binary operations of addition and multiplication defined 

in the previous sections. This follows immediately since]) is an abeliann 

group under addition, is closed under the associative operation of multiplication 

and its elements satisfy the following two distributive laws: - 

to (b + c) = ä. ßb 
+ ä. c 

and (b+c): =bä+c 
ä (3.25) 

(in fact, ID is a commutative ring with unit element, although it is not a 

field since it has zero divisors, and hence differs, in this respect, from 

the complex numbers). 

Finally, the set of dual. nwnbers, D, is an al;; ebra over the field of 

real numbers, since it is both a vector space over the reals and an 

associative ring, and in addition its elements satisfy the following axiom: - 

a : (ä b) (a. a) 
e=ä. (a b) (3.26) 

where 
a and b are dual nwnbers and oc is real. 

(sec Herstein [20] and Appendix II. ). 

Of the three main algebraic structures that ID possesses (i. e. vector 

space, associative ring and algebra), the most important, for the purposes of 

this dissertation, is the ring structure, since the properties O' the latter 



will lead to a novel and concise proß i or the P ?'l. nC; i, pl" or A, `'lsft. ''. '. '.:: (: 'r'- 

wlhich poi ms a basis for the analyses prmented here. 

3.10 The Ring_ oi' Dual Numbers. 

The set D of dual rw: nibers forms a ring under the operations o° a 1dit io_ 

and multiplication defined alcove and, by reference to Herat: ^in L'%01 or 

Appendix II., it is clear that the dual axis (or subset oC Pure duaiý ), R-! 103 

by H, is an ideal of this ring. Thus one may construct the cosets or this 

A 1: \ 
ideal, H, and these are of the form; ä+H, 'i 

+ H, a+H, etc., "whr. re -It r(i 

are arbitrary dual numbers. It can be seen from Figure 3. F that the cosets 

of H, when represented on an Argand diagram, are straight lines parallel to 

the dual axis (H), and passing through the points at 
b, 2ä etc. Althovjh 

each coset, like fit is a single infinity of dual numbers, il- is c , aracterv. m eZ 

by a unique real number (the point at which it cuts the real! axis). Hence 

the cosets of H may be put into one-one correspondence with the real namber-1 

in a natural way. 

This set of cosets of H is denoted by, ]U%II, and by defining appropri :e 

operations of 'addition' and 'multiplication' on D/H, the latter will. I,, %ve 

the structure of a ring. This ring is called the quotient ring of H i. n D 

(see Herstein [20] ). Addition and multiplication are de. i::. ned by: 

(ä+H) + (t+H) s (ä+tti). +Fl 

and a (a. + H). (b + H) (a. b) +H (3.27) 

and with these two operations, DAH satisfies the ring axioms (see Appendix II. ). 

However, since it is the only non-trivial ideal of ID, H crust be a 

maximal ideal and this means that D/H is a Field (see Herstein [20]). 

Consequently one may define an operation of division in'm/H, although this 

cannot be done for ID itself.. Furthermore, Prom Figure 3.6, the cosets of 

H are clearly in one-one correspondence with the real nwiibers (M), and so 

ID/`H and IR are isomorphic as fields. In other words, dcnotin; J a typical cosec 

(ä + H) by (a + H) where t a, is the point at which it cuts the real axis 
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See Figure 3.6), one may define the cpcv tiot"1 v +1 

in terms of these same operations on the s(-'t. of rea1S, "is 

(a + H) + (b+H) = (a + b) +II 

(a+ H) - (b+H) = (a-b) +H 

(a + H) x (b+H) _ (ax b) +H 

(a + H) ; '(b + H) (a b) +H (3,2 i) 

Alternatively, since a coset may be thought of as an , quivalenc. e cl. aCs 

(see Appendix II. ) of dual numbers related wider the eqi . va1"ýnce relation, 

"has the same real part as", one may represent a typical coset, a+ 'ill in a 

very brief Form as, [a]. This is in accordance with accepted conve-Weions : ind 

[a] is taken to be the equivalence class of all elements which arc related to 

(In this case it is the set of all those dual numbers with real part, 

Using this equivalence class notation one may restate (3.2^) very brjrfly as. 

follows: - 

[a]+EbJ=[a+b] 

[a] - [bJ ° Ea - bJ 

x[b'=[a x b] 

[a] T ý5ý _ [a s bý (3.29) 

Clearly this definition of division in terms of cosets or equivalence 

classes obviates the difficulties mentioned earlier in defining such an 

operation on the set of duals, D, since it automatically excludes division by 

a pure dual number, whose toset would be(G + H) or just H, and whose 

equivalence class is [0]. Neither (3.28) nor (3.29) yields a meaningful 

result for such a quotient, since a+0 is not defined. As a final point 

it must be noted that the advantage in using cosets or equivalence classes is 

that any- single element of a particular class may be selected as a represent- 

ative of the whole class. This property is of fundamental Jimportance -in. the 

proof of the Principle to Trans. ferencel to be dealt with later. 
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3.11 rwictiüns of a. Dual. 

Equations (3.23) and (3.29) define the four 

addition, subtraction, multiplication acid division on the set of ccsets or 

equivalence classes of dual numbers by means of the natura]. i -; oýnorý71; i. sºr of 

ID/H tai th ]R, the reals. (see Figure 3.6). For cons. ', l envy ono rmiý; t define a 

function of a coset in the same manner, as follows: - 

f((a + Ii)) _ (f(a) + u) (3,3Ci) 

or equivalently: - 

f(EaJ) = Cf(a)J (3 31) 

In practice, however, one requires a definition for a function of a 

particular dual number. Thus, in analogy with the definitions given by 

Spiegel. E34J for functions of a complex variable, one can define the vale o 

a function with a dual number argument by means of a Taylor series expans. ý: ýn 

about the real part of the dual argument. Thus if aMa 
"1.0 a. then: - 

21 

= f(a) +6 a0. f'(a) (3.32) 

since 62 = E3 = ... = 0. 

In other words, if f(ä) is identified with f(a) and written: - 

f(ä) = £(a +2 a0) " 

fi £(a) +E £O(a) 

= (a) (3.33a) 

then FO (a) = a0f'(a) (3.33b) 

In particular, one has from (3.32): 
- 

sin(ä) = sin(a +Ea ) 
0 

= sin a+9 a0. cos a (3.34a) 

cos(ä) = cos(a +8a ) 
o 

= cos a- a0. sin a ( 3.344) 

and tan(ä) = tan(a +6a ) 
ß 

2 
_ tan a+¬ a0. sec a ( 3. ý4 ) 
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Furthorrore, ill. the nsuaY f'I'1J0! 10; `; r: ̀ý2': LC:. ý 1 CiE r it i. r an cl rc: '' 

are valid for dual number arERvnc-nts. for rxa:, ý; a7. c: "ý 

sin2(ä) + cos2(a) =- 1 (3.35) 

as can be seen from equations (3.34a) and 3.34b). 

3.12 Dual Angles. 

The relative position and orientation of two skew l. ir. nes (i. e. unit line! 

vectors) in space can be represented by -: dizal rnimber, '- for exa; npi' wrºc rr_ 

the real part o. fý' is the real angle, ac, b¬: tween the two lines and the dual 

part, usually denoted by " a4 rather than c c0) is the common perpi, ndieulC±r 

distance between the lines. This dual number, c, is then termed the du. ý, il 

angle between the skew lines, Thus the dual angle- between the adja: _cnt unit 

line vectors 
Si 

and in Figure 1.1 is denoted by ccij, 
where: - 

ä. 
j = ocij +Ea.. (3.3ý) 

whilst the dual angle between the adjacent common perpendiculars, z.. and 
.. '1 J 

ýk is denoted by ý, 
where: - 
n 

.= ej +ES (3.37) 

(again it is conventional to use the symbol, S, rather than AD for the secondý. ýy 

part o£ 8, when dealing with dual angles). 

This concept of a dual angle is due to Study [35] and has proved of 

considerable importance in the analysis of spatial mechanisms. 

3.13 Dual Vectors in Terns of Dual Angles and Dual Numbers. 

Having examined the properties of dual numbers in some details it is now 

possible to define a 
. 
dual vector more rigorously as an ordered triplet of such 

dual munbers, in analogy with the definition of a real vector as an ordered 

triplet of real numbers. Thus, if v is a real vector, ý"here: - 

aý 

v a2 (3.38) 

a3 

?. nd are real numbers 3, one a coi rc snondi. nU du,? .It ec ort 
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-(al loi) 

° (a2, a02 

( a-. 7t 3' `10 3) 

01 

a2+g aO2 (3.39) 

3 +Ea03 

and a1 +E ao1 , a2 +¬ a02, a� +B a03 are three (. L. 'A1 numbers. 

Clearly, Prom, ý 
3.1 

\ 3.39) and tic rul. Ffi P: ))' 'I: ilr^. ctý1Ci1 F.. on or Vectors, 

one may write: - 

a01 

v= a? +6 a= v+Ev0 (3.40) 
02 

La3J a03 

where. - 

`'01 

v0 a02 
(3.1) 

a03 

is a real vector. (Coi, ºpare (3.4) and (3.40))- 

Al In general a dual vector, represents a motor (see Brand C4]) and 

Figure 3.7 illustrates the relationship between v, v and v0, (11ote: a motor 

may be thought of as the sun of a line vector and a couplet) in this case. 

However, if in equation (3.40) one has the condition: - 

V-O 
(J. 42 ) 

then v represents a line vector, and if in addition: - 

v. 'v- 1 (3.43) 

then represents a Unit line vector, and may be used to describe a pair axis 

in space as previously discussed (see also equation (3.4)). In this case 

v and yo are the Plucker co-ordinates of the line. 

A line vector 
v 

which passes through the ori3ln has zero moment about the 

latter (i. e. yo = o) and hence may be identified with the free vector, v, for 

that particular. ' choice of origin. 
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Now any unit free vector v can be specified by tae three real an files, 

(X 11(x2 cx3 , at which it intersects the co-ordinate axes i, I and k 
- -' 

(considered to be three intersecting unit line vectors). Alternatively and 

more usually, one may specify it by its three direction cosines (D. C. 's), 

cosoc1, coscx2, and cosoc3, which are also the real number components of v 

and where: - 

cosoc1 =i. v 

cosac2 :j. v 

cosa3 k. v(3.44) 

and cos2a1 + cos2cr. 2 t cos2oc 31 
(3.45) 

This situation is illustrated by Figure 3.8(a). 

In an analogous manner one may specify the unit line vector, 2=v+6 vo, 

by the three dual angles, äff, 0&2 and oc3, defining its positior. and 

orientation relative to i, j and k, respectively, where: - 

ä 
=cci+9aß 

ä2 
= 0x2 +E a2 

a3= 0(3+ 6 a3 (3046) 

(ocý, 0x21 0(3 are the real angles at which v intersects i, 3 and k, and 

a,, a2, a3 are the common perpendiculars between v and the latter, respectively). 

This is illustrated by Figure 3.8(b). 

Now from Figure 3.9 it is clear that: - 

i Yo a1 sinoc, 

and similarly . vý a2sina2 

k vv a3sinoc3 (3.47) 

since 4 is the moment of v about the origin. Thus, from (3.44) and (3.47) 

the components of v and yo are given by: - 

cosoc1 - a1 sinoc1 

v= Cosoc2 - a2sincx2 (3.4r) 

cosoc3 - a3sinoc 3 
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A may be writ: tcn: - 

cosoci sinoc coscx1 - a1 sinrx ý 
n V -- cosoc2 +8-a 2sino! 2 Casa: 

c�- 
t a2sinoc2 (3. r9) 

Cosa -a since, cosoc3 -a , sinoc 

However, from (3.34b) 
, cosc1 = cosoc1 -C a1 sinoc 

coscx = cost 2- e a2sinoc 2 

cosä3 = coso: 3 -6 a3sinoc3 (3.50) 

and consequently the three dual number components of the unit line vector, 

v, 
are cosä1, cosa&, ), and cosor3, (see equation (3.39)). Furthermore from 

(3.48) and (3.42) one has: - 

a1 sinoc1 cosy + a2sinoc9 coscx2 + a3sincx3 cosoc3 =0 (3.51) 
L 

and, after squaring and adding equations (3.50) one obtains, from (3.45) 

and (3.51), the following identity: - 

Cos2a1 + Cos2ä2 + COS 0003 1 (3.52) 

It is clear, there2ore, that cos 1, cos, ä2and cos'a3 may be considered 

to be the dual direction cosines of v and they uniquely specify the latter. 

As a final point it must be noted that only two real direction cozir_es- 

are independent (from (3.45)) since a line through the origin is determined by 

two real co-ordinates. Similarly only two dual direction cosines c-tei be 

independent (from (3.52)) and since these involve four real numbers, this is 

in agreement wLth the number of variables required t'o specify a line in space. 

(see also Chapter 2 and Appendix I. ). 

3.14 Spherical and Spatial Geometry and the Principle of Transference. 

it is now possible to compare the behaviour of unit line vectors through 

the origin (i. e. free vectors) with that of general unit line vectors in space. 

From the previous section it is clear that a general unit line vector, 

v+E v0 may be related to a unique free vector, v, such that if v is 

orientated with respect to i, j and k., by the three dual angles acx A 
10 (x2 and 

ý3 (given by (3-46)), then v intersects i, j and k at the real angles o it c. 2 

and cc3, respectively. 
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FuI`lhennore, SIYl^<; ' t' et or i71tersect'_n J 1)ii .t! 
I tIe y '('} ny '; 
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vectors) efi ectiV"1. y r. -pre ss>nts a spherical j%ol on `Sf r? 'j 'id [4] sid 

Todhunter and Leathacnj-36J ) and a set of gen<-rai unit line vectors --rcpresents 

a spatial polygon: (see Yan)j [44] )j it is clear that the correspondence 

'between v and v is one between spatial and spherical geometry. For each 

spatial triangle, for example, defined by the three unit. line vectors, 
S1, S 

A 
and Sir orientated with respect to one another by the relative dual angles 

ä12r ä23' 0(31 (see Figure 3.10(a)), there is a unique spherical. trie. njle 

defined by S11 S2 and S3 which intersect each other at the real angles 

CK12r ° 23º and oc jl 
(see Figure 3.10(b) ). 

The correspondence between equivalent spatial and spherical configurations; 

is attributed to 17obrovolski E8]. However, it is not a one--one correspondence 

since a spherical polygon is related to an infinite number of spatial polygons. 

Nevertheless, it is possible to transfer laws relating to spherical po7. ygcnns 

into equivalent spatial laws using the Principle of Tran. sferenc<e? Formulated 

originally by 1 of lnikov [26]. The principle may be formally stated as 

follows: - 

All valid laws and formulae relating to a system of 

intersecting unit line vectors and hence involving re-n-11 

variables) are equally valid when applied to an equivalent 

system of skew unit line vectors, if each real. variabler 

c, in the formulae is replaced by the corresponding dual 

variable, oý =A+ Tal and each constant, k, is replaced 

by the dual constant, k=k+60 (i. e. 
k has zero 

secondary part). Here ? k' is not'a parameter but a 

definite fixed number. 

As an example of the Principle, one may apply it to equation (3.45) and 

obtain equation (3.52) directly. (Note: if the constant, 5, on the R. H. S. Of 

(3.45) were not replaced by '1 +C0 then (3.51) would not be correct and 

would be a motor). The proof' or the Principle of Transference is now fairly 

straightforward and depends on the properties of dual numbers outlined in this 

chapter. 
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, ;.,, "l Thus s appose ol. - e has so, la' 
. rei . tlrtfj t:!? 

of a spherical triz? n ji e1 for f ,:., r. pl. ý> (see F: i jure lay be 

expressed as; - 

f(a: 
12' (x23' 02) =0 (" ýý1 ....,, 

But since the real ntJJat Cý are isomorph i. c to t v: ('O c tS; n' r'ii1bers, 

discussed previously, one may Write, from (3.53): - 

(` (°C12' OC23t Q2) + H) (o + H) (3-5-1) 

or in ec, u3. vaience class notation. - 

Ef (IX12' cý23' 92)J = [0J ( 3.55) 

NOW from (3.30) and (3.31) one may rewrite (3.54) and (3.55) in the form: - 

£((«12 + H), ('X23+ I')' \e2 + H)) (0 + ii) 

and f([`ý: 
2 

]' [23J' [2J)= 101 (3.57) 

Finally by making use of the properties of equivalence classes (sce 

Appendix III. ) one may sc1cct a particular element from eýýclh of the latter 

as a representati-, 1e of the class and obtain from (3.5/"): - 

f((°c12+ C a12)r ( °c23+ 6 a23)r (A2 +ß S2)) =0+ý: 0 (3.53) 

Expanding (3.58) by means of the rules for a function of dual variables (see 

previous sections), one obtains two real equations (after equating primary 

and secondary parts), one of which is equation (3.53), the original spherical 

law. The dual number 0+e0 on the R. H. S. of (3.53) rmiFt be chosen as the 

representative of the equivalence class, C0], i. n. (3.57) it order that (3.58) 

will reduce to'(3.53) When a2 = a63 = S2 = 0. 

Equation (3.58) is the required equation applicable to the spatial ti'ianglEc. 

corresponding to the original spherical triangle (see Figure 3.10(a)). This 

completes the proof of the Principle of' Transference, and clearly the procedure 

is valid for all polygons and relevant formulae. The Principle is of 

fundaºncental importance since it enables one to derive dual number loop equations 

describing spatial mechanisms (represented by spatial polygons), directly from 

the much simpler real number loop equations describing equivalent spherical 

mechanisms (represented by spherical pol. yyons). 
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Thus, Sl.. li)Y IISL O? l t' '! '1, -'ý. S S01O.. ý-_` la reia. tin j t': 1: > c: xd till. J.? "lý 

oi' a spherical triýuz; 7 e, For 2.10etý}; .T: _s ;: ý. Yy t. ýc 

expressed as: - 

f(oa121 ° 23' 02) -0 I". rýý 
73L? t since the real n1. u 1 ers a. 1'e iso orp h1?. c to : 'iC' oc is Ö" Ce"al. r,. '. )Il1)er5, 

discussed previously, one may Write, from (3.53): 
- 

(i (°Cl 
2' X23' 2) + H) _ (o + rt} (3.54) 

or in equivalence class notation. - 

Ef(°c12' c(23' 02)J = Eo] (3.55) 

Now from (3.30) and (3.31) one may rewrite (3.54) and (3.55) in the for. nt- 

f((«12 t H), (oc23+ II)t (0 +I )) = 
(0 + i) (3.55) 

and f(E°! 
2 

11 [(x231' 
LQ2J)= 

101 (3-57) 

Finally by making use of the properties of equivalence c1casses (see. 

Appendix iy .) one may select a particular element from each or the letter 

as a representati"1e of the class and obtain from (3.57): -. 

f((°c12+ 6 a12), (° 
'23+ E a23), (82 +6 S2)) 0+60 (3.58) 

Expanding (3.58) by means of the rules for a function of dual variables (sere 

previous sections), one obtains two real equations (after equating primary 

and. secondary parts), one of which is equation (3.53), the original spherical 

lava. The dual number 0+E0 on the R. H. S. of (3.53) must be chosen as the 

representative of the equivalence c_lassq [0], in (3.57) in order that. (3.58) 

will reduce to ' (3.53) when aýL= a3 = S2 - 0. 

Equation (3.58) is the required equation applicable to the spatial tr: iang7. f:. 

corresponding to the orýgina7. spherical. triangle (see Figure 3.10(a)). This 

completes the proof of the Principle of Trans. ference, and clearly the procedure 

is valid for all polygons and relevant fornulae. The Principle is of 

fundamental importance since it enables one to cderive dual number loop equations 

describing spatial mechanisms (represented by spatial polygons), directly from 

the much simpler real number loop equations describing equivalent spherical 

mechanisms (represented by spherical. polygons). 
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In practice one obtains equation (3.5`ß) irctm-Ji ately fromýýi ('. 53) by 

the device of " introducing the dual syttl)ol ^ r,. In this w_ý r the dual of 

(3.53) is: - 

f(oc12, cx23' 82) 
0 (3.59) 

where, by convention: - 

w12- 
012+ E a12 

°c 23= "`23 +6 a23 

82 92+E S2 

and =0+60 
(3.6, C0) 

Equation (3.59) is then expanded into a primary equation (. dentical to 

(3.53)) and a secondary equation using the algebra of dual numbers outlined 

previously. 

The use of the dual symbol should not now lead to any c'mhiquit: 'Les since, 

for example, the dual of any constant such as 1T/2, is taken to be (see also 

equation (3.16(b)): - 

Tr/2- TT/2"80 (3.61) 

In Chapter 4, a complete system of loop equations for spherical 

polygons is derived and classified, and, using the Principle of Transference, 

these then yield corresponding dual number loop equations for spatial polygons. 

The subsequent analyses of spatial mechanisms, presented in later chapters is 

based on these dual equations. 
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(a) Several Distinct Arrows. 
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(b) The Arrows Defining the Geometric 
Vector, v 

Figure 3.1 Representation of Arrows and Geometric Vectorso 
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Figure 3.2 Representation of Line Vectors by the Arrows Closest 
to the Origin. 
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Figure 3.3 The Significance of the Plucker Co-ordinates, v and 41 
of a Line Vector, 2. 
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(a) The Complex Plane, Co 
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(b) The Dual Plane, ID. 

Figure 3.4 Comparison between the Complex and the Dual. Planes. 
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(a) Lines of Constant t and p Values. 

Dual 
Axis ä=p, (1 +6 t1) äb 

ý= p2(i +e t2) 
ä. t p(l +e t) 

P= P1 "p2 
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(b) Obtaining the Product of two Dual Numbers Graphically. 

Figure 3.5 'Pseudo. -Polar"Representation of Dual Numbers. 
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Figure 3.6 The Cosets of H (the Dual Axis). 
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Motor, v=v*6YO 

where 4= vQ +4 
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Figure 3.7 The Significance of the Components of a General 
vDual Vector, , in Representing a Motor. 
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Figure 3.8 Comparison between a Unit Free Vector and a Unit 
Line Vecctor. 

(a) Orientation of a Unit Free Vector, v. 

(b) Orientation Of a Unit Line Vector, 2. 
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Figure 3.10 Comparison between Spherical and Spatial Geometry. 
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CHAPTER 4 

DERIVATION OF LOOP EQUATIONS 

FOR 

SPHERICAL AND SPATIAL POLYGONS 
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ý.. 1 I nt ro llu ur_ ti on. 

In this chapter, loop equations are derived for spherical and spat: iol 

linkages using spherical trigonometry. Now it has been demonstrated in 

Chapter 3 (as a consequence of the Principle of Transference) that loop 

equations for spherical polygons can be extended to corresponding eqlz: iti_ons 

for spatial polygons simply by introducing the dual symbol. Consequently it 

is only necessary to derive spherical loop equations since the angular 

relationships for a spatial polygon are clearly identical to those of an 

equivalent spherical polygon. This concept of equivalent spherical and spatial 

configurations is due to Dobrovolski [8] and the importance of the dual angle 

in this context is now apparent. 

The approach used here will be to derive a system of spherical. loop 

equations from the fundamental trigonometrical laws for a spherical triangle. 

Then, by presenting a relatively simple and concise notation, these derived 

equations for spherical polygons can be categorised into a natural scheme of 

sine, sine-cosine and cosine laws, in analogy with the laws for a spherical 

triangle. 

Earlier an attempt was made by Duffy [9] to introduce a unified notation 

for five, six and seven-link spherical mechanisms by extending the notation for 

the four-link spherical mechanism adopted by Yang and Freudenstein 461. This 

was accomplished by adding triangles and using the sine and cosine laws [36] 

for the spherical triangle. However, although sonne equations were in a compact 

form, others were not, and much new notation had to be introduced. 

In the past, what was not immediately clear was, firstly, the nature 

of the dependence of one loop equation on another, secondly, which equations 

could be considered to be basic or fundamental and finally how they should be 

classified. 

In this chapter loop equations are derived for four, five, six and seven- 

link spherical mechanisms using the sine, cosine, and in addition the sine- cosine 

laws E36] for spherical triangles. The incorporation of the sine-cosine law 
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for the -, pherical triangle which has only util. ize. rl i.;: ti 

analysis, has led to a significant ciaanUe in the pers"pec"tive Of 1'ß:, p ccju_, ': . o. ý 

for spherical polygons. It is now clear which are fundamental form lae and 

what their origin is. Furthermore, from an algebraic point of view, the 

derivation of the various laws is now considerably more straiý'rýt c, rcard, 

whereas in E91 without the sine-cosine law, it was necessary to describe the 

derivations using lengthy Appendices. 

The basis of these loop equations is hence a knowledge of spherical 

trigonometry and, in particular, an understanding of the basic laws r la;: ii 

the sides and angles of a spherical triangle. 

4.2 The Spherical Triangle. 

The spherical triangle (vertices 1,2 and. 3), defined by the three 

intersecting unit line vectors S11 S2 and S3 (see Chapter 3) is illustrated by 

Figure 4.1" The sides of the triangle are arcs of great circles of a sphere 

with unit radius and centre at 0, the point of intersection of the line vectors, 

They are designated oc12' oc23, and oc31, as shown, whilst the exterior angles 

of the triangle are denoted by 9 1, A2 and 03. (The angles are considered to 

be positive when measured in an anti-clockwise sense as viewed frort outside 

the sphere). 

There are three fundamental laws for a spherical triangle and it is 

demonstrated in Todhunter and Leatharn[36] that these formulae are valid for 

any spherical triangle (i. e. they are not restricted to triangles for which 

the angles and sides lie within the first quadrant). The three laws are the 

sine, sine-cosine and. cosine laws. Thus the sine law is normally written as: - 

sinoc12 
_ 

sino: 2� 
_ 

sinoc, l (c;. 1 
sin93 singt singt 

which iss effectively, three equations3 the three cyclic permutations of. the 

cosine law are written as: - 
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COSCX = cÖ cosIX,, 
c 

.: 
i 

Coso `, = -OS( X-, coSOG. 

cosa31 = cosa1 2 cos«23 

sincx siflo . cosA 2,3 

sinoc J1 s: Lna;, cost 1 
(4.2i. ß) 

sina12 sinoc`3 cas®2 (.. 2. c) 

and the six cyclic permutations of the sine-cosine law are written as: -- 

sinot � cosA 1ý 1 = -(cosec sing + 23 31 si. na coscx cos0 ) 
23 31 ? 

(=. 3c-ß) 

sinoc23 cosA2 = -(cosac3 sin(x12 + sina31 cosot, 1 2 cosö i) 1 

sinoc31 cos93 = -(coscc12 sinoc23+ sinoc12 cosy23 cos82) (A;. 3c) 

sinoc31 cos81 _ -(coscc23 sinoc12 + sinOC23 cosoc12 cosA2) (4.3d) 

sinoc12 cos82 = -(cosoc31 sinoc23+ sincc31 cosoc23 cosEý3) (4.3e) 

sinoc23 cos83 = -(coso: 12 sinoc3l + sinoc12 cosa31 cos81) (4.: ßf) 

The three basic laws may be derived in a number of differert+: ways, and 

the derivations are presented in [36] and in Brand E4]. However, the solution 

of any spherical triangle may be obtained using only the sine law, (4.1), and 

the cosine law, (4.2a-c), and hence the sine-cosine law is rarely used. 

Nevertheless, as will be seen, the latter is of considerable importance in 

the derivation of formulae for spherical polygons with more than three sides. 

It must be noted that, of the three basic laws, only two are independent 

(apart from cyclic permutations) and each may be derived from a combination of 

the other two. Thus the sine-cosine law (4.3f), for example, may be considered 

to be a combination of the two cosine laws, (4.2a) and (.. 2b), by observing 

that (4.2a) + cosac31 x (4.2b) gives: - 

cosoc12 
- 

(cosoc23 coscx31 - si. noc23 sinoc31 cosa3) (4.4a) 
+ cossx31 coscx23 + cosoc31. (cosoc31 coscx12 - sinac3. sincx12 cosO1) 

which, upon simplification, becornes: - 

coso: ý 2 sin2 x31 =- sinoc31 . 
(sincxG3 cos©3 + coscx_ si. na1 2 cos0 (4.4b) 

Rearranging equation (4.4b) one obtains: - 

sinoc23 cosa3 = -(cowl 2 sinoc31 + sirio 12 cosc: V., cosß1) (4.4c) 

which is identical to equation (4.3c), the siiic-cosine law. 
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''al ') 1 , _z, Yr iF the aný s 11fß oc , , cx,; arlý. c cý .,. ý a ,-r, 1,.. , . ý;. 1: ": ri. ýýý t: ý a. ý, 'i. ýý 

are s. -. iai). L the triangle shoul d not differ si gnific; a3ri 'w). y tri r1ý, "_ý: r ro; n a planar, 

and hence the three laws should reduce to the corresponding planar la,, -is. 

This is indeed found to be the case, if one r, iakes the usual approximation 

for the sines and cosines oPa smell angle. Thus e ;. uations (4,1) 
, 

(4.21a) 

and (4.3a) become respectively: - 

°C 12 °C23 CK 31 
-c-_ 

(4.21 j 

sine 
--ý 

sing sir, O 31,, 
(the sine law for a plane triangle). 

° 
12 

ac23. ý. cx31 + 2. oc2 331 cos83 (4.5h) 

(the cosine law for a plane triangle). 

and «12 cosQ1 = -(cc 31 + oc23 cosca3) (4.5c) 

(the I sine-cosine' law for a plane triangle). 

4.3 Notation for a Spherica]. Dyad. 

Throughout the course of the work- presented here, an extremely u. e£ul 

short-hand notation was developed for describing lengthy trigonometrical. 

expressions, which led to the realisation that the three triangle laws could 

be extended to other spherical polygons. Thus, it was found convenient to 

define six basic trigonometric forms (involving two adjacent sides and the 

included angle) for a spherical triangle and these . 
forms are clearly applicable 

to any spherical dyad. With reference to Figure 4.2(a) one may define the 

six basic forms as follows: '- 

X= sinoc. sing (4.6a) 
J 1J 3 

Yi = -(cosaij sinajk + since J. 
coscx jk cosA J. 

) (4- Co) 

ZJ = 
(cosoc. 

. cosocjk- sinceiJ ij sinoc jk cos;; .) 
(4.6C), 

- J 

sinoc. sine 
3 Jý 

(4.7a) 

V. = -(cosajk sincxi j+ sincx. cosyi coso ) (4.7b) 
3 i 

Zi = (cosec 
JA coscxij - sin(xjk sinocl. cos. ) 9 (4.7c) 
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where each of the symbols X. 
, Y3 

;s, 
X, ý' 

. ; id .is 
to )F" CiiCI L'ic1 re: ri aF, 

JJJJ .1 

a particular function of A Thus, for example, Yý '"(O 

z= Z(Q etc. Now from (4.6c) and (4.7c) it is apparent that Zi is 

identically equal to Zi and hence there exist only five distinct forms. 

However, it will be appreciated later that it is convenient to make a 

distinction between Z1 and Z. for completeness, consistency and greater ease 

in manipulating the notation when considering spherical polygons with more 

than three sides. 

As an aid to memory, it may be noted that the expressions for, say, 

Xj , Yj , and Z. are defined by approaching the angle Q. in an anti-Clockwise 

sense along the preceeding side ai ý, whilst those for 7: ý, Yj, and 7. 
j 

are 

defined by approaching 8. in a clockwi sr. sense along the succeediiiJ side, cxjk. 

This scheme of barred and iuibarred symbols was considered to be more 

suitable than one based on double-suffices, in order to resolve the ambi quitics 

inherent in, say, the symbol Xj . 

4.4 Identities for a Spherical Dyad. 

From a consideration of equations (4.6) and (4.7) thy. following identities 

may easily be derived for a spherical dyad: - 

z. = 1ý (4.8) 

X+ Y2 + 72 1 (4.9a) 

ý+ Yý + Zý 1 (4.9b) 

(sinocik Z. + coscxik yi ) a -sinoc.. cosQ . 
(4.10a) 

(cosocjk Zj - sincxjky) cosoc.. (4.10b) 

{sinalj Zi + cosoc 
1. J J) --sinoc jk cos9 J 

(4.11a) 

(COS oc. '-J J - sinc; iý 
; 'ý) = cosacj k 

(4.1lb) 
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T}: ese. identitý_¬_a hav proved to be extre1 i 
.l 

in thcc lk: a'ivati_o_i 

of loop ecuations and ha f-tangent laws (Ceee Chapter .;, are Clearly 

valid for all spherical lygons. 

4.5 The Laws for a Sphrir"icai Triangle. 

Using ti, e notation introduce(i above, it is no possible to rewrite the 

three basic laws for a spherical. triangle in a very concise form. Thus 

¬: quzations (4-1), (4.3b) and (4.2b) become respectivF]. y: - 

Sine Law X1 = sincx23sin@2 
(4.12a) 

Sine-Cosine Law Y1 = sinCK23 cosQ2 (4.12h) 

Cosine Law Z1 = cosoc23 
(4.12c) 

whilst equations (40)r (4.3f) and (4.2b) involve barred symbols and 

become: - 

Sine Law X1 = sino: 23 sin93 (4.13. x) 

Sine-Cosine Law y1 = sinac23 c: osp3 (4.13h) 

Cosine Law Z1 = Cosa23 (4.13c) 

All cyclic permutations can now easily be obtained from equations 

(4.12) and (4.13) by considering Figure 4.2(b), and an exhaustive list is 

given in Appendix III. 

At this point it must be emphasised that, whereas equations (4.6) and 

(4.7) are identities defining the symbols Xjt Yj ', etc., equations (4.12) and 

(4.13) represent relationships that X1, Y1, etc., must satisfy. 

The advantages of this particular notation for the spherical triangle are 

fairly minimal, however, and the real significance of the symbology will not 

become apparent until it is applied to the other spherical polygons. 

4.6 Polar Spherical Triargles. 

The spherical triangle with vertices 1j 2 and 3 is illustrated in 

Figure 4.3. The sides of this triangle, being arcs of ; great circles, each 

define an axis perpendicular to the planes in which they lie and passing 
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through the ce: Antý'e of the sphere. Thus the side cx, de fi ne the " :d 

represented by the unit line vector a12, cF. osc'n s, xch that S}, S< er'd 2 

form a dextral set. The points 3' , 1' and 2' at which a 12' a23 and a s1 

intersect the sphere are termed the poles of the respective sides (x121 0x23 

and ccj1, and these poles define a second spherical triangle with 

g1, A2 and 8 
J, and exterior angles 0x12, a2, and c. x31 as shown in Figure 4.3, 

The points 1,2 and 3 at which S1, S2 and S3 intersect the sphere (i. e, the 

vertices of the original triangle) are themselves the poles of the sides 

8l' 82 and A3 of the second triangle. 

The two triangles are thus said to be polar with respect to each other 

since there is a complete reciprocity between the vector sets (S1, S2' S3) 

and (212' a23' a31), and hence between the spherical triangles they determine 

(see also Brand [4] ). As a consequence or this direct corre_spondencet '. it is 

possible to interchange the roles of the angles and sides of a spherJ. c.. 1 

triangle and hence obtain equivalent sine, sine-cosine and cosine laws in terms 

of two exterior angles and an included side. Hence, making the following 

definitions in analogy with equations (4.6) and (4.7): 
- 

Uij = sing isinaiJ , 
(4.14_{) 

Vi. = -(cos@ising i+ sing icos6i coso: ij) 
(4. "fl)) 

Wig _ (cosAicos9j 
- sing 1sing iCMCx,.. 

) (4.14c) 

oae obtains a scheme of laus completely analogous to (4.12) and 4.13). 

Thus: - 

Sine Law U12 = sing 3sinoc 2J 
(4.15a) 

Sine-Cosine Law V12 = sing 3cosa23 
(4.1: b) 

Cosine Law x'12 - cos93 (4.15c) 

Sine Law U21 = sing 3sinoc31 
(ý. t. 16a) 

Sine-Cosine Law V21 = sing 3cosc ,; j 

Cosine Law W21 _ cos A3 (4.16c) 
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1rTOi: ICF that there is 1. o nE^t? SS; lf: ý 

ýYlra ;ý as UiJ etc. 
) since there is :t double m r. iiX invrol'1cdd ?. n the IT, l 

expressions and hence Uli (* Uij) takes the place o. $ Uli. 

Finally, it is possible to derive identities analogous to equations 

(4.8), (4.9), 4-10) )rid (4.11) for these polar expreSSi(ns. TIms - 

W. s ;J(. a. 17 
ij ji 

Ul2 22 
+w. E1 (1. vm) 

i+ Vii ij 

uii+qi+ýyýi 1 (4. lch) 

(sine 
3W LJ .+ cos8 

3V1. J 
)_ 

-sing 1 
cosox 

1J . 
(4?. 19a) 

(cos8jW7.. 
j - sing j Vl. j) = cosQ1 . 

(4.19")) 

(sing 
iWji + cosQiVji) a -sing icosocij 

(4.20x) 

(cosQiitji 
- sing IVJi) = cosQ. (4.20b) 

However, it was felt that it would be pointless and also superfluous to 

include exhaustive lists of these polar-triangle laws in an appendix since 

throughout the course of the work presented here, their relevance and use? i1ties s 

has proved minimal. 

4.7 Combinations of the Basic 

It is possible to derive certain additional formulae from various 

combinations of the three basic laws for a spherical triangle. Thus, 

restating (4.12a)ß one obtains: - 

sinoc31 singt = X2 (4.21x) 

Multiplying (4.12c) by sincx12, (4.12b) by cosoc12and adding, one obtains, 

after making use of identity (4.10a) (with i=3, j=1 and k= 2): - 

sinoc31 raso1 = YZ (4.21b) 

Finally, multiplying (4.12c) by coscx 2, 
(4.12b) by sinac 2 and subtracting, 

1c 12 



I 1Q1, 

One. oLtdin. s, tft(, 'r making use o$ identity ý4. lOb) f 
v't; i 1= ýf �ý I and 

k=2): 

coscx31 = Z2 (4.21c) 

However, in carrying out these manipulations, the additional formulae 

that have been obtained (i. e. (4.21a), (4.211)) and (4.21c)) are simply cyclac 

permutations of the three basic laws (equations (4.13)) and hence nothing now 

has been achieved. This is not the case when considering the other spherical 

polygons, however, and certain distinct subsidiary Formulae can be derived 

in the above manner. Nevertheless, in the case of the triangle, what has been 

shown is that the three laws involving barred symbols and the three not 

involving barred symbols, are completely interdependent, and hence there are 

clearly only three basic or fundamental laws (i. e. equations (4.12a), (4.12h) 

and (4.12c)) termed the sine, sine-cosine and cosine laws, from which all 

other relationships can be derived. 

This dependence of the many varieties of formula on the three basic ia; ": s 

is of fundamental importance when considering the spherical polygons with more 

than three sides, and it will be discussed in greater detail later in this 

chapter. 

4.8 The Spheri cal. Qua6r: i7. ateral. 

The spherical quadrilateral (vertices it 29 3 and 4) defined by the 

for intersecting unit line vectors S1, S2, Sý and is illustrated by 

Figure 4.4(a). The sides of the quadrilateral are designated oc12, a23, 

«34' X41 and the exterior angles are denoted by A1' Q2 A3 and A4 as shown. 

Consider the spherical quadrilateral to be formed from the two spherical 

triangles 123 and 134 with common side cc310 The loop equations for the 

quadrilateral can then be derived using the sine, sire-cosine and cosine laws 

for these two triangles, which are respectively: - 



1: 
0 

-(cos(X 31 sina: 12 + sino: 
111 

1 cascx12 Cosa'i) = s: in 
2Jc, )sß2 

(coscx3 
1 cosoc 12- Sincx ý1 sino 12 cosQ1) - cos x23 

and: 

simx31 sing" = X4 

sincx31 cosQIO =Y 

cosoc31 = 7,4 

l 
-- 

(4.22C 

(4.23x) 
r. r 4.2 3b) 

(4.2'(') 

In order to inter-relate the two sets of equations, a re7. ationsti_ip between 

9, l, 
A'I and the desired 91, is required. From Figure 1.4(a) it is dear that 

this relationship is: - 

TT -- 0t _ 8" -A 
(4.24) 

and hence: - 

sin®; a (sinOl cosQ1 - cos9ll singt) (4.25&) 

and cosQ; = -(cosQll cosß1 + sing" sin©1) (4.25b) 

it is now possible to deduce three basic laws for the spherical 

quadrilateral, which are termed the sine, sine-cosine . nd cosine lat s 

(because of their fundamental similarity to the correcpondinS triangle 1: ', 's) 

as follows: - 

(i) Sine Law 

Substituting-for sine; from (4.25a) into the L. H. S. of 

equation (4.22a) and re-grouping terms, one obtains: - 

(sinoc31 sinQý )cosQ, 
- (sina31 cosoý) sin91 = sinoc23 sinQ2 (4.26) 

By means of (4.23a) and (4.23b)7equation (4.26) becomes: - 

X4cosp1 - Y4sin91 0 sina23 sin92 (4+. 2'7) 

Now, by defining: - 

X41 = X4 cos81 - Y4sing 1 
(4.29) 

equation (4.27) may be written as: - 



1 1'',, 

si, nO,, 41 , 1. ? ". 

which is termed the sine law for a spherical quadrila$; er. a l, since it is 

analogous in form to equation (4.12a) 
. 
for the spherical triangle. Again the 

symbol, X, has the meaning of a function, whilst it suffices ce; ote that it 

has two arguments (84 and 91 in this case). 

(ii) Sine-Cosine Law. 

Substituting for cosof from (4.25b) into the L. . S. of efiuat: Lo, -i 

(4.22iß) and re-grouping terms, one obtains: - 

-sirn(x 12 
(cosoC31) + cosýx14 (sinoc31 co5Q )c, )sQ1 

+ coscx12 (sinn 
31 si.. "8'l )sir; 01 sinn 23 coso2 (4.30) 

By means of (4.23a), (4.23b) and (4.23c) this beconeZ: - 

cosa12 (Y4sing 
1 "i- y4cos91) - sinoc1,, Z4 = si rjo"23 cosAý (4" '31 

Now, by defining: - 

Y41 = cosac12 (X4sing 
1+ Y4cosA1) - sina: 12 Z4 (i. 32) 

equation (4.31) may be written as: - 

Y41 = s3. ncx23 COSG2 ( . 33) 

which is termed the sine-cosine law for a spherical quadrilateral, since it 0 

analogous in form to equation (4.12b), for the spherical triangle. 

-(iii) Cosine Law 

Substituting for cosQ, from (4.25b) into the L. H. S. of 

equation (4.22c) and re-grouping terms, one obtains: - 

cosoc 12 
(coso: 

31) + si nc; 12 
(sincx31 cos©1)cosQ1 

+ sinot12 (sinoc31 sinoý) si. n0 = cosa2 3 
(4.34) 

By means of (4.23a), (4.23b) and (4.23c) this becomes: - 

since 2 
()C4ring 

1+ Y4cosQ1) + coscxl 2 Z4 = coscx 3 
(4.35) 

Now, by defining. - 

Z4ý sixta14 (ý: 
ýsi r. E)ý + YýTcýýs©j + coCcx 12 Z4 {4.36; 
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equation ('. 25) maybe written is: - 

Z41 coso2 3 
(4.37) 

which is termed the cosine law for a spherical quadrilateral, since it is 

analogous in form to equation (4.12c) for the spherical triangle. Notice 

that from (4.36) and definitions (4.6) (with i=3, j=4, k= 1) it can 

easily be shown that Z41 = Z14 (i. e. the 'Z' expression is symmetric , "rit?: 

respect to its suffices). 

Now, equations (4.2.9), (4.33) and 0.37) (the sine, sine-cosine and cosine 

laws for a spherical quadrilateral) are considered to be funda. 'nent,. il formulae 

and are sufficient to determine completely an; º spherica' quadrilateral 

provided any five of its eight elements (i. e. four sides and four exterior 

angles) are specified. The definitions (4.23), (4.32) and (4.36) can clearly 

be written in general form (applicable to any three adjacent spherical 

links) as: - 

X cosg =X -Y sing is i 1 i i 

y 
i = CAS(X. (X sing k cosQ. ) +Y - sinoc. ^. 

i k j ý i j ý i ý 

Z, i = sincx (XisinQ cosQ ) +Y + cosac k7 i ý ý ý i ý 

Xki = XkcosAl - 
YksinA 

,J 
Ykj = cosai (xsing 

J. + YkcosQj) - sino: ij 
2. 

k 

Zkß = sinocij (ý`sinQ 
.+ Yxcosoi + cosai j 

2k 

(4.38a) 

(4.38b) 

(4.33c-) 

(4.39a) 

(4.39b) 

(4.39c) 

where i, j and k are in ascending consecutive cyclic order, and with the aid 

of (4.38), (4.39) and Figure 4.4(b) all cyclic permutations of the three basic 

laws may be easily obtained. Appendix III* contains a complete list of the 

latter. 

Finall; y, it must be noted that a set of ]_aý"rs may be derived for the 

polar quadrilateral, in complete analogy with equations (4.15) and (^. 16). 
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A T`f? nl^n"CYlt? ýl. LýE? OF f'. 7^ý Z.:? ýT 'l-Ir he ý. Y: 'lt*f? Yl 1. f: ' follow-, 

u123 = sing 4sinoc314 
(T. /! o ) 

v123 = sing 4cosrr. �4 
(A,. 40b) 

W121 ` cos94 (4. l. Uc) 

where the U, V and W expressions are defined by: - 

11193 = U12cosac23 - V12sinoc 
3 

(1.41 a) 
J 

V123 = cosA 3 
(U 

12sincx 2,1 +V 12 Cosa 23 
)- sing 3W 12 

(4.11b) 

W123 = sing 3(U12sinoc23+ V12cosoc23) + cos93W12 (4.41c) 

and U12, V12 and W12 may be obtained from definitions (4.14). 

However, the author is of the opinion that, since the polar laws (for 

all spherical polygons) closely resemble the basic laws, in form, it is 

unnecessary and would be largely irrelevant to include exhaustive lists of 

these polar laws, in view of the ease with which they may be written down 

using the above notation. 

4.9 Identities for a Spherical Quadrilateral. 

In addition to identities (4.8), (4.9), (4.10) and (4.11), which are 

valid for any spherical dyad, it is possible to derive the following 

identities from equations (4.38) and (4.39), using (4.6) and (4.7), for a 

spherical quadrilateral: - 

IZ 13 a Zvi (4.42) 

Xz. + Y?. + Z?. $1 (4. '13a) 13 1ý 1ý 

X2 Y2 Z2 1 (4.43b) 
kj i" kj + kj 

(sinocjk Zig + cosocjkYid) is (xising + Y1CO. S9 ) (4.44a) 

(cosocjkzij 
- sincx. kYij) Rzi (6.44b) 

(sinoci. 
i rý<1 + cosax . jyjý) 

(? C}`sinil + YkcosO)j) (4.45a) 

(coscxli 7i- sincxi Yý, )%(. 5b) jk 



1ij. 

Finally, the followinýi t-ao identities, which are rcýý evic? nnt, may 

be stated, as they are useful in some of the derivations: - 

cosQý(XicosQý - Yiging 

+ sing (Xi sing + Y. cos9ý) Xi iA+. 46a) 

sing ý(XicosBý -y sing i) 

- cosQý(Xisi. nQý + Yicosgi) -Yi 
(4.46b) 

4.10 Subsidiary Form. die for a Spherical Quadrilateral. 

In analogy with the triangle laws it is possible to derive certain 

subsidiary formulae from the basic quadrilateral sine, sine--cosine and cosine 

1azs (i. e. equations (4.29), (4.33) and (4.37))" Thus, restating (1.29) 

one obtains: - 

(X4cosQ1 - Y4sinA1) _ 22 (4.47a) 

Multiplying (4.37) by sincc129 (4.33) by cosoc12 and adding, one obtains, 

after making use of identity (4.44a) (with i=4, j=1, k= 2): - 

(X4sing 
1+ Y4cosQ1) = -Y2 (4.47b) 

Finally, multiplying (4.37) by cosoc12, (4.33) by sinoc12 and subtracting, one 

obtains, after making use of identity (4.44b) (with i=4, j=1, k= 2): - 

Z4 _ Z2 (4.47c) 

Equations (4.47a), (4.47b) and (4.47c) are termed subsidiary sine, 

sine-cosine and cosine laws respectively and are extremely useful for the 

purposes oP displacement analyses. 

However, some further laws may be obtained from equations (1.47) by 

using identities (4.46a) and (4.46b)ß and these are: - 

X4 (X2cos8ý 
- Y2sing, ) (4.48a) 

-Y4 - (X2sin01 + Y2cos81) (4.4$b) 

z4 =22 (4.48c) 
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T}icse 1. i , are mere1`. ' cyclic ('. 1' I?. l± ý'":. C1YIS Of 1 , ixt tlici. r 

complete functional dependence on the latter, and hence on the initial laws 

(4.29), (4.33) and (4.37) has clearly been demonstrated. 

One final set of 'subsidiary' laws may be derived, with the aid of 

identities (4.10a) and (4.10b), which are: - 

sina34 sing4 = X21 (4949a) 

sinoc34 cos04 = Y21 (4.49b) 

coso 4= Z21 (4.49c) 

and these are just cyclic permutations of the basic sine, sine-cosine and 

cosine laws (1.29), (4.33) and (4.37). However, what has been shown is that 

all the laws involving three out of the four angles of a spherical quadrilateral 

can be derived in a systematic way from various combinations of the three 

fundamental laws in those angles. Furthermore, in the course of the 

derivations, certain extra subsidiary relationships or formulae arise, such 

as equations (4.47b) and (4.47c), which were not apparent in the case of the 

triangle. All fundamental and subsidiary formulae for a spherical quadri- 

lateral are listed in Appendix III. 

4.11 The Spherical Pentagon. 

The spherical pentagon (vertices 1,2,3,4 and 5) defined by the five 

intersecting unit line vectors S1, "?, S3, SS and S5 is illustrated by 

Figure 4.5(a). The sides ö£ the pentagon are designated oc12, °23' a34' 

oc45, a51, and the exterior angles are denoted by A1, A2, A3, A4 and A5 as 

shown. 

Consider the spherical. pentagon to be formed from a spherical triangle, 

234, and a spherical quadrilateral, 1245, with common side, c 42. The loop 

equations for the pentagon can then be derived using the sine, sine-cosine and 

cosine laws for this triangle and quadrilateral, which are, respectively. - 

sinax42 singt = sinoc34 sing3 (4.50a) 

-(cosoc42 sin(c23 + sincx42 cosa23 cose2) _ sina34 cosQ3 (4.50b) 

(cos«42 cos«23 - si - 42 sinoc23 cos92) = COSIX34 (4.50c) 



and: - 

since sinQn - X1 ) (4. i 
42 1 51 

sinocg2 cosQ =Y 51 
(4.51b) 

coscc42 = Z51 (4.51c) 

In addition, the following relationship holds (sce Figure 4.5(a)): - 

IT - 0` = 82 - Q2 (4.52) 

and hence one may derive the three laws for a pentagnr as: - 

Sine Law x 512 = sinayq sing ('1.53a) 

Sine-Cosine Law Y512 = sincc34 cos83 (4.53b) 

Cosine Law Z512 = cosoc34 (4.53c) 

where the terms X512, Y512 and Z512 are defined by: - 

X512 = X51cos02 - Y51sin02 (4.54a) 

Y512 = cosoc23 (X51 singt + YS'cos92) - sinoc23 Z51 (4.544b) 

2512 - sina23 (X51 sin92 + y51cos82) + cosoc? 3 Z51 (4.54r. ) 

and X51, Y51 and Z51 are obtained from equations (4.38) (with i=5, j= 1). 

Equations (4.53a), (4.53b) and (4.53c) (the sine, sine-cosine and cosine 

laws for a spherical pentagon) are fundamental formulae and are sufficient to 

determine completely any spherical pentagon provided any seven of its ten 

elements are specified. Furthermore, the definitions (4.54) can clearly be 

generalised £or any three adjacent angles of a spherical polygon and from 

this it can be shorn that 2512 2 2215' 

A complete list of all cyclic permutations of the three basic laws for 

a spherical pentagon may be written with the aid or Figure 4.5(b) and is 

given in Appendix III. 

4.12 Identities for a Spherical Pentagon. 

Some further identities may be derived from the spherical. pentagon laws, 

in addition to those which -ire valid for. any spherical dyad, ard the m ,, 11'+dri- 

lateral. i dentitiec. These niny be listed as fo1la', rr and are välid for arty 

three adjacent angles of a spherical polygon: -- 

--, 



9.? 

J 

X. Y + ? 
ijk 

+ ak lk a1 ýn., 56) 

v) (x C1ýý ý. \7 ý., rQ) (ß!. 5i i) ijk kl ijk ij k iJ k 
(cosocki :: 

l .l- sinockl Yi 
. k) 

Zi . 
(4.57h) 

Finally, two useful self-evident identWen may he listed es: - 

cosok(Xi YiJ sinok) 1 co5Al 

+ singk(Xij sinQk + YijcosAk) = X1j (4.5ga) 

sing k(Xij cosok - Yij sinAk) 

- cosAk(XiJ sinAk. + YiJ cosAk) - -YiJ 
(4.5Ah) 

4.13 Subsidiary Formlae £or a Spherical Pentagon. 

By adopting the procedures outlined for the quadrilateral it is possible 

to obtain two distinct groups of subsidiary laws for the spherical pentapon, 

where only one such group occurred for the quadrilateral. The subsidiary 

sine, sine-cosine and cosine laws in the first group may be written 

respectively as: - 

(Xy1co. sQ2 - Y51sing 2) = x3 (4.59a) 

(X51si. nA2 + Y51cosQ2) _ -Y3 (4.59b) 

751 = Z3 (4.59c) 

where (4.59a) is a restatement of (4.53a); equation (4.59b) is derived by 

adding cosoc23 x (4.53b) to sine 23 x (4.53() and using (4.57-R); and Finally 

equation (4.59c) is derived by subtracting sine 23 r, 
(. 1.53b) from 

coscx23x (4.53c) and using (4.57b). 

In a similar manner the three subsidiary laws in the second group may be 

written: - 
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X5 = (X os2 YCi.? ZN, -)ý 

-Y51 = (X3Sing 
2+ 

Y3cosQ2) (;. GOb) 

z X51 =3 (ý?. GOc) 

and these are derived from equations (4.59) and identities (4.58). Notice 

that although (4.59c) and (4.60c) are identical the equation is included in 

each of the two groups since it possesses the characteristics of both. 

Appendix III. contains an exhaustive list of all cyclic permutations 

of the subsidiary sine, sine-cosine and cosine laws for a spherical pentagon. 

4.14 The Spherical Hexagon. 

The spherical hexagon (vertices 1,2,3,4,5 and 6) defined by the six 

intersecting unit line vectors S1, S2, S3, S-4, Sr and S6 is illustrated. by 

Figure 4.6(a). The sides of the hexagon are designated o: 12,023, ccý 

«4S' °C56' c61 and the exterior anales are denoted by 91, AL, 83, An, 95 

and 96 as shown. 

Considering the spherical hexagon to be formed by adding a spherical 

triangle, 345, to a spherical pentagon, 12356, with common side «; 3, one 

may write the three laws for the triangle as: - 

sinoc53 sing, = sincc45 sing, 

--(cosoc53 sina34 + sinoc 53 coscx34 cos93) = sinoc45 cosQ4 

(cos(X 
53 cosoc34 - sinor53 sincx34 cosQ3) = cosa45 

and those for the pentagon as: - 

sina si. ng3 =X 53 612 

sinoc53 cosA = Y612 

cosoc53 _ ß, y1 ?. 

In addition, from Figure 4.6(a) one has: - 

lT-83_03-93 

(4.61 a) 

(4.61b) 

(4.61 c) 

(4.62a) 

(4.62b) 

(4.62c) 

(4.63) 

and hence, in exact analogy with the pentagon, the Allowing three £undanent31. 

laws may be derived for the spherical hexagon- 



I 
:: t'i 

Si. nP Lana XG1.3 .. sr, ccýf 4 

Sine--Cosine Law ' 6123 ' sill COSQ 

Cosine Law 26123 = coscxg5 (4.61c) 

where the terms X61`3, YG123 and 76123 are defined by: - 

x6123 ° X61 ? cos93 - Y612sin©3 (4. c5e. ) 

y 6123 cor (X sing� +Y coso )- sinac Z 3a 612 612 3 3ý ( 1 
(4,65b) 

6123 = sincc 34 
(X612sing 

3+ Y612c osQ3) + cost, °'i ry61 2 
(ý 

" 65c) 

and are each clearly functions of four angular displacements (i. e. 06 Eilt 

A2 and A3). Furthermore, these definitions can be generalised for any four 

adjacent angles of a spherical polygon and a complete list of these d all 

cyclic permutations of equations (4.6'Ia), (4. E4h) and (4.64c) (the sine, sine- 

cosine and cosine 1a, gs for a spherical hexagon) t which are fundamental forrit., te, 

is given in Appendix III. with the aid of Figure 4.6(s). 

4.15 Identities for a Spherical Hexagon. 

The following additional identities may be derived from the definitions 

(4.65): - 

Z1jkl $ Zlkji (4.66) 

222 Xljk1 + Yijkl + Zijkl 61 (4.57) 

(sinaim zi jkl + CosalmY. jkl) ß (xi 
jksinol + Yi jkcosA1) 

(4.68a) 

(cosalm zi jkl - sinoclmYi jkl) Zi jk (4.6ßb) 

and the two self-evident identities are written: - 

cos9i(XijkcosQ1 - Yijksing, ) 

+ sinQl(XijksinQ1 + Yijkcos01) - X. (4.69a) 

sin9I(x.. 
1c_cosO1 - 

YiJ, 
ksing1) ýý 

- cosO1(Xijksin41 + YijkcosAl) 'Yi. jY 
(4.69b) 
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In each of the above iclentitieq 
, 

it 
. 
j, kr 1 ricl. in rare 

integers in comýccutive cyclic order. 

4.16 Subol f ary Forri l- e for a Snheri cal hexagon. 

For the spherical hexagon it is possible to derive three distinct groups 

of subsidiary laws using procedures exactly anzlofous to those for the 

pentagon. Thus the subsidiary sine, sine-cosine and cosine laws in the first 

group may be written: - 

(X612cosA3 - Y612sin03) = x-1 (.. 70a) 

(X612sing 
3+ Y612cos93) = _y4 

(4.7ob) 

2612 = 74 (4.70c) 

and these are obtained from equations (4.64) with the aid of identities (4.68°). 

The laws in the second group are then obtained from equations (4.70), using 

(4.69a, b) and are: - 

X612 (X4cosQ3 
- 17 4sing 3) 

(4.71 a) 

-Y612 (X4sing 
3+ 

7f 
4cosQ3) 

(4.71b) 

2612 - Z4 (4.71c) 

Finally the laws in the third group are derived from equations 4.71) 

using (4.57a, b) and are written: - 

(X61cosg2 - Y61sing 2) X43 (4.72a) 

(X61sinQ2 + Y61cos92) -Y43 (4.72b) 

Z61 y Z43 (4.72c) 

All cyclic permutations of these laws are given in Appendix III. 

4.17 The Spherical Heptagon. 

The spherical heptagon (vertices 1,2,3,4,5,6 and 7) defined by the 

seven intersecting unit line vectors Sý, S3' 2' SI SS and S7 is 

illustrated by Figure 4.7(a). The sides of the heptagon are designated 

ach 2' «23" «34' C45 r 56' (5c67' a7 1 and the exterior ang].:, s are denoted 

by Q1,822 93' 04 85, A6 and 0ý as shown. Gonstritcting the heptagon by 



iýýý 

adding a splýcrical tz"iana?. e, 456, to a sphýric...? kc gon, 1231677, end 

removing the common side oc61' one may trite the laws for the triangle! -- 

sincx64 sin64 = sin- sing 

-(coscx64 sinoc45 + sincx 64 cosoc45 cos8ý) = Slncx56 cosQ5 

(cosoc64 cosa45 - sinot64 sincx45 coqaý) = coscr, 56 

and for the hexagon: - 

sinacý4 sing" =X7 123 

sina64 cosQ4 =- l'7123 

cosa64 =Z 7123 
from which, together with the relationship (see Figure 4.7(a)): - 

TT -A4=A4-04 

(4.73a) 

(4.73b) 

(2.73c) 

(4.74) 

(4.7.? b ) 

(4.71lc) 

,, -75) 

one may derive the three Lundamental laws for a spherical heptagon. 'Fliese 

are: - 

5 
Sine Law X71234 = sincx56sing 

Sine-Cosine Law Yý1234 ` sinoc56 cosO5 

Cosine Law Zý1234 - coscc56 

where the terms X71234' Y71234 and ? 71234 are defined by: - 

X71234 - X7123cos04 - Y7123sin94 

Y71234 - cosoc45 (X71ý3sin84 + Y7123cos04) - sinoc45`"7123 

? 71234 sina45 (X7123sinA4 A- Y7123cosQ4) + coscc45 Z71? 3 

(1.76? ) 

(4"7Gb) 

(4.76c) 

(1.77x) 

(. ß. 77h) 
(4.77c) 

and are each functions of five angular displacements (i. e. 07, Al, A2' A3' 

and A4). As with the other polygons, these definitions can be generalised for 

any five adjacent angles of a spherical polygon, and a complete list of 

cyclic permutations of the three laws (i. e. equations (4.76)) is given. in 

Appendix III., with the aid of Figure 1.7(b) 

4.18 Identities fora S1,? ^^r; c_,? Heatacýon. 

The following additional identities may be derived from the defini. t4. ons 

(4.77):. - 



z 
131! 11Y! Intl ji. 

221 Xi jklm + Yi j', ýlm + Ji jklm 

(sinamn 7i 
jklm + coJ(xmn Yi jklm) 

(Xi 
jkl. SI fQm + vi jkl'`csgm) 

(cost: Zi 
jkl m- 

sinacmn Yi jklm) m Zi jkl 

123. 

(ßr; ) 

(4.79) 

(4. ý; aa) 
(",. gob) 

and, in addition, the following two self-evident identities may be written: - 

cosem(Xi . LlcosQm - y.. klsin9 
) 

ý 

+ sinQ (XijklsinQm + Y.. kicosQm) 
Xljkl (t. 81a) 

sing m(Xijkloosom - Yijklsing ) 

- cosQm(XijklsinAm + Yijklcocam) e -Yijkl (4.81b) 

where i, j, k, 1, m and n are positive integers in consecutive cyclic order. 

4.19 Subsidiary Formulae for a Spherical. Heptagon. 

There are four distinct groups of subsidiary sine, sine-cosine and 

cosine laws that may be derived for a spherical heptagon from the three basic 

lal, is (equations (4.76)) using procedures exactly analogous to those for a 

spherical hexagon. The first group may be written with the aid of identities 

(4.80) as: - 

(X7123cos04 
- Y7123sin04) _ A5 

(X7123sing 
4+ Y7123cosc4) _ -Y5 

27123=Z5 

the second group, derived using (4.81x) and (4.81b), is: - 

X7123 = (XScosO4 
- Y5sing4) 

^Y7123 (25sing 
4+ 

? 
5co39 4) 

27123 22 2 
5 

(4.82a) 

(4,82b) 

(4.82c) 

(4.33a) 

(4.03b) 

(4.83c) 

whilst the third group may be written: - 
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(X712(: o583 ' 
71 r�-i. ny ) -. (.; 

'';,, j% 

(X712siiiýd3 + 712- co_; ýýj _ . 154 (?. ` ,} 

2712 - 754 (ri. 8ýfcý 

using identities (4.68). 

Finally the fourth group of laws is derived from using, 

identities (4.69), and is written: - 

x 712 - 
(X54coso3 -y 54 sing 3) 

C5 1) 

-Y712 = (X54sin83 + Y54COSQ3) (4.. '5b) 

2712 " Z54 (4oC5c) 

All cyclic permutations of these laws are given in Appendix TII. 

4.20 Note on the Symbology. 

The notation developed in the above sections is based on as rsten of 

three distinct but well-defined trigonometrical functions (the XY and. Z 

expressions) which, apart from the single-suffix case, are all oi' the 

following form: - 

X... = X.. cosA. - Y.. sin9. %n.. 86. a) 

Y... = COSIX.. (X.. si. nQ. + Y.. COSO. ) 
- SiroC.. Z.. (4.8Gb) 

Z... = sirux.. 
(X.. 

sinQ. + Y.. cosQ. 
) 

+ Cosoc.. Z.. (4.36c) 

(the number of suffices being determined from the contexts but in each case 

representing the particular angular displacements involved). The expressions 

for a spherical dyad (i. e. Xj, Y. o z., x,, Yi and -Z can' however, be made 

to fit into this scheme by defining appropriate constants as follows: - 

X=0 

Y_ -sincx. . 

Zý cosoc. 
ij 

Xt0 

k J 

cosoc. 
1}' 

(4.87) 

With these definitions? one may rewrite equations (4.6j and (4.7) as: - 



1 _' ̀ ý 

X. r 
=x cosA - y sing j 

ýrý,, ) 

Yi coso . 
(X sing ,+Y cos9 .) - sino: . z (4.88b) 

J k a 

Z. = sinoc. (X sing. +Y cosQ. ) + coso: jk z (i. 88c) 

Xj X cos9. - Y sing (4.29a) . 
Yj = cosocl (X sing. +Y cosQ ) - sing. Z (4aenb) j 1J 
Z sinoc.. (X sing + 71 cos9. ) + coso (4. {39r) j . 

and these clearly fit into the scheme of (4.86). The sole drawback of this 

restatement of the dyad notation is that the constants (X, y, z, i, Y and Z) 

each depend on the value of j for their definition. 

Nevertheless, the scheme of notation developed in this chapt^r is of 

fundamental importance as a means of presenting, in concise form, the loop 

equations for any spherical polygon, since it can clearly be extended and 

applied to polygons other than those considered here. 

4.21 Direction Cosines. 

If one considers the seven intersecting unit line vectors defining the 

spherical heptagon in Figure 4. E, it can be shown geometrically that, reeerred 

to the co-ordinate system illustrated, the x, y and z direction cosines of, 

say, Sý calculated in an anti-clockwise sense are XS4321, Y54321, and 

254321 respectively, whilst those calculated in a clockwise sense are 

sina67 sing7, sina67 cosQ7- and coscx67 , respectively. (These are also the 

D. C. 's of the point, P, on the surface of the unit sphereýat which S 

intersects the latter). Hence equating corresponding direction cosines, one 

obtains the three equations: - 

X54321 = sinoc67 sin87 (4.90a) 

''54321 " sinoc67 cose7 (4.90b) 

254321 = coso: 67 
(4.90c) 

which are merely the sine, sine-cosine and cosine laws for a spherical heptagon, 
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Listing tile lirectjon co-, im`, ý in this, wriy for t: ICjl Of the ! ýc_V<'i 

unit line vectors in Figure 4.. 8,, one obtains Table Itl. Noliee that the 

D. C. 's of the line vector S. (i 1,...., 7) do not depend on Ai (i. e. none 11 

of the X, Y, Z expressions has 'it as a suffix). 

The advantages of the X-Y-Z notation are thus apparent since all X tcrm 

represent the x-D. C. of some unit line vector through the origin (i. e. a pair 

axis), whilst Y or (X sing +Y cos9) terms represent the y-D. C., and Z terms 

represent the z-D. C. Furthermore, the significance of the sine, sine--cosine 

and cosine laws, in arising from equating corresponding. D. C. 's calculated in 

a clockwise sense with. those calculated in an anti-clockwise sense, is now 

apparent. Also, it can be seen that the subsidiary laws are merely a 

restatement of the basic laws, referred to a different co-ordinate syster.. 

Finally, it has been noted that the following identity is valid in 

general (see equations (4.9), (4.43), (4.56), (4.67) and (4.79)): - 

X2.. + Y?.. + Z2.. 1 ('. 91) 

and in the present context this is nothing more than the identity satisFi. ed 

by the three D. C. 's of any unit line vector at the origin. Note also that 

identities of the form: - 

(Xicosoi 
- Yising . 

)2 

2 +(XisinQi + Yicosoi) 

+ zi -s1 (4.92) 

are valid in general, which verifies that the terms on the R. II. S. of Table III. 

behave as D. C. Is. 

4.22 Dual Laws for Spatial Polygons. 

The equations and laws presented so far in this chapter describe the 

relationships between the various real angles of a spherical polygon und fall 

naturally into the classification of sine, sine-cosine and cosine laws 'ciopted 

above. In addition, it is clear that, of all possible laws relating a given 
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set or angl e$, oY! 1 y t`. rr `etch lx. -ic can hr- 

(This can be seen from the derivatiors of the tiu'. ýsid: i< ry fc: rrhxla- or from 

the fact that the various laws represent direction cosines and therefore 

equation (4.91) must be satisfied). 

NOW it has been e: cpiained in Chapter 3 that for c-ch pheric 1. ý.; ;ý 

involving real angles there is a corresponding law for spatial polygons 

involving 2? al angles obtained by introdneing the dual symbol and using the 

Principle or Transference. R, º applying the rules fer manipulating ýnc: ti n 

of a dual variable (see Chapter 3) and. equating primary and secondary parts, 

each spatial law may then be expanded to give two real equations. The first, 

which is termed the primary egization, is identi. cril to the original. spherical 

law, whilst the second is called the secondary elu? tion correspond-inqr to j114, 

primary, and is applicable only to the spatial polygon. 

For the purposes of this expansion it is convenient to define, in the 

case of the spatial hexagon for example, the following dual notation (hc: rt 

X6123 is identified with X(Ä6, Sit Q21 9)) 
- 

A X6123 X6123 +¬ X06123 

Y6123=Y6123+EY06123 

n 
6123 26123 +e 206123 (4.93) 

in accordance with the usual practice. Thus, as an example, the three dual 

triangle laws corresponding to equations (4.12) arc written: - 

= sinä23 sinÄ2 

= sins 
A 

23 cosQ2 

= cos 23 
(4.94) 

where: - 

1= X1 +6 X01 

Y1 - Y1 + 9, Y01 

z1 r z1 +8 X01 (4.991' 



and: - CY23 2 r.! C j+ 
¬' ' 

92 
:-92+F, 32 t%ýýr: 

Equations (i. 94) then yield six real equations obtained by eTaatincj 

primary and secondary parts from each side. The primary equations are 

identical to the original triangle laws (egluaaatiors (4.12)) whilst the 

secondary equations are derived by expansion of (4.91) and are: - 

X01 a23cosa23 sin92 + S2sincxL3 co, -92 (1.97a) 

Yol a23cosoc`3 cos82 - S2si. r, o. P 3 sing 2 
('1.9,7", 

--, ) 

zol -a23siticc23 
(4.9? c") 

where: - 

X01 = a31 cosoc,, 1 sin81 

+ S1 sincc31 co591 (ýý 9 h) 

Y01 =- a12(coSIX12 coscc�1 - sinoc12 sine 31 cosQ1 

+ a31 (sinc12 sina: 31 -- cosoc12 coscx31 cosc1 

+ S1 cosac12 sincx31 singt 0.9i>b j 

Z01 `- a12t sincx12 c0scx31 + cosoc12 s: ir cx ý1 cos©1 

a31(cosoc12 sinoc3l 't11oc12 coso: 31 cos91 

+S1 sincx12 sinoc31 sin81 (4.91c) 

Such expansions are clearly of an extremely complex and laborious wtl; re, 

and there is no advantage to be gained from listing numerous cyclic 

permutations. However, the expressions for X071234, Y071234 and' '/'071234 are 

given in Appendix III. as representative for the spatial heptagon, together 

with various other'Z; expressions, since these latter may be written in 

syiametrical form. 

4.23 Dual Direction Cosines. 

The significance Of the X-Y-Z notation as real. direct-Lon cosines for the 

intersecting unit line vectors defin: irg a sphe r: i c a1 poiyg, or. has already ben 
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dcl: Ln(, ated above. As -a consequence UF t h1 5 ant ot 1 l^ PT'] ? 1C1 ^i ro 

Transference (see Chapter 3) it now follows that the correspnndinq 

X-Y-7. symbols, defined by expressions of the form of (4.93) repre''ent the 

dual direction cosines for the skew unit line vectors defining a spatia. ). 

polygon. Thus, introducing the dual symbol into Table III. proc'. zces the 

corresponding dual direction cosines for the spatial heptagon, ý: ho'nn in 

Figure 4.9, and it can be seen from Figure 4.10 that a particular unit line 

A 
vector, say S,, is represented uniquely in space by the thrcc diia'. direction 

A 
cosines? X4J21, y4321' 4321. 

Now the primary part of, say, X4321 (i. e. X, 
1321) 

is. simply the cosine 

of the relative angle, PX between r\ and the x-axis (see Figure 4.10), 

whilst the secondary part of X4321 (1. e. A04321) must equal --h . sin A 
ý, ý. *cýeFre 

bX is the common perpendicular distance between 
S 

and the x-axis (see also 

Chapter 3). in other words one may interpret X 4321 as follows: - 

A 
x 

4321 -cosgX-cos 
x-6 

xsingX (4.9-7) 

where: - 

4321 

and: - 
g_ 
ý_ x 

In a similar mann 
A 

dual D. C. 's of S5 with 

X4321 +e X04321 (4.98) 

Jp x+E 
bx (44.99) 

A 
er it is possible to interpret y4321 `"mod 7'4321 as the 

the ya rtd z axes respcctively. 

- Now from equation (3.52) it is clear that: - 

A2 A2 A2 A X4321 + y4321 + 74321 (4.100) 

and hence equating primary parts one has: - 

X42 22 
321 + Y4321 + 24321 1 (4.101) 

which is a cyclic permutation of (4.67); whilst equating secondary parts 

gives: - 

X4321''04321 + Y4321"Y04321 + Z43?.. 1`Z04321 0 (4.102) 

which may be prcived directly. Howwever, equations (4.101) and ( 
. 102) '--Ire the 



ronc1lt?. On 1f: 'in0 ('Ci on the COtl! nc>'1Cr'. Ot 1 '"13ti' try iýýY ý. Or:? rr `.: ', 

unit line rector (see Chapter 3 awl Brand [aj)º end. ý-, the ; ign fig ct-:. r r, ' 

4321 4321' and 
'4321 

as the dual-number components OR a unit 1. i: 1c vecýnr 

is verified. Thus, with reference to Figure 4.10t in the co-ordinate. system 

shown, one tray write;. - 

J5 S; +ßs05 (4.103" 

where: - 

x4321 

S5 Y4321 

z4321 

x 04321 
(4. i0") 

205 YO41321 

'O4321 

and: - 

s5. s5=1 ' 
7i 

Hence X04321' Y04321 and 204321 are the xp y and z components o- 

vector representing the moment of the unit line vectors 
S5, 

about the oriyi. iz 

(see Figure 4.10). Consequently one must have the condition: - 

2) 
X02 22 

4321 + Y0ý}321 + 204321 h (4.106 

where h is the perpendicular distance from the origin to A. 

Furthermore, the co-ordinates of any point, P, on the line definte. "d by 

n S may now be written immediately. Thus with reference to equations (3. ') 

and (3.2) one may write in this case (see Figure 4. '10): -- 

X= SO5' 

and r. SF (. i. 107) 

and the solution to these equations is given by (see Brani [3j ar. 0 erj). ation 

(3.2)): - 

5e &) ) (4.106) 4- Cl R5)/(. tl 

Hence, from (4. 'l0ß) the co mponernts of' 'll arc: - 



1 3. 

Px = 
(Y 

4321.70. "321 - 24321''04321) -1 'd Y'432,, 

Py = (24321'"04321 " `{4321"Z04321) +d y4321 

pz = (X 
4321. y04321 - y4321. x04321) +d Z4321 (4°109) 

Clearly, these considerations and deductions may be applied in general 

to any spatial polygon in any suitable co-ordinate system of the type 

illustrated in Figure 4.10, and the relevant dual. direction cosines, etc., 

may then be written down immediately. 

Thus, having obtained the basic equations to describe spherical and 

spatial polygons, and realised their significance as real or dual direction 

cosine expressions, the problem now is to derive input-output equations, for 

various spatial linkages, from these laws in terms of just two anTu '. r 

displacements, by eliminating the extraneous or unwanted variables. The 

difficulties encountered in such elimination procedures will be discussed in 

Chapter 5. 
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Figure 4.1 Representation of the Spherical Triangle. 
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(a) Notation for a Spherical Dyad. 

(b) Planar Representation of the 
Spherical Triangle. 

Figure 4.2 Notation and Representations for Spherical Polygons. 
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Figure 4.3 Representation of Polar Spherical Triangles. 
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(b) Planar Representation. 
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Figure 4.4 Representation of the Spherical Quadrilateral. 
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Figure 4.5 Representation of the Spherical Pentagon. 
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(a) Spherical Representation. 

(b) Planar Representation. 

Figure 4.6 Representation of the Spherical Hexagon. 
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(b) Planar Representation. 

Figure 4.7 Representation of the Spherical Heptagon. 
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Figure 4.8 Representation of the Intersecting Line Vectors 
Defining a Spherical Heptagon. 
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Figure 4.9 Representation of the Line Vectors Defining a 
Spatial Heptagon. 
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5S5+8s05 

where S5 = X4321' Y4321' 14321 

and 805 = x04321' Y04321' 204321) 

I 

Figure 4.10 The Significance of the Dual Direction Cosines of 
a Unit Line Vector, Ste, of the Spatial Heptagon 
in Relation to the X- Z Notation (see Figure 4.9). 



14 34 

CHAPTER 5 

DERIVATION OF HALF-TANGENT LAWS 

FOR 

SPHERICAL AND SPATIAL POLYGONS 



i"ý. 

5.1 i trnducti. O'. 

The major problem in the analysis of spatial linkages \': Lt_h more than 

four links is the derivation of input-output displacement equations. Thus 

it is necessary to derive, for the various mechanisms, an eqpuatinn which 

relates the input angular displacement to the output anrn11. ar (or slidin-) 

displacement. in general, such input-output equations must contain )I. l the 

mechanism dimensions. 

The initial starting point in deriving the input-output el'. z tion for a. r., ' 

particular spatial mechanism is the scheme of loop equation developed in 

Chapter 4 (i. e. the sine, sine-cosine and cosine laws, or combination, o. ̂  

these). The fundamental problem is then. one of algebraic elimin tion for a. il 

except the RCCC mechanism, sine these transcendental loop equ, tions cap be 

converted into algebraic fort by rzcans of the following substituutions: -" 

sing. 
ý=2. 

x /(1 + xýj (5.1 i) 

coso. _ (1 
- r2)/(1 + xý) (5.1b) 

Theories of algebraic elimination are given in Salmon [31], B cherý_? i 

and 2"uir E28], and are outlined by many other authors such as Turnbull. [13l etc. 

For the majority of spatial mechanisms one is requui red to eliminate a 

single unknown between two non-homogeneous non-linear simultaneous equation:, 

which are in polynomial form (the coefficients being each a function of the 

input and output variables), and the theory of dialytic elimination, as 

propounded by Sylvester, has been prominent in the field of mechanisms. 

Briefly, Sylvester's method produces an eliminant, or condition on the 

coefficients of two polynomials, f(x) and g(x), (in one variable) such that 

f and g may have at least one root in common. If f(x) is of degree m and 

g(x) is of degree n then the eliminant, denoted by F(f, g), is in the form, of a 

determinant of order (m + n), which is obtained by multiplying f by 1, x, x2, 

n-1ý 23 m-1 
x3$""", X, and g by 1, x, X, K, ".., Y in turn, and e'qua; i. n? the 



ý 'l: r. i 

dt Y'7 ! '1.21? 11± o r'o f Pi iý'ntS of (l ,., ý, ný,. llý', Y1rf 
(it,. + r) l', 't-: . On.. (<, 7> 

: ý. r-.... 1 
homogeneous in the (m + n) variables 1, x,..., xm4. r-- to zero. '? 'I-Ii ss 

the condition that the equations be satisfied by a cummor, non- .. e. ýc value of x. 

Thus, in the case of two quadratics one has: - 

f. (x) =a2x2+a1 r. +ap=0 
(5.3) 

9(x) =b2x2+ box + b0 =0 
(5.4) 

and multiplying f by 1, x; and g by 1, x gives: - 

a2x3+a1x2+a. 0x0 

a2x2+a1x+a0 =0 L 

b2x2 + b1x + h0 =0 

b2x3 + blx2 + box =0 
(5.5) 

Treating this system as four linear equations, homogeneous in xx 

x and 1, the condition for a non-trivial solution is-. -- 

F(f, g) = 

a a a 0 2 , 0 

0 a a a 2 , 0 0 
0 b2 b1 b0 

b2 b1 b0 0 

(5.6) 

This determinantal form of the eliminant is. called a bi. gradieat (see Turnbui]. 

Here the author prefers to use the method of B&out which leads to a 

condensed form of the above eliminant, and, for a system of two quadrL. tic 

equations, produces a symmetrical compound determinant of half the order of 

Sylvester' s bigradient. B'zout' s determinant is termed the Bezoxitian and, in 

addition to the above mentioned reduction in order, it enables one to obtain 

various expressions for the common root directly. 

The method may be demonstrated for the case of the two quadratics 

considered above (i. e. equations (5.3) and (ss. 4)) as follows* Thus, writing 

(5.3) and (5.4) in the two alternative forms: - 



f(xý = 2x2 + (a1x ý" a0ý =0 
(Ii. 

.) 

g(x) b2x2 + (b1 ,c+ b0) 0 (5.4P. ) 

or: - f(x) = (a2x + a1 )x+ a0 =0 
(5"^-} 

g(x) = (b2x + b1)x .L b0 =0 
(5.4h) 

one may treat (5.3a) and (5.4a) ?. s two non-homogeneous ]i ienr ec ; J_ittc in 

x2 and eliminate the latter to obtain the equation: - 

(a2b1)x + (a2bu) =0 
5� j'" 

Similarly, treating (5.3b) and (5.4b) as non-homogeneous in x and eliminatiY; 3, 

one has, also: - 

(a2b0)x + (alb0) =0 (5"7b) 

It is now a simple matter to eliminate x between (5.7a) and (5.7h) and oüt rý. 

i 
the desired }3ezoutian of f and g as the following compound determi. narnt: - 

(a`b1 ) (a2b0) 

(a2h0) (alb0) 
(4.8) 

In equations (5.7a), (5.7b) and (5.8), the notation (a2b1), etc., has been 

adopted for brevity to represent a (2 x 2) determinant. 

i. e. (a2b1) 
a2 a1, 

'etc. 
b2 b1 

(5.9) 

- The vanishing of B(f, g) is again the condition for f and g to have a 

common root and it is shown in Archbold r1j and in Turnbull [38] that the 

i 
bigradient and the Bezoutian may be transformed one into the other by a 

suitable partitioning of their parent matrices. In frct it is clear that. -- 

B(-fr 9) =± E(f, g) (>. 1. r)? 

where E(f, g) is the bigradialt of f and g. In the general. cane vrh(:! ': fi 

of degree in and g of degree no both the bigradi. ent and 3ezoutian produce a 

elimifant of degree n in the coe_ff1Cie! ^ts of P rd of degree r in tie 



: ̀'ý� 

coefficiei. ts of ?, will'i. 5t. l: {1(: ` cr. r 
. 

all (. 1t. -*rro :! `S 
(`Iý + Y1) in 

.... li_ c... 'i?! ' `. 1. ý'.. ""'. .. 

However, it must be pointed out that if one re-; aired the "! onldit cia -Cti"I '-_ 

three quadratics share a common root, for example, then the desired e: "? imindrit 

is of a lesser degree than would be expected from the above i. c ussi. on. 

Thus if f0 g and h are given bv: - 

f- (x) = a2x2 + a1x + A0 =0 
(%. i ) 

1--) + b1x + b0 0 

h(x) -c'x2+cox+c0 =0 
(ýý'1 

the required eliminant, E(F, g, h), is the determinant of tý. sy; -tem tre .týl 

as a set of three non-homogeneous equations linear in the to u yiknoi., ns, 

2- 
and x. The vanishing of E(f, g, h) is then the condition; that (5.11 ), 

(5-12) and (5.13) have a common root. 

I a2 a, ao 

i. e. E(£r gr h) = b2 b1 b0 =0 
(5.14) 

c2 C1 c0 

This is a third order determinant and hence E(f, g, h) is of ova,: -x] 1 dceree 

three in the coefficients of f, g and h. 

Clearly, the total degree of an eliminant of a system of equations 

depends on at least the following two major. factors: - 

(i) The degree of each equation. 

(ii) The number of equations in the system. 

outian arm As a final point it mist be noted that an eliminE\nt in 3, ',., 

is easier to manipulate than is a bigradient, and, in addition, two 

alternative expressions for the Common root of a pair oP quadratics are 

obtainable immediately from equations (5.7a) and (5.7b). 

592 Ii1P; ýt-Output Equations and Extraneous Roots. 

The fundamental problem in obtair_i. ng the . r_pul-. ou; utput equation for tý: =. 

vast majority of spatial mýckýznisrns is that of the ¬1it; iiIlatioa r. -' a singt' 



ýiiý}a 

tZ'71ciYO,, rn bct'yce? 1 tr aneous 1ýý? 1-1: 1 ne r r' u 't'Iou "t . ': ý the `i! f'ocv of 

algebraic eiiý-iination for this problem is well estbli_F, heO (se(, pr vi. ou 

section). Nevertheless, s`veral papers have already appeared, [16,17,49], 

which present input-output equations containing extraneous roots. 

A contributing factor to the difficulties encountered in the elimin?. tion 

process is that the loop equations, as presented in Chapter 4, are each 

quadratic in the angular displacements. However, pairs of sine acid sine-cosine. 

la%, rs can be expressed (using (5-1)) in terms of the half. -tan en t of an 

appropriate angular displacement, and expressions for the cournon root of these 

equations, lead to novel loop equations which are linear in a half-tangent. 

The author has defined these as fuandrmental half_tanrient laws. Using these 

laws it has been possible to formulate the correct eliminant (and hence 

input-output equation), free from extraneous roots, for man; mec. z ,. is�ýs. 

5.3 Fundmental Half-Tangent Laws. 

The fundamental half-tangent laws, which are linear in the half-tangent 

of one angular displacement, may be derived in a straightforward manner ror 

all the spherical polygons discussed in Chapter 4. However, the method is 

most conveniently explained with reference to the spherical quadrilateral. 

miss, applying the half-tangent substitutions (5.1), (with j= 1) to the 

subsidiary sine and sine-cosine laws expressed by equations (4.47) and, 

rearranging, one obtains the following two quadratics: - 

f(x1) = 
(x4 + X? )x2 + 2. Y4x1 - 

(X4 
- XL) =0 

(5.15) 

g(x1) - (Y4 
- 

Yz) x2 - 2. X4x1 - 
(Y4 a Y2) -0 (5.16) 

where: - x1 = tan(Q, /2) (5.17) 

The e]. imin. ant of 5.15) and (5.16) may be obtained. from the BEZoutia. n 

of f and g, ý? hich may be '; Fi'itten, with reference to de£init: i on (5-8), as: - 



(Yý - r2) 
E(f, 

(Xý+X2ý 

tYýý " Y2) 

--(X - :) 

-(y4 v21 -2. x'4 --(Y4 + 

After expansion and simplification of this compound determ ný'nt one 

obtain. s: - 

2 ý" 
E(f, 9) = 4. (X 

4+ Y4 

2To'. z from identities (4.9a) and (, 

x42+ Y1 

and x2+ Y2 

and hence (5.19) becomes i- 

). [. (x2 + Y2) - (x + 
?.. 9b) one has:. - 

1- Zn 

1_ ý2 

F(fs g) _ 4. (1 - ? 4). (? 2 
- z4) 

ý' ýý i 

(c nDr. ) 

( K)b ) 

(5 e21) 

Thus from (5.21) and the subsidiary cosine law (4.47c) it is clear that 

E(ff g) must be identically zero for all values of Q,, and a4 ar. d hence 

(5.15) and (5.16) must always possess a common root. 

It is possible to obtain expressions for this common root by using the 

well-known formulae for the roots of a quadratic, Consequently the two roots 

of (5.15) may be written: - 

(72. Y4 ±[4. Y4 + 4. (X4 
- K2)J )/ 2. (x4 + X2)] (5.22) 

whilst the two roots of (5.16) are: - 

xý _(2. X4 +[4. X4 + 4. (Yä 
- 1'271)/ [2. (YI - Y2)J (5.23) 

The discriminants in (5.22) and (5.23) may be simplified appreciably 

using the identities (5.20) together With the cosine law (4.47c) and thus 

(5.22) becomes: - 

X, ` (`y4 1; ? 2) 
(y4 + x2) 

i. e. (X4 + X, )x1 
-" 

(--v + Y2) =0 (5.24) 
4c 



:; c.., 

4I': 11ý. Sß 
(5.2', ) may he written: - 

(X4 ! X2)/(Y4 - 12) 

i. e. (Y4 
- Y2)X, - 

(X4 +V=0 
(5.2-5) 

The condition for one of the roots of. (5.24) to be identically equal 

to one of those of (5.25), for all values of A6 and 94, is that the 

determinant of coefficients be identically zero. However, this will only 

occur for one of the four possible combinations of positive and negative 

signs and this is: - 

(X4 X2) -(-Y4 - Y2) 
2222 
22 (Y4 - Y2) -( x4 - X2) 

from (5.20a, b) and (4.47c). 

Thus two distinct expressions for the co on root of (5.15 and (5.16) 

may now be written, using (5.24) and (5-25), as: - 

(X4 + X2)x1 + (Y4 + Y2) =0 (5.2-7 ) 

and (Y4 - Y2)xl - (X4 - X2) =0 
(5.28) 

and these expressions are both linear in the half-tangent of 91 . The 

author has termed expressions of this form fundamental half-tangent lav, , 

and their validity may be appreciated geometrically since, if two angular 

displacements (say A2 and 94) and the four sides of a spherical quadrilateral 

are specified,, the remaining angular displacements must be uniquely determined. 

In an analogous way, one may express the basic sine and sine-cosine lags 

(4.29) and (4.33) for the spherical quadrilateral in terms of the half-tangent 

of 92 and obtain, via a similar procedure to the above, a further two 

Pundamental half-tangent laws, which may be written: - 

X41x2 + (Y41 - sina23) =0 
(5.29) 

(Y41 + sincx? 3) x2 X41 =0 
(5.30) 

where x2 = tan(ý12/2) (5.31) 



comt etl list Of 7,1-1 siich Pundarnent al 

one half-tangent, is given in Appendix IV. for the sphc. rißa7. quadrilater. ýi. 

Similar laws to the above may be derived for any spherical polygon and, 

in particular, three distinct pairs exist for the hexagon, obtained 

respectively from the basic sine and eine-cosin(, lairs (4.5 a, b); the t'ro 

subsidiary laws (4.70a) and (4.70b); and finally the to subsidiary laws 

(4.72a., b). These half-tangent laws may be listed as follovs; -- 

X6123x4 + (Y6123 - sinota5) =0 

and (Y 
6123 + sinoc 45) x4 -X 6123 =0 

(5,39) 

where x4 = tan(A4/2) (5. M#) 

(X612 + x4)x3 + (Y612 + Y4) =0 
(5.35) 

and (Y612 - ? 
4) 3 

(x612 - x4) =0 (5.3 ;) 

where x3 = tan(03/2) (5.37) 

(X61 + X43)x2 + (Y61 + Y43) 0 (5.38) 

and (Y61 - Y43)x2 - (X61 - X43) =0 (5.39) 

where x2 = tan(8J2) (5.40) 

An exhaustive list of all cyclic permutations of these fundmienta]. 

half-tangent laws is given in Appendix IV. for each spherical polygon up to 

and including the spherical heptagon. 

5.4 Ha. 1. f-Tangent La. ýs for the Sprerical Triangle. 

For the spherical triangle there exists the following pair of 

fundamental half-tangent laws, (linear in the single angular displacement 

9 
2) which are derived frort the basic sine and sine-cosine laws (4.12a) 

and (4.12b): - 

X1x2 + (Y1 
- - sincx23) =0 (5.41) 

and (Y1 + sin(x2 3) x2 -- X1 =0 (5.4? j 

where x2 is given by (5.40). 



jhi: 

1,1C, Iition t0 7. t 1. ̀ i '! h c' l (, j (! >). ': I, V( ... i_` > 

of ,' I'l rti'zý'. r h 1F-tancýent laws which are linear in two h=; li=-tang nts for the 

spherical triangle. Thus from (5.41), (5.12) and the two cyclic 

permutations: - 

X2xl + (Y2 - i. nc 
31 

}-0 

(Y2 + sincx31) x1 -- X2 -- 0 

one may derive the following four further half--tangent laws, linear in 

and x2: - 

[cos(oc12 - °23 )- cosac31 1 x2 - [cos(cc12 - (31) - cosoc23' x1 - C) 

[cos((X 
1` + cc 31) - cost 23j x2 - 

[cos(c)c12+ a 23) - co=3 iJ x1 =0 

[cos(oc12 -a 23) - coscx31J x2x1 - sincx12 sincx31 

(5,12.1 

(5.44) 

(5.45) 
(5.46) 

0 (5.47) 

[cos(ct12 - at31 - cosac23] X2x1 + [cos(a, 
2+a. 23) - cosy J1, --1 0 (5.43) 

The derivations are rather tedious but basically one replaces the Y 

terms in (5.41) and (5.42) with a Z1 term by means of identity (4.11b) and 

this in turn may be replaced with cosoc23 from the cosine law (4.12c). 

Carrying out a similar procedure to remove X2 in (5.43) and (5.44), one has 

two equations containing only X1 and two containing only X2. Now since. 
% 

gý .2 
(from the basic sine law for a triangle (4.12a)), it is clear that 

these equationt may be combined in four distinct ways to give the four 

further half-tangent laws listed above. 

5.5 Further H lf-Tangent Laws for Spherical Polygons. 

For the spherical quadrilateral there exist six fundamental hal°-tangent 

laws in any three angular displaceme. Its, say 01' 82 and n3, and these may be 

written 
(see Appendix IV. ) as follows: - 
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12"3 1? ný 
(Y12 sznoc J. }j ... 3 - :. 12 =0`;. Cl 

(xý 
-t X3)x2 + (Yl + Y3) 

=0 (5.5 ') 

(Y1 
- `? 

3)x2 - 
(xl 

=0 (5, ``2) 

X32x1 + (Y32 
- sin(; 11) 

0 (5 3 sý 

0 (Y32 + sina41; x1 - 32 

Using a similar procedure to that adopted for the trian-j1e, above, i. t 

is possible to derive eight distinct further half. -tar: gent la-vs in the thr. - 

half-tangents x1, x2 and x3 by taking various combinations of these laws. 

Thus, for example, from (5-50), (5.52) and (5.54) one obtai;, : -- 

sinoc12 [cos(o: 
2 -o 34) - Z., ]x3 
y 

+ [sina12 cosoc34+ sin(ac23 c12). Z1 - sinc: 23 coso, x2 

- sino; 23Icos(cc12- oc41) Z13x1 ?. `, ̀ ) 

which is analogous to the law (5.45) for the triangle. 

However, "wnlike the triangle law, equation (5.55) is not liroor in ýýr"-}, 

half-tangent and is in fact cubic in x. The other seven possible : f,, rther 

half-tangent laws are of a similar nature to (5.55). 

Clearly the above discussion may be applied in general and It can be 

shown that frort the 2-(n - 1) fundamental half-tangent '± aws (in one h_al r- 

tangent) involving (n 
- 1) angular displacements, for an n-sided spher-icai. 

polygon, it is possible to derive 2n-1 distinct urther half-tangent 

each in (n 
- 1) half'-tangents, Appendix IV. contains a Iii-Ated selection 

of such laws as examples, thoujh their usefulness has so far proved to be 

minimal. 

Nevertheless, in the process of. deriving then _r furthexr laws, cer. taxi n 

jnter ecýzýte hal£-tangent lays occur which contain lees th-ý? (n 

tangents and, in particular, the -j eltiat )n k two ha. 1£--t. -nrýents for 



t( , (' rntil t'riC I 
hepptr1Ron. ,, i.,, r hr., 

sinoc 556 x1234m5x6 + (sincx5(, y123ýf + coýsa56 Z12 ýý co 6 7) .. -6 

- rcos(a + ve i -- =0 (5-56) 
56 67 ' '23.1 

It is the opinion of the author that equations of this form may prove 

useful in the formulation of the R7 mech-nmism proble, r, (see. C}RDt r 11). 

5.6 Dual ITal£-Tangent L7ýws. 

Having obtaired the fundamental ha1. C-tangent l_a:: 7s, ýaý: i. cl! are Linear in 

the half-tangent of one angular displacement, and from them the further 

half-tangent laws, one may inquire as to the form of the secondary parts of 

the corresponding dual half-tangent laws. For the fundamental half'-tangent 

laws, these secondary equations may always be reduced to the same basic 

linear form as that of their primary equations. 

In order to illustrate the point, consider equations 5.35) and (5.6) 

for the hexagon: - 

X612 + Y4)x3 + (Y612 +'7 4)05.35) 
ýy612 - Y4)x3 X612 - x4) =05.36) 

These are the fundamental half-tangent laws derived from the subsidiary 

sine and sine-cosine laws (4.70a) and (4.70b). The latter may be writtr: n 

as follows with the aid of the half-tangent. substitution, (5.1): - 

(X612 + 54)x3- + 2. Y612X3 - (X61 
, - X4) =0 (5.57) 

(Y612 - Y4)x3 - 2. X 612x3 - (y612 + Y4. ) =0 (5.58) 

Now after introducing the dual symbol and expanding the resulting dual 

equations corresponding to (5.35) and (5.36) one obtains the two secondary 

equations: - 

X612 *X4)UX '3* 612 *h41XU3 +ýY612 +V4)0 ^U (5.59) 

(Y612 - 4)OX3 + (y612 
'G3 

(x612 0 (5.60) 

where the zero suffix signifies a secondary part. 



"c-; ö: 

i? o, sever: -- 

X03 - 
It (Q3/2)]0 

= 3. sec2 (Q3/2). 53 (from Taylor's expansion) 

S J[9 + taný(p3 /2)J /2 

2 S3(1 + X3)//2 

and hence (5.59) and (5.60) become: - 

53ý-(x612 + 54)x2 + (X612 +x 31 2+ (x612 + X4)0x3 1- (ýý612 + . 
ý)% ý -, = C (5.: 62) 

S3. (Y512 - Y4)x3 + (Y612 
- Y4)1` 2+ (Y612 

- Y4)px3 - 612 - x4)`, 0 5.63) 

At this point it can be seen that the coefficients of x, 
3 in (5,57) and 

(5.62) are proportional and hence (5.62) can be immediately reduced to an 

equation linear in x3 by means of (5.57). A similar argument way be applied 

to (5.58) and (5.63) and the latter also reduces to an equation linear in 

(see also Chapter 10. ). 

Clearly this process is obviously general in the sense that the 

secondary equation corresponding to any fundamental half-tangent law may be 

reduced to a linear equation, using the quadratic primary equation from \., ihich 

it is derived. 

In addition this type of reduction may be possible for the further 

half-tangent laws considered above, although the author has not attempted 

the task. 

Thus, having developed a unified theory for the analysis of spatial 

mechanisms in Part Y. of this dissertation, Part I[. ,, rill be devoted to the 

application of the method to a series of specific mechanisms, arid, in 

particular, to a group of five distinct six-7. i. nk sp tia1 mmcchanisms -which in 

the author's knowledge have not been correctly z"alysed prcviously. 
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PART II 

APPLICATION OF THE THEORY 

TO 

FOUR, FIVE, SIX AND SEVEN-LINK SPATIAL MECHANISMS 

S 
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CHAPTER 6 

A DISPLACEMENT ANALYSIS 

OF 

SPATIAL FOUR-LINZ R-3C 

AND 

FIVE-LINK 3R-2C MECHANISMS 
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6.1 Introd'iction. 

The objective of this chapter is to present an outline of the 

displacement analyses of spatial four and five-link mechanisms based on the 

unified theory developed in Part I. In recent years considerable progress 

has been made in this area and th^ four-'?; rte RC3 is well doeýi«rmert°d. 

E6,46]. For the five-link RCRCR mechanism Dimentberg E7] obtained initially 

an input-output equation of degree eight, but Yang [45] later succeeded in 

deriving a quartic equation for this mechanism. More recently this quartic 

was corrected by Yuan E47] and by Duffy and Habib-Olahi E11] who also 

derived input-output equations of degree four and eight respectively For the 

two inversions, RRCRC and RCRRC, of the RCRCR mechanism [13,14]. Finally, 

Yuan E48] analysed the RRCCR five-link mechanism obtaining a degree eight 

equation, whilst Duffy and Habib-Olahi [14] derived the input-output equation 

for one of its inversions - the RRRCC mechanism. 

In this chapter the basic problem of the elimination of a single unkno': m 

from two equations, which is central to the analysis of the majority of 

spatial mechanisms, is met with. The fundamental difficulty is the formation 

of the correct initial equations, sincethe elimination aspect presents no 

problem in this case (see Chapter 5), and the techniques adopted in this 

chapter will prove to be of general applicability. Finally, it was thought 

unnecessary to include numerical examples for the mechanisms dealt-with in 

this chapter in view of the agreement obtained with earlier published results 

ý11! 13,14,19,45,46,48]. 

6.2 Description of the Four-Link RCCC Spatial Mechanism. 

The four-link RCCC spatial mechanism is illustrated by Figure 2.2 and, 

in accordance with Chapters 1 and 3, it is modelled mathematically by a 

spatial quadrilateral with the following dual sides and dual afigles: - 
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ccc1G - 1Gý. a, 

=0'i23 X23 

«34 ac 4+¬ a34 " 

1 °c41 +6 a41 (6.1} 

A 
Al = Al +B S11 

n 
82-A2+E S` 

83=A3+E S3 

94+E S4 (6,2) 

where 92r0, anü all constant mechanism dimensions have double or repeated 

suffices. The input variable is the angular displaceirent, Q1, whilst th"- 

output variables are the angular displaccanerit, 0 4, and the slidir. J di. ýplacr_ý; ý;, t 

S4. 

6.2.1 immit-Output Displacement Equation. 

For the RCCC mechanism no elimination procedure is requi. r«d to obtain 

the input-output equation, since it is possible to write loop equations which 

contain only the input and output angular variables as t nknow' is. Thus Fro,: i 

equation (4.37) (the cosine law for a spherical quadrila eva1) one has, by 

introducing the dual symbol, the follo, rinj cyclic permutation of the dual 

cosine law for a spatial quadrilateral: - 

L 
ýý = coscxx23 (G. 3) 

Expanding (6.3) into primary and secondary parts (see Chapter 3. ) gives 

the respective primary and secondary equations: - 

Z14 = cosoY23 (6.4) 

L014 -ý. 23sinacL v. 5) 

where: - 

Zý4 sinoc34 ý. ý Ging + Y, cýsO4) + coso, (ý . ýj 
-1 t 34 
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and Z014 may be written in the syifinetric form: - 

z 
014 a34Y, 4 

+ ä4sincx34 K14 

+ 41(Cn5 12 
V4 slv- 2cos9 i7 

+ S11sina12X41 

+ a12y41 (6.7) 

(Note that '014 z041). 

Equation (6.4) is clearly the input-output equation for both the spherical 

and the spatial four-link mechanisms, and may he expressed as a ,, uadrati. c in 

the half-tangent of the output angular displacement. This veriFies the fact 

that both the R4 spherical and RC3 spatial four-lint: mechanisms ; lave two 

closures in general (see Chapter 2. ). For a given set of. « 
j, 

S11 and input 

angle 8l , 
(6.4) may be solved to give in general two values for Q4. By 

substituting the sets (01, p4), obtained in this way, into (6.5) one obtains 

corresponding values for the output sliding displacement S4. 

In the notation adopted by Yang and Freudenstein [46] the input-output 

equation for the RCCC spatial mechanism would be written-s- 

A(81)sinQ4 + B(A1)cosQ4 = C(AS) (6.8) 

and hence from (6.4), (6.6) and (6.3) the relationship between the two 

notations is: - 

A(Q1) sinoc341 

B(Q1) sinoc34? 1 

C(Q1) = cos«2 J-$34Z1 
Z1 (6.9) 

6.2.2 Determination of 92 and 0 3. 

Once the corresponding values of input and output angular displacements 

have been determined from equation (6.4)ß unique values for the angular 

variables 92 and 03 may be calculated using the Fundarnenta. l half-tangent laws. 
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Th_, s 9,,, ma, ' be obtained from either of e--, -ilia ti. ons (5.29) or (5. '10' by 

rearranging these as follows: - 

x2 = -(Y41 - since /X41 (5.29a) 

or x2 = X41AY41 + sinoc23) (5.30a) 

where x2 a tan(A2ý 2) (5., ") 

since: - X41 = X4cosQ1 - Y4sing 
1 

(4.28 

and Y41 = cosoc, 2( X1+sin©1 + Y4cosQi) - sinoc1 2; i 
(4.32) 

are uniquely determined for a given set, (9l= p4). 

In a similar manner Q3 may be found from the following cyclic permutations 

of (5.29a) or (5.30a): - 

x3 = -(Y14 - sina23) /X14 (6.10) 

or x3 = x14/("14 + sinoc23) (6.11) 

where x3W tan(03/2) (6.12) 

and: - X14 = X1 cosQ4 - Y1sing 
4 

(6.13) 

Y14 = cosoc34( 1 sin84 + Y1 cos94) - sinac34 Z1 ( 6. 'i 4) 

6.2.3 Determination of S2 and S3. 

Unique values for S2 may he obtained from the secondary part of the dual 

cosine law: - 

z12 

0' cosoocc34 (6.15) 
A 

which is written in the form: - 

2012 " -a34Gxna34 (6.16) 

where: 2012 = a23Y12 

+ S2sinoc23 x12 

+ a12Ccosoc41 YG - sincx41 ?, 
2cosß1' 

+ S11 s1no 41 
X21 

+ a41y21 (6.17} 
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since 91 and 92 are known. 

Similarly, values for S3 are obtained fron the secondary part of the 

subsidiary dual cosine law: - 

n 
z3 = z1 

which is written in the form: - 

Z0 3= Z01 

where: - Z03 - "a34Y3 

+ S3sina34 X3 

+ a23Y3 

and 01 = a41? 1 

+ S11sina41 X1 

+ a12Y1 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

6.3 Note on the Derivation of Input-Output Displacement Equations for Spatiül 

Mechanisms with Yore than Four Links. 

In the case of spatial mechanisms with more than four-links it is not 

possible to write down the input-output displacement equation immediately 

(in contrast with the RCCC mechanism), since the loop equations contain more 

than two angular displacements. Generally the input-output equation must 

involve all the constant mechanism proportions, and it is impossible to include, 

say the fixed offsets, Sii of a mechanism, in the analysis without introducing 

the corresponding extraneous angular variables, 9 i. The difficulty is 

inherent in the loop equations derived in Chapters 4 and 5, since they are, 

of necessity, expressions in terms of the dual angles, 
Ä= 6i +E S1.. 1. The 

major problem in the analysis of such mechanisms is the derivation of 

input-output displacement equations free from extraneous or unwanted roots, via 

an elimination procedure. 

For all five-link 3R-2C, six-link 4R-P-C and seven-link 5R-2P mechanisms 

one may write appropriate primary equations which contain the inputloutput and 



a single extraneous angulai^ ýL X4)1- C;:. 'ill( Yltý 9. 
" Fienc(-, it is nt"e!!! -, aT. " O 

1 

form a second equation containing the input output and 8_ 
1 

in order to derive 

the input-output equation from an elimin t-iou of this Q. býýý c: z the cwo 

equations. The required second equation grast be derived fron that secondary 

equation which involves all the fixed offsets. This ensures teat all t? 'Fe 

constant mechanism proportions are included in the analysis. 

Now the second equation must not be of an unnccessarily high degree in 

the input, output or extraneous Ai, since if it is, one has inadvertently 

performed an elimination, and the final. eliminant will contain the required 

input-output equation multiplied by an extraneous factor, which is, practically, 

impossible to find. In general, more than one elimination introduces extraneous 

roots. 

The derivation of the second equation is greatly facilitated by the 

following factors: - 

(i) The scheme of notation introduced in Chapter 4. 

(ii) The classification of the loop equations into 
sine, sine-cosine and cosine laws. (see Chapter 4). 

(iii) The expected degree (as predicted by Chapter 2) of 
the input-output equation. 

(iv) The discovery of the fundamental half-tangent laws, 
derived in Chapter 5. 

Finally it must be noted that for six-link 5R-C and seven-link 6R-P and 

7R'mechanisms one is confronted with the problem of the elimination of more 

than one extraneous angular displacement from at least three equations, as 

can be*seen from the relevant loop equations for the spatial hexagon and 

heptagon (see Chapter 4), and this presents forrl3. dable difficulties which 

will be discussed further in Chapters 10 and 11. 

6.4 DesPtion of the Five-Link RC? RCZ Spatial Mechanism. 

The five-link RCRCR spatial mechanism is illustrated by Figure 2,24 

and is represented mathematically by the following dual sides and angles: - 



ýý-rte 

n 
°C 12' 0<12+ P. a12 

äc3 
= o, +E a23 3 

a� +Ea,, , f 

4511- _ "`45 +e a45 
ä51 

= ac5 + 13 a51 (6.22) 

A Al81 +6511 

A 
2=A2+6 S2 

A 
A3_ A3+e S33 

Ä4=A4+ES4 

595+6S5 5 
(6.23) 

where 82 = 0, and all fixed mechanism proportions have double or repeated 

sufi'ices. The input and output angular displacements are respecti. vt1y 

and Q5ý and the frame may be considered to be the constant dual side, 
A5 

1" 

6.4.1 Derivation of Input-Output EVation. 

The input-output equation for the RCRCR five-lini mechanism is derived 

by eliminating the extraneous angular variable, 83, bet, ýeen the primary and 

secondary parts of the following dual subsidiary cosine law (see Chapter 4). - 

A7 
15 = 

z3 (6.24) 

The primary component of equation (6.24) is written as: - 

7115 = Z3 (6.25) 

where: - 

Zý 5= sina45 (:; 
1 sines + Y1 cosp5 )+ cosoc45 

Z3 = coscc23 coso_, ý4 - sires. 2, siricx34 cos63 (6.27) 

whilst the secondary component of (G. 24) is: - 

2015 = 7- 03 

where Z015 and Z03 are obtai ne d by e, cpa to i ýn of { 6.26) and (6-P7) as explained 

in Chapters 3 and 4, and may be written in the following sy; nmetr. ica1 fors; 

(see Appendix III): - 
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fr ., 4y 115 01 5 

+ 55sä. na .5; 1J 
+ aj1coseccxý1(1Z5 - cosoc12 coscc451 

+ S11sinoc12X51 

+ '12 51 
t` 

'^^i 

Z03 ~ a34Y3 

+ S33sina34X3 

+ a. 23? 3 
(G. 30) 

Now equations (6.25) and (G. 2.8) contain the ir, pu 1, outr. ut arl d F3 uId 

so are in a suitable form for the elilninat_ion of the latter. Thus, ma2, in 

the substitution (5.1) for cos93 in (6.27) and (6.25) and rearranging, onnc 

obtains the following quadratic in x3(ß tan(aý2)ý, from (6.25): - 

2(x3) = a2x3 + a1x3 + a0 =0 (c. 31) 

where: - a2 Z15 cos(a23-- «34) 

aý 0 

a0 = Zý5 - cos(ac23+ oc34) (6.3? } 

Zn a similar manner, since X3' Y3 and Yj are defined by: - 

x3 = sina23 sing3 

Y. 3 = -(cosa23 sin«34+ sina2ý coscx34cos©3) 

Y3 = -(cosa34 sinCc23+ sincx34 coso G3 cos83) (6.33) 

it is possible to obtain the following quacäratic from (6.23), using (6.30): - 

g(x3) = b2x3 + b1x3 + b0 =0 (6.34) 

where: - b2 e 2015 + ýl - a)sin(oc, y- cx ) 
c3 34 ` 34 

bý -2. S 33sincc ,. sinn 
J4 

Z? =Z+ Ca 
+a )sin(oc 

3} , 0 015 23 34 2'3 
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Now, forming the Bezoutian of (6.31) and (6.34) (see Chapter 5), one 

obtains as t1he eliminant, the compound symmetric determi rant: - 

(a., b1ý (a2bo) 

(a2bo) ' (a1ilO 

which, when equated to zero, must give the desired input-output equation. 

Since 3(f, g) is of order 4 in the coefficients a2, a1,... etc., which 

are themselves quadratic in both the input and output variables, one might 

expect to obtain a degree eight input-output equation for the RCRCR. 

However, expanding (5.8) gives: - 

B(f, g) _ (a2b1 - a1 b2)(alb0 - a0b1) - 
(a2b0 - a0b2)2 =0 

(G. 36) 

and from (6.32) and (6.35) it is clear that: - 

a2ap+ký 

aý p (6.37) 

b2=b0+k2 

b1 ^ S33k1 (6.38) 

where k1 and k2 are constants depending only on the fixed mechanism proportions 

and given by: - b 

k1 = -2sinac23 sincx34 

k2 = -. 2(a23cosa23 sina34+. a34sinoc`3 cosoc34) (6.39) 

Hence (6.36) reduces to the form: - 
ZL 

-S33k1a0(a0 + kl) - [(a0 t. k1)b0 - a0(b0 + k,., )] =0 (6.40) 

which upon rearranging becomes: - 

(S32 
3k1 + k2}a2 +k2b2+ kl(S33k1 2k bp)ap =0 (6.41) 

Clearly, since only a0 and b0 are functions of the input and ouput variables 

and are quadratic in both, equation (6.41) is the biaa c input-output 

equation for the RCRCR mechanism, and may be arranged in the form: - 
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4 (Pý'1 + 
3 

043x1 
2 

+ pý, ý`x. "r pt}1xi 
4 

+ 24.0)x3 

4 
+ (034x1 + 

3 
033x1 + 032x1 

2 
+ 031x1 

3 
+ p-10 )x5 

+ (024x1 + '023x1 + p22; c1 + 021x1 + p20)xý 

4 
+ (p14xi + 

3 
013x1 

2 
+ p12x1 + 011x1 + p, 0)x5 

+ (po4x1 + 003x3 + 002x2 + p0 ̀ x1 + poo) 0 (6.42) 

where: - 

X, - tan(A1/ 2) (6.43) 

x5 tan(e5/2) (6.44) 

and the coefficients, pik, are expressions in terms of the riechanisia 

proportions only. This is in complete agreement with the predicted degree 

for the RCRCR (see Table II. Chapter 2)y and with the algebraic results 

obtained by Yang [45', Yuan [47] and Duffy and Habib-07. ahi. E11]. 

3. 6.4.2 Determination of 9 

. For a given set, (®il Q5)ß of corresponding input and output angles 

obtained from a solution of (6.42), one may calculate the unique value of 

the angular displacement, A3, from either of the two expressions for the 

common root of (6.31) and (6.34), derived from the Bezoutian (5.3) (see 

equations (5.7a, b) of Chapter 5. ). These expressions are: - 

x3 = -(a2b0)I(a2h1) 

= -(a2b0 - a0b2)/(a2b1 - a1b2) 

or x3 = -(alb0)/(a6b0) 

-(a1 b0 - a0b1)/(a2b0 - a0b2) 

Thus from (6.32), (6.35), (6.37) and (6.33) one leas: - 

X3 = (k2a0 
- klbo)Is33k1(a, + 1.1) 

or x3 = S33k1a0/ (1 b- k`a0) 

(6.45a) 

(6.45b) 

(6.46a) 

(6,46b) 
where x3 a tan(6 /2) and kl, k2 are given by (6.39). 
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6.4.3 Dcter: nination Or 8G aý }. 

Having determined corresponding values for Alf 05 a. fld 83 it is no,, "i a 

simple matter to obtain the unique value of 82 from either of the two 

fundamental half-tangent laws (see Appendix IV): - 

X2 = -(Y51 + 13)(5,51 + A3) (6.47a) 

or x2 = (x 
51 -7 3) 

/(Y 
51 - 3) 

(6-, "7b) 

where x2 s tan(QJ2) (6.43) 

In a similar manner one may obtain the value of A4 from a cyclic 

permutation of (6.47a, b). Thus: - 

x4 = -(Y15 + Y3)/(x15 + X3) (6.49a) 

or x4 = (X15 -X 3)/(Y15 - Y3) (ö. 49b) 

6.4.4 Det-_"rrt1. -nati. oil. of S2 and 3 

The sliding displaceriient S2 may be determined from the secondary 

component of the dual cosine law: - 

A (6.50) 
z512 - cosac34 

which is: - 

20512 = -a34sinoc34 
(6.51) 

where: - 

20512 -, a23Y512 

+ S2sinoc23 X512 

+ a12[(X5sing 1+ Y5cosQ1)72 + X5Y2] 

+ 511[(Y5Y2 - X5X2)sir_g1 - (Y552 + X5Y2)cosA1J 

+ a51[(R 2sing 1+ Y2cos81)Z5 + 22Y53 

+ S55sinoc 5 X215 

+ a45Y215 (6.52) 

since X512' Y512, X215'.. "etc., are uniquely defined for a given set of 

Alt 05 and 9 
2. 
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Similarly the displacement, 34, is determined from the secondary 

component of the dual cosine law: - 

which is: - 

where: - 

casäý3 (6.;: ) z 154 

20154 'ý a23sina23 (6.54) 

20154 - a34Y154 

+ S4sin«34X154 

+ a45[(X1sinQ5 + Y1cosQ5)Z4 + Z1Y4J 

+ 355[(Y1Y4 - X1X4)sing 5-(, 
7 

1X4 + X1Y4)cos951 

+ a51[(X4sing 5+ Y4cosG5)Z1 + Z4Y1] 

-+ 
S11 sincc12 X451 

+ a12Y451 (6.55) 

6.5 Description of the Five-Link RRCCR Spatial. Mechanism. 

The five-link RRCCR spatial mechanism is illustrated by Figure 2.23 

and is represented mathematically by the following dual sides and angles: - 

12_ a 12+ E a12 

A 
oc23 = cx23+ 6 a23 
ä34 0c34+ E a34 

0(45 = «45 +¬ a45 
A 

ä51 
= a51 +6 a51 ( 6.56) 

A Al Al +6 S11 

2 292+8S2 2 

03=o3+6S3 
A A4=A4+6S4 

5= 
A5 +6 S55 (6.57) 

where 62 = 0, and all fixed mechanism proportions have double or repeated 
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Su. Efices" TIle input and Output aiv. uiar C1. i3p' ?. i ('I lct1ý`i T" rc. ii '1C1. y 

Al and 91 and the frame is the constant dual side 
c 

ý. 

6.5.1 Derivation Of Input-Output r ; ucttioti. 

The input-output equation for the RRCCR five-link spatial mecl. ani. si-ii 

13 derived by e'_i: nin? *_ing the extrIn FO-, IS rý/tj it '. r1riah r, Q llr"'`1: ''. ^. i fi! ý, ̂  

primary and secondary parts of the following dual cosine law (see Chapter 4): - 

A 
2512 = COSQeJ4 (6.5ý) 

The primary part or (6.53) is: - 

z512 ° cosoc3 4(6.5 
j 

where: - 

2512 = sinac23 (X51 sin02 +Y 51 cosQ2) + cast 23 3 5, 
(6.: O) 

whilst the secondary part of (6.53) is given by egwztions (6.51) and (,, `0- 

z0512 -a34sincx, 4 
(6.51) 

where: - 20512 a23Y512 

+ S2sincc23X512 

+ a1 C sin91 + YScosQ1)Z` + ? ý5Y`1 

+ 511E(Y5Y2 - X5X2)sin91 - 
(Y5n2 + "IN. 

5Y2)cosCý11 

+ a51[(-72sin®1 +? cosA1)Z5 +Z2Y5J 

+ S55sinoc45X215 

+ a45Y215 (6.52) 

However, for present purposes, it is more convenient to write 20512 as: - 

20512 = a0512 + S22sina23 ^512 

+ sinac231X051sin82 + Y0j1cosQ2) 4 cosx232051 6.61 

where: - 

x512 = X51coso2 - Y51S-1192 (6.62) 

) -- sin x�ý Z51 (S. 63) '512 = cosoc23 (X51 sin82 +Y 51cosA2 c. 

since (6.61) follows immediately by expansion of (6.60). 
b 
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Arranging (6.59) and (6.51) as quadratics in x2( with i ý: ic 

aid of (6.60) and (6.61), gives the following two u I;. ations: - 

(x2) a2x2+a1x2+a0=0 

g(x2) = b2x2 + b1 x2 + b0 =0 (6. ri5) 

where: - 

a2 = cosoc23 Z51 - Si. nOx23Y51 - co5IX34 

a, = 2. sinoc23 X51 

a0 = cos(x 23 Z51 + sincx23Y51 - cosoc34 (6.66) 

and: - 

b2 = (cosec 
23 2 33 2051 - sinoc23Y051) - S22sinCK Xr1 

-a23( sin«23 Zj1 + coscxG3 Yj1) + aJ4sina34 

b1 = 2(sinoc2 J �051 - S`2sinoc23 Y51 + a23cosa23 X51) 

b0 = (cosoc23 2051 + sin«23 Y051) + S22sinoc23 x51 

-a23( sin«23 Z51 - coscx23 Y51) + a34sinac34 (6.67) 

The Bezeutian of 6.64) and (6.65) is again given by (5.8), since they 

are quadratics and hence the input-output equation for the RRCCR is: - 

(a2bl) (a2b0) 
(5.8). 

(a2b0) (alb0) 

i. e. B(fr g) = (a2b1 
- a, b2)(albo - a0bl) - (ß'2b0 - aj 2) 

2 

=0 (6. G8) 

Unlike the case of the RCRCR, there do not exist relationships of th^ 

form (6.37) and (6.38) between the coefficients (6.66) and (6.67), and thus 

(6.68) does not reduce in order or degree. Consequently the input-output 

equation for the RRCCR is of degree eight in the input road output variables. 

This result is in complete agreement with the predicted degree for this 

rnechanisrn (see Table II., Chapter 2. ), and with the algebraic results obtained 

by Yuan [48] and Soni [33]. 
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G-5.2 Of" 7 

The remaining mechanism variables may be determined by following similar 

procedures to those used for the RCRCR. Thus ©,,, may be obtained from either 

of the following two expressions for the common root of (6.64) and (6.65): - 

x2 = -(a2b0)/(a2b1) 

-(a2b0 - a0b2)/(a2b1 - alb2) (6.69a) 

or X2 = -(alb0)/(a2b0) 

= -(a1 bo -. aob1 )Aa2bp - apb2) (6.69b) 

where x2 E tan(0/2) 

Having determined corresponding values for 91,95 and Alp one may 

obtain a unique value for 93 from either of the two fundamental half-tangent 

laws (see Appendix IV. ): - 

x3 = -(Y512 - sina34) /50512 (6.70a) 

or x3 = X512//(Y512 + sincx34) (6.70b) 

where x3 tan(Q/2). 

Similarly A4 may be determined from either of: - 

x4 a -(Y215 - sincx34) /C215 (6-71a) 

or x4 X215' (Y215 + since, 34Y 
(6.71b) 

r where x4 = tan(01/2) 

The sliding displacement, S3, is then obtained from the secondary 

component of the dual subsidiary cosine law (6.24), which is: - 

Z01j = ZG3 (6.72) 

where: - 
Zo15 = a45y15 

+ S55sinoc45 X15 

+ a51cosecoc51(Z1Z5 - cosa12 cosa. 45) 

+ S11sincx12X51 

+ a12Y51 (6.73) 



e 

ands- 103 = a34V 3 

+S Jsinoc 
X 

34 3 

+ a03 

Finally, S4 may be determined From the secondary component of the dual 

cosine law (6.53), which is: - 

(6.75) 20154 22 -a23sina2ý 

where: - 

20154 a34V154 

+ S4sina34X154 

+ a45[(7C1sing 5+ Y1cas85)Z4 + Z1Y41 

+ S55[(Y1Y4 - 171 4)sing 5- 
(Y1x, + Y4)co g53 

+ aj1[(X,,, sin85 + Y4cosG5)71 + Z4Y1] 

+ S11sinoc12X451 

+ a12y 451 
(G. 76) 

6.6 Derivation of the Input-Output Displacement E -. cations for the two Inve-rsionst 

RRCRC and RCRRC, of the RCRCR Mechanism and the Inversion, 22RCC, of the 

RRCCR I iechani sn. 

There exist two inversions of the RCRCR five-link spatial mechanisn;, 

namely the ?. RCRC and the RCRRC, whilst the RRCCR has but a single inversion, 

the RRRCC. Now these three mechanisms share the property that they all have 

a cylindric output pair and this presents difficulties in the derivation of 

their input-output displacement equations. Thus, although one may write a 

suitable primary equation relating input, output and a single extraneous 

variable in each case, the corresponding secondary equations involve, in 

addition, the respective output sliding displacements, and are unsuitable for 

the elimination of a single unknown. In fact it is necessary to utilize that 

secondary equation which includes all the fixed mechanism proportions and 

involves only those angular displacements related to revolute pairs. The 
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problem is then to nanipulate this secondary equatio in b,, ) ü corm suitable 

for the elimination of a single angular variable without unnecessarily 

increasing its degree. 

6.7 Description of the Five-Link RRCRC Spatial Mechanism. 

The five-link RRCRC spatial mechanism is illustrated by Figure 2.24 

since it is an inversion of the RCRCR. It is represented matheJaatically by 

the following dual sides and angles: - 

12 
= oc12 +6 a12 

`x23 = °c 23 +8 a23 

«34 = oc34 +6 a34 

«ý5 . oc45 +6a. 45 

cýc51 = oc5l +8 a51 (6.77) 

A 
0 0+8 S 

2 _A2+8 S2 

Ä3 
=A3+6 S33 

Ä4 A4+8 S4 

5 
=05+6 S55 (5.73) 

where 62 =0 and all fixed mechanism proportions have double or repeated 

suffices. The input angular displacement is 01. whilst the output angular 

displacement aid sliding displacement are respectively A2 xn. d 9 
Z. 

The frame 

is the constant dual side, 
ä 

12" 

6.7.1 Derivation of Input-Output Equation for the RRCRC. 

The input-output equation for the RIMI. ' five-link mechanism, unlike the 

RCRCR, cannot be derived directly by eliminating, say 9r, between the primary 

and secondary parts of the dual cosine law (6.53), since ? 0512 
(given by 

equation (6.52)) involves the sliding output variable S2 in addition to the 

output angular displacement Q2, Conse"Nentl; I an alternative derivation is 
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re uii'cd. Thus, co: isidcr the two : iaiE-taaJý_il- : iý: - 

(x51 + 3)x2 + (lý1 + yJ) =0 (x. 73) 

(Y51 - Y3)x2 - (; '51 - R3) 0 (ö. CG) 

whit 1 arc expreSS. LOnS for th¬ Common root bttwc; tm the SU SlýLl r2'j inc sullil 

sine-cosine laws (4.59a) and (4.59b). 

The : 13 terms can be removed from (6.79) and (5. Co) by neans of the 

secondary equation (6.28), ý. Yloich conveniently involves all the mechanism 

proportions and hence introduces these into the analysis. 

For this purpose it is necessary to write (6.2") in the . 
Lorm: - 

2015 - a23 3- a34i3 533sinoc34X3 

S33sinoc23. c3 (6.31) 

and with the aid of (6.81), one may rewrite (6.79) and (G. 10) as: - 

(S33sinoc23X51 +Z 015 - a23Y3 - a34Y3)x2 

+ S33sincx23 (Y51 + Y3) =0 (G. 32) 

S33sinoc2 J 
(Y 

51 - Y3)x2 

-(S33sinot23Xj1 - Z015 + a2373 + a34Y3) °0 (6.33) 

Finally, the Y3 and Y3 terms may easily be replaced by means of the 

identities (4.10b) and (4.11b) together with the subsidiary cosine law 

(4.59c). Thust- 

sinocý3 Y3 V cosec 2 3' 
Z"ý - cosocý4 

= cosa23Z51- cosa34 

and: - 

sinoc34 Y3 cosa34 Z3 - cosa23 

- cos«34Z15 - cosoc2 
r- I 

cosoc34Z51 - cosa23 

(6.84) 

(G. 05 

and hence (6.82) and (6.83) become: - 
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E033silioc23`.: 
51 + 7.015 - (a23cot 

t3+ ý'. 3:; cctc>" 1) -51 

+ (a23cosoc3 cosecoc2 J+ a34cosox2 J cosec.: oc3At) Jx2 

+ . S33[sinoc23 Y5, ß + cos«23 z51 - coso 343 =0(6.36) 

and: - 

S33[sincc23 Y51 - coscx`3 Z51 + cosoc34 ax2 

- ES33sina23 X51 - 2015 + (a23cotcw23 + a34cot(x34) Z51 

- (a23cosoc34 cosec(X 23 + a34cosoc23 coseca31) J=0 (G, -07) 

Now (6.86) and (6.37) are of the form: - 

2(x5) = a2x2 + a1x5 + a0 =0 (6. S ) 
5 

g(x5) = b2x5 + b1x5 + b0 =0 (6. C9) 

where: - x5 Iff tan(05/2) 

and each of a2, a1,..., b0 is of degree two in x1(input) and linear in x2 

(output). Hence, eliminating 85 by means of the Bezoutian (5.8), one obtains 

an input-output equation which is of the eighth degree in x1 and quartic in 

x4. This result is in complete agreement with the predicted degree for the 

RRCRC (see Chapter 2), and with the algebraic results obtained by Duff; ' and 

Habib-Olahi [14]. Note also that (6.86) and (6.87) are in the form: - 

f(x2) = allx2 + ab =0 (6.90) 

g(x2) - býx2 + bt =0 (6.91) 

where: - x2 = tan(gV2) 

bI are each of degree 2 in both x1 and x5. Hence eliminating and aýl aý1 b' 11 

x2 between (6.90) and (6.91) gives a biquartic relationship between x1 and x5' 

and this is an alternative form for the input-output displacement equation 

of the RCRCR mechanism (see equation (6.42)). 

The remaining variables for the RRCRC mechanism (i. e. S2t 83,04t S4,85) 

may now be calculated using similar procedures to those used for the RCRCR 

and RRCCR mechanisms. 



C)ýý. i li., sci'. tit: LOti _)['_i_t 
l. "�r"-_j'ý ßi1:. ... i11. : ýý`; 11: 1. ý'ý 1': '. ': "'tl'i. 11.1. i", i" 

Th five-link RT IM sp tiE1 ilcc '. i'I: 111 is i. l'1. U=`r; t: rj }ýý/ F''i. cu ". ' :ý 

since it j_^, an inversion of t}ee RC', t' Z. it is r&pr,.: cnr\te -. 1 

the following dual, sides and angles: - 

'c12 cc 12+ 6a 12 
n 
a23 = cx23 + 8 a23 

n 
oc 34 cc 34 + 6 ct 34 
n 
oc45 = °'45 + E a45 
A 

51 oc 51 + P, a 51 
? 2) 

A 
91= 91+ 
A 

2= 2+ 2 
83= 

63+E S33 
4- 

04+¬ S4 
Ä= 

05 +8 S55 (6.93) 

where 62 = 0# and all fixed mechanism proportions have double, or reptý1-ed. 

suffices. The input angular displacement is A, whilst the oiatp"At -x1gVi r 

displacement and sliding displacement are respectively 02 and S2. Th 

frame is the constant dual side, 2 cýý%3 . 

6.8.1 De-riyation of Input-Gutp"zt Equation for the RCW C. 

The input-output equation for the RCZRC five-link mechanism cannot 

be derived directly by eliminating say 91 between the primary and secondary 

parts of the dual cosine law: - 

A 
Z= cost 4S 

(6.94) 

since Z0321 involves the output sliding variable S2. 
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"e" 
z 'J 0321 51-321 

+ S11 sina, l X341 

+ a12E(3slne 2+ 
13cosa2) ü1 + 3y1J 

+ 32[(Y3Y1 - {3X1) sin62 - 
('3A1 + n3Y1)cos821 

+ sing -L Y cos9 )^ +: `J , ̀ ' 12123 J1 3 

+ S33sino: 
34X123 

+ a34Y123 (6.95) 

However, it is possible to use the primary part of (6.94), which is 

written in the form of a quadratic in x1(= tan(81/2)), by means of the 

half-tangent substitutions (5.1), as follows: - 

£(x, ) = a2x2 + a1 x1 + a0 =0 

where: - 

a2 cos«51 Z J2 - sinac51 Y32 - coso 45 

a1 = 2. sinoc51 X32 

a0 = cosoc 51 Z32 + sinn 51 Y32 - cosoc45 

(6.9) 

(6.97) 

A second equation of the form (6.96) is now req, xtr". d from which to 

eliminate x1, and for this purpose one must use, cquu:, tion 5.29) in order to 

include in the analysis all the fixed ntech th. ism proportions. Thus, wri. tin3 

ýs. 23) in Lull with the aid of definitions 6.29) and one has, 

after rearranging: - 

a45v15 + S55sincx45X15 

+ a51cosecO 51 
(7175 

- cosoc12 cosoc45) 

+ a12Y51 + S11sincxl? ^51 

- d23Y3 a34' 3- S33sinoc3ý X} 0 (6.93) 

In its present form (6.9v) cannot be used since it involves the additional 

variable 85. Nevertheless, it is possible to repliice every such teal; in 

6.9 ) with expressions involving only 03, ©2 and A1 without incrcasiiio the 

degree of the equation by means of the following identities and relationships: - 
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nn +rý ý Y= Cot<'x - cos. c^ý (SCC- (1. b 
15 15 45 

Z1 
J5 

Z, cotoc. 5 -7ý cosecoc .5 
(see (4.59c)) (6.99) 

Z5 = Z32 (subsidiary cosine law) (6.100) 

y = Zj1cota12 - ZScosecoc (see (4.44b)) 
51 12 

Z3cota12- Z32cosecoc12(using (4.59c) and (6.100)) (6.101) 

X51 = X32 (subsidiary sine law) (6. '02) 

The remaining unwanted term involving 95 contains the expression J 

and this presents certain difficulties. However, by using the definition 

or X15(see Chapter 4), together with the various laws for a spherical 

2, pentagon, it is possible to reduce this term to one involving only 8, ' 9 

and 91 in the following sequence o£ steps: - 

sina45X15 = X1(sincc45 cosQ5) - (sina45 sings) 

X1Y321 - Y1X321 

sinoc12 sinQl[cos« 51 
(X 

32 sing 1+Y 32 cosA1 ý) - sinaý1 Z321 

+ (cosa12 sina51 + sino(1L cosoc51 co-"01)(X32 cosQ1 - y32 sinQ1 

_ -X32Y1 - 
(cosa12y32 + sincx12 Z32)X1 

0 -[X32Y1 + (2 
3sing 2+ 

Y3cosQ2)X, J (6.103) 

Thus, (6.93) may now be rewritten, using equations (6.99), (6.100), 

(6.101), (6.102) and (6.103), as follows: - 



ý X13", 

(a coseccx z -- a cos0cýo: )Z 
5 151 32 45 45 

(S55x2) 
1 ). ) 1SiTikHý i ýý 

JCQSBýjn 

- a12coseccc1 
21 

Z�` + S11 sinoc1 L 
X� 

32 

+ (a12cotoc12 + a45 cotoc 45 
) ?. 3 

- a23Y3 - a34X3 - S33sino X3 4 

- a51 cosoc12 cose 45 cosecoc51 =0 (n. 104) 

This can now be written in the form: - 

gýx = b2x1 '- b1x1 + b0 =0 
(6.105) 

where: - 

x1 : tan(81/2) 

and: - 

b= Ca cosecoc cos(a - oc a �coseccx 
IZ 

2 51 51 51 12)- 1ý 12 32 

+ [S. 
11 sinac12 - S55sin(oc51 (3c12) ]x32 

+ [(a12cot(c12+ a45cotoc45) Z3 a23Y3 a34? 3 - S33sina34A31 

- [a45coseccx45 cos(oc51 -a 12) + a51cosecoc51 cosac12 cosoc45 a 

b1 =-2. S55sinoc51(X3sing 2+ 
Y3cosQ2) 

b0 = [a51cosecoc51 cos((x 51 i. «12) - a12cosec x12 ]Z32 

+ [S11 sirioc12 + S55sin(oc51 + °{12) I X32 

+ [(a12cotcx12 + a45Coto( 
45) Z3 - a23ýý3 - a34Y3 -S J3sinoc34 X3] 

- 
[a 

45 coseca 45 cos(a 51 +a 12) + a51 cosecoc 51 coso 12 cosoc ßr5 
J (6.106) 

Clearly equations (6.96) and (6.105) are of degree two in both input 

(A3) and output (82), and hence eliminating x1 between these two equations 

by forming the IIe'zoutian, (5.3), produces an input-output equation for the 

RCRRC, which is of degree eight in both the input and the output variables, 

This result is consistent with that obtained by Duffy and Habib-Olahi [133 

and with the predictions of Chapter 2. 

The remaining variables for the RCRRC inechani sn, (i. e. S2,81,05,04 

and S4) may now be calculated using sirni7. ar procedures to those used for the 

RCRCR mechanism above. 

i 
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The five-link RRRCC` spatial mer_hani. y,, n is illustrated by Figure 2.23 

since it is an inversion of the RRCCR. It is represcnl; eü mdtiiei+iatic: iJ1y by 

the following dual sides and angles: - 

«12 = Lx 12 + 6 "12 

o0c23 = «23 + E a23 

n 
O34 cc34+ E t34 
A 0(45 = 0(4 5+ "45 

ö51= «J1+ a51 (6.107) 

1= 
A1 +E S11 

2-A2+¬ 
S22 

Ä33+6 Sý 

4=A4+6 S4 

0 05 +S S55 (G. 103) 

where 62 = 0, and all fixed mechanism proportions have O. ouble or repeated 

suffices. The input angular displacement is 0L whilst the output angular 

displacement and sliding displacement are respectively 83 and S3. The frame 

is the constant dual side, c 23" 

6.9.1 Derivation of, Input-Output Equation for the'RR3CC. 

The input-output equation for the RRRCC five-link mechanism cannot be 

derived directly by eliminating, say A11 between the primary and secondary 

parts of the dual cosine law (6.94), since 20321 involves the output sliding 

variable S3 in addition to 0 3, A2 and A1. i. e.: - 

2' cosä45 (6.94) z3A 
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and: - 
20321 - a51,1321 

+ S11sinocj1 X321 

+ a12C(`C3sing 2+ 
YJcosQ2)Z1 + Z3Y11 

+ S22C(3Y1 - X3X)si. n82 - (? 
3X1 + X3Y1)cos821 

+ a23ý(X1Sing 2+ Y1cosQ2)Z3 + Z1'31 

+ S3sina34X123 

0.109) + a34Y123 

Consequently, an alternative procedure is required. In practice it is 

not possible to use the primary part of (6.944) as one of the equations from 

which to eliminate Al, and hence it is necessary to use the primary part 

of the following dual cosine law (a cyclic permutation of the above)**- 

AA 
234 = cosoc51 ( 6.110 

which is: - 

z234 = cosoc51 (6.111) 

and to seek a second equation of the form of (6.111), from which to eliminate 

64. This has proved to be the correct method. 

Thus, making the half-tangent substitution, (5.1), for x4(La tan(Q4/2)), 

in equation (6.111), one has: - 

f(x4)- = a2x2 + al x4 + a0 =0 (6.112; 

where: - 

a2 = cost 45 Z23 - sinoc45 Y23 -- cosoc51 

a1 = 2, sinoc45 X23 

a0 = cosoc45 723 + sinoz45 Y23 - cosoc. 51 
(6.113) 

and a further such equation is now required. 

Now, as outlined previously, it is clear that one must take, as the 

second equation, the secondary part of the dual cosine law: - 

A` 
cosä34 (6.114) 
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which is: - 

20215 ' -a`4 sinoc34 (6.115) 

where: - 

20215 - a45Y215 

+ S5; sincx45 X215 

+ a51[(}C2sing 1+ Y2cos91)Z5 + Z2Y53 

+ 511[(Y5Y2 - X5 2)sing, - (Y5X` + )C5'2)cosQ1J 

+ a12[(X5sing 1+ Y5cos81)Z2 + Z5Y21 

+ S22sinac23 X512 

+ a23Y512 (6.115) 

since this contains all the mechanism proportions. However) it is necessary 

to convert this equation into one involving only 82, A3 and 64 by means of 

substitutions which do not raise the degree unnecessarily. The most 

convenient means of achieving this end is to examine the coefficients of each 

of the terms, a45, S55, a51, """etc., of (6.116) in turn, in order to 

convert these to the required form. Thus the coefficients of a45' s55' 5=2 

and a23 may be easily rewritten using the following sine and sine-cosine 

laws for a spherical pentagon (see Chapter 4 and Appendix III. )s- 

x 215 = sinoc34 sin®4 

Y215 = sinoc34 coso4 (6.117) 

x512 = sinoc34 si. n83 

Y512 sinoc34cosQ3 (6.11'0 

The remaining three coefficients present a certain amount of difficulty 

however, and are most conveniently dealt with individually. Thus, using 

the subsidiary sine-cosine and cosine laws: - 

(X2sinQi + Y2cosb1) _ -Y 45 

Z? = z45 (6.119) 
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olle . iay rew. J-t' the cocf. 'J Qicrit o a51 !. n 

(coef2icier. L Of a)-: 'L I? - 
51 -Y I'r ') 
51 x. 55 

and, expanding and regrouping this expression, one obtains, with the aid 

of identity (4. loa): - 

Z45Y5 ~ Y15Z5 = sinoc34 (cos8 
}cosOS - sing ýýsin85coscc, J) 

(6.121) 

Similarly, by symmetry one has for the coefficient of a 12 
il 

(coefficient of a12) Z32Y2 - Zý27. 
J 

= sinct34( cos93cos9, - sinQ, sinQ2coioc (6.1'2 
23 

Finally, using the subsidiary sine and sine-cosine laws: - 

(X5cos81 - Y5sing 1) = X32 

(X5sing 
1+ 

Y5 cos91) _ -Y32 
(05.123) 

together with identity (4.11a) one may write the coefficient of 311 in 

(6.116) as: - 
(coefficient of s, 1) - Y32X2 ~ X32i2. 

34 
" 23 

(6.124) 

Hence from (6.117), (6.118), (6.121), (6'. 122) and (6.124) it is Possible 

to rewrite (6.115) in the following form: - 

sinoc34 [a45cosQ4 + S5rSLICK 45 sing4 + a51(cosA4cosQ5 - sing 4sing 5cosoc45) 

+_a23cQse3 + S22sinc(23sing 
3+ a12(cosA3cose2 - sinQ3sine2cosOC23) 

+ S11X23 + a341 =0 (6.125) 

from which one may cancel sinoc31, since, in General, oc3, *0 or TT. 

Now equation (6.125) is almost in the required form and it only remains to 

remove the sings and cosa5 terms. The latter may be removed by means of the 

subsidiary cosine law: - 

z5 Z32 (6.126) 

since this can be rearranged as: - 



1 : ý�>:. 

COSA) = 
(coso. - 45 cO5OC5 1- 

Z32)CoSE: coY. cOS¬=cc 
ý 

v" ; _/ 
A, 5 51 

In addition, the sing term may be replaced using the half-tangent. law: - 

(Y 

4 23 - 15) - ("23 

which using the idcnt: i. ty: - 

sinoc45 Y5 r cosoc45 Z5 - cosoc51 

cos«45 Z23 - cosoc5l 
C6. ý GJ) 

may be rearranged in the form: - 

-sines = [x4(sincx45 Y23 - cosa45 Z23 + cosa51) - sine 45 }, 2; 
1cosecc cu c() _ _ccc 51 

(6.1; 0) 

Hence substituting into (6.125) for sin85 and cosA5 obtained from 

(6.127) and (6.130), gives the following equation in 021 03 and 0q' which 

is of the desired form: - 

cosO4[a45 + a51 (cosoc45 cosec 1- Z32)cosecoc45 cosecoc31 J 

+ Sing 4[ 55sinoc45 .+ 
a51 cosoc45 [x4(sinoc45 Y2 3- cosoc45 Z2,. + coscc51) 

- sincc45X23]cosecoc45 cosecoc 1] 

+ [a23cosQ3 + S22sinoc23sing 3+ S11 X23 + a34 

+ a12(cosA3cos82 -- sing 3sing 2cos(x23) 
1=0 

Finally, making the substitution (5.1), for x4(r tan(Q4/2)) in 

(6.131) gives the following quadratic: - 

g(x4) = b? x2 + b1x4 + b0 =0 

where: - 

b2 a23cose3 + S22sincx23sing 
3+ S11X23 + a34 

+ a12(cos83cosQ2 - sing 3sing 2cosoc23) 

a45 - a51 (cosoc45 cosy-N1 - z32)cosecoý45 cosecoc51 

(6.131) 

(6.132) 

+ 2. a 51(sinoc43Y23 - c:. 0scx45Z23 + cosa51) ccotcx45coseccx51 

b, _ 2. (355sinac45 - a45 cosecoc51 x23) 



ýf 

a+ S3ixlocs. i. na+ 0 23cos3 22 23 1123 a34 

+ a, `(cosQ, cos8G - sing sing, cosoc, 3) 

+ a45 + a51(coscx45 cos«51 - Z32)coscccx45 costcoc51 (v, 133) 

Clearly equations (6.112) and (6.132) are of degree two in both input 

(A2) and output (83), and hence eliminating x4 between these tvo equatioiis 

by forming the B zoutian, (5.3), produces an input-output equation for the 

RRRCC, which is of degree eight in both the input and the output variables. 

This result is in agreement with the predictions of Chapter 2 and is an 

improvement on that produced algebraically by Habib-Olahi [19]. The latter 

obtained an input-output equation for this mechanism which was of degree 

twelve in the input angular displacement and of degree eight in the output 

angular displacement. 

The determination of the remaining variables for the RRRCC : uechailism 

ýi. e. S3, Q1,85, A4, S4) is now a relatively simple matter using similar 

procedures to those used for the RRCC: 2 mechanism above. 

.0 
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CHAPTER 7 

A DISPLACEMENT ANALYSIS 

OF THE 

SPATIAL SIX-LINK RCRPRR MECHANISM 
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7.1 Introduction. 

There exist three distinct 4R-P-C meck nis, ns, wldch dLPfer in the 

separation of their cylindric and prismatic p, ý. irs and tlieyinýty 'rar listLd as 

follows together with their inversions: - 

Mechanism. Inversions. 

RCRPRR RPRCRR, RPRRRC, RR3PRu, RRRCRP, RCRRRP. 

RCRRPR RRCRRP, RRPRRC. 

RRRPCR RRRCPR, RRPCRR, RRRRCP, RRRRPC. 

In this and the following two chapters, novel eighth degree polynomials 

are derived for the input-output relationships of the RCRPRR, RCRRi'. R, and 

RRR. PCR mechanisms respectively. In addition, these equations collectively 

contain, as special cases, the input-output displacement equations for all 

spatial five-link 3R-2C mechanisms (see Chapter 6. ), since a combination of 

revolute and prismatic pairs (W or i) may be used to simulate a cylindric 

pair. Thus, for example, the input-output equation gor the RCRPRR six-link 

mechanism reduces to the input-output equations for the five-link RCRCR 

(RCR R) and the RCCRR (RC2i R) mechanisms, and similar reductions are possible 

for the other two six-link mechanisms considered here. Further reduction and 

specialization or-these six-link mechanisms, yields solutions for the spatial 

four-link RPSC (RU), RCSP (RCP), RSCP. (F RI CP) and RSPC (r Rl C) 

mechanisms. 
(Three revolute pairs may be suitably combined to simulate a 

spherical pair, S). 

In this chapter, a degree eight input-output displacement equation is 

derived for the spatial six-link RCRPRR mechanism. Following this, a procedure 

is presented which determines uniquely the remaining linkage variables, the 

method of analysis verifying the closures. This result implies that the 

RPRCRR six-link mechanism also has a degree eight input-output equation since 

it is an inversion of the RCRPRR mechanism and both of these reduce to the same 



basLC fLve-lit-Oý 3-RCiRP structure (!. ih: i. C'l ha ['1 J%i 1' S- t)ýY ;; 1! _ 
Li 2'C tic ) 

for a given fixed value of their respective input atigul. ar displacements. 

This is an itnpi`oveiaent on tilc dejrCe SiXtEC: ii 1: 1pUt-OUtPL'. ', 

obtained by Yuan [49] recent: y for the spatial, six-lin'c 2PRCt3 mechani m 

and, indeed, Yu. nn conel. mrled in his paper that his equation maust contain 

extraneous roots since a number of the roots of the dejrer_ sixteen tquati i 

did not satisfy the closure conditions for the mc_hanism. 

In Chapters 3 and 9, degree eight input-output displace; l nt eelacttioris 

are derived in detail for the spatial six-link RCRRPR an'. i RZ ti'O. mechani s;; is 

respectively, and procedures are. presented for determining the remainin;; 

linkage variables in each cast. Although the basic problem (i. e. the 

elimination of a single extraneous unknown between two eciuations) is cour. on 

to all three 4R-P-C mechanisms, the derivations of their input-output 

displacement equations differ significantly from one another and, therefore, 

warrant special attention. In this respect the most difficult result to 

obtain was the degree eight equation for the spatial six-1in anal +sed 

in Chapter 9. In each case, the closures were checked nurne.: ically, which 

afforded a verification of the accuracy of the results. 

7.2 Description of the Six-Link RCRPZR 2lechanism. 

The six-link RCRPRR spatial mechanism is illustrated by Figure 2.25 and 

is represented mathematically by the followiag six dual sides and six dual 

angles: - 
ä12- 

oc12+ 6 a, 12 

23 = oc`3+ E a23 

34 = °C34+ E `'34 

0 45 = a45+ E x'45 
A «56 =° 56+ E a56 

CK61 X61+ r: a61 {7.1) 



I-) rill 

+ 
p`= 

AL+ S2 

A 
e3 3+ t S33 
4= 

844 + 6 S4 

A 
05 - 05 355 
6 

9S+ 6 S66 (7.2) 

where 62 = 0, and all fixed mechanism proportions have double or repeated 

suffices. The input and output angular displacements F%re respectively P. 

and A6, and the frame is considered to be the constant dual side, 
ä26ý. 

A relationship between the input and output angalai d&. splacernents c, iiy, 

of the lowest possible degree in botho is required. 

7.3 Derivation of Input-Output Equation For tht R1,911IR MccLan Grl. 

As with the five-link 3i -2C mechanisms. a alysed In Chapter 6., it is 

possible to write appropriate primary equations for the 4. -P-C mcchc: Yiis; Cis, 

which contain the input, output and a single extraneous angwlcr displacement. 

The problem is then to derive a second equation of the se Form, which 

contains all the fixed mechanism proportions, in order to eliminate the 

extraneous angular displacement and obtain the input-output equation. 

Hence the strategy in all three cases may be outlined in three stcgs 

as follows: - 

(i) Transform the relevant primary equatio. l into the most 
su}table form for e1ininating the extraneous angular 
displacement. 

(ii) Derive the required seconc7 equation fron that secondary 
equation which involves all the Fixed mechanism parameters. 

Perform the, elimination procedure %? si. ng the ßef;, out: an, 
(5.8), to elir.; ina. te the sinSie extrane. pus 

Using this procedure one may now analyse the :t "RPR mecharLi sm. 

x. 3.1 First E, ýuatio-a in e,, y ßn89. 

For the RORF'2R mechanising the prix ry pl: xL o° the dual cosine idw: -. 

AA Z1X54 = C. DSx�3 (7"? ) 
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which is: - 

21654 ° coscx23 (7.4) 

where: - 

21654 ' sina34 (X165sinQ44 + Y165cos®44) + cosoc34 2165 (7.5) 

involves only the input angle (A1), output angle (A6) and a single extraneous 

angular variable (05), 
-since the angle, 044, is a constant mechanism proportion, 

Hence, one can rewrite (7.4) in the form: - 

L416sing 5+ M416cosQ5 + N416 = cosoä23 (7.6) 

wheres- 

L416 ° -(V16 + X4Y16) 

M416 - (X4816 - Y4Y16) 

N416 ` Z4Z16 (7.7) 

The terms X16' Y16 and Z16 of equation (7.7) are defined in Appendix III., 

whilst X4t Y4 and Z4 are given by: - 

X4 = sinox34 sing 44 
Y4 = -(cos(X 34 sinoc45 + sina34 cosa45 cos644) 

Z4 = (cos(X34 cosa45 - sinoc34 sinoc45 cosQ44) (7.8) 

it is convenient to transform (7.6) into a form suitable for the 

elimination of A5 by making the substitutions (5.1) and rearranging terms. 

Thus: - 

sin05 Z 2x/(1 + x5) 

coso ig (1 - x5)/(1 + x5) (5.1) 

where x5 as tan(o5/2) 

and (7.6) becomes: - 

f(x5) ° a2x5 + alx5 + a0 "0 (7.9) 
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wheres- 

a2 ° N416 - H416 - cosoc23 

a, e 2. L416 

a0 a N416 + M416 - cosoc23 (7.10) 

7.3.2 Second Equation in A and A 

In accordance with the procedure outlined above, the secondary part of 

the subsidiary dual cosine law (see Chapter 4. ): - 

z165°Z3 (7.11) 

is transformed into an equation involving only A1, A. and 05 as variables. 

Thus the secondary part of (7.11) is: - 

_ 
Z0165 . Z03 (7.12) 

and it is convenient to write Z0165 and Z03 in the following forms (see 

Appendix III): - 

Z0165 '° a4 cos0C45(x16sing5 + Y16cosQ5) - sina45 Z1 J 

+ S55sinoc45(X16cosQ5 - Y16sin05) 

+ [sinoc45 (X016sin05 + Y016cos95) + cosa45 Z016J (7.13) 

and Z03 a34y3 

+ S33sinoc34X3 

+ a23f 3 
(7.14) 

Now, using the following subsidiary sine, sine-cosine and cosine laws 

for a spherical hexagon: - 

x3 ° (X165cos944 
- Y165sinQ, ) 

- Y3 a (X165sing 
44 + Y165cos944) 

Z3 - 2165 (7.15) 

together with the identity (see equation (4.11b))s- 
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Y3 = cotcx23 Z3 - cosoc34 cosecac23 

Cotcc23 2165 - COSOC34 COSPCOC23 (7.16) 

one may rewrite (7.12) as followss- 

P416sing 5+ Q416cos®5 + R416 = -a23cosoc34 COI-loecoc 23 
(7.17) 

where: - 

p416 [Cosa45 (5 
33 sins 34 sing 44 +a 34 cos9 44 +a 45) 

- a23sincx45 cotoc23 
-x"16 

+ (S33sinac34 cosec - a34sing 4- S55sina45) Y16 

+ sina45 X016 

Q416 s [coso: 
45( S33sinoc34 sing44 + a34cose44 + a45) 

- a23sinot45 cotac233 Y16 

- (S33sinoc34 cosQ44 - a34sing 44- S55sinoc45) X16 

+ sina45 Y016 

R41 6-- 
[sinac45( 833'inoc34 sing44 + a34cosQ44 + a45) 

+ a23cosa45 cota23J Z16 

+ cosa45 2016 (7.18) 

The terms X16, Y16 and Z16 in the above equations are defined in Appendix III., 

whilst X016' Y016 and Z 016 are given in the most convenient form bys- 

x016 s (R01cosQ6 - 'qol sing 6) 

866(R1sing 6+ 
Y1cos06) 

Y016 = Ccosa56 (X01 sinQ6 + Y01cosQ6) - sina56 2011 

+ S66(X1 cos06 - )7 1 sing 6)cosa56 

- a56 Esina56 (C1 sin®6 + 21 cos06) + cosa56213 

2016 ' [sina56 (3t01 sinGt6 + ? 
01cos06) + cosa56 2013 

+ S66(R1cosg6 - Y1sinc6)sinoc5 

+ a56[cosa56 (21 sinß6 + Ill cos®6) - sina56 213 (7.19) 
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where: - 

X01 = a12cosa12 singt + S11 sina12 cosQ1 

Yol = a12(sina12 sinoc61 - cosa12 coscx61 cosQ1 

- a61(cosa12 cosa61 - sina12 sina61 cosQ1 

+ S11 cosa61 sina12 singt 

Z01 a12(cosa61 sina12 + sinac6, cos(X 12 cosa1) 

- a61(sinoc61 coscx12 + cosa61 sinoc12 cos91) 

+ S11 sinoc61 sinoc12 singt (7.20) 

It is now possible to make the substitutions (5.1) in equation (7.17) and 

obtain, upon rearranging, the following equation which is in the most suitable 

form for eliminating x51- 

g(x5) . b2x2 + b1x5 + b0 s0 

wheres- 

b2 = R416 - Q416 + a23cosa34 cosecoc 23 
b1 a 2*P416 

b4 'R 416 + Q416 + a23cosa34 coseca23 

7.3.3 Elimination Procedure. 

(7.21) 

(7.22) 

It is now possible to eliminate x5 between equations (7.9) and (7.21), 

using the Bezoutian, (5.8)ß for two quadratics, and obtain as the eliminant 

the input-output equation for the RCRPRR mechanism in the form: - 

(a2b0 - a0b2)2 - (a2b1 - alb2)(alb0 - a0b1) -0 (7.23) 

where a2, all a0 and b2, b1, b0 are defined by (7.10) and (7.22) respectively. 

Clearly. these coefficients may be expressed in terms of the half-tangent of 

the output angular displacement (A6), by means of the substitution (5.1) as 

follows: - 

a" pX2 2 22 6+ p12x6 + p02 

a` px 
2 

1 21 6+ p11x6 + P01 

a0 ' P20x6 + P10x6 + p00 (7.24) 
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ands- 

b2 422X2 6+ 412x6 + q02 

b1 ° 921 
2 

x6 + 411X6 + 401 

b0 ° 420X6 + q10x6 + 900 (7.25) 

where the terms pia and qij are each a function of the input angular 

displacement (91) only, and are listed in Appendix V. 

Since all of the terms at al, a0 and b2, bl, b0 are quadratic expressions 

in X61 it is clear from (7.23) that the input-output displacement equation 

for the RCRPRR mechanism is of degree eight in the half-tangent of the output 

angular displacement. In addition the coefficients a2, all a0 and b2, bl, bp 

may be expressed alternatively as quadratics in the half-tangent of the 

input variable, xl, and so (7.23) is also of degree eight in x1 . These results 

are in-agreement with the predicted degree for this six-link mechanism 

(see Chapter 2). 

7.4 Displacement Analysis. 

Solving the input-output equation (7.23) for x6, one obtains, in general, 

eight distinct real values for the output angular displacement (i. e. 961' 062' 

0 63' 064' 065' 066' °67' 868)' for each value of the input angular displacement, 

e1. The eight ordered pairs (Q1,061)' (A1' Q62), (A1' '63)'°°°"(Q1' Q68) 

thus produced will then each give rise to corresponding values for the 

remaining linkage variables (A5, S41 G3,82, S2) using procedures outlined 

below. 

Thus 05 may be determined from either of the two expressions for the 

common root of (7.9) and (7.21), which are derived from the Bezoutian (5.8) 

(see Chapter 5. ). These expressions ares- 

x5 _(a2b0)/(a2b1) 

-(a2b0 - a0b2)/(a2b1 - a1b2) (7.26a) 

or X5 w -(a1 b0)/(a2b0) 

° `(albp - apb1)/(a2bp - apb2) (7.26t) 
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where: - 

x5 6 tan(95 /2) 

Having determined corresponding values for 81, A6 and 05 it is then a 

relatively simple matter to obtain the unique value of 03 from either of the 

two fundamental half-tangent laws (see Appendix IV): - 

x3 s -(Y1654 - sinoc 23) 
Al654 

or x3 m x1654/(Y1654 + sinoc23) 

where x3 is tan(Q3 /2) 

which are cyclic perrnutationsof (5.32) and (5.33). 

Here: - 
x 1654 X165cosO4 - Y165sing 44 
Y1654 cosac34(X165sinQ44 + Y, 65cosQ44) -- sinoc "165 34 

whilst X165, Y165 and 2165 are given in Appendix III. 

(7.27a) 

(7.27b) 

(7.28) 

In a similar manner one may obtain the value of A2 from a cyclic 

permutation of (7.27a, b) once ®1t A6 and 95 are known. Thuss-- 

X2 - -(Y4561 - sinoc23)/X4561 (7.29a) 

or x2 m x4561/(Y4561 + s'noc23) (7.29b) 

where x2 a tan(0/2) 

and. - 

X4561 m X456cosQ, - Y456sing 1 
Y4561 s cosa12(x 456s'nol + Y456cos91) - sinal 2 2456 (7.30) 

The sliding displacement S4 may be determined from the secondary 

component of the dual subsidiary cosine law: - 
AA 
116 34 7.31) 

which is: - 

2016 ° 2034 (7.32) 
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where Z016 and Z034 are defined as follows, in their symmetric form: - 

2016 ° a56Y16 

+ S66sina56 X16 

+ a61cosecoc61 (Z1Z6 
- cosoc12 cosoc56) 

+ S11sina12X61 

+ a12Y61 (7.33) 

and: - 
2034 = a45Y34 

+ S4sinac45X34 

+ a34cosecoc34( Z3Z4 - cosoc23 cosa45) 

+ 833sinoc23X43 

+ a043 (7.34) 

The terms X16' Y16' X61' Y61' X34' Y34' X43' Y43' ! 
1' Z6' Z3 and Z4 are again 

defined in Appendix III. and are each uniquely specified for a given set of 

A6' ®3 and Q. 

in a similar manner the sliding displacement S2 may be calculated from 

the secondary component of the dual cosine law: - 

A ^1 (7.35) z 6123 ° cosoc45 

which is: - 
Z06123 a- a45sinoc45 (7.36) 

where: - 
Z06123 a34Y6123 

+ S33sinoc34X6123 

+ a23[(X61sing 2+ Y61coso2)! 3 + Z61? 3] 

- S2[(X61sin92 + Y61cosQ2)7'3 + X61273] 

+ a12cosecac12 [Z61Z32 - Z? 3] 
811E(X32sinQ1 + Y32cosol)X6 + X321Y6J 

+ a61[(X32sinQ1 + Y32cos01)Z6 + Z32Y6J 

+ S66sinoc56X3216 

+ a56Y3216 (7.37) 
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and the terms X6123' Y6123' iiietc., in these equations are defined in 

Appendix III. 

7.5 Numerical Results. 

A computer program was developed by the author to solve the input-- 

output equation for the RCRPRR mechanism (see equation (7.23)) and to 

obtain the remaining linkage variables for a given set of mechanism proportions. 

With the aid of this program, graphs of the output angle, 0 6, and remaining 

variables 05, A3,02, S4 and S2. against the input, 91, were plotted (see 

Figures 7.3,7.4,7.5,7.6,7.7 and 7.8 respectively). 

In addition, since a combination of revolute and prismatic pairs may 

be used to simulate a cylindric pair, the input-output equation (7.23 for 

the RCRPRR mechanism may be used to generate input-output relationships for 

five-link RCCRR or RCRCR spatial mechanisms. Figures 7.1 and 7.2. show 

plots for these two mechanisms. 

The following sets of data for the mechanism proportions were chosen 

in each case: - 

7.5.1 RCCRR Mechanism. 

a12 = 2.0 ins* a12 = 60 deg. S11 = 3.0 ins* 

a23 = 2.5 ins* a23 = 45 deg. S33 = 0.0 ins* 

a34 = 0.0 ins* a34 = 0 deg. 
. 
S55 - -6.0 ins* 

a45 = 3.5 ins. a45 = 45 deg. S66 = 1.0 ins. 

a56 = 1.0 ins. a56 = 30 deg. 

a61 = 3.0 ins* a61 = 20 deg. 04= 0 deg. 

Here the third revolute pair has been superimposed on the fourth 

(7.38; 

sliding pair by selecting the proportions, a34 a cx34 " S33 a 044 . 0. 

The remaining proportions were selected to give the same RCCRR mechanism 

as that previously analysed by Yuan [48]. Figure 7.1 is identical to the 

input-output relationship presented in the latter reference. 
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7.5.2 RCRCR Mechanism. 

a12 = 2.5 inse 

a23 = 3.0 ins. 

a34 = 4.0 ins* 

a45 = 0.0 ins* 

a56 = 1.0 ins* 

a61 = 3.2 ins. 

OC12 s 60 deg* 

«23 - 45 deg. 

(XW 35 deg. 

a45 00 deg. 

a56 a 30 deg. 

a61 a 10 deg. 

S1ý a 3.0 ins. 

S33 : 2.5 ins. 

S55 a 0.0 ins. 

S66 = 0.0 ins. 

044 s0 deg* 

Here the fourth prismatic pair has been superimposed on the fifth 

(7.39) 

revolute pair by selecting the proportions, a45 " OC45 a S55 ý 044 C 0" 

The remaining proportions were selected to give the same RCRCR mechanism 

as that previously analysed in [11]. 

output relationship presented in [11]. 

7.5.3 RCRPRR Mechanism. 

a12 = 3.0 ins. 

a23 = 1.6 ins. 

a34 a 2.0 ins. 

a45 = 2.0 ins. 

a56 = 2.7 ins. 

a61 s 1.4 ins. 

Figure 7.2 is identical to the input- 

a1 2= 73 deg. 

a23 = 264 deg* 

a34 = 175 deg* 

a45 = 100 deg. 

«56 s 286 deg. 

a6, ß - 242 deg. 

Sýý a -2.4 ins. 

$33 ' 6.4 ins. 

S55 a -5.4 ins. 

S66 s 3.8 ins. 

0 44 : 30 deg. (7.40) 

These proportions were chosen to yield eight real closures for various 

ranges of the input angular displacement since they are similar to a set 

used by Habib-Olahi [19] for a spatial five-link RCCRR mechanism which 

possessed eight such real closures. The direct correspondence of the results, 

illustrated in Figure 7.3 for the two mechanisms (RCCRR-broken lines, 

RCRPRR-continuous lines), is a consequence of the fact that it is possible 

to replace the third cylindric pair of the RCCRR with an'r combination of 

joints by replacing a side with a spatial triangle (apex angle A44 )f thereby 

converting the five-link mechanism into a six-link mechanism. By careful 
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choice of the proportions, the two mechanisms will both have the sane number 

of closures and similar input-output relationships. 

Finally, it must be noted that for ease in identifying the different 

circuits, the turning points of the various curves (twelve in number, for 

this set of proportions) have been labelled 1-12, as shown in Figures 7.3- 

7.8 inclusive. 
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Figure 7.1 Graph of Input--output Relationship (i. e. 86 vn X1 for the 
Six-Link RCRPRR Mechanism with Proportions chosen to 
Reduce the Latter to the Five-Link RC RR Mechanism. 
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Figure 7.2 Graph of Input-Output Relationship (i. e. 96 vs 8) for the 
Six-Link RCRPRR Mechanism with Proportions chosen to 
Reduce the Latter to the Five-Link RCRCit Mechanism. 
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Figure 7.3 Graph of Input-Output Relationship (i. e. 86 vä 91) for the 
Six-Link RCRPRR Mechanism. (The Broken Curves Represent 
the Input-Output Relationship of a Five-Link RCCTtR 
Mechanism with Similar Proportions). 
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8.1 Introduction. 

In this chapter, a novel closed-form input-output displacement equation 

of degree eight in the half-tangent of the output angular displacement is 

derived for the spatial six-link RCRRPR mechanism, using the dual number loop 

equations derived in Chapter 4. This input-output equation in then used to 

simulate the spatial five-link RCRCR and RCRRC mechanisms by superimposing 

the fourth revolute pair on the fifth prismatic pair (RCRrR^R), and the fifth 

prismatic pair on the sixth revolute pair (RCR 'R) respectively. Following 

this procedure, identical input-output relationships to those presented by 

Yuan [47] and Duffy and Habib-Olahi [11,13] were obtained for the RCRCR and 

RCRRC mechanisms. 

8.2 Description of the Six-Link RCRRPR Mechanism. 

The six-link RCRRPR spatial mechanism is illustrated by Figure 2.26, and 

is represented mathematically by the following six dual sides and six dual 

angles: - 

a12 ° ac12 +6 a12 

aQ23 = «23+ 6 a23 

e34 
s ac34 +E a34 

oc45 = cc45 +s a45 

l ý56 
= oc56 +6 a56 

ä61 
° «61 +6 a6, (8.1) 

Ä1s 
Al +¬ S11 

2.02+6S2 
G3A3+ES33 

494+ES44 

5" 
055+ E S5 

6m06+S 
S66 (8.2) 

where 82=0, and all fixed mechanism proportions have double or repeated 
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suffices. The input and output angular displacements are respectively 

01 and 0 6, and the frame is the constant dual side, 
ä61. 

A relationship between the input and output angular displacements, of 

the lowest possible degree in both, is required. 

8.3 Derivation of Input-Output Equation for the RCRRPR Mechanism. 

For the RCRRPR mechanism one may again write an appropriate primary 

equation relating the input, output and a single extraneous angular variable. 

It is then necessary to derive a second equation, from that secondary equation 

which involves all the fixed parameters, from which to eliminate this 

extraneous variable and obtain the desired input-output relationship. 

8.3.1 First Equation in A1,9 ä and 00 

The primary part of the dual cosine law: - 

A 
654 m cosä23 (8.3) 1 

is written as: - 

21654 in Cosoc23 (8.4) 

wheres- 

21654 ° sina34 (X165sinQ4 + y165cosG4) + cosoc 34 2165 (8.5) 

ands- 

x165 s X16cosQ55 - Y16sing 55 
Ym Cosa (X sing +Y cosA )- sins Z 165 45 16 55 16 55 45 16 
2165 - sina45(X16sin955 + Y16cosQ55) + cosoc45 Z16 (8.6) 

and involves only the input angle (A1)ß output angle (A6) and a single 

extraneous angular variable (A4), since the angle, 9 55, is a constant mechanism 

proportion. (In the above equations X16, Y16 and Z16 are given in Appendix III. ). 

Hence, making the substitutions. 

sinA4 2x4(1 + x4) 

cosA4 (i - x4) (1 + x4) (5.1) 

where x4 E tan(04 /2) 
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G" 

in equation (8.4) and rearranging one obtains: - 

g(x4) = a2x + a1x4 + a0 i0 
(8.7) 

where: - 

a2 " CosIX34 2165 - sinoc34 Y165 - cosa23 

a1 a 2. sinoc34 X165 

a0 - cosa34 2165 + sincx34 Y165 - cosoc23 (6.8) 

Equation (8.7) is now in a suitable form for the elimination of x4. 

8.3.2 Second Equation in A1_06 and 64. 

It is not possible to make use of the secondary equation corresponding 

to equation (8.4) since this would introduce the variable offsets S5. 

Instead, one must use the secondary part of the dual subsidiary cosine law: - 

z16 

' z34 (8.9) 

which iss- 

Z016 = z034 
(8.10) 

since the above contains all the fixed linkage proportions. Now in equation 

(8.10) it is convenient to write Z016 and Z034 in the following forms 

(see Appendix III. ): - 

2016 ' a56[coscc56( X1 sing6 + 171 cosQ6) - sina56 Z, J 

+ S56sinoc56(X1cosO6 - Y1sing6) 

+ [sina56(Z01sing 
6+ 

Y01cosQ6) + coscc56 Z013 (8.11) 

ands- 

2034 2043 = a2ýcosa23 (X4sing 
3+1 4cos©3) - sina23 2 

+ S33sina23(X4cosQ3 - Y4sing 
3) 

+ [sina23 (R04sinQ3 + 104cosQ3) + cosa23*2041 (8.12) 

where X', Y19 Z' and X4, Y4, Z4 are defined in Appendix III* and where: - 
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X01 ` a12cosoc12 sirt81 + 511 s1noc12 cos®1 

Y01 = a12( sinoc12 sina61- cosa12 cosrx61 cos91) 

- a61(cosac1 2 COSCK61 - sinn 12 sinoc61 cos01) 

+ S11 cosoc61 sincx12 singt 

Zpl - a12(cosa61 sinoc12+ sinoc coscx12 cos91) 
. 
61 

a61(sina61 cosa12 + cosoc61 sina12 cos41) 

+ S11sinoc61 sina12 sin81 (801 s) 

X04 ffi a45cosoc45 sinA4 + Sýsinoc45 cosA4 

YO4 a45(sinoc45 sina34- coscc45 cosa34 cosQ4) 

- a34(cosoc45 cosa34- sina. 45 sina34 cos94) 

+ S44cosa34 sinoc45 sing4 

Z04 a45(cosoc34 sinoc 45 + sinoc34 cosa45 cosQ4) 

a34( sinoc34 cosa45 + cosa34 sina45 cos94) 

+ S44 sina34sincx45 sinA4 (3.14) 

Thus, with the aid of (8.12), it is possible to rewrite (8.10) as follows, 

after regrouping terms: - 

[sincc23 (X04 - S33? 4) + cosoc23 a23X4'sin93 

+ Csina23( 
04 + 5334) + cosoc23 a23$AIcos®3 

f CCOSCC 23 
Z 

04- 
sinIX23 a 

23 4 
Z01 a0 (8.15 

6 

It is now necessary to replace sin93 and cosO3 without unnecessarily 

raising the degree of (8.15). Now cosQ3 may be replaced in terms of 91,0 6 

and 055 using the subsidiary cosine law: - 

z3 = 2165 (8.16) 

since this may be rearranged in the Forms- 

coso3 = (cosoc23 cosoc34- Z165)cosecoc23 coseca34 (8.17) 

using the definition of Z3 (see Appendix III. ), and Z165 is given by (3.6). 
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Similarly sing3 is replaced in terms of 01,06,055 and x4 by means 

of the fundamental half-tangent law (see Chapter 5. ): - 

(Y165 
3 
)x X165 ^ X3ý '0 

(8: 'IS) 

which is a cyclic permutation of (5.36). Thust using the identity: - 

sina34 Y3 a cosa34 Z3 - cosa23 

= cosoc34Z165 - cosa23 (8.19) 

(see (4.10b)), together with the definition of X3 (Chapter 4. ), one may 

rewrite (8.18) ass- 

sin83 - [sinoc34X165 + (cosa34Z165 - sina34Y165 - cos(X23) x4]coseca23 coseccx34 

[sina34X165 + a2x4Jcoseca23cosecoc34 (8.20) 

where a2 is given by (8.8) and x165' Y165 and Z165 are defined by (8.6) 

Hence, it is now possible to substitute into (8.15) for sinQ3 Ptnd cos83, 

using (8.20) and (8.17) giving: - 

[sinoc23( X04 - 533? 4) + coscx23 a23X4I [sina34 X165 + a2x4J 

+ [sina23( Y04 + S33X4) + cosa23 s23Y4] [cosoc23 cosa34- 21651 

+ [cosoc 
23 

204 - sinoc23 a2314 - 20163 sina23 sinoc34 =0 (8.21) 

Making the substitutions (5.1) for sin®4 and cos84. 

sino4 a 2x4 Al + x2) 

cos®4 11 (1 - x4)/(1 + xý) (5.1) 

where x4 s tan(Q/2) 

in equation (8.21), and rearranging, one has: - 

g(x4) = b3x4 + b2x2 + b1x4 + b0 a0 (8.22) 
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where: - 

b3 L2a2 

b2 - sinoc34 L2X165 + L1 a2 + M2(cosac23 coscc34 - 2165) 

+ N2 - sinac23 sinac34 Z016 

b1 e sinoc34 L, X165 + L0a2 + M1(cos(X 23 cosoc34 - z165) 

+ N1 

b0 sinoc34 L0X165 + MO(coscx23 cosoc34 -z 165) 

+ N0 - sina23 sinoc34 Z016 (8e23) 

and the nine constants L2, Ll, L0, M2, Ml, M0, N29 Nl, NO (defined in 

Appendix VI. ) depend only on the fixed mechanism parameters. 

8.3.3 Elimination Procedure. 

It is now possible to eliminate x4 between equations (8.7) and (8.22). 

At, the outset, however, it would seem that the Bezoutian for a cubic 

and a quadratic is a third order compound determinant and that the resulting 

eliminant is of the fifth degree in the coefficients a2, al,..., b1, b0. This 

would then imply that the input-output equation for the RCRRFR mechanism 

is of degree ten in input and output. However, this is not the case, since 

the leading coefficient, b3, of the cubic is a constant multiple, L2, of the 

leading coefficient, a2, of the quadratic and, wherever this occurs the 

eliminant is of degree (m +n- i) (i. e. 4 *'n this case) in the coefficients 

instead of (m + n). This is because one may extract a factor, a2 (from the 

eliminant) which is non-zero in general. The process is best seen by 

examining the bigradient, (5.6), rather than the Bezoutian for the system 

(8.7) and (8.22). 

Thus the bigradient of f and g is: - 

E(fr g) 

a2 al a0 0 0 

0 a2 a1 a0 0 

0 0 a2 a1 a0 

0 b3 b2 bl b0 

b3 b2 b1 b0 0 

(8.24) 
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But, since b3 = L2a2 (see (8.23)) where L2 is a constant, one may extract 

the factor a2 from the first column of (8.24) and, after performing a 

series of simple row operations, reduce the above determinant to one of 

fourth order which iss- 

a2 a1 

0 a2 
Z(£, g) s a2" 

0 (b2 
- L2a1) 

(b2 - L2a1) (b1 - L2a0) 

a0 0 

a1 a0 

ýb1 - L2a0) b0 

b0 0 

(8.25) 

The input-output equation for the RCRRPR mechanism is hence of order 

four in the coefficients since the factor a2 is non-zero in general and may 

be cancelled. Clearly, therefore, it is of degree eight in the input and 

output variables, and is given by equating the determinant in (8.25) to 

zero. It may be written in a more concise form by noticing that this 

determinant is the bigradient of the following systems- 

£(x4) = a2x4 + a1x4 + a0 m0 

g'(x4) (b2 - L2a1)x4 + (b1 - L2a0)x4 + b0 00 (8.26) 

and subsequently writing the Bezoutian of (8.26),, which, when expanded, 

becomes (see (5.8)): - 

[a2(b1 - L2a0) - a1(b2 - L2a, )] Calb0 -. a0(b, - L2a0)] 

[a2b0 - a0(b2 - L2a1)]2 =0 (8.27) 

Expressing the coefficients a2, al, a0 and b2, b1, b0 in terms of the 

half-tangent of the output angular displacement by means of the substitution 

(5.1), i. e. s- 

sings 2x1 + x6 &/6) 

cosO6 r. (i - x2) (1 + x6) (5.1) 

where xb 0 tan(A6 /2) 
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one hass- 

a2 p22X 
26+ 

p12x6 + p02 

a1 p21x 
2 

+ p11x6 + p01 

a0 a p20X6 + p10X6 + p00 (8.28) 

b2 g22X2 6+ g12x6 + q02 

b1 a g21x6 + q11x6 + `IOi 

b0 = g20x6 + g10x6 + qoo (8.29) 

where the terms pik and qij are each a function of the input angular 
displacement (01) only and are listed in Appendix VI. It is now clear from 

(8.28) and (8.29) that the input-output equation (8.27) for the RCRRPR 

mechanism is of degree eight in the output angular displacement. Alternatively, 

the coefficients a2t a1j.... tb0 may be similarly expressed in the half-tangent, 

x1, of the input angular displacement and hence (8.27) is also of degree 

eight in the latter. 

These results are in agreement with the predicted degree for the RCRRPR 

six-link mechanism (see Chapter 2. ). 

8.4 Displacement Analysis. 

Solving the input-output equation (8.27) for x6, one obtains, in general, 

eight distinct values for the output angular displacement (i. e. 9 61' 0620 

063' 064' p65`g66' 067' 068) for each value of the input angular displacement, 

Q1. The resulting eight ordered pairs (91, p61) (Al, A62)I...., (Al' 068) 

will then each give rise to corresponding values for the remaining linkage 

variables (S5,04, A3, A2, S2) using procedures outlined below. 

Thus, A4 may be determined from either of the two expressions for the 

common root of (8.7) and (8.22) which are derived from the Bezoutian (5.8) 

of the system (8.26) and are written: -. 

X4 s -[a2bp - ap(b2 - L2a1)] / [a2(b1 - L2a0) - a1(b2 - L2a, )] (8.30a) 

ors- 
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X4 -[albo - a0(b1 - L2a0)] / [a2b0 - a0(b2 - L2a1)] (8.30b) 

where x4 51 tan(A4/2) 

Having determined corresponding values for ®lt A6 and A4 it is then 

a relatively simple matter to obtain the unique value of Q3 from either of 

the two fundamental half-tangent laws (see Appendix IV. ): - 

x3 = -(Y1654 - sinoc23)/X1654 (8.31a) 

or: - x3 - X1654/(Y1654 + sinot23) (8.31b) 

where x3 it tan(0/2) 

which are cyclic permutations of (5.32) and (5.33). 

Here: - 

X1654 n X165cos94 - Y165sing 4 
Y1654 = cosa34 (X165sing 

4+ Y165cos04) - sincc34 Z165 (8.32) 

whilst X165' Y165 and Z165 are given by (8.6).. 

In a similar manner one may obtain the value of G2 from a cyclic 

permutation of (8.31a, b) once A1, A6 and A4 are known. Thuss- 

x2 ° -(Y4561 - sinoc23)/X4561 (8.33a) 

ors- x2 m x4561/(Y4561 + sinoc23) (8.33b) 

where x2 m- tan(G /2) 

and: - 
x4561 a X456cosQ1 - Y456sinQ1 

Y4561 0 cosa12 (X456sin91 + Y456cos91) - sinccl 2 2456 (8.34) 

The sliding displacement S5 may be determined from the secondary 

component of the dual cosine laws- 

1654 ° COS 
&23 (8.35) 

which is: - 

201654 '- a23sinac23 (8.36 
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where 201654 is defined as follows in its symmetric form (see Appendix III. ): - 

z01654 = a34Y1654 

+ S44si: 1ac34X1654 

+ a45L(X16sing 5+ Y16cos®5)Z4 + Z16Y4] 

- S5[(X16sing 5+ Y16cosQ5)X4 + X, 65Y4J 

+ a56coseccc561Z16Z45 - 21Z 

- S66[(X45sing 6+ Y45cosQ6)5E 1+ X456Y13 

+ a61[(X45sing 6+ Y45cos06)Z1 + 245711 

+ S1 1 sina12 X4561 

+ a12y4561 (8.37) 

The terms X1654' Y1654. " '. etc., are explained in Chapter 4 and defined 

in Appendix III. They are each uniquely specified for a given set of ®11 

0 6' 055 and 04. 

In a similar manner the sliding displacement S2 may be calculated from 

the equation: - 

206123 0 -a45sinoc45 
(8.38) 

which is a cyclic permutation of (8.36) and wheres- 

206123 a34Y6123 

+ S33sinoc34X6123 

+ a2[(X61sin92 + Y61cos®2)Z3 + Z61Y31 

- S2[(X61sing 2+ Y61cosA2)7'3 + X612Y31 

+ a12cosecoc12 [Z61Z32 - Zj3ý 

- S11[(X32sing 1+ Y32cos61)X6 + X321Y6] 

+ a61[(X32sing 1+ Y32cose1)Z6 + Z32Y6J 

+ S66sinac56X3216 

+ a56Y3216 (8.39) 

Again, the terms X6123' Y6123'.... 'etc., are defined in Appendix III. 
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8.5 Numerical Results. 

The input-output equation (8.27) for the RCRRPR mechanism was solved 

numerically for a given set of mechanism proportions, and graphs of the 

output angular variable, A6' and remaining variables, C41 A3' 02' S5 

and S2 against the input, ®1, were plotted (see Figures 8.3,8.4,8.5, 

8.6,8.7 and M. respectively). 

In addition, since a combination of revolute and prismatic pairs may 

be used to simulate a cylindric pair, the input-output equation (8.27) for 

the RCRRPR mechanism may be used to generate input-output relationships 

for five-link RCRCR or RCRRC mechanisms. Figures 8.1, and 8.2 show plots 

for these two mechanisms. 

The following sets of data for the mechanism proportions were chosen 

in each case: - 

8.5.1 RCRCR Mechanism. 

a12 - 2.5 ins. 

a23 = 3.0 ins. 

a34 = 4.0 ins. 

a45 . 0.0 ins. 

a56 s 1.0 ins. 

. 
a61 ° 3.2 ins. 

a12 = 60 deg. 

IX23 a 45 deg* 

a34 a 35 deg. 

cc45 s0 deg. 

«56 = 30 deg* 

a61 m 10 deg. 

Sil a 3.0 ins. 

333 a 2.5 ins. 

S44 = 0.0 ins. 

S66 = 0.0 ins. 

a55 :0 deg. 

Here the fourth revolute pair has been superimposed on the fifth 

(8.40) 

sliding pair by selecting the proportions, a45 0 «45 '0 S44 a 055 w 0. 

The remaining proportions were selected to give the same RCRCR mechanism as 

that previously analysed in [11]. Figure 8.1 is identical to the input- 

output relationship presented in [11]. 
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8.592 RCRRC Mechanism. 

a12 = 3.0 ins. 

a23 m 2.5 ins 

a34 = 3.2 ins* 

a45 = 1.0 ins. 

a56 = 0.0 ins. 

a61 0 4.0 ins. 

a12 = 45 deg. 

a23 = 60 deg. 

a34 = 10 deg* 

a45 a 30 deg. 

a56 = 0 deg. 

oc61 = 35 deg. 

S11 = 2.5 ins. 

S33 = 3.0 ins. 

S44 = 0.0 ins. 

S66 = 0.0 ins. 

055 's 0 deg. 

Here the fifth sliding pair has been superimposed on the sixth 

revolute pair by selecting the proportions, a56 ' °X56 a 566 = 955 = O0 

(8.41) 

The remaining proportions were selected to give the same RCRRC mechanism 

as that previously analysed by Duffy and Habib-Olahi [13]. Figure 8.2 is 

identical to the input-output relationship presented in [13]" 

8.5.3 RCRRPR Mechanism, 

a12 = 0.3 ins. 

a23 = 1.4 ins. 

a34 = 3.2 ins. 

a45 = 0.3 ins. 

a56 = 0.5 ins. 

a61 = 1.1 ins. 

a12 - 312 deg* 

oc23: 126 deg. 

cc34 a 282 deg* 

ox45 @ 78 deg. 

cc56 m 196 deg. 

Cc 61 s 236 deg* 

S11 _ -4.0 ins. 

S33 = 0.5 ins. 

S44 " 0.1 ins. 

S66 = -2.3 ins. 

055 a 332 deg. (8.42) 

These proportions were chosen to yield eight real closures for various 

ranges of the input angular displacement, and the results have been plotted 

in Figures 8.3-8.8 inclusive. On these-graphs, the turning points, which 

occur at twelve distinct values of the input variable, Olt are labelled 

1-12 in order to identify easily the different closures. 
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CHAPTER 9 

A DISPLACEMENT ANALYSIS 

OF THE 

SPATIAL SIX-LINK RRRPCR MECHANISM 
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9.1 Introduction. 

In this chapter, a novel closed-form input-output displacement 

equation of degree eight in the half-tangent of the output angular 

displacement is derived for the spatial six-link RRRPCR mechanism using 

the dual number loop equations derived in Chapter 4. This input-output 

equation is then used to simulate the spatial five-link RRCCR mechanism 

by superimposing the third revolute pair on the fourth prismatic pair 

(R RRýPtR). Following this procedure, an identical input-output relationship 

to that presented by Yuan [48] for the RRCCR mechanism was obtained. 

9.2 Description of the Six-Link RRRPCR Mechanism. 

The six-link RRRPCR spatial mechanism is illustrated by Figure 2.27 

and is represented mathematically by the following six dual sides and six 

dual angles: - 

ä12w 
0(12+ E a12 

0( 
23 = a23 +6 a23 

ä34 
= °(34 +E a34 

°e45 = °X45 +6 a45 

cý 
56' °C 56 +¬ a56 

ä61a«61+6a61 

a0i +8511 
2=82+9522 

3.03+eS33 

4=044+6 S4 

5=A5+9S5 

6Q06+8S66 

(9., ) 

(9.2) 

Where E2 = 0, and all fixed mechanism proportions have double or repeated 

suffices. The input and output angular displacements are respectively Q. 

b 

and 9 6, and the frame is the constant dual side, 61. 
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A relationship between the input and output angular displacements, of 

the lowest possible degree in both, is required. 

9.3 Derivation of Input-Output Equation for the RRRPCR Mechanism. 

As with the previous two 4R-P-C mechanisms, dealt with in Chapters 7 

and 8, one may write an appropriate primary equation relating the input, 

output and a single extraneous angular variable, for the RRRPCR mechanism. 

It is then necessary to derive a second such equation from that secondary 

equation which involves all the fixed mechanism parameters. The extraneous 

variable may then be eliminated from the two equations and the desired 

input-output relationship obtained. 

9.3.1 First Equation in 81, 
_ , 

and 95. 

For the RRRPCR mechanism one may write the following primary equation 

which is the primary part of a dual cosine law for a spatial hexagon, and 

which relates the variables 01 (input), 06 (output), 05 and the constant 

angular displacement, 0 
44 

21654 ' CoSCC23 

where: - 

(9.3) 

Z1654 = sinoc34 (X165sing 
4+ Y165cosQ44 )+ cosa34 Z165 (9.4) 

and: - 

x165 ° X16cos05 - Y16sin®5 

Y165 COSac45 (X16sing 
5+ Y16cos®5) - sinoc45 Z16 

2165 sina45 (X16sin®5 + Y16cos85) + cosoc45 Z16 (9.5) 

In (9.5) the terms X16' Y16 and Z16 are defined in Appendix III* and are 

each functions of 91 and 06 only (see Chapter 4. ). 

Clearly one may rewrite (9.3) in the forms- 

L416sin95 + M416cosa5 + N416 32 cosa23 (9.6) 

Where: - L416 m -(Y4X16 + X4Y16) 

M416 u (X4X16 - Y4Y16) 

N416 ' Z4Z16 (9.7) 



233. 

and X4, Y40 Z4 are given in Appendix III. (see also equation (7.8)). 

Now, making the substitution (5.1) in (9.6) for sings and cosQ5 i. e.: - 

sings = 2x5/(1 + x5) 

cosQS al (1 - x2)/(1 + x5) 

where x5 a tan(0/2) 

and rearranging, one has: - 

f(x5) = Y5 + alx5 + a0 =0 

where: - a2 = N416 - M416 - cosoc23 

a1 = 2. L416 

a0 = N416 M416 - cosoc23 

(5., ) 

(9.8) 

(9.9) 

Equation (9.8) is the required first equation in a suitable form for 

the elimination of x5. 

9.3.2 Second Equation in Al, 0 and R5, 

It is not possible to make use of the secondary equation corresponding 

to equation (9.3) directly, since this would involve (as extra variables) 

the offsets S4 and S5. Consequently one must use the secondary part of the 

dual cosine law: - 

6123 = cosQ45 (9.10) 

which iss- 

206123 S a453in0c45 (9.11) 

since this involves all of the fixed mechanism proportions and may be 

transformed into the required form. 

In equation (9.11) the term 206123 is most conveniently written in its 

symmetric form (see Appendix III. ) as follows$- 
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? 06123 = a34Y6123 

+ S33sinoc34 X6123 

+ a23[(X61sing 2+ Y61cos82)23 + Z6131 

- S22[(X61sin92 + Y61cosQ2)X3 + x612Y3J 

+ a12cosecoc12 CZ61Z32 - Z6Z3] 

- S11[(X32sing 
1+ Y32cosQ1)X6 + X321Y61 

+ a61[(X32siz. A1 + Y32cosQ1)Z6 + Z32Y63 

+ S66sina56x3216 

+ a56Y3216 (9.12) 

where the terms X6123' Y6123'" `*etc., are also defined in Appendix III. 

In order to transform (9.12) into an equation in 91' 86' 05 and 0 
4} 

only, it is natural to examine the coefficients of each term, a34,... ", a56 

separately and to reduce these to the correct form in turn. In order to 

achieve this end one requires the following sine, sine-cosine and cosine 

laws for a spherical hexagon (see Chapter 4): - 

x 6123 sina45 sinG44 

Y6123 ° sinoc45 cosQ44 (9.13) 

R61cosQ2 - Y61sing 2= X43 

X61sin02 + Y61cosQ2 a -Y43 

Z61 = z43 (9.14) 
t 

X32cosQ1 - Y32sing 1a X56 

X32sing 1+ Y32cos®1 = Y56 

z32 = z56 (9.15) 

x 3216 S sinoc45 sings 

Y3216 w sinot45 cos®5 (9.16) 

where the terms X6123' Y6123'" .. "tetc., are defined in Chapter 4 and 

Appendix III. 

Thus the coefficients of a34 and 533 in (9.12) Can be immediately 

replaced using (9.13 whilst those of a56 and S66 can be similarly dealt with 
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using (9.16). The remaining five terms (i. e. a23,522' c312, S11 and a61) 

must now be examined in detail. 

If one labels these five coefficients as follows: - 

ký s coefficient of a23 

k2 = coefficient of S22 

k3 = coefficient of a12 

k4 = coefficient of S11 

k5 = coefficient of a61 (9.1 i) 

then this will facilitate the manipulations. 

Hence using (9.14) one may write: - 

k1 . (X61sing 
2+ Y61cosQ2)23 + Z61Y3 

m -Y43Z3 + Z43Y3 (9.18) 

apter 4 and rearranging, Applying the definitions of Y43' X43' Y3` Z3 frO'R Ch 

this reduces to: - 

k, - »(sina34 24 + cos«34It 4)COSO3 

- cosa34 sincc45 sing 4sing 3 
(9.19) 

But from the identity (4.11a) this may be rewritten as: - 

ký a sinoc45 (cos93coso4 - sing 3 sing 4 cosoc 34) 

z sin X45 [(sina23 cos83)cosQ4 - (sinoc23 sinQ3) sinQ4cosoc34 3/ sincc23 

(9.20) 

and, using the following sine and sine-cosine laws: - 

sina23 sine3 = X1654 

sina23 cus®3 = Y1654 9.21) 

which are cyclic permutations of (9.13) or (9.16), equation (9.20) becomes: - 

k1 s sinoc45 coseca23 (y1654COsQ4 - X1654sinQ4cosa34) (9.22) 

which finally simplifies to the following form using the definitions of 

X1654 and Y1654 from Chapter 4s- 
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k1 = sina45 cosecoc23 C(X1 
Ssing5 +Y 16cosQ5) Z4 +ZJ (9.23) 

41 

Thus the coefficient, k1, is now in the required form. 

Clearly, exactly analogous, but equally lengthy, procedures may be 

applied to the four remaining coefficients (i. e. k2, k3, k4 and k5) and 

the results may be listed as follows: - 

Thus, from (9.14), k2 may be written as: - 

k2 ' -(X61 sin®2 + Y61cos92)X3 - X61223 

Y4333 - X4323 (9.24) 

After expanding and rearranging (9.24) one has: - 

k2 e sinoc45(X3cosQ4 - Y3sing 4) 

= sinoc45 X165 (9.25) 

from the subsidiary sine law. 

Similarly one may rearrange k, as follows, using the definitions of 
J 

Z61 and Z32(see Chapter 4. ): - 

k3 = coseca12(Z61Z32 - 2623) 

s (X6sing 
1+ Y6cos®1)Z32 + ZJ32 (9.26) 

and from the subsidiary sine-cosine and cosine laws: - 

-Y32 . (X36sin®1 + Y56cosQ1) 

Z32 = Z56 (9.27) 

one may rewrite (9.26) in'the following form, after regrouping terms: - 

Y3 u (Z56X6 - x56Z6) sinQ1 

+ (Z56Y6 - Y56Z6)cosQ1 (9.28) 

Finally, expanding and regrouping (9.28) using the identity (4.10a) one 

obtains: - 

k3 sina45 [sing5(U16sina56+ V16cosoc56) + cos95w16] 

sinac45 W165 (9.29) 

where U16, V16 and W16 are expressions for the polar spherical hexagon (see 

Chapter 4) and are defined as follows: - 
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U16 = sin81 sinoc61 

V16 = -(cosQ1sinQ6 + sing 1cose6cosoc61) 

116 = (cose1c)se6 - sinn1 sinQ6cosoc61) (9.30) 

Nov the remaining two coefficients of (9.12), (i. e. k4 and k5) may 

clearly be written as follows, with reference to (9.23) and (9.25), since 

206123 is symmetric: - 

k4 = -(x32sing 1+ Y32cose1)X6 - X321Y6 

sinoc45 X234 (9.31) 

ands- 

k5 = (X 
32sing 1+ Y32cosQ1)Z6 + Z32Y6 

sina45 coseccx61 [(X235inQ44 + Y23cosQ44 )Z5 + Z23Y5] (9.32) 

However, using the three subsidiary lawss- 

x 234 $ (X23cose44 
- Y23sinQ44) = X65 

(X23sing 
44 + Y23cosQ«) m -Y65 

Z23 = Z65 (9.33) 

equations (9.31) and (9.32) are transformed into the following: - 

k4 - sinoc45X65 (9.34) 

ands- k5 = sinac45( cosQ6cosQ5 - sing 6sing 5cosoc56) 

a sina45 W65 (9.35) 

It is now possible to rewrite the whole of (9.12) in a form which 

involves only 81, A6,05 and 044 . Thus7from (9.23), (9.25), (9.29), (9.34) 

and (9.35), together with (9.13) and (9.16), equation (9.11) becomes: - 
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-a45sinoc45 = a34sinoc45 cosQ44 

+ S33sina45 sin(x 34 sing 44 

+ a23sinac45 cosecoc23[(X16sinQ5 + Y16cos05)Z4 + ?. 16Y41 

+ S22sina45 X165 

+ a12sinoc45 W165 

+ S11 sinoc45 X65 

+ a61 sinoc45 W65 

+ S66sincc45 sinoc56 sings 

+ a56sina45 cosO5 (9.36) 

After dividing throughout by sinac45, equation (9.36) may be arranged 

in the form: - 

where: - 

P416sin85 + Q416cosQ5 + R416 = -a45 
(9.37) 

1416 ° a23coseca23 Z4X16 - s22Y16 

+ a12(U16sinoc56+ V16cosoc56) - S11Y6 

- a61cosoc56 sing6 + S66sinoc56 

Q416 a a23cosecc 23 Z4Y16 + S22X16 

+ a12W16 + S11X6 

+ a61cos®6 + a56 

R 416 a34cose44 + S33sina34 sing44 

+ a23cosecac23Y4z16 ky#* 30) 

Hence making the substitutions (5.1) in (9.37) for sing 5, and cosQ5 

one obtains after rearrangement: - 

g(x5) = b2x2 + b1x5 + b0 =0 (9.39) 

where: - 
b2 = 8416 - Q416 + a45 

b1 2. P416 

b0 R 416 + 0416 4' a45 9.40) 
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and clearly (9.39) is in the desired form for the elimination of 

x5(a tan(A5/2) ). 

9.3.3 Elimination Procedure. 

The elimination of x5 between equations (9.8) and (9.39) may now easily 

be carried out using the Btzoutian, (5.8), for two quadratics and the 

input-output equation for the RRRPCR mechanism is thus of the form: - 

(a2b0 
- a0b2)2 - (a2b1 - a1b2)(alb0 - a0b1) =0 (9.41) 

where a2, a,, aG and b2, b1, b0 are defined by (9.9) and (9.40) respectively. 

Since each of these terms is a quadratic expression in x6 it is clear from 

(9.41) that the input-output equation is of degree eight in the half-tangent 

of the output angular displacement. One may express these coefficients in 

terms of x6( a tan(A /2)) by means of the substitution (5.1)1 

sinQ6 s 2x6/(1 + x6) 

cos®6 a (i - x6)/(1 + x6) (5.1) 

as follows: - 

a°p2 2 22x6 + p12x6 + P02 

a1 ° p21x 
2+ 

p11x6 + p01 

a0 p20x6 + p10x6 + p00 (9.42) 

and: - 
` b2 = 422X6 + q12x6 + q02 

b1 = q21x 
2+ 

q11x6 + 401 

b0 = 420X6 + g10x6 + Qoo (9.43) 

where the terms piß and qij are each a function of the input angle (Q1) 

only, and are listed in Appendix VII. 

Furthermore, it is also possible to express a2, a1...., b0 as quadratics 

in x1( a tan(A1/2)) and again, from (9.41), it is clear that the input- 

output equation is of degree eight in the input variable. These results a., -e 
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in agreement with the predicted degree for the R? 2RPCR mechanism (see 

Chapter 2. ). 

9.4 Displacement Analysis. 

Solving the input-output equation (9.41) for x6, one obtains, in 

general, eight distinct real values for the output angular displacement 

(i. e. 061,062...., Q68), for each value of the input angular displacement, 

01. The eight ordered pairs (9 
it A61), (8i, A62),...., (A1,068) thus 

produced will then each give rise to corresponding values for the remaining 

linkage variables (A5, S5, S4, A3,02 ) using procedures outlined belog. 

Thus 05 may be determined from either of the two expressions for the 

common root of (9.8) and (9.39), which are derived from the Bezoutian (5.8). 

(see Chapter 5). These expressions are: - 

- x5 = -(a2QAa2bl) 

c -(a2bo - a0b2)/(a2b1 - a1b2) (9.44a) 

or: - 
X5 = -(albo)A a2b0) 

s -(albp - aobl)/(a2bo - apb2) (9.44b) 

where: - x5 a tan(A, /2) 

Having determined 01, A6 and 95 it is a simple matter to obtain the 

unique value of 03 from either of the two fundamental half-tangent laws: - 

X3 ° -(Y1654 - sinoc 23)/X1654 

or: - I 

x3 . R1654/(Y1654 + sina23) 

where: - 

x3 w tan(A/2) 

(see equations (5.32) and (5.33)). 

Here: - 
x1654 a x165cosQ44 - Y16sing 44 

Y1654 00 cosa34 (X165sinQ44 + Y165cos0«) - sina34 2165 

(9.45a) 

(9.45b) 

(9.46) 
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In a similar manner one may obtain A2 from a cyclic permutation of 

(9.45a, b) for known values of o1, A6 and A5. Thus: - 

X2 a -(Y4561 - sinoc23)/X4561 (9.47a) 

ors- 

x2 = x4561AY4561 + sin(x23) 

where: - 

x2 E tan(62/2) 

and: - 

X4561 X456cos91 - Y456sinQ1 

Y4561 = cosoc12(X456sing 1+ Y456cose1) - sinoc12 2456 

The sliding displacement S4 may be determined from the secondary 

component of the dual subsidiary cosine law: - 

A ý16UZ34 

which is: - 

z016 a 2034 

where: - 

2016 a56y16 

+ S66sina56X16 

+ a61coseca61 (Z1 Z6 - cosoc12 cosoc56) 

+ S11 sinoc12 X61 

+ a12Y61 

and: - 

(9.47b) 

(9.48) 

(9.49) 

(9.50) 

(9.51) 

2034 a45Y34 

+ S4sina45 X34 

+ a34cosecoc34 (Z3Z4 - coscx23 cosa45) 

+ S33sina23 X43 

+ a23Y43 (9.52) 

In a similar manner the sliding displacement S5 may be calculated from 

the secondary component of the dual cosine law*. - 
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A 
z2165 = cosä34 

which is: - 

202165 = -a34sinoc34 

where: - 

202165 = a45Y2165 

+ S5sina45 X2165 

+ a56[(X21sing 6+ Y21cosQ6)Z5 + Z21Y51 

- S66[()C21sinQ6 + Y21cosQ6)X5 + X216Y5J 

+ a61cosecoc61[Z21Z56 - Z2Z51 

- S11[(X56sin01 + Y56cosQ1)X2 + X561Y2J 

+ a12[(X56sinQ1 + Y56cosQ1)Z2 + Z56Y2J 

+ S22sinoc23X5612 

+ a23y5612 

and the terms X2165' Y2165... ', etc., are defined in Appendix III. 

This completes the displacement analysis for the RRRPCR six-link 

mechanism. 

9.5 Numerical Results. 

(9.53) 

(9.54) 

(9.55) 

The input-output equation (9.41) for the RRRPCR mechanism was solved 

numerically for a given set of mechanism proportions, and graphs of the 

output angular variable, A6, and remaining -variables 85, A3, A2, S4 and 

S5 against the input, Q1, -were plotted (see Figures 9.2,9.3,9.4,9.5, 

9.6, and 9.7 respectively). 

In addition since a combination of revolute and prismatic pairs may 

be used to simulate a cylindric pair, equation (9.41) may be used to generate 

the input-output relationship for the five-link RRCCR mechanism. Figure 9.1 

shows a plot Of A6 vs 01 for this mechanism. 

The following sets of data for the mechanism proportions were. 

chosen in each case: - 
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9.5.1 RRCCR Mechanism. 

a12 = 1.0 ins. 

a23 = 3.5 ins, 

a34 = 0.0 ins, 

a = 2.5 ins. 
45 

a56 = 2.0 inse 

a61 = 3.0 ins. 

a12 = 30 deg. 

a23 = 45 deg* 

a34 m 0 deg. 

a45 = 45 deg. 

(X 56 = 60 deg& 

a6 1= 20 deg. 

S11 = 1.0 ins. 

S22 = -6.0 ins. 

S33 = 0.0 ins. 

S66 = 3.0 ins. 

044 =0 deg. 

Here the third revolute pair has been superimposed on the fourth 

(9.56) 

sliding pair by selecting the proportions, a34 «34 = S33 = 044 = 0. 

The remaining proportions were selected to give the same RRCCR mechanism 

as that previously analysed by Yuan [48]. Figure 9.1 is identical to 

the input-output relationship presented in [48]. 

9.5.2 RRRPCR Mechanism. 

a12 m 2.0 ins 

a23 a 2.0 ins. 

a34 a 1.0 ins. 

a45 = 2.0 ins. 

a56 : 2.0 ins. 

a6, = 4.0 ins. 

cx12 = 90 deg* 

a23 = 80 deg. 

oc34 = 10 deg. 

a45 = 90 deg. 

a56 = 90 deg. 

0061 = 90 deg. 

Si is8.0 
ins. 

S22 a -4.0 ins. 

S33 W 0.0 ins. 

S66 = -2.0 ins. 

0 44 =0 deg. (9.57) 

These proportions were chosen to yield eight real closures for various 

ranges of the input angular displacement, and the results have been plotted 

in Figures 9.2-9.7 inclusive. On these graphs, the turning points (which 

occur at sixteen distinct values of the input variable, ®1) are labelled 

1-16 in order to identify easily the different closures. 
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CHAPTER 10 

A DISPLACEMENT ANALYSIS 

OF 

SPATIAL SIX-LINK 5R-C MECHANISMS 
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10.1 Introduction. 

For all spatial five-. link 3R-2C (Chapter 6) and six-link 4k-P-C 

(Chapters 7,8 and 9) mechanisms, the input-output equation must be derived 

by eliminating a single angular displacement in one operation from two 

simultaneous equations (see Chapter 5). However, in the case of spatial 

six-link 5R-C mechanisms the problem formulation is far more difficult. 

It is no longer possible to write equations involving the input, output and 

a single extraneous angular displacement, and one must eliminate two 

extraneous angular displacements. Furthermore, it is now well established 

that this elimination must be performed in one operation to avoid the 

introduction of extraneous roots into the final eliminant. 

Now for two quadratics in one variable (see equations (5.3) and (5.4)) 

for example, it is possible to derive the following two conditions on their 

coefficients: - 

(i) The condition that the two polynomials should possess 
a common zero or root. 

(ii) The condition that they should possess a common linear 
factor. 

The former condition is known as the eliminant whilst the latter is 

termed the resultant (see Höcher [2]. ). However, in this case the two 

conditions are identical and the terms 'eliminant' and 'resultant' are used 

synonymously. 

For polynomials in more than one variable, however, the above two 

conditions are no longer synonymous since if two or more such equations 

possess, for example, a single common linear factor they clearly possess 

an infinite number of zeroes or roots. 

e. g.: - 

f(x, y) _ (x +y- 2)(x2 - 2x + 4) 0 (10.1) 

g(xv y) = (x +y- 2)(x3 + 4x2 - 1) =0 (10.2) 

Thus (10.1) and (10.2) have a common linear factor but are satisfied by an 

infinite number of ordered pairs, (x, y). 



253. 

Now, whcn considering the 5R--C mechanisms, one requires the eliminant 

(rather than the resultant) of a system of polynomials in, two extraneous 

variables in order to obtain the input-output relationships, and since the 

two conditions are no longer synonymous, one cannot use expressions 

corresponding to the bigradient or Be'zoutian. This is because the latter 

are essentially resultants (see Böcher [2] ). 

Nevertheless, it is still possible to obtain the required eliminant for 

the 5R--C mechanisms in determin- antal Form (see also Salmon [31] ). At the 

outset one would expect to derive three equations from which to eliminate 

the two extraneous variables, although this has not proved to be the case. 

In this chapter a set of four non-linear equations in two unkno m angular 

disElacements is derived, from which the input-output equations for both the 

RRRRCR and the RRCRRR mechanisms may be obtained. 

The set is derived from the fundamental half-tangent laws for the 

spatial hexagon and each equation is a function of the input, output and two 

extraneous angular displacements. This new problem formulation is a 

significant result since it simplifies the elimination process and provides 

solutions (for the spatial six-link RRRRCR and RRCRRR mechanisms) of a much 

lower degree than any quoted elsewhere (see [16,17] ). In addition, the 

input-output equations contain, as special cases, eighth-degree polynomials 

for spatial six-link 4R-P-C slider-crank mechanisms. These results are, 

again, in agreement with the predictions of Chapter 2. 

10.2 Desci ption of the Six Link RRRRCR and RRCRRR Mechanisms. 

The six-link RRRRCR and RRCRRR (an inversion of the RRRRCR) spatial 

mechanisms are illustrated by Figure 2.28 and are represented mathematically 

by the following six dual sides and six dual angles: - 
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0C12= c12+ C a12 

«23= 
°23+ E a23 

0C34 = °(34 + ¬ a34 

oc45 = 0: 45 + 6 a45 
ä56 

=° 56 + a56 

ä61 
= a61 + a61 (10.3) 

01 _ Q+ F S11 

2= 82+ C S22 

3` 93+ 6533 
4_ 04+ 9S44 
Ä5= 85+ ES5 
Ä6 

. A6 + 9 S66 (10.4) 

where 62 = 0, and all fixed mechanism proportions have double or repeated 

suffices. For the RRRRCR mechanism the input and output angular displacements 

are respectively 61 and A6, and the frame is the constant dual side, X61, 

whilst for the RRCRRR the input, output and frame'are respectively A1, A2 

A 
andoc12" 

10.3 Derivation of Input-Output Equations for the RRRRCR and RRCRRR Mechanisms. 

The input-output relationships for the RRR. RCR and RRCRRR inversions may 

be obtained from the same set of four equations, which is derived below. 

10.3.1 Derivation of Four Equations ice- 90 and x3. 

For the spherical hexagon it is possible to write the two fundamental 

half-tangent laws relating 0 6' A1,92,94 and x3I expressed by equations 

(5.35) and (5.36) and hence, after introducing the dual symbol, one has 

the following two dual laws for a spatial hexagons- 

(X6A L\ 
12 + 4)X3 + (Y612 + 4) -Ö (10.5) 

``612 - Y4)x3 - (X612 ' X4) 0 (10.6) 
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'ehe primary parts of (10.5) and 10.6) are equations 5.35) and 5.36) 

respectively i. e.: - 

(x 
612 + 43 + (Y612 + Y4) °0 (5.35) 

(Y612 - Y4 )x3 - (x612 X4) =0 (5.36) 

whilst the secondary equations corresponding to these are given, after 

regrouping terms, by (5.62) and (5.63) (see Chapter 5). i. e.: - 

533[(X612 + X4)3"3 + (x612 + X4)J /2 + (X612 + R4)Ox3 + (Y612 + Y4)0 =0 

(5.62) 

S33[(Y612 - Y4)x3 + (Y612 - Y4)J /2 (y612 - 24)0x3 (X612 - X4)0 "0 

-- 
(5.63) 

Equations (5.62) and (5.63) are quadratic in x3 at present but it is 

possible to reduce them to linear form. This may be achieved by writing the 

subsidiary sine and sine-cosine laws (4.70 ab) in terms of x3(= tan(83/2)) 

as follows: - 

Thus (X612cosQ3 - y612sing )= X4 (4.70a) 

(X612sing 
3 + Y612cosQ3) _ -Y4 (4.70b) 

and, making the substitutions (5.1) for sing3 and cosQ3, one has, after 

-regrouping terms: - 

(X612 + X4)x2 = -2. Y612x3 + (x 
612 - 714) 

and'- (Y )x = 2. X x+ (Y +Y) 612 - 4)< 3 612 3 612 4 

Clearly (10.7) may be used with (5.62) to gives- 

[(x612 + R4)0 - 533Y612]x3 + [S33X612 + (2612 + X4)0] =0 

whilst from (5.63) and (10.8) one obtains: - 

UY612 - Y4}0 + S33X612]X3 + [S33Y612 (X612 - X4)0] =0 

(10.7) 

(10.6) 

(10.9) 

(10.10) 

Thus, at this stage one has four equations ((5.35), (5.36), (10.9) and 

(10.10)) which involve 9 6, A1,021x3 and 94. It is now necessary to remove 



256v 

the terms sin04 and cosO4 from these, without unduly increasing their degree. 

Now from the identities (4.10tß) and (4. lib) one may write: - 

Y4 E cotoc45 Z4 - cosoc34 cosecoc45 (10.11) 

Y4 L cotoc34 Z4 - cos«45 cosecoc34 (10.12) 

In addition one has the primary and secondary parts of the dual 

subsidiary cosine law: - 

Ah 
z612 " z4 (10.13) 

which are: - 
2612 S Z4 ( Z4) (10014) 

and- . 

0612 
Z 

04 
(10.15) 2 

where Z0612 and Z04 are given in their symmetric forms by: - 

20612 a23Y612 

+ S22sinoc 23 X612 

+ a12[(X6sing 1+ Y6cos®1)Z2 + Z6Y2J 

+ 511[(Y6Y2 - Y2)sin91 - (Y6g2 + X6? 2)cos01J 

+ a611(X2sinel + 72cosQ1)Z6 + Z2Y6J 

+ S66sinoc56 X216 

+ a56Y216 (10.16) 

and: -- 

z04 a34 A 

+ S44sinoc34 sinoc45 sing4 

+ a4ýY4 (10.17) 

Thus from, (10.11) and (10.12) using (10.14) one may rewrite (10.15) 

as: - 

20612 - (a34cotoc34 + a45cotoc45) 2612 

+ (a34cos(X 
45 coseccx34 + a45cosoc34 cosecoc45) = S44 sincx34 sina45 sing4 

3 44 sincx34X4 (10.18) 
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Finally, from the definition of Z4 (see Chapter 4), equation (10.14) 

can be written as: - 

coscx34 cosoc45 - 2612 - sincx34 sinoc45 coso4 (10.19) 

It is now possible to remove the X4 terms from (5.35) and (5.36) using 

(10.18), and the Y4 terms using the identity (10.12) together with 

10.14). Thus, after multiplying throughout by S44,, sinoc34, equations 

(5.35) and (5.36) become respectively: - 

CS44sinoc34 X612 + 20612 - (a34`"otocs4 + aQ5cotcx45) Z612 

+ (a34cosoc45 cosecoc34+ a45cosoc34cosecoc45) ]x3 

+ S44(sina34 Y612 + cosoc34 2612 - cosac45) 00 (10,20) 

and: - 

S44(sinoc34 Y612 - cosa34 2612 + cosa45) x3 

- [S44sinac34 X612 - 20612 + (a34Coto( 
34 + a4500ta45) 2612 

- (a34cosac45 cosecoc34+ a45cosoc34coseca45) I=0 (10.21) 

Equations(10.20) and (10.21) are two equations of the desired form 

in A6' A1,02 and x3, and it now remains to obtain a further two such 

equations by removing terms in A4 from (10.9) and (10.10). 

From the definitions of RC04 and Y04 (see Appendix III. ) equation 

(10.9) becomes: - 

(X0612 + a45coscx45 sinQ4 + S44 sina45 cosQ4 - S33Y612)x3 

+ [S 
33X612 + Y0612 + a45(sinoc45 3iI ac34 - cosoc45 cosoc34 cosQ4) 

- a34(cosoc45 cosa34 - sincx45 sinoc34 cosQ4) 

+ S44sina45 cosoc34 sing41 m0 (10.22 

whilst (10.10) becomes: - 
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CY0612 a45(sxnac45 sincx34 - cosac45 cosa( 34 coso4) 

+ a34(cos(x45 coscc34-- sinoc45 sintx34 cos04) 

- S44sina45 cosoc34 sing4 + S33X612Jx3 

+ (s33Y6,2 - X0612 + a45cosoc45 sing4 + S44 sinoc45 cosQ4) 22 0 (10.23) 

Now, using (10.18) and (10.19) to replace some of the terms involving 

sin84 and cosQ4, (10.22) gives after multiplying throughout by sinoc34* 

[sina. 
34 X0612 + S44(coscx34 cos«45 - zß; 12) - S33st ra34 Y612 

+ a45siricx34 cosoc45 sing 41x, 

+ 
[533sincc34X612 

+ ac14Y0612 - a34sinoc34 Z612 

+ a45sinoc34 [sincx45 sinoc34 - cotoc45 cot«34( cosa34 cosoc45 - Z612)] 

+ cosoc34[ZO612 - (a34cot`x34+ a45cotoc45) z 612 

+ (a34cosoc45 cosecac34+ a45cosoc34 cosecoc45) ý] a0 (10.24) 

In a similar manner (10.23) becomes: - 

[S33s1ncx34X612 + sinac34 Y0612 + a34sinoc34 Z612 

- a45sinac34 [sina45 sinac34 - cotoc45 cotoc34( cosoc34 cosoe45 - Z612)] 

- cosoc34 [z0612 - (a34, cotoc34+ a45cotcx45) Z612 

+ (a34cosoc45 coseccc34+ a45coscc34 cosecac45) ]]x3 

- [sine x -- S44( cosy cosy Z612) -S sinn Y 34 0612 34 45 33 34 612 

- a45sinoc34 cosoc45 si A41 28 0 (10.25) 

Finally the x3sing 4'term in (10.24) and the sin84 term in (10.25) may be 

replaced using equations (5.35) and (5.36) respectively, since the latter 

can be written (with the aid of identity (10.12)) in the forms- 

sinoc34 sinoc45 sing4x3 =- sina34X612x3 

- (sinoc34 Y612 + cosac34 2612 - cosoc45) (10.26) 

and: - 

sinoc 34 sinac45 sing4 =- (sina34 y612 - cosaC34 2612 + cosoc45) x3 

+ sinoc34 X612 (10.27 
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Thus from (10., 24) and (10.26) one obtains: - 

Csina34X0612 ,r S44(cos=sc34 coscx45- z612) w S33si. na, 4Y612 

a45sinoc34 cotcx4r X612jx3 

+ 
[(sinac34Y0612 

+ cos0c34Z0612) + S33sincx34X612 

+ a34cosecac34 (cosac34 cars«45 -- 2612) 

f a45[cosecoc4S -- cots-45( sinac34 Y612 + co oc34 Z612)] 
]0 

(10.28) 

and from (10.25) and (10.27) one has: - 

I sin(x34YO612 - cos x94 Z0612) + 533sinoc34X612 

- a34cosecoc34( cosoc34 cosa45 - 2612) 

- a45Ccosecoc45 + cotac45 (sincx3AY612 - cosoc34 Z612)]1x3 

-- [sinat34 X0612 - S44(coscx34 ccsoc45 - Z612) - S33 sinoc 34Y612 

- a45sinoc34 cotoc45 X612) 00 (10.29) 

Equations(10.20), (10.21), (10.28) and (10.29) are now the desired 

four equations in 9 6,91,82 and x3. 

10.3.2 Elimination Procedure for the RRRRCR. Mechanism. 

By making the substitutionst- 

singt a 2x2/(1 + x2) 

cosQ2 a (i - x2)/(1 + x2) (5.1) 

where; - x2 a tar, (02/2) 

in equations (10.20), (10.21), (10.28) and (10.29)ß one obtains the 

following set of four equations which are respectively: - 

F1(x2, x3) (a, x2 + b1x2 + c1)x3 + (d1x2 + e1x2 + f1) .0 

F2(x2, x3) _ (a2x2 + b2x2 + c2)x3 + (d2x2 + e2x2 + f2) =0 

F3(x2t x3) a (a3x2 + b3x2 + C1)x3 + (d3x2 + e3x2 + f3) _= 0 

? 4(x2, x3) _ (a4x? + b4x2 + c4)x3 + (d4x2 + e4x2 + f4) =0 (10.30) 

where the coefficients ai, big cis di, el, fi. (i = 1,29 3,4) are given 

in Appendix VIII and are each of degree two in the half-tangents of both 
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Al (input) and 86 (output). They also collectively involve all of the 

mechanism proportions. 

The two unknowns x2 and x3 can be eliminated from equations (10.30) 

in a single operation by firstly multiplying the latter system throughout 

by x2. This produces a further four equations giving, together with (10.30), 

a total of eight equations. By treating these as a system of eight non- 

homogeneous linear equations in the seven unknowns x3x3, x3,4x3, x2x3, 

x3,2 and x2 it is possible to eliminate the latter and obtain as the 

eliminant an (8 x 8)-determinant (see also Salmon [31])� This eliminant, 

equated to zero, is then the required input-output equation for the RRRRCR 

six-link spatial mechanism, and it may be written as follows: - 

00 a1 b1 c1 d1 e1 f1 

00 a2 b2 c2 d2 e2 2 

00abcde 
33333 

f3 

E(F1, F2, F31 F4) 
00 a4 b4 c4 d4 e4 £4 

s0 (10.31) 

a1 d1 b1 C10 e1 f10 

a2 d2 b2 c2 0 e2 £2 0 

a3 d3 b3 C3 0 e3 £3 0 

a4 d4 b4 c4 0 e4 £4 0 

Clearly, (10.31) is of order 8 in the'coefficients ai,....., fi and is 

therefore of degree sixteen in both the input and the output half-tangents, 

x1 and x6. This novel result agrees with the predicted degree for the 

RRRRCR input-output equation given in Chapter 2. 

10.3.3 Elimination Procedure for the RRCRRR Mechanism. 

In a similar manner, by making the substitutions: - 

sine a 2x6/(1 + x2) 

cosQ6 a (1 - x2)/(1 + x2) (5.1) 

where x6 a tan (A/2) 
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and regrouping termst equations (10.20), (10.21), (10.28) and (10.29) can 

be written as a set of four equations in the following form: - 

Fil (x6, x3) a (a; x6 + b1x6 + C; )x3 + (d; x6 + ellx6 + 111) r0 

F'(X t 26 X) = 3 
(a"x2 

26 +býX 26 +Ct)X + 23 
(dýx2+ 

26 etx + 26 fl) a0 2 

F3(x6, x3): (aýx6 +bx6 +C3)x3+ (d3xý+ e3x6+ f3) a0 

F4(X6' x3) = (aýx2 + blx6 + c4)x3 + (ddx2 + C4X6 + f4) =0 (10.32) 

where the coefficients air bl, cl, dlf elp 11 2,3p 4) are given in 

Appendix. VIII and are of degree two in the half. -tangents of both 01 (input) 

and A2 (output). They also collectively involve all the mechanism 

proportions. 

Nowt in analogy with the previous inversion (the 12RRRCR), it is 

possible to eliminate the unknowns x6 and x3 from (10.32) in a single 

operation by, firstly, multiplying throughout by x6; then eliminating the 

seven unknowns x6x3, x6, x2x3, x6x3, x3, x6 and x6 from the resulting 

eight equations. In this matmer one obtains the following eliminant: - 

o0 
o0 

o0 
00 

E(FlI * F2t F3t F4) 
a+ 

a 3+ 

a+ 

d" 1 

d' 2 

d 13 

dý 

a1. b1 c1 d1 e 

a2 b2 c2 d e2 

a3 b3 c3 d3 e3 

a4 b4 % d4 e4 

b1 ; Cr 0 e 1 f; 1 

b2 c2 0 e2 f2 

b3 c3 0 e3 £3 

b4 c4 0 e4 f4 

1 2 

f 3' 

f 4' 

0 

0 

0 
0 

0 (10.33) 

Equation (10.33) is the required input-output equation for the RRCRRR 

six-link spatial mechanism and it is clearly of order 8 in the coefficients 

al,......, f. It is, therefore, of degree sixteen in both the input and 

the output half-tangents, x, and x2. This result agrees with the predicted 

degree for the RRCRRR input-output equation given in Chapter 2. 



262, 

10.4 Displacement Analyses for. 5Y-C Mechanisms.. 

For spatial five-link 3R-2C# six-link 4R-"P--C and seven-link 5R-2? 

mechanisms it is a relatively simple matter to devise procedures for 

determining uniquely the remaining variables once the input-output equation 

has been solved (see Chapters 6,7,8 and 9). However, for the 5R-C 

mechanisms, analysed here, the problem is of a more complex nature since 

one cannot write down immediately expressions for the common root obtained 

from the Bezoutian. Indeed the 'common root' of either of the systems 

(10.30) or (10.32) is no longer a single value but rather an ordered pair 

((x2, x3) or (x6, x3)) of values. 

Nevertheless, explicit expressions for x2 and x3 (x6 and x) in terms 

of the coefficients ai,.... =fi(a1 1 may be determined in the case 

of the RRRRCR (RRCRRR) mechanism, using what is, essentially, an extension 

of Bezout's method for dealing with equations in a single unknown. 

10.4.1 Displacement Analysis of the RRRRCR Mechanism. 

Thus, for the RRRRCR mechanism, one may write the system (10.30) in 

the following form; - 

aýx2x3 + b1x2x3 + d1x2 + (e1 x2 + c1x3 + f1) =0 

a2x2x3 + b2x2x3 + dýx2 + (e2x2 + c2x3 + f2) 0 

a3x2x- + b3x2x3 + d3x2 + (e3x2 + c3x3 + f3) a0 

a4x2x3 + b4x2x3 + d4x2 + (e4x2 + V3 + 24) =0 (10.34) 

Treating (10.34) as a set of four non-homogeneous linear equations 

in the three variables 
4x3, 

x2x3 and x2, and eliminating the latter, 

one obtains, after expansion of determinants, the following linear equation 

in x2 and x3: -- 

A1x2 +B1x3+ C1 00 (10.35) 
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where: - 

A1 a 

B1 = 

and: - 

a1 b1 d1 e1 

a2 b2 d2 e2 

a3 b3 d3 e3 

a4 b4 d4 e4 

a1 b1 d, c1 

a b d2 c2 2 2 

a3 b3 d3 c3 

a4 b4 d4 C4 

(14.36a) 

(10.36b) 

aý b1 dý 

C1 
a2 b2 d2 f2 

a3 b3 d3 f3 

a4 b4 d4 f4 

Alternatively, it is possible to write the system (10.30) in the 

forms- 

(10.36c) 

a1x2x3 + c1x3 + (d1x2 + b1x3 + e1)x2 + f1 =0 

a2x2x3 + c2x3 + (d2x2 + b2x3 + e2)x2 + f2 a0 

a3x2x3 +c 3x3 + (dax2 +b 3x3 +e 3)x2 +f3=0 

a4x2x3 + C03 + (d4x2 + b4x3 + e4)x2 + f4 =0 (10.37) 

and, teating (10.37) as a set of four non-homogeneous linear equationsin 

the three variables 
4x3, 

x3 and x2, one obtains, after eliminating the 

latter, the following linear equation in x2 and x3s- 

A2x2 + B2x3 + C2 a0 (10.38) 
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where i- 

aý 

a2 
A2 

a3 

a4 

c1 d1 f1 

c2 d2 2 

c3 d3 f3 

C4 d4 f4 

(10.39x) 

a1 C1 b1 f1 

B 
a2 c2 b2 f2 

(10.39b) 

a3 c3 b3 £3 

a4 C4 b4 f4 

and: - 

a1 c1 e1 f1 

C2 
a2 c2 e2 f2 

(10.39c) 

a3 c3 e3 f3 

a4 c4 e4 p4 

It is now possible to obtain explicit expressions for x2 and x3 by 

solving the two linear equations (10.35) and (10.38) simultaneously. The 

required expressions for the common root (or zero) of (10.30) are therefore: - 

x2 m (B102 ^ B201)/(A1B2 " A2B1) (10.40) 

and: - 

x3 = -(A1C2 - A2C1)/(A1B2 - A2B1) ('10.41) 

The determination of the remaining variables is now straightforward 

since 81, A6, A2 and A3 are now known. A complete displacement analysis 

for the RRRRCR mechanism can be outlined and summarised as follows: - 

(i) The degree sixteen polynomial obtained from (10.31) 

gives, in general, sixteen real values of 66 (i. e. 
061, A 2....., ®61 ) for each specified value of the 
input 

Angular 
th solacement Q,. 
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(ii) For each of the sixteen ordered pairs (O1,961)9 
(01 ß62)s"°... '(91 s ©ý1 ), the corresponding numerical l N 
values of the coef icien s a, (see 
Appendix VIII) may be calculated and hence the 
unique values for x and x can be obtained from 3 (10.40) and (10.41): 

(iii) The corresponding values for x4 (-- tan(®A/2)) and 
x (s tan(Q5/2)) may now beeasily caiculdted from 
either form of the relevant fundamental half-"-zancjent 
laws (see equations (5.32) and (5.33)). Thus: - 

x = (sinoc - Y'6123)6123 (10.42a) 
4 45 

or: - 

/ 
(sincx + Y, 6123 x = X612 ('10.42b) 

45 4 3 
and: - 

x5 =(sinoc - Y3216)c3216 (10.43a) 
45 

or: - 

x5 = X3216ý(slnoc45 + y3216) (10.4äb} 

(iv) Finally, the sliding displacement, S5, is calculated 
from the secondary part of the dual subsidiary 
cosine law: - 

123 =25 (10.44) 

which is: - 

20123 X05 (10.45) 

where Z0123 and 7,05 are written in their symmetric forms as: - 

20123 ° a34y123 

+ S33sincx34 X. 123 

+ a23[(X1sin82 + Y1coso2)Z3 + Z1Y 

+ S22[(Y173 - X1Y3)sing 2 -(Y1X3 + X1Y3)cos821 

+ a12VR3sing 2+7 3cosQ2)Z1 + Z3Y1l 

+ S11 sinac61 X321 

+ a61Y321 (10.46) 
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and: - 

zß5 a45Y5- 

+ S5sincx45 X5 

+a Y (10.47) 
56 5 

10.4.2 Displacement Analysis of the RRCI RR Mechanism. 

For the RRCRRR six-linlc spatial mechanism, the remaining variables 

may be calculated using a procedure exactly analogous to that used above 

for the RRRRCR inversion, Thus, by writing the system (10.32) in the 

following two alternative forms: - 

a'1x2x3 + bIx6x3 + d', x6 + (e; x6 + c; x3 + El) .0 

a2x6x3 + b2x6x3 + d2x6 + (e2x6 + c2x3 + f2) =0 

ax3 N + b3x6x3 + d3x6 + (e3x6 + c3x3 + f3) =0 

aýx2x 463 + bIx x 463 + d4x2 + (et x 646 + cox + f) 434 =0 (10.46) 

or: - 

a,, x2x3 + c; x3 + (d; x6 + bjx3 + e; )x6 + f1, = 0 

a2x6x3 + c2x3 + (dzx6 + b2x3 + e2)x6 + 22 0 

a3x2x3 + c3x3 + (d3x6 +b '3x3 + e3)x6 + 23 = 0 

a4x6x3 + c4x3 + (d4x6 + b4x3 + e4)x6 + 24 = 0 (10.49) 

and eliminating the three variables x2x3, x6x3 and x6 from (10.48) one 

obtains the foll owing linear equation in x6 and x3: - 

Allx6 + B1 x3 + Cl' =0 

where: - 

a; b; d, e 

a2 b2 d2 e 
A Al ffi l 

a3 b3 d3 e3 

a1 b4 dd e4 

(10.50) 

(10.51a) 
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$1 

and: - 

at b, d c 

at b2 d2 c2 

at b3 d3 c3 

a4 b4 dd cý 

(10.51b) 

f1 a1 bd 

at b' d' f' 
C1 =22 

(10.51c) 

a3 b3 d' f3 

a4 b4 d4 f4 

Alternatively, by eliminating x2x3, x3 and x6 from (10049), a further 

linear equation in x6 and x3 is produced and this is: -. 

A2x6 + B2x3 + C' =0 
(10.52) 

where: - 

a1 c1 d1 £ 

a2 c2 d f2 
A' 

a3 c3 d3 3 

a4 c4 dd f4 

(10.53a) 

atj a; b1 fý 

a2 c2 b2 f2 
B2 fl (10.53b) 

a3 c3 b3 f3 

a4 c4 b4 f4 

a; c; el 

Ct 
a2 c2 e2 £2 

(10.53c) 

a3 c3 e3 f3 

a4 c4 e4 f4 

Explicit expressions for x6 and x3 may now be written by solving (10.50) 

and (10.52) simultaneously for x6 and x 3. 
Thuss- 
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X6 (B; c - B2C; )/tA; B2 - A2B; ) (10.54) 

and: - 

X3 -(A'lC2 A2C')/(A; $ý - ALB) 10.55) 

A complete displacement analysis for the RRCRRR mechanism can be 

summarised as follows: - 

(i) The degree sixteen polynomial obtained from (10.33 gives, 
in general, sixteen real values of A2 (i. e. A 1, °22,.... 

""", Q216)For each specified value of the input angular 
displacement, A1. 

(ii) For each of the sixteen ordered pairs (81,921), (01,02)' 

""""*"f (011 Q 16), the corresponding numerical values oP 
the coefficients Wt. f! (see Appendix VIII) may be 
calculated and hence the unique values for x6 and x3 
can be obtained from (10.54) and (10.55). 

(iii) The corresponding values for x (m tan(Og/2)) and 
x (a tan(A /2)) may now be eaýily calculated from the Andamental5half-tangent 

laws; (10.42 a or b) and 
(10.43 a or b). 

(iv) Finally the sliding displacement, S' is calculated from 
equations (10.45), (10.46) and (10.17). 

This completes the analysis procedures for both of the 5R-C mechanisms 

dealt with here. 

10.5 Numerical Results. 

The input-output equations (10.31) and (10.33) for the RRRRCR and 

RRCRRR mechanisms were solved numerically for given sets of mechanism 

proportions, and graphs of the output angular variables (06 for the RRRRCR 

and 02 for the RRCRRR) and remaining variables 03,04,05 and S5, against 

the input angle, A1, were plotted (see Figures 10.1,10.2,10.3,10.4, 

10.5 and 10.6 respectively). The mechanism parameters were selected from 

a consideration of the intersecting right circular torii used in Chapter 2 

(to determine the number of closures of these mechanisms) and, as a 

consequence of this, the input-output equations each possess sixteen real 

roots for various ranges of values of the input angle, ®1 (see Figures 

10.1 and 10.2). In addition, the parameters were chosen so that both 

inversions would produce identical sets of graphs, and thus Figure 10.2 is 
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both the input-output graph $or the RRCRRR and a plot or 0Z wo 1 for 

the RRRRCR. 

The following sets of data were selected in each case: - 

10.5.1 RRRRCR Mechanism. 

a12 = 2.0 ins. 

a23 = 0.0 ins. 

a34 = 8.0 ins* 

a45 = 200 ins. 

a56 = 2.0 ins* 

a61 = 3.0 ins. 

cx1 2= 90 deg. 

C". 23 L 90 deg. 

cx34 90 deg. 

CX45 = 90 dego 

oc56 90 deg* 

cx61 90 deg. 

For this inversion the input-output relationship is plotted in 

Figure 10.1. 

10.5.2 RRCRRR Mechanism* 

a12 = 2.0 ins. 

a23 = 0.0 ins. 

a34 : 8.0 ins, 

a45 = 2.0 ins. 

a56 - 2.0 ins. 

a6, a 3.0 ins. 

a12 = 90 deg. 

a23 = 90 degs 

cx34 = 90 deg. 

OC45 = 90 deg* 

a56 = 90 deg. 

cx61 = 90 deg. 

$11 a 
8.0 ins. 

S22 
-- 

3.0 iriss. 

S30 = 0.0 ins. 3 

S44 0.0 ills. 

S66 200 ins. 

S i1 _ -8.0 ins. 

S22 = -3.0 ins. 

S33 a 0.0 ins. 

S 44 ffi 0.0 ins. 

S66 -2.0 ins. 

For this inversion the input-output relationship is plotted in 

Figure 10.2. 

(10.56) 

(10.57) 

10.5.3 Note on the Selection o. £ Data, 

The two sets of data above differ only in the signs of the offset 

distances S11,...., S66 (those for the PPCRRR being the negatives of those 

for the RRRRCR). The reason for this choice is that, although the two 

kinematic loops are identical, Figure 2,28 clearly shows that the RRRRCR 

loop is described in the opposite sense to the RRCRRR loop, and hence, in 

order to obtain identical sets of graphs for the two inversions, one must 

consider the line vectors, SI (i a it 2,3,4,5,6), to be in opposite 
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directions for the two loops* 

10.6 Disct. ssion of Results. 

The results illustrated in Figures 10.1-10.6 are in agreement with 

the predictions of Chapter 2. In addition the numerical values of the 

remaining variables for the RRRRCR mechanism (i. e. Q2' (43 049Q5 and 55) 

were in exact agreement with those obtained for the RRCRRR mechanism 

(i. e. 06,03, Q4,25 and s5). Thus, for example the results presented 

in Figure 10.2 (02 vs 91) were obtained in two independent ways, firstly 

by solving (10.33), and secondly by sequential solution o£ (10.31) and 

(10.40). This agreement provides verification of the analysis procedures 

for the two mechanisms. 

The drawing of Figures 10.1-10.6 proved to be rather difficult owing 

to the complexity of the situation, and, in order to simplify matters, 

the corresponding turning points have been numbered on each graph. There 

are essentially six complete "circuits" on each Figure, and the following 

sequence of numbers has been used to identify them: - 

No. of Turning 
or Limit Points 

1st Circuit 1 to 11 8 

2nd Circuit 12 to 14 2 

3rd Circuit 15 to 18 4 

4th Circuit 19 to 22 4 

5th Circuit 23 to 26 4 

6th Circuit (not labelled) 0 

The ist circuit is the most complex and contains four double points. 

The 2nd and 6th circuits each contain a single double point and traverse 

the width of the graph. The 3rd, 4th and 5th circuits on the other hand 

are three small loops, but they also each contain a single double point. 
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10.7 pecial Cases. 

The input-output equation, (10.31), for the RRRRCR mechanism contains 

as special cases closed form input-output displacement equations for the 

two spatial six-link, PRRRCR and RRRRCP slider-crank mechanisms. The 

reduction to the PRRRCR (RRRRCP) mechanism is achieved by transforming the 

input (output) revolute pair A1' S11 (06' S66) of the RRRRCR mechanism 

into a sliding pair 0 11' S1 (066, S6)' Following this equation (10.31) 

can be arranged as an eighth degree polynomial in either the sliding 

displacement, S1 (PRRRCR mechanism), or the sliding displacement, S6 

(RRRRCP mechanism), since the coefficients ail...., fi, are linear in the 

latter. 

In an exactly analogous manner one can derive an eighth degree polynomial 

in either S1 (PRCRRR mechanism) or S2 (RRCRRP mechanism) from the 

input-output equation, (10.33), for the RRCRRR mechanism, by transforming 

01' S11 (A 
2' 522) into g11' Si (022' S2)' 

These results together with those presented in Chapters 7,8 and 9 

complete the analysis of the spatial six-link 4R-P-C mechanisms. 

a 
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Figure 10.5 Graph of G5 vs G1 for the Six-Link 5R-C Mechanisms. 
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CHAPTER 11 

CONCLUSIONS 

AND 

SUGGESTIONS FOR FURTHER WORK 
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11.1 Introduction. 

The objective of this dissertation has been to present a unified 

theory for the analysis of spatial mechanisms. Thus in Part I the basic 

theory is developed, whilst Part II is devoted to the application of the 

theory to the analysis of various specific mechanisms. The approach was 

based primarily on spherical trigonometry and led to the development of 

the important X-Y-Z notation detailed in Chapter 4 where loop equations 

are derived for spherical polygons simply by adding a succession or spherical 

triangles to one another and using the triangle laws. In particular, the 

three basic laws derived for each spherical polygon (i. e. the sine, sine- 

-cosine and cosine laws) have proved-to be of fundamental importance, whilst 

the notation (whose significance in representing Direction Cosines is 

outlined in Chapter 4) has greatly facilitated the writing of these laws, 

since it reduces their length and complexity enormously. In addition, 

certain, previously unsuspected, fundamental half-tangent laws (Chapter 5) 

have arisen naturally as expressions for the common root between pairs of 

sine and sine-cosine laws, and these play a crucial role in the analysis of 

the five and six-link (particular the 5R-C) spatial mechanisms presented 

in Part II. 

Having derived the various trigonometrical laws and expressions 

describing spherical polygons in Chapters 4 and. 5 the author has then shown 

how one may "dualize" (see Chapter 3) these to yield a corresponding scheine 

of laus applicable to spatial polygons, via the all--important Principle of 

Transference (proved in Chapter 3). These dual laws have then been used 

successfully to analyse four, five and six-link spatial mechanisms in 

Part III and the results presented there are in exact agreement with the 

preliminary geometrical predictions of Chapter 2. In the latter chapter an 

attempt was made to classify certain groups of mechanisms collectively as 

being derived from particular basic structures (see Table II) and this 
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categorisation led to various predictions about the degrees of the input- 

output equations of these spatial mechanisms. 

Finally, the author decided that it would prove more fruitful to 

analyse the 5R-C mechanisms (Chapter 10) rather than to continue with an 

analysis of the 5R-2P seven-link mechanisms in Part II since the former 

posed a significantly different problem. However, the method of analysis 

for the 5R-2P mechanisms appears to be reasonably straightforward and 

involves the elimination of a single unknown between two equations. 

There are three distinct 5R-2P mechanisms and these have been recently 

analysed by Keen [22] who obtained a degree eight equation for the RPPRRRR, 

a degree twelve for the RPRPRRR and a degree sixteen equation for the 

RPRRPRR. An outline of the method of analysis for these seven-link 

mechanisms is given below. 

The chief advantages of the method presented here over the numerous 

other approaches appearing in the literature may therefore be listed as 

follows: - 

(i) The method is of general applicability. 

(ii) The degrees of the input-output equations derived in 

Part II are the same as or lower than any derived 

elsewhere for the particular mechanisms analysed there. 

(iii) A physical significance has been attached (see Chapter 2) 

to the degree of an input-output equation (or number 

of closures of a mechanism), and to the phenomenon of 

different closures having equations of different degrees. 

(iv) Using the special values of the parameters adopted in 

Chapter 2 for ease of visualisation, one may obtain 

input-output equations having all-real solutions 

without recourse to tedious random-search techniques. 

This process also verifies that no extraneous roots 

have been introduced into the analysis, and illustrates 

the relationships that exist between structures and 

mechanisms. 
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(v) The equations that one must manipulate, though still 

of an extremely complex nature, have been reduced to 

a concise and manageable form by means of the Y, -Y--Z 

notation derived in Chapter 4, and have been clearly 

categorised into a natural scheme of sine, sine-cosine 

and cosine laws, in analogy with the case of the spherical 

triangle. 

(vi) The fundamental half-tangent laws (see Chapter 5) are 

linear in the half-tangent of a single angular displacement 

and hence one may begin an analysis with equations of 

a lower degree than was previously possible. 

(vii) The problem formulation for obtaining the maximum number 

of closures for each mechanism, has been shown to fall 

into one of four possible types. Thus, the four-link 

RCCC requires no elimination procedure to obtain its 

input-output equation; all five-link 3R-2C, six-link 

4R-P-C and seven-link 5R-2P mechanisms require the 

elimination of a single unknown between two equations; 

input-output equations for six-link 5R-C mechanisms are 

obtained by eliminating two unknowns from four equations; 

the 7R mechanism appears to require the elimination of 

three unknowns from eight equations (see below). 

(viii) For the first time a six-link mechanism (i. e. the 5R-C) 

with a significantly different problem formulation 

(the elimination of two unknown angular displacements) 

has been tackled and successfully- analysed (see Chapter 10)x, 

There now appear to be three main areas in which further work may be 

carried out. The first, and most important at present, is an analysis of all 

seven-link (including the 7R) spatial mechanisms together with the RRRRRC 

inversion of the 5R-C mechanisms, since this will then complete the analysis. 

Secondly, an investigation of the gross motion of five, six and seven- 

link spatial mechanisms, similar to that carried out by Gilmartin [50] for 

the four-link mechanism, is warranted. In particular, the prediction of 

limit positions and the derivation of conditions for complete rotability of 

the input link of a mechanism are of importance to the designer. 
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Finally, it is clear that an essential factor in the practical use of 

a spatial mechanism is a thorough knowledge and understanding of its 

dynamic behaviour. Thus, an obvious field for further work is an invest- 

igation of the velocities, accelerations, forces, torques etc., present 

in the components of a spatial mechanism in motion. 

In the following sections brief outlines are given of suggested 

approaches to these areas of further research, based on the unified theory 

presented here. 

11.2. Analysis of Seven-Link Mechanisms. 

The first area of research mentioned above is an analysis of the seven- 

link spatial mechanisms, and there are two distinct groups of these: - the 

5R-2P mechanisms (which require the elimination of a single unknown between 

two equations) and the 6R-P and 7R mechanisms which pose more difficult 

problems 

11.2.1 The 5R-2P Seven-Link Spatial Mechanisms. 

For the RPPRRRR mechanism (Figure 2.29) one may write three different 

primary equations relating the input (01) output (07 ) and a single 

extraneous angular displacement, since the angles, 922 and 033 are constant 

mechanism proportions. These three equations are (see Appendix III): - 

z71234 = cosa561 

267123 = cosa45 

27123 z5 

One must now use the secondary equation: - 

2017654 =- a23sinoc23 

(11.1) 

(11.2) 

(11.3) 

(11.4) 
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where: - 

2017654 = a12Y45671 

+ S11sinac12X4671 

+ 271[(X456sing 7+ 
Y456cos07)Z1 + 7456Y1-1 

a77[(X456sinQ7 + Y456cose7)X1 + X456711 

+ a67E(X45sing 6+ Y45cos06)717 + 745Y173 

+ s66[(Yl7Y45 - X17X45)sinQ6 - (Y17X45 - X11Y45)cosß6] 

+ a56C(X17sing 6+ 
%Z + Z17Y453 

- S55[(X176sing 5+ Y176cos: ß5)X4 + X1765Y41 

+ a45C(X176sing 5+ Y176cos(4 5)z4 + Z176Y43 

+ S44 sina34X17654 

+ a34Y17654 (11.5) 

since this alone contains all the fixed parameters. The problem is then to 

transform (11.4) into an equation in the three angular displacements A1, A7 

and either A4' A5 or A6 only. It would then be possible to eliminate the 

latter extraneous variable from the transformed version of (11.4) and the 

appropriate primary equation (i. e. (11.1), (11.2) or (11.3)), and obtain 

the input-output equation for the RPPRRRR mechanism. 

In a similar manner the input-output equation for the RPRPRRR mechanism 

(Figure 2.30) may be obtained by eliminating a single unknown between one of 

the following three primary equations (see Appendix III): - 

z71234 cosoc56 

26712=Z4 

2712 Z54 

(11.6) 

(1,. 7) 

(1,. s) 

and the appropriate transformed version of the following secondary equation: - 

201765 ` 203 (11.9) 
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where: - 

Z01765 a12Y5671 

+ S11 sinac12 X5671 

+ a71[(X56sing 7+ Y56cosQ7)Z1 + Z56711 

- S77[%X56sing� 
7+ 

Y56cose7)k1 +X 567 Y1] 

+ a67cosecoc67(Z17Zj6 -2 1Z5) 

- S66r(X17sinQ6 + Y17cos96)X5 + X17rY53 

+ a56[(X17sin66 + Y17cos®6)Z5 + Z17Y5_j 

+ S55sinoc45 X1765 

+ a45Y1765 (11 1ý1) 

and: - 

03 = a23? 3 

+ S33sinoc23 sincx34 sing 3 

34 3 

(Note that the angular displacements 922 and 044 are constants for the 

RPRPRRR mechanism). 

Finally, for the RPRRPRR mechanism (Figure 2.31), the input-output 

equation may be obtained by eliminating a single unknown (Q22 and 4+5 are 

constants) between one of the following three primary equations (see 

Appendix III): - 

z 7123 Z5 

z56712 COSCK34 

2712 Z54 

(11,12) 

(11.13) 

(11.14) 

and the appropriate transformed version of the following secondary equation: - 

z0176 = 2034 (11.15) 
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where: - 

20176 a a12Y671 

+ S11sinoc12X671 

+ a71C(X6sinQ7 + Y6cosA7}Zý + z62, ] 

+ s77E(Y1Y6 - X1X6)sinQ7 - (? 
1x0 + 5E 

1Y6)cosA7] 

+ a67[(X1sine7 + Y1 cos07)Z6 + Z1 Y6] 

+ S66sincx56X176 

+ a56Y176 

and: - 

2034 = a23Y43 

+S 33sin(--- 23 X43 

+ a34cosecoc34 (Z3Z4 - cos(X 23 cosor45) 

+ S44 sinoc45 X34 

+ a45Y34 

11.2.2. The 6R-P and 7R Seven-Link Spatial Mechem ms. 

(ii 
. 16) 

(1 1.1 j) 

It seems likely that the input-output equation for the RRRRRPR seven- 

link mechanism (Figure 2.32) may be obtained using a similar procedure to 

that used for the 5R-C mechanisms (Chapter 10) since the problem formulation 

appears to be the same (i. e* the elimination of two unkno rns from four 

equations). This is because one may write primary equations in the input 

(01), output (p7) and two extraneous angular displacements (066 is constant), 

and hence one would expect to obtain a scheme of equationsysimilar to 

equations (10.30), where the coefficients a,,..... , fi, are now functions of 

91 and 07. 

Now the input-output equation for the six-link RRRRRC mechanism 

(Figure 2.28) is clearly of degree sixteen in the output angle (Q5) if the 

predictions of Chapter 2 are correct (see Table II), since fixing the 

input an le (96) reduces the mechanism to the RRCRR structure, which has 

sixteen assemblies. However, if one holds the output angle constant one 
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obtains the RRMP structure which has n4 assemblies say (see Table ii) 

Furthermore, the RRRRRPR mechanism also reduces to the : latter structure 

for a fixed input angle (91). Consequently the RRRRRP. 2 seven-li. nk 

mechanism has an input-output equation of the same degrees n4' in the 

output angle (A7), as that of the equation of the six-link RRRRRC 

mechanism in the input angle (A6). 

Finally, the most difficult and perhaps the most important and 

significant (from the point of view of the number of possible reductions 

to other mechanisms) spatial mechanism to analyse is the RRZRRRR or 7R 

seven-link mechanism (Figure 2.33). Now since one may write various 

primary-equations- nv©lving -the-input--(Q1 -)� output- (9 
7) and three extraneous 

angular displacements (see Appendix III) it see-ins clear that one is faced 

with the elimination of at least three unknowns. It is suggested by the 

author that the correct problem formulation for the 7R mechanism is the 

elimination of three unknowns from eight equations. The exact form of. these 

equations is not yet clear although two possible schemes suggest themselves, 

in analogy with equations (10.30) (see Chapter 10). Thus, if it is possible 

to derive a set of eight equations of the following form: - 

[(aix2 +bix+ c1) + (dix2 +eix+ fi) ]z 

+ C(g1x2 +h1x+ ki)y + (lix2 +. mix + n) ]=0 (11.1$) 

where ai, bi,..., n1 (i - 1,2,..., 8) are functions of the 'input and output 

angles (A1 and 07) only, and x, y, z are each the half-tangent of an 

extraneous angular variable, then by multiplying the system (11.18)throughout 

by x, one obtains a set of sixteen non-homogeneous equations in the fifteen 

variables, x3yz, x3y, x3z, x2yz, x3, x2y, x2z, xyz, x2, xy, yz, xz, x, y and z, 

By taking the determinant of this system, treated as a set of linear equations, 

one then obtains a (16 x 16)-determinant of the coefficients ail..., nil 

as the eliminant. Hence, if the coefficients are each quadratic in input and 
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output angles the input-output equation for the 7R mechanism would be of 

degree thirt -two in these. 

Alternatively, the following system may arise: - 

i(aix2 +bix+ ci)Y2 + (dix2 + eix i" fi)Y + (gix2 +hix+ ki) ]z 

+ E(lix2 + mix + ni)Y2 + (Pix2 + q. x + ri)Y + (six2 + tix + u1) ]=0 

(11.19) 

where i=1,2,...., 8., and the coefficients are again functions of Al and 

07 only. If this is the case, then multiplying the system (11.19) throughout 

by x, y and xy in turn, produces a set of thirty-two non-homogeneous 

equations in the thirty-one variables, x3y3z, x3y3, x3y2z, x2y3z, x3y2, 

x2 y3, x3yz, xyz, xy3z, x3 y, x3 z, %ßy3, y3 z, x` y2" x2yz, xy`z, x3r y31 x? Y, 

x2z, xy2, y2z, xYz, x2, Y2, xy, xz, Yz, x, y and z" By treating the latter 

as linear unknowns and eliminating, one obtains a (32 x 32)-determinant of 

the coefficients a.,..., ui, as the eliminant of the system. This clearly 

leads to a degree six y-four input-output equation for the 7R mechanism 

if the coefficients are quadratic in Al and 9V 

As justification for the two suggested systems (equations (11.13) and 

11.19)) one may list the following two points: - 

(i) It may be possible to transform the intermediate 

half-tangent laws mentioned in Chapter 5 (see equation 

(5.56)) into the form of equations (11.18) since they 

are initially in a similar form, ard# in addition, there 

exist eight such suitable equations of the type (5.56). 

(ii) It is possible to write immediately four equations of 

the form of (11.19) for the 7R mechanism since these are 

the heptagon equations corresponding to equations (10.30) 

for the hexagon. Furthermore it may be possible to reduce 

a suitable cyclic permutation of these, to the same form 

and hence obtain eight equations in all. 
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It is the opinion of the author that if the 6R-P mechanism proves to 

have an input-output equation of degree sixteen (i. ee n4 = 16) then it 

seems likely that the 7R mechanism should have an equation of degree thirty- 

two. Current research work appears to indicate that this may be correct, 

and that the set of equations (11.19) is the more probable alternative, 

If this is the case then there must occur certain proportionalities amongst 

the coefficients in order that the final eliminant may reduce from degree 

sixty-four to degree thirty-tiro (see also equations (8.24) and (8.25) of 

Chapter 8). 

Thus, from the above discussion and Chapters . 
6-10 it seems probable 

that for the elimination of n unknowns one requires 2n equations. 

11.3. The Gross Notion of Spatial Mechanisms. 

One of the most important attributes of an algebraic (as opposed to 

a numerical) approach to the analysis of spatial mechanisms, is that it can 

provide a firm foundation for the further study of such important areas of 

linkage behaviour as the following: - 

(i) The determination of those proportions which lead 

to overclosure. 

(ii) The derivation of criteria for rotability. 

(iii) The determination of type, limit positions and 

number of branches of the input output curves. 

(iv) The determination of transmission characteristics etc. 

In particular, a knowledge of the degree of an input-output equation 

should theoretically enable one to predict the maximum number of turning 

points (or limit positions) that the graph of the equation can have. 

Thus, treating the input-output relationship as a polynomial in the output 

variable alone, it is clear that a limit position exists at those values of 

the input for which this polynomial has at least two equal roots. This 

will only occur if the polynomial and its first derivative share a common 
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root. Hence one requires the discrimirn t of the polynomial to be zero 

(see Becher [2] ). This is simply the eliminait of the polynomial and 

its first derivative. Thus, in the case of a quadratic one has: - 

f(x) = a2x2 + a1 x+ a0 =0 

ft(x) = 2a2x + a1 =0 

and D(f), the discriminant of f, is given by: - 

a2 a1 a0 

D(2) E(f, f') 0 2a2 a1 0 

2a2 a1 0 

(11.20) 

(11.21) 

(11.22) 

However, one may always reduce this determinant by one order since 

the leading coefficients of (11.20) and (11.21) are proportional# and this 

is true for any polynomial (see also Chapter 5 and equations (8.24) and 

(8.25)). Thus a polynomial of degree n in the output variable has a 

discriminant of order 2(n - 1) in the coefficients. In the case of a 

spatial mechanism, the latter coefficients are also polynomial expressions, 

of degree m, in the input variable and hence the discriminant is a polynomial 

of degree 2. (n 
- 1). m in the input. Consequently there are at most 

2. (n - 1). m limit positions. 

For the RCRCR five-link mechanism for example ( Chapter 6 and Figure 2.24) 

one has n=m=4, and hence the above discussion suggests that there 

exist a maximum of twenty-four possible limit positions for this mechanism. 

It has been suggested by Gilmartin [50] that this number may be too high, 

and that extraneous roots may have been introduced into the analysis, 

although the present author is of the opinion that this is not the case and 

that it is possible to reconcile four closures with twenty-four limit 

positions without producing any contradictions. 
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Now, unlike the case of the planar four-link mechanism, for spatial 

five, six and seven--link mechanisms, the broad classifications of 

"crank-rocker'', "rocker-crank" and "double. -rocker" are somewhat inadequate 

terms as can be appreciated from a consideration of the graphs in 

Chapters 7-10 of this dissertation and those obtained by Habib-O ah. i [19] 

and Keen [22] etc. It is therefore suggested that a more meaningful 

categorisation be developed for spatial linkages. 

It may be useful to consider Figure 11.1 in this respect,, Thun;. 

normally, one plots input-output curves or a finite rectangular plane of 

side 21Tand obtains various different types of curve, such as A (double- 

rocker), B (crank-rocker) and C (rocker-crank). Since the co-ordinate axes 

represent input or output angles in radians, the curves would repeat, at 

intervals of 21Ton a plane of infinite extent and hence it suffices to 

consider a finite plane, (i. e. (0,21T) x (0,2n)) as shown in Figure 'i1.1. 

The latter may, therefore, be mapped onto the surface of a right circular 

torus in the manner shown, by identifying the four corners, P1, F2, P3 and 

P4. 

Following this procedure, it is clear that all three curves (A, B and C) 

may now be considered to be closed. However, they differ in their 

topological properties. Thus only curve A can be "shrunk to a point" 

(i. e. it is homotopic to zero), whereas this is not possible with B or C. 

Furthermore none of these curves can be continuously deformed into another. 

Thus there are at least these three distinct Fundamental types of curves 

as well as others of a type that may "spiral" the torus by various numbers 

of turns. 

It is suggested that perhaps a classification of spatial mechanisms, 

based on the above topological considerations, may be developed and related 

to conditions for rotability, etc. 

Finally, having shown in Chapter 2 that two inversions of the seine 
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spatial mechanism may have differing numbers of closures, the question 

arises as to whether or not there exist any true invariants for a given 

closed kinematic loop, irrespective of th, a particular inversion. Perhaps 

the maximum number of loops (or branches) of the graph of an input-output 

relationship is such an invariant? 

11.4. The pmamics of Spatial Mechanisms. 

In the long-term the dynamics of spatial mechanisms will be of 

Amdamental importance to the designer. It is thus essential to be able 

to manipulate expressions for the angular velocities, accelerations, forces, 

torques, etc., present in the links of a spatial mechanism. The author 

suggests that initially one may be able to obtain reasonably simple 

expressions for the derivatives, with respect to time, of the various 

X-y-Z terms presented in this dissertation, and perhaps this may form a 

foundation on which to proceed. 
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Figure 11.1 Mapping the Finite Plane, (0,2u) x (0,21T), onto the 
Surface of a Right Circular Torus with Circular 
Cross-Section. 
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APPENDIX I 

A PRELIMINARY OUTLINE 

OF 

A POSSIBLE ALGEBRAIC APPROACH 

TO THE PROBLEM OF PREDICTING 

THE CLOSURES OF SPATIAL MECHANISMS 
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A. Basic Concepts. 

It is suggested in Chapter 2 that the number of closures of a spatial 

mechanism may be predicted in advance using algebraic and projective 

geometry and it is the intention of the author to outline in this appendix 

a possible procedure to achieve this end. It is necessary therefore to 

base the geometry of three-dimensional Euclidean space on the fundamental 

concepts of 'point', 'lines and 'plane', where these objects are treated as 

elements of the projective space thus produced. (see Semple and Roth [321 ). 

In particular, various line ensembles (i. e. systems of lines) are of 

importance in this context. (For present purposest a 'line' is considered to 

be an infinite straight line in the usually accepted sense). 

Now it is clear from an algebraic point of view that there exist GD4 

distinct lines in Euclidean space of three dimensions, since four independent 

parameters are required to specify any given line. The validity of this may 

also. be seen geometrically since: - 

(i) There are an m2 of lines through any one point. 

(ii) There are an ®3 of points in three-dimensional space. 

(iii) Each line passes through an OD 1 
of points. 

Hence from (i), (ii) and (iii) there are clearly OD4 (= (L2 x 003/& ) distinct 

lines in all (see also Hunt F21J and Woo and Freudenstein [42] ). 

Now, certain preferred subsets of this 00 4 
system of lines have been 

studied-in detail by several authors (see Semple and Roth [32] ), and three 

particular types are of special interest here: the line series, the 

congruence and the complex. 

p, 1. The Line Series. 

The line series or regulus is an (Dlalgebraic ensemble of lines. In 

other words, each line of the ensemble requires a single parameter to specify 

its position. Such systems of lines include ruled surfaces (planes, cylinders, 

hyperboloids of one sheet, etc). 
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A. 2. The Congruence. 

The congruence is an algebraic system of m2 lines. A finite number, 

in, of these pass through a generic point, whilst a finite number, n, lie 

in a generic plane. The integers m and n are termed the order and class 

of the congruence respectively, and are collectively referred to as the 

indices of the system. 

A congruence is usually symbolised by K(m'n) and the point star, K(l'o), 

the ruled plane, K(091) , and the linear congruence, K(lt 
l), 

are particular 

examples. 

A. 3. The Complex. 

The com lex is an algebraic ensemble of GD3 lines. One of the more 

important types of complex is the linear complex dealt with by Hunt 121]. 

The most interesting of the above three types of line ensemble, from 

the point of view of this dissertation, is the congruence, and there exists 

an important theorem, applicable to systems of the latter, which is stated 

below. 

A. 4. Hair n' s Theorem. 

Halphen's theorem determines the number of lines common to two 

congruences. The theorem states that: - 

The number of rays (lines) common to two congruences, 

ý1M, 
N) 

and 
4m,, 

in general position, is Mm + Nn. 

B. Algebraic Prediction of the Number of Closures of a Spatial Mechanism. 

From the definition of a congruence as an OD2 ensemble of lines it is 

clear that each line of the system requires two parameters to specify it. 

Now, of the six open spatial chains dealt with in Chapter 2. there are four 

(i. e. the Cc, RRc, P8c and RPc) which generate a two-parameter family of 

lines. Thus the Cc open chain (Figure 2.7) consists of a single link, a12, 

constrained so that it can both rotate about and slide along S and since 

there is a one-one correspondence between the points of the cylinder thus 
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generated and the tangent line vectors, 
2, 

the latter clearly require 

two parameters for their specification. Consequen. tly, the tangent line 

vector field on the surface of the cylinder forms an OD2 ensemble of lines 

and is, therefore, a congruence. It is suggested by the author that this 

congruence has indices, (2,2), and this is justified somewhat by reference 

to Figure 1.1 which illustrates the two lines passing through a generic 

point and the two lines lying in a generic plane for the Cc open chain. 

In a similar manner the RRc open chain (Figure 2.8) also produces a 

system of lines (in one-one correspondence with the points uze the surface 

of a skew torus) requiring two co-ordinates for their specification and in 

this case it is suggested that the resulting congruence has indices 

m=n=4. Again Figure 1.2 illustrates the four lines passing through a 

generic point and the four lines lying in a generic plane. 

Using similar reasoning to the above it is suggested that both the PRc 

(Figure 2.11) and RPc (Figure 2.12) open chains generate congruences with 

indices (2,2). 

Finally, the CRc chain (Figure 2.10) requires three parameters (one 

sliding and two angular displacements) to specify the position of its free 

end and hence its associated line vectors generate an system of lines 

(i. e a complex), whilst the Rc chain (Figure 2.6) requires only a single 

parameter and its line vectors thus generate a regulus (a hyperboloid of 

one sheet in this case). 

Now if the in and n values conjectured above are correct one may apply 

Halphen's Theorem and list the following three resultss- 

(i) Two Cc chains should have eight (= 2.2 + 2.2) lines in 
common. 

(ii) A Cc, PRc or RPc chain and an RRc chain should have sixteen 
2.4 + 2.4) lines in common. 

(iii) Two RRc chains should have thirty-two (= 4.4 + 4.4) lines 
in common. 

I 
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At first sight, however, these results do not appear to be consistent 

with the number of assembly configurations for the various structures thus 

produced (see Table II., Chapter 2). However, the following two observations 

are valid: - 

(i) A Cc chain produces a cylinder of infinite extent and 
hence possesses tangent lines at infinity. (A similar 
situation also occurs for the PRc and RPc chains). 

(ii) The systems of lines generated by open spatial chains 
must be considered to be systems of directed lines in 
order that mechanism proportions (particularly the twist 
angles) should remain constant. 

Consequently, it appears that of the eight common lines between two 

Cc chains, four lie at infinity, and of the remaining four, only two are 

acceptable as common directed lines. In the case of a Cc, PRc or RPc chain 

with an RRc chain, however, the latter does not produce any lines at 

infinity, and hence there can be no common lines at infinity. Nevertheless, 

of the sixteen common lines between the two chains, only half are acceptable 

common' directed lines and one must therefore discount eight (see Chapter 2). 

Finally- .n the case of two RRc chains, neither congruence possesses lines 

at infinity (the two torii are of finite extent) and hence cannot have any 

common lines at infinity. However, one must still discount sixteen (i. e. 

half) of the thirty-two common lines since these do not preserve direction. 

(see Figure 2.20). The unacceptable lines are symmetrically positioned with. 

respect to the acceptable ones in Figure 2.20. 

Finally it must be noted that the number of assemblies of the RCRC 

structure depends on the number of common lines between a regulus (Rc chain) 

and a complex (CRc chain) and thus Halphen's Theorem cannot be applied in 

this case. In a similar manner the assemblies of the six-link 4R-2P, 5R-P 

and 6R structures depend on the number of common lines between a congruence 

(the RRr chain, say) and a complex (the RRRr chain, say) and the theorem is 

again not applicable. 
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The approach outlined in this appendix, to the problem of proving 

rigourously the results summarised in Table II is clearly- a preliminary 

one, although the author is of the opinion that these algebraic suggestions 

. -are-correct particularly concerning the order and class of the congruences 

considered. 

b 
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Figure I. 1 Illustration of the Two Lines Passing Through 
a Generic Point and the Two Lines Lying in a 
Generic Plane for the Congruence Produced by 
the Cc Open Spatial Chain. 
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Figure I. $ Illustration of the Four Lines Passing Through 
a Generic Point and the Four Lines Lying in a 
Generic Plane for the Congruence Produced by 
the RRc Open Spatial Chain. 

Generic plane in space 
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APPENDIX II 

FUNDAMENTAL ALGEBRAIC CONCEPTS 
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A. Relations. 

A binar relation, R, on a set, A, is a subset of AxA (the Cartesian 

product of A with itself), and hence consists of a set of ordered pairs, 

(af, b), where " a' and ' b" belong to A. An equivalence relation , Ry on A is 

a relation whose elements satisfy the following three axiomss- 

El. (a, a) is an element of R for each element, $alp of A. 

E2. If (at b) is an element of R then so is (b, a). 

E3. I£ (a, b) and (by c) are elements of R then so is (a, c). 

Alternatively one may think of a binary relation as a means of combining 

two elements of Al by definiri ' b' to be related to 'a' (written aR b) if 

and only if (a, b) is an element of R. The above three axi. oms for an 

equivalence relation may now be more conveniently restated as follows. - 

El'. aRa for each element, 'a', of A. 

E2'* If aRb then bRa. 

E3'. If aRb and bRc then aRc. 

The first of these properties is called reflexivity, the second, 

rte, and the third, transitivity. 

Now if A is a set and if R is an equivalence relation on At then the 

equivalence class of an element, 'a't of A is defined to be the subset of all 

those elements of A which are related to 'a,. In other words the equivalence 

class of tat is the set of all x such that aR xt and is written as [a] 

It is proved in Herstein [20] that: "Tie distinct equivalence classes 

of an equivalence relation on A provide a decomposition of A into a union of 

mutually disjoint subsets. Conversely, given a decomposition of A as a 

union of mutually disjoint, non-empty subsets, one can define an equivalence 

relation on A for which these subsets are the distinct equivalence classes. " 

Be Algebraic Structures. 

For present purposes an algebraic structure is a set whose elements may 

be combined by one or more bLmM, operations which satisfy certain axioms. 
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There are five such structures which are of interest here: groups,, . rings' 

fields, vector spaces and algebras. 

B. 1. Groins. 

Thus a non-empty set of elements, G, forms a groupv if in G there is 

defined a binary operation, termed the product and denoted by ". ", such that 

the following four axioms are satisfied, 

G1. If a and b are elements of G then so is a. b (i. e. G is closed 

under the product). 

G2. If a, b and c belong to G then a. (b. cj = (a. b). c (associative law;. 

G3. There exists an elem 

for all elements, ap 

G4. For each element, a. 

that a. a 1=a1 
.a 

ant, et of G such that a. e=e. ,a=a 
of G (i. e. G has an identity element). 

of G there exists an element, a lo 
such 

e (i. e. every element has an inverse in a). 

A group G is an abelian group (i. e. commutative) if for every a and b 

in G one has, ab = b. a. 

B. 2-Rings. 

A non-empty set, Rp is an associative rin if there are defined, in R9 

two binary operations, denoted by "+" and ". " respectively, such that for 

all at b and c in R, the following four axioms are satisfied: - 

R1. The set, R, forms an abelian group under the operation 

of "+" (termed addition), with identity element denoted by, 

0, (zero) and inverses denoted by dti. nus signs ( -a, -b, etc, ) 

R2. a. b is, in R (i. e. closure under multiplication, f°. '). 

R3. a. (b. c) _ (a. b). c (imitiplication is associative). 

R4. a. (b + c) a a. b + a. c and (b + c). a = boa + c. a (the two 

distributive laws). 

If the multiplication of R is such that a. b a b. a for every a and b 

in R then R is called a commutative rin . 

Furthermore, if there is an element, 1, in R such that a. 1 w 1. a =a 

for every a in R, then R is a ring with unit element. 
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Finally, if R is a commutative ring then any non-zero element, 'a', 

of 8 is said to be a zero-divisor if there exists another rion--zero element, 

'b's, such that a. b 0. 

B. 3. Fig. 

A non-empty set, F, forms a field if there are defined in F two binary 

operations, "+" and ". " such that the following two axioms are satisfied: - 

F1. The set, F, is a commutative ring with unit element under 

the operations '*+" and ". ". 

F2. The non-zero elements of F form an abelian group under 

multiplication. 

B. 4. Vector Spaces. 

A non-empty set, V, is said to be a erector space over a field F if 

V is an abelian group under an operation, '1+", and if for each acin F and 

v in V there is defined an element (written acv) in V subject to the 

following four axioms: - 

Vi. IX (V f W) a cc vf ccv 

V2. (a +e )v - acv + pv 

V3. a (p/v) - («p, )v 

V4.1v =v 

for all elements cc, p of F and v, w of V. 

B. 5- Algebras. 

A non-empty set, A. is called an algebra over a field F, if the following 

three axioms are satisfied by its elements: - 

Al. The elements of A form an associative ring under two operations, 

I$ I and ti. I'* 

A2. The elements of A form a vector space over F. 

A3. For all elements, a and b, of A and ac of F one has the 

condition: - 

ac (a b) a (cc a)b m a(ocb) 
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CO The Structure of Rings, 

A ring, Rp whose elements satisfy the axioms R1-R4 (see above) may 

possess certain important subsets termed ideals whose properties are 

relevant to the study of dual numbers (see Chapter 3}« 

Thus a non-empty subset, U, of R is said to be a tv; o-sided ideal of 

R if the following two conditions are valid: - , 

I1. U is a subgroup (i. e. a subset which is a group) of R 

under addition. 

I2. For every element, u, of U and r of R, both u. r and 

r. u are in U. 

The condition 12 simply asserts that U "absorbs" multiplication fron the 

right or left by arbitrary ring elements. 

Now, given an ideal, U, of a ring, R, one may construct the set, ß/U, 

of all distinct cosets of U in R, obtained by considering U as a subgroup 

of R under addition (Note: if U is a subgroup of R and 'a' is an element of 

R, then a+U, the set of all elements of the form a+u, where u belongs to 

U, is termed a coset of U in R). By defining an appropriate addition and 

multiplication on R/U (see equation (3.27) of Chapter 3, and Herstein 0201 ) 

the latter has the structure of a ring and is termed the otient ring of 

Uin Re 

Finally, a maximal ideal of a ring, R,. is an ideal, U( 0 R), such that 

U is not properly contained by any other ideal of R, apart from R itself. 

It is proved in Herstein [20] that: "If U is an ideal of R then it is a 

maximal ideal if and only if A/&J is a field". This result is of importance 

in Chapter 3" 
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APPENDIX III 

LIST OF TRIGONOMETRICAL LAWS 

FOR 

SPHERICAL AND SPATIAL POLYGONS 
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A. Spherical or Primary Larrs. 

All cyclic permutations of the sine, sine-cosine and cosine laws for 

the spherical triangle, quadrilateral, pentagon, hexagon and heptagon may 

now be listed (see Chapter 4. ), together with the relevant definitions and 

subsidiary formulae. 

A. 1. The Spherical Triangle. 

(i) Definitions. 

With reference to Figure 4.2(a) and equations (4.6) and (4.7), one may 

define the following basic forms for a spherical triangle (where q, i and j 

- ------are in-ascending-consecutive cyclic order): - 

X. sinoc 
qi 

sing. 
I 

Yi -(cosocgi sinaij + sinagi cosoclj cosoi) 

Zi (cosocgi cosocij - sinagi sinaij cos®i) (iii. 1) 

Xi sinocij singi 

Yi -(cosocij sin(x gi + sinocij cosocgi cosQi) 

Zi (cosocij cosocgi- sinaii sinagi cosQi) (111.2) 

These definitions are applicable to any dyad in a spherical polygon. 

(ii) Fundamental Laws. 

Using the above definitions one may now list all cyclic permutations of 

the basic sine, sine-cosine and cosine laws for a spherical triangle (equations 

(4.12) and (4.13)) with the aid of Figure 4.2(b) (see Chapter 3. ), as 

follows: - 

Sine Sine-Cosine Laws Cosine Laws, 

X1 = sina23 singt Yj = sina23 cosQ2 Z1 = cosa23 

x2= sinoc 31 sing3 Y2 = sina31 cosQ3 Z2 a cosa31 

X3 sinal 2 sino1 Y3 = sina12 cosQ1 Z3 = cosa12 
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X1 = sinoc23 sing3 Y, = sincx23 cos93 Z1 - cosoc23 
X2 = sina31 sin91 Y2 = sinac31 coso1 Z2 - cosoc31 

x3 = sincx12 sing2 Y3 = sinoc12 cosQ2 Z3 = COScX12 

There are no subsidiary formulae for a spherical triangle. 

A*2. The Spherical Quadrilateral. 

(i) Definitions. 

If i, j and k are in ascending consecutive cyclic order then one may 

make the following definitions (see equations (4.38) and. (4.39)) for a 

spherical quadrilateral: - 

Xis - Xicosoi - YlsinQ. 

Yi j= cosocjk (Xisin©j + Yicosoi - sinoc jk Zi 

Zia @ sinacjk (XisinQ, 
j 

+ YicosQi) + cosocjk Zi (IIT. 3) 

Xkj _ }CkcosQ j- '7k sing i 

Yk j= cosalj (XksinAj + YkcosQ 
j) - Sinai j 

Z, 
k 

Zkj = sins. i 
(Xksing 

i+ 
? 

kcos9j) + cosaij Zk (ZII 
eq) 

where Xi, Yip Zi are given by definitions (III. 1) for the triangle, and 

Rk' y., Zk are obtained from (III. 2) (see previous section). 

The above definitions are applicable to any three adjacent links in a 

spherical polygon. 

(ii) Fundamental Laws. 

All cyclic permutations of the laws for a spherical quadrilateral may 

now be listed as follows, (vrith the aid of Figure 4.4(b))%- 

Sine Laws Sine-Cosine Laws Cosine Laws. 

X12 a sina34 sing3 Yl 2a sinoc34 cosQ3 Zl 2 cosa34 

X23 a sina41 sing4 Y23 = sina41 coso4 Z23 cosoc41 

X34 = sina12 sin®1 Y34 :: sinocl 2 cosQ1 Z34 cosoc12 

x 41 = sina23 9'n82 Y41 = sinoc23 cos92 Z41 a cosoc23 
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x 21 = sinoc34 sin84 

X32 = sincc41 singt 

x 43 = sinac12 sin®2 

X14 = sin«23 sinQ3 

Y21 sincx34 cose4 

Y32 = sina41 cosg1 

X43 = sinoc12 cos92 

Y14 = sinoc23 cosQ3 

COSCX 34 

32 cosa41 

z43 r" cosoc12 

z14 = COSC(23 

(iii) Subsidiary Formulae. 

The following subsidiary formulae may be derived iron the above 

fundamental laws for a spherical quadrilateral: - 

Sine Laws 

X1cos82 - Y1sin®2 = X3 

X2cos®3 - Y2sing 3 =2 4 

X3cosQ4 - Y3sing 
4= 

X1 

X4cosQ1 - Y4sinQ1 = X2 

2cosQ1 - Y2cosQ1 = X4 

3coso2 - Y3sinQ2 = X1 

X4cosQ3 - 4sinQ3 = X2 

X1cosQ4 - Y1sing4 = X3 

A. 3. The Spherical Pentagon 

(i) Definitions. 

Sine-Cosine Laws Casino Laws. 

X1sing 2 + Y1cos82 a 3 Z1 c Z3 

X2sing 3 + Y2cosQ3 a 4 z2 Z4 

X3sing4 + Y3cose4 = -Y1 z3 = z1 

X4sing 1 + Y4cos91 a -Y2 Z4 Z2 

X2sing 
1 + ? 

2cosQ1 0 -Y4 2 Z 

X3sing 
2 +17 3 COS9 2a -Y1 3o Z1 

R4sinQ3 +14 cos03 a -Y2 4 Z2 

F. 
1 sing4 + Y1cosQ4 0 -Y3 Z1 a Z3 

b 

jr- i, jr lc and 1 are in ascending consecutive cyclic order, then one may 

define, for a spherical pentagon (see equations (4.54)): 
- 

Xijk = XijcosQk - Yijsing, 

Yi jk ° cosacl (Xl 
j sinQk + Yi jcosQk) - sinockl Zi j 

Zljk = sinockl(XijsinQk + YjjcosQk) + cosockl Zij (III. 5) 

Xlkj = XlkcosQJ - Ylksing 
k 

Ylk j= cosai j 
(Xlksing 

j+ Ylkcoso j) - sine ij Zlk 

Zlkj = sinaclj (Xlksing 
j+ Y1kcosoj) + cosoclj Zlk (111.6) 
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where Xis, Yid, Zlj are given by definitions (111.3) and Xlk' Y1k' Zlk 

are obtained from (111.4) (see previous section). 

The above definitions are applicable to any four adjacent links in a 

spherical polygon. 

(ii) Fundamental Laws. 

All cyclic permutations of the laws for a spherical pentagon may now 

be listed as follows (with the aid of Figure 4.5(b)):.. 

Sine Laws 

X'i 23 ' sina45 sinQ4 

x234 = sinoc51 sings 

X345 = sinoc12 singt 

x451 = sina23 sin82 

x 512 = sinoc34 sing3 

x 321 = sina45 sin95 

x 432 = sina51 sing1 

x 543 = sinoc12 sing2 

X154 ginoc sing 

x215 = sina34 sing4 

Sine-Cosine Laws Cosine Laws. 

Y123 ° sina45 CO 4 2123 coso 5 
'234 a sinoc51 cos®5 2234 cosoc51 

Y345 = sinoc12 cosQ1 2345 ° cosoc 12 
Y451 sinoc 23 cosQ2 z451 cosoc23 

Y512 = sina34 cos®3 ti512 " cosoc34 

Y321 = sinoc45 coso5 

Y432 a sinoc51 cosQ1 

Y543 = sinoc12 cosQ2 

Y154 0 sina23 cosQ3 

Y215 S sina34 cosQ4 

2321 ° Cos0c45 

z432 Cosc; 51 

2543 cosoc12 

2154 CosOC23 

z215 cosoc34 

(iii) Subsidiary Formulae. 

The following two groups of subsidiary formulae may be derived from the 

above fundamental laws for a spherical pentagon: - 
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Sine Laws Sine-Cosine Laws Cosine IA s. 

Grou 1. 

X12cosQ3 - Y12sing 3=4 
X12sing 3+ Y12coso3 = -Y4 Z12 = Z4 

X23coso4 - Y23sin®4 = X5 X23sing 4+ Y23coso4 =-5 123 = ?. 
5 

X34cose5 - Y34sing 5=1 X34sing 5+ Y34coso5 = -Y1 Z34 1 

X45cose1 - Y45sing 1= 
X2 X45sing 1+ Y45coso1 = -Y2 145 Z2 

X51cose2 - Y51sinQ2 = X3 X51si. n82 + Y51coso2 = -Y3 Z51 3 ': 
3 

X32coso1 - Y32sing 1= 
X5 X32sing 1+ 

Y32coso1 = Y5 Z32 = Z5 

X43cos02 - Y43sing 2= X1 X43sing 2+ Y43coso2 = -Y, 1 Z43 = Z1 

X54cosQ3 - Y54sing 3= X2 X54sing 3+ Y54coso3 = -Y2 Z5, ß = Z2 

X15cosQ4 - Y15sing 4= X3 X15sin94 + Y15coso4 = Y3 Z15 Z3 

X21cosQ5 - Y21sing 5= X4 X21 sin©5 + Y21coso5 = -Y4 Z21 = Z4 

Group 

X12 = X4coso3 - Y4sino3 -Y 12 = X4sing 
3+ 

Y4cosQ3 112 z4 

X23 = XScosQ4 - Y5sing 
4 -Y23 . X5sinQ4 + ? 

5cose4 Z23 = Ly 

X34 = X1coso5 - Y1sing 5 Y34 = X1sinQ5 + Y1coso5 Z34 1 

X45 = X2coso1 - Y2sinG1 -Y45 = X2sing 
1+ 

Y2coso1 145 = Z2 

X51 = X3coso2 -1 3sin82 -Y51 = X3sing 
2+ 

; 
3coso2 Z51 = Z3 

=X cosA -Y sing 32 5151 
Y= XsinA +Y cosA 32 5151 Z= 32 Z 5 

X43 = X1coSA2 - Y1sin02 Y43 = X1sing 2+ Ylcoso2 Z43 ° Z1 

X54 = X2coso3 - Y2sing 3 -Y54 = X2sinQ3 + Y2coso3 Z54 = Z2 

X15 = X3coso4 - Y3sing 4 -Y15 = X3sing 4+ Y3coso4 Z15 = Z3 

X21 = X4coso5 - Y4sing 5 -Y21 e X4sing 5+ Y4coso5 Z21 = Z4 

A. 4. The Spherical Hexagon. 

(i) Definitions. 

If i, j, k, 1 and m are in ascending consecutive cyclic order, then one 

may define, for a spherical hexagon (see equations (4.65)): 
- 

0 
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xijkl = Xijkcos®1 - Yijksins 

Yi jkl cosalm (Xi 
jksing1 + Yi jkcosQi) -- sinacIm Zi ijk 

Zijkl = sin(X (Xijksing1 + Yijkcos®1) + cosec Zijk (III. 7) 

Xmlkj = XmlkcosQ. - mlksing j 

Y= cosoc 
i. 

(X sing .+Y rrik 
coso .)- sinoc i... 

z 
mlk jý mlk ýýý ml k 

Zmlk js sinai j 
(XmlksinQ 

j+ Ym'. kcosQj) + coscxi j Zmlk (111.8) 

where Xi jk 0 Yi jk' 
Zi 

jk are given by definitions 
. 
(111.5) and Xralk' Yjnlr t Zmil, 

are obtained from (111.6) (see previous section). 

The above definitions are applicable to any five adjacent links in a 

spherical polygon. 

(ii) Fundamental Laws. 

All cyclic permutations of the laws for a spherical hexagon may now be 

listed as follows (with the aid of Figure 4.6(b)): - 

Sine Laws Sine-Cosine Laws Cosine Laws. 

X1234 ° sinoc56 sings Y1234 = sina56 cos®5 21234 = cosoc56 

X2345 sinoc61 sing6 Y2345 = sinIX61 cosQ6 22345 coscc61 

X3456 ` sinoc12 sing1 Y3456 a sincx12 cos61 23456 = Cosoo12 

X4561 sinoc23 sing2 Y4561 a sin'c23 coSA2 24561 cosa23 

x5612 = sino; 34 sin83 Y5612 sina34 COS03 5612 ° `O ; oc34 

X6123 = sinoc45 sin®4 Y6123 = sina45 cosQ4 26123 = cosa45 

X4321 = sinoc56 sing6 Y4321 = sincx56 cos86 24321 = cosoc56 

X5432 = sinoc61 sin®1 Y 5432 sina 61 cosQ 1 Z 5432 = cosy 61 

X6543 sinot12 singt Y6543 = sina12 cosQ2 26543 cosa12 

X1654 sinoc23 sing3 Y1654 = sinoc23 cosQ3 21654 CO3cc23 

X2165 = sinoc34 sin94 Y2165 = sinat34 cosg4 22165 = cosa34 

X3216 sinoc45 sings Y3216 sinac45 COS95 '3216 = cosoc45 
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(iii) Subsidiary Formulae. 

The following three groups of subsidiary formulae may be derived from 

the above fundamental laws for a spherical hexagon: - 

Sine Laws Sine-Cosine Laws Cosine Laws. 

Grow 1. 

X123cose4 

X234cosQ5 

X345cose6 

X456cosQ1 

X561cose2 

X612cose3 

Y123sing 4= 
X5 

Y234sing 5= 
X6 

y345sing 6.1 

Y456sing 1=2 

Y561 sing2 =3 

Y612sing 3= 
X4 

X432cos91 - Y432sinQ1 - X6 

X543cos02 - Y543sinQ2 = X1 

X654COS03 - Y654sinQ3 = X2 

X165cos64 - Y165sing 4= X3 

X216cosQ5 - Y216sine5 X4 

X321COS96 - Y321sing 6= X5 

x123sing 4+ 
Y123cos04 

5 

X234sin95 + Y234 coso5 .6 

X345sing 6+ Y345cos06 = -Y1 

X456sing 1+ Y456cosQ1 =2 

X561sing 2+ Y561cos82 = -Y3 

X612sing 3+ Y612coso3 . -Y4 

X432sing 1+ 
Y432cos81 = -Y6 

X543sin02 + Y543cosQ2 = -Y1 

X654sing 3+ 
Y654cos93 a -Y2 

X165sinQ4 + Y165cose4 = -Y3 

X216sin®5 + Y216cosQ5 = -Y4 

X321sing 6+ Y321coso6 = -Y5 

z. 1 23 `'5 

2234 2& 

z 345 = El 

2456 z2 

z 561 =3 

z612 4 

z432 = Z6 

z 543 Z1 

2654 Z2 

z165'= z3 

z216 = Z4 

1321'ýZ5 

..,... 
Group 

X123 = R5cosQ4 - 4 
Y5sing 

x 234 = X6cosQ5 - Y6sin05 

x 345 = X1cos®6 - Y1sing 
6 

X456 = X2cosQ1 - Y2sing 1 

x 561 = X3cosQ2 - 3sinQ2 

X612 = X4cosQ3 - Y4sinQ3 

Y123 = XSsine4 + ? 
5cosg4 

_Y234 = X6sinQ5 + 6cosQ5 

-Y345 = X1sing 6+ 
Y1cosQ6 

. -Y456 ° X2sing 
1+ 2coso1 

-Y 561 ° FE 
3sin®2 + Y3cosQ2 

Y612 = 4sing 3+ 
4'4cose3 

2123 Z5 

2234 = 26 

2345 a Z1 

2456 22 

2561 3 

2612°ý4 
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X432 = X6cos81 - Y6sing 1 

X543 X1cosQ2 - Y1sinQ2 

X654 - X2cosQ3 - Y2sing3 

X165 - X3cosQ4 - Y3sing4 

X216 ' X4cosQ5 - Y4sinQ5 

X321 ° X5cose6 - Y5sing 6 

Grou 3. 

X12cos83 - Y12sing 3= X54 

X23COS04 - Y23sing 4= X65 

X34cos05 - Y34sing 5= X16 

X45cosQ6 - Y45sing 6= X21 

X56cos81 - Y56sing 1= X32 

X61 cos82 - Y61 sing2 = X43 

X43cose2 - Y43sinQ2 = X61 

X54cosQ3 - Y54sing 3 = X12 

X65cosQ4 - Y65sing 4 = X23 

X16cos05 - Y16sin95 = X34 

X21 coso6 - Y21 sing6 = X45 

X32cosQ1 - Y32sing 1 = X56 

Y432 = X6sing 1+ Y6coso1 432 Z6 

Y543 = X1sing 2 + Y1cosQ2 543 = z1 

-Y 654 = X2sing 3 + Y2cosQ3 2654 = Z2 

-Y165 ° X3sing 4 + Y3cose4 L165 ` Z3 

" -Y 216 ' X4sinQ5 + Y4cosQ5 2216 z4 

-Y 321 = X5sing 6 + Y5cosQ6' 2321 Z5 

X12sing 3 + Y12cos93 = -Y54 7,12 = Z, 4 
X23sing 4 + Y23COSe4 = -Y65 Z23 Z65 

X 34sing5 + Y34cosQ5 = --Y16 Z34" ' Z16 

X45sing 6 + Y45COS06 = -Y 21 ZI+5 = Z21 

X56sing 1 + Y56coso1 = -Y32 L56 Z32 

X61sing 2 + Y61CO3A2 a -Y43 Z61 ` Z43 

X43s1n02 + Y43cos02 = -Y 61 Z43 761 

X54sing 3+ Y54cosQ3 = -Y12 z54 z12 

X65sing 4+ Y65cos04 = -Y23 z65 z23 

X16sing 5+ Y16coso5 A -Y34 z16 ° z34 

X21sing 6+ Y21cosQ6 = -Y45 Z21 = z45 

X32sing 1+ Y32cos®1 = -Y56 z 32 Z56 

A. 5. The Spherical Heptagon. 

(i) Definitions. 

If i, j, k, 1, m and n are in ascending consecutive cyclic order, then 

one may define, for a spherical heptagon (see equations (4.77)): - 

Xijklm m Xijklcos8m - Yijklsing 
m 

'ijklm cosai(Xijklsing 
m+ 

YijklcosAm) - sinocmn Zijkl 

Zijklm sinocmn (Xijklsing 
in 

+ yijklcosQM) + cosocmn Zijkl (111.9 
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Xnmlkj ý Xn 
nikcos8j - nmlksin®j 

y lkj = cosocij (X 
lksine. + Ynmlkcos9. ) - siracij 7nmlk 

Znmlkj = sinoci j 
(Xnmlksing 

j+ ynmlkcosQ. ) + cOSOCi j Zi 
nik 

(111.10) 

where Xijkl' Yijkl' Zijkl are given by definitions (I1I. 7) and Xnmik' Ynmlk' 

Znmlk are obtained from (111.8) (see previous section). 

The above definitions are applicable to any six adjacent links in a 

spherical polygon. 

(ii) fundamental Laws. 

All cyclic permutations of the laws for a spherical heptagon may now 

be listed as follows (with the aid of Figure 4.7(b)): - 

Sine Laws Sine-Cosine Laws Cosine Laws. 

X12345 o sina67 sinQ6 

X23456 0 sina71 sinQ7 

X34567 = sinac sing 

x 45671 sinoc 23 sing2 

X56712 = sina34 sing3 

x67123 = sina45 sing4 

x 71234 = siiia56 sin85 

Y12345 v' sina67 coso6 

Y23456 `° sina71 cosQ7 

Y34567 " sino: 12 cos81 

'45671 s sinoc23 cosQ2 

Y56712 - sinoc34 cosQ3 

'67123 ° sino: 45 cos®4 

'71234 m sinoc56 cosQ5 

z12345 = cos c67 

z23456 cosa71 

z34567 coscxý2 

z45671 cosa23 

z56712 cosa34 

267123 cos«45 

z71234 coscx56 

x 54321 sinoc67 sing? 

X65432 ' sinoc71 singt 

X76543 sina12 sing2 

x 17654 = sinoc 23 sing3 

x 21765 sinoc34 sinQ4 

x 32176 ° sinoc45 sing5 

x 
43217 ° sinoc56 sing6 

Y54321 = sin(%67 cos87 

Y65432 ° sina71 COSQ1 

Y76543 = sinoc12 coso2 

Y17654 ° sinoc23 cos®3 

Y21765 0 sinoa34 cosQ4 

Y32176 0 sinoc45 cos®5 

Y4321ý 'ý Ai. noc56 cos®6 

254321 = Cosa(67 

z65432 = cosa71 

z76543 " cosoc12 

z17654 ° cos«23 

z21765 coscx34 

z32176 ° cos(X45 

z43217 a cos«56 
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(iii) Subsidiary Formulae. 

The following four groups of subsidiary formulae may be derived from 

the above fundamental laws for a spherical heptagon: - 

___ _ . one Laws ---Sine-Cosine Laws Cosine Laws. 

Group 1. 

X1234 cosQ5 - Y1234sinQ5 = X6 X1234sing5 + Y1234 cos©5 s -Y6 21234 6 

z2345 a7 

z3456 '" 21 

X2345cos06 - Y2345sine6 = X7 X2345sin06 + Y2345COS06 =7 

X3456COS 7 - Y3456sing 7 = X1 X3456sin07 + Y3456cosQ7 _ -Y1 

X4567cosQ1 - Y4567sing 1= X2 X4567sing 1+ Y4567cosQ1 = 2 24567 _2 

X cosA - 
ýý671 

2 Y sinA = 5671.2 XC 3 X sing + 5671 2 
Y cosA = 5671 2 -Y 3 

Z=Z 
5671 3 

X6712cosQ3 - Y6712sinQ3 = Y. 4 X6712sin93 + Y6712cosQ3 = -Y4 Z6712 Z4 

X7123cos04 - Y7123 sinQ4 = X5 X7123sing 4+ Y7123cos04 = -Y5 Z7123 ° Z5 

x5432coso1 - Y5432sin01 = X7 x5432sing 1+ Y5432cos01 -Y7 25432 ° Z7 

X6543cose2 - Y6543sin92 = X1 R6543sing 2+ Y6543cose2 = Y1 z6543 Z1 

X7654cosQ3 - Y7654sing 3= X2 X7654s1n03 + Y7654cosQ3 -Y2 Z7654 = Z2 

X1765cosQ4 - Y1765sing 4= X3 X1765sing 4+ 
Y1765cosQ4 -Y3 Z1765 Z3 

X2176cosQ5 - Y2176sin95 = X4 X217691n05 + Y2176cosQ5 Y4 Z2176 = Z4 

X3217cOSQ6 - Y3217sing 6= X5 

X4321cosQ7 - Y4321sin07 = X6 

Group 2. 

X1234 + X6cos85 - Y6sing 
5 

X2345 = X7 cosQ6 - Y7 sing6 

x 3456 ° X1cosQ7 - Y1sing 
7 

X4567 = X2cosQ1 - Y2sing 
1 

x 5671 ' X3cos02 - Y3sing 
2 

X6712 = X4cosQ3 - Y4sinQ3 

x 7123 = X5cosg4 - Y5sinQ4 

X3217sing 6+ Y3217cosG6 = -Y5 Z3217 = Z5 

X4321sing 7, + Yg321cose7 a -Y6 Z4321 = Z6 

-Y1234 ° X6sing 5+ 
Y6cos95 21234 6 

Y2345 ° X7sing 6+ 7cose6 22345 = 7 

-Y 3456 
R1sing 

7+ 1cosQ7 z3456 1 

-Y4567 = X2sing 
1+ Y2cosQ1 24567 ° 2 

-Y5671 ° X3sing 
2+ 

Y3cos®2 25671 ° 3 
Y6712 = 4sing 3+ 

Y4cosQ3 z6712 = 4 

-Y 7123 = X5sing 
4+ 1? 5cos®4 27123 ý5 
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X5432 = X7cosQ1 - Y7sing 1 

X6543 = X1cosQ2 - Y1sinO2 

X7654 = X2cose3 - Y2sing 3 

X1765 = X3cosQ4 - Y3sing 4 
X2176 ° X4cosQ5 - Y4sing 5 

X3217 = X5coso6 - Y5sing 6 

X4321 - X6cos97 - Y6sin87 

Grou 3e 

X123cosQ4 - Y123sing 4= X65 

X234coso5 

X345cos06 

x456cosQ7 

X567cosQ1 

x671 cosQ2 

X712cos83 

-Y 5432 = X? sing 1+ Y7cose 

-Y6543 X1sing 2+ Y1cosQ2 

-Y 7654 X2sing 3+ Y2cose3 

-Y1ý65 ` X3sing 4+ Y3cose4 

-Y2176 = X4sing 5+ Y4coso5 

-Y321'7 - X5sing 6+ Y5cos06` 

-Y4321 - X6sin87 + Y6cos87 

X123sing 4+ Y123cosQ4 = -Y65 

X234sing 5+ Y234cos95 = -Y76 

X34}sing 6+ Y345cos96 = -Yý7 

X456sing 7+ Y456cosQ7 = -Y21 

X567sing 1+ Y567coso1 = -Y32 

X671 sing2 + Y671cosQ2 = -Y43 

X712sin83 + Y712COS03 = -Y54 

z5132 s z7 

z6543 ss z1 

27654 z 2 

z1765 Z3 

z2176 a Z4 

23217 = ZS 

24321 ` Z6 

z123 = 765 

z234 Z76 

7.345 Z17 

z 456 z21 

z567 = z32 

z671 z43 

z712 u Z54 

Y234sing 5= X76 

Y345sing 6= X17 

Y456sinQ7 = X21 

Y567sing 
1= X32 

Y671sin02 = X43 

Y712sin83 = X54 

X543cos92 - Y543sing 2= X71 

X654cos93 - Y654sing 3= X12 

X765cos04 - Y765sing 
4= X23 

X176cos05 - Y176sinQ5 = X34 

X217cosQ6 - Y217sing 6= x 45 

X321cose7 - Y321sing 7= x56 

X432cos9 1 - Y432sing 1= X67 

X543sing 2+ 
Y543cosQ2 = -Y71 

X654sing 3+ Y654cos03 = -Y12 

X765sing 4+ 
Y765cosQ4 = -Y23 

X176sing 5+ Y176cose5 Y34 

X217sin86 + Y217cos06 -Y45 

X321sing 7+ 
Y321cos97 = -Y56 

X432sing 1+ Y432cos81 = -Y67 

z543 - Z71 

z 654 ° z12 

z765 ° Z23 

2176 Z34 

a217 s Z45 

x321 Z56 

z432 ° Z67 
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Group 4. 

X123 r X65cosQ4 - y65sing 4 

X234 = X76cosQ5 - Y76sing 5 

X345 X17 cos96 - Y17 sino6 

X456 = X21 cosec - Y21 sing7 

X567 - X32cose1 - Y32sing1 

X671 = X43cos82 - Y43sin82 

X712 X54cos93 - Y54sing 3 

X543 = X71cos02 - Y71sing 2 

X654 = X12coso3 - Y12sing 3 

X765 = X23cosQ4 - Y23sing 4 

X176 _ X34cos85 - Y34sing 5 

X217 _ X45cose6 - Y45sing 6 

X321 ° X56cosQ7 - Y56sing 7 

X432 = X67cosQ1 - Y67sing 1 

B. Secondary Laws. 

-Y 123 X65sing 4+ Y65coso4 7.123 Z55 

-Y 234 X76sing 5+ Y76cos9 5 2234 Z76 

-Y345 = X17sing 6+ Y17cosrp6 7,345 Z17 

-Y456 a X21sing 7+ Y 21cos®7 Z456 = 121 

-Y567 = X32sing 1+ Y32cos91 2567 132 

Y671 = X43sing 2+ Y43cosp2 1671 = 743 

-Y712 ' X54sing 3+ 54 cosQ3 2712 `54 

-Y543 ° Y71sinQ2 + Y71cos92 2543 " ? 71 

-Y654 = X12sin83 + Y1Vcos©3 2654 17 

u'12 

Y765 = X23sine4 + Y23cosQ4 z76` ? 23 

-Y176 = X34sing 5 + Y34cos95 7,176 Z34 

-Y 217 = X45sinQ6 + Y45cosg6 121` Z45 

-Y321 = X56sing 7 + Y56cos87 2321 z56 

-Y432 `= X67sing 1 + Y67cosoI 2432 = z'67 

Introducing the dual symbol (see Chapter 3) into the above laws, and 

expanding into primary and secondary parts, produces a series of secondary 

laws in addition to the primary laws given in the previous sections. The 

writing of these laws is greatly facilitated by designating the secondary 

part of X6123' for example, as X06123 (see equation (4.93)) and one then 

obtains an Xp, YO and Z0 expression corresponding to each X, Y and Z 

expression defined above. 

Thus, if q, i, j, k, 1, m and n are positive integers in ascending 

consecutive cyclic order, one may list the following series of definitions, 

with the aid of the rules for manipulating functions of a dual variable 

presented in Chapter 3: - 
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An 
= Xi +6 Xoi Xi = ri +E Xoi 

ýQ 
Yi = Yi +9 YOi Y. = ?i+6 YOi 

4 
= zi +8 Z0i Zi = Ei +9 ZQi 

Xi 
=X +6X j 

Yi Yi +6 YOi j j j 

Z +Ez j ij oij 

A 
XiJk = Xijk +6X 

ijk = Yijk +E YOijk 

Zijk 
= Zijk, + 6 ZQijk 

A 
Xijkl = Xi. jkl +e XOijkl 

ijkl yijkl +6 yOijkl 

Zijk1 Zijkl +6 20ijkl 

A 
Xijklm - Xijklm +9 XOijklm 

A 
Yijklm Yijklm +6 YOijklm 

Zijklm Zijklm +8 ZOijklm 

where the primary parts are defined in Part A. of this appendix and the 

secondary parts are defined below: - 6 

X_ aglcosaqi singi 

+ Sisi. nocgl cosO. 

YOi = agl(sinocqi sinocij- cosagi cosai j cosQi) 

- al J 
(cosagl cosacij - sinagi sinalj cosQi 

+ Sisinocgi cosocij singi 

ZOi a- agi(sinaqi cosaij + cos(x 
gi sinocij cosQ. ) 

- alj(cosocgi sinoclj + sinoagl cosoclj cosQi) 

+ Sisinocgi sinocij singi 
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Xoi = a.. cosocij singi 

+ Si since. cosQI 

Yoi a.. (sinocij sinocgl - cosocij cosocgi cosQ. ) 

- aq. (cosoc.. cosocgi - sinoc. j sinocgi cosQi) 

+ Sisinoc.. cosagi sing: 

Z0i alj(sinaij cosocgi + cosotij sinccgl cosQi) 

- agl(cosalj sinoc + sinaij cosocgi cosOi) 

+ Sisinoc.. siriocgi singi 

X013 _ (x 
. cos. 9- YOisin9P 

01 

- Si (XisinQ. + YicosQ. ) 

yyij = cosajk (Xoising 
.+ YDicosoi) - sinajk ZOi 

+ Si cosocjk (Xicosgi - Yising .) 

- ajk[sinocjk (XisinQ 
.+ YicosQ .)+ cosocjk Zi] 

ZOij = sinocjk (X0isinQj + YOicosoi) + cosocjk ZOi 

+ Si sinajk (Xicosoi 
- YisinQi) 

+ aikEcosocjk (XisinGj + YicosQj) - sinoc. k Zil 

XDji z (X0jcosQi - YQjsinQi) 

- Si(Xi singi + ?. cosOi) 

YOji = cosOCgi (XOjsing 
i+ YOjcosQI) - sinagi EOj 

+S i cosoc qi 
(XjcosQi - YjsinQi) 

- agi[sincxqi (X 
jsing i+Y jcosOi) + cosagi Z3] 

Z03 j= sinagi (X0 
j singi + Y0j cos®1) + cosagi Z0 j 

+ Sisinagi (XjcosQi 
- 

Yjsinoi) 

+ aq. Icosagi (XjsinOi + ?. cosoi) - sinagi `Z3i 
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XOijk = (XOijcosQk - YOijsinQk) 

- sk(XijsinQk + Yijcosok) 

YOijk = cosock1 (XoijsinQk + YoijcosQk) - sinockl 7J0ij 

+ Skcosocl (XijcosQk - Yijsing. ) 

- akl[sinockl (Xi 
jsinQk + Yi jcosQk) + cosockl z ji 

ZOijk = sinackl(XOijsing k +. YOijcosAk) + COSccklZ0ij 

+ Sksinockl (x.. cosOk - Y.. sing. ) 

+ akl[cosakl (XijsinQk + Y. j cosQk) - sinockl Z. j] 

XOijkl - 
(XOijkcosQl - YOijksin91) 

- S1(Xijksing 
1+y jkCOS91) 

Y0i jkl a Iosalm (XOi 
jksine + YQi jkcos91) - sinaclm Z0i jk 1+ 

Slcosoclm(XijkcosQ1 - YijksinO ) 

- a1 [sincclm(Xijksing1 + YijkcosQl) + cosalm zijk] 

ZOijkl - sinacim (XOijksinA1 + YOijkcosAl) + Iosalm ZOijk 

+ S1sinoc (XijkcosO1 - Yijksing, ) 

+ alMIcosoclm (Xi 
jksing1 + Yi jkcosQl) - sinoclm Zi jk] 

XOijklm ! 
(XOijklcos©m - Y0ijklsinOm) 

Sm(Xijklsing 
m+ 

yijklcosQM) 

YOijklm m Cosamn (X0ijklsin8m + Y0ijklcos8m) - sinccmn Z Oijkl 

+ Smcosocmn (XijklcosOm - Yijklsinem) 

-a n[sinamn 
(Xijklsing 

m+ 
YijklcosQm) + cosamn Zijkll 

ZOijklm m Sina (XOijklsingm + YOijklcosom) + cosai ?. 0ijkl 

+ Smsinocmn (XijklcosQm 
- YijklsinQM) 

+a [cosoc (Xijklsing 
m+ 

YijklcosQm} - sinoc Zijkll 
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Now from identities (4.8), (4.42), (4.55), (4.66) and (4178) 

(see Chapter 4. ) it is clear that the primary Z expressions are s; mLmetric 

with respect to their suffices and hence one would. expect the corresponding 

Z0 expressions to be symmetric also. This is indeed the case, and after 

expanding and using the various sine, sine-cosine and cosine laws it is 

possible to rewrite these Z0 expressions alternatively in the symmetric 

forms shown below. Thus: - 

ZOi aqi? i 

+ S. sinocgi sincxij singi 

+ a. Y. 
ij 1 

Zpij w aglyj i. 

a Sisinacq. Xji 

+ a.. coseccxij (ZiZi - cosagi cosaik) 

+ Si sinoc Xi 

+ ajkYij 

ZOijk a agiYkji 

+ S1sinagi Xkji 

+a j[(XksinQj + YkcosOj)Zi + 2kYi] 

+ Sjl(YiYk - Xi3Ck)sinQj -- 
(YiXk x. )cosQjl 

+ ajk[(Xising j+ Yicos9j)Zk + ZiYk] 

+ SksinCck] Xi jk 

+ aklYijk 
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ZOijkl aq"Ylkji 

+ Sisinrxq. Xlkji 

+ aljr(Xlk sinOj + Y�coscj)Zi + Z1kYi] 

- sj[(xlksing .+ YlkcosQ. )Xi + X1kjYil 

+ a. kcosecocjk 
(ZijZlk - ZiZ 

- Sk1(XijsinAk + YijcosAk)X1 s" XijkXl1 

+ ak1C(X. jsing k+ Yijcosok)Z1 + ZijYl 

+ 81sincclmx jkl 

+ aimmijkl 

ZOijklm = agiymlkji 

+ Si sinocgi Xml. k ji 

+ aijr(Xmlksin8. +y mlk ý cosg. )Z 
i. +Z mikYil 

- Sj[(XmlksinQ. + YmlkcosQ. )Xi +X mlkj 
Yil 

+ a. 1(Xmisinek + Ymlcos9k)Zij + Zm1Yijl 

+ Ski(Yijyml - XijXml)sinQk - (Y.. Xml + XijYm1)cosQk] 

+a kl[(Xijsinek + YijcosQk)Zml + Z.. Yml. ] 

- S1[(Xijksing 1+ Yijkcoso1)Xm "1 Xijkl%] 

+ almL(Xijksin01 + Yijkcosel)Zm + ZijkYm-J 

+ Smsinax Xi jklm 

+ am Yijklm 
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APPENDIX IV 

LIST OF HALF-TANGENT LAWS 

FOR 

SPHERICAL POLYGONS 
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A. Fundamental Half-Tangent Laws. 

All cyclic permutations of the fundamental half-tangent laws for 

the spherical triangle, quadrilateral, pentagon, hexagon and heptagon 

may now be listed (see Chapter 5). In each case xi is given by: - 

xi ä tän(Ai/2) 

A. 1. The Spherical Triangle. 

The fundamental half-tangent laws for the spherical triangle 

Figure 4.1) may be listed as follows: - 

X3x1 + (Y3 - sinoc12) =0 

X1 x2 + (Y1 - sinoc 23) =0 

X2x3 + (Y2 - sina31 )=0 

X2x1 + (Y2 - sinac1) =0 

+ (Y- sinaX3x2 3 12), = 0 

X1 x3 + (Y1 - sina23) =0 

p. 2. The Spherical Quadrilateral. 

(Y3 + sina12) xl -- Xa =0 

(Y1 + sinoc23) x2 - x' =0 

(Y2 + sincx31) x3 -- x2=0 

2+ sina31) xl - 5ý2 0 

(Y3 + sina12) x2 - X3 0 

(Y1 + sinoc23) x3 - X1 =0 

The two groups of fundamental half-tangent laws for the spherical 

quadrilateral 
(Figure 4.4) may be listed as, follows: - 

Groouupr 1- , 

" 
X34X1 + (Y34 - sinoc12) =0 

X41x2 + (Y41 ' sinoc 23) =0 

X12x3 + (Y12 ^ sina34) =0 

X23X4 + (Y23 - sina41) =0 

(Y34 + sincx12) xl - X34 m0 

(Y41 + sina23) x2 - X41 =0 

(Y12+ sinoc )x3-X12a0 
34 

(Y23 + sinoc 41) x4 - X23 =0 
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X32x1 + (Y32 - sina41) =0 

x43x2 + (y43 - sinoc12) =0 

X14x3 + (Y14 
- sinoc23) =0 

X21x4 + (Y21 - sinoc34) =0 

Grog. 

(X4 + X2)x, + (Y4 + Y2) =0 

(X1 + 3)x2 + (Yl + Y3) =0 

(X2 + 4)x3 + (Y2 + Y4) =0 

(X3 + X1 )x4 + (Y3 + Y1) a0 

A. 3. The Spherical Pentagon. 

(Y32 + sincx41) x1 - X32 =0 

(Y43 + sinoc1 2) x2 -" X43 =0 

(Y14 + sincx23) x3 - X14 =0 

(Y21 + 3inoc34) x4 - X21 =0 

(Y4 - Y2)xl 
- (X4 - X2) .-0 

(Y1 - 1? Y 
3)x2 - (Xl -X J) =0 

(Y2-4)x3- (X2-7x4) _0 

(Y3 -2 1)x4 - (X3 - 
7*1) =0 

The two groups of fundamental half-tangent laws for the spherical 

pentagon (Figure 4.5) may be listed as follows: - 

1. Group 

X345x1 + (Y345 - sinoc12) =0 

X451x2 + (Y451 - sinoc23)a 0 

X512x3 + (Y512 - sincx 34) -0 

X123x4 + (Y123 - sinoc45) -0 

X234x5 + (Y234 - sinac 51) a0 

X432x1 + (Y432 - sinoc51) =0 

X543"2 + (Y543 - sina12) =0 

X154X3 + (Y, 
54 - sinvc23) a0 

X215X4 + (v215 - sina34) =0 

X321x5 + (Y321 - sina45) =0 

(Y345 + sinoc12) x1 - X345 0 

(Y451 + sinoc23) x2 - X451 0 

(Y512 + sinoc34) x3 - X512 0 

(Y123 + sina45) x4 - X123 0 

(Y234 + sinoc51) x5 -x 234 0 

(Y432 + sinoc51) x1 - X432 0 

(Y543 + sinoc12) x2 - X543 0 

(Y154 + sina23) x3 - X154 °0 

(Y215 + sina34) x4 - X215 =0 

(Y321 + sina45) x5 - X321 :=0 
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Group '21. 

(X 
45 + X2)x1 + (y45 + Y2) =0 

X51 +3 )X2 + (Y51 + Y3) =0 

12 + 4)x3 + (Y12 + Y4) =0 

X23 + X5)x4 + (y23 + Y5) =0 

(X34 + x1)X5 + (Y34 + Y1) =0 

X32 + X5)x1 * (y32 + Y5) =0 

(x43 + X1)x2 + (Y43 + y, ) 0 

(X54 + X2)x3 + (Y54 + Y2) =0 

(X15 + X3)x4 + (Y15 + Y3) =0 

X21 + X4)x5 + (Y21 + Y4) =0 

A. 4. Thome Spherical Hexagon. 

(Y45 - Y2)x1 (X45 
2) 0 

(Y 
51 -- 3)x2 - X51 - X3) ä0 

(Y12 - 4)x3 - X12 - 14) 0 

(y23 - Y5)x4 - (X23 - Xy) 0 

(Y34 - Y1)x5 - (X34 - 21) -0 

(Y32 - Y5)x1 - (X 
12 - X5) -0 

(Y43 - Y1)X2 - (X4 
j -- x1) 20 

(Y54 - Y2)x3 (X54 -x 2) 0 

(Y15 
- Y3) X4 - (x: 

15 -K J) =0 
(Y21 - Y4)x5 (x21 

- k4) :ý0 

The three groups of fundamental half-tangent laws for the spherical 

hexagon (Figure 4.6) may be listed as follows: - 

1' Group 

X3456X1 + (Y3456 - sin«12) =0 

X4561X2 + (Y4561 - sina23) =0 

X5612x3 + (Y5612 - sinac34) 0 

X6123X4 + (Y6123 - sina45) =0 

X1234X5 + (Y1234 - sina56) =0 

X2345X6 + (Y2345 - sina61)= 0 

(Y3456 + sina12) x1 - X3456 0 

(Y4561 + sina23) x2 .- X4561 =0 
(Y5912 + sina34) x3 - X5612 m0 

(Y 
6123 + ailia45) x4 - '6123 0 

(Y1234 + sinoc56) x5 - x, 234 =0 
(Y2345 + sincx 61) x6 - X2345 0 
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X5432x1 + (Y5432 

x6543x2 + (x6543 

X1654X3 + (Y1654 

X2165X4 + (Y2165 

X3216x5 + (Y3216 

X4321X6 + (Y4321 

2. Group 

sinoc61) Q 

sin0c12) =0 

sina23) =0 

sinoc34) =0 

sina45) =0 

sinoc56) =0 

(Y 
5432 + sincc61) x1 -. X5432 0 

(Y6543 sincx12) x2 - X6543 0 

x1654 + sin«23) x3 -. x1651} =0 

(Y2165 + sino: 34) x4 ~ X2165 0 

(Y3216 + sincx45) ; x5 -- X3216 =0 

(Y4321 + sincx56) x6. - 7'4321 0 

X456 + 2)x1 + (456 + Y2) 0 (y 
456 - Y2)X1 ("456 - X2) %: ' 0 

(X561 + 3)x2 + (Y561 + Y3) =0 (Y561 - 73)x2 - (X561 - X3) 0 

X612 + 4)x3 + (Y612 + Y4) =0 (Y 
612 - Y4)x3 - x612 - X4) 0 

X123 + 5)x4 + (Y123 + Y5) =0 (Y123 - Y5)x4 - X123 - x5) W0 

X234 + X6)x5 + (Y234 + Y6) =0 (Y234 - 17 Y 6)x5 (X234 - 7,6) 0 

X345 + 5t1)x6 + (y345 + Y1) =0 (Y345 - Y1)%6 - (X345 - X1) 0 

X432 + X6)X1 + (Y432 + y6) =0 (Y432 - Y6)X1 - (X432 - X6) =0 
X543 + X1)x2 + (y543 + Y1) =0 (Y543 - Y1)x2 - (X543 - X1) =0 
X654 + X2)x3 + (Y654 + Y2) =o (Y654 - Y2)x3 - (x654 - X2) =s 0 

X165 + X3)x4 + (Y165 + Y3) =0 (y165 - Y3)x4 - X165 - 7*3) =0 
X216 + X4)x5 + (y216 + Y4) =0 (Y216 - Y4)x5 (x216 - X4) =0 
X321 + X5)x6 + (Y321 + Y5) =0 (Y3E1 - Y5)x6 - (x321 

-x 5) tt 0 

Gro" 

(X56 + X32)x1 + (y56 + Y32) =0 (Y 
56 - Y32)x1 - (X56 -x 32) =0 

(X61 + X43)x2 + (Y61 + Y43) m0 (Y61 - Y43)x2 - (X61 - X43) =0 
(X12 + X54)x3 + (Y12 + Y54) =0 (Y12 - Y54)x3 - (X12 - X54) 0 
(X23 + X65)x4 + (Y23 + Y65) 0 (Y23 - Y65)x4 - (X23 - X65) 0 
(X34 + X16)x5 + (Y34 + Y16) 0 (Y34 - Y16)x5 - (X34 - X16) =0 
(X45 + X21)x6 + (Y45 + Y21) °0 (Y45 - Y21)x6 - (X45 -x 21) 0 
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A. 5" The Spherical Heptagon. 

The three groups of fundamental half-tangent laws for the spherical 

heptagon (Figure 4.7) may be listed as follows: - 

Group 1. 

X34567x1 + (Y 
34567 - sinoc12) 0 

X45671x2 + (Y45671 - s1na23)= 0 

X56712x3 + (Y56712 - sincx34) = 0 

x67123X4 + (Y67123 - sincc45) = 0 

x71234X5 + (Y71234 - sinoc56) = 0 

x12345X6 + (Y12345 - sin«67) = 0 

X23456x7 + (Y23456 - sinac71) = 0 

X65432X1 + (Y65432 sina71) 0 

x76543x2 + (Y76543 - s: noc12) 0 

X17654X3 + (Y, 
7654 - sinIX23) 0 

X21765X4 + (Y21765 - sinoc34) =0 

x32176x5 + (Y32176 - sinac45) 0 

X43217X6 + (Y43217 - sinor56) 0 

X54321 x7 + (Y 
54321 - sincx67) a0 

Group 2. 

X4567 + x2)x1 + (Y 
4567 + 2) =0 

(X5671 + 3)x2 + (y5671 + X3) ffi 0 

X6712 + 4)x3 + (Y6712 + Y4) 0 

X7123 + X5)x4 + (y7123 + 75) 0 

X1234 + `6)x5 + ('11234 + 26) ffi 0 

(X2345 + X7)x6 + (Y2345 + Y7) a0 

X3456 + X1)'7 + (y3456 + Y1) =0 

(Y34567 + sincx12) x1 - X34567 L0 
(Y45671 + sinoc23) x2 - X45671 0 
(Y56712 

+ sin0c34) x3 - 
X567.12 0 

( 
67123 + sinoc45) X-1ß *X6'1123 0 

(Y71234 + sinoc56) x5 - X71234 0 

Y12345 + sincx67)3ä - X12345 -0 
(Y23456 + sinoc71) x7 - X23456 *7' 0 

(Y65432 + sina. 71) x1 - X65432 =0 
(Y76543 + sincx12) x2 X76543 =0 
(Y17654 + sina23) x3 - X17654 =0 
(Y21765 + sinoc34) x4 - X21765 0 

(Y32176 + sinoc45) x5 - X32176 0 

(Y 
43217 + sinoc56) x6 - X43217 0 

(Y54321 + sina67) x7 - . X54 321 0 

(Y4567 - ? 2)x1 - X4567 - R2) 0 

(Y5671 - 73)x2 - (x5671 - R3) 0 
( 

6712 - ? 
4)X3 X6712 - 24) "0 

(7123 - 5)X4 X7123 - x5) °0 
(Y1234 - 6)x5 - X1234 - 26) 0 

(Y2345 - ? 7)x6 - (X2345 - 27) =0 
(Y 

3456 - ? 1)x7 - (X3456 - 21) =0 



331v 

x5432 + X7)x1 + (Y 
5432 + y7) =0 

(X6543 + X1)x2 + (Y6543 + Y1) =0 

X7654 + X2)x3 + (y7654 + Y2) =0 

X1765 + X3)x4 + (Y1765 + Y3) =0 

X2176 + X4)x5 + (Y 
2176 + Y4) =0 

x3217 + X5)x6 + (y3217 + Y5) =0 

X4321 + X6)x7 + (y4321 +y 6) =0 

Group 3* 

(X567 + X32)x1 + (Y567 + y32) =0 

(X671 + X43)x2 + (y671 + y43) =0 

(X712 + X54)x3 + (Y712 + Y54) =0 

(X123 + X65)x4 + (Y, 
23 + y65) _0 

(X234 + X76)x5 + (Y234 + Y76) 0 

(X345 + X17)x6 + (y345 + y17) 0 

(X456 + X21)x7 + (Y456 + Y21) =0 

(Y5432 - Y7)x1 (x 
7432. - x7) =0 

(Y 
6543 Y1)Y2 x6543 x) =0 

( 
7654 - Y2)'c3 (X7654 - x`) -0 

(Y1765 - Y3)x4 - X1765 - X3) =0 

( Y2176 - Y4)x5 (x`176 - J4) =0 

(Y3217 - Y, ý)x6 - x321"/ ... x5) Ci 

(Y4321 - YG)x - 7 x43? 1 - x6) =0 

(Y567 - Y32)x1 - (X567 - X32; =0 
(Y 

671 - Y43)x2 - (x671 - x43) 0 

(Y 
712 - y543 - (` 

712 -- X54 () 

(X123 - Y55)x4 - (x123 -- X65) o 

(x234 - y76)x5 - (X234 - X76 0 

(x345 - Y17)x6 - ()'345 - X17) t0 

(Y 
456 - x21)x'7 - (X4; 

56 -x 21) _0 

(X432 + X67)x1 + (y432 + y67) _0 

(X543 + X71)x2 + (y543 + Y71) =0 

(X654 + X12)x3 + (YG54 + y12) =0 

(X765 + X23)x4 + (Y765 + y23) 0 

(X176 + X34)x5 + ('1176 +y)=0 34 
(X217 + x45)x6 + ('1217 + y45) =0 

(x321 + X56)x7 + ('1321 + Y56) =0 

B. Further Half-Tangent Laws. 

(Y432 - Y67)x1 - (X432 M X67) 0 

(x543 v71)x2 - (x543 - X71) =0 
(Y654 - Y12)x3 x654 ' x12) -0 

(Y765 - Y23)x4 - (x765 X23) m0 
(x176 - Y34)x5 - (x176 - x34) -0 

(x217 - Y45)x6 - (x217 - X45) =0 

(x321 - Y56)x7 - (X 
321 - )C56) =0 

It has been explained in Chapter 5" that it is possible to derive jux 

extensive series of further half-tangent laws from the fundamental half- 

tangent laws for each spherical polygon (see above)* In particular there 
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are 2(n-1) distinct further laws, each in (n - 1) half-tangents, for an 

n-sided spherical polygon. Thus the four further laws in the two half- 

tangents x1 and x2 for a spherical triangle (Figure 4.1) are given by 

equations (5.45), (5.46), (5.47) and (5.48) (see Chapter 5). 

For the spherical quadrilateral (Figure 4.4)t there are eight further 

' laws in the three half-tangents x1' x2 and x3, and equation (5.55) 

represents one of these laws. A second example may be written: - 

sincx12[cos(cx23+ oc34) - Z1]X1x2 

+ [sinac12 cosa34 - sin(cc23 + «12) Z1 + sinac23 cosoc41 ]x1 x3 

+ sinoc23 [cos(ac12 + a41) - Z1]x2x3 -0 

For the pentagon (Figure 4.5) there are sixteen further half-tangent 

laws in any four half-tangents, whilst for the spherical hexagon (Figure 4.6) 

there exist thirty-two such laws in, say, the five half-tangents, 

x1, x2, x3, x4 and x5. Three examples of the latter may be listed as 

follows: - 

x5[cos(ac45 (X 56)- 
`Z5]sina12 sinoc23 sinot34 

+ x4[sin(oc45 - a34)Z 5- sinoc45 Z12 + sinoc34 cosa56 ]sinn, 
2 sina23 

+ x3[sin(a34 - 0x23) Z12 - sinoc 34 Z1 + sina23 25Jsin3r12 sina45 

+ x2[sin(a23 - (X 12) Z1 + sina12z 54 - sinn 23 cosa6i ]sinoc34 sinoc45 

+ x1[- cos(a12 - oc61) + Z1 ]sincx23 sina34 sinac45 =0 

xix2x3x4Z5 - Cos( oc45 } °{56) ]sinoc12 sinoc23 sinoc34 

+ x1x2x3x5[sin(oc34+ 0045) Z5 - sina45 Z, 2- sina34 cosoc56 ]sina12 sinoc23 

+ x1 x2x4x5[sinOc23 Z5 - sin(a23 + cx34) Z12 + sinoc34 Z1 ]sinoc12 sinoc45 

+ Xix3x4x5[sin(oc, 2+ a23) Z1 - sina12 Z54 - sina23 cosab1 ]sina. 
4 sinoc45 

+ x2x3x4x5[Z1 - cos((X 61 + cc12) ]sinoc23 sinoc 34 sina. 45 m0 
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x1 x2x3[sincx23 cosoc61 - sins 12 z54 - sin( oc23 - ot12) Z1 ]since 
34 sinac45 

x1x3x4tsincx34 cosoc56 - sinoc45 Z12 + sin(«45 - (3c34) ý5]sincx12 sincc23 

+ x1 x3x5Ccos(oc45 + «56) - Z5]sincx12 sinoc23 sincc34 

+ xl[sin(a34+ 0x`3) z12 - sincx34Z1 - sino; 23'Z5]sincxl2 sinoc45 

+ x3[Z1 - cos(a12 + oc61) ]sinoc23 sina34 sina45 =0 

Finally, one may derive the following equation as a representative of 

the sixty-four possible further half-tangent laws in the six half-tangents 

xi, x2, x3, x4, x5 and x6, for the spherical heptagon (Figure 4.7):. 

x1x2x3x4x5EZ1234 - cos((c56+ cx67 ) 3sincx12 sinn 23 sinoc34 sina45 

_+ x1x2x3x4x6(coscx56 21234 + sin(x 56Y1234 - cosa67) sirioc12 sinoc23 sina34 sinoc45 

x1x2x3x5x6(cosoc45 Z123 + sincx 45Y123 - Z1234)sinoc12 si. na23 sinoc34 5ifoc56 

+ x1x2x4x5x6(cosa34 z 12 + sinoc34Y12 - Z123)sinoc12 sinoc23 sinnoc45 sino; 56 

- x1 x3x4x5x6(coscc23 Z, + sincx23Y1 - Z12)sinoc12 sin0c34 sino: 45 sinoc56 

+ x2x3x4x5x6[cos(a12 + a7l )- Z1 ]sincx23 sinoc34 sinoc45 simx56 =0 

b 
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APPENDIX V 

LIST OF COEFFICIENTS 

FOR 

THE RCRPRR MECHANISM 



, 
33, E 

The coefficients for the systems of equations, (7.24) and (7.25), 

for the RCRPRR six-link spatial mechanism (see Chapter 7) may be listed 

as follows: - 

p22 = Z4(cosac56 Z1 - siroa56 Y, ) - Y4(sina56 Z1 + cosoc56 Y1) 

+ X4X1 - cosoc23 

p12 = 2. [(sina56Z4 + cosa56Y4)X1 + X4Y1] 

p02 = Z4(cosa56 Z1 + sina56 Y1) - Y4(sina56 `Z1 - cosoc56 Y1) 

-- x4Xl - cosa23 

p21 _ 2. CY4X1 + X4(sinoc 56 
El + coscc56Y1)J 

pl1 = 4. (Y4Y1 - coscx56 X4X1) 

pol _ -2. [Y43 
1- X4(sinoc56 Z1 - coscx56 7 

1)] 

p20 = Z4(cosoc56 Z, - sinoc56 Y1) + Y4(sina56 z1 + cosa56 Y1) 

X4X1 - cosoc23 

pl0 = 2. [(sincx56 Z4 - cosoc56Y4)X1 - X4Y13 

p00 = Z4(cosoc56 Z1 + sinoc56 Yj) + Y4(sinoc56 1- cosoc56 Y1) 

+ X4Xý - coscx23 

q22 = h1X1 - h2Y1 + h3Z1 - h4 

+ sin(a56 - oc45 )Y01 - cos(oc56 - °C45)Z 01 

q12 = 2. [h2X1 + h1Y1 - sin(x56 - (x45) X01] 

q02 = -h121 + h2Y1 + h3Z1 -, h4 

- sin(a56 - a45) Y01 - cos(a56- oc45) Z01 

q21 -2. () 
l- 

h5Y1 - h621 - sina45 X01 

q11 _4. 
(h5X1 + K2Y1 - sina45 Y01 

q01 2. (102X1 
_ 

h5 71 + h6Z1 - sina45 Rol ) 
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q20 = --111 X1 - H2Y1 + H3Z1 -h 

+ sin(oc56 + oc45) YO1 

qý0 = 2. [H2R1 
- H1Y1 - sin 

q00 = H1Xl + H2Y1 + H3Z1 - 

- sin(a56 + (C45) YO1 

where: - 

- cos(«56+ °C45) Z01 

(cc56+ oc45)R011 

h4 

- cos(«56+ oc45) Z01 

h1= S33sinoc34 - 555sinoc45 + S66sin(oc56 - cc45) 

h2 = K1 sinoc56 - K2cosa56 a56cos(«56 - °C45) 

h3 = K1 cosoc56 + K2sinoc 56 + a56sin(«56 0045) 

h4 S33cosoc23x44 + a23(sinac23cosoc34+ cos 
2a 

23coscx34cosecoc.. 3) 

+ a34(sincx34coscx23+ cos2oc34 cosoc23 coseccx34) 

h5 - 
(S33sinoc34 - S55sin«45) cos«56 - S66sinoc45 

h6 - 
(S33sinac34 - S55sincx 45) sinoc56 

H1 = S33sinac34 - S55sinac45 - S66sin( a56 + a45) 

H2 =K1 sinoc56 + K2cosoc56 - a56cos(oc56 + oc45) 

g3 = K1cosoc56- K2sinoc56+ a56sin(cx56+ 0045) 

S33cos(«45 - 0C34) x44 + a45sinoc45 

+ cosoc45 (a34 cotcx34 + a23cotoc23) 

2 S33sin( cc45 - cc34) x44 - a45cos«45 

+ sinoc45 (a34cotoc34 + a23cotcx23) 

and where: - 

x4= sina34 sin844 

Y4 s -(cos(X 34 sina45+ sinoc34 cosoc45 cosQ44) 

Z4 = (coscc34 cos(X 45 - sinoc34 sina45 cose44) 
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In the above coefficients, the term x44 is defined by: - 

x44 a tan( G4,4/2) 

and the terms X1, Y1' Z1 and X01' YO 1' 701 are given in Appendix III. 

(see also Chapter 4). 
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APPENDIX-VI 

LIST OF COEFFICIENTS 

FOR 

THE RCRRPR MECHANISM 



33'» 

The coefficients for the systems of equations, (8.28) and (8.29)9 

for the RCF: RPR six-link spatial mechanism (see Chapter 8) may he listed. 

as follows: - 

p22 - sin((x 34 - 0x45) sing 55X. + h1 Y1 + h2Z1 - cosoc23 

p12 = -29Ch1 X1 - sin(a34 - oc45) sing 55 
rill 

p02 - sin(oc34 - ac45) sing55X1 - h1 Y1 + h2%ß - coscx23 

p21 = -2sina34(cose5 1- cosa56 sing 55Y1 - sinac 56 sing 55 

p1, ß _ -4sincc34 (cosoc56 sinQ55X1 + cosQ55Yi ) 

p01 - 2Sina34( cosQ55X1 - coscc56 sing55Y1 + sinoc56 sing 55z1) 

p20 -sin(a34 + cc45) sing5ý1 - h33, - h4Z1 - cosoc23 

p, 0 2. [h33, - sin( a34+ cc45) sing 55 
1, 

p00 sin(oc34+ a45 ) sing553C1 + h3Y1 - h421 - cosa23 

q22 = H1X1 - H2Y1 - H3Z1 + H4 + L2P21 

+ sinoc34 sina23 (sin(X 
56 Y01 - cosoc56 Z01) 

q12 = 2. (H2X1 + H1Y1 - sinoc34 sinoc? 3 sinoc56 X01) + L2p11 

q02 = -H1X1 + H2Y1 - H3 Z1 + H4 + L2p01 

- sinvc34 sinac23 (sinoc56 ? 
01 + cosa56 Z01) 

q21 = K1X1 - K2Y1 - K3%1 + K4 + L0p22 

q11 = 2. (IC2X1 + '17Y + L0p12 

q01 a K1X1 +1 211 - K3Z1 + K4 + L0p02 
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q20 = -1r1X1 + J2Y1 + JaZ1 + J4 - L1P20 

+ sina34 sina23 (sina56' 
01 -E01) 

q10 = -2. (J2R1 + J1Y1 + sins sincc sinoc X01 )-Lp 
34 23 56 1 10 

q00 =11 X1 - 327 1+ J321 + J4 - L1 p00 

- sina34 sina23 (sina56? 
01 + cosa56 201 

where: - 

h1 sin(a: 34 - ac45) cosac56 cose55 - cos(ac34 - 0: 45) sincx56 

h2 = sin(a34 - (X 45) sinac56 coso55 + cas(ac34 - (X 45) ccsoc56 

h3 = sin(oc34+ 0(45) cosac56cosa55 + cos(oc34+ ac45) sinoc56 

h4 «r- sin(«34 + a45) sinoc56 cosQ55 - cos(oc J4+ oc45) casac56 

H1 = sinoc34 (L2cos855 + S66sinoc23 sincc56) + M2X5 

H2 = sinoc34 cosoc56 (L2sing 
55 - a56sina23) + M2Y5 

A3 = sincc34 sinoc56 (L2sing 
55 - a56sinoc23) + M2Z5 

g4 = M2cosa34 cosa23 + N2 

gi = L1 sina34 cos®55 + M1X5 

X2 a L1 sinoc34 cosoc56 sing55 + M1 Y5 

K3 = L1 s1noc34 sincx56 sing55 + M1 Z5 

g4 s M1 cosoc34 coso 23 + N1 

J1 = sinoc34 (L0COSA55 - S66sina23 sina56) - M0X5 

J2 = sinac34 cosa56( L0sinQ55 + a56sina23) - 1M0Y5 

33= sinoc34 sinac56( L0sing 55 + a56sinoc23) - MOZ5 

J4 = MOcosa34 cos«23 + N0 

L2 sinoc 23 
[S33sin(ac34 - cc45) _ S44sinac45 

L, a 2. (a23cos(X 
23 sinoc45 + a45cosa45 sinoc23)I 

LO = sinoc23 CS33sin(°C34 + cc45) + S44sina45 I 
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M2 a (a45 - a34)sinoc23cos(oc34- cc45) 

- a23cosoc23 sin((x34- oc45) 

M, = 2sina23 sinac45 (S33 + S44cosoc34) 

MO to -(a45 + a34)si. noc23 cos(oc34+ cx45) 

- a23cosoc23 sin(oc34 + 0x45) 

N2 = sinoc23 sinor34 [(a45 - a34)cosac23 sin(OC34 - cc45) 

- a23sincc23 cos(cx34 - oc45) 1 

N1= 2S4sin2oc34 sinat23 cosoc23 sinoc45 

Na =- sinoc23 sinoc34 [(a45 + a34)cosac23 sin(oc34 + cc45) 

+ a23sinoc23cos(oc34+ °C45) I 

and where: - 

x5 = sinoc - sine55 

Y5 = -(cosoc45 sincx56+ sinac45 cosoc56 cosQ55) 

Z5 = (cosa45 cosoc56 - sina45 sinoc56 cose55) 

In the above coefficients, the terms Xi, Y1, and XOi, YO1' Z01 are 

given in Appendix III. (see also Chapter. 4). 

%I 
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The coefficients for the systems of equations, (9.42) and (9.43), 

for the RRRPCR six-]. ink spatial mechanism (see Chapter 9) may be listed 

as follows: - 

p22 a X4Xl - h2Y1 + h1 Z1 - Co=23 

p12 _ 2. (h2Xl + X4 1) 

p02 X4Xl + h2Y1 + h1 Z1 - cascx23 

p21 m 2. (Y4X1 + h3X4) 

56 X4X1 - Y4Y1) p11 = -4. (cos(x 

Pol _ -2. (Y, xl - h4X4) 

p20 = -X4X1 - h6Y1 + h5Zl - cosoc23 

pl0 = 2. (h6X1 - X4Y) 

p00 = X4X1 + h6Y1 + h5Z1 - cosa23 

q22 = a23(h2Z1 + h1 Y1)cosecoc23 + S33sina34 sing44 + S22X1 

+ a34cos®44 + a12cosQ1 + (a45 -a 56 + a61) 

q12 = 2"(52211 - a23h. 1Y: 1cosecoc23- S11sinoc61 + a12cosoc&1 sing) 

q02 = a23(h2Z1 - h1Y1)cosecc 23 + S33sinac34 sinQ44 - 522X1 

+ a34cos944 - a12cosA1 + (a45 - a56 - a61) 

q21 ° 2. [S22h3 - a23Z4X1 cosecoc23 + a12cos(oc56 - (X61) sin01 

+ S11 sin(ac56 - (c61) + S66sinac56 1 

q11 ° -4" (S22cos«56 R1 + a23Z4Y1 cosecoc 23 + a12cosac56 cosQ1 + a61 cosoc56) 

q01 = 2"[S22h4 + a23Z4X1 cosecoc23 - a12cos(oc56 + oc61) sing1 

+ S11 sin(oc56 + cc61) + S66sincc56 
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q20 -a23(h6Z1 + h5Y1)cosecoc23+ S33sill oc34sing 44 - S22X1 

+a34cos044 - a32cosQ1 + (a45 + a56 -a 61) 

q10 -2. 
(S22Y1 - a23h5X1 cosecoc23 - S11 sinoc61 "F a1 2cosa61 singt ) 

`; 00 a23(h67'1 - h5Y1)cosecc: 23 + S33sino: 34 sing 44 + S22X1 

+a34cosQ44 + a12cos01 + (a45 + a56 + a61) 

where; - 

hý cosc: 56 Z4 - sinoc56 Y4 

h2 = sincx56 Z4 + cosoc56 Y4 

h3 = sina56 Z1 + cos(ac56 ?1 

h4 = sinoc56 Z1 - cosa56? 1 

h5 = cosa56 Z4 + sincc56 Y4 

h6 = sinac56 Z4 - cosa56 Y4 

and where: - 

x4 = sincc34 sing 44 4 

Y4 = -(cosoc34 sina45 + sina34 cosa45 cos®44) 

Z4 = (cosac34 cosoc45 - sinoc34 sincx45 cos944) 

In the above coefficients, the terms Xj' Y. 
y Z1 are given in Appendix 'w7. I. 

(see also Chapter 4). 
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A. Coefficients for the RRRRCR Mechanism. 

The coefficients for the system of equations, (10.30), for the RRRRCR 

six-link spatial mechanism (see Chapter 10) may be listed as follows: - 

a1 = Z61(S33sinac23 sinoc34- S44 cosoc23) 

+'Y61(S22sinac34 + S33cosoc23 sinoc34 + S44sina23 ) 

+ X61 a45cotoc45 sinoc34 

- sina34 X061 

+ S44cosoc34 cosoc45 

a2 =z 61 
[a 

23s"'( cc 23 

+ Y61[a23cos(oc23 

+ X61[S22sin(oc2 3 

- 
[cos(oc23 °C34 

- (X 34) + a34cosoc23 cosec(x34 

+ a45cotoc45 cos(cc23 - oc34) J 

- C(34) - a34sinoc23 coseca34 

- a45cotoc45 sin(oc23 - cc34) 1 

- (X 34) - S33sinoc34 ] 

) Z061 - sin(cc23- (x34) YO61] 

- (a45cosecoc45 + a34cosoc45 cot(X 34) 

a3 s4[- Z61cos(oc23 - cc34) + Y61 sin(oc23 - a34) + cosoc45 j 

a4 =- Z61[a23sinoc23 + (a45cotac45 4 a34cotoc34) cosoc231 

- Y61[a23cosoc23 - (a45cotoc45 + a34cotgc34) sinoc231 

- X61(S22sinoc23 ++ S44sinoc34) 

+ (cosa(23Z061 - sinoc23Y061)' 

+ (a45cosoc34 cosecoc45 + a34cosoc45 coseca34) 

b1 = 2'CY6la45sina34 cotcc45 

X61(S22sinoc34 + S33cosa23 sinoc34 + S44 sincx23) 

- sina34 YO611 
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b2 2a 
(. 
jt Y61 [S22sin( c., 3 

- X61 [a23cos(a23 

- sin(oc23 - a34) 

- oc34 

- 0(34 

- a45c 

x06 

- S33sinoc34 3 

- a34si. ncx23 coscccx34 

otcx45 sin(rx23 - oc34) 1 

b3 = -2. S44sin(a23 - a34) X61 

b4 _ 2. 
[- 

Y61(S22sinoc23 + S44 sinoc34) 

+ X61 [a23cosoc23 - (a45cota45 + a34cot(Y34) sin. cs, 2 Ji 

+ sinoc23 x0611] 

c1 = Z61(S33sinac23 sin(x 34- S44cosct23) 

- Y61(S22sinoc34+ S33cosoc 23 sincx34+ S44sincx23) 

- X61a45cota45 sina34 

+ sinoc34 X061 

+ S44 cosac34 cosoc45 

c2 = Z61[a23sin(oc23 - «34) + a34cosoc23 cosecoc34 

+ a4Scotoc45 cos(oc23 -o 34) 
] 

_ Y61[a23cos(oc23 - 0(34) a34sinoc23 cosecoc34 

- a45cotoc45 sin(0(23 - oc34) ] 

- x61IS22sin(oc23 - °C34) - S33sinoc34 3 

_ [cos(cx23- 0(34) 2061 + sin(cc23- °C34) YO61] 

(a45cosec(c45 + a34cosoc45 cotoc34) 

c3 _ s441 - Z61 cos((X 23 - a34) - Y61 sin(a23 - oc34) + cos«451 

C4 =- z61[a23sinac23 + (a45cotoc45 + a34coto(34) cosoc23 

+ Y61[a23cosoc23 - (a45cotoc45 + a34cotoc34) sinoc23 

+ X61(S22sinoc23 + S44sinoc34) 

+ (cosac23 2061 + sin«23 Y061 

+ (a45cosoc34 cosecoc45 + a34coscc45 cosecoc34) 



348. 

d1=- Z61[a23sin(ac23 + (X 34) + a34cosoc23 cosecoc34 

+ a45cotoc45 cos(oc23 + °C34) J 

- Y61[a23cos(oc23+ cc34) a34sincx23 cosecoc34 

- a45cotoc45 sin(«23 + «34) a 

- X61[S22sin(«23 + oc34) + S33sinoc341 

+ [cos(oc23+ (X 34) 2061 - sin( «23+ a34) YO611 

+ (a45cosecoc45 + a34cosoc45 cota34) 

d2 =- Z61(S33sinac23 sina34+ S44cos«23) 

Y61(S22sinoc 34+ S33cosoc23 sina34- S44sinoc23) 

- X61 a45cotoc45 sina34 

+ sinoa34 X061 

+ S44 cosa34 cosa45 

d3 _ Z61[a23sinoc23 + (a45cotoc45 + a34cotoc34) cos«23 

_ Y61[a23cosoc23 - (a45cotoc45 + a34cot(X34) sinoc23 

_ X61(S22sin(x 23 - S44sinoc34) 

+ (cos«23 Z061 - sinoc23Y061) 

+ (a45cosoc34 cosecoc45 + a34cosoc45 cosecoc34) 

d4 S44EZ61cos(oc23 + a34) - Y61 sin(cc23 + a34) - cosa45 3 

e1 . 2. L- Y61[S22sin(oc23 + ac34) + S33sinoc34 

+ X61[a23cos(cc23 + cc34) - a34 sina23 cosecoc34 

- a45cotcx45 sin(oc23 + ac34) ] 

+ sin(oc23 + 0«34) X06J 

e2 = 2. [ - Y61a45sincc34 cotoc45 

+ X61(S22sinoc34 + S33cos«23 sina34 - S44 sina23) 

+ sinoc34 Y0611 
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) 
e3 = 2. j _ Y61(S22s1ncc23 -S sinoc3444 

(,. 
+ X61[a23cosoc23 - (a45cotcx45 + a34cotcc34) sinoc23 

+ sin«z3X061 

e4 = 2. S sin((x23 + oä. 34) X61 44 

f1=- Z61la23sin(cx23 -F" (X 34) + a34cosac23 coseca: 34 

. f. a45cot«45 cos(o. 23 + oc34) 3 

+ Y61la23cos(cx23 + oe34) a34sir_oc23 cosecoc34 

a45cotoc45 sin(oc23 + oc34) 

+ X61[S22sin(a23 + oc34) + S33sincc 343 

+ [cos(oc23 + (X 34) Z 061 + sin(cr23+ (X 34) YO613 

+ (a45coseca45 + a34cosac45 cotac34) 

p2 =- Z61(S33sinac23 sin(x 34+ S44cosa23) 

+ y61(0'22sinac34 + S33cos(x23 si. ncx34 - 544 sin_cx23) 

+ X61 a45cotot45 sinoc34 

- sinoc34 X061 

+ g44 cosoc34 cosoc45 

£- Z61Ca23sincx23 + (a45cotoc45 + a34cotoc34) cosoc23 
3 

+ Y61[a23cosoc 23 
(a45cotoc45+ a94cot&34) sincc231 

+ X61(S22sinoc23 - S44sinoc 34) 

+ (cosac2 
3 2061 + sincc23 Y061) 

+ (a45cosa34 coseca45 + a34coscx45 cosecoc34) 

f4 =S Z61cos(a23+ oc34) + Y61sin(a23+ cc34) - cosoc45 

B. Coefficients for the RRCRRR Mechanism. 

The coefficients for the system of equations, (10.32), for the RRCRRR 

six-link spatial mechanism (see Chapter 10) may be listed as follows: - 
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a; = a12sinoc34 R1 sing2 

+ a45sinoc34 cotoc45 (P1 cosQ2 - Q1 sin82) 

(a56 - a61) sincc34 [sin(oc56 - oc61) U21 - cos(oc56 - cx 61) V211 

- 
[S11 sin(ac56 - oc61) + S66sinoc56 ]sinoc34 W12 

+ S22sinoc34(P1sing 2+ Q1cosQ2) 

+ S33sinoc34 [cosoc23 (P1sing 
2+ Q1cos82) + sinoc23 R1] 

+ S4Lsinoc23 (P1 sing2 + Q1 coso2) - cosoc23 R1] 

+ S44 coscx34 cosoc45 

a2 =- a12[cos(oc56 - °C61) Q2 + sin(«S6 - a61) R2cosQ1] 

+ a23[cos(oc23 - (x34) (P1 sina2 + Q1cosQ2) + sin(oc23 - °x34) R1J 

- a34cosecoc34 [sin(oc56 °C61) (X2sinQ1 + Y2cos01) - cos(oc56 - or 61)221 

- a45Coto( 45 
[sin(oc56 - cc61) (P2sinQ1 + Q2cosQ1) - cos(oc56 - cc61) R21 

+ (a56 - a61) [cos(oc56 
- oc61) (P2sinQ1 + Q2cosQ1) + sin(a56 - oc61)R 21 

+ [S11 sin(a56 - cc61) + S66sinoc561 (P2cosQ1 - Q2sinQ1) 

+ [S22sin(a23 - (x 34) - S33sincx34 ] (P1 cosQ2 - Q1 sing2) 

_ (a34cota34 cosa45 + a45cosecoc45) 

a3 = s, fsin(oc56 - oc61) (P2sinQ1 + Q2cosQ1) -- cos(0c56 - oc61) R2 + cosa45 

a4 a12[cos(oc56 - a61) ?2+ sin(a56 oc61) Z2cosQ1] 

- a23[cosac23(P1sing 2+ Qlcose2) + sinoc23R1] 

+ (a34cotoc34+ a45cotoc45) [sinoc23, (P1sing 
2+ Q1cosQ2) - cosoc23R1] 

- 
(a56 - a61) [cos((j6 

- oc61) (X2sinQ1 + Y2coso1) + sin(oc56 -o 61) Z21 

- 
[S11 sin(ac56 o(61) + S66sinoc56 ] (X2cosQ1 - ? 

2sin81 

- (S22sinoc23 + S44sina34) (P1 cosQ2 - Q1 sing2) 

+ (a34cosecoc34 cosoc45 + a45cosecoc45 cosoc34) 
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bl, = 2. [a12sinoc34 sinoc56 U21 singt 

(a45cotoc45 sinoc56 - a56cosoc56) sinoc34 X112 

+ sinoc34 sinoc56 (S11V21 + S22V12) 

+ S33sinac34 sinoc56 (sinoc23 U12 + cosoc 23 V12) 

- S44 sinac56 (X2coso1 -- 2sing1 

+ S66sina34 sina56 (sinoc61 U21 + cosa61 v21)] 

b2 = 2. E a12sinoc56 R2sing 1 

+ a23sinoc56[sin((x 23- «34) u12 + cos(oc23- cc34)v 121 

+ a34sina56 cosecoc34 (X2cosQ1 - Y2sing) 

+ (a45sinoc56 cota45 - a56cosa56) (P2cosQ1 - Q2sin91) 

+ S11 sina56(P2sing 1+ P2cosQ1) 

- ES22sin(a23 °C34) - S33sina34 ]sinoc56 W12 

+ S66sinocS6 [cosoc61 (P2sing 
1+ Q2cos81) - sina61 R2, 

] 

sinoc56( P2cosQ1 - Q2sing, ) b3 -2. S 44 

bý = 2. E12sina56 Z2sing1 
4 

- a23sinoc56 (sinoc23U12 + cosa23V12) 

[(a34cotoc34 + a45cotoc45) sincx56 - a56cosoc561 (3t 
2cosQ1 - ? 

2sin81) 

- S11 sina56 (X2sing 
1+ 

Y2cos81) 

+ (S22sina23 + S44 sino: 34) sincx56 W12 

_ S66sinoc56 Ccoscx61 (X2sing 
1+ Y2cosQ1) - sina61 Z2]] 
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Lt a sinoc N sing 1 12 34 12 

- a45sino; 34 cotoc45 (L1 cosQ2 - M1 sing2) 

- 
(a56 + a61) sinoc34 [sin(cc56 + oc61) U21 + cos((X 56 + cx61) V21 ] 

+ {S11 sin(oc56 + (c61) + S66sinoc56 ]sincx34 W12 

-S 22 sinac 34 
(L 

1 sing 2+ M1 cosQ2) 

- S33sinoc34 [cosoc23 (L1 sing2 + M1 cosQ2) -- sinac23 N11 

- S44[sinac23 (L1 sing2 + M1 cosQ2) + cosa23 N1 

+ S44 cosa34 cosa45 

C12 a- a121cos(oc 56+ a 61) Q2 - sin(cx56+ oa61) R2cos®1] 

- a23[cos(oc23 cc34) (L1sing 
2+ M1cosQ2) - sin(oc23- cc34) N1] 

+ a34cosecoc34 Esin(oc56 + cx61)(R2 sing, + -7 2cosQ) + cos((X 56 + cx61) 223 

+ a45cotac45 [sin(ac56 + oc61) (P2sinA1 + Q2cos91) + cos(oc56 +c 61) R21 

- (a56 + a61) [cos((x56 + cx61) (P2sing 
1+ 

Q2cosQ1) - sin(oc 6+ (X 61) R2] 

- 
[S11 sin((x 56 + a61) + S66sinoc56 ] (P2cosO1 - Q2sing) 

- 
IS22sin(oc23 - (x34) - S33sinoc34 ] (L1 cosO2 - M1 sing`) 

- 
(a34cotoc34 cos(X 45 + a45coseccc45) 

C'3 =- g44[sin(«56 + oc61) (P2sing, + Q2cosQ1) + cos((X 56 + oc61) R2 - cosoc45 1 

c= a12[cos(oc56 + ac61) Y2 - sin(oc56 + ac 
4 61) 

22cose11 

+ a23[cosa23 (L1 sin92 + M1 cosQ2) - sinoc23 N, ] 

- (a34coto: 34+ a45cotoc45) [sinoc23 (L, sin®2 + M1coso2) + cosoc23N1] 

+ (a56 + a61) Ccos(a56 + 0061) (X2sing1 + 12cos91) 
- sin(oc56 + oc61) Z2] 

+ [S11 sin(cx56 + oc61) + S66sinoc56 ] (X2cosQ1 - Y2sing1) 

+ (S22sincx23+ S44sinoc34) (L1cosQ2 - M1sing 2) 

+ (a34cosecoc34 cosa45 + a45cosecoc45 cos(X 34) 
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a1 a12[cos((x55 - oc61) M2 + sin(oc56 - ac61) N2cos01] 

a 23[cos( oc 23 + oc34) (P1sing 
2+ Q1cose2) + sin(c 23+ cc3.4) R1J 

+ a34cosecoc34 [sin(cc56 
- oc61) (X2sing 

1+ Y2cosA1) - cos(oc56 - °c. 61) X21 

+ a45cotoc45 Esin(cx56 - cc61) (L2sing 
1+ M2cosQ1) - cos(cx56 - cx61) N21 

(a56 a61) Ccos((x56 - ac61) (L2sing 
1+ M2cos81) + sin(oc56 - oc61) Nf 21 

- [511 sin(«56 - °C61) + S66sincx56 ] (L2cosQ1 - M2sing ) 

- [S22sin(oc23 + cc34) + S33sinoc34 3 (P1 coso2 - Q1 sing2) 

+ (a34cotoc34 cosoc45 + a45coseccc45) 

d2 =- a12sinoc34 R1 sing2 

- a45sinoc34 cotoc45 (P1cosQ2 - Q1 sinQ2) 

+ (a56 - a61)sinot34 Esin(oc56- cx61) U21 - cos(c 56- (X6 i) V21-1 

+ [S11 sin(oc56 - oc61) + S66sincx56 ]sincx34 W12 

- S22sinoc34(P1sing 2+ 
Q1cos92) 

- S33sina34[cosoc23 (P1sing 
2+ 

Q1cos92) + sinoc23R1] 

+ S, Esinoc23 (P1 sin82 + Q1 cos®2) - cosoc23 R1] 

+ S44 (coscx34 cos«4S) 

d3 = a12Ecos(ac56 - a61) Y2 + sin( (x56 - oc61) 2cos61 
] 

_ a23[cosoc23 (P1 sing2 + Q1 cosQ2) + sinoc23 R1] 

+ (a34 coto 34 + a45cotoc45) Esinoc23 (P1 sing2 + Q1 cosQ2) - r_oscc23 R11 

_ 
(a a) [c: os(a -a) (X sinQ1 +Y cosA) + sin(oc56- a61) Z2] 56 61 56 61 2121 

- ES1 
1 sin(a56 -a 61) + S66sincx561 (X2cosA1 - Y2sing1) 

- (S22sinoc23 - S4sinoc34) (P1 cosQ2 - Q1 sin92) 

+ (a34cosecoc34 cosoc45 + a45coseca45 cosa34 

d4 ý S4sin(a56 - (x61) (L2sing1 + M2cos81) - cos(rx56 - a61) N2 + cosa45 
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ell = 2, 
Eal 

2sinoc56 N2sing 1 

- a23sinoc56 [sin(oc23 + oc34) U12 + cos(cx23 + oc34) V, 23 

a34sinac56 cosecoc34 (R2cosQ1 - Y2sing, ) 

- (a45sinoc56 cotoc45 - a56cosoc56) (L2cosQ1 - M2sz. nQ 1) 

- S11sinoc56(L2sin81 + M2cos®1) 

+ CS22sin(a23 + oc34) + S33sinoc34 ]si. noc56 w1 ?. 

- S66sinoc56 [cosoc61 (L2Sing 
1+ It2cosQ) - sincx61 N2] 

1 

t e2 oe 2. [- a12sinoc 34 sinac56 U21 sing 

+ (a45cotoc45 sinoc56- a56cosoc56) sinoc34W12 

- sincc34 sinoc56 (S11V21 + S22V 12) 

- S33sincc34 sinac56 (sincx23 U12 + cosoc23 V12) 

- S44sina56(X2cosQ1 - Y2sin®1) 

- S66sinoc34 sinoc56 (sinoc61 U21 + cost 61 V21)] 

e3 = 2. 
[ 

12sinoc56 
22sing 

1 

_a23sinoc56 (sinoc23U12 + cosoc23V12) 

- 
[(a34cotoc34 + a45cotac45) °56 - a56cosa561 (X2cose1 - Y2sing) 

S1lsinac56(X2sing 1+ 
? 

2cosQ1) 

+ (S22sino(23 -- S44 sinoc34) sincx56 W12 

S66sinoc56[cosoc61 (X2sine1 +1 2costa, 
) - sin°61 2,2]] 

e4 . 2. S44 sina56 (L1- M2sing) 
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a+ oc sin(oc cxNcosO12[cos((X56 6) M2 - 56 61) 2J 

+ a23[cos(oc23+ cx34) (L1sing 
2+ M1cosQ2) - sin(0c23+ cx34) N1] 

- a34cosecac34 [sin(oc56 + °x61) (X2sing1 + Y2cosQ1) + cos(oc56 + «61) z21 

- a45cotoc45 [sin(cx56 + (X61) (L2sing1 + M9cos91) + cos(oc56 + (X 61) N2] 

+ (a56 + a61) icos(oc56 + cx61) (L2sing 
1+ M2cosQ1) - sin(oc56 + oc61) N2] 

+ [S11 sin(oc56 + cc61) + S66sinac561 (L2cos91 - M2sing) 

+ ES22sin(oc23+ «34) + S33sincx341 (L1cos92 - ml sing 2) 

+ (a34cotoc34 cosoc45 + a45cosecac45) 

f2 =- a12sinac34 N1 sing2 

+. a45sincc34 cotoc45 (L1 cosQ2 - M1 sing2) 

+ (a56 
.+ a61) sinoc34 Csin(oc56 + cc61) U21 + cos(oc56 + oc61) V21J 

- [S11 sin(oc56 + oc61) + S66sinoc56 ]sina34 W12 

+ S22sinoc34 (L1sing 
2+ M1cosQ2) 

+ S33sinoc34[cosoc23 (L1s'nQ2 + M1cos82) - sinoc`3Nil 

- SEsinoc23 (L1 sing2 + M1 cosQ2) + cosat23 N1 

+ S44cosoc34 coscc45 

ff =3 a12Ccos(oc56 + (x61) 172 - sin(«56 + (c61) t2cosQ, ] 

+ a23[cosoc23 (L1 sing2 + M1 cosQ2) - sinoc23 Nil 

(a34cota34+ a45cotac4) [sinoc23 (L1sinQ2 + M1 cosQ2) + cosoc23N1] 

+ (a56 + a61) [cos(oc56 + oc61) (X2sinO; + Y2cosol) - sin(oc56 + (x61) ZLJ 

+ [s11 sin(oc56 + 0(61) + S66sinoc56 ] (X2coso1 - Y2sing, ) 

+ (S22sinac23- S44 sinoc34) (L1 cos82 - M1 sin®2) 

+ (a34cosecac34 cosoc45 + a45cosecoc45 cos(X 34) 

ft r. S 4sin(« +a) (L sing +M cosA) + cos(a +a- cosy 44 56 61 2121 56 61)g2 45 
1 
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C. Terms Used in the Above Coefficients. 

In the above coefficients, a,,..., fit at,..., fi (i 1,..., 4) the 

terms P1, P2,. etc., are defined as follows: -- 

p1 = sin(a56 -c c61) sing1 

Q1 ý Ecos(oc56 = cc61) sinoc12 - sin(a56 -° 61) coso«12 cosQ1], 

R1 = cos(«56 - °C 61) cosoc12 + sin(oc56 °C61) sina12 cosol] 

p2 sin(ac23 - oc34) singt 

Q2 -[cos((x23 - oc 34) sinoc12 + sin(CC23 - (X34) coscx12 cose21 

R2 _ [cos(oc23 - 0(34) cosoc12 - sin(cx23 - 0: 34) sina12 cosQ2] 

L1 = sin((x 56 + oc61) sin91 

M1 = -{cos(oc56 + (X 61) sincx12 + sin(«56 f °(61) coscc12 cosQ 1] 

N1 a [cos(oc 
56 + oc61 } cosvc12 - sin(oc56 + oc61 ) sinoc12 cosQ1] 

L2 = sin((x 23 + oc34) singt 

M2 = . {cos(oc23+ a34) sinoc12+ sin(oc23+ cc34) cosoc12 cosO2] 

N2 = [cos((x23 + oc34) coscx12 - sin(oc23 + cc34) sinoc12 cosQ2J 

U12 , sinal2 sin81 

V12 = _(cosQ1 sing2 + sing 1cosQ2cosoc12) 

w"1 2 12 
(cos81cosQ2 - sin61sing 2cosoc12) - 

U21 sina12 singt 

v21 ^ -(cosQ2sing 1+ sing 2cosQ1 coscx12) 

X2 sina23 singt 

-. -(cosa23 sina12 + sina23 cosa, 2 cosQ2) 

%2 - (cosac23 cosa12 - sinoc23 sinoc12 cosQ2) 
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X0612 = (X061 cosA2 -- Y061 sin02) - S22(X61 sin02 + Y61 cosQ2) 

Y0612 `- a23Z612 + 522coso: 
23X612 

+ Ccosoc23 (X061 sinQ2 + Y061 cos82) - sinoc23 20611 

20612 a23Y612 + S22sinoc23X612 

+ [sincc23 (X061 sin82 + Y061 cos82) + cosoc23 20611 

X061 - 
(X06cosQ1 - Y06sing1) - S11(X6sing1 + Y6cosQ1) 

Y061 r- a12Z61 + S11cosoc12 X61 

+ [cosoc12 (X06sing 
1. YQ6cos91) - sina12 Z061 

2061 = a12Y61 + S11 sincx1 2 X61 

---+'[sina (X sino +Y cosA) + cosy z 12 06 1 06 1 12 061 

x06 r a56cosoc56 sing6 + S66sincx56 cose6 

Y06 _ a61Z6 + S66cosoc61 X6 

+a56(sinoc61 sinoc56 - coscx61 cosoc56 cosA6) 

Z06 a61Y6 + S66sinac61 X6 

_a56(cosoc61 sinoc56 + sinoc61 cosoc 56 cosQ6) 

where the terms X612' Y612" 2612' X61' Y611 Z61, X6' Y6 and Z6 are defined 

in Appendix III (see also Chapter 4). 
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