
Developing a Global Observer
Programming Model for
Large-Scale Networks of

Autonomic Systems

David John Lamb

A thesis submitted in partial fulfilment of the
requirements of Liverpool John Moores University

for the degree of Doctor of Philosophy

School of Computing & Mathematical Sciences
Liverpool John Moores University

Liverpool, United Kingdom

June 2009

Abstract

Computing and software intensive systems are now an inextricable part of modern

work, life and entertainment fabric. This consequently has increased our reliance on

their dependable operation. While much is known regarding software engineering

practices of dependable software systems; the extreme scale, complexity and

dynamics of modern software has pushed conventional software engineering tools and

techniques to their acceptable limits. Consequently, over the last decade, this has

accelerated research into non-conventional methods, many of which are inspired by

social and/or biological systems model. Exemplar of which are the DARPA-funded

Se1f-Regenerative-Systems (SRS) programme, and Autonomic Computing, where a

closed-loop feedback control model is essential to delivering the advocated cognitive

immunity and self-management capabilities.

While much research work has been conducted on vanous aspects of SRS and

autonomy, they are typically based on the assumptions that the structural model

(organisation) of managed elements is static and exhaustive monitoring and feedback

is computationally scalable. In addition, existing federated approaches to distributed

computation and control, such as Multi-Agent-Systems fail to satisfactorily address

how global control may be enacted upon the whole system and how an individual

component may take on specified monitoring duties - although methods of interaction

between federated individuals is well understood. Equally, organic-inspired

computing looks to deal with event scale and complexity largely from a mining

perspective, with observation concerns deferred to a suitably selective abstraction

known as the "observation model". However, computing and mathematical science

research, along with other fields has developed problem-specific approaches to help

manage complexity; abstraction-based approaches can simplify structural organisation

allowing the underlying meaning to be better understood. Statistical and graph-based

approaches can both provide identifying features along with selectively reducing the

size of a modelled structure by selecting specific areas that conform to certain

topological criteria.

..
11

This research studies the engineering concerns relating to observation of large-scale

networks of autonomic systems. It examines methods that can be used to manage

scale and generalises and formalises them within a software engineering approach;

guiding the development of an automated adaptive observation subsystem - the

Global Observer Model. This approach uses a model-based representation of the

observed system, represented by appropriately attached modelled elements; adapters

between the underlying system and the observation subsystem. The concepts of

Signature and Technique definitions describe large-scale or complex system

characteristics and target selection techniques respectively. Collections of these

objects are then utilised throughout the framework along with decision and

deployment logic (collectively referred to as the Observer Behaviour Definition - an

ECA-like observational control) to provide a runtime-adaptable observation overlay.

The evaluation of this research is provided by demonstrations of the observation

framework; firstly in experimental form for assessment of the Signature and

Technique approach, and then by application to the Email Exploration Tool (EET), a

forensic investigation utility.

111

Acknowledgements

Firstly, my utmost gratitude to Prof. Taleb-Bendiab for all his advice, support,

encouragement and friendship throughout this research and writing up; in addition to

facilitating funding for the PhD. In this regard, I must extend thanks to Prof. Merabti,

Dr. Dhiya AI-Jumeily and the School of Computing and Mathematical Sciences.

Secondly, I would like to thank all the members of academic and technical staff, along

with researchers for their friendship and support, with special mentions to: Dr. Martin

Randles for his discussions and advice, particularly in the late stages of writing up,

Dr. Thomas Berry for talking me into the PhD, Dr. John Haggerty for the opportunity

to work on the EET project, and Dr. Denis Reilly for all his assistance in HND

teaching. Mengjie Yu, Mike Baskett, David Llewellyn-Jones, Ian Rhead, Chris Wren

and Oliver Drew all supplied endless good humour, chats and at times kept me sane.

The administrative staff deserve many thanks for the help received in navigating the

university's organisation; particularly Trish Waterson and Lucy Tweedle.

Thirdly, I would like to thank my family; particularly my Mum and Dad - Christine

and Bill - without whom none of this would have been possible. Much appreciation to

my Mum for all she did during this write up. Liz and Ste (my siblings) both provided

opportunities to escape the write up when it was needed. Thanks also to Uncle David

for donating his old laptop; I do not know how I managed without one.

It was my late Dad's interests in radio and electronics that ultimately led me towards

computing as a career and academic interest. This work is dedicated to his memory.

Finally, I must thank Sarah, the love of my life for her support, understanding,

patience and encouragement. Without her, I simply would not have completed this

thesis. Her parents, Ken and Frances also allowed me to take over the dining table as a

workstation at weekends, for which I am most grateful.

IV

Table of Contents

~l>stJr~<:t•••ii
~(:IcI1()~I~cI~~II1~lltS ••• i"

Table of Contents v
TalJle oj[lfi~lIJres ••••••••••••.•••••.•••.••.•..••.••.••••..•.••.•..••..•••••••••.•••••.•••••..•••..•.•.............•..•.•...•iJl

Table of Equations and Tables xi

Chapter 1 - Introduction 1
1.1 Resilient Self-Managing Software via Observation 2
1.2 Motivation: Observation in Complex Software Systems 3

1.2.1 Software System Complexity 3
1.2.2 Autonomic Software 4
1.2.3 Lack of Engineering Support and Mode1. 5

1.3 Challenges 8
1.4 Approach 9

1.4.1 Objectives 10
1.4.2 Scope 10

1.5 Main Contributions 13
1.6 Structure 14

Chapter 2 - Autonomic Software Control 17
2.1 Introduction 18
2.2 Features of Complexity 19

2.2.1 Large Scale: Huge Datasets and Monolith Software 19
2.2.2 Component Independence and Systems-of-Systems 21
2.2.3 Emergence of System Behaviour. 22
2.2.4 Self-Organisation & Emergent Topologies 25

2.3 Software Engineering and Complex Systems 26
2.3.1 Systems of Systems, Internet and Ultra-Large Scale 27
2.3.2 Organic Computing 29
2.3.3 Cognitive Immunity & Autonomic Computing 30
2.3.4 The Multi-Agent-System Approach 34
2.3.5 Domain-specific Monitoring and Management in Complex Systems.36

2.4 Requirements: Large Scale and Complex Systems Observation Model 38
2.5 Summary 41

v

Chapter 3 - Graph Theoretical Modelling .42
3.1 Modelling and Abstraction .42
3.2 Use of Graph Theory .45

3.2.1 Modelling Software with Graphs .46
3.2.2 Exploiting the structure 48

3.3 Modelling Scale-Free Connectivity .49
3.3.1 Hub Connection Density 53
3.3.2 Mean Shortest Path 54
3.3.3 Clustering Coefficient 54
3.3.4 Acquaintance Nomination 55

3.4 Summary 57

Chapter 4 - Large-Scale Observer Design Pattern 58
4.1 Applying the Observer Pattern 59
4.2 Requirements for a "Complex" Observer Pattern 60
4.3 The Observer Conceptual Model 62

4.3.1 Identifying the observed structure 63
4.3.2 Managing system scale via topology-based architecture 65
4.3.3 Determining a suitable modelling strategy 67
4.3.4 Deploying the Observers 70

4.4 Complex Observers in Context. 73
4.4.1 The Complex Software System 73
4.4.2 The Complex Observers 76
4.4.3 Structural Observation Framework 77
4.4.4 System-level Observation Framework. 80

4.5 Summary 82

Chapter 5 - Specifying the Observer Programming Models 85
5.1 Specifying Structural Types 85

5.1.1 Modelling the System Structure 86
5.2 The Structural Signatures 90

5.2.1 A Scale-Free Signature 92
5.2.2 Formalising the Requirements 93
5.2.3 Modelling the Signature in Software 94

5.3 Specifying Observation Techniques 98
5.3.1 Acquaintance Immunisation Technique 99
5.3.2 Modelling Generic Observation Techniques 101

5.4 Summary 110

Chapter 6 - Assembling the Observation Model 111
6.1 Specifying Observation Policies and Process III

6.1.1 Situating the Policies 112
6.1.2 Observation Technique Selection Process 113
6.1.3 System-level Observer Deployment Logic 118

6.2 "Typed" Observers: Applying the Mode1. 121
6.2.1 Completing the Model: Overview Class Diagrams 123
6.2.2 Using the Model: Important Runtime Processes 127

6.3 Summary 135

VI

Chapter 7 - Evolution and the Observation Model 136
7.1 Considering the Model's Runtime Processes 137

7 lIB . Ob . "B havi D fi ., "· . aSIC servation e aVlOur e imtion 139
7 1 2 E di h B havi D fi ..· . xten Ing tee aVlOur e imtron 145

7.2 Exposing Components' Behaviour and State 149
7 3 Flexib T . S· d hni fi . .. eXI ihty In ignature an Tee ique De initrons 151

7 3 1 F 1" h OBD S· D .t:': ••· . orma ISIng t e ignature etmmon 153
7 3 2 F 1" h OBD T hni fi ..· . orma ISIng t e ec Ique De mitron 158

7.4 The Externalised Specification 160
7.4.1 The OBD Format 162
7.4.2 The OBD Classes 163

7.5 Summary 169

Chapter 8 - OBDXML to Code 170
8.1 OBD to OBDXML Schema Definition 170

8.1.1 Re-Examining the OBD Schema 171
8.1.2 The Finalised Compact Schema 178

8.2 The Binding Processes 181
8.3 Interpreting and Processing 185

8.3.1 Acquiring the OBDXML String 185
8.3.2 Un-marshalling XML strings to OBD objects 186
8.3.3 Piggybacking OBD on the Structural Framework 186
8.3.4 Runtime (Typing) Errors 188

8.4 Summary 190

Chapter 9 - Evaluation & Case Study 191
9.1 Testing & Evaluation Methods 191

9.1.1 Evaluation Conditions and Specifications 191
9.2 Quantitative Evaluation: Identification and Deployment 192

9.2.1 The Infection Experiment 193
9.2.2 Results: Random, Regular and Scale-Free topologies 195
9.2.3 Limitations of the experimental work 199
9.2.4 Implications on "Observability" 200
9.2.5 Further development of the experiment 201
9.2.6 Summary 202

9.3 Qualitative Evaluation: Applying the Model to "EET" 203
9.3.1 The Email Exploration Tool: Overview 203
9.3.2 Model Application: Overview 204
9.3.3 Modelled Element: Core EET Support 205
9.3.4 Developing Algorithms, Signatures and Techniques 207
9.3.5 OBDXML Governance in EET 209
9.3.6 Summary 210

9.4 Evaluation Summary 212

..
Vll

Chapter 10 - Conclusions and Further Works 213
10.1 Motivation and Research Approach 213
10.2 Summary of Thesis 218
10.3 Significant Contributions 220
10.4 Critical Review 224
10.5 Suggested Further Works 225

10.5.1 Project and Framework Specific 226
10.5.2 General and Wider Framework Related 227

C=;1()ss~Jr~ ••~~~

~)lJl~Il(Ji<:~s •• I
Appendix I - The Programming Model: Additional Discussion 11

1.1 An Example Structural Model Implementation II
1.1.1 Decomposition for Structural Model V

Appendix II Additional EET Data X
11.1 Additional EET Data XI

Appendix III - Publications by the same author XII

~ejfeJrell<:es••••••••••••••••..••.•.•••••.•..............•••.••••••••••••••••••••••••••••••• ~

vtu

Table of Figures

Figure 1: Example Decomposition of Vehicle Model .43
Figure 2: Example Power Law Degree Distribution 50
Figure 3: 00 Observer Class Requirements (UML) 59
Figure 4: Overview of Observation Processes 63
Figure 5: Signature-Selected Observation Techniques 64
Figure 6: Required Model Generation Components 69
Figure 7: Identification and Model Generation Process 69
Figure 8: Observer Deployment Components 71
Figure 9: Deployment Process Overview 72
Figure 10: Controlled Complex System Architecture 73
Figure 11: Hierarchical Organisation of Structural Observers and Scope of Interest. 77
Figure 12: Architectural Overview of Structural Observer Unit 78
Figure 13: Structural Observation Overview 80
Figure 14: Simple Hard-coded Signature 86
Figure 15: UML Class Diagram showing Structural classes 90
Figure 16: Signature and Invalidation Handler - significant classes, relationships and

methods 97
Figure 17: Relationships between Acquaintance-based Signature, Technique and

Algorithm 101
Figure 18: Wrapper Modelled Element and supporting Meta Data representations. 103
Figure 19: Revised Generic Signature and support classes for Results and

Associations along with Acquaintance Nomination-specific example 105
Figure 20: Generalised Modelled Element Algorithm Interface and Example

Implementation 106
Figure 21: Observation Technique class and example concrete implementation 108
Figure 22: Overview of Observation Technique, support classes and relationships. 109
Figure 23: Simply-revised Signature and Technique Association class 115
Figure 24: Signature design modified for Change Observer 116
Figure 25: Summary of contributory processes to Observation Technique Selection

.. 116
Figure 26: Basic Technique Selector class definition and relationships 117
Figure 27: System-level Deployment Support: significant methods and classes 119
Figure 28: Deployment Coordinator, support classes and revisions to existing classes

.. 121
Figure 29: Significant Model and Signature Classes 124
Figure 30: Significant Technique, Technique-selecting and support classes 125
Figure 31: System-level Observer Deployment and support classes 126
Figure 32: Logical flow for Structural Observer / Modelled Element creation 129
Figure 33: SignatureInvalidationHandler and StructuralObserver relationship 132
Figure 34: Technique Selection and Observer Deployment process flow 134
Figure 35: Pseudo-Specification Signature-to-Observer Mapping 138
Figure 36: Generic OBD format 143
Figure 37: UML for Extemalised OBD Support Classes 144
Figure 38: Extended OBD Format 148
Figure 39: UML diagram showing additional support classes for extended OBD 149

IX

Figure 40: OBD Signature Format., 156
Figure 41: Significant OBD Signature support classes 157
Figure 42: OBD Observer Technique Definition 159
Figure 43: OBD Technique and support classes 160
Figure 44: Overview ofOBD Format 163
Figure 45: UML Class Diagram: OBD Base and Utility classes 165
Figure 46: UML Class Diagram - OBD Signatures and Techniques and significant

relationships 167
Figure 47: UML Class Diagram: Main Behavioural Definition class and relationships

.. 168
Figure 48: XML Schema snippet: Book Example 171
Figure 49: XML Schema snippet: OBDExternalisable, OBDVariable and their

extensions 174
Figure 50: XSD Snippet: Function derivatives 175
Figure 51: XSD Snippet: BooleanExpression sub-types 176
Figure 52: XSD snippet for SignatureInvalidationHandler-related elements 177
Figure 53: XSD Snippet: Signature and Technique definitions 178
Figure 54: XSD snippet: References, Behaviour and OBD Definition 180
Figure 55: Generic view of Un-Marshalling XML 182
Figure 56: Infection Simulation Network Screenshot 194
Figure 57: Cost of Monitoring Strategies (x: Network Size vs. y: Nodes Observed) 197
Figure 58: Effectiveness of Monitoring Strategies (x: Network Size vs. y: Nodes

Infected) 198
Figure 59: Email Exploration Tool Screenshot 204
Figure 60: EET Code Snippet: "Add" Model Change Event generation 206
Figure 61: EET Code Snippet: Simplified Acquaintance Selection Algorithm 208
Figure 62: EET Compact OBDXML Snippet.. 210
Figure 67: Example System Setup Showing Component / Service dependencies III
Figure 68: Example Service-based System: Simplified Class Diagram .IV
Figure 69: Example "hook" into Component for failure disconnect VII
Figure 70: Snippet showing example Component to ModelledElement event

translation VIII
Figure 71: Example Modelled Element Factory snippet VIII
Figure 72: Additional EET OBDXML Signature Snippet XI

x

Table of Equations and Tables

Equation 1: Power Law Degree Distribution .49
Equation 2: Simplified Hub Connection Density Algorithm 53
Equation 3: Mean Shortest Path 54
Equation 4: Clustering Coefficient Measure 54
Equation 5: Normalised Immunised Set Size 56

Table 1: Requirements for Observation Model .40
Table 2: Simplified ECA Breakdown of Observation Subsystem Rules 138

Xl

Chapter 1 - Introduction

Software systems, by nature of their changing development styles, their usage patterns

and ever-developing functionality, are increasing in both complexity (functional and

organisational), and their operational scale (widely distributed systems-of-systems,

where each component is in itself a major software system, and giant monolith-type

systems). As each independent yet interlinked component is tweaked, tuned, or

redesigned to fulfil a new requirement, the overall makeup of the system is affected,

albeit subtly; the net effect that the software system as a whole gradually evolves ­

such that its original design and requirements no longer adequately describe its

behaviour, organisation, or possibly even its intentions [1].

In tum, the complexity involved in the design, development and maintenance of such

software systems is ever increasing. This problem is compounded by new generations

of systems that go some way to automating this evolutionary process. Although this

may not - yet - be as advanced as adjustments made by software engineers and

administrators - software is capable of reconfiguration; for efficiency, fault tolerance,

or some other system requirement. This can range from automated adjustment of user

parameters or other configuration item(s), to effectively constructing component­

based systems or employing alternate services/components; examples in [2, 3].

Hence, it is clear that given increasing system complexity; software that can manage

many of its own operations is an extremely attractive proposition. However, although

engineering models and techniques exist that are suited to evolutionary development,

they are based on the iterative concept of co-ordinated dialogue between end­

user/analyst/engineer - governed analyse -7 design -7 implement -7 reanalyse [4].

Following an engineering framework provides reassurance and guarantees, clear

architecture, and design; facilitating application of post requirements engineering

formal specification to provide proofs of key software behaviour. However, this

approach seems to contrast with the near-organic, continual self-managing process by

which a system may adjust itself; its configuration deviating further from original

design models and specifications.

1

1.1 Resilient Self-Managing Software via Observation

In order to introduce the area of self-managing software and its relationship to

observation, it is useful to consider the computer science interpretation of Cognitive

Immunity (CI). The notion of CI was first introduced in a DARPA-funded Self­

Regenerative System (SRS) programme in 2004 [5], which outlines four functional

objectives, including CI. The latter was defined as " .. .introspection on the system's

operation to understand the state, and reasoning about that state to recognise problem

areas or errant behaviour. Further reasoning is then undertaken in order to determine

solutions that will restore the desired system functionality."

The CI proposals in the SRS programme ranged from high-level architectural

approaches for component management to facilitate failure recovery and component­

trust quantification, through to plans for the specification of learning and repairing

software systems. Given the aim of this research for a generalised software

development approach part-facilitating self-managing systems, the SRS-related work

on developing an software architecture approach [6] was of great interest. Further

research by the same authors [7] showed that the approach aimed primarily to protect

systems from unauthorised actions, sourced either internally or externally. However,

of particular interest was that monitoring of the underlying system was undertaken by

way of specialised instrumentation attachment to system processes. These approaches

relied on a pre-engineered decomposition of important system tasks, identifying

related processes and attaching the required monitors.

Whilst the CI concepts, architecture models and associated techniques were reported

to be beneficial for the design of software-intensive systems, it has only been applied

to small-scale systems including autonomic systems. However, this thesis aims to

explore the applicability of CI to large-scale networks of autonomic systems. As such,

the research must look to address the considerations brought about by the effects of

scaling and complexity on these system-level instruments and observers in particular.

2

1.2 Motivation: Observation! in Complex Software

Systems

In the interests of clarity, the motivating factors influencing this research will be

broken down into three main categories, further detailed in the following sub-sections.

The first is a brief description of the problem domain's characteristics - that of

increasing software complexity and scale. The second borrows theory from traditional

Software Engineering and Autonomic Computing to describe desirable properties of

developed software, and why they are so. Thirdly the research motivation is

concluded with an overview of existing software engineering techniques and how

they are lacking in these areas; further narrowing the intended focus of this research.

1.2.1 Software System Complexity

As introduced in earlier sections, "complexity" is one of the characterising features of

the Software Engineering (SE) domain under investigation. Perhaps the simplest

definition is to consider complex software to be: where the operation is not well

specified, and its behaviour is nonlinear (i.e. not easily understood by examining the

behaviour or the specification of the component parts).

Often, this complexity is a product of the sheer scale of a system. It is quite possible

to encounter a complex system composed of many very simple individual

components. Taking the example of an ant colony [8], the important behavioural

characteristics of each type of ant can be observed and recorded, though this does not

provide the observer with an overview of the colony's (i.e. the entire system's)

operation. This creates an incomplete design model situation. An observer can know

each component's behavioural rules; yet understand none of the system's operation. If

system operation is not well understood, the dangers of unforeseen and apparently

unpredictable effects are undesirable effects. An observer could (due to an

unintentionally-blinkered viewpoint) "tune-up" some component's operation,

seemingly improving the local situation, while having catastrophically adjusted the

I Throughout this thesis, the term Observer is used in relation to a software system. Unless identified as
otherwise, it is referring to a sub-system or component that is responsible for noting changes in the
state of another component or system and acting accordingly.

3

behaviour of another dependent component. In other words, it is possible that the

individual components of a system have conflicting concerns and in order for the

whole system to operate satisfactorily, each contributing component must operate in a

less-than (locally) optimum fashion.

These (and other related) characteristics further examined in Chapter 2 complicate the

engineering process; successful software development relies on clear requirements

and a complete design model. A software engineer may be working on a component

in a large and complex system, whose behaviour is governed by the interaction of

various individual software components. While they each may have well-specified

design plans, behavioural models, coding APls, and unit test results; this does not

mean that the software engineer will have a clear and complete overall system design

model. Any system-wide software created with an incomplete understanding will not

necessarily operate in the best interests of the system.

Leading on from this, the next section introduces a set of properties and

characteristics desirable in these software systems, which provide a conceptual guide

to how some of these issues of complexity may be overcome.

1.2.2 Autonomic Software

Whereas the previous section concentrated on some of the issues surrounding

software systems complexity, this section brings in some of the concepts from related

work that looks to delegate the management of system complexity to the software

system itself.

The first, and possibly most well known of these conceptual models is that of

Autonomic Computing (AC), first discussed in 2001 by Paul Hom of IBM [9]. AC is

aimed primarily at distributed software systems, and aims to tackle the complexity

associated with the immense interconnectivity and management of these software

systems. Kephart and Chess, also of IBM [10], pointed out that while there is a great

deal of power in the ubiquitous nature of computing devices and their common

standards for interconnectivity; directly managing the resulting system architecture

4

and its dependent components is too complex for an engineer (or team of engineers)

to contemplate.

The Autonomic Computing ideal is inspired by the autonomic nervous system of

mammals, and suggests that software systems should self-manage without any

conscious (i.e. engineer/operator) intervention. This led the way for a whole host of

self-something buzzwords (collectively termed self-star / self-* [11]), above and

beyond the initial "Self-CHOP" characteristics proposed by the IBM initiative, which

were Self-Configuring, Healing, Optimising, and Protecting. The notion of the Self­

Healing and Configuring characteristics is a particularly attractive proposition as a

method toward equipping complex software systems with a degree of Cognitive

Immunity. The next section aims to give an overview of how traditional engineering

models are ill equipped to deal with these notions, and outline the difficulties of

adopting the Autonomic Computing approach in a traditional software engineering

scenano.

1.2.3 Lack of Engineering Support and Model

This section gives a brief overview of some traditional software engineering methods

and how they are lacking or inappropriate when it comes to the development of

support software for large-scale and complex systems. Software engineering is a

discipline concerned largely with the development and support of an engineering-style

approach and related processes to aid in the building of software systems.

While there is some dispute [12, 13] about the formal use of the "engineering" term,

various UK-based engineering councils and guilds are recognising that their

membership schemes can extend to Software Engineers. Regardless of the (non)

clique surrounding the engineering-derivation, there is little doubt that many Software

Engineers also work within a sub-discipline of Computer Science, concerned

specifically with the formalisation, modelling, development and use of engineering

concepts to the various aspects in a software system's lifecycle, from analysing

through to testing [14]. As such, software engineers look to formalise, standardise;

produce and use methods that lay down best practice to software development

problems.

5

Analysis and Formalisation of Fixed Requirements

Traditional "waterfall" SE techniques rely on a finn set of requirements, the ability to

formalise those requirements for future use in verification and validation, and a

development cycle that refines and designs a software system based on the all­

important system requirements. While this cycle adheres to traditional engineering

techniques, it is inflexible to requirements changes throughout the development, let

alone after software deployment. As such, changes during development combined

with cost and other constraints can lead to patchwork-type modifications during the

development, and ever-changing requirements, often known as requirements, scope or

feature creep [15].

Evolution of the traditional waterfall approach led to techniques more flexible to

change during development, such as iterative models [16], various examples of which

are found in agile development [1 7]. These model types retain a linear backbone, but

assume that requirements will change during development; as it is natural that

requirements become more fully understood and refined [18]. As such, development

cycles operate in short iterations; relying on rapid analysis, design and prototyping,

which provide (with end-user support) feedback and information to the next

development iteration. However, even iterative development models rely on a

requirements (re)acquisition, or refinement phase, followed by a redevelopment

phase. These development approaches do not take into account the architecture,

design, maintenance and testing of software that can evolve and alter its own

configuration during runtime [19].

This does not render existing SE models (nor an engineering-based approach)

irrelevant for large, complex and evolving (i.e. dynamic) systems. However, it is clear

that the translation from analysis/requirements phases to implementation may not be

as rigidly connected to the implementation and testing as in a static system. The next

subsection will look at SE modelling and architectural approaches that attempt to

cater for runtime dynamism.

6

Runtime Adjustment and Requirements

The previous subsection gave a quick overview of software development for fixed

requirements within a well-understood problem domain. This section will give a

similar review of engineering approaches that permit runtime adjustment or some

degree of dynamism in developed software.

Firstly, policy, rule-based, and other related software systems go some way to

creating a layer of indirection between "system requirements" and "implementation

concerns", allowing for a flexible runtime environment that can operate in accordance

with a user-defined set of boundaries. Runtime inspection of system state is used to

calculate suitable behaviour based on (typically design-time specified) goals/rules,

enabling adaptive behaviour. At a small scale, rule-based software is capable of

sophisticated reasoning and associated behaviour; adaptive to some extent to its

environment against a set of goals [20], and approaching a large scale via component

composition and re-use [21]. Equally, such work has been extended (via, for example,

Agent-based systems with its specified dialogues [22]) to provide a degree of

autonomous control over multiple elements within distributed systems, where manual

per-component management would be too complex and/or costly [23]. Agent system

architectures rely on global system policy taking the form of a basic knowledge­

oriented goal approach [24] and are no doubt extremely useful as a form of self­

management; whereby system configuration is best expressed as a set of global

policies or rules. This approach allows elements to tailor their response appropriately

to deal with local conditions whilst retaining some form of global system control.

However, these types of system architecture do not easily support overseeing

observation, engineered co-operation, controlled configuration and optimisation [25].

The components' autonomy enforces behaviour based on assessment of local

situations and system-wide goals or constraints; they effectively operate as

independent components with a degree of governance via a system goal/rule-set. This

architecture makes a good model for distribution of computation loading; each

component or agent is responsible for managing its own domain, controlled by system

rules. However, this creates difficulties in terms of adopting a responsive, scalable

approach for observing and adapting (e.g. tuning) component rules based on system-

7

wide overseen observations. System-wide observation and feedback controlled self­

configuration and optimisation is hindered by the relative independence of each

component and variability of design.

With such a large number of widely-distributed components, identifying areas in

which to monitor the system and obtain feedback is not an easy task; with selection

influenced by the organisation of components, the current system state and a

multitude of system-specific concerns. While there are techniques that are applicable

for engineers to model a large monitoring and feedback system, there is limited

engineering support to guide the overall design and structure of such systems. In

summary, a Software Engineering approach that combined tested engineering practice

and could integrate research ideas and approaches associated with Cognitive

Immunity would help in the development of self-managing/configuring systems.

There are still limitations in applying current SE approaches to this problem domain,

as detailed above, and there will be issues in applying new (to the field of software

engineering) techniques associated with large-scale and complex systems, which will

be outlined in the next section.

1.3 Challenges

As discussed in the previous section, many of the motivating factors for this research

project are indeed research challenges in their own right. However, as outlined below,

this thesis focuses on a smaller subset, namely:

• Scale - The challenges associated with modelling a system whereby an

exhaustive model is desirable, but the system size presents difficulty in

exhaustive modelling. The proposed approach suggests that a suitable

abstraction must be found; furthermore, the observation subsystem should be

responsible for its automatic selection and management.

• Complexity - can manifest itself in many different ways; primarily that overall

system behaviour and structure is more than the sum of its parts [26].

Observation must look to effectively reduce complexity, concentrating on

relevant areas. Emergence, discussed in more detail in Sections 2.2.3 and

2.2.4, presents further complications, both structurally and behaviourally.

8

•

•

Evolution - Many software systems may change - or evolve - during their

operation. When this change occurs at runtime, this presents a problem to

those subsystems or components wishing to monitor, or even model them.

Formalising the approach - Given the nature of complex systems, it is likely

that an approach that works well in one domain is not necessarily transferable

to another. As such, the final significant research challenge is the specification

and generalisation of any methods devised to manage the previous challenges.

1.4 Approach

Building on established methods for software design [14, 17, 27], Autonomic

Computing [9, 28, 29], and graph theory [30-32]; this research examines how to

extend existing autonomic software design methods to equip next generation software

systems with scalable observer capability for Cognitive Immunity in large-scale

networks of autonomic systems. This encompasses a range of concerns, including:

• Identification of issues that complicate the management of large­

scale/complex software systems - preliminary literature/practice review.

• Collection and evaluation of techniques used for system complexity

management -literature/practice review.

• Collection of relevant current software engineering systems practice ­

literature/practice review.

• Investigation of how the above techniques can be integrated to make a

software engineering process - the application of the research.

• Investigation into large-scale/complex software applications and their

common characteristics - Use this to generalise the findings to increase

applicability.

• Evaluation of final methods using a case study.

This research examines some of the significant concerns in the development of self­

managing complex software systems. It is embarked on with an understanding that

there is significant research already undertaken in the areas of goal-driven. rule-based

software. Equally, there is a developing understanding of methods that can be used to

manage and simplify certain complex structures. The research therefore looks to

9

formalise a development framework for defining, detecting and applying these

practices at runtime to create an adaptive observation subsystem capable of managing

large scale and complex systems.

As such, this necessitates the following contributory aims, drawn from the tasks

outlined earlier:

• Collection of current software engineering observer design and practice

• Detail the conclusions drawn from evaluation; suggested refined approaches

The remainder of this section will look to provide further detail on those tasks that

involve collection of current practice and research, and provide an overview of the

scope of this research.

1.4.1 Objectives

In order to conclude the purpose of the project approach; the aim is that it should

assist software engineering of large and complex systems, and as such, the main

objectives of this research project are as follows:

• Identification of significant issues that complicate the observation

management of software (and indeed software engineering as a whole) of a

large scale and with complex system structures.

• Investigation into methods that can integrate complexity management and

software engineering's approach to observation.

• Specification of software engineering and programming model for designing

observers within large scale and complex systems

• Evaluation of methods; case studies and real world applications

1.4.2 Scope

This work has two distinct lines of research, each a large and well explored field in its

own right. In this section the focus points in each area will be identified, in addition to

linking the two areas together to explain the overall research perspective.

10

The first of these areas is the study of complexity, with its many sub-fields, many of

which feature heavily in Chapter 2 and Chapter 3. The second somewhat distinct areas

of study are Computer Science, Software Engineering, their connected disciplines and

relevance to complex systems. The other chapters look to tie the two subjects together

with the application of complexity management techniques in a software domain.

Complexity is a wide and well-studied field, with significant contributions from areas

such as natural sciences (e.g. [33, 34]), business and information systems study (e.g.

[35, 36]), and particularly importantly for this work, mathematics and graph theory

[37-39]. Each of these fields looks to provide a method of understanding or even

managing complexity; be it in the form of a simplistic statistical measurement, a

system modelling approach, or simply a variety of observations describing one system

from a variety of perspectives.

The relevance to this research is concerned with extracting a desired (and therefore

simpler) subset of data from the complex system, or to influence the operation of the

system in a controlled and limited manner, managing otherwise unpredictable global

actions. This may range from the use of an algorithm to derive a measure from a

system, or a modelling approach that divides a complex system into several

subsystems with constraints on their interactions and responsibilities. As such, in this

work, it is the mathematical and graph-based complexity-management approaches

that are of most direct value, as mathematical algorithms are, after all, the most

directly translatable to lines of code.

It would be short-sighted to assume that Computer Science is entirely distinct from

the study of complexity; there is necessarily much overlap as the target systems have

many common features [40]. However, it is the differing focus of computer science

used as the separation criterion in this thesis. CS focuses on the study of applying

many different techniques within computer systems, whereby complexity

management techniques are "only" one such set of techniques. More specifically. the

thesis is focused particularly on Software Engineering as a sub discipline; with

particular note to the specification and design guidance it provides for the observation

of system components and complete systems.

11

As discussed briefly in Section 1.2.3, SE as a whole specialises in techniques used in

the development of software systems; at its broadest, from overall project

management through to the maintenance of previously developed software. Given the

types of software under investigation, the thesis design is influenced by the subset of

software engineering models that acknowledge the evolutionary nature of complex

software, both in design and at runtime. This considers traditional engineering-rooted

approaches and designs [14, 21], along with iterative and evolutionary engineering

models [17, 41, 42], and those that support runtime dynamism, such as dynamic

composition approaches [21]. This wide scope is considered in order to try to examine

the areas in which the complexity management techniques are relevant to system

observers; through from design-time analysis to runtime adaptation.

The thesis will look to include relevant background information from both these areas

of research as and where required, and will particularly focus on techniques in the

mathematical management of complexity, in order to better understand the way in

which it can be applied.

12

1.5 Main Contributions

As outlined previously, the thesis documents a body of work aimed towards the

development and refinement of a software engineering process to support the design

and implementation of observation subsystems intended to monitor large-scale, self­

organising and complex system structures. To this end, this thesis presents a number

of novel contributions to the field including:

• Collation of research relevant to the problem of modelling and observation of

large-scale and complex structures, including a preliminary investigation into

existing metrication of defining characteristics for large scale and complex

structures, along with the related software-specific concerns.

• Definition of a scale-free detection metric, based on existing work by Cohen and

colleagues in Acquaintance Immunisation [43].

• Specification of a Global Observer Programming Model and associated software

engineering support. The programming model specifies the key programming

concerns along with implementation guidelines for a global observation system

for large-scale, complex and dynamic software systems and datasets.

• Specification of a high-level software engineering framework for this

programming model; comprising architectural overviews, generalised software

designs, and implementation examples for key components such as the adapter

interface with the observed system.

• Definition of a runtime-adaptable Observation Behaviour language in XML,

providing a runtime-evaluable specification of the connections between and

concerns of the various observation subsystem components. This, along with

design and implementation guidance is intended to assist with the development

of runtime-inspection and adaptation "plug-ins" and components for the

observation framework.

• Development of a prototype email and social network visualisation tool. While

the primary research value of this tool is centred in Computer Forensics, it has

provided a useful evaluation and a contributory reference implementation for the

global observer programming model.

13

1.6 Structure

This chapter has given a brief introduction to the research work; its inspiration and

where it fits into the fields of computer science, software engineering and research

related to complexity management. A detailed breakdown of the format of this

research work follows:

Chapter 1 introduces the thesis, giving firstly a brief overview of the motivation for

the work and an outline view of the challenges involved. The research approach and

relevance is detailed, before summarising the main contributions.

Chapter 2 provides background information and a literature-review-style overview of

the elements of complex systems that have guided this research. The first half of the

chapter gives an overview of large-scale and complex "features" and a brief review of

management techniques; the second half conducts a review of both established and

state of the art SE and/or general management techniques for the "systems-of­

systems" that govern this research, covering topics such as ULS, Autonomic and

Organic Computing.

Chapter 3 discusses some of the problems and potential solutions as regards

observation within a complex model. This chapter continues the viewpoint-dependent

complexity theme and begins to examine the creation of abstract models, discussing

differences in model creation between complete-design functional decomposition and

assembling a design "bottom up" from individual components. This complication

leads towards graph theory as a method by which complex structures can be

represented as graphs and simplified by suitable measures. The chapter concludes

with a discussion of scale-free connectivity, its frequent occurrence in complex

systems; finishing with examinations of how the connectivity can be detected

(including the author's metric), and how the connectivity's strengths and weaknesses

can be exploited, concentrating on Cohen's Acquaintance Immunisation.

Chapter 4 begins to address the aims of this research by examining the notion of a

complex and large scale observer model, discussing the 00 Observer pattern as a

starting point. The approach taken is to look at an architectural specification that

14

would permit an observer to operate on large-scale and/or complex systems, and to

detail an approach that would manage some of the significant concerns associated

with large scale and complex systems. Out of the requirements presented in the

chapter, the research concentrates on the management of scale and complexity;

adopting a model-based observation view of the system. The architecture proposes

that system characterisation/identification, reasoning/planning/determination, and

observer deployment should all form significant components within the system. The

chapter concludes with a brief description of the Structural Observation Framework,

and its requirements.

Chapter 5 refines the preVIOUS architectural specification, and presents software

designs for the significant components within the structural observer system. This

involves a detailed consideration of the Signature and Techniques, key building

blocks towards the goal of Typed Observation, and how they will interact with the

large scale and complex systems, represented in the observer model as simply a large

structure, composed of Modelled Elements.

Chapter 6 completes the design of the structural observer system by an assessment of

generalised observation policy specification, the manner in which signatures and

techniques can be associated, and how the system-level observer units can be

deployed about the system. The chapter is brought to a close with a summary of the

presented designs, plus a formalised view of execution detail for some of the system's

mam processes.

Chapter 7 further develops the designs presented previously, and examines the

concerns regarding adapting the framework's behaviour at runtime. This involved a

detailed consideration of the designs thus far, along with identification of the areas of

the system that made up the basic runtime process. The chapter then proposes the

Observer Behaviour Definition, which is based on the reduction of key observation

processes to an ECA-type specification.

Chapter 8 opens with a discussion of the considerations required to translate the

OBD specifications between their evaluative-type objects and XML representation,

considering implementation issues regarding exposure of observer functionality and

15

data. It concludes with an OBDXML specification, which takes the form of an XML

schema definition and then presents some use-case discussions surrounding the XML

strings.

Chapter 9 provides an evaluation of the proposed observation framework, assessing

and demonstrating the effectiveness of the signature matching mechanism. The

approach taken is to try and evaluate and validate the components of the approach;

progressing onto a case study which applied the model within a software system

developed by the author.

Chapter 10 concludes the thesis, outlining the research approach and explaining how

it developed into the contributions of this work. This chapter closes by outlining some

of the areas of research that are considered suitable further work.

16

Chapter 2 - Autonomic Software Control

As discussed In Sections 1.2.1 and 1.3, software complexity continues to be the

subject of many different research areas, including biological, social,

businesslinformation systems, along with mathematics and computing, with

considerable interest overlap between fields. In regard of software complexity,

complex systems are largely characterised by their many-component composition and

non-linearity; therefore most easily understood at an architectural and design level via

abstract descriptions [44].

From a software management perspective, complexity of system design, structure or

behaviour directly affects complexity involved in monitoring the system.

Furthermore, monitoring a large-scale system with limited observation resources

places efficiency constraints on the observers. As such, when monitoring large or

complex systems; it is likely that complete observation will be unrealistically

expensive, leading to a necessary selective reduction in observation targets [45].

Systems that undergo non-specified evolution or any form of runtime change place

greater complexity on this selective reduction process.

The first part of this chapter will arm to explore the characteristics of complex

software systems, and to identify specific observation and modelling challenges that

arise from their complexity 2. The latter half of this chapter will detail a review of

some existing software approaches to system complexity; particularly those with a

relevance to the issue of monitoring, management and observation.

2 This chapter gives an overview of Complex Software Systems within the scope of this thesis,
including their characterising features - and their challenges and potential areas for exploitation. As a
whole, it is intended to give a sufficient, though by no means exhaustive background in the
manifestations of complexity that characterise the systems under investigation.

17

2.1 Introduction

Goldenfeld and colleagues argued that a seemingly simple system can exhibit a very

complex internal behaviour and/or structural properties, and that a system's perceived

complexity is very much dependent on the observer's viewpoint [46]. The often-cited

example is that an outside observer would see a tornado as a reasonably easily­

described (even structured) flow of wind, though it would seem very much more

complex (possibly even random) to a fly caught up inside. Admittedly, there is a great

deal of simplification in this theory - the "viewpoint selection" method is described

only as the correct descriptive level is "determined by the nature of the underlying

problem."

This complements the idea that a complex system can be greatly simplified by

functional abstraction [44]: defining and naming a system part or characteristic, and

outlining only those behaviour elements that are relevant to the user. This black-box

approach emphasises that while the inner workings of this bounded element are

unimportant; the relevant external behaviour and interaction methods are of utmost

importance. Hierarchical levels of a system's organisation are ideally comprised of

appropriate functional abstractions of lower-level behaviour. As such, successful

system simplification as a complexity management technique relies on finding the

appropriate viewpoint or abstraction.

Equally, functional abstraction and viewpoint-dependent complexity applies to many

software engineering aspects. Thus, in order to manage successfully a software

system via observation, the observers must be able to cope with the managed systems'

complexity in a manner that permits sufficient observation within available resource

constraints.

Hence, as exemplified by Randles and colleagues [47], where system action histories

were used as tools to manage the observation complexity, software could exploit this

notion of viewpoint complexity such that the observer's viewpoint only examines a

limited and relevant subset of the software "world" - creating something resembling

an observation model. In a rather more generalised observation model, the difficulty is

expected to arise in finding a suitably abstract viewpoint that:

18

•

•

•

Effectively reduces the complexity of the system by including only the

required observation facets/viewpoints.

Ensures it is not so limited as to ignore potential areas of effect, such as those

mistakenly left outside the observation targets, due to miscalculation, or

incomplete/incorrect system information.

Is not unnecessarily reliant on static structures; such that it cannot manage a

changing system

Allowing such observation requires rigorous techniques to define, deploy and operate

observation logic at a system level. Hence, the first half of this chapter examines

precisely that; collation and review of characteristics that may allow a suitably generic

modelling approach towards complex systems and their characteristics. Alternative

self-regulation methods will be explored for unit management. This implies self­

contained regulation, rather than that of a centralised controller or observer, and

concepts and approaches will be examined in the later half of this chapter.

2.2 Features of Complexity

Software systems are varied, and their variable nature suggests that attempting to

definitively specify a Generic Complex Software System would be of little merit.

Accordingly, this section aims to give an overview of some common features, and

therefore challenges and areas for exploitation present in software systems, along with

many other complex systems. Thus, in specifying the features, the rationale is to

indicate the significant properties associated with complex systems, and the ways in

which they could be managed.

2.2.1 Large Scale: Huge Datasets and Monolith Software

As identified in Section 1.3, large system scale presents a significant challenge to

monitoring and observing complex software systems in accordance with a model­

based approach. In many software systems, apparent system complexity is brought

about mostly by the number of system components and their many varied

interconnections. Whilst an individual component may be adequately described by

19

traditional techniques, the quantity of components alone could render it impractical to

construct and, importantly, interpret an exhaustive design model.

It can be difficult to precisely quantify this characteristic in software; it could be

argued that almost any software system exhibits large-scale properties if sufficiently

functionally-decomposed. Equally, many software systems are capable of

manipulating large data models, such as those built around large database systems (for

which mature research and practice exists [48-50]). However, these are not

necessarily complex systems in their own right - in this context of management and

observation. Typically, these data sets and their component support are well

understood in the target domain; as such, there are often domain-specific techniques

such as appropriate indexing structures (e.g. [51]), exploration and search

optimisations that can be used to reduce the "scale-only" complexity present in a large

quantity of data.

Additionally, remammg In the context of software, scale is apparent in system

organisation; where functionality relies on many different components. In many cases,

these components provide one or more services for the system, thus distributing

required computation about many different processing units. As with large data sets,

in the case of monitoring and observing such systems, their (potential) component

composition may necessitate a reduction of scale-related complexity. Very large-scale

processing systems may make use of a huge number of hosts and processing

components but may still make use of relatively well-understood or well-specified

domain-specific techniques to manage the scale. For example, the hugely-parallel

SETI@home loosely co-ordinates tasks and results across a great number of

computational processes to facilitate "complex" processing; facilitated through both

the massive nature of the system goal, and the well-specified manner in which it can

be sub-divided [52]. Generally, when the system organisation is sufficiently simple or

well understood, scale-only problems associated may be sufficiently reduced and

represented as sub-models, created by domain-specific techniques, or monitored by

sampling or statistical techniques of the whole system model [53].

However, in the complex system, scale is rarely present as an isolated property. While

solely monolithic software systems do exist, they are often developed within domain-

20

specific optimisations and tailored abstractions, into which monitoring information

can be encapsulated. This research aims to specify a software engineering and

programmatic model for observing large-scale complex systems. The nature of system

complexity indicates that when a system exhibits large-scale properties, it is likely to

feature other distinct characteristics and modelling challenges. The next section will

define complex system structure by examining another property which describes

characteristics of the components that are used to make up the large scale systems.

2.2.2 Component Independence and Systems-of-Systems

As alluded to in the previous section, and as identified in work related to Ultra-Large­

Scale Systems [54], another key characteristic of a large-scale complex system, (rather

than just a very-large-scale standalone) is that each of its components are

independent. Systems fitting the "system-of-systems" definition are made up of

components that fit one or both of the following definitions. Independent components

are usable in a great many different situations outside of their current scope

(operationally-independent), and/or do not rely on and are not wholly controlled by

the utilising system (managerially-independent).

The case of system composition of managerial-independent components leads to a

likelihood of each component operating to different (i.e. localised) optimal criteria

than the system as a whole. This may, for example, indicate that the system cannot

place equal reliance on a 3rd-party-managed vs. a system-managed component. In the

case of a set of components utilised only by a single system, in the interests of

simplicity, it is tempting to largely dismiss this concern and take the approach that

each component should be "tuned" to the global system optimum. However, even

then, the case of operational independence must be considered - if a component can

be described as "independent" by the criteria above, it should be considered a system

in its own right, therefore operating to its own component-specific criteria, using other

services, and potentially providing services to other systems. In a multi-use situation,

the component's own priorities may be subtly different to dependent system x, which

in turn may be different to system y and so on. Furthermore, other users of the

component may alter in numbers and needs during system operation, placing new

external constraints on the quality of service delivered. While mechanisms for

21

establishing performance measures and service contracts (e.g. [55]) can agree required

levels of service, allowing the component to trade its services while fulfilling its

requirements; from a user system's perspective, it may still be important to monitor

and deliberate on usage statistics and make decisions on planned redundancy or

configuration changes.

The next section examines system properties that often exist in conjunction with large

scale, component-independent systems though are not generally apparent from a static

system description.

2.2.3 Emergence of System Behaviour

Emergent system behaviour often occurs in large scale systems-of-systems.

Emergence, though distinct from scale, is often associated because it describes

behavioural and structural properties that occur only due to the collective

organisational contribution of many components [56]. As such, emergent properties

are those that are generally difficult to present as an enumeration of system states

before system operation commences. Furthermore, they are difficult (or in cases,

impossible) to calculate from the individual components' behaviour, as they are not

the result of a single component's actions.

Emergence is popularly used to describe several naturally-occurring phenomena

observed in the real and computing worlds. Barabasi, Albert et al observed that the

frequency with which pages making up the World Wide Web on the Internet linked to

other pages is described by a power law [57]; following the rich-get-richer model,

rather than a normal degree distribution that would be expected were the network of

pages built randomly. However, there is no centralised control of page links, with the

possible exception of super-linking large search engines; the organisation simply

reflects the developed social interest between pages. Flocking [58], Swarming [59]

and Schooling [60] are all naturally-observed patterns of animal and insect behaviour

that produce observed global co-ordination (i.e. the group appears to be acting as a

whole), yet the individual animals or insects are following very simply-described

social behavioural patterns and rules. Other complex social interactions, such as those

associated with Ant Colonies (e.g. waste and disease management, defence of

22

"home") arise from certain situations and a single ant's reaction and simple chemical

stimuli forming a communication method between many ants and resulting complex

behaviour [61].

It is therefore important to differentiate between scale and emergence. While they

often occur together, large scale in isolation creates modelling and design challenges

that complicate the understanding of overall system behaviour only due to the number

of component interactions and resulting possibilities. As discussed previously, large­

scale-only systems may be sufficiently "sub-modelled" by sampling. Therefore, in a

large scale non-emergent system, behaviour monitoring and modelling may be

theoretically determined by enumeration and reduction of potential environmental

states, followed by calculation on each component's behaviour thus forming a model­

based description of overall behaviour and resulting states.

However, emergence creates an "anti-reductionist" situation whereby system

behaviour is not deterministically calculable from individual component behaviour

[I]. As such, from a design viewpoint, it could be argued that the management of both

large scale and emergent systems are best addressed via abstraction-type design or

operation models. However, with emergent systems in particular, this point needs

further clarification: an observer wishing to monitor a system exhibiting emergent

behaviour must adapt to changing system conditions, and must be capable of

obtaining system information from some level of "global" observation of the system

model; rather than a purely reductionist and calculative model. Selective observation

may need to alter selected targets to reflect changes in importance and relevance as

new system organisations emerge. They may be characterised by structural or

behavioural changes, though the work in this thesis will concentrate on monitoring

structural change.

As such, systems providing overviews and/or management for emergent systems must

have a reactive element in order that they can correctly adapt to emergent structural

changes in the system, along with correctly understanding emergent trends in system

behaviour [62]. Equally, if an observer is expected to provide feedback to the system,

it must be appreciated that the observer's actions may alter the emergent behaviour of

the system. While this could steer the system in a desirable direction, if the observer is

23

unable to calculate completely the predicted results of its actions, it could prevent it

from reaching a desirable stable/equilibrium state. This necessitates some form of

analysis and prediction routine within the observation model [63]. In an attempt to

avoid the complexities associated with this particular issue, some strategies [64] for

managing emergent designs involves a "hold-off' approach - whereby the system is

allowed to establish its structure and behaviour - deferring monitoring action /

adjustments that can best serve the behaviour until it is established.

However, whichever approach is adopted, in order to ensure viability as a software

management technique, the system must still be sufficiently monitored such that

measures to establish emerging and steady states are defined - and can be evaluated,

as in the example by the author [65]. In summary, emergence in both behaviour and

structure is observed in many large systems, both within large computer software

systems and in many other fields. It is a key factor in the definition of a complex

system. Additionally, emergence brings several unique challenges in how

management and observer systems must co-operate with the emergent system:

• Management with minimal design-based modelling of a system, which potentially

frequently changes in both structure and behaviour. Observation may therefore

need to enact observation techniques in response to system behavioural or

structural change indicators.

• Calculation of future states is made difficult, and pre-emptive management actions

(i.e. without historical track-record) are rendered unpredictable. Equally, the

system's operation in a reactive-only manner may lead to constant unnecessary

tweaking actions that upset emergent equilibrium. This requires a solution

whereby the observer must be able to analyse, experiment and predict where

necessary, leading to the explore/exploit dilemma.

• Unpredictable effects of external actions may cause the system to change state in

an unpredictable manner with no observable cause.

Emergence is not confined to behaviour; an important type of complex emergence is

that of self-organisation, in which the structural properties of a system are created and

altered as the system is operating. The next subsection examines the management and

observation concerns that arise regarding self-organisation and system topology.

24

2.2.4 Self-Organisation & Emergent Topologies

A key characteristic relating to the modelling and therefore observation of complex

systems is closely linked to both scale and the emergence of new system properties.

This issue is the structural organisation of the system.

Emergent structural organisation was noted by researchers who determined that in

human social networks, despite relative organisation and regularity in local networks,

the emergent topology of a "global" network demonstrated random characteristics ­

particularly small world tendencies [66]. The relevance of the wider topological

characteristics will be discussed further in Chapter 3; the remainder of this section

will concentrate on structural emergence within software systems.

Returning to the discussion of large datasets and monolithic systems from Section

2.2.1, the datasets or host organisation is largely determined at design time. Although

organisations may undergo minor adaptations at runtime, these occur within well­

defined boundaries (such as the expansion of data tree structures) and relate to the

system's management of the scale of its dataset, operational host pooling and

collection or both [52, 67]. However, with complex systems, particularly referring to

those as described in the lead up to this section, such as loosely-designed service­

based, system-of-system architectures, the organisation of the entire system is liable

to evolve at runtime. Additionally, given simple constructional guides, organisations

may emerge and re-emerge at runtime. Early related research work looked to address

the problem of software evolution and its effect on formally-specified architecture;

firstly by high-level description language approaches, including Architecture

Description Languages (ADLs) such as Darwin [68] that define system structure in

terms of component provisions and requirements, and allow the expression of runtime

modification. A later development looked to develop the concept of connector-based

ADL and associate it with a runtime-modifiable model. This model permits simple

changes and model constraints preventing the system's structure entering unwanted

states. Finally, compound "transactional" changes allow the system to pass through

unwanted states en-route to a valid state [69].

25

The use of Architecture-level runtime-accessible and modifiable description

languages (or related ideas and techniques) provides a useful insight into the manner

in which runtime models can be maintained at Implementation-level, along with some

of the concerns surrounding a structural system model. However, while these

approaches separate the architectural and behavioural concerns, the latter integrates

constraints as purely architectural concerns, thus limiting the potential for

architecturallbehavioural crossover in a large system-of-system architecture. Equally,

while provision was made for code-level implementation detail, this is generally

constrained to a particular architecture-supporting software framework (e.g. [70]), and

as such, programming models are necessarily framework-specific and target

architectural concerns in isolation. Developments of this work have retained the

architectural-only focus, whilst opening up the detail in which the architectural

model's changes and evolutions are described [71].

The Architectural model-based approaches provide a useful method of describing the

system's structure, reacting to, and to some degree controlling alterations within the

structure. However, they do not examine the possibility that the structure of the

system's architecture may itself become too complex to manage; instead relying on

the architectural abstraction and constraints being sufficient. As such, for observation

model purposes, it is considered useful to further consider aspects of the notion of

viewpoint-dependent complexity, and how that can be applied even at a structural

system level; exploiting structural characteristics wherever possible. As such, the

remainder of this chapter will further examine the modelling and management of

system complexity in software. While established and recent software approaches to

the features identified have been discussed throughout Section 2.2, the discussion

centred on relevant characteristics of complexity. The next section will examine some

software management and engineering approaches that look to manage complexity in

software, along with their relevance to software observation.

2.3 Software Engineering and Complex Systems

The previous section gave an overview of the features associated with software

system complexity along with brief notes on how those features may affect system

observation and the required models. This section will provide a review of software

26

engineering architectures, design approaches, and related fields that combine toward

the design, maintenance, implementation and refactoring of complex software

systems. The section is intended to flow from abstract to concrete; such that concepts

and analysis techniques will appear first, leading on to design and implementation

techniques towards the end. In brief, the subsections will examine the following

approaches and fields of research and practice:

• Ultra-Large-Scale, Internet Scale and Systems of Systems [45, 72, 73]

• Organic Computing [74]

• Cognitive Immunity and Autonomic Computing [5, 10]

• Multi-Agent-System-based Complexity Management [22]

• Domain-specific approaches to complexity (e.g. [75])

2.3.1 Systems of Systems, Internet and Ultra-Large Scale

This section aims to give an overview of the system types in which this research is

applicable, along with some examples of software approaches to the problem. In order

to best situate this problem, it is important to look at Monolithic software. The

terminology "monolith" has several connotations, even in software. In small-scale

software, it can mean a very tightly coupled, many-featured software package, or can

even make for negative commentary when describing software with poor cohesion

and high coupling, indicating the software has no well defined design modularity [76].

However, in the domain of large-scale and complex systems, it is understood to have

a secondary meaning. Monolithic software systems can still be large, complex entities

that exhibit distributed processing and has many different data sets. However,

monolithic complex software generally has less apparent evidence of the software's

architecture within its implementation. Typically, it refers to software where

component-based design is avoided entirely or well abstracted from runtime

concerns. This does not specifically imply design with poor modularity, but software

operating as a single apparent process and concealing architectural concerns from the

implementation's operation [77]. While these monolithic large scale systems exert

direct control over all aspects of their operation and as such present a global

knowledge of system operation, they tend to have a relatively fragile architecture

[78]; for example, there is no easily-specifiable mechanism of redundancy or an

ability to exchange system components as they become overloaded or fail.

27

As such, the development of large-scale and complex software that may previously

have become monolithic software has shifted to component or service-based

architecture, whereby software is composed of a variety of components, often entirely

independent [77] (e.g. [79]). There are two key advantages to this service or

component-oriented software architecture; one is the ease of reusability and therefore

the effects on development efficiency, while the second is the potential benefit of

dynamic composition - components or services can potentially be re-sourced as

required due to failure or new adaptations; allowing a truly flexible configuration

[73]. In order to facilitate this design scenario, components must have well-defined

responsibilities and a well-defined interface for communication with other

components. In order to take advantage of the configuration flexibility, key

components must have the capability to source their dependencies and make decisions

on runtime reallocation. Utilised components are considered as black-box interfaces

to processing functionality, a service, or an item of data, fitting component

independence characteristics as discussed in Section 2.2.2; resulting in a system of

systems. Along with the potential benefits of late or dynamic composition, there is the

added complexity of self-organising and emergent properties; a system is composed

of many different components, each with their own composition priorities and rules.

Current methods for dealing with this system-of-systems complexity include

Federated Multi-Agent behaviour (see Section 2.3.4), in which system management

and monitoring responsibility is located at appropriate subsystem "agents". Somewhat

conversely, though with similar priorities; SE-based research has called for methods

to monitor the need for system change [80], such that it can be engineered and

controlled, rather than entirely autonomic and emergent.

Alongside the development of systems-of-systems design, two other significant

system descriptions have emerged that relate to this work. Often, large and complex

systems will exhibit characteristics of several of these definitions, so it is useful to set

out a definition of some of the significant characteristics identified by these two

related lines of research:

• Internet-Scale Systems (ISS) - are designated as classes of systems that can

operate over networks such as the Internet, and those that are intended for

deployment at a scale comparable with an Internet audience. As such, ISS-

28

related research is concerned with issues particularly relating to the

interoperability and the management of large quantities of component data ­

early ISS research work discusses the partitioning of Internet data that does not

readily lend itself to such partitioning [45]. More recent work by active ISS

authors has tended towards addressing the problem of formalising scalability in a

variety of domains (e.g. [81]), and as such, research interest in managing very­

large-scale systems has transferred to ULS:

• Ultra-Large-Scale Systems (ULS) - are described by Carnegie-Mellon's

research team as very-large-scale software systems that will make use of

resources at an Internet-scale, and will serve such large populations and diverse

functionality that they cannot simply reach a natural life-cycle end, are

discontinued and re-deployed; they must evolve [72]. The authors of related

work identify a significant monitoring issue; systems will be so large that a

complete specification will be impossible - therefore preventing runtime

validation - so monitoring and management will take the form of assurance

rather than assertions [82].

The next subsection will discuss related research and application in Organic

Computing, examining some of the biologically-inspired methods and their place in

management of large scale and the complexity associated with the many-tier

architecture associated with systems-of-systems.

2.3.2 Organic Computing

Organic Computing (OC) describes software system development that aims to allow

software to achieve a set of properties, many of which are in common with IBM's

Autonomic Computing initiative, as briefly discussed in Section 1.2.2. AC will be

discussed in greater detail in the next section. However, OC subtly differs from AC;

concentrating specifically on biologically and organically-inspired solutions to these

problems [74]. As such, and of particular relevance to this research, a significant

focus is the study of self-organisation and emergence in systems [83]. One OC-based

line of research [84] involves the definition of a generic observation architecture that

uses a traditional sensor and actuation set of interfaces to represent goings on in the

observed system. Observations are analysed on a time-series basis using a variety of

29

appropriate techniques, and control feedback is decided on, altering the structure of

the system if necessary and itself facilitating emergent change in the system - to

optimise system characteristics such as performance or reliability. However, this work

defers specific concerns regarding the magnitude of observation - in terms of

observed units - to the System under Observation and Control (SuOC), which is

intuitively expected to include the appropriate system data. The referenced work

concludes that observational complexity within the SuOC could be managed by a

series of agents (Section 2.3.4), or observations may be exhaustive and dealt with on a

mining or machine learning basis.

While these represent potentially valid approaches to the problem of data-scale, the

author reasons that there would be equal, if not greater value in developing an

observation model that could intuitively select appropriate observation targets from an

observed system on system-specific criteria to make best use of available resources.

In order to manage some of the emergent aspects of complexity, the model should

allow the entry and removal of targets based on system change; filtering out irrelevant

data at the instrumentation level, rather than the processing stage. There are several

other related approaches to this problem to be considered; they will be examined over

the next few sections. The next subsection discusses the original inspiration work ­

the DARPA-cited Cognitive Immunity, along with focussing on the engineering aims

and technical detail of the IBM Autonomic Computing programme.

2.3.3 Cognitive Immunity & Autonomic Computing

The topics of Cognitive Immunity and Autonomic Computing are briefly introduced

in Section 1.2.2, and their root concepts - if not necessarily the proposed approaches,

have influenced the aims and motivation of this research enormously. This section

aims to discuss these two schools of thought and how the author feels the overlap of

the two is useful, and how they have been interpreted in order to guide this research.

The DARPA Cognitive Immunity notion, as discussed in Section 1.2.2, fell primarily

within the umbrella of the Self Healing Systems from the Autonomic Computing

initiative. Research in Self-Managing Systems in general is multi-disciplinary; it

explores other areas of study that have not traditionally been the domain of the

30

computer scientist, with fields ranging from the study of behaviour of animals and

people in social science and natural systems [37], and the study of antibody and

antigen behaviour within medicine [85], along with other biologically-inspired areas,

as per Organic Computing (previous section). It has also resulted in several different

types of research project and resulting application. Driving factors have been found

particularly in military [5], state administration [86], and several areas of industry and

state have recognised the potential value of a self-managing system. Therefore, the

remainder of this section will look in more detail at some of the other aims of

Autonomic Computing. It will identify the outstanding research problems and how

this research relates to IBM's existing work. As introduced in Section 1.2.2,

Autonomic Computing started as an IBM initiative intended to investigate software

that could autonomously self-regulate, in much the same way as the central nervous

system of mammals. A significant aim of self-management in Autonomic Computing

is to reduce the complexity overhead associated with the set up and configuration of

complex and highly distributed systems.

The original IBM Autonomic Computing proposal includes four mam desirable

characteristics of an autonomic software system: Self-Configuration, Self-Healing,

Self-Optimising and Self-Protecting [10]. IBM's proposals include an "Autonomic

Manager" and "Managed Element" architecture, which defers autonomic-type

responsibilities for the Managed Element (and its users) to the Manager. While this

provides a wrapper approach in which to integrate older subsystems into a fully

autonomic system, the Autonomic Computing initiative does not provide a complete

engineering solution and programming model to developers wishing to create

autonomic software systems out of legacy software, and it is perhaps unfair to expect

it to do so. It is instead a collection of research, open and proprietary technologies that

can help to facilitate the development of software within the abstract AC architecture.

One such research area given high priority by IBM [87] IS the study of

interoperability. Interoperability is a key concern with any system-of-system

architecture; facilitation of the co-operation of distinct system components in the

autonomic element model. It is also referred to in terms of the technical challenges

involved in its implementation; standardisation of element log-files, interpretation of

31

logs, and models to allow autonomic elements to expose their behaviour, workload

and structure - along with mapping abstractions to the individual component settings.

However, it is important to differentiate between IBM's research vision and current

technical position on the matter. At the time of writing (Summer 2009), the IBM

Autonomic Computing Toolkit (current version (3) October 2006) consists of the

following key elements [88]:

• Common Base Event (CBE) definition - a (template for an) event definition

comprised of the reporting component, the affected component, and the new

situation. This is intended to describe system changes that may occur, which

would affect system operation. This structure and its support effectively forms

the basis of IBM's method to resolve the issue of reporting and logging

interoperability [89].

• CBE support - consists of log-file conversion routines for data extraction from

legacy logs, along with tracing support - plug-ins for a small collection of Java

IDEs assist the inspection of CBE and log-file-based system event data.

• Autonomic Management Engine (AME) specification - the system's AME is the

environment in which model decision algorithms are executed. CBEs are

transmitted from managed elements to the engine (manager) via a Touchpoint

interface, responsible for managing RMI between remote hosts. The IBM toolkit

contains a reference implementation AME, called TAME, which is capable of

processing basic resource model reasoning. AC resource models define the way

in which the AME attaches to the resource's CBE event model, the analysis that

should occur and "autonomic" responses [90].

Relating the toolkit to the earlier description, the Autonomic Computing Manager is

the domain-specific code that utilises the AME functionality to attach to system units

and deliberate and react accordingly. Managers (AMEs in the toolkit) are attached to a

number of managed elements via their touchpoint interface. Scaling is architecturally

managed as Managers are a subtype of Managed Element; therefore a Manager can

manage a set of Managers. However, the hierarchical arrangement must be

determined according to domain-specific design criteria. Equally, it is not clear how

this model would adapt to emergent system structures as discussed in Section 2.2.4.

32

The IBM architectural model (thus far) has significant strengths in terms of

interoperability, integration of existing systems, along with new research development

(e.g. [91]). However, the toolkit is in essence, with the exception of the XML­

specified CBEs (an IBM-specific implementation of the OASIS Web Services

Distributed Management (WSDM) Web Event Format), a proprietary framework with

loose architecture, rather than an open programming model.

A well-defined and partially-implemented framework with proprietary database and

server support reduces the development workload related to AC integration within a

business system; in common with any large reuse of 3rd party closed-source

restrictive-licence software, there are certain undesirable issues:

• Licensing costs - IBM indicate that in order to develop for-release software,

licensing must be obtained for which a charge may apply.

• Level of flexibility - Adopting a third-party framework can introduce

difficulties in flexibility. If the third-party framework is written to be used in a

variety of different ways, adopting it can be cumbersome and future behaviour

changes in an API can introduce problems in upgrades. Alternatively, if the

framework was created with specific constraints on functionality, extending

this functionality on a closed source base can prove difficult, if not impossible.

In summary, the IBM AC Model is made up of Managers (toolkit AMEs) that are

responsible for a set of Managed Resources, and intercommunication is facilitated by

CBEs. Managers are effectively Observers, Deliberators, and include provision for

control feedback. The IBM AC Toolkit provides a comprehensive set of methods for

processing log-files in order to generate CBE-type descriptions from legacy

applications; however, is licensed in its current form only for testing and evaluation

purposes. Therefore, if a pattern design, or open source implementation framework

were to be developed that can achieve significant aspects of Self-Management as

present in the IBM model, along with better addressing the issue of scaling and

evolution; this would represent a clear step forward in terms of complex software

observation and management. The next subsection will examine a programming

methodology that appears better suited to the problems of scaling and evolution in

system structure.

33

2.3.4 The Multi-Agent-System Approach

The term multi-agent systems refers to a software programming methodology

whereby the software is designed to operate via a set of software (intelligent) agents

[22]. Without delving into a full explanation of agent-based software design, this

section will give a brief overview of the key points, concentrating particularly on the

potential relevance to complex system modelling, management and observation.

Agents operate as independent software components that communicate, negotiate and

co-operate where appropriate with other agents via a common language, such as the

FIPA Agent Communication Language (ACL) [92]. A popular model for Intelligent

Software Agents is the Belief-Desire-Intention (BDI) approach [93], along with

various extensions [94, 95], in which the following design paradigms are adopted:

• The local state of the environment - as observed by the agent (e.g. state of

managed components) - is represented by a series of statements, known as the

agent's beliefs.

• The required local state - is represented by another series of logical statements,

known as the agent's goals.

• The agent's intentions are the internally-deliberated set of actions - the plan ­

that will bring about the agent's goals, given the current beliefs.

Multi-agent-based systems are generally considered appropriate for the design of

complex software/systems-of-systems management for the following reasons:

• The methodology is a decentralised and distributed architecture, and

importantly, employs a bottom-up design strategy, thus allowing appropriate

agent organisations to emerge for a particular problem or system state [96].

• Individual software agents should be designed as autonomous - that is, they

can operate with minimal direction, and are expected to adapt - according to

observation of their local environment in order to develop plans to correctly

achieve their goals.

• Interoperability between agent units IS "guaranteed" providing agents all

subscribe to the same communication specification (e.g. FIPA's ACL),

although remembering agents represent autonomic units, they are free to refuse

to perform requested actions; an agent communication is not an instruction.

34

Inter-agent control is usually set up through advert and contract messages; thus

permitting agents to request and provide certain functionality.

• Increased scaling is generally managed in the same way as the hierarchical

manager model in IBM's AC model. Agents responsible for large parts of the

system may manage their responsibilities via delegated control of several other

agents, each managing considerably smaller subsystems.

In theory, therefore, intelligent multi-agent system design provides a method by

which complex and large-scale systems can be managed and partially modelled and

observed in a fashion similar to that in which their own organisation forms and

evolves. Required global control can be propagated throughout the system via

messaging, or can be specified as global goals to which all agents subscribe. While

the model is naturally distributed, self-managing and tailored towards scalable

systems, it is not without its disadvantages as an underlying model for observation.

The intended flexible deployment structure well suits the concept of a hierarchical

observer set monitoring evolving large-scale systems, and the notion of messaging

also fits the traditional event exchange of information in observers. As such, this

research work will look to take a similar stance on division of observational load,

along with a flexible structural organisation.

However, the agent model does not set out to specify a genenc method for

distribution of agent groups and delegation of responsibility between them. This

adaptive behaviour instead relies on either appropriate delegation specification in each

agent unit, or automatic emergent organisation by appropriate interaction rules within

the agent "colony". While this may prove adequate while the system is behaving in a

manner anticipated at design time, this does not extend to the provision of new

organisational features; notwithstanding the deployment of new agent types.

In summary, the author considers the agent model has much to offer large scale and

complex software system observation and modelling. IBM's CBE model illustrates

that observed components can be wrapped into a standard event-generation form; an

abstraction pattern equally applicable to agent models. However, much work is to be

done in terms of specification of the self-organisation and management techniques

that allow the controlling model of observation delegation to adapt yet behave

35

predictably, within relevant constraints in a variety of situations. The next subsection

will provide an overview of domain-specific approaches for management of scale and

complexity to determine lessons that can be learned and potential generalisations.

2.3.5 Domain-specific Monitoring and Management in

Complex Systems

The previous subsections gave an overview of some current significant architectural

thinking concerning the application of software engineering to self-managing systems.

Wherever applicable, the role of the observer was highlighted to show the separation

or indeed integration of observation within general system concerns and elements.

This subsection will identify and discuss recent research by others, showing domain­

specific examples of the adoption of models similar to those discussed, either partially

or in their entirety. This section will include elements from others' detailed designs or

implementations for various requirements of complex system or complex element

monitoring and management, and draw conclusions on the implications for a

complex, adaptive observation framework.

Controlled Self-Organisation via Observer/Controller Collaboration

This work cites its primary inspiration as Organic Computing and aims to apply

generic observer/controller architecture to a simple problem. This is based on work

already discussed briefly in Sections 2.2.3 [63] and 2.3.2 [74], which jointly suggest

the notions of an Observer architecture in Organic Computing, and that of controlled

self-organisation; harnessing the flexibility of self-organisation, yet bounding it such

that systems can still be engineered. The work in question [75] explores how a series

of cars in opposing directions can cross an intersection efficiently, concentrating on

how a form of observation and co-operation can improve the situation vs. a simple

sensing approach whereby cars operate entirely independently and selfishly. As such,

the referenced paper aims to demonstrate the differences in localised collaboration vs.

central, high-level control. It shows how in simple cases, localised collaboration is

outperformed by an abstract view, while in high-complexity cases (which are

simulated by a nondeterministic environment, with greater outside influence) the

localised collaboration actually outperforms the centralised controller. The authors of

36

the referenced paper conclude this is an indication that in a dynamic and complex

system, observation-based control must be as dynamic as the system it is observing.

In certain cases, higher-level observational control will represent the best action,

while in others a localised and potentially collaborative approach may suffice or even

outperform the potential high-level response. The referenced paper demonstrated a

convenience abstraction for centralised control - given the simulation environment;

all the system elements were known and indeed well specified. As such, the author

considers there is research value in determining a generic model that will facilitate an

abstract-level controller that can adapt its lower levels to the system it is observing as

it undergoes change.

Adaptive Monitoring via Reflective Proxy/Proxies

The adaptive monitoring work considered [97] is situated in the context of evolving

software systems, and acknowledges that continuous monitoring is a necessity for

dynamic systems, in which the software requirements cannot be entirely encapsulated

in the design-based code. As such, the referenced paper introduces a novel need to

instrument software elements for monitors that would be taken for granted in terms of

assertion or simple hard-code in static systems, and presents the basis of a reflective

framework to help support this requirement. The reflective technique makes use of a

series of reflective proxies in Java [98] to allow both: monitoring of elements'

behaviour that has not been deliberately exposed, and to allow the level of monitoring

to vary according to either element-specific criteria, or even external influences.

Given this work, the author considers that a globally-adaptive observer framework

should make provision for specifying monitoring-levels (be it event-filtering, or

proxy-based adjustment) to observed elements that can support this adjustment.

Existing ULS and Distributed Monitoring Systems

In order to clarify requirements for observer frameworks that monitor very-large-scale

and complex systems, it is helpful to look at an existing widely-deployed approach to

monitoring on an ultra-large-scale, and an attempt to further generalise this approach

into a wider-usable approach. The discussed system is Ganglia [99], which is used

primarily as a monitoring system in cluster and grid-type computing systems.

37

"Ganglia" uses multi-cast transmission (i.e. broadcast) techniques of monitored data

to keep track of nodes appearance and disappearance within a cluster, and to distribute

the data; assuming high bandwidth and availability of connections within a cluster.

Several clusters are monitored through a tree-based aggregation of data from different

cluster nodes; approaches which are both known to scale well and can carry and

distribute the required data sufficiently. "Ganglia" fulfils several of the requirements

of a complex monitoring system: it scales well and automatically handles the

dynamism within the system - i.e. the arrival and departure of nodes. However, it is

monitoring systems that are subtly different to the "systems-of-systems" anticipated;

clusters are largely homogeneous, and have fairly well specified elements of

"dynamism", rather than the previously-discussed emergence.

As such, later research work introduced a paper to promote the development of these

and connected techniques to create a generic design for adaptive monitoring in ultra­

large-scale systems [100]. This set out to outline requirements for an ULS monitoring

design pattern; specifying concerns such as inter-element messaging, attachment and

removal of sensors. The author recognises these are valid concerns, yet also that there

is extensive research into concerns such as instrumentation and the distribution and

aggregation of information. As such, this research aims to specify the observation

model in terms of a generic framework that manages the scale and complexity of the

underlying system, providing either a series of distributed observer units, or an

adaptive architecture to provide a single high-level abstraction that connects via a

series of hierarchical, adaptive layers to the element instrumentation.

2.4 Requirements: Large Scale and Complex Systems

Observation Model

The chapter thus gave an overview of features present in complex software along with

some current software engineering thinking and approaches towards the architecture,

design and implementation of complex systems. Each section has focussed on

features/approaches that affect, or can help with the management of complex systems

from a monitoring and/or observation perspective.

38

What has emerged is a general consensus that as systems reach a certain level of scale

and/or complexity, traditionally-established SE methods of exhaustive specification of

behaviour and design (i.e. the monolith software approach) become impractical, if not

impossible. As such, more appropriate methods of engineering software have

emerged; composition-type approaches integrate the architectural concerns of scaling,

distribution and redundancy in the design and therefore implementation methods,

permitting dynamism and flexibility at runtime. However, traditional engineering

methods for operational verification and validation via observation and monitoring are

not appropriate as: the system is not likely to be completely specified in advance, and

the complexity present in the system prohibits accurate, exhaustive observation.

This section will reiterate some of the identified significant challenges, and propose

requirements for complex observers that can help manage the issues identified in this

chapter; highlighting areas in which existing models are inspirational or deficient. The

requirements, shown in Table 1, will describe the basic features the author reasons

must be present in a generic observer programming model; as such, wherever

possible, they are stated in a methodology-agnostic terminology.

Having set out the four basic requirements for the observation model, it is clear that

there will be other implied requirements relating to the specification of an observer

system; for instance, the observers must have a way to report their domain-specific

findings, propagate them appropriately, and to examine the current observation model

in order to direct feedback to the appropriate system element. Many of these

observation-specific system requirements will be explored during the specification of

the observation system; starting in Chapter 4.

However, this section has collected the complexity-specific requirements, based on

likely characteristics and inspiration and shortcomings of related work.

39

en
8
Q).....
en
>..

r./J
~
o
I

en
8
Q).....
en
>..

tr:

Requirement

L Observers must be capable of
managmg this scale by
appropriate reduction or
delegation of target selection ­
given any constraints under which
the system may be operating.

2. Observers must be able to
determine relevant observation
targets by resolution of their
design-time observation
requirements alongside
examination (or other
characterisation) of their observed
environment; design-time
observation instruction may be
incomplete.

3. Observers must be able to
instrument the system in order to
determine relevant configuration
change and to update their
observation targets appropriately
if required; by re-characterisation
(see Req. 2), or incremental
change.

4. Given the dynamic nature of
complex systems, the observation
system must support either
localised feedback or propagation
of relevant observations to permit
higher level control; providing an
appropriate response to differing
situational complexity.

Additional Detail

Scale creates issues of computational complexity; suggesting a
need for some form of automated and appropriate scope
reduction m the observation target set. Federated agent
behaviour shows that delegation of responsibility can prove a
useful management technique, providing sufficient resources
can be made available and the agents can each deal with the
manner III which the large-scale IS presented. Equally,
Autonomic and Organic approaches show that exhaustive data
monitoring could theoretically be processed by mining or other
appropriately selective techniques at runtime.

Component Independence creates Issues of incompatible
sensing techniques, competing concerns, along with a potential
for isolated component failure - information that must be
propagated to a level that can make alternative plans. Systems
of systems may have an architectural or design brief that does
not adequately describe its runtime state to interested
observers. This is highlighted in both Component/Service­
based and Multi-agent systems - both of which facilitate
dynamic composition; one via service contracts and the other
via request and advert messages. As such, final composition
details may only be known precisely at runtime. For example a
component-based architectural design may give the required
service connectors at design time, but the precise serving
components may only be known at runtime when the system is
assembled.

Continuing the previous point, emergence of behaviour and
structure complicates the manner in which systems can be
modelled, and therefore observed. This means that new
components may appear, existing components may be
removed, along with existing components' roles - or
observational importance - altering or being altered during
system execution. Again, a software solution could lie in the
use of federated agent-type behaviour, whereby components
each manage their own domain, with hierarchical control
providing levels of abstraction and propagation of appropriate
control messages. Addition or removal of components and
changing of roles is managed at the appropriate agent(s), and
inter-agent communication keeps each "managed domain"
updated. Equally, organic-type approaches look to identify
newcomers or change in much the same way as biology may
use danger signals [85]. While this seems a useful abstraction,
biologically-inspired computing IS not a one-size-fits-all
approach. The model must still be applied at the code-level,
and a suitable mechanism for describing the system's current
state (i.e. "self') must be determined. Equally, work on
controlled self-organisation shows that while localised­
collaboration can outperform centralised control in situations
exhibiting very high complexity, the reverse IS true III

situations with lower inherent complexity.

Table 1: Requirements for Observation Model

40

2.5 Summary

This chapter provided background information to allow the reader to familiarise

themselves with the elements of complex systems that direct this research. The first

half of the chapter gave an overview of the significant features in large scale and

complex systems along with some relevant management techniques, while the second

half of the chapter reviewed some established and state-of-the-art Software

Engineering and Management techniques related to Large-Scale and Complex

Software Systems, extending to those termed as Systems of Systems.

Of particular interest are the concepts of Cognitive Immunity and Self-Management

in its many guises (this work retains the IBM Autonomic Computing definition),

whereby software is expected to take an active role in its own configuration and

dealing with external aspects outside the initial development scope of software.

Additionally, the overview describes several Autonomic Computing-like

methodologies outlining key requirements anticipated of complex software in the

future.

It is apparent that while various techniques have been researched and practised to

manage some of the issues here, there is not a generic and coherent approach to

engineered and controlled observation of large-scale systems. As such, the final

section investigated requirements for an observation system that can operate within

these system types, as perceived by the author. The next chapter will examine a key

requirement for observation; how to go about modelling the systems that need

observation and formalising the relevant considerations.

41

Chapter 3 - Graph Theoretical Modelling

The previous chapters discussed motivations and challenges for this research, along

with an outline of the state of the art relevant to software engineers, in terms of

equipping large-scale software systems with Cognitive Immunity and Self­

Management characteristics. This chapter argues the importance of mechanisms to

facilitate an adequate description of a managed or observed system; taking into

account that such a system is likely to be too large and complex to model using

existing exhaustive modelling techniques 3
.

Thus, this chapter looks at methods for modelling complex system, how they assist in

overcoming the challenges reiterated above, along with those identified in Chapter 2,

and how this can help to manage the system's operation.

3.1 Modelling and Abstraction

A continuing research theme regarding complexity management is the concept of a

correctly-selected viewpoint. Translating this idea to software systems, an observer or

monitoring viewpoint is represented by its target model of the system, its current

scope in terms of modelled elements, along with messages or events it receives from

its targets. This section looks at the concerns when designing a suitable abstract

model, along with some of the options available. The aim of any abstract model is to

create a simplified representation of the desired system, removing unnecessary detail.

The model should adequately describe the important system characteristics,

(potentially functional and structural), but can afford to discard individual component

detail; particularly if it is irrelevant or of minor consequence at the point of study.

One way of interpreting a model is as an expression of a design overlay, where each

element in the model maps to one or more elements of the real system. Elements in

3 Additionally, a significant way in which the system's organisation may demonstrate its complexity is
by firstly emerging into an initial state - potentially of some stability - and then evolving through
different input/environmental factors. As such, the adopted modelling technique must be capable of
both reducing the complexity and scale present in the real underlying model, while remaining flexible
enough to adapt to system changes.

42

Load
Carrying

the underlying system are aggregated where necessary and represented by a new

composite model element, or even omitted completely in order to reduce the size of

the resulting model. If this abstraction approach is repeated and extended such that it

is multilayered and hierarchical, each layer of the model can represent the real system

in decreasing layers of granularity - each layer up a further abstraction.

For example, to take an entirely subjective model of a simple vehicle according to its

functional composition:-

Vehicle

Figure 1: Example Decomposition of Vehicle Model

The decomposition, albeit incomplete, has been carried out entirely subjectively,

based on elements of functionality most obvious to the designer. It was also carried

out based on previous definitions of a well-known and design-static system. However,

decomposition of even such a trivial example shows that there are modelling issues

apparent. The first issue is that the result of decomposition has both structural and

functional characteristics. As such, the use of this model is largely dependent on who

interprets it; there are likely to be disagreements about both terminology and scope.

For instance, a mechanical engineer working on final drive-train components may

only consider it their domain to study the Axles sub-component. Should Springs

(presently within Suspension) also be placed under the Axles element? If the designer

wanted to model the vehicle's onboard computer and its engine control system, where

would the Fuel Injection system reside in this model - under Fuel (as it clearly

belongs), or within Electrics - is it not an electrical subsystem? The change in scope

and use of the model has potentially changed the chosen categorisation method.

43

In addition, if this simple vehicle model was taken and used by another system

engineer, could they make use of it easily? Hence, in order for any model to be useful

to others, there needs to be a standardisation or explanation of terms - and in the case

of all but the most trivial of models, a taxonomy; effectively a model of a model.

Additionally, even in the case of relatively simple models, the requirements of the

model user must be understood; abstraction must be undertaken with a relevant scope.

Top-down and Bottom-up models - As mentioned, this example model has been

built with a complete knowledge of the system it is modelling. The model was created

by starting with a full description of the system, and decomposing it into several

functional elements - in this case, selected arbitrarily by the author! Each new

element was then further decomposed into sub-elements, and so on; each more

specialised and detailed. This approach has the advantage that the resulting model has

a hierarchical nature, and therefore represents the system at a variety of levels of

granularity. This allows for the model to provide greater detail at the lower levels, yet

avoids overcomplicating the system overview.

However, as discussed in Chapter 2, the nature of complex systems means that

creating a top-down model of a system is not an approach that lends itself to

generalisation, due in part to the following factors:

• Requirement for complete system knowledge vs. availability of incomplete and

changeable system information.

• Description and ontological representation of the system.

• The system representation must be static - even if only at the point it is modelled.

Alternatively, systems can be modelled by the study of individual components and

their behaviour; eventually generalising functional or structural descriptions in an

upwards direction - a bottom-up design. However, while bottom-up design brings

with it some advantages, it is not without problems:

• Shortcomings of reductionist approach when applied to emergent systems (i.e.

overall system behaviour may not be understood by studying minute components).

• Requirements, as per top-down design, for a static model - along with the

required deliberation to (in this case) create an abstract model from specifics.

44

However, this work is not focused on building models of relatively well-understood

and static (in terms of system functionality and organisation) systems. Systems under

consideration demonstrate apparently random structures and behaviours, and are

expected to alter these features during their operation. They are, as discussed above,

large-scale, such that the model must act as a plan for attachment of observation. As

such, despite complications; the value of creating a representative model should not

be overlooked as impractical.

The next section will examine a method that can be used to model structures and

relationships between system elements; permitting a mathematical approach to the

problem of "viewpoint-dependent" complexity.

3.2 Use of Graph Theory

Graph Theory is a mathematical field of study for modelling relationships between

different objects. It is particularly useful when modelling systems as an abstraction of

their organisational graph - or topology. This section will look at some available

graph theory techniques and their uses in managing and modelling large-scale

systems. A brief overview of some important Graph Theory terminology is provided

in this section to avoid the reader having to follow references [39, 101] to gain a basic

understanding of the terms used:

• Edges, Arcs, and Links - these terms are all used to refer to the connections

between the vertices in a graph. If an Edge is connects vertex A to B, but not

B to A, it is said to be directed. Directed Edges are also known as Arcs. Edges

that are not directed are termed undirected.

• Vertex, Vertices (pl.) or Nodes - are synonymous in terms of graph theory and

represent the elements in a graph. The set of vertices that are directly

connected to a vertex are known as its neighbours.

• Degree - the degree of a vertex is its number of neighbours.

• Hop Count - a hop refers to an intermediate vertex encountered on a route

traversed between any pair of vertices. The hop count is therefore the number

of intermediate vertices encountered on a specific path.

45

Graphs are often classified by their topology or structure, and some of these

classifications are used to describe complex structures in this thesis. Therefore, a brief

explanation of some common topological classes follows:

• Random: The simplest and most correct definition of a random graph is one

that has been created through a random process [102]. However, throughout

this thesis, the term random graph is used to indicate a graph where a given

pair of vertices is connected according to a probability, referred to as p.

• Regular: A graph is regular if each vertex has an equal degree. Subtypes and

strongly-regular graphs that place additional constraints on neighbourhoods,

such as the lattice are often used to illustrate properties and transitions

between phases of connectivity.

• Complete Graphs and Cliques: A graph or sub-graph is said to be complete or

a clique, if every vertex is connected to every other vertex; i.e. for every pair

of vertices there exists an edge between them. Disconnected graphs are the

opposite; for every pair of vertices, no edge connects them.

• Small World: A graph is said to have small world properties if any two

vertices are likely to have a short path between them, and that cliques occur

throughout the network more frequently than they would in a randomly­

constructed graph. The latter property is described as a high clustering

coefficient [103]. More information on this class can be found in Section 3.3.2

and a detailed description of clustering co-efficient in Section 3.3.3.

• Scale-Free: Many graphs that occur in complex systems are said to have scale­

free properties. Scale-Free graphs have a power law degree distribution [104],

and share the short path characteristic with Small World graphs. A discussion

of Scale-Free connectivity follows in Section 3.3; to which further description,

including that regarding the power law is deferred.

3.2.1 Modelling Software with Graphs

In order to use graph theory as a modelling tool, it is first necessary to represent the

system as a graph structure. At its simplest, this involves representing system

elements as vertices, and their connections, be they physical connections, logical links

(such as a network connection, a dependency or another architectural connector) as

edges. While this creates a useful abstraction, it is not in itself a design solution - only

46

a modelling approach. In order to be useful, a designer must determine how to apply a

graph-type model to the system and how to interpret it; for example which system

elements should be modelled as nodes and edges between nodes.

However, if a graph model can be applied, graph theory techniques can be used to

help to model and manage the system's scale and complexity. Graph-based techniques

have already been applied to several areas of software specification, particularly

architecture design to provide formalisation and or connectivity description. A

pertinent example uses a graph-theoretical grammar-based approach [105] to describe

software architecture in terms of the components/agents and their connectors

(interactions and dependencies). This allowed basic components to be specified in a

recognisable formalism, and therefore proofs to be constructed to ensure the specified

software design is compliant with its architecture. This work was extended by [106] to

provide a constraint-based formalism by which transitions and basic dynamism in the

architecture could be included from a proof-based perspective.

A recent review and consolidation of a variety of similar approaches towards

architectural dynamism in graph-based grammars can be found in [107], which helps

determine the applicability of the different proposals in a variety of domain problems.

Additionally, software change and maintenance management - from a low-level

design and coding perspective has been examined in [108], which examined its

applicability to software refactoring. This considered the representation of

programming code in graph-form, then the specification of valid code alongside that

of refactoring transformations; thus allowing a programmer, potentially a system, to

determine whether a given refactoring operation would produce valid transformations.

These approaches demonstrate that both graph-based formalisms and general graph

theory is useful in describing software design, both at a high abstract level and even at

a code-based object level. However, this work is concerned particularly with the

application of graph theory as an adaptor to a software component map, and (rather

than validation or proofs) its assessment, via graph theory techniques to determine

characteristics of the software's organisation and/or behaviour.

47

3.2.2 Exploiting the structure

Therefore, in order to take the graph abstraction further - where the scale of the

system is such that it cannot possibly be exhaustively modelled, any management

system must operate on an abstract model that adequately describes the system. With

large scale systems, a significant challenge is representing the large amounts of data

with enough detail that the representative model is meaningful. In such cases, it can

be beneficial to inspect the overall structure, in order to determine the limited set of

elements that should be represented in the model.

This approach will be termed as "exploiting" the structure or topology; using prior

(perhaps even domain-specific design) knowledge of noted structural characteristics

in order to indicate subsets of the topology that merit particular investigation.

However, given the complexity of system structure involved, the method cannot rely

on explicitly-specified knowledge of the actual "runtime" structure encountered. As

such, this implies that both the system model and the way in which the characteristics

are specified must be either generic or adaptive such that they can be applied usefully

in a variety of similar, though not identical situations.

In summary, a key element of this research is to simplify elements of complex

systems using graph theory to identify and abstract characteristics within their

complex structure. The rest of this chapter will look to illustrate the discussion above

as related to exploiting structures in a complex system. While the remaining sections

will concentrate on a single topological class; the intention of the derived approach

described in later chapters is that it can be applied to systems other than those

exhibiting scale-free connectivity.

48

3.3 Modelling Scale-Free Connectivity

As discussed in previous sections, challenges associated with modelling complex

systems include the scale, and evolutionary/emergent nature of the system's structure.

This section will examine a model that goes some way to explaining the topological

emergence found in many complex and naturally occurring systems. The subsections

look at some defining features in the scale-free model, and how measuring these can

be used to help detect the topology's occurrence or emergence. Additionally, some of

the measures can help identify key structural features that are of great importance

when modelling a large and complex system in a simplified and compact manner.

Firstly, an introduction to and discussion of existing research in scale-free systems:

Scale-free connectivity describes a particular type of graph structure that is found to

occur in many complex systems. It is most easily identified by its power-law degree

distribution [104], shown in Equation 1:

P(d) = cd-A for d=m,M

Equation 1: Power Law Degree Distribution

In this equation, c is a normalisation factor, and d is selected from the range m ... M

(the range of possible node degrees). It indicates the probability of a particular degree

occurring in a scale-free graph, subject to correction factors. The power law degree

distribution indicates that there are many nodes with a relatively low degree, but

crucially, a small number with a very high degree. These significant few are

represented in what is termed the tail of the distribution, which is shown to the right

of the graph; an example of which is shown Figure 2. As mentioned, scale-free

connectivity is known to occur in various natural systems, and has been suggested as

a method to describe the connectivity of the World Wide Web [57], according to Web

Pages' links to one another.

49

o
Node~"

Figure 2: Example Power Law Degree Distribution

Therefore, considering the power-law properties of scale-free connectivity when

applied to a network such as this, there are some important observations that have

been made: As there are likely to be a large number of low-degree nodes, the random

selection of a node is likely to return a low-degree node. Translating the graph to a

representation of some critical system, the failure or removal of a random node is

unlikely to significantly disturb the overall connectivity of the network. As such,

when graphs exhibit scale-free connectivity, they are said to be resistant to random

failure and attack. However, there are likely to be a very small number of high-degree

nodes. Returning to the WWW example, consider pages such as search engines - that

necessarily link to a large number of other pages. In this type of model, these high­

degree nodes (termed "hubs") are considered to be particularly important. The

removal or failure of a hub is likely to significantly affect or possibly even destroy the

connectivity throughout a scale-free graph. Therefore, scale-free graphs are said to be

susceptible to targeted attacks.

Returning to the need to model complex systems; considering a large and complex

system that happens to exhibit scale-free connectivity, it provides a hint for

modelling. If modelling the entire system is too costly, and the representation must be

50

simplified; hub nodes are significant. Before selecting the adoption of scale-free

connectivity as a modelling tool for complex systems, there are two significant issues

to be considered:

• Do large and complex systems tend to exhibit scale-free connectivity?

• How to discern the occurrence of scale-free connectivity, and to identify important

characteristics, including that of "hub" nodes?

In order to try to address the likelihood of complex and large systems exhibiting

scale-free connectivity, it is worth looking at how scale-free graphs come into being.

Much research work discusses the manner in which SF graphs are constructed or the

way in which they emerge from network graphs of other topologies. A common

introduction involves a network being created (or growing) by way of "preferential

attachment" [109]. In this description, new nodes are connected to an existing node

with a probability based on the existing node's degree. Put simply, high degree nodes

are more likely to gain the new node as a neighbour than lower degree nodes. This

rich-get-richer model leads to high-degree nodes being more attractive to new nodes,

which in tum leads to the very highest degree nodes maintaining their status as hubs.

Given that SF connectivity networks are observed in a variety of naturally-occurring

structures (particularly those arising from social-type interactions), it is logical to

extend that some conclusions drawn on these other complex systems could potentially

be applied to, and exploited within software systems. In fact, recent research has

applied knowledge of the scale-free connectivity model to examine Java class

libraries and theorise on the results of this analysis. Additionally, the authors of that

work [110] produced a software tool to process a static package of Java classes and

determine its Component Dependency Network - effectively a graph describing the

reliance (indicated with the import keyword) between a given package's classes and

those that reside in other packages. In almost all cases, the investigated libraries

demonstrated scale-free tendencies. The research discussed the possibility that such

graphs could demonstrate the quality and efficiency of a chosen software system's

code re-use - providing sufficient sampling was undertaken.

51

The work was extended recently [Ill] and it discussed some of the software

conclusions that arise from studying a system's code-dependency networks. Of

particular interest to this work was the discussion on the application to distributed

complex software systems. As well as outlining the difficulties in determining the

component / code / service graph for such a system - as discussed in this work - the

notion was put forward that complex software systems may follow rules determined

via observation for other large complex systems. This is best described as a large

scale-free connectivity graph gradually emerging from what starts out as a random ­

or even complete network of objects. The authors of the referenced work suggest that

when considered hierarchically, a complex software system would exhibit the

differing stages of scale free evolution. At the high-level abstract, it would appear to

be a well-connected, potentially complete network, while at lower levels, components

would demonstrate one or more of the scale-free connectivity characteristics.

The author of this thesis believes it is this theoretical approach - describing

reasonably predictable system characteristics that emerge from fairly unpredictable

systems - that will assist software engineers in developing overlay observation and

control frameworks, of which this work is intended to provide software design

guidance. As such, to begin tackling the problem of identifying and exploiting the

scale-free topology in a changing system, methods - both effective and efficient - to

measure scale-free properties must be examined and assessed. The following

subsections look at a variety of graph theory measures, and related research in scale­

free connectivity; assessing their applicability to a modelling approach. The measures

will address one or both of the following points:

• Check for presence of scale-free connectivity

• Locate points of interest in a scale-free topology

52

3.3.1 Hub Connection Density

When considering scale-free connectivity, it IS important to consider the role of

"hubs" in the connectivity graph. Hubs are nodes that have a high degree of

connectivity - i.e. they connect with many other nodes. A defining property of scale­

free connectivity is the manner in which hub nodes tend to connect to other hub

nodes. A simple indicator of the proportion of interconnected hubs can be calculated,

based heavily on a similar approach from [104], by the following algorithm:

L did}
(i,})EC

N

Equation 2: Simplified Hub Connection Density Algorithm

N is the measured size of the system in number of nodes, d, is the degree of node i and

C is the set of connections between nodes i and j. In short - hub connection density

may be used as an indicator of scale-free connectivity: high values are produced when

hubs connect to other hubs. This hub-to-hub connection pattern can be considered as a

system backbone, and as such, of special interest when wishing to exploit the

structure of a system. The spinal cord arrangement can be considered a tool by which

the "important" (considering hubs as important points) areas of a structure are

highlighted. Highlighting important areas may provide a suitable method for structure

simplification - even ifjust ignoring the "unimportant" structural elements.

Additionally, in [112] it was shown that a similar combined algorithm could be used

to demonstrate phase transitions from a regular lattice, through small world and

random networks, to a scale-free network. At the circular lattice stage, the measure is

easily calculated as it is based on the maximum degree of the nodes - if the maximum

node degree is c, the hub density will be c3
, irrespective of network size.

As neighbour nodes break the lattice structure by reconnecting to more distant nodes

[113], the measure predictably decreases; eventually reaching that of a random

network. If scale-free connectivity emerges, then the measure once again increases.

While the effects of this transition are on one hand a statement of the obvious, the

referenced paper demonstrates a potential use of this measure as a detection tool for

an emerging scale-free connectivity - and therefore the possible emergence of a

"complex" system structure.

53

3.3.2 Mean Shortest Path

Bearing in mind the high proportion of interconnected hubs in a scale-free topology;

this property leads to the network having small world characteristics [103]. Small

world graphs are characterised by any two nodes being only a few hops apart, despite

a direct connection not existing between them. A hop in this instance is defined as

having encountered an intermediate node when planning a route between the two

chosen nodes. When determining whether a graph demonstrates small world

characteristics, it is useful to be able to calculate the mean shortest path:

I N
8=-"8· .N ~ 1,)

1

Equation 3: Mean Shortest Path

SiJ is the shortest path between the two nodes i and j, and appropriately, S indicates

the Mean Shortest Path (MSP) for the network. Networks with small-world properties

will have relatively low MSPs when compared to similarly-sized regular networks.

However, random graphs also tend to have low MSP values - when compared to any

given regular graph [101]. Calculating the many routes between many node-pairs to

determine the shortest path may very well be computationally expensive. As such,

while a useful measure of small-world tendencies, there is limited value in the

structural graph's MSP as both a reliable and timely indicator of scale-free

connectivity.

3.3.3 Clustering Coefficient

Watts and Strogatz produced another algorithm [113] to measure the small world

properties of a particular graph. This measure is the Clustering Coefficient and is

shown below:

1 N
C - -~ C ..,1{e·k}1- L..J i where c.= "'1 }N . I d.(d.-l)

1 I I

Equation 4: Clustering Coefficient Measure

54

As can be seen, the Clustering Coefficient for the graph is a mean measure of the

coefficient for each node. C, is the coefficient for a given node, i, and is made up

based on the number of edges of the "i" node's neighbours:

• An edge between nodes j and k (taken to be the node neighbours) is denoted by ejk

• The degree of node i is denoted by d,

In summary, the measure is a proportion of connections within a node's

neighbourhood (directly connected nodes) from the number ofpotential connections.

The Clustering Coefficient is effectively a measure of how well a node's

neighbourhood is interconnected. Watts and Strogatz found (as discussed earlier) both

random and small-world graphs demonstrated low MSPs; yet that small world graphs

produced relatively high clustering coefficients.

3.3.4 Acquaintance Nomination

While the algorithms discussed in the previous sections provide various methods of

calculating properties that can be used to identify scale-free graphs, these methods are

not without issue. In particular, the Mean Shortest Path algorithm suffers from

calculation complexity in as much as routing calculations are required to determine

the shortest path between numbers of nodes in the graph. Additionally, the other

measures are good indications of small world properties - in as much as most nodes

are a small number of hops away from a randomly-chosen other node. However, as

discussed in Section 3.2, the intended use of graph theory is to simplify the complex

structures and to exploit any given available features.

In terms of scale-free connectivity, this means finding the high degree hub nodes

which form the discussed topological backbone. In short, an indication is required that

confirms I) high degree "hub" nodes exist; and 2) there are relatively few of them.

Related work on the subject of Acquaintance Immunisation [43] provides an

interesting lead. Acquaintance Immunisation involves selecting a small subset of

nodes to "immunise' while ensuring good coverage of a graph. Good coverage is

taken to mean that the selected nodes will be either directly or l-hop connected to the

vast majority of nodes. Interested readers can refer to the included reference [43] for

55

full details and an assessment of the algorithm but in short, Cohen et al select the

"immunised" nodes in the following manner:

1. For a given network size n, select a random set of nodes, (herein termed the

"Interrogated nodes"), of size pn, where p is a probability between 0 and 1.

2. For each interrogated node, randomly select a connected neighbour, adding it to

the set of immunised nodes.

In scale-free graph types, the immunised nodes are considered important; statistically,

due to the graph's topology, they are likely to be the well-connected hub nodes. It is

the author's opinion that this represents a valuable approach for selecting observation

points as it requires little global knowledge and low computation cost in selecting the

immunised set. Additionally, the author has extended this work to produce a

reasonably simple metric, titled the "Acquaintance Nomination" measure. The

Acquaintance Nomination measure indicates the suitability of a given graph to the

hub abstraction/simplification method. It follows the same steps as Cohen et al' s

work, but the calculations are based on the size of the sets produced by the algorithm.

Examining the algorithm, Acquaintance Immunisation must produce a set of nodes,

sized a, where a lies between 0 and pn. Near these extremes would give an indication

of graphs that are either totally disconnected or cliques, respectively. Therefore, the

number of immunised nodes can be normalised by the extremes, such that the

measure lies between 0 and 1:

. limmunisedNodesl
aMetrzc = I Inetwork *p

Equation 5: Normalised Immunised Set Size

Thus, aMetric is the size of the immunised node set (as selected by Acquaintance

Immunisation) divided by product of the network size and probability p.

Scale-free networks produce low (though greater than 0) aMetric values, as the

immunised set is likely to contain relatively few nodes; the important "hubs" as

described above. This is best explained by considering the implications of scale-free

connectivity:

l. Scale-free connectivity suggests that the randomly selected nodes (the

interrogated set) are likely to be low-degree nodes

56

2. The low-degree nodes are likely to be connected to a high-degree node (a hub),

thus the acquaintances are likely to be hub nodes common to several of the low

degree nodes. Therefore, the immunised node set will contain a small number of

nodes.

However, random and regular networks tend to produce values nearer to 1 as the

nominated set is likely to contain many different nodes. In these cases, the graph

connectivity does not bias the selection of nodes towards a set of common "hub"

nodes. Simulation results published in [114] validate the use of the proposed aMetric

as a positive identification of scale-free networks making them suitable for this type

of observation.

3.4 Summary

This chapter has set out to give a brief background in terms of modelling systems;

particularly those concerned with the complexity and scale of a system. Referencing

back to the challenges identified in Chapter 2, this chapter has examined existing

research that can be used to simplify and abstract a large scale system's structural

design and effectively address some of those challenges.

The examples discussed in this chapter centre on one type of structural organisation:

the scale-free topology. This is because of the high occurrence of scale-free or similar

topological characteristics in the organisation of many large-scale systems.

Additionally, thanks to Acquaintance Immunisation and the author's metric

development (Section 3.3.4), it provides a convenient way to scale-down a large

system's structure while retaining the key points of the organisation.

However, it is worth reiterating that while the remainder of the work will concentrate

on the use of these scale-free examples, the proposed techniques (and the framework)

are not limited to this one topological example.

57

Chapter 4 - Large-Scale Observer Design
Pattern

Building on the preVIOUS sections, this chapter discusses the conceptual and

architectural concerns for the design of a large-scale, complex software observer".

This observation is required in order to facilitate the behaviour associated with

Cognitive Immunity, and how to implement this support. The discussion will focus on

three main points, namely:

• How to deal with scale, complexity and evolution - Previous sections (with

particular reference to Chapter 3) have examined the challenges associated with

complexity and methods of managing these issues. This section will examine the

programmatic techniques developed during this research.

• How to identify the structure to be observed - As introduced in Chapter 2, dealing

with and simplifying a complex system is very much a technique of finding the

appropriate viewpoint or abstraction. In order to do that, the software observer

would need to be able to recognise the structure it is dealing with. Previous

sections (particularly Section 3.3) examined the types of structure known to

emerge in complex systems, along with models that can generate such structures.

This section will investigate how these structures can be recognised quickly, and

how this recognition can be encoded within software.

• How to specify the behaviour model for a large-scale observer system - This

builds on the previous sections to discuss the various elements of the observer

model and how it can be built into software.

4 Software engineering is a mature computer science field that has established practice for developing
observer frameworks (example in [27] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements ofReusable 00 Software: Addison-Wesley, 1995.). There is
much research in rule-based reasoning systems to provide cognitive function to developed software. As
such, the major research concern is how to best specify, deploy, co-ordinate and manage observer
components within a large-scale and complex system.

58

4.1 Applying the Observer Pattern

Subject Event
-observers : Observer

- 1
1 «send» -source : Subject

+attach(in toAttach : Observer) 1
" -description: string1

+detach(in toDetach : Observer) ----------7

#notifyO

~.
Ir--

1
1 1

,1/

Observer

0..* +update(in event: Event)

Figure 3: 00 Observer Class Requirements (UML)

The Observer is a well-known software design pattern [27], the basics of which are

illustrated in the UML class diagram, shown above in Figure 3; Observers register

with Subjects to receive Events when they are changed.

The Observer pattern has some shortcomings that are apparent when applied to large­

scale networks of autonomic software systems. They are outlined below along with a

brief explanation of the author's interpretation of the problem. This is not a specific

criticism of the pattern, rather a brief identification of areas in which the pattern either

lacks relevant detail or is unsuited without greater detail to the problem:

• Event Description - event descriptions in the Observer pattern are typically hard­

coded; object instances are parameterised with sufficient detail. However, in a

dynamic system, this may not be sufficient: components may generate events that

require new event types or extensible types, and observers may need to recognise

novel events, or aggregate existing types to produce a new compound event.

• Number of Subjects - a typical implementation of the Observer pattern may use

a single observer handling a whole set of particular user interface or data change

events from many components or data items (subjects). The observer pattern

facilitates the design and usage of multiple observers, each with specific

responsibilities and scope. Additionally, In traditional observation

implementations, the set of subjects is either fixed (e.g. user interface

components), or the mechanism by which it changes is domain specific and well

understood. However, with large-scale and complex systems, the organisational

59

scope and domain responsibilities are not necessarily clear at design time.

Conversely, a single Observer component handling events from the entire system

will prove computationally impractical, both in terms of event handling and

maintenance of observer scope (i.e. the monitored subjects).

• Despatch Mechanisms - events are despatched in the Observer pattern by an

interface-enforced method implementation and call. However, in a widely­

distributed system-of-systems arrangement, this mechanism is likely to be

unsuited. Some of the related concerns are present in certain small-scale problems

that demonstrate limited complexity - such as in multi-threaded user interface

complexity. One such concern that arrives with the multi-threading of event

despatch is that of incorrectly-timed, or inaccurate and outdated events.

• Event Feedback - All but the most trivial Observers are active, rather than

passive - they are responsible for some sort of action in response to certain events.

However, the Observer model does not specify a mechanism by which response

actions or environmental feedback should be provided.

4.2 Requirements for a "Complex" Observer Pattern

This section provides a concise summary of the requirements that were identified in

the previous subsection. These are necessitated when applying the Observer pattern to

complex or large-scale systems:

• Reduction of Observer Complexity - where applicable the system should

operate the observers as a relatively simple overlay on the complex system. This

may include varying the scope of an observer's interest as the system

configuration changes or filtering or discarding particular event types as they

cease to be relevant. Complexity reduction techniques may be domain specific,

and certain domains may lend themselves more readily to this than others. The

proposed method of reducing complexity in a generic and/or adaptable manner is

discussed further in Section 4.3.

• Externalisation of event descriptions - the observer pattern may operate in

systems that exhibit unique behaviour (such as runtime-emergent states). As such,

the descriptions contained within events (which are traditionally hard-coded, with

60

limited runtime parameterisation) must be sufficiently flexible to describe events

that only arise at runtime. This involves examining methods of extemalising (in an

interpretable form, such as in XML) both the event description, and information

necessary to interpret the event description.

• Suitability of event despatch mechanism - as discussed previously, the

complexity of systems creates additional concerns for event despatch and

processing, outside the specification of the Observer pattern. Consideration must

be given to the possibility that the scale of event processing may lead to situations

where the current event being processed has arrived before events that logically

precede it, or events that cancel or alter its impact.

• Feedback mechanism - as discussed in the previous section, the issue of how to

provide feedback to the environment is complicated by both the scale and

particularly the non-deterministic nature of the environment types under

consideration. The author considers that the study of event consequences with

regard to this problem is a research project in its own right. However, it is

important that the complex observer model makes sufficient consideration of the

interface by which control will be exerted over the environment, or by which

event reporting can be consolidated for further reasoning and deferred feedback.

61

4.3 The Observer Conceptual Model

The previous section has identified the main concerns relevant to the extension of the

observer pattern to support complex and large scale systems. A key requirement was

that of Reducing Observer Complexity, which forms the main topic of this section.

As described in Section 2.2, complexity in software systems manifests itself in several

ways. Not all of the features identified in those Sections are necessarily expected to be

present in each "complex" software system; however two features have significant

implications at a design level, and as such, it is logical to examine these first.

Section 2.2.1 described how large-scale systems create modelling problems that can

be overcome in a number of different ways. Techniques for modelling large-scale

systems each have their advantages and disadvantages; while a given technique may

be perfectly suited to a vast number of situations, it may be completely inappropriate

for a specific type of system. In order that a useful, reusable engineering framework

may be created, it must be able to cope with these differing scenarios, and flexible

enough to make appropriate use of the different techniques available to it. Continuing

the theme of this research; when dealing with large and complex systems, one of the

key research aims is the exploitation of system structure such that the required

observation is simple - relative to the original. This aims to reduce the computational

cost of observation, and the key software components must effectively address:

• Structural identification

• Selection or creation of a suitable observation overlay

• Deployment of the overlay on the system.

Sections 3.2 and 3.3 gave some examples of how graph theory and statistical

techniques can be used to mathematically simplify a scale-free structure in order to

reduce the number of structural elements that need to be managed - without losing

important system parts. However, the developed approach should not be tied to the

scale-free example; a large structure of any type should be effectively reducible to a

set of specifiable metrics and key exploits.

62

By selecting the right set of measures or metrics, a topology description (a structural

type) can be encapsulated in a type signature. This signature can be used on first

deployment and during model changes to help determine which modelling strategies

are applicable to the structure being observed. Once the observation strategy has been

selected or created based on information from the previous steps, it must be

appropriately deployed. The basic stages in the approach are shown in Figure 4:

Observers Created--Identified

Identify Structure
(Check for matching

metrics)

etermine Suitable
Modelling Strategy

Model Change

Create Suitable
Observer

Components
Deploy Observers

Figure 4: Overview of Observation Processes

The following sections will examine the basic concepts involved in each of these

stages, some of the sub-processes omitted in this simplification, and limitations

associated with the linear nature of this process.

4.3.1 Identifying the observed structure

Signature: the identification process makes use of the aforementioned signature

methodology. In this framework, a signature's purpose is to specify one or more

features of a system's structure, and allows a system to check whether a particular

collection of modelled system elements have these features. As such, a basic

signature would indicate, when queried, via a Boolean return value whether the

specified features are present. The internal workings of a signature are a matter for

individual software developers; though it is suggested that features are identified

by a combination of simple metric or algorithmic results. Further discussion

surrounding the design and implementation of a structural signature specifying

Scale-Free characteristics can be found in Section 5.2.

This signature methodology forms the basis of the identification component within

the observation framework proposed and evaluated in this research - as it will enable

the specification of key structural characteristics that can be exploited by an observer.

63

In [115] , the author demonstrated a basic implementation of a signature-based

topology identification and protection system. Structural change along with a small

pool of signatures were put to use as a "trigger" for a simple scheme of system

protection; when the system detected (by signature matching) that it was operating on

a certain topology, it would deploy a predetermined type of protection strategy known

to be effective on that topology type. A basic illustration of the relevant processes and

data requirements are shown in Figure 5.

Identifie

Determine
Suitable Modell ing

Strategy

Model Change

System Model
Data Observer Deployment

Model Change

,,,,,,,,
t,,

Protection "
Technique \,

,
,,,,,

,
,,

..------ --- .. _- \
'"

--"-""',.,\ \

..............

Select
Technique

,,,,,,,,,,,,,,,,,
,
~ .>

\ ;"// ---
\ "", '
"/J'

,,,,,,
i,,,,,,,,,,

,
,,,,,,

Matched
Signature

,,,
,
,,,

,,,
,,,,,,,,,,,,,,,,,,,,,,

Signature : '
Informat ion '

,,,
......... \

" ,
" ,
<;\\-.

Signature \
Information \\

,

Signature
Information

Check
Signatures

Signature
Information

,
,,,,

r
r

r,
t

,
,,,,

t,
t

t
/ .. , .., .-"".. .:

,:"
/ Signature

,/ Information
r

t,,,,,,,,,,,,,,,,,,,,,,,,,,
... , Signature

Information

"
................

".

Signature
Pool

Techniques
Pool

Figure 5: Signature-Selected Observation Tec hniques

64

The protection strategy in the referenced paper takes the form of an observation

overlay, specifying where observation resources should be concentrated within the

system for best effect, according to the selected protection technique. The limited

experiment made the assumption that signatures would specify only topological

characteristics that could be measured using simple graph theory metrics.

A signature matching was attempted whenever the underlying system structure

changed, requiring exhaustive deployment of simple monitors at each system element.

The simple monitors notified the parent observer when a system component

connected to, or disconnected from another component. A connection represented

communication or dependency between components. More information on the

measures employed can be found in Section 3.3; with further details in the associated

paper [115]. Additionally, the evaluation of methods in Section 9.2 develops this

simulated environment to assess the effectiveness of the signature approach.

4.3.2 Managing system scale via topology-based

architecture

While the initial experimental work was concerned only with determining certain

topological characteristics associated with the whole system organisation; it was

proposed that in order to extend the usefulness of the approach, the hierarchical nature

of the observation subsystem could be further developed. Equally, a hierarchical

breakdown of responsibility and area of effect is attractive as it can provide a solution

to the issues of scalability, providing that overlay-level observer units could be

constrained to monitor only a certain set of structural elements. While a single root

overlay-level component would in effect hold responsibility for the entire observation

system, it would do so via child overlay-level components, each responsible for a

subset of structural elements, with this model applied recursively as required.

Any given observation overlay model should take its own structure from the system it

is modelling; each component of each layer would look to exploit the relevant

topological features of the observed (sub) system; itself a key aim of this research. As

discussed in the earlier vehicle example of Section 3.1, abstraction via the hierarchical

systems-of-systems approach can be a useful simplification tool. The level of

65

abstraction applied at the top of the hierarchy allows an overview control of many

elements, while the level of detail at the bottom of the hierarchy should permit precise

control of a single element. Levels in between provide the relevant translation stages

between abstract concepts - such as goals - and the technical detail required for

individual components.

The potential benefits of the hierarchical organisation almost make it too tempting to

assume that this approach can simply be applied to the previously-discussed

experimental work without modification. However, without regurgitating all of the

referenced section, it is worth revisiting the distinction between bottom-up and top­

down system design. So far, it has been convenient for modelling purposes to assume

that the newly-proposed hierarchical overlay creates a top-down system overlay,

neatly encompassing related and relevant system structures in equally-sized

subsystems. In this case, organising observation hierarchically would be a simple case

of adopting a similar hierarchical structure to the system's own model.

However, previous chapters have gone to some length to discuss the features and

challenges that make complex systems difficult to model. One such challenge is the

tendency for structural features to emerge from a previously-unstructured system

arrangement. Additionally, complex software construction through service and

component composition can lead to a situation where traditional software modelling

techniques do not give an accurate breakdown of the entire system.

Difficulties aside, it is apparent that extending the previously-discussed structural

identification, such that the observed systems' models of organisation can be

partitioned and further broken down into hierarchically-organised subsystems, is a

useful addition. This functionality permits different observation components to deal

with the individual parts of the system in a suitably-adapted manner, and removes an

centralised control element from the observation overlay's architecture. However,

supporting this approach brings several challenges of its own:

• How to partition the observed system's organisation model- which metrics can be

used to determine areas of different topological identification? How can these be

used to set the boundaries for different observers' scopes of interest?

66

• Computational intensity of the partitioning (and sub-partitioning) operations. The

signature/trigger approach discussed above is able to operate on large systems

because it is intended to require minimal computation. It is therefore aimed to be

flexible as it can be repeated as required. As it is likely that constructing a

suitably-partitioned overlay will be more computationally intensive, this will limit

its flexibility when the underlying system undergoes change.

• Continual maintenance of hierarchical structure - in order to keep the observer

scope correctly adapted, it will be necessary to maintain the arrangement of

observers such that they adequately reflect the changing system structure.

However, to avoid the problems of centralised control and excessive loading on a

single group of units, the changing system structure and resulting change in

observer deployment must be handled in a decentralised manner.

However, while the work referenced and described in the previous sections

demonstrated the value of a signature-based approach, it still relies on a hard-coded

link between a given signature and the relevant observation outcome. It is considered

that this limitation is a significant obstacle to the partitioning discussed above, in

addition to the flexibility of the entire approach. The following section will examine

how this direct link can be removed such that a signature match simply informs the

modelling and observation processes.

4.3.3 Determining a suitable modelling strategy

Technique: the eventual response to a particular signature match (which indicates

a detected characteristic) is the creation or implementation of a suitable modelling

strategy for the observers. This framework defines a Technique as a model­

generating component, which is responsible for creating anew, reduced­

complexity system model. As such, a basic Technique should select important

system elements; importance defined by the type of technique. Further discussion

along with an applied example of an Acquaintance Immunisation Technique for

model generation can be found in Sections 5.3 and 5.3.1, respectively.

67

Once a particular structural type has been identified within a system via a set of

metrics or characteristics, the next step is to determine the most suitable way to model

this structure. The model should encompass the important areas of the structure while

reducing complexity sufficiently to allow observer(s) to be deployed at key points. It

is proposed that this would be achieved by the production of a cut-down model that

contains only those structural elements that are deemed important. At the very least,

that would require the signature data and access to the full system model.

In the initial simulation (see Section 9.2 for related simulation work), the decision

regarding the production of the simplified model was entirely hard-coded based on the

matched signature. For example, if a scale-free signature matched using an

Acquaintance Nomination metric, then the Acquaintance Immunisation model

strategy was the hard-coded response. If the network was shown to match the Random

metric, then the Random monitoring strategy was deployed.

While the approach in this simulation in its own right was not without merit, it was

certainly limiting. The limiting effects can be reduced by altering the way in which

signatures are used. Instead of a signature acting as a simple condition for a triggered

action, it provides a description of a certain set of characteristics, which may include

vulnerabilities, exploits, or modelling techniques that are applicable to these

characteristics. A signature match is then used as part o/the simplified model creation

process, rather than the final say. Model creation is deferred to another component,

which reasons on the quality of match and whether any of the supplied techniques

may produce a benefit, within the signature's specified parameters. If no signature

matches satisfactorily, the system model could be referred for further processing ­

such as attempted partitioning, as mentioned in the previous section. Deferring the

model generation in this way would also allow details of the resulting model to be

affected by policies outside of an identify-and-exploit process.

A brief simplification of the process thus far is shown in Figure 6 and Figure 7, which

show the basic component responsibilities, and a simple process overview

respectively.

68

For -A.
Observation

.............

.~--....._~" " " " \
.,,

.. '"

.........

. ,. ,·,y
·,
··.

...............

Simplified
Model

',,,,,, ',,,,,, ',,,, '" "

Requested
------- System

Model

System
Model

Interrogation

Observers Creat

System
Model Change------ _

- - ------ ~- - - -- - -- - -- - -- -- --- - - - - ------ -- ----

..,,,,
.,.
·······,.

. • "'>:::,::,:,',:\ " ~~::~~."" "" ""
, , S~n~ure
: :!\ j Data

: \ I, ., .
f \~,
, "
: <., -,I '
.,,
,,
,
,

Figure 6: Required Model Generation Components

Idle
7. Deploy
Observers

1. Model Change
Event Received

No

2. Threshold
Exceeded?

No
a. Further
Checking
Required? Yes

Yes•
3. Evaluate
Signatures

~
4. Check selected
Signature Metrics

...
Yes

4a. Matched?

No

Yes

6. System Policy
Model Verification

5. Generate
Observation

Model

No

Figure 7: Identification and Model Generation Process

69

In summary, the model generation process is still triggered by the matching of one or

more signatures. The developed signature carries more information regarding suitable

techniques, and when evaluated, a signature should be capable of specifying how

suitable a match it is - a simplified utility measure may suffice. Rather than making a

direct inference to a particular modelling technique, a set of applicable techniques are

provided, and it is the responsibility of the model generator to select the most

appropriate for any given input model. This may seem like unnecessary indirection,

but it allows the model generator to check for other closely matched signatures, and to

make modelling decisions based on other external policies, in addition to those

specified in any signature-based techniques. For example, a policy could indicate that

the modeller should produce a number of differently-simplified models to allow

several observation techniques. Further examples of these external policies are

detailed in the next section, which is concerned with the processes that occur on the

simplified model in order to successfully deploy the system observers.

4.3.4 Deploying the Observers

The previous sections discussed identification and simplification of the system model.

This section identifies the system-level processes that: are involved in taking this

information, making appropriate considerations, and finally deploying or redeploying

observers about the system.

A basic implementation may deploy an observer to each component identified within

the simplified model. However, this would place all of the responsibility and decision­

making regarding conservation of resources firmly within the model generation stage.

Therefore, the proposed framework includes a separate component whose

responsibility is resource and management concerns for observer deployment.

The observer deployment process should consider the following concerns:

• Existing observation deployment - to facilitate use on evolving systems,

deployment must create a transformation plan to avoid removing observers only

to redeploy them.

• Available observation resources - III order to deploy required observers, the

deployment co-ordinator must ensure it has sufficient resources to do so. If not, it

70

may be able to select a further subset of the elements for monitoring, or refer a

subset of the elements for monitoring at another unit.

• Other observation policies / rules - certain domains may require that particular

elements are given a high observation priority, and in these cases, system-specific

policies should override generated results.

A simplified architectural VIew of this process is shown in Figure 8, highlighting

significant components and major data requirements. Note how in this diagram, the

Observed Elements are shown as three separate entities, all linked to a single

Observed Element Coordinator. This represents the manner in which observation

responsibility may be delegated to another observer, according to resource data. In

order to maintain system scalability, these observers are modelled as children, in

effect coordinated by the parent observer. The actual implementation of this may vary

depending on system requirements. For example, if another observer (known to the

parent unit) has capacity, it could delegate to this unit. Alternatively, if the available

resource data determines that the system has available resources (but the parent

observer does not), it could request the creation of a new observer to manage a section

of the subject set - effectively a new child observer.

.....................\\

,
,,,,
,,,,,,,,,,,,,,---------­ ,,

.--_......

Observed Element
Co-ordinator

Observers CreateModel Changed

For
Observation

Deployment

r,,,,,,,,,,

~
, ', '

Policy \, \,
/ Resource Rules \, \,, ' ,

,/ •.. Information --------___ \, \,

/--,>" --"'",\ '.
" ' 4 '.,.

,,' '\ -.
, I "

I I " ..
\\ // '

" "

...... ' .. '

Identifi

Highlighted Model
Elements

Simplified
Model

)
Figure 8: Observer Deployment Components

71

The observers are attached to targets in their simplified model, and then managed or

overseen by their Observation Element Co-ordinator. The responsibility for creation,

deployment, and removal of a given observer lies with its co-ordinator, which may

remove and redeploy existing observers in accordance with available resource data. In

order that the resulting deployment of observers is manageable and scalable, each

level is expected to provide a filtration of events; observers collating, interpreting or

otherwise processing the events before passing them up to the next level, potentially a

level of system control, or a parent observer. A basic overview of the deployment

process is shown in Figure 9:

7. Remove
Redundant
Observers

_ Yes--~ 6b1. Attach New
Observers

--No

b. Sufficien
Resources
Available?

Yes

6a.
Further

Deployment
eeded?

6. Assess
Resource

Allocation and
Availability

1. Structural
Change

Notificat ion

+
2. Determine
Appropriate
Techniques

..
,. 3. Generate Basic

Observer Model

+
0

4. Adapt Model To
System Policy

N

5. Deploy
Observers

Model
Acceptable?

Yes

No- - - -----.I
6b2. Delegate
Deployment

Responsibility

Figure 9: Deployment Process Overview

The previous subsections have identified the key points of information processing that

fit in the Identify-Model-Deploy strategy proposed in Section 4.3, and how to use this

approach to manage the scale present in a given system. Layers of units are used to

progressively simplify or abstract the complexity present in a large system, while a

division of observation effort is responsible for ensuring that the System Observer­

level overlay represents the system as accurately as observation resources allow.

The next section will look to place the observers in the context of a complex and/or

large software system, and how it is expected the observers will communicate with

and serve the rest of the system's elements.

72

4.4 Complex Observers in Context

The previous subsections looked at the main processes surrounding management of

system scale through to deployment. This section will summarise the requirements,

describing the main components of the extended observer framework. It is hoped that

by the conclusion of this chapter, the reader will be able to visualise the architectural

elements necessary for the proposed framework, along with the ways in which the

framework could be overlaid on a complex system design.

4.4.1 The Complex Software System

Before going into any detail on the observers, it is appropriate to introduce briefly

how they fit into the complex software system model. Figure 10 shows the way in

which observers fit in the overall system control model.

Goals / Status /
Aims Results

Actions/
Commands

\--- - Actions

The Large/Complex
Observed System

Events

Figure 10: Controlled Complex System Architecture

73

This system is intended to represent a "generic" complex system, in as much as the

interface with the actual system components is by way of:

• Observation - instrumented and attached in whichever way the system requires.

• Actions - performed upon the system via actions and commands specified in the

correct manner by system-specific actuators.

The left side of the diagram represents the architecture of the observers with the right

showing the control input to the system. Generally speaking, the top of the diagram

represents the abstract, large area-of-effect (macro) actions, while the lower half

represents the specialised, technical and component-specific (micro) actions ­

growmg more specific for components nearer the complex system "object". The

overall system architecture (along with the architecture of the observer subsystem

which overlays it) takes themes and variations from the following:

Observer/Command/Action patterns - the model uses simplified interpretations of

several of the common 00 design patterns [27]. There is a clear separation of

concerns between the components being observed (subjects) and the subsystem's

monitor components (the observers), plus a standardised attachment interface.

Additionally, applying a hierarchical arrangement means that a higher-level observer

may have the task of monitoring several system-level observers and providing

event-srule translation for the deliberation layer. Equally, there is a component-level

separation between the deliberation of the system and the mechanism that enacts the

chosen actions upon the system. While feedback to the system can take any number of

forms, by specifying a generic feedback Command or Action, individual actuator

components can implement specific Command wrappers, thus providing a translation

layer for the components being altered.

Rule-based & Goal-driven systems - the generic system model shown above uses or

implies several features found in rule-based systems, well supported in modem

programming languages (e.g. [116]). Firstly, the system's objectives and constraints

are specified at a high level by way of goals / aims that indicates the state the system

should aim to regulate, or should work towards. Equally, system policy is used at all

levels as an additional control mechanism specifying component-specific

74

clarifications of goals, or other particular constraints. Secondly, the Reasoning and

Analysis level is responsible for taking the observer's findings (also, at this level,

assumed to be in the form of rules, or rather current "statements" in terms of rule

variants) and translating them into suitable Actions that bring about the system's

Goals, such as in the Agent methodology discussed in Section 2.3.4.

Autonomic systems and autonomic system control - there are many aspects of the

system model inspired by or compliant with those common to autonomic systems as

discussed in Chapter 2. The whole system is architecturally adaptive - that is, as the

environment (in this case, the complex system being observed) changes, the

observation overlay should adapt accordingly. Equally, it is expected to be aware;

both self-aware (in terms of its goals), and aware of other systems that can impact its

goals. Importantly, this level of monitoring / sensing is needed in order that the

system can self-manage and take appropriate actions such that it achieves its goals

while handling necessary administrative tasks. Finally, the system is modelled as a

huge feedback/control loop, such as [117] - where sensing is performed within the

observer components, reasoning components decide the appropriate feedback, (based

on the system goals, including any necessary tuning criteria to try and correct

undesired change), and closing the loop, the actuator components are instructed to

perform actions or commands upon the system

The focus of this work is on the observation concerns of large, complex systems. To

recap, software observers report their observations by way of events, which describe a

change in system state at one a component. In the typical small-scale system model,

these events arriving at an observer generally result in an action, via some simple

conditional checks. Generally speaking, an observer has a specific responsibility ­

even something as simple as updating a user interface control to reflect a data change.

In the complex system model in Figure 10, in accordance with the autonomic

architecture discussed above, the link between observation and resulting actions is not

as clearly defined or rigid. The observation findings are routed through an additional

level of indirection before resulting in actions on the system. The observers send

information via a hierarchy of observer control through to the reasoning and analysis

component. The reasoning and analysis component is responsible for enacting the

appropriate actions, based on the current system goals or aims - given the currently-

75

observed status. In this generic complex system model, the method of abstraction in

higher level observers is not specified. It simply implies that the events are passed

from child observer up through parents and reach the reasoning or analysis parts of

the system in order. As briefly discussed in Section 4.3.4, in order that the structural

overlay of observers function as desired, each level of observation must perform some

"filtering" of events, be it a simple collation, or some cognitive function on events

before passing them up to the parent observer level.

The following section will explain how the proposed observers fit this high-level

architectural view and manage scale and complexity, along with handling any

structural evolution present in the system structure.

4.4.2 The Complex Observers

This research work concentrates on the way In which large-scale networks of

observers can be attached to complex systems in order to provide suitably-simplified

or abstract descriptive events to higher-level cognitive systems. There are similar

concerns regarding feedback and actions, decided at cognitive levels and passed down

to the system by way of an actuator system. However, the research focus is upon

observation and description; analysis, returned feedback and actuation are largely

outside the scope of this work.

The observer designs are split into two distinct architectures, representing the

separation of concerns in the two parts. The first of these is the Structural Observation

framework, proposed as a hierarchical overlay that is capable of monitoring the

system components under observation; specifically with regard to component

interconnection. The second part of the architecture is the System-level Observation

framework. The Structural framework manages deployment and to some extent, the

communication between components of the System-level framework. However, the

System-level observer components are domain-specific, because of their close

interaction with system components. As such, this research concentrates design effort

on the Structural part of the framework, with specific requirements for the System­

level observers noted as required.

76

4.4.3 Structural Observation Framework

The structural observation addresses the following requirements of the system, which

were previously identified in Section 4.2: Reduction of Observation Complexi ty and

Variable Observer Scope. The setup, observation and evolution processes of the

structural observer are refined throughout Section 4.3. A simplified view of a set of

structural observers is shown in Figure 11. The system's components or elements are

shown as small dots at the system level, and each of the lowest layer of structural

observers has a scope of interest, indicated by the dashed circle.

l'"1
~

<
~.......

C/'1
'-<
VJ
e-e-
~

a
l'"1
~

-<
~.......

-----.... _--------------

\
\
\
\
\
\

\ , I I \ I I
, \ I " \ , t

---r--------~-------~--------T-----r---------~-------- ~- - - - - - - - - -r - - - - - - - -
, " ' I I , I I
, , - - - - - \ " , - - - -' , __ \ I __ _ t

i-: 0 o " J""O 0 ,,~ : -,"0- -........ ~\ .-: 8 --6 :
, " ".' ~I \ , , "0 Q " \.

/ • • 0 \/0.. \ roo 0 <. o. 0 \~
: 0 0 :: 0 00 : :0. 000:: f"Y\.00'

0 ' 0' \ 'I \-..A...I '\. \ 0 a \0 '\ '\ 0,'\ o e ,', .0 "00 ', , \ 1\. I
" ,', " I \ '.... " " ;'" '" o~, ... ' " ,...' ,

Figure 11: Hierarchical Organisation of Structural Observers and Scope of Interest

While the operation of an overlay-based and hierarchical deployment is a scalable

architecture, it creates the issue that certain targets may need to be interleaved into

more than one observer's scope at system level. This issue is less pertinent at the

structural level, owing to the structure-sensitive signatures; as such, it will not receive

detailed discussion in this research. However, if interleaving of several observers '

scope (i.e. subject set) is required at the system-level, the adoption of an overlay­

based architecture provides a solution: a single shared-scope subject may appear in

the overlay as a collection of different subjects, depending on their subject

requirements.

77

In deployment, the observers' scope of interest is tailored to the system configuration,

adapting accordingly, as outlined in Sections 4.3.3 and 4.3.4 - as is the responsibility

of the Structural framework. Components that are identified of particular interest are

shown as filled dots, which fall into the second part of this architecture model - the

System-level Observation. Each structural observer has the following responsibilities:

• Appropriate instrumentation within each system component to detect the

following situations: Creation of a new component, removal of an existing

component, and connection between two components.

• Modelling this data facilitating considerations on the observed structure.

• Sending and receiving a set of events that describe these structural changes.

• Creation, deployment and removal responsibilities for management of the

structural overlay*

• Identifying components of particular interest that should receive further

attention from other observation units*

The last two points (marked *) are items of responsibility deferred to the structural

observer's reasoning module, composed of two elements; illustrated in Figure 12:

• Structural Identification - identify the type of structure being observed based

on the details obtained from each instrumented component, monitor the

structure for changes, and identify key areas for intensive observation.

• Resource Allocation - in conjunction with structural identification, determine

the exact structure of the observation overlaid on the system by way of

resource constraints specified as rules, and any observer-level policies.

" ;,,,".. .:

..

o
@

Instrumented
Component

Allocated
Subject

Figure 12: Architectural Overview of Structural Observer nit

78

Figure 12 also shows a static snapshot of an isolated structural observer unit. In this

simplification, the co-ordinator has allocated 3 subjects for intensive system-level

observation. These subjects have been selected from the instrumented set of

components, based on the appropriate structural identification process and In

accordance with the unit's resource allocation rules.

This assumes the structural observer unit has sufficient resources available to it

(defined in system policy, as discussed in Section 4.3.4). In the case of a very-large­

scale enterprise, a single structural unit may have insufficient resources. Therefore,

the structural unit may:

• Refuse observation responsibility and advertise for another unit to take over.

• Delegate observation responsibility for the coverage to another known

observation unit. The other observation units are then effectively managed by

this unit in a parent-child relationship; the parent sets policy to describe its

expectations and requirements from the child.

In both cases direct instrumentation responsibility and structural management then

passes to the new unit. However, the manager / parent unit retains responsibility for

managing the fulfilment of system observer policy. Therefore, if the parent

determines it can adequately fulfil the requirements without delegation, it can request

the child units un-deploy their system-level observers and manage them directly.

Given that the system must manage and interpret the system-level observers' reports,

domain-specific design is still needed to determine the types of observation required.

The required observation criteria and models for system-level observation need to be

engineered, following an appropriate modelling strategy. While adaptive, the model is

not intended to rewrite code on the fly, determining behaviour of system-level

observers; rather the organisational, management and deployment characteristics.

In order to summarise this section a simple system overview diagram is shown in

Figure 13, outlining the components discussed in Section 4.3. The diagram shows the

main software components, significant data flows, and the repositories of information

that will be required to support this system. The following items on the diagram will

be further specified later in the thesis: Signatures (Section 5.2), Techniques and basic

79

Model Generation (Section 5.3) , Policy and Model Generation (Section 6.1.2) , and

finally, the Deployment Process (Section 6.1.3).

Observer System Overview

Signatures

/7
Structural
Measures

Techniques

"'"Modelling
Techniques

\

Policy

\
Observer

Policy

Observation
Model -~

Component
-'--1C~--- Data

Internal
System Model

Component
Data

~

Structural
Change ­

Notification

Component
Data

System
Change

Notification

?"
Component

Data

~

/
Component

States

\
Observation
Instructions

Deployment!
Undeployment

Instructions

System Components

Figure 13: Structural Observation Overview

Howeve r, to complete this chapter, significant architectural concerns in the System­

level framework are still to be fully defined. The next section will briefly examine the

concerns at the System-level to provide the desired level of system observation.

4.4.4 System-level Observation Framework

References to the sys tem- leve l observers and the system-level observation framework

have been made throughout the previous section. This section aims to clarify their

purpose, state their high-l evel requirements and produce design guidance aimed at

engineers producing observation subsystems for deployment within this framework.

80

Structural observers are considered to be low-cost and effectively ubiquitous

throughout the structure, yet system-level observers are domain specific, may require

significant computational power and as such, require targeted deployment. While this

targeted deployment is undertaken and managed by the structural part of the

framework, system-level observers are responsible for observing and reporting on the

individual system components. Referring back to Figure 12 in the previous section,

the stars represent system components / elements that will receive system-level

observation. This section describes a basic architecture comprising the expectations

and requirements of the system-level observers. Given the Structural framework is

responsible for efficient and targeted selection of observation targets, the high-level

requirements for the System-level observers are as follows:

Observation of system-specific components / collection of measurements - this is

the most domain-specific area of observation, encompassing component-specific

instrumentation and suitable processing of this information into descriptive events.

Standardised method of deployment - The structural framework defined thus far is

based on a homogenous arrangement of structural components. This does not mean it

is incapable of handling systems with a variety of component composition types;

rather that these differing component types are suitably abstracted in order to create a

global system model. However, at the system-level, this simplification is unlikely to

be sufficient. Different components within the system are likely to require unique

methods of instrumentation and different business logic in order to handle and

generate suitable events. Equally, the structural-level observers, with their abstract

system viewpoint, require a standardised deployment interface. Without stepping into

low-level design/implementation details, the deployment mechanism could make use

of a factory-type model [27] to control creation of system-level observers. The factory

would create a suitable observer based on the target component type.

Co-ordinating System-level Observation - The final issue regarding system-level

observer structure is co-ordinating observers' reported events. Again, this process is

largely domain-specific but is seen from two distinct architectural perspectives:

• Complex - The complex approach accepts that although the structural

framework may have reduced the complexity and scale of the target set; it still

81

has organisational aspects rendering it unsuitable for design-time observation

strategies. This approach relies on the structural observation framework taking

responsibility for managing the scale of the system, yet places responsibility on

system-level observation to determine co-ordination strategies at runtime.

• Simplified - In the simplified approach, system-level observers monitor their

targeted system components and either: act independently, are co-ordinated in a

(near) traditional manner, or a combination of both models. This makes the

assumption that the structural framework has reduced the scale and complexity

of observed targets sufficiently for normal SE architectural and design patterns

to apply. This approach is preferred; for the relative simplicity of organisation in

the high-cost/system-level observation, and as it enforces a clear division of

responsibility between structural and system-level components. Structural

observation is responsible for management of scale and structure, whereas

system-level deals with the application/system concerns.

Regardless of the system-level method used to handle collation and event processing,

the structural framework must provide a suitable interface to coordinate the two

distinct structural and system areas. The Mediator design pattern [27] can provide a

solution such that event handling, collation or processing is provided as mediation,

and individually-deployed observers refer any events that they cannot handle locally

to a suitable processing mediator. However, this design pattern tends to centralise the

handling protocol, which may make it unsuitable for a large and diverse system.

4.5 Summary

This chapter aims to give an architectural overview of how the findings of this

research should be applied to complex systems observation design. It began by giving

a brief overview of the existing Observer design pattern and then discussed how the

extensions required would provide better support for the kinds of structures found in

complex and large software systems. An examination of the aims followed;

identifying the major processes to be addressed in the makeup of an adaptive and

scalable observer framework. The chapter proposes a two-part architecture, divided

into structural and system-level observation; the former managing the latter:

82

The Structural Observation elements are responsible for breaking the system down

into manageable "chunks" of observation, and for exploiting topological features

within those chunks, where possible. These responsibilities are broken down into

three subsystems:

1. Structural Identification - identifying the type of structure / substructure on which

the observation should operate, along with (a set of) techniques that can be applied to

best exploit the structural type.

2. Modelling and Reasoning - creating a limited model of the structure, using the

supplied exploitation techniques. This limited model represents the observation set,

based on resource constraints, along with other general system observer policy.

3. Creation and Deployment of System Observation - deploying system-level

observers on the system based on the observation model. In order to manage the

magnitude of the observed target set, this may involve the delegation of parts of the

observation to child observers.

Conversely, System-level Observation elements are deployed and managed by the

structural observation component. They are responsible for observation of real system

events (i.e. those that are of interest to a general system observer, rather than one

interested in structural exploitation) and have the following responsibilities:

• Instrumentation and component / unit attachment - this should follow

traditional software engineering patterns for instrumentation and observation of

components. System-level observers will attach to the subject in an appropriate

manner and either:

o Hold full control over their observation / response (i.e. independent

observers); with the rest of the framework providing only guidance

regarding where and when to be deployed.

o Make observations and generate their own descriptive events that can be

packaged and sent to higher-level observers for further co-ordination.

• Standardised Deployment - while this design section does not consider low­

level design specifics of the system observers, it is important to specify the

manner in which the structural observers will control the deployment of the

system observers. This takes the form of a standardised deployment interface,

parameterised for further domain-specific requirements. As discussed

83

previously, a factory pattern is a preference to allow a standard interface to

deploy a variety of different types of observer according to the selected target

components.

• Observation Co-ordination - In the event the system observation units cannot

operate independently, or the design for the resulting observation system is

insufficiently understood to be modelled with standard approaches at design

time, there must be mediation/co-ordination between system observers.

As discussed throughout the chapter, the system-level part of the framework involves

considerable domain-specific information; both in terms of the targets to be observed

and the types of event to be collected, and generated for higher levels in the overlay.

As such, the next chapter will discuss designs for the structural part of the framework.

This will take the form of developing the identified design requirements, and

continuing to follow the proposed architectures in order that a suitably-detailed design

emerges. The design will describe the relevant detail required for an engineer to apply

these techniques in a real software system.

84

Chapter 5 - Specifying the Observer
Programming Models

As described in Chapter 4, the observer framework specifies two support elements:

• Structural Observation, responsible for dividing the system into observable

chunks, managing them, and exploiting features of those "chunks" for best

observation effort.

• System-level Observation, deployed and essentially controlled by the Structural

Observation elements, and responsible for observing the "real" system events and

producing appropriate feedback. The feedback may be direct to the component or

produced by generating or forwarding events that are passed to system-level

observers operating at a higher level.

For the sake of conciseness, this Chapter only outlines the key aspects of the proposed

framework and associated programming model. However, a more detailed

specification along with relevant supporting information can be found in Appendix I.

Throughout this chapter, the design process is explained in detail, and summarised by

way of the recommended classes and interfaces in a UML class diagram form. The

diagrams follow standard UML notation, and for the sake of brevity, obvious accessor

/ mutator methods for attribute access are typically omitted.

5.1 Specifying Structural Types

Observers CreatedIdentified

Determine
Suitable Modelling

Strategy

Create Suitable
Observer

Components
Deploy Observers

Model Changed

The first step to exploitative observation is to identify the structure on which the

observation must operate. The author's experimentation work on structural

identification, as discussed in Section 4.3.1 [115] deployed observers about a

hypothetical system based on the identified structure. This section will begin by

85

identifying significant points from this work, before expanding to show how this can

be generalised and therefore made more widely-usable.

The structural identification signature used a hard-coded metric-based evaluation on

the structure under investigation. The signature was simply referenced where

required, as demonstrated in Figure 14. The simple code sample outlines the use of a

parameterised Acquaintance Nomination Signature (refer to Section 3.3.4 for a

reminder of the specifics of the metric in this signature), which requires two data

items in order to check for a match - the structure (network in the code) and the

required match value. This is the desired value of "aMetric" (match Value in the code),

which is specified with a given +/- tolerance (+/- 0.1). The signature is checked for a

match simply by calling its checkMatch method.

DoubleTolerance rnatchValue = new DoubleTolerance(O.ld, O.ld);
StaticSignature acqSig = new AcquaintanceSig(network,

rnatchValue);

Boolean ACQUAINTANCE_MATCH = acqSig.checkMatch();

Figure 14: Simple Hard-coded Signature

This code sample lifted from the experimentation work has some immediately

apparent limitations, along with some assumptions being made:

• Signature calculation specifics are defined in code (the AcquaintanceSig

class), with a single runtime-specifiable parameter - the desired aMetric value.

• The system structure is already specified, as a form of collection, in a variable

called network.

• Signature evaluation is invoked by an explicit call to the checkMatch method.

Before examining the signature-specific limitations, requirements and designs that

address them, the next section will examine the ways in which the system structure

itself can be modelled for signature and observation needs.

5.1.1 Modelling the System Structure

In order to facilitate the structural signature match approach, the system structure

must be modelled in a standardised way. In addition to the specification of a standard

86

structural model, consideration must be given to the manner in which this model is

kept up to date with the system. As described in Section 4.3.1, the signature approach

relies on a set of simple monitors exhaustively deployed about the system, which:

• Keep the structural model up to date, and

• Enable "structural change" triggers to be fired, allowing signatures to be

checked only when the structure changes

Structural signatures will assess this model when required, and must be capable of

specifying their trigger mechanism in terms of the simple structural events fired by

these monitors. The structural model must represent the necessary aspects of a

complex system (bearing in mind the potential to extend signatures beyond structural

characteristics, as mentioned earlier), while allowing a domain-specific specialisation

to represent other globally-important characteristics. When considering the potential

specialisation, it is important to remember that while the structural model may

represent additional information, the system-level instrumentation required to

represent it, along with the signature matching criteria, has computation cost. The

structural model should have as minimal overhead on the underlying system as

possible. Signature match criteria in particular should not reach a level of complexity

where real-time operation would become impractical.

Therefore, at its most basic level, the structural model must represent every significant

element in the observed system - i.e. everything that may require overlay observation.

Equally, the model must represent the relationships between different elements. The

experimental work briefly discussed in the previous chapter and examined in [118]

suggested the structure could be representative of workstations in a networked setup.

The same graph model could be used to indicate dependencies between software

components, usage of various services, or connections between servers. The precise

nature of the relationship between model elements will, to a certain extent, determine

the nature of signatures checked, and the observation techniques reasoned on and then

applied. This relationship information at each low-level component or modelled

element will be implemented using domain-specific and technology-specific

techniques.

87

It is envisaged that production-quality systems may need to make use of several

distinct overlays, each having the inter-component relationships modelled in different

ways, and serving a different type of observation requirement.

Therefore, the following model specification designs will be presented at an abstract

level, and although concrete implementation examples will be included for

illustration, they will demonstrate a single usage, not the only available usage. The

graph model provides a simple abstraction for the types of relationship stated above ­

components modelled as vertices and their relationships as edges. As discussed in

Section 3.2, treating the structure's relationship model as a graph allows the system to

apply well-established graph theory techniques to simplify and examine the structure.

The designs for the structural model will take the following form: Firstly, the classes

required to support the model will be introduced, along with a discussion on their

implementation. This section will conclude by explaining how the structural model

will self-manage, leading on to the specification of signatures to assess these models.

The structural model will be formed with appropriate instances of a single type,

known as ModelledElement. In an implementation, this class may be extended as

required to encompass any system-specific information for particular elements that

need consideration within a signature. Instances of ModelledElement maintain a

simple child and parent relationship with one another, allowing representation as a

directed graph (directional edges represented as children and parents). Model

information is monitored by StructuralObservers, which are attached to the real

system elements, each represented by a ModelledElement which hold responsibility

for keeping element-specific information up-to-date. Modelled Elements represent a

Bridge or Adapter between the structural model and its individual components. As

such, the implementation details of each element's relationship to its matching

component are necessarily component specific; depending on, amongst other

concerns, the way in which the subject component allows instrumentation of the

required data.

88

However, regardless of the system-specific implementation concerns involved in the

creation of a Modelled Element; in order to reduce complexities to the Structural

Observer, a standardised method of Modelled Element creation must be made

available. This method should:

• Manage the component-specifics for hooking into the events necessary for the

Structural Observer.

• Create a Modelled Element with adequate descriptive content for the underlying

component.

• Have a standard interface such that objects (i.e. Structural Observers) requesting

a Modelled Element do not need to know the specifics of the target object.

Given these requirements, the design proposes the use of an Abstract Factory pattern

[119]; an abstract ModelledElernentFactory will be implemented as required for the

various component types encountered in the model. The system-specific observer will

use the Modelled Element Factory to create the appropriate Modelled Elements,

containing any type-specific logic to this class. This allows the system to create

Modelled Elements via the factory without needing to be aware of the runtime type of

the underlying system elements.

The StructuralObserver expects to receive ModelChangeEvents from its subject

elements, which describe the type of model change and the affected element(s). The

basic types of change proposed are add (connect) and remove (disconnect), covering

the events that govern the evolution of a system's structure. Therefore, the basic

functionality expected of a StructuralObserver is to maintain the accuracy of any

overlay model information based on observed ModelledElernents - by responding to

add/remove events. Additionally, the StructuralObserver will also provide the

basis for the attachment of signature triggers, which will be explained in more detail

in Section 5.2. The relationship between the low-level observation classes is shown in

the following class diagram, Figure 15. For ease of reference and to assist those

unfamiliar with the Observer design pattern, the conceptual link to the Subj ect,

Event and Observer classes is also explicitly shown on this diagram.

89

<<receives>> Event «send»

r--------- ------ - -source : Subject
~- - -- - - -- ------ ----------- --- ,I -description : string

1
1
1

,1/ Subject 1

Observer L~
1

-observers : Observer

+attach(in toAttach : Observer)
+update(in event : Event) +detach(in toDetach : Observer)

3
#not ifyO

D IT
~

StructuralObserver ModelChangeEvent ModelledElement

-affects : ModelledElement

+processModeIChangeEvent() -affectedBy : ModeliedE lement +getChildrenO : Coliection<ModeliedElement>
-type : ModelChangeType +getParentsO : Coliection<ModelledElement>

+getNeighboursO : Coliection<Modelied Element>

• I--1 «is created by»1 1
,1 /

ModelledElementFacto ry
«type»

ModelChangeType
~ -ADD +createElementFor(in object : object) : ModeliedEle

1
-REMOVE

ment

Figure 15: UML Class Diagram showing Structural classes

When a Structural Observer is monitoring a system, the underlying system model (as

represented by modelled elements) is kept up-to-date by way of the observer receiving

add/remove events for newly connected or removed components; then creating or

discarding the related modelled elements appropriately. However, when the observer

is first deployed; it cannot rely on these events to build a complete system model.

Therefore, the observer must be able to employ a method to allow it to build this

model from a system on which it has just been deployed; detailed specification of this

process is found in Section 6.2.2. Additionally, a worked example of the structural

model can be found in Appendix 1 (Section 1.1).

5.2 The Structural Signatures

With a standardised minimum level of modelling information provided by the

structural observation subsystem, it is now possible to consider the requirements of

the basic structural signature, and how it will obtain the necessary information from

the system model. Equally, it is important to consider how the structural signature

could be extended to support any model extensions that have been made at the

modelled element level.

90

To recap, the role of the structural signature is to provide the association between a

given set of observation techniques with a particular (structural) trend or characteristic

set. Details regarding these observation techniques will be deferred to Section 5.3.

This section aims to examine only a suitable specification of the relevant

characteristics or trends in the structural model specified in the previous sections;

effectively a structural type identifier.

In certain cases, it may be appropriate for the signature to specify the manner in which

they should be checked; e.g. time interval between checks, or low-level modelling

events that triggers the signature check. The typed structural model intends to allow

observers to deal with systems with unfamiliar system-structure specifics. Due to the

uncertainty, incompleteness of information and potential variety inherent in complex

systems; it is unfeasible to try and cater for every possible structural or organisational

formation. Instead, the signature approach is the basis for an abstract typed

observation framework - specifying heuristics which are detected at runtime, thus

adapting observation accordingly. In summary, a signature must fulfil the following

requirements:

Type Specification: Have the capability to check (a set of) characteristics in the

structural model and return a result indicating type compliance or otherwise. In the

example discussed in Section 5.1 and Figure 14, this requirement is fulfilled by the

Boolean checkMatch method.

Potential Specialisation: The signatures must be open to extension to allow

additional domain-specific information to be included within a defined type.

Invalidation and Triggers: Allows the association of a trigger event (or set thereof)

from the structural model that indicates a previously matched signature has become

"invalid" and should be rechecked. As a signature encapsulates the structural metric

data required for type specification, it is best suited to specify the structural alterations

likely to lead to metric invalidation.

In essence, the definition of a signature is an example of a Template Method pattern

[27] within the structural observer model. Implementations will define the algorithms,

metrics and measures that provide the signature's characterisation, while the Template

defines the interface to the signature. As such, the model of a generalised signature

template within the framework must consider:

91

• How structural model interaction (querying or exploration) should be facilitated,

and how the match criteria can be specified against this model.

• How the signature invalidation (i.e. the trigger to recheck the signature) can be

specified in terms of a model change event, or a composite thereof - along with

potential implications for the invalidation model.

The next section will briefly outline how a Scale-Free Signature fits the above model,

thus examining the suitability of the proposed requirements.

5.2.1 A Scale-Free Signature

When considering the required methods for structural model examination, it is worth

remembering that signatures may require rechecking at regular intervals. As such, low

computational complexity is a desirable property. Therefore, signatures may make use

of simplification measures; examples of which can be found within Chapter 3. Section

3.2 discusses scale-free systems and metrics providing a heuristic indication of scale­

free topology. In order to develop the signature specification, the following applies

the previously-defined criteria to a scale-free signature.

Type Specification: The Signature should specify the measures required for the

Acquaintance Nomination metric, as discussed in Section 3.3.4; in order to give an

indication of Scale-Free (SF) topology. Summarising the data requirements from this

section indicates that the signature requires the following data from the model:

• The size of the model - i.e. number of elements.

• A set of elements, selected randomly from the entire model

• The directly-connected elements for a given element (its neighbours)

The model structure proposed in Section 5.1.1 can only fulfil the final requirement.

The other requirements suggest a level of global data access that has not yet been

specified. However, the Modelled Element Factory also proposed in Section 5.1.1

must maintain this information for object issuing and pooling; therefore it is logical to

formalise this functionality and propose a data relationship between Signatures and

their related Modelled Element Factory. Finally, the type indication may be provided

in several forms. Referring back to the pseudo-code example in Figure 14, this

signature provides a Boolean result; however, it could potentially provide a

92

continuous result of bounded accuracy by providing a numeric indication; for

example, a normalised distance from the required value.

Potential for Specialisation: While it is impossible to predict every potential

specialisation; with a SF-indicative signature such as this, a possible specialisation for

heterogeneous component-based systems may involve a filter on underlying Modelled

Elements; only certain types of connections are included in the metric.

Invalidation Requirements: The SF indication provided by the signature IS

invalidated after a certain number of connection alterations have been made to the

underlying model graph. As discussed in Section 3.3, a system's organisation can

undergo connectivity transition phases, during which the topological features required

to match this signature may emerge. Connectivity changes are quantified in terms of

Model Change Events, as discussed in Section 5.1.1; as such, the signature must

specify the magnitude or types of events that lead to signature invalidation.

5.2.2 Formalising the Requirements

In summary, the extended requirements for the structural signature's design model

(and implications on the model design thus far) are as follows:

Type Specification: The system structure modelling must be extended to support

some "global" (i.e. structural observer domain) information; with a complete

collection of the modelled elements as a minimum requirement. The required global

information is, as per previous designs collected in the Modelled Element Factory.

However, in order to clearly separate the design concerns of the factory from these

requirements, it is proposed to make this functionality available via the Structural

Observer. Developers implementing the factory must maintain the element list in a

scalable manner within the modelled element structure - such as placing the elements

in a distributed shared space or hash table.

Potential Specialisation: while it is impossible to cater for every potential

specialisation of a given signature, a signature definition should not make it difficult

for developers to implement likely specialisations, based on the proposed model

93

access and constraints on signature execution. The potential specialisation in the

example case relied only on the specialised signature's ability to interrogate the

runtime-type model object, rather than modelled element interface constraints.

Invalidation and Triggers of a signature's match status; a signature should define

the criteria (i.e. sequence and/or magnitude of events) that render a previous match

invalid, if possible. However, it is also clear that the framework needs to incorporate a

standardised method by which interested parties can exercise control over the priority

given to various concerns within a signature's triggering. This allows for an

appropriate balance between timely signature accuracy and the computational cost of

repeated signature matches. However, should this trigger describe invalidation criteria

more complex than just the magnitude of structural change that must occur (i.e. a

number of connect/disconnect operations), it is possible that capturing and processing

these contributory events may involve greater overhead than simply rechecking the

signature at periodic intervals. Therefore, invalidation should be used with care, and

only to help regulate the amount of computational load present in a fast-evolving

system. The next section will demonstrate how these refined requirements in terms of

class and interface changes.

5.2.3 Modelling the Signature in Software

Previous sections divided the signature specification requirements into three areas

aimed to refine the Template's requirements. However, examination also highlighted

a number of further design requirements for the underlying structural model. These

are presented below with a brief summary of each requirement's meaning, along with

their contributory model requirements as discussed above:

Type specification (The model metrics or statistics that define a particular type and

how they do so)

• Indication of type compliance - at the simplest level, a Boolean true/false, and

potentially a continuous (normalised between 0-1) value indication, allowing

further consideration on the quality of a type indication.

94

• Access to model via existing graph / structural model - in order to explore graph

model and specific elements (Provision via Structural Observer, which accesses

the elements in the appropriate Factory).

• Direct access to all model elements, without the need to "explore" (i.e. follow

neighbour links) to gain a complete model overview, perform statistical

calculations on the model, and to rapidly select subsets of elements according to

certain criteria.

• A specification of compliance test - the signature must specify the criteria by

which a collection of modelled elements are tested for compliance. In a typical

implementation, this specification will take the form of an algorithm in the

checking method. While this will fulfil the requirements of the signature, it

should also be considered that other components may benefit from being able to

inspect the specifics of the compliance test. Chapter 7 discusses a variety of

issues surrounding externalisation.

Potential for specialisation (Required flexibility in a design to permit implemented

signatures access to required data in specialised model elements)

Invalidation and Triggers (How a signature should specify events that lead to a

potential change in signature state)

• A New event type - Invalidation Event - that can adequately describe the change

that must occur within the model to "invalidate" the previous signature match

value.

• Granularity of change - It is appreciated that the smallest of model change may

slightly affect the continuous match value, necessitating possibly-needless

repeated signature rechecking. Therefore, the invalidation event should include a

granularity value, exposing a method of control over the magnitude of change

required to invalidate the signature. However, even at minimum sensitivity; the

invalidation event should specify the degree of model change that is required to

alter the discrete match value.

Therefore, in breaking down these requirements into areas of responsibility, it is

shown that there is interaction with the components from previous stages of design:-

95

Modelled Elements - they provide the description of the structure to be assessed and

are accessed in two ways. The first is as a direct reference to the targeted modelled

element, which allows access via exploration to the entire model, while the second is

via the proposed "shared space" whereby all the elements within a model are

available directly.

Model Change Events - they will provide the description for the invalidation

mechanism previously discussed, by way of disconnection and connection events

describing structural change, and potential "triggers" for reassessing the signature.

Structural Observer - the related observer will provide the signature with access to the

following information:

• "Global" list of elements - by modifying the Modelled Element Factory so

that it exposes the list of element objects that it has "issued", this allows the

observer to make available all the elements it is monitoring

• Shared variable space - this is to allow a signature to place data for evaluation

by other components within the structural observer's scope.

As there are significant new functional requirements, this necessitates new design

components for the system model. These can be summarised as:-

Signature - the Template - implementations are responsible for: specifying the

match criteria, the model to assess, and for assessing the match criteria and providing

a result. This result should be available in both discrete and continuous forms. Once a

signature has been assessed, in addition to the results, the signature should be

responsible for specifying the potential invalidation trigger events. This is a separate

area of responsibility in its own right and is described below.

Invalidation Handler - the invalidation handler should provide functionality (to be

used by an interested party, such as an observer) to determine when a signature should

be reassessed. Externally, it should encapsulate the model changes that potentially

alter the signature's match status. It should provide a method of control to allow the

balance between accuracy and overhead to be fine-tuned. It will be an event

transformer; subscribing to change events from the model in order to determine when

the signature is potentially invalidated, then generating its own event to inform

interested parties when this invalidation occurs.

96

These new areas of responsibility are assigned appropriately between new classes, and

shown (along with their significant interactions as external methods) with the related

existing classes in the following class diagram, Figure 16.

creation»_ _____ J

I«checked by»
,....-__'~;;::.....-/ __...L- ---,

InvalidationEvent

-affects : Signature
ModelChangeEvent

-affects : ModeliedE lement
-affectedBy : ModeliedElement
-type : ModelChangeType

ModelledElement 1

+getChildrenO : Coliection<ModeliedElement> 1
1..*

+getParentsO : Coliection<ModeliedElement> •+getNeighboursO : Coliection<ModeliedElement>
SignaturelnvalidationHandler

1
1 -invalidatedSignature : Signature-- -accuracyPriority : double

+addlnvalidationObserver(in obs) 1

1
+removelnvalidationObserver(in obs)

1--. ModelledElementFactory
Signature

-checkedModel : ModeliedElement
-checkingObserver : StructuralObserver +createElementFor(in object : object) : ModeliedElemen t

- \ +getAIiElementsO : ModeliedElementD
+checkMatchO : bool I

+getMatchO : double
I ~
I I

+createlnvalidationTriggerO : Signature Invalidation Handler I I «relies on for system-level object
I I

StructuralObserver

-elementF actory : Modelled ElementFactory

+processModeIChangeEvent()
+getAliElementsO : ModeliedElementD

Figure 16: Signature and Invalidation Handler - significant classes, relationships and methods

In this diagram; note how the existing classes Mode l ledElement Factory and

St ructura lObserver have gained methods to allow access to the collection of

Modelled Elements that have been issued by a factory. As discussed in the previous

section, this data coupling (getAllElements) is present as Mediation, avoiding direct

coupling of a Signature object and a Modelled Element Factory implementation:

Section 5.2 has discussed the requirements of a structural signature and used an

example to derive simple outline software designs. Before continuing to show how

the signatures will be utilised by the structural observers, the next section will outline

the design for the responses to the signature matches - the observation techniques.

97

5.3 Specifying Observation Techniques

Observers Created

Identified

Deploy Observers

Referring back to the hard-coded example discussed in Section 5.1, the observation

overlay deployed was decided during the code's design stage. As outlined in Section

4.3.3, this hard-coded link between signature and appropriate observation overlay is

limiting. The architecture instead proposes the association of one or more observation

techniques with a signature, deferring the decision on which technique to the

observer's model generation unit.

In order to allow any given observation technique to be applied by a model generator,

techniques must be specified in a standard form, customisable to specify different

methods of target selection. As with the signature specification, which required a

standard specification for system structure, observation technique specification must

similarly make use of the structural model. Continuing the "typed observation" theme,

while the framework proposes that observation techniques should still relate to one or

more signatures, an observation technique should be capable of producing useful

results when applied to systems that only partly conform to the signatures with which

they are associated. In short, although techniques may produce poor results when

applied to poor signature matches, they should still produce results.

An observation technique must identify a subset of target elements from the overall

system. In order to do so, it may be beneficial if there is interaction - and potentially,

a degree of data coupling - between the observation technique and the signature

match that brought it about. Referring to Section 3.3.4, the acquaintance-based metric

used to determine scale-free connectivity (as invoked by the signature) is similar to

the acquaintance immunisation technique used to select the suggested target set. There

is a benefit in allowing the observation technique to make use of the signature check

method, and vice versa. Doing so can avoid the unnecessary duplication of metrics

98

and increased maintenance, along with unnecessary repeated invocation of the

algorithms - more computation to obtain the same results.

Additionally, observation techniques may need to prioritise elements within the

resulting target set; as discussed in Section 4.3.4, observer deployment may need to

reduce the target set further. Encapsulating data regarding the relative importance of a

particular element within a technique's target set allows the deployment process to

make better decisions regarding the actual target set (i.e. the observed elements).

As with signatures, discussed in Section 5.2, the technique demonstrates an effective

use of the Template Method pattern, allowing the subclasses to implement the

appropriate model simplification algorithms. To summarise, the Template specifying

the observation technique should have the following main interface concerns:

1. To select a (reduced) "suggested target" set from the modelled system that can be

passed to the deployment module to arrange the placing of observation units.

2. To interact with the matched signature that brought about the use of this

technique. This interaction should facilitate:

• Shared use of the "algorithm" specified within the signature (avoid algorithm

duplication)

• Shared use of the results of the signature's algorithm (avoid wasted

computation)

3. Production of the target set should take the form of an extension of the system

model to allow the included modelled elements to be specified with additional data ­

such as a degree of importance or priority for observation.

5.3.1 Acquaintance Immunisation Technique

Continuing the example of the scale-free model signature, this section examines the

Acquaintance Immunisation technique for:

• Applicability as an observation technique,

• Fulfilment of previously listed requirements, and

• Generalisation to provide the basis for the observation technique specification.

99

As a brief reminder from Section 3.3.4 and its referenced publications, Acquaintance

Immunisation [43] refers to a graph theory technique that is extremely effective in

reducing the complexity in a scale-free graph. This brief overview will re-examine the

previously identified objectives with particular consideration to the Acquaintance

Immunisation Technique:

The suggested target set: IS selected in accordance with the Acquaintance

Immunisation technique, and IS a collection of Modelled Elements to which the

deployment unit can attach system-level observers.

Interaction with matched signature: as discussed in previous sections, there is

significant re-use of algorithm and data between the Acquaintance Signature and

Technique; thus a mechanism to permit this relationship is logical. However, the

architectural design suggests a weakening of this relationship due to the potential

many-to-many association between signatures and techniques. Therefore, to permit

re-use without over-constraining the architectural relationship, three clear design

responsibilities emerge: Algorithm, Signature and Technique. The relationship

between them is shown in the UML class diagram, Figure 17.

Extension of the system model: Acquaintance Immunisation requires no additional

metadata on the suggested target set; the algorithm does not specify importance

between "immunised" nodes. However, it is conceivable that other modelling

techniques may require methods to attach additional data to its suggested target set.

100

ObservationTechnique

t
AcquaintanceSelectionAlgorithm

Set : Coliection<ModeliedElement> , in probability : double)
lement>

-r- -r-
I I

«call» I I
I I
I I___________ J

I I

«call»
ture I

I
I
I
I
I
I

liedElement>
I
I
I

II

Acqua intancelmmunisationTec hniq ue

#getTargetSet() : Collection<Mode liedElement>
+getTargetSetFrom(in signature : Signature) : Coliection<ModeliedElement>

Signature

(acqu ire data)

«call»

+checkMatchO : bool
+getMatchO : double
+getLastSignatureSetO : Coliection<Mode

AcquaintanceNominationSigna

+transformSet(in system
: Coliect ion<ModeliedE

Figure 17: Relationships between Acquaintance-based Signature, Technique and Algorithm

5.3.2 Modelling Generic Observation Techniques

Building on the findings of the previous section; this section will produce outline and

generalised software designs, illustrated where necessary with UML class diagrams.

In order to avoid duplicated diagramming, representations showing change s to

existing classes will be limited to the changes or additions only .

Summarising previous proposals and design decisions, the place of Observation

Techniques in the framework is as the first stage in an observation response to a

particular structural signature match. They exist to:

• Provide or identify a set of target elements selected for observation from the

entire system set of elements.

• Add any element-specific meta-data (such as the previously-mentioned example

of observation priority) to particular modelled elements within the observation

target set.

• Return the target set of modelled elements and meta-data to the observation co­

ordinator or deployment unit in order that the recommended techn ique can be

implemented as the blueprint for deploying system-leve l observers.

101

As outlined in the Acquaintance Immunisation examples, two significantly different

approaches were identified that enable an Observation Technique to function:

1. Taking an output set from a related Signature, performing optional further

examination or translation on the set of elements, and returning the translated set as

the desired observation targets.

2. Utilising an Algorithm defined elsewhere and implementing a standardised

interface or inheriting from a suitable abstract class to allow appropriate re-use of that

algorithm (as per the Acquaintance "Selection" example)

Before discussing the finer design decisions regarding algorithms and their

interactions with techniques and signatures, the design for representing elements'

metadata will be formalised.

Extending Modelled Element with Metadata

The element metadata concerns can be appropriately represented with a Decorator

approach, which will contain any other relevant observation technique-added data and

behaviour. Domain-specific metadata requirements will necessitate flexibility - in that

metadata must not be constrained to a particular type - yet it must adequately describe

itself to enable other units to use it.

The proposed design is based around a new type, ModelledElementMetaData, which

is a special subtype of Modelled Element. It both inherits from Modelled Element (to

allow it to appear in models without the need to further complicate the structural

model) thus acts as both a Proxy and Adaptor, wrapping the "real" instances of

Modelled Element. The associated data is represented by a Meta Data / Meta Key

hash table structure, allowing Modelled Element to associate a number of pieces of

metadata, each identified by a specific "key". In the example class diagram (Figure

18), a single key is defined - Priority - as discussed throughout the previous text.

Domain-specific implementations could specify additional keys, allowing flexibility

but ensuring that the metadata is identified in a standardised form across the

framework.

102

Many 00 languages allow runtime examination of an object's type (such as the

instanceo f keyword in Java), but values in the MetaData class are also type­

specified by the MetaDa taTy p e class; another Adapter, allowing simplification of

runtime types to a programmer-defined collection of acceptable metadata types.

wraps

1

MetaData1 «enumeration»

..-.-type : MetaDataType MetaKey ModelledElement...... -value : object +PRIORITY =priority '--
+... =...

-

~
*

MetaDataType *
'--

-typelD : string
-typeSpecification : Class

n 1.- •ModelledElementMetaData

-wrappedElement : ModeliedElement
1 -metaData : Hash<MetaKey. MetaData>

•+putMetaData(in key : MetaDataType. in data : MetaData)
+removeMetaData(in key: MetaKey)

1

Figure 18: Wrapper Modelled Element and supporting Meta Data representations

Algorithms, Signatures and Techniques

As discussed previously, there is a case for sharing both data and algorithmic logic

between Signatures and Observation Techniques. Figure 17 showed an example of an

overview class design that was applicable to the Acquaintance Immunisation

Technique and Signature, and their shared algorithm. While the approach fulfilled the

necessary requirements for that example, the specification was limiting as it relied on

example-specific interactions between each of the main classes. In order to provide a

design with wider appl ication, and to assist developers in creating their own domain­

specific des igns , it is necessary to generalise these classes, and better specify the

relationships between them. The rest of this section will discuss key design features of

the example, generalise the feature and then demonstrate how it can be re-applied to

the example in question .

103

The first feature concerns a signature's relevance to one or more techniques. The

example showed how the Acquaintance Nomination signature defined a new method

exposing the signature's "nominated set" of elements, allowing the Acquaintance

Technique to interrogate it directly to determine if it needed to calculate the set itself

(using a suitable algorithm), or whether it could simply use the set that the signature

had calculated. However, this creates a strong relationship between signature and

technique, something that the earlier sections had looked to remove to allow greater

influence of other concerns on the mapping between signatures and techniques. As

such, generalising this design must address:

• The associations (though not simply one-to-one mappings) between signatures

and techniques (i.e. which techniques are applicable for certain signatures)

• The standard for transfer of data between a signature and one of its related

techniques (remembering that a technique may be associated with more than

one signature and vice versa)

Extracting both of these concerns into their own data-managing classes moves the

responsibility for managing them away from Signature. Additionally, this allows a

basic level of functionality to be implemented in these new classes that can be

extended as required, rather than placing a dependency on any given signature. The

new classes are shown in Figure 19. The new structure to manage associations

between Signatures and Techniques IS appropriately named as

SignatureTechniqueAssociator. It is capable of storing associations between any

number of signatures and techniques and returning a collection of techniques for a

given signature and vice versa. A Facade method is added to Signature to allow a

signature's related techniques to be determined from a specified association object. A

similar approach is adopted for the matter of any Signature data that should be made

available to other interested parties. A new class, SignatureResul ts, encapsulates a

collection of Modelled Elements along with the Signature that produced it. It can

therefore be extended to support other features independently of any signature; thus

allowing new common types of result data to be created without having to duplicate

definitions across different signatures. Accordingly, an abstract method has been

added to the Signature class to get the result data from an instance of Signature.

104

SignatureTechniqueAssociator

+addAssocatio ~(i~ siqnature : Signature. in technique : ObservationTechnique)
+rem~veAssocl ~ t lon(l n ~Ignature : Signature , in technique: ObservationTechnique)
+getS lgna t.u res(l ~ te?hnlque : ObservationTechnique) : Coliection<Signature>
+getTechniques(m signature : Signature) : Coliection<ObservationTechnique>

/I'.
I
I
l_ _ _ _ _ «mapped to techniques via»

I

Signature

-checkedModel : ModeliedElement
-checkingObserver : StructuralObserver

+checkMatchO : booI
+getMatchO : double
+createlnvalidationTriggerO : SignatureInvalidationHandler
+getResultsO : SignatureResults
+getAssociations(in associator : SignatureTechniqueAssociator) : Coliection<ObservationTechnique>.-

*
1

SignatureResults

-elements : Coliect ion<ModeliedElement>
-producedBy : Signature

Acquaintance-specific code
I

AcquaintanceNominationSignature

+checkMatchO : bool
+getMatchO : double
+getResultsO : Coliection<SignatureResults>

Figure 19: Revised Generic Signature and support classes for Results and Associations along
with Acquaintance Nomination-specific example

The second feature concerns the extrac tion of common algorithms into separate code

shared by both signatures and techniques. The Acquaintance Immunisation example

introduced a new class; AcquaintanceSelec ti o nAl g o ri t hm defining a method

transformSet , requiring two parameters - the whole collection of Modelled

Elements and the probabili ty va lue determining the set size in acquaintance selection.

This method encapsulated the algorithm required for Acquaintance-based selection

and returned the co llection of Modelled Elements selected through Acquaintance

Immunisation. However, with other Signatures and Techniques, it IS impossible to

know what parameterisation they will require. Equally, including this

parameterisation in the algorithm access method means that re-use of an algorithm on

a genera l basis elsewhere is rendered impossible due to incompatible interfacing.

105

The solution takes the same form as used for Signatures and Techniques; the

Template Method pattern to specify the interfacing of the algorithm - the method

tran s f o r mSe t in a new ModelledElementAlgori thm interface . This takes a

collection of ModelledElement objects as a parameter and returns another collection.

Implementing this interface allows for common algorithms or element collection­

translation functions to be extracted into another class, allowing reuse of the same

algorithm by both a Sig n a t ure and Obse rva t ionTechnique object. Any required

parameterisation is included not in the call to the t ran s f o r mSe t method, but instead

in the constructor for the appropriate implementation of the algorithm interface, as

shown in Figure 20. This separation approach allows simple Signatures and

Techniques to be generic code units, specialised only by inclusion of an appropriate

algorithm. The example shows how Acquaintance Selection Algorithm's constructor

takes the required parameterisation (the probability).

«interface»
ModelledElementAlgorithm

+transformSet(in inputSet : Co/lection<Mode/ledElement» : Co/lection<Mode/ledElement>

c.

AcquaintanceSelectionAlgorithm

-probability : double

+AcquaintanceSelectionAlgorithm(in probabil ity : double) : AcquaintanceSelectionAlgorithm
+transformSet(in inputSet : Coliection<ModeliedElement» : Coliection<ModeliedElement>

Figure 20: Generalised Modelled Element Algorithm Interface and Example Implementation

The third and final feature under consideration is defining the observation technique

itself, making use of the new additions " The Acquaintance Immunisation example

defined Acquaintance lmmunisationTechnique - encompassing the required logic

to generate the required target set. The entire calculation logic is in the algorithm­

containing code and the related signature matching set, if available. As such, the

technique made simple deci sions based on the availability of the signature matc h data,

and returned the appropriate data via its relationships with these objects. Figure 17

also showed this class inheriting from a hypothetical new ObservationTechnique

abstract cla ss, which acted as a marker in the diagram for the requi red generalisation.

The remainder of this sec tion will complete this generalisation process .

106

The first stage is to examine the basic responsibilities of the technique. Remembering

that an observation technique must produce a suitable target set for deployment of

observers and it has the following resources available to it:

• The complete collection of modelled elements that make up the system from

which targets should be selected.

• Zero or more Signature Result objects that can be used as a base collection to

translate further or to form the result "as-is".

• One or more Modelled Element Algorithms that can be used to translate a

collection of modelled elements into only those elements identified as targets.

• Modelled Element Metadata (and its supporting classes) to allow the addition

of deployment information to any of the elements in the target set.

From a basic interface perspective, an observation technique needs to define only a

single method that returns the selected target element set, taking a specified system­

wide element collection as a parameter. The necessary algorithmic logic to perform

this translation, as discussed previously, can be specified in a suitable implementation

ofModelledElementAlgori thm. Therefore, the simplest generalisation that will fulfil

the basic requirements must be composed of a suitable algorithm and define a method

that returns the target set.

This generalisation IS shown In Figure 21 below as a new class

ObservationTechnique. Note how as with Signature, a Facade method,

getAssociations () is provided to allow other objects to determine which signatures

are associated with this technique, according to the specified association object.

However, unlike Signature, ObservationTechnique is shown as a concrete class.

Its constructor requires a ModelledElementAlgori thm, so instances can perform

basic functions without further sub-classing. This default implementation of the

getTargetSet () method will simply pass the specified collection of modelled

elements to the algorithm specified in the constructor and return the result.

Therefore, in order to demonstrate how this generalised class can perform more

advanced functionality, as required by the Acquaintance Immunisation technique, this

107

relationship is also shown in the class diagram. This Acquaintance Immunisation­

specific class subclasses Observatio nTechniqu e and provides two constructors; one

requiring an instance of SignatureResul ts, and one with no parameters. Both

constructors create an instance of AcquaintanceSelec ti o nAlgo r i t hm and pass it to

their super-constructor. The method that generates the target set - ge t TargetSet - is

also overridden to check if a SignatureResu l ts object has been specified in the

constructor. If so, it returns the modelled element collection from the results object.

Alternatively, it calls its namesake method in the super-class, which results in the use

of the specified algorithm - Acquaintance Selection.

Other domain-specific concerns, such as the addition of metadata to modelled

elements, or the amalgamated use of several different algorithms could be specified

easily in further-specified subclasses of Observation Technique, whilst retaining a

standardised interface for use in a deployment unit ; thus utilising the Template

Method form of the technique.

ObservationTechnique

-algorithm : ModeliedElementAlgorithm

+ObservationTechnigue(in algorithm : ModeliedElementAlgorithm)
+getTargetSet(in system : Coliection<ModeliedElement» : Coliection<ModeliedElement>
+getAssociations(in associator : SignatureTechniqueAssociator) : Coliection<Signature>

c:
Acquaintance-specific code

Acquai ntancelmmunisationTechnique

-results : SignatureResults

+AcguaintancelmmunisationTechnigueO
+AcguaintancelmmunisationTechnigue(in results : SignatureResults)
+getTargetSet(in system: Coliection<ModeliedElementMetaData» : Coliection<ModeliedElement>

I - - ------------------
«uses this algorithm»

Acquaintance-specific code

AcquaintanceSelectionAlgorithm v-
-probability : double

+AcquaintanceSelectionAlgorithm(in probability : double) : AcquaintanceSelectionAlgorithm
+transformSet(in inputSet : Coliection<ModeliedElement» : Coliection<ModeliedElement>

Figure 2I: Observation Technique class and example concrete implementation

108

Piecing together the new classes and additions provide s a complete overview of the

design to support the Observation Technique functionali ty. The class diagram in

Figure 22 below shows all the newly-introduced classes along with their important

methods, relationships to and dependencies on other classes. In this diagram, the

previously-used Acquaintance Immunisation examples have been removed for clarity.

The faint dependencies on the ModelledEleme ntMet a Da t a class indicate that the

classes may make use of the metadata additions if required.

+ObservationTechniguelin algorithm : ModeliedElementAlgorithml
+getTargetSet(in system : Coliection<ModeliedElement» : Coliection<ModeliedElement>
+getAssociations(in associator : SignatureTechniqueAssociator) : Coliection<Signature>

«uses this
algorithm»

ObservationTechnique

-algorithm : ModeliedElementAlgorithm
r - - - +-:----:-:-:---:-:----:--::--:=:----:-:----:::------------- ...,
I
I
I
I

«mapped to I
. . I

signatures via» I
I
I
I'Y

SignatureTechniqueAssociator

+addAssocation(in signature : Signature , in technique: ObservationTechnique)
+removeAssociation(in signature: Signature , in technique : ObservationTechnique)
+getSignatures(in technique : ObservationTechnique) : Coliection<Signature>
+getTechniques(in signature : Signature) : Coliection<ObservationTechnique>

/ "

«mapped to
techniques via»

«interface»
ModelledElementAlgorithm

~--------I

I
,
~-------------------l

I
I
I
I
I
I

1) lor,Clliy ana e~

I rnetadata :
I
I I
I I
I I

I '

'/ :
I

________;<c ..:
ment
taData>

ntMetaData

Type, in data : MetaData)
removeMetaData(m key . MetaKey)

Signature

-checkedModel : ModelledElement
-checkingObserver : StructuralObserver

+checkMatchO : booI
+getMatchO : double
+createlnvalidationTriggerO : SignaturelnvalidationHandler
+getResultsO : SignatureResults
+getAssociations(in associator : SignatureTechniqueAssociator) : Coliect ion<ObservationTechnique>

•1

*

SignatureResults ModelledEleme

-elements : Coliection<ModeliedElement> -wrappedElement : ModeliedEle
-produced By : Signature -metaData : Hash<MetaKey, Me

+putMetaData(in key : MetaData
+

Figure 22: Overview of Observation Technique, support classes and relationships

109

5.4 Summary

Chapter 5 developed the design of the building blocks of the observation framework,

with particular attention to the structural part of the framework. This involved a

decomposition of the framework into three main design areas - system modelling,

structural characteristic signatures, and observation techniques. The design has been

undertaken wherever possible using well-established software engineering techniques

and design patterns to solve the problems of how to assign components'

responsibilities into classes and interface specifications.

The design has been presented largely as UML class diagrams with surrounding text

explaining significant decisions and any implementation issues of note. In order to try

and demonstrate the validity of the designs and to augment the basic class diagrams,

the designs of the low-level elements have been applied in the associated Appendix I.

It is hoped that this has shown how some of the general designs could be specialised

to deal with system requirements. Detailed implementation instructions have been

omitted, firstly in the interests of design clarity, and secondly as some of the

significant implementation issues relate to the element-specific instrumentation

required for the Modelled Element-derivative adapter classes. Outline software

designs specifying the structural model's representation are introduced in Section 5.1.

They are developed to show how Signatures can specify desired structural

characteristics in Section 5.2. The final part of the chapter, Section 5.3, specified the

design for techniques that can be used in response to these model and signature

matches, in order to guide deployment of observers and provide efficient overlay

coverage.

The next chapter will piece together the different units by examining the way in which

observation policies are defined.

110

Chapter 6 - Assembling the Observation Model

Model Changed

Determine
Suitable Modelling

Strategy

Identified

As discussed throughout the previous chapter, a significant aim of the observation

model is to allow operation on complex systems that exhibit only partial or uncertain

system information. This is achieved by the development of an adaptive system that

relies only on "typing" characteristics, as discussed in Chapter 5, rather than

examining the system model for specific components or a prescribed structure.

Therefore, a necessity In the observer model is a prOVISIon for system-specific

observation requirements. These requirements may operate in conjunction with the

findings of the rest of the observation framework, or may provide a fixed specification

that overrides certain areas of the framework's recommendations - such as system

elements that must (or cannot) be observed. This chapter will build on the

requirements identified in the previous chapter, integrating provision for the system­

specific requirements, along with assembling the observation model from the

previously defined building blocks.

6.1 Specifying Observation Policies and Process

The scope of an observation policy can range in complexity. It may be as simple as a

basic constraint on the amount of resources that are available for observation, or may

extend to the specification of external observation concerns. It is impossible to define

the specification of such varied policies without resorting to the definition of a full

rule/policy-based interpretation system.

It is outside the scope of this thesis to define a policy-based system; there is already

active research and practice established (e.g. [23]) in this area . Equally, there are

concerns regarding scalability of rule-based systems when applied to complex

domains, along with real-time performance issues.

11 1

However, the framework must detail how this information can be included in the

system's considerations, along with the classes of policy that can be induced upon the

rest of the observation framework, and the implications of this additional level of

indirection on model creation and observer deployment. The major components

needed for policy integration were defined throughout Chapter 5. Significant

components such as Signatures and Techniques have been designed in order to

promote code reuse and to encourage a separation of concerns and avoid direct one­

to-one mapping. This section explains how they join together and provide clear

instructions to the deployment process. This must take responsibility for attaching the

system-level observers to the real system element, which are abstracted at this level

by their Modelled Element representation.

6.1.1 Situating the Policies

Before examining the potential makeup of the policies, it is important to determine

their place in the system. Chapter 5 concentrated on the makeup of the significant

components that were established in Chapter 4; however, this chapter needs to revisit

details of the components' interaction. Further exploring those relationships will help

gain a proper understanding of how policy checking controls observation response

and technique.

Referring back to Chapter 4 shows that policy control is required within the following

elements of the system:

Selection of appropriate observation technique - Section 4.3.3 suggests that

system policy, signature results and reasoning are used to determine which

Observation Technique is selected as an appropriate response to a signature match.

Deployment of system-level observers - Section 4.3.4 shows that system policy,

combined with an appropriate evaluation of current system states (e.g. resource

availability) will control the deployment of system-level observers.

Within Chapter 5, basic software designs have been produced for the structural

modelling interfaces, along with the signature and technique specifications. While it

was possible to design the earlier components in relative isolation within the

architecture - only specifying the data they require and that they must produce -

112

specifying policies requires a more inter-component cohesive approach. Reasoning

and decision-making are key aspects of the policy-based areas of the system and as

such, it is important to understand the events that lead to policy decisions being made

and the outcomes of these decisions. As such, defining the policy and decision

making component will necessarily affect the designs of other components; requiring

greater specification in terms of how the components will function together as a

whole system.

6.1.2 Observation Technique Selection Process

The first policy aspect under consideration is that regarding selection of appropriate

Observation Techniques. As discussed in Sections 4.3.3 and 5.3; Signatures can be

associated with several Observation Techniques.

The proposed architecture indicated that system-level observation need not be limited

to the output from a single Observation Technique, and if applicable, the output from

several techniques could be either combined or deployed as several different overlays.

The architectural overview does not specify constraints for technique-selection

decision logic; however, selected techniques may be chosen according to the quality

of the triggering signature match (i.e. the numeric value), design-time guidance

(policy), comparisons of different signature result sets, and potentially access to other

signatures to determine if there are other signature matches or near matches. Before

considering any detail regarding specification of policy itself, it is useful to review the

data requirements for the Observation Technique Selection component. It should

generate a list of Observation Techniques selected according to criteria within the

selection component. The criteria may include system policy, signature match quality,

or a comparison of various signatures and their related techniques.

In order to do so, it will require:

• Suitable decision-making information, incorporated entirely within the

component, specified in system policy, or a combination thereof.

• The matched Signature instance and notification of a signature match

• A suitable instance of SignatureTechniqueAssociator providing system­

specific associations between signatures and techniques

113

• Access to other system signatures for comparison of matches and near matches

Some of these data requirements are met by existing classes: Instances of

SignatureTechniqueAssociator provide the Technique selection process with a set

of ObservationTechnique objects that are associated with any given Signature. For

clarification, it would be entirely possible to have an observer system operating from

a single SignatureTechniqueAssociator instance; the intention being that different

instances could provide associations for the differing needs of individual overlay

types. Equally, instances of the Signature class provide sufficient information for the

reasoning or decision-making process to function. The interface specifies method

access for basic signature requirements such as match checking, and returning the

"quality" of a match. Additionally, runtime type checking can provide information

about the exact signature subtype that was matched, allowing signature-specific

policy (in addition to SignatureTechniqueAssociator) to be included in the

Technique Selection process.

However, there are new issues requiring further specification. They can be divided

into two areas. The first concerns signatures and encompasses issues such as the need

for notification upon a signature match, and enumeration of all signatures. The second

is that of the decision making process involved in selecting one or more techniques in

response to a given signature match.

Support: Signature Enumeration and Match Notification

While the signature interface was defined in Section 5.2.2, the technique selection

method requires additional signature-related information. Firstly, signatures within the

system must be made available. Secondly, the technique selection process must be

notified when a signature is matched, as this is when the selection process must begin.

Given that the SignatureTechniqueAssociator class makes prOVISIOn for

associating Signatures with available Techniques and vice versa, it is logical to extend

its functionality to make available all the system's signatures through this class. The

method will return all the signatures available through the association class; its

revised class method signature is shown in Figure 23:

114

SignatureTechniqueAssociator

+addAssocation(in signature: Signature, in technique: ObservationTechnique)
+removeAssociation(in signature: Signature, in technique: ObservationTechnique)
+getSignatures(in technique: ObservationTechnique) : Coliection<Signature>
+getTechniques(in signature: Signature) : Coliection<ObservationTechnique>
+getAliSignaturesO : Coliection<Signature>

Figure 23: Simply-revised Signature and Technique Association class

Detail surrounding signature match notification has so far been limited, with designs

centred on the SignatureInvalidationHandler class and its invalidation model.

Instances of this class are associated with a given signature, and receive model change

events from the set of modelled elements associated with a structural observer. They

generate InvalidationEvents when the associated signature should be rechecked.

However, this approach places the onus of signature rechecking with the items that

are interested in its status, and does not provide change notification events describing

when a signature's match status has altered.

To avoid several interested parties having to individually check the status of the

signature, support is required to allow a signature to be observed for change. This

requires little more than a suitable event-describing class, the observer interface, and

suitable methods to add and remove observers in the Signature class. The Observer

design pattern is a common pattern; a brief class diagram showing the basics of its

application is contained in Figure 24, alongside existing definitions for

InvalidationEvent and related interfaces. The new event description is contained in

the SignatureChangeEvent class, while SignatureChangeObserver defines one

method; a receiver for instances of SignatureChangeEvent.

The Technique Selection process can now fulfil the requirements as follows:

• Notification of matched Signature by implementing the

SignatureChangeObserver interface and registering as a listener on all

signatures the process is expected to respond to.

• It can now access other available system signatures for comparison purposes by

having a reference to the appropriate SignatureTechniqueAssociator

instance, which can now enumerate all associated system signatures, and provide

the Technique associations for a given signature.

115

Event)

InvalidationEvent «interface»
-affects : Signature SignatureChangeObserver

+processSignatureChange(in event : Signature Change

I
1

1
r----

1 «receives notification I

• description via» 1
1

SignaturelnvalidationHandler
,1/

SignatureChangeEvent
-invalidated Signature : Signature
-accuracyPriority : double -affects: Signature /

-oldValue : bool
,,-

+addlnvalidationObserver(in obs)
+removelnvalidationObserver(in obs)

• 1 «describes match
1 1 value change via»

Signature

-checkedModel : ModeliedElement
-checkingObserver : StructuralObserver

+checkMatch() : bool
+getMatch() : double
+createlnvalidationTrigger() : SignaturelnvalidationHandler
+getResults() : SignatureResults
+getAssociations(in associator : SignatureTechniqueAssociator) : Coliection<ObservationTechnique>
+addChangeObserver(in observer: SignatureChangeObserver)
+removeChangeObserver(in observer: SignatureChangeObserver)
#fireChangeEvent(in event: SignatureChangeEvent)

Figure 24: Signature design modified for Change Observer

Selecting Techniques

The actual technique-selection policy logic is a system-specific operation and as such,

this design will only specify the key process operations. In order to recap and clarify

events, the process established thus far is shown in Figure 25:

1. Invalidation
Handler generates
Invalidation Event

3. Signature
re-evaluated

4. Signature Match
Value Changed

checkMatchO

2. Structural Observer
(or other) causes

Signature re-evaluation Not changed

InvalidationEvent«Validation
criteria expire»

7. System-level
Observer Deployment

\
Observation
Techniques

6. Assess current
situation and determine

14-- ----1
suitable Observation

Technique(s)

5. Technique
Selector

receives event

Has changed

Figure 25: Summary of contributory processes to Observation Technique Selection

The key points include:

116

• A SignaturelnvalidationHandler triggers an I nv a l i d a t i o nE v e n t ,

processed at an invalidation event observer (e.g. Structural Observer), causing

re-evaluation of the invalidated signature.

• If signature re-evaluation causes a change In the match value, it notifie s its

listeners, including one or more Technique Selectors.

• The Technique Selector queries signature information, current system state or

relevant variables, then determines the appropriate technique from those

associated with the matched signature. Once applicable techniques are

determined, they are passed to System Level Deployment (Section 6.1.3)

Therefore, Technique Selectors must implement the SignatureChangeObserver

interface. Secondly, they require a Signatu reTechniqueAssociator object to

determine fit techniques. A class diagram is shown in Figure 26, outlining basic

requirements a Te chniqu e Sel e c t o r must fulfil.

SignatureChangeEvent

-affects : Signature
-oldValue : bool

iflcation>
-------1

I
I
1
I
I
I
I

DeploymentCoordinatorI «receives change not

1--------------------
I

1 «interface»SignatureChangeObserver

+processSignatureChange(in event : SignatureChangeEvent)

Lt
I

TechniqueSelector.. -associator : SignatureTechniqueAssociator
-deployer : DeploymentCoordinator

+TechnigueSelectorlin associator : SignatureTechnigueAssociatorl
+processSignatureChangeEvent(in event : SignatureChangeEvent)
+selectTechniquesFor(in signature : Signature) : Collection<ObservationTechnique>

Figure 26: Basic Technique Selector class definition and relationships

The diagram demonstrates the relationship between classes, utilising the Template

Method design pattern to permit concrete subclasses to determine technique selection.

This is illustrated via the selectTechni que s For () method, which must be

implemented according to the subclasses ' own policies. The diagram also notes the

dependent relationship with the to-be-defined Dep loymentCoordinator, which is

acting as a placeholder for the system-level deployment class (es). The next subsec tion

will discuss the requirements for the system-level deployment module.

117

6.1.3 System-level Observer Deployment Logic

Finally, the policy logic applicable to system-level observer deployment will be

examined and refined. As from the architecture presented in Section 4.3.4, significant

decision-making regarding system-level observer deployment is deferred to a separate

component - i.e. it is not the responsibility of Observation Techniques to specify

exactly how system-level observers should be attached to the underlying components.

System-level deployment is tightly connected to the previous stage along with

element-specific technical issues. In order to best separate concerns, the intention is

that components in the previous stage deal with structural system concerns ­

signatures, techniques, and the mapping policy. Concerns for observer deployment are

centred on the current state of the observed system; resource availability, current

observer deployments, and management of system observer units. As with Modelled

Elements in Section 5.1.1, it is not the concern of these designs to set out the element­

specifics; rather specifying a suitable interface for the system-level Deployment Co­

ordinator that can be implemented at a component level. This co-ordinator will

manage operations such as observer deployment, un-deployment, and provide control

to applications of different observer techniques resulting in different sets of system

observer operating together.

As with previous sections, the first stage of this component's design is to determine

the data it must be provided with, and the output it should produce. The previous

section established that Technique Selection processes will provide the system-level

Deployment Co-ordinator with one or more techniques that have been identified as

appropriate to use in target selection for the system-level observers.

System-specific concerns

Referring back to Section 5.1.1 and the example in Appendix I (Section 1.1); the

bridge between system-level elements / components and structural-level model

elements is represented by instances of the ModelledElement class. Therefore, in

order to keep access to bridging functionality in a single location, it is sensible to

require concrete subclasses of ModelledElement to implement the actual system­

level component-specific deployment logic.

118

This permits the Deployment Co-ordinator to rely on simple deploy () and

und e p lo y () calls to manage creation and destruction of system-level observers.

However, there are a number of shortcomings with viewing this as a simple one-to­

one deployment relationship:

• Fault reporting mechanism - as the deployment mechanism is the bridge to the

system-level components, it is possible that this mechanism could fail for system

specific reasons. A simple example of a fault is: the real component represented

by the Modelled Element becomes faulty and disconnects.

• Multiple observer deployments for a single Modelled Element - by permitting

only deploy/un-deploy commands from the Modelled Element, this prevents a

number of System Observers being created to represent the element in different

overlays.

Therefore, Modelled Element will control deployment, but the resulting system-level

observers will be responsible for handling un-deployment requests. In Figure 27, the

SystemLevelObserver abstract class defines an un d ep l oy () method; allowing a

one-to-many element-s system-level observer relationship. Additionally, the deploy

operation facilitates a form of fault report , via the Exception model as shown in

Figure 27. The deploy () method throws a DeploymentExcept ion to indicate that the

deployment did not succeed; allowing the co-ordinator to deal with the fault.

Should additional deployment functionality be required at the Modelled Element

level, deployment methods can be overridden and parameterised to support particular

types of deployment.

ModelledElement

+getChildrenO : Collection<ModelledElement>
+getParentsO : Collection<ModelledElement>
+getNeighboursO : Collection<ModelledElement>
+deploy() : SystemLevelObserver f-

+getEstimatedObserverCost() : Resources
I
1
I

«deployment I

result object» :
I---- -- 1

, 1/

SystemLevelObserver

-structuralElement : ModelledElement

+undeploy()

I
I
I
I «throws»
I
I

~ J

-.!/
«exception»

DeploymentException

in description : string
in element : ModelledElement

Figure 27: System-level Deployment Support: significant methods and classes

119

Co-ordinating Deployment

As discussed above in accordance with the architectural overview in Section 4.3.4, the

Deployment Co-ordinator is responsible for co-ordinating aspects of system-level

observer setup and management, significantly:

Requests for changes in observer deployment - the co-ordinator must process

requests for observer deployment and translate them into deployment of observers in

accordance with the current system state and deployment-related policy.

Currently-deployed observers - the co-ordinator must determine which observers

are currently deployed. Even in simple mappings, this affects resource availability,

and the makeup of replacement observer deployments. For example, if the new

deployment requires many existing observers, it could be wasteful to remove them

only to re-deploy moments after.

Observation resource availability - while a technique may recommend a set of

elements that require observation, it is the responsibility of the deployment unit to

determine which elements may have observers deployed. Resource calculation may be

a crude observer count, more accurately specified on a per-element cost, or may even

be composed of different resource types. Tight resource constraints may mean only a

subset of the Technique's recommended elements deploy observers, determined via

calculation of (estimated) resource cost and use of Modelled Element metadata.

Other policy-based considerations - in addition to the items outlined above, the

deployment co-ordinator may still make its own policy-based decisions on elements

requiring observation. As previously, the same caveats apply regarding the use of a

rule-based language. The following designs will assume either hard-coded policy-type

logic, or sub-classing to provide policy interpretation facilities.

To facilitate this functionality, a new class DeploymentCoordinator handles

deployment requests from the technique selection process. In the UML class diagram

in Figure 28, the co-ordinator is defined as an abstract class, requiring

implementations to provide the abstract method, reques tDeploymen tOn (), which is

the method used to tum an Observation Technique into a real system deployment.

Additional methods are defined to deal with manipulation of the deployed set, along

with a utility method, transla te (), to return only those Modelled Element objects

that are not already observed in a specified collection. The same diagram also shows

120

Resources, which facilitates basic resource functionality as described above. The

template interface facilitates basic differentiation of resource types, addition and

deduction of resources of a particular type , along with availability checking. Further

system-specific requirements could be included via extension.

The diagram also shows resource allocation and costing-related methods in

SystemLeve lObserver and Mo dell e dEl eme n t. These methods allow access to the

planned cost of observing an element against the available resources.

r - - ' «quantifies deployment
: requirements using»
I

ModelledElement

+getChildren O : Collection<ModelledElement>
+getParents O : Collection<ModelledElement>
+getNeighboursO : Collect ion<ModelledElement>
+deploy() : SystemLevelObserver
+getEstimatedObserverCost() : Resources

, 1/ <:»

Resources

-typesAva ilable : Hash<ResourceType, int>

+Resources(in type : ResourceType, in value : int)
+hasAvailable(in resource: Resources) : booI
+add(in resource : Resources)
+deduct(in resource : Resources) : booI

/ 1'

1

: «quantifies deployment
: requirements using»
-----------------------1

1
1

,,
I
I
I

«specifies resource types» - - -

ResourceType

-id : string v
f'

+ResourceType(in id : string)

-structural Element : ModelledElement

+undeploy()
+getCost() : Resources

SystemLevelObserver

I
I
1
I
I,--------

«quantifies deployment
requirements using»

DeploymentCoordinator

-available : Resources
-deployed : Hash<ModelledElement, System LevelObserver>

+getDeployedO : Collection<SystemLeveIObserver>
+translate(in needObs : Collection<ModelledElement» : Collection<ModelledElement>
+requestOeploymentOn(in technique : ObservationTechnique)

Figure 28: Deployment Coordinator, support classes and revisions to existing classes

The next section assembles individual components for an overview design showing

system-wide class interaction and major processes involved in typed observation.

6.2 "Typed" Observers: Applying the Model

In later sections of Chapter 5, new requirements have emerged for existing classes;

whereas concise presentation has necessitated inclusion of only the directly-altered

classes in new diagrams. This section assembles final designs, explains significant

usage processes, and demonstrates how application of this model can create typed-

12 1

observation for use in monitoring large-scale systems with complex structural

characteristics. Firstly, a reminder of the components comprising the system designs:

The Structural Model - provides a low-level overlay on the observed system,

effectively the bridge between the structural observation framework and the

underlying system. ModelledElement objects are responsible for notifying

StructuralObserver objects of structural change, and on request via the deploy ()

method, providing element-specific observation services.

Significant classes and interfaces: ModelledElement, ModelChangeEvent,

ModelledElementFactory, StructuralObserver

Structural Characteristic Typing (Signatures) - responsible for identifying types

by their distinctive characteristics. They interact with a target ModelledElement, its

neighbourhood and ModelledElementFactory to provide information regarding the

structural characteristics of the system. Specification is via a Signature abstract

class, and can make use of ModelledElementAlgori thm objects in order to translate

sets of elements and produce results. Signature objects must provide an indication of

whether their characteristics have been met - both as Boolean and continuous values

- the latter indicating the quality of match. They must provide two methods of

notification - change and invalidation. Change notifications are despatched when the

signature value is changed from true to false or vice versa. Signature Invalidation

Handlers monitor change events from the ModelledElement objects and generate a

suitable InvalidationEvent object when the signature should be rechecked.

Significant new classes and interfaces: Signature, ModelledElementAlgori thm,

SignatureResults, InvalidationEvent, SignatureInvalidationHandler,

SignatureChangeEvent, SignatureChangeObserver

Observation Exploit Typing (Techniques) - responsible for specifying different

observation exploits; effectively techniques for selecting observation targets.

Techniques can also make use of one or more ModelledElementAlgori thm objects

or can further extend this functionality to provide advanced functionality for target

elements selection. Techniques can additionally parameterise their output target

elements by associating additional MetaData objects.

122

Significant new classes and interfaces: ObservationTechnique, MetaData,

MetaKey, MetaDataType, ModelledElementMetaData

Technique Selection - responsible for static association of Signatures with

Techniques and for dynamic selection of a particular Technique when a signature is

matched. The selection process examines structural concerns and policy (such as the

quality of signature match and alternative approaches) and selects one or more

suitable observation techniques.

Significant new classes and interfaces specifying and supporting this component:

SignatureTechniqueAssociator, TechniqueSelector

System Observer Deployment - responsible for translating a technique's

recommendations into observer deployment. It must consider the observed system's

runtime state, including resource availability concerns, and the presence of existing

observers. Design for this component includes a basic specification for resource

management and calculation representation.

Significant new classes defined for this component:

DeploymentException, Resources, ResourceType, DeploymentCoordinator,

SystemLevelObserver

6.2.1 Completing the Model: Overview Class Diagrams

In order to provide a complete overview of the system and describe the relationships

between the designed classes and components, a series of complete class diagrams

follow. They show the consolidated makeup of the system's classes and are

accompanied with only basic explanatory detail; they are collating classes whose

functionality has been explained previously. Usual UML notation is used to show

abstraction, interfaces and composition, while dependencies and significant

interactions are depicted with dotted-line arrows. In the case of dependencies, the

arrow is pointing in the direction of the dependency; i.e. away from the dependent.

The first class diagram in Figure 29 shows classes required for the Structural Model

and the associated Typing (Signature) functionality outlined in the previous

summary. As these classes form the model on which the system is built, a selected

few of them will necessarily feature in following diagrams for completeness in

123

providing a reference back to the types defined here. Wherever they appear

duplicated, they will be depicted with a shaded background.

«interface» «interface»
SignatureChangeObserver ModelledElementAlgorithm

+processSigna lureChange(in event : Signal ureChangeEvenl) +lransformSel(in inpuISel : Colleclion <ModelledEfement» : Colleclion<ModelledEfement>

,---- ---- ;'
I

« receives notification :
description via» ,,

SignatureChangeEvent

Model and -affects : Signature

Signature
-oldValue : bool

Classes 'I' « describes match « uses this
I value change via» algorithm»,
----- ----- -- -----1 ,- - - - - - - - - -

Signature. -checkedModel : ModelledElement

I
1l

-checkingObserve r : StructuralObserver

+checkMalch() : boof
ModelledEfement +geIMalch() : double

+crealelnvalidalionTrigger() : SignarurelnvalidalionHandfer

+getChildrenO : Collection<ModelledElement> +geIResults() : SignatureResufls

+getParentsO : Collection<ModelledElement> -
+getAssociations(in associator) : Collection<SignatureTechniqueAssocialop

+getNeighboursO : Collection<ModelledElement> +addChangeObserve r(in observer : SignalureChangeObserver)

+deploy() : <unspecified> 1 +removeChangeObserver(in observer : SignatureChangeObserver)

+geIEslimaledObserverCos l() : Resources #fireChangeE vent(in event : SignatureChangeEvent)

, , l'---, .,
.1 « checked by»

,---, ,
I, ,

« is , I SignatureResults
I ,:,produced I SignaturetnvatidationHandter « uses», -elements : Collection<ModelledElemenl>

by» , -invalidatedSignature
------- -1 StructurafObserver -producedBy : Signature, • --, 1 -accuracyPriority : double -elementFactory : ModelledElementFactory[----------~ +addlnvalidationObserver(in obs) 1 +processModelChangeEventO, +removelnval idationObserver(in obs) +getAlIElementsO : <unspecified>[) I, 1... ,

I
I

I « relies on for system-leve l object
,

, 1 ,
ModelChangeEvent I creation» , ~; - -- - --- ---- - - - ----

,

-affects : ModelledElement InvalidationEvent ModelfedElementFactory
-affectedBy : ModelledElement

-affects-type
+getElementFor(in object : object) : ModelledElement
+getAlIElementsO : ModelledElement[)

/ ,,,
1_ _ _ _ __ - - - -- - -- - ----~

Figure 29: Significant Model and Signature Classes

124

The UML class diagram following in Figure 30 shows the Observation Exploits

(Techniques) and Technique-selection policy/logic component classes. Abstract

classes such as Mode lledElement and Signature are included from the previous

diagram to help show interactions with the underlying structural model and the

signature matching that brings about the Technique selection process.

1
1

Meta Data «enumeration»
MetaDataType

MetaKey Technique and-type : MetaDataTy pe-type lD : string
-value : object +PRIORITY = prior ity Selection-typeSpecification +... = ...

Classes

I . .
1 1

4. •ModelledElementMetaData I
«interface»ModelledElementA lgorithm

-wrappedElement : ModeliedElement +transformSet(in inputSet : Collection<ModelledElement» : Collection<ModelledElement>
-metaData : Hash <MetaKey, MetaData>

+putMeta Data(in key : MetaDataType . in data : Meta Data) .
+removeMetaData(in key : MetaKey) 1

I /1" •I
I Observ at io nTechnique
I----- - - - - -

-algorithm : ModeliedElementAlgorithm

+ObservationTechnigue(in algorithm l

I- - - +getTargetSet(in system : Coliect ion<ModeliedElement » : Coliection<Mode liedElement>
I +getAssociations(in associator : Signatu reTechniqueAssociator) : Coliect ion<Signature>--- - - - - - - -_ ...

I
« mapped toI 1

: signa tures via» TechniqueSe/ector

,:/ ~ -associator : SignatureTechniqueAssociator

SignatureTechniqueAssociator
-deployer : DeploymentCoordinator

+TechnigueSelector(jn associator : SignatureTechnigueAssociatorl
+processSignatureChangeEvent(in event : SignatureChangeEvent)

+addAs socation(in signature, in technique) +selectTechniquesFor(in signature) : Collection<ObservationTechnique>
+removeAssociation(in signature, in technique) 1 T+getSignatures(in techn ique) : Coliection<Signature>
+getTechniques(in signature) : Coliection<ObservationTechnique> "L.-

~+getAliSignaturesO : Coliection<Signature>
/1" I «interface»SignatureChangeObserv er II

l+processSignatureChange(in event : SignatureChangeEvent)1I
I
I

I
I

« mapped to 1I .
I techniques via»I •L __ _ _ ___ _____ _ _ _ _ _

1
SignatureI

I
-checkedModel : ModeliedElementI

'\7
I---- - -checkingObserver : StructuralObserver

ModeUedElement +checkMalch () : bool
+getMatch() : double

« checks» 1- +createln validation Trigger() : Signature lnvalidationHandler
+getCh ildrenO : Coliection<ModeliedElement>

1
+getResults () : SignatureResultsv I

+getParentsO : Coliection<ModeliedElement> ~- - - - - - ------- - +getAssociations(in associator) : Coliect ion<Signatu reTechniqueAsso ciator>
+getNe ighboursO : Coliect ion<ModeliedElement> +addChangeObserver(in observer : Signatu reChangeObserver)
+deploy() : <unspecified> +removeChangeObserver(in observer : SignatureChangeObserver)
+getEstimatedObserverCost() : Resources #fireChangeEvent(in event : SignatureChangeEvent)

Figure 30: Significant Technique, Technique-selecting and support classes

125

The following class diagram in Figure 31 shows those classes involved in the system­

level Observer Deployment, and relationships between the significant organisational

class - Dep loymentCoord inato r - and its dependencies.

System Observer Deployment Classes

ModelledElement TechniqueSelector

-associator : SignatureTechniqueAssociator

+getChildrenO : Coliection<ModeliedElement> -deployer : DeploymentCoordinator

+getParentsO : Coliection<ModelledElement> - 1 +TechnigueSelectorlin associator : SignatureTechnigueAssociatorl

+getNeighboursO : Coliection<ModeliedElement>
1 +processSignatureChangeEvent(in event : SignatureChangeEvent)I

+deploy() : <unspecified> *
1 +selectTechn iquesFor(in signature) : Collection<ObservationTechnique>
1

+getEstimatedObserverCost() : Resources 1 ,
1

«quantifies 1 .Ii" 1

deployment :
1 «deployment 1 «throws» 1
: !~s~~ object»

1_ - ______________ ------------------ ,
requirements 1 , 1/

with» : SystemLevelObserver «excepti on»
1_____ '

1 -structuralElement *
DeploymentException

I in description : string
I +undeploy()
1 in element
1 +getCos t() : Resources /"-
1
1 ~ «quantifies deployment

1

1
I

I
r- ___ I

requirements using»
1

,,/ ,1/
r----- I

Resources «catches»

-typesAvailable : Hash<ResourceType, int> 1

+Resources(in type : ResourceType , in value : int) f--

+hasAvailable(in resource : Resources) : booI
+add(in resource : Resources)
+deduct(in resource : Resources) : bool

1
«specifies '-I 'i'«quantifies deployment 1

1
1

resource 1 I requirements using» ~~ ~. ~.
1 L.. ___

types»
,~ 1 DeploymentCoordinator

1
1

ResourceType I
-available : Resources

I--

-id : string -deployed : Hash<ModeliedElemen t, SystemLevelObserver>

+ResourceType (in id : string) +getDep loyedO : Collection<SystemLeveIObserver>
+translate (in needObs : Collection<ModeliedElement» : Coliection<ModeliedElement>
+requestDeploymentOn(in technique : ObservationTechnique)

Figure 31: System-level Observer Deployment and support classes

However, while these diagrams helped to consolidate classes previously shown only

iteratively; as a design guide, they suffer from the underlying issue with any UML

class diagram - they present only a static overvie w of the system. Therefore, the

following sec tion will help to show how the designs intend the system operates, by

summarising component interactions when they are performing system tasks.

126

6.2.2 Using the Model: Important Runtime Processes

This section examines some key processes that the system is designed to deal with

from initial structural addition to a system, through to the changing deployment of

system-level observers. As with the previous section, this is largely collating

information from Sections 5.1 to 6.1 but with the benefit of presenting the whole

picture now previous designs are completed. In order to present a logical overview of

the system and to assist developers in implementing the various classes such that they

function together correctly, this section will examine how the "reference design"

would achieve the following system processes:

• Adding a structural observer to a modelled element

• Initial registration of system signatures, techniques, and deployment processes

• Signature rechecking and Invalidation Handling

• Signature match through to system-level observer deployment

These processes will be broken down into the necessary task descriptions, with

clarification of where responsibility lies for each one. Where greater clarity can be

gained by using process or flow diagrams, these will be included.

During these functional examinations, reference will be made to super-classes,

abstract types and interfaces as if they had been suitably sub-classed or implemented

as concrete functional units. It is appreciated that in a real system, programmers

would be dealing with the appropriate subtypes that are providing the real

functionality.

127

Adding a Structural Observer to a Modelled Element

This subsection examines how the reference design deals with the process of creating

a new structural observer and deploying it on a modelled element. It involves the

following sub-processes:

1. Creating the structural observer

2. Creating the modelled element and model exploration*

3. Registering the structural observer as a listener on the modelled element (and

accordingly, its neighbourhood)

* = Indicates that this process could be undertaken as a separate operation, allowing

many different Structural Observers to then attach to the element. Alternatively,

element creation may be encapsulated by the Structural Observer for convenience.

This makes use of functionality from concrete subclasses and implementations of the

following types:

ModelledElement, ModelledElementFactory, StructuralObserver

Importantly, it also assumes that suitable ModelledElement subtypes have been

created; capable of adequately describing all system-level components and elements.

Additionally, this necessitates a suitable element factory being imbued with correct

instantiation logic.

The diagram, Figure 32 below shows the basic process flow of information and

execution required in creating the observer and its target ModelledElement objects.

Attention is paid to the manner in which the factory maintains an object cache and the

ModelledElement constructor is responsible for providing a factory call-back to get

the neighbours. Considering that the process operates recursively, it is clear to see this

will result in an exploration (and creation) of the system-level component graph.

128

Idl e

I

Create
Structural
Observer

1

Structural Observer Observer
attached

I
1. Call Factory

getModeliedElement()
on component

6. Attach Observe r to
new element

l
Factory
Method

Call
New

Modelled Element

ModelledElementFactory

2. getModeliedElementO C
f-I omponent

for system component
2a. Is element

already cached?
Yes--' 5. Return

Modelled Element

Element / Modelled1 Element pool

t
Cached

I
3. Construct

Modelled Element
for component

4. Cache newly­
created

Modelled Element

I
,----- Got Construct

Neighbour ,_~========~;;;;;;;;~;;;;;;;;~==,-----__-====.===:::::J
Component

3a2. Get
Modelled Element

'-----+---j
for this neighbour

from factory

3a. Does
component have

re neighbour .

'----Yes~

No

I

No•
3a1. Return new

Modelled Element f----+-- - - - - ----'

ModeliedElement

Figure 32: Logical flow for Str uctural Observer / Modelled Element creation

The limited detail in the flow diagram does not intend to provide line-by-line

implementation guidance there are other Issues to be determined; e.g.

multithreading and cache handling. However, the flow diagram reiterates the logical

delegation of responsibility between the significant objects involved in this process.

129

Initial Registration of System Components

The next task looks at how various system components are registered with the system

once the system model and suitable structural observation units are created. This can

broadly be split into the following significant tasks:

1. Instantiation of suitably-written Signatures, Techniques, and shared Algorithms

as required

2. Instantiations of suitable signature-technique "associator"(s), Technique

Selector(s), and Deployment Co-ordinator(s)

3. Creation of Invalidation Handlers associated with Signatures and attachment to

Modelled Elements

4. Attaching Technique Selector(s) to Signatures (as Signature Change Listeners)

5. Association of the appropriate Deployment Coordinator(s) with the Technique

Selector(s)

Implementation Note: - Referring back to the end of Section 5.2, the signature

invalidation method is discussed along with both an appropriate method to handle it

and situations where a low-complexity invalidation mechanism would be preferred

(effectively a polling model). Although the concept of an Invalidation Handler is

included in the design, it is perfectly feasible to produce a statically-generated

InvalidationHandler object that simply invalidates the signature every x

ModelChangeEvent events it receives, or even once every predetermined time

interval.

This functionality is split across many of the types In the system, specifically:

ModelledElementAlgori thm which contributes to Signature and

ObservationTechnique. Instances of the signature and technique classes are

associated via SignatureTechniqueAssociator, which is combined along with

DeploymentCoordinator, to create TechniqueSelector objects.

TechniqueSelector implements the SignatureChangeListener interface, and is

attached to the various signatures in the system, completing the structural "Ioop" and

providing response to signature matching.

130

Invalidation Handling and Signature (re)checking

It is appropriate at this point to clarify how the loop between signatures and their

invalidation handlers is completed. As discussed in Sections 5.2.1 and 5.2.2,

Invalidation Handlers have been selected as the method for Signature objects to notify

an interested party that they should be re-evaluated. Implementation details are of no

concern at this stage; they could perform complex calculations regarding received

connectivity events and the likelihood of signature change, or they could provide what

is effectively a polling mechanism.

However, in order to understand the way in which invalidation will cause Signature

rechecking, it is important to pay particular attention to the definition. It states that

concrete implementations of the SignaturelnvalidationHandler class will act as

both event receiver and producer - it receives events of type ModelChangeEvent (to

allow it to calculate the invalidation "threshold"), and produces events of type

InvalidationEvent to indicate when the signature should be recalculated. Section

6.1.2 outlined reasoning behind having a single component to process these

Invalidation Events (thus specifying that Signatures must also generate change

events), and the Structural Observer was proposed as the component that should

receive and process these events. When the Structural Observer receives an event, it

should locate the appropriate Signature and recheck it.

This functionality will be outlined in a simple flow diagram, Figure 33, highlighting

which components can take responsibility for particular tasks. The diagram shows the

proposed relationship between SignaturelnvalidationHandler and

StructuralObserver when dealing with signature (re)checking. Note how the

structural observer should, if required, forward the ModelChangeEvent objects on to

the invalidation handler. This permits the invalidation handlers to operate without

having to maintain their own list of ModelledElement objects; exploiting the

StructuralObserver position as a structural manager.

This process centres on the following classes and interfaces:

SignaturelnvalidationHandler, InvalidationEvent, StructuralObserver,
ModelChangeEvent

131

o-Idle

o 0
MOdeIEvent_ -1Y ~~

Received ~

SignaturelnvalidationHandler

No
,

1. processModelEvent - event
2. Threshold
Exceeded?

I
Yes

Event

3. Create
InvalidationEvent

and send

I
Event

C. Forward
ModelChangeEvent

4. Receive
InvalidationEvent

Yes Event

B. Forwarding
Required?

5. Signature
managed

here?

Yes

event

A.
ModelChangeEvent

Received

No

6. Invoke
Signature.checkO

I
Signature

Rechecked

No

ModeIChangeEvent- - -j o -Idle

StructuralObserver o

Figure 33: SignaturelnvalidationHandler and StructuralObserver relationship

132

Signature Matching - through to System-level Observer Deployment

This final subsection shows how a signature match event (as detailed above) leads to

the system-level observers being (re)deployed. As discussed previously in this

chapter, a Signature that has changed its matched value starts the following process:

1. Signature Change Event despatched

2. Technique Selector determines one or more recommended Observation

Techniques, considering concerns such as multiple signature matches, the

"quality" of the notified signature match and the techniques associated to the

matched signature.

3. Deployment Coordinator is invoked with selected technique(s) and deploys

the requested technique(s), taking account of concerns including resource

availability, currently deployed observers, and dealing appropriately with

failures.

Much of what happens within the technique selection and system-level deployment is

of necessity domain-specific, and as such, a flow diagram could not provide a generic

solution. However, the diagram in Figure 34 shows some potentially common aspects

to the whole process, aiming to help clarify each component's responsibility. Of

particular domain-specific note IS the Issue surrounding

Mode l l e d El e me n t . depl oy (). As discussed in Section 6.1.3, this provides the bridge

to SystemLeve l Observer objects, and effectively to the real system observation.

Referring back to the architecture in Chapter 4, it is envisaged that there could be

several different overlays operating on one system, each monitoring different

concerns or states, and each with a different type of system-level observer; each

potentially co-ordinated via different deployment coordinators.

133

DeploymentCoordinator

r---I D7a. L__
Handle Fault i FaultI

Fault
Handled

Idle

T3. Check System
Other matches- - Signatures for other

matches

event---I~

T1. J
processChangeEvent

Deployed

No

D6. Already
Deployed?

Idle

D3a. Recalculate
Elements

D5. No more
Elements?

r-
No

1
Yes

a.-(_r

Revised
Elements~

- element

>-- - - - - - - - No

D7.
ModeliedElement.

deployt)

r-----yes------'

Yes

D3. Sufficient
Available?

Deployed

Elementsl

Required Resources

D2. Calculate
Required Resources

Yes

+

Technique(s)

1

Matched
Signature

T2. Match?

T5. Determine Techniques
For Matched Signature

From Associator

Yes

No

T4a . Is it
Better Quality
than Matched

Signature?

T4. More

Remain/Exist? l
Yes

No, go
to next

Go to
next

T4b. Replace Matched
Signature with

checked alternative

T6. Pass to
DeploymentCoordinator

D1. Get Modelled
. Techniquetsj -c-e Elements for

Technique(s)

Elements

Resources

Figure 34: Technique Selection and Observer Deployment process flow

134

6.3 Summary

This chapter continues the design process begun in Chapter 5, and provides additional

design consideration to those summarised in Section 5.4. This new consideration ­

representing policies and deployment concerns - completes the basics of the

observation framework, allowing it to perform controlled observation deployment and

observer management duties.

However, the designs here are suited to hardcoded implementations; the flexibility of

the system is constrained by options included in the code. The system is designed to

adapt to structural changes, but adaptations are catered for by way of hardcoded

signatures and techniques bound together by largely hard-coded policy. Changing the

system policy would involve editing it at a code level, re-compiling and re-deploying.

As discussed in Section 6.1, use of third party rule-based systems could provide a

greater degree of runtime flexibility, but this is not without its problems regarding

scaling and real-time performance management considerations.

The next chapter will further examine some of the issues briefly tackled in Section

6.1, possible solutions to allow further evolution of the system at runtime, and how

the necessary components could be exposed in a suitable externalised format.

135

Chapter 7 - Evolution and the Observation
Model

The previous chapter explored many design concerns involved in the large-scale /

complex observer framework. Implementations following this architecture and design

guidance should benefit from an observation overlay that will deploy its observation

units in accordance with the system structure and at a best-match from the available

signatures and techniques provided at design time. However, while the observation

overlay will adapt to system modifications, it is still reliant on sufficient information

being provided in terms of signatures, observation techniques and observation policy.

The framework should perform efficiently under these conditions as the types of

design-time specification are intended to be heuristic rather than specific. However,

the previous chapter did not specify how new signatures, techniques or policy may be

added, or how existing types may be amended. Additionally, the previous chapter

showed designs that specified interfaces and demonstrated how the various proposed

classes would interact, but in many cases, did not specify the precise implementation

- abstract classes and interfaces gave behaviour definitions but the implementation

discussion was deliberately generic. In certain cases, there is value in a hard-coded

approach; signatures are defined in code implementing the specified interfaces, then

compiled and used in the system. In fact, the entire observation specification could be

specified in code, compiled and then deployed on a system, moving between the

various combinations of design-time specified characteristics and techniques as

required. However, this approach limits the manner in which the observation

subsystem can evolve at runtime - it is, at simplest, moving between design-time

determined states.

Throughout the architecture and design, reference has been made to the use of policy

and associated reasoning to assist the system's deployment decisions. Equally,

reasoning has been made for creating loose associations between signatures and

techniques, rather than making fixed mappings. Therefore, rather than a simple reflex

trigger that determines a particular observed characteristic should lead to a particular

136

observation technique; deferring this decision to a reasoning component allows a

more complex and complete definition of structural type and appropriate observation

behaviour.

As stated previously, a full discussion of reasoning and policy setup is outside the

scope of this work. However, the interfacing between the defined observation sub­

system components and any reasoning entity should be well defined. As such, if the

behavioural logic behind these signatures and observation techniques is in compiled

code, reasoning components cannot be expected to make decisions based on signature

criteria, observation technique, and importantly, any mappings between the two.

Therefore, this chapter will determine the system components that benefit from

openly exposing elements of their data and behaviour, those that would benefit from

an externalised specification (be it of behaviour, data or both), and how the necessary

exposure and externalisation can be bound to the executed code.

7.1 Considering the Model's Runtime Processes

The bulk of this chapter will look into the individual components that require

externalisation and how best to expose them. Firstly, it is worthwhile revisiting the

observation model and looking to highlight the process that the observation subsystem

uses to deploy an observer, as outlined in Section 6.2.2. This will help to demonstrate

how the overall observation behaviour could be specified externally - before going on

to consider the required specification points for each of the sub-elements.

As discussed in earlier chapters, the basic premise of this observation system is that

when an observer is added to a particular set of elements, it uses signatures to indicate

that a particular observation technique should be deployed. The signatures were

developed such that they could specify an invalidation event - or trigger - that

indicated they should be re-matched. Taking the basic rule-based or event-driven

software methodology, ECA (Event-Condition-Action) e.g.([120]), this equates to a

couple of complimentary ECA definitions. Additionally, it implies a range of

definitions that link signatures, observer policy and other conditions together with a

particular deployment of an observer system (i.e. the observation techniques):

137

ECAID Causal Event Required Condition Resulting Action

I
Observer Added to system Observer not pre viously

Invoke Signature Ma tching
elements observing these elements

Observer still observing the
2 Signature Invalidation elements within the Invoke Signature Ma tching

signature

Deploy Observers applicable

Variety of Observer Policy
to Signature x in

3. .. Signature x Matched
Conditions y

consideration with
conditional policies y using
Technique z

Table 2: Simplified ECA Breakdown of Observation Subsystem Rules

This may seem a trivial example; ECA rules 1 and 2 make up the straightforward

logic forming the basis of the system components outlined in the previous chapter.

However, the interest lies in rule 3 and developments thereof. These rules form active

system logic determining which observation techniques are applicable in which

situations, and how they are deployed.

Signatures and techniques could be hardcoded yet still provide flexibility ; their

behaviour is governed by the Te chnique Sele cto r and Dep loymentCoordinator

classes. Runtime flexibility can be addressed at the link between signature s and the

resultant techniques. In exposing the map between signature x and observation

technique z as an ECA-style specification, this allows a simplistic policy specification

to be included in this externalised mapping between signatures and techniques . If

signatures and techniques were extended with suitable construction parameterisation,

limited values could be specified in the externalised form. For example , a basic

pseudo specification is shown in Figure 35:

ON EVENT Signatu re Match (SYSTEM, SCALE- FREE)
WITH (Ava i lable Re s ou r c e s (SYSTEM, LOW))
THEN DEPLOY (Acquaintance I mmuni sati on (SYSTEM, MIN IMUM))

ON EVENT Signature Match (SYSTEM , SCALE- FREE)
WITH (Available Resources (SYSTEM , HIGH)

OR Operation Priority (SYSTEM, CRIT ICAL))
THEN DEPLOY (Acquaintance I mmu n i s a t i o n (SYSTEM, FULL)

Figure 35: Pseudo-Specification Signature-to-Observer Mapping

138

Assuming that suitable fluents or predicates are defined elsewhere within the system

for available resources and the priority of the current system operation, this would

allow basic system policy to be encapsulated in the externalised form.

To reiterate, externalisation following this form makes the following assumptions:

• Signatures are defined at design-time, compiled and included in the runtime

code-base. Inspection and modification of these signatures is not possible at

runtime, other than predefined customisation via suitable parameterisation,

specified in both the externalised form and the implemented signature code.

• The same condition applies to Observation Techniques - they must be fully

specified in code, and have any configuration variables supplied as parameters.

• The fluent or predicate functions are also defined in the code and are exposed as

required to the externalised form. The effect of the predicate on the resulting

action (i.e. observer deployment) should be relatively simple: it is intended to

allow access to the system's policy or rule base. The externalisation should be,

in some ways, a definition language that allows simple Boolean and

mathematical comparisons; yet the externalisation is not expected to be a

Turing-complete language, nor capable of rule resolution in itself.

The next sections will discuss the required elements as per the example in Figure 35,

thus creating a definition schema, before further examining the concerns in exposing a

detailed specification of both the Signature and Technique individually.

7.1.1 Basic Observation "Behaviour Definition"

An externalised specification of form shown in Figure 35 will effectively create an

Observation Behaviour Definition, allowing the runtime inspection, alteration

(addition and removal) of the system's observation strategies (Techniques), in terms

of which type indications (Signatures) and system policies bring them about. As such,

to achieve this simplest level of ECA-driven observer definition, the system would

need to provision access for and expose the following items:

139

Signatures

Firstly, a signature needs to be uniquely identifiable so that it can be used from the

externalised definition/mapping. For readability of human editors, the element's

identification could be a simple string. In the example pseudo-definition above

"SCALE-FREE" was used to indicate a reference to the Scale-Free signature. The

externalisation's mapping to the signature's match event was marked in the example

definition by the use of the ON EVENT keywords, followed by "Signature Match",

marking the appropriate section. Secondly, a signature needs to be suitably

parameterised such that necessary information can be "injected" from the externalised

observation behaviour definition. In the case of a signature the first (and necessary)

parameterisation is that of the element/elements under consideration. Given the

hierarchical nature of the structural observer, as described in Section 4.3.2, this

parameter would primarily concern the matter of scope - an observer may be

interested in structural characteristics of its own system elements (designated by

SYSTEM in the example), its parent's scope, or indeed a domain-specific subset of its

own scope. Other important parameterisations may be required, which will be

examined in Section 7.2, which focuses on behavioural controls.

Observation Techniques

The requirements for exposing control of observation techniques / strategies are

broadly similar to those surrounding Signatures. Firstly, they must be positively

identifiable, and should at least be parameterised with the scope of observation

subjects (as per the SYSTEM example for signatures), along with the priority /

strength of observation that should be requested from this technique. Observation

techniques are referenced in the example by their unique identifier, and marked by the

keywords "THEN DEPLOY". As shown in the example definition, this would permit

basic implementation of system policies such as linking resource availability to

planned allocation.

System Fluents and Predicate Statements

These permit basic interaction with system control policy, and require the most

explanation at this stage. In the example, the marking for a (series of) system fluent(s)

is the "WITH" keyword. At an implementation level, results from the fluents or

140

parameterised predicates may come from a suitably-built rule-base query that defines

system policy or may simply read and process appropriate data from another settings

file. The purpose in using simplistic predicate functions is to remove rule-related

complexity (particularly evaluation of rules) from the externalised description and to

place it within the observer system. As with the signatures and techniques, it is

proposed that predicates will be accessed from the external description via a unique

identifier and parameterised suitably. Their purpose is to evaluate its supplied

parameters against the current state of the system and to return a result. In the

example definition, Figure 35, a fluent "Available Resources" is used to check the

currently available observation resources, which then influences the method of

observation. The necessary information is provided by way of parameters - in this

example, the first to indicate the scope of resource availability checking, and the

second to indicate the desired level of availability. Providing the desired state of the

predicate or fluent as a parameter reduces the complexity of the description:

1. in-code evaluation is only on an equality basis,

2. guarantees a Boolean return value as the desired value is either a match or it is not

3. constrains parameters to discrete values - thus encouraging fixed categorical

definitions, rather than continuous values that are open to differing interpretations

Variables, Constants, Connectors and other Conjunctives

As is apparent from the Figure 35 example, some elements that do not fall into the

categories discussed so far. These elements fall into the categories of Variables or

Constants along with Conjunctive and other connecting statements. In the example

shown, Variables exist in two main roles:

1. In the constant type, used to provide access to system scoping constraints (e.g. use

of the SYSTEM constant to scope the applicability of a function check)

2. As a parameter, selected from a suitable (potentially function-specific)

enumeration that defines the possible states of the fluent. For example, the

Available Resources fluent is used with both the HIGH and LOW fluent-variables.

In these roles, they effectively a constant providing reference to a system entity, or

system state, as measured by a function. However, they still must be represented in

code and assigned to a particular value for exposure in the OBD. The example also

141

shows two main types of connecting statement. The first defines the structure of the

definition and highlights where the various significant component parts are found.

The second type of conjunctive is effectively a Boolean join, which helps to define a

conditional statement and enables more than one predicate-based function to be used

in a single condition.

The structural connectors have been mentioned in each of the appropriate headings,

but for reference are listed here:

ON EVENT Signature Match - this statement opens a new definition and indicates

that the following parameters will specify the type of signature match to be expected

WITH ... - this statement follows the signature match specification, and indicates the

condition that should be fulfilled on signature match in order to proceed. This is

where system policy can be included in the observer definition by way of system

fluent checking.

THEN DEPLOY - This statement follows the condition and indicates which

observer technique response is appropriate in the specified event and condition.

The Boolean joins will be reasonably self-explanatory to readers - particularly anyone

with a familiarity in formal specification or anyone of a number of programming

languages. However, for completeness, they are listed here:

Statement ordering - The ordering in which statements should be evaluated could be

specified by way of brackets surrounding groups of statements that should be

evaluated before moving to the next.

• E.g. (X OR Y) AND Z is different to X OR (Y AND Z)

Simple Boolean algebra joins - i.e.

• AND - The new compound statement is true if and only if both halves evaluate

to true

• OR - The new compound statement is true if one or both halves evaluate to true.

• A single translation function; negation - NOT - the new statement is the

negation of the surrounded statement. True becomes false; false becomes true.

Therefore, the basic Observation Behaviour Definition (OBD) would take the

following form, subject to the peculiarities of the exact externalisation format:

142

ON EVENT Signature Mat ch (-signature match information -)

WITH (-fluent defined system p oli cy-

J oined by AND/OR, translated b y NOT as req ui r ed)

THEN DEPLOY -required observati on technique-

Figure 36: Generic OBn format

A basic overview of the classes required to support this external format are shown in

the following UML class diagram, Figure 37. This class diagram shows the basic

division of data and responsibility, in terms of significant public methods. The precise

method used for externalisation will be discussed later; however, in this class

diagram, note how the requirements for externalisation are defined in an interface

Externalisable, and the information pertaining to an externalisation's form is

contained in the ExternalisedForm utility class. OBDVa riable represents the data

types that appear as parameter to fluents and expressions, and can contain any

appropriate data type, as constrained on an instance-by-instance basis via the

DataTypeDefini tion mapping. The appropriate externalisation code and mapping is

achieved at a class level via its Externalisable interface implementation.

BooleanExpressi on and SystemFluent are considerably more constrained in that

they must produce a Boolean value. They are defined as abstract classes and are also

responsible for handling their own externalisation needs via the Exte r nalisable

interface. The class that represents the whole definition

Obse rve r Be h a v i o u r De f i n i tion - is comprised of all the elements discussed above.

143

«interface»
OBDExternalisable

+extemalise(in form : ExtemalisedForm) : string
+getlD() : string
+evaluate() : object - 1

+getTypeID() : string 1 «uses» «datatype»
1 ExternalisedFormc: c: 'I
1
~ - - - -------/

.----- ,.----

I
ObserverBehaviourDefinition

-onEvent : Signature
-onEventHandler : SignaturelnvalidationHandler
-withConditi on : BooleanExpression
-thenDeploy : ObservationTechnique

+externalise(in form : ExternalisedForm) : string
-readfrornrin externalForm : string) : ObserverBehaviourDefinition

1 •
I 1

- Boo/eanExpression

OBDVariable
+getValueO : bool
+externalise(in form : ExternalisedForm) : string

+getValueO : object
~ if«uses»

1
_ _ _ I

«enumeration»1,v JoinType SystemFluent
«datatype»

+AND =AND -id : string
DataTypeDefinition

+OR = OR +check(in parameters : object(Coliect ion)) : booI
+getParameterTypesO : objectDefinition(Coliection)

.-
BooleanJoin Negation

-type : JoinType -original : BooleanExpression
-leftHand : BooleanExpression
-rightHand : BooleanExpression

Figure 37: UML for Externalised ORO Support Classes

The next section looks at identifying limitations in the behaviour definition proposed

thus far and additional propositions aimed at overcoming these limitations.

144

7.1.2 Extending the Behaviour Definition

The behaviour definition format thus far describes the deployment description for

observers that follow the ECA-based Signature -7 Policy/Condition -7 Technique

approach discussed throughout this framework. Programmers and mathematicians

will recognise the format of description as having similarities to certain aspects of

formal specification and algebra (such as in [121]) or as a tightly-constrained form of

conditional statements such as looping (while, for, etc) and control (if, else, etc)

statements in a programming language.

However, as a consequence of its simplicity, this approach is also limiting. The

following text will examine the way in which the behaviour definition's present form

is limited, how to expand it, and the additional complexities this may bring. Doing so

requires a revisit of the System Fluents and Variables and Conjunctives parts from

the previous section.

System Fluents, Predicates - and Functions

Previously, in Section 7.1.1, predicates or fluents were proposed as a simplified

solution to the problem of getting system policy into a form that provided easy input

into observer deployment decisions. However, any predicate approach (due to its

Boolean-only result form) would prevent the description specifying observer

behaviour for a range of values in a single statement. The only ways to specify a

range of acceptable values with the fluent approach is to:

• Specify a range of values via parameters to a range-checking predicate, or

• Perform a Boolean OR join between a set of statements enumerating all

elements within that range.

Therefore, it may prove worthwhile to permit the use of a more general function­

based approach that operates in a similar way to the fluent-based system described

previously. In addition to returning a Boolean outcome, functions will be able to

directly inspect system variables - though again, only those deliberately exposed. The

notation proposed for the functions would be as for the previously-discussed system

fluent - uniquely identifiable and parameterised as necessary; however, functions

145

would be capable of returning a wider range of data types. Again, this is not without

disadvantages. Just as the "fluent" approach was relatively simple, the "fluent +

function" approach adds complexity to the whole definition format, namely:

Complications surrounding variety of return types - the fluent approach was

constrained to Boolean-only and as such provided the go-ahead indication for

observation - or alternatively, prevented a strategy being deployed. If other data types

are considered within an observation strategy's conditional functions, then there is the

added complexity of validating and evaluating the types used. Opening the function­

based approach to allow any data type creates type-related problems that are

approached in a variety of different ways by different programming languages.

Type handling can be strongly or semi-strongly-typed as in languages such as C# or

Java, where typing errors are detected before and at execution [122], or can operate on

a weaker Variant (such as Visual Basic) basis, whereby type conversions are

automatic and wherever possible meaningful. However, a significant issue with

automatic type-conversion is that in the case of specification mistakes; instead of an

explicit error being generated, the automatically-converted data may lead to

unexpected behaviour. Conversely, the problem with strong typing is that suitable

error reporting must be implemented to report the error to the specification editor.

Conditional statements - The condition specifying whether a given observation

strategy should be deployed must still reduce to a Boolean condition - no matter how

the condition is made up. Taking the example of an "if-then" statement in a

programming language, it is perfectly acceptable for it to be comprised of a variety of

data types, providing they combined to make Boolean conditions. For example,

assuming x and yare integer variables, "if (x > 3 AND y < 2) ... " is a perfectly valid

Boolean statement, whereas "if (x AND y)" is, generally speaking, not. The addition

of automatic type conversion (as above) complicates this process further, as the nature

of the automated conversion from integer to Boolean is not specified.

Allows free interpretation offunctional results - with the fluent approach, the desired

state value is provided as a parameter (from an enumeration of possible state values)

while the result is provided as a Boolean indication. Allowing functions to return a

continuous value means that the result may be open to different (mis) interpretation.

146

Requirement for (more) conjunctive operators - with Boolean-only type constraints,

any connecting statements only needed to fulfil simple Boolean join requirements as

discussed in the previous section. Additional data types bring their own requirements

for conjunctives, which will be discussed in more detail shortly.

In summary, while the addition of different types can facilitate greater functionality in

the behaviour definition, it has a variety of knock-on concerns to the manner in which

statements are assembled, and the guaranteed validity of the specification as a whole.

Connecting statements

With Boolean-only values, the required connecting statements are relatively limited.

As the "WITH... " condition expects a Boolean value, the only conjunctives needed

are those to join a variety of Boolean statements (i.e. the fluents) together, as shown in

the previous section. However, when dealing with non-Boolean values methods must

be made available to translate (sets of) these values to Boolean.

One of the most widely-applicable methods of translating a non-Boolean value to

Boolean is by way of an equality test. Comparing a non-Boolean value to see if it is

the same as something else gives a Boolean result. With many data types, a

Comparator-type model: Strategy and Interpreter patterns [27], are suitable and

provide functionality above and beyond that of a simple equality test. The Comparator

model requires that data types each provide functionality to compare a values and

return a result to indicate whether one is equal to, greater than, or less than the other.

As Boolean return values are required, this necessitates three different operations - an

equality test, and greater-than and less-than tests. Mathematical-style notation is used

to represent these operations; the operator sits between the two statement values that

need testing. For reference, the additional connective operations are:

• EQUALITY (=) - Returns true if and only if the value of the statement on the

left hand side equals that on the right hand side.

• GREATER THAN (» - Returns true if the value of the statement on the left

hand side is greater than that on the right hand side

• LESS THAN «) - Returns true if the value of the statement on the left hand

side is less than that on the right hand side.

147

The precise behaviour of these connective operators depends on the types of data they

are comparing. Comparisons of two number data types are quite simple; they should

be compared mathematically. Equally, string and character types have well­

established patterns for matching and comparisons [123]. The externalisation method

should, in common with the Comparator model, place the responsibility for

comparisons with the type definition for the data being compared. Specifically, given

the relatively weak typing of this externalised definition, the comparison should

compare using a meaningful data commonality if possible. This may involve

boxing/un-boxing [124] and assessing several data commonalities - akin to the

Variant type. A simple example involves a comparison between the "35" (a character

string) and 35 (a numeric integer). At a code level, a simple equality test would return

false, or even generate an error because of the differing types.

In summary, the extended Observation Behaviour Definition (OBD) will extend the

existing format, and featuring the same "ON EVENT, WITH, THEN DEPLOY"

structure. However, adding another Boolean evaluation - Comparison - would allow

the WITH condition to contain greater complexity, as indicated below in Figure 38:

ON EVENT Signature Match (-signature match information-)
WITH (-fluent defined system policy-

-equality/value comparisons of system functions­
Joined by AND/OR, translated by NOT as required)

THEN DEPLOY -required observation technique-

Figure 38: Extended OBD Format

The following UML class diagram is based on Figure 37, revised to show the

additionally-required classes to support the function-based and comparator operations.

Note how Function and its derivatives are shown inheriting from the OBDVariable

class; data type permitting, they could be used in place of a straightforward variable ­

replacing the provided value with a calculation returning an appropriate value.

148

: object) : int

pe»
finition

value : object)
ect

«interface»
OBDExternal isable «datatype»

+externa/ise(in form : Externa/isedForm) : string
«uses»

Externalis edForm
+eva/uate() : object -!... _- ---,
+getlD () : string

+pers istValue (in container : OBDExternalisable, in id : string. in
+getType/D() : string

+readValue(in conta iner : OBDExternalisable, in id : string) : obj

L If
OBD Variable - - - - - - - - - - - - - - -

0."«uses»
+getValueO : object

~Bo oleanExpression
«enumeration»

JoinType

+AND = AND +externa lise(in form : ExternalisedForm) : string Function
~

+OR = OR +getValueO : booI -id : string
L),. r +externalise(in form : External isedForrn) : string

+getVa/ue() : object ,-
+getParameterTypes() : Collection<DataTypeDefinit ion> 1

1 1
1

I .1 1
1/

1 Comparison «dataty

"--------t -type : ComparisonType
DataTypeDe

BooleanJoin Negati on -leftHand : Function
-rightHand : Function +compare (in object

-type : JoinType -original : BooleanExpression /''-
-leftHand : BooleanExpression
-rightHand : BooleanExpression a

L
«enumeration»

I
1 Comparison Type

+EQUALITY - =
SystemFluent +GREATER THAN = >

-id : string 1 +LESS THAN = <

+externalise(in form : ExternalisedForm)
+check(in parameters : object(Collection)) : Collection<boo/>
+getParameterTypes() : Collection<DataTypeDefinition> «uses» I

IL I

Figure 39: UML diagram showing additional support classes for extended OBD

Section 7.1 and its subsections have provided an overview of control elements in the

observation model that are responsible for specifying the behaviour of the structural

framework. The result is specified as a Behaviour Definition; allowing mapping

between signatures and techniques, along with basic system policy to be specified by

in a set of data objects. These are evaluated to determine how exactly the framework

should behave when it encounters a signature match. Specifying system control logic

in a separate layer (i.e. the definition 's data objects) allows an externalisation to

translate between definition objects and a suitable external form (e.g. a flat file, an

XML file, or a database of rules); effectively creating an interpreted specification of

structural behaviour. Externalising this behaviour specification is discussed in more

detail later in the next chapter; the next section examines the need for further

preparation of the behaviour definition for externalisation.

7.2 Exposing Components' Behaviour and State

The designs discussed prepared a Interpreter pattern, code-level specification of

behaviour for the observation framework 's structural operations. Use of a suitable

externalisation technique would allow a great degree of control over framework

149

behavioural logic without having to recompile code. However, there is a reliance on

the following components/elements being designed, implemented and compiled - and

therefore their makeup is effectively immutable at runtime:

Signature match specification - only basic parameterisation is available via the

OBD - the mapped signatures still need to be defined in code, assigned a unique

identifier, and exposed via an appropriate external mapping. They are then referenced

in the external form via this unique identifier.

Observation technique - again, only basic parameterisation is available to customise

technique behaviour. Techniques are included in a specification by unique identifiers.

Available system predicates and fluents - Predicate functions and fluents allow the

specification to determine whether a particular system condition is true at a point in

time. However, these fluents must be specifically exposed at design time; thus, if the

need to check a new predicate arises, then code must be recompiled to expose it.

Available system functions - functions extend the above functionality to allow a

particular system variable to be examined or the value of a system setting to be used

in the OBD. This again relies on a model of explicit exposure, such that any state

variables are mapped within code to their unique identifier and external link.

Effectively, the OBD designs thus far allow for the observer deployment decision

logic to be exposed in whichever external form is most appropriate. Referring back to

Chapter 5, the externalised OBD effectively takes much of the responsibility from the

Technique Selection and to some extent Deployment Coordinator components. In

order that the observer system could function, basic core-level functionality would be

expected of these components similar to that outlined in Section 6.2.2. However, the

OBD would specify much of the mapping associated with the Signature/Technique

Associator and basic policy that would otherwise reside in the selector, such as access

to the system's Resources object via suitable function exposure.

However, flexibility is limited as event triggers (signatures), responses (observation

techniques), and data that makes up the connecting conditions (fluents, functions and

variables) must all be predefined in code, and the only configurable aspects must be

explicitly exposed via parameterisation.

150

7.3 Flexibility in Signature and Technique Definitions

In the cases of signature and observation techniques, greater flexibility could be

obtained by specifying the makeup of signatures and techniques entirely in an external

form. However, simply making the entire signature/technique an interpreted unit of

execution, while increasing flexibility, is perhaps a little naive.

Considering that the externalisation model thus far discusses the limited extreme (i.e.

signature and observation technique unit code must be prewritten, compiled and

explicitly exposed), the open extreme would allow a complete code-like definition in

external form. The designs presented make use of a basic Interpreter pattern

implementation demonstrating basic language constructs expected of the OBD.

However, introducing a fully-featured logical grammar specification to support the

OBD brings forward concerns relating to the operation of the system-level observers.

Firstly, completely novel (i.e. unforeseen at design time) signatures and their

applicable techniques are likely to require additional observation support at the

system-level. It is possible that the functionality of the system-level observers may in

itself be too complex to represent in a logical runtime adjustable grammar.

Additionally performance, scalability, or system-critical concerns of the system-level

observation may necessitate a traditional design and implementation approach. In

such cases, runtime adaptation, while supported at the structural level, would require

more traditional redeployment of the system-level observers. In this case, it is

arguable that it would still be beneficial to be able to keep the system running as-is,

and then introduce the new observation subsystem as a whole, without recompiling or

taking down the observer subsystem at all.

However, the virtual-machine nature of modem 00 languages such as Java and C#

support approaches such as reflection, dynamic class-loading, and even hot swapping

of byte-code (part-compiled classes). Reflection permits the external form to contain

only a named reference to the newly revised or added code-unit, rather than a

complete definition of the logic contained within. Equally, dynamic class-loading and

hot swapping in VM-based languages allow for the part-compiled code to be loaded

151

after system deployment and reloaded by the JVM (Java) or CLR (MS .net) as they

are modified. However, this approach raises two major concerns:

Security concerns - Writing code that instructs an executing VM to load new or

replacement code exposes a level of security risk. Assuming the developer has control

over the entire host environment, the security concerns can be mitigated to some

extent by adequate security on the hosts - i.e. the code is at no greater risk than the

rest of the hardware system. However, if the observer system requires access to a

variety of hosts and security arrangements, the framework requires a suitable method

of validating code. Ensuring security concerns on swapped-in code is a research field

in its own right (e.g. [125]) and a solution is outside the scope of this research.

Interface concerns - Generally speaking, hot swapping places fairly stringent

demands on the interfaces of replaced classes. The strictest requirement encountered

is that the replacement class must be absolutely interface-identical to those they

replace; they cannot define new methods, remove unused methods or override

existing methods [126] - though there has been research to overcome even this

limitation [127, 128]. However, given that the system interaction with signatures and

techniques are well-specified, this should not pose a particular issue.

However, if entire code-level edits and swaps are envisaged - movmg toward

dynamic programming - it is perhaps better to look to programming paradigms that

better support this notion. Several methods of increasing dynamism in software code

are available to programmers and system designers. The most flexible approach

centres on the concepts of Meta-programming. While only directly supported in the

languages under consideration via reflection, others have explored methods of

simulating and closely-reproducing advanced meta-programming [129].

In the context of the OBD, declarative programming would provide useful generative

functionality. Just as Signatures and Techniques are examples of Template patterns, a

generative approach treats these as class templates. At runtime, the templates would

be used in conjunction with observed states to create correctly-specified signatures

and techniques in executable code. Equally, more widely-spread meta-programming

techniques such as Reflective Programming [130] or any similar approach that relies

on a level of descriptive meta-information regarding the code units are suited to this

high level of external software influence and runtime dynamism.

152

Industrial practice and research is active in dealing with some of the initial concerns

regarding class loading, class reloading and other hot-VM issues (as detailed above)

since release 2 of Java - effectively the early 2000s [131-133]. Therefore,

remembering that this software framework is intended to extend the traditional

Observer pattern and applying existing engineering techniques; some of the levels of

flexibility discussed above are an over-complication of the problem. This framework

intends that system-level observation will follow more traditional 00 patterns, and as

such, this degree of flexibility adds a great deal of complexity and most likely would

lie redundant without sufficiently dynamic logic in the observer framework - i.e. at

the system-level observers. Therefore, the OBD will be based on a simplistic

grammar-oriented [134] approach to meta-programming:

As such, extending the OBD to allow a useful degree of inline definition and

customisation for signatures and techniques - without creating a fully-featured

interpreted language - requires a clear definition of:

• The data available to signatures/techniques (specified in code interfaces)

• The data expected from signatures/techniques (as above)

• The calculations, libraries and other algorithms available to signatures and

techniques for their signature matching and target-set producing procedures.

The following subsections will summarise these definitions for the signatures and

observer techniques respectively, concluding with an overview of the format and

support classes for the extensions to the OBD modelled so far.

7.3.1 Formalising the OBD Signature Definition

In the currently-proposed OBD format, the precise type of signature is indicated by a

unique identifier, and the Modelled Element on which it should operate. As

mentioned above, in order to try and overcome some of the limitations inherent with

this simplistic approach, this section will examine the manner in which the signature

could be specified in more detail "in-line" via the externalisation. To introduce how

the OBD could give a more detailed definition of a structural signature, let us first

recap some of the significant data requirements both in and out for the Signature type

from Chapter 5's class designs:

153

• checkedModel - The Modelled Element on which it performs signature

checking. This is already considered to some extent by the OBO proposal in

Figure 35. This shows a signature being referenced by both its unique identifier

and a signature "scope" - in the example case, SYSTEM to indicate it should

include the entire Modelled Element neighbourhood.

• getAssociations () - The signature class defines a method to allow access to

associated techniques via a specified Associator. In the OBO, this

mapping/association is already dealt with by virtue of the format of the

definition - its purpose is to map signatures to techniques via certain conditions.

• createlnvalidationTrigger () - hardcoded signatures generate a Invalidation

Trigger which specifies how the signature should be rechecked. As discussed

previously, this may range from complex statistical evaluation of model change

events to a simple polling approach; effectively evaluation of time-based or

event magnitude constraints. However implemented; this completes the loop

controlling signature checking as discussed in Section 6.2.2. As such,

invalidation must feature in the OBO signature definition in some form.

• getMatch () - Specification of how to check the metrics to double precision

(referred to as match quality throughout the designs, as it gives an quantitative

indication of signature matching). The designs encourage signature checking to

use ModelledElementAlgori thm objects to perform necessary manipulation of

sets of Modelled Elements. The OBO must specify how this value is calculated.

• checkMatch () - Specification of metric check as Boolean. In implementation,

this may be a simple check of the value produced by the getMatch () method.

• (dependency on ModelledElementAlgori thm) - The Signature may make use

of Modelled Element Algorithm(s) to perform set translation for comparison /

statistical purposes as part of the Signature checking process.

Therefore to create an inline OBO Signature definition, two significant features must

be facilitated, either by flexible definition, or reference to a hardcoded element.

Firstly, a flexible and simple match specification must be determined, while secondly,

the OBO-based Signature must specify how it is invalidated and therefore rechecked.

154

Match Checking

The signature definition in OBD defines two match specifications:

• Continuous value match (signature match = 0 to I) calculation

• Boolean match (signature match = true or false) calculation

In order to retain a simple, yet configurable approach, the OBD continues to extend

functional exposure via the abstract Function mapping, with a specialisation to allow

access to a system-defined ModelledElementAlgori thm object via a new class

OBDAlgori thmFunction. This class exposes ModelledElementAlgori thm instances

as required; implementations could explicitly map instances or use a reflection

approach to find the appropriate Algorithm class at runtime. The class

OBDAlgori thmFunction must correctly construct ModelledElementAlgori thm

objects with required parameterisation.

The algorithm results can be examined using special Function implementations that

allow statistical investigation of the result set, such as sizing functions. Given that

signatures discussed thus far are structural, a special implementation of Function

could implement a variety of graph-manipulating and statistical functions to make

them available to the OBD. If the system is extended such that other signatures types

are envisaged, as discussed in the architectural chapters, then new Function subtypes

could be created exposing suitable utility calculations.

Invalidation Trigger

The signature rechecking loop is only closed by the signature itself specifying an

invalidation handler that captures ModelChangeEvents and determines when a

significant magnitude of change has occurred. Earlier designs left implementation

details open, allowing as much complexity as required. However, in order to allow

specification in OBD, Invalidation Handling must be significantly constrained:

Simple - Signature rechecking is polling-based - The invalidation handler generates a

new event every x Model Change Events, or alternatively every t time ticks.

Complex - Signature rechecking is calculated based on its estimated likelihood of

change given the captured model change events. This involves greater considerations

than simply the number of events; and may involve a model of what is happening to

the previous structure; a mini-signature checking model in itself.

155

Given the potential for complexity, the reference designs presented here will

concentrate on the Simple-type Handler. Externalising a Complex-type Handler is not

impossible; rather that it would result in complexity that would be difficult to take

advantage of without increasing the complexity of the signature specification - i.e.

therefore would be better placed directly in the target language code.

The Invalidation in OBD will expect a BooleanExpression statement that has access

to two invalidation-specific predicates. They will allow specification of either the time

passed (in milliseconds) or the number of model change events since the last

invalidation event. A new concrete type OBDSignatureInvalidationHandler

subclasses SignatureInvalidationHandler providing the extra functionality. This

requires construction with a BooleanExpression parameter, specifying its

invalidation criteria. In order to facilitate rechecking, it records the number of

ModelChangeEvents it has received and the time since its last InvalidationEvent.

Additional mapping is included in order that the two special-use predicates link back

to the appropriate OBDSignatureInvalidationHandler instance; localising the

scope to the Signature and its Invalidation Handler.

Proposed OBD Signature Definition

To summarise, the proposed OBD-based Signature Definition requires the following

significant attributes in the external form. Figure 40 shows the definition in the same

format as previous OBD-type definitions:

SIGNATURE New-Signature-Identifier
MATCHING
-VALUE (-calls to named Function implementations-

Joined by calls to Graph Stats functions as required
Double-precision value expected)

-BOOLEAN (-BooleanExpression- that can self-reference -MATCH
value if required, joined by AND/OR, NOT, or
Comparisons as required)

INVALIDATED (MODELCHANGEEVENTS_PASSED(x) OR TIME PASSED(t))

Figure 40: OBD Signature Format

156

It is presented in a declarative form; in common with the other externalisable objects

introduced during this section, it has a unique identifier. Referring back to Figure 38

showing the extended OBD format; Figure 40 complements this approach, such that

the behaviour definition can refer interchangeably to explicitly-mapped hardcoded

signatures, or those defined in the format shown above. The following class diagram,

Figure 41, shows the OBD Signature classes, and their organisation with previously

defined OBD classes. OBDSignatureDefini tion IS the central class, both

implementing Externalisable while inheriting from Signature - linking the OBD

and the Signature class. OBDSignatureInvalidationHandler and

OBDAlgori thmFunction also have dual roles, providing OBD externalisation

functions for a simplified implementation of the abstract class

SignatureInvalidationHandler , and a externalised link to suitably mapped (or

reflected) implementations ofModelledElementAlgori thm, respectively.

«interface» ! I
OBDExternalisable

1~6

I Signature

~
I

IOBDVariable I
I

~1 OBDSignatureDefinition
/"0.. -id : string ~~

-modeliedElementScope : string

1 -matchValue : Function
-matchBoolean : BooleanExpression-- -invalidation: OBDSignaturelnvalidationHandler~

1

ISignaturelnvalidationHandlerI I Function I
1 c.

I
OBDSignaturelnvalidationHandler

-invalidationExpression : BooleanExpression
-numberModelChanges : long

GraphFunction-time: long
-type: GraphAlgorithmType+OBpSignaturelnvalidationHandler!in expression: BooleanExpressionl

1
+getValueO : object

1 1 1 +getParameterTypesO : Coliection<DataTypeDefinition>
11

I
1 1

'I I 1 «function enumeration»I OBDAlgorithmFunction 1
I 1

Boo/eanExpression I -realAlgorithm . ModeliedElementAlgorithm 1_______

1
+getValueO . object ,1/

+externalise(in form: ExternalisedForm) : string +getParameterTypesO «enumeration»
+getValueO : bool #resolveRealAlgorithmO GraphAlgorithmType

f <) +SIZE
1 +AVG_DEGREE

SystemFluentI +MIN_DEGREE

«special data type 1 +MAX DEGREE

~
for invalidation criteria»

~------------- I «interface»~

OBDSignaturelnvalidationFluent ModelledElementAlgorithm

-type: int =MODELCHANGE or TIME
-value: long

Figure 41: Significant OBn Signature support classes

157

The next section repeats this process for the ObserverTechnique class in order to

create an OBD-compliant and more flexible technique specification.

7.3.2 Formalising the OBD Technique Definition

ObservationTechnique, when compared to Signature is a relatively simple class

with three main concerns on attributes and method:

• getTargetSet (Collection<ModelledElements» - The Technique must be told

from which Modelled Elements it should select targets. As with the signature

scope concern regarding Modelled Elements, this is partly covered in the OBD

proposal in Figure 35. The technique is shown being applied to a system scope

variable alongside an observation priority parameter (HIGH) - in the example

case, the scope variable used was SYSTEM to indicate it should include the entire

Modelled Element neighbourhood.

• getAssociations () - The Observation Technique class defines a convenience

method to allow access to associated signatures via the specified Associator. In

common with discussion on signatures in the previous section, this mapping is

already handled by the existing OBD format.

• algorithm - The observation technique is composed of one or more algorithms,

specified by the ModelledElementAlgori thm interface. Just as with the

Signature, use of the algorithm was designed to allow for common element­

selection tasks to be extracted and reused by other Techniques and Signatures to

avoid duplication of code. It is also useful for the OBD externalisation as it allows

some control over what the technique does without having to create a complex

algorithmic-capable language in the OBD.

Therefore, in order to define the OBD Technique, there is the issue of specifying how

the OBD-specification can generate target sets with a flexible use of the algorithm,

rather than relying entirely on the hard code. As the OBD algorithm-related design

work was undertaken in the previous section, this greatly simplifies the new design

requirements for the OBD Technique.

158

Creating the Target Set

Hardcoded Observation Techniques require a single ModelledElementAlgori thm

object. Techniques requiring more complex functionality can extend the root class and

add features, such as combining multiple algorithms, using additional logic, or

manipulating the target set without using an algorithm object.

Allowing OBD-defined techniques to freely manipulate the target set brings the same

kinds of complexities rejected previously; therefore, the OBD-techniques will be

limited to the use of OBDAlgori thmFunction objects as introduced in the previous

section. However, as their return and input parameter types are the same, they can be

nested, thus allowing combined technique functionality to be introduced at runtime.

As with their use in the OBD Signatures, instances of the OBDAlgori thmFunction

class's subtypes are responsible for permitting the external OBD-referenced algorithm

to map through to the appropriately-identified implementers of

ModelledElementAlgori thm and to populate them with the correct parameterisation.

Proposed OBD Observer Technique Definition

To summarise, the proposed OBD Observer Technique is simpler than its Signature

partner. This is partly because the technique requires less information and interaction

with other components, and partly because the significant requirements had already

been fulfilled for the OBD Signature definition. The proposed makeup of the OBD

Observer Technique is shown below (Figure 42), in the as-previous OBD format.

TECHNIQUE New-Technique-Identifier
TARGETS
-FROM (-desired source set of elements; e.g. SYSTEM-)
-USING (-OED Algorithm Function identifier; may nest-)

Figure 42: ORD Observer Technique Definition

It follows the same form as the Signature definition; it is effectively a declaration.

This allows Techniques to be used directly from hardcode if mapped, or to be built up

from algorithms in OBD and used elsewhere in the definition.

159

The new OBD Technique involves a single new class, OBDTechnique. It translates the

source element specification, along with populating its referenced instance of the

oBDAlgori thmFunction class. It is shown along with its compositional classes and

amongst the significant typing classes within the OBD in Figure 43.

I «interface» I
OBDExternalisable

iff
I

IOBDVariable1IObservationTechnique I 1
~ I Function If ~I r

OBDTechnique OBDAlgorithmFunction
0..*

-id : string .-. -realAlgorithm : ModeliedElementAlgorithm
-elementColiectionScope : string -- +getValueO : object
-targetSelectionAlgorithm : OBDAlgorithmFunction 1 1 +getParameterTypes()

#resolveRealAlgorithmO
.....

1
Q 1

1

I «interface» I
ModelledElementAlgorithm

Figure 43: OBn Technique and support classes

The next section draws together the parts of the OBD in summary before moving on

to the method of externalisation. It also addresses some potential implementation

issues that have not yet been covered in the overview design form.

7.4 The Externalised Specification

The purpose of this section is to piece together previous incarnations of the OBD,

along with their OBD-compliant simple definitions of Signature and Techniques. This

creates a cohesive overview of the OBD approach to externalised specification, before

discussing the externalisation mechanism used to validate this approach.

The externalisation relies on a series of bridging classes which are responsible for

translating external elements into classes already presented in the Chapter 5 designs.

External elements are marked with a special interface, OBDExternalisable, which

defines the necessary methods to manage the translation to and from an external form,

including a requirement for a unique identifier, and type-identifier strings.

160

Implementers are responsible for implementing these methods and for ensuring that

relevant class-specific data is persisted and read correctly from the external source.

For example, the OBDSignatureDefini tion class both implements the

OBDExternalisable interface and inherits from Signature. As such, it is responsible

for ensuring that all the information it requires to construct a Signature is suitably

packaged in its external form. It must externalise the unique id and type id (both of

which are required for all OBD Externalisable types), and references for the following

signature-specific information:

• Modelled element scope (A Variable)

• Match value (A Function)

• Match Boolean value (A Boolean Expression)

• Invalidation handler (An OBD Signature Invalidation Handler)

By referring back to any of the class diagrams in Figure 39, Figure 41, or Figure 43, it

is apparent that each of these values are references to other OBD Externalisable types,

and therefore the responsibility for persisting each of these values will be referred to

the appropriate type. Thus, the designs avoid unnecessary ties to a particular format,

with ExternalisedForrn responsible for the serialisation implementation.

The final matter to cover before presenting an overview of all the externalisation and

relevant classes is to explain how "real" code elements should be exposed via the

external interface. As mentioned in previous sections, Signatures, Techniques, certain

important system variables and states (particularly items related to a structural

observer, such as its collection of modelled elements) can be exposed to the external

form. Previously, this had been discussed from two points of view:-

• Explicit Mapping - This approach maintains a mapping structure (either per

structural observer or per OBD Externalisation type). It requires the definition

of the new mapping structure and requires that the framework is modified such

that required data and functions are explicitly exposed.

• Open access via reflection - This approach does not use any explicit mapping

and as such, eliminates the need for a modification to the framework. This

relies on the OBD classes that need access to the framework using fully

qualified host language names to access them. While this provides open access

161

to code, it does have some drawbacks. Firstly, it means that the system

becomes host-language dependent, and that the externalisation process must

either map meaningful names in the external form to fully-qualified classes

and method names, or the external form itself must contain direct string

references to host-dependent class or method names, e.g.

"structural. techniques. ScaleFreeTechnique". Equally, the reflection

approach is limited in that it is still unable to access existing objects within the

framework - so would only be suitable for those instances where creating new

objects are required (e.g. creating a new Technique)

Therefore, it is clear that while allowing reflection may in some cases bring greater

flexibility, the externalisation must provide a global method of mapping data objects

from the structural observer (global meaning associated with a single structural

observer). Certain OBD classes may need to extend this functionality in order to

expose variables with a tighter scope for calculation purposes.

7.4.1 The OBD Format

This section briefly consolidates the vanous OBD-format definitions that have

evolved during this chapter. The schema is shown in a linear format in Figure 44,

simply for convenience of presentation. The OBD requires that the externalisation

format is capable of delineating each section such that elements can appear in any

order, providing that the attribute location is respected (i.e. attributes such as

TARGETS must always appear within a TECHNIQUE element). SIGNATURE and

TECHNIQUE have been explained fully in Section 7.3 and its subsections, and the

behaviour definition form is similar to that initially described by Figure 38; similar to

the signatures and techniques - signified by the OBSERVER BEHAVIOUR element.

The whole OBD is split into separate sections for Signature, Technique and finally,

Behaviour definitions.

The next section presents an overview of the OBD supporting classes combined

together from throughout this chapter.

162

SIGNATURE DECLARATIONS
SIGNATURE New-Signature-Identifier

MATCHING
-VALUE (-calls to named Function implementations­

Joined by calls to Graph Stats functions as required
Double-precision value expected)

-BOOLEAN (-BooleanExpression- that can self-reference
-MATCH value if required, joined by AND/OR, NOT,
or Comparisons as required)

INVALIDATED (MODELCHANGEEVENTS_PASSED(x) OR TIME_PASSED(t))
[...]

-END SIGNATURES

TECHNIQUE DECLARATIONS
TECHNIQUE New-Technique-Identifier

TARGETS
-FROM (-desired source set of elements; e.g. SYSTEM-)
-USING (-OBD Algorithm Function identifier; may nest-)

[...]
-END TECHNIQUES

BEHAVIOUR DEFINITIONS
OBSERVER BEHAVIOUR

ON EVENT
Signature Match (-signature's unique id-)

WITH (-fluent defined system policy­
-equality/value comparisons of system functions­
Joined by AND/OR, translated by NOT as required)

THEN DEPLOY -required observation technique-
[...]

-END BEHAVIOUR

Figure 44: Overview of OBn Format

7.4.2 The OBD Classes

This section consolidates classes required for the OBD approach, along with

introducing some new features to existing classes and new classes. The new features

are introduced where required to support some of the issues identified in Section 7.4,

including variable and class mapping and reference management in general.

This explains how elements and ExternalisedForm translator implementations can

manage the issue of dual-purpose references - that is, a reference to other OBD or

external elements or a reference directly to a Structural Observer type.

In common with the design summary of Chapter 5, the classes will be shown in

lightly annotated UML class diagrams, and where classes appear in several diagrams

in order to show relationships, they will be shaded to indicate their duplication.

163

The first class diagram, in Figure 45 shows the classes that make up the backbone of

the OBD externalisation. They represent the various operatives, data-types and

calculating functions that are available within an OBD definition. It also shows the

OBDExternalisable interface and ExternalisedForm that are jointly responsible for

performing the actual serialisation and de-serialisation operations.

Paying particular attention to the entirely new classes; there are two new identifier

classes - OBDIdentifier and OBDTypeIdentifier, which are used to formalise the

way in which elements are identified and can refer to one another.

This identification functionality is made use in the second new class - OBDMapping ­

which holds references between one or more Structural Observers and the OBD

system, allowing OBD elements to locate explicitly exposed data in code identified by

a unique instance of OBDIdentifier and to make references to other elements using

the same identification and lookup process.

Using OBDMapping to create maps between the OBD and Structural Observer

variables or constants requires only a reasonably simple and familiar approach - a

key/value pair mapping (such as a Hash Table or Set) to a suitable data-carrying

mutable object is sufficient. However, in the case of mapping functions, more

explanatory detail is required. OBDMapping must effectively provide higher-order

functions; it must provide a way to associate and then return a method call to a unique

ID - not just the method's return value at the time of mapping.

OBDHigherOrderFunction IS responsible for managing this functionality.

Implementing this functionality could be simplified by the target language's runtime

dynamism; for example, in Java - reflection may be used to store the method's name

and reflected each time it is used (or alternatively a direct reference to the

java. lang. Method object - eager evaluation of the reflected method). By storing the

Method, its relevant object, and any such parameter list, it can be invoked from

elsewhere. These classes enable the creation of a useful OBD system; providing the

basic elements from which the meaningful elements are made.

164

"Tl_.
CJel
C.,
ttl

~
!JI..
c
3:
r""

0
~
t'-'
t'-'

0_.
~

CJel.,
~

:301 ..
VI

0=0
=~t'-'
ttl

~

::
Q.

C...
:::_.
~
!2.
~
t'-'
t'-'
ttl
t'-'

OBDldentifier «interface»OBDExternalisable
-idString : string +externalise(in form : ExternalisedForm) : string

«datatype»ExternalisedForm

I' +eva/uate() : object "< +getlD() : OBD/dentirier +persistValue(in container, in id : string , in value : object)r +getTypelD(} : OBDType/dentifier +readVa lue(in conta iner, in id : string) : object
"I ' I ____ _ _ __ ~ c.

OBDTypeldentifier

-acceptedTypes : Coliection<Class> «uses» « datatype

I
enumeration»

1------------ -1 «datatype»DataTy peDefi nit ion
1

OBDVariable 1 1
-)

«enumeration» f-- +compare(in object : object) : int
ComparisonType 1 +getValueO : object

+EQUALITY ==

I+GREATER THAN =>
+LESS THAN =< 1 0."

~t o
Boo/eanExpression Comparison Function

('1, -type : ComparisonType
.........

+externalise(in form) : string -leftHand : Function +externalise(in form) : string
+getValueO : booI • -rightHand : Function 1 . +getVa/ue() : object

+getParameterTypes() : Collection<DataTypeDefinition>

I
I I I I

BooleanJoin SystemFluent Negation GraphFunction OBDAlgorithmFunction

-type : JoinType -original : BooleanExpress ion -type : GraphAlgorithmType -realAlgorithm : ModeliedElementAlgorithm 0."

-leftHand : BooleanE xpression +externalise(in form) +getValue() : object +getValue() : object
-rightHand : Boolea nExpression +check(in parameters : object(Collection)) : boo/ +getParameterTypesO : Coliection <DataTypeDefinition> +getParameterTypesO

+getParameterType s() : Collection <DataTypeDefinition > 0 #reso lveRealAlgorithm O

0." ? 0."

~
0

« function enumeration» 1
1

1

I
OBDMapping StructuralObserver I

-elementFactory «enumeration» 1
«enumeration» +mapValue(in id : OBDldentifier, in value : object) GraphAlgorithmType

JoinType +getVa lue(in id : OBDldentifier) : object
+processModeIChangeEvent()
+getAliElementsO : <unspecified>D +SIZE I «interface»ModelledElementA lgorithm I+AND - AND +hasValue () : boot

I
+AVG_DEGREE

+OR =OR

1 9 +MIN_DEGREE l+transformSet(in inputSet : Conecttonccunspecitied>»} : Collection-ccunspecitiea»> I
OB07 1." +MAX DEGREE

Structural Framework Bridging

The next class diagram in Figure 46 shows the extensions to the basic functionality

and utility classes that comprise some of the elements seen in the specification in

Figure 44 - specifically the Signature representation (OBDSignatureDefini tion plus

its invalidation support classes OBDSignaturelnvalidationHandler), and the

Technique OBD representation (OBDTechnique).

It shows the relationships with other classes; significantly how the Signature and

Technique are both made up of an in-code Modelled Element Algorithm­

implementing class - represented by OBDAlgori thmFunction. Note that the OBD

Signature can have any Function type making up its matching value attribute, thus

allowing manipulation of the results of a Modelled Element Algorithm. The

Technique must supply a Modelled Element collection, thus is only permitted to use

Modelled Element Algorithms as these produce the correct data type.

The final class diagram in Figure 47 shows the culmination of these definitions - the

Observer Behaviour Definition itself, with its significant relationships to other classes.

166

~
(J'Q

c.,
~

".
Q\..
c::
~
t""
c-l
;-
til
til

51
~

(J'Q.,
~

3
I

0
0=
0
rJ)

riQ.
=
~......... c

0\ .,
--J ~

til

~

=Q.

-3
~
f")

=-=..c.
c
~
til

~

=Q.

til_.
(J'Q

=_.
:l
f")

~=....,
~-~...o·
=til
=-_.

"'C
til

«interface»OBDExternali sable

+externalise(in fonn : ExternalisedForm) : string
+evaluate() : object
+getlD() : OBD/dentifier
+getTypelD() : OBDType/dentifier

I
OBDSlgnalurelnvalidationFluenl ISignature/nvalidationHand/e~

-type : int - MODEL CHANGE or TIME
-value : long

~ OBDVariable 1
rv 1
I
I OBDSlgnalurelnvalidationHandler
'------- +getValue() : object

« special data -inva lidationExpression

type -numberModelChang es : long lfor invalida tion -time : long

r--
criter ia» +OBDSignature lnvalidationHandler(in expression) . I 0.:

0.: 0.:

11
(

() 0

"
OBDSlgnalureDefinlllon

Function OBDTechnique

..... -modeliedElementScope : string
-elemenlC oliectionScope : OBDVariable

SystemF/uent -matchValue : Function +externalise(in form) : string -targetSelectionAlgorithm : OBDAlgorithmFunction

-matchBoolean : BooleanExpression +getVa/ue() : object

+extemalise(in form)
-invalidation : OBDSignatureln validationHandler +getParameterTypes() : Collection<DataTypeDefinition> o

+check(in parameters : object(Collection)) : boo/ i 1.:

+getParameterTypes () : Collection <DataTypeDefinition > ~t

I 1 I~ 1

Boo/eanExpress/on 1
OBDAlgorilhmFunctlon

I «interface»ModeliedElementA lgoril hm l 1 -realAlgorithm : ModeliedElementAlgorithm

+extemalise(in form) : string
l+transfonnSet(in inputSet : Cotiectionccunspecitieo>»} : c onectionceunsoec iuea»> I +getValue() : object

+getVa lue() : booI

+getParameterTypes()

~ 1I
#resolveReaIAlgorithm()

I
0.:

~a'Q.
c.,
tD
~
-.....J..
c=
::
to""
o
;-
'"'"0;.

(Jel.,
~

3..
::
~..
=

...... 0=
0\

tD

00
=-
~-e. .
e
c.,
~-0
tD
:l:.......
e=
f')-~
'"'"~=Q,.,
tD
;-
e,
e='"=-.:0.
'"

«interfacellOBDExternalisable

+extemalise(in form : ExternalisedForm) : string
+evaluate() : object
+get/D() : string
+getTypelD() : string

c:

OBDSignatureDefinition

-id : string OBDSignaturelnvalidationHandler

-modeliedElementScope : string -invalidationExpression
-matchValue : Function -numberModelChanges : long

ObserverBehaviourDefinition-matchBoolean : BooleanExpression -time : long
-invalidation : OBDSignaturelnvalidationHandler +OBDSignaturelnvalidationHandler(in expression) -onEvent : OBDSignatureDef inition

-onEventHandler : OBDSignaturelnvalidationHandl er

~. • 1 1 -withCondition : BooleanExpression
1 -thenDeploy : OBDTechnique

1 1 +externalise(in form) : string
+readFrom(in externalForm : string) : ObserverBehaviourDefinition

Boo/eanExpression
~. 0

1 0."

1
+externalise(in form) : string
+getValueO : booI

1

II I
1 OBDTechnique

-elementColiectionScope : OBDVariab le
-targetSelectionAlgorithm : OBDAlgorithmFunction

7.5 Summary

Chapter 7 examined how the structural observation framework could be augmented

such that it is open to greater runtime flexibility. The system proposed allows runtime

specification and modification of key structural observer processes. It gives control

over the associations between the Structural Signatures and Techniques, along with a

basic level of flexibility in terms of considerations that would previously have been

deferred to the Technique Selector and the Associator, along with some of the

concerns usually assigned to the Deployment Co-ordinator.

In terms of its interaction with the previously-discussed Structural Observer

framework; the OBD externalisation can entirely replace the hardcoded definitions of

behaviour (subject to structural algorithms' implementation), or piggyback a basic

OBD on core observer functionality implemented in hardcode. For example, structural

signatures, techniques and deployment requirements could be specified in hardcode,

and the externalised OBD could specify only the associations between signatures and

techniques according to an evolving system policy. OBD requires significant control

of particular classes; OBD-specific implementations of the Deployment Co-ordinator,

Technique Selector and Associator components are required. These stages in the

observation process are then subject to evaluation by relevant OBD objects. Finally,

suitable implementations of the OBD Mapping specification controller within

Structural Observer instances are required, which allows the exposure and control of

Observer-determined data and behaviour.

The designs have already been summarised largely in Section 7.4, which aimed to

demonstrate the basics of externalisation requirements. This culminated with the OBD

specification - both as a generic free-text externalisation schema, and the necessary

classes to support that data structure and provide interaction with the classes from the

Structural Framework. Next, Chapter 8 will examine the mechanisms by which the

OBD can be implemented - both in terms of the externalisation format and

mechanism, and how it can be fully integrated into the structural observation

framework so that OBD-type specifications could replace, or make up functionality

alongside the hard-coded structural observers.

169

Chapter 8 - OBDXML to Code

This chapter details the method used to externalise the observer definitions and shows

how they can be moved out of the code, into an external source of the format shown

in the previous chapter. This section also explores how OBD-representative classes

can be linked with the external form and Structural Observer code, thus facilitating

runtime inspection and modification of the observer system's behaviour.

Firstly, a brief introduction into the actual externalisation format: the required

elements of the specification will be stored externally in XML. XML has been chosen

for this framework because it:

1. Is defined by its own per-document-type Schema (thus allowing easy lexical and

syntax checking), yet is still extensible and flexible,

11. Allows sufficient parameterisation of required data within a simple type

111. Is sufficiently "mature" to have been used in many applications and therefore has

a wealth of developer support in several languages, and a variety of APIs to

allow translation from data objects in code to an XML string/file and back again

8.1 OBD to OBDXML Schema Definition

While it is assumed that the reader will have a basic understanding of the XML

format, a brief discussion of XML schemas follows. A variety of XML schema

definition formats exist, but OBDXML will be presented in XML Schema (XSD).

When trying to create a serialisation of an DO-based object tree, there is the problem

of super and sub-classes. They are hierarchical, and if serialising several objects from

within the same type hierarchy, the basic DTD format can take two approaches:

1. The first is to represent super-classes by composition. Therefore, if type B

inherits from type A (and only type A), then the definition of the B element

contains an A element. However, while this represents the data efficiently, and

conveys an understanding of the represented data, it breaks the 00 hierarchy and

prevents the correctly-formed use of more specific subtypes in XML.

170

ii. The second is to duplicate the necessary attributes in each type definition.

Following the same example, the B element definition will explicitly present a

duplicate declaration of all the attributes that are found in A. While this produces

somewhat more intuitive and readable XML, it increases DTD maintenance in

the case of changes, and leads to overcomplicated definitions. Additionally, the

problem of sub-type substitution still remains.

As sub-typing has been used throughout the OBD specification thus far (e.g.

OBDVa r i a b l e implicitly permits Function, which permits the use of GraphFu n c ti on

and OBDAl go r i thmFunction, and so on), it is appropriate to look towards an XML

definition that better facilitates this structural makeup. Therefore, while accepting that

it is entirely possible to produce schema designs for OBDXML in DTD, the

remainder of this section looks towards XSD as the method of document definition.

XSD allows inheritance; restrictive and extensive subtypes of defined element types

can be created. For the reader unfamiliar with the XSD format , Figure 48 shows a

brief example of a simple inline-XML variant ofXSD:

< me name="servicecontract ">
<xs :complexType>

<xs :sequence>
<xs :e lement name="serviceID " type="xs :string" use="required "/ >
<xs :e lement name="providerID " type= "xs :string" use="required "/ >
<xs :e lement name="subsID " type= "xs :string " use="required " / >

</xs :sequence>
</xs :complexType>

</ m n >

Figure 48: XML Schema snippet: Book Example

8.1.1 Re-Examining the ODD Schema

The OBDXML schema follows the form of the summary OBD schema in Figure 44,

shown previously in Section 7.4.1. Recapping, there are three main types of element:

Signatures, Techniques and Behaviour Definitions.

Multiple Signatures, Techniques, and Behaviour Definitions can exis t III a single

XML file; thus there is a need to reference a single Signature or Technique from one

171

or more Behaviour definitions. Each element type is made up of a set of attributes,

some of which are reasonably complex themselves (i.e. greater than a single

attribute). In order to further simplify the schema creation, the following bulleted-lists

will hierarchically enumerate the element types, their attributes and their attribute

types.

Almost everything that exists In the OBDXML is an implementation of

OBDExternalisable. Its XML representation requires the following information:

• Unique ID (OBDIdentifier)

In the UML class diagram there is also a requirement for a Type ID. This will not

appear as an attribute or sub-element in XML. It is the responsibility of the

externalisation mechanism to ensure this is populated appropriately based on the

XML element type (marshalling) or the runtime object-type (un-marshalling). The

following element types are the main OBD elements populating the file:

OBDSignature (made up of the following attributes)

• Matching Value - (Function)

• Matching Boolean - (BooleanExpression)

• Invalidation Handler - (OBDlnvalidationHandler)

OBDTechnique (made up of the following attributes)

• Target Selection Algorithm (OBDAlgori thmFunction)

ObserverBehaviourDefinition, comprised of the following (note: although the

invalidation handler appears in the class diagram, this is obtained from the XML­

specified signature, and not directly from the XML)

• On Event Match (OBDSignature)

• With Condition (BooleanExpression)

• Then Deploy (OBDTechnique)

All types listed in brackets are not easily represented in XML as a simple attribute,

with the one exception of the OBDldentifier - which although a class, has just a

single attribute and is effectively a string identifier. However, most of the other types

are actually just references to either other elements in the external document, or are

172

mapped via the OBDMapping object as part of a fluent, function or variable. In the case

of constant and variable data, it is sufficient to map (mutable) data-carrying types that

can be modified and accessed from both OBD and Structural Observer sides of the

OBD Bridge. As mentioned previously, in the case of function and predicate or fluent

mappings, it is necessary to simulate higher-order functions by mapping a suitably

wrapped OBDHigherOrderFunction implementing object containing the desired

evaluation method call.

These types are examined hierarchically, following the classes in the UML OBD

Utility class diagram (Figure 45), specifying attributes that are required in the XML

representation. This is not an exact replica of the information in the UML diagram, as

some types are effectively mapped to their code representations; thus from an

externalisation point of view, require only an ID and list of parameters.

The utility OBDExternalisable types in can be further split into two subtypes:

OBDVariable - A variable is any element that has a value usable by a set of other

elements. It is comprised of all the information in OBDExternalisable, and this

subtype supports variable mapping and management. From an externalisation

perspective, it is a role marker; i.e. a new subtype with no additional attributes.

BooleanExpression - A Boolean Expression is any element having a Boolean value

usable by other elements. Again, it IS comprised of the data from

OBDExternalisable, and the sub-typing supports Boolean functionality, and

provides role indication.

The OBDVariable type can then be further split into:

Function - A function is a predefined code element that is exposed to the OBD. It is

distinct from an OBDVariable as it is able to take zero-to-many parameters. At a code

level, it returns a value of a type specified by its own Data Type Definition. To

reference in XML, it extends OBDVariable with:

• Parameter List (OBDVariable) (0-* elements)

173

<'s impleType name= "OBDID ">
<restriction base= "string ">< / r e s t r i c t i o n>

<:/s i mpleType>

<:;.:....;;...., - name= "OBDExternalisabl e ">
.~ -

<attribu te name = "I D" t ype="tns : OBDID " u se= "required "></ a t t r i b u t e >
c / 'r'~ j yplt: >

<complexType name = "OBDVa r i ab l e ">
<complexConten t>

<extension base="tns : OBDExternali sable "></ e x t e n s i on >
</complexConte nt>

</complexType>

<complexType name = "Fun c t i on ">
<comp lexCon te nt>

<extension base= "tn s : OBDVariabl e ">
<seque nce>

<e lement name = "p a r ame t e r s " t y pe = " t n s : OBDVar i ab l e " minOc cu r s = "O"
maxOccurs = "unbounded ">< / e l e me n t >

</seq uence>
</ex tensio n>

</complexCo nten t>
</complexType>

<complexType name = "Boo l e an Ex p r e s s i on ">
<complexConte nt>

<extens ion ba s e = " t n s : OBDEx t e r n a l i s ab l e "></ e x t e n s i o n >
</comp l exContent>

</complexType>

Figure 49: XML Schema snippet: OBDExternalisable, OBDVariable and their extensions

The Function type itself can then be further split into the following subtypes:

GraphFunction - provides OBD access to a library of algorithms for manipulating

graphs. Other functions could be added and whole new libraries, if signatures are

extended beyond structural characteristics. Each algorithm requires one parameter; a

collection of Modelled Elements. In XML, it extends Fu n c ti o n with:

• Algorithm Type (SIZE , AVG_DEGREE, MIN_DEGREE, MAX_DEGREE)

OBDAlgori thmFunction - provides OBD access to a Mode lledElementAlgori thm,

allowing functional composition of OBD Signatures and Techniques with the same

building blocks as hardcoded versions. In addition to the Fu n c ti o n elements, it needs

the following information:

• Modelled Element Algorithm (OBDldentifier - as algorithms must be mapped

from XML to code)

174

< name= "Gr ap h Fun c t i on">
<complexContent>

<extension base="tns :Function ">
<sequence>

<e lement name = "Al g or i t hmTy p e ">
<simpleType>

<restriction base="string ">
<enumeration value= "SIZE "></ e nume r a t i o n >
<enumeration value= "AVG_DEGREE "></ e nume r a t i on >
<enumeration va lue= "MAX DEGREE ">< / e nume r a t i o n >
<enumeration value= "MIN DEGREE ">< / e nume r a t i o n >

</restriction>
</simpleType>

</element>
</sequence>

</extension>
</complexContent>

</ >

<complexType name = "OBDAl g or i t hmFun c t i on ">
<complexContent>

<extension base="tns :Functi on ">
<sequence>

<element name = "Mod e l l e dEl eme n t Al g or i t hm" type="tns : OBDID"
minOccurs = "l " maxOccurs = "l ">< / e l e me n t >

</sequence>
</extension>

</complexContent>
</complexType>

Figure 50: XSD Snippet: Function derivatives

The BooleanExpression type can also be further split into the following subtypes:

BooleanJoin - Joins two BooleanExpressio n s , and is comprised of:

• Left Hand Side (BooleanE xpressio n)

• Right Hand Side (BooleanExpression)

• Join Type (can be "AND" or "OR")

Negation - Negates/inverts a given Bo oleanExpressi on; thus:

• Original (BooleanE xpression)

SystemFluent - Provides access to a system fluent or predicate, and can be thought

of as effectively a Boolean-only, potentially situation-bound version of the Fu n c t i o n.

It requires the following, size depending on the implementation:

• Parameter List (OB DVa ri a ble) (0-* elements)

175

< name= "Bo oleanJoin ">
<com plexContent>

"extension base= "tn s :B oo leanExpres s i on " .>
<seque nce>

<element name= "leftHandSi de "
type= "tns:Bo oleanExpressi o n " minOc cur s = "] " maxOcc u rs= "] ">

</el eme nt>
<elemem:. name= "r i gh t Ha n d Si de"

t y p e = " t n s : Boo l e anExpre s s ion " minOccurs= "] " ma xOccurs = "] ">
</element>
<element name= "type ">

<simpleType>
<rest riction base= "stri ng ">

<enumeratio n v a l u e = "AND">< / e n ume r a t i o n>
<en ume ration value= "OR">< / e nume r a t i o n >

</restriction>
</simpl eType>

</element>
<Isequence>

</extens io n>
"lcomplexContent>

<I >

<complexType name= "Negati on ">
<complexConten t>

<exte ns ion base= "tns :BooleanExpressi on ">
<seque nce>

<ele me nt name= "original " type= "tns :B ooleanExpressi on " mi nOccu rs= "] "
maxOccurs= "] "></ e l e me n t >

</seque nce>
</extens ion>

<lcomplexContent>
<lcomp lexType>

<complexType name= "Sy s t emFl ue n t">
<complexConte nt>

<extensio n base= "tns :BooleanExpressi on ">
<sequence>

<element name= "parameters " type= "tns : OBDVariable " minOc cur s = " O"
maxOc c u r s = " unbo un de d "></ e l e men t >

</sequence>
</extens ion>

<lcomple xCo ntent>
<lcomp l e xT ype>

Figure 51: XSD Snippet: BooleanExpression sub-types

Revisiting the original list of significant OBD elements (Signature, Technique and

Observer Behaviour Definition), there are just two ancillary elements that need their

XML requirements defining, and it is logical to discuss them together. They are both

connected to the Signature Invalidation Handling:

OBDSignaturelnvalidationHandler - This is the signature handler associated with

a signature. It is a special subtype of Si gnature Inva l idationHandler, which exists

to provide simple invalidation criteria for the associated Signature. It inherits

functionality from OBDExterna l isable , requiring the following extra functionality:

• Invalidation Criteria - The criteria for invalidation is a BooleanE xp r e s s i o n .

It is given special access to invalidation handler specific data via the next

fluent (see next item)

176

OBDSignaturelnvalidationFluent - This is a special extension of Sy stemFluent

that, in order to provide access to important data can be associated with a

OBDSi g n a t u r e l nv a l i d a t i o n Ha n d l e r . It allows the invalidation

BooleanExpression to contain references to the desired level of model change or

elapsed time before a signature should be re-evaluated. As such, it requires the

following functionality on top of SystemFluent:

• Associated Signature Handler (OBDldentifier or XML reference to the

OBDSignaturelnvalidationHandler)

• Type of condition (MODEL_CHANGE_EVENTS or TIME_MS)

• Value for condition (long integer)

< --_ .Y i>n: name = "OBDSi gn a turelnvalida tionHandler ">
<complexConte nt>

<extensio n base= "tns :OBDExternalisable ">
<sequence>

<e lement name="InvalidationCriteria " type= "tns :BooleanExpression "
mi nOccurs = "l " maxOccurs = "l ">< / e l e me n t >

</sequence>
</extension>

</complexContent>---
</"' f'\m~ f ..LY}Jo >

<comp lexType n ame = "OBDS i gn a turelnvalida tionFl uen t ">
<complexContent>

<extensio n b ase= "tns :SystemFluent ">
<sequence>

<element n ame= "i n v a l i d a t i on Han d l e r "
t ype = " t n s : OBDI D">

</element>
<element n ame = "c on d i t i on Ty p e ">

<simpleType>
<res triction ba se= "s t r i n g ">

<e numeration v a l u e = "MODELCHANGEEVENT "></ e n ume r a t i o n >
<e numeration v a l u e ="TIME_MS "></ e nume r a t i o n >

</restriction>
</simpleType>

</element>
<element n ame = "c on d i t i on Va l ue ">

<simpleType>
<restriction base="int ">

<minExclusive v a l u e = "O"></ mi nEx c l u s i v e >
</restriction>

</simpleType>
</element>

</sequence>
</ e x t e n s i o n >

</ c omp l e xCo n t e n t>
/complexType >

Figure 52: XSD snippet for SignaturelnvalidationHandler-related elements

177

8.1.2 The Finalised Compact Schema

Therefore, revisiting the main elements first discussed, it is a matter of formality to

produce the XML Schema now the relevant sub-elements have been defined. As a

recap, the final schema must contain correctly-specified XML elements for:

OBDS i gna t u re
OBDTech n i q u e
ObserverBe hav i o u r De f i n i t ion

Additionally, a structure that permits multiple instances of each element type is

required, along with the facility to reference a single Signature or Technique in many

Behaviour Definitions. The following snippet, Figure 53, shows the OBD Signature

and Technique definitions in isolation:

< -'e .n-I.. name- "OBDSignature ">..~ ''''''= .l' J;:;"" -

<complexCon tent>
<ex tens ion base="tns :OBDExternalisable ">

<sequence>
<e lement maxOccurs="l " minOccurs= "l " name="matchingValue "

type= " t n s: Function " />
<e lement maxOccurs="l " minOccurs= "l " name="matchingBool "

type="tns :BooleanExpression " />
<e lement maxOccurs= "l " minOccurs= "l "name="invalidationHandler "

type="tns :OBDSignatureInvalidationHandler" />
</sequence>

</extens ion>
</complexContent>

</ C!.n1:h'["~A~T >-
<complexType name= "OBDTechnique ">

<comp lexContent>
<extension base="tns :OBDExternalisable ">

<sequence>
<e lement maxOccurs= "l " minOccurs= "l "

name = " t ar ge t S e l e c t i on Al gor i thm "­
type="tns :OBDAlgorithmFunction " />

</sequence>
</extension>

</comp lexContent>
</complexType>

Figure 53: XSD Snippet: Signature and Technique definitions

178

In order to complete the XML-based OBD, in addition to declaring the whole

Behaviour Definition, a suitable element type must be defined to represent Signatures,

Techniques and single Definitions, along with permitting the cross-referencing

detailed above.

Firstly, this involves the definition of specific signature and technique reference

element types - OBDSignatureRef and OBDTechniqueRef - specialised elements

holding only the OBDldentifier and each still a sub-type of OBDExternalisable.

The new BehaviourDefini tion element type uses these new types as references to

the actual Signatures and Techniques.

The final new element type, OBDType, defines a structure that holds a number of

Signature, Technique and BehaviourDefini tion elements. The XML schema is

completed by the definition of an element "instantiation", of type OBDType. This has a

number of XSD key/keyre f constraints, indicating that the reference types described

earlier actually reference valid OBD Identifiers existing in the document.

The following schema (Figure 54) is presented surrounded in an XSD schema tag, but

without all of the previously shown XSD snippets for conciseness only; in the real

schema file, all the XSD definitions thus far would reside in the same schema in order

to make it complete and correct.

The rest of this chapter, following the referenced Figure, examines how the XML is

marshalled and un-marshalled between the OBD-specific code and XML, then

discusses the OBD-specific processing that is required to enable the OBD classes to

interact with the structural framework.

179

< >
<comp lexType name= "OBDSignatureRef ">

<complexContent>
<extens ion ba s e = " t n s : OBDEx t e r n a l i s ab l e " />

</complexContent>
</comp lexType>
<complexType n ame= "OBDTechniqueRef">

<comp lexCo ntent>
<extension b a s e = " t n s : OBDEx t e r n a l i s ab l e " />

</complexConten t>
</comp lexType>

<complexTy pe name="BehaviourDefinition ">
<comp lexCon t ent>

<extens ion b a s e = " t n s : OBDEx t e r n a l i s ab l e ">
<sequence>

<element maxOccu rs= "] " minOccurs = "] " name="onEventMatch "
type="tns :OBDSignatureRef" />

<element maxOc c u r s = "] " minOccurs = "] " name="withCondition "
type="tns :BooleanExpression " />

<element maxOccurs = "unbounded " minOccurs = "] " name="thenDeploy "
t ype = " t n s: OBDTechniqueRef " />

<element re f = " t n s :OBD " />
</sequence>

</ex tens ion>
</comp lexContent>

</comp lexTy pe>

<comp lexType n ame = "OBDTy p e ">
<seque nce>

<element ma xOc cu r s = " unb o un d e d " minOccurs = "] " name="signature "
type="tns :OBDSignature " />

<e lemen t max Oc cu r s = " unb o un d e d " minOccurs = "] " name= "technique "
type="tns :OBDTechnique " />

<elemen t maxOccu r s = " unb o un d e d " minOccurs = "] "
name="behaviourDefinition " type="tns :BehaviourDefinition " / >

</sequence>
</complexTy pe>

<e lement name= "OBD" type="tns :OBDType ">
<key name= "sigKey ">

<selector x p a th= " . /signature " />
<f ie l d xp a t h = "@ID " />

</key>
<key n ame = " t e c h Ke y ">

<selector x path= " . /technique " />
<fie l d xpa t h = "@ID " />

</key>
<keyre f name= "sigKeyRef" re fer ="tns :sigKey ">

<selector xpa th= " . / b e h a v i o ur De f i n i tion /onEven tMa tch " / >
<fiel d xpath= "@ID " />

</keyref>
<keyre f name = " t e c h Ke y Re f" re fer = " t n s: techKey ">

<selector xpath= " . / b e h a v i o ur De f i n i tion /thenDeploy " />
<field xpath= "@ID " />

</keyref>
</element>

<./ >

Figure 54: XSD snippet: References, Behaviour and OBO Definition

180

8.2 The Binding Processes

The purpose of XML binding is to associate one or more XML documents with a

series of in-code objects that adequately reflect the data in the XML. Usually this

process is referred to as marshalling when translating from in-code objects (the

content) to an XML string, and "un-marshalling" when translating an XML string into

a representative code object.

This section does not provide a detailed breakdown of XML-code interface

techniques, nor is it intended to give a review of the state-of-the-art XML serialisation

libraries available at the time. However, it does discuss the basic processes involved

in XML binding and gives a brief overview of the chosen XML serialisation library,

along with justification of this choice.

There are different models for managing the translation from XML string to code

content and vice versa, but the following diagram (Figure 55) aims to show the main

stages of several of the common library approaches. Some of the significant stages are

described briefly after the diagram. The processes included are split into the pre­

deployment actions, and those that happen during un-marshalling (XML~object)

iterations. Although the diagram and following text deal primarily with the un­

marshalling operation, detail is added to the explanatory notes to provide a basic

understanding of some of the considerations involved in the marshalling (i.e.

object-sXlvll.) operation too.

181

Un-Marshalling
Pre-Deployment ..

Programmer f::::::: ~ XML Parsing and S::::: ~['--.::: :::::::---- ... -........::::: ::::::---
Class ---------., ...

Syntax Validation
Creation XML Content

XML Data/File
Classes •,

~,,, ,
Element, ,• ,,

Validation,

Binding Binding
Customisation -------. Compilation *

r- - •
Mapping and U •,

-- ------- -----, Resolution
~ --::::::,,, ~ :::.---',, • Temporary ~

f::::::: ~ Marshalling
r----:::: :::----- Data Objects----.. -- - • Conversion * h •Bindings

,,,
Instantiation/

1___ _ _ _ ______ _ ________ __ _ _ ____

Population of
Objects

r-
~ ~-........::::: ::::::---

~...
XML Content

Objects

Figure 55: Generic view of Un-Marshalling XML
(Note: brief discussion regarding marshalling XML and its peculiarities also follow in this text)

Firstly, the pre-deployment points :

1. Binding "Customisation" - The programmer maps XML element definitions

to classes in the host language. Typically, most frameworks will do this for

language-included types , such as strings and number types , but this stage

allows any specific element types to be given a matching allocation in code.

ii. Binding Compilation (if required) - Some XML APls allow the programmer

to map every XML type to a corresponding host language class. This can

obviate the need for a complete XML schema in place beforehand and is

useful for prototype development and where the makeup is expected to

regularly change. However, it does place onus on the programmer to write

matching XML content classes, and to ensure that the class definitions match

the element definitions; a mismatch will have no alternative but to generate a

runtime exception.

182

Conversely, some XML APIs (e.g. JAXB [135]) provide a compiler that will generate

host-language XML content class files, based on the definition in the XML Schema.

This relies on having an XML Schema correctly written and in an appropriate format

for the chosen XML API. Whichever approach is taken, the result is that a set of XML

Content classes must be written and compiled that match the XML and Schema that

are processed at runtime.

The un-marshalling of an XML file/stream/string typically includes several of the

following stages:

1. Parsing the XML file (& Validation ofXML) - Checks the XML is correctly­

formed and all tags are populated correctly. If an error is encountered here, a

runtime exception is usually generated, indicating the XML is malformed.

11. Validation of elements - Validation that all elements match the types defined

the XML Schema (and/or the manually mapped classes), and that elements are

correctly populated with the expected data types in the XML string.

111. Resolution and Mapping of elements 5 - This feature may be omitted in less

sophisticated XML persistence methods, and its precise approach can vary

with implementations. It involves the process of determining where several

elements in XML should represent just a single object in the host-language. It

may also extend to allowing particular XML elements access to existing in­

code objects, by use of unique identifier as in OBD XML. The same concern

applies in the reverse of this process - marshalling. When one object is

referenced several times by different objects that will be marshalled, this

referencing must be satisfactorily and efficiently replicated in XML.

IV. Conversion (where applicable) - if a particular binding has been set up that

has specified a particular conversion routine, this can be set up here. For

example, improperly specified, or old (e.g. DTD) style schemas may declare

every attribute and element as having string characteristics, and some fields

need parsing and converting to numeric data types.

5 Note: Readers requiring further information relating to element resolution may wish to look at an
approach which tackles the issue of object references and inter-element references within XML. The
W3C's XPath language allows specification of a location within an XML document either absolutely
or relative from a particular point, such as that used to locate key/keyref elements in the OBD XML
Schema [136] James Clark and Steve DeRose, "XML Path Language (XPath) Version 1.0," in W3C
Recommendations, vol. 2009: W3C, 1999.

183

v. Instantiation and Population of code-side objects - the appropriate content

objects are instantiated from the content classes and populated with the data in

the XML, according to the bindings and conversions that have been set up,

and resolutions if found.

The prototyping for this research was implemented in two XML binding mechanisms,

following the pattern outlined above. The first mechanism is XStream [137], used

throughout the project. XStream is an open-source, Java-based XML serialisation

library available under a BSD licence. It has the following significant advantages:

• Simplicity of binding - XStream doesn't describe itself as a binding library;

rather a serialisation tool. As such, the level of specification is fairly minimal;

it need only map the elements' type names to appropriate classes. Given that

the design thus far has already produced suitable classes, this saved effort in

terms of Schema definition (and redefinition) during prototyping. Equally, it

avoids any in-schema duplication of inherited attributes as discussed in the

previous section's comments on DTD; the attributes only appear if they require

serialisation. The downside is that as the Schema is an optional part of the

whole process, the resulting XML is not always a valid, well described and

correctly-formed XML Document; although it is easy to read.

• Tidy handling of inter-element referencing/self-referencing - XStream is

configured by default to use the W3C-XPath Relative Location Path handling,

which made the XML relatively easy to understand for debugging purposes and

dealt with the issue of multiple references neatly and simply.

In comparison, built-in Java support for XML at the project start was inflexible and

clumsy to use. Java included support for several XML-access methodologies;

however the discussion concentrates on the binding methodology - Java Architecture

for XML Binding, otherwise known as JAXB. The first version of JAXB requires a

schema definition, compiling a set of special XML content classes that represent

XML document data. However, these classes contained calls to special reflective

constructors, and forced inheritance with proprietary JAXB classes.

184

However, JAXB version 2, released with JDK 6 [138] was a significant improvement.

While it still requires greater specification than XStream for binding, it made use of

other new-to-JDK6 features; supporting inline XML-serialisation annotations of code,
which greatly simplifies the binding operation, allows already-written data classes to

be made XML-compatible easily, and even generates suitable XML Schema for a

particular set of XML-annotated classes; an approach more suited to this design

scenario than previous versions of JAXB.

The next section examines what happens once the XML has been un-marshalled, and

discuss behavioural aspects of the classes outlined in the previous sections ­

specifically in Figure 37 and Figure 39.

8.3 Interpreting and Processing

This section discusses the outstanding concerns regarding the OBD subsystem's

method of acquiring, interpreting and processing its specification in conjunction with

the Structural Observer framework.

8.3.1 Acquiring the OBDXML String

The designs thus far have assumed that an XML string is available for processing;

overlooking the method by which new or updated XML would be introduced into the

system. There are several potential options available to manage the specification

XML string. Firstly, there is the prospect of re-reading the XML string from its

source whenever OBD objects are evaluated. However, this has the potential to

become computationally inefficient, particularly as the XML string could contain the

entire system specification; re-reading, re-parsing and re-processing it each time a set

of elements need re-evaluating is wasteful.

Therefore, once created, the OBD objects should be created from the XML, kept in

cache, and evaluated when they are required. The OBD object pool should only

revalidate itself as and when the source XML string has changed. XML change

notification could be managed by a variety of methods dependent on how the string is

stored or provided. Some examples follow:

185

• If the XML string IS contained in a locally-sourced file, then the

externalisation mechanism has to simulate its own change notification. A

simple implementation involves a threaded file listener, sleeping for a regular

period x, then polling the file; if the last-modified time/date has changed (e.g.

in Java, java. io. File#lastModified () provides this data), it must reload

and process it.

• Equally, if the XML string is located at a remote-source location, the

externalisation must again simulate change notification. However, in this

instance, last-modified file information may not be available. Therefore, the

change component must devise another method, such as string comparison, to

determine when to generate change events.

• Alternatively, the XML string may be provided by users/administrators or

other services, by way of uploading an XML-containing file to a specially­

written server. In this case, once the stream has been read; the server listening

thread could notify the externalisation of an XML change event.

8.3.2 Un-marshalling XML strings to OBD objects

In addition to the serialisation and de-serialisation processes outlined in the previous

section, the un-marshalling of XML to OBD type objects must consider the following

additional OBD-specific requirements:

• Allocation of appropriate TypeID to each OBD object. In implementation

terms, the XML-based element type is used to select the destination code

class, and the constructor for each class must ensure it is populated with the

correct TypeID, in order to support externalisation forms.

• Resolution of mapped OBDVariable derivative types; OBDVariable,

SystemFluent, OBDSignatureInvalidationFluent, and OBDAlgorithm

types. Each association must describe which object or collection it should

acquire the data from, and how it should acquire it (e.g. method name).

8.3.3 Piggybacking OBD on the Structural Framework

As discussed earlier in this chapter, the OBD subsystem provides an externalisation

approach to some of the Structural Framework's observation processes. However.

186

while units and classes have suitable functionality to provide for these processes; the

intended method of integration into the structural framework has not been specified.

Therefore, this subsection will clarify the interfaces between the Structural

Framework and the OBD subsystem's classes, and specify how they should interact in

order to facilitate the operation of a Structural Framework with the appropriately

determined degree of externalisation.

Firstly, Signatures, Techniques and the required OBD bridging:-

OBDSignature and OBDTechnique are OBD-specialisations of the Signature and

ObservationTechnique classes defined by the Structural Framework. Therefore,

dealing with these classes in isolation, the modifications required to the framework

are such that the Structural Observer is registered as a Signature Change Listener on

the OBD Signatures. Additionally, the Observer's SignatureTechniqueAssociator

must be programmed to obtain its list of Techniques and Signatures from the OBD (in

addition to its hardcoded ones). As such, the OBD external definition would be

contained to new Signatures and Techniques.

Several OBD support classes provide functionality for the OBD Signature and

Technique instances - this includes OBD's Signature Invalidation Handler, which is

again an OBD specialisation of SignatureInvalidationHandler, specifying its

associated Signature's invalidation criteria in terms of special OBD data. All of the

tests in Signature, SignatureInvalidationHandler, and Technique make use of

the OBDVariable (and its Function derivatives), and BooleanExpression.

BooleanExpression objects evaluate their contained statements appropriately to

produce a Boolean value from the joins, negations and contained comparisons of

OBDVariable and derivative objects, mapped as described previously.

Completing the OBD to Framework Bridge

However, even with this functionality, there are still missing links; the Technique

Associator does not receive instruction on how to associate the OBD techniques to

any particular Signature(s). As such, the new OBD Signatures and Techniques, while

included in the system's available items, will not actually do anything. In the

187

Structural Framework, the decisions leading from a Signature match to a Technique's

deployment are made by firstly the TechniqueSelector, then the

DeploymentCoordinator. Technique Selector selects a suitable Technique from

those that are associated, then Deployment Co-ordinator tunes the output from the

Technique to make it suitable for the current system state and current system policy

(e.g. resource constraints).

With OBD-associated techniques, much, though not all of this process is managed by

the appropriate ObserverBehaviourDefini tion. With OBD, the selected Technique

is chosen based on whether the BooleanExpression-typed withCondi tion attribute

evaluates to true, replacing TechniqueSelector's functionality. However,

DeploymentCoordinator must manage the deployment of the actual observers, as it

is ultimately responsible for co-ordinating which units need deploying and which

units should be un-deployed. Therefore, in order to support OBD, the

TechniqueSelector must be able to check with the OBD Coordinator to determine if

any BehaviourDefini tion objects exist that specify the matching signature. If so,

they must be evaluated, and if their withCondi tion evaluates to true, then the

associated Technique should be added to the TechniqueSelector's recommended

Technique set.

Therefore, a revised OBD-compatible TechniqueSelector is a requirement, along

with consideration to an OBD-compatible DeploymentCoordinator. The

DeploymentCoordinator may prioritise information contained in an OBD, or even

override certain definitions with hardcoded policy if necessary.

8.3.4 Runtime (Typing) Errors

As the OBD system introduces both an external input format and a form of dynamic

typing, the potential for runtime errors is greater than a standard POlO-based piece of

software. Constraints on the externalisation format (e.g. XML key/keyrefs,

requirements on the types of data) goes some way to mitigating these problems, but

they are to some extent unavoidable - for example, in XML, the Function Element

allows any number of parameters and the type checking necessarily occurs when the

appropriate OBD Function is called. Admittedly, an externalisation format with

188

greater complexity and customisability (such as a bespoke definition language) could

determine the expected types and encode this in the definition. Equally, the use of

variant types while allowing for flexible definitions; increases the possibility that a

type will not convert at runtime, leading to another deferred error situation.

Therefore, the OBD and its externalisation mechanism must be capable of dealing

with two main types of errors and determining the appropriate response:

Externalisation validation error - when the provided specification is determined

invalid before attempting execution. With XML, this may be an error that arises when

the document is parsed and validated against its schema. In this case, it is possible that

the external source (a user or other component) can be informed immediately with a

detailed error. The malformed part of the document must be discarded, but the system

must have an error-handling policy that determines whether to:

• Discard the whole document (i.e. ignore it, do not change current OBD)

• Discard the malformed part of the document, and load the rest, overwriting the

current OBD

• Discard the malformed part of the document, and merge it with the current

OBD

OBD execution error - this type of error can occur even when the specification has

loaded, parsed and validated according to its schema correctly. It may include an

incorrect number of parameters for a function, a parameter type that cannot be

converted into the appropriate type, or a referenced element that does not exist. In this

case, the domain-specific error handling policy has different decisions to make. It

must firstly determine how and where to log the error with sufficient detail, and then

has the following options:

• Ignore the failed element execution and try to continue if possible, stopping

otherwise.

• Ignore the failed element execution, and try to find a near alternative.

• Remove the failed element from wherever it occurs in the OBD, and continue

without its presence in the specification.

• Produce a default value for this type of functional error and continue.

189

System error handling policy can be produced to deal with these errors in a

satisfactory way, and in critical systems or systems where it is not envisaged that the

OBO will alter regularly, it would be possible to make the OBO perform a complete

validation on its new specification when one is provided. While this would not

eliminate the errors, it would at least report them in a timely fashion, increasing the

possibility of suitable alternative action.

8.4 Summary

This chapter provided an overview of the OBO externalisation mechanism, along with

a discussion of some externalisation-related concerns. The design can be split into the

OBO data with custom implementations, and the Externalisation Mechanism itself.

Although there is a small degree of overlap, they have separate responsibilities.

The OBO provides a method of external control to the Structural Observer

framework; the functional and Boolean OBO classes effectively form a basic OBD

language specification which allows predicate-based and functional comparisons to

create a basic Boolean-driven policy. The Externalisation part of the OBO takes

control of the mechanism by which OBO data is serialised and de-serialised, along

with controlling the method of updating, resolution and error handling.

It is worth mentioning In the summary that while the externalisation has been

designed with the aim of allowing flexibility and policy change during execution, it is

not a substitution for dynamic programming. While the OBO may exhibit certain

dynamic traits, such as flexible specification of policy, and aspects of dynamic data

typing; the OBO still relies on the implementation of underlying algorithms, fluents

and functional tasks and exposure via mapping. This feature simplifies OBO policy

development, and reduces the amount of runtime type errors that can be raised, whilst

still allowing reasonable flexibility.

The next chapter evaluates vanous aspects of both the structural observation

framework along with the OBO externalisation.

190

Chapter 9 - Evaluation & Case Study

The thesis considered an architectural overview of the framework in Chapter 4, and

specified the software along with detailed component design in Chapter 5 and Chapter

6. Finally, the framework OBD and its externalisation bridge are detailed in Chapter 7

and Chapter 8. This chapter provides evaluation details and results of key features of

the framework using both qualitative and quantitative measures.

A case study and experiment are used to assess both the generality and applicability of

the framework from an SE perspective, and the potential performance of components

under conditions that simulate their likely application.

9.1 Testing & Evaluation Methods

The evaluation method is used to assess the validity of the basic approach; that is, the

type signature based observation mechanism and associated framework. In addition,

the evaluation demonstrates the applicability of the method to systems that do not

wholly conform to the expected problem domain. For instance, how to provide

developer support for bespoke observation overlays creation for systems that do not

necessarily require all the functional components specified by the framework designs.

Therefore, the chosen experiment is used to assess how well the approach is suited to

the observation of large-scale dynamic systems by means of monitoring for specified

topological events; in addition, how well the software engineering design guide can

be adopted as needed to provide a typed observation overlay. The following

subsection will describe the conditions under which experiments were conducted.

9.1.1 Evaluation Conditions and Specifications

The framework developed through this thesis is not tied to a particular programming

language or methodology. However, it is intended for use as part of an 00 design

model and implementation platform, and makes use of design concepts, particularly

sub-typing and polymorphism.

191

The evaluation used for the experimental simulated component-systems environment

was conducted using an agent-based network simulation testbed. This was developed

for this research by extending the open source Repast agent-based discrete event

simulation framework [139]. Repast was selected primarily due to its open-source

availability and inclusion of basic visualisation tools.

Repast experiments and software evaluations were conducted on a small sample of

JREs, with the following specification being a fair representation:

• Intel P4 3.0Ghz or higher

• IGb+RAM

• Windows Platform (XP SP3 or Vista)

• Sun's JDK 1.6.0 for Windows

• Repast v J 3.0 6,

(Experimental code developed and debugged in the Eclipse IDE, v 3.3 and greater)

The case study following the simulation is based on a piece of software developed by

the author known as the Email Exploration Tool (EET), full details of which will be

included alongside the evaluation in Section 9.3. EET is also written in Java, yet

differs from the experimental work as it operates on real data, rather than a simulated

component set.

9.2 Quantitative Evaluation:

Identification and Deployment

As discussed throughout this thesis, the framework is built on several architectural

components. These components allow a traditional type observer pattern to observe a

large-scale, dynamic computer system. The complexity and scale of the system should

be hidden from the business-logic observers (the system-level) observers, by way of a

structural overlay that reacts to system change and deploys the system-level observers

in an efficient placement, and in accordance with system-wide goals.

6 This project deadlines and requirements did not allow or necessitate for the upgrade of the simulation
to use the new version of Repast ("Sim-phony") as it was only released towards the end of 2008.

192

Concentrating particularly on the structural overlay and efficiency of placement, this

is highly reliant on good performance of both the Structural Signatures (Section 5.2),

and the Observation Techniques (Section 5.3), along with their interaction with the

system model (Section 5.1). This section will examine the effectiveness of the

structural signatures particularly, along with the effectiveness of selected observation

techniques when used to protect a simply-constructed (yet large-scale) system.

9.2.1 The Infection Experiment

This evaluation example assesses the system's ability to keep an observed system

protected against an introduced infection. The protection mechanism, which will be

explained in more detail below, relies on the use of a set of pre-defined signatures that

specify structural characteristics associated with several types of topology. The

deployed observation strategy is entirely reliant on the indicated type characteristics

as provided by the signature. The infection is introduced on demand to a randomly

selected set of nodes, of size in (a proportion of the total nodes, n). The infection then

propagates from one node to another, with each transmission along the propagation

occurring according to a certain probability, p. A screenshot of the simulation's

network is shown in Figure 56. The significant visualisation features will be explained

in the following paragraphs.

The system is protected by an arrangement of observers across a certain set of nodes,

which are then immune to the infection. Immunity is used here to mean that these

nodes can neither have the infection nor spread it. Immune nodes are shown green in

the screenshot. Infected nodes are shown as red, while "normal" nodes are blue. The

size of the node indicates the number of connections to other nodes (the degree). Note

how even from the screenshot; it is clear that in this simulation the majority of

immunised are well-connected (i.e. high degree) nodes.

The propagation of infection is used solely as a measure of success of the

observation's deployment, as is described below. Infection does not alter an infected

node's connectivity, or its ability to spread infections that are propagated through it.

Network connectivity changes are made by user adjustments to the simulation's

193

"
11.

controls. The implementation of the structural observer model was assessed on two

main criteria in a system with a changing topology:

1. The cost of the selected observation strategy (i.e. how many nodes needed

observation within a particular strategy on a particular topology)

The effectiveness of protection (i.e. how many nodes were infected/clean after

the system was infected according to runtime parameters)

........ •

_.

•
•

III
-.: .- :-.. ..-.

; .. 1-- . ri'
: :
. -.:" -•

•

....-

.....
.-..

..

..

-r» » . . . - •
." . '.

• . -I ~ . '.. ."- .-•• • .. w1J ..-..-". -.",..- .._. -,. , -
.. . .-ii '...

..11:.-
1-: =..

-.... . -.
.. -rJI' • •

'" .'-
... I .. ~
:

....
•
.~

•-.
.
•.

Figure 56: Infection Simulation Network Screenshot

In accordance with the proposed framework, this experiment's observation control

was organised as an overlay. Specifically, the system operated this overlay level using

two levels of listening & management components:

1. Firstly, an exhaustive set (i.e. one at each system node) of simple low-level

listeners monitored the network for base-level topological events such as nodes

being connected or disconnected from other nodes. These low level listeners

form the basics of the Structural Observer part of the architecture, as discussed

at the start of Chapter 5. These listeners effectively provide the bridge between

the real system components and the structural model , represented as

194

ModelledElement and ModelChangeEvent classes identified in the system

design, (Section 5.1.1 and the associated Section 1.1 of Appendix I).

ii. Secondly, an observation overlay controller 7 node monitors each of these low­

level nodes. Each time a network structure change occurred, the controller node

was notified. This caused the identification phase to begin operation. This co­

ordinator is responsible for the Identification and Deployment of System

Observers (Chapter 5). Again, to provide a precise code-to-design mapping

between the experiment and Chapter 5, the controller takes the role of the

StructuralObserver (Figure 15 and detail In Section 5.1.1),

TechniqueSelector and DeploymentCoordinator all in one - as it makes

decisions regarding the high cost protective observation. The observer system re­

evaluates the network's structure against a set of topological signatures, then

selects the appropriate system-level observation overlay, and re-deploys it if

necessary (i.e. if the topological type had changed).

This system-level type of observer, from an architectural viewpoint, represented the

real (i.e. high-cost) resources required to protect, duplicate, or otherwise guarantee

important system elements. In the simplistic case demonstrated in the experiment, the

system-level of observer was represented by a set of infection observers - responsible

for controlling the spread of infection and their cost (i.e. number of deployed units)

were measured as detailed above. It is the characteristics surrounding the

identification of observed structure and placement of these system-level observers that

make up the assessment criteria for this experiment. The next section discusses the

results of the experiment on a variety of different system topologies, and presents

results according to the criteria defined above.

9.2.2 Results: Random, Regular and Scale-Free topologies

As described earlier, the main assessment criteria for this experiment were the cost

and effectiveness of the selected strategy. In order to provide a comparison of this

framework's effectiveness, it was decided to introduce two other monitoring

7 While there is overlap of responsibility into the roles of Observation Techniques (Section 5.3) and
Policies (Section 6.1), this experiment intends primarily to give an indication of the success of the
identification phase, and as such, detail related to the techniques and associated deliberation is omitted.

195

strategies that each acted in a predictable and simple manner. Therefore, this resulted

in the following framework implementations:

• Intelligent - This implemented the key parts of the framework - signatures

and observation techniques, and appropriate associations. It used the

structural-level observers to assess signatures, which in tum controlled the

observation technique used to deploy the system-level (i.e. infection­

protection) observers.

• Random - This did not implement any signatures and only a single technique.

Upon a system model change, the technique would simply deploy system­

level observers at a variety of randomly-selected component locations,

totalling ~ of the system's components. As such, the cost of this strategy was

always known to be at most ~ of system resources, yet the effectiveness was

variable.

• None - This did not implement any signatures or techniques, and as such, did

not have a cost overhead on the system. It predictably did not inhibit the

progress of the introduced infection, and is included as a control measure.

To recap, an experiment's iteration would consist of:

1. Constructing "system-maps" (effectively large graphs representing several

thousand interconnected nodes, representing system components),

2. Using the selected framework to control the observation

3. Introducing "infection" to the modelled system

4. Recording the results

A variety of iterations on increasing system sizes and differing system topologies was

conducted. This was followed by the current framework implementation being

unplugged and swapped for the next one, and the process would start again. The

following graphs show some results from the most striking set of iterations, obtained

when the experiment was running through its Scale-Free topology for the different

framework implementations.

196

This first graph (Figure 57) shows the cost of observation - in terms of the number of

deployed units at the system-level. Predictably, the None Strategy is the lowest cost,

while Random increases steadily with the size of the system.

Cost Comparison of Monitoring Strategies
3000

2500

~ 2000
"'0o
Z

~ 1500..
o.-c:o
:E 1000

500

o
500

- None

- Random

Intelligent

1000 2000 5000 10000

Figure 57: Cost of Monitoring Strategies (x: Network Size vs. y: Nodes Observed)

Interestingly, the Intelligent Strategy, while increasing with the overall size of the

system, is a very low-cost option. This suggests that the intelligent strategy is

potentially selecting observation targets efficiently. However, in order to make any

meaningful conclusions, the effectiveness of the observation strategy must be

assessed. The effectiveness measure calculates the effectiveness of the deployed

observers in terms of inhibiting progress (Section 9.2.1) of the hypothetical infection.

The measures shown on the graph in Figure 58 indicate the number of nodes infected

after the infection attempt; the plot for None indicates an open control - the effective

spread of the infection algorithm without any observer protection. Plotting the results

of the Random approach indicates the spread of the infection with observers placed at

a quarter of the system's components, demonstrating the effectiveness of constrained

but considerable resource-usage, yet insensitive placement of observers. The

Intelligent plot, showing the effectiveness of the structural overlay and its

identification, indicates that it stops approximately half the infection paths; when

197

compared with no strategy at all (None) . The results also show that it prevents 40% _

decreasing and stabilising towards 20% (as system size increases) - of infection paths

that exist with the Random strategy.

Effectiveness of Monitoring Strategies
60 0

5000

." 4000

~u
QJ
~

.: 3000

'"~
."e
Z 20 0

1000

o

- None

- Random

Intelligent

5 0 1000 20 0 so 0 10000

Figure 58: Effectiveness of Monitoring Strategies (x: Network Size vs. y: Nodes Infected)

While the Intelligent results do not appear as significant an improvement when

compared with the Random pattern, they still outperform it. This demonstrated

improvement is evident while using a small fraction of the resources of the Random

approach.

However, while this experimental approach effectively demonstrated the validity of

an automatic topology-dependent observation framework, it did not addre ss all of the

requirements that had been outlined in the suggested component architecture (Section

4.3). The next section will discuss some of the important limitations that directed the

rest of the research work.

198

9.2.3 Limitations of the experimental work

The limited-framework implementation in this experiment had limitations both in

scope, and as a basis for a scalable engineering approach; some of which have been

discussed during the previous results section. In summary, the significant limitations

that should be borne in mind when considering this experimental work are presented

below for reference:

• Ease of instrumentation - as the experiment was conducted within a controlled

simulation environment, there were no issues regarding attaching instrumentation

to the underlying "system", nor in terms of common event translation.

• Reliance on centralised "observation overlay controller" - the load associated with

the low-level structure observation was spread across the system, with basic

observers deployed at each structural element. However, resolution of these

observers' notifications, along with the decision-making processes required to

update the high-level observation overlay, were carried out at a single, centralised

point. This was based on the premise that only system-level observation

components needed consideration as regards computational cost. The overlay­

level observation components were considered to be provided for little, or at most,

no significant cost. While this assumption sufficed while demonstrating the

practicality of the basic approach, the centralised architecture would present

reliability and robustness concerns, along with scalability concerns as the

observed structure became ever more complex.

• With reference to the previous point, the small pool of potential signature matches

and deployment strategies ignores problems associated wi,th scaling to huge

signature databases. Equally, the experimentation does not consider the use and/or

impact of multiple positive signature matches. In the case of a system matching

several topological characteristics, the resulting observation would only be

deployed on a first-matched, first-deployed basis.

• Predetermined (i.e. hard-coded) response lacks flexibility; the potential

effectiveness that could result in combining responses for several topological

characteristics.

• The "special case" of Scale-Free topology and its predetermined Acquaintance

observation & protection response was shown to be extremely efficient and

199

effective. While research indicates [37, 57] that many complex structures are

observed to demonstrate this type of topology, not all topological characteristics

can be expected to have such a clear and favourable response.

Equally, it demonstrated the potential effectiveness and basic principles involved in

using a signature trigger for a given pattern of observation. In summary, the most

severe limitation to this early simulation approach was the lack of flexibility. This

manifested itself as an inability to customise the system to make the most appropriate

use of observation patterns not explicitly identified at design time (i.e. pre­

programmed).

9.2.4 Implications on "Observability"

Section 2.3 introduced characteristics of large-scale complex software systems. Of

particular interest were the concepts within Systems-of-Systems and ULS Systems, as

discussed in Section 2.3.1. To recap, these systems may - owing to the emergence of

new behaviour and structures - exhibit dynamic properties in the elements requiring

observation. This characteristic is replicated in this simulation environment by

runtime topology change in response to user input, while the observers must handle

this change via events noted in their structural probes - Modelled Elements.

At the end of the discussion on ULS Systems in Section 2.3.1, a note is made that

when dealing with dynamic system configurations, system monitoring is expected to

be tasked with assurance rather than assertions of behaviour and state. Therefore, it is

appreciated that a reduced-complexity or reduced-size observation set is not

necessarily going to have the capabilities to make absolute guarantees of full system

observation - herein termed "0bservability". However, in certain system domains,

such as safety-critical systems, the quality of provided assurance and level of

observability will need to be quantified such that the resulting system can operate

within the constraints applied to the safety-critical elements [140]. In these cases, the

deployment of observers will need assessing in order to determine the resulting

quality or coverage of observation. This may take the form of a system-wide bounded

uncertainty measure, or policy that specifies certain system areas that require

observation. As this experiment demonstrates, the observation deployment will

200

automatically adjust as the simulation alters the topology type, thus providing an

efficient coverage for the detected topology. However, outside of a simulated dataset,

can the observers' placement be reliably assessed?

To answer this question, the discussed framework should be considered a foundation

in the case of observability. The author believes there is no single solution that will fit

all requirements; however, the use of simulation provides some useful techniques

supported by the structural model to help bound uncertainty-in-observation within the

observed system:

1. Visualisation provides a useful tool by which the system model can be examined by

human operators for placement of particular observers, just as in this simulation.

2. Simulation of deployment and model analysis according to domain-specific

observability requirements. The structural observer components are responsible for

maintaining an exhaustive model of the system's structural elements via the Modelled

Element objects, while a Deployment Coordinator is responsible for managing the

model of each layer of system-level observation.

9.2.5 Further development of the experiment

The experiment, also reported in [114] and the associated technical report [118] can

be extended to adopt more advanced features of the framework and OBD

specification language (see Chapter 7 and Chapter 8). This allows for runtime support

for adjustable systems' observation and actuation. In particular, provisioning for:

1. Runtime-specifiable operation of the observation subsystem; in its simplest form, if

the triggers and/or behaviour were altered by another editor (even a human editor), the

observation subsystem would alter its behaviour to match the externalised

specification.

2. Alteration of the observation subsystem behaviour by one or more other

subsystems; such that the observation subsystem itself or other concerned parties

could (request to) alter the behaviour of the observation system

Thus the proposed extension to this experiment should test the effectiveness of the

method and the associated performance overhead and other issues incurred to support

this feature of the framework.

201

9.2.6 Summary

The experiments in the paper showed that the envisaged subsystem structure could

provide the basis of an efficient observation management subsystem for large scale

systems. When equipped with suitable structural characterising metrics and

appropriate guidance for co-ordinating deployment, it provided a workable framework

which responded accordingly to topological changes, identifying known topological

characteristics and deploying a cost-effective observation strategy accordingly.

Experiment results indicated that exploitable structural characteristics would benefit

greatly from tailored observation responses, and that required resource allocation

could be greatly reduced with no perceivable reduction in observation effect, and in

many cases, an improvement. Importantly, it demonstrated that the information

required to exploit system structure could be gained without necessitating a full,

predefined "designer's" viewpoint of the system; the notion of Typed Observation.

Importantly, it showed that a sufficiently-detailed model could be built at runtime

(albeit through exploration) and then kept updated, rather than continuously rebuilt.

The experimental work did admittedly utilise a degree of centralised control, but

identified areas in which distribution of computation could be introduced (such as

exploration) while retaining central co-ordination of model events and management of

distributed processing (e.g. factory object creation control and co-ordination).

As such, the experimental work was able to simulate some of the aspects of a large­

scale topological arrangement by treating a distributed component-based system as,

conceptually, a very large data structure which undergoes change - an abstraction that

guided the idea of Modelled Element-based structural bridge with an Observer-pattern

overlay. Additionally, the implementation of this simulation provided the basis for

future research work, some of which helped to guide the direction of this project and

was addressed during this research. In terms of experimental gains, it provided an

opportunity to implement classes to support the system and helped to complete the

architectural design of the system and to introduce suitable levels of system

indirection, thus allowing concerns to be suitably delegated among separate

processing units.

202

9.3 Qualitative Evaluation:

Applying the Model to "EET"

The Email Exploration Tool (EET) is an application to consolidate and visualise any

number of email repository files in a given social network, developed for computer

forensics analysis of social networks found in electronic communication [141]. Unlike

the simulated synthetic autonomic network type of experiment presented in Section

9.2 above, EET operates on very large-scale dataset of legacy data, loaded from

distributed collections of email files.

The observer model discussed throughout the thesis is intended for application to

systems of systems, which are known to exhibit scale-free connectivity patterns.

Equally, social networks often exhibit a scale-free connectivity structure (see Section

3.3). As EET operates on large-scale email repository data, the underlying structure of

the dataset being examined and visualised represents a social network; therefore

providing a suitable problem domain for the applicability of this work.

This evaluation will provide a qualitative assessment of the results of this research

work by applying the findings to the development of a new software utility for EET.

This will concentrate on the application of the scaling-management, complexity

management and runtime-alteration, their specific requirements along with how they

were implemented.

9.3.1 The Email Exploration Tool: Overview

EET is a Java-based Computer Forensics software utility, which allows users to

import a set of emails into the software and then visualise the email traffic according

to a variety of forensic investigation criteria. EET can import emails on a one-by-one

basis, or in "repository" form; whereby files are parsed directly from the user's email

client format. Partial support is included for all known email repository formats, but

full support in the referenced prototype is limited to Thunderbird email data files.

During email loading, basic efforts are made to resolve duplicated email content and

senders from duplicated or similar email aliases. The net result of the import process

is a graph-type model whereby senders and recipients are connected by their joint

203

email traffic. Further detail regarding the EET software can be found in Appendix II.

A screenshot is shown in Figure 59; the software is demonstrated having loaded its

dataset, presenting the contents according to the selected settings.

LmAl1bl)~&ttOn l ool-lL I ~ J. Ib (LO JOJ/. tIS, I OfenfkS)

.. ':~

e-Jc_...-·---__--~

..odEmelA.

ExllO't to P.,.k

ClearItelwo1l,

_<dli:lnCatrols - - - - - --,

P OrawEdget

Ii' Draw Edge Ttlckness

j;;' t«JdeTransparel'l:'f

Nod.S1r"g: JAU. ..:J
Node.....u, I ICl£'oER_C1RCllAR::::J

Fen ~l': I 9±l
E<i;loWb~s I ~±1

Nt-'-5t.tsContrcIJ

fbnbe,"'~ 334

.-.-.af-......1I18
flloo IIp<JoelI COO037

BSt ForeO$ICS

Figure 59: Email Exploration Tool Screenshot

9.3.2 Model Application: Overview

Despite this software operating only on a single machine and dealing with

functionally simple components, it was considered a relevant application for this

framework as it is managing observation functionality - albeit with a human end-user

as the ultimate Observer. Additionally, this evaluation will demonstrate the manner in

which the programming model is capable of managing and resolving:

• Scale - the examined datasets can potentially consist of many different emails

(forming links / edges) between senders and many different senders/recipients

(nodes / vertices) in an investigation's email network.

• Complexity - complex social structures that undergo change - firstly as new

datasets are loaded, and secondly, as the "perspective" of the system

undergoes change - i.e. the settings that the user inputs as regards importance

in the "observed" emails.

204

• Runtime alteration - the user selection preference was demonstrated via the

alteration of OBD-XML which was re-interpreted by the system and reflected

in the visualisation.

As such, this evaluation will concentrate on a brief evaluation of the design involved

in the following components of the observation framework and its OBD counterpart:

• Simple ModelledElement wrapping functionality - the design of the EET­

specific Modelled Element class will be explained through a basic coverage of

its responsibilities to and interaction with the EET data.

• Algorithms - basic algorithms required to support the social email networks

will be described, with their implementation in code and exposure via the

observer's OBD mechanism.

• Signatures - design for the signatures will be specified, along with some detail

regarding their implementation.

• Techniques - the limited application of observation techniques - in this

software as a method for visualisation selection only - will be noted, along

with an explanation of their necessary association with the OBDXML.

• OBDXML - The XML-based OBD will be used to demonstrate the manner in

which the various observation rules are linked to the user interface, in order

that the underlying logic can be altered to represent the current visualisation

selections.

9.3.3 Modelled Element: Core EET Support

As described in Section 5.1, the programming model defines Modelled Elements as

providing the adapter between the real system under observation and the observer

framework itself. Within the EET scenario, the Modelled Elements provide the

interaction between the EET data and the observer framework - which itself provides

visualisation feedback.

205

Therefore, in EET, Modelled Elements are synonymous with senders and recipients _

effectively email addresses. Therefore, the class used to represent email address must

either inherit from Modelled Element, or if this is not possible, must be wrapped by a

specialist subtype of the Modelled Element class that can perform the necessary event

functionality. Modelled Elements must generate events when connections are added

and removed.

As this system is being designed around the observation framework, it is possible to

have the main data class (i.e. email senders/recipients) simply extending Modelled

Element and firing events when necessary. In terms of required events , this translates

in EET to a sender/recipient having a new email (i.e. either sent or received) and

therefore another sender/recipient email address associated with it. The alternative

approach (i.e. a prewritten class that needs a ModelledEl ement adapter) would

require a wrapping ModelledElement class capable of capturing the prewritten

class's events, then translating and forwarding them in a ModelledEl ement-agreeable

fashion. In the prototype version of EET, new data sets can be loaded, but they cannot

be individually unloaded, so the core support required is only to generate events for

new links (as an existing email will not be removed). As such, support for the basics

of the add event is shown in Figure 60 alongside the visualisation-specific graph

manipulation.

public class EmailAddressNode extends ModelledElement
{

public void connectTo(EmailAddressNode node, Email email)
{

II if (node != this)
if ((getOutNodesCount () < getMaxConnections ()) I I

(getMaxConnections() == -1))

{ .
EmailEdge edge = new EmailEdge(this, node, emall);
edge.setColor(Color. LI GHT_ GRAY);
this.addOutEdge(edge);
node.addlnEdge(edge);
ModelChangeEvent mce = new ModelChangeEvent(this, ModelChangeType . ADD) ;
fireEvent(mce)

}

}

Figure 60: EET Code Snippet: "Add" Model Change Event generation

206

As the system is providing a visualisation service, the notion of an observer

deployment is subtly different to that in the discussed self-managed systems. EET's

high-level Observer - so to speak - is the human operator, and as such, EET Observer

Deployment is concerned with making prominent the selected-for-observation Email

Address Nodes. As discussed in Section 6.1.3, deployment and un-deployment is

managed at the Modelled Element via a pair of methods, suitably parameterised if

necessary. As such, the Email Address Nodes' implementation of the deploy ()

method causes the node to highlight itself within the visualisation and the

undeploy () method causes the node to return to its normal state. Additionally, the

deploy () method is parameterised such that the Observer Deployment Co-ordinator

can specify the extent of node highlighting; allowing the visualisation to reflect the

number of emails sent, or any other measure of importance of a given Email Address

Node, based on the Co-ordinator's knowledge of others.

9.3.4 Developing Algorithms, Signatures and Techniques

Signatures and Techniques were described in Sections 5.2 and 5.3 as the components

that provide the system characterisation and observational response, fitting broadly as

the specification for the Event and method for the Action in the ECA model,

respectively. Implementations of Algorithm classes provide results, in terms of sets of

Modelled Elements (in this case, Email Senders/Recipients) translated based on

algorithmic and parameter-specific criteria. They can therefore be used by both

signatures and techniques to reduce: the complexity or amount of XML-based OBD

specification that is required, the amount of duplicated algorithmic logic that must be

written, or both.

It is beyond the scope of a short evaluation to go into a full breakdown of all of EET' s

features however this section will examine one of the visualisation's features, based, ,

on a recurring theme throughout this thesis - Scale-Free Connectivity - and how it is

supported by the observation framework.

• Acquaintance Selection - makes use of the Acquaintance Immunisation and

related techniques, as discussed in Section 3.3.4. This identifies senders and

recipients that form the "hubs" of the email communication network in the loaded

email repositories. This is implemented as an algorithm in order to simplify the

207

externalised specification and to allow its use by both signatures and techniques.

A simplified version of Acqua intanceSelectio nAlgori thm is shown below in

Figure 61:

public class AcquaintanceSelectionAlgorithm
implements ModelledElementAlgorithm

private double prob ;

public AcquaintanceSelectionAlgorithm(double probability)

public Collection<ModelledElement>
transformSet(Collection<ModelledElement> in)

Collection<ModelledElement> interrogated
selectRandom(in, in.size() * prob) ;

Collection<ModelledElement> neighbours =
selectRandomNeighbours(interrogated);

return neighbours;

Figure 61: EET Code Snippet: Simplified Acquaintance Selection Algorithm

Using any algorithm from a signature or technique is fairly self explanatory; the

algorithm object is instantiated with the correct parameters (in the referenced figure,

the parameter is the appropriate probability), and then its method transformSet is

invoked on the collection of Mode l ledElements that requires translation. As the

evaluation deals with a relatively simple visualisation tool, the use of signatures and

techniques is also simply described. Continuing the case of the Acquaintance

Selection algorithm, the associated Signature and Technique provides the following

support to the application:

• An appropriate Signature IS specified that uses the Acquaintance Selection

Algorithm in conjunction with the Acquaintance Nomination algorithm (Section

3.3.4) to detect the presence of scale-free connectivity in the email network.

• An appropriate Technique is also specified using the same algorithm which

produces a limited-size model , based directly on the results of the algorithm.

The Signature and Technique are then associated, as described in the next section. A

simplified Deployment Co-ordinator is then responsible for creating and managing the

208

observers at each Email Address Node via the deploy () and undeploy () methods as

discussed in the previous section on Modelled Elements.

9.3.5 OBDXML Governance in EET

The XML form of Observer Behaviour Definition (OBD) is used to specify the

behaviour in a runtime-examinable and alterable manner. OBD is described

throughout Chapter 7 as a mechanism by which the behaviour of the observer can be

specified through the instantiation of various OBD objects, rather than embedded

entirely in hard code. OBDXML utilises these objects but specifies their makeup in

XML, allowing runtime alteration and a reasonable degree of human-readability of

the observer system's operation.

The EET software can be operated in either user-configurable or automatic mode. In

user-configurable mode, the operator selects the desired visualisation method by

setting the appropriate controls, shown on the left-hand side of the screen in Figure

59. In automatic mode, the software evaluates the OBD and uses this to determine

Observer (and therefore visualisation) behaviour. In both cases, the resulting

visualisation is produced by the application of Techniques to select a set of Email

Address Nodes, and the use of the Deployment Co-ordinator to enact the required per­

node adjustments.

The behaviour of EET's OBD was initially specified by hardcoded Technique

Selector and Deployment Co-ordinator, then extended to use the proposed OBDXML

format. Figure 62 shows a simple example, specifying a single OBD and the

Technique it uses referring to a common (hardcoded) algorithm as in the previous

section. Associating several techniques and signatures in this way provides at a

minimum a flexible mapping between them, whilst allowing for additional governing

logic to be specified in a form that is easily inspected and altered at runtime. Thus,

visualisation behaviour under OBD control could still be customised just as in the

user-configurable mode though with the added benefit of automated visualisation

changes in accordance with the currently specified OBD.

209

However, the OBDXML Signature has been omitted from this snippet due to its

verbosity, though is included in Appendix II (Section 11.1). Comparison of the XML

snippet in the Appendix with that in the Figure below demonstrates how OBDXML is

compact and understandable when used simply to map between hardcoded elements,

though becomes more verbose and deeply-nested, reflecting the binary-tree structure

of the operators when the specification involves further computational direction.

<tns :techniques I D= "Ac qua intan c e lmmun ise " >
<tns :targetSelectionAlgorithm I D="Ac qua i n t a n c e Se l e c t Re f " >

<tns :ModelledElementAlgorithm ID= "Ac qua i n t a n c e Se l e c t i on ">
<tns :parameter>SYSTEM</tns :parameter>
<tns :parameter>O. 3</tns :parameter>

</tns :ModelledElementAlgorithm>
</tns :targetSelectionAlgorithm>

</tns :techniques>

<tns :behaviourDefinitions ID= " Sc a l e Fr e e " >
<tns :onEventMatch ID = "Ac qua i n t a nc e Si g na t u r e " / >
<tns :withCondition I D= " s i mp l e Tr ue " >
<tns :parameter>t r ue</tns :parameter>

</tns :withCondition>
<tns :thenDeploy ID = "Ac qua i n t a n c e l mmun i s e " / >

</tns :behaviourDefinitions>

Figure 62: EET Compact OBDXML Snippet

9.3.6 Summary

Section 9.3 provides a brief evaluation of the application of a selection of components

from the observation framework; applying the model to a problem that may initially

have been considered outside the proposed domain of the framework. In particular,

this evaluation demonstrated the use of:

1. Modelled Element as a method of wrapping existing system elements

(including data) or providing a base on which to model.

ii. Modelled Element Algorithms as a method of describing collection-translating

algorithms and their reuse within Signatures and Techniques

111. The externalisation support for OBD (OBDXML) and how it provides easy

mapping between signatures and techniques, thus effectively external ising the

technique selector. Additionally, the relatively high size of the OBDXML

string required to support even a simple set of comparisons or mathematical

operations was noted.

210

Managing and visualising large data sets that consist of complex arrangements of

connectivity is an example of how the framework can be applied in a

traditional/small-scale software engineering and design environment. Application of

the framework's design guidance to EET enables it to successfully produce a

visualisation overlay; this displays a complex social network that is contained within

one or more email repositories.

Additionally, OBDXML was used in a real specification situation: simple

visualisation behaviour for an email-based social network according to the results of

EET algorithms. This behaved as expected, resulting in a flexible runtime

environment, whereby the behaviour of the overlay can be adjusted at runtime ­

according to social/email characteristics that are deemed important.

211

9.4 Evaluation Summary

This chapter has described the methods of evaluation used in this research, starting

with a brief explanation of the environments and methods used. The evaluations

presented in this chapter took a two part approach to evaluating the success of the

observer programming model and the framework's approach.

The first part of the evaluative approach assessed via controlled experimentation: the

potential success of the signature and technique approach as an underlying control and

adaptation model for observer deployment and co-ordination. This used hypothetical,

generated "system models" to quantify the level of observer deployment under

different strategies and to quantify the effectiveness of limited, targeted observer

deployment. This provided positive results within the simulated environment along

with highlighted areas for improvement in the model. This evaluation made some

simplifications in its approach, which were detailed in Section 9.2.3. While some of

these provided useful feedback governing the further development and generalisation

of the model, some - such as the component-specific instrumentation - were

considered outside the scope of this research and have remained abstractions in the

proposed model; via the Modelled Element adapter.

The second adopted a qualitative approach whereby the applicability of the

programming model was evaluated. The model was applied to the forensics software

developed by the author, EET; demonstrating the generalised nature of the model. In

automatic OBD mode, the underlying observer control model was adapted to control

elements within the user's visualisation; thus highlighting certain Email Address

Nodes according to their importance as defined by:

1. The topological characteristics outlined in a set of signatures

ii. The visualisation response, as defined by a combination of the matching

technique and the control (in this case, visual sizing on degree) embedded in

the system's deployment co-ordinator.

212

Chapter 10 - Conclusions and Further Works

The research described in this thesis is centred on the development of a global

observer software design pattern, and associated programming model and framework.

The framework aims to present a method to manage some of the problems associated

with large and complex software systems, through mathematical abstraction, layering,

and importantly, modelling in such a way that the system-level observers can attach

and operate in a standardised manner, absent from the concerns of scaling.

The next section discusses the motivating factors for this research, and re-examines

the approach used. This chapter and the thesis concludes by outlining some specifics

in which the author considers further research may deliver worthwhile results and

developments in the area.

10.1 Motivation and Research Approach

Software systems continue to evolve in complexity; in addition to increasing product

complexity, evolving software development approaches have contributed by

increasing system organisational complexity yet vastly decreasing development time.

Increased component reuse, composition and service-based systems, via levels of

indirection, create process workflow paths necessarily abstracted from those using the

system.

This creates a great number of issues for software engineers providing management,

debugging and configuration tools for these systems. These can range from technical

concerns surrounding interoperability and interfacing through to acquisition and the

algorithmic complexity in interpretation of policy governance and control; the

problem area encompasses many different fields of research. However, the underlying

objective of this research has been to approach the problems of large-scale,

complexity of structure and resource constraints upon these large-scale systems.

213

In order to attempt to tackle this problem, this necessitated an investigation of the

following research areas:

•

•

•

Identifying the nature of the problem: In order to start to develop this research,

in common with any research, it was important to identify some of the key aspects

of the problem domain. With complex and large scale systems, it was clear that

there were a variety of aspects to consider, such as component interoperation,

service quality guarantees, problem resolution and AI type approaches. For this

research, the author chose to concentrate on the aspects of reliably modelling and

monitoring large scale systems, along with extracting an engineering-style

approach to this problem; ultimately aiming for the specification of a

programming and software development model. It was also important to be able to

assess other research approaches to complex system management in order to avoid

duplication of research effort.

Examining commercial and research approaches to software system

complexity: investigating some of the existing mainstream approaches to this

problem helped to guide the research inasmuch as areas of weakness or omission

could be identified. What became apparent was that autonomic computer system

design centred on policy-based control, propagating downward to system levels

that could effectively function autonomously with only basic rule guidance.

However, methods to achieve that translation between system goal and component

behaviour have not been specified, nor the mechanisms by which the underlying

control loops would operate. Therefore, the research investigation took the

direction of examining modelling and observation techniques in order to provide

one of the required underlying support elements.

Characterising complex and large-scale systems: understanding the challenges

that are present in complex and large scale systems was a key component in

beginning the architecture of a framework to help overcome these challenges.

Complex behavioural characteristics such as evolution and emergence were

identified, along with examining frequently-occurring structural characteristics

such as scale free connectivity. In particular, understanding the characteristics that

present obstacles to traditional modelling approaches helps to develop modelling

methods that can better deal with, and if possible exploit these aspects.

214

• Abstract modelling of systems: based on the notion of viewpoint-dependent

complexity, an examination of a variety of approaches to reduction and

abstraction-based modelling provided an overview of several different approaches

to complexity reduction. This included traditional top-down functional

abstraction, along with introducing methods of mathematical modelling of

systems:

o Mathematical modelling of large connectivity structures: While the

functional abstraction approaches provide logical, hierarchical overviews,

they generally rely on decomposition requiring a viewpoint with full

understanding of the system and its behaviour - creating more granular,

specified sublevels from abstract part-specifications. Therefore,

investigation of mathematical modelling allows reduced-size modelling of

systems by statistical methods, or graph-theory-centred approaches.

Examinations of graph theoretical approaches in particular allowed further

explorations of some of the complex connectivity descriptions, such as

Scale Free connectivity, along with their characterisations, and exploits,

such as Acquaintance Immunity. This provided scope for the proposed

Acquaintance Nomination metric as a basic trigger for a particular type of

mathematical exploit of connectivity structure.

Determination of sufficient basic information in these fields led to a period of

simultaneous design and experimentation, which prompted the following lines of

enquiry in terms of architectural and further design considerations:

• Experimentation Environments and Requirements: Experimentation was

proposed as a method to determine the validity of the whole observation­

triggering signature approach. Given the requirement for control over

experiments, and the need for repeatable structural characteristics,

experimentation in closed simulation environments was identified as the preferred

way to proceed. The ideal simulation environment would provide support for

large-scale data structures that can be changed during execution, along with

sufficient visualisation support to provide user overviews of the systems

undergoing trial, along with results of the trials.

215

• Relevant Software Engineering Design Techniques: A limited-scope

application of structural exploitation presented in simulation form is of research

value. However, in order to development the usefulness of the underlying

techniques, it was necessary to a) generalise this approach, and b) present it in

such a way that it would be understandable and usable by software engineers,

from analysis stages through to implementation. Therefore, this work used the

Observer pattern as the design mechanism providing the base for adaptation, and

included other relevant good-practice approaches; all of which exposed the need

to adequately model the system structure needing observation:

o Incorporating and Modelling large mathematical structures in code:

While the purpose of the framework is to effectively reduce complexity of

the observed system, that does not relieve the obligation for the observer

subsystem to access and manage information - across the entire system.

Therefore, a suitable method was required in order to co-ordinate this

information and put it to use in checking signatures for observation

triggering. This model-based observation consolidated the concept of

typed observer recognition, and eventually, deployment.

As the designs were refined and finalised, the issue of runtime dynamism, which

eventually led to specification of the OBD, became more important. This required

research investigation into the following areas:

• Approaches to runtime-dynamism: The approach to runtime adaptation of

observation was to consider systems in terms of their identifiable characteristics,

rather than via full specifications of expected systems and the desired observation

response. However, even by specifying selection and deployment components; the

author accepted that given the wide variety of complex arrangements, this may not

provide sufficient support for runtime adaptation. Therefore, research was

required to briefly investigate mechanisms that would support runtime dynamism

of code. The significant areas investigated included:

o Domain-specific meta-programming and code (re)generation ­

describes, in this context, a variety of approaches to meta-programming as

an applicable paradigm for the OBD specification; including the definition

216

of class specifications or even templates that are then used at runtime to

generate the executed code. Several variants of the meta-programming

approach were considered, including the following points.

o Recompiling and "Hot-swapping" is the process of code generation

either in the manner described above, or via standard development

channels, recompilation and exchanging it for executing/executed code on

the host machine. While this approach has the potential to improve

performance in the longer term, and allows greater magnitude of change to

a running system, a detailed evaluation was considered outside the scope

of the thesis, in order to concentrate on full specification of OBD

attributes.

o Open access via reflection - allows software to inspect and modify its

own program code. In 00 this approach typically makes use of object

representations of code units such as classes and methods. This work

dismissed reflection as a primary access method to dynamism due to the

risks to security and excessive complexity; however, it is used to facilitate

some of the chosen methods of exposure.

o Higher-order functions - describes primarily, in this context, the issue of

functions that return other functions in their return set, rather than just a

value. While this has greater implications in the context of dynamic

software, it was discussed with relevance to the explicit exposure of easily­

customisable system predicates and functions via OBD, hence the focus on

functions returning functions.

o Interpretation - allowing the software, at runtime, to interpret and

execute externally-specified code - be it a near full-set language, a

reduced-set language, or even a precise specification. It is a useful method

of dynamism as it can be extremely flexible, but brings disadvantages in

the form of complexity, security risks, and ease-of-maintenance plus

performance concerns. OBD opted for a reduced-set language to try and

mitigate some of these issues whilst providing a degree of runtime

dynamism to the observers.

217

•

•

Externalisation methods and mechanisms: were considered a necessary topic in

order to describe, understand and appreciate the processes involved in an

externalisation. The issues to tackle include taking a piece of executing code,

exposing elements of its state to an external (i.e. non-host language) source,

potentially allowing change, and then interpreting the changes and reflecting them

in execution.

XML as a serialisation format: was discussed during the work in Chapter 7 as a

simple demonstration, with widespread usage and thorough language support, in

order to use as a soft code external specification. While XML has both proponents

and opponents in the software development world, it provides a convenient and

human-readable form in which external specifications can be demonstrated.

10.2 Summary of Thesis

This research work within this thesis is centred on the concept of resilient self­

managing software, with particular focus towards addressing this problem in large­

scale, complex system-of-systems architectures. Observation is crucial in the

management of any software system, and as such, this forms the motivation for the

work.

Trends, particularly as discussed in Chapter 2, indicate that software will continue to

increase in complexity, and these software systems will continue to need management

and configuration. Commercial research proposals include ideals of self-managing

software; entirely abstracting the underlying system complexity such that the

administrator's management tasks are greatly simplified, and wherever possible,

managed by the system itself. However, many of these proposals take for granted the

concept that the balance between autonomy and control has been struck perfectly; the

system configuration is sufficiently detailed yet not overwhelmed with confusing

constructs.

However, providing a simplistic abstraction of a complex model does not usually

translate to a genuine removal of complexity; it is hidden, apparently reduced, and

organised in such a way as to make it appear simple. Details are omitted, and levels of

external control are reduced. It is the autonomous nature of the proposed next-

218

generation software that is supposed to manage this balancing act. Therefore, at the

system-level, methods must be in place to reduce the apparent complexity

manifesting at the next higher level, while still recognising and interacting

appropriately with the local complexity at the lower level. Importantly, these methods

must be able to operate in a variety of conditions, on a changing structure, whilst

remaining efficient.

The potential of graph theoretical techniques as a method to manage the scale and

structural complexity of a system is clear; both in terms of the efficient identification

of characteristics, and of special features and areas of the structure that are considered

vital, abnormal or otherwise significant. The discussion of Scale-Free connectivity led

to research examples studying interesting perspectives on the emergence of the

connectivity, its unique features and the criticality of structures with such

connectivity. Additionally, it led to the development of a novel metric that utilises

existing work in Acquaintance Immunisation.

Therefore, addressing the stated problems, the thesis has presented a programming

model and framework, taking the form of overview architecture, subsystem level

designs, and implementation guidelines. This framework aims to help software

engineers develop software components that can deal with these system-level issues

of scale and complexity. The approach results in an adaptive overlay of observation

components that can adequately characterise or type the configurations they are

dealing with, identify key areas and suggest suitable observation exploits or

techniques, and select them according to defined policy. This overlay is intended to

support the implementation of system management, monitoring and visualisation

components.

Additionally, given the evolving and emergent nature of the software systems under

investigation and those likely to develop, the need for a degree of runtime adaptability

has been identified. The framework facilitates this through the Observer Behaviour

Definition (OBD) design concept, specifying the behaviour of the observer

(Signature, Observation Technique and mapping policy) in an ECA-like manner. The

OBD forms an externalisation-friendly description, which has been externalised into

219

XML during this work; though the designs encourage a loose coupling thus permitting

any suitable externalisation mechanism's use.

The validity of the proposed typed observation has been evaluated by both

experimentation and case study. A simulated Repast environment was used to test the

likely performance of reduced-cost observation and to assess the improvements that

could be gained by selecting targets based on the observed topology. The

programming model was then incrementally applied to the development of an email­

collating forensics visualisation tool; thus demonstrating both the method of

utilisation for these design methods on a software system along with the framework's

flexibility in terms of applying the model to systems that exhibit only a few of the

characteristics discussed throughout this work.

10.3 Significant Contributions

The research work contained in this thesis has led to the specification of a

programmmg model, aimed to assist engineers in moving toward autonomic

management of large-scale and complex systems. Early on in the research, it became

clear that Autonomic Computing is a large research field in its own right, attracting

significant research input from IBM, and bringing together several research

communities outside of computer science. As such, given the author's position as a

software engineer, the research focused towards the specification of technical and

programming aspects concerning the management aspects required to support

autonomic control in software.

One significant concern identified surrounding these management aspects was the

matter of observation and monitoring. As such, the programming model looked to

address the issues associated with observation of a large-scale complex system;

particularly issues associated with management of resources (and resource costs) ­

typically associated with the traditional exhaustive approach, and those associated

with approaches that relying on unrealistic quantities of design knowledge. Equally,

the model specification was approached with a conscious awareness that research into

complexity within self-managing systems very often led towards low-level,

biologically-inspired, emergent, self-regulating systems that could maintain a state

220

with true autonomy. At the other end of the microscope, overall system control is

often discussed in terms of well-specified policy and goals; the two levels often seem

disconnected; the engineering problem of governance and control vs. the art of self­

regulation and autonomy.

This project has approached the problem retaining the model-based design of the

observer system with an understanding that an exhaustive model of systems

undergoing observation is not a feasible approach for observing large-scale or

complex system. As such, the approach taken has concentrated on specifying the

relationships between a logical "observer" and its actual system-level monitoring

points within the system. The programming specification has done so in a way that is

intended to support efficient reduced-set observation, along with evolution and any

form of system change. This was enacted through both characteristic-based typed

observation and the facility to adjust the measures and associations the observer

subsystem uses at runtime, without recompilation. It necessitated the following

significant contributions, as outlined originally in the research aims:

Identification of significant issues that complicate the management of software

(and software engineering as a whole) of a large scale and with complex system

structures: Issues connected with structural complexity, including evolving structures

and a lack of design-time specification present challenges that complicate traditional

approaches to management; specifically monitoring and observation. Additionally,

challenges presented purely by the size of the system being monitored create issues

regarding co-ordination of the system's units, resource availability vs. requirements

and the difficulty in creating an exhaustive observation model.

Investigation into methods that can integrate complexity management and

software engineering: Methods discussed include ideas mooted under the Autonomic

Computing umbrella, including the self-regulative and managing approach; specifying

normative overview control of otherwise-autonomic system-level units [9, 142].

Additionally, mathematical modelling of structures and relevant software engineering

techniques were collated in the research stages:

221

•

•

Collection and assessment of complexity management techniques: Autonomy

at the lower levels is often compared to biologically-inspired computing

paradigms [85, 143-145]. Equally, observed characteristics of complex topologies

can be exploited to reduce requirements for exhaustive monitoring, such as the

Scale-Free and Acquaintance-based approaches [37, 43, 57, 109]. However,

joining this autonomy with the software engineering concepts of control,

parameters and regulation presents the issue of exercising control over this

autonomy and self-regulating behaviour. As such, modelling approaches based on

mathematical exploitation [39, 101] allow for the adoption of model-based

approaches that can overcome some of the identified scaling issues.

Collection of relevant software engineering practice: The issue of relevant

software engineering design practice was effectively split into two separate

categories; those investigated in preliminary research, and those during system

design. The first was a consideration of the architectural approaches and design

patterns that support the notion of large-scale monitoring and complexity

management. This included those that have featured strongly in the research such

as the Observer pattern [27], modelling techniques rooted in graph theory, and

other relevant overlay design techniques to support modelling abstractions and

overlays, such as Adapters, Factories and Facades . The second considerations

centred on runtime dynamism, and included collecting and considering

approaches towards Meta-programming, including considerations towards

Reflection, and a variety of potentially-applicable programming approaches [134].

Specification of software engineering model for designing within large scale and

complex systems: Based on the preliminarily research, an observation approach was

proposed that retained a model-based overview of the system. However, the model­

based overview was implemented via a series of unit-hosted modelled elements,

adapting the real system model to the low-level observation model. The low-level

model undergoes translation to the reduced-size high-level observation model utilising

the Signatures, Techniques, and connecting Association and Deployment components

that make up the bulk of the framework. Change is propagated from the low-level

modelled elements via events. This was accompanied by an optional runtime

specification and alteration plug-in sub framework that allowed further configuration

222

of certain components and specification of the main conditions of the observer

system's behaviour- the OBDXML.

Evaluation of methods; case studies and real-world applications: The

programming model, its useful application, and the validity of important components

were assessed in a series of experiments and applications to real world case studies.

The case studies were aimed to assess the quality of generalisation in the design and

the ease of application throughout different problem domains. The case studies and

simulations used as evaluations were:

• Signature and Deployment Infection Simulation - The simulation, described in

Section 9.2, created a mock system structure representative of service-sharing

components, deploys an observation overlay, and then attempts infection of the

simulated system. The infection is intended to represent a viral-type denial of

service, whereby components infect neighbours and reduce or remove their

functionality. The observation overlay represents protection from this infection;

both directly for the observed component and in terms of prevention of

propagation to others. Signatures and Deployment techniques were used in the

observation deployment mechanism to provide appropriate observation coverage

and were found to provide useful improvements over uninformed approaches.

Additionally, the experimental work led to additional functionality being proposed

for addition to the framework; further details of which can be found by referring

back to Section 9.2.5.

• Email Exploration Tool (EET) - The development of EET, while outside the

scope of this research specifically, has been undertaken during the PhD research

programme in conjunction with another researcher. While this was primarily a

Computer Forensics software prototype, the author (as its developer) saw this as

an opportunity to use the framework as a design tool in order to facilitate the

visualisation of a social network of email contacts based on imported raw email

data. In this evaluation, the overlay took the form of a visualisation tool, rather

than an observer in the usual sense. The usefulness of the framework was

demonstrated along with the ease with which it could be partially adopted to

provide functionality outside its initial scope.

223

10.4 Critical Review

This research has set out to produce a software engineering approach - specifically a

programming model - for the observation of large scale and/or complex systems; in

order to facilitate the monitoring, and ultimately, management of such systems.

Monitoring and Observation forms a well-established software design principle;

required as in important part of the control mechanism/loop in even the smallest of

scale systems. It is widely used and formalised from an Object Oriented perspective

by way of the Observer design pattern; defining a subject/target and observer/monitor

relationship where the observer(s) takes the responsibility for registering on subjects

in which they are interested, who in turn take responsibility for notifying interested

observers via events. However, as evidenced by this relationship, observers must

explicitly elect to observe those elements that they wish to observe, and of course,

take responsibility for receiving (and processing) any events that are sent.

This basic observer model is incompatible with the systems under consideration for

two main reasons. Firstly, scale; as system size increases, the observer's set of target

elements (and therefore, potential for received event size) increases. As such, a point

will be reached where the event load - and/or the associated deliberation for incoming

events - reaches too high a computational load. Secondly, complexity; complex

systems tend to exhibit properties that make them difficult to model consistently. One

such property is that of an evolving or otherwise unstable structure, with components

being introduced and removed; thus, in addition to scaling concerns, the observer

must constantly re-determine its targets and manage its own redeployment.

This research is therefore primarily situated with others in the fields of self-managing

and adaptive software; largely under the umbrella of Autonomic Computing. Current

research in this field is active - from software engineering, mathematics, and

"biologically-inspired" or Organic research schools. Existing research work ranges

from the discussion of engineering architectures through to the specification of

domain-specific techniques that can help to manage certain aspects of complexity

and/or scale in systems that follow a prescribed makeup or certain characteristics.

224

However, current research is lacking in terms of a software engineering design

approach - more specifically, a model for the implementation of software

management systems providing autonomic-type functionality on complex systems. As

described throughout Chapter 2, existing research has as yet either avoided the

software design considerations or has produced a specific design targeted at a specific

application or at its most generic, a problem domain.

As such, this thesis has aimed to address this problem and to formalise the solution;

taking the form of a two-part specification for a programming model to manage the

observation concerns, facilitating the monitoring of large and complex systems as a

step towards control in autonomic software:

• Part one of the programmIng model - the Structural Observer Framework ­

addresses the concerns of scalability using best-match exploitation of structural

types, facilitated with signatures, associated techniques and deployment models,

allowing domain specific and system-wide concerns to influence observation

tactics. System-level instrumentation and evolution are abstracted by the overlay

adapter model - Modelled Elements - thus allowing the system to report changes

to the framework, which arranges alterations to deployment as required.

• The second part of the programming model - the Observer Behaviour Definition ­

looks to provide greater flexibility in the adaptive part of the Structural Observer

Framework; acknowledging that as the system evolution progresses the initial

design-time policy for deployment and management may alter and removing and

re-implementing the overlay may not be a viable solution.

10.5 Suggested Further Works

The work contained in this thesis looked to develop an efficient, manageable

observation framework that would be easily understandable by developers and

engineers familiar with common and domain-specific approaches toward

instrumentation, observation and simple 00 design patterns.

225

However, it is appreciated that this problem is situated in a field with much greater

scope than can be covered sufficiently in a single research project; matters such as

alternatives to design issues, new issues identified along the way, along with greater

specification of the rest of the autonomic control problem. This section looks to

highlight some areas in and around the framework in its current form that may benefit

from further research and problem-solving. The suggested future work is therefore

split into two categories; Project and Framework-Specific, and General and Wider

Framework related.

10.5.1 Project and Framework Specific

The following items of future work are tightly constrained to this current project and

as such, are extensions of the design, implementation details or minor architectural

additions.

• Increased Developer support for this programming model - The thesis has

provided discussion and documentation, including overview software

architectures and designs, and detailed designs for the individual components.

However, in order to increase the ease with which the framework can be adopted

and model implemented, the creation of developer tools to support common

design and implementation tasks would be beneficial. Popular IDEs such as

Eclipse include a plug-in development kit; thus allowing development of such

features and easy distribution and integration into the developer's workstation.

• OBD Extensions: Further investigation into the integration of XPath, a standard

XML-based language; thus allowing greater extensibility of system policy

specification in XML, while helping to reduce the string size for simple

compansons and operations. Additionally, alternative forms of specification

languages could be utilised to help facilitate greater externalised OBD

functionality; thus allowing a more system-appropriate balance between, for

example, portability of format and computational features.

• Beyond Scale-Free Connectivity: Much of the work in this thesis regarding

structural identification and exploitation has centred on well-researched elements

of scale-free connectivity. In order to provide better-tailored support to a greater

number of structural features and sub-features, further research is required into

complex system structure in terms of features, exploits, system partitioning.

226

•

Additionally, further research into, and general collation of complexity

management techniques in order to increase the applicability and base "library";

thus facilitating greater sophistication in terms of the structural's observation

deliberation.

Integration of runtime-adaptability technologies and patterns - Given the

potential computational load involved in a many-signature Structural Observation

model, additional overhead associated with an interpreted specification may be

problematic. While the OBD model separates the externalisation mechanism _

thus only reparsing strings where necessary, the OBD specification objects must

be re-evaluated at each call. As such, there is further useful research involved in a

greater investigation of meta-class, part-compiled, Just-In-Time or similar

approaches to runtime adaptability. Some potential options for future research

work were identified in Section 7.3 alongside existing established technologies.

10.5.2 General and Wider Framework Related

The following items discuss some potential alternative or additional framework

approaches and an extension of the framework beyond observation; moving closer to

a full specification for the behaviour and co-ordination of self-managing systems.

These points are therefore considered important research questions for any given

approach to equipping large-scale software with global self-management capabilities:

• Structural and System-level observation systems - The research in this thesis

adopted a level of separation between the structural or deployment control and the

underlying system-level, business observation. Specification of the system-level

observation level is deliberately abstracted due to the likely domain-specificity of

these components. Some design methodologies, such as multi-agent systems do

away with this separation of concerns, placing responsibility for attachment and

adaptation management with system designers. However, for observation system

designs that retain this separation; it is conceivable that in certain applications, a

greater level of cross-observation co-ordination will be required. As such, further

investigation into management at the Observer Deployment level - between the

structural and system observers - and the concerns and new interfaces required

would no doubt bring greater flexibility to the system-level adaptation.

227

• Feedback to Observed System - This work focussed on the attachment of and

observation on the software systems. As discussed in Section 4.2, the issue of

feedback was identified as a complex subject in its own right. Assuming a high­

level deliberative system is capable of providing such feedback; further

investigation and design work is required in terms of specification for the

observational response. Concerns such as how to specify the feedback, how to

resolve or evaluate it against undesirable behaviour, translate it between levels of

hierarchy and finally, how to ensure that the system-level component(s)

responsible for enacting the feedback are capable of doing so - are all important

Issues.

• New or Novel Event, Situations and Feedback Types - Observation and

management systems operating on complex and particularly evolving systems

must have the capability to described newly-observed events, event types along

with new feedback types. In the case of events, this may involve development of

existing research such as IBM's Common Base Event [146] to ensure that all

system events can be described in a commonly-understood format. Equally, the

author suggests research into associated methods for correlating lower level events

into composite events to increase the ease with which higher level governance

policy and components could be written.

228

Glossary

AC:

ACL:

ADL:

API:

BSD:

CBE:

CI

CIL/MSIL:

CLR:

DARPA:

DTD:

ECA:

EET:

FIPA:

JDK:

JVM:

JRE:

OASIS:

OBD:

OC:

Autonomic Computing (see OC)

Agent Communication Language

ADL - Architectural Description Language

Application Programming Interface - also typically used to refer to a
libr~ry whose instructions and specifications are provided by way of a
detailed method-by-method interface instruction.

Berkeley Software Distribution - now used to describe a type of free
software licence that usually allows unlimited redistribution providing
certain conditions are met.

Common Base Event (IBM implementation ofWSDM WEF)

Cognitive Immunity; see Section 1.1

Common Interpreted Language (MicroSoft Interpreted Language) - the
core language of the .NET framework. See also JVM.

Common Language Runtime - Microsoft's VM created for executing
CIL (and its bytecode) within the .NET framework. See also JVM.

Defence Advanced Research Projects Agency; USA Military and
Technology research agency

Document Type Definition - see XSD, XML

Event-Condition-Action - a description for a broad range of simple
event-driven rule-based architectures; where the event triggers the
evaluation of a set of rules and then performs an action

Email Exploration Tool (by the author - see Evaluation)

Foundation for Intelligent Physical Agents; trade and standards
association for software agents; IEEE-accepted.

Java Development Kit - broadly considered to be the bare minimum
software utilities required to create and (part) compile a piece of Java
software.

Java Virtual Machine - a VM specifically for executing Java byte
code. See also CLR

Java Runtime Environment - the minimum software (and hardware)
required to execute a piece of Java software created with a JDK.

Organization for the Advancement of Structured Information
Standards; trade-based data standards organisation, whose standards
are usually XML-based.

Observer Behaviour Definition / Description (originated in this
research)

Organic Computing (see AC)

229

00:

POJO

SRS:

UML:

VM:

W3C:

WSDM:

WEF:

WXS:

XSD:

XML:

Object Oriented / Object Orientation (as context); software design and
programming methodology based on Objects - i.e. structures that
combine data attributes and related data-manipulation methods.

Plain Old Java Object - Refers to standard Java objects; i.e. those that
do not have to implement interfaces or extend specific classes.

Self-Regenerative Systems (see DARPA)

Unified Modelling Language

Virtual Machine

World Wide Web Consortium; independent standards organisation

Web Services Distributed Management - Collection of Web standards
defined by OASIS. See WEF and OASIS

Web Event Format; definition within WSDM. See WSDM and CBE

W3C XML Schema Document - (used interchangeably with XSD)

XML Schema Document - see WXS, XML

eXtensible Mark-up Language

230

Appendices

I

Appendix I - The Programming Model:

Additional Discussion

This appendix provides additional information in support and discussion of the

observer's programming model, as discussed in Chapter 5. The following text details

some relevant features and a detailed example that was omitted from the main text in

order to improve readability.

1.1 An Example Structural Model

Implementation

Section 5.1.1 gave a software design overview for the structural modelling module of

the proposed framework. In order that the designs remained suitably generic it was

necessary to omit detail in some areas. Of particular note was the manner in which

Structural Observers and Modelled Elements would manage the instrumentation of

the real underlying system component. This section considers the design and partial

implementation of a Structural Observation subsystem on a simple "service-oriented"

software system.

This example system is made up of a number of components and a number of

different service types. Each component is capable of providing a number of different

service types, and may require one or more service types. Each component's goal is to

ensure that it has all its required service dependencies fulfilled. A snapshot of the

hypothetical system's configuration is shown in Figure 63.

Each component is represented within the observation system as an instance of

ModelledElement, which demonstrates the use of an implementation of Modelled

Element Factory, facilitating necessary separation provided by each element between

component-level instrumentation and structure-level observation.

II

~ - --

--=-'"..-.. -Subscribes

.........\.

Subscribes------ -

<,

Figure 63: Example System Setup Showing Component / Service dependencies

During execution, existing components are removed and new components added,

crudely simulating the evolution associated with a complex system. The service

provisioning and requirements of new components will be generated randomly. This

is to demonstrate how the Structural Observers will be expected to keep the system

model updated based on the ModelChan g eEv e n t s being fired by the remaining

components' representations.

At this level, brief consideration will be given to the creation of and communication

between individual observers - via a measure of how successful the system is

connected (in terms of dependency fulfilment). However, full details on the observer

network's maintenance and control will be deferred to the later sections - describing

the application of the observation techniques.

The example system is built around the following types of object, shown in context in

the UML class diagram found at Figure 64:

• Component - represents the working elements of the system that are

responsible for providing and subscribing to services from other components.

When a component has acquired contracts for all its required services, it is

said to be in a "fulfilled" state. At this point that it can offer its own available

services to other components. It is each component's fulfilment state that will

be used to measure the success of the system. This type of architecture

requires that there are some standalone components - those that do not have

any dependencies.

III

• ServiceType - represents a type of service; specified by a unique ID and a

description. This class exists as a simplification of any given service-oriented

service specification.

• ServiceAdvertBoard - for the purposes of this example system, this

singleton class provides the abstraction of a distributed shared advert space ,

allowing components to advertise requests for services and to arrange to fulfil

other requests.

• Servi c eRequest and ServiceCon t rac t represent a component ' s

interaction with the service advert board, to either request a service or offer to

fulfil one respectively.

serviceAdvertBoard

-requests : ServiceRequest(Coliection)
-fulfilled : ServiceContract(Coliection)

+checkForRequests(in type : ServiceType) : ServiceRequest(Coliection)
+offerContract (in offer : ServiceContract)
+postRequest(in req : ServiceRequest)

<:; o
1 -advertises 1 -records

se rv iceType

-description : string
-id : int

0..' 0."

. .
Serv ice Reques t serv iceContract

'/ -requiredService : ServiceType -provider : Component
-subscriber : Component

~.
-service : ServiceType

+cancelContractO1 11 r-,
I
I
I
I

Com pon ent

I
I

« uses to:
negotiate I

service» :
I
I
I
I
I
I

-required : ServiceRequest(Coliect ion)
-available : ServiceType(Coliection)
-subscribedComponents : ServiceContract(Coliection)
-fulfiliedDependencies : ServiceContract(Coliect ion)

+subscribe(in comp : ServiceContract) : bool
+unsubscribe(in contract : ServiceContract) : bool
+isAvailable(in service : ServiceType) : booI
+doSomethingO : object
+isFulfiliedO : booI

« negotiates and agrees» :
- - - - -- - - - - - - - - - - - - --- ----- - - -- - - - - - - - - - 1

Figure 64: Example Service-based System: Simplified Class Diagram

The system operates within the following logical constraints:

• When a Component is created, it is randomly assigned a number of required

and available Service Types. Service types may be duplicated, indicating that

the Component has a number of a given service types that it requires (or can

offer).

• If the component requires any services, it then creates a number of Service

Requests to describe those it needs, and then posts them on the system 's

Service Advert Board.

• When a Component has all of its serv ice dependencies fulfilled , it then

regularly checks with the advert board to determine if it can fulfil any

outstanding requests.

IV

•

•

•

1.1.1

If there are any outstanding requests, the component can offer a new Service

Contract to the requesting component. If the requesting component agrees, it

accepts the contract, and at this point, a dependency is set up.

Components can then make use of their contractually-subscribed services.

This is simulated by regularly invoking the doSomethinot] method on the

component providing the service, parameterised with the appropriate service

type.

At random intervals, a component may be removed or added from the system.

Removal can take one of two forms: a component may voluntary opt out of the

system; in which case, it can choose to cancel any contracts it may have

agreed to, thus alerting its dependents. Alternatively, a component removal

may simulate a failure. In this case, no warning is given, and it may go

unnoticed until the next time a dependent component attempts to make use of

the service and the doSomething () method fails.

Decomposition for Structural Model

In the system model described previously, it is the objects of type Component that are

candidates for the Structural Observer's ModelledElement type. Although this

system may have many different component types, in this case, they all conveniently

share a common super class, thus simplifying the addition of the structural observer's

modelling "hooks" to this system. However, this section will also examine which

design methods are best suited for integrating the required functionality in a variety of

code locations.

Given that each instance of Component contributes to the overall success of the

system and has the potential to fulfil a dependency for another component, it is also

clear that there is a direct relationship between a modelled element and a component ­

each component will be represented by a single modelled element.

The decision whether to model a system element should be based on the following

consideration - does the addition or removal of this component directly affect the

system's ability (now or in the future) to achieve its goals. Generally speaking, the

decision on an element's "importance" will be effected at a level above the structural

v

observation; therefore, a compelling argument would have to be made to omit a

system process or data store. One such example would be software architecture

exhibiting a number of clearly separated concerns - that together affect system

operation - but can be modelled entirely independently.

As outlined in the previous section, the modelled element's primary responsibility is

to provide an interface between the real system-level component, and the observation

system's structural level. Modelled element creation is deferred to a factory which

would be implemented such that it creates a suitable Modelled Element subclass

supporting the required functionality.

The design requires modelled elements to generate suitably descriptive model change

events that will be sent to the structural observers - which in tum will ensure the

correct state of the observation model. The earlier suggested minimum set of event

types are:

-an event to represent adding (or connecting) a new model element,

-and another to represent a removal (or disconnection).

These event types allow an observer to create a "bare minimum" graph of modelled

elements - encompassing connection information - and if the events are implemented

rigorously across elements, the resulting graph can therefore contain directional

information. However, even the creation of events to support this simplified graph

requires some design thought, considering the business logic of the system. Therefore,

to support this model, responsibility for firing the appropriate events must be

determined, To do so, it is imperative to find out at exactly which point a service

contract dependency is set up, and when it is cancelled, or otherwise rendered void.

Examining the specification above; it is the responsibility of components to manage

their relationships with other components. However, they do so utilising a set of

supporting classes, thus negating the assumption that a "connect" or "disconnect" (i.e.

subscribe to / cancel contract) operation is a synchronous, atomic operation. The

creation and validation of a contract requires the agreement of two components, while

the termination of a contract effectively only requires action from a single component.

Equally, while the classes provide methods to fonnalise cancellation operation, it is

not always possible that they are adhered to - as dictated by the system's "business"

VI

constraints (particularly that regarding component failure). Therefore, the notification

of a component disconnection may also need to be sent when it is realised a

subscribed component has failed - effectively when a doSomething () method call

fails.

As such, the events should all be generated within the Component class at the

following points:

• Exception handling within Comp o n e n t . doSometh ing ()

Remove/Disconnect Event

marks a

• At the success marker in Component . subscribe () - marks an Add/Connect

Event

• When Component . unsubscribe () is called - marks a Remove/Disconnect

Event. A new type of remove event may be required to indicate that this was

an "unauthorised" disconnection.

Therefore, if the Component class has not been designed to generate events that

describe its connectivity alterations, then this is the first element that must be

amended. This logic must be included in the Component class , as per the example

code snippet in Figure 65, (assuming a method fireE vent is defined that will send

the specified event to all the component's listeners).

public void doSomething() {

try {
II do normal service comms

catch (Exception e) {
ServiceEvent se =

new ServiceEvent(this, Servi ceEvent . DI SCONNECT) ;
fireEvent(se);

Figure 65: Example "hook" into Component for failure disconnect

Then, a new class, Modell edCompo nentElement, must be created, inheriting from

ModelledElement. Instances of this class are examples of the Adapter design pattern

[147] and are responsible for translating the events from the Component class into a

form suitable for the structural modelling elements. In this case , this will involve

Model l e d Comp o n e n tEl e me n t recei ving events from Component, determining what

VII

they represent and then generating new ModelChangeEvents and sending them to its

list of observers. An example of the code related to translating the component-specific

event to a Model Change Event is shown in Figure 66:

public class class ModelledComponentElement
extends ModelledComponent
implements ServiceListener {

public void processServiceEvent(ServiceEvent e)
ModelChangeEvent mce = null;

if (e.getType() == ServiceEvent.CONNECT) {
mce = new ModelChangeEvent(this, ModelChangeType . ADD) ;
else if (e.getType() == ServiceEvent.DISCONNECT I I

e.getType() == ServiceEvent.FAILED) {
mce = new ModelChangeEvent(this, ModelChangeType . REMOVE) ;

if (mce != null)
fireEvent(mce);

Figure 66: Snippet showing example Component to ModelledElement event translation

At this point, the existing classes have been edited (if required) , and a new Modelled

Element subclass has been created to wrap the existing classes to provide a consistent

structural model for the observation framework. The final stage is to create a suitable

Modelled Element Factory (if one does not exist) , and then to add suitable

instantiation logic for this new type to the factory 's creation method. Typically, this

logic will consist of determining the runtime type of the requested target object, and if

it is a Component, then creating a Modelled Component Element. An example of the

relevant logic is shown below in Figure 67.

public class ServiceSysternModelledElementFactory
extends ModelledElementFactory {

public ModelledElement createElementFor(Object object)
ModelElement me = null;

if (object is Component) {
me = new ModelledComponentElement(object);
else {
I I do other type determinations Icreations

}
return me;

Figure 67: Example Modelled Element Factory snippet

VIII

In summary, the main steps involved in the modification of elements to make them

compatible with the Structural Model:

• Add or identify suitable "hooks" into system-specific components or elements

that require observation.

• Create wrapper class implementing Modelled Element, which acts as a dual­

purpose Observer and Subject, translating component-specific events into

those suitable for Modelled Element.

• Add suitable runtime-type determination and instantiation logic into

appropriate Modelled Element Factory

This section has, using the requirements identified in Section 5.1.1, given a simple

example of a service-based system modelled from a variety of components, and then

identified the necessary decomposition of that system model in order to implement the

interfaces required by the structural model.

The code snippets within this section are reasonably simple, demonstrating the single

case identified within this design. It should be noted that outside of this simplified

example the steps identified above will be required for each unique element type that

should be modelled by the system, leading to a variety of type-specific "translator"

Modelled Elements and a factory capable of creating each of them.

IX

Appendix II Additional EET Data

This appendix contains important additional data relating to the Email Exploration

Tool (EET) evaluation undertaken in Chapter 9, when it has been omitted from the

evaluation for brevity.

EET v1 is a prototype software utility developed by the author as part of a separate

Computer Forensics software research project with a colleague, Dr John Haggerty;

detailed information regarding its Computer Forensics features and significant results

of which can be found in [141]. While its primary purpose was to fulfil a set of

Computer Forensic requirements; the implementation and as such, the exact features,

design and implementation methods were left to the author. Therefore, this allowed

the software to be developed with some of the functionality designed in accordance

with the proposed framework. Unlike the Repast-based simulations, EET operates on

real data, includes its own visualisation interface and runs as a standalone Java

application. While it is not a large-scale distributed software system, it deals with

large-scale dataset, managing emails and contacts, which may be made up of a variety

of individually distributed repository files.

The required software functionality allows the user to import a set of emails into the

software and then visualise the email traffic according to a variety of forensic

investigation criteria. EET can import emails on a one-by-one basis, or in "repository"

form; whereby files are parsed directly from the user's email client format. Partial

support is included for all known email repository formats, but fully tested support in

the referenced prototype is limited to Thunderbird email data files. During email

loading, basic efforts are made to resolve duplicated email content and senders from

duplicated or similar email aliases. The net result of the import process is a graph-type

model whereby senders and recipients are connected by their joint email traffic.

The following section provides extra detail pertaining to the OBDXML support

contained within EET.

x

11.1 Additional EET Data

As discussed in Section 9.3.5, the OBDXML snippet defining the Signature was

omitted. For completeness, it is shown in Figure 68 , referencing the shared hardcoded

Acquaintance Selection algorithm, nested within several Math and GraphFunction

tags used to make the Acquaintance Nomination Metric as discussed in Section 3.3.4 .

<tns :signatures ID = " Ac q u a i n t a n c e Si g na t u r e " >
<tns :matchingValue ID = " a c qVa l " >

<tns :parameters ID = " a c qMa t c h Pa r a ms " >
<tns :Math type= " DI VI DE" >

<tns :leftHandSide>
<tns :GraphFunction AlgorithmType= " SIZ E" >

<tns :ModelledElementAlgorithm I D= "Acqua i ntanceSelection " >
<tns :parameter>SYSTEM</tns:parameter>
<tns :parameter> O. 3</tns :parameter>

</tns :ModelledElementAlgorithm>
</tns :GraphFunction>

</tns :leftHandSide>
<tns :rightHandSide>

<tns :Math type= "MULTI PLY" >
<tns :leftHandSide>

<tns :GraphFunction AlgorithmType =" SI ZE" >
<tns :parameter>SYSTEM</tns:parameter>

</tns :GraphFunction>
</tns :leftHandSide>
<tns :rightHandSide>O. 3</tns :rightHandSide>

</tns :Math>
</tns :rightHandSide>

</tns :Math>
</tns :parameters>

</tns :matchingValue>

<tns :matchingBool ID = " a c q Boo l " >
<tns :Compare type= " GREATER_ THAN" >

<tns :leftHandSide>
<tns :Function>a c qVa l</tns :Function>

</tns :leftHandSide>
<tns :rightHandSide>O. l</tns :rightHandSide>

</tns :Compare>
</tns :matchingBool>
<tns :invalidationHandler ID = " s i mp l e Ha nd l e r " >

<tns :lnvalidationCriteria ID = " s i mp l e Cr i t e r i a " > .
<tns :invalidHandler>s i mp l e l nv a l i d a t i o nHa nd l e r</tns:invalldHandler>

<tns :conditionType>MODELCHANGEEVENT</tns :conditionType>
<tns :conditionValue> l</tns :conditionValue>

</tns :lnvalidationCriteria>
</tns :invalidationHandler>

</tns :signatures>

Figure 68: Additional EET OBDXML Signature Snippet

Xl

Appendix III - Publications by the same author

I. Social Network Visualization for Forensic Investigation of E-mail
Haggerty, 1., Lamb, D., Taylor, M.

Proceedings ofthe 4th IEEE Annual Workshop on Digital Forensics and Incident
Analysis (WDFIA 09), pp TBC, Athens, Greece, 25 - 26 June, 2009.

2. Monitoring Autonomic Networks through Signatures of Emergence
Lamb D., Randles, M., Taleb-Bendiab, A.
Proceedings ofthe 6th IEEE Conference and Workshop on Engineering ofAutonomic
and Autonomous Systems pp56-65, (EASe 2009, San Francisco), 14-16 April 2009.

3. Autonomic Monitoring in Large-Scale Digital Ecosystems via Self-Organisation
Randles, M., Lamb D., Taleb-Bendiab, A.
Proceedings ofthe 2nd IEEE International Conference on Digital Eco-Systems and
Technologies (DEST '08, Phitsanulok, Thailand)

4. Engineering Autonomic Systems Self-Organisation
Randles, M., Lamb D., Taleb-Bendiab, A.
Proceedings ofthe 5th IEEE International Workshop on Engineering ofAutonomic and
Autonomous Systems (EASe 2008, Belfast)

5. Cross Layer Dynamics in Self-Organising Service Oriented Architectures.
Randles, M., Taleb-Bendiab, A., Lamb D.,
In Self-Organising Systems (Editors: K.A. Hummel and J.P.G. Sterbenz) Springer LNCS
5343,2008.

6. Software Engineering Concerns in Observing Networks of Autonomic Systems
Lamb D., Randles, M., Taleb-Bendiab, A.
Presented at SOAS 2007, (3rd International Conference on Self-Organization and
Autonomous Systems in Computing and Communications), 24-27 September 2007,
Leipzig, Germany. Published in System and Information Sciences Notes Journal, ISSN
1753-2310, V.2, N.1, Sept. 2007, pp101-104, (cosiwn.2007.09.149)

7. An Adaptive Observation Framework for Self-Organising Networks of Autonomic
Systems
Lamb D., Randles, M., Taleb-Bendiab, A.
Proceedings ofthe 8th Annual Conference on the Convergence ofTelecommunications,
Networking & Broadcasting (PGNET 2007), pp296-302, Liverpool, 27-28th June 2007.
ISBN: 1-9025-6016-7

8. Using Signatures of Self-Organisation for Monitoring and Influencing Large Scale
Autonomic Systems
Randles, M., Taleb-Bendiab, A., Mise1dine, P., Lamb D.
Proceedings ofthe 4th IEEE Workshop on Engineering ofAutonomic and Autonomous
Systems (EASe 2007), pp24-26, Tucson (Arizona), 26-29th March 2007.

9. Towards the Automated Engineering of Autonomic Systems
Miseldine, P., Randles, M., Lamb D., Taleb-Bendiab, A.
Proceedings ofthe 7th Annual Conference on The Convergence ofTelecommunications,
Networking & Broadcasting (PGNET 2006), pp393-398, Liverpool, 26-27th June 2006.

XII

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

Jeffrey C. Mogul, "Emergent (mis)behavior vs. complex software systems,"
ACMSIGOPS Operating Systems Review, vol. 40, pp. 293 - 304, 2006.
Andreea Vescan and Horia F. Pop, "Automatic configuration for the
component selection problem," Proceedings of 5th international conference on
Soft computing as transdisciplinary science and technology, pp. 479-483,
Cergy-Pontoise, France, 2008.
Brandon Morel and IEEE Perry Alexander, "SPARTACAS Automating
Component Reuse and Adaptation," IEEE Transactions on Software
Engineering, vol. 30, pp. 587-600, 2004.
Kent Beck and Cynthia Andres, Extreme Programming Explained: Embrace
Change: Addison Wesley, 2004.
Lee Badger, "Self-Regenerative Systems (SRS) Programme Abstract,"
Agency, Ed.: DARPA, 2004.
Howard Shrobe, Robert Laddaga, Bob Balzer, Neil Goldman, et al.,
"AWDRAT: A Cognitive Middleware System for Information Survivability,"
Proceedings of National Conference on Artificial Intelligence (AAAI-06),
Boston, MA, 2006.
Howard Shrobe, Robert Laddaga, Bob Balzer, and Neil Goldman, "Self­
Adaptive Systems for Information Survivability: PMOP and AWDRAT,"
Proceedings of Self-Adaptive and Self-Organising Systems (SASO 2007), pp.
332-335, 2007.
D. J. T. Sumpter, G. B. Blanchard, and D. S. Broomhead, "Ants and agents: A
process algebra approach to modelling ant colony behaviour," Bulletin of
Mathematical Biology, vol. 63, pp. 951-980,2001.
Paul Hom, "Autonomic Computing: IBM's Perspective on the State of
Information Technology," IBM, 2001.
Jeffrey o. Kephart and David M. Chess, "The Vision of Autonomic
Computing," 2003.
Gregory R. Ganger, John D. Strunk, and Andrew J. Klosterman, "Self­
*Storage: Brick-based storage with automated administration," Carnegie­
Mellon University, 2003.
David Lorge Pamas, "Software engineering programmes are not computer
science programmes," Annals of Software Engineering, vol. 6, pp. 19-37,
1998.
J.R Speed, "What do you mean I can't call myself a Software Engineer?,"
Software, vol. 16, pp. 45-50, 1999.
Ian Sommerville, Software Engineering, vol. 7: Addison Wesley, 2004.
C. Jones, "Strategies for managing requirements creep," Computer, vol. 29,
pp. 92-94, 1996.
D Sotirovski, "Heuristics for iterative software development," Software, vol.
18, pp. 66-73,2001.
Kent Beck, Martin Fowler, and Jennifer Kohnke, Planning Extreme
Programming: Addison-Wesley, 2000.
Fred Brooks, The Mythical Man-Month: Addison-Wesley, 1995.

a

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

T Mens, M Wermelinger, S Ducasse, S Demeyer, et aI., "Challenges in
Software Evolution," Proceedings of Principles of Software Evolution, pp. 13­
22,2005.
R.J.K. Jacob and J.N. Froscher, "A software engineering methodology for
rule-based systems," IEEE Transactions on Knowledge and Data Engineering,
vol. 2, pp. 173-189, 1990.
P.K. McKinley, S.M. Sadjadi, E.P.Kasten, and B.H.C.Cheng, "Composing
Adaptive Software," in IEEE Computer, vol. 37,2004, pp. 56-64.
Michael Wooldridge, An Introduction to MultiAgent Systems. Chichester: John
Wiley & Sons, 2002.
M. Sloman, "Policy Driven Management for Distributed Systems," Network
and Systems Management, vol. 2, pp. 333-360, 1994.
Nicholas R Jennings, "An agent-based approach for building complex
software systems," Communications ofthe ACM, vol. 44, pp. 35-41,2001.
Franco Zambonelli and Andrea Omicini, "Challenges and Research Directions
in Agent-Oriented Software Engineering," Autonomous Agents and Multi­
Agent Systems, vol. 9, pp. 253-283, 2004.
Melanie Mitchell, "Complex systems: Network thinking," Artificial
Intelligence, vol. 170, pp. 1194-1212, 2006.
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements ofReusable 00 Software: Addison-Wesley, 1995.
IBM, "IBM Research - Autonomic Computing," IBM, 2001-2006.
Julie A. McCann and Markus C. Huebscher, "Evaluation Issues in Autonomic
Computing," in Grid and Cooperative Computing - GCC 2004, vol. 3252,
Lecture Notes in Computer Science: Springer Berlin / Heidelberg, 2004, pp.
597-608.
M. E. J. Newman, S. H. Strogatz, and D. J. Watts, "Random graphs with
arbitrary degree distributions and their applications," Physical Review E, vol.
64,pp.026118,2001.
Jon M Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, et
al., "The Web as a Graph: Measurements, Models, and Methods," Proceedings
of International Conference on Combinatorics and Computing, pp. 1-17, 1999.
P. Erdos and A. Renyi, "On the evolution of random graphs," Publications of
the Mathematical Institute of the Hungarian Academy ofSciences, vol. 5, pp.
17-61, 1960.
Murray Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and
the Complex: Abacus, 1994.
M. Mitchell Waldrop, Complexity: The Emerging Science at the Edge of
Order and Chaos: Pocket Books, 1993.
J.A. Zachman, "A Framework for Information Systems Architecture," IBM
Systems Journal, vol. 26, pp. 276-292, 1987.
Stafford Beer, "The Viable System Model: Its Provenance, Development,
Methodology and Pathology," The Journal of the Operational Research
Society, vol. 35, pp. 7-25, 1984.
Bela Bollobas and Oliver Riordan, "Robustness and Vulnerability of Scale­
Free Random Graphs," Internet Mathematics, vol. 1, pp. 1-35,2003.
Duncan J. Watts, "Networks, Dynamics and the Small-World Phenomenon,"
American Journal ofSociology, vol. 105, pp. 493-527, 1999.
Reinhard Diestel, Graph Theory, vol. 173, 3rd ed. Heidelberg: Springer­
Verlag, 2005.

b

[40]

[41]

[42]
[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Steven Berlin Johnson, Emergence: Connected Lives of Ants, Brains, Cities
and Software. New York: Scribner, 2001.
Kurt Bittner and Ian Spence, Managing Iterative Software Development
Projects: Addison Wesley, 2006.
Craig Lannan, Agile and Iterative Development: Addison Wesley, 2003.
Reuven Cohen, Shlomo Havlin, and Daniel ben-Avraham, "Efficient
Immunization Strategies for Computer Networks and Populations," Physical
Review Letters, vol. 91, 2003.
HA Simon, The Sciences ofthe Artificial: MIT Press, 1996.
David S Rosenblum and Alexander L Wolf, "A Design Framework for
Internet-scale Event Observation and Notification," SIGSOFT Software
Engineering Notes, vol. 22, 1997.
Nigel Goldenfeld and Leo P Kadanoff, "Simple Lessons from Complexity," in
Science, vol. 284, 1999, pp. 87-89.
Martin Randles, Hong Zhu, and A. Taleb-Bendiab, "A Formal Approach to the
Engineering of Emergence and its Recurrence," Proceedings of Engineering
Emergence in Decentralised Autonomic Systems, 2007.
C. Mohan, "A Survey of DBMS Research Issues in Supporting Very Large
Tables," Lecture Notes In Computer Science, vol. 730, pp. 279-300, 1993.
Andrew Johnson and Farshad Fotouhi, "Adaptive Indexing in Very Large
Databases," Journal ofDatabase Management, vol. 1995, 1996.
V Ganti, J Gehrke, and R Ramakrishnan, "Mining very large databases," in
IEEE Computer, vol. 32, 1999, pp. 38-45.
Stefan Berchtold, Daniel A. Keirn, and Hans-Peter Kriegel, "The X-tree: An
Index Structure for High-Dimensional Data," Proceedings of 22th
International Conference on Very Large Databases pp. 28 - 39, 1996.
David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, et al.,
"SETI@home: an experiment in public-resource computing," Communications
ofthe ACM, vol. 45, pp. 56-61,2002.
Celso L. Mendes and Daniel A. Reed, "Monitoring Large Systems Via
Statistical Sampling," International Journal ofHigh Performance Computing
Applications, vol. 18, pp. 267-277,2004.
Mark W. Maier, "Architecting Principles for Systems-of-Systems," Systems
Engineering, vol. 1, pp. 267-284, 1999.
M. Turner, D. Budgen, and P. Brereton, "Turning software into a service," in
Computer, vol. 36, 2003, pp. 38-44.
F. Heylighen, "Self-organization, emergence and the architecture of
complexity," Proceedings of 1st European Conference on System Science, pp.
23-32, Paris, 1989.
Albert-Laszlo Barabasi, Reka Albert, and Hawoong Jeong, "Scale-free
characteristics of random networks: the topology of the world-wide web,"
Physica A: Statistical Mechanics and its Applications, vol. 281, pp. 69-77,

2000.
John Toner and Yuhai Tu, "Flocks, herds, and schools: A quantitative theory
of flocking," Physical Review E, vol. 58, pp. 4828-4858, 1998.
Guy Theraulaz, Jacques Gautrais, Scott Camazine, and Jean~Lous
Deneubourg, "The formation of spatial patterns in social insects: from SImple
behaviours to complex structures," Philosophical Transactions: Mathematical,
Physical and Engineering Sciences, vol. 361, pp. 1263-1282,2003.

c

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Julia K. Parrish, Steven V. Viscido, and Daniel Grunbaum, "Self-Organized
Fish Schools: An Examination of Emergent Properties," Biological Bulletin,
vol. 202, pp. 296-305, 2002.

Frederick R. Adler and Deborah M. Gordon, "Information Collection and
Spread by Networks of Patrolling Ants," The American Naturalist, vol. 140,
pp. 373-400, 1992.

Hartmut Schmeck, "Organic Computing - A New Vision for Distributed
Embed~ed Sy.stems," Proceedings of Eighth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (lSORC 2005), pp.
201-203, Seattle, Washington, 2005.

Urban Richter, Moez Mnif, J''urgen Branke, Christian M"uller-Schloer, et al.,
"Towards a generic observer/controller architecture for Organic Computing,"
Proceedings of INFORMATIK 2006 - Informatik f''ur Menschen!, pp. 112­
119,2006.

Huaglory Tianfield, "Some Reflections on Intelligent Control," Artificial
Intelligence Review, vol. 23, pp. 57-91,2005.
David Lamb, Martin Randles, and A. Taleb-Bendiab, "Monitoring Autonomic
Networks through Signatures of Emergence," Proceedings of Engineering of
Autonomic and Autonomous Systems, EASe 2009, pp. 56-65, San Francisco,
CA,2009.

S. Milgram, "The small world problem," Psychology Today, vol. 2, pp. 60-67,
1967.
Reynold Cheng, Yuni Xia, Sunil Prabhakar, and Rahul Shah, "Change
Tolerant Indexing for Constantly Evolving Data," Proceedings of International
Conference on Data Engineering (lCDE) 2005, pp. 391-402,2005.
Jeff Magee and Jeff Kramer, "Dynamic Structure in Software Architectures,"
ACMSIGSOFT Software Engineering Notes, vol. 21, pp. 3-14, 1996.
Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor, "Architecture­
based runtime software evolution," Proceedings of International Conference
on Software Engineering, pp. 177-186, Kyoto, Japan, 1998.
Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, James
Whitehead Jr, et al., "A Component- and Message-Based Architectural Style
for GUI Software," IEEE Transactions on Software Engineering, vol. 22, pp.
390-406, 1996.
John C Georgas, Andre van der Hoek, and Richard N. Taylor, "Architectural
runtime configuration management in support of depedendable self-adaptive
software," Proceedings of International Conference on Software Engineering
(lCSE), Workshop on Architecting Dependable Systems (WADS), pp. 1-6,
2005.
Linda Northrop, P.H. Feiler, B. Pollak, and D. Pipitone, Ultra-large-scale
systems: The software challenge of the future: Software Engineering Institute,
Carnegie Mellon University, 2006.
M.N. Huhns and M.P. Singh, "Service-oriented computing: key concepts and
principles," in IEEE Internet Computing, vol. 9, 2005, pp. 75-81. " .
J. Branke, M. Mnif, C. Muller-Schloer, and H. Prothmann, Orgamc
Computing - Addressing Complexity by Controlled Self-Organization,"
Proceedings of 2nd International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation, pp. 185-191, 2006.
Emre Cakar, Jorg Hahner, and Christian Muller-Schloer, "Creating
Collaboration Patterns in Multi-Agent Systems with Generic

d

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Observer/Controller Architectures," Proceedings of Autonomies, Turin, Italy,
2008.
T. DeMarco and T. Lister, "Software Development: State of the Art vs. State
of the the Practice," Proceedings of 11th International Conference on Software
Engineering, pp. 271-275, 1989.
Ivica Crnkovic, "Component-based Software Engineering - new challenges in
software development," Proceedings of 25th Itnl Conference on Information
Technology Interfaces (lTI2003), pp. 9-18,2003.
S.C. Chu, "From Component-based to Service-Oriented Software Architecture
for Healthcare," Proceedings of 7th International Workshop on Enterprise
Networking and Computing in Healthcare (HEALTHCOM 2005), pp. 96-100,
2005.
1. Kral, M Zemlicka, and M Kopecky, "Software Confederations - An
Architecture for Agile Development in the Large," Proceedings of
International Conference on Software Engineering Advances (lCSEA 06), pp.
39-44, 2006.
Pin Chen and Jennie Clotheir, "Advancing Systems Engineering for Systems­
of-Systems Challenges," Systems Engineering, vol. 6, pp. 170-183,2003.
L Duboc, E Letier, D. S. Rosenblum, and T. Wicks, "A Case Study in Eliciting
Scalability Requirements," Proceedings of 16th IEEE International
Conference on Requirements Engineering (RE08), pp. 247-252, Catalunya,
Spain, 2008.
Richard P. Gabriel, Linda Northrop, Douglas C. Schmidt, and Kevin Sullivan,
"Ultra-large-scale systems," Proceedings of Dynamic Languages Symposium;
21st ACM SIGPLAN: Object Oriented Programming Systems, Languages and
Applications, pp. 632-634, Portland, Oregon, 2006.
Christian Muller-Schloer and Bernhard Sick, "Emergence in Organic
Computing Systems: Discussion of a Controversial Concept," in Lecture Notes
In Computer Science, vol. 4158/2006, Autonomic and Trusted Computing,
2006, pp. 1-16.
Urban Richter, Moez Mnif, F'urgen Branke, Christian M'uller-Schloer, et a/.,
"Towards a generic observer/controller architecture for Organic Computing,"
Proceedings of INFORMATIK 2006 - Informatik f''ur Menschen!, Lecture
Notes in Informatics (LNI), pp. 112-119,2006.
Uwe Aicklen and Steve Cayzer, "The Danger Theory and its Application to
Artificial Immune Systems," HP Labs, 2002.
Jie Wang, Jian Cao, J.O. Leckie, and ShenSheng Zhang, "Managing e­
government IT infrastructure: an approach combining autonomic computing
and awareness based collaboration," Proceedings of Computer and
Information Technology - CIT'04, pp. 998-1003, 2004.
Jeffrey O. Kephart, "Research Challenges of Auto~omi~ Computing,"
Proceedings of International Conference on Software Engineering (lCSE), pp.

15-22,2005.
IBM, "Autonomic Computing Toolkit Overview," in IBM DeveloperWorks -
Autonomic Computing, Accessed May 2009.
David Bridgewater, "Standardize messages with the Common Base Event
model," in IBM DeveloperWorks, 2006. .
Bart Jacob, Richard Lanyon-Hogg, Devaprasad K Nadgir, and Amr F Yassin,
"A Practical Guide to the IBM Autonomic Computing Toolkit," vol. 2009:

IBM Redbooks, 2004.

e

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

R Desmarais and H Muller, "A Proposal for an Autonomic Grid Management
System," Proceedings of Software Engineering for Adaptive and Self­
Managing Systems - SEAMS '07, pp. 1-11, 2007.
Foundation for Intelligent Physical Agents - FIPA, "FIPA ACL Message
Structure Specification," 2002.
Michael E. Bratman, Intention, Plans, and Practical Reason. Stanford
California: Stanford University, 1987. '
Martin Randles, A Taleb-Bendiab, Philip Miseldine, and Andy Laws,
"Adjustable Deliberation of Self-Managing Systems," in EASe 2005.
Greenbelt, Maryland, USA: Liverpool JMU, 2005.
Hong Jiang, Jose M. Vidal, and Michael N. Huhns, "EBDI: an architecture for
emotional agents," Proceedings of International Joint Conference on
Autonomous Agents and Multiagent Systems, Honolulu, Hawaii, 2007.
Norbert Glaser, Conceptual Modelling of Multi-agent Systems: The
CoMoMAS Engineering Environment (Multiagent Systems, Artificial Societies,
and Simulated Organizations) Springer, 2002.
Dylan Dawson, Ron Desmarais, Holger M. Kienle, and Hausi A. Muller,
"Monitoring in Adaptive Systems using Reflection," Proceedings of
International Workshop on Software Engineering for Adaptive and Self­
Managing Systems, pp. 81-88, Leipzig, Germany, 2008.
Patrick Eugster, "Uniform proxies for Java," Proceedings of 21st Annual
ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications, pp. 139-152, Portland, Oregon, 2006.
Matthew L. Massie, Brent N Chun, and David E Culler, "The Ganglia
Distributed Monitoring System: Design, implementation and experience,"
Parallel Computing, vol. 30, pp. 817-840, 2004.
Andres J. Ramirez and Betty H.C. Cheng, "Design patterns for monitoring
adaptive ULS systems," Proceedings of 2nd International Workshop on Ultra­
large-scale software-intensive systems in International Conference on
Software Engineering (lCSE '08), pp. 69-72, Leipzig, Germany, 2008.
Brian Hayes, "Graph Theory in Practice: Part 2," American Scientist, vol. 88,
pp. 104-109,2000.
Bela Bollobas, Random Graphs, vol. 73. Cambridge: Cambridge University
Press, 2001.
Nisha Mathias and Venkatesh Gopal, "Small worlds: How and why," Physical
Review E, vol. 63, pp. 12,2001.
Lun Li, David Alderson, John C. Doyle, and Walter Willinger, "Towards a
Theory of Scale-Free Graphs: Definition, Properties, and Implications,"
Internet Mathematics, vol. 2, pp. 431-523, 2005.
Daniel Le Metayer, "Describing Software Architecture Styles Using Graph
Grammars," IEEE Transactions on Software Engineering, vol. 24, pp. 521-
533, 1998.
Dan Hirsch, Paola Inverardi, and Ugo Montanari, "Graph Grammars and
Constraint Solving for Software Architectural Styles," Proceedings of 3rd
ACM International Software Architecture Workshop - ISAW'98, Orlando, FL,
1998.
Robert Bruni, Antonio Bucchiarone, Stefania Gnesi, and Heman Melgratti,
"Modelling Dynamic Software Architectures using Typed Graph Grammars,"
Electronic Notes in Theoretical Computer Science, vol. 213, pp. 39-53, 2008.

f

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]
[123]

[124]

[125]

[126]

Tom Mens, Gabriele Taentzer, and Olga Runge, "Analysing Refactoring
Dependencies using Graph Transformation," Software and Systems Modelling,
vol. 6, pp. 269-285, 2007.
Albert-Laszlo Barabasi and Reka Albert, "Emergence of Scaling in Random
Networks," Science, vol. 286, pp. 509-512,1999.
Lian Wen, Diana Kirk, and R.G.Dromey, "Software systems as complex
networks," Proceedings of IEEE International Conference in Cognitive
Informatics, pp. 106-115,2007.

Lian Wen, R.G.Dromey, and Diana Kirk, "Software Engineering and Scale­
Free Networks," IEEE Transactions on Systems, Man and Cybernetics, vol.
39,pp.648-657,2009.

Yuumi Kawachi, Kenta Murata, Shinichiro Yoshii, and Yukinori Kakazu,
"The structural phase transition among fixed cardinal networks," Proceedings
ofComplex2004, pp. 247-255, Cairns, Australia, 2004.
Duncan J. Watts and S. H. Strogatz, "Collective dynamics of small-world
networks," Nature, vol. 393, pp. 440-442, 1998.
David Lamb, Martin Randles, and A. Taleb-Bendiab, "Software Engineering
Concerns in Observing Networks of Autonomic Systems," System and
Information Sciences Notes Journal, vol. 2, pp. 101-104, 2007.
David Lamb, Martin Randles, and A. Taleb-Bendiab, "An Adaptive
Observation Framework for Self-Organising Networks of Autonomic
Systems," Proceedings ofPGNET 2007, pp. 296-302, Liverpool, 2007.
Ernest Friedman, Jess in action: rule-based systems in java: Manning
Publications Co, 2003.
Tian He, John A. Stankovic, Michael Marley, Chenyang Lu, et al., "Feedback
control-based dynamic resource management in distributed real-time
systems," Journal ofSystems and Software, vol. 80, pp. 997-1004, 2006.
David Lamb, Martin Randles, and A. Taleb-Bendiab, "Software Engineering
for Large-Scale Observation Systems," in DASEL Technical
Reports/O7/07/DLOl , 2007.
B Eckel, Thinking in Java. Englewood Cliffs, New Jersey: Prentice-Hall,
1998.
W. Mepham and S. Gardner, "A software framework for translating ECA
sequences from OWL-DL into Java," Proceedings of Web Intelligence and
Intelligent Agent Technology, 2008. WI-IAT '08, pp. 540-543,2008.
Adrian Paschke, "ECA-RuleML/ECA-LP: A Homogeneous Event-Condition­
Action Logic Programming Language," Proceedings of International
Conference of Rule Markup Languages (RuleML '06), Athens, GA, 2006.
1. Gosling, "The feel of Java," Computer, vol. 30, pp. 53-57, 1997.
William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg, "A
Comparison of String Metrics for Matching Names and Records," Proceedings
ofKDD Workshop on Data Cleaning and Object Consolidation, 2003.
W. Clay Richardson, Donald Avondolio, Scot Schrager, Mark w. Mitch~l~, et
al., "Boxing and Unboxing Conversions," in Professional Java JDK 6 EdItIOn:
Wiley Publishing, 2007, pp. 19-21.
Angela Nicoara, Gustavo Alonso, and Timothy ~osc~e, "Controlle~:

systematic, and efficient code replacement for runnmg Java programs,
Proceedings of 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, pp. 233-246, 2008.
Sun, "Java Hotswap API."

g

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]
[138]
[139]
[140]

[141]

[142]

[143]

[144]

[145]

[146]
[147]

Dong Kwan Kim and Eli Tilevich, "Overcoming JVM HotSwap constraints
via binary rewriting," Proceedings of International Workshop On Hot Topics
In Software Upgrades, pp. 1-5, Nashville, Tennessee, 2008.
Algis Rudys and Dan S. Wallach, "Enforcing Java Run-Time Properties Using
Bytecode Rewriting," in Lecture Notes in Computer Science: Springer Berlin /
Heidelberg, 2003, pp. 271-276.

Eelco Visser, "Meta-programming with Concrete Object Syntax," In

Generative Programming and Component Engineering, Lecture Notes In

Computer Science: Springer Berlin, 2002, pp. 299-315.
Jonathan M. Sobel and Daniel P. Friedman, "An Introduction to Reflection­
Oriented Programming" Proceedings of Reflection 96, 1996.
N Feng, GAo, T White, and B Pagurek, "Dynamic evolution of network
management software by softwarehot-swapping," Proceedings of 2001
IEEE/IFIP International Symposium on Integrated Network Management,
2001.

Shigeru Chiba, Yoshiki Sato, and Michiaki Tatsubori, "Using HotSwap for
Implementing Dynamic AOP Systems," Proceedings of 1st Workshop on
Advancing the State-of-the-Art in Run-time Inspection, 2003.
Jonathan Appavoo, Kevin Hui, Craig Soules, and Robert Wisniewski,
"Enabling autonomic behavior in systems software with hot swapping," IBM
Systems Journal, vol. 42, 2003.
RG Taylor, Models ofcomputation and formal languages: Oxford University
Press, 1998.
Ed Ort and Bhakti Mehta, "Java Architecture for XML Binding (JAXB)," in
Sun Java Technical Articles, 2003.
James Clark and Steve DeRose, "XML Path Language (XPath) Version 1.0,"
in W3C Recommendations, vol. 2009: W3C, 1999.
Joerg Schaible, "XStream Tutorial," 2008.
Wolfgang Laun, "A JAXB Tutorial," in Glassjish Tutorials, 2009.
Open Source / SourceForge, "Repast API Documentation," 2005.
Nancy G. Leveson, "A Systems-Theoretic Approachto Safetyin Software­
Intensive Systems," IEEE Transactions on Dependable and Secure
Computing, vol. 1, pp. 66-86,2004.
John Haggerty, David Lamb, and Mark Taylor, "Social Network Visualisation
for Forensic Investigation of E-mail," Proceedings of 4th IEEE Conference on
Digital Forensics and Incident Analysis (WDFIA 09), Athens, Greece, 2009.
Martin Randles, A Taleb-Bendiab, and Philip Miseldine, "Using Stochastic
Situation Calculus to Formalise Danger Signals for Autonomic Computing,"
in PGNET2005. Liverpool John Moores University: LJMU, 2005.
Alfred Tauber, "The Biological Notion of Self and Non-self," in The Stanford
Encyclopedia ofPhilosophy, Zalta, Ed., 2002. . .
Markos Markou and Sameer Singh, "Novelty Detection: a review - part 1:
statistical approaches," Signal Processing, vol. 83, pp. 248.I-2~97, 2003. . .
P Matzinger, "Tolerance, Danger, and the Extended Family, Annual Review
ofImmunology, vol. 12, 1994.
IBM "Autonomic Computing Toolkit: A Developer's Guide," 2006.
J Bo~ch, "Design Patterns as Language Constructs," JOURNAL OF OBJECT
ORIENTED PROGRAMMING (JOOP), vol. 11, pp. 18-32.1998.

h

	505924_0001
	505924_0002
	505924_0003
	505924_0004
	505924_0005
	505924_0006
	505924_0007
	505924_0008
	505924_0009
	505924_0010
	505924_0011
	505924_0012
	505924_0013
	505924_0014
	505924_0015
	505924_0016
	505924_0017
	505924_0018
	505924_0019
	505924_0020
	505924_0021
	505924_0022
	505924_0023
	505924_0024
	505924_0025
	505924_0026
	505924_0027
	505924_0028
	505924_0029
	505924_0030
	505924_0031
	505924_0032
	505924_0033
	505924_0034
	505924_0035
	505924_0036
	505924_0037
	505924_0038
	505924_0039
	505924_0040
	505924_0041
	505924_0042
	505924_0043
	505924_0044
	505924_0045
	505924_0046
	505924_0047
	505924_0048
	505924_0049
	505924_0050
	505924_0051
	505924_0052
	505924_0053
	505924_0054
	505924_0055
	505924_0056
	505924_0057
	505924_0058
	505924_0059
	505924_0060
	505924_0061
	505924_0062
	505924_0063
	505924_0064
	505924_0065
	505924_0066
	505924_0067
	505924_0068
	505924_0069
	505924_0070
	505924_0071
	505924_0072
	505924_0073
	505924_0074
	505924_0075
	505924_0076
	505924_0077
	505924_0078
	505924_0079
	505924_0080
	505924_0081
	505924_0082
	505924_0083
	505924_0084
	505924_0085
	505924_0086
	505924_0087
	505924_0088
	505924_0089
	505924_0090
	505924_0091
	505924_0092
	505924_0093
	505924_0094
	505924_0095
	505924_0096
	505924_0097
	505924_0098
	505924_0099
	505924_0100
	505924_0101
	505924_0102
	505924_0103
	505924_0104
	505924_0105
	505924_0106
	505924_0107
	505924_0108
	505924_0109
	505924_0110
	505924_0111
	505924_0112
	505924_0113
	505924_0114
	505924_0115
	505924_0116
	505924_0117
	505924_0118
	505924_0119
	505924_0120
	505924_0121
	505924_0122
	505924_0123
	505924_0124
	505924_0125
	505924_0126
	505924_0127
	505924_0128
	505924_0129
	505924_0130
	505924_0131
	505924_0132
	505924_0133
	505924_0134
	505924_0135
	505924_0136
	505924_0137
	505924_0138
	505924_0139
	505924_0140
	505924_0141
	505924_0142
	505924_0143
	505924_0144
	505924_0145
	505924_0146
	505924_0147
	505924_0148
	505924_0149
	505924_0150
	505924_0151
	505924_0152
	505924_0153
	505924_0154
	505924_0155
	505924_0156
	505924_0157
	505924_0158
	505924_0159
	505924_0160
	505924_0161
	505924_0161a
	505924_0162
	505924_0163
	505924_0164
	505924_0165
	505924_0166
	505924_0167
	505924_0168
	505924_0169
	505924_0170
	505924_0171
	505924_0172
	505924_0173
	505924_0174
	505924_0175
	505924_0176
	505924_0177
	505924_0178
	505924_0179
	505924_0180
	505924_0181
	505924_0182
	505924_0183
	505924_0184
	505924_0185
	505924_0186
	505924_0187
	505924_0188
	505924_0189
	505924_0190
	505924_0191
	505924_0192
	505924_0193
	505924_0194
	505924_0195
	505924_0196
	505924_0197
	505924_0198
	505924_0199
	505924_0200
	505924_0201
	505924_0202
	505924_0203
	505924_0204
	505924_0205
	505924_0206
	505924_0207
	505924_0208
	505924_0209
	505924_0210
	505924_0211
	505924_0212
	505924_0213
	505924_0214
	505924_0215
	505924_0216
	505924_0217
	505924_0218
	505924_0219
	505924_0220
	505924_0221
	505924_0222
	505924_0223
	505924_0224
	505924_0225
	505924_0226
	505924_0227
	505924_0228
	505924_0229
	505924_0230
	505924_0231
	505924_0232
	505924_0233
	505924_0234
	505924_0235
	505924_0236
	505924_0237
	505924_0238
	505924_0239
	505924_0240
	505924_0241
	505924_0242
	505924_0243
	505924_0244
	505924_0245
	505924_0246
	505924_0247
	505924_0248
	505924_0249
	505924_0250
	505924_0251
	505924_0252
	505924_0253
	505924_0254
	505924_0255
	505924_0256
	505924_0257
	505924_0258
	505924_0259
	505924_0260

