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Ahstract

Abstract

In order to achieve high speed and packing density, the size of the transistor

has shrunk aggressively. The gate dielectric, as the most critical component in

the transistor, is undergoing rapid and substantial changes with the adoption of

ultra-thin plasma nitrided oxide and more recently high-k dielectrics. As the

nitrogen concentration in silicon oxynitrides (SiON) increases, the negative bias

temperature instability (NBTI) rises and becomes a limiting factor for device

lifetime.

The NBTI can recover significantly during typical measurement time when

using conventional instruments. To suppress this recovery, several fast

techniques have been developed, including ultra-fast pulse Id-Vgtechnique and

the On-The-Fly technique. These techniques, however, give different threshold

voltage degradation (~VI) after the same stress. The interpretation of this

difference is still controversial. The objective of chapter 3 is to bridge the gap

between the ~Vt extracted from these techniques. Degradation and recovery

during measurement, measurement and truncation errors, and evaluation of

transconductance are examined. After taking these factors into account, the

gap in llVt still cannot be filled. The effect of the sensing Vg on l::,.Vtis considered

and it is found that 111VtIincreases with sensing IVgl.The popular assumption of
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t:.Vt being independent of sensing Vg is invalid, thereafter. After taking both the

effect of sensing Vg and recovery into account, the gap in llVt is successfully

bridged. The difference between the effect of sensing Vg and recovery is

explored, and the results show that they are two different phenomena.

The recovery suppression and the sensing Vg effect challenge the applicability

of the traditional lifetime prediction technique. In a large circuit with roughly 106

MOSFETs, there will always be some of them under the worst case condition,

namely constant stress without recovery. The failure of one of these MOSFETs

can lead to the malfunction of the whole circuit. At present, there is little

information on how this worst case NBTI lifetime can be predicted and whether

the traditional Vg acceleration technique can be applied. In chapter 4, the worst

case lifetime prediction is investigated. It is found that the prediction based on

the Vg acceleration results in substantial errors. To predict the worst-case

lifetime, a model for NBTI kinetics under operation gate bias is developed. This

kinetics includes contributions from both as-grown and generated defects and it

no longer follows a simple power law. Based on the new kinetics, a single test

prediction method is proposed and its safety margin is estimated to be 50%.

Mobility reduction is another important issue when oxide thickness becomes

thinner. It is reported that when the gate SiON becomes thinner than 2 nm or

the interfacial layer in high-k stack is thinner than 2.5 nm, carrier mobility

reduces. Agreement has not yet been reached on the level of reduction, or on
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the underlying mechanism. Remote charge scattering (ReS) has been

proposed to be responsible for this mobility reduction. However, one weakness

of earlier work is that different samples were used when experimentally

studying the Res and this introduces uncertainties. For example, a reduction in

oxide thickness does not only bring the gate closer to the substrate, but also

modulates other factors such as surface roughness. In chapter 5, the

importance of ReS is assessed by varying charge in the same device through

either processing or electron trapping, to remove the uncertainties from using

different devices. It is found that by increasing charge density at 0.56 - 1 nm

from the substrate interface to the order of 1020 ern", both electron and hole

mobility change little.
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Abbreviation Signification

ALCVD Atomic Layer Chemical Vapor Deposition

ALD Atomic Layer Deposition

CP Charge Pumping

DPN Decoupled Plasma Nitridation

EOT Equivalent Oxide Thickness

FG Forming gas

HCI Hot carrier injection

Hf02 Hafnium dioxide

HfSiON Hafnium Silicate Oxide Nitride

IL Interfacial layer

MOCVD Metal Organic Chemical Vapor Deposition

MOSFET Metal Oxide Semiconductor Field Effect Transistor

NBTI Negative Bias Temperature instability

PDA Post Deposition Anneal

PVD Physical Vapor Deposition

SILC Stress Induced Leakage Current

SiON Silicon Oxide Nitride

TaN Tantalum Nitride

TDDB Time Dependent Dielectric Breakdown

TiN Titanium Nitride
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List of sym bols

Symbol Description Unit

tleff Effective mobility cm-2/V-s

ESi02 Dielectric constant of Si02

ESi Dielectric constant of Si

Eo Electric permittivity of vacuum F/cm

Ell Dielectric constant of the interfacial layer

Cox Oxide capacitance F

Cs,lf Low-frequency substrate capacitance F

Ef Fermi level eV

Eeff Effective surface field in the Si substrate MV/cm

f Frequency Hz
gd Drain conductance 5

gm,Gm Transconductance 5

Id Drain current A

Ig Gate current A

Jg Gate current density A/cm2

L Mask channel length 11m

Lo Debye length cm

NA Substrate doping density ern"

Nit Interface trap density
-2cm

ni Intrinsic carrier concentration in Si substrate cm-3

NO Total density of Si-H bonds

NH(O) Free Hoat the interface

q One electron charge C

o., Inversion charge density C/cm2
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Ot, Depletion charge density C/cm2

R Feedback resistance 0

Rsd Series resistance at source and drain 0

Rch Channel resistance 0

T Temperature DC

x, Equivalent oxide thickness nm

Xc Centroid of the charge

UF Normalized Fermi potential

Us Normalized surface potential

Vd Drain voltage V

Vfb Flat band voltage V

Vg Voltage applied on the gate V

Vox Voltage drop across the oxide V

Vt Threshold voltage V

tNt Threshold voltage shift V

W Mask channel width 11m
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Introduction

1.1 Challenges for scaling CMOS devices

Moore's law [1-5] has been the guiding principle for the integrated circuit (lC)

industry since 1965. In order to follow the Moore's Law (===16%compound

annual growth rate), device scaling is the key attribute for planar MOSFET

circuitry based on the work of Dennard et al [6-8].

From 1970s to mid 1990s, the scaling of MOSFETs largely followed the

constant voltage scaling rule. As the hot-carrier induced reliability issue became

difficult to handle, the supply voltage was reduced as the MOSFET scales, and

the constant field scaling is now used. Since mid 90s, the semiconductor

industry association (SIA) started to publish technology roadmaps, which

include an outlook of future scaling of MOSFET technology. It later became an

international effort as the International Technology Roadmap for

Semiconductors (ITRS) [9]. The scaling trend projection in ITRS is determined

from transistor performance targets and power dissipation constraints, together

with a sophisticated compact model of MOSFET transistors. In all scaling
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schemes, the gate oxide thickness scales down with the transistor feature size

at a steady rate.

Decreasing device feature sizes leads to short channel effects and reduced

gate control. To suppress the short channel effects, an equivalent gate oxide

thickness (EOT) of less than 1 nm is required for a 70 nm channel length high

performance devices, as proposed in 2006. At this thickness of Si02, devices

are hampered by increased gate leakage, questionable reliability, large poly-

silicon depletion effects, and boron penetration into the channel.

Poly-silicon depletion can decrease the capacitance of the device and becomes

significant as the EOT is decreased. Increasing the doping does minimize

influencing the depletion capacitance, but this leads to greater boron

penetration and threshold voltage shifts. Furthermore, the limit of poly-silicon

doping is _1021 ern? which may not be enough to recover the capacitance. It is

suggested that replacing the gate electrode with metals, which have at least an

order of magnitude higher carrier concentration and do not suffer from depletion,

will tackle these issues. Many investigations are ongoing concerning alternative

metal gate electrodes with work on titanium, tantalum, ruthenium, tungsten as

well as their nitrides, silicates, and alloys [10-14]. Metal gate electrodes have

been successfully incorporated into the CMOS process.

Gate leakage current reduces the on-off current ratio of the device, creating

heat and possibly breaking down the device. While increasing the thickness of

the Si02 will decrease this leakage, the capacitance and consequently the

speed and drive capability of the device will decrease. The efforts are made



Chapter-l Introduction 3

mainly in two areas. First, in order to decrease the leakage current while

maintaining an appropriate gate capacitance, Si02 is replaced by a material

possessing a higher dielectric constant denoted as high-k dielectric. This is

because the dielectric constant, k, is a measure of an insulator's ability to

concentrate an electric field. If one gate oxide has twice the dielectric constant

of another, a given voltage will draw twice as much charge into the transistor

channel or the same amount of charge will accumulate, if the higher k dielectric

is made twice as thick. There are many difficulties, however, with high-k

dielectric, including process integration, lower carrier mobility, threshold voltage

instability, and poor yield [15]. Although these problems delayed the introduction

of high-k dielectrics, high-k dielectrics were successfully used in production for

CMOS technology in 2007.

The second area is focused on developing new device structures, such as

Ultra-thin Body MOSFET, Double Gate MOSFETs (including FinFET), and

various Multi-gate MOSFETs [16]. The short-channel effects are suppressed

and relatively thick dielectrics can be used in these new transistors. For both

SiON and high-k layers, Negative Bias Temperature Instability (NBTI) is a

severe problem.

1.2 New materials in advanced gate dielectrics

As one of the solutions to suppress gate leakage current, an alternative gate

dielectric has been sought. The requirements of this new dielectric include: an

increase in the dielectric constant (k) [17], a large band gap with high barrier

heights to both electrons and holes [18]. and compatibility with conventional
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planar CMOS processing. There are many potential candidates for high-k gate

dielectrics with k values ranging from 7 - 80. These candidates include: SbN4,

have low thermal stability which makes them incompatible with conventional

CMOS processing [19]. Ah03 alone, which has a k value of 9, may not be

sufficient to achieve sub 1 nm equivalent oxide thickness (EOT) values.

However, when incorporated into Hf02 as an Hf-aluminate, the film enhances

scalability toward sub-nm EOT applications [20]. Although scaling is possible,

other device parameters such as transconductance are degraded when

comparing Hf-aluminates to conventional Hf02 [21]. La203 and Y203 have

higher k values of 30 and 15, respectively, but lose their k values in

conventional processing due to silicate formation [22]. La203 could still be a

possible candidate with continued process optimization. Hf-based dielectrics

have eventually become the winner as the first high-k dielectric used in CMOS

technology [20, 23-32].

1.3 Negative Bias Temperature Instability (NBTI)

Negative Bias Temperature Instability (NBTI) is not a new problem. It is actually

one of the earliest instabilities indentified for metal-oxide-semiconductor field

effect transistors (MOSFETs). NBTI occurs in pMOSFETs stressed with

negative gate voltage at elevated temperatures. It manifests itself as absolute

drain current Idsat, and transconductance gm, decrease and absolute "off' current

Ioff, and threshold voltage Vt increase. Typical stress temperatures are in the

range of 100 - 250°C. The oxide electric fields used to be below 6 MV/cm but,

much higher field has been used in more recent work. Such field and
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temperature are typically encountered during burning-in, but are also

approached in high performance ICs during routine operation. Either negative

gate voltages or elevated temperatures can produce NBTI, but a stronger and

faster effect is produced by their combined action. It occurs primarily in

pMOSFETs with negative gate voltage bias and appears to be smaller for

positive gate voltage and for either positive or negative gate voltage in

nMOSFETs. In MOS circuits, it occurs most commonly during the high output

state of inverter operation. It also leads to timing shifts and potential circuit

failure due to increased spreads in signal arrival in logic circuits. Asymmetric

degradation in timing paths can lead to non-functionality of sensitive logic

circuits and hence lead to product failure.

NBTI was first studied by Deal in 1967 [33] and later was studied on FAMOS

and EEPROMs [34]. Deal named it Instability Number VI [35]. The original

technological motivation for NBTI studies was the shift of threshold voltage of p-

channel MNOS [35,36] or FAMOS non-volatile memories [34]. In 1973,

Goetzberger et al at Bell lab were one of the first groups to show detailed

characterization of NBTI [36]. They used metal gate devices on 100 nm oxide,

stressed at -106 V/cm at 300 QCand found an interface trap density Dit peak in

the lower half of the band gap. The higher the starting Dit, the higher the final

stress-induced Oil. For positive gate voltage, they noted a very small Dit

increase.

In 1977, Jeppson and Svensson [37] investigated the kinetics of NBTI. They

observed that the defect generation follows a power law with a power factor in

the range of 0.2 -0.3. The physical process responsible for NBTI includes an
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electrochemical reaction at the interface, followed by a diffusion of hydrogenous

species. The interfacial reaction leads to a rupture of hydrogen bonds and the

release of hydrogenous species. It is believed that the reaction is relatively fast

and the generation rate is limited by the subsequent diffusion process.

Though NBTI is not important on buried channel (BC) pMOSFETs [38] because

of the naturally reduced oxide field for the same gate voltage compared to

surface-channel devices, the introduction of CMOS technology and the dual

poly process finally replaced the buried channel PMOS devices. Although the

circuit performance is improved, the NBTI performance is actually worse [39].

NBTI is not the only type of electrical stress induced instability. Other

instabilities include hot carrier induced instability, Fowler-Nordheim or direct

tunnelling induced damage and the time-dependent-dielectric-breakdown

(TOD8). Compared with these instabilities, NBTI received less attention until

about 7 or 8 years ago when oxide dielectrics became thinner. NBTI is

becoming increasingly important in recent years, mainly for two reasons. First,

for each new generation of CMOS process, both operation temperature and

electrical field increase. Second, to suppress the boron penetration and

increase the dielectric constant, the nitrogen density in the gate oxide is

increasing rapidly. Nitridation enhances NBTI and positive charge formation [40-

42]. For a gate oxide thinner than 3.5 nm, the NBTI replaces hot carrier induced

degradation as the limiting mechanism for device lifetime.

Schroder and Babcock gave a comprehensive review on the subject in early

2003 [43], which summarized the understanding on NBTI at the time, its origin,
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its effect on transistors, and most importantly its dependence on process and

device parameters. Research on NBTI prior to 2003 largely followed the

paradigm set in the 1970s.

A typical NBTI study involves stressing a MOS device at an elevated

temperature under negative gate voltage. In the earlier work [37], the gate

voltage was chosen so that the electric field in the oxide is less than about 6

MV/cm to avoid degradation due to Fowler-Nordheim tunneling. After a preset

stress time, the sample is cooled down to room temperature and its device

characteristics are measured. Typically the parametric shift in threshold voltage,

flat-band voltage and linear drain current are recorded. Generation of interface

states is commonly measured by one of the many available techniques, while

the accompanying generation of fixed charge is calculated indirectly. This

stress-measure cycle is repeated and extends to, typically, 103-105 s.

1.3.1 NBTI models

Various NBTI models have been proposed, of which the Reaction-Diffusion (R-

D) model is the most prevalent [37,44-52]. It was first proposed by Jeppson and

Svensson [37]. In their model, it is assumed that the silicon interface contains a

large number of defects. Those defects are electrically inactive and can be

activated through chemical reaction like:

Where Si3 == SiH is the surface defect, Si3 == Si . is the surface trap, 03 == Si+ is

the oxide charge. When the defect is activated, the H of the SiH bond is
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released by some dissociation mechanism and reacts with the Si02 lattice to

form an OH group bonded to an oxide atom, leaving a trivalent Si atom in the

oxide to form a fixed charge and one trivalent Si atom at the Si surface

constituting an interface state. The rule Nit - t1/4 was observed and

mathematically proven by assuming the process is diffusion rather than

reaction-rate limited.

The model described above is called the Electro-chemical model. Since then,

many variants have been proposed by assuming different dissociation

mechanisms to meet the observations from the experiments. Two popular ones

are given below.

High-electric field dissociation

A hydrogen terminated interface trap precursor can be represented by,

Si3 = SiH

High electric field can dissociate the silicon-hydrogen bond, leading to:

Si3 = Sill 4 Si3 = Si . +Ho

where HOis a neutral interstitial hydrogen atom or atomic hydrogen. Atomic

hydrogen is highly reactive and considered to be a fast diffuser in oxide [53].

The availability of SiH bonds for dissociation under high electric field is the rate-

limiting process for this reaction. Recent first-principles calculations show that

the positively charged hydrogen or proton (H+) is the only stable charge state of

hydrogen at the interface. H+reacts directly with SiH to form an interface trap,

according to the reaction (54]:
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The above reaction uses the fact that the SiH complex (or passivated dangling

bond chemical species) is polarized such that a more positive charge resides

near the Si atom and a more negative charge resides near the hydrogen atom.

Mobile H+migrates towards the negatively charged dipole region of the SiH

molecule, then reacts with the H-to form H2, leaving behind a positively charged

Si dangling bond. In this model, H can later dissociate to act as a catalyst to
2

disrupt additional SiH bonds. This process, in theory, can continue so long as

hydrogen is available and SiH bonds are available to react. The reaction

between hydrogenous species (H+ or H ) and SiH bonds is the rate-limiting
2

process for this reaction model.

Hole induced dissociation

This model explains NBTI induced trap formation by the interaction of SiH with

"hot holes" or holes near or at the Si/SiO interface [43,49,55,56]. Dissociation
2

involving holes is given by

During NBTI stress, holes are attracted to the SiO lSi interface. This model is
2

consistent with the results that a positive substrate bias accelerates NBTI

degradation, reduces the device lifetime [42]. Hole-induced SiH bond

dissociation is the rate-limiting process for this reaction model.
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1.3.2 NBTI recovery

Earlier work treated the degradation as permanent. Since 2003, however, the

NBTI community started to realize that the recovery effect is not negligible [57-

61]. It was observed that NBTI degradation has appreciable recovery within a

time less than 1 s. If an AC stress voltage is applied, the sample is stressed for

half of the period in each cycle. During the other half-cycle, existing NBTI

degradation can be healed. As a result, NBTI degradation is much less severe

for samples under AC stressing than those under constant voltage stressing. In

modern circuit design with roughly 106 MOSFETs, there will always be some

devices under the worst case condition, namely stress is constantly applied

most of the time. Failure of one MOSFET can potentially lead to the failure of

the whole circuit. Therefore, it is crucial to model the device and predict its

lifetime at its worst case condition [62].

The traditional stress-measure procedure is problematic because of the

recovery effect. Cooling the wafer from the stress temperature to the

measurement temperature (normally room temperature) takes minutes, and

during this time, the NBTI degradation is substantially recovered. Even if the

cooling procedure is eliminated and the measurement taken immediately after

the electrical stress, the commonly used parametric analyzer still takes

significant time, typically between 0.5 s to 10 s. It should be noted that the time

stated in the specification from the manufacturer does not include the hold and

delay time presets for the instrument. If these are included, the measurement

time can even double.
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Rangan et al were the first to propose a solution for investigating the recovery

transient [63]. It involves converting the change in drain current bold,at stress

bias into the change in threshold voltage, boVt. Since the drain current is

measured at stress bias and only one drain current point is measured, the

procedure can be considered as recovery free. One problem of this solution is

that when the change in drain current is converted into that in threshold voltage,

the mobility degradation is ignored. In order to remove this uncertainty, an

improved On-The-Fly (OTF) technique (the 2nd order OTF technique) was

proposed [64] to take mobility variation into consideration. However, since these

researchers used slow measurement instruments, the non-negligible NBTI

degradation during measurement itself seriously affects the result. To reduce

the measurement time, customized instrumentation was needed. Kerber et al

were the first to design their own customized circuit to implement fast

measurements [65]. Since then, a number of variants have been proposed [66-

70]. The basic principle for all these fast measurements is to combine a pulse

generator with a digital oscilloscope. The pulse generator is used to supply the

gate voltage, and the corresponding current will be converted to voltage and

captured by the oscilloscope.

The suppression of recovery in the measurement invokes an alternative theory

that accounts for the NBTI phenomenon. The NBTI is modeled by charge

trapping/de-trapping. It is well known that injected carriers can be trapped in an

insulator as they pass through it. Charge trapping in dielectrics under Fowler-

Nordheim stress was extensively studied in the 1980s. Trapped charge in the

gate dielectric of MOSFET will shift the threshold voltage Vt and the flat-band

voltage Vfb. Positive charge trapping will increase the IVd of pMOSFETs.

11
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Ushio et al proposed that hole-trapping near the Si/SiON interface caused the

enhanced NBTI in SiON gate dielectric [71,72]. After recovery was suppressed,

more groups began to report hole trapping. Huard and Denais used their OTF

technique to demonstrate that NBTI degradation can be entirely explained by

hole trapping [64]. The group at LJMU further separated these traps into three

different types [73].

Tan et al tried to reconcile the hole trapping with the R-O model and suggested

that hydrogen released from broken Si-H bonds can be trapped at nitrogen sites

at the interface to form fixed charge [40,74]. The role of hole trapping in SiON

gate dielectric has been one of the most controversial topics in the study of

NBTI.

Recent work shows that the !1Vt obtained from customized instrumentation can

be five times higher than that from conventional techniques. However, the !1Vt

obtained from the On-The-Fly technique can be one order of magnitude higher

than that from conventional techniques and the interpretation of this large

difference is quite controversial. The reconciliation of all the existing

characterization methods is the subject in chapter 3.

The NBTI recovery model also brings question into the applicability of existing

lifetime prediction techniques, which were developed without taking recovery

time into account. This issue will be thoroughly investigated in chapter 4.
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1.4 Carrier mobility degradation in state-of-the-art transistors

One of the most important parameters of a MOSFET is the channel mobility: a

measure of the ease with which the inversion carriers travel along the channel.

The mobility is sensitive to the quality of the channel, the dielectric, and even

the gate electrode. Properties such as oxide trapped charge, lattice vibrations

scatter the moving carriers and decrease their mobility, reducing the

effectiveness of the device. Among the scattering mechanisms, coulomb

scattering, phonon scattering, and surface roughness are the most important

ones in CMOS devices.

Phonon Scattering

Phonon scattering of the inversion carriers originates from the acoustic and

optical mode vibrations of the Si lattice. As the temperature increases, lattice

vibrations also increase and thus the phonon scattering rate increases. At room

temperature, phonon scattering plays an important role on the carrier mobility in

inversion layers. It has been shown experimentally by Takagi et al that mobility

limited by phonon scattering can be determined from [75],

/J - AE-o.3T-1.75
rph - eff

where A is a constant with the value of 2 x 105 and 6.1 x 104 for electrons and

holes on (100) Si, respectively, Eeff is the effective vertical field in silicon at the

interface, and T is the temperature in Kelvin.
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Coulomb Scattering

Scattering from charged centers such as fixed charge, interface states, and

ionized impurities in the depletion layer of the substrate is designated as

Coulomb scattering. As the vertical field increases and more carriers occupy the

inversion layer, electrostatic screening occurs and Coulomb scattering therefore

reduces [75]. This means that Coulomb scattering limited mobility is dominant at

lower fields where the surface carrier density is small. An increase in doping

concentration and fixed charge density enhances coulomb scattering. The

coulomb scattering weakens as temperature increases, since the velocity of the

inversion carriers increases and they interact less effectively with stationary

impurities.

Surface Roughness

Since the silicon-insulator interface is not perfect, the surface potential can

fluctuate on the molecular level and the small deviations of the interface from

the ideal plane causes perturbations in the inversion carrier mobility. The

surface roughness of the interface decreases the mobility of carriers in the

inversion layer. As the vertical field increases, the inversion carriers are pulled

closer to the interface and surface roughness limited mobility becomes

increasingly smaller. Therefore, the mobility limited by surface roughness has

an inverse relationship with effective field with a power factor,y, close to 2 [75,

76].
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Multiple Scattering Mechanisms

When multiple scattering mechanisms are present, the overall mobility is

generally described by Matthiessen's rule:

Since there is a reciprocal relationship, the effective mobility is dominated by

the process with the lowest mobility. Coulomb scattering limited mobility is

dominant at low fields since there is no screening of the inversion layer and

surface roughness scattering is dominant at higher fields since the carriers are

pulled closely to the imperfect interface.

The above mechanisms are very well established for thick EOT Si02 devices

with poly-silicon electrodes. However, these mechanisms may not be sufficient

to explain the poor mobility shown by the devices with high-k dielectrics and

metal gate electrodes [77].

When the gate Si02 thickness, Tex, is over 5 nm, carrier mobility is insensitive to

Tex [78]. Once it is below 2-3 nm, however, mobility reduces [79-84] and the

reported reduction near threshold voltage varies substantially, from a factor over

2 [79] to an insignificant level [81]. As gate voltage increases from threshold, the

relative mobility reduction can either decrease [79,80] or increase [81,82]. In

order to explain this phenomenon, several scattering sources have been

proposed. Agreement has not yet been reached on the origin for such

phenomenon and the proposed mechanisms include remote phonon scattering

[85]. remote surface roughness [81,82] , long-range Coulomb interaction
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between carriers in the gate and in the inversion layer [84] and remote charge

scattering from impurities in the depleted poly-Si gate [79,80,83]. The

explanation is controversial and Remote Charge Scattering from impurities in

depleted poly-Si gate has attracted much attention. A brief introduction of these

remote scattering mechanisms is given below.

Remote phonon scattering

Remote phonon scattering was proposed by Fischetti et al [85]. He predicted

that the remote phonon scattering originating from the gate dielectric cannot be

neglected in MOSFET with high-k materials. Since the bonds in most high-k

dielectrics are the metal-oxygen type, they are highly polarisable and result in a

large static permittivity, desirable for advanced CMOS scaling. However,

inherent in these soft bonds are low energy lattice oscillations which are optical

in nature and derive from their ionic characteristics. These low energy phonons

trigger frequent emission and absorption processes by thermal electrons in the

inversion layer, resulting in a remote phonon scattering mechanism which, due

to the dipole field of the insulator, decays away from the bulk of the insulator

into the inversion layer. Conversely, Si02 yields hard Si-O bonds and a reduced

ionic polarization with high energy optical phonons. It is difficult for thermal

electrons to emit excitations at these energies especially at room temperature

where the number of absorbed thermally excited phonons is low.

Remote surface roughness scattering

Remote surface roughness scattering was first proposed by Li and Ma in 1987
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[86]. They introduced this new scattering mechanism to explain the

experimental observation that the mobility of carriers in the MOSFET channel

degrades as the gate oxide gets thinner. When the oxide is thick, the channel

charges are far from the metal/oxide interface and the scattering of carriers by

that interface can be neglected. As the oxide becomes thinner, the imperfection

at the metal/oxide interface (not perfectly smooth) can give rise to a potential

variation seen by the carriers inside the channel which serves to degrade the

mobility.

Long-range Coulomb interaction

In this theory, mobility degradation is explained by long-range coulomb

interaction between electrons in the inverted channel of the substrate and

electrons in the gate. The idea of coulomb interaction originates from the work

in investigating the mutual drag between a two-dimensional electron gas (2DEG)

and a 3DEG in compound-semiconductor system [87-90]. When the oxide

dielectric thickness is thinner, the electrons in the channel of the Si substrate

can interact strongly with the electrons in the gate. Since the electrons in the

gate are almost at rest, while the channel electrons drift from the source to the

drain under the action of the applied bias, a 'gate drag' can be expected and

therefore electrons in the channel will lose momentum to those in the gate,

leading to the mobility degradation.

Remote charge scattering from impurities in depleted poly-Si gate

The remote charge scattering (ReS) from impurities was extensively studied in
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III-V hetero-structure semiconductors [91-94]. In 1999, it was introduced to

metal-oxide-semiconductor devices on Si by Krishnan et al [95]. They

developed a model for RCS by computing the impurity potential which is

obtained by solving the Poisson equation, taking into account the size

quantization effect and 20 screening of the carriers. In their calculation, they

used semi-analytical expressions for the momentum relaxation time (MRT) that

Stern and Howard originally derived from coulomb centres in the substrate

silicon with very thick oxide dielectric [91]. However, free carriers can also

produce screening effect and if this is taken into account, the impact from RCS

can be negligible [83].

1.5Organization of the thesis

This thesis is organized as follows:

Chapter 2 comprises a review of the characterization techniques used in

investigating Negative Bias Temperature Instability (NBTI), including

conventional and fast techniques. The DC transfer characteristic, capacitance

(C-V), On-The-Fly (OTF) and ultra fast pulse Id-Vg measurement (UFP) are

reviewed. The focus is on the implementation and validation of the ultra fast

pulse Id-Vgtechnique. This technique is used later in the thesis.

Chapter 3 contains a comprehensive study on the characterization method of

NBTI. The impact of various factors and uncertainties on !lVt evaluation by the

OTF-Vgst technique is analyzed first, including degradation during the

measurement that affects the reference Id and initial transconductance. The
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popular assumption that I~VtI is independent of sensing Vg is not used, rather a

new evaluation method is proposed and justified. Based on the new evaluation

method, the difference in ~Vt evaluated by different techniques is explained.

Chapter 4 employs threshold voltage shift at device operating level to develop a

model for NBTI kinetics which includes contributions from both as-grown and

generated defects. The inapplicability of existing lifetime prediction techniques

will be demonstrated. Based on the new kinetics, a single-test novel lifetime

prediction method is proposed, and the safety margin is estimated.

Chapter 5 comprise a discussion of the impact of RCS on mobility. The impact

is studied in the same device by varying charge density either by annealing or

trapping. Therefore, the uncertainty from varying distance into the oxide by

using different devices is removed. The work shows that the contribution of ReS

to mobility degradation is insignificant.

Chapter 6 summarizes the work presented in this thesis. Finally, the direction

for future work is suggested.
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Conventional characterization review and

development of pulse Id-Vg technique

2.1 Introduction

In the 1980s, highly integrated and automated electrical measurement

instruments became commonly available, including Hewlett Packard 4140B pA

meter/DC voltage source [1], followed by Hewlett Packard 4145 [2], 4155/4156

semiconductor parameter analyzers [3], Agilent B1500 semiconductor device

analyzer [4], and similar products from other manufacturers. The semiconductor

parameter analyzers are the de facto standard for measuring the I-V

characteristics of transistors.

Normally the measurements performed by these analyzers are called quasi-

static or DC measurements. DC measurements can accurately measure small

currents down to 10-15A which is critical for MOSFET characterization. In order

to reach such high accuracy, normally the measurement is slow. In practice, to

achieve sub-pice-ampere accuracy, the measurement time at each bias point

(integration time) should be at least 20 ms, or one power-line-cycle, in order to

minimize interference from the power supply. In addition, small bias steps in

measurement and a delay time before measurement at each step are

recommended, to ensure that all transients caused by the bias step relax and
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the true steady-state characteristics are measured. In the field of reliability

research, though this is widely accepted when investigating on thick oxide, it is

no longer valid when the oxide thickness becomes very small.

The degradation of MOSFET characteristics under electrical stress can recover

after the stress is removed. This recovery produces strong transients when

measuring MOSFET device parameters, notably in the threshold voltage Vt, in

the time scale of micro-seconds to tens of seconds. The typical measurement

time with semiconductor parameter analyzers ranges from milli to tens of

seconds, which overlaps with that of the transient in device parameters. During

this overlap time, transistor parameters (e.g. threshold voltage) have already

changed. It is therefore necessary to remove this overlap by applying fast

measurements for transistor characteristics.

In this chapter, the conventional techniques including measurement of transfer

characteristic (I-V), capacitance (C-V) and the fast techniques including On-

The-Fly (OTF) and ultra fast pulse Id-Vg(UFP) are reviewed first. The focus is

on the implementation and justification of the ultra fast pulse Id-Vgtechnique and

this technique will be used later in the thesis.

2.2 Review of conventional characterization techniques

2.2.1v, by conventional Id-Vg technique

Conventionally, Vt degradation is evaluated using the measure-stress-measure

(MSM) method with a DC parametric analyzer. This is also called the "slow"
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technique or DC technique since the total time for one Id-Vgmeasurement is

typically in the order of 1-10 seconds, and the threshold voltage is normally

extracted by using extrapolation [5] or the constant current method [6]. Figure

2.1 (a) shows how the threshold voltage Vt is extracted by using an

extrapolation method, from the typical Id-Vgcurves measured before and after

stress. The transconductance is firstly calculated by differentiating the Id-Vg

curve and threshold voltage is defined as the gate-voltage axis intercept of the

linear extrapolation on the Id-Vgcurve at maximum transconductance. Figure

2.1 (b) shows a typical Vt shift with stress time under NBTI stress.

2.2.2 Conventional C-V technique

The capacitance-voltage behaviour of a MOS device can be described using

the equivalent circuit shown in figure 2.2 [7] where Cox is the oxide capacitance,

Cs the substrate capacitance, Cit the interface state capacitance, Rs the series

resistance and 1/Rp the parallel conductance.

The capacitance of a MOS capacitor is defined as

(2.1)

based on charge neutrality, Q)! = -(Q,. +Q,/) with Q, the substrate charge and Q,/

the trapped interface charge. This assumes no charge trapping in the dielectric.

The gate voltage is partially dropped across the dielectric and the

semiconductor substrate. This gives v~= Vjh + V:u +,p, I where Vrh is the flat-band

voltage, V:,x the voltage drop across the oxide and ,p,. the Si surface potential.
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Fig 2.1 (a) Typical results obtained by using conventional
technique. Id-Vgcurves were measured after stressing the device
under NBTI for a period of time. After stress, Id-Vgcurve is shifted
towards higher IVgl. Threshold voltage is extracted by using the
maximum gmextrapolation method. The transconductance is first
calculated by differentiating the Id-Vgcurve and threshold voltage
is defined as the gate-voltage axis intercept of the linear
extrapolation on the Id-Vg curve from the maximum
transconductance. (b) Typical NBTI degradation with stress time.
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Fig 2.2 Equivalent circuit of an MOS structure.

Therefore equation (2.1) can be written as

c = dQ\ +dQf
d~)X +d¢s

(2.2)

Depending on the Si surface potential, the contribution of majority, minority or

depletion charge associated with the substrate varies.

From the equivalent circuit, the total gate capacitance can also be written as

(2.3)

The low-frequency substrate capacitance is given by [7]

(2.4)

where the dimensionless surface electric field F(Us,Ur) is defined by

(2.5)
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U, and UF are normalized potentials, defined as Us = qtjJs / kT and UF = q¢F I kT .

The Fermi potential is calculated by ¢F = (kT I q) In(NA / n,) where NA is the

acceptor concentration and n, the intrinsic carrier concentration in the Si

substrate.

A

The symbol U, stands for the sign of the surface potential and is given by

(2.6)

A A

Where U, = I for u.~> 0 and U, = -1 for Us < O. The extrinsic Debye length In is

G.~.,GokT
2q2NA

(2.7)

High Frequency C-V measurement

In a High Frequency Capacitance-Voltage (HF C-V) measurement, a small AC

signal superimposed on a DC bias is applied to the MOS device and the

response is analyzed with respect to gain and phase. A schematic drawing of

the HF C-V measurement setup is shown in figure 2.3 (a).

The gain and phase analysis is based on the equivalent circuits given in figure

2.3 (b) and figure 2.3 (c) where in addition to the measured capacitance, either

a parallel conductance term or a series resistance is considered. The

impedance Z,..,,<I' of the serial circuit is given by

Z = R + 1
scnal scrtu! . ("1

}lJJ .\'('1'/0/

(2.8)
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where R'<'fl£ll is the series resistance, m = 2Jrf is the angular frequency and C,mal

the serial capacitance. For the parallel circuit the admittance Ypuralld can be

written as

Ypurallel = Gparallel + j tnCparallel (2.9)

where Gparallel is the parallel conductance and Cpurallcl the parallel capacitance.

To discuss the limitations of the equivalent circuits the serial circuit is

transformed into a parallel circuit and vice versa. The inverse of the serial

impedance is given by

Y =_1_ = --;-__
s('rUJI Z )j

serial RSerl£l1 + jnrC
serta!

1/ R 'arC= wrml + ) serial = y
1+ Q2. 1 X . - parallr]

serial + Q2
senu!

(2.10)

with Q'l'r/al = 1 / wC,malR,mal being the quality factor of the serial circuit. For the

inverse of the parallel admittance, write

z _ 1
parallel - Y

parallel

=-------
G ·Cparallel + j W / paralld

= 10p~lrllllt'l +Y WCpaml/t'1 == Z
1+ f). - 1 X s'T"II

~paral/'" + Q2
pumll"1

(2.11 )

with Qpllral/el = wCpamll'" / Gpamll'" being the quality factor of the parallel circuit. For

the case where Gporall'" < WCparallt'1 and R"'"a' < l/wC't'rIa' ' both
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Fig 2.3 (a) Schematic configuration of high frequency C-V
measurement. The DC and AC bias is applied to one terminal of
the capacitor whereas the gain and phase of the AC signal is
measured on the second terminal. (b) Equivalent circuit of a HF
C-V taken in the parallel mode, (c) Equivalent circuit of a HF C-
V taken in a serial mode

measurement modes yield equivalent results and the extracted capacitance

becomes C,wrtJI/el = C,crllli. Therefore, the measurement result is independent of

the selected measurement mode. However, considering the simplified

equivalent circuit of the MOS devices which normally contains the parallel

conductance and the serial resistance, as shown in figure 2.4.
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*G parallel
L-

-'-- *_~ C Parallel

*R serial

Fig 2.4 Simplified equivalent circuit of a MOS device with parallel
conductance and serial resistance.

The impedance Z* and admittance Y* of the circuit are given by

Z' =R' + 1 _
se nul c: . c·

J paralle! + ) W purallcl

1/ G' 1/· C'=R' + pllm/I .. I + JW > 1'11,1111'"

sertul 1 Q'2 X+ parull ..1 1+ O"
~ parallel

(2.12)

where Cp"r{JII c'1 is the equivalent capacitance measured in the parallel mode [8].

The limiting factor at higher frequencies is the series resistance whereas at low

frequencies the parallel conductance has to be taken into consideration.
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Quasi static C-V measurement

An alternative technique to measure the capacitance-voltage characteristic of

MaS devices is the quasi static C-V measurement. This technique requires

measurement of either the displacement current or displacement charge, which

directly reflect the capacitance of the test structure.

One of the commonly used quasi static C-V measurement techniques involves

application of a linear voltage ramp to one terminal of the device and

measurement of the current as a function of time at the second terminal, as

shown in figure 2.5 (a). The capacitance is then given by the relation

C .I
= dvl

Idt
(2.13)

The voltage ramp dV / dt can be varied over a range from -10 VIs down to

<0.01 VIs.

The practical limitation of the voltage ramp is given by the sensitivity of the am-

meter and the leakage current of the measurement setup. The basic gate

leakage requirements can be estimated as follows

(2.14)

For an EaT of - 2 nm (1.5 ~F/cm2) and a voltage ramp of 1 VIs a leakage

current of .Ig < 1.5~Alcm2 would be required.
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Equilibrium controlled quasi static C-V

The equilibrium controlled quasi static C-V measurement [9] is an alternative

technique. In contrast to the linear voltage ramp technique, discrete voltage

steps are applied and the displacement charge is measured using the

electrometer, as illustrated in figure 2.5 (b). The capacitance is calculated from

the measured displacement charge and the voltage step following the

relationship in equation (2.15).

~V ~V
Q(V+-)-Q(V --)

C(V) = AQ = 2 2
At ~V

(2.15)

The strength of the quasi static C-V technique is the ability to measure interface

states and it has been used extensively in the past decades. However, as the

device scaling progresses, the gate leakage current has become so large that

the quasi static C-V measurement cannot be used for a Si02 thinner than 3 nm

approximately.

Current meter

Electrometer

''\ Y'~"1. _>
Pro(1ammable /(//
voltage rarnp V

(a) (b)

Fig 2.5 (a) Schematic configuration of quasi-static measurement
setup using a linear voltage ramp; (b) schematic configuration of
equilibrium controlled quasi static measurement setup where
discrete voltage steps are applied and the displacement charge is
measured using an electrometer.
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2.3 On-Ihe-Fly (OIF) technique

The OTF technique was motivated by the desire to measure the NBTI induced

threshold voltage shift without recovery. The recovery during the conventional

measurement has long been thought negligible until recently when it was found

that most of the Vt degradation induced by NBTI recovers during the

measurement when using conventional techniques [10-14). In addition, the

studies of charge trapping in.high-k dielectrics in recent years have also shown

significant recovery even within 1 ms delay [15-16). Therefore, an accurate Vt

measurement technique is required to capture all the degradation.

Some attempts on reducing the measurement time with the semiconductor

parameter analyzers like the Agilent 41xx series were made initially. The

minimum measurement time for a single bias point can be as fast as 80 us as

specified by the manufacturer [3). This is much faster than the configuration in

previous module. However, it was soon realized that significant overhead time

must be added to the quoted minimum, as shown in figure 2.6 (a). The real

measurement time can be much longer than the value preset in the instrument.

One of the earliest measurement solutions proposed to mitigate the recovery

during measurement is the on-the-fly (OTF) technique, and a few variants have

been proposed [17-21). The common feature is that the stress voltage is always

applied to the gate, and the degradation of drain current is measured at stress

voltage. Since the stress voltage is not removed from the gate, the on-the-fly

method is claimed to be free from the fast recovery of NBTI. It soon became

popular as it can be performed on commercial semiconductor parameter
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analyzers, without additional equipment requirement.

The first OTF technique (the 1storder OTF technique) was proposed by Rangan

et al [17]. An initial Id-Vgcurve is measured with Vg swept to the stress voltage,

and both the drain current IdOat Vg = Vgstand the threshold voltage VtOare

recorded. During the following electrical stress, the drain current is continuously

sampled at Vg = Vgst and the change of drain current {)'Id = Id - Ida can be

calculated. The threshold voltage shift is then calculated from

!lV = !lId .(V -V )
I I g 10

dO
(2.16)

Apparently, equation (2.16) ignored the mobility variation with Vg, and this

assumption introduces a large uncertainty into the value of the extracted

threshold voltage shift. Therefore this technique is not widely used.

In order to remove this uncertainty, an improved OTF technique (the 2ndorder

OTF technique) was proposed by Denais et al [18]. The mobility degradation is

taken into consideration by evaluating the transconductance, g during each
m

measurement. As shown in figure 2.6 (b), three points are measured at Vgstand

Vgst±DV.Therefore, g can be obtained by using equation (2.17).
m

It/(Vg + DV) -It/(Vg - DV)
gm = 2DV (2.17)

The degradation of drain current between measurement points In' and 'n-1' is

(2.18)

The shift of threshold voltage between these two points can be evaluated by

(2.19)
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The accumulative shift of threshold voltage is

(2.20)

Where M+1 is the number of Id measurements and g (n) is the mean value of
m

the transconductance between the nthand (n-1)thmeasurements, as shown in

figure 2.7. Hence, periodical, three-point I measurements are enough to
d

monitor Lli ,g ,and LlV during stress.
d m t

Time
Stress Measurement

• •
Time

(a)

[Vg[

_-:_r·l.jll-:·IlI"/-
I , ,_,

I I
I I

Strell

Mnsuremen\
, I

Time, ,

Time

(b)

Fig 2.6 (a) Traditional NBTI test sequence, (b) The 2nd order On-
The-Fly measurement sequence.
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... .... ... ... ....

Stress time

Fig 2.7 The n" and n-1lh Id measurements, together with the
transconductance gm(n), can give the threshold voltage shift, t...VI,
between n" and n-1lhmeasurement points.

In equation (2.20), g is assumed to be constant between the two measurement
m

points and the average gm is used, gmCn) = (gm(n) + gmCn - 1))/2. To

estimate the error caused by this assumption, figure 2.8 shows a comparison of

the flV calculated by using s-o». gm(n-1) and gmCn). It is clear that the error is
I

insignificant.

Since the 'On-The-Fly' measurement is based on I degradation at stress
d

voltage, NBTI still occurs during the measurement. When I was measured for
d

the first time, it typically took 0.15 s and some degradation occurs during this

period. This degradation in the reference I leads to an underestimation of flV. It
d t

also affects the gmevaluation. The error of the 2nd order OTF technique will be

discussed further in chapter 3.
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Fig 2.8 The effect of gmon ~Vt. Symbol '0' is calculated using the
average gm value between two measurement points, while the
dashed line used the previous gmvalue, and the dot line uses the
current gm value. It is clear that ~Vt is weakly dependent on the gm
value used.

2.4 Pulse Id-Vg Technique

2.4.1 Experimental setup

Another direction for suppressing recovery is to implement fast measurement by

using specific circuits. Kerber et al [15] were the first to develop a pulse Id-Vg

technique to investigate the large charge trapping in high-k dielectric. A Id-Vg

curve can be measured within 10-100 I..Isusing their technique. The schematic

measurement setup for the pulsed Id-Vgmeasurement is given in figure 2.9. In

this setup, the MOSFET is used in an inverter circuit with a resistive load (R). A

small DC bias is applied to the resistor which acts together with the channel

resistor as a voltage divider. The Id-Vgcharacteristic is obtained by applying a

trapezoidal (triangular) pulse to the gate and recording the drain voltage using a
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digital oscilloscope. From the measured voltage traces the Id-Vg characteristic

can be constructed using the following relationship [15]:

_ 100m V (_10_O_m_V_-_V.!!_d)Id----
Vd R

(2.21 )

where Vd is the measured drain voltage and R the resistive load of the inverter.

100mV

I VD IDo,
0

DUT oen
0
.-VG oen
0

Fig 2.9 Schematic setup for the pulse Id-Vg measurement proposed
by A. Kerber et al. The MOSFET was used in an inverter circuit with
a resistive load (R). From the voltage waveform (Vg(t). Vd(t)). the Id-
Vg characteristics were extracted.

Due to the use of a voltage divider. the drain voltage changes during the

measurement. In order to eliminate this effect. the extracted drain current is

normalized to a constant drain voltage. which is given by the term 100mVNd in

equation (2.21).

This method suffers from the following limitations. Firstly. in order to reduce

noise and obtain accurate data from the oscilloscope. the impedance along the

signal path should be matched and therefore the resistive load should be

around 500. This limits the gain of the circuit significantly. Figure 2.10 (a) shows

a screen shot of one measurement using this technique. Figure 2.10 (b) shows
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the extracted Id-Vgcurve. It can be seen, how considerable noise is observed,

and this technique is affective with large drive currents. Moreover, due to the

use of a voltage divider, the drain voltage changes during the measurement.

The normalization used in the technique is only correct when the MOSFET is

operated in the linear regime, ~nd this gives uncertainties on the drain current

measured at higher Vg voltage level where the device series resistance cannot

be ignored.

300 pMOSFET with SiON gate dielectric

250 EOT = 2.7nm

-- By pulse Id-Vg
200 with IMEC setup

~
. .2; 150 0 By DC technique

(a)

100 Vd is normalized
to 100mV

50
T = 100 QCO~~~~~~~~~~0.2 0.4 0.6 0.8 1.0 1.2

IVgl (V)

(b)

0.0

Fig 2.10 (a) A screenshot of the signals from the oscilloscope
connected as shown in figure 2.9. (b) The extracted Id-Vgcurve by
using equation (2.21), Vd is normalized to 100mV. The device used
here is 2.7nm SiON with a channel length = 0.15 urn and channel
width = 10 urn.

In order to increase the gain of the circuit while maintaining impedance

matching along the signal path, an improved approach was proposed, where an

op-amplifier is used [22]. The schematic setup is shown in figure 2.11. The drain

of the MOSFET is connected to negative input of the op-amplifier (op-amp).

Since the voltages at the two input terminals are approximately equal when

negative feedback is present through R, the drain voltage of the MOSFET is

fixed at Vdsupplied by the voltage source.
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Fig 2.11 Schematic setup for the ultra fast pulse Id-Vgtechnique

Since the input bias current for the op-amplifier is very low, drain current flows

almost entirely through the gain resistor R. In other words, the drain current is

measured by the gain resistor R. Resistors ranging from 1 - 10 kO are used in

this study for different gain. The output voltage from the op-amplifier is related to

the MOSFET drain current by,

(2.22)

This technique was implemented, as shown in figure 2.12. A high-speed op-

amplifier f with 60 MHz bandwidth (A0844) is used to achieve fast

measurement [23]. As to be discussed in more detail later, accurate and fast

measurement primarily relies on the minimization of the length of signal paths.

The corresponding circuit schematic diagram is shown in figure 2.13 and the

impedance controlled cables are labeled explicitly, while thin lines represent

wires and probe tips. The components enclosed by the dashed box (except the

OUT) is mounted inside the probe station, as shown in figure 2.12.
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(a)

(b)

Fig 2.12 Photographs of the ultra fast pulse measurement setup
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.0
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500 1
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Fig 2.13 Schematic setup for ultra fast pulse measurement by using
op-amplifier (AD844) with matched impedance and controlled cable
delay.

The signal path of any non-impedance controlled section (e.g. from the drain of

the transistor to the input of op-amplifier, or from the gate to the junction

between cable 1 and cable 2) is less than 10 em, in order to minimize parasitic
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effects. All the transmission lines are 50 n co-axial cables, and cables 2 and 3

have the same length to minimize the difference in cable delay. The output

impedance of the pulse generator and the input impedance of the oscilloscope

are adjusted to 500 as well. Since the MOSFET gate has very high impedance,

the short wire connecting the gate does not break the impedance matching

between cable 1 and 2. A 50 0 Resistor is used at the output of the op-amplifier

to match the cable impedance, so the voltage recorded by the oscilloscope,

through cable 3, is % of Vou! from the op-amplifier.

When a voltage pulse is applied to the gate, the transistor will be turned on and

the drain current will induce a corresponding voltage pulse in the output voltage.

Both pulses are recorded by the oscilloscope, as shown in figure 2.14 (a), and

conversion from Vou! to Id is calculated by using equation (2.22). An plot of Vg(t)

and Id(t) yields the familiar Id-Vgcurve. The device used in this measurement is

the same as that used in figure 2.10 (a) and clearly the accuracy is improved.

2.4.2 Source of errors

Displacement current, 1m!

In principle, when a pulse is applied to the gate, the current measured from the

drain has two components: drift current, Id,and displacement current, Igd.The Igd

results from the presence of gate-ta-drain capacitor, Cgd. By taking Igd into

account, equation (2.22) becomes,

V =(1 -I )·R+V
0111 Ii gil Ii (2.23)
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Fig 2.14 (a) Screenshot of the signals from the oscilloscope
connected as shown in figure 2.13. (b) The extracted Id-Vgcurve by
using equation (2.22), with Vd = -25mV during the measurement.
The device used here is the same as the one used in figure 2.10.
Measurement accuracy has improved significantly.

The Igdis proportional to the pulse rate,

(2.24)
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In the measurement, the MOSFET is biased in the linear region, and as a rough

estimation, Cgd is given by,

1
Cgd = Co\'erlap,d + 2 Cit", (2.25)

where Coverlap,dand Cinvare the capacitance of the drain overlap region and the

inversion capacitance, respectively.

The displacement current, Igd, increases with device area, while the drift current,

Id, increases with W/L. To minimize Igdand ensure Igd«ld, MOSFETs with W»L

should be used. In this work, the typical Land W is 0.15 urn and 10 I-Im,

respectively. To test the contribution of Igd, a symmetric triangular pulse was

applied on the gate as shown in the inset of figure 2.14 (b), the Id-Vg curves

were measured at both the up-edge and down-edge of the pulse. In these two

edges, dVg/dt are of the same magnitude but the opposite sign. This changes

the direction of 19d'If the contribution of Igdwas significant, the Id-Vg obtained

from these two edges must be different. Figure 2.14 (b), however, shows that

the difference is negligible and the pulse Id-Vg agrees well with that from DC

measurement where the displacement current is zero, As a result, the effect of

the displacement current is negligible for the size of MOSFETs and the pulse

speed used here. The typical edge time used is limited to 5 us, as discussed

below.

Parasitic capacitors

As shown in figure 2.14 (a), Vou!must be synchronized to Vg in order to produce

the correct Id-Vg curve. A delay of St between V9S and Vou! will generate
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approximately a horizontal shift of Id-Vgcurve,

dV
c5V =_E_·ot

~s dt
(2.26)

When measurement time (rise/fall time) is reduced, dVg/dt increases, and the

distortion of the Id-Vgcurve worsens. One source of this delay difference arises

from the unmatched signal path length, for example, between the two long

cables 2 and 3 in figure 2.13. One meter of cable length difference causes 50

ns delay time skew. If in the fast measurement, Vg ramps from 0 to 3 V in 5!-1s,

50 ns introduces 30 mV shift in Id-Vgcurve. This can be comparable with the

degradation induced by NBTI stress. Using cables of equal length is essential

therefore.

Another potential source of the delay arises from the parasitic capacitance in

parallel with the feedback resistor R. For R = 10 kO used, a capacitance as little

as 1 pF would cause a delay of 10 ns in the op-amplifier output waveform. For

distortion of the Id-Vgcurve to be less than 10 mV, the maximum ramp rate for

Vgneed to be 5 V over 5 us. In practice, small stray capacitance is unavoidable

and its control is essential.

An error can also originate from the parasitic capacitance seen at the inverting

input terminal of the op-amplifier, which consists of the intrinsic input

capacitance of the op-amplifier, the capacitance between wires in the circuit and

the wires connecting the probe, and finally the probe tips. It was found that,

extremely short wires in the current setup are absolutely necessary.
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2.5 Application to the investigation of NBTI

This pulse Id-Vg technique was applied to investigate Negative Bias

Temperature Instability on devices with thin oxides. A pMOSFET with a 2.7nm

SiON gate dielectric is used for demonstration here.

The test procedure is shown in figure 2.15 (a). Since the time for data

transmission and storage for the computer is much longer than 1 s, only one Id-

Vg curve can be obtained within a 1s stress cycle. Therefore, it is necessary to

repeat the stress and measurement within 1 s stress. The waveform within 1 s

is schematically illustrated in figure 2.15 (b) and the waveform after 1 s is shown

in figure 2.15 (c). After stress for a certain time, an Id-Vg measurement is

performed at the falling edge and then OV is applied on the gate for 2 minutes to

allow recovery. It is assumed that the device will recover to its fresh condition

after 2 minutes. In order to check this assumption, an Id-Vgcurve is measured

each time after 2 minutes recovery and the extracted threshold voltage is shown

in figure 2.16. It can be seen that, Vt can be accurately obtained by extracting Id-

Vg measured directly after the stress and the Vt is also almost constant after 2

minutes recovery and agrees with its fresh value. This validates the assumption.

One uncertainty from the procedure is that a small voltage (100mV) is always

applied on the drain even during the stress, as shown in figure 2.15 (b) and (c).

Therefore, the applied stress is not 100% uniform. In order to check whether

this small Vd affects the degradation, different Vdwas used in the measurement.

As we can see in figure 2.17, Vd up to 100mV will not affect the results, so that

Vd= 100mV is normally used in this work.
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Fig 2.15 (a) Typical NBTI test procedure used in this project. The
device is characterized by applying a pulse on the gate. The edge
time of the pulse is set at 5 us. (b) The waveform used for
measuring NBTI degradation within 1s stress time. Since the time
for data transmission and storage is much longer than the stress
time «1 s), stress is repeated after recovery. The stress time is the
peak time of the pulse, and the falling edge of the pulse is used to
measure Id-Vgcurve within 5 us. The edge for the measurement is
represented by the thick black line in the diagram. Between two
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neighbouring stress tests, DV is applied on the gate for 2 minutes to
allow the device recoverying to its fresh state. (c) The waveform
used for stress time over 1 s. Data transmission and storage can be
performed during the stress, and the recovery stage used in (b) is
not needed here. DC voltage is applied on the gate to stress the
device and one pulse is triggered when the stress time reached the
pre-set level for monitoring the degradation. The edge time is 5 us
as well.

0.8
V = -3.17V

0.7 95t

T = 100 QC
0.6-> 0.5-->
0.4

IVtl fromfreshdevice----___.t
= 0.44V

0.3 .__----'-----'- __ -L-_-L-_-----L _ ___J

10-5 10-4 10-3 10-2 10-1

Stress time (s)

Fig 2.16 When stress time is within 1 s. The device is stressed,
measured and recovered repeatedly. After each stress, the device
is left with Vg = DV for 2 minutes for recovery. After the recovery, Id-
Vg is measured before applying the next stress. This allows
threshold voltage of the device after 2 minutes recovery to be
compared with the fresh value. The square symbols show that the
threshold voltage after recovery and the solid line is the threshold
voltage extracted from fresh device.
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Fig 2.17 Effect of drain voltage on the NBTI degradation. Drain
voltage up to 1OOmVwill not affect the experimental result.

Finally, this technique is used to demonstrate the huge recovery phenomenon

after removing stress. In figure 2.18, the device is stressed for 1000s and Id-Vg

is measured at the falling edge with different speed. The extracted Vt shift is

plotted against falling edge time, i.e. Id-Vg measurement time. It is clearly

observed that as measurement time increases, the measured Vt shift drops.

And the Vt measured by conventional technique is only 1/6 of the value before

recovery. Also from the figure, it can be seen the measurement time of 5 !-IS is

fast enough to freeze the recovery. As a result, 5!-1smeasurement time is used

hereafter, unless otherwise specified.
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Fig 2.18 pMOSFETs with SiON gate dielectrics were stressed for
1000 s with Vg = -3.17V, after which Id-Vg was measured with
different falling edge time. The threshold voltage shift before and
after stress (flVt) is plotted against the measurement time. The
threshold voltage shift obtained from DC measurement is also
shown for comparison. The recovery during a quasi-DC
measurement can reduce IflVd by a factor of 6. When the
measurement time is less than te = 40 IJs, the recovery during
measurement is negligible.

2.6 Summary

In this chapter, the conventional techniques are firstly reviewed, including the

measurement of transfer characteristics (I-V), capacitance (C-V), followed by

the fast techniques including On-The-Fly (OTF) and ultra fast pulse Id-Vg(UFP).

The development of ultra fast pulse technique was then described. The

experimental setup is described, and the sources of errors were analyzed. The

details for implementing this ultra fast pulse technique have not been

documented in the literature. Finally, the applicability of this technique to NBTI

investigation was demonstrated together with typical test procedures used in

this work.
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Real threshold voltage instability of

pMOSFETs under practical operational

conditions

3.1 Introduction

Gate dielectric breakdown [1,2] and negative bias temperature instability (NBTI)

[3] -[10] are two major reliability issues for current CMOS technologies. To

suppress boron penetration into the substrate, high nitridation concentration has

been used in gate SiON, which increases NBTI [3]. Now NBTI is limiting the

lifetime of pMOSFETs and it has received a lot of attention [3]-[10].

NBTI-induced threshold voltage shift, l1VI,was traditionally evaluated from the

shift of the quasi-DC transfer characteristic Id-Vg and its measurement can take

several seconds [4].

Recently, it has been shown that significant recovery of !'1.VI can occur during this

measurement delay [5,6], which, in turn, leads to an underestimation of

degradation. To suppress this recovery during measurement, the "On-The-Fly

(OTF)" and "ultra-fast pulse (UFP)" techniques have been developed [5-7]. The

OTF technique evaluates !'1.VI at the stress gate bias V gsl so that the stress is
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maintained during the measurement [5,6]. Since fJ.Vtis effectively sensed at Vgst,

this technique will be referred to as "OTF-Vgst"hereafter. The UFP technique

replaces the quasi-DC Id-Vgby a pulse Id-Vgand the recovery can be suppressed

to within measurement resolution [7,8]. Like conventional measurement, fJ.Vt is

also evaluated by extrapolating the pulse Id-Vg, and it will be referred to as

"UFP-ex" hereafter.

Earlier work shows that the fJ.Vt obtained from the UFP-ex technique can be five

times higher than that from conventional techniques and it is widely accepted

that the difference is because of the recovery [7]. The fJ.Vt from the OTF-Vgst

technique can be one order of magnitude higher than that from conventional

techniques and the interpretation of this large difference is still controversial [5,6].

Furthermore, fJ.Vt obtained from these two fast techniques is also different and

this difference is not fully understood at present.

In this chapter, the impact of various factors and uncertainties on fJ.Vtevaluation

by the OTF-Vgsttechnique will be analyzed first, including the degradation during

measurement that affects the reference Id and initial transconductance. The

popular assumption that 1fJ.Vd is independent of sensing Vgwill be removed and

a new evaluation method will be proposed and justified. Based on the new

evaluation method, the gap in fJ.Vtevaluated by different techniques will be

explained. Finally, the possible physical mechanism is discussed.
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3.2 Samples

The MOSFETs used in this study were manufactured at Interuniversity

Microelectronics Research Centre (IMEC), Belgium. The pMOSFET used for

NBTI tests has a surface channel and a p+ poly-Si gate. The channel length is

0.15 urn and the channel width is 10 urn. The gate dielectric is silicon oxynitride

(SiON) with an equivalent thickness of 2.7 nm, oxidized at 850 QCand then

nitrided in NO at 1050 QCfor 10 s.ln addition to the 2.7nm thermally nitrided

sample, three wafers nitrided by DPN for different time were also used, as

detailed in table 3.1 and a top view of the MOSFET layout is given in figure 3.1.

Table 3.1 Nitridation conditions of gate dielectrics and their thickness

Wafer No. Nitridation time (s) Gate Dielectric Thickness (nm)

1 12 1.85
2 20 2.0
3 45 2.0

nMOSFit' .aMOSFtT
So,,"~

II!l rn:J @] I!l rn:J ~

&&&&l&J
p.nb

pM'()sm nMosm
Fig 3.1 Layout of MOSFETs used in the experiments
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3.3 Shortcomings of the OTF-Vgst technique

The comparison of threshold voltage shift, I~Vd, measured by OTF-Vgst, UFP-ex

and conventional DC-ex techniques is shown in figure 3.2. Although OTF-Vgst

and UFP-ex are both fast techniques, the obtained I~Vd are different.

310 r:--cV=--9S-t=--:::-3:--.1-=-=7~V~IA-:-;;V:-;-l""'(O;;;-;;T;;;;o;;:......._~....g-S~~)I-D----,

T = 100 QC· 0 -~
u=E1 El

o

101~~----~------~------~~
10° 101 102 103

Stress time (s)

Fig 3.2 Comparison of threshold voltage shift, IL\Vd,measured by
OTF-Vgst,UFP-ex and conventional DC-ex technologies.

The OTF-Vgst technique suffers from a degradation of reference Idand an error in

evaluating the initial transconductance. For the OTF-Vgst technique proposed in

[5], the reference Id is measured by a quasi-DC parameter analyzer. As

mentioned in chapter 2, it could take 20 - 150 ms to measure one point. Figure

3.3 (a) shows Idmonitored against stress time under a given stress bias. In this

test, data for time within and over 1 s were measured by an oscilloscope and a
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standard parameter analyzer, respectively. By using a parameter analyzer, the

1stpoint is measured with a rate of 150 ms per point and is marked out in figure

3.3 (a). Apparently, Id is substantially degraded. To suppress Id degradation

during measurement to a level within a measurement resolution of 0.3%, the

measurement time must be less than a critical value, te,which is defined as the

time within which Id is flat and degradation cannot be observed, as shown in

figure 3.3 (a). When the measurement time is longer than te, Id degradation

becomes observable. At Vgst=-3.17 V, te is approximately 30 us. Figure 3.3 (b)

shows that te increases to 600 j..JS when Vgst=-1.2 V. A reduction in IVgstlresults in

a slower degradation and consequently, an increase of t., If the reference Id is

already degraded, !lVt will be under-estimated.

Unlike UFP-ex, OTF-Vgstrequires the evaluation of gm.Figure 2.6 (b) shows that

two measurement points at Vg=Vgst±DVare needed to evaluate the first gm.The

impact of Iddegradation during the measurement on gmshould also be assessed.

When the measurement time for one point is 150 ms, figure 3.4 shows that the

initial gm depends on the perturbation sequence of gate bias. When IVgl was

firstly decreased to IVgst-DVI and then increased to IVgst+DVI. gm was

underestimated since the continuing degradation reduced the increase of Id at

IVgst+DVI.The opposite occurs if IVglwas increased first.
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Fig 3.3 Dependence of drain current on stress time and the
definition of a critical time, tc (a). (b) shows that tc reduces for higher
IVgsd. The solid lines in (a) and (b) are guides-to-the-eye.

1 234
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To minimize the Id degradation, measurement time for the initial gm should be

limited to within t, and figure 3.4 also gives the gmevaluated in this way. As the

stress time increases over 1 s, figure 3.4 shows that the gmmeasured by two
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perturbation sequences merged. This indicates that the measurement induced

degradation of gm becomes insignificant at time longer than 1 s even for a

standard parameter analyzer.

_10
2!
~ 8
-E 6 +
Cl 4 JUlse

2 (5 J.1s)

14 V = -3.17V at 100 QC
gst

12 ~V=50mV? _IVgstl

101

Stress time (s)

Fig 3.4 The classical transconductance, gm, during NBTI test. The
symbol '+' was obtained from a pulse (5 J.1s)Id-Vg and should be
used as the initial gm.The symbol '0' and '. were measured by a
quasi-DC parameter analyzer and the time for obtaining one Idpoint
is 150 ms.

By using a degradation-free reference Idgiven in figure 3.3 (a) and the corrected

initial gmgiven in figure 3.4, I~VtI is re-calculated. Figure 3.5 compares the I~Vtl

evaluated with a measurement time of 5 IJs and 150 ms. When the degraded Id

with the measurement time of 150 ms was used as the reference, I~Vd was

underestimated by a factor of 2.5 after 1000 s stress.
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Fig 3.5 Impact of degradation during measurement on lAVd. When
the stress time was less than 1 s, the symbol '0' was obtained by
pulse measurements with a measurement time of 5 IJs.When the
stress time was longer than 1 s, the symbol '0' was measured using
a quasi-DC parameter analyzer and it took 150 ms to obtain the
reference Id and this reference Id was not degradation free.

As a result, suppression of degradation during measurement further enhances

IAVd and widens its gap from the IAVtI evaluated by pulse Id-Vg technique. The

lAVd now rose to above 1 V and is over one order of magnitude higher than the

lAVd typically reported in earlier work [9-10].

To check whether this large lAVd originates from the poor quality of the samples,

lAVd is compared with that reported in literature. Threshold voltage shift is

transformed to charge density here to make direct comparison for samples of

different thickness. First, figures 3.6 (a) (b) (c) show that the degradation of the

SiON sample is similar to that of SiON samples reported in the literature if
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measured by the traditional quasi-DC extrapolation technique [9,10,14].

Secondly, figure 3.6 (d) shows that the degradation of SiON samples is also

similar to those reported in the literature if it is measured by the pulse technique

and extracted by the extrapolation method [7]. Finally, the OTF Id degradation

was compared. Figure 3.7 shows that OTF L\ldlldOis again similar to that reported

in the literature [15]. Based on the good agreement with earlier work, it is

concluded that the quality of these samples is similar to the typical SiON used in

earlier work.

The next question is whether the high IL\Vd is caused by the use of exceptionally

severe stress conditions. The stress voltage Vgst used in figure 3.5 is -3.17V.

Figure 3.2 shows that IL\Vd is in the order of tens of mV under these stress

conditions, when measured by the conventional DC-ex technique. This level of

IL\Vd is typically observed in earlier work [9-10] and consequently, this stress is

not exceptionally harsh.
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Fig 3.6 Comparison of these results with NEC [14] (a), Toshiba [10]
(b), United Microelectronics, Infineon and IBM joint work [9] (c), and
the (d). (a)-(c) was measured by conventional technique, but (d)
was measured by pulse Id-Vg technique. In all cases, threshold
voltage is evaluated by extrapolation. The threshold voltage shift is
transformed into charge density for comparing samples of different
thickness.
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Fig 3.7 Drain current degradation comparison of the result with that
of Kumar et al [15]

After clarifying that the high I~Vd in figure 3.5 is not caused by the sample quality

and exceptionally severe stress conditions, the next question is to understand

why the I~Vd given by OTF-Vgst is larger than that given by the UFP-ex under the

same stress condition. The differences between these two techniques should be

noted, namely: (i) the sensing Vg is around Vgst for OTF-Vgst, but close to Vt for

UFP-ex, and (ii) OTF-Vgst requires the evaluation of gm, but UFP-ex does not.

3.4 A novel evaluation method for I~Vtl based on the pulse Id-Vg technique

A popular assumption is that I~VtI is independent of sensing Vg, although this

was not experimentally verified. To test this assumption, AVt is evaluated for

different sensing Vg. Using the pulse Id-Vg technique, the whole Id-Vg curve can

be obtained within 5IJs which is short enough to suppress recovery within
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measurement accuracy as has been demonstrated in chapter 2. Based on the

Id-Vgcurves, the degradation of Id at each sensing IVg!, ~ld,n(Vg),is evaluated

from the difference in the Id-Vg recorded at two neighbouring measurement

points, as illustrated in figure 3.8 (a), and the result is given in figure 3.8 (b). The

threshold voltage shift between these two points (n-1) and (n) at a given Vg,

I~Vt,nL can be evaluated by using the same analysis as those for OTF-Vgst,

namely, the equations (2.1) and (2.2). By combining the measurement of UFP-ex

with the analysis of OTF-Vgstin this way, the range of sensing Vg from Vgstused

by OTF-Vgstis extended to around Vt used by UFP -ex. The result for I~Vt,nl is

plotted against sensing Vg in figure 3.8 (c) and it clearly increases with sensing

IVgl. The assumption that I~VtI is independent of sensing Vg used in OTF-Vgst

technique is not justified therefore. The detailed procedure and evaluation

method are given next.



Chapter-3 Real threshold voltage instabilitv o[pAfOSFEn linda practical operational condition" 73

150~----------------~(a~)

100

Id(n-1 )

_'0 50

0.0 0.5 1.0 1.5 2.0
IV I (V)

9

(a)

2.5 3.0 3.5

0.4

(c)

-Cl

~
LI-
0.. 0.2
:::>-".~-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
IVgl (V)

(c)

10~----------------~(b~)

(c)

D~
Jl
o
o

/

5-
~

o

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
IVgl (V)

(b)

Fig 3.8 The !!'J.Vt evaluation by combining the measurement of
UFP-ex technique with the analysis of OTF-Vgst. Two pulse Id-Vg
after a stress of 0.5 ms and 3 s is given in (a). The drain current
difference in these two Id-Vg. ~Id.n. is caused by NBTI between the
two measurement points and is plotted against sensing Vg in (b). (c)
shows the threshold voltage shift between these two measurement
points, !!'J.Vt,n.To make the difference in the two Id-Vg in (a)
observable, a large time step, 0.5 ms - 3 s, is purposely used here
for illustration.
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3.4.1 Procedure and evaluation method

The evaluation of gm is now examined and it is shown how to make the

correction. In this measurement, Vd was set at -25 mV and IVdl « IVg - Vd·

Under these conditions, the relation between the drain current and gate bias can

be simplified to

W
I (t)=J.1C ·-·V ·[V -VCt)]d (}XL J g I

(3.1)

where ~ is the effective carrier mobility and Cox the effective oxide capacitance

per unit area. Since the Id is clearly driven by (Vg-Vt), rather than Vg, a general

definition for transconductance should be

G = dId
m d(V -V)

g I

(3.2)

The physical meaning of Gm is the variation of drain current per unit overdrive

voltage, (Vg-Vt), a measure of the ability to control Id with the gate taking into

account the offset effect of threshold voltage on Vg into account. If Vt were a

constant, the Gmin equation (3.2) would reduce to the classical gmas shown in

equation (2.17). When t1Vt changes with sensing Vg, the transconductance

should be evaluated by using equation (3.2). The threshold voltage shift

between two neighbouring measurement, n-1 and n, AVt n is

I - It1V = d.n d.n· 1

tn (Gm,n + Gm,II'!) / 2
(3,3)

Where

G = dId
m.n··! d[V - V 1

g I.II-!
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G == dId
m,ll dlV - V -l\V]

g t,n-I tn

and the accumulative degradation is

N

f1V, ==I f1V,,n
n=1

(3.4)

In order to solve equations (3.3) and (3.4), iteration is needed. The flow chart of

iteration is shown in figure 3.9. The iteration sequence begins with an assumed

threshold voltage degradation between n-1 and n, !1Vt,n(Vg). It is Vg dependent

and firstly, it is calculated by using f1ld/[(gm,n-,+gm,n)/2] as normally used in the

OTF-Vgst technique. This permits a calculation of the Gm,n and then the new

!'1Vt,n(Vg) by using equation (3.3).The newly calculated value of ""Vt,n(Vg) is

compared with the assumed one. The iteration continues until the difference

between two iterations becomes acceptable. In this case, the difference is set at

1mV.

3.4.2 Dependence of I""Vtl on sensing Vg

After using the correct Gm, figure 3.10 shows the dependence of the

accumulative I""Vd on sensing Vg. The correction in transconductance by using

equation (3.2) reduces I""Vd moderately at low sensing IVg!, but strongly at high

sensing IVgl. This drop is because an increase of IL\VtI with IVgl results in a

smaller denominator in equation (3.2), making Gm larger than the gm. This in turn

leads to a reduction of 1!'1Vd. Even after correcting transconductance, figure 3.10

shows that I""Vd can still rise substantially for higher sensing IVgl. The



Chacter-3 Real threshold voltage instahiliD' ofpAfOSFETs lIllda practical (pef"(JtioI1111conditions 76

dependence of I~Vtl on sensing IVgl will be named the Vg effect. Since the

evaluation gives I~VtI at different sensing Vg, the technique will be referred to as

'UFP-Vg~hereafter.

11.~h(Vg) known

Obtain Id,n+l "-'[VG - LWili (Vg)]

b . G d1a,n+yo tain m,n = [Vg -11. Vili (Vg)] "-'Vg

11.Vili (VG)
= llVili+l(Vg)

Obtain llIa(Vg) = Ia,n(Vg) - Ia,n+l(Vg)

Obtain 1l.Vci,.+l(Vg)"-'VG

Obtainl1l. Vili (Vg) - NO

1l.Vili+1(VG)I< lmV?

YES

END

Fig 3.9 Flow chart of the I~Vtl evaluation by iteration.
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Fig 3.10 Impact of transconductance evaluation on the accumulative
I~VtI. The sample is stressed at -3.17V for 1000 s. When the
classical gm=dld/dVg was used, I~VtI was substantially
overestimated at high sensing IVgl·

In order to check whether this Vg effect only happens under high stress

conditions, relatively low stress voltage Vgst = -2.0V is used in the next

experiment. Figure 3.11 shows that the feature of the Vg dependence on 1/\Vd is

not changed.

The result shown above was obtained on the thermally nitrided SiON dielectric.

To ensure the Vg effect is not process-specific, the same technique is applied on

1.85nm - 2.0nm SiON gate devices which have been nitrided by DPN. Figure

3.12 shows that the feature of the Vg effect always occurs, indicating it is

insensitive to processing. The degradation is higher after longer nitridation as

expected.
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Fig 3.12 Insensitivity of the Vg effect to fabrication processes. The
samples used here are nitrided by DPN with different nitridation time,
leading to a different nitridation concentration.
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3.5Justification of the Vg effect on I~Vd

In order to justify the Vg effect on I~Vd, possible sources of error should be

carefully examined, including:

1) The accuracy of the measurement.

2) Truncation errors from the evaluation procedure

3) Gate leakage current contribution to the drain current.

The measurement accuracy is addressed first. Recently, Reisinger et al [16]

have pointed out that the measurement accuracy should be as high as 10-4*ld.

They show that error propagation outside the measurement range of Vg can

cause substantial errors in the I~Vd evaluation, as shown in figure 3.13.

5.4- modulationen 5.2 voltageE- t\
Q) 5.0ucro 4.8- Goo
:::l 4.6'Cs::
0 4.40 .'
s:: .
ro 4.2 Va V,...
'C 4.0-2.0 -2.1 -2.2 -2.3 -2.4

gate voltage (V)

Fig 3.13 Figure from Reisinger et al work [16]. The dashed straight
lines illustrate how even a small change in conductance at stress
level leads to a large variation at the lower Vg where the threshold
voltage is evaluated.

Reisinger et al [16] reported that if the Id-Vgmeasured near to the stress Vg is

extrapolated towards lower IVg" both statistic and systematic errors will be
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enlarged. This means that the Idmeasured at a high IVglclose to the stress level

should not be used to determine the I~VtI at the conventional low IVgl. In this

evaluation, however, the Id-Vgobtained between 'Vo' and 'V1' were used, as

shown in figure 3.13, to determine the I~Vd at the sense voltage. Furthermore,

between 'Vo' and 'V1' no extrapolation of Id-Vgwas used. To obtain the I~VtI at a

lower IVg!. the Id-Vg covering that IVgl is used. As a result, errors do not

propagate in this evaluation process.

Within DV, Id is assumed to be a linear function of Vg and this assumption

introduces truncation errors. The larger DV, the larger will be the truncation error.

To control this error, DV must be sufficiently small so that a further reduction

hardly improves the results. Figure 3.14 (a) shows that there is little difference in

the result between DV=100 mV and DV=25 mV and so DV=25 mV is used in this

work. The effect of the Id-Vg range on the I~VtI is also studied and figure 3.14 (b)

shows that I~VtI at a given sensing Vg is insensitive to how low IVglwas ramped

down, so long that the Id-Vgcovers this sensing Vg.

During NBTI tests, figure 3.15 (a) illustrates that Gm was evaluated only at

pre-specified points, rather than continuously. This means that the continuing

variation of Gm is approximated by a step function and the Gm between two

neighbouring points is treated as a constant. The step in time must be sufficiently

small to control the truncation error in time. Figure 3.15 (b) shows that the use of
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8 points per decade is adequate. A constant number of points per decade time is

used, instead of a constant M, since degradation rate slows down and larger flt

can be used for longer stress time.

o DV1=25mV
o DV2=50mV
+ DV3=100mV
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Fig 3.14 An assessment of the effect of evaluation errors on flVt. (a)
compares flVt obtained by using three different DV for estimating Gm
through equation (3.2). The negligible difference in AVt confirms that
truncation errors in DV are insignificant. (b) compares AVt obtained by
ramping down IVgl from IVgstl=3.17 V to 3, 2, 1.2 and 0.5 V,
respectively. It shows that the range of Id-Vg has little effect on AVt at
a given sensing Vg, so long that this sensing Vg is covered by the
Id-Vg.
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Fig 3.15 An assessment of the effect of time truncation error on /j,Vt.
(a) shows that the continuous variation of Gm with stress time is
approximated by a step function. (b) shows that an increase of
number of points per decade of stress time has little effect on /j,Vt,

indicating that the time truncation error is negligible.
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One requirement for the new OTF-Vg technique is that gate leakage current

should be negligible when compared with the drain current during the whole

stress time and also over the whole range of sensing Vg. For this sample, Ig« Id

is always valid as shown in figure 3.16 (a) and (b). Therefore, it will not introduce

errors to Vt extraction.

After the correction, I~Vd can be as large as O.7V, which corresponds to a

charging level of6x1012 ern", approximately, for a 2.7 nm SiON. Although such a

high level of charging is rarely reported by earlier work on NBTI, it was routinely

observed under other types of stress, such as substrate hole injection [17], as

shown in figure 3.17. As a result, it is physically realistic and achievable.

Though I~Vd can be as large as O.7V,a MOSFET can still be switched on. Figure

3.18 shows that, IVd=IVtO+~Vdincreases with IVglat a slower rate than IVgl itself

and consequently, IVg-Vd still increases with IVgl. For example, even if

I~Vd=O.7Vgave IVtl;:: 1.14V at IVgl=3.17V, there is still an over-drive voltage of

IVg-Vd;::2.03V, so that the MOSFET will be switched on.

3.6 Effect of mobility variation in the evaluation

The OTF-Vg technique can give I~Vd over a wide range of sensing IVgl.When

I~Vd is sensed near the threshold condition, hole concentration in the p-channel

is negligible and the impact of mobility variation on II'lVd is normally ignored.
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Fig 3.16 (a) Id and Ig current variation with stress time. Ig « Id is valid
over the whole degradation stress period. (b) Id and Ig current
variation with sensing Vg. Ig « Id is valid over the whole range of Vg.
2.7nm SiON sample is used here.
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Fig 3.17 Positive charging during substrate hole injection (SHI). The
charging density can be routinely over 6x1012 ern". The figure is
taken from [17].
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Fig 3.18 The device is stressed at -3.17V for 1ks under 100°C
condition. I~Vd can be as large as 0.7V. Although an increase of I~VtI
results in an increase of IVdfor higher IVg!. IVg-Vtl still increases with
IVg!. so that the MOSFET can be switched on and Id increases with
IVgl·
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When I~Vd is sensed in strong inversion at higher IV91. there is a strong channel

and the impact of mobility variation on I~Vd must be evaluated. Degradation of

carrier mobility during stress results in a reduction of Idand will give an apparent

I~VtI, even though the threshold voltage was not shifted. In this sense, I~VtI

measured by the OTF-Vg technique could be over-estimated. It is not explicit

whether the effect of mobility variation has been taken into account in the new

technique. This uncertainty is addressed in the following.

With numerical approximation, one can have

M ~ A . (V - V)· f111+A· /I. f1(V - V)d g I r: r: g I
(3.5)

As expected, both mobility variation, ~~, and a shift of (Vg- Vt) can change Id.

To facilitate the discussion, a parameter is defined,

If mobility variation were neglected, a=O would be required. It should be

emphasized that the OTF-Vg technique does not assume a=O. If a=O were

assumed, Gm = A*j.J,which is not valid under the present test condition.

From the evaluation, although Gm was treated as a constant between two

neighbouring measurement points, it has not been assumed as constant during

the whole stress period. Figure 3.15 (a) illustrates schematically the

approximation used. Since the analytical expression of Gm against stress time is

not known, the continuous function of Gm vs time (the dashed line) is replaced by
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the step function. In the time step between 'n-1' and 'n', the Gmis considered as

a constant, that is the average of its value at 'n-1' and 'n'. For the next time step

between In' and 'n+1', it is considered as constant again, but this constant is

changed and is now the average of its values at In' and 'n+1'. As a result,

although they are approximated as constants within one time step, they are

changing from one step to the next.

It is well known that mobility is reduced for higher IVgl. This, however, will not

cause an increase of I~Vd for higher IVgl. In figure 3.19 (a), an Id-Vgis shifted by

0.1 V to simulate the case that the charging does not change with Vg. Figure

3.19 (b) shows the gm before and after the shift and the average value. It

confirms that gm indeed reduces for higher IVgl. Figure 3.19 (c), shows that ~Id

also reduces for higher IVg!, as a consequence of smaller gm. Figure 3.19 (d)

clearly shows that the I~VtI= 1~ld/gm(average)1is independent of Vgand equals

the expected value of 0.1 V. Therefore, the increase of IL\VtIwith IVglobserved in

these tests is not caused by a reduction of gmfor higher IVgl.

To evaluate the variation of mobility during NBTI, from equations (3.1) and (3.5),

write

L1/1(n) = Ald(n) + A~(I1)

pen) [J(n) Vg -~(n)
(3.6)

The accumulative mobility variation is
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~f.1(accumulalive) ;::;_f ~f.1(I1) (3.7)
1'0 n=l f.10

Under the typical test conditions, the relative change of drain current, threshold

voltage and the effective mobility are given in figure 3.20 (a) and (b), respectively.

The ~Vt/(Vg-Vt) can be over 30%, corresponding to a shift of Vt larger than 0.7V.

This, however, only leads to about 10% percent degradation of drain current,

because the effective mobility at the given stress voltage actually increased.

During stress, it is reported that the carrier mobility will degrade, contradicting

the mobility increase observed in figure 3.20 (b). To explain it, it should be

pointed out that the effective mobility used in figure 3.20 (b) is different from the

low field mobility, !JLF. The relation between these two can be expressed as [18]

f.l = f.1u:
1+ 0 . (Vg - V; - 0.5 . Vd )

(3.8)

The mobility degradation reported in earlier work [19,20] is for I-ILF. Under the test

condition employed here, there is little doubt that !JLF is also degraded. To show

this degradation, the Id-Vg before and after a typical NBTI stress is plotted in

figure 3. 21 (a) and the corresponding transconductance is given in figure 3. 21

(b). The maximum gm is proportional to the low field mobility, I-ILF, and it is clear

that stress reduces the maximum gm.

Equation (3.8) shows that the effective mobility increases for lower IVg-Vd. The

stress was carried out under a constant IVgl. As time increases, the magnitude of

threshold voltage increases, leading to a reduction of IVg-Vd. A smaller IVg-Vd
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Fig 3.19 A demonstration that a reduction of gm for higher IVgl does
not result in an increase of I~Vd for higher IVgl. In (a), the Id-Vgwas
shifted in parallel by 0.1 V. In (b), gmwas evaluated from the Id-Vgboth
before and after the shift. The average value of these two is also
given. In (c), the difference in Idfor the two curves in (a) was given. In
(d), I~Vtl was evaluated by using I~VtI= 1~ld/gm(average)l.
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Fig 3.20 (a) Variation of ~Id/ldo and ~Vt/(Vg-Vto) during stress. In
contrast with the relatively small ~Id/ldo « 10%), AVt/(V g-Vtc) can be
over 30%. (b) Variation of the effective mobility during stress. Against
popular expectation of mobility degradation, the effective mobility at
the stress gate bias actually increases with stress time.
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Fig 3.21(a) Pulse Id-Vgmeasurement was performed before and after
stress at -3.17V at 100 QC for 1000 s. Id-Vg curve measured after
stress shifts negatively, indicating the generation of positive charges.
(b) from the Id-Vg curves, the gm before and after stress are obtained.
The maximum transconductance, gm_max, reduced after NBTI
stress, as illustrated by the dashed arrow. After the stress, the gm-Vg
is shifted toward higher IVgl. The gm at a given IVgl=3.17V actually
increased.
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3.7 Bridging IL1Vtlevaluated by different techniques

An attempt is now made to bridge the gap in 1L1VII evaluated by the different

techniques. Figure 3.22 compares 1L1VII evaluated by various techniques. First of

all, after replacing gm by Gm, the IL1Vdby OTF-Vgst agrees well with the I~Vd

obtained from UFP-Vg when the sensing Vg is at Vgst, although quasi-DC

modulation was used by OTF-Vgst. This indicates that the recovery is

insignificant even during the quasi-DC measurement, if the modulation from Vgst

is small (DV= 25 mV). Secondly, the 1L1Vd obtained by UFP-ex also agrees with

the I~VtI from the UFP-Vg when the sensing IVgl is reduced to close to IVtI. As a

result, the difference in 1L1VtI evaluated by OTF-Vgstand UFP-ex is caused by the

difference in sensing Vg. Finally, the on-the-fly and quasi-DC lAVd are compared.

The symbol '0' in figure 3.16 was obtained by ramping down IVgl from IVgstiin a

quasi-DC speed and the total measurement time was 7.65 s. The difference

between I~VtI by the UFP-Vg and the quasi-DC results is small when sensing Vg

is near to Vgst, since recovery is limited here. As IVgl decreases and

measurement time increases, the recovery becomes larger, resulting in lower

quasi-DC I~VtIwhen compared with the I~VtI by UFP-Vg. When the sensing Vg is

close to VI, the quasi-DC 1L1VtI evaluated through Gm agrees with that by

extrapolating the quasi-DC Id-Vg, I~VI(DC-ex)1. further endorsing the new

evaluation technique.
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Fig 3.22 Bridging the gap in ~Vt evaluated by different techniques.
The symbol 'A', !~Vt (OTF-Vgst)! was obtained by the OTF-Vgst
technique with Vgst modulated by ±25 mV at quasi-DC speed. The
symbol '0' and '0' was obtained by using the new UFP-Vg method,
where !Vgl was ramped down from IVgsti to 0.5 V in 5 us (pulse) and
7.65 s (quasi-DC), respectively. The ~Vt evaluated by extrapolating
the pulse and quasi-DC Id-Vg is represented by the two dashed
horizontal lines, labelled as I~Vt (UFP-ex)1 and IAVt (DC-ex)!. By
taking both the recovery and sensing Vg effects into account, the new
method successfully bridges the gap in !/\Vt (OTF-Vgst)!. !AVt

(UFP-ex)1 and I~Vt (DC-ex)l·

In summary, the difference between I/\Vt(DC-ex)! and !AVt(UFP-ex)! is caused by

the recovery reported in earlier work. The difference between IAV1(OTF-Vgs1)1

and I~Vt(UFP-ex)1 is caused by the sensing Vg effect. Both the recovery and the

Vg effect contribute to the difference between 1/\Vt(DC-ex)1 and IAVt(OTF-Vgst)l.

In this way, the large difference in I~Vd evaluated by various techniques is

bridged by the new method.



Chapter-3 Real threshold voltage instahilitv o[pMOSFEn under practical ()p(',.ati(}naLs:!indi(itJ]~s 9·t

3.8 Possible physical process

Threshold voltage of pMOSFETs can be defined as [21]

(3.9)

In some text books [22] a thermal potential term is added to equation (3.5), but it

makes no difference to the discussion here. In physical terms, Vt is the minimum

Vg needed to switch on a MOSFET and equation (3.1) shows that Id is

proportional to (Vg-Vt). For a degradation-free pMOSFET, Q is fixed and Vt is a

constant. During stress, however, Q increases with time, resulting in a shift in Vt.

During recovery, Q and IIIVd decreases.

The phenomenon that IIIVd increases with IVgl can be explained if Q is higher at

higher IVgL as schematically illustrated in figure 3.23. The defect responsible for

the sensing Vg effect is not known at present. It has been reported that some

positive charges can have an energy level above the bottom edge of the silicon

conduction band and their neutralization was sensitive to temperature [23-25].

One possibility is that, under low IVg!. free electrons in silicon driven by thermal

energy can still bombard the interface and neutralize a portion of them, as

illustrated by figure 3.23 (a). A higher negative Vg raises the defect energy level

and impedes free electrons from reaching the interface and more positive

charges can survive the neutralization shown in figure 3.23 (b). Another

possibility is that there are defects close to the top edge of the silicon valence
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band. An increase of IVgl also raises the energy level of these defects with

respect to the Fermi level, resulting in more positive charge. Whether they are

interface states is not known, but even if they are, they cannot be probed by the

conventional technique like charge pumping, since they are close to the band

edge [26].

SiON Si SiON Si

++ ++
DD +-- e ++
DD +-- C DD +-- C

'----Ev"'----Ev

Fig 3.23 Schematic illustrations of the defects responsible for the
sensing Vg effect. The symbol '+' and '0' represents positively
charged and neutralized defects, respectively. 'e' and 'a' represents
free electrons and holes. (a) shows that when IVgl is relatively low,
some defects above Ec can be neutralized by free electrons driven to
the interface by thermal energy. Some defects below Ef can also be
neutral. (b) shows that when Vg is more negative, positive charges
can increase.

3.9 Difference between the sensing Vg effect and the recovery effect

When IVgl was ramped down from the stress level, figure 3.22 shows that both

the recovery and the effect of sensing IVgl can lead to a reduction of IAVtl.
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Although a loss of charges must have occurred in both cases, there are good

reasons for believing that the Vg effect is not the same as the recovery reported

in the literature, as discussed below:

Recovery occurs under the same sensing V g~ Since 1f1Vd is conventionally

measured with Vg close to Vt, the sensing Vg changes little and it is widely

observed that recovery is substantial. To test this further, figure 3.24 (a) shows

that recovery is also substantial under other fixed sensing Vg. As a result, the

recovery occurs when the sensing Vg effect is eliminated.

Relative recovery is insensitive to the sensing V g~ After normalizing the 1/\Vd in

figure 3.24 (a), figure 3.24 (b) shows that the relative recovery under different

sensing Vg agrees well. As a result, although the sensing IVgl affects IAVtI, it has

little effect on the relative recovery.

Vg effect is substantial when recovery is minimized: By using pulse Id-Vg

technique with 5 JJsmeasurement time, the recovery can be minimized to within

the measurement resolution. Substantial Vg effect, however, was observed at the

same short time in figure 3.24 (a). This supports that they are different

phenomena.

When recovery is essentially over, Vg effect remains: Although it is difficult, if not

impossible, for the recovery rate to drop to zero, it reduces exponentially as time
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increases, as shown in figure 3.24 (b). To study what happens to the Vg effect

after recovery is essentially over, one device was allowed to recover for 1000 s

at 100 "C, as shown in figure 3.25 (a). The pulsed Id-Vg was measured both

before and after the recovery to evaluate the Vg effect and figure 3.25 (b) shows

that the relative Vg effect remains substantial after the recovery.
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Fig 3.24 Difference between the conventional recovery and the
sensing Vg effect. (a) shows that the Vg effect exists when the
recovery is negligible at short measurement time. (b) shows that the
normalized recovery is independent of the sensing Vg.
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Fig 3.25 A comparison of the sensing Vg effect before and after
recovery. In (a), the point 'A' is before recovery and further recovery
beyond the point 'B' is insignificant. The solid lines are
guides-to-the-eye. The pulse (5 us) Id-Vgwas taken at both 'A' and 'B'
and the normalized Vg effect is compared in (b). The Vg effect is
substantial both before and after the recovery.
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3.10 Advantage of I~Vtl over ~ldsatfldsatOas a measure for NBTI

Apart from ~Vt, ~Idsat/ldsatois also used to monitor NBTI. Compared with

~ldsatlldsatO,~VI has two advantages.

Firstly, ~Vt allows the estimation of the effective charge density, ~N, from

~N=~VtXCox/q, which cannot be directly obtained from illdsat/1dsatO.Secondly and

more importantly, ~Vt is independent of the source and drain series resistance,

Rsd, but ~ldsatlldsatOdepends on it. To provide experimental evidence, a resistor,

Rext, was externally connected to the drain. Figure 3.26 confirms that flldsatfldsatO

measured at Vg=Vd=-1.2 V drops for higher Rext, while ~Vt remains a constant.

In a real circuit, Rsd depends on the size and layout and it can change

substantially for different devices [27]. As a result, the flldsatfldsatOobtained from

the test in a laboratory may not be directly used to predict the circuit performance,

where the device size and layout change.

Moreover, Vt is a key parameter for the 8SIM-based circuit simulators [28,29]. As

a result, fl V! is indispensable.
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Fig 3.26 Dependence of ~ldsal/ldsatOand IL1VtIon the series resistance.
The 'external resistance', Rext, is a resistor externally connected to the
drain of the devices under test. Both L1ldsallldsalOand 1L1VII were
normalized to their value at Rext=O.

3.11 Summary

In this chapter, the NBTI-induced threshold voltage shift evaluated by different

techniques is compared, including on-the-fly (OTF-Vgst) sensed at stress Vgsl,

ultra-fast pulse (UFP-ex) technique with extrapolation, and the conventional

quasi-DC measurement with extrapolation. Attention was paid to the impact of

various factors reported recently on ~Vt. This includes the degradation during

measurement that affects the reference Id and initial transconductance. The

sample quality and errors during both measurement and evaluation were

addressed. After clarifying these issues, it is found that recovery alone cannot

explain the difference in t:J.Vt extracted from different techniques and it is

essential to consider the effect of sensing Vg on t\Vt. The evaluation of /",VIat
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different sensing Vg was achieved by calculating the ~Id and transconductance

at the same Vg and the classical gm=dld/dVg should be replaced by

Gm=dld/d(Vg-Vt}.The results clearly show that I~VtI increases with sensing IVgl

because of more positive charge at higher IVgl and the popular assumption of

t-.Vt being independent of sensing Vg is shown to be invalid. After taking both

recovery and the sensing Vg effect into account, the large gap in t'.Vt obtained

from different techniques in earlier work has been successfully bridged. The

results show that recovery reported by earlier work and the sensing Vg effect

observed here are two different phenomena.

Test engineers should take into account the increase in It-.VtI with sensing IV91

when assessing the impact of NBTI on circuit performance. In a worst case

scenario, It.Vd should be sensed at the highest possible oxide field during

operation without recovery by using the UFP-Vg technique and care must be

exercised to ensure the reference Id degradation at this high sensing IVgl is

insignificant. In reality, different devices in a circuit can have different recovery

dynamics and the oxide field can also change with time and along the channel,

resulting in smaller It-.Vd·



Chapter-3 Real threshold voltage instahiliO' ofpMOSFETs under practical o/h>ruti{)!lil{_l'(_Jl_ujitl!_J/1I_1Q_J

References

1. J. S. Suehle, "Ultrathin gate oxide reliability: physical models, statistics, and
characterization," IEEE Trans. Electron Dev., vol. 49, pp. 958-971,2002.

2. W. O. Zhang, J. F. Zhang, C. Z. Zhao, M. H. Chang, G. Groseneken, and R.
Oegraeve, "Electrical signature of the defect associated with gate oxide
breakdown," IEEE Electron Dev. Lett., vot. 27, pp. 393-395, 2006.

3. S. S. Tan, T. P. Chen, J. M. Soon, K. P. Loh, C. H. Ang, and L. Chen,
"Nitrogen-enhanced negative bias temperature instability: An insight by
experiment and first-principle calculations," Appl. Phys. Lett., vol. 82, pp.
1881-1883,2003.

4. J. F. Zhang, M. H. Chang and G. Groeseneken, "Effects of measurement
temperature on NBTI," IEEE Electron Dev. Lett., vol. 28, pp. 298-300,2007.

5. M. Oenais, A. Bravaix, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, Y. R.
Tauriac and N. Revil, "On-the-fly characterization of NBTI in ultra-thin gate
oxide PMOSFET's," in International Electron Devices Meeting (IEDM) Digest,
pp.109-112, 2004.

6. M. H. Chang and J. F. Zhang, "On positive charges formed under negative
bias temperature stresses," J. Appl. Phys., vol.101, Art.no.024516, 2007.

7. T. Yang, M. F. U, C, Shen, C. H. Ang, C. Zhu, Y.-C. Yeo, G. Samudra, S. C.
Rustagi, M. B. Yu, and O. L. Kwong, "Fast and slow dynamic NBTI
components in p-MOSFET with SiON dielectric and their impact on device
life-time and circuit application," in Symposia on VLSI Technology and
Circuits, pp. 92-93, 2005.

8. J. F. Zhang, Z. Ji, M. H. Chang, B. Kaczer, and G. Groeseneken, "Real Vth
instability of pMOSFETs under practical operation conditions," in International
Electron Devices Meeting (IEDM) Digest, pp.817-820, 2007.

9. C. H. Uu, M. T. Lee, C.-Y. Un, J. Chen, K. Schruefer, J. Brighten, N. Rovedo,
T. B. Hook, M. V. Khare, S.-F. Huang, C. Wann, T. C. Chen, and T. H. Ning.,
"Mechanism and process dependence of negative bias temperature
instability (NBTI) for pMOSFETs with ultrathin gate dielectrics," in
International Electron Devices Meeting (IEDM) Digest, pp. 861-864, 2001.

10. Y. Mitani, M. Nagamine, H. Satake and A. Toriumi, "NBTI mechanism in
ultra-thin gate dielectric: Nitrogen-originated mechanism in SiON," in
International Electron Devices Meeting (IEDM) Digest, pp. 509-513, 2002.

11. S. Rangan, N. Mielke, and E. C. C. Yeh, "The universal recovery behaviour
of negative bias temperature instability," in International Electron Devices
Meeting (IEDM) Digest, pp. 341-344, 2003.

12. C. Shen, M. -F. U, X. P. Wang, Y. -C. Yeo, and D. -L. Kwong, "One fast
measurement technique of MOSFET Id-Vg characteristics," IEEE Electron
Dev. Lett., vol, 27, pp. 55-57, 2006.

13. C. Shen, M. -F. Li, C. E. Faa, T. Yang, O. M. Huang, A. Yap, G. S. Samudra,
and Y.-C. Yeo, "Characterization and physical origin of fast Vth transient in



Chapter-3 Real threshold voltage instahiliD' o(pllfOSFETs under practical orcratilll1ClI c()/J_l/iji!JJ1_"_1(J.l

NBTI of pMOSFETs with SiON dielectric," in International Electron Devices
Meeting (IEDM) Digest, pp. 333-336, 2006.

14. N. Kimizuka, K. Yamaguchi, K. Imai, T. lizuka, C. T. Liu, R. C. Keller and T.
Horiuchi, "NBTI enhancement by nitrogen incorporation into ultrathin gate
oxide for 0.1O-l..Imgate CMOS generation," in Symposia on VLSI Technology
and Circuits, pp. 92-93, 2000.

15. E. N. Kumar, V. O. Maheta, S. Purawat, A. E. Islam, C. Olsen, K. Ahmed, M.
A. Alam and S. Mahapatra, "Material dependence of NBTI physical
mechanism in silicon oxynitride (SION) p-MOSFETs: A comprehensive study
by ultra-fast On-The-Fly (UF-OTF) IOLINtechnique," in International Electron
Devices Meeting (IEDM) Digest, pp. 809-812, 2007.

16. H. Reisinger, U. Brunner, W. Heinrigs, W. Gustin and C. Schlunder, "A
comparison of fast methods for measuring NBTI degradation," IEEE Trans.
Device Mater. ReI., vol. 7, pp. 531-539, 2007.

17. J. F. Zhang, H. K. Sii, G. Groeseneken and R. Degraeve, "Hole trapping and
trap generation in the gate silicon dioxide," IEEE Trans. Electron Dev., vol.
48, pp. 1127-1135,2001.

18. Operation and modelling of the MOS transistor, Y. Tsividis, WCB
IMcGraw-Hill, 1999.

19. D. K. Schroder and J. A. Babcock, "Negative bias temperature instability:
Road to cross in deep submicron silicon semiconductor manufacturing," J.
Appl. Phys., vo1.94, pp.1-17, 2003.

20. V.Huard, M.Denais and C.Parthasarathy, "NBTI degradation: From physical
mechanisms to modeling," Mircoelectronics Reliability, vol. 46, pp. 2101,
2006.

21. Fundamentals of Modem VLSI devices, T. Yuan and T. H. Ning, Cambridge
University Press, 1998.

22. MOSFET modeling for VLSI simulation: Theory and Practice, N. Arora,
World Scientific Press, 2006.

23. J. F. Zhang, C. Z. Zhao, A. H. Chen, G. Groeseneken and R. Degraeve,
"Hole traps in silicon dioxides --- Part I: Properties," IEEE Trans. Electron Dev.,
vol. 51, pp. 1267-1273,2004.

24. C. Z. Zhao, J. F. Zhang, G. Groeseneken and R. Degraeve, "Hole traps in
silicon dioxides --- Part II: Generation mechanism," IEEE Trans. Electron Dev.
vol. 51, pp. 1274-1280,2004.

25. C. Z. Zhao, J. F. Zhang, M. H. Chang, A. R. Peaker, S. Hall, G. Groeseneken,
L. Pantisano, S. De Gendt, and M. Heyns, "Stress-induced positive charge in
Hf-based gate dielectrics: impact on device performance and a framework
for the defect," IEEE Trans. Electron Dev. vol. 55, pp. 1647-1656,2008.

26. W. D. Zhang, J. F. Zhang, M. J. Uren, G. Groeseneken, R. Oegraeve, M.
Lalor, and D. Burton, "On the interface states generated under different
stress conditions," Appl. Phys. Lett., vol. 79, pp. 3092-3094, 2001.

27. A. Dixit, A. Kottantharayil, N. Collaert, M. Goodwin, M. Jurczak and K. O.
Meyer, "Analysis of the parasitic SID resistance in multiple-gate FETs," IEEE
Trans. Electron Dev., vol. 52, pp. 1132-1140,2005.



Chaptcr-3 Realthrcshold voltage instability o(pMOSFETs under practical o[1cratiol1al c()l1djtJ!l!l,\' 105

28. BSIM3v3 manual, Y. H. Cheng, M. Chan, K. Hui, M. C. Jeng, Z. H. Liu, J. H.
Huang, K. Chen, J. Chen, R. Tu, K. K. Ping and C. Hu, University of
California, Berkeley.

29. N. K. Jha, P.S. Reddy, D. K. Sharma, and V. R. Rao, "NBTI degradation and
its impact for analog circuit reliability," IEEE Trans. Electron Dev., vol. 52, pp.
1132-1140,2005.



Chaptcr-4 NBT! Li(ctime prediction and kinetics at operation hias hr pulse !d- Vg tcc/mic/lle 1J1G

NBTI Lifetime prediction and kinetics at operation

bias by pulse Id-Vg technique

4.1 Introduction

Negative bias temperature instability (NBTI) is nowadays the most critical device

degradation mechanism and becomes a limiting factor in the scaling of modern

CMOS technologies [1-12]. This leads to a strong demand for accurate lifetime

prediction. The NBTI lifetime is typically defined as the time for the threshold

voltage shift, l1Vt, to reach a preset level [6-11]. Under an operational gate bias,

Vgop,the required lifetime is 10 years and the degradation under VgOpcan be too

low to be measured reliably within a practical stress time. To predict the lifetime

under a Vgop,multiple accelerated tests are carried out with stress biases, Vgst,

higher than Vgop. The accelerated lifetime is typically fitted with IVgstra [6,7] or

exp(-IVgstD [8,9] and then extrapolated to Vgop,so that the lifetime under Vgopcan

be estimated. Recent work [2-5], however, has raised several questions on the

validation of the above prediction technique, as described below.
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First of all, the above prediction technique was developed based on quasi-DC

measurements with a measurement time for a transfer characteristics, Id-Vg,up

to seconds [7-9, 12]. Recent work [2-5] has shown that substantial recovery

occurs during the measurement and to suppress the recovery, measurement

time must be reduced to the order of tens of microseconds by using the ultra-fast

pulse (UFP) technique [2,4,5,10]. In a real circuit, different transistors will

experience different levels of recovery and the worst-case scenario will be no

recovery. It is not known whether the Vg acceleration technique described above

is still applicable in this case.

Secondly, the threshold voltage is typically evaluated by extrapolating the

transfer characteristic, Id-Vg,and the sensing Vg used here is close to VI. In a

practical circuit, the operation bias is higher than VI and an implicit assumption of

earlier work is that !1Vt is insensitive to the sensing Vg. In chapter 3, however, it

was shown that !1Vt increases with sensing Vg and its value at Vgopcan double

the level extracted by extrapolating Id-Vg.There is no information on how the

lifetime can be predicted by including this dependence on sensing Vg.

In this chapter, lifetime prediction will be based on results measured by the pulse

Id-Vgtechnique, and the degradation will be evaluated at the operational bias

level. Therefore recovery will be suppressed during the measurement and the

worst-case lifetime will be estimated. For the first time, current acceleration

methods, which are normally used for predicting NBTI lifetime, will be evaluated
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based on all measured data, Substantial errors from these acceleration methods

will be demonstrated and causes will be explored, To predict the worst-case

lifetime, a model for NBTI kinetics under operational gate bias is developed

which includes contributions from both as-grown and generated defects, Based

on the new kinetics, a single test prediction method is proposed, An effort will be

made to estimate the safety margin of this new lifetime prediction method.

4.2 Samples

The MOSFETs used in this study were manufactured at Interuniversity

Microelectronics Research Centre (IMEC), Belgium. In order to test the

applicability of the proposed NBTI kinetics and lifetime prediction method,

samples from six different processes were used, as shown in table 4.1. The

samples with silicon oxynitride (SiON) as the gate oxide have p+ poly-Si gate

and four of them were plasma nitrided for different time and one was thermally

nitrided. One HfSiON/SiON stack was also prepared by ALCVD with 80% Hf and

a TiN gate.

Table 4.1 Samples used in the experiments

EOT
Wafter No. Gate material Gate dielectrics (nm)

A p" poly-Si
r--------

12 s plasma SiON 1.85
p' poly-Si

-_----
B Plasma SiON 1.4

p" poly-Si
-----

C Thermal nitried SiON 2.7
p" poly-Si

-----0 45 s plasma nitrided SiON 2.0
p' poly-Si

----E 20 s plasma nitrided SiON 2.0
F TiN 2 nm ALCVD HfSiON + 1 nm SiON

----_
1.53
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4.3 Measurement problems and solutions

The typical lifetime prediction is based on so-called measure-stress-measure

(MSM) procedures. The pMOSFETs are stressed under constant Vgstat 125 °C

for a pre-specified time and the degradation then monitored by interrupting the

stress and measuring Id-Vg by using a standard semiconductor parametric

analyzer [2,12,13). The degradation is normally evaluated by using the

extrapolation method. Therefore, the predicted lifetime can be over-estimated by

the recovery during the measurement and the 11Vt used for prediction not

evaluated at the real operational bias as discussed in chapter 3.

In order to study NBTI lifetime prediction with recovery suppressed, the UFP

Id-Vgtechnique will be used. In chapter 2, it was shown that the recovery during

measurement can be effectively suppressed to within the measurement

resolution when the pulse edge time was reduced to the order of tens of

microseconds. In this chapter, 5 IJs is used.

In order to predict lifetime at operational conditions, the sensing Vg should be at

operational level. The sensing Vg at operational level will be referred to as Vgop,

hereafter and I1Vt(DC-ex)will be replaced by I1Vt(UFP-Vg).

In this chapter, devices are stressed at IVgopl=1.2V, which is lower than the

typical stress bias used in earlier NBTI tests [2-5,10]. For low level degradation,
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noise must be minimized. The typical commercial parameter analyzers minimize

noise by repeating the Id measurement for a given bias many times to produce

an average value as illustrated in figure 4.1 (a) [14]. For a stress time less than

1s, the pulse measurement was repeated 30 times and an average value was

used, as shown in figure 4.1 (b). For stress longer than 1s, a quasi-DC

parameter analyzer that automatically uses average values was used.

In order to avoid device to device variation, the repeated measurement must be

performed on the same sample. Within 1 s of stress time, the device was

stressed for a pre-set time, and then measured within 51Js.After that, it was left

with 0 V applied on the gate for 2 minutes to recover to its fresh state. In order to

justify that recovery is completed, figure 4.1 (a) gives the Id measured repeatedly

for 30 times on a device stressed for 1 s and recovery for 2 minutes. The

recovery is complete and degradation was not observed. A measurement

resolution of ±0.23% was achieved. As to be shown later in this chapter, the

measurement accuracy achieved in this way is good enough to establish a

kinetic model that allows lifetime to be predicted with a safety margin of 50%.

Figure 4.1 (b) also shows that 11'1Vd becomes higher than 10 mV in less than 1

ms under Vgop= -1.2 V. This rapid increase of I1'1VtIdoes not mean that the

quality of the samples used here is poor. This difference is caused partially by

suppressing recovery with the pulse measurement and partially by using

IVgopl=1.2V as the sensing bias, rather than the conventional extrapolation to
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IVd-O.4 V, as shown in chapter 3. Therefore, the degradation can be easily

underestimated if recovery is not suppressed or improper sensing Vg is used and

this can have a very significant impact on lifetime prediction.

4.4 Theories for the NBTI dynamics

In this section, two theories for the NBTI degradation, namely, the

reaction-diffusion model (R-D model) and the charge-trapping model are

outlined.

4.4.1 Reaction-Diffusion model

Since reaction-diffusion model was first proposed in 1977 [15], it has been the

most successful and most widely accepted model for NBTI. However, it remains

controversial as to the exact form of diffusing hydrogen species, the interfacial

chemical reaction and the appropriate boundary conditions [13].
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Fig 4.1 Measurement resolution and minimization of noises. In (a), Id
at Vg=-1.2 V was measured 30 times on a device stressed for 1 sand
recovery for 2minutes from the pulsed Id-Vgwith an edge time of 5 us.
In (b), the pulse measurement (symbol'o') was repeated 30 times for
stress time less than 1 s and the average value (symbol'o') was used
to minimize the noise. For stress longer than 1 s, we used a quasi-DC
parameter analyzer that automatically used the average value
(symbol 'x'),

According to the reaction-diffusion theory, interface trap generation is a result of
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the electrochemical reaction at the SilSi02 interface. The exact reaction is

unclear, but it is widely accepted that:

• A Si-H bond is broken, hydrogen species are released, and leaving behind a

silicon dangling bond (interface trap);

• Holes at the interface catalyze or participate in the reaction;

• The forward reaction is accelerated by stress voltage and temperature.

A hypothetical equation of this interface reaction under electrical stress is given

in (1), where the interaction of a hole, h", with the Si-H bond results in a

donor-like interface trap and a free H that can diffuse away from the interface or

passivate a Si dangling bond. The trap density (Nit) increases with the net

reaction given in (2).

passivatton
(4.1 )

dNII _ k (N N) k (0)-- =r-r 0 - " - R' Nil' N"dt
(4.2)

At the beginning of the stress, both Nit and NH(O)are negligible (No»Nlt), and so

is the second term in the right side of (2). Therefore, the increase in Nit is

generation-limited, as shown in region (i) (Nit - t1) of figure 4.2. The reaction later

reaches a dynamic equilibrium state in region (ii) (Nit - to) when the annealing

term of (2) becomes comparable to the generation term. After sufficient build-up

of hydrogen near the semiconductor/oxide interface, the diffusion of H into the

oxide begins to dominate, so the net reaction rate becomes limited by the

hydrogen diffusion in region (iii) (Nit - tn), and gives the characteristic time
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evolution of the NBTI degradation. Eventually, in region (iv), all the Si-H bonds

are broken (Nit = No),so that the trap density saturates [16].

(kr)

Loglo(time)

Fig 4.2 Schematic time evolution of the classic R-O model. Regions: (i)
generation-limited, (ii) dynamic equilibrium, (iii) diffusion-limited, and
(iv) saturation. Region (iii) gives the power-law behaviour for NBTI.

The reaction-limited process and the following dynamic equilibrium is considered

to be very fast and has never been monitored by measurement. Therefore, the

measured results are normally explained by using the third stage which is

diffusion-limited. An asymptotic solution was derived by Jeppson to show that Nil

grows with time as Nit - to.25 in this diffusion-limited situation [15]. Alam, by

assuming a triangular hydrogen concentration profile, arrived at the same result

[17]. As shown in figure 4.3, the hydrogen concentration away from the interface

(x = 0) is approximated with a simple linear function, with characteristic diffusion

length -{i5t. The hydrogen concentration at the interface is N/~()). Since each

broken Si-H bond releases one atomic hydrogen, the number of interface trap
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equals the number of hydrogen atoms in diffusion.

ao

Nu(t)= JNH(x,t)dx
o
rfi5i x=.b NH(O,t)(l- ~)

" Dt
(4.3)

Since the reaction rate is much faster than the diffusion rate, the system is

assumed to be close to equilibrium even in the presence of slow diffusion.

Therefore, the dNit/dt:::::: ° and equation (4.2) roughly equals

(k~No) ~ N H(O)· Nil
R

(4.4)

Combining equations (4.3) and (4.4), gives

N = ~ k,. N (Dt)O.25
II 2k 0

R

(4.5)

A power-law dependence with an exponent of 0.25 is identified.

I ~ _+X

o

Fig 4.3 Approximate concentration of HO in the diffusion process.

Apart from HO, other diffusion species are proposed. Chakravarthi et al
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enumerated a possible signature of neutral H2diffusion with n = 1/6 [18]. Ogawa

and Shiono demonstrated that H+ diffuses with n = 1/2 [19]. The mathematical

derivation is similar to that presented above and is not repeated here.

4.4.2 Charge Trapping/De-trapping model

As the gate dielectric is scaled down into the direct tunneling regime. a

significant content of nitrogen is always added to the Si02 dielectric. Since the

silicon-nitrogen bond is weaker than the silicon-oxygen bond. it is well known

that nitrogen incorporation leads to higher NBTI. Carriers can be trapped in the

insulator as they transport through it [20-23]. Trapped charge in the gate

dielectric of a MOSFET will shift the threshold voltage VI. Positive charge

trapping (hole trapping) would increase the IVI [of a pMOSFET.

Ushio et al first proposed that hole-trapping near the Si/SiON interface caused

enhanced NBTI in SiON gate dielectric [24]. After recovery is suppressed in

recent work. more groups began to believe in hole trapping. For example. Huard

and Denais used their OTF technique to demonstrate that NBTI degradation can

be entirely explained by hole trapping [3].

Tan et al tried to reconcile the hole trapping with the prevailing R-D model and

suggested that hydrogen released from broken Si-H bonds can be trapped at

nitrogen sites near the interface to create fixed charge [25-30]. The role of hole
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trapping in NBTI has been one of the most active research topics recently.

4.5 Traditional acceleration method for lifetime prediction

Accelerated stress testing is widely accepted in the semiconductor industry. It

allows the projection of long lifetime (10 years or more) in a relative short test

time. After the accelerated stress, NBTllifetime estimated at stress condition has

to be extrapolated to nominal gate voltage [31]. The extrapolation procedure is

based on fitting experimental data points reV g) with an analytical model, and

then using it to estimate the lifetime for operational bias. Unfortunately, there is

no analytical model or theory for the dependence of NBTllifetime on stress gate

voltage or electric field in the gate oxide [1.32] . As a result. the empirical or

phenomenological models are used.

Two of the most frequently used models for extrapolation along the voltage axis

are the exponential [8,9] and power laws [6,7]. The lifetime predicted by them

can be considerably different. In the following. these two models will be outlined

first and their applicability is then addressed.

4.5.1 Exponential law

Extrapolation by using an exponential law was derived from the study of hot

carrier injection experiments as early as 1983 [33]. The model depends on two
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observations from experimental results. One is the relationship between

degradation and the stress time,

~V,=A·t" (4.6)

Another is the relationship between the magnitude of degradation and Vd, the

voltage applied on the drain,

A ex exp(-a /Vd) (4.7)

Using (6) and (7), the lifetime T, of MOS devices under a certain criterion can be

expressed as,

L\v,(r) = A· t"

t = [~ ~v,(r)rl/" ex A-I!"

(4.8)

(4,9)

Since a and n is constant for different Vd, lifetime T and 1Nd show an

exponential relationship.

When the stress mode changes from Hel to NBTI, the same exponential

relationship is used. This relationship is used because it can fit the measured

data [8, 9, 34-37].

4.5.2 Power law

For the thinner oxides, another empirical model was proposed [38], namely.

tlV =B·IV 1
m I"I /:sl (4.10)

The lifetime T of MOS devices under a certain criterion can be expressed as
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1 ~V (r )
log(r)= n ·[log( ~ )-m·}og(IVg1,1)]

It indicates a power law relationship between the lifetime and Vgst [39]. This

(4.11 )

power law relationship became popular after 2004 [6,7,38,40].

4.5.3Applicability of the acceleration technique

The applicability of the two acceleration techniques will be examined first for the

data measured from quasi-DC Id-Vgby extrapolation, ~Vt(DC-ex) and then for

the data extracted from ultra-fast pulse Id-Vgat Vgop, ~Vt(UFP-Vgop).Figure 4.4

a-c show the common procedure for prediction of lifetime based on ~Vt(DC-ex):

multiple Vg accelerated tests were carried out and the lifetime, T, at Vgopwas

estimated by an extrapolation against Vgst. Vg acceleration is used to allow

reliable NBTI kinetics to be measured within a practical length of stress time. The

safety margin of the prediction, however, is generally not known. To assess the

prediction of a safety margin, it is essential to be able to directly measure ~VI at

Vgst=Vgop·This allows comparison of the measured stress time for !'I.VI to reach a

given level under Vgst=Vgopwith that predicted by using Vg acceleration, so that

the safety margin of prediction can be estimated.
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Fig 4.4 Lifetime prediction by Vg acceleration technique for the
conventional 11Vt(DC-ex) measured by extrapolating the quasi-DC
Id-Vg.(a) shows that L\Vt(DC-ex) follows the power law. The horizontal
dashed line represents 111Vd= 19 mV that is used to define the lifetime.
(b) shows that the prediction (solid line) by using exponential
extrapolation does not agree with the measurement. (c) shows that
the prediction (solid line) by power law extrapolation agrees better
with the measurement (symbol '.') when compared with the
prediction by exponential law extrapolation.

In figure 4.4 (a), the last measured 1I1Vt1 reaches 19 mV under Vgst=Vgopand

using I~Vd=19 mV to define lifetime, the stress time for this last point will be the

lifetime under Vgop=-1.2 V. This measured lifetime is compared with the

prediction based on Vg acceleration in figures 4.4 (b) and (c). Power law IVgstl~

[6,7] and exponential law exp(-IVgstl) [8,9] are both used. A comparison of figures
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4.4 (b) and (c) shows that lifetime projected by the power law agrees better with

the measured value. This supports the earlier work [6,7], which reported that the

power law is better than the exponential law for predicting lifetime of thin oxides.

In order to assess the uncertainties from recovery and different sensing voltage,

measurement by pulse Id-Vg technique replaced the conventional quasi-DC

technique to suppress recovery. Threshold voltage shifts at operational level was

obtained by using UPF-Vg technique, as discussed in chapter 2.

As Vgopdoes not reduce proportionally with the SiON layer thickness, the oxide

field during device operation increases to such a level that figure 4.5 (a) shows

that the I1Vtat Vgop=-1.2V can now be reliably measured.

In figure 4.5 (a), 111Vd = 60 mV is used to define lifetime since it is the last value

reached under Vgst= Vgop= -1.2V. The same Vg acceleration methods are used

and the measured lifetime is compared with the predicted one. Figure 4.5 (b)

and (c) show that there is a substantial difference between the predicted and

measured lifetime and neither of the Vg acceleration methods can be used to

predict lifetime in this case, therefore.
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To analyze the reason for the inapplicability of the Vg acceleration technique, the

IVgst!-Qacceleration rule is used as an example. At a device lifetime of t = T, I\Vt

reaches the specified LlVt(r) and the equations (4.10) and (4.11) require the

logl~VtI-log(t) to be shifted in parallel for different Vgstand the power factor

against time, 'n', being insensitive to Vgst,so that log (T) is a straight line against

10g(IVgstl).For the conventional ~Vt measured by extrapolating the quasi-DC
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Id-Vgwhich is shown in figure 4.4 (a), these requirements can be met, as can be

seen from figure 4.6. Once the recovery is suppressed and Vgop=-1.2V is used

as the sensing Vg, however, tlVt in figure 4.5 (a) no longer follows a simple

power law and logIAVd-log(t) at different Vgstis generally not a parallel shift. A

clear example for the non-parallel shift is given in figure 4.7. The Vgsteffect can

no longer be separated into a 'pre-factor' like that in equation (4.10) and this

explains the inapplicability of Vg acceleration technique to the case where

recovery is suppressed.

0.35 0
1.4nm SiON, 125 C

0.30
n = 0.1926

e 0.25
1....

0 0.20.... 0 0 0 0 0 00
ca 0.15.........
Cl>
~ 0.10
a. 0.05

0.00
1.2 1.4 1.6 1.8 2.0 2.2

IVgstl (V)

Fig 4.6 The power factor n from DC-ex measurement. It is insensitive
to the stress bias. The solid line represents the average power factor
of n=O.1926.
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Fig 4.7 The kinetics at different Vgst is not shifted in parallel for the
UFP 6.Vt sensed at IVgl=1.2 V. The dashed curve was obtained by
shifting the symbol 'x' downward in parallel.

4.6 New model for NBTI kinetics at operational gate bias

Since 6.Vt does not follow a simple power law against stress time when recovery

is suppressed, efforts should be made to develop a model that can describe this

dynamic behaviour. For the 6.Vt under Vgst=Vgop=-1.2 V, figure 4.8 shows that an

outstanding feature of the kinetics is the presence of a 'shoulder'. This indicates

that there is an initial period when as-grown defects dominate and the saturation

of their charging results in the 'shoulder'. At longer stress time, generation of

new defects becomes increasingly important and is responsible for the rise

above the 'shoulder'.
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Fig 4.8 The kinetic feature of the UFP /}.Vt sensed at IVgl=1.2 V: a
"shoulder". By combining the 1st order model for as-grown hole traps
with the power law for defect generation, /}.Vt can be fitted over 10
orders of magnitude in time, as shown by the solid line. The dashed
lines show that /}.Vt is dominated by as-grown hole traps initially, but
the generated defects become important at longer stress time.

To support the above suggestion, two tests were carried out. In the first test, the

effect of temperature on the shoulder height was checked. The saturation level

of as-grown defects should be insensitive to temperature [41,42] and if it

dominates the shoulder, the shoulder height should be insensitive to

temperature. This is confirmed by figure 4.9. Figure 4.9 also shows that the rise

above the shoulder is thermally activated, supporting the proposition that defect

generation is thermally accelerated.
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Fig 4.9 Effect of temperature on NBTI kinetics. The height of the
shoulder is insensitive to temperature, but the generation of defects
above the shoulder is thermally accelerated.

In the second test, the charging and discharging rate of the defect responsible

for the shoulder is compared. Earlier work [42-451 identified three different types

of positive charges in the dielectric: anti-neutralization positive charges (ANPe),

cyclic positive charges (Cf'C), and as-grown hole trapping (AHT), as illustrated

by figure 4.10. ANPe has an energy level above the bottom edge of silicon

conduction band, Ec, making its discharging more difficult than charging. Cf'C

has an energy level close to Ec and its charging rate is similar to the discharging

rate. In contrast, AHT is below the top edge of silicon valence band and there are

far more valence electrons for discharging than hot holes required for charging.

As a result, AHT has the signature that discharging is much faster than charging.

Figure 4.11 shows that, when the stress time corresponds to the shoulder, the

charging and discharging properties of the defect agree with the signature of
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AHT, supporting that AHT dominates the shoulder.

CPC

SiON AHT SiON

Vg < 0 : Charging Vg> 0 : Discharging

Fig. 10 Energy band diagram of different types of positive
charges. The anti-neutralization positive charges (ANPC) have
energy level above the bottom edge of silicon conduction band,
Ec, making them difficult to neutralize. The cyclic positive
charges (CPC) have energy level near to Ec, resulting in similar
charging and discharging rate. The as-grown hole traps have
energy level below the top edge of silicon valence band, Ev.
Their charging requires hot holes, leading to charging slower
than discharging.
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Fig 4.11 A comparison of the charging and discharging rate for the
as-grown defects. The stress time is 2.6 s that corresponds to the
region where as-grown defects dominate. The discharging under
Vg>O is much faster than charging under Vg<O: a unique signature of
as-grown hole traps (AHT). The solid lines are guides-for-the-eye. It
should be noted that the rapid discharging within 5 us observed here
was achieved by applying a positive gate bias. For normal NBTI test,
however, positive gate bias was not applied and the AHT discharging
at Vg=-1.2 V within 5 us was negligible.

It is now discussed how hot holes can be generated under a modest bias of

Vgop=-1.2 V. Hot holes can arise from three sources. Firstly, the surface

quantization effect gives energy subbands [46,47). Although the carrier density

reduces as the energy increases, there are holes in the higher sub bands.

Secondly, the process "a" in figure 4.12 shows that an electron tunneling from

the gate can recombine with a hole in the substrate and the released energy can

create hot holes [48]. Third, it has been proposed that photons can be emitted by

electron-hole recombination in the gate [49], as illustrated by the process "b" in

figure 4.12. Holes can become hot by absorbing the photons.
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p" gate SiON n-Si

Fig 4.12 A schematic diagram showing the physical processes for
generating hot holes under V9=-1.2 V. The process "a" shows that the
energy released by the electron-hole recombination in the substrate
can create hot holes. The process "b" shows that the photons emitted
from the gate can be absorbed to generate hot holes.

On the kinetics, the charging of AHT generally follows the first order reaction

model [50,51], while the generation of new defects follows a power law [5,6,27].

By combining these two, write:

~v, =At" +c(l-e-li'o) (4.12)

For a given stress temperature and bias, 'A', 'n', 'c', and t* are constants and

were obtained by fitting test data with a least square technique. There is only

one 'n' for the whole stress period and this 'n' is not the slope of the data in figure

4.8, namely n#d(logI6VtI)/d[log(t)]. Figure 4.8 shows that equation (4.12) can

model the 'shoulder' and this simple physics-based model can fit the 1\VI over

ten orders of stress time. The two dashed lines represent the contribution from

AHT and generated defects, respectively. AHT clearly dominates initially, but
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generated defects become more important for longer stress time. On the nature

of generated defects, earlier work [12,13,42-45,50,51] shows that both interface

states and new hole traps are created by stressing. The new hole traps are

further separated into anti-neutralization positive charges and cyclic positive

charges, each with a unique signature.

4.7 Lifetime prediction based on a single test

The Vg acceleration technique was developed for predicting the lifetime caused

by either hot carrier [52] or the time dependent dielectric breakdown (TDDB) [53].,

For TDDB, intrinsic dielectric breakdown generally does not occur within an

affordable test time under the operation bias and multiple Vg accelerated tests

are essential. For NBTI with a sensing IVgl=1.2V based on UFP measurement, it

has been shown that the prediction based on Vg acceleration is inapplicable and

an obvious question is how to assess lifetime in this case. One possibility is to

use thermal acceleration. Figure 4.9, however, shows that 10glAVtl at different

temperatures is not shifted in parallel, so that it does not offer a reliable

prediction method. Since /).Vtcan be measured at Vgop(figure 4.8), in principle,

lifetime can be estimated by extrapolating the /).Vt against stress time based on a

single test at Vgop.This requires a reliable kinetic model that can not only fit the

existing test data, but also predict the future trend.
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4.7.1 Verification of prediction method

The affordable test time is typically in the order of days and the data can be used

to predict lifetime in years, so that a kinetic model should have the ability to

predict at least two decades ahead, To test the prediction ability of a model, the

test data in the last two decades are not used for fitting the model and the /).VI at

the last test point is considered as LlVt(T), The time for the last point is treated

as the measured lifetime t-«, although Tm is not the actual device lifetime, A

departure of kinetics from a simple power law was noted in the past and

suggestions were made on how lifetime prediction method should be modified to

take this departure into account [5,54]. One proposed method is to only use data

with a stress time over 10 s to fit the power law against time [5], but there is no

information on the prediction accuracy, Figure 4.13 shows that this method can

overestimate T by a factor of 75000. Another proposed method is to fit

/).Vt(t)-/).Vt(1s) with a power law [54], but figure 4.14 shows that it underestimates

T by a factor of 10. By applying the model of equation (4.12) to the same set of

data, figure 4.15 shows that good agreement is achieved between the

measurement and the prediction with Tp/Tm = 1.03.
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Fig 4.13 Lifetime prediction based on the method proposed in ref. 5.
All symbols are test data but only symbol "x" was used for fitting with
a power law in the range of 26.8 s < t < 2680 s. The thick dashed line
is extrapolated from the fitted line for prediction. Trn is the time for the
last test point and Tp is the predicted time.
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Fig 4.14 Lifetime prediction based on the method proposed in [53]. All
symbols are test data but only symbol IIx" was used for fitting. L\Vt(t) _
8Vt(1 s) (the symbol"+") was fitted with a power law and ~Vt(1 s) was
then added back. The dashed line is extrapolated for prediction. Tm is
the time for the last test point and Tp is the predicted time.
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4.7.2 Applicability to samples from different processes

Although a good prediction is achieved in figure 4.15, it is inadequate to

demonstrate that a prediction method works for only one process. For a

prediction technique to be useful, it must be applicable to samples fabricated by

a wide range of processes. The applicability is now tested for four other SiON

layers with different nitrogen concentrations and nitrided either by plasma or

thermal methods. Moreover, an ALCVD HfSiON/SiON stack is also tested.

Figures 4.16 (a)-(e) shows that ~Vt follows equation (4.12) in all cases, although

the 'shoulder' in some samples is less apparent. Importantly, the prediction

achieved a safety margin of 50% or less in all processes tested, giving

confidence that the single test technique is generally applicable.

100 1.85 nm SiaN 125 C
V = -1.2V

gst

-
=e 10
-...
~ Extra-

Data for fitting polation

-

Fig 4.15 Lifetime prediction based on our model: the equation (4.12).
The test data is the same as those in Figs. 13 and 14 and only symbol
"x" was used for fitting.
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Fig 4.16 Applicability of the single test lifetime prediction technique for
different fabrication processes: (a) 1.4 nm plasma SiON, (b) 2.7 nm
thermal SiON, (c) 2.0 nm 45 s plasma SiON, (d) 2.0 nm 20 s plasma
SiON, and (e) 2.0 nm/1.0 nm HfSiON/SiON stack prepared by ALCVD
with TiN gate. The safety margin for the prediction is within 50% in all
cases.

4.7.3 An analysis of extracted power factors

Table 2 shows that the fitted power factors for different processes have a range

of 0.07-0.36, which agrees with the range reported by earlier work [55-58].

Earlier work reported that the variation of power factor could come from two

sources: different hydrogenous species and different nitrogen densities and

distributions.
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Table 4.2 The wafers and the fitted parameters at 125 QC.

Device Gate A c (mV) t* (us)n
number Dielectrics (mV/s)

1.85nm 12s
Plasma 0.23 0.36 11.91 30

A SiON
1.4nm
Plasma 7.70 0.13 18.39 4390

B SiON
2.7nm

Thermal 26.27 0.07 22.07 80
C SiON

2.0nm 45s
Plasma 4.10 0.12 7.49 740

D SiON
2.0nm 20s
Plasma 3.91 0.12 1.89 110

E SiON
TiN,ALCVD
2.0 nm /1 0.14 40.86 30

nm 12.21
F HfSiON I

SiON

On the hydrogenous species, the work of Ogawa et al [19] showed that the

power factor for atomic hydrogen should be 0.25. More recently, however, it has

been observed that the power factor can be either considerably higher or lower

than 0.25. On one hand, it was reported that the power factor could rise to 0.5, if

the hydrogenous species is H+, where the transport was field-assisted. On the

other hand, it was reported that the power factor should be 0.16, if the

hydrogenous species is H2 [59].

On the nitridation effect, it was reported that an increase of nitrogen reduces the



Chapter-4 NET! Lifetime prediction and kinetics at operation Nas hv pulse !d-' 'g tL'chnilllic 138

power factor through increased dispersion for the transportation of hydrogenous

species [60], Moreover, for the same area density of nitrogen, the power factor of

a thermally nitrided SiON is typically lower than that of a plasma nitrided SiON.

This was attributed to the pile-up of nitrogen towards the SiON/substrate

interface in a thermally nitrided sample [55].

The power factor reported in this work generally agrees with the trend observed

by the earlier work, The sample A with the highest power factor of 0.36 has the

lowest nitrogen density and figure 4.17 shows that the pure Si02 has high power

factors [56-58]. The sample C was thermally nitrided and has the lowest power

factor of 0.07 [59-62], again agreeing with the trend in figure 4.17.

Lower N at. %

0.4.-----t--------------.
v

: 0.3 toE ~>siO,--i
o I 101 x This work
'0 0.2 I~ 'l' [g la • 0 Ref.51
~ ~ [g[§ l!J • 0 Ref.55

~ 0.1 ~~ ~ 4 ~ ::m
fl. ~ 0 ~ X4-~ * Ref.52

LThermally nitrided SiGN
0.01~---:2-~3--4.L..----l5---L.6---J

EOT (nm) HigherN at. %

x
Plasma
Nitrided

Thermal
Nitrided

Fig 4.17 A comparison of the power factor obtained in this work with
that reported by earlier work.
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As a result, this work confirms the trend, but throws little new light on the power

factor. What is new for this work is that it proposes a method for predicting the

worst case device lifetime without using the conventional Vg acceleration and it

shows the applicability of this method for processes over a wide range of power

factors.

4.8 Summary

This chapter investigates the NBTllifetime prediction in the worst case scenario

where the recovery is suppressed and t1Vt is sensed at the operational gate bias.

In this case, the conventional Vg acceleration prediction is inapplicable, because

the NBTI kinetics no longer follow a simple power law and an increase of stress

bias does not lead to a parallel shift of 10glt1Vt!.

To predict the lifetime at the operational gate bias based on the UFP

measurement, NBTI kinetics and defects are examined. An outstanding feature

of the kinetics is the presence of a 'shoulder', which is insensitive to temperature

and must be dominated by the charging of as-grown defects. The charging and

discharging properties of the defect agree well with the signature of as-grown

hole traps. By combining the first order model for the as-grown hole traps and

the power law for generating new defects, !1Vt can be modelled over ten orders

of stress time. This kinetic model is then used to predict the NBTllifetime, based

on a single test at the operation temperature and bias, For the six different
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processes tested, the safety margin of the single test prediction technique is

within 50%, which is substantially better than the methods proposed in earlier

work,
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Effects of remote charge scattering on

mobility degradation

5.1 Introduction

One driving force for downscaling metal-oxide-semiconductor field effect

transistors (MOSFETs) is to improve circuit operation speed. When the gate

Si02 thickness, Tox, is over 5 nm, carrier mobility is insensitive to Tox [1]. Once it

is below 2-3 nm, however, mobility reduces for thinner Tox [2-7]. The reported

reduction near threshold voltage varies substantially, from a factor over 2 [2] to

an insignificant level [4]. As gate voltage increases from threshold, the relative

mobility reduction can either decrease [2,3] or increase [4,5]. Agreement has not

yet been reached on the origin for such phenomena and the proposed

mechanisms include remote charge scattering (ReS) from impurities in the

depleted poly-Si gate [2,3,6], increased surface roughness [4,5], and long-range

Coulomb interaction between carriers in the gate and in the inversion layer [7].

Even among the various ReS theories, depending on the assumptions used in

the model, the calculated ReS mobility can vary over two orders of magnitude
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[2,6]. For the high-klSi02 stack, it has been reported that a reduction in the

thickness of interfacial Si02 below 2.5 nm can progressively reduce carrier

mobility [3], indicating the presence of remote scattering. Soft optical phonons

[8,9], remote surface scattering [10], and ReS from charges either in the bulk of

high-k layer or at the high-klSi02 interface [3,6] can all contribute to a lower

mobility.

One weakness of earlier work is that different samples were used when

experimentally studying the ReS, which leads to uncertainties. For example, a

reduction in Tox can not only bring the gate closer to the substrate, but could also

modulate other factors such as surface roughness [4,5]. In this work, these

uncertainties will be removed to allow a study of the impact of ReS on mobility

by varying charges in the same device through either processing or electron

trapping.

5.2 Samples selection

The typical doping level for poly-Si gates is 1019_1020 cm? and it is proposed

that the ionized impurity reduces effective mobility when Tax ~ 2nm [3,6). As a

result, the criteria for selecting test samples are as follows: the dielectric

charging can vary in the order of 1020 cm -3 and must be within 2 nm from the

substrate. Four different samples were selected and the details are given in table

5.1. All samples have a substrate doping of 5 x 1017 cm-3. The channel length
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is 0.25-0.8 urn and the channel width is 10 urn. The samples with an IMEC

Clean process were activated by a 1000 Cc spike anneal.

Table 5.1 The samples

Sample A B C 0

Device nMOSFET pMOSFET nMOSFET nMOSFET

THfo2 2nm 2nm 2nm 1.5nm HfSiON

Hf02: Material Hf02 Hf02 Hf02 ALD
Process ALD ALD PVD

TSio2 0.56 nm 0.73 nm 1 nm 0.77nm

Si02: Material Si02 SiON Si02 Si02

IMEC
Process SPER 650 -c IMEC Clean Clean IMEC Clean

EaT 0.96 nm 1.13nm 1.62nm 1.16nm

Gate material TaNffiN TaNffiN TaNffiN Poly-Si

5.3 Conventional mobility characterization technique

In this chapter, the principle of the conventional mobility measurement will be

introduced, and then the problems of this technique for the devices with high-k

stacks will be raised.

5.3.1 Principle of conventional mobility measurement

In order to study the impact of RCS on mobility, accurate measurements of

high-k mobility must be performed. For a MOSFET working in the linear region,

the drain current Idcan be written as [11]

Jf'
I =-./1 ·0 (V)·V
d L r: er!" - 1nl' R .J (5.1)



I-Ieff is the effective mobility of the carriers in the inversion layer and QInV is the

inversion charge density, which is a function of the gate bias. Rearranging

equation (5.1), I-Ieff can be determined from

(5.2)

where the drain conductance gd is defined as

(5.3)

The most important parameters in equation (5.2) are QInV and Id.To find inversion

charge density Qinv, two approaches are commonly used. QInV can be

approximated by

(5.4)

where Cox is the oxide capacitance per unit area and VI is the threshold voltage

of the device. Since the threshold is not uniquely defined and different definitions

can lead to different Vt [12], equation (5.4) can give inaccurate estimation of the

inversion charge, especially near VI.

A better approximation is to use the method called split CV [13]

1'.,

Q/n,,(Vg) = JC~Cd Vg (5.5)

where Cgc is the gate to channel capacitance. Cgc is measured by connecting the

capacitance meter between the gate and the source-drain while grounding the

substrate as illustrated by figure 5.1 (a). At gate voltages below threshold, the



capacitance is equal to the total overlap capacitance of the gate to the source

and drain, 2Cov. As the channel starts to invert and inversion charge appears,

the capacitance increases.

Substrate

(a)

p S_/D_----,
G

Source Drain

Substrate

B

(b)

Fig 5.1 Configuration for split C-V technique. Conventionally, split C-V
technique is performed by using LCR meters. (a) In order to measure
gate-to-channel capacitance, CgC, the terminal marked HI is
connected to the gate and LO to the source and drain, the substrate
of the device is connected to GND. (b) In order to measure
gate-to-substrate capacitance, Cgb, the terminal HI is connected to the
gate and LO to the substrate.

As the voltage is increased further, the capacitance saturates to some inversion
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value which is a combination of the overlap capacitance and the channel

capacitance, 2Cov + echo Subtracting 2Co.., and integrating this curve gives am..,as

a function of Vg. The gate to substrate capacitance, Cgb, can be measured in a

similar way. The connection is shown in figure 5.1 (b). The bulk charge density,

ab, can be formed by integration in a similar way to equation (5.5),

Qb(Vg)= r<»,
fb

(5.6)

By using this split C-V technique, Ojn.., and ab can be measured separately. am..,

is used to calculate mobility and both Ojn.., and ab are used to calculated effective

surface field.

The drain conductance, gd, can be determined from eqn. (3) using a single low

drain bias, typically 50-100 mV [14], and measuring the DC drain current.

Carrier mobility given in Eqn. (2) is usually plotted versus the effective surface

field in the Si substrate which is given by

(5.7)

The factor rJ is given as 1/2 for electron mobility and 1/3 for hole mobility [15].

The depletion charge can either be determined experimentally, or be estimated

by [11]

(5.8)

Where
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(5.9)

5.3.2 Challenge for conventional measurements on high-k devices

Generally, the electron trapping in thin dielectric stack is highly unstable [16, 17).

The slow gate voltage ramp used in split C-V measurement can result in

significant charge trapping during the measurement, giving rise to a stretch-out

of the C-V curve, thus results in an over-estimation of Oinv [18]. Additionally, a

threshold voltage shift caused by the change of oxide trapping density during the

Id-Vg sweep can result in an underestimation of Id current. These factors lead to

large errors in mobility evaluation [19].

In order to suppress trapping during the measurement, two fast techniques are

proposed. Pulse Id-Vg technique [20] is used to measure drain current and pulse

C-V technique is developed to measure Oinv. The details of the pulse Id-Vg

technique is given in chapter 2. In the next section, the development of pulse

C-V will be described.
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5.4 Novel pulse C-V based mobility characterization technique

5.4.1 Shortcomings of existing setups for pulse C-V techniques

The principle of the pulse C-V technique is similar to that of the quasi-static C-V

measurement. By using a linear voltage ramp, the corresponding displacement

current is measured and then converted to capacitance. One advantage of pulse

C-V is that, by raising the ramp rate, the displacement current can be several

orders of magnitude higher than that in the conventional quasi static C-V

measurement. Two setups were proposed for the pulse C-V measurement. A

commercial IN converter (e.g. Keithley 428) is used to convert the displacement

current to a voltage which is recorded with a digital oscilloscope [21,22]. The

schematic setup is shown in figure 5.2 (a). This setup gives good measurement

accuracy, but the ramp rate is limited to around 10 kV/s [22]. At this rate, only

large area devices can be used for the test. Although large area capacitors are

normally provided by the manufacturer, it is better to obtain MOSFETs that are

large enough for this setup. Nowadays the largest MOSFET available on the test

mask is typically 1Ox10 IJm2.Figure 5.3 shows that if the device with an EOT =

1.53nm and area = 100 IJm2is used, the displacement current at 10 kV/s is too

small. Only when the ramp rate is increased to 80 kV/s, the displacement current

can be measured accurately.

Another setup was proposed by Singh et al [18]. They connected the MOSFET
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with a capacitor, CR, to measure inversion charges directly, and it is reported that

the pulse edge transition time can reach around 70ns. The schematic setup is

shown in figure 5.2 (b). The shortcoming for this setup is that it is very sensitive

to parasitic effects from the cable connection and consequently it needs a

special probe card with ground plane to minimize inductive effects and

reflections [18]. Because of this inconvenience, this technique is seldom used.

Since both setups have their shortcomings, a new setup was developed for the

pulse C-V technique.

VOUT

CD
0..oo
Cl)

o
o
Cl)

o

Pulse Generator
~ ..{-~I

60 OHM~J ~_
250HM

9G
G,o:nd: "'fiji"Plane I
. I

'-- -.

50 OHM

~

~~--~ __--
1M OHM C'-- '--'T R

(h)

50 OHM

Fig 5.2 (a) Schematic setup used to obtain pulse C-V characteristics.
The voltage pulse applied to the gate (Vin) is recorded using a digital
oscilloscope together with the output voltage (Vout) of the
current-voltage amplifier which convert displacement current to the
voltage by IN converter Keithley 428. (b) Schematic illustration of the
setup used for pulse Oinv measurement, Oinv is measured directly by
using an external capacitor connected in parallel with MOSCAP.
Parasitic effect must be minimized and attentions should be paid to
impedance match and ground plane connection.
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1.2
ramp rate

1.0 -D- 600 KV/sec
-0- 300 KV/sec- 0.8 -----6-- 150 KVIsec

~ ~80 KV/sec- 0.6- ---0- 30 KV/secr:::
Cl) -+- 15 KVIsec... 0.4...

--x- 10 KVIsec::l
(J

0.2

0.0 1 1-2.0 -1.5 -1.0 -0.5 0.0 0.5 .0 .5
Vg (V)

Fig 5.3 Displacement current measured from the MOSFET with an
EOT of 1.53 nm and a typical area of 100 IJm2. The magnitude of the
displacement current drops for lower ramp rate. When ramp rate is
lower than 30 kV/s, the displacement current is below 10-8 A and it is
not easy to measure accurately.

5.4.2 The new pulse C-Vsetup

The schematic setup for the new pulse C-V technique is the same as that used

by Deleruyell et al [21]. In order to increase the measurement speed, a new

circuit was designed to replace the commercial IN converter. The circuit

configuration is shown in figure 5.4 (a). The principle is similar to that for pulse

Id-Vgbut the drain is virtually grounded here. The source/drain and substrate are

connected to separate circuit so that Cgc and Cgbcan be measured at the same

time. By following the same cautions mentioned in chapter 2, the ramp rate can

be increased up to 600 kV/s. In order to improve accuracy, 200 times averaging

is used. An accuracy of 10-8A is reached, which allows measuring capacitances
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of the order of pica-farads.

When a pulse is applied to the gate, the displacement current is converted to a

voltage, Vout,and recorded by a digital oscilloscope. The C-V characteristic can

then be extracted using the following relationship:

v -vc = nul "((,'el

R·dV I dl
(5.10)

where dV/dt is the voltage ramp rate, Voffsetis the offset voltage of the

current-voltage amplifier and R is the feedback resistor between input and

output which control the gain of the circuit. The input (Vln) and output (VOUI)

voltages correspond to the terminals of the circuits as illustrated by figure 5.4 (a).

In figure 5.4 (b), a typical screen-shot is given. The gate voltage Vg = VIn, and

output voltages Vout(lgc)and Vout(lgb)are captured by the oscilloscope. A

comparison between the pulse C-V technique and the standard HF C-V is given

in figure 5.5 (a).

Figure 5.5 (a) shows that the Cgc-Vgmeasured by pulse C-V technique can be

different at high IVgl for different ramp rate. This is caused by gate leakage

current and its correction will be addressed next.
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Osclllosco e

50 OHM

(a)

(b)

Fig 5.4 (a) The configuration of new developed pulse C-V setup. In
order to measure Cgband Cgcat the same time, two amplifiers are
used. One amplifier is connected to the source and drain and another
one to the substrate. Both amplifiers are connected the ground,
effectively grounding the source, drain and substrate. When a pulse is
applied on the gate, the displacement current from the source/drain
and substrate are converted into voltage traces using two
independent circuits and recorded with a digital oscilloscope. (b) A
typical screen shot for Vin,Vout(lgc),and Vout(lgb).
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5.4.3 Sources of error

There are three sources of error: gate leakage, series resistance and a reduction

of channel length from the mask length. The measured current includes both

displacement current and gate leakage current. For thin dielectrics, leakage can

be significant and is responsible for the increase of Cgc when lowering IdV/dtl in

figure 5.5 (a). A decrease of ramp rate will reduce the displacement current and

this increases the relative contribution of leakage current, resulting in the larger

apparent capacitance.

According to equation (5.2), in order to obtain the true mobility, drain current and

effective channel length should also be obtained precisely. Therefore, series

resistance from the source and drain should be found for correcting the drain

current, Id. Also effective channel length, Leff, should be used rather than the

mask length, Lmask, in the specification.

5.4.3.1 Gate leakage current

The displacement current is proportional to dV/dt, but the leakage current, 19, is

independent of it. This allows 19 to be corrected by comparing two currents 11, lz.

measured at different dV/dt [23].

c .dV / drl" + I~= I} (5.11)
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(5.12)

Subtracting (12) from (11), we have,

(5.13)

Figure 5.5 (b) compares the C-V corrected by using dV/dt = 600 and 150 kV/s

with that corrected by using dV/dt = 80 and 150 kV/cm. Unlike the disagreement

shown in figure 5.5 (a), after correction, the C-V curves become independent of

ramp rate and they also agree well with the standard HF C-v. Inversion charge

Oinv and the bulk charge Ob are integrated by using equation (5.5) and (5.6) and

they are shown in figure 5.6. The Ob calculated from equation (5.8) is also

compared.

Figure 5.7 shows the results obtained for the thinner sample 8 (EOT ==

1.13nm).The difference before and after correction can be clearly seen so that a

correction is essential. Figure 5.7 (b) shows the inversion charge integrated from

Cgc before and after correction. Large leakage current gives higher apparent amv

and may under-estimate the mobility.
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Fig 5.5 (a) A comparison of the C-V characteristics measured using
our pulse C-V technique and the conventional High frequency
technique (f = 5 MHz). Three ramp rates were used for the pulse C-v.
The pulse C-V varies with ramp rate and does not agree with the high
frequency C-V, due to gate leakage current. (b) The gate leakage
current is corrected by using C-V at two frequencies. After the
correction, all pulse C-V curves agree well with the high frequency
C-v.
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Fig 5.6 Inversion charge Qinv and bulk charge density ab obtained
from equation (5.5) and equation (5.6). ab calculated from equation
(5.8) is represented by the dashed line. The substrate doping in our
sample is 5x1017 ern",
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Fig 5.7 (a) egc is measured by the pulse e-v technique with 600 kV/s
and 280 kV/s ramp rate respectively. The thickness of the device used
in the test is 1.13 nm and therefore the leakage current is much more
severe than the case shown in fig 5.5. egc before and after correction
agrees reasonably well within -1.2V and then begin separating. (b)
shows the inversion charge integrated by using egc before and after
correction.
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5.4.3.2 Series resistance and effective channel length

In order to extract series resistance and effective channel length, the

Shift-and-Ratio method [24,25] is used and a very brief description is given

below.

The Shift and Ratio method starts with equation (5.14)

Vd
R,o' == I = R,d + Reil

d

= Rsd + L'f! . f(Vg - ~.~)

(5.14)

where Rtot is the total resistance between source and drain, including series

resistance Rsdand channel resistance Rch.

By differentiating equation (5.14) with respect to Vg, one can obtain

S(V ) == dR,of = dR", + L d/(Vg - r:)
g dV dV .« dVg g g

(5.15)

Since the parasitic resistance Rsdis either independent or a weak function of Vg,

the first term in equation (5.15) can be neglected to give

S(V ) == dRwl = L c({(Vg - r:)
g dV etf dV

R J.!

(5.16)

S&R extraction is usually carried out with two devices: one long-channel and one

short-channel:

df·(V ,,0)
SO (V.) = L~ . g - I

g -« dV
g

(5.17)
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and

(5.18)

where the superscript 0 represents the long channel device and 1 represents the

short device.

If VtO = vl, SOand S1 would be similar functions of Vg and Left would be extracted

from the ratio S1/S0 = L~ff/L~ff:::::: L~ff/L~ask' In general, however, VtO '* Vt1

due to the short-channel effect [25], and the S-functions must be shifted with

respect to each other before the ratio is taken.

(5.19)

The purpose is to find the a-value for which the ratio r is a constant, independent

of Vg. The a is the threshold voltage difference between the two devices.

The procedure is automated by computing the average r and the mean square

deviation of r from its average value, Le.

i . 1'(£5, V )JV(r)= .-\,., ~ X

r dV
J\I' K. . (5.20)

(5.21)

Once the correct shift is found, r is evaluated from equation (5.19) and one

example is given in figure 5.8 (a). ~L and Rsd can be then obtained by using



equation (5.22) and (5.23).

And

(5.22)

I RI RORsd = r o' lot - lot

rio -1
(5.23)

The correct 0 results in the minimum < (J2 >, as illustrated by figure 5.8 (b).

For the data in figure 5.8, the extracted Rsd= 76 n and the llL = 0.08 IJm.
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Fig 5.8 (a) The dependence of the ratio of S-function for three
different amounts of shift, O. Only when the correct shift is found, r
becomes independent on Vg. (b) Demonstration of extracting series
resistance (Rsd)and effective channel length by using Shift and Ratio
(S&R) method. The longer and shorter channel is 10 IJmand 0.25 IJm
respectively. The channel width is 10 IJm. Average raito <r> and
variance <0"2 > depends on the gate voltage shift, O.

By using the same S&R procedure, the series resistance and channel length

offset are extracted for four samples we used in this work and the results are

given in table 5.2.
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Table 5.2 Extracted Rsd and ~Leff by using S&R method

Sample Rsd (0) ~Leff (um)
A 64 0.07
B 76 0.08
C 57 0.056
0 75 0.013

A comparison of the mobility before and after the correction is shown in figure

5.9 (a) and (b). It will be seen that without the correction, the mobility can be

under-estimated.

5.5 Effect of remote charges on mobility degradation

The impact of process-induced positive charge (PIPC) on the effective mobility

can now be studied followed by an assessment of the effect of electron trapping.

5.5.1 Impact of Pipe on electron mobility

It has been reported that annealing in forming gas (10% H2) at 500-550 °C can

generate positive charge in the Hf02/Si02 stack [26,27). Id-Vg curves before and

after 60 minutes forming gas annealing for sample A are shown in figure 5.10 (a)

and the corresponding mobility is shown in figure 5.10 (b).
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Fig 5.9 (a) A comparison of mobility before and after the correction for
series resistance and channel length offset. The mobility increases
after the correction. (b) shows the percentage of the effective mobility
due to correction. Measurement without the proper correction can
under-estimate mobility by as large as 10%.
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Fig 5.10 The transfer characteristics of sample A before and after a 60
minutes annealing are shown in (a). A positive charging of 5.5x1020

cm-3 is generated in Hf02. The effective electron mobility before and
after the 60 minutes annealing is shown in (b). The dash line is the
universal curve.

Since the detailed spatial distribution of Pipe is not available, its density and



separation from the substrate interface must be estimated.

On one hand, as a "rule-of-the-thumb" estimation of the farthest possible

distance from the substrate, it is assumed that all Pipe are uniformly distributed

in the HfOzlayer and there is no Pipe in the interfacial SiOz. The volume density,

p, can be determined from [28]

(5.24)

where kHf and THt are the dielectric constant and thickness of high-k layer,

respectively. By using equation (5.24), a ~Vt=0.8 V from figure 5.10 (a) gives an

area density of 1.1 x 1014 cm? and a volume density of p = 5.5 X 1020 crn'",

which is in the same order as the typical doping density for a modern poly-Si

gate [4,6] and is among the highest charging level observed for MOS devices.

On the other hand, as an estimation of the nearest possible distance, we

assume that all Pipe are uniformly distributed in the interfacial layer. The volume

density, p, can be determined from [28]

p= (5.25)

where klL and TIL is the dielectric constant and thickness of interfacial layer,

respectively. By using equation (5.25), a ~Vt=O.8 V from figure 5.10 (a) gives a

volume density of p = 5.2 X 1020 crn'", so that the volume density is insensitive
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to the assumption. We will use the p calculated by using equation (5.24)

hereafter. The effective electron mobility before and after Pipe generation is

evaluated and figure 5.10 (b) clearly shows that it changes little through the

whole range of effective vertical field. We conclude that the ReS induced by a

Pipe of p = 5.5 X 1020 cm-3 at 0.56 nm from the substrate has an insignificant

effect on electron mobility.

5.5.2 Impact of Pipe on hole mobility

To test effects of Pipe on hole mobility, the sample B is used. After 60 minutes

exposure to forming gas, the threshold voltage shift caused by PIPC can reach

1.2 V, as shown in figure 5.11 (a) and the corresponding volume density can

reach p = 8.2 X 1020 cm'? at 0.73 nm away from the substrate interface. Figure

5.11 (b) shows that hole mobility changes little after the Pipe formation.

5.5.3 Impact of electron trapping on electron mobility

The Pipe originates from hydrogenous species [26,27] and it may be assumed

that its interaction with channel electrons is weaker than the interaction between

channel electrons and the ionized impurities in the gate, although there is no

experimental evidence for this assumption. To test the sensitivity of RCS to the

type of charge, the impact of electron trapping in the dielectric on electron

mobility is investigated next.
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Fig 5.11 The transfer characteristics before and after 60 minutes
annealing of sample B are shown in (a). The effective hole mobility
before and after the 60 minutes annealing is shown in (b). The dash
line is the universal curve.

Although pre-existing electron traps in SiON are negligible [29]. their volume
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density can reach the order of 1020 ern'? in a 4 nm Hf02 prepared by atomic layer

deposition (ALD) [17]. The problem is that the electron trapping decreases

sharply as the Hf02 becomes thinner and becomes insignificant for a 2 nm ALD

Hf02 [3,17]. Sufficient electron trapping within 2 nm from the substrate interface

cannot be obtained by using ALD Hf02, therefore. The RCS influence decays

exponentially with distance [4,6] and it is essential to have charges within 2 nm,

where RCS was reported to be effective [2-4]. This means that we cannot use

ALD Hf02.

To overcome the above difficulty, a 2 nm PVD Hf02 (sample C) is prepared.

Figure 5.12 (a) shows that electron trapping leads to a substantial positive shift

of Id-Vg.Since there is little pre-existing electron traps in the interfacial Si02

[17,29], a uniform distribution of electron traps in the Hf02 is assumed. A

~Vt=0.84 V leads to a volume density of p = 5.8 X 1020 crn'". Figure 5.12 (b)

clearly shows that electron mobility changes little after an electron trapping of

20 -3 1 fp = 5.8 x 10 cm at nm rom the substrate interface. As a result, changing

the type of charges has not changed the conclusion.
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before and after electron trapping are shown in (a). The effective
electron mobility before and after electron trapping is shown in (b).
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5.5.4 Impact of gate material on mobility

The samples used up to here have a TaNrriN gate and the poly-Si gated sample

is now tested. After forming gas annealing for 120 minutes, it can be seen from

figure 5.13 (a), threshold voltage shift reached 0.34V and volume density of

Pipe up to p = 2.7 X 1020 ern'? were generated at 0.77 nm from the substrate

interface. Little change in the effective mobility can be observed in figure 5.13 (b).

Our conclusion holds for devices with either metal or poly gate.

5.5.5 Discussion

The slight degradation observed in these samples may be attributed to the large

amount of charge pre-existing in the samples. If this is the case, the mobility in

these samples should have already been heavily degraded. When more charge

was added by forming gas annealing or trapping, further degradation could be

much smaller. In order to test this possibility, the mobility of these samples is

compared with those reported from earlier work for similar dielectric stacks and

gate materials:

• The sample B: figure 5.14 (a) shows that the hole mobility is similar

to that reported by the group at IMEP/CEA-LETI [30}.

• The sample 0: figure 5.14 (b) shows that the electron mobility is

similar to that reported by the group at Intel [9}.



• The samples A and C: figure 5.14 (c) shows that the electron

mobility is similar to that reported by the group at Sematech (31)

and figure 5.14 (d) shows that the electron mobility is similar to that

reported by the group at IMEP/CEA-LETI [30}.
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curve.
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Fig 5.14 (a) A comparison of the hole mobility in our sample B with
that reported by the group at IMEP and CEA-LETI [30]. (b) A
comparison of electron mobility in our sample 0 of a poly-Si gate with
that reported by the group at Intel [9]. (c) A comparison of the electron
mobility in our sample A and C of a TiN gate with that reported by the
group at SEMATECH [31]. (d) A comparison of the electron mobility in
our sample A and C with that reported by the group at IMEP and
CEA-LETI [30].

As a result, any pre-existing charge in these samples is not excessive and is

similar to those in earlier work [9,30,31]. To quantify these pre-existing charges,
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we compare the measured threshold voltage with its theoretical value next.

Figure 5.15 compares the measured fresh threshold voltage with its theoretical

value. Two values agree quite well, indicating insignificant pre-existing charges

in the oxides.
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oCalculated Vl
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Fig 5.15 A comparison of the measured threshold voltage for fresh
devices with their theoretical values. The theoretical value is
calculated by using equation (5.26). The experimental value is
extracted by using constant current method at the level of 1x10-6·W/L.

To explore why RCS is not as important as previously thought, it is noted that the

strength of RCS is sensitive to the assumptions used in the model [33,34]. For

example, the inclusion of gate free carrier screening substantially reduces the

effect of ReS on channel mobility [33,34] and it can become negligible when the

free carrier density in the gate is sufficiently high [33].

It should be clarified that this work does not rule out that remote charge can

degrade mobility in principle. The degradation was not observed for a charge
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density up to the order of 1020ern? at a location of 0.56-1 nm from the substrate

interface. If the remote charge is closer to the substrate or have a higher density,

it may degrade the mobility.

5.6 Summary

In this chapter, the focus has been on investigating the impact of remote charge

scattering on mobility degradation. In order to fix the charging during the

measurement, a new measurement setup was developed for the pulse C-V

technique with the capability to measure C-V curve up to 600 kV/s ramp rate. For

a 1Ox10 ~m2 MOSFET, this produces a displacement current large enough for

an accurate measurement. To evaluate mobility, corrections must be made for

gate leakage current, series resistance and the channel length offset.

Unlike earlier work where different samples were used for investigating the

impact of remote charge scattering on mobility, the same sample is used in this

work. The charge is introduced either by forming gas annealing or trapping, and

the volume density can reach the order of 1020ern'? at 0.56nm -1nm from the

substrate interface. These experiments clearly showed that these remote

charges have little effect on the channel mobility, although it is not ruled out that

ReS can degrade mobility in principle.
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Conclusions and Future work

6.1 Conclusions

This project is divided into three parts: the reconciliation of characterization

techniques for NBTI, the worst case NBTI lifetime prediction, and the impact of

remote charge scattering on mobility degradation. Conclusions for each part are

given below.

6.1.1 Conclusions on the real threshold voltage instability under
operational bias

The focus was on bridging the gap in threshold voltage shift evaluated by

different techniques after NBTI stress. Firstly, the NBTI-induced threshold

voltage shift evaluated by different techniques was compared, including the

on-the-fly technique sensed at stress Vgst (OTF-Vgst), ultra-fast pulse technique

with extrapolation (UFP-ex), and the conventional quasi-DC measurement with

extrapolation (DC-ex). The impact of various factors reported recently on AVt

was examined one by one. These include the degradation during measurement

that affects the reference Id and initial transconductance, the recovery during

measurement, and the evaluation of transconductance.
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After clarifying these issues, it is found that the gap in DoVt extracted from

different techniques cannot be bridged and it is essential to consider the effect of

sensing Vg on DoVt.The evaluation of DoVtat different sensing Vgwas achieved by

calculating the Doldand transconductance at a given Vg and the classical

transconductance gm=dld/dVgshould be replaced by Gm=dlid(Vg-Vt}. The results

clearly show that I,1Vtl increases with sensing IVgl because of more positive

charge trapping at higher IVgl and the assumption of ,1Vt being independent of

sensing Vgwas shown to be invalid. After taking both recovery and the sensing

Vg effect into account, the large gap in ,1Vt obtained from different techniques in

earlier work has been bridged successfully. The results show that recovery

reported by earlier work and the sensing Vg effect observed here are two

different phenomena.

6.1.2 Conclusions on NBTI lifetime prediction and kinetics at operational
bias

The objective was to predict the worst case NBTllifetime under operational bias.

It is found that when the recovery is suppressed by using ultra-fast pulse

measurement and ,1Vt is sensed at the operational gate bias, the conventional

Vg acceleration prediction is not applicable. This is because the NBTI kinetics no

longer follows a simple power law and an increase of stress bias does not lead

to a parallel shift of 10gl,1VtI.

To predict the worst case lifetime at the operational gate bias, NBTI kinetics and
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defects were examined. An outstanding feature of the kinetics is the presence of

a 'shoulder', which is insensitive to temperature and must be dominated by the

charging of as-grown defects. The charging and discharging properties of the

defect agree well with the signature of as-grown hole traps. By combining the

first order model for the as-grown hole traps and the power law for generating

new defects, f...Vt can be modelled over ten orders of stress time. This kinetic

model is then used to predict the NBTI lifetime, based on a single test at the

operation temperature and bias. For the six different processes tested, the safety

margin of the single test prediction technique is within 50%, which is

substantially better than the methods proposed in earlier work.

6.1.3 Conclusions on the impact of remote charge scattering on mobility
degradation

In this part, the impact of remote charge scattering on mobility degradation is

investigated. In order to freeze the charging during the measurement, a new

setup for the pulse C-V technique was developed, To evaluate mobility,

corrections were made for gate leakage current, series resistance and the

effective channel length.

Unlike earlier work where different samples were used for investigating the

impact of remote charge scattering on mobility, the same sample was used in

our work. The charge is introduced either by forming gas annealing or trapping,

and the volume density can reach the order of 1020 ern? at 0.56 - 1 nm from the
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substrate interface. The experiments clearly showed that these remote charges

have little effect on either electron or hole mobility.

6.2 Future work

Despite the progress made in this project, there are many problems remaining to

be solved, including but not limited to, the following:

Further improvement of the ultra-fast Id-Vgtechnique

This project relied heavily on the ultra-fast Id-Vg technique implemented in

chapter 2, which, to the best knowledge of this author, has reached the highest

accuracy compared with the implementation by other groups. However, the

speed is limited to 5 IJs at present. This is because the op-amplifier used only

has 60 MHz bandwidth, which limited the measurement speed. The difficulty for

using higher bandwidth op-amp is these high bandwidth op-amplifiers are

usually sensitive to parasitic components in the circuit, and therefore, they need

to be mounted by using the surface mount technology on double layer PCB.

The defects responsible for the sensing Vg effect

This work clearly shows that threshold voltage shift after NBTI stress is

dependent on sensing Vg. However, the understanding of the defects

responsible for the sensing Vg effect is poor. For example, it is not clear whether
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they are hole traps close to the interface or interface states. The generation

mechanism of these defects is not known either. These issues should be

addressed in future work.

NBTI lifetime prediction and kinetics at operational bias

In this work, the proposed kinetics can predict NBTI lifetime at the operational

gate bias in the worst case scenario where the recovery is suppressed. However,

this lifetime prediction is based on a single device. In the real world, one

functional circuit can include millions of these transistors and only the lifetime of

the functional circuit is meaningful to the manufacturer and the customer.

Therefore, not only the worst case lifetime is needed, the impact of recovery

should be included in the kinetics model as well. Furthermore, it could be useful

if the model can be verified by implementing it into a circuit simulator.

Impact of remote charge scattering on mobility degradation

This work clearly shows that the remote charges have little effect on the carrier

mobility for the device studied. However, the reason for the observed mobility

degradation when the gate oxide becomes thinner is still not clear and needs

further work.
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