Developing a Global Observer
Programming Model for
Large-Scale Networks of

Autonomic Systems

David John Lamb

A thesis submitted in partial fulfilment of the
requirements of Liverpool John Moores University
for the degree of Doctor of Philosophy

School of Computing & Mathematical Sciences
Liverpool John Moores University
Liverpool, United Kingdom

June 2009

Abstract

Computing and software intensive systems are now an inextricable part of modern
work, life and entertainment fabric. This consequently has increased our reliance on
their dependable operation. While much is known regarding software engineering
practices of dependable software systems; the extreme scale, complexity and
dynamics of modern software has pushed conventional software engineering tools and
techniques to their acceptable limits. Consequently, over the last decade, this has
accelerated research into non-conventional methods, many of which are inspired by
social and/or biological systems model. Exemplar of which are the DARPA-funded
Self-Regenerative-Systems (SRS) programme, and Autonomic Computing, where a
closed-loop feedback control model is essential to delivering the advocated cognitive

immunity and self-management capabilities.

While much research work has been conducted on various aspects of SRS and
autonomy, they are typically based on the assumptions that the structural model
(organisation) of managed elements is static and exhaustive monitoring and feedback
is computationally scalable. In addition, existing federated approaches to distributed
computation and control, such as Multi-Agent-Systems fail to satisfactorily address
how global control may be enacted upon the whole system and how an individual
component may take on specified monitoring duties - although methods of interaction
between federated individuals is well understood. Equally, organic-inspired
computing looks to deal with event scale and complexity largely from a mining
perspective, with observation concerns deferred to a suitably selective abstraction
known as the “observation model”. However, computing and mathematical science
research, along with other fields has developed problem-specific approaches to help
manage complexity; abstraction-based approaches can simplify structural organisation
allowing the underlying meaning to be better understood. Statistical and graph-based
approaches can both provide identifying features along with selectively reducing the

size of a modelled structure by selecting specific areas that conform to certain

topological criteria.

i

This research studies the engineering concerns relating to observation of large-scale
networks of autonomic systems. It examines methods that can be used to manage
scale and generalises and formalises them within a software engineering approach;
guiding the development of an automated adaptive observation subsystem — the
Global Observer Model. This approach uses a model-based representation of the
observed system, represented by appropriately attached modelled elements; adapters
between the underlying system and the observation subsystem. The concepts of
Signature and Technique definitions describe large-scale or complex system
characteristics and target selection techniques respectively. Collections of these
objects are then utilised throughout the framework along with decision and
deployment logic (collectively referred to as the Observer Behaviour Definition — an
ECA-like observational control) to provide a runtime-adaptable observation overlay.
The evaluation of this research is provided by demonstrations of the observation
framework; firstly in experimental form for assessment of the Signature and
Technique approach, and then by application to the Email Exploration Tool (EET), a

forensic investigation utility.

11

Acknowledgements

Firstly, my utmost gratitude to Prof. Taleb-Bendiab for all his advice, support,
encouragement and friendship throughout this research and writing up; in addition to
facilitating funding for the PhD. In this regard, I must extend thanks to Prof. Merabti,
Dr. Dhiya Al-Jumeily and the School of Computing and Mathematical Sciences.

Secondly, I would like to thank all the members of academic and technical staff, along
with researchers for their friendship and support, with special mentions to: Dr. Martin
Randles for his discussions and advice, particularly in the late stages of writing up,
Dr. Thomas Berry for talking me into the PhD, Dr. John Haggerty for the opportunity
to work on the EET project, and Dr. Denis Reilly for all his assistance in HND
teaching. Mengjie Yu, Mike Baskett, David Llewellyn-Jones, Ian Rhead, Chris Wren
and Oliver Drew all supplied endless good humour, chats and at times kept me sane.
The administrative staff deserve many thanks for the help received in navigating the

university’s organisation; particularly Trish Waterson and Lucy Tweedle.

Thirdly, I would like to thank my family; particularly my Mum and Dad — Christine
and Bill - without whom none of this would have been possible. Much appreciation to
my Mum for all she did during this write up. Liz and Ste (my siblings) both provided
opportunities to escape the write up when it was needed. Thanks also to Uncle David
for donating his old laptop; I do not know how I managed without one.

It was my late Dad’s interests in radio and electronics that ultimately led me towards

computing as a career and academic interest. This work is dedicated to his memory.

Finally, I must thank Sarah, the love of my life for her support, understanding,
patience and encouragement. Without her, I simply would not have completed this
thesis. Her parents, Ken and Frances also allowed me to take over the dining table as a

workstation at weekends, for which I am most grateful.

v

Table of Contents

ADSEFACE....cecoiiiriitiiiniiecsaisaieneessessssssessssasssossessossessesssssesssessessesssssssssossessessessessersessosses il
ACKNOWIEAZEMENLSuoeeurereaierssissensensanonnasesssssossasasesssessessessensessassasssesssssessessesseses iv
Table Of CONLEIES cuucuueecueieeiiiiricrensnsssnssasssessesssssssesaessenssasssessasssessasssessessnessessasssessasas v
Table Of FIgUIES...uuiioniiiiiiinicniiicrninnainnsssisssssncsntessesssssssesessessssssssseessessssssensassns ix
Table of Equations and TabIescciuieneercricneenrencrecsecsneensnnsssesssesssessensssesssssssesses xi
Chapter 1 = — INtrOdUCHION......ueicrceiirenienriieseicrtiensenessenesseesessessseesaneessassssesssassssaeses 1
1.1 Resilient Self-Managing Software via Observationcccoccocoveevennne.. 2
1.2 Motivation: Observation in Complex Software Systems.................cccoocee...... 3
1.2.1 Software System CompleXityccocuevvviievieiiienieeiicieeeeee e 3
1.2.2 Autonomic SOFEWATrEcocvieiiiriiriieie e, 4
1.2.3 Lack of Engineering Support and Model.................c..ccccoooviiiiiinnnn.., 5

1.3 ChalleNES......ceeeeieeieiee e 8
1.4 APPIOACH ..o e 9
1.4.1 ODJECTIVES ettt ettt raeeaneeeaeas 10

1.4.2 SO ettt 10

1.5 Main ContribULIONSccevciiiiiiiiiieiiie ettt et e e e e e e 13
1.6 SEUCTULE ...ttt e e rae e s e e e evae e saaeeennees 14
Chapter 2 — Autonomic Software Control............eccccvieeensvernisnneicssernnsnercsssecsnes 17
2.1 INtrOAUCTION. ...ttt et e 18
2.2 Features of CompleXity......ccooveeiiiiiiiiiieeie et 19
2.2.1 Large Scale: Huge Datasets and Monolith Software..................cc........ 19
222 Component Independence and Systems-of-Systemscceceeereeenn 21
223 Emergence of System Behaviour..............ooooveeiiiiiiinieeee, 22
224 Self-Organisation & Emergent Topologiescccceevieeiiiniecnennee. 25

23 Software Engineering and Complex Systems..........coccerevieiniicriiieiniecnnnnne. 26
2.3.1 Systems of Systems, Internet and Ultra-Large Scale.......................... 27
2.3.2 Organic COMPULING.oerirririeeiieeieeriee et eiee et e eieesreeeaeeesanesnens 29
233 Cognitive Immunity & Autonomic Computing..........ccceeveeeveeerreeennnen. 30
234 The Multi-Agent-System Approachccccevvvieiiiiineienincenncenen. 34
235 Domain-specific Monitoring and Management in Complex Systems.36

2.4 Requirements: Large Scale and Complex Systems Observation Model38
2.5 SUIMIMATY ..ottt ettt et e ettt e et e s et et e e bt e saneesabeeeateesateens 41

Chapter 3 — Graph Theoretical Modellingcccceeeeeeereeereererereseresssseseseaenes 42

3.1 Modelling and ADSLractionccceueerieeririeeeeieriieieeceeeeee e, 42
32 Use of Graph Theoryccoceeierereireieienieietieetieee e 45
3.2.1 Modelling Software with Graphs...........cccoocovviiiiiiiiiiiiiiic, 46
322 Exploiting the StruCture..........cccovevirieviiniiniiniceeee e, 48
3.3 Modelling Scale-Free COnNEctiVityccccoeoveviiriiieiieeeeeeieeceereceeeee e, 49
3.3.1 Hub Connection Density.........cccoceeeievenineninieieieieeceeeeeeeeee, 53
3.3.2 Mean Shortest Pathcccoovieiiieiiiiiicceeeeeeeeee 54
3.33 Clustering CoeffiCient...........cccceveerieiieieneeieeiceeceeeee e 54
3.34 Acquaintance NOmINAtioNccceeevveeruieeciieiieecreeecteeeee e 55
3.4 SUMIMATY ..ottt ee ettt ae e et e e eteeereeeereseeseeeneeesreeeneeenes 57
Chapter 4 — Large-Scale Observer Design Pattern............cccccoevveivvirvceecruecnnnns 58
4.1 Applying the Observer Pattern...........cccecveevieiiieeiiecieeeeeeeeceeee 59
4.2 Requirements for a “Complex” Observer Pattern...........c.cccceeeevveeeeennnenenne, 60
4.3 The Observer Conceptual Model...........ccooviieiiiiiiieieeeeece e, 62
4.3.1 Identifying the observed Structureoccoeveveecieeciecciieee e, 63
432 Managing system scale via topology-based architecture..................... 65
433 Determining a suitable modelling strategycccceeeevvvieciiiecieeennnn 67
4.3.4 Deploying the ODSEIVETS......cccviieriiieeeiireeiee e eereeeieeeereeeeeaeesneeens 70
4.4 Complex Observers N ConteXt........coeeeiuirieiiieeiieeeie e 73
4.4.1 The Complex Software Systemccccovviiiiiiieiiii e 73
4.4.2 The CompleX ODSETVELSccocueiiiiiiieeiieeeeee e 76
4.4.3 Structural Observation Framework.............coccceiviiiiiiniiiiiiniiis 77
4.4.4 System-level Observation Framework..............c..ccoociii, 80
4.5 SUMMIATY ...ttt ettt et 82
Chapter 5 - Specifying the Observer Programming Models........................... 85
5.1 Specifying Structural TYPES......ccceovierieiriiniieiiiciie et 85
5.1.1 Modelling the System Structure.............cccceeereverireieeiieniiicecienn 86
5.2 The Structural Signatures...........occeeeveeiiiieniiiiiiierieereereeer e 90
5.2.1 A Scale-Free Signaturecccoeeeuiiiiiiiiieiiiiinccnccic e 92
522 Formalising the Requirementsccccoeceviiiiiiiiiiiiniiiiiiniieneene 93
523 Modelling the Signature in Softwareccc.cocoviiiiiiiiiiiniiiiine 94
53 Specifying Observation Techniquesccccoooiiiiiiiiiiis 98
53.1 Acquaintance Immunisation Techniqueccocoi 99
532 Modelling Generic Observation Techniquesc.occoiiiiinn. 101
54 N1 11110 0F:1 OO 110
Chapter 6 — Assembling the Observation Modelcccoervervcnincinvinsensecnnnne 111
6.1 Specifying Observation Policies and Process...........c.coooevveininincinnnne. 111
6.1.1 Situating the POlICIES.cccoiriiiiii e, 112
6.1.2 Observation Technique Selection Process...........coccvvveeviiieerienenieeen, 113
6.1.3 System-level Observer Deployment LogiC..........ccccccovviiiiiiiiinnnnn. 118
6.2 “Typed” Observers: Applying the Model.................cocoiil 121
6.2.1 Completing the Model: Overview Class Diagramsc..ccocceeueeee. 123
6.2.2 Using the Model: Important Runtime Processesccccceeeeennee 127
6.3 SUIMIMIATY ..ottt ettt ettt sat et e bt e st e e bt se e e s eeeaseeanseanseeeseeenseenns 135

Vi

Chapter 7 — Evolution and the Observation Modelc.ccocceveueevevrcveeeurunne 136

7.1 Considering the Model’s Runtime Processesccoccovcvveeeveeeeennnn... 137
7.1.1 Basic Observation “Behaviour Definition”ccccocoovveeennnn... 139
7.1.2 Extending the Behaviour Definition.............c.occooveieieiiiicece 145

7.2 Exposing Components’ Behaviour and Statecc...coeieiennnnn 149

7.3 Flexibility in Signature and Technique Definitions............cccccovveverveunnn... 151
7.3.1 Formalising the OBD Signature Definition....................ccococveennnn. 153
7.3.2 Formalising the OBD Technique Definition...................c.c.ccoeeeneen.. 158

7.4 The Externalised Specificationcc.cooeeevieveeeiiieeeieeeeeeeeeee, 160
7.4.1 The OBD FOrmatc.ccoeceeeeieiiieeeieeteeeeeeeeeeeeeeee e 162
7.4.2 The OBD Classes.......cccuieuieieriieiieeiieieeeeeeeteeeeeeeeeee e 163

7.5 SUMMATY ...ttt ettt e 169

Chapter 8 — OBDXML 0 COAEcccevueiereienererseenrneerseeerncessnessssessnsesssssssnessness 170

8.1 OBD to OBDXML Schema Definition...........cccoeeieeieciiecieiiiciieiieene, 170
8.1.1 Re-Examining the OBD Schema........c..occoooviiiiiiiiii 171
8.1.2 The Finalised Compact Schema..............cccoceveeiiicvenieciiiiicccreenee 178

8.2 The BInding ProCesses.........coouieiiriiriiieiiiiiecieeieceeee e 181

8.3 Interpreting and Processing..........cccoeevviiiiiirireniieniiecceeeieeee e 185
8.3.1 Acquiring the OBDXML Stringcccocoeeeiieiieecieeiieeie e 185
8.3.2 Un-marshalling XML strings to OBD objects............ccceccverveerieannn. 186
8.3.3 Piggybacking OBD on the Structural Frameworkc........... 186
8.3.4 Runtime (Typing) Errors........cccoooeoiiiiiiiiiieee et 188

8.4 SUIMIMATY ...ttt e ettt e e e en e esaeeeeaeas 190

Chapter 9 — Evaluation & Case Studyccovveerieiscvirinnsnneicissiencnscnsecsssnnennes 191

9.1 Testing & Evaluation Methods.........ccooooiiiiiiiiii e 191
9.1.1 Evaluation Conditions and Specificationsccccoeeieiiviieieeennneen. 191

9.2 Quantitative Evaluation: Identification and Deployment....................... 192
9.2.1 The Infection Experimentcoocoioeiiiiiniiiniiiieccece e, 193
9.2.2 Results: Random, Regular and Scale-Free topologies....................... 195
923 Limitations of the experimental work..................ccooc 199
924 Implications on “Observability”cccccooiiiiiiiiiiiin, 200
9.2.5 Further development of the experiment............ccccocoveviieiiiiiinnnne 201
9.2.6 SUMMATY ...ttt e e s 202

9.3 Qualitative Evaluation: Applying the Model to “EET”............cccoceiine 203
9.3.1 The Email Exploration Tool: OVerviewccccocoviciiiiiiinninnnnne. 203
9.3.2 Model Application: OVEIVIEWcccovvuiervieeinreeniiiiiiiniiiecnie oo 204
933 Modelled Element: Core EET Support........ccooooeiiiiiiiiiiiiiiniieeee, 205
934 Developing Algorithms, Signatures and Techniques....................... 207
9.3.5 OBDXML Governance in EETccoooiiiiiiiiiiiiiccee, 209
9.3.6 SUIMIMATY «.eeenieieeireeeteeett ettt st e et e e e en e e s sna e s e e eeenne e 210

0.4 Evaluation SUMMATY......ccccceiriririeeriiieaiieeee e eeee e seee e 212

Vil

Chapter 10 — Conclusions and Further Workseeeeceeeeeesvseereescsseseenes 213

10.1 Motivation and Research Approach...............cocoooveoveiveneeeeeeeeeeeveeen, 213
10.2 Summary 0f TRESISc.oouvivieieee e 218
10.3 Significant Contributionsc.ooveeioeeeieriieteeeeeeeeee e eeeeeeeeee s 220
10.4 Critical REVIEWoviiiiieiieiiieeeeee et 224
10.5 Suggested Further WoOrks..........coveeiiioireeiieeeeieeeeceeceeeeee e 225
10.5.1 Project and Framework SpecifiC..........ccceevvrviiviiieiiieiiieeeceeeeeean 226
10.5.2 General and Wider Framework Relatedcccccoeoii 227
GIOSSATY ceveirinvininiiinnnicnsaniissstecsssenssnsssssascsssasssssesssssssssessssessassssesssssassssessssessasessasesens 229
APPECNAICES...nnriiiiiiiiiiiiinriinssinsssissssnsssssessassssssssssssosssssssssssssssssssssssessassssassssasossssssasenss I
Appendix I — The Programming Model: Additional Discussioncceeccereneeene II
I.I An Example Structural Model Implementation..........c...cccoccvieeviieeiieenrcnenne. 11
[II Decomposition for Structural Modelcccoivviiiiiiiiiiieeiee e, \%
Appendix I Additional EET Data......eeiiciininnvnnniiinssssnnsesscscssssssessssessssssscns X
IL.I Additional EET Data..........cooooviiiiiiiiiieeie e XI
Appendix III — Publications by the same author...............eeeirneeecisvueeeenanns XII
RELEIEICES .ccuvreicrrranricrsssnnisnsratinssssenssssssicsssssssssssesssssresssssiessssasssssssssssessssssssssssssssssssssssese a

vill

Table of Figures

Figure 1: Example Decomposition of Vehicle Modelcocoovovoovooo 43
Figure 2: Example Power Law Degree DiStribution...............ocoovovvvevovovoeoooooo . 50
Figure 3: OO Observer Class Requirements (UML)c.oooovomoooooooooo 59
Figure 4: Overview of ObServation PrOCESSES.........oveveuveveremeeeeooeeeeeeeeeoeoooeeooeo 63
Figure 5: Signature-Selected Observation Techniques..............oeveveeeeeveeeeoeoeeeoe, 64
Figure 6: Required Model Generation COMPONENtS..............ocoovoveveeeeeemeoeoeeoeoeo. 69
Figure 7: Identification and Model Generation Processoovocoeeuemeveeereeeevin. 69
Figure 8: Observer Deployment COMPONENtSooveeeeeereeeeeeeseeeeeoeoeoee) 71
Figure 9: Deployment Process OVErVIEWc.c.c.ovveeueieeeoeeeeeeeeeeeeeeeeeeeeeo, 72
Figure 10: Controlled Complex System Architecturecoooeveeeeeeveeeeeeeeeeeeonn, 73
Figure 11: Hierarchical Organisation of Structural Observers and Scope of Interest .77
Figure 12: Architectural Overview of Structural Observer Unit............ococveveevvnnnn.. 78
Figure 13: Structural Observation OVEIVIEWccoveueeeereneeeeeeeeeeeeeeeeeees e 80
Figure 14: Simple Hard-coded Signatureooooveiomieieeeeeeeeeeeeeeeeeeeeeeeeens 86
Figure 15: UML Class Diagram showing Structural classes...............ccocoeveeevverenn.. 90
Figure 16: Signature and Invalidation Handler - significant classes, relationships and
MEtNOAS ... 97
Figure 17: Relationships between Acquaintance-based Signature, Technique and
ALZOTIERIM ...t 101

Figure 18: Wrapper Modelled Element and supporting Meta Data representations . 103
Figure 19: Revised Generic Signature and support classes for Results and

Associations along with Acquaintance Nomination-specific example.............. 105
Figure 20: Generalised Modelled Element Algorithm Interface and Example
IMPIEMENTAtIONoiiiiiiiiieieee e 106

Figure 21: Observation Technique class and example concrete implementation...... 108
Figure 22: Overview of Observation Technique, support classes and relationships . 109

Figure 23: Simply-revised Signature and Technique Association class.................... 115
Figure 24: Signature design modified for Change Observercccccouvevvrereennin. 116
Figure 25: Summary of contributory processes to Observation Technique Selection
.. 116
Figure 26: Basic Technique Selector class definition and relationships................... 117

Figure 27: System-level Deployment Support: significant methods and classes...... 119
Figure 28: Deployment Coordinator, support classes and revisions to existing classes

.. 121
Figure 29: Significant Model and Signature Classes...........ccoccervrrieiiiiiiiencenneenenne 124
Figure 30: Significant Technique, Technique-selecting and support classes 125
Figure 31: System-level Observer Deployment and support classes...........cc.c..c...... 126
Figure 32: Logical flow for Structural Observer / Modelled Element creation......... 129
Figure 33: SignaturelnvalidationHandler and StructuralObserver relationship 132
Figure 34: Technique Selection and Observer Deployment process flow................. 134
Figure 35: Pseudo-Specification Signature-to-Observer Mapping..............ccccc........ 138
Figure 36: Generic OBD formatooooooiiiiiiiicccccc s 143
Figure 37: UML for Externalised OBD Support Classesc.cccooiiiie 144
Figure 38: Extended OBD Format...........cccccoooiiiiiiiiiiiiic, 148

Figure 39: UML diagram showing additional support classes for extended OBD.... 149

1X

Figure 40: OBD Signature FOrmMat...........ccooeveviieieriiereiereeieeeeeeeeeeeeeeeeeeeeeeee, 156
Figure 41: Significant OBD Signature support Classes................ccccccoooovveeereeennnn, 157
Figure 42: OBD Observer Technique Definition...............cococoooooeiiiiiiiecieee 159
Figure 43: OBD Technique and support Classes..........coovevevieeeeeeeeerereieieeeeeeeenn, 160
Figure 44: Overview of OBD FOrmat..........ccceviviveuioreieieeeereiieeeeeeeeeeee e, 163
Figure 45: UML Class Diagram: OBD Base and Utility classes.................ccco......... 165
Figure 46: UML Class Diagram - OBD Signatures and Techniques and significant
TElAtIONSRNIPS c.cvioviceiiictct s 167
Figure 47: UML Class Diagram: Main Behavioural Definition class and relationships
.. 168
Figure 48: XML Schema snippet: Book Example..........cccocoeveeeieiiciiieiceeee 171
Figure 49: XML Schema snippet: OBDExternalisable, OBDVariable and their
EXECIISIONS ... eenvteeutieeieeetteeteeteesteeeeteesteessaesteenseeenseesaeenseeaseassesseeseeaseesseeeseenresneas 174
Figure 50: XSD Snippet: Function derivatives...........ccccceeevvevrieeereeiieeeeceeeene, 175
Figure 51: XSD Snippet: BooleanExpression sub-typescocceveeveeverecieeenneennenn.. 176
Figure 52: XSD snippet for SignatureInvalidationHandler-related elements............ 177
Figure 53: XSD Snippet: Signature and Technique definitions.............c.ccvveeenenne..e. 178
Figure 54: XSD snippet: References, Behaviour and OBD Definition..................... 180
Figure 55: Generic view of Un-Marshalling XML.........c.ccccooiiiiiiiiniinniiiieceee, 182
Figure 56: Infection Simulation Network Screenshotcccoooevvieeiiiicienninenen. 194
Figure 57: Cost of Monitoring Strategies (x: Network Size vs. y: Nodes Observed)197
Figure 58: Effectiveness of Monitoring Strategies (x: Network Size vs. y: Nodes
INFECTEA) .ottt 198
Figure 59: Email Exploration Tool Screenshotc..ccoooeieniiniiiniiinicenicnienes 204
Figure 60: EET Code Snippet: "Add" Model Change Event generation................... 206
Figure 61: EET Code Snippet: Simplified Acquaintance Selection Algorithm 208
Figure 62: EET Compact OBDXML Snippet........ccccccoeiiiiiiiiiiiiiiiiiiiniicciece 210
Figure 67: Example System Setup Showing Component / Service dependencies111
Figure 68: Example Service-based System: Simplified Class Diagram...................... AY
Figure 69: Example "hook" into Component for failure disconnect VII
Figure 70: Snippet showing example Component to ModelledElement event
TLANSIATION.ccetiiii ettt et s VIII
Figure 71: Example Modelled Element Factory snippetc.cocoveiiiiiiiiiiinnnnns VIl
Figure 72: Additional EET OBDXML Signature Snippet.........c.occoooviiiiiiiiiiininnnns XI

Table of Equations and Tables

Equation 1: Power Law Degree Distribution...........c...ooooeiiiiiiiiiiiiicceeee e, 49
Equation 2: Simplified Hub Connection Density Algorithm...............c..ccoeeeiiieinnn. 53
Equation 3: Mean Shortest Path............c.ccooiiiiiniiii e 54
Equation 4: Clustering Coefficient Measure..........ccccoevvivvvieviiecieiiecieieveee e 54
Equation 5: Normalised Immunised Set SiZecccoeviievievieiiiciiiiiice 56
Table 1: Requirements for Observation Modelcccccooiiiiiiiiiiiee, 40
Table 2: Simplified ECA Breakdown of Observation Subsystem Rules................... 138

X1

Chapter 1 — Introduction

Software systems, by nature of their changing development styles, their usage patterns
and ever-developing functionality, are increasing in both complexity (functional and
organisational), and their operational scale (widely distributed systems-of-systems,
where each component is in itself a major software system, and giant monolith-type
systems). As each independent yet interlinked component is tweaked, tuned, or
redesigned to fulfil a new requirement, the overall makeup of the system is affected,
albeit subtly; the net effect that the software system as a whole gradually evolves —
such that its original design and requirements no longer adequately describe its

behaviour, organisation, or possibly even its intentions [1].

In turn, the complexity involved in the design, development and maintenance of such
software systems is ever increasing. This problem is compounded by new generations
of systems that go some way to automating this evolutionary process. Although this
may not — yet — be as advanced as adjustments made by software engineers and
administrators — software is capable of reconfiguration; for efficiency, fault tolerance,
or some other system requirement. This can range from automated adjustment of user
parameters or other configuration item(s), to effectively constructing component-

based systems or employing alternate services/components; examples in [2, 3].

Hence, it is clear that given increasing system complexity; software that can manage
many of its own operations is an extremely attractive proposition. However, although
engineering models and techniques exist that are suited to evolutionary development,
they are based on the iferative concept of co-ordinated dialogue between end-
user/analyst/engineer — governed analyse = design = implement -> reanalyse [4].
Following an engineering framework provides reassurance and guarantees, clear
architecture, and design; facilitating application of post requirements engineering
formal specification to provide proofs of key software behaviour. However, this
approach seems to contrast with the near-organic, continual self-managing process by

which a system may adjust itself; its configuration deviating further from original

design models and specifications.

1.1 Resilient Self-Managing Software via Observation

In order to introduce the area of self-managing software and its relationship to
observation, it is useful to consider the computer science interpretation of Cognitive
Immunity (CI). The notion of CI was first introduced in a DARPA-funded Self-
Regenerative System (SRS) programme in 2004 [5], which outlines four functional
objectives, including CI. The latter was defined as “...introspection on the system's
operation to understand the state, and reasoning about that state to recognise problem
areas or errant behaviour. Further reasoning is then undertaken in order to determine

solutions that will restore the desired system functionality.”

The CI proposals in the SRS programme ranged from high-level architectural
approaches for component management to facilitate failure recovery and component-
trust quantification, through to plans for the specification of learning and repairing
software systems. Given the aim of this research for a generalised software
development approach part-facilitating self-managing systems, the SRS-related work
on developing an software architecture approach [6] was of great interest. Further
research by the same authors [7] showed that the approach aimed primarily to protect
systems from unauthorised actions, sourced either internally or externally. However,
of particular interest was that monitoring of the underlying system was undertaken by
way of specialised instrumentation attachment to system processes. These approaches
relied on a pre-engineered decomposition of important system tasks, identifying

related processes and attaching the required monitors.

Whilst the CI concepts, architecture models and associated techniques were reported
to be beneficial for the design of software-intensive systems, it has only been applied
to small-scale systems including autonomic systems. However, this thesis aims to
explore the applicability of CI to large-scale networks of autonomic systems. As such,
the research must look to address the considerations brought about by the effects of

scaling and complexity on these system-level instruments and observers in particular.

1.2 Motivation: Observation' in Complex Software

Systems

In the interests of clarity, the motivating factors influencing this research will be
broken down into three main categories, further detailed in the following sub-sections.
The first is a brief description of the problem domain’s characteristics — that of
increasing software complexity and scale. The second borrows theory from traditional
Software Engineering and Autonomic Computing to describe desirable properties of
developed software, and why they are so. Thirdly the research motivation is
concluded with an overview of existing software engineering techniques and how

they are lacking in these areas; further narrowing the intended focus of this research.

1.2.1 Software System Complexity

As introduced in earlier sections, “complexity” is one of the characterising features of
the Software Engineering (SE) domain under investigation. Perhaps the simplest
definition is to consider complex software to be: where the operation is not well
specified, and its behaviour is nonlinear (i.e. not easily understood by examining the

behaviour or the specification of the component parts).

Often, this complexity is a product of the sheer scale of a system. It is quite possible
to encounter a complex system composed of many very simple individual
components. Taking the example of an ant colony [8], the important behavioural
characteristics of each type of ant can be observed and recorded, though this does not
provide the observer with an overview of the colony’s (i.e. the entire system’s)
operation. This creates an incomplete design model situation. An observer can know
each component’s behavioural rules; yet understand none of the system’s operation. If
system operation is not well understood, the dangers of unforeseen and apparently
unpredictable effects are undesirable effects. An observer could (due to an
unintentionally-blinkered viewpoint) “tune-up” some component’s operation,

seemingly improving the local situation, while having catastrophically adjusted the

" Throughout this thesis, the term Observer is used in relation to a software system. Unless identified as
otherwise, it is referring to a sub-system or component that is responsible for noting changes in the
state of another component or system and acting accordingly.

behaviour of another dependent component. In other words, it is possible that the
individual components of a system have conflicting concerns and in order for the

whole system to operate satisfactorily, each contributing component must operate in a

less-than (locally) optimum fashion.

These (and other related) characteristics further examined in Chapter 2 complicate the
engineering process; successful software development relies on clear requirements
and a complete design model. A software engineer may be working on a component
in a large and complex system, whose behaviour is governed by the interaction of
various individual software components. While they each may have well-specified
design plans, behavioural models, coding APIs, and unit test results; this does not
mean that the software engineer will have a clear and complete overall system design
model. Any system-wide software created with an incomplete understanding will not

necessarily operate in the best interests of the system.

Leading on from this, the next section introduces a set of properties and
characteristics desirable in these software systems, which provide a conceptual guide

to how some of these issues of complexity may be overcome.

1.2.2 Autonomic Software

Whereas the previous section concentrated on some of the issues surrounding
software systems complexity, this section brings in some of the concepts from related
work that looks to delegate the management of system complexity to the software

system itself.

The first, and possibly most well known of these conceptual models is that of
Autonomic Computing (AC), first discussed in 2001 by Paul Horn of IBM [9]. AC 1s
aimed primarily at distributed software systems, and aims to tackle the complexity
associated with the immense interconnectivity and management of these software
systems. Kephart and Chess, also of IBM [10], pointed out that while there is a great
deal of power in the ubiquitous nature of computing devices and their common

standards for interconnectivity; directly managing the resulting system architecture

and its dependent components is too complex for an engineer (or team of engineers)

to contemplate.

The Autonomic Computing ideal is inspired by the autonomic nervous system of
mammals, and suggests that software systems should self-manage without any
conscious (i.e. engineer/operator) intervention. This led the way for a whole host of
self-something buzzwords (collectively termed self-star / self-* [11]), above and
beyond the initial “Self-CHOP” characteristics proposed by the IBM initiative, which
were Self-Configuring, Healing, Optimising, and Protecting. The notion of the Self-
Healing and Configuring characteristics is a particularly attractive proposition as a
method toward equipping complex software systems with a degree of Cognitive
Immunity. The next section aims to give an overview of how traditional engineering
models are ill equipped to deal with these notions, and outline the difficulties of
adopting the Autonomic Computing approach in a traditional software engineering

scenario.

1.2.3 Lack of Engineering Support and Model

This section gives a brief overview of some traditional software engineering methods
and how they are lacking or inappropriate when it comes to the development of
support software for large-scale and complex systems. Software engineering is a
discipline concerned largely with the development and support of an engineering-style

approach and related processes to aid in the building of software systems.

While there is some dispute [12, 13] about the formal use of the “engineering” term,
various UK-based engineering councils and guilds are recognising that their
membership schemes can extend to Software Engineers. Regardless of the (non)
clique surrounding the engineering-derivation, there is little doubt that many Software
Engineers also work within a sub-discipline of Computer Science, concerned
specifically with the formalisation, modelling, development and use of engineering
concepts to the various aspects in a software system’s lifecycle, from analysing
through to testing [14]. As such, software engineers look to formalise, standardise;

produce and use methods that lay down best practice to software development

problems.

‘N

Analysis and Formalisation of Fixed Requirements

Traditional “waterfall” SE techniques rely on a firm set of requirements, the ability to
formalise those requirements for future use in verification and validation, and a
development cycle that refines and designs a software system based on the all-
important system requirements. While this cycle adheres to traditional engineering
techniques, it is inflexible to requirements changes throughout the development, let
alone after software deployment. As such, changes during development combined
with cost and other constraints can lead to patchwork-type modifications during the
development, and ever-changing requirements, often known as requirements, scope or

feature creep [15].

Evolution of the traditional waterfall approach led to techniques more flexible to
change during development, such as iterative models [16], various examples of which
are found in agile development [17]. These model types retain a linear backbone, but
assume that requirements will change during development; as it is natural that
requirements become more fully understood and refined [18]. As such, development
cycles operate in short iterations; relying on rapid analysis, design and prototyping,
which provide (with end-user support) feedback and information to the next
development iteration. However, even iterative development models rely on a
requirements (re)acquisition, or refinement phase, followed by a redevelopment
phase. These development approaches do not take into account the architecture,
design, maintenance and testing of software that can evolve and alter its own

configuration during runtime [19].

This does not render existing SE models (nor an engineering-based approach)
irrelevant for large, complex and evolving (i.e. dynamic) systems. However, it is clear
that the translation from analysis/requirements phases to implementation may not be
as rigidly connected to the implementation and testing as in a static system. The next

subsection will look at SE modelling and architectural approaches that attempt to

cater for runtime dynamism.

Runtime Adjustment and Requirements

The previous subsection gave a quick overview of software development for fixed
requirements within a well-understood problem domain. This section will give a
similar review of engineering approaches that permit runtime adjustment or some

degree of dynamism in developed software.

Firstly, policy, rule-based, and other related software systems go some way to
creating a layer of indirection between “system requirements” and “implementation
concerns”, allowing for a flexible runtime environment that can operate in accordance
with a user-defined set of boundaries. Runtime inspection of system state is used to
calculate suitable behaviour based on (typically design-time specified) goals/rules,
enabling adaptive behaviour. At a small scale, rule-based software is capable of
sophisticated reasoning and associated behaviour; adaptive to some extent to its
environment against a set of goals [20], and approaching a large scale via component
composition and re-use [21]. Equally, such work has been extended (via, for example,
Agent-based systems with its specified dialogues [22]) to provide a degree of
autonomous control over multiple elements within distributed systems, where manual
per-component management would be too complex and/or costly [23]. Agent system
architectures rely on global system policy taking the form of a basic knowledge-
oriented goal approach [24] and are no doubt extremely useful as a form of self-
management; whereby system configuration is best expressed as a set of global
policies or rules. This approach allows elements to tailor their response appropriately

to deal with local conditions whilst retaining some form of global system control.

However, these types of system architecture do not easily support overseeing
observation, engineered co-operation, controlled configuration and optimisation [25].
The components’ autonomy enforces behaviour based on assessment of local
situations and system-wide goals or constraints; they effectively operate as
independent components with a degree of governance via a system goal/rule-set. This
architecture makes a good model for distribution of computation loading; each
component or agent is responsible for managing its own domain, controlled by system
rules. However, this creates difficulties in terms of adopting a responsive, scalable

approach for observing and adapting (e.g. tuning) component rules based on system-

wide overseen observations. System-wide observation and feedback controlled self-
configuration and optimisation is hindered by the relative independence of each

component and variability of design.

With such a large number of widely-distributed components, identifying areas in
which to monitor the system and obtain feedback is not an easy task; with selection
influenced by the organisation of components, the current system state and a
multitude of system-specific concerns. While there are techniques that are applicable
for engineers to model a large monitoring and feedback system, there ts limited
engineering support to guide the overall design and structure of such systems. In
summary, a Software Engineering approach that combined tested engineering practice
and could integrate research ideas and approaches associated with Cognitive

Immunity would help in the development of self-managing/configuring systems.

There are still limitations in applying current SE approaches to this problem domain,
as detailed above, and there will be issues in applying new (to the field of software
engineering) techniques associated with large-scale and complex systems, which will

be outlined in the next section.

1.3 Challenges

As discussed in the previous section, many of the motivating factors for this research
project are indeed research challenges in their own right. However, as outlined below,
this thesis focuses on a smaller subset, namely:

e Scale — The challenges associated with modelling a system whereby an
exhaustive model is desirable, but the system size presents difficulty in
exhaustive modelling. The proposed approach suggests that a suitable
abstraction must be found; furthermore, the observation subsystem should be
responsible for its automatic selection and management.

e Complexity — can manifest itself in many different ways; primarily that overall
system behaviour and structure is more than the sum of its parts [26].
Observation must look to effectively reduce complexity, concentrating on
relevant areas. Emergence, discussed in more detail in Sections 2.2.3 and

2.2.4, presents further complications, both structurally and behaviourally.

e Evolution — Many software systems may change — or evolve — during their
operation. When this change occurs at runtime, this presents a problem to
those subsystems or components wishing to monitor, or even model them.

e Formalising the approach — Given the nature of complex systems, it is likely
that an approach that works well in one domain is not necessarily transferable
to another. As such, the final significant research challenge is the specification

and generalisation of any methods devised to manage the previous challenges.

1.4 Approach

Building on established methods for software design [14, 17, 27], Autonomic
Computing [9, 28, 29], and graph theory [30-32]; this research examines how to
extend existing autonomic software design methods to equip next generation software
systems with scalable observer capability for Cognitive Immunity in large-scale
networks of autonomic systems. This encompasses a range of concerns, including:
e I[dentification of issues that complicate the management of large-
scale/complex software systems — preliminary literature/practice review.
e C(ollection and evaluation of techniques used for system complexity
management — literature/practice review.
e Collection of relevant current software engineering systems practice —
literature/practice review.
e Investigation of how the above techniques can be integrated to make a
software engineering process — the application of the research.
e Investigation into large-scale/complex software applications and their
common characteristics - Use this to generalise the findings to increase
applicability.

e Evaluation of final methods using a case study.

This research examines some of the significant concerns in the development of self-
managing complex software systems. It is embarked on with an understanding that
there is significant research already undertaken in the areas of goal-driven. rule-based
software. Equally, there is a developing understanding of methods that can be used to

manage and simplify certain complex structures. The research therefore looks to

formalise a development framework for defining, detecting and applying these

practices at runtime to create an adaptive observation subsystem capable of managing

large scale and complex systems.

As such, this necessitates the following contributory aims, drawn from the tasks
outlined earlier:
* Collection of current software engineering observer design and practice

* Detail the conclusions drawn from evaluation; suggested refined approaches

The remainder of this section will look to provide further detail on those tasks that
involve collection of current practice and research, and provide an overview of the

scope of this research.

1.4.1 Objectives

In order to conclude the purpose of the project approach; the aim is that it should
assist software engineering of large and complex systems, and as such, the main
objectives of this research project are as follows:

o Identification of significant issues that complicate the observation
management of software (and indeed software engineering as a whole) of a
large scale and with complex system structures.

e Investigation into methods that can integrate complexity management and
software engineering’s approach to observation.

e Specification of software engineering and programming model for designing
observers within large scale and complex systems

e Evaluation of methods; case studies and real world applications

1.4.2 Scope

This work has two distinct lines of research, each a large and well explored field in its
own right. In this section the focus points in each area will be 1dentified, in addition to

linking the two areas together to explain the overall research perspective.

10

The first of these areas is the study of complexity, with its many sub-fields, many of
which feature heavily in Chapter 2 and Chapter 3. The second somewhat distinct areas
of study are Computer Science, Software Engineering, their connected disciplines and
relevance to complex systems. The other chapters look to tie the two subjects together

with the application of complexity management techniques in a software domain.

Complexity is a wide and well-studied field, with significant contributions from areas
such as natural sciences (e.g. [33, 34]), business and information systems study (e.g.
[35, 36]), and particularly importantly for this work, mathematics and graph theory
[37-39]. Each of these fields looks to provide a method of understanding or even
managing complexity; be it in the form of a simplistic statistical measurement, a
system modelling approach, or simply a variety of observations describing one system

from a variety of perspectives.

The relevance to this research is concerned with extracting a desired (and therefore
simpler) subset of data from the complex system, or to influence the operation of the
system in a controlled and limited manner, managing otherwise unpredictable global
actions. This may range from the use of an algorithm to derive a measure from a
system, or a modelling approach that divides a complex system into several
subsystems with constraints on their interactions and responsibilities. As such, in this
work, it is the mathematical and graph-based complexity-management approaches
that are of most direct value, as mathematical algorithms are, after all, the most

directly translatable to lines of code.

It would be short-sighted to assume that Computer Science is entirely distinct from
the study of complexity; there is necessarily much overlap as the target systems have
many common features [40]. However, it is the differing focus of computer science
used as the separation criterion in this thesis. CS focuses on the study of applying
many different techniques within computer systems, whereby complexity
management techniques are “only” one such set of techniques. More specifically. the
thesis is focused particularly on Software Engineering as a sub discipline; with
particular note to the specification and design guidance it provides for the observation

of system components and complete systems.

1

As discussed briefly in Section 1.2.3, SE as a whole specialises in techniques used in
the development of software systems; at its broadest, from overall project
management through to the maintenance of previously developed software. Given the
types of software under investigation, the thesis design is influenced by the subset of
software engineering models that acknowledge the evolutionary nature of complex
software, both in design and at runtime. This considers traditional engineering-rooted
approaches and designs [14, 21], along with iterative and evolutionary engineering
models [17, 41, 42], and those that support runtime dynamism, such as dynamic
composition approaches [21]. This wide scope is considered in order to try to examine
the areas in which the complexity management techniques are relevant to system

observers; through from design-time analysis to runtime adaptation.

The thesis will look to include relevant background information from both these areas
of research as and where required, and will particularly focus on techniques in the
mathematical management of complexity, in order to better understand the way 1n

which it can be applied.

12

1.5 Main Contributions

As outlined previously, the thesis documents a body of work aimed towards the
development and refinement of a software engineering process to support the design
and implementation of observation subsystems intended to monitor large-scale, self-
organising and complex system structures. To this end, this thesis presents a number

of novel contributions to the field including:

» Collation of research relevant to the problem of modelling and observation of
large-scale and complex structures, including a preliminary investigation into
existing metrication of defining characteristics for large scale and complex
structures, along with the related software-specific concerns.

* Definition of a scale-free detection metric, based on existing work by Cohen and
colleagues in Acquaintance Immunisation [43].

e Specification of a Global Observer Programming Model and associated software
engineering support. The programming model specifies the key programming
concerns along with implementation guidelines for a global observation system
for large-scale, complex and dynamic software systems and datasets.

e Specification of a high-level software engineering framework for this
programming model; comprising architectural overviews, generalised software
designs, and implementation examples for key components such as the adapter
interface with the observed system.

e Definition of a runtime-adaptable Observation Behaviour language in XML,
providing a runtime-evaluable specification of the connections between and
concerns of the various observation subsystem components. This, along with
design and implementation guidance is intended to assist with the development
of runtime-inspection and adaptation “plug-ins” and components for the
observation framework.

e Development of a prototype email and social network visualisation tool. While
the primary research value of this tool is centred in Computer Forensics, it has

provided a useful evaluation and a contributory reference implementation for the

global observer programming model.

13

1.6 Structure

This chapter has given a brief introduction to the research work; its inspiration and
where it fits into the fields of computer science, software engineering and research

related to complexity management. A detailed breakdown of the format of this

research work follows:

Chapter 1 introduces the thesis, giving firstly a brief overview of the motivation for
the work and an outline view of the challenges involved. The research approach and

relevance is detailed, before summarising the main contributions.

Chapter 2 provides background information and a literature-review-style overview of
the elements of complex systems that have guided this research. The first half of the
chapter gives an overview of large-scale and complex “features” and a brief review of
management techniques; the second half conducts a review of both established and
state of the art SE and/or general management techniques for the “systems-of-
systems” that govern this research, covering topics such as ULS, Autonomic and

Organic Computing.

Chapter 3 discusses some of the problems and potential solutions as regards
observation within a complex model. This chapter continues the viewpoint-dependent
complexity theme and begins to examine the creation of abstract models, discussing
differences in model creation between complete-design functional decomposition and
assembling a design “bottom up” from individual components. This complication
leads towards graph theory as a method by which complex structures can be
represented as graphs and simplified by suitable measures. The chapter concludes
with a discussion of scale-free connectivity, its frequent occurrence in complex
systems; finishing with examinations of how the connectivity can be detected
(including the author’s metric), and how the connectivity’s strengths and weaknesses

can be exploited, concentrating on Cohen’s Acquaintance Immunisation.
Chapter 4 begins to address the aims of this research by examining the notion of a

complex and large scale observer model, discussing the OO Observer pattern as a

starting point. The approach taken is to look at an architectural specification that

14

would permit an observer to operate on large-scale and/or complex systems, and to
detail an approach that would manage some of the significant concerns associated
with large scale and complex systems. Out of the requirements presented in the
chapter, the research concentrates on the management of scale and complexity;
adopting a model-based observation view of the system. The architecture proposes
that system characterisation/identification, reasoning/planning/determination, and
observer deployment should all form significant components within the system. The
chapter concludes with a brief description of the Structural Observation Framework,

and its requirements.

Chapter 5 refines the previous architectural specification, and presents software
designs for the significant components within the structural observer system. This
involves a detailed consideration of the Signature and Techniques, key building
blocks towards the goal of Typed Observation, and how they will interact with the
large scale and complex systems, represented in the observer model as simply a large

structure, composed of Modelled Elements.

Chapter 6 completes the design of the structural observer system by an assessment of
generalised observation policy specification, the manner in which signatures and
techniques can be associated, and how the system-level observer units can be
deployed about the system. The chapter is brought to a close with a summary of the
presented designs, plus a formalised view of execution detail for some of the system’s

main processes.

Chapter 7 further develops the designs presented previously, and examines the
concerns regarding adapting the framework’s behaviour at runtime. This involved a
detailed consideration of the designs thus far, along with identification of the areas of
the system that made up the basic runtime process. The chapter then proposes the

Observer Behaviour Definition, which is based on the reduction of key observation

processes to an ECA-type specification.

Chapter 8 opens with a discussion of the considerations required to translate the
OBD specifications between their evaluative-type objects and XML representation.

considering implementation issues regarding exposure of observer functionality and

15

data. It concludes with an OBDXML specification, which takes the form of an XML

schema definition and then presents some use-case discussions surrounding the XML

strings.

Chapter 9 provides an evaluation of the proposed observation framework, assessing
and demonstrating the effectiveness of the signature matching mechanism. The
approach taken is to try and evaluate and validate the components of the approach;

progressing onto a case study which applied the model within a software system

developed by the author.

Chapter 10 concludes the thesis, outlining the research approach and explaining how
it developed into the contributions of this work. This chapter closes by outlining some

of the areas of research that are considered suitable further work.

16

Chapter 2 — Autonomic Software Control

As discussed in Sections 1.2.1 and 1.3, software complexity continues to be the
subject of many different research areas, including biological, social,
business/information systems, along with mathematics and computing, with
considerable interest overlap between fields. In regard of software complexity,
complex systems are largely characterised by their many-component composition and
non-linearity; therefore most easily understood at an architectural and design level via

abstract descriptions [44].

From a software management perspective, complexity of system design, structure or
behaviour directly affects complexity involved in monitoring the system.
Furthermore, monitoring a large-scale system with li