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A Statistical Mechanics Approach for an Effective, Scalable, and 

Reliable Distributed Load Balancing Scheme for Grid Networks 

By 

Osama Abu-Rahmeh 

Abstract 

The advances in computer and networking technologies over the past decades 

produced new type of collaborative computing environment called Grid Networks. 

Grid network is a parallel and distributed computing network system that possesses 

the ability to achieve a higher computing throughput by taking advantage of many 

computing resources available in the network. To achieve a scalable and reliable 
Grid network system, the workload needs to be efficiently distributed among the 

resources accessible on the network. 

A novel distributed algorithm based on statistical mechanics that provides an 

efficient load-balancing paradigm without any centralised monitoring is proposed 
here. The resulting load-balancer would be integrated into Grid network to increase 

its efficiency and resources utilisation. This distributed and scalable load-balancing 

framework is conducted using the biased random sampling (BRS) algorithm. 

In this thesis, a novel statistical mechanics approach that gives a distributed load- 

balancing scheme by generating almost regular networks is proposed. The generated 

network system is self-organised and depends only on local information for load 

distribution and resource discovery. The in-degree of each node refers to its free 

resources, and job assignment and resource updating processes required for load 

balancing are accomplished by using random sampling (RS). An analytical solution 

for the stationary degree distributions has been derived that confirms that the edge 
distribution of the proposed network system is compatible with ER random 

networks. Therefore, the generated network system can provide an effective load- 

balancing paradigm for the distributed resources accessible on large-scale network 
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systems. Furthermore, it has been demonstrated that introducing a geographic 

awareness factor in the random walk sampling can reduce the effects of 

communication latency in the Grid network environment. Theoretical and simulation 

results prove that the proposed BRS load-balancing scheme provides an effective, 

scalable, and reliable distributed load-balancing scheme for the distributed resources 

available on Grid networks. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Improvements in computer and networking technologies have produced a dramatic 

increase in communication and computer capabilities. During the past decades, 

numerous methods have been developed to maximise the use of networked 

computers for large-scale computing, and several protocols have been developed to 

efficiently utilise resources within a distributed computing system. 

Large-scale computing networks enabled a new kind of application to emerge where 

the network is populated with services and devices with different Quality of Service 

(QoS) requirements. Therefore, next-generation systems will require predictable 

behaviour in areas such as throughput, load balancing, routing, scalability, 

dependability, and security. There is a need for more flexible network systems that 

can adapt to dynamic changes in application requirements and environmental 

conditions, and its flexibility should not be at the expense of reliability or security. 

Moreover, the spread of the Internet as well as the availability of powerful computers 

and high-speed network technologies are rapidly changing the computing landscape 

and society. All these developments in technology have led to the possibility of using 

wide-area distributed computers for solving large-scale problems. 

Large-scale computing systems can provide higher throughput computing by taking 
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advantage of many networked computers that create a virtual computing architecture 

to distribute process execution between the computers in the network. An example of 

such network system is the Grid Network (Foster and Kesselman, 1999). 

Grid Network is a parallel and distributed computing network system that utilises the 

available resources in the network to solve large-scale computation problem. With 

Grid Network, organisations can optimise computing and data resources, pool them 

for large capacity workloads, share them across networks and enable collaboration. 

Therefore, Grid Networks possess the ability to achieve a higher throughput 

computing by taking advantage of many computing resources available in the 

network. However, to achieve a scalable and reliable Grid Network system, the 

workload needs to be efficiently distributed among the resources accessible on the 

network. 

In this thesis, a novel distributed algorithm based on statistical mechanics that 

provides a load-balancing paradigm without any centralised monitoring, is proposed. 

The resulting load-balancer would be integrated in Grid Network to increase its 

efficiency and resources utilisation. The proposed load-balancing framework is 

implemented using biased random sampling (BRS) technique. The generated 

network system provides an effective, scalable, and reliable non-centralised load- 

balancing scheme for the distributed resources available on Grid Networks. 

1.2 Research Motivation 

Grid Network is an active research field (NGG2,2004). There are several challenges 

that need to be addressed in order to design and optimise Grid Networks. Research is 
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ongoing in a number of areas including resource allocation, load distribution, 

mathematical models, performance measurements, routing mechanisms, and fault 

tolerance techniques (Kephart and Chess, 2003; Foster, 2002; NGG2,2004; Favarim 

et al., 2003; Jennings, 2000). 

In order to meet these challenges, appropriate models and techniques are needed for 

understanding, controlling, and designing the emergent behaviour in large network 

systems, such as Internet and Grid Networks. Fundamental mathematical work is 

needed to understand how the properties of self-configuration, self-optimisation, 

self-maintenance, and robustness arise from or depend on the behaviours and goals 

of individual elements. In addition, it can be used to investigate the pattern and type 

of interactions among them, and the external influences or demands on the system. 

Recently, a new area called Complex Networks Theory emerged (Scharnhorst, 

2003). Complex Networks theory is the field where the structural and dynamic 

properties of networks are analysed. Statistical models of large networked systems 

will let systems detect or predict overall performance problems from the stream of 

data from individual devices. 

There has been a large improvement in the field of Complex Networks due to 

combining ideas and analytical tools from statistical mechanics. These analytical 

tools have led to develop a number of protocols and models for Complex Networks 

that result in predictable properties. Networks have various dynamical processes, and 

their topology determines their dynamical features. 
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Many models and concepts have been developed to describe and analyse the Internet 

and the web (Adamic, 1999; Albert, et al., 1999; Dorogovtsev, et al., 2000; Faloutsos 

et al., 1999; Huberman, 2001; Huberman and Adamic, 1999; Tadic, 2001; Vazquez 

et at., 2002; Krapivsky and Redner, 2002; Barabäsi, 2001). 

However, analysing and studying Grid Networks using Complex Networks theory is 

still new and a challenging research problem. Besides, the current models do not 

allow the networks to grow up and increase its size, but they exist in a stationary 

state that supports different network topologies (Slanina and Kotrla, 2000, Slanina 

and Kotrla, 1999, Newman, et al., 2001). Thus, it is still a challenge to design new 

models that based on selection or optimisation mechanisms would produce 

topologies similar to those seen in the real world. 

1.3 Research Obiectives 

Grid Network consist of millions of interconnected nodes, and with its huge number 

of distributed resources, it is likely that some nodes are heavily loaded while others 

are lightly loaded or even idle. To achieve maximum use of these large systems, it is 

desired that the workload be distributed among all the nodes so that resource 

utilisation is efficient and maximum performance is achieved. A load distribution 

scheme must decide where and when a given task should be executed in order to 

increase performance. Therefore, implementing an effective load-balancing 

technique that distributes the load among the available nodes in the network can 

improve overall system performance. Thus, when one node is overwhelmed by work, 

it can make use of unused computing power in the network. Therefore, integrating an 

effective load-balancing paradigm for an efficient load distribution and resource 
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discovery will have a significant influence in implementing the self-configuring and 

self-optimising characteristics of Grid Networks. 

The principal objectives of this research can be summarised as follows: 

1. To develop a statistical mechanics network system based on Complex 

Networks theory that would provide an efficient load-balancing scheme for 

Grid Networks. 

2. To analyse and derive the stationary degree distribution for load distribution 

in the proposed network system. 

3. To develop an efficient, reliable, and scalable load-balancing protocol 

suitable for use in large-scale networks based on a biased random sampling 

(BRS) scheme. 

4. To determine the proper length of random sampling required to balance the 

network. 

S. To evaluate the performance of the proposed load-balancing scheme through 

Simulations and analyse the results. The random sampling will be biased in 

various ways to select the nodes, such as: 

a. Geographical position and communication latency between the nodes. 

b. Computational power (such as CPU) available for each node. 

c. Number of resources available for each node. 

6. To extend the network simulations to take into consideration the 

heterogeneous nature of nodes capability and job size to predict the 

performance of the algorithm in large-scale networks. 

7. To evaluate the efficiency, scalability, and reliability of the proposed load 

balancing mechanism in various situations. 
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1.4 Contributions 

The field of load balancing is an active research area and many techniques and 

problem formulations have been used. However, implementing an efficient load 

balancing mechanism is a challenging research area. There is a need to consider the 

cases where services are time-bound, or require certain QoS requirements, or when 

jobs' execution process depends on the outcome of other jobs. 

To address these issues, a novel statistical mechanics system that provides a 

distributed load balancing mechanism is proposed in this thesis. This novel network 

system leads to a decentralised, self-organised, and scalable network that depends 

only on local information for load distribution and resource update. Since the 

resulting network system is based on random graphs, there is a higher possibility to 

find a connected path between almost any two nodes in the system. Therefore, it will 

be more resilient to random errors. 

A novel load-balancing protocol based on random sampling is developed that is 

suitable for use in both homogeneous and heterogeneous large-scale networks. A 

stationary solution for load distribution which uses random sampling technique to 

distribute and balance the load in the network has been derived. Analytical and 

simulation results have been used to evaluate and validate the proposed load- 

balancing scheme. 

Though similar techniques exist for load balancing, the proposed scheme has the 

advantage of dynamically reshaping the network structure to efficiently distribute the 

load. Moreover, this load-balancing paradigm will not require any monitoring 
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mechanisms since it is intrinsic in the network structure, and the random sampling 

algorithm which will be used for node selection will depend on local information 

about the free resources available for each node. 

The proposed load-balancing scheme uses a decentralised and scalable balancing 

algorithm. While other decentralised load-balancing algorithms have been proposed 

in the literature, performance and scalability analysis for the algorithms which 

promise nearly optimal performance as the number of nodes becomes very large 

have been lacking. Scalability is capability of a load-balancing algorithm to work 

efficiently when applied to a large number of nodes. It has been demonstrated that 

under ideal conditions, the network structure converges to a random graph that is at 

least as regular and balanced as Erdös-Renyi (ER) random graphs (Erdös and Renyi, 

1960). 

In addition, the random sampling technique is improved by biasing the sampling 

walk toward specific nodes such as unvisited nodes or nodes with certain properties 

instead of choosing them uniformly at random. Hence, the nodes' selection criteria 

will be based on a predefined criterion rather than selecting only the last node in the 

walk. Moreover, the number of sampling steps (or sampling length) will be limited to 

a specific length of order O(log N), where N is the number of nodes in the network. 

Another essential feature of the Grid Network is that the resources accessible in the 

network are distributed geographically. However, one of the fundamental challenges 

to run Grid applications across geographically distributed computational resources is 

to overcome the effects of the latency between them. Although high performance 

8 



clusters and supercomputers can deliver data to applications with a latency of few 

microseconds, latency across the wide area networks is measured typically in 

milliseconds. Thus, reducing the effects of communication latency is critical for 

achieving good performance with Grid applications that involve significant amount 

of communication. 

Therefore, a novel biased random sampling algorithm is proposed that optimises the 

communication latency in Grid Networks and thus enabling the network to achieve 

load balancing which is scalable and reliable. 

1.5 Thesis Structure 

The thesis is divided into eight Chapters. Chapter 1 is an introductory Chapter that 

outlines load balancing and its applications and the contributions of the thesis. 

Details of the scope of this research are also given here. In Chapter 2, the literature 

review related to Grid Networks is presented and a detailed review of the existing of 

techniques of load-balancing is given. Chapter 3 gives a review of Complex 

Networks Theory and discusses the concepts and standards of this area. Chapter 4 

presents the modelling techniques used to describe the networks as random 

networks. Chapter 5 proposes a novel biased random sampling (BRS) load balancing 

scheme for Grid Networks. the analytical solution for the stationary degree 

distribution of the network is presented here. Moreover, simulation description and 

implementation are summarised in this chapter. Performance evaluation of the 

proposed algorithm and the research results are reported in Chapter 6. In addition, 

the new latency optimising biased random sampling algorithm is presented here. In 

Chapter 7, conclusions are drawn from the research described in this thesis. 
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Furthermore, suggestions for further work are outlined in this Chapter. Finally, 

references are listed in Chapter 8. 
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Chapter 2 

LITERATURE REVIEW 

The spread of the Internet as well as the availability of powerful computers and high- 

speed network technologies at low-cost commodity components is rapidly changing 

the computing landscape and society. These technology opportunities have led to the 

possibility of using wide-area distributed computers for solving large-scale 

problems, leading to what is popularly known as Grid Network (Foster and 

Kesselman, 1999). 

2.1 Grid Network Technology 

Grid Network is a computing system that provides the ability to perform higher 

throughput computing by taking advantage of many networked computers to model a 

virtual computer architecture that is able to distribute process execution across a 

parallel infrastructure. Grid Network uses the resources of many separate computers 

connected by a network to solve large-scale computation problems. It is a type of 

parallel and distributed system that enables the sharing, selecting, and assembling of 

geographically distributed resources dynamically at runtime, depending on their 

capability, availability, cost, performance, and users' quality-of-service requirements. 

Grid Networks represent the idea of a promising infrastructure that is focused on 

networking together heterogeneous, multiple regional and national computing 

systems. Grid Networks enable software applications to integrate instruments, 
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displays, and computational and information resources that are managed by various 

organisations in widespread locations. It provides an abstraction for resource sharing 

and collaboration across multiple administrative domains. The concept resource 

covers a wide range of terms including physical resources (computation, 

communication, storage), informational resources (databases, archives, instruments), 

individuals (people and the expertise they represent), capabilities (software 

packages, brokering and scheduling services) and frameworks for access and control 

of these resources such as OGSA and Semantic Web (Foster, 2002). 

A Grid Network is a services-oriented architecture that contains heterogeneous 

systems and involves distributed computing over the Internet or any private network 

via open standards. It enables the virtualization of distributed computing and data 

resources such as processing, network bandwidth and storage capacity, to create a 

single system image, granting users and applications seamless access to vast IT 

capabilities. Just as an Internet, user views a unified instance of content via the Web; 

a Grid Network user essentially sees a single, large virtual computer. 

Therefore, Grid Networks will be a virtual infrastructure with specific computational 

semantics. It performs computation, solves problems, or provides service to a single 

or million clients. The Grid Network may consist of millions of interconnected 

nodes. A Grid Network node is an atomic unit forming an abstraction over resources, 

entailing what is hidden by the interfaces it provides. Nodes may provide new 

services, functions, or even new concepts that are unknown to clients, and they can 

be organised, at runtime, into a group in order to provide functionality and 

behaviours that none of its individual members has. The self-organising capabilities 
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of nodes aim at establishing higher robustness and lower costs for systems 

management. These capabilities are provided through a small, common set of 

facilities, such as highly scalable protocols for communication and membership 

management. 

At its core, Grid Network is based on an open standards and protocols (e. g. Globus, 

OGSA (Foster, et. al, 2002), Condor-G (Frey, 2001), GridFTP (Taylor, 2005) and 

Grid Resource Information Protocol (Czajkowski, 2001)) that facilitate 

communication across heterogeneous, geographically dispersed environments. With 

such infrastructure, organizations can optimize computing and data resources, pool 

them for large capacity workloads, and share them across networks, thus enabling 

collaboration. 

The Globus Project launched a research and development program aimed at creating 

a toolkit based on the Open Grid Service Architecture (OGSA) (Foster, et. al, 2002) 

that defines standard mechanisms for creating, naming, and discovering services and 

specifies various protocols to support accessing services. OGSA specifies an open 

standard for Grid Network protocols and interfaces, supplies Web services, and it is 

designed to enable large-scale cooperation and access to applications through the 

Internet. 

2.1.1 Grid Network and Autonomic Computing 

Autonomic Computing (Ganek and Corbi, 2003) initiative, which is focused on 

making software and servers that are self-optimising, self-configuring, self- 

protecting and self-healing, is closely related to the Grid Network concept. That is, 
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the principles of Autonomic Computing are similar to Grid Network principles 

which include the development of intelligent, open systems that are capable of 

adapting to varying circumstances and preparing resources to efficiently handle the 

workloads placed upon them. Therefore, autonomic technologies will help 

companies to manage their Grid Networks more easily and cost-effectively. And 

since the spread of the Grid Network can expand the domain of computing across 

many systems, a successful Grid Network system will require autonomic 

functionality. 

Like other elements of c-business on demand (the Internet, the Web, Linux, etc. ), 

Grid Network is more powerful with open standards. Work efforts on Grid Network 

and Autonomic Computing are creating important architectural models and new 

open industry standards which will help the IT industry to make progress toward 

more self-managing systems. 

2.1.2 Wireless Grid Networks 

The popularity of wireless devices, such as laptop computers, mobile phones, 

personal digital assistants, digital cameras, and so on, is rapidly increasing. These 

devices can be connected to wireless networks of increasing bandwidth, and software 

development kits are available that can be used by third parties to develop 

applications. Moreover, they can be used to access personal and public information, 

to store personal information, and to communicate with others. Therefore, what we 

expect from those devices is the right information displayed at the right time on the 

right device in the right format, and with the right level of intrusiveness upon the 

user's current tasks. This requires context-awareness: the location of the device, the 
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profile of the user(s), their current schedule and tasks, the capabilities of the 

interface, aspects of security and trust. Furthermore, they can also be used to capture 

information as tools to support the users in a creative process of collecting and 

working with information and knowledge (Globus, 2003). 

It is obvious that mobile devices will make significant demands on my information 

processing capabilities and computational infrastructure. It requires the automatic 

generation of information from multiple sources and customised for delivery to the 

user's device. Furthermore, it may require computation for information search and 

generation for the purposes of modelling and prediction, which in turn may inform 

the dynamic behaviour of the devices. In addition, it may require an on-demand and 

timely presentation of information, requiring dynamic composition and negotiation 

of services. This creates challenges for negotiation, coordination, and scheduling. 

To achieve this, Grid Network infrastructures are required. They require the 

assembly of data and computational resources to meet application requirements, they 

involve the creation and support of virtual organizations, and they need an 

infrastructure, which provides interoperability but also provides security and 

appropriate models for service negotiation and charging. They also require a user- 

centric perspective, working with context and user information, and new qualities of 

Grid Networks service to address the dynamic aspects such as timeliness and change. 

In addition, it would be desirable if mobile devices can co-operate independently 

from the central station in a distributed mobile ad hoc network to perform a set of 

services. This would be necessary in cases where the central station has been 

damaged or is temporarily unavailable. This is also necessary in cases where small 
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teams have to operate independently for some time, and local data can be cached, 

avoiding having overhead to communication links and computational capacity of the 

central station. This aspect also refers to the ability of the mobile staff to have access 

to remote information and databases distributed over the world. 

However, such applications on these types of devices introduce challenging 

problems. Devices face temporary and unannounced loss of network connectivity 

when they move. They need to discover other hosts in an ad hoc manner, and they 

are likely to have limited resources, such as low power battery, slow CPU, and little 

memory. Furthermore, they are required to react to frequent changes in the 

environment such as changes of location or context conditions, and variability of 

network bandwidth (Coulouris, et al., 2001). 

2.2 Grid Networks Architectures 

Grid Networks show a variation in purpose and architecture, however, there are few 

common techniques where communication between nodes occurs on a Grid 

Network. The two most common protocols are the master-slave and peer-to-peer 

(P2P) architectures. 

2.2.1 The Master-Slave Architecture 

The master-slave (or client-server) architecture is the least complicated and most 

common communication setup for Grid Network. It involves the use of a master 

node and one or more slave nodes. The master node sends control signals to the slave 

nodes and the client executes or responds to those commands. Many of the current 

Grid Network computers use the master-slave architecture. The master-slave 
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architecture uses a simple and direct communication between the nodes and the 

server, and since the instructions and tasks come from a centralised server, it can be 

easily verified and validated. Moreover, it is easy to return results as they are 

collected by the server controlling the nodes. However, reliability and scalability are 

a major challenge on a centralised architecture which makes it more liable to single 

point of failure. In addition, the server needs to support the clients with a lot of 

resources (such as: bandwidth, memory, CPU, disk) which will make it a bottleneck 

on the network with a large number of nodes (clients). 

Examples of master-slave based architecture include the BOINC (Anderson, D., 

2004) and the Globus (Globus Alliance, 2005) toolkit. BOINC is an open source 

framework built to power scientific projects; it is developed by a group of volunteers 

and participants from the University of California, Berkeley. BOINC forms the basis 

of several well known Grid Network computing projects including the SETI@Home 

project, which is a Grid Network computing application designed for a "scientific 

experiment that uses Internet-connected computers in the Search for Extraterrestrial 

Intelligence" (SETI Project 1999-2005). It is also used to power more generic 

community Grid Network initiatives, such as the world community Grid Network 

(IBM Corporation 2005b). 

The Globus Toolkit is another sophisticated open source Grid Network framework, 

which has many years of research and development behind it, and a number of 

developers from various universities around the world. It's targeted to a number of 

open and commercial research projects based around e-science and e-business 

applications (Globus Alliance 2005). 
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Both BOINC and the Globus Toolkit allow a developer or group of developers to 

access their application programming interface (API). This API exhibits 

functionality such as: message routing, XML Simple Object Access Protocol 

(SOAP), security control and definition, and retrieval of statistics, on top of the core 

features of other Grid Network. 

2.2.2 The Peer-to-Peer Architecture 

The peer-to-peer (P2P) architecture has been a more recent development as they 

involve the use of peer-to-peer protocols to manage the underlying communication 

channels. Peer-to-peer protocols have a large number of applications, and most of 

these protocols were originally designed to address the problem of decentralised 

message/content 'delivery. As these protocols have become more refined, 

standardised and understood by the developer community, the benefits of their 

application have become better understood. 

Although P2P's utility has not yet been fully realised outside of the content 

distribution space, a few new and promising frameworks have begun the 

implementation of a Grid Network framework based on P2P. (Mengotti, et al, 2002) 

describe one such framework based on the Gnutella P2P protocol, called the 

Gnutella Processing Unit (GPU). The GPU framework uses P2P communication as a 

way to send messages to client nodes (GPU team 2004-2005). 

The key difference between P2P and master-slave architectures lies in the control of 

resources and control delegation (Mengotti, 2004). In a P2P network, nodes join and 

leave the network without ever being connected to a master server; this is because all 
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nodes act as masters and/or slaves. Control messages and statistics are passed from 

one node to another through peering. This means that the Grid Network works 

cooperatively and the throughput of the Grid Network is determined by the number 

of connections that a client node has to its peers. 

The advantage of the P2P architecture is it is de-centralised and there is no need for 

dedicated servers since each node can act as both server and client. Thus, the larger 

the size of the network, the better is its reliability (Mengotti, et al, 2002). Moreover, 

since jobs can be given to the next available peer if a node goes offline, this makes 

the network reliable and more resilient to node failures. 

However, the acquisition of statistics is difficult as messages may need to be routed 

over several nodes. Moreover, processing overhead is involved in validating and 

verifying the authenticity of control signals or commands. Also, a dynamic technique 

is required for resource discovery and their availability. Some of the major technical 

challenges in P2P Grid Network computing include the construction of security 

measures needed to stop viral infections on the Grid Network and providing a trust 

model for inter-node communication. That is, a node must be able to verify the 

integrity and authenticity of a message sent by a peer. 

2.3 Load-balancing: A Background 

The development of Grid Networks requires solutions to a number of technical 

challenges (e. g., load balancing, routing, flow control, resource discovery and state 

maintenance, source and channel coding, power control, modem design, hardware, 
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etc. ). Among all these, the load balancing and state maintenance problems are of 

particular interest. 

Load-balancing is the process of distributing the computation workload across 

multiple machines/processors as evenly as possible with an objective to improve the 

overall system performance (Peixoto, 1996). The load distribution scheme must 

decide where and when a given job should be executed in order to increase 

performance. Application-level load-balancing algorithms concentrate on 

minimising the execution time of the jobs. System-level load-balancing and 

distributed scheduling focuses on maximising system throughput or the overall 

utilisation rate of the network. 

The objectives of load-balancing algorithms may vary and influence the design of 

the load distribution strategy (Riedl, and Richter, 1996). The typical objectives of 

load-balancing algorithms are: 

- To balance the distribution of workload. 

- To minimise the jobs average response time. 

- To maximise the network throughput. 

- To predict task response times in real-time systems. 

- To increase the reliability and fault-tolerance of the system. 

For example, it has been shown that in a heterogeneous system, the distribution of 

loads across the heavily loaded nodes into lightly loaded nodes would improve the 

performance of all nodes in the system (Zhou, 1988). 
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The performance of the load distribution mechanism may be viewed from either the 

workload or the system point of view. When considering performance from the 

process point of view, the metric used is often the individual job's completion time 

response. When viewing the system as a whole, it is desired that all jobs are being 

treated fairly and that the system throughput is improved. The system point of view 

of improving resource utilisation is compatible with the desire for maximum system 

throughput. Though, there is an inherent conflict in trying to optimise both response 

and throughput. In a parallel system, it is often required to run a single application 

composed of several tasks and performance is measured as the completion time of 

this application. 

When evaluating a load-balancing mechanism there are two properties which must 

be considered (Casavant and Kuhl, 1988): 

- Performance: the satisfaction of the tasks with how well the mechanism 

manages the resources in question. 

- Efficiency: the satisfaction of the tasks in terms of how costly it is to access 

the load distribution mechanism itself. 

In other words, the tasks and applications would like to quickly access the machines 

or processors, but do not want to be delayed by overhead problems associated with 

using the management function itself. The desirable system behaviour is that which 

has the highest level of performance possible while incurring the least overhead in 

doing it. 
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It is possible to identify some requirements which proved to be important for a 

general purpose load balancing strategy (Kunz, 1991): 

- No apriori knowledge about incoming tasks requirements. 

- No assumptions about the underlying network (topology, homogeneity, size, 

etc). 

- Dynamic, physically distributed, and cooperative decision making. 

- Minimisation of average/worst response time of tasks as performance criteria. 

2.4 Load-Balancing Components 

Generally, a load-balancing scheme consists of four components: information 

gathering, data transfer, decision making, and data relocation processes (Shivaratri, 

1992). 

2.4.1 The Information Gathering Process 

The information gathering process decides when information about the states of 

other nodes is to be collected, from which nodes and what information is collected. It 

collects the information of load distribution state and detects if there is differences in 

load distribution. It is also responsible for the broadcasting of each node's load 

information. 

A key issue is to identify a suitable load index which is able to describe the current 

load of a node. A number of load indices have been used in the literature: CPU 

queue length, CPU utilization, normalised response time, I/O queue length, memory 

utilization, context-switch rate, and system-call rate (Ferrari and Zhou, 1987, Kunz, 

1991). It has been observed that a task at a node is likely to demand services from a 
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number of resources, so it might be important to define load not only as a single 

resource in a node, but as a collection of resources. 

2.4.2 The Transfer Process 

The transfer process decides if there is a need to initiate load balancing across the 

system (Gustafson, 1988, Becker and Waldmann, 1994). Using load information, the 

transfer process determines when a node becomes appropriate to act as a sender 

(transfer a job to another node) or as a receiver (retrieve a job from another node). 

Transfer processes may be either based on thresholds or relative transfer processes. 

Threshold policies decide that a node is a sender if its load index exceeds a threshold 

TSe�der or a receiver if it falls below a threshold T,, 
ceier 

(Shivaratri, 1992). The choice 

of these thresholds is fundamental to the performance of the algorithm. Clearly the 

best threshold values depend on the system load and the task transfer cost. 

Relative transfer processes consider the difference between the load of a node and 

the loads of the other nodes in the network. Nodes might be considered able to 

participate in a transfer if their loads differ by more than some threshold function. 

They might then transfer some fixed number of tasks or a fraction of the load 

difference (Casavant and Kuhl, 1988, Kropf, 1996, Luling, et. al, 1991, Monien, 

1996, Scheurer, et. al, 1995, Xu, et. al, 1995). 

Additionally, the transfer process may be either periodic or event-triggered. The 

algorithm may periodically check if the node's state qualifies itself as a candidate for 

a task transfer or not. However, the great majority of the algorithms proposed in the 
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literature are event-triggered. If the state of the node or one of its neighbours 

changes, then, a task transfer may be possible. The state of a node may change 

because a task has ended or because a new task has been initiated. 

2.4.3 The Decision Making Process 

The decision making process calculates the optimal data distribution. Once a node 

decides to participate in a task transfer as a sender, a decision making process must 

select the task(s) to be transferred. The decision making process should consider 

several factors: 

- The overhead incurred in transferring the task should be minimised. 

- The execution time of the transferred task should be enough to justify the 

cost of the transfer. 

- The number of location-dependent resources needed by the selected task 

should be minimal. These resources include specific data, I/O devices 

(display, keyboard, disks, etc). 

2.4.4 The Data Relocation Process 

The data relocation process selects a suitable transfer node using information about 

the nodes' states for a job transfer transaction (Kald, 1988, Kumar, 1994). In other 

words, it locates the nodes to/from which a node can send/receive workload to 

improve overall system performance. It transfers the load from over-loaded 

machines to unloaded ones. Some algorithms try to find the best node among the 

same network cluster, while others just look for an acceptable node from the entire 

network. For example, in a random relocation algorithm, the destination node is 

randomly selected among all the nodes in the system. The random relocation scheme 
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chooses a random node without using any information about the target's state 

(Kumar, et. al, 1992, Shin and Chang, 1995). The random scheme yields substantial 

performance improvement over the non-load sharing case. The degree of 

performance improvement is surprisingly high for such a simple algorithm. The 

authors also claim that this is a very scalable algorithm since it does not collect any 

system state information. 

Some relocation processes use probabilistic schemes instead of state-dependent ones. 

Probabilistic schemes distribute tasks according to a set of predefined rules. Studies 

have shown that state-dependent relocation schemes consistently outperform their 

probabilistic counterparts (Stankovic, 1985). 

Data relocation processes can be generally classified as sender-initiated (Eager, et. 

al, 1986, Zhou, 1988), receiver-initiated (Eager, et. al, 1986, Lin and Raghavendra, 

1992), or symmetrically-initiated (Shivaratri, et. al, 1992, Willebeek-LeMair and 

Reeves, 1993, Feng, et. al, 2000, ). Sender-initiated policies are those where heavily- 

loaded nodes search for lightly-loaded nodes while receiver-initiated policies are 

those where lightly-loaded nodes search for suitable senders. Symmetrically-initiated 

policies combine the advantages of these two by requiring both senders and receivers 

to look for appropriate partners. 

The relocation process may deal with some restrictions when looking for a 

destination node. These restrictions may include resource requirements, tasks 

precedence, and data dependencies. 
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2.5 Load-Balancing Scalability and Stability 

A very important property of load-balancing policies is scalability, which implies 

that an algorithm should be independent of system size and physical resource 

characteristics such as communication bandwidth and processor speed. Scalability 

analysis of a parallel algorithm and architecture combination is very useful to predict 

the performance of a system when there are changes on the number of nodes or on 

the size of the problem instance being solved. 

Stability is the ability of the algorithm to detect when the effects of further actions 

will not improve the system state (Peixoto, 1996). A stable algorithm will return the 

system to a state of equilibrium after a disruption from this equilibrium. In the 

context of load distribution, a disruption is the arrival or removal of tasks, which 

may cause imbalances between the nodes loads. Stability is a necessity for 

scalability. 

2.6 Load-Balancing Approaches 

Based on the different approaches used in implementing the four load distribution 

components, load-balancing techniques can be classified into the following two 

categories. 

2.6.1 Static vs. Dynamic 

Load-balancing policies can be broadly characterised as static, dynamic or adaptive. 

Static policies make task transfer decisions deterministically or probabilistically 

without taking in consideration the current state of the system. Static schemes 

assume previous knowledge of both application and system state (Braun, et. al, 
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2001). This approach can be effective when the workload can be sufficiently well 

characterised before the actual execution, but it fails to adjust to the fluctuations in 

system load. Static load balancing is advantageous in terms of low overhead as the 

decision is only made once before computation. However, it cannot adapt to changes 

of application requirement and system state. 

Dynamic load-balancing is proposed to make decision based on the current system 

state and can rapidly adapt to workload fluctuations (Torrellas, et. al, 1995, Tzen and 

Ni, 1993). Dynamic load-balancing algorithm use system-state information to make 

load distribution decisions, so they have the potential to outperform static policies by 

improving the quality of their decisions. Essentially dynamic load distribution 

policies improve performance by exploiting short-term fluctuations in the system- 

state. Because they must collect state information of the system, they incur more 

communication overhead than their static counterparts, but this overhead is often 

well spent. 

Adaptive load-balancing policies adapt their activities by dynamically changing their 

parameters, or even their algorithms, to suit the changing system state. While a 

dynamic policy takes system-state inputs into account when making its decisions, an 

adaptive policy takes system-state into account to modify either its parameters or the 

scheduling policy itself. The performance of load-balancing algorithms is very 

sensible to their parameters, which suggests that adaptive load distribution may be 

able to provide good performance when system-state changes widely (Becker and 

Waldmann, 1995, Casavant, 1988, Zhou, 1988, Shivaratri, et. al, 1992). 
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2.6.2 Centralised vs. Distributed 

Load-balancing algorithms can be centralised, distributed or some hybrid form of 

both. Centralised means that information is collected at a single physical location at 

which all scheduling decisions are made. In centralised schemes, a central server 

collects load information and making decision based on global knowledge. 

Centralised schemes usually require global synchronisation to obtain global 

information at the cost of high synchronisation cost. 

Distributed load balancing allows every machine to calculate its local view of load 

distribution and makes decision based on the partial knowledge. Typical distributed 

load balancing schemes are neighbour based, such as diffusion method 

(Subramanian and Scherson, 1994, Loväsz and Winkler, 1995). The lack of global 

knowledge slows down the convergence rate of global balancing. 

Even though some authors claim that centralised techniques achieve better results 

and are scalable with the size of the network, the great majority agrees that a load 

balancing policy must itself be distributed in order to avoid hotspots and thus be 

scalable. In this research work, Theimer and Lantz claim that the centralised 

approach is scalable and more efficient than a distributed one (Theimer and Lantz, 

1989). However, they assume that most of the nodes are idle and the decentralised 

policy that has been studied here is based on each node broadcasting its load level to 

the system. They claim that if inter-processor communication is efficient and the 

system size is limited, the centralised approach to load information dissemination 

and task placement may be simple and effective (Theimer and Lantz, 1989). In 
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(Ozden, 1993), the author shows that a centralised scheme will scale only until a 

given number of nodes. 

However, most authors argue that centralised strategies are not scalable because the 

central component is potentially a bottleneck, leading to less performance on larger 

networks (Kremien, and Kramer, 1992, Luling and Monien, 1993). If one of the 

basic requirements of the load distribution strategy is to make no assumptions about 

the underlying network, including its size, as stated before, then it should be 

distributed in order to scale with system size. The functional capacity of any 

centralised server is bounded and cannot grow when the system where it is 

embedded is enlarged. To be independent of system size an algorithm should be 

completely distributed, taking advantage of distribution by maintaining only a partial 

view of the system at each node (Kremien, and Kramer, 1992, Luling and Monien, 

1993, Ozden, et. al, 1993). 

The "Hicon" concept provides dynamic load balancing support on heterogeneous 

workstation networks (Becker and Zedelmayr, 1994, Becker, 1995). It employs 

distributed clustering, where each cluster is managed by a centralised load balancing 

component and inter-cluster load sharing is performed by using a decentralised 

policy. The centralised approach provides sophisticated load control, while the 

decentralised coupling of clusters ensures scalability. 

Central load-balancing algorithms has no logical drawbacks, but it is not scalable as 

it will cause processing time overhead and delays to grow with system activity and 
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the number of processors. Above certain limit of system size, centralised approaches 

no longer offer efficient overall performance. 

2.7 Load Distribution in Grid Networks 

Grid Networks are typically a collection of various resources with different owners, 

but make it possible for users to develop complex applications that access remote 

nodes (Braun, et. al, 2001, Eager, et. al, 1986, Feng, et. al, 2000, Foster and 

Kesselman, 1999). Each of these nodes could be a uni-processor machine, a 

symmetric multiprocessor cluster, a distributed memory multiprocessor system, or a 

massively parallel supercomputer. Each node consists of a number of heterogeneous 

resources. The heterogeneity being in the type and capability of each of its resources 

(e. g., number of processors, CPU speed, amount of memory, and so on). One of the 

biggest advantages of a Grid Network is that it can offer resources to the users that 

are not locally available. With the Grid Network becoming a practical high 

performance computing alternative to the traditional supercomputing environment, 

several aspects of effective Grid Network resource utilisation are gaining 

significance. 

Since Grid Networks may consist of millions of interconnected nodes, it is likely that 

some nodes would be heavily loaded while others are lightly loaded or even idle. To 

achieve maximum efficiency of these large systems, it is desired that the workload is 

distributed among all the nodes so that resource utilization is increased and 

maximum performance is achieved. A load distribution scheme must decide where 

and when a given task should be executed in order to increase performance. 

Therefore, implementing an effective load-balancing paradigm that would be 
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integrated with Grid Networks for efficient resource discovery and load distribution 

will have an important role in designing self-configuring and self-optimising Grid 

Networks. With its huge number of resources, an efficient load-balancing scheme 

can lead to improve overall system performance. 

Due to its essential role in high performance computing, the field of load-balancing 

has been active for decades and many techniques and problem formulations have 

been used for parallel and distributed systems (Mitzenmacher, 2001, Luling, et. al, 

1991, Peixoto, 1996, Litzkow, et. al, 1988, Montresor, et. al, 2001). However, the 

majority of these works focus on traditional distributed systems and are no longer 

suitable for the Grid Networks (Kremien and Kramer, 1992, Luling and Monien, 

1993). Some techniques use a centralised approach that leave the algorithm un- 

scalable, while others assume the overhead involved in searching for appropriate 

resources to be negligible. Furthermore, classical load-balancing algorithms do not 

consider a Grid Network node to be k-resource nodes and only work towards 

maximising the utilization of one of the resources 

The Grid Network system is different from the traditional distributed systems as it 

converts high performance computing platforms into heterogeneous, dynamic and 

shared platforms, which prevents conventional load-balancing schemes from 

benefiting large-scale parallel applications. Therefore, extending existing load- 

balancing schemes to handle one or more of the challenges of Grid Networks (such 

as heterogeneity, resource sharing, high latency and dynamic system state) is a 

challenging research area. 
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Despite the fact that several load balancing techniques are proposed in the literature, 

much of the analysis of these techniques is limited to the results obtained from 

simulation; few have been studied using analytical methods and even fewer from 

measuring the performance of an actual Grid Network. Moreover, there is a need to 

consider the cases where services are time-bounded, or require certain QoS 

requirements, or when jobs are depending on the output of other jobs. 

2.8 Summary 

A relevant literature review in the area of Grid Networks technology is presented in 

this chapter. Research challenges and performance optimization techniques required 

to achieve the self-optimization and self-configuration properties of Grid Networks 

are also discussed. Then, the load-balancing problem is described and a brief review 

of the most common load-balancing solutions and strategies is summarised. 

Additionally, the load-balancing stability and scalability issues have also been 

discussed. 

Although intensive work has been done in the area of load balancing, the Grid 

Network environment is different from the traditional network systems, which 

prevents existing load-balancing schemes from benefiting large-scale networks. The 

Grid Network evolves high performance computing platforms to heterogeneous, 

dynamic and shared environments, which prevent exploiting conventional load 

balancing techniques directly. Thus how to adapt current load-balancing schemes to 

Grid Network becomes the focus of load distribution research area. 
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Chapter 3 

A REVIEW OF COMPLEX NETWORKS THEORY 

3.1 Introduction 

Complex Networks Theory is the field that describes the structural and dynamic 

properties of networks. A complex network is a network that has certain significant 

topological features which do not occur in simple networks. Such topological 

features include: a heavy tail in the degree distribution; a high clustering coefficient; 

and an indication of a hierarchical structure. Simple networks do not have such 

properties, and are typically described by graphs such as random graphs, which show 

a high similarity regardless of what part is examined. In mathematics, a random 

graph is a graph that is generated by some random process. A graph is a theoretical 

representation of a set of objects where some pairs of the objects are connected by 

links. The interconnected objects are represented by mathematical abstractions called 

nodes, and the links that connect some pairs of nodes are called edges. Many existing 

networks (such as social, computer, and neural networks) can be classified as 

complex networks based on their topological structure. 

In the past few years, there has been a great achievement in the field of complex 

networks due to combining ideas and analytical tools from statistical mechanics. 

These analytical tools facilitated the development of a number of protocols and 
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models for complex networks that result in predictable properties. Networks have a 

variety of dynamical features (such as self-organising, robustness, heterogeneity, 

connectedness of nodes, etc. ) and their topology structure determines these 

dynamical features. 

Several theories and models have been developed to analyse complex networks, and 

to characterise the dynamic properties of networks. For example, the Random Graph 

Theory described by Erdös and Renyi inl930s (Erdös and Renyi, 1959), and the 

analysis of social networks started in the 1960s and 1970s (Scott, 2001). Graph 

theory has long since been described as part of system theory (Laue, 1970). Several 

authors have discussed the characteristics of nature and society networks (Bollobäs, 

1985; Barabäsi, 2002; Bornholdt & Schuster, 2003; Buchanan, 2002; Dorogovtsev & 

Mendes, 2003; Huberman, 2001; Watts, 1999). As network science has continued to 

grow in importance and popularity, other models of complex networks have been 

developed. 

Traditionally, complex networks have been described using Graph Theory. Simple 

networks with a large degree of design can be described by regular graphs, but large- 

scale networks are often too complex for their designing principles to be visible. The 

first approach is to model them as completely random, and to study the properties of 

random graphs with the same number of nodes and edges as the original network. 

Then, the properties of the corresponding random graphs may give an idea about the 

properties of the real networks. 
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Random Graph Theory was the simplest theory to describe complex networks. P41 

Erdös and Alfred Renyi were the first who studied random graphs (Erdös and Renyi, 

1959, Erdös and Renyi, 1960). According to the Erdös-Renyi (ER) model, we start 

with N nodes and connect every pair of nodes with probability p. At the end of this 

process, the graph will have approximately pN(N - 1)/2 edges distributed 

randomly. This model has been used in various fields dealt with complex networks. 

Another two important models for complex networks are the scale-free networks 

model (Barabäsi and Albert, 1999), and small-world networks model (Watts and 

Strogatz, 1998). 

In scale-free networks model, some nodes have higher degree, and most of the nodes 

are of lower degree. Scale-free networks' structure and dynamics are independent of 

the number of nodes the network has. In other words, a network that is scale-free will 

have the same properties no matter how many nodes it has. The degree distribution 

for scale-free networks follows a power law relationship (Barabäsi and Albert, 1999). 

In small-world networks model, most of the nodes are not neighbours, but most of 

the nodes can be reached from every other by a small number of hops or steps. The 

small-world networks model is classified based on two independent structural 

features; the clustering coefficient and average shortest path length (Watts and 

Strogatz, 1998). ER random graphs have a small average shortest path length along 

with a small clustering coefficient. However, the small-world model has a small 

average shortest path length, and a large clustering coefficient. 
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Many real world networks are modelled as small-world networks. Social networks, 

the connectivity of the Internet, and gene networks all show small-world network 

characteristics (Watts and Strogatz, 1998). 

The Internet and the World Wide Web inspired the development of the field of 

network analysis, or complex networks, in statistical physics. Without the availability 

of digitised data, none of the examples used in complex networks theory could have 

been exploited. Availability of data in digitised form facilitates computation in 

particular for huge networks. The development of this speciality started with the 

empirical investigations of different types of real-world networks, such as the 

Internet and the web. It was extended into model-building activities that tried to 

mirror the statistical features found empirically. 

3.2 Complex Networks Concepts 

There have been dramatic advances in analysing complex networks in the literature, 

and many quantities and measures have been proposed and investigated in depth. 

However, four main concepts emerged in the past few years that occupy a major part 

in investigating complex networks. These four concepts are small-world concept, 

degree distribution, clustering coefficient, and diameter. 

3.2.1 The Small-World Concept 

The small-world network is a class of random graphs, where every node can be 

reached from other nodes by a small number of hops or steps. The small-world 

concept refers to the fact that in most networks, despite the large number of nodes 

they are made of, the typical distance between any two nodes is very short (Milgram, 
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1967). Here the distance between any two nodes in a network is the number of links 

in the shortest path connecting them. Therefore, distances do not depend on the 

distances between the nodes; it only depends on the interconnections between them. 

Small-world networks were identified as a class of random graphs by Duncan Watts 

and Steven Strogatz in 1998 (Watts and Strogatz, 1998). They noted that graphs 

could be classified according to their clustering coefficient and their mean-shortest 

path length. Small-world networks, as compared to other random graphs with the 

same number of nodes and edges, are characterised by clustering coefficients 

significantly higher than expected, and mean shortest-path length lower than 

expected. 

Moreover, Erdös and Renyi have shown that if the connection probability p is larger 

than ln(N) IN, almost any random graph will be strongly connected. Hence, we can 

find a path of edges connecting any two nodes in the system. The typical distance 

between any two nodes in a connected random graph tends to be small, and it scales 

as the logarithm of the number of nodes. Therefore, such random graphs are 

considered as small-worlds networks. 

3.2.2 Degree distribution 

The degree distribution gives the probability distribution of nodes' degrees (edges) in 

a network. The degree of a node (or connectivity), k, gives an indication of how 

many links (or edges) the node has to other nodes. Its use comes from the study of 

random graphs by Paul Erdös and Alfred Renyi (Erdas and Renyi, 1959), and it has 

become an important concept, which describes the topology of complex networks. 
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In directed networks, nodes have two types of degrees. The incoming degree 

k, 
� 

denotes the number of links that point to a node, and an outgoing degree 

k�u, denotes the number of links that start from it. An undirected network with N 

nodes and L links is characterised by an average degree k= 2L /N (Barabäsi and 

Oltvai, 2004). Otherwise, both incoming and outgoing links are counted in the 

undirected case (Freeman, 1979). 

The degree distribution of a graph is a function describing the total number of nodes 

in a graph with a given degree (or number of edges). Not all nodes in a network have 

the same number of edges. Thus, there is always a spread in the number of edges 

associated with a given node. This spread is characterised by a distribution function 

P(k), which gives the probability that a randomly selected node has k edges. 

Since in a random graph every node is equivalent, the majority of the nodes have 

approximately the same number of edges, equal with the average degree k of the 

network. Consequently, the degree distribution is a Poisson distribution with a large 

peak at P(k) (Albert and Barabäsi, 2002). 

An observation that recently has attracted much attention was that for most large 

networks the degree distribution does not follow the Poisson distribution expected 

for random graphs. In particular, for a large number of networks, including the 

World Wide Web (Albert et al., 1999), Internet (Faloutsos et al., 1999), or cellular 

networks (Jeong el al., 2000), the degree distribution has a power-law tail, which 

expressed as 
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P(k) - k'' (3.1) 

where % is the exponent of the power-law (Barabäsi, 2002) .A power-law degree 

distribution indicates that a few nodes hold together numerous small nodes. Thus, the 

networks that are characterised by a power-law degree distribution are highly non- 

uniform; most of the nodes have only a few links. A few nodes with a very large 

number of links hold these nodes together. 

Other networks, such as an electrical power grid (Amaral et al., 2000), display an 

exponential tail. Therefore, the degree distribution is a common way of classifying 

graphs into categories, such as random graphs (Poisson distribution) and scale-free 

networks (Power law distribution) (Albert and Barabäsi, 2002). 

3.2.3 Clustering coefficient 

Duncan Watts and Steven Strogatz (Watts and Strogatz, 1998) introduced the term 

clustering coefficient to determine whether a graph is a small-world network or not. 

Let i be a node in the network with k, edges that connect it to k, other nodes. So, if 

the first neighbours of the node i were also a part of this network, then, there would 

be k; (k; - 1)/2 edges between them. Therefore, the clustering coefficient (C) of 

node i is the proportion of edges between the nodes within its neighbourhood 

divided by the number of edges that could possibly exist between them. Accordingly, 

the ratio between the number of edges that actually exist between these k, nodes, F:, , 

and the total number k, (k, - 1)/2 gives the value of the clustering coefficient of 

node i. Thus, 
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C_ 2E; 
(3.2) , k, (kt - 1) 

So, the clustering coefficient of the whole network is then the average of all 

individual clustering coefficients, 

C=1zCi= 
1E 2E; 

(3.3) 
N k, (k, -1) 

The clustering coefficient of random graphs is small. In fact, since the edges are 

distributed randomly, the probability that the first neighbours of a node are connected 

is the same that any two nodes in the graph are connected. Consequently, the 

clustering coefficient of random graphs is C=p. However, Duncan Watts and 

Steven Strogatz mentioned that in most real networks, the clustering coefficient is 

much larger than it is in a random network with the same number of nodes and edges 

(Watts and Strogatz, 1998). This observation was the first indication that real 

networks have properties that go beyond random graphs. 

3.2.4 Connectedness and diameter 

The diameter of a graph is the maximum distance between any pair of its nodes. The 

connectivity and diameter of a random graph has been studied by many authors 

(Chung and Lu, 2001, Newman, 2001, Watts and Strogatz, 1998). They observed 

that for most values of connection probability p, almost all graphs with the same N 

and p have identical diameters. Thus, for all graphs with N nodes and connection 

probability p, the range of values in which the diameters of these graphs can vary is 

very small, and usually concentrated around In(N) / In(k). 
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In most cases, random graphs are likely to have small diameters, provided that 

probability p is not too small. This is because the diameter of a random graph 

depends logarithmically on the number of nodes the graph. Therefore, if the 

connection probability is not large enough, random graph tends to be spreading. 

The connectedness of a random graph can be summarised using the following 

important results: 

- If k= pN <I, then a typical graph is composed of isolated trees and its 

diameter equals the diameter of a tree. 

- If k= pN > 1, then a giant cluster appears. The diameter of the graph equals 

the diameter of the giant component. 

- If k >_ 3.5, then the diameter of the graph is proportional to ln(N) / In(k). 

- If k= pN >_ ln(N), then almost every graph is totally connected. The 

diameters of the graphs are concentrated on a few values around 

In(N) / In(k). 

Another way to describe the connectivity of edges of random graph is to calculate the 

average distance between any pair of nodes, or the average path length. It is expected 

that the average path length scales with the number of nodes in the same way as the 

diameter. Therefore, the average path length of a random graph can be determined by 

Equation (3.4) (Albert and Barabäsi, 2002). 

band a In(N) 
In(E) (3.4) 
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In most cases, random graphs are likely to have small diameters, provided that 

probability p is not too small. This is because the diameter of a random graph 

depends logarithmically on the number of nodes the graph. Therefore, if the 

connection probability is not large enough, random graph tends to be spreading. 

The connectedness of a random graph can be summarised using the following 

important results: 

- If k= pN < 1, then a typical graph is composed of isolated trees and its 

diameter equals the diameter of a tree. 

- If k= pN > 1, then a giant cluster appears. The diameter of the graph equals 

the diameter of the giant component. 

- If k >_ 3.5, then the diameter of the graph is proportional to ln(N) / ln(k). 

- If k= pN >_ ln(N), then almost every graph is totally connected. The 

diameters of the graphs are concentrated on a few values around 

In(N) / In(k). 

Another way to describe the connectivity of edges of random graph is to calculate the 

average distance between any pair of nodes, or the average path length. It is expected 

that the average path length scales with the number of nodes in the same way as the 

diameter. Therefore, the average path length of a random graph can be determined by 

Equation (3.4) (Albert and Barabäsi, 2002). 

'rand 0 In(N) 
In(T) 

(3.4) 
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Albert and Barabäsi showed that the average path length of real networks is close to 

the average path length of random graphs with the same size (Albert and Barabäsi, 

2002). By comparing the predicted average path length for random graphs of 

different sizes with data collected from several real networks, they found that the 

trend of the data in real networks is similar with theoretical prediction of random 

graphs, and that for several networks Equation (3.4) works quite well. But in general 

the average path length of real networks is larger than that of a random graph with 

the same N and T. 

3.3 Summary 

The specialty of complex networks theory remains an interesting development that 

scientists should be aware of. It concerns new definitions for connectivity and new 

indicators for network analysis. It also concerns results about the functionality of 

connectivity, which has implications for the accessibility of information in networks 

and the functional stability of this information. Possible explanations of connectivity 

with the help of mathematical models require further qualitative and context bounded 

research into the nature of complex networks. 

In this chapter, the various theoretical tools developed to model the complex 

networks have been reviewed. The four robust measures of the network topology; 

small-world, clustering coefficient, degree distribution and diameter were the basis 

of network modelling in the past few years, resulting in the introduction and study of 

three main classes of modelling paradigms. A review of network modelling efforts 

and the theoretical developments of the various models and theoretical tools are 

discussed in the following chapter. 
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Chapter 4 

COMPLEX NETWORKS MODELS 
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Chapter 4 

COMPLEX NETWORKS MODELS 

Many researchers have proposed models of networks that try to explain either how 

networks come to have the observed structure, or what the expected effects of that' 

structure will be. A summary of these models is presented, covering random graph 

models and their generalisations, the small-world model, and models of network 

growth, particularly the preferential attachment and scale-free models. 

4.1 Random Graph Networks Model 

Classical models of networks share the assumption that the connections between the 

nodes occur at random. The first attempt at developing a model for large and random 

networks was the Random Net (Rapoport, 1957, Solomonoff and Rapoport, 1951). 

Random Net was concerned with social networks of relationship among groups of 

people (such as the patterns of friendships between individuals, business 

relationships between companies, and intermarriages between families). Later, this 

work was independently rediscovered by Erdös and Rcnyi and gave it the name 

Random Graph (Erdös and Renyi, 1959, Erdös and Renyi, 1960). 

In Eröds and Renyi (ER) random graph model, the probability of having a graph G 

with N nodes and k edges follows a Binomial distribution, and is given by 
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N(N-1)_kl 

"N. k. n 
(G) = pk (1- p) 2J (4.1) 

Here, every possible edge occurs independently with connection probability p. At 

the end of this process, the graph will have approximately pN(N - 1) /2 edges 

distributed randomly. 

In a large random graph, there are several nodes with the same degree, and the 

number of nodes with a given degree (or the degree distribution) can be calculated. 

So, in a random graph with connection probability p, the number of nodes with 

degree k is 

P (k) = CN-1pk (1- p)"-I-k (4.2) 

where CN_, is the probability space in which k edges are chosen from the total 

number of edges N -1. 

Thus, for large N, the number of nodes with degree k follows a Poisson 

distribution (Erdös and Renyi, 1960, Bollabäs, 2001), 

P(k) 0 e-P, V (k )k 
= e-k 

(p) k 
(4.3) 

Figure 4.1 shows the degree distribution for a random graph with N =10,000 nodes 

and connection probability p=0.0015. The plot compares the calculated number 
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of nodes with degree k, with the expectation value of the Poisson distribution P(k). 

As shown in the figure, the difference between them is small. 

P(k) 
i" Binomial Distribution 
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Poisson Distribution 
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Figure 4.1 The degree distribution for a random graph with N= 10,000 nodes and 

connection probability p=0.0015. After (Albert & Barabäsi, 2002). 

Thus, in ER model, the probability that an ER graph has more or less than the 

expected number of edges decreases exponentially. This binomial distribution 

implies that each node will have a degree, which is close to the average degree, and 

that the number of nodes with much higher or much lower degree than average is 

very small. Thus, the probability that any node has the expected number of edges is 

the same. 

The ER random graph has been used in various fields dealing with complex 

networks. Though, do real world networks (such as the Internet and Web) have a 

completely random structure without any organising characteristics? It is easy to 

argue against a fully random structure for many network systems, as they must 
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display some organising properties that allow them to operate successfully. 

Therefore, if these networks differ from a random topology, new tools and measures 

are needed to realise the underlying organising properties. 

4.2 Small-World (SW) Networks Model 

The small-world networks concept was introduced by Watts and Strogatz, to 

describe networks where nodes are linked to each other by only a few nodes in 

between (Watts and Strogatz, 1998, Watts, 1999). Small-world networks can be 

constructed from regular networks just by adding random elements to them 

(Buchanan, 2002); see Figure 4.2. 

Figure 4.2 Schematic representation of the creation of Small-world networks from 

Regular networks. (a) Regular networks. (b) Small-world networks 

created after some steps of random rewiring of links. After (Buchanan, 

2002). 

To create a small-world network, we start with a ring network with N nodes in 

which every node is connected to its first k neighbours. Then, we randomly rewire 

each edge of the network with probability p such that self-connections and 

duplicate edges are excluded. By varying p, the transition between regular (p = 0) 

and randomness (p = 1) in networks can be observed; see Figure 4.3. Hence, the 
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small-world networks are located somewhere in the middle between regular graphs 

and random graphs. 

Regular Small-world Random 

P=O p-1 
Increasing randomness 

Figure 4.3 The transition from Regular to Random networks as p increases. 

After (Watts and Strogatz, 1998). 

Alternatively, small-world networks can be defined by examining the local 

neighbourhood and the diameter of the network. The diameter of a network is the 

average shortest path length of a network. Small-world networks are then defined as 

having local neighbourhood similar to regular networks, and the diameter of the 

network increases logarithmically with the number of nodes as in random networks 

(Amaral et al., 2000; Hayes, 2000). 

In random networks, the distance between any two nodes can be small. Here, this 

distance is number of links that connect the nodes along the shortest path. Small- 

world networks share these properties with random networks. The difference 

between them is that small networks have a higher clustering coefficient, C. The 

clustering coefficient of a network describes at which degree the nodes that are 

connected to a certain node are also connected to each other. It compares the number 
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of existing links in a neighbourhood of a node with the number of all possible links 

in that neighbourhood. The clustering coefficient of real world networks is typically 

compared with the clustering coefficient for a random network (Strogatz, 2001). 

Figure 4.4 shows the degree distribution of the small-world model for k=6 and 

various p. And for a comparison, the degree distribution of a random graph with the 

same parameters is plotted with filled symbols. The symbols are obtained from 

numerical simulations of the small-world model with N =1000 (Barrat & Weigt, 

2000). We can see that the degree distribution for small-world network is similar to 

that of a random graph, and only when k? (k / 2) values are present. Moreover, it 

has a peak at T, and it decreases exponentially for large k. Thus, in small-world 

model, when p=0, each node has the same degree k, and the degree distribution is 

a delta function centred at k. A non-zero p introduces disorder in the network, 

broadening the degree distribution while maintaining the mean degree equal to k. 

As a result, all nodes will have approximately the same number of edges. 

4.3 Scale-Free (SF) Networks Model 

There are two features of real networks that are not included in the ER and SW 

models. First, both models assume that we start with a fixed number of nodes (N) 

which are then randomly connected (ER model), or reconnected (SW model), 

without modifying N. However, most real world networks are created by the 

continuous addition of new nodes to the system and the number of nodes can change 

over time. Thus, many networks start with a small number of nodes, then the number 

of nodes increases throughout the lifetime of the network. 
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Figure 4.4 The Degree distribution of the small-world model for k=6 and various 

values of connection probability p. After (Barrat & Weigt, 2000). 

Secondly, the previous random network models assume that the probability that two 

nodes are connected is random and uniform. However, many real networks show 

preferential connectivity. For example, a newly created webpage will likely include 

links to well known, popular documents which already have high connectivity. 

Therefore, the probability that a new node connects to the existing nodes is 

inconsistent, but there is a higher probability to be linked to a node that already has a 

large number of connections. 

A model based on these two features leads to the observed scale-free distribution 

since networks expand continuously by the addition of new nodes, and new nodes 

attach preferentially to already well-connected nodes; see Figure 4.5. The scale-free 

network structure and dynamics are independent of the number of nodes the network 
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has. In other words, a network that is scale-free will have the same properties no 

matter what the number of its nodes is. This indicates that the development of large 

networks is governed by robust self-organising phenomenon that goes beyond the 

particulars of the individual systems (Barabäsi et. al, 2003, Barabäsi, 1999). 

(a) Random Network (b) Scale-Free Network 

Figure 4.5 Examples of a Random network and a Scale-free network. Each network 
has 32 nodes and 32 links. (a) Random network. (b) Scale-free network. 

After (Castillo, 2004). 

Therefore, and based on the two common features; growth and preferential 

attachment, a new model has been developed to characterise the scale free Power- 

law degree distribution observed in real networks. This model is called a Scale-Free 

(SF) model (Barabasi and Albert, 1999). 

Albert and Barabäsi introduced the concept of a scale-free network to describe a 

specific distribution of links over nodes (Albert & Barabäsi, 2002). They 

demonstrated that many large networks share the common feature that their degree 

distribution follows a power-law for large k, and that random graph theory and the 

small-world model cannot reproduce this feature. Moreover, even for networks with 
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degree distribution that has an exponential tail, their degree distribution significantly 

differs from Poisson degree distribution; see Figure 4.6. 
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Figure 4.6 Comparison of Degree distribution for Random networks and Scale-free 

networks. After (Scharnhorst, 2003). 

The scale-free model displays an extremely skewed distribution with a long tail that 

can be described by a Power-law. The power-law distribution implies that most of 

the nodes have only few links, and few nodes have a very large number of links 

(Barabäsi, 2001). Power laws characterise the transition from disorder to order. 

Therefore, the discovery of power law is particularly important because it comes 

together with the presence of self-organising mechanisms. Barabdsi mentioned that 

"through these findings, complex networks were lifted out of the jungle of 

randomness where Erdös and Renyi had placed them forty years earlier and dropped 

them into the centre of a colourful and conceptual rich arena of self-organisation" 

(Barabäsi, 2002). 
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There is no characteristic scale for node's degree in networks with skew distribution 

(Krapivsky and Redner, 2002). For this reason, skew distributions are called scale- 

free. Power-law distribution implies that the probability of finding a node with k 

links to other nodes is proportional to 0. If the data of the distribution are plotted 

in a log-log plot, where both the x-axis and the y-axis have a logarithmic scale, they 

should follow a straight line; see Figure 4.7. The slope of this line is equal to the 

parameter A. Such a unique parameter characterises each power law. This makes the 

exponent A very important for the analysis, and researchers typically focus on fitting 

the degree exponent A from data taken from different real world networks. 
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Figure 4.7 The logarithmic scale of the degree distribution for Random networks 

and Scale-free networks. After (Schamhorst, 2003). 

The different values of the exponent indicate the different dynamic mechanisms 

working behind the distributions; similar values indicate the action of similar 

55 



mechanisms. Furthermore, the resistance of networks against attacks (i. e. the 

removal of nodes or links) appears to depend on the value of the degree exponent. 

As the power-law observed for real networks describes systems of rather different 

sizes at different stages of their development, it is expected that a correct model 

should provide a distribution whose main features are independent of time. The 

development of the power-law scaling in the model indicates that growth and 

preferential attachment play an important role in network development. 

However, the power law cannot always be clearly observed in real data. Therefore, 

other types of distributions have been introduced, such as Broad-Scale networks and 

Single-Scale networks have been defined. Broad-scale networks show power law 

behaviour over different scales, followed by a sharp cut-off. Single scale networks 

have an exponentially decaying tail (Amaral et al., 2000). 

4.4 Small-World vs. Scale-Free Networks 

One may get confused regarding the two models: small-world and scale-free for 

complex networks. Sometimes, both characteristics are assigned to networks and in 

other times, the different characteristics of these two types of networks are 

highlighted. This confusion may arise due to the different levels of observation 

which are being applied. Mathematical models, as theoretical justification for 

experimental facts, follow one type of reasoning. Experimental analysis of real world 

networks follows another type of reasoning. Therefore, to find proper descriptions 

for both small-world networks as scale-free networks, prototypes of models have 

been developed at the theoretical level. Small-world networks are represented by the 
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Watts-Strogatz (WS) model and scale-free networks by the Barabäsi-Albert (BA) 

model. 

Albert and Barabäsi mentioned that the WS model has a degree distribution similar 

to a random graph and is not scale-free (Albert and Barabäsi, 2002). Holme 

mentioned that the WS model has high clustering, whereas the BA model has a 

clustering coefficient that scales toward zero for large number of nodes (Holme et 

al., 2002). The BA model produces a scale-free network, which is not a small-world 

network. However, it shares one feature with a small-world network, which is that 

two randomly chosen nodes are connected by a very short path. Furthermore, to 

make the situation even more complex, other models have been developed which 

show both properties. 

In terms of experimental analysis, real networks usually display various degree 

distributions and sometimes do not meet the exact criteria of a Power-law. Moreover, 

when the network has small number of nodes and links, it is more difficult to 

statistically analyse its properties. Accordingly, real networks are expected to display 

different features. The creation of variants of the two models mentioned above is a 

theoretical reflection of variation in experiential measurements. Besides, depending 

upon which theoretical definition is chosen, the properties of both network models 

can be found in real world networks. 

4.5 Statistical Properties of Networks 

Determination of the statistical properties of a network is not only of mathematical 

interest, but also has practical implications. The information about the topological 
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structure of small-world networks, or scale-free networks, is expressed by using 

probability distributions. Therefore, considerable variation and randomness have 

been created at the individual level. For these models, there are no specific rules to 

follow, but the probability for certain actions might be higher than for others. For 

example, in a random graph, two nodes will not have a higher probability to link to 

each other because they have a common neighbour. In small-world networks, just the 

opposite is the case and a high clustering coefficient is a measure of this feature 

(Newman, 2000, Newman, 2001). 

To summarise, in order to understand the nature of the mechanisms that lead to a 

certain network, it is useful to look at the topology of the finally emerging network. 

Are the links created randomly? Or are they created following specific rules? Is there 

a combination of randomness and certain rules? Another aspect to consider is that 

the networks are not only created differently, but they also behave differently 

depending on different topologies. All these questions should be carefully considered 

in order to understand the emergence of certain networks. 

4.6 The Growth of Complex Networks 

Random networks remain the main reference point for characterising complex 

networks. The classical random network is usually considered as a network with 

fixed number of nodes, and it is only the distribution of links between these nodes 

will be affected as the network grows. To be able to reproduce the features of real 

networks, we should consider the fact that the network itself could grow or decline 

(Albert and Barabäsi, 2002). 
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4.6.1 Exponentially Growing Networks 

The simplest exponentially growing random network can be created as follows: one 

new node is added to the network in each time step. Then, another node is randomly 

chosen, without any preference, to be linked which the new node. Accordingly, the 

degree distribution of such growing network can be analytically expressed. It is 

expected to be different from random networks, but it will share with them the 

feature that the degree distribution for highly connected nodes will quickly decrease. 

Such networks are called exponentially growing networks (Dorogovtsev and 

Mendes, 2002). 

An example of an exponentially growing network is a small-world network that 

begins with a fixed number of nodes connected in a regular order; see Figure 4.2. 

Then, two scenarios can be applied here: either a random rewiring of nodes with a 

certain probability (Watts-Strogatz model), or by adding links to a randomly chosen 

nodes with a certain probability (Newman-Watts model) (Wang, 2002). 

4.6.2 The Preferential Attachment Mechanism 

Scale-free networks are constructed differently from exponentially growing network. 

Not only the number of links grows, but also the number of nodes grows too. First, 

the network starts with a small number of nodes. Then, new nodes are inserted and 

connected to a certain number of already existing nodes. These nodes are selected 

with a probability proportional to the number of links k they have. Thus, the nodes 

that already have a large number of links are more likely to be selected to be linked 

to the new nodes. This process is described as Preferential Attachment, and it 

produces a scale-free network. The degree distribution of this network has a Power- 
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law tail, which is approximately equal to V', with A=3. This model is called the 

Barabäsi-Albert (BA) model. 

According to Barabäsi, the combination of growth and preferential attachment is a 

simple model for producing a hierarchy. Thus, a node rich in links increases its 

connectivity faster than the rest of the nodes because incoming nodes link to it with 

higher probability (Barabäsi, 2001). The preferential attachment mechanism has also 

been called "popularity is attractive" (Dorogovtsev, et al., 2000). This is because if 

the linking behaviour is pointed toward the popularity or attractiveness of a node, 

this attractiveness can be expressed in terms of the number of links of a node. 

As noted earlier, real networks usually express various degree distributions. Thus, 

detailed empirical investigations are required to find a good fit for the value of the 

exponent A. The value of A. can differ among different real world networks, which 

indicate the presence of other mechanisms in addition to preferential attachment. In 

this context, new theoretical analysis emerged which gives different variants of the 

original BA model. 

What seems to be crucial for the construction of scale-free networks is the type of 

dependency between the degree of a node and the probability of adding another link 

to it. The question is: what are the criteria for connecting a new node to already 

existing nodes? Consider a mathematical equation that expresses this relationship: 

X(k)= p+ aka (4.4) 

"9ri 
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The X(k) stands for the probability of adding a link to a certain node and depends 

on the number of links (degree) this node has (Albert & Barabäsi, 2002). Three 

parameters are present: p, a, and a. 

The first term is simply a constant p, and it states the probability that a node will be 

connected, independently of the degree it has. If a node does not yet have links, there 

must also be a chance for such an isolated node to become connected within the 

growing network. This kind of basic wiring ensures that every node has a chance to 

become linked. Usually, it would be assumed that this probability is small. This 

mechanism is a simple but quite important extension of the original BA model. The 

way in which isolated nodes can be connected to a network has to do with the 

addition of innovation to a network. If 'a node that is already linked remained the 

only criterion for growth, then isolated nodes would never get a chance to be part of 

the network. 

Once a node has a link, the second mechanism aka starts which ensures that the 

probability of connecting a node to other nodes will increase with the number of 

links that this node already has. This mechanism has been introduced previously as 

preferential attachment. The exponent a describes the way in which probability 

grows with degree. When a=1, a linear growth occurs and the value of .A will vary 

between 2 and oo depending on the other parameter a. If a< 1, the degree 

distribution approaches a stretched exponential form. In the case that a>I, almost 

all nodes have a single edge, connecting them to a strongly connected node that has 

the rest of the edges of the network (Albert & Barabäsi, 2002). 
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To summarise, only when a =1 the scale-free character of the network is 

reconstructed, whereas any other form of preferential attachment seems to destroy 

the scale-free character of the network (Krapivsky, Redner, & Leyvraz, 2000). 

Accordingly, a node with a certain degree is always seeking for new nodes to 

increase its own degree. If only the degree of the node is relevant for the adding 

process, it is expected to have such a pure preferential attachment mechanism. If the 

neighbourhood of the node (e. g., the degree of neighbouring nodes) is also involved 

in the growth process, one would expect a non-linear growth rates with a unequal to 

one (Bruckner & Scharnhorst, 1986). 

In the literature, further extensions of Equation 4.4 can be found by adding or 

modifying terms. Pennock et al. proposed a slightly different combination of two 

processes: the process of preferential attachment and the process of uniform 

attachment (Pennock et al., 2002). In addition, the process of introducing new links 

may be changed. If the number of these added links increase in time, then this is 

called accelerated growth. Nodes and links may have a limited lifetime, and 

networks that also decay can be considered. Dorogovtsev and Mendes found that the 

Power-law dependence in connectivity distributions remains if only a small fraction 

of links between old nodes are removed (Dorogovtsev & Mendes, 2000). The 

experimental investigation of these processes remains to be carried out via case 

studies. These would determine whether such processes occur in real-world 

networks, and what are the system-specific reasons for them to appear. 
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4.7 Dynamics in Complex Networks 

Dynamics in networks refers to dynamic processes that take place in a network 

topology. An example of these dynamics is the robustness of the network against 

attack. One can think of the spread of computer viruses among computers. In this 

case, each node gets additional characteristics. It is "infected" or "not infected. " The 

network topology defines the neighbourhood between nodes, and so the possible 

method of infection. 

In particular, it has been shown that scale-free networks have a noticeable resilience 

to random connection failures, which implies that the network can resist a high level 

of damage (disconnected links), without loosing its global connectivity properties; 

i. e., the possibility to find a connected path between almost any two nodes in the 

system. (Pastor-Satorras & Vespignani, 2001). 

Not all networks are equally vulnerable, and they may be more or less resilient in the 

face of different kinds of attacks. Holme et al. introduced different attack strategies 

by removing nodes or links. One strategy determines which objects are to be 

removed from the initial topological structure of the network (e. g., starting with the 

nodes with the highest degree). Another strategy recalculates the structure (e. g., 

ranking list of high degree nodes) after each step of removal (Holme et al., 2002). 

The difference in attack strategies showed the importance of changes in the 

network's structure during the attack. Recalculating strategies were the most 

effective for real networks. 
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Investigations of this kind become very important if the topology of networks is used 

to protect networks against attacks. Random networks are still the most robust 

networks. In addition, it has been recognised that scale-free networks are also 

relatively robust against random attacks, and that they can organise the now of 

information effectively. Real world networks represent a combination between 

functionalities described by different models. The goal of analysis consists in 

understanding the mechanisms and driving forces behind these functional ities. 

4.8 Summary 

The last few years have witnessed the emergence of Complex Networks Theory. The 

development of this field started with experimental investigations of different types 

of real-world networks. It extended further into model-building activities that tried to 

mirror the statistical features found empirically. A rich class of different models has 

become available. 

In this chapter, various network modelling efforts and the theoretical tools developed 

to model complex networks have been reviewed. Also a brief discussion of the three 

main classes of modelling complex networks is presented. First, the random graphs 

model which is highly used in many fields, as well as serve as a benchmark for many 

modelling and empirical studies. Then, the small-world model, which is located 

between highly clustered regular networks and random graphs. Finally, the scale-free 

models which is used to explain the origin of the Power-law tails and other non- 

Poisson degree distribution seen in real networks. Then, the topology of real world 

networks, mechanisms of growth, and the appearance of dynamic processes on these 

networks have been discussed. 
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Chapter 5 

A STOCHASTIC LOAD-BALANCING ANALYSIS 

5.1 Introduction 

The analytical tools of Complex Network Theory have resulted in the creation of a 

number of dynamics and properties for complex networks that yield to predictable 

features. For example, a dynamic preferential attachment scheme provides a model 

for the evolution of developed networks (Newman and Park, 2003, Jin, el., 2001, 

Handcock and Jones, 2003, Lehmann, el., 2005), and explain why some networks 

have particular properties such as Power-law degree distributions and fault-tolerance 

to attacks and failures (Sarshar and Roychowdhury, 2004, Albert, el., 2000). 

Dynamics of such networks have led to efficient techniques for load distribution and 

search in peer-to-peer systems and power-law random networks (Sarshar, 2004). 

In this thesis, and based on such studies, a dynamic network system is introduced 

such that the stationary degree distribution close to the degree distribution of ER 

random graphs. In ER random graphs, the probability of deviating from the average 

decreases exponentially with the deviation distance. The proposed load-balancing 

scheme is further improved to generate network system with stationary degree 

distribution close to that of regular graphs. I found that the network system studied 

here can provide an effective load-balancing mechanism for the distributed resources 

available on Grid Networks. 
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5.2 Load-Balancing Related Work 

Future large-scale and Grid Networks are likely to be highly dense networks 

composed of thousands, hundreds of thousands, or even millions of nodes. 

Additionally, to contain the costs associated with deploying these networks, they will 

continue to be populated by low-cost, unreliable, power-limited nodes. As a 

consequence of this unreliability and the requirement to deploy these networks in 

harsh environments where partial destruction of the network may occur with high 

probability, new load-balancing and fault-tolerance algorithms should be designed to 

enhance the survivability of data collected by the network. 

Consequently, there is a need for efficient, reliable, and scalable load-balancing 

paradigm for the distributed resources available on Grid Networks. Thus, when one 

node is overloaded, it can make use of unused computing power available in the 

network. Therefore, implementing an integrated load-balancing paradigm for an 

efficient load distribution and resource discovery will have an important role in 

implementing self-configuring and self-optimising networks, which are essential 

characteristics of Grid Networks. 

Although several load-balancing algorithms for Grid Networks are proposed in the 

open literature, much of the analysis of these algorithms is limited to the results 

obtained from simulation; few have been studied using analytical methods and even 

fewer from measuring the performance of an actual Grid Network. 

Let us consider a network system that consists of N nodes/resources. For efficient 

usage of these resources, it is desired to distribute the requests as evenly as possible, 
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so that no node is significantly more loaded than the others. However, this will not 

be simple to achieve for several reasons. The number of nodes is large causing a 

computational complexity in balancing the workload. Moreover, the uncontrolled 

dynamics of nodes where nodes have different capabilities and are geographically 

distributed with the possibility of loosing the connections between them at any time, 

makes the design of an efficient load-balancing algorithm a challenging task. 

Therefore, due to the above mentioned complexity considerations, it may be 

reasonable to introduce an element of randomisation in the problem formulation. 

Load balancing is an active research field, and many methods and algorithms have 

been used to approach this problem (Drougas, et. al, 2006; Mitzenmacher, 2001; 

Peixoto, 1996, Mitzenmacher, 2001). The use of polling, agent-based methods, 

global random choice, randomised algorithms, and local diffusion methods have 

produced great advances in the field of load balancing (Murata, et al., 2006; Theimer 

and Lantz, 1989; Oppenheimer et al., 2004; Subramanian and Scherson, 1994; Els 

and Monien, 2003; Litzkow, Livny and Mutka, 1988; Bustos and Caromal, 2006; 

Yagoubi and Slimani, 2007). 

However, most of these methods depend on centralised techniques, which can be 

efficient in small-scale networks, or on particular properties of the load distribution 

in larger networks. Furthermore, as central nodes require high computing power and 

large bandwidth, network systems that depend on such techniques are Un-Scalable 

(Luling and Monien, 1993; Kremien & Kramer, 1992). Besides, reliability is another 

concern since the central server is a single point of failure. 
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In this thesis, a different load-balancing scheme is proposed. It is desired to create a 

dynamic network system that gives load distribution and resource updating without 

the need to monitor the nodes for their availability in a static network. Thus, no 

central nodes are required for resource allocation and load assignment. Moreover, in 

previous load balancing techniques, the structure of the network does not give 

information about the load status of the network; the network structure is used only 

to communicate load status information and to distribute the jobs, not to balance the 

load. 

Some projects have been implemented to provide decentralised load balancing that 

use random walks on a network to distribute load (Montresor, et. al, 2002; Weiss, 

1999). These projects are based on Multi-agent techniques, and load balancing is 

performed through a swarm of autonomous computing units, or agents, that travel 

randomly across the network trying to distribute the load. However, it is not clear 

how long the random walk will need to balance the load. In the proposed network 

system, it is aimed to reshape the network topology to successfully distribute the 

load and update resources via a limited number of the random steps. Furthermore, 

there is no analytical modelling for the load distribution in previous systems. 

To address these issues, a statistical mechanic network system that provides a 

distributed load balancing mechanism is proposed. This network system has new 

contributions to distributed load balancing techniques since it will be decentralised, 

self-organized, scalable, and depends only on local information for load distribution 

and resource update. Furthermore, since there is no central point of failure and the 

networks created are based on random graphs, there is a higher possibility to find a 
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connected path between almost any two nodes in the system. This implies that the 

generated networks will be more immune to random errors, thus offering reliability 

to the network. 

Based on jobs' arrival/departure rate equation analysis, it is shown that the steady 

state degree distribution corresponds to ER random graphs. It has been demonstrated 

that providing a local and distributed stochastic protocol, based on random sampling, 

can effectively enable the network to self-organise itself into ER random graphs. 

Extensive simulation results are presented which prove that the convergence of the 

generated network system into ER random graphs is robust even if the protocols 

have been modified in different ways to match practical implementation 

requirements. Therefore, the network system considered here can provide an 

effective load-balancing scheme for the distributed resources available on large-scale 

networks. 

5.3 Proposed Load-Balancing Mechanism 

The load-balancing technique proposed here can provide effective load balancing 

solution for Open Source software projects, Grid Networks, and other organisations 

seeking non-commercial load distribution solutions. Such network systems have 

hundreds of computing nodes and resources that are chosen randomly by users. 

Thus, the demand difference of the nodes can be quite large. Therefore, if each of the 

nodes can automatically redirect traffic to less loaded nodes, the nodes would have a 

more predictable load, and the users would have a more reliable service. 

To effectively utilise nodes' resources, it is desirable to distribute the load requests 
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uniformly between the nodes, so that no node is significantly more loaded than 

others. Many load-balancing algorithms based on monitoring have been proposed 

(Wolf and Yu, 2001, Cardellini, el., 2002, Andreolini, el., 2002) and several open 

source projects have been created to give load balancing based on nodes' power and 

their geographical position (Horman, 2001, Horman, 2005, Zhang, 2003). 

In this thesis, a load-balancing scheme that is different from those proposed in the 

literature is presented. Instead of monitoring the nodes and their available resources 

through a static network, a dynamic network system that provides a measure of 

instant load distribution status, and gives dynamics for job allocation and resource 

update is created. 

To implement the proposed dynamic network system, a node's in-degree (node 

capacity) is mapped to its free resources or to the computation power of a node. 

Then, the edge dynamics are used to make the job allocation and resource 

maintenance procedures required for the load-balancing scheme. Accordingly, when 

a node receives a new job, it will remove one of its incoming edges to decrease its 

in-degree and indicate that its available resources are reduced. In the same way, 

when the node finishes a job, it will add an edge to itself to increase its in-degree. 

The process of adding and removing incoming edges is done by random sampling, In 

steady state, the rate at which jobs arrive would equal the rate at which jobs are 

finished and the network would have a fixed average number of edges. Therefore, a 

dynamic network system connecting all the nodes is developed. 

The state of the network refers to the distribution of the jobs betwccn the nodes. In 
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ideal conditions, the network system is expected to have the expected number of 

edges, and to have a binomial degree distribution close to that in ER random graphs. 

My proposal is to correlate resources with in-degree and then allow the graph to 

reshape itself to reach the required edge dynamic. The nodes' in-degree distribution 

state in this network reflects the current distribution of load on the nodes. The job 

assignment and the resource update processes are achieved according to the edges' 

addition and deletion dynamics in the network. This will assure that the distribution 

of jobs will be relatively equal across all the nodes in the network. The in-degree 

distribution of the proposed network system will be similar to ER random graphs 

with a binomial degree distribution, which gives us load balancing. The proposed 

load-balancing protocol is described in details in the following sections of this 

chapter. 

The stationary solution for the load distribution has been derived in this thesis. It is 

shown that this system can provide an effective load-balancing paradigm for the 

distributed resources accessible on Grid Networks. 

As discussed in Section 4.2 of Chapter 4, the probability that an ER random graph 

has more or less than the expected number of edges decreases exponentially. This 

binomial distribution implies that each node will have a degree, which is close to the 

average degree, and that the number of nodes with much higher or much lower 

degree than average is very small. Thus, the probability that any node has the 

expected number of edges is the same. 
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Therefore, it is desired to develop a network system with degree distribution being 

converged around the average value. Thus, a network system equivalent to ER 

random graphs that are binomially distributed is needed to be defined, where each 

node will have the same probability to have the average number of edges, which will 

give us the required load balancing. 

5.4 Stochastic Network System Modelling 

The proposed load balancing algorithm creates a correlation between node's in- 

degree and its free resources. This implies that the network is optimally balanced and 

most of the nodes in the network must have the same in-degree and thus has the 

same free resources. Since ER random graphs have such dynamic, it is desired to 

reshape the network system to become close to ER random graph to achieve the 

required load balancing performance. Therefore, it is desired to generate a network 

system with degree distribution equivalent to those of ER random graphs that are 

binomially distributed. 

In order to design such a dynamic system, the in-degree distribution of the nodes in a 

stochastic network system is analysed with a fixed number of nodes and fixed 

average number of edges. A node's in-degree refers to the free resources of a node. 

The job assignment and resource maintenance processes required for load-balancing 

are inherent in the network structure. Therefore, when a node receives a new job, it 

will remove one of its edges to decrease its in-degree. Similarly, when the node 

completes a job, it will add an edge to itself to increase its in-degree. The state of the 

proposed system refers to the distribution of the jobs between the nodes. 
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The increment and decrement of node's in-degree is performed via Random 

Sampling. Random sampling is the process whereby the nodes in the network are 

randomly picked up with equal probability. The random sampling will start at some 

fixed node, and at each step, it moves to a neighbouring node chosen randomly 

according to an arbitrary distribution. Then, in the last node in the walk of the 

random sampling will be selected for the load assignment. That is, when a node 

initiates a new job, a random sampling will be started through the network to assign 

the new job to the last node in the sampling. Then, the node who receives the new 

job will randomly remove one of its incoming edges to show that its load increased 

and its free resources decreased; see Figure 5.1. 

Edge to be 

1 Ira 3 

New 

1; 

32 

12 
RS 

Ld% 

(a) (b) (c) 

Figure 5.1 The random sampling procedure when a new job arrives. 

In Figure 5.1, the large nodes represent the computing nodes in the network, and the 

label for each of the computing nodes indicates the current number of jobs it is 

running. Part (a) shows new job created in the network. In part (b), we see that the 

node who creates this new job initiates a random sampling. The last node in the 

sampling is selected to run the new job. To compensate for the additional job, the 

node which accepted the new job removes one of its incoming edges to show that its 

free resources decreased. The resulting network is represented in part (c). 
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Similarly, when a node finishes executing a job, it initiates a random sampling 

through the network and a new edge will be created to connect it to the last node in 

the sampling. This new edge will be added to the in-degree of the node that executed 

the job to show that its load decreased and its free resources increased. 

Figure 5.2 shows the random sampling procedure when a running job finishes. Part 

(a) shows a running job finishing. In part (b) the node where job finishes initiates a 

random sampling through the network. In part (c) the last node on the sampling will 

be the origin of a new edge to connect it to the node that finished executing the job. 

This new edge represents the increase in available resources on the node where the 

job just executed. 

Job I 
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Jew Edge 
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Figure 5.2 The random sampling procedure when a running job finishes. 

The node's edge insertion/deletion process described above models the load 

assignment in the proposed dynamic load balancing algorithm, and the amount of 

free resources available for the nodes will show the job distribution status of the 

network. Therefore, node's edges are added or removed to keep the in-degree of a 

node proportional to its free resources. 
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As a result, the generated graph using this protocol will be a directed graph. For a 

directed graph with N nodes, each node has (N -1) possible incoming edges, each 

of which is selected independently and with a definite probability. In addition, the 

direction of the edges in the directed graph is used to lead the propagation direction 

for the random sampling. 

Analogous techniques have been used for load balancing which have produced some 

interesting results (Servetto and Barrenechea, 2002, Tian, el., 2005, Montresor, el., 

2002, Avin and Brito, 2004). In (Servetto and Barrenechea, 2002), constrained 

random walk in Grid Network was studied. The constrained random walk algorithm 

chooses the next-hop neighbour through only the shortest path direction to forward 

the random walk. In the two directions of the shortest path, the probability of 

forwarding in each direction is recalculated in every step so that the load balancing is 

reached for multi-path routing. However, a regular Grid system on a plane has been 

used for their random walk, which is a special case of real networks. The work has 

not been generalised to random graphs embedded in arbitrary k-dimensional Grid 

systems. Moreover, the load-balancing algorithm proposed in this thesis is different 

from (Servetto and Barrenechea, 2002) since the direction and probability of the 

random sampling is not constrained in each step. 

A random walk routing and load-balancing protocol in (Tian, cl., 2005) is applied for 

Wireless Sensor Networks (WSNs). This random walk protocol does not require any 

location information, neither the exchange information between neighbouring nodes. 

However, this protocol is deployed only for specific WSNs applications where 

sensor nodes need to report their status to the base station (BS) from time to time by 
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sending a short message to the BS. The work is focused on the routing protocols for 

small size data transmission in WSNs with regular topologies to efficiently save 

energy and achieve long networking lifetime. In this contest, their protocol needed to 

be further improved to be extended to general WSNs, and to find other technique to 

prolong the network lifetime. 

A different scheme is proposed here which has an advantage over the previous 

methods in that the network structure is dynamically changed to efficiently distribute 

the load. The proposed load-balancing paradigm will not require any monitoring 

mechanisms since it is encoded in the network structure. Moreover, the random 

sampling algorithm that will be used for nodes' selection will depend on the free 

recourses (in-degree) available for each node. 

Load-balancing in general is not limited to the use of resources; there are other 

characteristics that can be used to effectively weight the sampled in-degrees, such as 

geographical distance, computing power, and available memory. Therefore, the 

random sampling can be biased in various ways to select certain nodes even if they 

are not the highest degree. The proposed load distribution scheme can utilise Grid 

resources performance monitoring toolkits to obtain runtime information such as 

computing power, processor available time, end-to-end network bandwidth, free 

memory, available resources, geographical location, and latency. Then, the proposed 

scheme calculates a non-uniform load distribution in the nodes based on all the 

above runtime information which will be used by the random sampling to select the 

target node that will receive the new load. 
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Therefore, the performance of the random sampling is improved by directing the 

sampling walk toward specific nodes (such as unvisited nodes, or nodes with certain 

properties) instead of choosing them unbiasedly at random. Furthermore, the number 

of sampling steps (or sampling length) will be limited to a finite length, and the 

nodes' selection criteria will be based on a predefined criteria rather than selecting 

the last node in the walk. 

Random sampling is an uncontrolled process. The sampling walk can go to a 

neighbour and return to the same node after one step. This may result in some of the 

nodes being visited more times than the other nodes. However, if the network is 

regular and the random sampling is long enough, the steady state distribution of the 

random samplings will be uniform. This means that after a long enough time, the 

probability of the walk to be at any node is the same, which gives us load balancing, 

In (Lov'asz and Winkler, 1995), the authors observed that in undirected graph, if the 

random walk was long enough, then in stationary state, the probability that the walk 

will stop at a specific node is proportional to its stationary in-degree distribution. 

This also can be applied to my directed graphs since the underlying network has 

fixed average number of edges. Hence, the generated graph using this technique will 

be a strongly connected directed graph. It is necessary that the graph be strongly- 

connected with no isolated components to ensure that the random sampling approach 

can effectively sample the graph. If many nodes in the network are isolated or if the 

network has multiple connected clusters, then the nodes will not be able to 

participate properly in the proposed load-balancing algorithm. 
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The connectedness of random graphs is well studied and it is an important measure 

of performance (see Albert and Barabäsi, 2002, and Chung and Lu, 2001). In order 

for a random graph to be a strongly connected graph, the average node's degree k 

should be greater than 3.5 (Chung and Lu, 2001). Therefore, the minimum average 

in-degree for the nodes is set to 4 to ensure that the network will be strongly 

connected network. It is not necessary that the graph must always have a single 

strongly connected cluster at every time step because the creation of new edges will 

heal the graph and make it a single strongly connected cluster again. This is an 

important practical aspect for an implementation and more detailed analysis will be 

the subject of future work. 

ER random graphs have binomial distributions that exponentially decrease which 

provide good load-balancing. However, since every node in the network has the 

same in-degree, the optimal degree distribution is a regular graph as every node 

would have the same load. Modifications to the random sampling scheme to generate 

a more regular graph can further improve the load-balancing performance. 

Therefore, biasing the sampling toward specific nodes instead of choosing them 

uniformly randomly will improve the random sampling performance. 

Accordingly, a biased random sampling (BRS) is proposed here to provide the 

required dynamic load-balancing and the edge insertion and deletion strategy assures 

that the load will be distributed equally across all the nodes in the network. The BItS 

load-balancing technique assigns the new job to the least loaded (or highest in- 

degree) node in the random sampling. The generated network system is expected to 

have in-degree distribution close to regular graphs. The main initiative of the BRS 
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load-balancing scheme is that the network structure can represent the load 

distribution status of the network. 

Figure 5.3 shows the BRS procedure when a new job arrives. Part (a) shows new job 

initiated in the network. In part (b), the node who creates the new job initiates a 

random sampling which keeps track of the in-degree (or free resources) of each 

visited node. The highest in-degree node (most free resources) is selected to run the 

new job. Then, the node which accepted the new job removes one of its incoming 

edges to show that its free resources decreased. The resulted network is showed in 

part (c). 
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Figure 5.3 The biased random sampling (BRS) procedure when a new job arrives. 

One key advantage of the BRS scheme is that the data structure required for load- 

balancing is dynamically retained by each node through the links (or edges) used to 

connect with other nodes in the network. The nodes in the network will create these 

edges when the load is distributed using random sampling and/or when edges are 

being inserted or deleted. These edges are vital because they hold the state of the 

network. Therefore, it is essential to keep the network in the proper state in order to 
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keep the BRS load-balancing scheme in the proper state to effectively distribute the 

load. Besides, the network state maintenance is easily attained using local edge 

connecting procedures. Therefore, if a link is failed, it can simply be fixed before it 

has an effect on the system performance. 

5.5 Stationary In-Degree Distribution Analysis 

The proposed load distribution mechanism is difficult to analyse mathematically due 

to the dynamic nature of the network and the way the random sampling works. 

Therefore, the analytical verification was simplified by restricting the load 

distribution mechanism to use a simple random sampling scheme, which selects the 

last node in the walk, rather than using the proposed random sampling scheme. 

To analyse the generated network system, a network system with N nodes is 

considered for this work and it is assumed that all the nodes in the network have 

similar capabilities and jobs can be executed in any node. Suppose pk is the 

probability that a node has k edges. Then, the average number of edges, E, in the 

network is: 

E=NJ: kpk (5. i) 

At each step, a randomly chosen edge will be deleted, and a randomly chosen edge 

will be inserted. Thus, the numbers of edges inserted and deleted are both random 

variables that are selected to have a fixed average number of edges. 

Let D be the average number of deleted edges in the network, and let M be the 
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maximum number of edges a node can have. To make the network system 

compatible with ER random graphs, it is assumed that each node can have up to 

(N-1) edges, thus M <- (N - i) . This assumption is not a limitation of the 

mechanism; it is only to show that this system is designed for large-scale networks. 

So, the expected number of edges in the network is given by: 

E=NM-D (5.2) 

Since the probability that a random sampling with a proper length will stop at a 

specific node is proportional to its stationary in-degree, thus, if node's edges have 

been deleted uniformly randomly, then the probability that a node with k edges will 

lose one or more of its edges is proportional to its in-degree. Therefore, the rate at 

which the in-degree of a specific node with k edges will decrease is given by: 

Rk -k_k' 05k5M (5.3) ETVM 

here, the node's in-degree will decrease only by one edge at a time. 

In the same way, the probability that the in-degree of a certain node will increase is 

proportional to the number of deleted edges from this node. Thus, the node's in- 

degree will increase by one at a rate given by: 

Sk= Dk 
, 0Sk5M (5.4) 
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Since the average number of edges is assumed to be fixed, the network can be 

described as a Markov Chain (Kleinrock, 1975) with insertion and deletion rates 

given by Equations (5.3) and (5.4). In this Markov Chain, the node's in-degree 

represents Markov states with the probability of going from one state to another 

being given by Rk and Sk respectively by deletion or addition of an edge. Therefore, 

the total number of states in this Markov Chain is (M +1) , where they refer to the 

node's in-degree in this dynamic system, and the rates at which node's in-degree 

decreases and increases are given by Rk and Sk respectively. 

For Markov Chain, the stationary distribution for the expected number of jobs per 

node (node's in-degree) is defined by the following expression: 

V[A-1]=0 (5.5) 

where A is the transition matrix, I is the identity matrix, and V is the distribution 

vector (transition probability) and it is defined as: 

V= [Pk+i Pk Pk-I ], 1 
_<k <M (5.6) 

Figure 5.4 shows the transition graph (states) for node's in-degree. From Figure 5.4, 

the transition matrix T can be obtained; 

1- Rk+, Rk+I 0 
T= Sk 1-(Rk + Sk) Rk 

0 Sk-1 1- Sk-1 
(5.7) 
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Figure 5.4 The transition graph (states) for node's in-degree in the network. 

Please note that the in-degree of the node is decreased or increased by only one edge. 

Using Equations (5.5), (5.6), and (5.7), I have 

1- Rk+l Rk+l 0100 
[Pk+l Pk Pk-I I Sk 1- (Rk + Sk) Rk 010=0 

0 Sk-1 1- Sk-1 001 

Rk+l 

[Pk+l pk Pk-1 J 
Sk 

0 

Rk+l 0 

-(Rk + Sk) Rk =0 
Sk-I 

-sk-1 

Then, by expanding Equation (5.9), it gives 

Pk+l Rk+I + Pk `5k 

Pk+1Rk+i -Pk(Sk +Rk)+Pk-iSk-I =0 

(5.8) 

(5.9) 

(s. i 0) 

(5.11) 
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PkRk Pk-ISk_I =0 (5.12) 

From the above equations, we can see that in the steady state, the rate at which 

node's in-degree increases will equal the rate at which node's in-degree decreases. 

Therefore, the network system generated has a fixed expected number of edges. 

From Equation (5.12), 1 have 

Pk = 
Sk-' 

Pk-1 (5.13) 
Rk 

Now, if k =1, then from Equation (5.13) 1 have 

S 
PI T Po (5.14) 

i 

Similarly, if k=2, then 

Pz=s, PA= ,. 
SoPo 

(5.15) 
RZ RZ R, 

Thus, the probability that a node has k edges, pk , becomes 

Pk - 

Sk-I 
Pk-1 _ 

. 
Sk-1`Sk-2 

.... 
Sp 

Pa 5.16) 

Rk Rk Rk-1... Rl 
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By inserting equations (5.3) and (5.4) into equation (5.16), it becomes 

M(M-1)(M-2)... (M-(k-1))D-k M NM-D k 
(5.17) Pk - k! (NM-D)-k Po -kD Po 

Moreover, since the total probability Pk is equal to one, then I have 

(NMD-D k 
)p0=1 (5.18) Pk =ýkpk kk 

By using the Binomial Expansion Theorem (Abramowitz and Stegun, 1972), 1 have 

DM 
Po =C NM) (5.19) 

Thus, after simplifying the equations (5.16) through (5.19), we can see that pk is 

binomially distributed and it is given by 

_M 
NM-D kD M_ M NM-D kD (M-k) 

Pk kD NM k NM NM 

=(M)(1- 
DkD (M-k) (5.20) 

k NM NM 

This degree distribution implies that the proposed network system is equivalent to 

the degree distribution of ER random network as illustrated in Equation (4.2) in 

Chapter 4. 
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Pk = 
Mk 

qk (1-q)(M_k) (5.21) 

Thus, for each node, there are M possible incoming edges, each of which is selected 

independently and with connection probability Cp given by 

D NM-D E Cr = 1- __ (5.22) 
NM NM NM 

These analytical results show that the stationary distribution is compatible with ER 

random networks. Therefore, if the number of edges in the network is fixed with 

connection probability Cp =E/ (NM), it is expected that each node in the network 

will have E edges, which gives us load-balancing. Thus, the proposed algorithm 

gives nearly optimal load-balancing performance by creating an almost regular 

network system where each node's in-degree refers to its free resources. 

5.6 The BRS Load-Balancing Scheme Implementation 

The proposed BRS load-balancing scheme is an easily implemental scheme using 

standard networking protocols. The decentralised feature of the scheme makes it 

suitable for many large network systems such as Grid Networks. Hence, we can 

apply the proposed load-balancing scheme on top of Grid Network as a virtual 

network (Adabala et at., 2005), or, we can integrate it inside Grid Network 

Middleware (Schantz and Schmidt, 2001; Blair et al., 1999). For example, this 

network system can be built directly on top of any of the physical transport layers 

and use the Grid Network as its underlying network. 
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Grid Networks consist of computers and routers, which are connected by different 

physical links (Ethernet, Serial, ATM, Wireless, etc. ). By using a virtual IP 

addresses, networked computers can be addressed without the knowledge of the 

physical transport layer. Therefore, the network does not need to consist of physical 

connections between nodes. Thus, in an addressable system, the nodes' edges may 

simply be a table of IP addresses that each node constructs to represent its 

neighbours in the network. If the networks are not globally addressable, each node 

will need to maintain a routing table that gives complete route information on how to 

reach its neighbours, or the actual physical links. Accordingly, network edges can be 

used to represent cached routes in the underlying physical layer and lightweight and 

fast transport protocols (e. g. User Datagram Protocol (UDP), Lightweight Directory 

Access Protocol (LDAP), Lightweight TCP/IP (IwIP)) can be used to represent the 

large number of edges of the network with minimum overhead. Each node will have 

local information about its status (i. e. its free resources available), which can be used 

for resource allocation and load distribution. 

To implement the proposed algorithm and to generate the network dynamics 

analysed in the previous sections, there is a need for a random dynamic that samples 

the network using local information to choose which edges to insert or remove. As 

can be observed from Equating (5.3), the nodes lose their edges preferentially with 

respect to their in-degree. And since in steady state and when the random sampling is 

long enough, the probability that the random sampling will end at a particular node is 

proportional to its in-degree. Therefore, the proposed random sampling technique 

can be used to implement the desired graph dynamics which will sample the network 

using only local information to efficiently distribute the jobs among the nodes. 
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The performance of proposed load balancing technique has been improved by 

assigning the new job to the least loaded (or highest in-degree) node in the sampling, 

instead of the last node in the walk. When the node with the most-free resources on a 

walk is preferred to receive the new job, its resources must be greater than or equal 

to the resource of the last node on the random sampling. Hence, it is expected that 

improved load balancing technique will have the same scalability as the standard 

random sampling, and the balancing performance is much improved as shown in 

simulation results in Chapter 6. 

In addition, the random sampling is further improved by directing the sampling 

toward specific nodes (such as unvisited nodes, or nodes with certain properties) 

instead of choosing them uniformly at random. Hence, the nodes' selection criteria 

will be based on a predefined criterion rather than selecting only the last node in the 

walk, and the length of sampling walk will be limited to a finite length. 

5.7 Network Simulation Methodology 

Simulations are used to evaluate the performance of load-balancing algorithm and to 

show that the resulted dynamics match the theoretical predictions. For network 

simulations, a network system is created which has N nodes. Each node in the 

network is a computer with computing power equal to its maximum in-degree. One 

unit of power can process a unit of load in each unit of time. The number of edges in 

each node will be proportional to its free resources. Simulation timing (iteration) is 

the time required to send a message or a data packet from one node to another node. 

Initially, experiments were carried out under ideal conditions where it is assumed 
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that all the nodes in the network have similar capabilities and jobs can be executed in 

any node. Such assumption was made to prove the concept of the load-balancing 

scheme and to verify that the proposed network system certainly leads to ER random 

networks and matches the analytical results. Here, the random sampling will select 

the last node in the sampling to match the predicted theoretical analysis. After that, 

the proposed scheme has been modified to suit more real networks by adding 

heterogeneity to the nodes and biasing the random sampling toward specific nodes. 

In a homogeneous configuration, all nodes have equal capabilities and jobs can run 

on any node. For homogeneous system simulations, the number of jobs that arrive 

and depart each time step is Poisson distributed, and the average job arrival rate is 

512 jobs at each time step. In addition, the job size is Poisson distributed and the 

average job size is 512 Kbits. Applying Poisson distribution in homogenous system 

simulations is discussed in more details in Chapter 6. 

In a heterogeneous configuration, the nodes have different capabilities and varying 

resources. Each node in the network has an in-degree equal to its computational 

power (capability). For heterogeneous system simulations, Pareto (or Power-law) 

distribution (Mitzenmacher, 2003) has been used to model nodes' computation 

power distribution, job's arrival rate and job sizes. These simulations can give a 

practical reflection of how the system would work under real situations. Table 5.1 

summarises the simulation parameters for heterogeneous system simulations. Pareto 

distribution is discussed in more details in Chapter 6. 
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Table 5.1 Parameters for heterogeneous system simulations. 

In-Degree Distribution Job Arrival Rate Job Size (Kbits) 

Minimum Maximum Minimum Maximum Minimum Maximum 

4 100 1 4096 32 2048 

The random sampling protocol used for load distribution depends only on local 

information (e. g. node's available resources, communication delay, computing 

power, and available memory) to sample the network and to efficiently distribute the 

workload among the nodes. The length of random sampling will be limited to a 

specific number of steps which will vary according to experiment's requirements. 

In simulations, the random sampling algorithm assigns the new jobs to the sampled 

nodes according to a predefined criterion from the following: 

- The last node in the random sampling to compare the results with the 

mathematical predictions. 

- The node which has the highest in-degree (most free resources) in the 

sampling to efficiently balance the load distribution. 

- The node with least communication delay to reduce the average 

communication latency in the network. 

To examine the performance of the proposed load-balancing scheme in practical 

networks, two types of simulation experiments were carried out. The first experiment 

considered the computing power alone as the key factor for load balancing. In the 

second experiment, the geographical distance (communication delay) is added as a 

second factor for load balancing. Accordingly, the proposed load-balancing scheme 
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models the network as a graph consisting of weighted nodes and communication 

edges. Therefore, the load balancing scheme objective is to balance the load between 

the nodes as well as to minimise the communication latency. 

In all of these simulations, we begin with a randomly-connected network subject to 

the initial degree distribution. The node's edges are added or removed to keep the in- 

degree of a node proportional to its free resources. Hence, when a node receives a 

new job, it randomly removes one of its incoming edges to show that its load has 

increased and its free resources have decreased. Similarly, when a job is completed, 

the in-degree of the node that executed the job will be increased to show that its load 

has decreased and its free resources have increased. This is done by randomly 

sampling the network, and then, a new directed edge will be created from the last 

node in the sampling to the node that executed the job. 

The generated network is a directed graph and the direction of edges is used to lead 

the propagation direction for the random sampling. Every node in the network must 

keep the minimum in-degree so that the network remains strongly-connected. 

Therefore, the minimum in-degree for the nodes is set to 4 to guarantee that the 

network will be a strongly-connected network. 

The node's edge insertion and deletion process described above will simulate the 

change in the workload of the network, and the amount of free resources available 

for the nodes will exhibit the job distribution status of the network. The state of the 

network represents the instantaneous distribution of jobs over all the nodes. 

92 



5.8 Simulation Description 

The following steps were used to simulate the network and job traffic on the network 

and to find out whether or not a regular graph could develop from random initial 

topologies: 

- Graph Initialisation: First we create a directed graph with N nodes and the 

maximum degree of any node is Af . The nodes have in-degree proportional to 

their free resources. The free resources are defined to be the amount of 

computing power available. The initial structure of the network is created by 

connecting each node in the network to a random number of nodes. This graph 

is intentionally constructed in a random manner to show that the proposed 

algorithm lead to a regular graph independent of the initial configuration. 

- Edge Deletion (Job Submission) Process: When a new job is submitted, a 

random sampling of length log(N) is started from the node that submitted the 

new job. In standard random sampling (RS) algorithm, the last node on the 

random sampling will be selected to receive the new job. Figure 5.5 shows the 

pseudo code for procedure SelectDestinationRS(source). 
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Procedure SelectDestinationRS(source) - when a new job 

enters the network, a random sampling initiated to select the last 

node in sampling to give it the new job. 

1: RS_length log(N), steps <-- 0 

2: destination E-- source 

3: while (steps < RS-length) 

5: destination - RandomOutNeighbor(destination) 

6: steps E-- steps +1 

7: end while 

8: return destination 

Figure 5.5 The pseudo code for procedure SelectDestinationBRS(source). 

In the biased random sampling (BRS) algorithm, the highest in-degree node on 

the sampling will be selected to receive the new job rather than the last node to 

improve the efficiency of the proposed BRS load-balance algorithm and 

generate networks closer to regular graphs. Therefore, when a new job enters the 

network, a random sampling is initiated that retain information about the nodes' 

free resources during the random sampling. Then, the job is assigned to that 

highest in-degree node. Figure 5.6 shows the pseudo code for procedure 

SelectDestinationBRS(source). 
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Procedure SelectDestinationBRS(source) - when a new job 

enters the network, a random sampling is initiated that retain 
information about the nodes on the sampling. The job is then 

assigned to that highest in-degree node. 

1: BRS_length *- log(N), node +- source, steps <-- 0 

2: indegree F-- node. resources, destination <-- node 
3: while (steps < BRS_length) 

4: node +- Random OutEdge(no de) 

5: indegreetemp F- node. resources 

6: if (indegreetemp > indegree) then 

7: indegree E-- indegreetemp 

8: destination i-- node 

9: end if 

10: steps f-- steps +1 

11: end while 

12: return destination 

Figure 5.6 The pseudo code for procedure SelectDestinationBRS(source). 

Accordingly, when the node receives the new job, it uniformly randomly deletes 

one of its incoming edges. These edges are deleted to reflect the decrement of 

nodes' free recourses; see Figure 5.7 for the pseudo code for procedure 

DeletelncomingEdge(destination). 
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Procedure DeletelncomingEdge(destination) - when an node 

receives a new job, it deletes on of its incoming edges to reflect 

the decrement of its free recourses. 

1: source destination 

2: source ý-- RandominEdge(destination) 

3: DeleteEdge(source, destination) 

4: destination. resources f- destination. resources -1 
5: end 

Figure 5.7 The pseudo code for procedure DeleteIncomingEdge(destination). 

- Edge Addition (Job Finishing) Process: The addition of an edge is undertaken 

when a node finishes one of its jobs and wants to increase its in-degree. Thus, 

when a node completes a running job, it initiates a random sampling of length 

log(N) through the network and the last node in sampling to be connected to 

the node that finished the job. Figure 5.8 shows the pseudo code for procedure 

SelectSource(destination). Then, a new directed edge will be added from the last 

node that the sampling ends at to the node which finished the job to account for 

its increase in free resources. Figure 5.9 shows the pseudo code for procedure 

AddIncomingEdge(source, destination). 
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Procedure SelectSource(destination) - when a node finishes a 
job, it initiates a random sampling that selects the last node in 

sampling to be connected with the node that finished the job. 

1: RS_length - log(N), steps «- 0 

2: source E-- destination 

3: while (steps < RS-length) 

4: source E- RandomOutEdge(source) 

5: steps E-- steps +1 

6: end while 
7: return source 

Figure 5.8 The pseudo code for procedure SelectSource(destination). 

Procedure AddIncomingEdge(source, destination) - when a 

node finishes a job, a new directed edge will be added from the 

last node in the random sampling to the node that finished the job 

to show that its free resources is increased. 

1: AddEdge(source, destination) 

2: source. resources 4-- source. resources +1 

3: end 

Figure 5.9 The pseudo code for procedure Add IncomingEdgc(sourcc, destination). 
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5.9 Summary 

In this chapter, a network system that gives a distributed load-balancing scheme by 

generating almost regular graphs is proposed. This network system is self-organized 

and depends only on local information for load distribution and resource discovery. 

The in-degree of each node refers to its free resources, and job assignment and 

resource updating processes required for load balancing is accomplished by using 

random sampling. The idea is to correlate resources with in-degree and then allow 

the graph to reshape itself to reach the required edge dynamic. An analytical solution 

for the stationary degree distributions has been derived which confirms that the edge 

distribution of proposed network system is compatible with ER random graphs. 

Thus, this network system can provide an effective load-balancing paradigm for the 

distributed resources accessible on Grid Networks. 

Simulations description and the key procedures and parameters that have been used 

to conduct the network simulations are summarised in this chapter. Extensive 

simulations were performed to validate the efficiency and scalability of the proposed 

load-balancing mechanism and the results are reported in this and the following 

chapter. 
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Chapter 6 

PERFORMANCE EVALUATION, 

RESULTS, AND DISCUSSION 
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Chapter 6 

PERFORMANCE 

DISCUSSION 

6.1 Introduction 

EVALUATION, RESULTS, AND 

In order to evaluate the proposed load-balancing scheme, and to verify that the 

proposed network system generates almost regular graphs and matches the analytical 

results. Extensive simulations are performed with various parameters and the results 

are reported in this chapter. 

To verify the efficiency and scalability of the proposed load-balancing mechanism 

under various conditions, few adjustments to the developed system have been done. 

For instance, the network size does not have to be constant and the random sampling 

will be biased to preferentially select the nodes according to specific conditions. 

Moreover, the performance of my load balancing technique under heterogeneous 

configurations is examined where the nodes in the network have different 

capabilities and resources. Furthermore, the affect of communication latency on load 

distribution and nodes' in-degree is studied. The steady state in-degree distribution, 

the in-degree standard deviation (or variance), and the correlation have been used to 

assess the load-balancing performance. 

Simulation results have been used to evaluate and examine the performance of the 
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load-balancing algorithm and to determine the optimum random sampling length 

required to achieve the required load balancing. Then, the scalability and reliability 

of the algorithm is evaluated under several conditions. The effect of including 

localisation information to the random sampling on the average communication 

latency and the load-balancing performance is examined. 

6.2 Load Balancing Performance vs. Theoretical Predictions 

To study the performance of the proposed load-balancing scheme, the in-degree 

distribution of the generated network by using the random sampling (RS) protocol is 

examined and compared with the predicted binomial in-degree distribution. Here, the 

available resources (e. g. computing power) are considered as the key factor for 

selecting the node which will receive the new load. Moreover, the random sampling 

protocol used here will select the last node in the walk to compare simulation results 

with theoretical results. 

Here, the performance of proposed load balancing mechanism for homogeneous 

network systems is examined, where all nodes have equal capabilities and jobs can 

run on any node. Such assumption is made to prove the concept of load-balancing 

scheme and to verify that the proposed network system certainly leads to ER random 

networks and matches the analytical results. 

In homogeneous system experiments, the number of jobs that arrive and depart each 

time step is Poisson distributed, and the expected job arrival rate, v , is set to 512 

jobs at each time step. Also, the size of each job is Poisson distributed and the 
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average job sizeJ, is set to 512 Kbits. 

Figures 6.1 and 6.2 show that the steady state in-degree distribution for the network 

is very close to the binomial distribution described in Section 4.1 in Chapter 4. The 

network under consideration in these simulations has N= 512 nodes, and the 

maximum in-degree M=N -1. The node's average in-degree k for the network 

whose simulation is shown in Figure 6.1 is 32 and for that in Figure 6.2 is 72. 

Recall that predicted steady state in-degree distribution P(k) is calculated according 

to the following equation (Erdös and Renyi, 1960, Bollabas, 2001): 

P(k) = e- "N 
(PN)k 

=e -k 
(k)k 

(6.1) k! k! 
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Figure 6.1 The simulated steady state in-degree distributions using random sampling 

(RS) protocol compared with the predicted binomial distribution for networks with 

node's average in-degree k= 32 and network size N= 512. 
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Figure 6.2 The simulated steady state in-degree distributions using random sampling 

(RS) protocol compared with the predicted binomial distribution for networks with 

node's average in-degree k= 72 and network size N= 512. 

Simulation results confirm that the proposed network dynamic creates ER random 

networks, and the proposed random sampling technique can be used to efficiently 

distribute the load between the nodes. The correlation created by the load-balancing 

technique between a node's in-degree and its free resources implies that most of the 

nodes in ER random graph have the same in-degree and the same free resources. 

Thus, a nearly optimal load balancing performance is achieved. 

6.3 Load-Balancing Performance under Different Network Loads 

Simulations have been extended to analyse the proposed load-balancing technique 

under several parameters and conditions. For example, to study the performance of 

the algorithm under different network loads, the network has been examined under 
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various load capacities. Ideally, we would expect that the network would have a 

binomial in-degree distribution similar to ER random graphs. Indeed, simulations 

results confirm this. The performance of the proposed load-balancing algorithm is 

consistent for a variety of network loads. 

Figures 6.3 to 6.5 show the steady state in-degree distributions for three networks 

that are loaded up to 25%, 50% and 85% of their capacities; respectively. Here, the 

network in-degree distribution P(k) versus nodes' in-degree (k) is plotted for 

various load capacities. The networks under consideration have N =1024 nodes and 

each node has a maximum in-degree of M= 64 edges (or resources). Figure 6.3 

shows a network that is lightly loaded with less than 25% of its capacity. Figure 6.4 

shows a network that is about 50% loaded. Finally, figure 6.5 shows a network that 

is heavily loaded to about 85% of its capacity. 

Ideally, it is expected that the network would have a binomial in-degree distribution 

similar to ER random graphs. Indeed, simulations results confirm this. As we can see 

from the figures, the networks experiencing a large range of network loads benefit 

from nearly equivalent load-balancing performance. Thus, whether the network is 

heavily loaded or nearly idle, the load-balancing performance on the network is 

almost the same and the resulting in-degree distribution is close to ER random graph. 

Thus, the proposed load-balancing algorithm is effective for different network loads. 
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Figure 6.3 The in-degree distributions when the network is loaded up to 25% of its 

capacity with N=1024 and M= 64. 
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Figure 6.4 The in-degree distributions when the network is loaded up to 50% of it 

capacity with N=1024 and M= 64. 
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Figure 6.5 The in-degree distributions when the network is loaded up to 85% of it 

capacity with N=1024 and M= 64. 

6.4 Scalability Performance of the RS Load-Balancing Scheme 

Simulation results depicted in Figures 6.6 to Figure 6.8 show that the proposed 

algorithm is scalable and that the generation of regular graphs using biased random 

sampling is effective for various network sizes. Simulations have been carried out 

for increasing values of network size and the results presented here demonstrate the 

true scalability of the algorithm. 

As can be observed from theses graphs, the performance of the algorithm scales well 

specially for large network sizes. The in-degree distributions shown in the following 

figures are for graphs with network sizes N= 1024, N= 8192, and N= 16384; 

respectively. In addition, by increasing the number of nodes N, the in-degree 

distribution is closer to the degree distribution of regular graphs, which indicate that 
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this algorithm is designed for large-scale networks. Simulations results confirm that 

the proposed algorithm scales well over large network sizes. 

Hence, the generation of ER graphs using the proposed random sampling load 

balancing algorithm is effective for all network sizes simulated (at least up to 

N=16384). Moreover, with increasing network size, a convergence to binomial 

distribution is observed. Consequently, simulations results confirm that the 

scalability of random sampling (RS) load-balancing scheme over large network 

sizes. 
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Figure 6.6 The in-degree distributions for a network with N= 1024 and M= 48 . 
The network is loaded up to 75% of its capacity. 
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Figure 6.7 The in-degree distributions for a network with N= 8192 and M= 48. 
The network is loaded up to 75% of its capacity 
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Figure 6.8 The in-degree distributions for a network with N =16384 and M= 48. 

The network is loaded up to 75% of its capacity 
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6.5 Performance of the improved BRS load-balancing scheme 

The performance of the load-balancing technique proposed in Chapter 5 can be 

improved by biasing the sampling toward specific nodes instead of choosing them 

randomly. Hence, the nodes' selection will be based on a predefined criterion (such 

as computing power, communication latency, and geographic position) rather than 

choosing the last node in the walk. For example, the random sampling walk would 

be directed towards unvisited nodes or it would prefer a node with certain properties 

to allocate the new job. 

Accordingly, the BRS load-balancing technique has been improved by assigning the 

new job to the least loaded (or highest in-degree) node in the sampling, instead of the 

last node in the walk. When the node with the most-free resources on a random 

sampling is preferred to receive the new job, its resources must be greater than or 

equal to the resource of the last node on the random sampling. Therefore, it is 

expected that the BRS scheme will have the same scalability as the standard random 

sampling, and the balancing performance is much improved. 

ER random graphs have a binomial distribution that exponentially decreases which 

provides good load-balancing. However, since every node in the network should 

have the same in-degree, the optimal degree distribution would be a regular graph as 

the nodes would have the same load. Therefore, improving the proposed load 

balancing technique to generate more regular graph can enhance the load-balancing 

performance. Thus, the improved load balancing technique implies that to have an 

optimal balanced network, the network should be close to a regular graph where all 

the nodes in the graph have the same in-degree. 
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It is known that regular graphs have zero standard deviation and zero variance since 

all the nodes in the graph have the same degree (Cvetkovio, et al., 1998). The 

variance is the average of the square of the distance of each possible value from the 

expected value, and it is used to capture the degree that the data point is being spread 

out from average value. Hence, if the network system has an expected (average) in- 

degree k edges, then the variance Var(k) of the network is given by (Loeve, 

1977): 

Var(k) =lk pk (k -k )2 (6.2) 

However, the graph can also have a zero standard deviation if it has an even number 

of nodes. Another balanced network is a network where half of its nodes have the 

expected in-degree T, and the other half have in-degree (k7+1) or (T-1). In this 

case, the in-degree standard deviation is +0.5 and -0.5 respectively (i. e. the 

variance is equal to0.25). Accordingly, the network is also considered a balanced 

network when its variance is close to 0.25. 

Though it has not been proved that the modified load balancing scheme would 

generate a regular graph, simulation results for the BRS algorithm demonstrate the 

same property as a regular graph. Therefore, this scheme can be considered as an 

improvement of the random sampling technique derived in Chapter 5 which proved 

analytically to produce ER random graphs. Accordingly, it is expected that the 

improved load balancing scheme would generate networks with in-degree variances 

smaller than or equal to the in-degree variance of ER random graphs. The improved 

load balancing scheme which selects the node with highest degree in the sampling 
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should balance the load at least the same as the load balancing scheme which 

generates ER graphs through selecting the last node in the walk for the assigning the 

jobs. 

The proposed biased random sampling (BRS) technique will be used to balance the 

load distribution and the edge insertion and deletion strategy assures that the load 

will be distributed equally across all the nodes in the network. Moreover, to prove 

that the BRS scheme truly samples the nodes preferentially to their in-degree and 

that the load-balancing performance is much improved, the following simulation 

results are provided. 

6.5.1 Performance evaluation for the BRS scheme 

The set of Figures 6.9a to 6.9c demonstrate the in-degree distribution of the network 

plotted as the network evolved through different time slots (7), which shows the 

process of reaching the load balancing. Here the time dynamics of the in-degree 

distributions of the network can be clearly seen. In Figure 6.9(a), the network is 

initialised in a completely random state. For instance, in this experiment, the network 

started with a variance approximately equal to 46.3. Then with time, the network 

starts reshaping itself by balancing the load distribution among the nodes, and in- 

degree variance decreases to become approximately 11.4 at T=2500; as can be 

seen Figure 6.9(b). Over time, the network settles down to a nearly regular graph 

with variance approximately 0.32 at T= 4000 as seen in Figure 6.9(c). 

Hence, the BRS scheme attained an efficient load-balancing performance regardless 

the initial status of network's in-degree distribution. By using the BRS protocol, the 



network would dynamically reshape itself till it settles down to become nearly 

regular graph. The time it will take to settle down and balance the jobs depends on 

network size and its in-degree distribution status (more details are discussed in 

Section 6.6). 

Thus, when all the nodes have the same capabilities, the network will almost be a 

regular graph and an excellent load-balancing performance is achieved. Thus, the 

improved BRS load-balancing scheme which selects the node with highest degree in 

the walk improved the load-balancing performance attained from the previous 

version which generates ER graphs through selecting the last node in the walk. 
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Figure 6.9(a) The in-degree distribution of the network plotted at the time slot T=o. 
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Figure 6.9(b) The in-degree distribution of the network plotted at the time slot 

T= 2500. 
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Figure 6.9(c) The in-degree distribution of the network plotted at time slot T= 4000. 

Figure 6.9 The in-degree distribution plotted as the network evolves over a number 

of time slots (7). 
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6.5.2 The justification for using the BRS scheme to balance workload 

In order to determine the relation between each node's visitation frequency and its 

in-degree, the number of times that each node is visited after the network has 

evolved and balanced is recorded. The random sampling protocol shows that there is 

a relation between a node's degree and the frequency at which a random sampling 

visits a node. A linear relation between a node's in-degree and visitation frequency 

has been observed which validates the use of BRS scheme as a decentralised load 

balancing algorithm. I also observed that each node is visited at least once which 

determines the lower limit of the diameter characteristic of the network. 

Figure 6.10 shows the variance of the in-degree distributions of the network with 

time as the network evolves. The network is initialised randomly; for example, the 

network begins with in-degree variance of approximately 42.6. Then, the network 

starts reshaping and randomises itself with time by adding and deleting nodes' edges 

to reach a large in-degree variance of around 63.3. Then, the network starts to settle 

down and begins to heal itself. Consequently, the variance rapidly decreases until the 

network becomes almost regular with an in-degree variance close to 0.38. 

Hence, the BRS load-balancing protocol will efficiently and dynamically randomise 

and reshape the network to reach a nearly regular graph nevertheless the in-degree 

status of the network. The time required to heal the network and balance the 

workload depends on network size and its in-degree variance status. But, the time 

required by the network to settle down is significantly dependent on network size as 

discussed in Section 6.6. 
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Figure 6.10 The variance of the in-degree distribution vs. Time for a network with 

N= 2048 and M= 48. 

6.6 The Time required to Balance the Network in BRS Scheme 

Now, to further measure the efficiency of the BRS algorithm, the average time 

required for the network to settle down and balance the load is examined. 

Simulations have been carried out for networks with different sizes and the average 

time it took by each network to balance the load distribution is recorded. Table 6.1 

shows the network size and the corresponding aver time required to reach variance 

around 0.32, which is close to the optimum variance to perfectly balanced network. 

In Figure 6.11, the network size is plotted with the corresponding time required for 

balancing the network. As seen from the figure, the time required to efficiently 

balancing the network load increases logarithmically with network size (N). 

The above simulations have been carried out not only to illustrate relationship 

between the load-balancing time and network size, but also to capture the dynamics 
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of network growth. Theses simulation results confirm that the proposed BRS 

technique is suitable for growing networks. 
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Figure 6.11 The time required to balance the network increases logarithmically with 
the network size N. 

Table 6.1 The time required to balance the network for different network sizes 

Network Size 
Average Time to Balance 

Iterations 
512 5188 
1024 7244 
2048 9444 
4096 11111 
8192 13518 
16384 15370 
32768 17592 

116 



6.7 The Optimum Random Sampling Length 

Intensive simulations have been carried out to observe the number of steps needed to 

efficiently sample the network to achieve the required load distribution, and to 

evaluate its effect on the performance of load balancing algorithm. I found that the 

performance of the load-balancing algorithm improves as the random sampling 

length increases. 

As can be seen from Figure 6.12, increasing the random sampling length will 

decrease the in-degree variance. Here, simulations were performed on a network of 

2048 nodes with several random sampling lengths. If the random walk sampling is 

too short, then the load distribution is not very efficient and the variance is very high. 

This is because the network builds an overloaded cluster near the node that is 

initiating the job (and thus the random sampling). This cluster stays overloaded 

while the rest of the network is unloaded. However, if the random sampling length is 

16 or more (for a network with 2048 nodes), the in-degree variance is small and 

very close to 0.25, which is the optimum variance for balanced networks. 

Moreover, if the number of steps used to sample the network is very large, then the 

decrement in the in-degree variance is very small. As shown in Figure 6.12, the 

performance achieved by using very long sampling walk is very close to that when a 

random sampling of length close to log(N) is used. This has also been observed in 

larger network sizes. Intensive Simulations have been carried out on different 

network sizes to examine the number of steps needed to efficiently sample the 

network, and the results are recorded in Table 6.2. 
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Figure 6.12 The variance of the in-degree distribution vs. number of random 

sampling steps for a network with N= 2048 and M= 48, 

It can be observed form the table that using random sampling with length around 

log(N), as a cut off, will be sufficient to reach an in-degree variance very close to 

the optimum variance, and this confirms that the random sampling technique is very 

efficient to balance the workload in the network. 

Table 6.2 The random sampling length and the variance resulted in different 

network sizes. 

Network Size 
Number of Random 

Sampling Steps Variance 
512 9 0.3 
1024 13 0.29 
2048 16 0.31 
4096 17 0.33 
8192 19 0.34 
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6.8 Reliability Performance of the BRS Scheme 

To measure the reliability and robustness of the proposed load balancing mechanism, 

the simulations are extended to investigate how nodes' in-degree and load 

distribution in the network will be affected by random errors at run time. To do this, 

the possibility of node failure is introduced to the network after the network has 

settled down and distributed the load properly among the nodes. Node failure can 

occur due to node errors or attack. Here, it is assumed that the number of nodes that 

will fail is a random variable with Poisson distribution. 

Figure 6.13 shows the in-degree variance with time during random attack and node 

errors. It can be observed from the figure that the variance is increased dramatically 

when nodes failed. However, the network starts to heal itself and dynamically 

reshapes itself by re-distributing the load between the nodes. As a result, the in- 

degree variance will rapidly decrease and the network will become almost regular 

again. Thus, the proposed load-balancing scheme is reliable and robust against 

random errors or attack. Thus this algorithm enables the network to dynamically and 

efficiently reorganise and heal it-self against node failure or attack. 

Simulation results prove that the proposed BRS scheme does not require a specific 

connection to be available to randomly sample the network. If a particular edge is 

missing due to failure, another node or path can be used without affecting the load- 

balancing performance. Nevertheless, maintaining a reliable communication between 

the nodes is very important as these edges are used to maintain network status and 

losing data packets will prevent jobs from being transferred and executed. 
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Figure 6.13 The in-degree variance for a network affected by random attack. 
N= 2048 and M= 48. 

Therefore, designing and implementing efficient protocols to achieve a reliable 

transmission between the nodes while minimising latency will play a key rule for 

BRS scheme implementation. 

6.9 Latency-Optimised Load Distribution Algorithm 

In many network systems, load balancing is not restricted to the use of resources or 

computing power alone, but also is influenced by the geographical distance and 

communication delay between the nodes. Therefore, locality information has been 

included into the random sampling scheme to improve the proposed load-balancing 

technique for such network systems. The latency-optimised load balancing scheme 

models the network as a graph consisting of biased nodes' power and 

communication edges. Therefore, the load balancing scheme goal is to balance the 
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load between the nodes as well as to minimise the communication latency. 

Accordingly, the random sampling will prefer a geographically closer node or that 

has lower latency even if it is not the highest degree on the walk. This has been 

implemented by adding the geographical distance and communication delay factors 

in the random sampling process while distributing the load. The round trip delay 

time (RTT) data measured for a Grid Networks from the PingER Project (PingER, 

2005) has been used to model the communication delay in simulations. The RTT 

values are between 30m see and 160m see (PingER, 2005). 

Two experiments carried out and the average round trip latencies (RTL) for each 

executed job has been reported. As expected, simulation results prove that adding the 

locality factor in the load distribution algorithm indeed reduced the overall network 

latency. Table 6.3 summarises the simulation results for the average latencies 

observed in both load-balancing schemes; the latency-optimised scheme and the 

latency in the original scheme for different network sizes. As we can see from the 

table, the overall network latency is reduced up to 22% by using latency-optimised 

load-balancing scheme. 

Table 6.3 The latencies observed in both the latency-optimised scheme and the 
latency in the original scheme for different network sizes. 
Average Latency (msec) N=512 N=1024 N=2048 

LB Scheme 90.28 96.47 99.72 

Latency-Optimised LB Scheme 74.06 76.73 77.81 

Improvement 17.9% 20.5% 21.9% 
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Figure 6.14 shows the latency for completed jobs recorded for both load-balancing 

schemes. The network under consideration consists of 512 nodes distributed within 

a radius of 1500 kilometres. As can be observed from the figure, in the original load- 

balancing scheme, the overall average latency for the completed jobs is 90.28m sec , 

whereas in the latency-optimised scheme, the overall average latency for the 

completed jobs is 74.06m sec. Thus, the overall average latency has decreased from 

90.28m sec to 74.06m sec . That is, the latencies maintained by using the latency- 

optimised scheme have been reduced by at least 18% on average compared to those 

observed in the non-geographic aware scheme. The most important observation 

noticed here is that the latencies for the individual completed loads when using the 

latency-optimised algorithm will always remain close to the average latency without 

big overshoots (fluctuations), which make the network stable and reliable and a 

suitable environment for applications that require specific quality of service. 
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Figure 6.14 The average round trip latencies observed for the finished jobs in a 

network with N= 512 
. 

122 



Now, to study the effect of adding the locality factor on the load-balancing 

performance, the number of sampling steps required to efficiently balance the 

network under consideration is studied and compared with the original scheme. In 

this experiment, a network with 2048 nodes is considered, and the random sampling 

length required efficiently distributing the load and reaching an in-degree variance 

close to the optimal one has been measured. I have also arrived at a generic 

expression that links the cut off value for the random sampling length with the 

number of nodes. This experiment was run using both the BRS and the latency- 

optimised BRS schemes and the results are presented in Figure 6.15. 

As can be observed from Figure 6.15, the latency-optimised load balancing requires 

few additional sampling steps to achieve the required variance for a balanced 

network. For example, a random sampling length of 16 was sufficient for the 

original BRS scheme to reach a variance 0.32, while the latency-optimised scheme 

required a random sampling length of 20 to balance the load distribution and have a 

variance 0.34, which is still in the order of log (N). This increment in the number of 

random sampling steps is negligible compared to the size of the network and would 

be acceptable given that the improvement in latency achieved. 
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Figure 6.15 Comparison of the variance vs. random sampling (RS) length for a 

network with N= 2048. 

6.10 Performance Comparison of the BRS Scheme with the Centralised 

A1iorithm 

To evaluate the performance of the proposed biased random sampling algorithm, two 

important performance measurements in distributed systems were examined: the 

total job throughput achieved and the bandwidth capacity required by the load 

distribution mechanism. Then, the performance of the biased random sampling 

scheme is compared with the performance of the centralised mechanism. 

6.10.1 Bandwidth Capacity Analysis for the BRS and the Centralised Algorithms 

In this section, the bandwidth capacity occupied by the BRS algorithm is analysed 

and compared with the centralised algorithm. For a network system with N nodes. 

124 



let L; be the workload offered by each node i in the network, where iE 

and let H; be the packets used for handshaking protocols (i. e. the control packets 

sent to the central node in response to changes in load in the centralised scheme, and 

the random sampling packets used for searching for a node to give it the new job in 

the BRS scheme). And let T, ' and T, " be the time spent to send the workload 

packets and control packets, respectively. Hence, the total bandwidth capacity 

consumed by the entire network, BW, .,,, u1, 
is given by 

BWT0Iar = IN 
I 

Lý 
+ 

Er 
(6.3) 

TT 

In the centralised scheme, the central node has to know the load status in each of the 

nodes that are in the network. Therefore, the central node needs to periodically check 

the status of every node in the network, and the nodes have to inform the central 

node if they finished executing the jobs so that the central node can update the 

network load status. Therefore, for a network with N nodes, the central node will 

have to check the status of all the N nodes in the network before distributing the 

load. As a result, the total bandwidth capacity consumed by the network is in the 

order of network size N; that is the order of O(N). 

For the BRS algorithm, each node that initiates a new job must initiate a random 

sampling to search for a node to assign the new job. And since the random walk will 

be O(log N) length, the total bandwidth capacity of the random sampling will bC in 

the order of O(log N). Therefore, for a network of N nodes, the total bandwidth 
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capacity occupied by the biased random sampling algorithm will be in the order of 

O(NlogN), which is greater than the total bandwidth capacity required by the 

centralised scheme. 

In Figure 6.16, the total bandwidth capacity consumed by the network for both 

algorithms recorded for different network sizes. As can be observed from the figure, 

the central server algorithm indeed requires less total bandwidth capacity than the 

BRS algorithm. 
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Figure 6.16 The total bandwidth capacity consumed in the network recorded fier 

different network sizes. 

Another important performance factor to consider here is the bandwidth capacity 

consumed by individual nodes in the network. The bandwidth capacity required by 

each node in the network, BW , is given by 
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BW,. _ 
L; 

+H, yiE {1,..., N} (6.4) 
T, T, 

A very interesting observation was made here for biased random sampling scheme is 

found to considerably lower the bandwidth capacity consumed by any node in the 

network when compared to that for the centralised scheme and moreover stays 

highly stable for any network size as shown in Figure 6.17. Since the central node in 

the centralised scheme is engaged in all jobs and handshaking transfers, the central 

node consumes a network capacity of O(N). 

Alternatively, for the biased random sampling algorithm, the capacity consumed by 

each node depends only on the node in-degree and on the number of jobs it initiates. 

Thus, if the N nodes in the network use the total network capacity uniformly, then 

each node in the network will consume a capacity of the order of O log N) 
. 

Although the total bandwidth capacity consumed in the network is a significant 

performance measurement, the capacity consumed by any single node in the network 

can be of major bottleneck for large-scale networks. 

6.10.2 Throughput Analysis for the BRS Scheme and the Centralised Algorithm 

Another important performance metric in distributed networks is the system 

throughput. Throughput is the number of completed jobs during a specified period of 

time. The objective here is to have the maximum amount of completed jobs (large 

amount of throughput). Therefore, the total throughput, achieved by the biased 

random sampling algorithm is analysed and compared with the centralised scheme. 
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Figure 6.17 The average bandwidth capacity consumed by individual nodes for 

different network sizes. 

For a network system with N nodes, let J; be the number of completed jobs for 

node i in the network wherei (-= {1,..., N} . Let Ts;,,.. I.,. be the total simulation time. 

Hence, the total throughput attained in the network, Throughput 
Total , 

is given by 

Throughput Total =I 
N' 

Timet;,, 
u ia,; o 

(6.5) 

Figure 6.18 shows simulation results for the total throughput achieved by both the 

central load balancing scheme and the biased random sampling scheme. In these 

simulation results, it is assumed that the nodes in a network have equal capabilities, 

and the job sizes and arrival rates follow Poisson distribution. Moreover, I took into 

account the effect of communication delay on the total throughput performance by 

distributing the nodes in a network of 1500 kilometres radius area with IOMbpc 
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communication link speed. 

As can be seen from Figure 6.18, the throughput achieved by the biased random 

sampling scheme is very close to the throughput achieved by the optimal centralised 

scheme. The total throughput for biased random sampling algorithm is only about 

3% worse than the total throughput of the central algorithm, whilst the BRS scheme 

has the advantage of being a distributed load-balancing scheme. 
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Figure 6.18 Simulation results for network throughput achieved by both the central 
load-balancing scheme and the biased random sampling scheme. 

6.11 The Performance of the BRS Scheme in a Heterogeneous Network 

Systems 

A number of potential improvements to my load-balancing technique and 

generalisations of my model deserve further study. Here, to further measure the 
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efficiency of the proposed biased random sampling (BRS) mechanism for load 

balancing under more strict conditions, simulations has been extended to include 

heterogeneous nodes. In such systems, the nodes will have different capabilities and 

varying resources. This will help us in understanding how these situations will affect 

the nodes' in-degree distribution and the load distribution in the network. 

For heterogeneous system simulations, each node in the network has a number of 

edges equal to its computational power (capability). The maximum in-degree a node 

can have is proportional to its maximum computing power. A node's computational 

power ranges from 1 to 100 units of power. One unit of power can run a unit of load 

in each time unit. However, every node in the network must keep the minimum in- 

degree so that the network remains strongly connected and have a low diameter. This 

minimum in-degree was observed by graph theory to keep the network strongly- 

connected as illustrated in Chapter 5. Therefore, each of the nodes will have at least 

4 incoming edges. Nodes' computing power is considered here as the main aspect of 

the load balancing. Other aspects such as communication delay will not be 

considered here. However, it can be easily integrated in my algorithm and could be 

addressed in the future. 

As with homogenous systems, the in-degrees of the nodes are kept proportional to 

their free resources. And since the random sampling will select nodes preferentially 

to the in-degree of the nodes, it will preferentially sample the nodes according to 

their free resources. And due to the correlation between the load and the in-degree, 

the random sampling will select the node with the highest in-degree in the walk. 
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For simulations purposes, Pareto distribution has been used to model nodes' 

computation power distribution and job arrival rate. The degree distribution is given 

by the following equation (Barabäsi, 2002, Mitzenmacher, 2003): 

P(k) = k-', 4: 5 k: 5 100 (6.6) 

The jobs arrival rate is given by Equation (6.7): 

P(V)=V-', 1: 5 V<Vmax (6.7) 

Here, vm. is the maximum number of jobs that can arrive at any time in the 

network, and for heterogeneous system experiments, it is set to 4096 jobs at each 

time step. 

The Pareto distribution is one type of Power-law probability distributions. Power- 

law distribution is commonly used to represent several real network systems 

(Mitzenmacher, 2003). Therefore, Pareto distribution is also used to model job sizes, 

and in heterogeneous system simulations, it is assumed that size of jobs ranges from 

32 Kbits to 2048 Kbits. This is an important distribution since in most real networks 

they have many small jobs and few larger ones. Therefore, these simulations can 

give a practical image of how the system will work under real loads. 

Since the minimum node in-degree is 4 and the maximum node in-degrcc is 100, 

there exist many nodes which will have low power capability. Thus, for highly 

loaded network, it will be difficult to get close to perfect balancing. Therefore, in 

131 



heterogonous systems where many nodes will have low maximum in-degree, the 

correlation between node's load and its capacity (in-degree) is used to measure its 

performance. 

To determine the relation between each node's computational power and its in- 

degree, the number of jobs each node received is recorded. In Figure 6.19, the 

offered load versus node's capacity is plotted for a heterogeneous network system. 

As we can see from the figure, there is a very close relation between a node's in- 

degree with the amount of load it receives. This nearly linear relationship between 

the number of jobs the nodes received with their computational power proves that 

the BRS load-balancing scheme indeed distributes the load efficiently among the 

nodes in heterogeneous network system with power-law distribution as discussed. 
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Figure 6.19 The offered load versus node's capacity plotted for a heterogeneous 

network system. 
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Figure 6.20 shows the degree distribution for the network with Pareto-law resources 

distribution in different time slots during load balancing process. As shown in the 

figure, the degree distribution of the network has a Power-law trend. Thus, the 

degree distribution for the network matches the of the nodes resources distributions 

for Power-law resource distributions as seen in the figure. Moreover, as the network 

settles down and the biased random sampling algorithm balances the load 

distribution, the exponent become more negative with time till it becomes very close 

to regular graph distribution which give us a good load-balancing. We can see this 

more clearly from Figure 6.21 where the in-degree distribution of the network is 

plotted in a logarithmic scale as the network evolves. 
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Figure 6.20 The in-degree distribution for heterogeneous network system plotted as 

the network evolves over different time slots (7). 
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Figure 6.21 The logarithmic plot for the in-degree distribution for heterogeneous 

network system plotted as the network evolves over different time slots (fl. 

6.11.1 Throughput Analysis for the BRS Scheme in a Heterogeneous Network 

Systems 

As was done for the homogeneous network, the total throughput achieved by using 

the BRS scheme is evaluated and compared it with the central system for the same 

load trace for heterogeneous system. Throughput is the number of completed jobs 

during a specified period of time and the goal is to have the maximum amount of' 

completed jobs (large amount of throughput). The total throughput achieved in the 

network is calculated in Equation (6.5). 

To properly analyse the total throughput attained by the 13RS schcmc in 

heterogeneous system, the effect of communication delay and RTT on the total 

throughput performance is considered. This is done by distributing the n(XJC% in a 
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network of 1500 kilometres radius area with 10Mbps communication link speed. 

As been observed in homogenous configuration, the total throughput achieved by the 

BRS scheme in heterogeneous system is very close to the throughput achieved by the 

optimal centralised scheme. The total throughput for biased random sampling 

algorithm is only around 3% worse than the total throughput of the central 

algorithm, though the BRS algorithm has the advantage of being a distributed load- 

balancing scheme. 

Figure 6.22 shows simulation results for the total throughput achieved by both the 

central load balancing scheme and the BRS scheme in heterogeneous systems. 
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Figure 6.22 Simulation results for throughput achieved by both the central Ioac1 

balancing scheme and the BRS scheme for heterogeneous system. 
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6.12 Summary 

In this Chapter, the performance of the proposed biased random sampling (BRS) 

load-balancing scheme has been discussed and evaluated. The performance of my 

load balancing technique under both homogeneous and heterogeneous configurations 

is examined. The mathematical models and simulated results verify that for 

homogenous network systems, the proposed network system generates ER random 

graphs and matches the analytical results. 

Then, the proposed load-balancing algorithm has been improved by biasing the 

random sampling toward the highest in-degree node in the network. Extensive 

Simulation results show that the generated network system has approximately 

regular graph degree distribution. Thus, the proposed BRS scheme provides an 

effective, scalable, and reliable load-balancing paradigm for Grid Networks 

resources. In addition, I demonstrated that by introducing geographic awareness 

factor in the random sampling reduces the effects of communication latency in Grid 

network environments. 

Finally, the bandwidth capacity and throughput performance of the BRS scheme and 

the centralised scheme has been compared. It is shown that using BRS scheme 

decreases the bandwidth capacity occupied by any node in the network compared by 

the centralised scheme. Moreover, I demonstrated that the total throughput for biased 

random sampling algorithm is close to the total throughput of the centralised 

algorithm, while the BRS scheme has the advantage of being a distributed load- 

balancing scheme. 
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The proposed BRS scheme is a straightforward and easily implemental scheme using 

standard networking protocols. The decentralised feature of the scheme makes it 

suitable for many applications involving very large number of nodes such as Web 

Mirroring, PlanetLab (Peterson, el., 2002), and Grid Networks. Moreover, it can be 

also useful for applications which are designed to handle large parallel 

computational problems with hundreds or thousands of nodes since it scales well to 

very large system sizes. 

The BRS load-balancing paradigm is a novel technique that can be used for any type 

of resource sharing and it is not limited to be applied in only distributed computing. 

The in-degree of a node can be made to correspond to any type of shareable 

resources. And since the generated networks have low diameters, this makes them 

easy to sample using random sampling. Simulation results confirm the efficiency of 

this approach in networks with a large range of resource and load distributions. 
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Chapter 7 

CONCLUSIONS AND FURTHER WORK 

7.1 Discussion and Conclusions 

In this thesis, an effective, scalable, and reliable load-balancing scheme for the 

distributed resources accessible on Grid Networks has been demonstrated. A 

stochastic network system is proposed which provides a distributed load-balancing 

scheme by generating almost regular networks. The developed load-balancing 

scheme is based on biased random sampling (BRS) technique to assign new jobs and 

to update resources availability. Therefore, load balancing is achieved without the 

need to monitor the nodes for their resources availability. 

The main idea of the BRS load-balancing scheme is that the network structure can 

represent the load distribution status of the network which is dynamically maintained 

by each node through the links used to connect with other nodes in the network. The 

nodes in my dynamic network will create these edges when the load is distributed 

using the random sampling protocol. Thus, the network is a truly self organised 

dynamic system. To effectively distribute the load, it is required to keep the network 

in a correct state so that the BRS load-balancing scheme would work properly. Yet, 

it is easy to keep the network in a correct state by using local edge connecting 

procedures. Therefore, if a link is failed, it can easily be fixed without affecting the 

system performance. 
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The network state maintenance and workload allocation in the BRS scheme are 

based only on the local information and processes. That is, each node decides the 

amount of resource or computing power it needs to share, and it integrates this 

information into the network structure through the random sampling protocol. In the 

same way, new load is distributed based on only the information available via local 

investigation of the network. 

The BRS scheme produces dynamic random graph topologies, and the resulting 

network will be resilient to random faults and does not have a central point of failure. 

Moreover, the BRS load-balancing algorithm does not require the nodes to be aware 

of each other which allow the BRS scheme to scale well to very large network sizes. 

Accordingly, the generated network system provides an effective, reliable, and 

scalable load-balancing paradigm for the distributed resources accessible on large. 

scale networks. 

A statistical mechanical model for load-balancing paradigm based on Complex 

networks theory is developed. An analytical solution for the stationary distribution of 

node's degree in the network is derived. The steady state analysis of node's in- 

degree distribution confirms that the load distribution of the generated network 

system is compatible with ER random networks. Yet, since every node in the 

network should have the same in-degree, the optimal degree distribution would be a 

regular graph as the nodes would have the same load. Therefore, the performance of 

the proposed load-balancing technique is enhanced to generate more regular graphs. 
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Extensive simulations results have been used to evaluate the performance and to 

measure the efficiency of the proposed load-balancing scheme. The performance of 

the proposed load-balancing technique is examined for both homogeneous and 

heterogeneous configurations. In heterogeneous configuration, the nodes have 

different capabilities and resources with Power-law resource (in-degree) 

distributions. Moreover, I took into account the effect of communication delay on the 

performance of the proposed load-balancing technique. Simulation results agreed 

with the analytical predictions for the stationary in-degree distributions and confirm 

that the resulted network system can provide an effective load-balancing paradigm 

for the distributed resources accessible on large-scale networks. 

One of the strong points of the proposed algorithm is that a random sampling of 

log (N) steps is sufficient to reach an in-degree variance very close to the optimum 

variance. Furthermore, the time required to efficiently balance the load distribution 

in the network has a logarithmic relation with the size of the network. In view of 

that, the proposed BRS technique is a very efficient load balancing algorithm and 

suitable for growing networks. 

The throughput and bandwidth capacity performance of the IIRS scheme are 

investigated and compared it with the centralised scheme. I observed that the I3RS 

load-balancing scheme reduced the bandwidth capacity consumed by an individual 

node in the network compared to that within the centralised scheme. Besides, I 

observed the total throughput for BRS algorithm is close to the total throughput of 

the centralised algorithm, while my scheme has the advantage of being a distributed 

scheme. Then, I showed that introducing geographic awareness factor in the random 
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sampling has noticeably reduced the effects of communication latency in Grid 

Network environments. 

The main achievements of the proposed load distribution algorithm can be 

summarised in the following points: 

- BRS scheme is a straightforward and can easily be implemented scheme 

using standard networking protocols. The decentralised feature of this 

scheme makes it suitable for many applications involving large number of 

nodes such as Grid Networks. 

- The BRS scheme provides a decentralised and scalable load balancing 

performance. I have proved that the network structure converges to a regular 

graph under ideal conditions, which gives us load balancing. 

- The BRS scheme does not require the nodes to be aware of one another 

which allow the BRS algorithm to scale well to very large system sizes. 

- The network maintenance and job allocation protocols are based only on 

local information and actions. Thus, the BRS scheme is a truly self-organized 

dynamic system. 

- Only log(N) random sampling steps are sufficient for BRS algorithm to 

efficiently distribute and balance the workload. Thus, the overhead incurred 

from the proposed scheme is minimal. 

- The BRS scheme produces network system that is resilient to random faults 

since it does not have a central point of failure and it can dynamically heal 

itself against node failure or attack. 

- The time required for BRS algorithm to balance the load distribution has a 

logarithmic relation with the size of the network. 
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- Analytical and simulation results confirm that the BRS protocol can 

effectively distribute the load in both homogeneous and heterogeneous large. 

scale networks. 

- The bandwidth capacity and throughput performance achieved by the BRS 

scheme is close to the performance of the ideal centralised scheme. 

- Finally, introducing latency optimising factor in the random sampling has 

noticeably reduced the effects of communication latency in Grid Network 

environments. 

To conclude, the proposed biased random sampling (BRS) load-balancing paradigm 

is a novel technique for any type of resource sharing and it is not limited to the 

distributed computing environment. The in-degree of a node can be made to 

correspond to any type of shareable resources. And since the generated networks 

have low diameters, this makes them easy to sample using random sampling. 

Analytical and simulation results confirm the efficiency of this approach in networks 

with a large range of resource and load distributions. Thus, the proposed load- 

balancing algorithm generates network systems which are scalable, self-organised, 

robust, and depend only on local information for load distribution and resource 

discovery. 

The research work described in this thesis has resulted in Journals and international 

conferences publications, which are included in the list of references (Rahmch, ct al., 

2008; Rahmeh, et al., 2007; Rahmeh and Johnson, 2008; Rahmch, Johnson, and 

Lehmann, 2007; Rahmeh and Johnson, 2007; Rahmeh, ct al., 2006). " 
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7.2 Further Work 

A number of potential improvements to my load distribution technique and 

generalisations of my model deserve further study. This work can be extended to 

include cases where jobs may require certain quality of services (QoS); such as 

communications bounded, distance sensitive, and time bounded services. In addition, 

extra work is required to study the case where jobs depend on the output of other 

jobs. This will help us in understanding how these situations will affect the nodes' 

in-degree and load distribution in the network. Examining how these considerations 

will affect the efficiency of the load balancing could be a topic for future work. 

In this thesis, an analytical expression for the steady-state in-degree distribution 

using random sampling that selects the last node in sampling to give it the new load 

is derived, and it is shown that it produces ER random graphs. I further improved the 

algorithm to use a biased random sampling which selects the highest in-degree node 

rather than the last node. I have shown by using extensive simulations that the 

algorithm generates nearly regular random graphs. Theoretical analysis of the biased 

random sampling that selects the highest in-degree will be a useful extension for 

future work. 

The biased random sampling is proved to be an efficient technique to distribute the 

load. However, this efficiency comes at an extra overhead which may increase the 

communication delay overhead. To decrease the communication delay overhead, the 

number of random samplings initiated by each node could be increased. That is, 

instead of just sending out one random sampling, a requesting node sends j random 

samplings, and each one takes its own random walk. The expectation is that j 
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random samplings after £, z, steps should reach approximately the same number of 

nodes as one random sampling after jigs steps. Therefore, by using j random 

samplings, it is expected to cut the delay down by a factor of j. Examining how this 

technique will affect the load-balancing efficiency can be considered for future work. 

The formal structure of Grid Networks is expected to represent patterns of 

communication and organization, and to influence the nature of communication in 

these networks. Studying and analyzing the topology of the Grid is extremely 

important for deriving the mathematical model that describes the dynamics on Grid 

Networks. Dynamics on networks refer to dynamic processes that take place in a 

network topology. Therefore, there is a need to define the degree distribution that 

describes the growing behaviour of Grid Networks, average and shortest path length 

between two nodes, clustering coefficient, node types (e. g., single or bipartite 

(Newman et al., 2001), and other networks characteristics. It is expected that they 

will display characteristics that are different from small-world or scale-free 

networks. 

Despite the fact that several types of complex networks which are of high interest for 

the scientific community, such as the Web, cellular networks, Internet, and some 

social networks follow power-law distribution, Grid Networks arc expected to have 

an exponential distribution. Furthermore, due to its dynamic and adaptive behaviour, 

Grid Networks can develop both power-law and exponential degree distributions. 

Thus, if all processes shaping the topology of the network arc properly incorporated, 

the resulting distribution could have a complex form, described by a combination of 

power-laws and exponentials distribution. 
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