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Abstract 

This research has reviewed the current status of offshore and marine safety. The major 

problems identified in the research are associated with risk modelling under 

circumstances where the lack of data or high level of uncertainty exists. This PhD 

research adopts an object-oriented approach, a natural and straightforward mechanism 

of organising information of the real world systems, to represent the Offshore Gas 

Supply Systems (OGSSs) at both the component and system levels. Then based on the 

object-oriented approach, frameworks of aggregative risk assessment and fault tree 

analysis are developed. Aggregative risk assessment is to evaluate the risk levels of 

components, subsystems, and the overall OGSS. Fault trees are then used to represent 

the cause-effect relationships for a specific risk in the system. Use of these two 

assessment frameworks can help decision makers to obtain comprehensive view of risks 
in the OGSS. 

In order to quantitatively evaluate the framework of aggregative risk, this thesis uses a 
fuzzy aggregative risk assessment method to determine the risk levels associated with 

components, subsystems, and the overall OGSS. The fuzzy aggregative risk assessment 

method is tailored to quantify the risk levels of components, subsystems, and the OGSS. 

The proposed method is able to identify the most critical subsystem in the OGSS. As 

soon as, the most critical subsystem is identified, Fuzzy Fault Tree Analysis (FFTA) is 

employed to quantitatively evaluate the cause-effect relationships for specific undesired 
event. These results can help risk analysts to select Risk Control Options (RCOs) for 

mitigating risks in an OGSS. It is not financially possible to employ all the selected 
RCOs. Therefore, it is necessary to rank and select the best RCO. A decision making 

method using the Fuzzy TOPSIS (FTOPSIS) is proposed to demonstrate the selection of 

the best RCOs to control the existing risks in the system. 

The developed models and frameworks can be integrated to formulate a platform which 

enables to facilitate risk assessment and safety management of OGSSs without 
jeopardising the efficiency of OGSSs operations in various situations where traditional 

risk assessment and safety management techniques cannot be effectively applied. 
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Chapter 1 

Introduction 

Summary 

This chapter first discusses the background of the research and in doing so highlights 

the inherent problems which exist in offshore pipeline systems today when applying risk 

assessment analysis. The objectives and hypotheses of the research serve to set out a 
logical structure of the research which is aimed at addressing the inherent problems 

outlined. This is followed by a brief description of the research methodology and the 

scope of the study. Finally, the structure of this thesis is given. 

1.1 Background 

The essential function of an Offshore Gas Supply System (OGSS) is to transport 
hydrocarbons from the reservoir to the processing equipment in a cost-effective and safe 

manner. The importance of offshore system safety has been recognized and accepted for 

a long time, and significant improvements concerning both design and operating 

procedures have been made. In spite of these improvements, failures still occur and will 
most likely continue to occur in the future. The need for continued focus on offshore 
system safety is exemplified by the gas blow-out in 2005 on the Snorre tension leg 

platform operating on the Norwegian Continental Shelf (NCS) (Aven & Vinnem, 2007). 
According to the Petroleum Safety Authority (PSA) in Norway the accident could have 

resulted in a major accident with the loss of many lives. 

The offshore industry continues to develop new well and pipeline designs for 

challenging reservoir conditions. For example, the industry now focuses on finding and 
developing the smaller/marginal fields in the southern part of the NCS. In search for 

new large and profitable fields, the industry moves north and into deeper water. This 
development results in production in more environmentally sensitive areas and in 

operations under more hostile weather conditions. A similar development is seen in 

Russia where offshore fields in the Barents region are being planned. 
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To develop marginal fields it is expected that the operators of offshore fields will be 

more directed towards subsea systems and investments in new development concepts 

and technologies. An example is Subsea high integrity pressure protection systems , 
where pipelines are not rated for the full pressure and a Safety Instrumented System 

(SIS) is installed on the seafloor to close the flow if high pressure above an acceptable 

level occurs. The application of first subsea high integrity pressure protection systems 

on the NCS is the Kristin field (Aven & Vinnem, 2007). The field started production in 

October 2005. The trends mentioned above indicate that new technology applied in 

more challenging fields will require continued focus on risk assessment and 

management in the future. 

According to Hirsch et al. (2005) the oil and gas production will soon peak and there 

may be a mismatch between the demand for and the supply of petroleum and this 

situation will not be temporary. Peaking will create a severe liquid fuel problem for the 

transportation sector. Peaking will result in dramatically higher oil prices, which will 

cause economic hardship in the industrial countries, and even worse problems in the 

developing countries. With the expected mismatch between demand and supply, it is 

likely that there will be an increased pressure on safety of OGSSs. 

In Norway, the NORSOK D-010 standard (NORSOK, 2004) describes offshore well 
integrity requirements, where well integrity is "the application of technical, operational, 

and organizational solutions to reduce risk of uncontrolled release of formation fluids 

throughout the life cycle of the well". Well integrity has always been focused on the 

design of new wells, but well integrity in the operational phase is now of increasing 

concern. Because of high oil and gas prices, new technology for increased recovery, and 

government incentives, it is now possible and profitable to extend production beyond 

the initially assumed design life. However, life extension may result in more frequent 

critical failures involving leakages to the environment. The outcome of such leaks can 

be catastrophic. According to Corneliussen et al. (2007) 10% of the offshore wells in 

the United Kingdom Continental Shelf (UKCS) were shut-in due to well integrity 

problems during the last five years. The article refers to a study based on interviews 

with 17 UKCS operators. Approximately 83% of these operators experienced well 

integrity problems. Other topics highlighted in Corneliussen et al. (2007) are: 
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" Little is known about the implications of operating wells beyond their design 

lives, and UK operators found growing concerns about the safety, environmental, 

and economic standards associated with well structural integrity. 

" Some operators believe that well functionality can be maintained, regardless of 

age, through inspection, monitoring and maintenance. Nevertheless, 87% of the 

operators questioned believe that the incidence of structural integrity problems is 

increasing and will continue to do so. 

It is likely that the NCS situation is comparable to the UKCS situation because there are 

many similarities in field age, type of installations, operating practice, etc. Well 

integrity is also a major concern in the United States Gulf of Mexico (US GoM). A 

study carried out on behalf of the Mineral Management Services (MMS) concludes that 

more than 8000 wells in the US GoM Outer Continental Shelf experienced well 

completion leaks (Bourgoyne et al., 2003). 

The increased emphasis on well integrity in the operational phase is reflected in recent 

regulations and standards. In Norway, for example, NORSOK D-010 describes the 

requirements for "Well Integrity in drilling and well operations", while the American 

Petroleum Institute (API) currently develops a recommended practice for handling of 

annular casing pressure in the US GoM. The working title is API RP904 - Annular 

Casing Pressure Management for Offshore Wells. Independent of the industry sector, 
there is a global trend towards functional requirements (what is to be achieved) rather 
than deterministic/rule based requirements (what to do) in high-risk industries. A main 

reason for this change is to enable the industry to cope with new technology rather than 

restricting the development. As a consequence of more functional requirements there is 

an increased focus on risk assessment methods to demonstrate acceptable risk. 

Historically, offshore safety regulations were introduced following an accident or a 

series of major accidents, intending to address the most obvious causes. Over years, 

after a number of defining accidents including the capsize of the semi-submersible rig 
"Alexander Keilland" in 1980 and the explosion aboard " Piper Alpha" platform in 

1988, the way in which safety is reviewed has been alerted. The characteristic of 

offshore safety has evolved from a reactive manner toward a proactive attitude where a 
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goal-setting and risk-based regime is required since the introduction of the safety 

regulations including Safety Case Regulations (SCR) and Formal Safety Assessment 

(FSA) in the 1990s. The main objective of these safety regulations is to ensure that risk 
has been reduced to the level of As Low As Reasonably Practicable (ALARP) and Risk 

Control Options (RCOs) proposed are cost-effective. 

In general, the tendency of maritime risk assessment is that it is not only used for 

verification purposes in design and operational process of marine and offshore systems, 
but also for making decisions from the early stages (Wang, 2002). Accordingly, interest 

in the improvement of the safety of large engineering systems based on the safety 

management from the initial stages has been growing considerably within both the 

regulatory bodies and industry. However, since such a safety analysis is conducted at 
initial stages, circumstances of the lack or incompleteness of data, or the low or none 

relevance of generic data of specific areas in question are inevitably encountered. This 

would cause a high level of uncertainty that may significantly undermine the conclusion 

acquired based on the traditional quantitative risk assessment and safety management 

techniques. Consideration of these uncertainties may drive estimated risk level 

appreciably upward or downwards from the initial calculated results. Regardless of 

whether these estimated results are initially assessed as optimistic or pessimistic 

estimates, for instance, an upward revision could result from the consideration of the 

effect of a limited incident reporting in relation to its failure mode definition. Thus, the 

risk results evaluated under such circumstances may not be acquired with confidence. 

Due to the fact that detailed and historical safety' related data within offshore pipeline 
system is scarce, the issue as to the lack or incompleteness of data is also imposed on 
offshore pipeline system safety studies. This inevitably increases the difficulty of risk 
assessment and safety management in offshore pipeline systems. 

1.2 Research objectives and hypothesis 

The primary aim of this study is to develop a novel Quantitative Risk Assessment (QRA) 

methodology for an effective risk assessment and management of OGSSs; QRA is a 

new approach in offshore well and pipeline operations, which has evolved after the 

occurrence of some serious accidents, emphasising the'need of using a risk-based 
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management system in order to proactively ensure a strategic and scientific oversight of 

offshore well and pipeline safety and pollution prevention. The development of an 

advanced QRA is a vital part of this thesis as it sets the foundation of the whole project. 

in order to achieve such an aim, this thesis has the following four main objectives. 

A clear understanding of the system and the system boundaries is a key factor in any 

analysis, including risk analysis. By understanding of the system, suitable risk analysis 

methods and input data can be identified. Therefore, the first objective of this research 

work is to develop qualitative frameworks for representing the hierarchical relationships 

of components, subsystems and overall OGSSs. Frameworks of risk assessment are 
developed based on the concept of an Object-Oriented Approach (OOA) (Elshorbagy & 

Ormsbee, 2006) and characteristics of OGSSs. 

The second objective is to develop a method to evaluate risks of components, 

subsystems and overall OGSSs. The modelling techniques used to achieve the second 

objective are a combination of Fuzzy Risk Assessment (FRA) method and Analytical 

Hierarchy Process (AHP). The integration of FRA and AHP addresses the problems 

associated with a large amount of subjective expert judgments required. 

The third objective is to provide a method for assessing fault trees of OGSSs. Results of 

this assessment are likelihood of the occurrence for a specific event and importance 

measures of possible contributing causes. Based on the above risk analysis results, a 
MADM technique (Fuzzy Techniques for Order Preference by Similarity to an Ideal 

Solution (FTOPSIS)) is used to rank the alternatives of RCOs. 

The objectives are also carried out to test the hypothesis of the research. This thesis is 

designed to test a hypothesis that it is possible to develop a new QRA capable of 

tackling a variety of systems in industry, with special consideration placed on OGSSs. 

This hypothesis requires historical data, available data and expert judgment to be 

presented in risk-based tools and techniques. 

1.3 Statement of problem 

As aforementioned due to lack of data or incompleteness of data, uncertainties may 

significantly undermine the conclusion acquired based on the traditional quantitative 
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risk assessment and safety management techniques. Accordingly, the research problem 
for this PhD study is shown as follows: 

How are risk assessment and safety management conducted with confidence under 

circumstances where the unavailability or incompleteness of data or a high level of 

uncertainty exists? 

The challenge of this thesis is to extract the required information, from objective and 

subjective sources, in order to produce a new QRA methodology. The process of 

gathering data, the use of existing data or reliance on expert judgements has shown to 

be a troublesome process in terms of accuracy (Pillay & Wang, 2003). The gathering of 

objective data in order to apply a modelling technique can be difficult as it generally 

requires many months or even years to attain sufficient data. The use of subjective data 

gathered from expert judgments can often come in a form which requires 

standardisation with existing data in order to establish a consistency of data ensuring 

confidence in the modelling results. The combining of both objective and subjective 
data requires elicitation in order to establish the data which is required to apply 

advanced modelling techniques to OGSSs. 

1.4 Delimitations of the scope 

Since the objective of this PhD research is to provide a platform for risk assessment and 
safety management addressing OGSSs safety with confidence in circumstances of the 
lack or incompleteness of data, the subjective data for the test cases demonstrated in this 

study are hypothetically prepared by the author together with his supervisors and 

experts specialising in the offshore industry. This is because of the difficulty of 

acquiring real industrial data due to the many reasons including the confidentiality of 
data of this kind. 

1.5 Justification of research 

In the risk assessment and safety management research, management of the effects 

caused by uncertainty and complexity of systems is an important issue. A hierarchical 

framework is an effective way to deal with complexity. It decomposes, the complex 

problem into more manageable subsystems or components, and, represents the 
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contributions to overall system by its components and subsystems. Thus it has the 

ability to perform risk evaluations at both the component and system levels. As 

aforementioned, causes of uncertainty are diverse. Thus, regardless of what approaches 

are to be applied, it always depends upon human judgements to manage such negative 

effects. In other words, the deficiencies of risk modelling resulting from lack of data or 
high level of uncertainty must be made up by means of the general evaluation capacity 

of humans capable of grasping the essence of an object, even if it is vague and unclear. 
One feasible way to model such a situation under a high level of uncertainty is to use 
fuzzy set theory. Fuzzy set theory, formalised in 1965, has been applied in different 

fields. Its application in system safety and reliability analysis could prove to be useful 

since such analysis often requires the use of subjective judgment and uncertain data. 

When dealing with the safety of a system using fuzzy set theory, the parameters 
including occurrence likelihood and severity of possible consequences can be judged 

and described using linguistic terms and their associated memberships. These fuzzy 

variables can then be synthesised with confidence using an AHP (Lee, 1996; Chen, 

2001; Sadiq & Husain, 2005; Zeng et al., 2006; Wang & Elhag, 2007) or some other 

techniques such as FTA (Andrews & Moss, 2002; Henley & Kumamoto, 1981) or 
TOPSIS (Hwang & Yoon, 1981; Chen, 2000; Li & Yang, 2004; Herrera et al., 2005) 

With the awareness of the effectiveness of hierarchies in dealing with complexity, this 

study adopts hierarchies, but based on an OOA to represent the relationships in offshore 
pipeline systems, and to develop frameworks for risk assessment. Meanwhile, fuzzy set 
theory, AHP, Evidential Reasoning (ER) (Yang & Xu, 2002) and FTA are integrated 

with these hierarchies to generate quantitative results. This research is composed of four 
integrated technical parts as follows (Figure 1.1). 

1.5.1 Object Oriented Approach (OOA) of OGSSs 

Firstly, an OOA is proposed in this research to deal with the complexity (Simons, 1982; 

Courtois, 1985) of OGSSs and to generate a hierarchical structure for risk assessment. 
OOA is a method that represents engineering systems in terms of objects (Booch, 1994; 

Solomatine, 1996; Ross et at, 1992; Black & Megabit, 1995; Liu & Stewart, 2003; 

Crossland, et at., 2003; Elshorbagy & Ormsbee, 2006). Every component in an OGSS is 

viewed as an object, and the overall system is viewed as a set of objects that are 
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interconnected with each other. All risk factors about the components are considered as 

attributes or behaviours of objects. Furthermore, with the generalization and 

aggregation relationships, object-oriented hierarchical structures can be easily formed to 

represent the whole/part relationships and interconnections between objects in an OGSS. 

1.5.2 Fuzzy Risk Assessment (FRA) of OGSSs 

Aggregative risk assessment is composed of two stages, the component level and the 

system level. Firstly, state transition diagrams of objects describe the relationships 
between hazards, object failure states, and object risks, which thus provide a 
hierarchical framework for risk assessment at the component level. In this hierarchical 

framework, risk of an object is at top level followed by its relative failure states that are 

at its immediate lower level. Hazards or threats are at the bottom level in this 

framework. This indicates that risks of an object are determined by its failure states, 

which are in turn determined by the threats or hazards directly related to them. This 

research represents each hazard or threat in terms of its likelihood of occurrence and 

severity of possible consequences that are represented by fuzzy numbers. The risk of a 

component is thus an aggregative measure that is determined by aggregating the risks of 

threats or hazards along the hierarchical structure. 

Secondly, for the risk assessment at the system level, an object-oriented whole/part 

relationship structure is used to determine aggregative risks of OGSSs. In this 
hierarchical framework, The OGSS is at the top level, its subsystems and components 

are at relatively lower levels. Therefore, the risk of the overall system is an aggregative 

measure which is contributed by the risks of its subsystems and components along the 
hierarchical structure. With the development of the conceptual framework for 

aggregative risk assessment, fuzzy set theory and an aggregation method (i. e. AHP) 

(Leung & Cao, 2000; Bozdag et al., 2003; Kwong & Bai, 2003; Kahraman et al., 2003; 

Büyüközkan, 2004; Büyüközkan et al., 2004; Erensal et al., Huang et al., 2005; 2006; 

Tüysüz & Kahraman, 2006; Chan & Kumar, 2007) are used to produce quantitative 

evaluations. 
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1.5.3 Fuzzy Fault Tree Analysis (FFTA) of OGSSs 

FTA is considered in this study to represent the cause-effect relationships in OGSSs. 

Fault tree analysis, a deductive reliability and risk analysis technique, can answer the 

question of how the system could produce a failure. With the help of FTA, risk analysts 

will know which component in the system is more critical and which risk scenario is 

more significant (Pillay & Wang, 2003). Meanwhile risk contributions and uncertainty 

contributions can also be obtained to support selection of mitigation measures (Furuta & 

Shiraishi, 1984; Shu et al., 2006) and asset management. However the development of 
fault trees is still as much an art as a science. This research uses an object-oriented 

approach to generate fault tree structures via two steps. Firstly, object states transition 
diagram is used to generate the fault trees at the component level. Then, 

interconnections between components in an OGSS are used to develop fault trees at 

system level. After fault trees have been constructed, FFTA (Misra & Weber, 1990; 

Liang & Wang, 1993; Cheng & Mon, 1993; Lin & Wang, 1997; Dong & Yu, 2005; 

Ping et al., 2007; Pan & Wang, 2007) is adopted to obtain quantitative results. 

1.5.4 Application of Multiple Attribute Decision Making (MADM) in a fuzzy 

environment for selection of the best RCO in OGSSs 

Due to the complexity of OGSSs, conventional quantitative risk assessment may not be 

capable of providing sufficient risk management information. The selection of different 

mitigating and preventive alternatives (i. e. RCOs) often involves competing and 
conflicting criteria (cost and benefit), which requires sophisticated decision making 
methods. The decision making in this study is the analysis with multiple objectives that 
have both a quantitative and a qualitative nature. It is obvious that much knowledge in 

the real world is fuzzy rather than precise. In an OGSS ranking/selecting problem, 
decision data of MADM problems is usually fuzzy, crisp, or a combination of the two. 
Hence, a useful model should be able to handle both fuzzy and crisp data. Since 

imprecision and ambiguity in the calculation of a performance rating are incorporated 

into MADM, fuzzy set theory provides a mathematical framework for modelling them. 

The research method employed is a Fuzzy TOPSIS (FTOPSIS) (Zimmermann & Zysno, 

1985; Teodorovic, 1985; Zanakis et al., 1998; Jee & Kang, 2000; Chen, 2001; Yong, 

2006; Li, 2007) approach. It is one of the techniques that are developed to solve 
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MADM problems. By using this technique, subjective judgement with uncertainty and 

precise data can be consistently modelled under a unified framework. Figure 1.1 

demonstrates the logic relationship among the proposed methods in this PhD research. 

Using fuzzy set theory, AHP and ER 
theories to evaluate aggregative risk 
structure: 

Fuzzy sets are used to represent 
likelihood, severity and risk 
associated with each hazard 

AHP is used to obtain risk levels of 
components, subsystems, and the 

overall system by performing 
aggregation along the hierarchical 

structure 

ER is used to to incorporate newly 
obtained data for the updating of 

existing risk estimates at any level of 
hierarchy 

Using F[OPSIS to select the best 
RCOs for OGSS: 

Fuzzy sets are used to estimate rate 
of subjective alternative 

TOPSIS is adopted here to identify 
the best RCO from a finite number 

Object-oriented 

aggregative risk 
assessment 

Chapter 4 

Fuzzy set theory 

AHP 

ER 

Object-oriented FTA 

Chapter 5 

Object-oriented approach is used to 
generate conceptual frameworks for 
risk assessment 

Object-oriented aggregative risk 

assessment to show the whole'part 
risk contributions in OGSSs 

Object-oriented fault trees to 
demonstrate the cause-effect 

relationships for specific risk in 
OGSSs 

Fuzzy set theory 

FTA 

Chapter 6 

Furry set theory 

TOPSIS 

Using FFTA to quantitatively 
evaluate fault tree structure: 

Fury sets are used to obtain 
probability of basic events in a fault 

tree 

FFTA is adopted here to evaluate 
the fault tree quantitatively and to 
identify the most critical hazards in 

OGSSs 

Figure 1.1 Logic relationships among the methods used in this research 

1.6 Structure of thesis 

The scope of this research is to develop an advanced QRA methodology, utilising 

varying information from both objective and subjective sources. The purpose of the 

advanced QRA is to a) present the relation among components, subsystem and the 

overall OGSS, b) estimate risk of components, subsystem and the overall OGSS, c) 
identify an event or a group of events that has the highest contribution to an incident 

and d) provide the best RCOs for mitigating risk of the system. 

This thesis is compiled of seven chapters. Chapter 1 has outlined a brief introduction 

relating to the background of the research, an introduction of the research hypothesis, a 

Chapter 3 
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statement highlighting the problems currently encountered, methodology and the scope 

of this thesis. 

Chapter 2 reviews the current status of offshore and marine safety. The frameworks of 
the safety regulations including SCR and FSA are also discussed. The strengths and 
shortcomings of maritime risk assessment techniques commonly applied are examined, 
providing a critical review for their current practices. According to the reviews, 

comments are obtained to express the limitations associated with the conventional 
methods and to propose possible resolutions overcoming these limitations. Then the 

methodology background of the current study is justified and briefly discussed at the 

end of the chapter. 

Chapter 3 aims to develop conceptual frameworks for aggregative risk assessment and 
FTA of OGSSs. Firstly, it introduces the OOA and its potential application in 

organising complex information in OGSSs. Then a hierarchical structure of OGSSs is 
developed based on the concepts of OOA. State transition diagrams are used to 

represent the cause-effect relationships of risks at the component level. Frameworks of 
aggregative risk assessment are formed based on the hierarchical whole/part 
relationships of OGSSs and components state transition diagrams. Frameworks of fault 

trees are established according to the interconnections among components state 
transition diagrams. These frameworks can give useful information for decision makers 
in OGSSs. 

Chapter 4 introduces the method to quantitatively evaluate the hierarchical frameworks 

of aggregative risk assessment developed in Chapter 3. Fuzzy set theory is adopted here 

to determine the risk levels of hazards/threats which are at the bottom level of the 
hierarchical structure. Fuzzy AHP (FAHP) is adopted as an aggregative method to 

evaluate risk levels of components, subsystems, and the overall OGSS along the 
hierarchy. The proposed method is able to identify the most critical subsystem in OGSS. 

As soon as, the most critical subsystem is identified (Chapter 4). Chapter 5 applies 
FFTA to quantitatively evaluate the fault tree of the most critical subsystem. In the 
FFTA method, the likelihood of Top Event (TE) and importance measures of 

contributing factors are investigated. The results of this analysis are used to prioritise 
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the components and hazards for specific risks and assist risk analysts in making rational 

decisions. 

Result of Chapter 4 and Chapter 5 help the analyst to select RCOs for mitigating the 

risk of subsystem and OGSS. Chapter 6 proposes a Fuzzy MADM (FMADM) method 

which is suitable for treating group decision making problems under a fuzzy 

environment for selecting and ranking of the best RCOs from a cost-benefit viewpoint 

for mitigating risk of systems. A decision maker often encounters the problem of 

selecting a solution from a given set of alternatives. The chosen alternative is the one 

that most likely meets certain predefined objectives/goals. A MADM method provides 

engineering and management decision aids in evaluating and/or selecting the best RCO 

from a finite number of alternatives which are characterised by multiple attributes. 

Chapter 7 concludes the overall study. The chapter begins with discussing the main 

conclusions. The limitations of this research are also given together with possible future 

research which can expand and explore this body of research. A diagrammatic guide to 

this thesis is shown in Figure 1.2. 

Chapter 1: Introduction 

I 

Chapter 2: Literature review 

Develop conceptual 
framework for risk 

assessment 
I 

Chapter 3: Object-oriented risk assessment 
of OGSSs 

I 

Evaluate the conceptual frameworks 
developed in Chapter 3 by using 

quantitative methods 

P( 
Chapter 4: Fuzzy risk 
assessment of OGSSs 

Provide the be 
mitigate the ris: 

st RCOs to I 
oYOGSSe -ý 

i 

Chapter 5: Fuzzy fault tree 
analysis of OGSSs 

Chapter 6: Multiple attribute decision making 
in a fuzzy environment for selecting the best 

RCOs in OGSSs 

I 
Chapter 7: Conclusion and recommendation 

for further work 

Figure 1.2 Thesis structure 
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Chapter 2 

Literature Review 

Summary 

In this chapter, the current safety status of the offshore industry is reviewed. The 

frameworks of the safety regulations including SCR and offshore pipeline safety 

regulations are also discussed. The strengths and shortcomings of risk assessment 

techniques currently and commonly applied are examined, providing a critical review 
for their current practice. Finally, this PhD research is justified and discussed based on 

the problems and difficulties encountered. 

2.1 Introduction 

Offshore safety has evolved from a reactive manner towards a risk-based and goal- 

setting regime since 1990s. It has become an important issue in the offshore industry 

due to public concern following several catastrophic accidents and the introduction of 

safety regulations. The main objective of these safety regulations is to ensure that risks 
have been reduced to ALARP and RCOs to be implemented are cost-effective. In 

addition, due to the competitive nature, there is a need for the offshore industry to 

constantly conduct risk assessment and safety management with regard to assets from 

the initial stage, develop new approaches, propose new operational procedures and 
invent innovative technology. This inevitably brings new hazards and uncertainties in 

one form or another. Thus, risk assessment and safety management should cover all 

possible areas including those where traditional techniques are difficult to be applied. 
Accordingly, the development of a variety of novel risk modelling and decision making 

techniques capable of resolving such difficulties encountered is required. In this chapter, 
following the discussion of the current safety status of the offshore industry, the 

frameworks of SCR 1992 and offshore pipeline safety are presented. The strengths and 
difficulties of current offshore risk assessment practice encountered are subsequently 
discussed. Finally, the PhD research is justified with the presentation of the above 

difficulties. 
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2.2 History of offshore safety and Safety Case Regulation (SCR) 

The use of structured risk management in the offshore industry began in the Norwegian 

Sector of the North Sea. Norwegian offshore development in the late 1970s (the Ekofisk 

and Frigg fields) had wellhead and production platforms separated from their 

accommodation platforms, linked by bridges. Several accidents in the Norwegian Sector 

at this time, including two on the Ekofisk field (a riser in 1975 and a blowout in 1977) 

demonstrated that even this arrangement involved major hazards. 

The Norwegian Petroleum Directorate (NPD) issued their "Regulations Concerning 

Safety Related to Production and Installation" in 1976 (Vinnem, 2007). These included 

the requirement that if the living quarter was to be located on a platform where drilling, 

production or processing was taking place, a risk evaluation should be carried out. At 

that stage, such an evaluation would have been mainly qualitative. As part of the 

approval procedure for a new production platform in the Norwegian Sector, the NPD 

required submission of a general development plan, containing a safety evaluation of 
the platform concept. The NPD issued its "Guidelines for Safety Evaluation of Platform 
Conceptual Design" in 1981 (Vinnem, 2007). Although these were only guidelines, not 

regulations, they were followed very closely by Norwegian operators. The resulting 
studies became known as Concept Safety Evaluations (CSE). The CSE is a form of 

overall risk assessment of a platform, addressing the risk of impairment of safety 
functions. The safety functions are the escape routes, shelter areas (usually the living 

quarters) and the main support structure of the platform. CSEs produced a major 
improvement in Norwegian platforms. 

In the UK sector prior to Piper Alpha, QRA tended to be applied to specific aspects of 
the design, rather than to overall risks. Consequently, it was mainly used as part of the 
detailed design when the scope for changes was limited. The Piper Alpha accident in 

1988 provided tragic confutation that the major accident predictions which risk analyses 
had made were indeed realistic, and that QRA could be useful in trying to reduce the 

risks. QRA techniques were then applied to many platforms in the UK sector, as 

operators attempted to discover the extent of their exposure to fire and explosion 

hazards. The Department of Energy requested operators to re-evaluate emergency 

isolation arrangements for subsea pipelines and risers (the vertical sections connecting 
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pipelines to the platform); these concentrated studies on riser hazards and the effect of 

installing Sub Sea Isolation Valves (SSIVs) isolate the installation from the inventory of 

the pipeline). QRA was found to be an appropriate tool for evaluating the relevant 

hazards (fire and explosion, dropped objects, valve reliability, diving risks, etc). 

As a result of this activity, significant reductions of risk were achieved on many 

platforms by moving or installing isolation valves on risers and sub-sea pipelines by 

relocating accommodation in extreme cases. The effects were not confined to the UK 

sector, because multi-national oil companies applied similar safety evaluation to their 

offshore operations. Thus in the few years following the Piper Alpha accident, QRA 

was applied to platforms in areas as diverse as Australia, New Zealand, Malaysia, 

Brunei and Canada. The influential Lord Cullen Report on the Piper Alpha accident 

recommended a major change to a more modem system of safety regulation in the UK 

sector, symbolised by the transfer of responsibility to the Health & Safety Executive 

(HSE). Subsequently, the HSE Offshore Safety Division launched a review of all 

offshore safety legislations and implemented changes. The objective of this work was to 

seek a more goal setting regime to replace legislation which was regarded as 

perspective (Wang, 2002). The mainstay of the regulation is the Health and Safety at 
Work Act, under which a draft of the offshore installation (safety case) regulations was 

produced (HSE, 1991). It was then modified to incorporate the comments arising from 

public consultation. The regulation came into force at the end of May 1993 for new 
installations and November 1993 for existing installations. The regulation requires 

operational safety cases to be prepared for all offshore installations, including both 

mobile and fixed ones. In addition, all new fixed installations are required to have a 
design safety case in place. For mobile installations, the duty holder is owner. The SCR 

establishes a clear guidance as to what a safety case should include with respect to the 

design and operations of a particular type of offshore installation. Particular 

requirements to be included in a safety case for the design, operation, abandonment and 

well operations of different installations are also given. Installation cannot legally 

operate without such a safety case demonstration that has been approved by the 

Offshore Safety Division of HSE. 
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Risk criteria are standards that represent a view of regulators of how much risk is 

acceptable or tolerable (HSE, 1995a). A framework for decision on the tolerability of 

risk posed by the HSE is shown in Figure 2.1, where there are three regions, namely, 

intolerable, ALARP and broadly acceptable (HSE, 1995a). The risks in the intolerable 

region cannot be justified on any ground. In the region of ALARP, the risks must be 

reduced by introducing control measures towards the acceptable region. The residual 

risks remaining in this region will be tolerable only if further risk reduction is 

impracticable or its cost required is grossly disproportionate to the improvement gained. 

There is no need to demonstrate ALARP in the broadly acceptable region. However, it 

is necessary to take any measure to assure that the risks remain at this level. An 

accepted operational safety case must be capable of demonstrating that hazards with the 

potential to cause major accidents have been identified, and that associated risk have 

been evaluated and reduced to ALARP using appropriate measures. It is noted that since 

the uncertainties in input may be high the application of QRA may not always be 

appropriate (Wang, 2002). Therefore, the acceptance of a safety case is unlikely to rely 

solely on a QRA. 

Negligible Risk 

Figure 2.1 The HSE framework for decision on tolerability of risk 

16 



QRA is a relatively new technique. In general, there is lack of agreed approaches and 

poor circulation of data, resulting in wide variation in study quality. In some areas, 

accident data has not been collected or analysed, and no theoretical models are available, 

so that risk estimates are inevitably very crude. In other areas, availability of data and 

analytical techniques are being developed rapidly, and the risk estimates tend to 

fluctuate as a result. Because it is quantitative, QRA appears to be objective. However 

in reality it is very judgmental. These judgments may be explicit in situations where 

data is unavailable. There are also many implicit judgments in the analysis and 

application of available data which are often unrecognized. Overlooking the 

significance of these judgments may lead to false precision in the risk estimates. Over- 

emphasis on the judgmental nature of a QRA, on the other hand, may lead to its 

potential benefits being overlooked. 

QRA only provides one input to decision-making about safety issues, and most of its 

advocates recognize that it cannot be used to make the decision itself. There are other 

aspects, such as public dread of particular sources of risk, which QRA does not take 

into account at present. Decision-making about hazardous activities is legitimately 

influenced by many other economic, social and political factors besides risk, which 

need to be considered simultaneously in the decision-making process. 

2.2.1 Safety case approach 

The concept of the safety case came from the principle of safety assessment of system 

engineering or installations in which little or no previous operational experience exists 

(Kuo, 1998). There are five key elements in the safety case approach, namely, hazard 

identification, risk assessment, risk reduction, emergency preparedness and Safety 

Management System (SMS) (Wang, 2002a). 

1. Hazard identification 

The mission of this step is to identify all hazards that have the potential to cause a major 

accident. Hazard identification is the process of systematically identifying all hazards 

and associated events that could have negative consequences. The process is also 

concerned with the application of brain-storming techniques conducted by trained and 
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experienced personnel to determine the hazards. Therefore, it is often a qualitative 

exercise based on the expert judgement. 

2. Risk assessment 

Once the hazards have been identified, the associated risks will be evaluated using risk 

assessment techniques. The techniques employed may include qualitative, quantitative 

and semi-quantitative or some other risk assessment techniques such as approximate 

reasoning methods. It depends on circumstances encountered. 

3. Risk reduction 

The risk reduction measures will be identified based on the results of risk assessment 

obtained from Step 2. The purpose of this step is to deliver effective and practical RCOs 

to manage the risks. The hazards that have high probabilities of occurrence and severity 

consequences will have the priorities to be dealt with. 

4. Emergency preparedness 

The objective of this step is to ensure that the appropriate actions have been taken in the 

event that a hazard has become a reality so as to minimise the negative consequences 
caused. 

5. SMS 

The aim of a SMS is to demonstrate that the organisation is achieving the safety goal 

efficiently without jeopardising the environment. This is regarded as one of the most 
important factors of the safety case approach. 

Conventional risk assessment methods with cost benefit approaches can be employed to 

prepare a safety case. The objective of incorporating the cost benefit approach into a 

safety case is to ensure that the measures or RCOs proposed are cost effective. This is 

achieved by comparing the cost of the proposed RCO with its potential benefits 

including risk reduction. It should be noted that significant uncertainties in the data, 

information and factors may be encountered in the decision making process. Therefore, 

there is a need to apply common sense and to ensure that any uncertainties are identified 

and addressed (UKOOA, 1999). 
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2.2.2 Relevant regulations and standards 

There are several countries that have legislation for the use of QRA studies in the 

design and operational phases of offshore installations: 

" Canada 

" Australia 

" Norway 

" United Kingdom 

The following is a brief summary of the requirements of the legislation in these 

countries except for the UK, which are discussed in some depth throughout this section: 

1. Canada 

In association with a newly developed proposal in Canada, a conceptual safety analysis 
is required. The field development proposal needs to define how the analysis will be 

met, and to state the "target level of safety" that has been defined as acceptance criteria 
for risk. The development proposal shall also define a "Risk Assessment Plan" which 

should contain a list of various specific risk and safety analyses that may be required at 

the detailed design stages. It should also provide a plan for the completion of these 

studies and analyses and an explanation of how these analyses are integrated into the 

design process. Finally, it should provide an explanation of the methodologies to be 

utilised and a discussion of their validity and relevance in the overall process. 

2. Australia 

The National Offshore Petroleum Safety Authority 2004 (NOPSA 2004) has issued 

safety case guidelines. These regulations call for safety case to be prepared for all 

installations and to demonstrate that risk has been reduced to an ALARP level. 

3. Norway 

Use of QRA studies in the Norwegian offshore industry date back to the second half of 

the 1970s. A few pioneer projects were conducted at that time, mainly for research and 

development purposes, in order to investigate whether analysis methodologies and data 
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of sufficient sophistication and robustness were available. The next step in the 
development of QRA came in 1981 when Norwegian Petroleum Directorate (NPD) 

issued guidelines for safety evaluation of platform conceptual design (NPD, 1980). 

These regulations required QRA to be carried out for all new offshore installations in 

their conceptual design phases. NPD published a new set of regulations in 2001, which 

replaced the risk analysis and technical regulations from 1 January 2002. The 

requirement of risk analysis and other analyses were stipulated in the Health, 

Environment and Safety (HES) Management regulations. These regulations have 

requirements for analysis of risk as well as requirements for the definition of risk 

acceptance criteria. NPD was divided into two organisations from 1 January 2004 and 
the safety division of NPD was separated as a new organisation namely Petroleum 

Safety Authority (PSA). At the same time, PSA took over the responsibility for 

ensuring the safety of 6 onshore facilities in the petroleum sector, terminals and 
refineries. The HES management regulations were controlled by PSA. The SCRs were 
modified in 2005 and these revisions came into force from 5 April 2006 (Aven & 

Vinnem, 2007). 

4. UK 

The offshore regulatory regime was completely rewritten as the consequence of the 
Piper Alpha in 1988, based on the recommendation from the inquiry chaired by Lord 
Cullen (1990). The following regulations have been issued: 

" SCR (HSE, 1992). 

" Prevention of Fire and Explosion and Emergency Reponses Regulations 
(PFEERR) (HSE, 1995a). 

" Management and Administration Regulations (MAR) (HSE, 1995b) 

" Design and Construction Regulations (DCR) (HSE, 1996) 

The PFEER regulations (HSE, 1995a) imply important requirements for active and 

passive safety systems, as well as emergency preparedness systems and functions. The 

purpose of these regulations is to ensure that protection measures against fire and 

explosion are used to make a risk level in the ALARP, and that sufficient arrangements 
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are in place in order to provide a good prospect of rescue and recovery for personnel in 

all reasonably foreseeable situations. Operators are according to these regulations 

required to: 

" Take measures to prevent fire and explosion and provide protection from any 
which does occur. 

" Provide effective emergency response arrangements. 

A risk based approach is recommended to deal with problems involving fire, explosion 

and emergency response. The need for risks to be ALARP is the basis for using a risk 
based design in relation to fire and explosion. 

The MAR regulations (HSE, 1995b) were developed to deal with areas such as 

notification to the HSE of owner or operator changes or functions and powers of 

offshore installation managers etc (HSE, 1995b). The regulations are applied to fixed 

and mobile offshore installations, excluding subsea offshore installations. The 

importance of offshore pipeline safety has also been recognised. Pipeline Safety 

Regulations 1996 (PSR, 1996) were introduced to embody a single integrated, goal 

setting and risk based approach to regulations prescribing the safety issues to both shore 

and offshore pipelines (HSE, 1996a). 

The SCR was amended in 1996 to incorporate verification of safety critical elements 
(HSE, 1996 b). Safety critical elements are the components of an installation or its 

plants, including computer programmes. Failure of these components may cause or 

contribute substantially to a major accident. Thus, the amendment objective is to 

prevent or mitigate the consequences. Offshore installation and wells (Design and 

construction, etc. ) regulation 1996 (DCR, 1996) were launched to deal with various 

stages of life cycle of installation (HSE, 1996c). The DCR 1996 permitted the offshore 

operator to have a more flexibility to deal with their own safety problems. ̀  This 

encourages safety analysts to develop and employ novel safety assessment and decision 

making approaches to tackle offshore safety problems. 

The offshore safety regulations, including SCR, in the UK are aimed at establishing a 

more goal setting regime. This is accomplished by defining specific duties of operators 

and setting forth high level safety objective while leaving the selection of particular 
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hazard arrangements in the hands of operators. This is because hazards encountered by 

each installation may be specific subject to its unique functions and operating 

conditions. 

23 Pipeline safety and regulations 

Offshore pipelines operate in a physically and technically demanding environment. 
They are subject to severe weather, shifting sediments (especially in some areas of the 

Gulf), and a constant threat of corrosion. They also face seismic risks in some places. 
New pipelines are being installed in deeper waters, farther offshore, where the large gas 

and oil discoveries have been made, but where operation and maintenance present even 

greater challenges. The costs of inspection, maintenance and repair are also generally 
far greater than the ones on-shore. 

The rapid growth in the number of firms operating offshore pipelines has caused some 

concerns, because many are new entrants who have assumed control of major operators' 

older and less profitable pipelines in hopes of lowering operating costs. Today there are 

about 170 pipeline operating companies in the Gulf, up from about 65 a decade ago by 

National Research Council of US (NRC, 1994). It is essential that attempts to cut costs 
do not interfere with adequate pipeline maintenance and safety. At the same time, all 

pipeline operators must contend with new regulatory costs, notably those entailed in the 

new standards for controlling oil pollution under the Oil Pollution Act of 1990. 

Pipelines must share the seabed and waters with vessels of all types, near some of the 

most heavily used cargo ports and some of the most productive commercial and 

recreational fisheries. The potential for interference with other users was underscored in 

the late 1980s by two fatal accidents in which fishing boats operating in shallow waters 

struck inadequately buried pipelines, with ensuing explosions, injuries, and deaths 

(Joint task force on offshore pipelines, 1990; National Transportation Safety Board 

(NTSB), 1990). A more general concern is pipeline damage caused by anchors and 

fishing gears. Gas field service and supply boats are a particular concern near platforms, 

where their manoeuvring threatens pipeline risers and their anchoring can damage 

pipelines on the seabed. In addition, hurricanes, mudslides and other natural forces can 
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also damage pipelines or cause them to fail. Hydrocarbon spills from storms can be 
limited by shutting down and evacuating the platforms and pipelines. 

The ongoing shift of production to deeper waters will increase the need for attention to 

safety. Much of the existing offshore pipeline infrastructure, and particularly the 

transmission pipelines, will remain in service, carrying hydrocarbons from the new 
deeper fields. Deep water pipelines are relatively inaccessible to workers, and they 

operate at low temperatures, which encourage the formation of corrosive brines, ice like 

gas hydrates and waxes. As a result, inspection and maintenance problems will require 

new and innovative solutions. 

These trends have led the industry and its safety regulators to re-examine their 

approaches to ensuring safety. They are asking fundamental questions (NRC, 1994): 

" What are the risks, and are they growing? 
" Is maintenance technology keeping pace with the aging of the pipelines? 
" Are today's inspections and repair techniques suitable for the new deep water 

pipelines? 

" Are the measures taken to avoid interactions of pipelines with fishing vessels, 
cargo vessels, offshore supply and service boats, and recreational boats adequate? 

" Do hydrocarbon spill prevention and response requirements harmonize with the 

regulations to ensure personnel safety and protection of property? 

" Do the industry and its regulators collect the right data to support decisions 

about risk abatement? 

The hazards presented by offshore pipelines are not to be taken lightly; resulting in 

environmental and property damage, human injury and death. Vessels manoeuvring in 

shallow water may dent or rupture pipelines, releasing explosive or environmentally 
damaging hydrocarbons. In deeper water, fishing vessels sometimes snag nets and other 

gear on valves and other pipeline features, tearing the nets and occasionally causing 

leaks. Larger vessels may drag their anchors across pipelines, bending or cracking them. 

Internal and external corrosions are pervasive threats of leaks. Storms and seafloor 

mudslides may move, damage, or expose once-buried pipelines, allowing anchors and 
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nets to foul them. Objects dropped from vessels or platforms can also damage pipelines. 
During the late 1980s the 17,000 miles of pipeline in the waters of the U. S. Outer 

Continental Shelf (USOCS) experienced a leak or other reportable failures about once 

every five days, owing to one or another of aforementioned causes (Woodson, 1991). 

Injury or loss of life as a result of pipeline damage is rare, but not unknown, and it is 

these risks that are perhaps most prominent in the public mind. Natural gas and natural 

gas liquid pipelines in particular (about 70 percent of the marine pipeline mileages) hold 

the potential for explosions. A series of dramatic accidents in the late 1980s, involving 

natural gas explosions associated with pipeline damage, resulted in deaths, injuries, and 

substantial property damage. 

The Sea Chief accident. In July 1987, while working in shallow coastal waters off 
Louisiana, the menhaden purse seiner Sea Chief struck and ruptured an 8-inch natural 

gas liquids pipeline operating at 480 psi. The resulting explosion killed two crew 

members. Divers investigation found that the pipe, installed in 1968, was covered with 

only 6 inches of soft mud, having lost its original 3-foot cover of sediments. 

The Northumberland accident. October 1989 saw a strikingly similar accident, with 

even greater consequences. The menhaden vessel Northumberland struck a 16-inch gas 

pipeline in shallow water near Sabine Pass, Texas. The vessel was engulfed in flames; 

11 of the 14 crew members died. The pipeline, installed in 1974 with 8 to 10 feet of 

cover, was found to be lying on the bottom, with no cover at all (NTSB, 1990). 

Sonat/Arco, South Pass 60. In March 1989 a flash fire and explosion occurred on a 
Sonat/Arco platform in lease block South Pass 60, during repair of an associated 

pipeline. Seven of the platform crew died, and ten others were injured. Property damage 

was estimated about $70 million. The investigation showed that the incident had been 

caused by human error, leading to the sudden release of gas and liquids from the 

pipeline cut during repair work (which had been occasioned by damage from an anchor 

line). The repair was complicated by the operator's failure to update pipeline drawings, 

which left the workers unaware of a subsea valve assembly that would have made the 

repair easier and safer (U. S. Department of Transportation, 1989). 
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Reported causes of pipeline failures are not reliable; they are often determined by 

guesswork, without complete investigation or repair. Follow-up or "supplemental" 

reports are sometimes not made (U. S. Department of Transportation, 1989). In addition, 
different categories of causes cannot be regarded as entirely distinct, because of the 

likelihood of multiple failure modes. For example, a corrosion-weakened pipeline 

ruptured by storm or anchor damage would generally be reported as failure due to storm 

or anchor damage, not corrosion. Causes of failures are categorized differently by the 

three analysts (Table 2.1). For comparison, they can be divided into the following broad 

categories: 

" Corrosion (external and internal). 

" Maritime activities (anchors, nets, trawls, and vessel contact). 
" Natural forces (storms, hurricanes, and mudslides). 
" Material failure. 

" Other unknown. 

Table 2.1 Causes of offshore pipeline incidents (NTSB, 1990) 

Cause of failure Woodson (Mineral Mandke (Mineral Broussard ( Office of 
Management Service Management Service Pipeline Safety (OPS) 

(MMS) data, 1970-1990) (MMS) data, 1970-1990) data, 1984-1990) 
Corrosion (Internal and 50% (456) 50% (343) 45% (114) 

external) 

Maritime activities (nets, 14%(124) 21%(138) - 
vessel contact and etc. ) 

Natural force (mudslide, 12% (106) 12% (82) 31% (78) 

storms and etc. ) 

Material failure 10% (94) 9% (63) 14% (36) 
Others 15% (136) 9% (63) 10% (24) 
Total 100% (916) 100% (690) 100% (252) 

Corrosion is the most likely cause leading to pipeline incidents. In Woodson's analysis 
in Table 2.1, for example, corrosion is the most widely reported cause of failure (50 

percent of the incidents whose cause is reported), followed by maritime activities 
(anchor and net damage and vessel collisions) at 14 percent and natural forces (storms 

and mudslides) at 12 percent. 
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It is impossible to draw firm conclusions about the relative roles of internal and external 

corrosion, because more than one-third of the corrosion failure reports do not specify 

the location of corrosion. Mandke's (1990) analysis showed that about 70 percent of 

corrosion failures occurred in lines of 10 inches or less in diameter, and that 78 percent 

took place at platforms, either in risers (vertical pipeline extensions from the seabed to 

the surface) or on the adjacent seabed. Industrial experience suggests that many of these 
failures occur in production flow lines, in risers (through external corrosion in the 

splash zone or under clamps), and at the pipe bend where the riser meets the seabed 
(through internal corrosion on the pipe bottom) (Mandke's, 1990). However, the data is 

insufficient to establish these patterns without doubt. Analysis of offshore pipeline 
incidents is extremely difficult, due to the inconsistency of data collection by the 

various agencies without a shared focus on safety planning in data collection. 

The lack of consistent and comprehensive data on the safety record of offshore 

pipelines is a severe challenge for safety planning. Several public agencies that regulate 
the industry have varied missions. Their individual efforts to investigate failures have 

not led to the development of a comprehensive safety data base. Data is collected 
inconsistently, without a well-thought-out or coordinated plan, and without a consistent 
focus on safety planning. Reports are often incomplete or inconclusive. Risk assessment 

and safety management on the basis of such limited information is challenging, but not 
impossible. Modem techniques of risk analysis can guide the industry and its regulators 
in setting risk assessment and safety management priorities. Some of these techniques 

are outlined in this research, along with the framework of a risk analysis approach that 

could be applied to the offshore pipeline industry. 

Risk assessment and safety management has been widely developed by both 

governments and operators of gas pipeline systems. In the United States, an executive 

order 13010 establishing the President's commission on critical infrastructure protection 

was issued on 15 July 1996. This order developed a national strategy for protecting 

infrastructure from various threats in order to assure their continued operation (Clinton, 

1996). In President's commission on critical infrastructure protection, a gas pipeline 

system is considered as one of the critical infrastructures. In May 1998, a Presidential 

Decision Directive 63 (PDD63) was issued to call for a national effort and assure the 
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security of the increasingly vulnerable and interconnected infrastructures in the USA 

(Clinton, 1998). The U. S. Department of Energy established the Office of Energy 

Assurance (OEA) to direct the department's activities in accordance with (PDD-63) and 

the priorities established by the Secretary of Energy. From May 1998 to September 

2001, a team of experts was established to work within the energy industry (electric 

power, oil, and natural gas), and perform a series of vulnerability assessments as part of 

OEA's vulnerability assessment and survey program (OEA, 2001). The goal of such an 

assessment is to help the organizations in the energy-sector to identify and understand 

the existing threats and the vulnerabilities (physical and cyber) exposed to the 

infrastructure, and to stimulate actions to mitigate those with severe consequences. 

In the UK, "A Guide to Risk Assessment and Risk Management for Environmental 

Protection" and "Guidelines for Environmental Risk Assessment and Management" 

were published in 1995 and 2000 respectively. They suggested risk assessment and 

management as essential elements of structured decision making processes across the 

government (DETR, 1995; DETR et al, 2000). The guidelines set out some basic 

principles which the Department of the Environment, Transport and the Regions (DETR) 

and Environmental Agency (EA) would normally intend to use in the assessment and 

management of risks and which are recommended for all public-domain risk 

assessments (DETR et al, 2000). They also provided decision makers, practitioners and 

the public with a consistent language for risk assessment. 

In risk management of pipelines, QRA was not common among most EU countries 
(Papadakis, 2000). By tradition, standards and design rules applied to pipelines were 

"deterministic" in their approach, to ensure safe operation without explicit reference to 

risk assessment. Risk assessment emerged as an important engineering discipline in 

some Australian states (including WA) and American states (Parfomak, 2007). For 

example, the Pipeline Committee of Standard Australia (ME/38), was incorporated in 

AS2885 (part 1 issue 1997), a uniform risk methodology (DOCEP, 2006) for risk 

estimation of hydrocarbon pipelines. A qualitative approach was used in this standard, 

whereby threats to pipeline integrity were systematically identified and corresponding 

risks could be assessed throughout the entire length. Qualitative methods are used first 

of all in the verification of concordance of safety level with valid principle contained in 
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legal regulations and standards. These rules usually refer to separate devices and 

represent the minimum requirements that must be satisfied to reach an acceptable safety 
level. The aim of risk analysis and safety management is to use the data and information 

that is available or readily attainable to make decisions about using resources in the 

most effective way to enhance pipeline safety. 

2.4 Risk assessment techniques 

Risk assessment has been part of decision analysis since human was able to reason. 
However, the formalised process of making decisions about risk was formed much later 

and began with probability theory. Probability is a way of expressing knowledge or 
belief that an event will occur or has occurred. In mathematics the concept has been 

given an exact meaning in probability theory, that is used extensively in such areas of 

study as mathematics, statistics, finance, gambling, science, and philosophy to draw 

conclusions about the likelihood of potential events and the underlying mechanics of 
complex systems. Aside from some elementary considerations made by Girolarno 
Cardano in the 16th century, the doctrine of probabilities dates to the correspondence of 
Pierre de Fermat & Blaise Pascal (1654), Christiaan Huygens (1657) gave the earliest 
known scientific treatment of the subject (Garrick et at., 2004). 

The widespread, fromal application of probablistic risk assessment to critical 
infrastructure began in the earliest in the late 1900s. Some typical safety analysis 
techniques developed and applied in that period include: the Risk Matrix Method 
(RMM) (Halebsky, 1989; Tummala & Lenug, 1995), Preliminary Hazard Analysis 

(PHA) (Military standard, 1999; Henely & Kumamoto, 1992), What if analysis (Pillay 

and Wang, 2003a), HAZard Operability (HAZOP) studies (Bendixen et al., 1984), FTA 

(Ang & Tang, 1984), Event Tree Analysis (ETA) (Henley & Kumamoto, 1992), 

Markov Chains (MCs) (Norris, 1998), Failure Mode, Effects and Criticality Analysis 

(FMECA) (Andrews & Moss, 2002), etc. With the further development of the 

probability theory in risk asessment, many had indicated that the applications in the 

behavior based or management based fileds were more possibilisstic than probablistic, 

more experience than analytical based and more qualitative than quantitative (Yang, 

2006). It has been stated that safety anlysis can be generally divided into two broad 

28 



categories namely quantitative and qualitative analysis (Wang & Ruxton, 1998). 

Historical casualty data and information play an important role in safety analysis. If 

historical data is avaialble, quantitative method can be employed to perform analysis. 

FTA and ETA are the most widely used modelling methods for risk analysis. A fault 

tree is a logic diagram presenting the casual relationship between events which 
indiviually or collectively contribute to occurrence of a higher level event. Thus, the 

probability of occurence of a specific hazard can be determined. In addition, FTA is 

capable of considering common cause failures in systems with redundant or standby 

elements. It also has the capability of contemplating failure events or causes related to 

human errors. FTA is a top down approach, systemically considering the causes or 

events at levels below the top level. Prior to the use of quantitative FTA, the probability 

of occurrence of each basic event has to be obtained. If two or more need to occur to 

cause the next higher level event simultaneously, a logic AND gate is employed to 

express the operation. If any of two or more lower level events can cause the next 
higher level event directly, an OR gate is applied to demonstrate such an operation. The 

logic gates determine the addition or multiplication of probabilities to obtain the values 
for the Top Event (TE). 

An event tree is a logic diagram applied to analyse the effects of unintended events. 
Such a technique first expresses the probability or frequency of an accident linked to the 

safeguard measures required to be implemented to mitigate or prevent escalation after 

the occurrence of the event. Success and failure paths lead to various consequences with 
different magnitudes. The liklihood of each consequence is finally obtained by 

multiplying the probability of occurrence of the accident by liklihood of failure or 

success in each path. 

As aformentioned, historical data is crucial for risk assessment. In theory, the reliability 

of the result obtained depends upon the data collected. Therefore, it is highly likley that 

the risk analysis techniques previously discussed will produce a reliable outcome if the 

data in hand is complete. 

However, such techniques may not be practicable in circumstances where the lack of 

data exists or the level of uncetainty associated with failure data may be unreasonably 
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high (Wang et al., 2004). This is particulary true for large offshore systems at the intial 

design stages or newly adopted processes. Only non-numerical data, which could be 

subjective may be applied at such satges. To sum up, the problems encountered by risk 

assessment researchers due to the nature of offshore operations may include (Wang et al, 

2004): 

1. Inadequacy of historical data related to many newly adopted processes and 

regulations for wells, pipelines and for many novel designs. In many cases the 

staitstical accuracy of this inadequate and limited data avaialbe for safety 

analysts may be poor. 

2. It may be difficult to quantify the probabilities of occurrence and consequences 

of hazards. This is because those hazards are associated with the operational 

process in a very changeable enviroment and therefore it may involve a high 

level of uncertainty. 

3. A large number of assumptions, judgments and opinions are involved 

subjectively in a risk quantification process. As such, considerable skills are 

required for safety analysts to interpret the results produced. 

4. It may be impracticable for all scale experimentations to be conducted due to a 
high level of cost. The use of computer simulation may be potentially possible. 

The unavailability and incompleteness of data can lead to uncertainty, in particular for 

novel offshore systems or safety processes at their initial design and operational stages. 
Uncertainty is defined as a function in which a person does not have appropriate 

quantitative and qualitative information to prescribe or predict deterministically and 

numerically a system and its behaviour or other characteristics. According to the work 

by Ang & Tang (1984), there is uncertainty in all engineering-based systems because 

these systems rely on the modelling of physical phenomena that are either inherently 

random or difficult to model with a high degree of accuracy. 

Methods for analysing and describing uncertainty can range from simple to complex 

depending on circumstances encountered. Common approaches applied to handle 

uncertainty can be divided into two different categories: those developed based on 
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probabilistic analysis, including classical set theory, probability theory and Bayes 

theory; and those based on possibilistic analysis, including possibility theory and fuzzy 

set theory (Eleye-Datubo, 2006). The uncertainty modelled by the methods under the 

first category is represented by a collection of estimates of the quantity and degree of 

certainty or uncertainty measured by means of the distribution values in the collection 

of such estimates. The methods falling in the second category are reasoned with an 

epistemic state using max/min calculus that is not found in the probability theory. 

Among approaches under the category of possibilistic analysis, the significance of fuzzy 

set theory is the use of linguistic variables capable of providing a flexible modelling of 
imprecise data and information. The other factor, as important as uncertainty, is 

complexity of risk assessment. The complexity of pipeline systems mainly arises from 

the composition of a large number of components and subsystems which, in turn, 

consist of further sub-subsystems or sub-components. The exact definition of 

components and sub-components depends on the level of details of the required analysis 

and the level of available data (Mays, 2004b). This introduces difficulties in 

establishing cause-effect relationships for specific risks in offshore pipeline systems. 
Therefore, both knowledge of components and their relationships are important for a 

thorough understanding of the operation of the overall system. A risk assessment would 
be effective and comprehensive if it could be consistently performed at both the 

component and the overall system levels. However, this is hard to achieve by the 

existing methods as they usually focus on one specific part of an offshore pipeline 

system. 

FMECA, HAZOP, What if analysis and PHA are qualitative methods. As previously 

mentioned, the aim of this 'research is to perform quantitative analysis of OGSS. 

Therefore, the aforementioned methods are not suitable for this research project. FTA, 

ETA and MC can be used for quantitative analysis. However, they may not be 

applicable in circumstances where the lack of data exists. Fuzzy set theory is combined 

with FTA for solving the issue. Therefore, Fuzzy FTA is tailored for performing 

quantitative risk assessment of this research project. Table 2.2 provide the advantage 

and disadvantage of all the mentioned risk assessment techniques. 
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Table 2.2 Advantages and disadvantages of risk assessment methods 

Risk assessment methods Advantages Disadvantages 

FMECA 1. It is a very structured and reliable method for 1. The approach is not suitable for multiple 
evaluating reliability of systems failures 

2. The concept and application are easy to learn 2. It can not be applied for quantitative risk 
assessment 

HAZOP 1. This method covers human errors 1. It is a time consuming method 

2. It utilizes operational experience 2. It dose not consider dependency 

between hazards 
3. This method is very suitable for operational 
stages 3. It can not be used for quantitative 

assessment 

PHA 1. This method helps to ensure that the system is 1. The effects of interactions between 
safe hazards are not considered 

2. This method is very suitable for design stages 2. This method is not suitable for 

quantitative assessment 

FTA I. This method identifies all the possible causes 1. This method is not able to calculate the 
of a specified undesired event 

probability of TE and importance of all 
2. It can be applied for operational and design possible causes in the presence of data 

stages shortage 

3. It suitable for quantitative risk assessment 2. It is not suitable for modelling dynamic 

scenarios 

1. This method identifies all the possible causes 
FFTA of a specified undesired event 1. It is not consider dependencies between 

2. It can be applied for operational and design hazards in fault tree 

stages 

3. It suitable for quantitative risk assessment 

4. This method can solve the issue of data 

shortage 
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2.5 Decision-making context 

The types of decisions and their related decision-making processes vary a lot between 

different sectors and levels in business organizations. One should consider the whole 
decision cycle including the various decision activities to understand this problem area 

(Power, 2002). 

The four typical decision elements are: 

1. Goals and relevant alternatives. 

2. Ranking of alternatives. 

3. Decision environment. 

4. Decision makers. 

2.5.1 Goals and ranking alternatives 

The first two elements above contain the basic elements of a decision situation. In 

addition to the clearly stated goals the alternatives or decision options are being limited 

and defined to a comparable level. The following sections deal with the last three 

elements in the above list. The description has been prepared on a general basis. 

2.5.2 Ranking alternatives 

A sequential decision process model, or a decision loop, is illustrated in Figure 2.2. The 

decision process typically consists of the following seven basic steps (Marakas, 2003): 

1. Define the problem. 

2. Decide who should decide. 

3. Collect information. 

4. Identify and evaluate alternatives. 

5. Decide. 
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6. Implement. 

7. Follow-up and assess. 

1) Define the 
problem 

1. Define the problem 

2) Decide who 
should decide 

7) Follow up and 
assess 

I4 --ý 

3) Collect 
information 

6) Implement 
14 ý 

Figure 2.2 A general decision process model 

4) Identify and 
evaluate problem 

5) Decide 
T 

A well-defined problem is of great importance for the quality of decisions. If the 

problem is wrongly or not thoroughly defined, it may be impossible to make a decision. 

The complexity of many organizations sometimes makes it hard to identify the "real" 

problem. A typical confusion is not to distinguish between the symptoms of the problem 

and the problem itself. A symptom is evidence of a problem but not necessarily the 

problem itself (Marakas, 2003). 

A number of tools and actions may assist in problem identification. Diagnosis is the 
identification of problems or opportunities for improvement in the current decision- 

making behaviour. Diagnosis involves determining how decisions are currently made, 

specifying how decisions should be made, and understanding why decisions are not 

made as they should be. Diagnosis of problems in a decision process involves 

completing the following three activities (Marakas, 2003): 

" Collect data on current decision-making using techniques such as interviews, 

observations, questionnaires and historical records. 

" Establish a coherent description of the current decision process. 

" Specify a norm for how decisions should be made to improve decision-making 

in the future. 

2. Decide who should decide 
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A decision process can be categorised according to the degree of involvement and 

engagement of individuals. The three categories are an autocratic, a consultative, or a 

group decision process (Power, 2002). Individual decision makers make decisions by 

themselves in an autocratic way with the available information. Finally, a group 
decision process is characterised as participative by involving members of the group in 

the decision-making itself. Criteria for choosing an autocratic, a consultative, or a group 
decision process are (Power, 2002): 

" The need for acceptance of the decision. 

" The adequacy of available information. 

" The subordinate acceptance of organizational goals. 

" The likelihood of a conflict situation regarding a preferred solution. 

3. Collect information 

Information is collected based on a definition of the factors that affect the problem 
together with the viable alternatives. The cost of collecting data must always be 

weighed against the expected benefits. The information systems available may provide 
the relevant information for decision-making in an effective manner at an acceptable 

cost. 

4. Identify and evaluate alternatives 

The most creative part of decision-making is the identification of the set of alternatives 

and determining what criteria should be used in the evaluation of options. 

5. Decide 

Making a decision is to commit to a course of action or inaction. In some situations, a 

decision must be made if it is required or demanded by circumstances, customers, or 

stakeholders. Decisions are then sometimes made with less information than one would 

like, and with some feasible alternatives not properly evaluated or considered. In these 

situations no decision may be taken pending on more information to be collected. A 

Decision Support System (DSS) may potentially reduce procrastination and indecision 
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by helping to structure the decision situation and to gather the necessary information 

more easily. DSS may help to weight and structure qualitative criteria, like company 
impact, reaction of competitors, and general reputation. Most of the focus in this section 
deals with topics related to the decision-step in the general decision process model, as 

shown in Figure 2.2. 

6. Implement 

A decision or choice among alternatives is the culmination of one specific decision 

process. DSS may help communicate decisions, monitor plans and actions, and track 

performance. 

7. Follow-up and assess 

Because situations do not remain the same for a long time, managers are often dealing 

with problems that grew out of solutions chosen for previous problems. The completion 

of one decision loop may lead to consciousness about new problems based on the 

original problem definition. DSS helps in monitoring, following-up, and assessing such 

consequences as well. 

2.5.3 Decision environment 

The decision environment may be both internal and external. Factors in the internal 

environment influencing decisions include (Marakas, 2003): 

1) People, and their goals, experience, capabilities, and commitments. 

2) Functional units, including the technological characteristics, independence, 

interdependence, and conflict among units. 

3) Organization factors, including goal and objectives, processes and procedures, 

and the nature of the product or service. 

External decision environmental factors may be laws and regulations, and demands 

from external stakeholders. 

36 



2.5.4 Decision makers 

Different types of decision makers need support that is adapted to their problem 

contexts. The classification of decision makers has been utilised (Murphy et at., 1999): 

" Individual decision maker. 

" Multiple decision makers. 

" Group decision maker. 

" Team decision maker. 

The individual decision maker stands alone in the final decision process. The decision 

rests on his/her unique characteristics with regard to knowledge, skill set, experience, 

etc., and individual biases come to bear in the decision process. 

Multiple decision makers comprise several people interacting to reach a decision. Each 

member may come with a unique motivation or goal and may approach the decision 

process from different angles. They do not necessarily meet in a formalised manner to 

conduct discussions as a unit. In contrast, a group decision maker is characterised by 

membership in a more formal structure where members of the group share similar 

interests in the decision outcome. Each member is involved in the making of a decision 

based on consensus of the group, but none possesses any more input or authority to 

make the decision than any of the others. 

The team decision maker is a combination of the individual and group classification. 
The team produces the final decision, but the formalization of that decision and 

authority makes it rest with an individual decision maker. The decision support may 

come from several individuals empowered by the key individual decision maker to 

collect information. In this context the team produces the final decision, but the 

authority to make it rests with the individual team leader. 

2.5.5 Categorization of decisions 

Decisions may be categorised according to the level of certainty of each decision 

outcome. The following categories may be used: 
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" Decision under certainty. 

" Decision under uncertainty. 

2.5.5.1 Decisions under certainty 

Decisions under certainty mean that the decision maker has perfect knowledge about the 

alternatives and their typical outcomes (Hitt et al., 1983). Such decisions are the 

simplest for a manager to make, but are quite rare. This category is of minor relevance 

to the current problem context because most of the decisions in marine and offshore 

engineering are taken under risk and uncertainty, without a perfect knowledge. 

2.5.5.2 Decisions under uncertainty 

Decisions made under conditions of uncertainty are the most common types for 

managers. Sometimes there is not enough information to estimate the probability of the 

potential outcomes. Thus, it is termed as a decision under uncertainty. In well 

engineering the potential outcomes from main decisions are typically known, but the 

probabilities are not. Uncertainty is then related to the restricted information or lack of 

information on which to base the analyses or to reliably estimate the probabilities of 

known outcomes (Hitt et al., 1983). Another interpretation of uncertainty also involves 

the utility as a measure of the desirability of outcomes or otherwise the consequences of 

decisions. The decision elements, probability and utility are related dually. In a sense, 

the probability element is a function of our information at any given time and utility 

element is an expression of our preferences are both subjective (Jordaan, 2005). 

Decisions made under uncertainty are perhaps the most difficult of all decision 

situations. 

Hwang & Yoon (1981) proposed the TOPSIS method which is a multiple criteria 

method to identify the best solution from a finite set of points. TOPSIS is one of the 

effective methods and it is also widely accepted multi-attribute decision-making 

technique due to its sound logic simultaneous consideration of the positive-ideal and the 

negative-ideal solutions and easily programmable computation procedure. The basic 

principle is that the chosen points should have the "shortest" distance from the positive 

ideal solution and the "farthest" distance from the negative ideal solution. The 
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advantages for TOPSIS include (a) rationally comprehensible concept, (b) good 

computational efficiency, (c) ability to measure the relative performance for each 

alternative in a simple mathematical form (Yeh, 2002). In the traditional TOPSIS model, 

the measurement of weights and qualitative attributes did not consider the uncertainty 

associated with the mapping of human perception to a number (Makridakis et at., 1983). 

The concept of applying fuzzy numbers to TOPSIS was first suggested by Chen & 

Hwang (1992), but their fuzzy TOPSIS algorithms are incomplete. The main steps of 

multiple criteria-attribute (complex) decision-making are as follows: 

a) Establishing system evaluation criteria that relate system capabilities to goals. 

b) Developing alternative systems for attaining the goals (generating alternative). 

c) Evaluating alternatives in terms of criteria (the values of the criterion functions). 

d) Applying a normative multi-criteria analysis method. 

e) Accepting one point as "optimal". 

f) If the final solution is not accepted, gather new information and go into the next 
iteration of multi-criteria decision-making. 

Steps (a) and (e) are performed at the upper level, where decision makers have the 

central role, and the others are mostly engineering tasks. For step (d) a decision maker 

should express her/his idea about importance of criteria to determining their weights. 
These weights do not have clear economic significance, but they match model with 

actual concepts of decision making. By considering this fact that in many cases 
determining precisely the exact value of the attribute with respect to criteria is difficult, 

their values are considered as fuzzy data. Therefore the concept of TOPSIS is extended 

to solving problems under uncertainty. 

2.6 Conclusion and discussion 

In order to ensure the origination of the study, this chapter gives a comprehensive 
literature review associated with risk assessment of offshore pipeline systems. It 

emphasizes the explanation of applying uncertainty treatment methods and techniques 

to risk assessment and decision making in previous studies. The offshore industry has 

been moving towards a risk-based and goal-setting regime since the 1990s. Traditional 
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risk assessment techniques such as FTA and ETA are capable of providing results with 

confidence if historical data are available. However, they may not be applicable in 

circumstances where the lack of data exists or the information available consists of high 

level of uncertainty. Therefore, risk analysis in such circumstances strongly relies on 
human judgement. Different techniques including AHP, Evidential Reasoning (ER) and 

FTA can be incorporated respectively into risk assessment and fault tree frameworks 

with fuzzy set theory to facilitate the analysis performance and provide results with 

confidence. In a decision making process, many factors need to be considered when 

evaluating the RCOs for an OGSS. Under such circumstances where the factors 

considered have different attributes, the best RCOs will be identified using the 

FTOPSIS approach. The objective of this PhD research is to establish a platform of risk 

assessment and safety management consisting of various frameworks addressing OGSS 

safety without jeopardising the efficiency of OGSS operations under circumstances 

where the lack of data exists or high level of uncertainty is presented. 
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Chapter 3 

Object Oriented Approach of OGSSs 

Summary 

Frameworks of risk assessment are developed in this chapter based on the concept of 
OOA and characteristics of OGSSs. Object-oriented hierarchy is developed to represent 

the relationships among components, subsystems, and the overall system. Furthermore, 

for a component at the lowest level in the hierarchical structure, an object state 

transition diagram describes the objects state due to influence of hazards. It is proposed 

that two frameworks are developed for risk assessment using an object oriented 

structure and object transition diagrams. The former framework will be used in 

conducting an aggregative risk assessment whilst the latter will be used in the FTA. 

3.1 Introduction 

Frameworks of risk assessment are developed in this chapter based on the concepts of 

an OOA and the characteristics of OGSSs. Firstly, Section 3.2 introduces the basic 

concepts of OOA and their potential in dealing with the complexity of OGSSs. Then in 

Section 3.3, an object-oriented hierarchy is developed to represent the relationships 

among components, subsystems, and the overall OGSS. Furthermore, for the 

components at the lowest level in the hierarchical structure, object state transition 
diagrams are used to describe the state transitions due to the influences of multiple 
hazards and threats. Two kinds of frameworks are developed for risk assessment on the 
basis of the above object-oriented structure and object state transition diagrams. One is 

for aggregative risk assessment which is discussed in Section 3.4; and the other is for 

FTA and discussed in Section 3.5. Aggregative risk assessment is to analyse the risk 

levels of different objects in an OGSS, i. e., a component, a subsystem and the overall 

system. While fault trees are used to describe the cause-effect relationships for a given 

risk in the system, these frameworks are developed at both the component and system 

levels in order to meet the requirements of a comprehensive risk assessment. 
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3.2 OOA 

3.2.1 Basics concepts 

OOA is a method that can naturally represent real-world entities and phenomena in 

terms of objects and classes (Booch, 1994; Martin & Odell, 1994; Embley, 1992). In an 

object-oriented modelling paradigm, object and class are two key concepts with which 

analysts can effectively manage complex engineering systems. These two concepts are 

also effective to organise risk information in an OGSS. 

3.2.2 Objects 

Objects are models which can be used for representing real-world entities with the 

capability of communicating with one another (Booch, 1994; Martin & Odell, 1994). 
This communication consists of messages exchanged between objects. Messages 

represent the transfer of information, materials, or energy. Components (e. g., pipe, 
pump, etc. ) and subsystems (e. g., gas source, gas distribution, etc) in an OGSS can be 

viewed as different objects. These objects are interconnected to form a system of 
supplying gas to consumers. Gas flow is the message exchanged between any two 

objects in an OGSS. 

When an object receives a message, it gives responses by altering its internal state and 
important characteristics or attributes, and generating output messages to other objects 
in the model. The way in which the object responds to messages depends on its internal 

processes and states. 

One of the most important characteristics of objects is encapsulation. This means that 
the attributes and behaviours of a component or subsystem are entirely encapsulated 
within the confines of a self-contained object. Attributes define an object's state and 
behaviours describe an object's functionality. The entire system is thus viewed as the 

combination of individual objects with different functionalities. Meanwhile the 
individual objects communicate with one another in a way that faithfully replicates their 
interactions in the real-world (Booch, 1994). In an OGSS, for example, a well can be 

viewed as an individual object encapsulating the attributes of natural gas. A gas refinery 

can be viewed as an another object which encapsulates the behaviour of removing the 
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impurities from natural gas in order to meet the standards specified by the major 

pipeline transmission and distribution companies. Similarly, a pipe in the gas system 

can be viewed as an object which encapsulates the attributes, such as length, diameter, 

age, and roughness factor, and behaviour of delivering gas. The overall OGSS is thus a 

composite object composed of interconnected individual objects (including well, gas 

refinery, pipes, etc. ). Figure 3.1 demonstrates an OGSS with its objects. 

3.2.3 Classes 

In a real engineering system, there are many objects of a specific kind. It would be 

extremely inefficient to repeat the use of the same methods in defining every single 

occurrence of that object. Thus the concept of class is proposed in the object-oriented 

approach. A class is a template or blueprint that defines the methods and variables 
included in a particular kind of object (Booch, 1994; Martin & Odell, 1994). The 

methods and variables that make up the object are defined only once in the definition of 
the class. The objects that belong to a class are called instances of the class which 

contain only their own particular values for the variables. This concept is also applied to 

a gas pipeline network with large numbers of pipes (Lewandowski, 1994). This process 

of obtaining classes is usually called generalisation in practice. Even though it is only 

an abstract concept which has no physical counterpart in real world, class plays 
important roles in helping people organise complex information in the system. 

Inheritance is an important characteristic of class. It is one of the fundamental rules 

supporting abstraction and generalisation in the OOA. Two types of class are introduced 

in generalisation process, one is called base class and the other is derived or instance 

class. Inheritance allows the derived class or instance to inherit the attributes and 
behaviours defined within the base class. In a distribution network, pipe instances are 

usually viewed as derived classes, and the general pipe class is viewed as their base 

class. Attributes (i. e., diameter, length, age, material, roughness coefficient, etc. ) and 

behaviours (i. e., deteriorating with time, delivering gas, etc. ) are defined within the base 

class. These attributes and behaviours are inherited by the pipe instances. This 

mechanism of inheritance facilitates the process of risk assessment in an OGSS by 

developing common risk models for pipe class, while repeatedly reusing these models 

in different pipe instances. 
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3.2.4 Applications of OOA 

Applications of an OOA have covered various areas in practice. An object-oriented 

paradigm has represented a major achievement in software engineering that facilitates 

modelling complex real-world problems (Martin & Odell, 1994). When properly 

applied, it can yield robust models consisting of reusable and easy to maintain 

components in different kinds of engineering systems (Booch, 1994; Solomatine, 1996; 

Ross et al, 1992; Black & Megabit, 1995). Meanwhile, OOA has also been used to 

solve engineering problems, which includes development of framework for decision 

making (Liu & Stewart, 2003), modelling of natural gas pipeline networks 
(Lewandowski, 1994), surface water quality management (Elshorbagy & Ormsbee, 

2006), management of river system and water resources (McKinney & Cai, 2002; 

Simonovic, et al., 1997; Reitsma & Carron, 1997; Tisdale, 1996), reliability and risk 

assessment (Wyss, et al., 2004; Wyss & Duran, 2002; Black & Megabit, 1995; Matsinos, 

et al., 1994), material failures (Roberge, 1996), uncertainty modelling of early design 

(Crossland, et al., 2003) etc. The effectiveness of using the OOA to deal with the 

complexity of systems has also been specifically illustrated by many researchers (Booch, 

1994; Weber & Jouffe, 2006). 

However, its potential in risk assessment of complex systems has not been investigated 

to a significant degree in the previous research. From the above discussion on 

applications of an OOA, it is identified that one of most important powers of objects 

and classes is their effectiveness in organising complicated information of engineering 

systems (Martin & Odell, 1994). Firstly, all engineering systems including OGSSs are 
designed, constructed, operated and managed in terms of objects. For an OGSS, its 

performance is determined by the performance of the consistent components or objects. 
As a result, individual objects contribute to the one of the overall OGSS. Secondly, 

most of the knowledge about the engineering system focuses on objects. For example, 

many models (including physical and statistical models) have been developed to 

represent the deteriorating process of gas pipes with time. Even though these models are 

different with their applications, they are all related to specific pipe objects in a gas 

system. These models can be viewed as the behaviours or methods of pipe objects. 

Thirdly, generalisation of classes is a straightforward way to avoid repeated work, 
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which thus makes it effective to manage the common features in a complex system. The 

above discussion shows the possibility of using an OOA as an effective tool to organise 

complex risk information in OGSSs. Such awareness motivates this study to adopt an 
OOA to develop frameworks of risk assessment. 

3.2.5 Complexity of OGSSs and OOA 

Since complexity is one of the hurdles limiting the application of conventional risk 

assessment methods, it is necessary to explicitly discuss the potential of an OOA in 

dealing with complexity of the OGSS. In order to effectively analyse complex systems, 

many researchers have carried out extensive studies on the characteristics of complex 

systems. Courtois (1985) suggested five attributes common to all complex systems on 

the of the work of simons (1982). Such five attributes are mentioned in the following 

parts. The characteristics of the OOA make it possible to deal with the complexities 

effectively. Being one of the complex engineering systems, a general OGSS inherently 

has these five attributes. The following discussion is about the effectiveness of using an 
OOA to deal with the five attributes of an OGSS. 

(1) "Frequently, complexity takes the form of a hierarchy, whereby a complex system is 

decomposed of interrelated subsystems that have in turn their own subsystems until 

some lowest level elementary components are reached. " 

Based on the above discussions, an OGSS obviously has this attribute which could be 

easily represented by using an OOA. This can be shown by a simple example in Figure 

3.1. Figure 3.1 presents the subsystems of OGSS. The object-oriented hierarchical 

structure depicts the whole/partial relationships in an OGSS, which enables to 

understand, describe, and analyse the system and its parts better (Booch, 1994). 
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OGSS 

Gas source (well) 
Gas gathering 

pipeline 
Gas holder Gas transmission 

pipeline 

Compressor 

Figure 3.1 Hierarchical structure of an OGSS 

Pipe 

Furthermore this hierarchical structure also provides a possible framework for risk 
assessment. It is obvious within the hierarchy that risk levels of an OGSS are 
determined by the risk levels of its subsystems (i. e., well, treatment unit, pipe) as well 
as the hierarchical relationships among them. The risk levels of a subsystem are further 
determined by the risk levels of its own components. Once the risk levels of each 
individual component have been determined, aggregation can then be conducted along 
the hierarchy to generate risks of the subsystems and the overall system. 

(2) "The choice of what components in a system are primitive is relatively arbitrary and 
is largely up to the discretion of the observer of the system. " 

Primitive elements in this study are deemed as the components that are indecomposable 

and at the lowest level of a hierarchical structure. They play important roles in risk 
assessment. However, the determination of primitive elements is arbitrary and depends 

a lot on the observers of the system because they have different choices of what 
components are primitive in practical risk assessment. As an example shown in Figure 

3.1, a project manager is usually interested in the risks of the overall system (i. e., the 

risks associated the object at the top of the hierarchical structure) while a gas treatment 

manager is only interested in the risks within the gas treatment plant which is 

represented as an object at the second level of hierarchy. Pipe engineers are always 
interested in the risks associated with different pipes at the bottom level of the 

hierarchical structure. Due to the different interests of stakeholders, difficulties are 

consequently introduced in risk assessment of an OGSS. No matter which components 

are primitive, they are directly related to specific objects in the object-oriented 
hierarchical structure. This structure can be either truncated at higher levels or extended 
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to lower levels with the changes of primitive elements. This therefore provides a 

consistent and flexible way of developing hierarchies for different users. 

(3) "Intra-component linkages are generally stronger than inter-component linkages. 

This fact has the effect of separating the high frequent dynamics of the components, 

involving the internal structure of the components, from the low frequent dynamics 

involving interaction among components. " 

This difference between intra- and inter-component interactions provides a clear picture 

of separating various parts of an OGSS, which makes it possible to study risk levels of 

each part in relative isolation. The object-oriented hierarchical structure in Figure 3.1 is 

developed with respect to this attribute. For a primitive element in this structure, its risk 
is usually determined by its own internal states is called state transition diagrams. 

However, the influences from other elements are relatively smaller and could be 

neglected in many cases. For a composite object (i. e., treatment plant in this structure) 
its risk is more directly affected by the constituent components rather than other 

components (such as well). Actually the object-oriented structure is developed by taking 
into account intra-component linkages in OGSSs. 

(4) "Hierarchical systems are usually composed of only a few different kinds of 
subsystems in various combinations and arrangements. " 

This attribute indicates that complex systems have common patterns (Booch, 1994). 

This is also obvious in the object-oriented structure of OGSSs. A general OGSS is 

composed of some common elements such as gas sources (wells), risers, gas treatment 
facilities and gas transmission pipelines. All these elements are further abstracted as 
fewer common element types or classes like, gas wells, gas treatment plants, pipes, 

compressors and gas storages (tanks). The overall system is thus a specified 

arrangement of these different objects or classes. Identification of these basic 

components is obvious and explicit in an OOA. 

(5) "A complex system that works is invariably found to have evolved from a simple 

system that worked. A complex system designed from scratch never work and cannot be 

patched up to make it work " 
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This attribute indicates that an OGSS will work successfully if all its components and 

subsystems work normally. An OGSS will fail to supply gas to consumers, if some 

components or subsystems have failed. However direct determination of risk levels of a 

complex OGSS is difficult or almost impossible. A possible solution to this is indirect 

evaluation by aggregating the risks of its subsystems (i. e., gas source, gas treatment, etc. ) 

due to their less complexity. These less complex objects are composed of much less 

complex objects such as wells and pipes, etc. Therefore, risk information can be 

obtained for a complex OGSS by studying the risks of simpler objects in an object- 

oriented hierarchical structure. The above discussions not only demonstrate the 

potential abilities of object-oriented hierarchy in dealing with all the five attributes of 

complex systems, but also support the development of risk assessment frameworks. 

3.3 Object-oriented representation of OGSSs 

An object is an abstraction of real world entity described by attributes and methods. 
Each object can be influenced by the environment or external factors and interact with 

other objects by receiving and sending messages. Similarly, in risk assessment of an 
OGSS, the focus is the components in the system. Risks of a gas system are introduced 

by failures of one or more of the components. External hazards, threats and 

environmental factors, can only compromise the functions of a gas system by failing its 

components. With respect to these similarities, it is possible to use object-oriented 

structures to represent the risk assessment process of OGSSs. 

3.3.1 Object-oriented hierarchical structure 

The hierarchy of an OGSS is constructed (Figure 3.1) by viewing all the physical 

elements in an OGSS as objects that encapsulate specific attributes and behaviours and 
interact with one another. There are two kinds of relationships, aggregation relationship 

and generalisation relationship which are represented in this hierarchy. These two 

relationships not only represent an OGSS from a different point of view, but also are 

useful for risk assessment. 
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(1) Aggregation relationship 

Aggregation represents the "composed of' or "whole/part" relationship, e. g., a gas 
distribution network is composed of pipes, pumps and tanks, etc. In an OOA, the 

structure of aggregation is also called object/component structure (Booch, 1994) 

because it represents the relationships among objects/components. This aggregation 

relationship also provides a framework for aggregative risk assessment. This indicates 

that the risk of an OGSS at the top level is determined by the risks of the objects at its 

lower levels. This research views the real physical elements in an OGSS as primitive 

objects and puts them at the lowest levels in the hierarchical structure. For each of these 

primitive objects, states transition diagrams are used to represent its responses to 
hazards or threats, which are discussed in Section 3.3.2. 

(2) Generalisation relation 

Generalisation represents the "is kind of' relationship, For example, gathering pipes are 

a group of smaller interconnected pipelines forming complex networks with the main 

purpose of bringing natural gas from several nearby wells to a treatment plant or 

processing facilities. Transmission pipes are used for moving gas from offshore 

platforms to onshore, between cities, countries and even continents. These 

transportation networks include several compressor stations in gas lines. All pipe 

objects (gathering pipes, transmission pipes and risers) belong to a pipe class. Similarly, 

all offshore wells belong to a gas source class and all compressors belong to a 

compressor class in an OGSS. With the help of this generalisation process, all the 

elements of a system are grouped with respect to their "likeliness of behaviour" into 

classes; these classes are grouped into larger classes and so on (Solomatine, 1996). 

Finally another hierarchical structure is formed to express the class structure in gas 

systems. 

In the class hierarchical structure, the number of classes is much smaller than the 

number of objects in the object oriented structure, which thus simplifies the work of 

assessing risks for primitive objects. For risk assessment, risk analysts need to develop 

different models for every object in an OGSS. Generic risk analysis models can be 

developed only for the types of objects or classes and can be used in the object instances. 
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By combining the concepts of the aggregation and generalisation, this study develops 

frameworks of risk assessment at both the component and system levels in Figure 3.2. 

Firstly, basic classes are identified on the basis of the class structure of an OGSS. State 

transition diagrams are used for representing the relationship between hazards, failure 
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level by extracting risk information from the state transition diagrams. Secondly, 

aggregation relationship provides a framework of aggregative risk assessment at the 

system level. Interconnections between objects provide a framework of describing the 

cause-effect relationships at the system level. A more comprehensive view of risks can 
be obtained by considering the frameworks at both the component and system levels. 

Furthermore, this is a general method and can be applied to various OGSSs. This 

method is demonstrated in Figure 3.3. 
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Figure 3.3 Process of developing frameworks of risk assessment for an OGSS based on 

object-oriented concepts 

3.3.2 Object state transition diagram 

Figure 3.3 shows that state transition diagrams are an important step to develop a 

framework of risk assessment at the component level. Therefore, it is necessary to 

discuss them specifically in this section. In an object-oriented environment, a state 
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transition diagram reveals the state of a given class or object type, the events that cause 

a transition from one state to another, and the consequences that result from a state 

change (Booch, 1994). Associated with each object in an OGSS, there are input, output 

and states (Figure 3.4). Input includes gas flow, external hazards (e. g., flood, etc. ) and 
internal failures (e. g., deterioration, etc. ), output denotes the outflow of gas, and states 

represent the possible states of the component such as working (normal, failure and etc). 

input information ýº Object 
(Conmonent) 

'--*Output information 

11 

Input information 1 
-1 nu*-. 

Lit. Output information 

Initial state 

Figure 3.4 State transition diagram of an object due to hazards or threats 

An explicit explanation of states transition is illustrated by a pipe example (Figure 3.5). 

In this example, inputs are external load and gas with flow rate (Qin) and pressure (Hin); 

outputs are gas with flow rate (Qout) and pressure (Hout); the possible states are normal 
and leakage; and the methods or behaviours are to transport gas (Figure 3.5). There are 
three operational scenarios associated with the pipe that are normally considered in 

practice. In the first scenario, the pipe works normally (Figure 3.5a) and delivers normal 

gas flow to other components. In the second scenario, the pipe changes its state from 

normal to leakage due to some internal factors such as deterioration with time (Figure 

3.5b). Gas quantity and pressure of outflow is consequently reduced. In the last scenario, 
the pipe changes its state from normal to leakage due to the overloading from external 
factors (e. g., objects drop from ships, etc. ). Excessive loading force tends to cause 
longitudinal cracks and results in dramatic reduction of gas quantity. Usually the first 

scenario represents the normal operation of pipes, while the last two scenarios are 

specifically applied to a risk or reliability study of gas pipe systems due to the 

influences of external or internal threats/hazards. It is obvious that hazards, failure states, 

and possible consequence (outcome) are important factors to develop the state transition 

diagrams of a specific primitive object. 
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Figure 3.5 Examples of using state transition diagrams to represent operational 

scenarios of the pipes in an OGSS 

According to the object-oriented hierarchical structures (Figure 3.2), five classes are 
identified in this study as primitive, which include gas source, gas treatment plant, pipe, 

compressor, and storage. Although an OGSS is also an object, it is usually viewed as a 

composite object because it usually includes multiple basic objects or components. Risk 

assessment of these objects is not easily accomplished by directly using state transition 
diagrams, but can be obtained by using an aggregative method on primitive objects. 
Associated with each primitive object defined, the relevant hazards, its failure states and 

related risks are discussed in the following context. 

3.3.2.1 Hazards, failure states, and consequence of each primitive object 

Possible consequences in an OGSS include reduced gas quantity, reduced pressure and 

gas leakage. Normally gas quantity and pressure are interactive and the reduction of one 
factor will lead to the reduction of the other. Considering this and in order to simplify 

the risk analysis, this study only considers risks of reduced gas quantity and gas leakage 

specifically. 

(1) Gas source (well) 

The creation and life of a well can be divided up into five segments: 1. planning, 2. 

drilling, 3. completion, 4. production and 5. abandoment. Well is created by drilling a 

hole with diameter from 30 to 36 inches (Mather, 1995) into the earth or sea bed. After 

the hole is drilled, a steel pipe (casing) slightly smaller than the hole which is secured 

by the cement will be placed in the hole. The casing provides structural integrity to the 
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newly drilled wellbore in addition to isolating potentially dangerous high pressure zones 
from each other and from the surface. There are different types of well casing such as 

conductor casing, intermidate casing and production casing. The primary purpose of 

conductor casing is to protect the enviroment near the surface of wellbore from being 

contaminated by leaking gas from deeper underground. Conductor casing is also used to 

help in the process of circulating the drilling fluid from the bottom of the well to the 

wellbore. Intermidate casing is the largest section of casing in a well. The primary 

purpose of intermidate casing is to minimize the hazards coming along with subsurface 
formation that may affect the well. Production casing provides a conduit from surface of 

the well to gaseous hyrdocarbons. The size of production casing depends on a number 

of considerations, including the lifting equipment to be used and the possibility of 
further drilling in future. For example, if it is considered that the well will be drilled in 

future time, then the production casing must be wide enough to allow the passage of 
drill bit in future. Figure 3.6 represents a gas well. 
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Figure 3.6 An example of gas well 
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The production stage is the most important stage of a well life, when the gas is 

produced. Well is usually outfitted with a collection of valves called a Christmas Tree 

(CT). These valves regulate pressures, control flows and allow access to the wellbore in 

case that further completion work needs to be performed. From the outlet valve of a CT, 

the flow can be connected to a transmission pipeline and gas storages (tanks) to supply 

the product to refineries, natural gas compressor stations and gas distribution networks. 
The CT is essentially the heart and soul of the offshore (and onshore) hydrocarbon 

production system. It sits on the top of the wellhead casing system and represents the 
interface between the well and the production and process facilities. Typical 

components of a CT are Surface Safety Valve (SSV), Sub Surface Safety Valve (SSSV), 

Production Master Valve (PMV), Production Wing Valve (PWV), Tree Cap (TC), 

Pressure Transient Test (PTT), Annulus Vent Valve (AVV), Annulus Master Valve 
(AMV), Annulus Wing Valve (AWV) and flange. 

SSV is a hydraulically actuated fail-safe gate valve for testing gas well with high flow 

rate, high pressure or the presence of hydrogen sulphide in the system. SSSV is a safety 
device installed in upper wellbore to provide the emergency closure of the production 
conduit in the event of an emergency. A PMV is valve located on a CT that controls all 
flow from the wellbore. The modem CTs are equipped with two master valves referred 
to as upper and lower master valves. In most cases the lower master valve is manually 
operated and the upper master valve is operated via a hydraulic or pneumatic actuator 
and it is connected to the emergency shut down system. PMV is also called the main 
production barrier valve. Wing valves are incorporated into the "wings" of a CT to 

provide access to the production tubing for producing and well control purposes. Most 

CTs have two wings: a production wing connected to the surface production facilities, 

and a kill wing that may be used for well control or treatment purposes. PWV is also 

called the secondary production barrier valve. TC is used for covering the top of CT, to 

prevent ingress of contaminant such as sea water. Annulus is a space surrounding one 

cylindrical object placed inside another, such as the space surrounding a tubular object 

placed in a wellbore. AVV is located in the annulus outlet of CT for venting 

overpressure from the well annulus. AMV is located in the annulus outlet of the CT 

being the main annulus barrier. AWV is placed in the annulus outlet of the CT being the 
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secondary annulus barrier. Hazards, related failure states and consequences associated 

with wells in an OGSS are represented in Table 3.1. 

Table 3.1 Summary of the basic events, relative failure states and associated 

consequences with failure of wells in an OGSS 

Basic component Failure state 
(F) Hazards/threats (H) Consequence 

Gas source (well) 1. Operational failure 1. Gas leakage 

1.1 Well structural failure 
1.1.1 Conductor casing failure 1.1.1.1 Cementing job 

1.1.1.2 Age 
1.1.1.3 Water infiltration 

1.12 Production casing failure 1.1.2.1 Heating of well 
1.1.2.2 Type of well completion 
1.1.2.3 Galvanic corrosion 
1.1.2.4 Tension stress 

1.1.3 Cement 1.13.1 Carbonation of cement 
1.13.2 Age of cement 

1.2 Well chemical interaction 1.2.1 Marine fouling 
1.22 Bio corrosion 
1.23 Cement carbonation 

13 Well physical interaction 1.3.1 Abrasion of well 
1.3.2 Hydrate formation 

1.4 CT failure 1.4.1 SSSV fail to isolate 
1.4.2 PMV fail to isolate 
1.43 TCP failure 
1.4.4 PWV leakage 
1.45 PT leakage 

1.5 Annulus failure 1.5.1 Flange failure 
1.5.2 AVV failure 
1.53 AMW failure 
1.5.4 AWV failure 

2. Natural hazards 2.1 Ground movement 1. Gas leakage 
2.2 Iceberg collision 
2.3 High temperature 

3. Human threats 1. Gas leakage 
3.1 Third-party activity 3.1.1 Collision with ship 

3.1.2 Fishing trawlers 

3.21Iuman threats from terrorist actvity 3.2.1 Terrorist activity 

(2) Pipeline 

Pipelines are one of the most important primitives in an OGSS. Extensive research has 

been performed to analyse the consequences associated with them such as leakage and 

deterioration, etc. Leakages of pipes can occur due to multiple reasons such as corrosion 

of the internal or external surfaces of network components; specific events and 
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situations such as ground movement, stresses from excessive gas pressure; and faulty 

workmanship or construction. Leakage rates can range from a slow leak or "drip" to a 
large leak which is called a "main break". Examples of typical drips include loose joints, 

gaskets, or service connections. Typical examples of a break include longitudinal and 

circumferential cracks in a pipe body. Drips and main breaks usually result in the 

reduction of gas pressure and consequently gas quantity. Based on the above discussion, 

hazards, related failure states and consequence associated with pipes in an OGSS can be 

represented in Table 3.2. 

Table 3.2 Summary of the basic events, related failure states and hazards associated 

with failure of pipes in an OGSS 

Basic component Failure state 
(F) 

Hazards/threats (H) Consequence 

Pipeline 1. Operational failure 1. Gas leakage 
1.1 Defect of pipeline 1.1.1 Bad installation 

1.1.2 Bad weld 

1.2 Design 1.2.1 Unsuitable material 
1.2.2 Inadequate strength 

1.3 Corrosion 1.3.1 Internal corrosion 
1.3.2 External corrosion 

1.3.3 Stress Corrosion Cracking 1.3.3.1 Acid 
(SCC) 1.3.3.2 High water ratio 

1.3.33 Tensile stress 

1.4 Incorrect operation 1.4.1 Inadequate maintenance 
1.4.2 Human error 

2. Natural hazards 2.1 Ground movement 1. Gas leakage 
2.2 Current turbidity 
2.3 Mud flow 

3. Human threats 1. Gas leakage 
3.1 Third-party 3.1.1 Dropped object 

3.1. ITrawling 

3.2 Human threats from terrorist actvity 3.2.1 Terrorist activity 

(3) Compressor 

A gas pump is generally called a compressor, except in very low pressure-rise 

applications in heating, ventilating and air-conditioning, where the operative equipment 

consists of fans or blowers. A gas compressor is a mechanical device that increases the 

pressure of gas by reducing its volume. Compression of gas naturally increases its 

temperature. Compressors are similar to pumps, both increasing the pressure on a fluid 

and transporting the fluid through the pipe. As gases are compressible, compressors also 
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reduce the volume of gas. Liquids are incompressible; therefore, the main action of a 

pump is to transport liquids. 

The prime mover is the main power source providing energy to drive the compressor. 
The prime mover must provide enough power to start the compressor, accelerate it to 

full speed, and keep the unit operating under various design conditions. This power can 
be provided by any one of the following sources: electric motors, diesel or natural gas 

engines, steam engines and turbines. Electric motors are by far the most common type 

of prime mover. Diesel or natural gas engines are a common compressor power source 
in the oil and gas industries. Considerations of other factors such as convenience, cost, 

and the availability of liquid fuel and natural gas play roles in selecting an engine to 

power a compressor. Figure 3.7 represents a pipeline system. 
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Figure 3.7 Schematic of pipeline and compressor station 

Pipeline networks are composed of several pieces of equipment that operate 
together to move products between different places. The main elements that 

comprise a pipeline system can be summarized as follows: 

1. Initial injection station - known also as supply or inlet station, is basically the 
beginning of the system. It is the place where the product is injected into the line. 

Storage facilities, such as tank terminals, as well as other devices to push the 

product through the line, like pumps or compressor are usually located at these 

locations. 

2. Copmressor station - compressors for gas pipelines are located along the line to 

help move the product through the pipeline. The location of these stations is 

defined by the topography of the terrain, the type of product being transported, 

and operational conditions of the network. 

58 



3. Block valve stations - these are the first line of protection for pipelines. With 

these valves the operators can isolate any segment of the line to perform some 

specific maintenance work or isolate a rupture or leak. Block valve stations are 

usually located every 20 to 30 miles, depending on the type of the pipeline. Even 

though it is not a design rule, it is a very usual practice in OGSSs. Overall the 

location of these stations depends exclusively on the nature of the product being 

transported, the trajectory and operational conditions of the pipeline. 

4. Regulator station - it is a special type of valve station, where the operators can 

release some of the pressure built into the lines. Regulators are usually located at 
the downhill side of a peak. 

5. Final delivery station - known also as outlet stations or terminals, through which 
the product will be distributed to the final consumers. It could be a tank terminal 
for liquid pipelines or a connection to a distribution network for gas pipelines. 

Table 3.3 Summary of the hazards, related failure states and consequence associated 

with compressors in an OGSS 

Basic component Failure state 
(F) 

Hazards/threats (H ý Consequence 

Compressor 1. Operational failure 1. Reduced gas quantity 
1.1 Motor failure 
1.1. lMechanical 1.1.1.1 Rotor /stator failure 

failure 1.1.1.2 Brush failure 
1.1.1.3 Engine failure 

1.1.2.1 Liner supply failure 
1.1.2 Electrical failure 1.1.2.2 Switch failure 

1.1.2.3 Fuse unit failure 

1.2.1 Impeller failure 
1.2 Casing failure 1.2.2 Impeller shaft failure 

1.2.3 Shaft bearing failure 

1. Operational failure 1. Gas leakage 
1.2 casing failure 1.2.1 Shaft seal failure 

1.2.2 Impeller seal failure 
1.3 Alarm and monitoring failure 
1.4 Inadequate backup 
1.5 Gas meter and equipment corrosion 
1.6 Vibration and failure of small bore 
fitting 

2. Natural hazards 2.1 Ground movement 1. Gas leakage 
2.2 Current turbidity 

3. Human threats 3.1Terrorist activity 1. Gas leakage 
3.2 Incorrect operation 
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(4) Gas holder facilitiy 

Gas holders range in size and complexity from a water sealed gas holder with capacity 

of 25000m3 to a water less gas holder with capacity of 150000m 3 (Bernatik & Libisova, 

2004) Typically, a gas holder must allow: 

1. Filling (the fuel tank must be filled in a secure way). 

2. Storage of fuel (the system must contain a given quantity of fuel and must avoid 
leakage and limit evaporative emissions) 

3. Gauging (the remaining quantity of fuel in the tank must be measurable). 

4. Venting (if over-pressure is not allowed, the fuel vapors must be managed through 

valves). 

Figure 3.8 shows a large gas holder. Preventing over pressurisation in a large gas holder 

can be expressed as follows. A compressor drives gaseous hydrogen into the gas holder 

(tank). The pressure of gas can be controlled by Pressure Reducing Regulator (PRR). In 

case of high pressure during the filling process, which may be the consequence of the 
failure of PRR, Pressure Switch (PS) provides a closing signal to the Pneumatic Valve 

(PV) which will stop the compressor. For over pressure because of any other reason, the 

tank is equipped with Safety Relief Valves (SRVs), one of which is selected by 

positioning the Three Port Valve (TPV), and Rupture Disk (RD). The necessity for 

pressure relief is announced by a horn in the control room triggered by Pressure 

Indicator Alarm (PIA). The associated rules for system operators are: 1. To turn off the 

compressor, 2. To close the remotely operated valve. Table 3.5 summaries the hazards, 

relative failure states and possible consequences associated with gas holder in an OGSS. 
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Figure 3.8 Gas holder (tank) diagram 

Table 3.4 Summary of the hazards, related failure states and possible consequences 

associated with gas holders in an OGSS 

Basic component Failure state 
(F) Hazards/threats (H) Consequence 

Gas holder 1. Operational failure 1. Gas leakage 
1.1 Over pressure 
1.1.1 Over filling 1.1.1.1 PRR failure 

1.1.1.2 Automatic interruption not 
successful 
1.1.1.3 Manual filling interruption not 
successful 
1.1.1.4 PV failure 
1.1.1.5 PIA failure 
1.1.1.6 PS failure 

1.1.2 Pressure relief failure 1.1.2.1 SRVs failure 
1.1.2.2 RD failure 
1.1.2.3 Fire protection failure 
1.1.2.4 TPV failure 

1.2 Structural failure 1.2.1 Unsuitable material 
1.2.2 Inadequate strength 
1.2.3 Heavy load 

1.3 Corrosion 
1.3.1 External corrosion 1.3.1.1 Coating 

1.3.1.2 Atmospheric conditions 

1.3.2 Internal corrosion 1.3.2.1 Gas components 
1.3.2.2 Internal coating 

2. Natural hazards 2.1 Earthquake 1. Gas leakage 
2.2 Lightning 
2.3 Flood 

3. Human threats 3.1 Terrorist activity 1. Gas leakage 
3.2 Inadequate maintenance 
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3.3.2.2 State transition diagrams of primitive objects in OGSSs 

Based on the information identified in Tables 3.1 to 3.4, state transition diagrams are 

developed to represent the influence of hazards and threats for offshore gas sources, 

pipes, compressors and gas holders respectively. State transition diagrams for gas 

compressor are shown in Figure 3.9 and for the rest of components are attached in 

Appendix 1 (Figures Al.! to A1.3). State transition diagrams depict the relationships 

among hazards, failure states, and their related consequences. Hazards are viewed as 

input information in these diagrams in which an object gives its responses by changing 
its state from normal to one of the failure states and produces consequence as output 
information. For example, part of Figure 3.9 shows that the compressor can change its 

state from normal condition to natural hazard failure state due to ground movement, and 

consequently produces gas leakage. The hazards (ground movement) and internal state 

of the object (Natural hazard) drives the states changes and produces possible 

consequences (Leakage). Furthermore, state transition diagrams are used here to focus 

on the logic relationships among hazards or threats, failure states, and consequences 

rather than analysing the likelihood or consequence of a specific hazard or threat. 

Specific methods of analysing likelihood and consequence of a hazard or threat will be 

proposed in the ensuing chapters. 
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Figure 3.9 State transition diagrams of gas compressors 

3.4 Object-oriented frameworks for aggregating risks 

3.4.1 Aggregative risk assessment for basic components 

(1) General framework of aggregative risk assessment at the component level 

A framework of aggregative risk assessment (Figure 3.10) is developed at the 

component level by extracting the consequence (output) information from object state 

transition diagrams. In a state transition diagram, failure states are directly related to 

negative consequences or risks. Thus the risk level of an object is determined directly 

by the risk levels of its failure states. Further, the change from the normal state to a 
failure state of an object is directly related to and driven by its specific threats. It is the 

Compressor 
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Operational threats 1 
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threat that directly contributes to the risk levels of the failure states. A specific hazard is 

usually evaluated in terms of its likelihood of occurrence and severity of possible 

consequence. Then risks can be estimated for such hazards, failure states, and the object 

respectively by using fuzzy aggregative risk assessment. 
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Figure 3.10 Framework of aggregative risk assessment at component levels 

According to the above hierarchical structure the conceptual equations for quantitative 
analysis can be expressed as follows: 

R= f(FA,..., FM,..., Fz) 

FM =. f(Hari,..., HArj (3.1) 

Hj=HL; xHs;;; i=A,..., Z; j=1,..., n 

where R denotes the risk of the object; FM denotes the risk of failure state M; and H, 

denotes the risk of the j th hazard associated with failure state i, which is determined by 

multiplying the occurrence likelihood, HL with severity Hus of the hazard. The object 

has failure states of A to M and each failure state has n hazards associated with it. 

In order to quantitatively perform Equation (3.1), it is important to consider the 

following aspects specifically: 
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Firstly a mathematical function f (") is required to generate quantitative results for this 

framework, which will be presented in Chapter 4. Secondly, likelihood and severity are 

two important factors to evaluate the risk of a hazard or threat. 

(2) Frameworks of aggregative risk assessment for primitive objects in an OGSS 

With respect to Tables 3.1 to 3.4 and the corresponding state transition diagrams, 

negative consequences (outcome) are gas leakage and reduced gas quantity in an OGSS. 

For each primitive object, frameworks are developed to represent risk contributions 

from hazards to risk of the object (see Figures A1.4 to A1.7 in Appendix 1). As 

aforementioned, state transition diagrams of objects describe the relation among threats, 

failure states and object consequences, which thus provide a hierarchical framework for 

assessment at the component level. In this hierarchical framework, consequences 
(outcome) are at the top level of the hierarchy and followed by related failure states that 

are at an intermediate level. Threats (input) are at the bottom level in this framework. 

As can be seen from the state transition diagram of the compressor (Figure 3.9), leakage 

and reduced gas quantity are the outcomes (consequence) of the compressor. 
Construction of risk assessment framework of compressor leakage is presented by 

Figure 3.11 and described as follows: 

1. The outcome of the state transition diagram seats on the top of the hierarchical 

risk assessment framework. 

2. Intermediate levels of the framework are the failure states of well gas leakage 

(operational threats, natural threats and human threats). 

3. Input of each state transition diagram seats on the bottom of the framework and 

connects with the associated failure states. 
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Figure 3.11 Risk of gas leakage 

3.4.2 Aggregative risk assessment of subsystems and an overall system 

I 

The framework of risk assessment of each subsystem and the overall OGSS is 

determined by the whole/partial relationships represented in an object-oriented structure 
(Figure 3.12). In this framework, primitive components are at the bottom level whose 

risk levels are determined by the framework proposed for aggregative risk assessment 
(Figure 3.10) in page 64. This aggregative process explicitly shows that the risk of the 

overall system is determined by the risks of its subsystems, which are in turn 

determined by the risks of their consistent components. 

ocss (R) 

Subsystem WI 

Object SI 

Subsystem W 

Objeot Si 

Subsystem W 

ýý 

Object Sn 

Figure 3.12 Framework of aggregative risk assessment at the system levels 

According to this structure, the conceptual equations for quantitative analysis can be 

expressed as: 
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R=f (W 
,..., 

WS,..., Wvf) 

WS=f(51,..., Sj (3.2) 

where R is the risk of the OGSS; TV, is the risk of subsystem s, and S, (i =1,..., n) is 

the risk of object S, which is determined by Equation (3.1). 

Figure 3.13 gives an example to illustrate the framework of aggregative risk assessment 

at the system level. In this framework, the risk of the OGSS is determined by its 

immediate subsystems including well (gas source), gathering pipes, gas treatment plants 

and gas transmission pipes. For the subsystem gas source, its risk is further determined 

by the risks of the associated gas wells. A similar process can continue until the risks of 

all the subsystem are calculated. Finally, by combining the frameworks at the 

component and system levels, a general framework is formed for aggregative risk 

assessment of the OGSS. This hierarchical assessment has the ability to model the 

intricate relationships among the components and subsystems and to account for all the 

relevant and important elements of risk and uncertainty, therefore rendering the 

assessment process more tractable and representative. Furthermore, since both of the 

frameworks are developed from a general point of view, they can be applied to specific 

applications in various OGSSs. A possible quantitative evaluation of these aggregative 

frameworks is particularly studied in Chapter 4. 
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Figure 3.13 Framework of aggregative risk assessment for an OGSS 
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3.5 Object-oriented FTA 

3.5.1 Basics of FTA 

The FTA approach was developed by Waston from the Bell Telephone Laboratories in 

1961-62 for an Air Force study contract for the Minuteman Launch Control System. 

The first published paper was presented at the 1965 Safety Symposium sponsored by 

the University of Washington and the Boeing Company, where a group had been 

applying and extending the technique. This method has been extensively used in many 

engineering systems, especially with the development of computer-based analysis 

techniques since the early 1970s. Nowadays, FTA is viewed as a powerful tool for 

assessing the failure and reliability of complex large-scale systems. 

FTA is a backward analysis tool which begins with a system failure and traces 

backward, searching for possible causes of the failure. Thus it can identify the causal 

relationships in an engineering system. In practice, a fault tree is used to provide a 
logical and hierarchical description of a failure (TE) in terms of sequences and 

combinations of malfunctions of individual components. Then the reliability or failure 

of a complex system can be computed in terms of the given probabilities of the 

component failures. Even though it has been used widely, the construction of fault trees 

for an engineering system is still as much as an art for a science. To give a consistent 

risk analysis based on fault trees, the construction process is required to perform at both 

the component and the system levels. FTA is determined by component 

interrelationships in a system and its component failure characteristics (Andrew & Moss, 

2002). The construction of fault trees is studied, particularly in this section, based on 

object-oriented concepts. Similar with the development of aggregative risk assessment 

frameworks described in the previous sections, two steps are proposed here to develop 

the structure of fault trees, i. e., (1) fault trees at the component level, and (2) fault trees 

at the system level. 

3.5.2 Development of fault trees at a component level 

This study applies object state transition diagrams to develop frameworks of fault trees 

at the component level by extracting the logic relationships between negative 
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consequences, failure states and hazards. With respect to this, three steps are identified 

in the current study to develop fault tree structures for the objects in an OGSS. 

Step 1: Describing the undesired events in terms of different scenarios (i. e., reduced gas 

quantity and gas leakage). 

Step 2: Identifying what failure states can possibly cause the occurrence of an undesired 

event. 

Step 3: Extracting the potential hazards/threats that can possibly alter the object state 
from normal condition to the failure states identified in Step 2. 

These three steps will produce a hierarchical fault tree in which threats (input 

information of state transition diagram) are at the bottom level and viewed as basic 

events, and an undesired event of an object is the top event. Figure 3.14 presents these 

three steps. 

Step 1: Describe undesired event in terms of gas 
leakage, reduced quantity. 

Step 2: Identify the failure states of the object 
which can possibly introduce the abnormal 
condition and use AND and/or OR gates to 
renresent the loeic relation. 

Step 3: For each failure state, identify the potential 
hazards and/or threats which can alter the object 
states; then use AND and/or OR gates to represent 
the ineic relation. 

Object state transition diagrams 

4 

Figure 3.14 Steps of developing fault trees of an object due to its primary hazards by 

extracting risk information from objects' state transition diagrams 

As aforementioned, the three steps provide a cause-effect relationship for a given 

undesired event of an object. All the primitive objects except the gas compressors have 

one undesired event: R, (Gas leakage). The gas compressor has two undesired events 

R, (Gas leakage) and R2 (Gas reduced quantity). F, , F2 and F3 represent the failure 

states of operational failure, natural hazard failure, and human threat failure respectively. 

There are other failure states, e. g. operational failure states of gas well including, F,., 
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(Well structural failure), F, 
_Z 

(Well chemical interaction), F1.3 (Well physical interaction), 

F14 (CT failure) and F,., (Annulus failure) (Table 3.1). All the subsystem hazards and 

failure states are presented in Tables 3.1 to 3.4. H. is the hazard j associated with 

failure state of i, e. g. H1.1.3.1 for gas well means the first hazard associated with F1.1.3 

which is carbonation of cement. 

By employing the above three steps, the fault trees for all the subsystems in an OGSS 

can be constructed. The fault tree of the undesired events for the gas compressor is 

presented in Figure 3.15 and Figure 3.16. The fault trees of all the other primitive 

objects are shown in Appendix 1 (Figures A1.8 to Figure A1.10). The undesired events 

are obtained from the outcomes of state transition diagrams (consequence) and 

demonstrated as R or Rl in the fault trees. 
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Figure 3.15 Fault tree of reducing gas quantity 
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Figure 3.16 Fault tree of compressor gas leakage 

3.6 Summary and Comments 

Incorrect 
operation 

This study has shown an OOA is effective in dealing with the complexity in an OGSS, 

and can be used to develop frameworks of risk assessment for OGSSs. Two types of 
frameworks are developed in this chapter, aggregative risk assessment and fault trees 
have been developed on the basis of an object-oriented structure of the OGSS. A 

framework of aggregative risk assessment is used to evaluate the risks associated with 

components, subsystems, and the overall system. Fault trees are developed to represent 
the cause-effect relationships for specific undesired event in a gas system. By 

combining these two frameworks, risk analysts can obtain a more comprehensive view 

of the risks in an OGSS. In particular, 
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" They can be used by different users. The frameworks can be flexibly established 

at different hierarchical levels according to the requirements of system observers 

and/or available information. 

" They can be reused in different OGSSs. The frameworks are developed from a 

general point of view, which encapsulates the common features of various 
OGSSs and can be reused in any specific application. 

They can evaluate risks by considering multiple hazards. The frameworks can 

aggregate both natural hazards and human-related threats along with a consistent 
hierarchy to generate useful risk information for decision makers. 

" They are flexible to real applications of risk assessment. Even though only 

reduced gas quantity, gas leakage and gas contamination are considered as risks 
in this study, the method developed here can be easily reused to other risks (such 

as low pressure failures, etc. ). 

However, there are still further works required to improve the frameworks developed in 

this study, which can be summarised briefly as follows: 

" The framework for vulnerability assessment is required to be developed. 

Vulnerability also plays an important role in introducing risk into an OGSS. 

However, detailed study is required in order to make the assessment be closer to 

the real world. 

" The process of generating a fault tree structure at the system level is based on 

the normal flow directions of an OGSS, which is a conservative approximation 

of the real cases. However, the flow directions might change in real cases of 

failures. Therefore, further study is necessary to improve the generation of fault 

trees at the system level so that more reasonable results can be obtained. 
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Chapter 4 

Fuzzy Risk Assessment of OGSSs 

Summary 

Risk evaluation in OGSSs is a challenging task given that much of the available data is 

highly uncertain and vague, and many of the mechanisms are complex and difficult to 

be understood. Consequently, a systematic approach is required to handle both 

quantitative and qualitative data as well as means to update existing information when 

new knowledge and data become available. Each basic risk item in a hierarchical 

framework is expressed by a fuzzy number, which is derived from the composition of the 

likelihood of a failure event and the associated failure consequence. Analytical 

hierarchy process is used to estimate weights required for grouping non-commensurate 

risk sources. The evidential reasoning is employed to incorporate newly arrived data 

for the updating of existing risk estimates. It is envisaged that the proposed approach 

could serve as a basis to benchmark acceptable risks in OGSSs. 

4.1 Introduction 

This chapter presents a method that can quantitatively evaluate the frameworks of 

aggregative risk assessment of OGSS proposed in Chapter 3. There are two aspects 

required to be mathematically represented for these frameworks. The first aspect is a 

mathematical evaluation of risks associated with each basic risk item. A basic risk item 

in a hierarchical framework is expressed by a trapezoidal fuzzy number, which is 

derived from the composition of the liklihood of a failure event and the associated 

severity of its occurrence. The second aspect is a mathematical method that aggregates 

risk along the hierarchical structure to obtain the risks of objects, subsystems and the 

overall OGSS. A FAHP methodology is designed to deal with an alternative selection 

and justification problem by integrating the concept of fuzzy set theory and hierarchical 

structure analysis. The use of fuzzy methodology allows decision makers to incorporate 

both qualitative and quantitative data into a decision model. Decision makers usually 

feel more confident to give interval judgments rather than fixed value judgments 
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(Chang, 1996; Li, 2007). In this approach, fuzzy numbers are used for the preferences of 

one criterion over another, and then by using the extent analysis method, the synthetic 

extent value of the pair-wise comparison is calculated. An ER approach is employed to 

incorporate newly obtained data for the updating of existing risk estimates. Fuzzy 

aggregative risk assessment which is composed of fuzzy set theory, FAHP and ER 

theory is adopted to perform quantitative evaluations of aggregative risks in OGSSs. 

When a complex system involves various contributory risk items with uncertain sources 

and magnitudes, it often cannot be treated with mathematical rigor during the initial or 

screening phase of decision-making (Lee, 1996). It is often difficult to evaluate 
likelihood and severity associated with a hazardous event using probabilistic theory. 

Firstly some hazards may be related to many uncertain factors which are difficult to 

express in terms of probabilities. For example, human-related attacks or contamination 
to gas service components are influenced by several uncertain factors like the ability of 

a human to approach the component, the ability of a human transporting and implanting 

explosives, the ability of a human obtaining sufficient quantities, and the risk of 

terrorists attacks. All of such factors are subjective and difficult to represent by a single 

precise probability distribution function. 

Secondly, historical records of some risk scenarios, particularly extreme hazardous 

events (e. g., extreme current turbidity, terrorist activity, etc. ) are often incomplete and 
insufficient. Thus, an analyst may have the difficulties in developing proper probability 
distribution functions with limited data. 

Due to lack of data, risk analysts may be more confident with linguistic representations 
(such as very high, slightly low, etc. ). However, probabilistic variables have limited 

ability to represent this linguistic or descriptive information. 

Additionally, it may be necessary to carry out risk assessment based on multiple hazards 

which are represented in various forms, such as probabilistic data, experts opinions and 
linguistic representations. Traditional probabilistic risk assessment approaches may lack 

the ability to deal with such multi-form data input. Therefore, there is a need to develop 

an effective method to address the above characteristics of risk assessment. 
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As an alternative to probabilistic theory, fuzzy set theory was introduced by Zadeh 

(1965) to deal with the problems in which vagueness is presented. Fuzzy set theory can 
be used to represent subjective, vague, linguistic and imprecise data and information 

effectively. Applications of fuzzy set theory have been extensively studied with respect 

to the ambiguity and vagueness involved in the risk analysis in different engineering 

areas. Lee (1996) applied fuzzy set theory to evaluate the rate of aggregative risk in 

software development. Chen (2001) used fuzzy group decision making for evaluating 

the rate of aggregative risk in software development. Sadiq & Husain (2005) applied a 
fuzzy-based methodology for an aggregative environmental risk assessment of drilling 

waste. Zeng et al. (2006) applied an aggregative risk assessment model for information 

technology project development. Wang & Elhag (2007) used fuzzy group decision 

making for bridge risk assessment. The proposed methodology in this chapter is built 

upon the previous development of FARA. The novel parts of the proposed methodology 

are to combine both qualitative and quantitative information and to update information 

based on the new evidence by using Intelligent Decision System (IDS) via an ER 

approach. 

4.2 Fuzzy set theory 

Fuzzy set theory, formalised in 1965, has been widely applied in different fields. Its 

applications in system safety and reliability analysis could prove to be useful since such 

an analysis often requires the use of subjective judgments and uncertain data. The use of 

linguistic variables provides flexible modelling of imprecise data and information. The 

significance of fuzzy variables is to facilitate gradual transition between states. 

Therefore, they are able to deal with observation and measurement of uncertainties. 

When dealing with the safety of a system using fuzzy set theory, probabilities can be 

estimated using linguistic variables. A linguistic variable differs from a numerical 

variable in that its value is not numbers but words and sentences in natural or artificial 

language (Pillay & Wang, 2003). The concept of linguistic variables serves the purpose 

of providing a means of approximate characterisation of phenomena, which is too 

complex or ill defined to be manageable for description in conventional quantitative 

terms. 
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Classical set contains objects that satisfy precise properties of membership. Fuzzy sets, 

on the other hand, contain objects that satisfy the imprecise properties of membership. 

For example, membership of an object in a fuzzy set can be partial. For classical sets, 

element x in a universe U is either a member of a crisp set A or is not. This binary issue 

of membership can be represented mathematically by: 

XA = 
1, xEA 
O, x0 A 

(4.1) 

Zadeh extended the notion of binary membership to accommodate various degrees of 

membership on the real continuous interval [0,1], where the endpoints of 0 and 1 

conform to no membership and full membership respectively (Zadeh, 1965). The sets of 

universe U that can accommodate degrees of membership were termed by Zadeh as 

fuzzy sets. Hence, a fuzzy set can be represented by functional mapping as pA (x) E [0, I], 

where uA (x) is degree of membership of element x in fuzzy set 2 or simply 

membership function of A. The value µA (x) is on the unit interval that measures the 

degree to which element x belongs to l. The larger fc; i(x) is the stronger degree of x 

belongs to A. In this study two special kinds of fuzzy numbers including triangular 

fuzzy numbers and trapezoidal fuzzy numbers are employed. A triangular fuzzy number 

can be defined by a triplet as follows: 

ýý Xs al 

(4.2) 

where a2 is called the mean value ofA , a2 and a3 represent the lower bound and upper 

bound, respectively. Let Ä=(aa2, a3) and B=(bb2, b3) be two triangular fuzzy 

numbers. In this situation, the extended fuzzy operations can be defined as follows: 

Change of sign. -(a1, a2, a3) = (-a3, -a2, -a, 
) (4.3) 
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Addition(a,, (b,,, =(a, 

Subtraction-: (a,, a2, a3) -(b1, b2, b3) = (a1-b3, a2 -b2, a3 -bl) 

Multiplication ®: (a1, a2, a3)0(b1, b2, b3)=(a1b1, a2b2, a3b3) 

Inverse: (a1, a2, a3)-1' _( 
111 

-) a3 a2 a1 

Division =: (a,, a2, a )=(bl, b2, b3)=(a, 
a2 

, a3 b3 b2 bl 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Let A =(a,, a2, a3, a4) denote the trapezoidal fuzzy number, where [a,, a4] is the 

support of 2 and [a2, a3 I'S its modal set. 

;! 
A (x) = 

O, xS al 

x-a, 

a2 - a, , xE[a1, a21 J 

1, x= [a2, a3 
] 

a4 -x xE [a'3"a4l 
a4 - a3 

O, Xza4 

(4.9) 

Let A= (a1, a2, a3, a4) and B= (b,, b2, b,, b4) be two trapezoidal fuzzy numbers. The 

arithmetic operations on the proposed fuzzy numbers can be defined as follows: 

Change of sign: -(a1, a2, a3, a4) = (-a4, -a3, -a2, -a, ) (4.10) 

Addition (43 : (a1, a2, a3, a4) ®(bi, b2, b3, ba) = (ai +bl, a2 +b2, a3 +h3, a4 +b4) 

Subtraction-: (a,, a2, a3, aa)-(b, b2"b3, ba)=(a. -ba, a2 -b3, a3 -b2, a4 -b, ) 

Multiplication ®: (a,, a2, a3, a4) 0 (b,, b2, b3, b4) = (a, b,, a2b2, a3b3, a4b4) 

': - Inverse: (al, aZ, a3, a4ý-1' 1111 
a4 a3 a2 al 

Division j, ( al a' a3 a4 ý" 
CalsQ2aa3aaqý 'ýý`rlabZab; ab4ý - ýs aa) b4 b3 b2 bl 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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4.3 Research methodology 

In the circumstances where there is a lack of data, it is necessary to incorporate expert 
judgments into a risk study. A framework is established based on fuzzy set theory, ER 

and FAHP methods. The proposed framework is capable of quantifying judgments from 

experts who express their opinions qualitatively. The first step of the proposed 
framework is to obtain the risk of each hazard by using fuzzy set theory. This step 
includes five sub-steps which are explained in Section 4.4.2. The second step is to 

calculate weight factors for each hazard in the framework. Since the study incorporates 

fuzzy set theory into an AHP method, a set of linguistic priority terms along with the 

membership functions describing the relationship between elements in each hierarchy of 

the AHP is adopted. Thus, the pair-wise comparisons between the elements in each 
hierarchy using fuzzy set theory are established. The fuzzy expressions are subsequently 

converted into a single crisp value using an appropriate defuzzification method. This is 

followed by the weighting vector calculation so as to obtain the relative importance of 

element. By repeating the steps above, the risk of each element in the hierarchy is 

acquired based on the normalised weight factors calculated. Lastly, in case of obtaining 

new evidence, the ER method is employed to incorporate new evidence for updating the 

existing risk estimates in the system. Risk assessment can be carried out for each 

subsystem and finally for the OGSS. The following three steps are used in the proposed 

risk analysis: 

Step 1: Application of fuzzy risk assessment for risk analysis of a hazardous element. 

Step 2: Application of FAHP to synthesise the information produced at different 

hierarchical levels to obtain the overall risk estimate at the system level. 

Step 3: Application of ER to incorporate new data for updating the existing risk 

estimate. 

Figure 4.1 demonstrates the research methodology. Each step of the framework is 

discussed in the following sections. 
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Develop a hierarchical structure for a risk scenarios 
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Define a scaling system for 
likelihood and severity using 

fuzzy numbers 
HI 
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(5 -grade TPT') from 
likelihood and severity 

HI 
Calculate risk of TPFNs by the 
combination of likelihood and 

severity 
T 

ý Estimate weights for the risk items in 
hierarchical levels using FAHP 

Map TPFNs for basic risk items on 5-grade risk scale and 
convert into 5- tuple fluty set, and later perform 

normalization to maintain cardinality of I 

r- i 
I 

Aggregate Bills into more generalized risk items using matrix multiplication. The 
process is continued for obtaining the final risk. 

I 
Dcfuzzify 5-tuple fuzzy sets using a centroid defuzzification 

method 
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Evaluate the final aggregative risk 
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Conduct sensitivity analysis by changing either weight of atinbute 

(FAHP) or level of likelihood and severity of atinbute 

Figure 4.1 The research methodology of risk assessment of OGSSs 

4.4 FRA 

Risk can be obtained by Equation 4.16 as follows: 

R=L®S (4.16) 

where R is the risk associated with each hazardous event, L represents the likelihood of 

the hazard, S represents the severity or consequence of the hazard and 0 denotes the 

W--, 
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multiplication relationship between likelihood and severity. This definition has been 

applied to risk assessment in many applications such as software development (Lee, 

1996), environment modelling (Sadiq et al., 2004), mechanical system design (Wang et 

al., 1995), process plant modelling (Khan et al., 2002,2004; Khan & Haddara, 2003; 

Krishnasamy et al., 2005) and water pipe deterioration analysis (Kleiner et al., 2006 a, b). 

In this chapter, Equation 4.16 is used to describe the risk levels associated with each 

hazardous event in the OGSS. This definition indicates that if L and/or S are 

represented by fuzzy numbers, R will also be a fuzzy number. This calculation can be 

performed by using fuzzy operation rules. 

4.4.1 Linguistic risk levels 

In risk assessment, it is not unusual for analysts to prefer describing risks in terms of 
different levels, such as high, medium, low, rather than absolute values. This descriptive 

method may be necessary due to several reasons. 

Risk is not absolutely objective in nature, but rather relative and subjective. It is usually 

a fuzzy concept in the sense that there is not any unique risk associated with a 

hazardous event occurring in a given period (Karwowski & Mital, 1986). Therefore, 

risk assessment deals with quantities which are inherently imprecise and whose future 

values are uncertain. Linguistic categories or levels (e. g., very high, high, medium, low, 

very low), instead of absolute numbers, are adopted because each linguistic category or 

level can deal with the various and uncertain risk values by including a range or set of 

numbers. 

The real meaning of risk in practice is varied and application-specific. Risks are thus 

measured in different units. Even similar risk values may indicate different levels of 

influence in different applications. It is usually difficult to compare or aggregate risks 

with different units in a risk assessment as an alternative to numerical values for 

measuring risk levels, expert judgment using linguistic terms can be more easily used 

by risk analysts, system managers, policy makers and general users. 

Additionally, it is not unusual for analysts to have more confidence in risk evaluations 

performed in terms of risk levels rather than numerical values under certain 
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circumstances. The risk of terrorist attacks on an OGSS can be used as an example. An 

analyst cannot provide exact estimates for assessing risk in many situations; therefore, it 

is preferred to assess risk using linguistic terms rather than numerical values. This 

research uses linguistic risk levels to represent risk items. Furthermore, the numbers 

associated with linguistic risk levels are also considered as an important factor in 

practical risk assessment by many researchers. 

In 1956, Miller published a paper entitled "The magical number seven, plus or minus 

two: Some limits on our capacity for processing information" (Miller, 1956). With 

respect to this, it is often recommended that the number of linguistic terms for 

judgments should be restricted between five to nine (Karwowski & Mital, 1986). 

Normally, too few terms will not be adequate to present the real knowledge of analysts, 

while too many terms will bring extra difficulties in the following assessment. 
Therefore, five categories of linguistic representations are adopted in this research to 

express the degrees of (Likelihood) L and (Severity) S of hazards. It should be noted 

that there are some hazards with known occurrence L. L can be converted into 

qualitative grade such as: Very low, Low, Medium, High and Very high as represented 
in Table 4.1 (Military Standard, 1993; Pillay & Wang, 2003). Each of these linguistic 

terms can be represented quantitatively by a range of probabilities. Table 4.1 can 

provide a guideline for analysts carrying out such an analysis and can be used for 

converting the quantitative occurrence L of hazards into its corresponding linguistic 

terms. 

Table 4.1 Assessment of hazard probabilities and corresponding linguistic terms 

Linguistic terms for Qualitative Quantitative 
assessing L of risk (Grade 

of L) 
1. Very low Unlikely to occur Occurrence L< 10-6 

2. Low Unlikely, but possible to occur in 10-6 S Occurrence L< 10-3 
lifetime of an item 

3. Medium Likely to occur sometime in the life of 10-3 <_ Occurrence L< 10_2 
an item 

4. High Will occur several times in the life of 10-2 <_ Occurrence L< 10-1 
an item 

5. Very High Likely to occur frequently Occurrence LZ 10-1 
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4.4.2 Fuzzy representations of risk factors 

After the determination of the linguistic levels for L and S, one must determine the 

relevant mathematical expressions using membership functions for fuzzy numbers. 
However, the determination of a membership function is difficult and complicated. Any 

shape of a membership function is possible, but the selected shape should be justified 

by the available information. Bilgic & Turksen (1999) and Ross (2004) discussed 

several methods of determining the membership functions. It is also believed that in 

some cases the expressions of membership functions are not the dominant factors in 

engineering applications (Klir & Yuan, 1995). Chen & Hwang (1992) proposed 
different scales of linguistic terms for expert assessment. Scale 6 which contains 
trapezoidal membership functions is adopted to present mathematically the L and S 

levels of hazards in this research. 

A fuzzy number describes the relationship between an uncertain quantity x and a 

membership function u, ranging between 0 and 1. A fuzzy set is an extension of 

traditional set theory (in which x is either a member of set A or not) where x is a 

member of set A having a certain degree of membership j u. Let the L of a failure be 

defined by TPFNL and the S of failure be defined byTPFNs 
. Table 4.2 demonstrates a 

five-grade (or granular) qualitative scaling system for L and S. The membership 
functions of L and S are defined in Table 4.2. 

Table 4.2 Linguistic definition of grades (granulars) using TPFNs for L and S 

Granular Qualitative scale for likelihood 
of risk (Grade of L) 

Qualitative scale for severity of 
risk (Grade of S) 

Trapezoidal fuzzy number 
(TPFNS or TPFNL) 

1 Very low Extremely unimportant (0,0,0.1,0.2) 
2 . Low Unimportant (0.1,0.25,0.4) 
3 Medium Neutral (0.3,0.5,0.7) 
4 High Important (0.6,0.75,0.9) 
5 Very High Extremely important (0.8,0.9,1,1) 

Trapezoidal memberships of L and S of hazards are represented in Figure 4.2. 
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Figure 4.2 Linguistic terms of TPFNL and TPFNS 

Based on the definition of risk (Equation 4.16) and five grades for L and S (Table 4.2), 

the relative grades of risk are obtained and demonstrated in Table 4.3. 

Table 4.3 Linguistic level and explanations used to evaluate risks 

Linguistic representation of risk Description of linguistic values 
Very Low If likelihood is very low and severity extremely unim ortant 

Low If likelihood is low and severity is unimportant 
Substantial If the likelihood is medium and severity is neutral 

High If the likelihood is high and scverity is important 
Very High If the likelihood is very high and severi is extremely important 

According to the definition in Table 4.3, the standard categories of risk level can be 

determined as follows: 

'very 
Low 

Iie, 
y Low® 

SEexlremelyunimponant 

RLow 
- 

LLow 0S 
Unimportant 

RMedium = Lbledium 0 SNeutml 

RHigh = LHigh ®SImportant 

Rvery 
high- 

LExtemtely 
High® 

SExterinely 

where R denotes fuzzy risk variable; L and S denote fuzzy variables of likelihood and 

severity respectively. Table 4.4 shows the qualitative scales for risk and trapezoidal 

fuzzy numbers with their centroid values. P is the risk level number. 
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Table 4.4 Linguistic definitions of granulars using TPFNs for risk 

Risk level 
number 

(P) 

Qualitative scale for risk level 
(Grade of R) 

TPFNs Centroid 
LG (p) 

1 Very low: Risk is acceptable (0,0,0.01,0.04) 0.014 

2 Low: Risk is tolerable but should be reduced if it is cost 
effective 

(0.01,0.0625,0.16) 0.077 

3 Substantial: Risk must be reduced if it is practicable (0.09,0.25,0.49) 0.276 
4 High: Risk must be reduced (0.36,0.5625,0.81) 0.577 
5 Very high: Risk must be reduced and controlled (0.64,0.81,1,1) 0.858 

The five trapezoidal linguistic terms of risk are illustrated in Figure 4.3. 

I 
0.9S- 

09- 

0.85 

0.8 

0.75 

0.7 

0 65 

oe - 
0.65 

0.8- 

0.45- 

0.4- 

0.35--- 

3 . 
026 

0.0 0.1 0.2 0.3 0.5 0.6 0.7 

Figure 4.3 Linguistic terms of TPFNR 

0.8 0.0 1.0 

The risk of failure in the probabilistic realm is the combination of its occurrence 

probability and severity. When the occurrence probability and severity are assumed to 
be independent of each other, their combination is equal to the product of the two. 
Under the same assumption of independence, the fuzzy risk of failure (X) can be 

calculated as the product of the two fuzzy numbers denoted by L and S as follows: 

X= TPFNLS = TPFNL ®TPFNs = (aL x as, bL x bs, cL x cs, dL x ds ) (4.17) 

For example, if an event has L of (0.1,0.25,0.4) (Low) and S of (0.8,0.9,1,1) (Extremely 

important), the corresponding risk X will be a TPFN1 (0.08,0.235,0.25,0.4). There are 
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five steps to convert TPFN, S into fuzzy risk XJe 
,a normalized 5- tuple fuzzy set. 

These steps are illustrated in Figure 4.4 and explained as follows: 

1. Map TPFN over TPFNR (5 grades defined over the universe of discourse of risk). 

2. Determine the points where TPFNLS intersects each linguistic term of TPFNR (Table 

4.5). 

3. Use a maximum operator if TPFN, s and a linguistic term of TPFNR intersect at 

more than one point. 

4. Establish a set of intersecting points that defines a non-normalised 5- tuple fuzzy set 
(e. g., in Figure 4.5, XR is [0,0.32,1,0.1,0], which is the intersection of X with the 

membership of grade of risk (, u,, P=1,2, "-", 5) Very low, Low, Medium, High and 

Very high respectively). 

5. Normalise XR to obtain fuzzy set X* , where membership value p of XR is 

transformed to pp of X by dividing each pp by the cardinality C (sum of all 

membership values in the fuzzy set) as follows: 

' NP 
=C (4.18). ýp 

5 

EkP P=1 

Figure 4.4 Estimating 5-tuple fuzzy set of risk 
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Table 4.5 Converting fuzzy number TPFNLS into fuzzy risk 

X: -- TPFNLs [0.08,0.235,0.25,0.4] 
p VL LMH VH 

Inference 0 0.32 1 0.1 0 
[0,0.34,1,0.1,0] (Cardinality, C=1.44) 

XR 5- tuple fuzzy set represents membership values to qualitative risk levels 

X" [0,0.24,0.69,0.07,0] 

4.5 FAHP 

AHP is a methodological approach which implies structuring criteria of multiple 

options into a system hierarchy, including relative values of all criteria, comparing 

alternatives for each particular criterion and defining average importance of alternatives. 

FAHP is employed in this research to obtain the weight of each risk item and synthesise 

the risks from the bottom level to the top level of a hierarchical risk framework. The 

earliest work in FAHP appeared in Van Laarhoven & Pedrycz (1983), which compared 

fuzzy ratios described by triangular membership functions. Later, using the geometric 

mean, Buckley (1985) determined fuzzy priorities of comparison ratios whose 

membership functions were trapezoidal. By modifying Buckley's method, Boender et al. 

(1989) presented a more robust approach to the normalization of local priorities. 

According to Boender et al. (1989), the triangular approximation of fuzzy operations 

provides fuzzy solutions with a much smaller spread than Buckley's (1985) method. In 

1996, Cheng constructed a fuzzy judgment matrix using continuous judgment scale in 

which every element can be represented by a positive bounded closed fuzzy number. 

Chang (1996) introduced a new approach for handling FAHP with the use of triangular 

fuzzy numbers for pair-wise comparison scales and the use of extent analysis method 

for the synthetic extent values of pair-wise comparisons. Cheng (1996) proposed a new 

algorithm for evaluating naval tactical missile systems using FAHP based on grade 

values of membership functions. Kahraman et al. (1998) developed a fuzzy weighted 

evaluation method using objective and subjective measures. Deng (1999) presented a 

fuzzy approach for dealing with qualitative multi-criteria analysis problems in a simple 

and straightforward manner. 
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Lee et al. (1999) introduced the concept of comparison interval scales and proposed a 

methodology based on stochastic optimization to achieve global consistency and to 

accommodate the fuzzy nature of the comparison process. Cheng et al. (1999) proposed 

a new method for evaluating weapon systems using AHP based on linguistic variable 

weights. Zhu et al. (1999) discussed the extent analysis method and demonstrated some 

practical examples of FAHP. Leung & Cao (2000) proposed a fuzzy consistency 
definition with consideration of a tolerance deviation for alternatives in FAHP. More 

recently, Kuo et al. (2002) developed a decision support system for locating a new 

convenience store. 

Mikhailov (2002) applied the AHP method in conjunction with a fuzzy preference 

programming approach for partnership selection problems in establishment of virtual 

enterprises. Other examples of these applications include computer integrated 

manufacturing systems justification and selection, quality f nnction deployment, catering 

service companies evaluation, e-marketplace selection, software development strategy 

selection, new product development process, technology management, project risk 

evaluation, and global supplier selection (Bozdag et at., 2003; Kwong & Bai, 2003; 

Kahraman et at., 2003; Büyüközkan, 2004; Büyüközkan et al., 2004; Erensal et al., 

2006; Tüysüz & Kahraman, 2006; Chan & Kumar, 2007). 

As noted earlier in this chapter, because the contribution of each risk factor to the 

overall risk level is different, the weight of the contribution of each risk factor should be 

taken into consideration in order to represent its relative contribution to the risk level of 
OGSS. The application of FAHP may solve the problems of risk information loss in the 

hierarchical process for determining the relative importance of each risk factor in the 

synthesis process. Therefore, the risk assessment can be progressed from the bottom 

level of each subsystem hierarchical risk framework to the OGSS level (system level). 

An advantage of FAHP is its flexibility to be integrated with different techniques, such 

as FRA techniques in risk analysis. Therefore, FAHP analysis leads to the generation of 

weighting factors for representing the primary risk factors within each category. 
Traditional AHP may have the following problems in risk analysis in many situations: 
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" AHP dose not take into account experts imprecise subjective judgments 

associated with uncertainty. In practice experts often feel more confident to give 

judgments by using qualitative descriptors. 

" AHP is mainly applied to nearly crisp (non-fuzzy) decisions by a standardised 

estimation scheme, which adopts crisp numbers to represent the relative 
importance between alternatives. 

FAHP uses a similar framework of AHP to conduct analysis by using fuzzy ratios 

instead of crisp values. This approach captures the existence of uncertainty in risk 

assessment. In this chapter the Mikhailov method is employed to obtian weights of risk 
items at different levels of a hireachical structure. 

4.5.1 FAHP estimation procedure 

FAHP determines weighting factors by conducting pair-wise comparison. The 

comparison is based on an estimation scheme, which lists the intensity of importance 

using qualitative descriptors. Each qualitative descriptor has a corresponding triangular 

fuzzy number that is employed to transfer experts' judgments into comparisons matrix 

as follows: 

äW = 
(Rx,, 

aw, a;;, 
) (4.19) 

where aw and ax, correspond to the lower and upper values of a range to describe wth 

qualitative descriptor. aw stands for the most likely value to represent the wth 

qualitative descriptor. Table 4.6 describes the qualitative descriptors and their 

corresponding triangular fuzzy numbers (An et al., 2007). 
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Table 4.6 Estimation scheme 

Intensity of importance in Explanations Triangular 
qualitative descriptors fuzzy 

numbers 
Equal Importance (EI) Two experts or attributes contribute equally to the (1,1,2) 

event 
Weak Importance (WI) Experience and judgment slightly favor an expert (2,3,4) 

or attribute over another 
Strong Importance (SI) Experience and judgment strongly favor an expert (4,5,6) 

or attribute over another 
Very Strong Importance An expert or attribute is favored strongly over (6,7,8) 

(VSI) another 
Absolute Importance (AI) The evidence favoring an expert or attribute over (8,9,9) 

another is of the highest order of affirmation 

4.5.2 Construction of fuzzy pair-wise comparison matrix 

Suppose there are in experts in the risk assessment group. The elements in a fuzzy pair- 

wise comparison can be calculated as follows: 

ai. i =m ®(ei. i ®e, J ®... ekf... ®e, j) 

a 
j, t _ 

n. ýr, ý 

(4.20) 

(4.21) 

where aj is the relative importance formed by comparing event i with event j and e, j 

stands for the k th expert judgment in a fuzzy number format. Anxn fuzzy pairwise 

comparison matrix A can be obtained using Equation 4.22. 

P,. 1 
Ä= 

1 

a1,2 

ä2,, ä2.2 

1.1ni äx, 
2 

a k, / 

a,,. ) 
ä2n 

an,. 

(4.22) 

Weight factors can be calculated by using the geometric mean technique (Saaty, 1990; 

Tang et al., 2000; Mikhailov, 2004). 

1 

IXi2X... Xas 
1 

rnýý\g1xRi2X... 
XQiý1 

ý, (QjJXQi2X... 
Xäi°ný (4.23) 
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w. _, ý 
If 

' fi' ® f2 ®... f... ® 
. 
f. 

(4.24) 

where ff is the geometric mean of the ith row in the fuzzy pair-wise comparison matrix 

and wf is the fuzzy weight factor of the ith event. The output of the geometric mean 

method are triangular fuzzy weight factors, and a centroid defuzzification is adopted to 

convert a triangular fuzzy weight factor into a corresponding crisp weight factor in 

which FAHP employs a defuzzification approach obtained using Equation 4.25. The 

triangular fuzzy weight factor wi = 
(a, 

ar, a, 
) 

can be defuzzified as follows: 

DFw, = 
1'u' (x)xdx 

Jg; (x) 
(4.25) 

where DFw, is the defuzzified mean value of the fuzzy weight factor. w, can be 

calculated using Equation 4.26. 

DF-w, 

ZDF-w, 
=1 

(4.26) 

In this research, triangular fuzzy numbers are used for weight modelling and trapezoidal 

fuzzy numbers are selected for other modelling. Table 4.6 which contains triangular 

fuzzy numbers is used for pair-wise comparison of two experts or attributes. This Table 

has been used in many research papers for weight modelling (Mon et al., 1994; Cheng, 

1997; Mikhailov, 2004; An, 2007; An et al., 2007). Therefore, it is used for the same 

purpose in this research. Table 4.2 which contains trapezoidal fuzzy numbers is selected 

for identifying the importance level of an item, event or attribute. 

4.6 Risk aggregation 

Figure 4.5 illustrates the basic building blocks of the proposed hierarchical structural 

model for the risk aggregation. Each risk item is partitioned into its contributory factors, 

which are also risk items, and each of those can be further partitioned into lower level 

contributory factors. A unit that consists of a risk factor ("parent") and its contributory 
factors ("children") is called "family". A risk unit without children is called basic risk 
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item, while the term risk item is used for all elements with offspring. The notation used 

for a risk item is Xj, where j is the ordinal number of the risk item X in the current 

generation; i is the ordinal number of the parent (in the previous generation); and k is 

the generation order of X. The indices i, j, k are used for risk item attributes. The 

factors Lk and S, denote likelihood and severity (respectively) for the risk item-; j 

Generation Generation 2 Generation 1 3 

Child Parent 

Figure 4.5 A hierarchical structure for the estimation of aggregative risk 

Figure 4.5 shows a general case in which weights are assigned to each risk item. The 

notation used is w; j, which denotes the weight of X, relative to its siblings. Saaty 

(2001) described in detail the AHP to derive the weights. These weights are normalized 

to sum unity, such that in any generation k, for n siblings with parent i, a set of weights 

can be written as follows: 

=1 w; i = 
Iwi�, 

w2, t,..., w», 
J 

where 
ýwij (4.27) 

The process of evaluating aggregative risk in a "family" with an aggregative structure is 

described using the family (Figure 4.5) with X; 2 (parent) and X2.1 
,XZ. 2 ,X2.3 

(children), for example. For each of the sibling risk items, the likelihood (L) and 

severity (S) are assigned from the 5-grade scaling system (Table 4.2). TPFNLS(X) is 

the product of two fuzzy numbers TPFNL and TPFNS (Equation 4.17), which is then 

mapped over TPFNR to obtain the 5-tuple fuzzy set XL (a non-normalized fuzzy set for 

risk). XL is then normalized to obtain the 5-tuple fuzzy sets representing the risk 
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contribution of each of the siblings towards their parent. For ease of manipulation these 

5-tuple sets can be arranged in a fuzzy assessment matrix, 

I fýi(Xi. i) f1s(Xz. i) 
matrix F lul(X2,2) lu2(X2,2) 

1 
(X2,3 3 

3) JU2 
(X2,3 ) 

3331 
JU3 

/(X2,1 

) 
ll'ý4 

(X 
2,1 

) P5 

//(X2,1 

) 

ý3 \X 2,2 
ý ý4 (X2,2 ý 

JUS \X2,2 
) 

U3 (X 
2,3 

) U4 `X2,3 
ý U5 (X2,3 ) 

which is a 3x5 

. FAHP is then 

applied, weights wi, l, W2,2 and w2 2,3 are evaluated and arranged into a 3-member vector. 

The aggregative risk (or parent) of the three siblings is the cross product of the weight 

vector and the assessment matrix, resulting in a 5-tuple fuzzy set X21. 

ýl ýX 3 
2,1 

ý 

Xz 
lz - [lt'z, 

i " 
Ivx 1 Ni, 3 11 JU1(Xz, z 

ý 

JU1 
(X32,3 ) 

3 
lU2 (X 2,1 

ý 

/3 
Iu2 \X 2,2 

) 

2 (X2,3 lu 

3 
ý3 ýX2,1 ý 

3 
JU3 

(X 
2 

ý 

3 
P3 (X2,3 ) 

u4(X1) PS (X2,1 ) 1 
P4(X2,2) P5(X2,2) (4.28) 

33 p4(X23) Iu5 
(X2,3 ) 

where , uP (X; 2) _ IPI (X 12 ), P2 (X1 2)�u3 (X2 )' P4 (X 12 )' "5 (XI 2 
)] is the membership 

function of the aggregated risk with respect to the 5-grade risk scale. It should be noted 

that the process of evaluating L and S and mapping the product risk onto the 5-grade 

risk scale is necessary only for basic risk items, i. e. those risk items, which do not have 

children. All subsequent risk aggregations from one generation to the next are 

determined by applying Equation 4.28 and using the appropriate relative weights. The 

rate of final aggregative risk for top attribute Xö t can be obtained using Equation 4.29. 

S 

R=ELc(P)xfIr(Xö, I) 
P=1 

(4.29) 

R is calculated as a dot product of vector L. (P) and the aggregation fuzzy number for 

X, ',,, where LG (P) (Table 4.3) is the 5-tuple vector representing the centroid values of 

linguistic risk levels. Consequently it is useful to use notation that distinguishes 

between basic and non basic risk items. In the remainder of this paper, the notation for a 

basic risk item will include a star at the generation index, i. e., if item X2 3 is a basic risk 

item, it will be denoted by X2 3. 
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4.7 Risk updating 

The theory of evidence was first generated by Dempster (1967) and further developed 

by Shafer (1976); it is often referred to as Dempster-Shafer theory of evidence or D-S 

theory. The D-S theory was originally used for information aggregation in expert 

systems as an approximate reasoning tool (Lopez de Mantaras, 1990). Subsequently it 

has been used as an aid to decision making under conditions of uncertainty (Yager, 

2004). 

In the 1990s, ER was developed to deal with Multiple Criteria Decision Making 

(MCDM) problems under uncertainty based on the D-S theory. The use of ER as a 
decision making tool has been widely reported. The ER approach developed particularly 
for MCDM problems with both qualitative and quantitative criteria under uncertainty 

utilises individuals' knowledge, expertise and experience in the forms of belief 

functions (Wang et at., 1995; Yang & Xu, 2002). The ER rule of combination defines 

how to combine evidence obtained from two or more sources. Let A represent the set 

of the five safety expressions, which have been synthesized by two subsets A, and A2 

from two different assessors. Then, A, A, and A2 can separately be expressed by: 

A= {d "Very low", a2 "Low", a3 "Medium", a4 "High', as "Very high") 

A "Very low", aZ "Low" a; "Medium" "High", af "Ve high") 1= (d, Very low, 1, r, a4i ý "Very 

A2 -- {a'2 "Very low", a'a2 "Low", d2"Medium", a42 "High", as2 "Very hi h" g} 

The normalized relative weights of two safety assessors in the safety evaluation process 

are given as wl and w2 (wl + w2 =1). 

Suppose MI' and MZ (m = 1,2,3,4 or 5) are probability masses (or weighted belief degrees) 

to which the estimates AI and A2 support the hypothesis that the safety evaluation is confirmed 

to the five safety expressions. Then, M; and MZ can be obtained as follows: 

!q-M Iq Al M1 - w1a1 , 
MZ = w2a2 

44 

Let Hl =1-wLa; and H2 =1-w2Za2 
M=l m=1 

(4.30) 

(4.31) 
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Hl and H2 are regarded as remaining probability masses unassigned to any of the 

linguistic safety expressions. The terms Hl and H2 can be decomposed as follows 

(Yang & Xu, 2002): 

H, = H, + Hland H2 = H2 + H2 (4.32) 

where H, =1- w, and H2 =1- w2 represent the degree to which the other assessors can 

play a role in the assessment while 

5 

H1=w1 (1-Lai )=w1 [1 -(all+c21+a31+a41+as, )] (4.33) 
M=l 

and 

s 
H2 = w2 (1- Ea2 )= w2 [1- (W2 + a22 + a? 2 + a42+ ý2)) (4.34) 

M=l 

represent the possible incompleteness in the estimates Al and A2. 

Suppose a" (m = 1,2,3,4 or 5) represents the combined probability mass to which 

the safety evaluation is confirmed to the five safety expressions as a result of the 

synthesis of the judgments produced by assessors 1 and 2. Suppose Hu' represents the 

remaining belief degree unassigned to any of the safety expression as a result of the 

synthesis of the judgments produced by assessors 1 and 2. The evidential reasoning 

algorithm can be stated as follows: 

SS 

K=[1-1: 2: MiM2]a 
T=1 R=1 

R*T 

a'n I =K(M; M2 +M; H2+MZH, ) 

HU' =K 
(HI HI) 

Flu' =K(H, hl2+H, H2+H, IiZ) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 
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After the above aggregation, the combined degrees of belief a'° and normalised 

remaining belief Hu which represents the incompleteness in the overall assessment are 

generated by assigning Hu' back to the five safety expressions using the following 

normalization process: ' 

Rm=am"l(i-tIU') (m=1,2,3,4orS) (4.39) 

Hu = HU' l(1- Nu' ) (4.40) 

The above process can be repeated if more estimates need to be synthesised at one level 

or between different levels in a hierarchical framework. In this way, multiple subsets 

can be synthesised using the ER algorithm. 

4.8 Validation of fuzzy aggregative risk assessment methodology 

When a new methodology is developed, it requires a careful testing to ensure its robust 

which is especially important and desirable when subjective elements are involved in 

the methodology generated. There are several widely-accepted validation methods 

available for testing a new methodology. Sensitivity analysis shows how sensitive the 

outcome is to changes in inputs. The changes may be variations of L and S or the 

weights assigned to the risk items at different attribute levels. If the methodology is 

sound and logical, then the sensitivity analysis must at least concur with the following 

three axioms: 

Axioml. A slight increment/decrement in L and S of each basic risk item should result 
in the effect of a relative increase and decrease of Final Aggregative Risk (FAR) 

respectively. 

Axiom2. If L and S of x basic risk item s are increased to one higher linguistic 

judgment, the FAR with such basic risk items must be greater than the FAR with a set 

of (x-y) such basic risk items wherey E x. 

Axiom3. If L and S of x basic risk item s are decreased to one lower linguistic 

judgment, the FAR with such basic risk items must be smaller than the FAR with a set 

of (x-y) such basic risk items where yEx. 

95 



4.9 Case study 

The following test case is used to illustrate the assessment of risks in an OGSS. 

4.9.1 Developing an aggregative risk framework 

Two aggregative risk frameworks of OGSS were developed in Chapter 3. One of those 
frameworks (framework for a compressor gas leakage) is adopted in this section to 
demonstrate the application of the proposed methodology. 

I Terrorist activity 

Incorrect operation 

Alarm and monitoring failure 

Inadequate backup 

Vibration and failure of small bore 

rGas 
meter and equipment corrosion 

Shaft seal failure 

Impeller seal failure 

ýý 

Ground movement 

i Current turbidity I 

Human threats 

Nawral hazard 

Compressor leakage 

Figure 4.6 Hierarchical structure of aggregative risk model of compressor gas leakage 

Figure 4.6 represents a hierarchical structure model of aggregative risk involving three 

major attributes: human threats (X 21,1), operational failure (X2 1.2) and natural hazard 

(X21,3) at attribute level-2. The level-2 attributes are further divided into basic risk 

items, for example the human threat risk is divided into terrorist activity (X;; ) and 

incorrect operation (Xl Z ). The operational failure is divided into alarm and monitoring 

failure (X2 ), inadequate backup (X2 3* ), vibration and failure of small bore (X2 3* ), gas 

meter and equipment corrosion (X2'4 ), shaft seal failure (X3 6) and impeller seal failure 

(X2 
. 
*6). Similarly the natural hazard at level-1 is divided into two different basic risk 

(X). items: ground movement (X3. *, ) and current turbidity (X3 3,2 
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4.9.2 FRA 

An expert panel can determine the grades of L and S for basic risk item s. It should be 

noted that there is no data available regarding S of occurrence. If L of a basic risk item 

is known, then it can be converted into its corresponding linguistic terms using Table 

4.1. For example, L for XZ s is 3.5 x 10-4 
, this value can be converted into its 

corresponding L grade of 2 or linguistic term of Low by using Table 4.1. The grades of 

L and S for the basic risk items together with the weights of attributes at level-2 and 

level-3 of Figure 4.6 are demonstrated in Table 4.7 by using 5 grades of L and S which 

are provided in Table 4.2 

Table 4.7 Structure model of leakage in gas compressor 

FAR Attributes 
in level-2 

Attributes 
in level-3 

Weights of attributes 
in level-2 

Weights of 
attribute in level-3 

Grade 
L 

Grade 
S 

Xt o, l 
2 X1. t 

2, 
wu 

3 X1,1 3' wo 2 4 

3 X1,2 3' 
W12 2 

1 5 

X2 1,2 
z W12 2 

3" X2.1 3" 
W2 1 

2 4 

X2 2 3 
w2.2 1 3 

3" X2,3 P 
w2.3 1 2 

3" 

2", 4 X0 3' w2,4 3 2 

3* X2,5 3' W25 5 2 2 

3" X2,6 3" 
W2.6 2 2 

2 X1,3 2 
W1.3 

3" X3,1 3" W3.1 2 5 

X3" 
3.2 

P 
W32 2 2 4 
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The risks of basic risk items are evaluated in terms of the aforementioned criteria L and 

S by using Equation 4.16. Table 4.8 presents the risks of them in the form of TPFNJ2. 

Table 4.8 Risk of basic risk items 

Xd L' '` S` TPFNL TPFNS TPFNLs 

3" X1 
1 . 2 4 0.1 0.25 0.25 0.4 0.6 0.75 0.75 0.9 0.06 0.19 0.19 0.36 

X3" 12 1 5 0 0 0.1 0.2 0.8 0.9 1 1 0.00 0.00 0.10 0.20 
3" X2 

2 4 0.1 0.25 0.25 0.4 0.6 0.75 0.75 0.9 0.06 0.19 0.19 0.36 

3" X2 2 . 1 3 0 0 0.1 0.2 0.3 0.5 0.5 0.7 0.00 0.00 0.05 0.14 
3" X2 3 . 1 2 0 0 0.1 0.2 0.1 0.25 0.25 0.4 0.00 0.00 0.03 0.08 
3" X2 4 . 3 2 0.3 0.5 0.5 0.7 0.1 0.25 0.25 0.4 0.03 0.13 0.13 0.28 
3" X2 5 . 2 2 0.1 0.25 0.25 0.4 0.1 0.25 0.25 0.4 0.01 0.06 0.06 0.16 
3" X2 6 . 2 2 0.1 0.25 0.25 0.4 0.1 0.25 0.25 0.4 0.01 0.06 0.06 0.16 
3" X3 

1 . 2 5 0.1 0.25 0.25 0.4 0.8 0.9 1 1 0.08 0.23 0.25 0.40 
3" X3 

2 . 2 4 0.1 0.25 0.25 0.4 0.6 0.75 0.75 0.9 0.06 0.19 0.19 0.36 

The intersection results of all the evaluated risks over TPFNR are presented in Table 4.9. 

Table 4.9 Intersection results of all the evaluated risks over TPFNR 

.. "TPFYLý. ,.. NL Lm H VH 

0.06 0.19 0.19 0.36 0 0.43 0.83 0 0 

0.00 0.00 0.10 0.20 1 1 0.45 0 0 

0.06 0.19 0.19 0.36 0 0.43 0.83 0 0 

0.00 0.00 0.05 0.14 1 0.92 0.2 0 0 

0.00 0.00 0.03 0.08 1 0.7 0 0 0 

0.03 0.13 0.13 0.28 0.08 0.65 0.62 0 0 

0.01 0.06 0.06 0.16 0.37 1 0.28 0 0 

0.01 0.06 0.06 0.16 0.37 1 0.28 0 0 

0.08 0.23 0.25 0.40 0 0.33 1 0.1 0 

0.06 0.19 0.19 0.36 0 0.43 0.83 0 0 
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The evaluated risks are subsequently normalized using Equation 4.18 and the results are 

presented in Table 4.10. 

Table 4.10 Normalised fuzzy risks 

X,, l' VL 
. .. 

L.. M:..., `' H... VH 

3" X1 
1 . 0.00 0.34 0.66 0.00 0.00 

3" X1 
2 . 0.41 0.41 0.18 0.00 0.00 

3" X2 1 . 0.00 0.34 0.66 0.00 0.00 
3" 

2 2 . 0.47 0.43 0.09 0.00 0.00 
3' 
2 3 . 0.59 0.41 0.00 0.00 0.00 
3" X2 

4 0.06 0.48 0.46 0.00 0.00 
3 X2 
5 ' 0.22 0.61 0.17 0.00 0.00 

3" X2 
6 . 0.22 0.61 0.17 0.00 0.00 

3" X3 
1 . 0.00 0.23 0.70 0.07 0.00 

3" X3 2 . 0.00 0.34 0.66 0.00 0.00 

4.93 FAHP 

Fuzzy set theory and AHP are used to estimate the weights of all the risk items at 

different attribute levels. Table 4.6 is employed to carry out the pair-wise comparison. 

Five linguistic terms are used ranging from EI to Al. A 3x3 pair-wise comparison 

matrix is developed to obtain the weights of the level-2 risk items (human threats 

(X 21.1), operational failure (X22.1) and natural hazard (X2 33)). A is the pair-wise 

comparison matrix expressing the quantified judgment with regard to the relative 

importance of the level-2 risk items. For example, risk items of X2 2,1 and X2 3,1 were 

compared by three safety analysts. Two of them estimated the comparison of X22.1 

with X23,1 as SI which corresponds to fuzzy number of (4,5,6). The third analyst gave 

the comparison of X22,1 With X23.1 as VSI which corresponds to fuzzy number of 
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(6,7,8). Using Equation 4.21, the elements of i 13 and ä3i in Ä can be obtained as 

follows: 

ä, 3=3 
((4,5,6) ® (4,5,6) ® (6,7,8)) = (4.66,5.66,6.66) 

ä31 =1_1- (0.15,0.176,0.215) 
a13 (4.66,5.66,6.66) 

A3x3 fuzzy pairwise comparison matrix 2 can be constructed as follows: 

X21.1 X22.1 X23,1 

X11 F (1,1,1) (1,1,2) (1.66,2.33,3.33) 
A= X21 I (0.5,1,1) (1,1,1) (4.66,5.66,6.66) 

X3 , L(0.3,0.43,0.6) (0.15,0.176,0.215) (1,1,1) 

Each attribute weight at level-2 of the hierarchy can be calculated by using Equations 

4.23 and 4.24. For example, wi 1 is calculated as follows: 

®(1,1,2) ® (1.66,2.33,3.33))-31 = 
((lxix 

1.66)3, (1 x1x2.33)3, (1 x2x3.33)31 

fa; 
t= 

(1.18,1.32,1.86), fXl., = (1.32,1.77,1.86), fX; 
.= 

(0.35,0.426,0.5) 

z_ 
fx;, 

_ 
(1.18,1.32,1.86) 1.18 1.32 1.86 

= 0.28 w'' (2.86,3.51,4.22(4.22'3.512.86) 
('0.37'0.65) 

wi 1 can be converted into a crisp value by using Equation 4.25 as follows: 

_ 
0.28+0.37+0.65 

DF =0.43 
,=3 

In a similar way, DF_3 
1 
and DF_3 

, 
are found to be 0.48 and 0.12 respectively. The 

normalised weight of Xi 1, wit is obtained using Equation 4.26 as follows: 

2=_ 
w1'1 

0.43+0.48+0.12 
0.417 

0.43 
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The weights of the other attributes at level-2 and level-3 of the hierarchy can be 

obtained by repeating the above process. The weights of all the risk items at different 

levels of the hierarchical risk framework are presented in Table 4.11. 

Table 4.11 Weights of risk items at different attribute levels 

Weights of Weights of Defitzzified Defuzzified Normalized Normalized 
attributes in attributes in weights of weights of weights of weights of 

level-2 level-3 attributes in level-2 attributes in level-3 attributes in level-2 attributes in 
level-3 

2 W1,1 0.43 0.417 

3" Wt. 1 
0.86 0.835 

3" 
W1,2 

0.17 0.165 

2 W 0.48 0.466 
1,2 

3" w21 3.61 0.47 

P W2,2 0.92 0.121 

3" 0.47 0.062 W2,3 

3" 0.79 0.1 W2.4 

3" 0.98 0.13 W2.5 

3" 0.9 0.117 w2 6 

2 W 0.12 0.117 
1,3 

3" 
Wit 0.74 

3* W 0.26 
3,2 

4.9.4 Aggregation 

The fuzzy assessment matrices for the risk items of attribute level-2 can be established 

for X11, x1.2 2 and X; 3 individually. For example, for X; 1, the risk items involved are 

Xi; and Xi 2. The value of each risk item is estimated from Table 4.2, and then Figure 

4.5 is used to estimate the level of risk for each item. Thus a fuzzy assessment matrix 

F(X11) can be obtained as follows: 
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_ (R(ý. j 
®Sii'i)=ýi(Xii))ý..., (RlLi, 

i 
®Sii, s)=fýs(Xii)) Xii 

F(Xiz 
. 1)- 

[(R(ý. 

z ®Siz9l)=Ui(ý'i2)),..., (R(lý, z 
®Siz, s)=fýs('Yiz)) ý'iz 

(4.41) 

Similarly, the fuzzy assessment matrices for F(X12) and F(X13) can be formed for the 

corresponding attributes Xi 2 and Xi 3 respectively. Now the first stage aggregative 

assessment of gas leakage in compressor can be evaluated for attribute X11 as follows: 

*3 30 LN'i i, x'i. i hKz xF IXT i 
)ZKs 

- ýýN'i 
iX Ill iX ii) ý' K'i zx At i 

(ý'i 
z 

)), 
..., (4.42) 

(W13 x Lýs (X ii )+ W13 xx fýs (XI. 
2 )] 

Table 4.12 presents the first stage of aggregative calculation. 

Table 4.12 Result of first stage of aggregative risk assessment 

0.00 0.34 0.66 0.00 0.00 0.835 XI 
'l 0.067 0.353 0.580 0.000 0.000 

0.41 0.41 0.18 0.00 0.00 0.165 
2 Y 

0.00 0.34 0.66 0.00 0.00 0.470 ' 12 2 0.155 0.436 0.409 0.000 0.000 

0.47 0.44 0.09 0.00 0.00 0.121 

0.59 0.41 0.00 0.00 0.00 0.062 

0.06 0.48 0.46 0.00 0.00 0.100 

0.22 0.61 0.17 0.00 0.00 0.130 

0.22 0.61 0.17 0.00 0.00 0.117 
x2 
`Y 0.00 0.23 0.70 0.07 0.00 0.740 1.3 0.000 0.259 0.689 0.052 0.000 

0.00 0.34 0.66 0.00 0.00 Who 

The second stage of aggregative calculation is performed in a similar way. Table 4.13 

shows the quantification the second stage of aggregative calculation. 

Table 4.13 The second stage of aggregative risk assessment 

Xr� 
.' ; VL, .,..... 

,: 
I; ' M. <: ̀ . : VH,.. ,. .. VL LMH VH 

X `Yö 11 0.067 0.353 0.580 0.000 0.000 0.417 ,l 0.100 0.381 0.513 0.006 0.000 
X2 

1,2 0.155 0.436 0.409 0.000 0.000 0.466 
2 X 

0 689 0 0 00 1,3 0.000 0.259 . 0. 52 . 0 0.117 
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The rate of FAR for compressor gas leakage is shown in Table 4.14. It can be obtained 
by using Equation 4.29. 

Table 4.14 Result of final aggregative risk assessment of compressor gas leakage 

VL LMH VH 

X 
0.1 0.100 0.381 0.513 0.006 0.000 

Lc (P) 0.014 0.077 0.276 0.577 0.858 

X 0.175 

The overall risk of compressor gas leakage is 0.175. This belongs to the substantial risk 

category (Table 4.4). It means that the risk must be reduced if practicable. The result of 

aggregative calculation for the OGSS can be obtained by aggregating the risks of all the 

subsystems. The risks of all the subsystems are calculated and demonstrated in 

Appendix 2. The value of FAR for the OGSS is obtained and shown in Table 4.15. 

Table 4.15 Result of aggregative risk assessment of an OGSS 

Risks of 
subsystems VL L M 11 VH 

IPeighls' öf 

subsystems, 

° FAR of 
the 

OGSS 
VL LMH VH 

Risk of gas 1 X 
holder 0.270 0.449 0.268 0.013 0 0.16 O'l 0.164 0.351 0.403 0.076 0.006 
Risk of gas L (P) 
pipeline 0.116 0.299 0.416 0.153 0.016 0.38 c 0.014 0.077 0.276 0.577 0.858 
Risk of gas 
well 0.181 0.355 0.424 0.040 0 0.38 X 0.190 
Risk of gas 
compressor 0.100 0.381 0.513 0.006 0 0.08 

The subsystems of the OGSS can be ranked with respect to their contribution to FAR of 
the OGSS. Ranking of subsystems can be performed by measuring the decrease value in 

the FAR of OGSS, if risk value of a subsystem is considered as zero. Offshore gas 

pipeline has the highest contribution to FAR of system; therefore, it is ranked as the 

most important subsystem in the system. Offshore gas well, holder and compressor are 

ranked second, third and fourth respectively. The proposed methodology is capable of 
identifying the FAR of the system and rank the subsystems based on their contribution 

to FAR of system. With the help of FFTA (Chapter 5), risk analysts will know which 
MCs in the subsystems are the more critical. The results of this chapter and Chapter 5 
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help the analysts to select the best RCOs (Chapter 6) for mitigating risks of the 

subsystems and system respectively. 

4.9.5 Risk updating 

In the hierarchical structure described earlier, ER updating can be done at any level of 

the hierarchy when new evidence is available. In this step, the ER approach with its 

attached software Intelligent Design System (IDS) software is employed to combine 

evidence obtained from two or more sources. The risk updating is performed by 

recalculating of risk value with considering new evidence on X, '; 
. 

The existing risk 

value of X; , is mi (Xi'; ) - [0.06,0.19,0.36] (Table 4.8) with the weight factor 

of tii(nº, ) = 052. Assume new evidence is obtained from different expert with weight 

factor of tit(m, ) = 0.48 and risk value of in, (X,., '*) = [0,0,0.1,0.2]. IDS is employed to 

merge the new data with the existence one. Figure 4.7 shows the result of merging of 

data. 
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Figure 4.7 Result of merging new data with the existence one 

The value of X;;; is changed from [0 0.34,0.66,0,0] to m12(X1 3 I) = [0.16,0.39,0.45,0,0] 
. 

The process of risk calculation must be repeated to obtain a new FAR. The value of the 

new FAR is 0.16. The new result is obtained by considering the new evidence at risk 

item X, '* X. 
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4.9.6 Validation results of fuzzy aggregative risk assessment method 

Sensitivity analysis is performed to validate the proposed methodology. The model 

must satisfy the three axioms described in Section 4.8. The examination of the model 

reveals that when a basic risk item increases or decreases the FAR increases and 

decreases respectively. The first bar in the Figure 4.8 and Figure 4.9 show the FAR 

value of case study. Other bars in Figure 4.8 show the value of FAR by increasing of 

each individual basic risk item to one higher linguistic grade respectively. As mentioned, 

the FAR value of each increased basic risk item must be larger than the FAR value of 

case study. Figure 4.8 can satisfy the first expectation (Axiom 1). 

0.3 
0.27 
0.24 
0.21 
0.18 
0.15 
0.12 
0.09 
0.06 
0.03 

0 

n 

Case BRI1 BRI2 BRI3 BRI4 BRIS BRIG BRI7 BRI8 BRI9 BRIIO 
Study 

Figure 4.8 Increase of each BRI results in increase of FAR 

Bars in Figure 4.9 show the FAR value by decreasing of each individual BRI to one 

lower linguistic grade. The FAR value of case study must be smaller than FAR value of 

each decreased BRI. Figure 4.9 can confirm the aforementioned expectation. 

0.2 
0.18 
0.16 
0.14 
0.12 

0.1 
0.08 
0.06 
0.04 
0.02 

0 
Case BRI1 BRI2 BRI3 BRI4 BRI5 BRI6 BRI7 BRI8 ER9 BRIO 
Study 

Figure 4.9 Decrease of each basic risk item results in decrease of FAR 
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As shown in Figure 4.10, the first bar presents the value of FAR by considering the 

increment of all basic risk items (basic risk item 1 to basic risk item 10) to one higher 

linguistic grade. The second and third bars show the value of FAR by increasing basic 

risk item 2 to basic risk item 10 and basic risk item 4 to basic risk item 10 to one higher 

linguistic grade respectively. The FAR value of increasing all basic risk items must be 

larger than the one of increasing a subset of such basic risk item s. Therefore, FAR 

values must be as follows: 

FAR value of all basic risk items> FAR value of basic risk item 2 to basic risk item 10> 

FAR value of basic risk item 4 to basic risk item 10 

Figure 4.10 can confirm the aforementioned results. 

0.5 
0.4 
0.3 
0.2 
0.1 

0 

All BRIs are Increased BRI 2 to BRI 10 are increased BRI 4 to BRI 10 are increased 
I 

Figure 4.10 Comparison of increasing all the basic risk items and increasing its subsets 

L and S of all the basic risk items are decreased to one lower level Therefore, it is 

tested that the value of the resultant FAR with all such basic risk item s is smaller than 

the value of the resultant FAR with any subset of (x-j, ) such basic risk items 

where j, Ex. Figure 4.11 shows an example of comparing FRA values when all basic 

risk items and part of them are decreased to one lower grade. The results of the 

sensitivity analysis can confirm all the expectations in the three different axioms. 
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0.2 
0.15 

0.1 
0.05 

0 
All BRIs are decreased BRI2 to BRI 10 are decreased BRI 4 to BRI 10 are decreased 

Figure 4.1 1 Comparison of decreasing all basic risk items and decreasing its subsets 

4.10 Conclusion 

A proposed model using FRA, FAHP and ER is presented in this chapter for 

determining the aggregative risk of various sources. The rate of risk is defined by the 

product of L and S. Risk factors of L and S are expressed by a multiple level, qualitative 

scaling scheme increasing in value from Very low to Very high. The qualitative scales 

are expressed by fuzzy numbers to capture the vagueness in the linguistic subjectivity of 

risk definition. During grouping of attributes, FAHP is used for estimating the priority 

matrix (weights). Risk analysis using FRA and FAHP approaches can estimate domain 

human experts experience and risk management knowledge. The advantages of the 

proposed methodology are: 

" It enables the synthesis of both qualitative and quantitative information in a 

single framework. 

" It can explicitly handle and propagate data with uncertainties, for which 

probability distributions are unknown. 

0 It has the ability to update estimates based on the newly arrived data. 

" It is modular and scalable and new knowledge can be accommodated at any 

stage and in any form. 

" It is easily programmable for a computer application and could be used as risk 

analysis tool for an OGSS. 

The main limitation of the proposed method is: 
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" This framework supports both qualitative and quantitative data. Some data may 
be supported by rigorous observations, while the other may be based on beliefs 

that are loosely supported by anecdotal information. These two types of data 

should have different weights in the aggregation process. The hierarchical 

structure in its current form does not address this need to distinguish between 

data obtained from sources with different reliabilities. 

In the model development stages, the FAR value is expected to have limited meaning 
for the acceptable level of risk to the general public. It is envisaged that as the proposed 
hierarchical structure is developed, risk items are populated and improved upon (using 

newly obtained data), the designers and analysts of an OGSS will gain insight into 

acceptable risk levels as they are manifested in the final risk values. This approach 

could serve as a basis for bench-marking acceptable risks in OGSSs. 
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Chapter 5 

Fuzzy Fault Tree Analysis of OGSSs 

Summary 

Probabilistic Risk Assessment (PRA) is a comprehensive, structured and logical 

analysis method aimed at identifying hazards and assessing their risks of complex 

systems. FTA as a PRA method is used to identify basic causes leading to an undesired 

event, to represent logical relation of these basic causes in leading to the event, and 
finally to calculate the probability of occurrence of this event. To conduct a quantitative 
FTA, one needs a fault tree along with failure data of the Basic Events (BEs). 

Sometimes it is difficult to have an exact estimation of the failure rates of individual 

components or the probabilities of occurrence of undesired events due to a lack of 

sufficient data. Furthermore, due to imprecision in failure data of BEs, the overall 

result may be questionable. To avoid such conditions, a fuzzy approach may be used 

with the FTA technique. This reduces the ambiguity and imprecision arising from the 

subjectivity of data. The methodology is developed using a systematic approach of fault 

tree development, Minimal Cut Sets (MCSs) determination and probability analysis. 

This chapter also illustrates with a case study the use of importance measures in 

sensitivity analysis. 

5.1 Introduction 

FTA is a logical and diagrammatic method to evaluate the probability of top event that 

results from sequences of faults and failure events. The fault tree is useful for 

understanding the mode of occurrence of an accident in a logical way. Furthermore, 

given the failure probabilities of the BEs (i. e. system components), the occurrence 

probability of the TE can be calculated. This chapter considers the quantitative solution 

of the fault trees developed in Chapter 3 to quantitatively evaluate the cause-effect 

relationships in an OGSS (Figure 5.1). However, conventional probabilistic methods 

cannot be directly adopted in this study because the input data is not only represented in 

terms of probabilistic numbers but also fuzzy numbers. Therefore, FFTA is investigated 
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in this section. Fuzzy numbers are used to represent the likelihood of occurrence of BEs 

which are at the bottom level of the fault tree. FFTA is performed to generate the 

quantitative results used to represent the likelihood of occurrence of the TE. 
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Figure 5.1 Quantitative method used to evaluate the fault trees of the OGSS 

Besides the likelihood of the TE, another useful result of FTA is importance measures 

for BEs that identify contribution of the BEs to the occurrence of the TE. The 

importance measures are used for ranking the importance of different BEs. In this 

chapter, Section 5.2 introduces basic concepts of FFTA and reviews the methods used 

with FFTA. Section 5.3 describes the proposed methodology for this chapter. Section 

5.4 presents a case study. Lastly, Section 5.5 gives the conclusion. 
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5.2 Basics of FFTA 

FTA is a powerful and computationally efficient technique for analysing and predicting 

system reliability and safety. Many theoretical advances and practical applications have 

been achieved in this field to date. FTA is based on Boolean algebra and probability 

theory and is consistent with conventional reliability theory. It assumes that exact 

probabilities of events are given and sufficient failure data is available. However, many 

modern systems are highly reliable and thus, it is often very difficult to obtain sufficient 

statistical data to estimate precise failure rates or failure probabilities. Moreover, the 

inaccuracy associated with system models due to human errors is difficult to deal with 

solely by means of the conventional probabilistic reliability theory. These fundamental 

problems with probabilistic reliability theory have led researchers to look for new 

models or new reliability theories which can complement the classical probabilistic 

definition of reliability. Fuzzy set theory can be used to deal with this issue. Therefore, 

FFTA algorithm is developed to deal with such issues. 

5.2.1 Traditional FTA 

Traditionally, it is always assumed that the BEs contained in a fault tree are independent 

and could be represented as probabilistic numbers. With this assumption, quantitative 

analyses of fault trees are usually performed by considering two cases: (1) fault trees 

without repeated event, and (2) fault trees with repeated events (Andrews & Moss, 2002; 

Henley & Kumamoto, 1981). 

(i) Fault trees without repeated events 

If the fault tree for a TE contains independent BEs which appear only once in the tree 

structure, the TE probability can be obtained by working the BE probabilities up 

through the tree. In doing this, intermediate gate event ("and" or "or") probabilities are 

calculated by starting at the base of the tree and working upwards until the TE 

probability is obtained. Figure 5.2 demonstrates "and" and "or" intermediate gate events. 
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Figure 5.2 Symbol representation of "and" and "or" gates in fault trees 

For an "and" gate event, its probability is obtained by Equation 5.1. 

n 

I=fln, i-I 

(5.1) 

where P is the probability of the TE; p, denotes the occurrence probability of BE i; and 

n is the number of BEs associated with the "or" gate. For an "or" gate event, its 

probability is determined by Equation 5.2. 

n 

P=1-Fl 0 -J0 
I 

(5.2) 

where P is the probability of TE; p; denotes the occurrence probability of BE i; and n is 

the number of BEs associated with the "or" gate. 

(ii) Fault trees with repeated events 

When fault trees have BEs which appear more than once, the methods most often used 

to obtain the TE probability utilise the Minimal Cut sets (MCs). A MC is a collection of 

BEs. If all these events occur, the TE is guaranteed to occur; however, if any BE does 

not occur, the TE will not occur. Therefore, if a fault tree has n, MCs (MC, 
, 

i=I,..., n, ) then the TE "T" exists if at least one MCS exists (Andrews & Moss, 2002), 

i. e. 

n, 

T= MCS, + MCS2 +... + MCS" =U MCS; (5.3) 
i=l 

An exact evaluation of the TE occurrence likelihood can be obtained by Equation 5.4. 
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P(T) = P(MCS, U MCS2 U... U MCSN) 

=P(MGS, )+P(MCS2)+.. P(MCSN)-(P(MCS, nMCS2)+P(MCS, nMCS, )+.. P(MCS, nMCS, )... )... (5.4) 

+(-1)N-`P(MCS, nMCS2 n... n MCSN) 

where P(MCS, ) is the occurrence probability of minimal cut set i and N is the 

number of MCs.. 

5.2.2 Fuzzy FTA 

In conventional FTA, the failure probabilities of system components are treated as exact 

values. However, for many systems, it is often very difficult to estimate the precise 
failure rates or probabilities of individual components or failure events in the 

quantitative analysis of fault trees from past occurrences. In other words the crisp 

approach has difficulty in conveying imprecision or vagueness nature in system 

modelling to represent the failure rate of a system component (Liang & Wang, 1993). 

This always happens under a dynamically changing environment or in systems where 

available data is incomplete or insufficient for statistical inferences. Therefore, in the 

absence of exact data, it may be necessary to work with approximate estimations of 

probabilities. Under these conditions, it may be inappropriate to use the conventional 

FTA for computing the system failure probability. Therefore, it is necessary to develop 

a novel formalism to capture the subjectivity and the imprecision of failure data for use 
in the FTA. Instead of the probability of a failure, it may be more appropriate to propose 

its possibility (Misra & Weber, 1990). The probability values of components will be 

characterized by fuzzy numbers. 

With respect to this inadequacy of the conventional FTA, extensive research has been 

performed using fuzzy set theory in FTA. This pioneering research on this was 

conducted by Tanaka et al., (1983), which treated probabilities of BEs as trapezoidal 

fuzzy numbers, and applied the fuzzy extension principle to determine the probability of 

TE. Based on this work, further extensive researches were performed (Misra & Weber, 

1990; Liang & Wang, 1993). Another variation of FFTA was given by Misra & Weber 

(1989). Their analysis was based on possibility distribution associated with the BEs and 

a fuzzy algebra for combining these events. Parallel with this, Singer (1990) analysed 

fuzzy reliability by using L-R type fuzzy numbers. In order to facilitate the calculation 
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of Singer's method, Cheng & Mon (1993) and Chen (1994) proposed revised methods 
to analyse fault trees by specifically considering the failure FPs of BEs as triangular 
fuzzy numbers. In addition to the above studies, Onisawa (1988) proposed a method of 

using error possibility to analyse human reliability in a fault tree. By combining with 
Onisawa's work, Lin & Wang (1997) developed a hybrid method which can 

simultaneously deal with probability and possibility measures in a FTA. Sawer & Rao 

(1994) applied a-cuts to determine the failure probability of the TE in fuzzy fault trees 

of mechanical systems. Cai et al. (1991) and Huang et al. (2004) adopted possibility 

theory to analyse fuzzy fault trees. Dong & Yu (2005) applied the hybrid method to 

analyse failure probability of oil and gas transmission pipeline. Shu et al. (2006) used 
intuitionistic fuzzy methods to analyse fault trees on a printed circuit board assembly. 
Ping et al. (2007) presented a method which overcomes the drawbacks of traditional 

FTA by using FTA based on possibilistic measures and fuzzy logic. Pan & Wang (2007) 

used FFTA for assessing failures of bridge construction. 

Extensive research has been carried out to determine the importance of BEs in FFTAs. 

Tanaka et al. (1983) defined an improvement index to evaluate the importance of each 

BE. Furuta & Shiraishi (1984) used representative values of fuzzy membership 
functions to calculate the importance. Liang & Wang (1993) used ranking values to 

evaluate fiizzy importance index. Suresh et al. (1996) applied Euclidean distance to 

determine fuzzy importance measures and fuzzy uncertainty importance measures, 

which was further improved by Guimarees & Ebecken (1999). It is obvious from the 

above reviews that FFTA has been extensively studied for a long time and effectively 

applied to many engineering problems. However, its application in OGSSs is still scarce 

and rarely reported. This research specifically investigates the application of FFTA in 

OGSSs. 

5.3 Proposed model: FFTA of OGSSs 

In circumstances where a lack or incompleteness of data exists, there is a need to 
incorporate expert judgements into risk research. A framework is proposed based on the 
fuzzy set theory with the FTA method is capable of quantifying the judgement from 

experts who express opinions qualitatively. The proposed framework is developed in 

eight different stages in Figure 5.3. In the first stage, the BEs with known failure rates 
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are separated from those BEs with vague failure rates. The second stage is to obtain the 

failure probabilities of BEs with known failure rates. In the third stage, expert 
judgements are assigned to the BEs with vague failure rates. These ratings are generally 
in a fuzzy number form. The fourth stage is an aggregation procedure. It is performed 
by aggregating experts' opinions for BEs with vague failures through linguistic terms. 

A defuzzification process will then be adopted to transform the experts' judgements 

(fuzzy possibility) to the corresponding crisp possibility values by employing an 

appropriate algorithm. The sixth stage is to convert such crisp possibilities values to the 

failure probabilities. This is followed by estimating the MCSs and TE. In the last stage 

ranking of all the MCSs can consequently be produced. Figure 5.3 presents the structure 

of the proposed methodology. 

1. Spearating hazards with known failure rate from vague hazards 

2. Obtaining probability failure of known 
hazards from their corresponding failure 

rates 

I 

3. Rating stage: collecting expert opinions for vague 
hazards and converting their opinions into the 

corresponding fuzzy numbers 

------------------------ -------------------------- 
4. Aggregating 

stage 
I 4.1 Calculating the degree of similarity of pair of 

experts judgements for each BE 

I 4.2 Calculating the degree of agreement of each pair of 
experts 

I 

f 

f 
4.3 Calculating the relative degree of agreement of 

each pair of experts 

I4.4 Calculating the consensus degree of coefficient for 
each pair of experts 

f 
f 

f 

6. Transforming Crisp Failure Possibility (CFP) of BEs 
into FP 

7. Calculating all MCs and corresponding FP of TE 

i 

4.5 Calculating the aggregation result base on the 
expert opinion 

-------------------------------- -----------------l 

S. Defuzzyfing process 

8. Ranking of MCs 

Figure 5.3 Structure of the proposed methodology 
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5.3.1 Separating hazards 

As mentioned earlier, the first step of the methodology is a separation of hazards with 
known failure rate from vague hazards. Failure rates of some hazards are available from 

Offshore RElaibility DAta (OREDA, 2002). By using OREDA, it is possible to separate 
hazards with known failure rate from vague hazards associated with OGSSs. 

5.3.2 Obtaining failure probability of hazards with known failure rate 

The foundation of a good analysis is the pedigree of failure rate or event probability 
data that is assigned to BEs. A good faith effort must be made to obtain the best failure 

rate data that is available. The uncertainty in failure rate data depends in large part on 

the applicability of the data (its source). A failure rate should apply to the particular 

application of a component, its operating environment, and its non-operating 

environment. The failure rate data hierarchy is given as follows: 

1. Actual mission data on the component. 

2. Actual mission data on a component of similar design. 

3. Life test or accelerated test data on the component. 

4. Life test or accelerated test data on a similar component. 

5. Field or test data from the component supplier. 

6. Specialized data base or in-house data base on similar components. 

7. Standard handbooks for reliability data such as OREDA. 

There are predominantly three methods that could be used to determine the occurrence 

probability of an event namely (Preyssl, 1995): 

1. Statistical method. 

2. Extrapolation method. 

3. Expert judgement method. 

116 



The statistical method uses the treatment of direct test of experience data and the 

calculation of probabilities. The extrapolation method involves the use of model 

prediction and similar condition or using standard reliability handbook. The expert 
judgement method uses direct estimation of probabilities by specialists. 

A component is tested periodically with test interval r. A failure may occur at any time 

in the test interval, but the failure is only detected in a test. After a test/repair, the 

component is assumed to be "as good as new". This is a typical situation for many 

safety-critical components, like sensors and safety valves. If an event failure is of a kind 

which can be inspected, the component failure probability can be obtained from 

Equation 5.5 (Spouge, 2000; Rausand & Hoyland, 2004). 

P(t) =2 Ar 

where A is the component failure rate and r is the inspection interval. 

(5.5) 

If a component is of a kind which cannot be inspected. The component failure 

probability P, which is also called the unreliability, is determined from Equation 5.6. 

P(t) =1-e-1` (5.6) 

where A is the component failure rate and t is the relevant time interval. Based on the 

Maclaren Series, the above equation for P can be obtained from Equation 5.7 if At «1 

33nn 

+-ý 
t 

+... +ý 
t )_ý, t Pttý=1-(1+-A. t+A2tZ 

1! 2! 3! n! 

5.3.3 Rating stage 

(5.7) 

During this stage, experts express their opinions for each BE with respect to each 

subjective attribute. Expert elicitation is the synthesis of experts' opinions of a subject 

where there is uncertainty due to insufficient data because of physical constraints or 

lack of resources (Rausand & Hoyland, 2004). Expert elicitation is essentially a 

scientific consensus methodology and is often used in the study of rare events. Expert 

elicitation allows for parameterization, an "educated guess", for the respective topic 

under study. Expert elicitation generally quantifies uncertainty. 
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The technique has been studied within many disciplines. Examples of fields that have 

contributed to probability elicitation are decision analysis, psychology, risk analysis, 
Bayesian statistics, mathematics and philosophy. 

Quantification of subjective probabilities is employed in a number of circumstances 
(Korta et al., 1996 and SKB, 1999): 

9 Evidence is incomplete because it cannot be reasonably obtained. 

" Data exists only from analogous situations (one might know the solubility of one 

mineral and might use this information to infer the solubility of another mineral). 

" There are conflicting models or data sources. 

" Scaling up from experiments to target physical processes is not direct (scaling of 

mean values is often much simpler than rescaling uncertainties). 

Expert knowledge is influenced by individual perspectives and goals (Ford & Sterman, 

1998). Therefore, complete impartiality of expert knowledge is often difficult to achieve. 

An important consideration in the selection of experts is whether to use a heterogeneous 

group of experts (e. g. both scientists and workers) or a homogenous group of experts 

(e. g. only scientists). The effect of difference in personal experience on expert 

judgement is assumed to be smaller in homogenous group compared to a heterogeneous 

group. A heterogeneous group of experts can have an advantage over a homogenous 

group through considering all possible opinions. In summary, criteria to identify experts 

are based on (1) a person's period of learning and experience in a specific domain of 
knowledge, thus influencing his or her judgmental and analytical behaviour, and (2) the 

specific circumstances in which experience is gained, e. g. in theoretical or practical 

circumstances. 

In this study, a heterogeneous group of experts is selected for evaluating the probability 

of vague events. The weighting factors of experts are determined according to Table 5.1. 
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Table 5.1 Weighting scores of different experts 

Constitution Classification Score 
Professional Position (PP) Senior academic 5 

Junior academic 4 
Engineer 3 

Technician 2 
Worker 1 

Service Time (ST) >_ 30 years 5 
20 - 29 4 
10-19 3 
6-9 2_ 

55 1 
Education Level (EL) PhD 5 

Master 4 
Bachelor 3 

FIND 2 
School level 1 

Rating of expert judgement can be carried out in linguistic terms, which are used for 

soliciting expert opinions for each basic event. The concept of linguistic term is very 

useful in dealing with situations, which are too ill defined or too complex to be 

described in conventional quantitative expression (Zadeh, 1965). 

5.3.4 Aggregating stage 

Since each expert may have a different opinion according to his/her experience and 

expertise in the relevant field, it is necessary to aggregate experts' opinions to reach a 

consensus. 

Hsu & Chen (1994) presented an algorithm to aggregate the linguistic opinions of a 

homogeneous/heterogeneous group of experts. Suppose each expert, Ek 

(k =1,2,..., M) expresses his/her opinion on a particular attribute against a specific 

context by a predefined set of linguistic variables. The linguistic terms can be converted 
into corresponding fuzzy numbers. The detailed algorithm is described as follows: 

1. Calculate the degree of agreement (degree of similarity) Suv(k., R,, ) of the opinions 

K. and Ri, of a pair of experts Eu and Ev , where Su, (Ry 
,i)E 

[0, I]. According to this 

approach, A= (a1, a2, a3, a4) and il = (b,, b2, b3, b4) are two standard trapezoidal fuzzy 

numbers. Then the degree of similarity between these two fuzzy numbers can be 

obtained by the similarity function of S, which is defined as: 
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(4 
SIÄ, Bý=1- 1 

2la, -bi 1 
4 t_1 

(5.8) 

where S(A, B) E [0, I]. The larger value of S(A, B), the greater similarity between two 

fuzzy numbers of 2 and B. 

2. Calculate the Average Agreement (AA) degree AA(Eu) of the experts. 

AA(Eu)= 1 ZS(Rk) 
M-l u*v 

v=1 

3. Calculate the Relative Agreement (RA) degree, RA(E�) of the experts. 

E� (u =1,2,..., M) as RA(E� )= 
aAA(Eu 

) 

AA(Eu ) 

(5.9) 

(s. lo) 

U=1 

4. Estimate the Consensus Coefficient (CC) degree, CC(E,, ) of expert, Ed (u =1,2,..., M): 

CC(E�)=, 8-w(Eu)+(1-, 8)"RA(Eu). (5.11) 

where 8 (0: 5,8: 5 1) is a relaxation factor of the proposed method. It shows the 

importance w (E�) over RA (E. ) 
. 

When ß=0 no importance has been given to the 

weight of an expert and hence a homogeneous group of experts is used. When /3 = 1, the 

consensus degree of an expert is the same as its importance weight. The consensus 
degree coefficient of each expert is a good measure for evaluating the relative 

worthiness of each expert's opinion. It is the responsibility of the decision maker to 

assign an appropriate value to /3. 

5. Finally, the aggregated result of the experts' judgments, RAG can be obtained as 

follows: 

Ä,, G =CC(E, )xR, +CC(E2)xR2+- ""+CC(EJ xR, (5.12) 
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5.3.5 Defuzzification process 

Defuzzification is the process of producing a quantifiable result in fuzzy logic. 

Defuzzification problems emerge from the application of fuzzy control to the industrial 

processes (Zhao & Govind, 1991). Fuzzy numbers defuzzification is an important 

procedure for decision making in fuzzy environment. The centre of area defuzzification 

technique is selected here. This technique was developed by Sugeno in 1985 (Sugeno, 

1999). This is the most commonly used technique and is accurate. This method can be 

expressed as: 

f /t, (x)xdx 

f Pr (x) 
(5.13) 

where X* is the defuzzified output, p1 (x) is the aggregated membership function and 

x is the output variable. The above formula can be shown as follows for triangular and 

trapezoidal fuzzy numbers. Defuzzification of fuzzy number A= (al, a2, a3) is: 

a, 
x-a 

� _� 

o, 
- !1 -- 

xdx +3 xdx 
_. , 

a2 - a, ö, a3 - a: 
x= 

1a2-a1 x-a, dx +ýa, -x dx 

, =a, -a2 

=I(a, +a. +a3) 
(5.14) 

Defuzzification of trapezoidal fuzzy number A= (ai, a2, a3, a4) can be obtained by 

Equation 5.15. 

02 x- a xdY +j xdx +j a4 x 
xdz 

X. =J 

a2 -a, 
a4 -a3 I (a4 

+a3)2 -a4a, -(al +a2)2 +ala2 (5.15) 

° x-a ' dx + xdx+l 
a4 -x dx 

3 (a4 +a3 -a2 -al) ýj 
a2 - a, °ý °ý a4 - a3 

53.6 Transforming Crisp Failure Possibility (CFP) of BEs into failure probability 

As aforementioned, there are data available for failure rates of some events whilst the 
data associated with the others are vague. There is inconsistency between failure 

probabilities of certain hazards and CFPs of vague events. This issue can be solved by 

transforming CFPs of vague events into the form of failure probabilities. This 

121 



transformation can be performed by using Equation 5.16. Onsiawa (1998) has proposed 

a function which can be used for converting CFP to failure probability. This function is 

derived by addressing some properties such as the proportionality of human sensation to 

the logarithmic value of a physical quantity. The probability rate can be obtained from 

possibility rate as follows (Onsiawa, 1998; Onsiawa and Nishiwaki, 1998; Onsiawa, 

1988; Onsiawa, 1990; Onsiawa, 1996; Lin and Wang, 1998): 

1` 
CFP ý0_ 1- CFP 3 

FP= 10K' 
_ý 

K- 
( 

CFP 

) 
x2.301 

O, CFP-0 

5.3.7 Calculating all MCSs and occurrence of TE 

(5.16) 

By definition, an MCS is a combination (intersection) of BEs leading to the TE. The 

combination is a "minimal" combination in that all the failures are needed for the TE to 

occur; if one of the failures in the MCS does not occur, then the TE will not occur (by 

this combination). Any fault tree will consist of a finite number of MCs that are unique 

for that TE. One-component MCSs, if there are any, represent those single failures that 

will cause the TE to occur. Two-component MCSs represent the double failures that 

together will cause the TE to occur. TE can be obtained from MCSs by using Equation 

5.4. 

5.3.8 Ranking of MCs 

One of the most important outputs of an FTA is the set of importance measures that are 

calculated for the TE. Such importance measures establish the significance for all the 

MCSs in the fault tree in terms of their contributions to the TE probability. Both 

intermediate events (gate events) as well as MCSs can be prioritized according to their 
importance. Importance measures can also be calculated that give the sensitivity of the 

top event probability to an increase or decrease in the probability of any event in the 

fault tree. Two types of TE importance measure can be calculated for the different types 

of applications. The importance measures that can be calculated for each MCS in the 

fault tree are described as follows: 
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Fussell-Vesely Importance Measure (F-VIM) is the contribution of the MCS to the TE 

probability. F-VI measures are determinable for every MCS modelled in the fault tree. 

This provides a numerical significance of all the fault tree elements and allows them to 

be prioritized. The F-VI is calculated by summing all the causes (MCSs) of the TE 

involving the particular event. This measure has been applied to MCSs to determine the 

importance of individual MCS. Where Q; (t) is the contribution of MCS i to failure of 

the system, the importance measure can be quantified as follows (Modarres, 2006): 

1+FV Q! (t/ 
l1 QS (t) 

Probability of failure of MC i 

QS (t) = Probability of failure of TE due to all MCs 

(5.17) 

Risk Reduction Worth (RRW) measures the decrease in the probability of the TE if a 

given MCS is assured not to occur. This importance measure can also be called the Top 

Decrease Sensitivity (TDS). RRW for a MCS shows the decrease in the probability of 

the TE that would be obtained if the MCS did not occur. Therefore, the RRW can be 

calculated by re-quantifying the fault tree with the probability of the given MCS to 0. It 

thus measures the maximum reduction in the TE probability. An RRW value is 

determinable for every MCS in the fault tree. 

5.4 Case study 

The proposed methodology is applied to one of the OGSS subsystems in this section. 

The offshore gas pipeline fault tree is selected as the case study. 

5.4.1 Separating hazards with known failure rate from hazards with unknown 

failure rate 

The elements of the fault tree logic diagram are divided into hazards with known 

occurrence probabilities and hazards with unknown occurrence probabilities. 17 hazards 

are identified for pipeline gas leakage. 10 of them are hazards with known occurrence 

probabilities whilst there are not historical data available for the other 7 hazards. The 
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probabilities 7 of such hazards can be obtained by applying subjective linguistic 

evaluation. Table 5.2 presents all the hazards associated with the constructed fault tree. 

Table 5.2 Gas pipeline hazard probabilities 

Gas pipeline hazard Fault tree 
Ref. 

Hazard failure rate Gas pipeline hazard Fault tree 
Ref 

Hazard failure 
rate 

1. Bad installation HI11 Linguistic term 10Maintenace H141 Linguistic term 

2. Bad weld H112 Failure rate I1. Human error H142 Linguistic term 

3. Unsutiable material H121 Failure rate 12. Earth quake H21 Failure rate 
4. Inadequate strength H122 Failure rate 13. Turbidty current H22 Failure rate 
5. Acid 111311 Failure rate 14Mud flow H23 Linguistic term 
6. High water ratio H1312 Failure rate 15. Dropped object 11311 Linguistic term 
7. Tensile stress H1313 Failure rate 16. Trawling 11312 Linguistic term 

8. Intemal corrosion H132 Failure rate 17. Terrorist activity H32 Linguistic tern 
9. External corrosion H133 Failure rate 

5.4.2 Calculating FPs of hazards with known failure rate 

As previously mentioned, the foundation of a good analysis is the pedigree of failure 

rate or event occurrence probability data that is assigned to BEs. Therefore, occurrence 

probabilities of hazards with known failure rate can be estimated by using Equations 5.5 

to 5.7. For example, the failure rate of internal corrosion is lx 10-3 
1 

with 4 
kni. year 

inspections in a year. Therefore, FP of internal corrosion can be obtained by using 
Equation 5.5 as follows: 

FP, nrernat corrosion 
ix1x 10- x 

4= 6.6 x 10-4 1 
2 12 k7n. year 

The failure probabilities of the BEs with known failure rate are calculated and presented 
in Table 5.3. 

Table 5.3 Failure probabilities of BEs 

BEs FP of BEs of known failure rate BEs FP of BEs of known failure rate 
H112 0.0004 H 1313 0.001 
11121 0.003 H132 0.00066 
11122 0.0006 H133 0.00035 
H1311 0.005 H 0.005 
H1312 0.002 H72 0.001 
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5.4.3 Rating stage 

In the proposed method, a numerical approximation system proposed by Chen and 
Hwang (1992) is used to convert linguistic terms to their corresponding fuzzy numbers. 

There are generic verbal terms in the system where scale 1 contains two verbal terms 

(linguistic terms) and scale 8 contains 13 verbal terms (linguistic terms). The typical 

estimate of human working memory capacity is seven plus-minus two chunks, which 

means that the suitable number for linguistic term selection for human beings to make 

an appropriate judgement is between 5 and 9 (Miler, 1956; Nicokis and Tsuda, 1985). 

Therefore, conversion scale of 6 which contains 5 verbal terms is selected for 

performing the subjective assessment of hazards with unknown failure rate. Figure 5.4 

introduces the fuzzy linguistic scale that is used in this chapter to determine the 

judgements of experts with respect to hazards with unknown failure rate. 

Verv low 
1 

0.9 

0.8 r 
0.7 
0.6 

0.5 

0.4 

0.3 

0.21- 

0.1 
i 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 5.4 Chen and Hwang conversion scale 7 

Verv hiah 

1 

The linguistic terms of Figure 5.4 are in the form of both triangular and trapezoidal 

fuzzy numbers. All of the triangular fuzzy numbers can be converted into the 

corresponding trapezoidal fuzzy numbers for the ease of analysis. Table 5.4 presents all 

the fuzzy numbers of Figure 5.4 in the form of trapezoidal fuzzy numbers. 
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Table 5.4 Fuzzy number of conversion scale 6 

Linguistic terms Fuzzy sets 
VeryLow (VL) (0,0,0.1,0.2) 

Low (0.1,0.25,0.25,0.4) 
Medium (0.3,0.5,0.5,0.7) 

High (0.6,0.75,0.75,0.9) 
Very High (VH) (0.8,0.9,1,1) 

As previously mentioned, a heterogeneous group of experts is employed to perform the 
judgement for the vague events. The weights of the experts are not equal. The experts' 
weights can be obtained by using Table 5.1. Three experts are employed for performing 
the judgements. Table 5.5 shows the experts' weights. This table is particularly tailored 
for this research project. 

Table 5.5 Experts weight 

No of expert Title Service time (Year) Education level Weighting factor Weighting score 

1 Senior academic 10-19 PhD 5+3+5=13 0.38 

2 Engineer 20-29 Master 3+4+4=11 0.32 

3 Engineer 20-29 Bachelor 4+3+3=10 0.30 

Total: 34 Total: I 

Expert judgements on the BEs with unknown failure rate are illustrated in Table 5.6. 

Table 5.6 Expert judgments on vague BEs 

BE 
Expert judgment on vague BEs 

s Ei E2 E3 

Hill M M L 
H L L VL 
H14, m M L 
H23 M H H 
11311 H H H 
H 12 VL L L 
11,2 L M VL 

126 



5.4.4 Aggregation for obtaining estimates of BEs 

In this stage, all the ratings are aggregated under each subjective BE. As an example, 

the detailed aggregation calculations for BE of "Hill" are given in Table 5.7. /3 is 

considered as 0.5 in the aggregation calculation of the subjective BEs. 

Table 5.7 Aggregation calculations for the BE of "H111" 

Expert 1(El) 0.3 0.5 0.5 0.7 
Expert 2 (E2) 0.3 0.5 0.5 0.7 
Expert 3 E3 0.1 0.25 0.25 0.4 

S (EI&2) 1 AA (E1) 0.875 

S (El&3) 0.75 AA (E2) 0.875 

S (E2&3) 0.75 AA (E3) 0.75 

RA (E1) 0.35 CC (El) 0.365 

RA (E2) 0.35 CC (E2) 0.335 

RA (E3) 0.3 CC (E3) 0.3 

Weight of expert 1(E 1) 0.38 

Weight of expert 2 (E 2) 0.32 

Weight of expert 3 (E 3) 0.3 
Aggregation for Hlt, 0.24 0.425 0.425 0.61 

These calculations contain attribute based aggregation calculations, such as Average 

degree of Agreement (AA), Relative degree of Agreement of each expert (RA), etc. 
After the aggregation calculations, the results of all the BEs are presented in Table 5.8. 

Table 5.8 Aggregation calculations for each subjective BE 

BEs Aggregation of each subjective BE 
H111 (0.24,0.425,0.425,0.61) 
H141 (0.07,0.17,0.2,0.34) 
H142 (0.24,0.425,0.425,0.61) 
H23 (0.5,0.665,0.665,0.832) 
H31 t (0.6,0.75,0.75,0.9) 
H312 (0.06,0.163,0.198,0.33) 
H32 (0.13,0.25,0.28,0.43) 
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5.4.5 Defuzzification process of subjective BEs 

The centre of area defuzzification technique is employed to calculate the defuzzification 

of all the subjective BEs. Table 5.9 shows the result of subjective BEs defuzzification. 

Table 5.9 Defuzzification results for all subjective BEs 

BEs Aggregation of subjective basic events 
Defuzzification of subjective BEs 

(CFP) 
HI11 (0.24,0.425,0.425,0.61) 0.425 
H141 (0.07,0.17,0.2,0.34) 0.197 
H142 0.24,0.425,0.425,0.61 0.425 
H23 (0.5,0.665,0.665,0.83 2 0.665 
H311 (0.6,0.75,0.75,0.9) 0.75 
H312 (0.06,0.163,0.198,0.33) 0.189 
H32 (0.13,0.25,0.28,0.43) 0.274 

5.4.6 Converting CFPs of BEs into failure probability 

The CFPs of the subjective BEs can be transformed into the corresponding failure 

probabilities by using Equation 5.16. Table 5.10 presents the failure probabilities of all 

the subjective BEs. 

Table 5.10 Converting CFP into failure probability 

BEs FP of subjective BEs 

H111 0.002 
H141 0.0002 

H142 0.002 
H23 0.014 
H311 0.025 
H312 0.0001 

H32 0.0006 

5.4.7 Calculating failure probability of TE 

To quantify the occurrence probability of the TE of the fault tree, the occurrence 

probability for each BE in the fault tree must be provided. These BE probabilities are 

then propagated upward to the TE using the Boolean relationships. The BE probabilities 

can be propagated upward using MCSs. Table 5.11 presents the FPs of all the MCSs. 
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Furthermore, the occurrence probability of TE is obtained by using Equation 5.4. The 

occurrence probability of the TE is 0.0538 
1 

km. year 

Table 5.11 Failure probability of all MCs 

MCSs Occurrence 
probability 

MCSs Occurrence 
probability 

MCSs Occurrence 
probability 

1. Hill 0.002 6. H 132 0.00066 11. Hu 0.001 
2.11112 0.0004 7. H133 0.00035 12. H23 0.014 

3.11121 0.003 8. H141 0.0002 13. H311 0.025 
4.11122 0.0006 9. H142 0.002 14. H312 0.0001 

5. ( 111311 111312 111313) 
0.00000001 10.1121 0.005 15. H32 0.0006 

5.4.8 Ranking of Minimal Cut Sets (MCSs) 

An important objective of many reliability and risk analyses is to identify those 

components or MCSs that are the most important (critical) from a reliability or risk 

viewpoint so that they can be given priority with respect to improvements. Table 5.12 

presents the ranking of MCSs based on their calculated importance levels. 

Table 5.12 Importance level of each MCS 

No of MCs Occurrence probability 
of MCs 

F-VIM Ranking of MCs 

MCsI 0.002 0.036 5 
MCs2 0.0004 0.007 11 
MCs3 0.003 0.054 4 
MCs4 0.0006 0.010 9 
MCsS 0.00000001 1.8E-07 15 
MCs6 0.00066 0.027 7 
MCs7 0.00035 0.006 12 
MCs8 0.0002 0.003 13 
MCs9 0.002 0.036 5 
MCs10 0.005 0.091 3 
MCs11 0.001 0.018 8 
MCs12 0.014 0.256 2 
MCs13 0.025 0.457 1 
MCs14 0.0001 0.001 14 
MCs 15 0.0006 0.010 9 

In a sensitivity analysis, an input data parameter, such as a component failure 

probability is changed, and the resulting change in the TE probability is determined. 
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This is repeated for a set of changes using either different values for the same parameter 

or changing different parameters, e. g., changing different failure probabilities. Usually 

for a given sensitivity evaluation, only one parameter is changed at a time. This is called 

a one-at-a-time sensitivity study. This method is employed here to validate the 

sensitivity of the proposed model. RRW is employed to perform sensitivity analysis. 
The RRW can be calculated by setting an MCSs probability to 0. It is expected that 

elimination of the MC that has the highest contribution to the occurrence of TE should 

result in reducing the occurrence rate of TE more than other MCSs. Therefore, ranking 

of RRW values is expected to be the same as the ranking result of MCSs in Table 5.12. 

As shown in Table 5.13, MCS 13 has the highest contribution to the TE occurrence 

probability. Therefore, the RRW value of MCS 13 must be the largest. As demonstrated 

in Table 5.13, the RRW value of MCS13 is 0.0248 which is the highest as expected. 
Table 5.13 shows the ranking result which remains the same as the one in Table 5.12. 

The proposed model satisfies the aforementioned expectations. 

Table 5.13 Result of sensitivity analysis 

TE=0.0538 
No of 
MCSs 

Occurrence probability 
of MCs 

F-VI M MCs rank New TE RRW=TE-New TE RRW rank 

MCSsI 0.002 0.036 5 0.0519 0.0019 5 
MCSs2 0.0004 0.007 11 0.0534 0.0004 11 
MCSs3 0.003 0.054 4 0.0509 0.0029 4 
MCSs4 0.0006 0.010 9 0.0532 0.0006 9 
MCSs5 0.00000001 1.8E-07 15 0.0537 0.00001 15 
MCSs6 0.00066 0.027 7 0.0530 0.0008 7 
MCSs7 0.00035 0.006 12 0.0535 0.0003 12 
MCSs8 0.0002 0.003 13 0.0536 0.0002 13 
MCSs9 0.002 0.036 5 0.0519 0.0019 5 
MCSs10 0.005 0.091 3 0.0490 0.0048 3 
MCSs11 0.001 0.018 8 0.0531 0.0007 8 
MCSs12 0.014 0.256 2 0.0404 0.0134 2 
MCSs13 0.025 0.457 1 0.0290 0.0248 1 
MCSs14 0.0001 0.001 14 0.0537 0.0001 14 
MCSs15 0.0006 0.010 9 0.0532 0.0006 9 

5.5 Conclusion 

In this chapter a structured framework has been developed that may help the analyst to 

identify the critical MCSs in the system. From the result of this study, the following 

conclusions are drawn: 
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"A fuzzy methodology for fault tree evaluation seems to be a viable alternative 

solution to overcome the weak points of the conventional approach: insufficient 

information concerning the occurrences frequencies of hazardous events. 

" By using linguistic variables, it is possible to handle the ambiguities involved in 

the expression of the occurrence of a hazard (BE). In addition, the state of each 
hazard can be described in a more flexible form using the concept of fuzzy set. 

" Instead of using the CFP, failure probability is used to characterize the failure 

occurrence of the system events. It can efficiently express the vagueness nature 

of system phenomena and insufficient information. 

" The importance measure can provide useful information for improving the 

safety performance of a system. F-VI measure index assists the analyst in 

identifying the critical MCSs in the system for reducing occurrence likelihood of 

a TE. 

However there is another point that needs to be considered for further studies: 

" The basic events are considered as independent in this study. In the future 

research, it is required to develop a method for taking into account dependency 

between hazards. 
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Chapter 6 

Application of MADM in a Fuzzy Environment for Selecting 

the Best RCO in OGSSs 

Summary 

A Fuzzy MADM (FMADM) method, which is suitable for treating group decision 

making problems in a fuzzy environment, is proposed for ranking RCOs from a cost- 
benefit view point. It is obvious that much knowledge in the real world is fuzzy rather 

than precise. In OGSSs ranking problems, MADM decision data is usually fuzzy, crisp, 

or a combination of the two. A useful model is proposed here in order to handle both 

fizzy and crisp data. Imprecision and ambiguity in the calculation of a performance 

rating are incorporated into ! vMDM whereby fie.,, z"y set theory provides a mathematical 
framework for modelling them. Human opinions often conflict in group decision-making. 

The purpose of fuzzy MADM is to aggregate the conflicting opinions. In general, each 

expert's opinion for a given attribute may be different from others'. Therefore, it is 

necessary to develop an appropriate method of aggregating multiple experts' opinions, 

taking into account a degree of importance of each expert in the aggregation procedure. 
The weights of all attributes and experts are estimated using a FAHP. Finally, the best 

RCO with respect to cost and benefit is selected using a TOPSIS method. 

6.1 Introduction 

MADM is a common task in human activities. It consists of finding the preferred 

alternative from a given set of alternatives. The increasing complexity of the socio- 

economic environment makes it less likely that a single decision maker can consider all 

the relevant aspects of a problem (Kim & Ahn, 1999; Kim et al., 1999; Xu, 2000). In 

such situations, the preference information provided by the decision maker may be 

imprecise or incomplete. As a result, many decision making processes in the real world 

take place in group settings with incomplete information. There have been a few studies 

employing imprecise preference models in group settings to date (Anandaligam, 1989; 

Chen, 2000; Herrera et al., 2005; Lahdelma, 2005). Anandaligam (1989) developed a 
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methodology to use multiple attribute utility functions within a bargaining model. Salo 

(1995) developed an interactive method to aggregate the preferences of group members 
in the context of an evolving value representation. Kim & Ahn (1997) suggested the 

possibility that individually optimized results can be used to build group consensus, and 

considered strict or weak dominance values as inputs for aggregation procedures. 

Park & Kim (1997) proposed a dominance graph and also presented an algorithm to 

generate the dominance graph based on the information of pair-wise dominance. Kim et 

al. (1999) presented an interactive procedure for multiple attribute group decision 

making with incomplete information and described some theoretical models to establish 

a group's pairwise dominance relations using utility ranges with a separable linear 

programming technique. Kim & Ahn (1999) suggested a procedure to rank alternatives 

by comparing the net strengths of alternatives. Chen (2000) extended the TOPSIS of 

Hwang and Yoon (1981) to a fuzzy environment and developed a vertex procedure to 

calculate the distance between two triangular fuzzy numbers. The same paper defined a 

closeness coefficient to determine the ranking order of all alternatives by 

simultaneously calculating the distances to both the fuzzy positive-ideal solution and 

fuzzy negative-ideal solution. 

Li & Yang (2004) extended the classical linear programming technique for 

multidimensional analysis of preference (LINMAP) to develop a new methodology to 

solve multiple attribute group decision making problems in a fuzzy environment. They 

constructed a fuzzy linear programming model to rank alternatives by using the 

pairwise comparisons between alternatives, which can be used in both crisp and fuzzy 

environments. Lahdelma et al. (2005) developed a Ref-SMAA method to solve 

problems where both attribute data and preference information are uncertain or 

inaccurate (or preference information is absent). Olcer & Odabasi (2005) introduced an 

attribute based aggregation technique to deal with fuzzy multiple attribute group 

decision making problems. Herrera et al. (2005) presented an aggregation procedure to 

manage non-homogeneous information of a different nature (numerical and linguistic). 

However, in many real-life cases, such as negotiation processes or in high technology 

projects etc, a decision maker cannot generally specify exact attribute weights but can 

only provide value ranges (Li & Yang, 2004; Parkan, 1994; Park & Kim, 1997; Park, 
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2004). The information about attribute values usually takes the form of linguistic 

variables or triangular fuzzy numbers (Chen, 2000; Li & Yang, 2004). This is due to: 

" Decisions being made under time constraint and lack of knowledge or data (Park 

et al, 1996; Weber, 1987; Xu, 2000; Yang & Xu, 2002). 

" Attributes being intangible or non-monetary because they reflect social and 

environmental impacts (Kim et al., 1999). 

" Decision makers having limited attention and information processing 

capabilities (Kahneman et al., 1982). 

" Group settings with which all participants do not have equal expertise about 

problem domain (Ramanathan & Ganesh, 1994). 

Furthermore, during the decision making process a decision maker often needs to 

interact with group members (or analysts) by providing and modifying their incomplete 

preference information gradually. All of the above methods are somewhat unsuitable for 

dealing with these situations; therefore, it is necessary to pay attention to the 

aforementioned issues. In this chapter, an interactive method for multiple attribute 

group decision making under a fuzzy environment is developed where the information 

about attribute weights is partially known, the weights of decision makers and attribute 

values are expressed as trapezoidal fuzzy numbers. 

6.2 Background 

6.2.1 MADM 

Decision making with more than one criterion to be considered occurs frequently in our 
daily living. Though these Multiple Criteria Decision Making (MCDM) problems are 

diverse, they share some mutual characteristics (Hwang & Yoon, 1981). 

Conflict can exist among the criteria - Taking designing of a laptop as a simple 

example, the objective of low production cost may sacrifice part of its performance. 
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Criteria are of incommensurable units - Each criterion has its own unit of measurement. 

In the same example, cost is indicated by dollars, battery life is measured by minutes 

while processor speed is expressed by gigahertz (GHz). 

Either design or selection is the target - The goal of MCDM is either to design the 

optimal alternative or to choose the best one from the predefined alternatives. 

The last characteristic actually offers a way to classify MCDM problems, which can be 

broadly classified in two categories: Multiple Objective Decision Making (MODM), 

and Multiple Attribute Decision Making (MADM). Table 6.1 describes and compares 

the features of the two classes. 

Table 6.1 Characteristics of MODM and MADM 

MODM MADM 

Criteria defined Objective Attribute 

Goal Explicit Implicit 

Constraint Active Inactive 

Alternative Infinite field Finite field 

Decision space Continuous Discrete 

Usage Design Selection/Evaluation 

The decision matrix in a MADM method contains four main parts, namely: (a) 

alternatives, (b) attributes, (c) weights, and (d) measures of performance of alternatives 

with respect to the attributes. The basic information involved in a MADM model can be 

expressed by the following matrix: 

AT, ATZ ... AT, 

Al xi I xi2 ... XI" 
A2 x2l x22 ... . X2n 

D=. .... 
.::.. 

Ak xkl Xk2 ... x171 
w_ [WI 

WZ ... WN] 

(6.1) 

135 



where A, , A2 , ... , 
Ak are alternatives from which decision makers choose; AT,, AT2, 

..., AT. are attributes with which each alternative performance is measured; each x, 

k, j =1,..., n is the rating of alternative A. with respective to attribute AT, 

and wj is the weight of attribute AT. Some important issues with respect to MADM 

are explained as follows: 

A) Quantification of qualitative ratings. An alternative in a MADM problem is often 
described by qualitative attributes. When no attribute data is available, the preferred 

approach is to assign numerical values to qualitative data scaling (linguistic terms). A 

fuzzy set approach is a viable method for dealing with this issue. 

B) Normalization of attribute ratings. Attribute ratings are usually normalised to 

eliminate computational problems caused by different measurement units in a decision 

matrix. The normalization procedure attempts to obtain comparable scales, allowing 

attribute comparisons. There are two popular normalisation methods in the MADM 

methods: 

(1) Linear normalization, this procedure divides the ratings of a certain attribute by its 

maximum value. The normalsied value of x can be obtained by Equation 6.2. 

ry = 
xU 

x. 
i =1,..., k; j =1,..., n 

ý 

where xf is the maximum value xü . r. values vary between 0 to 1 (0 S r,, <_ 1). 

(6.2) 

(2) Vector normalization, this method divides the ratings of each attribute by its norm, 

so that each normalsied rating of x. can be obtained by Equation 6.3. 

r, = 
(6.3) 
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6.2.2 Fuzzy TOPSIS 

Yoon and Hwang (1981) developed the TOPSIS method based upon the concept that a 

chosen alternative should have the shortest distance from the Positive Ideal Solution 

(PIS) and the farthest distance from the Negative Ideal Solution (NIS). This method 

ranks alternatives according to their distances from the ideal and the negative ideal 

solutions. The ideal solution is identified with a hypothetical alternative that has the best 

values for all considered attributes, whereas the negative ideal solution is identified with 

a hypothetical alternative that has the worst attribute values. The TOPSIS method has 

some positive characteristics compared with other MADM methods. Firstly, 

performance is only slightly affected by the number of alternatives. Secondly, rank 

discrepancies are amplified to a lesser extent when increasing the number of alternatives 

and the number of attributes. 

In practice, TOPSIS has been successfully applied in solving selection/evaluation 

problems with a finite number of alternatives (Jee & Kang, 2000; Teodorovic, 1985; 

Yong, 2006). Furthermore, TOPSIS is based on solid logical foundation that reflects the 

rationale of human choice (Shiha et al., 2007). It has been proved to be one of the best 

methods in addressing the issue of rank reversal (Zanakis et al., 1998). However, RCO 

selection is often not crisply defined due to lack of data (Zimmermann & Zysno, 1985), 

therefore, many researchers have proposed fuzzy extensions of the TOPSIS method in 

order to eliminate the vagueness that is inherent in the corresponding evaluation 

problems (Chen, 2001; Yong, 2006; Li, 2007). 

The aggregating function of the TOPSIS method does not yield results such that the 
highly ranked alternative is simultaneously the closest to the PIS and the furthest from 

the NIS since these criteria can be conflicting (Li, 2007). This issue is dealt with by the 

original TOPSIS method via the use of the notion of "relative closeness" which is a 

measure of the relative distance between a certain alternative and the PIS and NIS. 

A new methodology for defining the aggregating function based on a fuzzy set 

representation of the distance to the PIS and NIS is proposed. This new methodology 

suggests the aggregating function to be modelled as the membership function of the 

intersection of two fuzzy sets, i. e. the fuzzy set of an alternative that has "the shortest 
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distance from the ideal solution" and the fuzzy set of the alternative that has "the 

farthest distance from the negative ideal solution". In particular, the use of the class of 
intersection connectives of fuzzy sets that is developed by Yager (1980) is a feature of 

the new methodology. Yager's class of connectives permits modelling of the relative 
importance of membership values as well as the "strength" of the intersection 

connective. Thus, it provides the mathematical basis for modelling the notion of 

closeness to the PIS and the NIS and enables a formal definition for the relationship 
between the proximity of the PIS and the NIS. 

6.3 RCOs of a Gas Well in Operational Phase 

A well barrier is defined by NORSOK D-010 (2004) as "an envelope of one or several 

dependent barrier elements preventing fluids or gases from flowing unintentionally 

from the formation into another formation or to surface". Well barrier can be viewed as 

a pressurized vessel (envelope) capable of containing the reservoir fluids. The two 

barrier principle is prevalent in Norway and in most oil and gas producing countries 

(NORSOK D-010,2004). This principle means that there should be at least two well 

barriers in a well. A well can therefore be considered as a system of two or more 

pressurized vessels (envelopes) that prevent the fluid from entering the surroundings. 

Figure 6.1 illustrates the well barrier system as pressure vessels. In Figure 6.1, the well 

tubular and the Christmas tree (X-mas tree) body constitute the vessel walls while the 

Surface Controlled Subsurface Safety Valve (SCSSV) and X-mas tree valves are 
illustrated as the outlet valves from the vessel. The innermost vessel illustrates the well 
barrier closest to the reservoir while the outer vessels illustrate the consecutive well 
barriers. 
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Figure 6.1 Illustration of well barriers to achieve integrity 

A well barrier system should prevent uncontrolled outflow from the borehole/well into 

the external environment (NORSOK D-010). A well barrier is dependent on one or 

several Well Barrier Elements (WBEs) to fulfill its function. A failure of one WBE 

results in a failure of the well barrier. A system that is functioning if and only if all of its 

components are functioning is called a series structure. According to NORSOK D-010 

there must be "at least two well barriers available during all well activities and 

operations, including suspended or abandoned wells, where a pressure differential exists 

that may cause uncontrolled outflow from the borehole/well to the external 

environment". This two barrier principle is well established throughout the oil industry. 

The well barrier closest to the reservoir is often called the primary well barrier, while 

the secondary well barrier prevents flow from the source. A system that is functioning if 

at least one of its components is functioning is called a parallel structure. Therefore, a 

system with a primary and secondary well barrier is a parallel structure (i. e., a 

redundant system). Redundancy is used to obtain high system availability. The well 
barrier system is functioning, if there is a connection either through the secondary or the 

primary well barrier, or both. The principle of two independent barriers is also 
important in terms of the system robustness. For example, if the wellhead on a 

production well is severely damaged the only remaining barrier against a severe blow- 
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out is the primary well barrier, namely the SCSSV and the tubing components below 

the SCSSV. 

Center for Chemical Process Safety (CCPS) distinguishes between passive and active 
Independent Protection Layers (IPL) (CCPS, 2001). A passive protection layer is a 

protection layer that is not required to take action to achieve its function in reducing risk. 
An active protection layer is required to move from one state to another in response to a 

change in a measurable process property (e. g., temperature or pressure), or a signal 
from another source (such as a push-button or a switch). A well barrier can be viewed 

as a protection layer whose objective is to prevent flow from the reservoir. A well 
barrier will however be a combination of passive and active protection layer "elements". 

The protection layer categorization in CCPS (2001) is used in this thesis to distinguish 

between passive and active WBEs. Typical passive WBEs are the production packer, 

the seal assemblies and the tubing string. Active WBEs are the Production Master Valve 

(PMV), the Production Wing Valve (PWV), and the SCSSV. For these valves a signal 
has to be sent (input) to close the valve (state change). Each WBE has different 

functions and different performance criteria. Examples of the relation between WBE 

functions, failure modes, and acceptable deviations are given in Table 6.2. The table 

illustrates that active WBEs change state and therefore the acceptable deviation for the 

state transition must be defined in addition to the acceptable deviation in the passive 

state (leak rate in a closed position). 

Table 6.2 WBE function and corresponding failures 

WBE Type Function Failure mode Acceptable deviation 
1. Passive Contain fluid, i. e. prevent 

leak across WBE 
Leak across WBE Leak rate (kg/s) 

2. Active Close WBE Fail to close WBE Closure time (S) 

Prevent leak (in closed 
position) 

WBE leak in a close 
position 

Leak rate (kg/s) 

Petroleum Safety Authority (PSA) (2002) identifies three attributes that describe the 

performance of safety barriers in general: 

1. Functionality/efficiency: the ability to function as specified in the design 

requirements. 
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2. Reliability/availability: the ability to function on demand or continuously. 

3. Robustness: the ability to function as specified under given accident conditions. 

Robustness is included as the ability to function given external threats, while 

availability underlines the importance of the well barrier system to "function over time". 

Functionality is seen as part of the design process where all interfaces are considered. A 

list of generic well barrier requirements is given in NORSOK D-010. The requirements 

are grouped into the different system interface categories and explained in Appendix 5. 

Different well barrier schematics in the drilling and operational phase are defined by 

NORSOK D-010. Figure 6.2 illustrates well barriers for well shut-in function in the 

operational phase. For performing the well shut-in function, the PMV is regarded as the 

outlet from the secondary well barrier, while the SCSSV is the outlet from the primary 
barrier (production/injection well). If the failed WBE is not part of these two envelopes, 

the failure does not influence the ability to shut-in the well on demand, and the well 

shut-in function complies with the two barrier principle. The two barrier principle also 

applies to well integrity, i. e., there should be two well barriers to prevent a blowout in 

normal operation. Two or more WBEs should therefore be intact in all leak paths. In 

addition to the two well barrier requirements, it is assumed that the primary barrier must 

always be intact. The primary barrier must be intact to allow for isolation of the well in 

the event of an external event damaging the wellhead. Four different RCOs with 

consideration of primary and secondary well barriers for well shut-in function during 

the operational phase are defined in order to prevent well leakage and blow-out. These 

RCOs are detailed in Table 6.3. The aim of this work is to select the best RCO with 

respect to cost and benefit. 

Table 6.3 Description of each RCO 

RCO1 Replacement of primary well barrier 
RCO2 Repairing of primary well barrier 
RCO3 Replacement of secondary well barrier 
RCO4 Repairing of secondary well barrier 
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A xV 
WBEs Function 

PJA 
1. Production packer Provide a scat between the completion string 

and the casing/liner, to prevent connection 
from the formation into the A-annulus above 

the production packer. 

2. SCSSV Prevent flow of the hydrocarbons or fluid up 
the tubing. 

3. Completion string Provide a conduit for formation fluid from 
the rescr\ oir to surface or vice \ ersa. 

1. Casing cement Provide a continuous, permanent and 
impermeable hydraulic seal along hole in the 
casing annulus or between casing strings, to 

prevent flow of formation fluids, resist 
pressures from above or below, and support 

casing or liner strings structurally. 
2. Casing Provide a physical hindrance to uncontrolled 

flow of formation fluid or injected fluid 
between the bore and the back-side of the 

casing. 

3. Tubing hanger Support the weight of the tubing, prevent 
flow from the bore and to the annulus and 

provide a seal in annulus space between itself 
and the wellhead. 

4. Well head Provide mechanical support for the casing 
and tubing strings and for hook-up of risers or 
production tree and to prevent flow from the 

bore and annuli to formation or the 
environment. 

P id i f h fl d d f 5. Production tree rov ea ow con t or y u rocarbons rom 
C--,. the tubing into the surface lines with the 

p 
, ', ... ability to stop the flow by closing the flow 

valve and/or the master valve. 
6. Annulus and valve Provide ability to monitor pressure and flow 

access line to annulus below the tubing hanger. 

Figure 6.2 Well barriers for well shut-in function in its operational phase 
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6.4 Research methodology 

A new algorithm will be developed in the following five major steps: 

1. Rating step. 

2. Estimating weights of experts and attributes. 

3. Aggregation of expert judgments for obtaining the estimate of each subjective 
attribute. 

4. Converting the aggregation result of subjective attributes to a crisp value. 

5. Selecting step. 

Define linguistic preference of DMs for each RCO 

i 
Calculate SD of each pair of expert opinions 

i 
Calculate the AD of each expert agreement 

4 
Estimate weights of 
experts and attribute 

Calculate RDA of each expert 

I 
Calculate CDC of each expert 

Calculate expert 
weight by FAHP 

Aggregate DMs opinion for each RCO coefficient 

Construct fuzzy decision matrix of RCOs by considering 
all attributes 

Estimate normalise fuzzy decision matrix 

I 
1* Estimate weight normalise fizzy decision matrix 

Calculate attribute 
weight by FAHP 

i 
Calculate the distance from FPIS and FNIS 

4 Calculate CC of each RCO by considering FPIS and 
FNIS 

4 
Rank the RCOs 

Transform available objective data of 
each RCO into subjective format 

Figure 6.3 Structure of the proposed methodology 
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In the first step, the attributes are divided into subjective and objective groups. Each 

expert expresses his/her opinion about the identified subjective attributes. The expert 

opinions are in a form of linguistic terms or verbal statements. This kind of subjective 
judgment can be modelled by a fuzzy number. 

In the second step the weights of attributes are obtained using FAHP. Experts' weights 

are estimated by employing the Delphi method. Then, an attribute based aggregation 

method for grouping experts' judgements is employed. One may conclude that the 

various experts are not equally important. This is known as a heterogeneous group of 

experts' problem. Aggregation is necessary only for the subjective attributes. After 

assigning a weight for each expert, all ratings are aggregated for each subjective 

attribute. 

In the fourth step, all aggregated fuzzy numbers are converted into numeric rating using 

the centre of gravity method. The result of the last phase is a decision matrix, which 

contains fuzzy data. Subsequently the alternatives in hand are ranked by FTOPSIS. The 

conceptual model of the proposed method is illustrated in Figure 6.3. 

6.4.1 Rating stage 

In order to establish the decision matrix, experts express their opinions for each 

alternative with respect to each attribute. This can be done by soliciting expert opinions 

for each alternative by considering a subjective attribute. An expert's opinion can be in 

a form of linguistic terms such as low, medium or high. The concept of linguistic 

variables is very useful in dealing with situations which are too complex or too ill 

defined to be reasonably described by a conventional quantitative expression (Zadeh, 

1965). The weights of various attributes and the ratings of each alternative with respect 

to each attribute are considered as linguistic variables. These linguistic variables are 

expressed in Table 5.4 (Chen & Hwang, 1992) and Table 4.6 (An et al., 2007). 

6.4.2 Estimating weights of attributes and experts 

6.4.2.1 Estimating weights of attributes 

Consider in experts in a decision making process. Each element in a fuzzy pair-wise 

comparison can be calculated as follows: 
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(6.5) 

where ä,. j is the relative importance by comparing attribute i with attribute j by 

m experts, and e,,, is the 1 th expert's judgment on the comparison of attribute i with 

attribute j in a fuzzy number format. A nxn fiizzy pair-wise comparison matrix A 

can be obtained as follows: 

rai, 
i ai, 2 

ÄcI 
ä2.1 ä2.2 

lan, 
l an, 2 

a1.,, 1 

ä,. 
j 

a2w 

an. ý J 
(6.6) 

Weight factors can be calculated using the geometric mean technique (Saaty, 1990; 

Tang et al., 2000; Mikhailov, 2004). ;) presents the lower bound (1) 
, 

median (m) and upper bound (u) values of är,, 
. 

,2 
ä" PI 
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(6.8) 

where fr is the geometric mean of the i th row in the fuzzy pair-wise comparison matrix 

and i is the fuzzy weight factor of the i th attribute. As the outputs of the geometric 

mean method are triangular fizzy weight factors, defuzzification is applied in order to 

convert triangular fuzzy weight factors into the corresponding crisp weight factors. A 

defuzzification approach used in FAHP is described below (Mikhailov, 2004): 

+5ý DT Wwr =3 (6+, 8 (6.9) 
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where Dom, is the defuzzified mean value of a fuzzy weight factor. The normalized 

weight of attribute i (w, ) can then be calculated by using Equation 6.10. 

w 
DFw-, 

DT-W, 
(6.10) 

i=1 

6.4.2.2 Estimating weights of experts 

The weighting of experts is determined according to Table 5.1. If an expert is 

considered "better" than others, then he/she is given a greater weight. 

Experts' weights are obtained by estimating weight scores and weight factors of experts. 

Weight scores and weight factors of experts can be obtained by using Equations 6.11 

and 6.12 respectively. 

Weight score of expert i= Score of PP of expert t+Score of ST of expert i+Score of 

EL of expert 1 (6.11) 

ff 
Weight factor of expert i= (Weight score of experti )/ (ý Weight score of experti ) 

(6.12) 

6.4.3 Aggregating stage 

Since each expert may have a different opinion according to his/her experience and 

expertise in the relevant field, it is necessary to aggregate experts' opinions to reach a 

consensus. Hsu & Chen (1994) presented an algorithm to aggregate the linguistic 

opinions of homogenous and heterogeneous groups of experts, which is presented in 

Chapter 5. The same algorithm is employed for aggregating experts judgements in this 

chapter. 

6.4.4 Defuzzifying stage 

Up to this stage, experts' opinions have been aggregated for each alternative under each 

subjective attribute. In order to rank the alternatives of the problem, all the aggregated 
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fuzzy numbers must be defuzzified. Therefore, all the components of the decision 

matrix are crisp numbers and any classical method can be used at the selection stage. 

Each subjective element of matrix Y. = 
(a,,, bb, c , 

d) can be converted to its 

corresponding crisp value by using Equation 5.15. 

6.4.5 Selection stage 

In the selection stage, classical MADM methods can be utilised to determine the 

ranking order of alternatives. Consider k possible alternatives A,, A2,.... Ak from which 

m decision makers pm = (1,2,..., m) have to choose the most desirable one on the basis 

of n attributes AT,,..., AT� . In order to make an appropriate decision, the following 

steps are performed. 

Step 1: Construct the normalised ficzy decision matrix. Suppose the aggregation rate of 

alternative A; (i =1,2,..., k) for attribute AT1 (1=1,2,..., n) is fy 
. 

Therefore, TOPSIS can 

be expressed in a matrix as follows: 

AT, AT2 ... ATn 

n_ýf. ý = 

A, 
A2 

Al 
J2 """ 

J21 
{'l 

�22 """ 

� 
In 

� 
2n 

fkn ý 
-- wp imxn 

Ak Lfkl fk2 
""" 

(6.13) 

Since n attributes may be measured in different ways, the decision matrix D needs to 

be normalised. This step transforms various attribute dimensions into the non- 
dimensional attributes, which allows comparison across the attributes. The normalised 

attributes can be obtained by using Equation 6.3. 

AT, AT2 ... AT� 

, rii r; 2 . r,, A^ 

R=) mx� = 
A2 r21 r22 ... r2 

(rv 
Akn Lrkl rk2 

(6.14) 
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Step 2: Construct weighted normalised decision matrix. The weighted normalised 

decision matrix can be constructed by multiplying each element r. by its associated 

weight w,: 

v, =w, xr, i=1,2, """, k; j=1,2, """, n (6.15) 

Step 3: Determine ideal and negative ideal solutions. Let the positive ideal solution A', 

and the negative ideal solution A- be defined in terms of the weighted normalised 

values: 

A+ = {Vi, V2 ,..., Vv ,.., V; }where v+ = (max v ,, l E J1; min Vß,, 1 E J2}, (6.16) 

A= {Vc 
, VZ ,..., Vi,.., Vk }where vý = (min vf, lE J1; max V f� iE J2 ), (6.17) 

where Jl is the set of the benefit attributes and J2 is the set of cost attributes. 

The distance of each alternative from positive ideal solution (D, ) and negative ideal 

solution (D, -) can be obtained by using Equations 6.18 and 6.19 respectively. 

D; 2, j (6.18) 
ý=ý 

D; )2, j(6.19) 
r=ý 

Step 4: Calculate the Relative Closeness (RC) of each alternative to the ideal solution 

and produce the final ranking. The ranking of alternatives is determined following 

the RC calculation. This allows the decision makers to choose the most rational 

alternative. RC can be obtained by using Equation 6.20. 

RC = 
Di 

Di + D; 
(6.20) 
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However it should be noted that, the notion of RC may lead to inconsistency (Li, 2007). 

Given two alternatives i and k, then alternative i is better than k ifRC1 > RCk . 

D, - 
> 

D; 
D, - + D; D; + Dk+ 

The above equation holds, if one of the conditions A, B and C is satisfied: 

(A) D; < Dk and D, > Dk 

(B) D, > Dk and D, - > D; but D, < 
Dk x 

D- D+ 
(C) D, < Dk and D, - < D; but D, >kx 

D; + 

Condition (A) corresponds to the principle of the TOPSIS method as alternative I is 

better than alternative k as it is closer to the PIS and farther from the NIS. However, 

condition (B) allows alternative i to be better than alternative k even though alternative 

i is farther from the PIS than alternative k. Condition (C) allows alternative i to be 

better than alternative k even though alternative i is closer to the NIS than 

alternative k. 

As aforementioned, TOPSIS ranks the alternatives according to their distances from 

ideal and negative ideal solutions, i. e. the best alternative has simultaneously the 

shortest distance from the ideal solution and farthest distance from negative ideal 

solution. In the previous section, it is shown that this statement is vague in sense that it 

does not provide a precise definition of the relative closeness to the negative and ideal 

solutions. A new model is proposed to solve the issue. 

In this context, the model proposed by Zimmermann & Zysno (1985) is used to 

determine the membership of an alternative that has the shortest distance from the ideal 

solution and that of the alternative that has the farthest distance from the negative ideal 

solution. According to this model, the membership of the former set is defined as a 

149 



function of the distance (D, ) between a given alternative i and the ideal solution, and it 

is represented by Equation 6.21. 

p+_1- 1+D; 
(6.21) 

(D, ) is measured by the euclidean distance. The membership of alternative from the 

negative ideal solution can also be defined, as a simple extension of the Zimmermann & 

Zysno (1985) model. Distance (Df) between the given alternative i and the negative 

ideal solution is given as follows: 

ý 
P- =1- 

1_D 
1+D; 1+Df 

(6.22) 

Yager (1980) suggested a class of intersection connectives as follows. Assume that A 

and B are subsets of X with membership values of N" and NB respectively. A general 

class of intersections is defined as follows: 

I 

AnB=Cwhere , u` =1-min[1, (1- f. c')p +(1-PB)p]p for P>_1. (6.23) 

The following properties can be concluded from this definition: 

1. If P -* oo, then pc = min(p4, ALB) (Zadeh connective) 

2. If P =1, then Nc = max[O, (p4 + pB -1)] (Lukasiewicz connective) 

The parameter Pis inversely related to the strength of the "and" operation. P is an 

inverse measure of how strong the "and" operation is meant. It must be noted that 

µ` n p- is a monotonically decreasing function of P. Thus, as P decreases, the 

strength of the "and" operation increases (Yager, 1980). 

According to the intersection connectives proposed by Yager (1980) RC can be 

obtained by Equation 6.24. 

I 
RC=p+"- =1-min[l, (1-p+)P+(1-f. c-)P]P for P>_1. (6.24) 
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where u' and p- are defined by Equations 6.22 and 6.23 respectively. Different values 

of P are connected with different behavioural patterns of decision makers uncertainty. 
In particular, higher values of P correspond to situation where decision makers 
increasingly take into account the worst characterization of an alternative, where as 
lower values of P correspond to situations where decision makers consider closeness to 

the best characterization of an alternative with increasing "strength". For example, 

assume the case of two alternatives i and j with memberships of C, = (0.3,0.6) and 

Cj = (0.2,0.9) respectively. Then the ratings that would be produced for different 

values of parameter P are shown in Table 6.4. 

Table 6.4 Ranking of two alternatives for different values of P 

P Cj = (0.3,0.6) Cj = (0.2,0.9) 

1 0.000 (2) 0.100 (1) 

2 0.194(l) 0.194(l) 

00 0.300(l) 0.200(2) 

The example depicted in Table 6.4 demonstrates that if P= OD a decision maker would 

rank alternative C, higher whereas if P =1 a decision maker would rank alternative Cf 

higher. Therefore, the proposed class of methods includes an extreme instance 

(P = oo) corresponding to situations where decision makers take into account only the 

worst characterization of an alternative, i. e. decision makers prefer alternatives that 

make as much profit as possible. 
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6.4.6 Validation of the FTOPSIS methodology 

Validation is an important aspect of this methodology as it will provide a reasonable 

amount of confidence to the result of the proposed model. In this particular study a 

sensitivity analysis for partial validation of the model has been developed. Sensitivity 

analysis is conducted by considering three rules. In the first and second rules weights of 

attributes are changed and the expected output results are investigated. Third rule 

considers the final ranking result by considering different P values. 

Rule 1: An increase/decrease in the weight of attributes should certainly result in 

changing of output. It should be noted that the sum of weights must be 1. 

Rule 2: If weights of all cost attributes (negative attributes) and benefit attribute 
(positive attributes) are considered 0 and 1 respectively, the output result must be 

dependent on the positive attribute (e. g. Reliability (REL)) of alternatives. It means that 

the alternatives with the highest and lowest REL values are ranked as the first and last 

alternatives respectively. 

Rule 3: Different P values must result in different outcomes. P =1 and P= oo are two 

extreme values. Therefore, the result of ranking for P =1 and P= oo must be different. 

It is expected that after certain values of P the ranking results remain unchanged in 

spite of different membership values. 

6.5 Case study 

The main aim of this section is to demonstrate how the proposed methodology can be 

applied to select the most rational RCO for offshore gas wells. Selection of the best 

RCO is made on the basis of one objective and three subjective attributes. Capital Cost 

(CC), Insurance Cost (IC), Reliability (REL) and Consequence (CON) are chosen, 
because they are regarded as the most significant attribute associated with well barrier 

based on extensive literature survey (Spouge, 1993; Erikvinnem, 2000; Corneliussen, 

2006). Since it is useful to develop a hierarchical structure showing the overall objective, 

the attributes and alternatives in such a hierarchy for selection of the best RCO are 

shown in Figure 6.4. 
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Objective Attributes Alternatives 

Selection of the 
best RCO 

Capital Cost (CC) 

RELiability (REL) 

CONsequence (CON) 

RCO 1 

RCO 2 

RCO 3 

RCO 4 

Figure 6.4 Decision hierarchy for selection of the best RCO 

There are basically two types of attribute for a selection problem, namely subjective and 

objective attributes. If an assessment of an alternative with respect to an attribute is 

from real field data, this kind of attribute is called an objective attribute. When experts' 

opinions for an alternative with respect to an attribute are fuzzy estimates, then this 

attribute is called a subjective attribute. In an MADM problem, subjective and objective 

attributes can be divided into two classes. The first class is cost (the larger, the less 

preferred) and the other is benefit (the larger, the more preference). Attribute properties 

such as the type of attribute and type of assessment are summarized in Table 6.5. 

Table 6.5 Attribute properties of case study 

Attributes Type of assessment Type of attribute 
REL Linguistic term Benefit Subjective 
CON Linguistic term Cost Subjective 
CC Real data Cost Objective 
IC Linguistic term Cost Subjective 

6.5.1 Rating stage calculation 

The alternatives in the case study are evaluated by a group of 3 experts, with respect to 

the subjective attributes. Since the only objective attribute of the decision problem is 

CC, the rating for this attribute does not need to be estimated and aggregated by the 

experts. For the rest of the attributes, the experts' linguistic judgments are transformed 

into their corresponding fuzzy numbers by using Table 5.4. RCO2 and RCO4 are 

considered as repairing the primary and secondary barriers respectively. It should be 

Insurance cost (IC) 

/"= 
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noted that valves, production packers and annulus are not repairable items; therefore, 

the CC and insurance premium must be considered the same as cost of replacing them. 

For IC and REL the experts express their opinions with respect to each WBE, but CON 

is rated with respect to well barriers. The three experts' judgments are presented for IC, 

CON and REL in Tables 6.6 to 6.8 respectively. 

Table 6.6 Expert evaluations of the four alternatives with respect to IC 

Willis RCO I RCO 2 

1. Production packer Expert I (1. ), Expert 2 (VL), Expert 3 (L) Expert 1(L), Expert 2 (VL), lxpert 3 (L) 
2. SCSSV Expert I(M), Expert 2 (M), Expert 3(H) Expert 1(M), Expert 2 (M), Expert 3(H) 

3. Completion string Expert I(1. ), I: xpert 2 (L, Expert 3(L) Expert 1(M), Expert 2 (L), Expert 3(H) 
RCO 3 RCO 4 

1. Casing cement Expert I(L), Expert 2(VL), Expert 3(L) Expert I (M), Expert 2(M), E. xpert 3(L) 

2. Casing Expert I (L, Expert 2(1. ), Expert 3(VL) Expert 1(L), Expert 2(M), Expert 3(M) 

3. Tubing hanger Expert I (VL), I-, xpert 2(1. ), Expert 3(L) Expert I (M), Expert 2(1-), Expert 3(M) 

4. Well head Expert 1(L), Expert 2(M), Expert 3(L) Expert I(M), Expert 2(H), Expert 3(H) 

5. Production tree Expert 1(1-), Expert 2(L), Expert 3(M) Expert 1(II), Expert 2(I-I), Expert 3(H) 

6. Annulus valve Expert 1(L), Expert 2(VL), Expert 3(1. ) Expert I(M), Expert 2(L), Expert 3(VL) 

Table 6.7 Expert evaluations of four alternatives with respect to CON 

WRIis RCOI RCO 2 

Primary well barrier Expert I(H), Expert 2(H), Expert 3(M) Expert 1(H), Expert 2 (H), Expert 3 (H) 

RCO3 RCO4 

Secondary well 
barrier 

Expert I(H), Expert 2(H), Expert 3(H) Expert 1(H), Expert 2(H), Expert 3(VH) 

Table 6.8 Expert evaluation of four alternatives with respect to REL 

W I3Ls RCO I RCO 2 

1. Production packer Expert I(VII), Expcrt 2(VH), Expert 3(VII) Expert 1(II), Expcrt 2(H), Expert 3(1) 
2. SCSSV Expert 1(VI1), Expert 2(VH), Expert 3(VH) Expert 1(II), Expert 2(H ), Expert 3(VH) 

3. Cornpletion string Expert I(II), Expert 2(VI1), Expert 3(H) Expert 1(M), Expert 2(M), Expert 3(M) 
RCO 3 RCO 4 

1. Casing cement Expert 1(I1), Expert 2(V11), Expert 3(H) Expert I(M), Expert 2(M), Expert 3(11) 

2. Casing Expert 1(VI t), Expert 2(V11), l xpert 3(V11) Expert 1(VH), Expert 2(VH), Expert 3(VI1) 

3. Tubing hanger Expert I(VH), Expert 2(VH), Expert 3(V11) Expert 1(VH), Expert 2(VH), Expert 3(VH) 

4. Well head Expert 1(VI1), Expert 2(VH), Expert 3(VH) Expert 1(H), Expert 2(H), Expert 3(I1) 

5. Production tree Expert 1(VIO, Expert 2(VH), Expert 3(VH) Expert 1(H), Expert 2(H), Expert 3(H) 

6. Annulus valve Expert 1(I1), Expert 2(H), Expert 3(H) Expert 1(H), Expert 2(H), Expert 3(11) 
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6.5.2 Calculating weights of attributes and experts 

6.5.2.1 Estimating weights of attributes 

Fuzzy set theory and AHP have been used to estimate the weights of all the attributes 

and experts. Table 4.6 has been used to make a pair-wise comparison. Five linguistic 

terms are used ranging from equal importance to absolute importance. A4x4 pair-wise 

comparison matrix is developed to obtain the weights of all the attributes. A is the pair- 

wise comparison matrix expressing the quantified judgment with regard to the relative 
importance of the attributes. For example, two experts estimated that attributes of REL 

and CCare of "equal importance" and their judgments are then translated to a fuzzy 

number of (1,1,2). One expert considered that REL is of "strong importance" in 

comparison with event CC which corresponds to fuzzy number (4,5,6). Using Equation 

6.4, elements in äl3 and ä31 pair-wise comparison can be obtained as follows: 

ä13 =3 ((1,1,2)® (1,1,2)® (4,5,6))= (1.66,2.33,3.33) 

a31 
11 (0.3,0.43,0.6 

ä13 (1.66,2.33,3.33) 

A4x4 fuzzy pairwise comparison matrix 2 can be constructed as follows: 

REL CON CC IC 

RRL T (1,1,2) (1.66,2.33,3.33) (4,5,6) 

_ 
CON (0.5,1,1) 1 (1.33,1.66,2.66) (4,5,6) 

A 
CC (0.3,0.43,0.6) (0.37,0.6,0.75) T (1,1.2) 
IC (0.16,0.2,0.25) (0.16,0.2,0.25) (0.5,1,1) 1 

Using the geometric mean technique, each attribute weight can be calculated by using 

Equations 6.7 and 6.8; Table 6.9 presents the weights of all the attributes. 

JREL =((L1,1)®(1,1,2)®(1.66,2.33,3.33)®(4,5,6))+ =I (1x1x1.66x4)ä, (1x1x2.33x5Y4, (1x2x3.33x6ý4 I 

fREL = (1.6,1.84,2.51), ICON = (1.28,1.7,2), fcc = (0.58,0.72,0.98), fic = (0.34,0.45,0.5/ 

1.6,1.84,2.51 
_ 

1.6 1.84 2.51 
_ wýL= 

* 
JREL ý,, 

(0.27,0.39,0.66 
IREL +J CON +ýcc +. Tic (3.8,4.71,5.99) 5.99 4.71 3.8 

) 
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Table 6.9 Weights of attributes 

Fuzzy weight of attributes Defuzzified weight Normalized weiht of attribute 
WREL = (0.27,0.39,0.66) DF WREL 0.44 WREL 0.415 

Wcov = (0.2,0.36,0.56) DF Wco, V=0.36 Wco, V-0.34 
wcc = (0.09,0.15,0.26) DF Wcc O. 17 wcc -0.16 

w, c = (0.05,0.09,0.13) DF w, c 0.09 Wjc =0.085 

6.5.2.2 Estimating weights of experts 

Three experts are selected to make judgments with respect to the subjective attributes. 
The experts' weight can be obtained by using Table 4.6, Equations 6.11 and 6.12. Table 

6.10 presents the experts' weights. 

Table 6.10 Weights of experts 

Exert number PP ST (Year) EL Weighting factor Weighting score 
1 Senior academic 10-19 PhD 5+3+5=13 0.37 
2 Junior academic 20 - 29 Master 4+4+4=12 0.34 
3 Engineer 20 - 29 Bachelor 3+4+3=10 0.29 

Total=35 Total=l 

6.5.3 Aggregation of subjective attributes 

In this step, all the ratings are aggregated for each subjective attribute. As mentioned 

earlier the subjective attributes are IC, CON and REL. The aggregation calculations for 

IC, CON and REL are given in Table 6.11 to Table 6.15 respectively. Aggregation of 

each RCO with respect to IC is performed in two stages. The first stage is to obtain 

rating of judgment of each expert for each RCO. As an example, the calculation of 

Expert 1 judgment for RCO1 is given in Table 6.11. 
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Table 6.11 Aggregation of judgment of Expert 1 for RCO1 with respect to IC 

WBEs 
1. Production packer 0.1 0.25 0.25 0.4 
2. SCSSV 0.3 0.5 0.5 0.7 
3. Completion string 0.1 0.25 0.25 0.4 
S (WBE1&WBE2) 0.75 
S (WBE1&WBE3) I 
S (WBE2&WBE3) 0.75 

AA (WBE1) 0.875 
AA (WBE2) 0.75 
AA (WBE3) 0.875 
RA (WBE1) 0.35 
RA (WBE2) 0.3 
RA (WBE3) 0.35 
CC (WBE1) 0.35 
CC (WBE2) 0.3 
CC (WBE3) 0.35 

Aggregation of El 0.16 0.325 0.325 0.49 

The second stage is to aggregate the judgment of the three experts on IC for the RCOs. 

Table 6.12 presents the aggregation calculation of the three experts' judgments on IC. 

Table 6.12 Aggregation of three experts rating with respect to IC 

Exert 1 1) 0.16 0.325 0.325 0.49 
Exert 2 (E2) 0.13 0.245 0.278 0.427 
Exert 3 (E3 0.225 0.375 0.375 0.525 

S (E1&E2) 0.945 
S (E1&E3) 0.95 
S (E2&E3) 0.895 
AA (E1) 0.947 
AA (E2) 0.920 
AA (E3 0.922 
RA (E1) 0.339 
RA (E2) 0.329 
RA (E3 0.330 
CC (E1) 0.354 
CC (E2) 0.334 
CC (E3 0.310 
Weiht of exert 1 0.37 
Weiht of exert 2 0.34 
Weiht of exert 3 0.29 

Aggregation for RCO1 0.170 0.313 0.324 0.479 

The aggregation of the three expert judgments for RCO1 with respect to CON is 

presented in Table 6.13. 
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Table 6.13 RCO1 aggregation with considering CON 

Exert I (E1 0.6 0.75 0.75 0.9 
Expert 2 (E2) 0.6 0.75 0.75 0.9 
Expert 3 (E3 0.3 0.5 0.5 0.7 

S (E1&E2) 1 
S (E1&E3) 0.75 
S (E2&E3) 0.75 
AA (E1) 0.875 
AA (E2) 0.875 
AA (E3) 0.75 
RA (E1) 0.35 
RA (E2) 0.35 
RA (E3) 0.3 
CC (E1) 0.36 
CC (E2) 0.345 
CC (D) 1 0.295 
Weiht of expert 1 0.37 
Weight of exert 2 0.34 
Weight of expert 3 0.29 

Aggregation for 
RCOI 0.511 0.676 0.676 0.841 

Aggregation of the REL estimates for each RCO can be performed in two stages. The 

first stage is to obtain a rating for each expert judgment for each RCO. A well barrier is 

dependent on one or several WBEs to fulfil its function. The REL of a series structure 

can be obtained by multiplying the REL values of all its components. Therefore, the 

reliability of a well barrier can be obtained by multiplying the REL judgments of the 

WBEs (Table 6.8). As an example, an estimation of expert 1 judgment on REL for 

RCO1 is given in Table 6.14. 

Table 6.14 Expert 1 judgment with respect to REL 

WBEs RCO 1 

1. Production packer Expert 1(VH) 
2. SCSSV Expert 1(VH) 

3. Completion string Expert I (H) 
REL estimation REL=VHxVHxH =(0.384,0.607,0.75,0.9) 
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In the second stage, the aggregation of the three experts' judgments for RCO 1 on REL 

is presented in Table 6.15. 

Table 6.15 Aggregation of the three experts' judgment REL for RCO1 

Exert 1 (E1 0.384 0.607 0.75 0.9 
Expert 2 (E2) 0.512 0.729 1 1 
Exert 3 3 0.384 0.607 0.75 0.9 

S (E1&E2) 0.85 
S (E1&E3) I 
S (E2&E3) 0.85 
AA (E1) 0.925 
AA (E2) 0.85 
AA E3 0.925 
RA (E1) 0.343 
RA (E2) 0.313 
RA E3 0.343 
CC (E1) 0.356 
CC (E2) 0.326 
CC 3) 0.316 
Weiht of exert 1 0.37 
Weiht of expert 2 0.34 
Weiht of exert 3 0.29 

Aggregation for RCOI 0.425 0.646 0.831 0.932 

Aggregations of judgment of all experts for each RCOs with respect to proposed 

attributes are demonstrated in Appendix 4. 

6.5.4 Transformation of subjective attributes into crisp values 

As aforementioned, CC is the only objective attribute. The CC estimates of all the 

WBEs are based on the values for a well under a pressure of 10000 psi. Such values are 
in units of US $ and shown in Table 6.16. These prices are obtained from Iranian 

Offshore Engineering and Construction Company (IOEC). 
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Table 6.16 CC for WBEs 

WBI: s RCO 1 RCO 2 

1. Production packer 25000 25000 
2. SCSSV 120000 120000 

3. Com letion string 45000 15000 
Total cost of each RCO 190000 160000 

RCO 3 RCO 4 

1. Casing cement 

mzamý 
20000 20000 

2. Casing 5000() 50000 
3. Tubing hanger 80000 80000 

4. Well head 210000 85000 
5. Production tree 350000 100000 

6. Annulus valve and access line 20000 200(X) 
Total cost of each RCO 730000 355000 

All the subjective data is converted into crisp values using Equation 5.15. The decision 

matrix, including all objective values and aggregation of subjective ratings for each 

RCO under consideration is obtained and shown in Table 6.17. As demonstrated in 

Table 6.17, the decision matrix is a combination of subjective and objective values. All 

the subjective values are converted into their corresponding crisp values by using 

Equation 5.15 and shown in Table 6.18. 

Table 6.17 Decision matrix 

REL (Benefit) CON (Cost) CC (Cost) IC (Cost) 
RCOI (0.425,0.646,0.831,0.932 0.511,0.676,0.676,0.841 190000 (0.17,0.313,0.324,0.479) 
RCO2 (0.12,0.3,0.31,0.59) (0.6,0.75,0.75,0.9) 160000 (0.27,0.426,0.44,0.6) 
RCO3 (0. W0.393,0.624,0.84) (0.6,0.75,0.75,0.9) 730000 (0.17,0.314,0.325,0.48) 
RCO4 (0.06, (1.2, (1.24,0.45) 0.66,0.795,0.825,0.93) 355000 (0.323,0.49,. 05,0.67) 

Table 6.18 Crisp value of decision matrix 

REL (Benefit) CON (Cost) CC (Cost) IC (Cost) 
RCOI 0.705 0.676 190000 0.323 
RCO2 0.336 0.75 160000 0.435 
RCO3 0.503 0.75 730000 0.322 
RCO4 0.243 0.800 355000 0.496 

6.5.5 Selecting stage 

The TOPSIS procedure is applied to the four alternatives to obtain the best RCO and 

ranking orders. 
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6.5.5.1 Normalization of the decision matrix 

In this step, the normalisation is carried out for the decision matrix shown in Table 6.18. 

The normalised attributes can be obtained using Equation 6.3. The normalised decision 

matrix is shown in Table 6.19. 

Table 6.19 Fuzzy normalised decision matrix 

REL Benefit) CON (Cost) CC (Cost) IC (Cost) 
RCOI 0.735 0.454 0.224 0.493 
RCO2 0.351 0.500 0.188 0.542 
RCO3 0.523 0.500 0.860 0.401 
RCO4 0.253 0.536 0.418 0.618 

6.5.5.2 Constructing weighted normalised decision matrix 

The weighted normalised fuzzy decision matrix can be obtained by employing Equation 

6.20. For example, the weighted normalised REL of RCO1 is obtained as follows: 

v11=0.415x0.735=0.305 

The weighted normalised fuzzy decision matrix is shown in Table 6.20. 

Table 6.20 Weighted normalised decision matrix 

REL (Benefit) CON (Cost) CC (Cost) IC (Cost) 
RC01 0.305 0.154 0.036 0.041 
RCO2 0.145 0.17 0.030 0.046 
RCO3 0.217 0.17 0.137 0.034 
RCO4 0.104 0.182 0.067 0.052 

6.5.5.3 Obtaining the distances of an alternative from ideal and negative ideal 

solutions 

Determination of the positive-ideal solution can be easily made by taking the largest 

element for each benefit attribute and the smallest element for each cost attribute. The 

negative ideal solution is simply the opposite formation of the positive-ideal solution. 

The positive and negative ideal solutions are given in Table 6.21. 
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Table 6.21 PIS and NIS 

Positive Ideal Solution (PIS) Negative Ideal Solution (NIS) 
REL 0.305 0.104 
CON 0.154 0.182 
CC 0.030 0.137 
IC 0.034 0.052 

The distances and closeness membership functions from each RCO to PIS and NIS are 

calculated for all the alternatives by employing Equations 6.23,6.24,6.26 and 6.27 

respectively. An example highlighting the calculation process for RCO1 is given below 

and the results for all the RCOs are shown in Table 6.22. 

D' == (0.305-0.305)2 +(0.154-0.154)2 +(0.030-0.33)2 +(0.034-0.041)2 =0.009 

/1* = 
1 

= 0.99 
1+0.009 

D- - (0.104-0.305)2 +(0.182-0.154)2 +(0.137-0.33)2 +(0.052-0.041)2 =0.226 

0.226 
= 0.184 'u 1+0.226 

Table 6.22 Distance and closeness values of each alternative from PIS and NIS 

RCOI RCO2 RCO3 RCO4 
D+ 0.009 0.160 0.112 0.206 

D- 0.226 0.115 0.114 0.070 

f2+ 
0.99 0.861 0.899 0.829 

7 
0.184 0.104 0.102 0.066 

6.5.5.4 Calculating the RC of each alternative from the ideal solution 

The RC values of the four RCOs at P=1,2,3 andoo can be obtained by using 

Equation 6.29 and the result is shown in Table 6.23. 
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Table 6.23 RC values of the RCOs 

P RCO1 RCO2 RCO3 RCO4 
1 0.175 0 0.001 0 
2 0.182 0.093 0.094 0.051 
3 0.183 0.101 0.100 0.063 
00 0.184 0.104 0.102 0.066 

It can be seen from Table 6.23 that each instance of the proposed method yields 
different values for RCOs corresponding to different behavioral patterns of decision 

makers. Indeed when P= co, RCO 1 is ranked as the best alternative followed by RCO2, 

RCO3 and RCO4 respectively. RCO1 is characterised by the maximum of negative 

membership value (0.184) corresponding to decision makers who prefer alternatives 

that make not only as much profit as possible but also as much as risk as possible. 

As parameter P decreases, rankings correspond to decision makers that take into 

account the best characterisation of an alternative with an increasing strength. 

When P=2, the ranking of the RCO2 and RCO3 is reversed as the higher membership 

value p+ of RCO3 (0.899 > 0.861) compensates it's lower membership value 

p- (0.104 > 0.102) leading to a completely different rank order compared with the 

instance ofP = co. 

6.5.6 Validation of FTOPSIS model 

In the first rule, analysis is performed by investigating the values and ranking of the 

alternatives due to the weight changes. The weights of all the attributes are considered 

to be of equal importance. Table 6.24 shows that the values of the RCOs are changed 
due to the weight changes. 

Table 6.24 Rating of RCOs by considering equal weights for attributes 

P RC01 RC02 RC03 RC04 
1 0.144 0.053 0 0 
2 0.167 0.141 0.067 0.091 
3 0.168 0.144 0.078 0.097 
00 0.169 0.146 0.080 0.099 

In the second rule, the weights of 1 and 0 are considered for positive attribute (REL) 

and negative attributes (CON, CC and IC) respectively. The alternatives (RCOs) with 
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higher REL values should have better ranking results. Therefore, the ranking result must 
be RCO1 (1sT), RCO3 (2ND), RCO2 (3RD) and RCO4 (4TH). Table 6.25 results confirm 

the aforementioned expectation. 

Table 6.25 Ranking results with considering weight of one for REL and zero for 

negative attribute 

P RCO1 RCO2 RCO3 RCO4 
1 0.325 (1) 0.001(3) 0.037 (2) 0 (4) 
2 0.325 (1) 0.047 (3) 0.193 (2) 0 (4) 
3 0.325 (1) 0.079 (3) 0.207(2) 0 (4) 
00 0.325 (1) 0.089 (3) 0.219(2) 0 (4) 

In the third rule, model validation is investigated by considering five instances forP (1, 

1.5,2,3,10 and oo ). Table 6.26 demonstrates that each instance of P results in different 

ratings values. Six instances of Pare selected randomly. 

Table 6.26 Ratings value with considering different P instances 

RCO1 RCO2 RCO3 RCO4 
1 0.174(l) 0(3) 0.001(2) 0(3) 

1.5 0.181(1) 0.067(3) 0.071(2) 0.018(4) 
2 0.182(l) 0.093(3) 0.094(2) 0.051(4) 
3 0.183(1) 0.101(2) 0.100(3) 0.063(4) 
10 0.183(1) 0.103(2) 0.101(3) 0.065(4) 
00 0.184(l) 0.104(2) 0.102(3) 0.066(4) 

As explained in the validation section, P =1 and P= oo should have certainly different 

ranking results. RCOs ranking in Table 6.26 can satisfy the aforementioned expectation. 

6.6 Conclusion 

This chapter presents an effective FMADM method, which is suitable for solving 

multiple attribute group decision making problems under a fuzzy environment where 

the information available is subjective and imprecise. The proposed method enables a 

group of decision makers to incorporate and aggregate subjective opinions. The basic 

principle of the TOPSIS method is that the chosen alternative should have the farthest 

distance from the NIS and shortest distance from the PIS. However, such chosen 

alternative is not always closest to the ideal solution if it is obtained by using Equation 

6.25. In this chapter a new method is proposed to balance the shortest distance from the 
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PIS and the farthest distance from the NIS. Such a FMADM can be employed as an 

alternative tool for situations where both qualitative and quantitative data has to be 

synthesized. By using the model developed and presented here, offshore well designers 

and operators can choose the best RCO based on the requirements of multiple attributes 
including REL, CON and costs. 
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Chapter 7 

Conclusion and implications 

Summary 

This chapter briefly summaries that the risk assessment and decision making 

approaches and techniques presented in the previous chapters would be of benefit in 

OGSS safety, operation and management. In summary, it is concluded that the 

developed models can be integrated to formulate a platform to facilitate risk assessment 

and safety management of OGSS operations without jeopardising the efficiency of 

system operations in a variety of situations where traditional techniques cannot be 

applied with confidence. The areas, which require more effort to be paid for the 

improvement of the developed approaches, are outlined. 

7.1 Conclusion 

Offshore safety has evolved in a reactive manner toward a risk-based goal-setting 

approach since 1990s due to public concern following several catastrophic disasters. 

Traditional risk assessment techniques are capable of handling risks with confidence on 

the premise that historical data is available. However, such techniques may not 

genuinely reflect risk results in circumstances where the lack of data exists or the 
information available consists of high level of uncertainty. Accordingly, it is necessary 
for a study of safety in an OGSS to enable the higher risk areas with scarce data for use 
to be addressed. 

In risk assessment and safety management, the issue of, "How to manage uncertainty", 
is a major concern. However, the causes of uncertainty are diverse. Thus, regardless of 

what approach to be applied, it is always dependent upon human judgment to manage 

such negative effects. In other words, the deficiencies of risk modelling resulting from 

the lack of information or a high level of uncertainty must be made up by means of 

general evaluation capacity of humans, who are able to grasp the essence of an object, 

even if it is vague and unclear. Therefore, the experience of experts consulted is crucial, 
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since the cornerstone of such uncertainty treatment is the professional judgment of such 

personnel. 

The risk assessment and safety management frameworks proposed based on fuzzy set 

theory in this study are capable of handling imprecise, ambiguous and qualitative 
information from experts in a consistent manner. These can be regarded as reliable 

reasoning processes with capability of quantifying the judgement from experts who 

express their opinions qualitatively. In addition, the linguistic terms employed in 

assessments are developed in a consensus manner. Such consensus assessments with 

regard to linguistic terms provide the compatible throughout the risk assessment and 

safety management process. 

Following the identification of the research needs, this PhD study has developed one 

data model and three analytical models capable of performing risk assessment and 

safety management with confidence under the aforementioned circumstances. Such 

frameworks have been demonstrated by three corresponding test cases with regard to 

the safety of OGSS operations. The frameworks have been developed in a generic sense 

to be applicable to deal with both engineering and managerial problems. They provide 

the basis for the generation of the various risk analysis methods and decision making 

procedures. In summary, these methods and techniques can be concluded as follows: 

" Using OOA to deal with complexity of OGSSs and to provide a hierarchical 

structure of risk assessment. 

" Applying FRA, AHP and ER to evaluate risks of objects, subsystems and an 

overall OGSS. 

" Employing FFTA to identify critical components in an OGSS. 

" Using FTOPSIS to select the best RCO for an OGSS. 

It is also believed that these methods can be tailored to practical applications of dealing 

with safety problems in other industries, especially in situations where a high level of 

uncertainty exists. The implementation of the described approaches could have highly 

beneficial effect in real life. More specific description can be provided as follows: 
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1) A framework of aggregative risk assessment for representing the relationships of 

components, subsystems and an overall OGSS. 

2) A framework of FTA for representing cause effect relationship of specific risks. 

FRA is used to evaluate the framework of aggregative risk assessment for an OGSS. 

Three mathematical theories are combined for assessing the risk frameworks in Chapter 

4. Fuzzy set theory is used to represent the characteristics of a hazard such as likelihood 

of occurrence and consequence severity. AHP is used to aggregate risks along the 

hierarchical structure to obtain the risk estimates associated with objects, subsystems 

and an overall OGSS. An ER approach is used to combine newly obtained data for the 

updating of existing risk estimates at any level of hierarchy. Risk analysts can use this 

information to compare risk levels of components and subsystems that contribute to the 

final aggregated risk. As demonstrated in Table 4.15, risk value of offshore gas well, 

offshore gas pipeline, offshore gas holder, compressor and OGSS are 0.17,0.241,0.12, 

0.175 and 0.19 respectively. By considering the risk value and weight of each 

subsystem, the most critical subsystem can be identified. Offshore pipeline is selected 

as the most critical subsystem. The next step is to apply FFTA for identifying the most 

important MCSs of the most critical subsystem (offshore pipeline). 

In the absence of excat data, it is necessary to work with subjective probabilities. Under 

these conditions, it is inappropriate to use coventional FTA. Therefroe, FFTA is 

proposed to capture the subjectivity. The result of FFTA are the liklihood of occurrence 
for specicific risks and importance measure of potential contributing factors. 

Application of FFTA in Chapter 5 shows that it is useful to identify critical MCSs for a 

specific risk. As shown in Table 5.12, all the critical MCSs are identified and ranked. 

Results of Chapter 4 and Chapter 5 help the analyst to select RCOs for mitigating risk 

of the most critical subsystem and overall OGSS respectively. It is not financially 

possible to select all the proposed RCOs. Therefore, MADM by using FTOPSIS is 

tailored to select the best RCO from a finite number of RCOs. When dealing with RCO 

ranking/selecting, decision data available for MADM is usually fuzzy, crisp, or a 

combination of the two. FTOPSIS is proposed to handle both fuzzy and crisp data. 

When evaluating RCOs for enhancing the safety of an OGSS, there are many 
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parameteres that need to be considered. On the basis of the test case in Chapter 6 
involving the elements of REL, CC, IC and CON, it is reasonable to judge that the 
decision making model developed is capable of handling such MADM problems. The 

proposed method is particularly useful in circumstances where multiple experts are 
involved in a decision making process. 

Since the test case in this study provide reasoanable results, it is felt that the analytical 

models developoped have the potential to imporve the safety of OGSSs. Such models 

can be applied indivually by the offshore pipeline industry particularly in circumstances 

where a lack of data exists or the data for use is associated with a high level of 

uncertainty. More importantly, these frameworks can be integrated to formulate a 

platform to facilitate risk assessment and safety mangement of OGSS operations 

without jeoparadising the efficeny of operations in variety of situations where 

traditional techniques may not be applied with confidence. 

7.2 Recommendations for further research 

In offshore safety, under circumstances where the lack of data or a high level of 

uncertainty exists, a large number of assumptions, judgments and opinions are involved 

subjectively in the reasoning process. Other than an approximate reasoning approach, 

new approaches capable of addressing uncertainty and combining expert judgment and 

empirical data should be developed. A Bayesian network model, for example, is a 

method that has the capability of incorporating expert judgment with historical data to 

evaluate risks. It provides intuitive visual representation with a sound mathematical 
basis in Bayesian probability, which captures genuine cause and effect relationship. 
Moreover, the technique facilitates a meaningful communication of uncertainty, 

allowing decisions to be made based on expected values. Such a technique is also 

capable of dealing with conditional probability problems. 

Furthermore, when evaluating risks under circumstances of the scarcity of data perhaps 
due to the high level of costs in conducting a full-scale experimentation, the use of 

computer simulation may be potentially useful. It is worthwhile to note that some 

computer software facilitates the data compilation process. 
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The offshore industry is moving toward a risk-based goal-setting regime. This provides 

safety analysts with more flexibility to employ novel and the latest risk modelling and 
decision making techniques. Subjective modelling and approximate reasoning methods 

may be useful approaches. It may be beneficial if the novel techniques developed in this 

research could be further applied to facilitate risk modelling and decision making. Since 

the methodologies proposed in this research are generic in nature, such frameworks can 

be further verified for safety analysis outside the offshore pipeline industry. This will 

provide an added value to the promotion of their use in different industries. 

This PhD research formulates a platform for OGSSs to improve the risk assessment and 

safety management of their operations. The principle implication of this is that the 

offshore pipeline industry will have to collect data for each component with regard to 

safety based on daily operations with the objective of continuous improvement of safety 

and efficiency. 
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Appendix 2 

Table A2.1 Structure model of leakage in gas wells 
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in level-1 
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L 

Grade 

S 

Xt 
01 

2 X1,1 3 X1,1 X4 1,1 
S" XP 2 

w1.1 
3 

wl, l 
4 

wl, l 
5' 

w1.1 
2 4 

s" X1.2 5' W12 2 
3 2 

5" X1,3 5' 
W13 3 

1 3 

a X1,2 s X 
2,1 

4 w1,2 5" w2,1 2 4 

5" X2,2 5' W2,2 1 3 

5" X2.3 5" 
W2.3 4 3 

5" X2,4 5" w2,4 1 3 

Xa 1,3 
s" X 
3,1 

a w1,3 s" w3,1 1 4 

5" X3,2 5" W3,2 2 3 

3 X1,2 4" X 
2,1 

3 wi. 2 
4" 

w2,1 
1 2 

4' X2.2 4" w2,2 3 3 

4' X2,3 4* 
w2,3 1 4 

3 X 1,3 
4" X 
3,1 

3 w1,3 
4" w3,1 2 3 

4" X3.2 4" w3,2 1 2 

3 X1,4 4' X4,1 3 w1,4 4" w4.1 2 4 

4" X4.2 4" W4,2 3 3 

4" 
4,3 

4" W4,3 1 3 

4" X4.4 4' w44 3 2 

4" X4,5 4" w4,5 3 1 
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Xis " XS1 3 
w1,5 

4' 
w5,1 

4 2 

" XS 5,2 
4" ws, 2 

3 

XS 
5,3 5,3 w 

3 

" X5 4 
4* 

W54 4 
3 

2 X1,2 3" X2,1 
2 

w2 
3" 

w2,1 
2 5 

3" X2,2 
3" w2,2 1 4 

3* X2,3 
3" 

w2,3 3 3 

X2 
1,3 

X3 
3,1 

X4. 
1,1 

2 
w1,3 

3 
w3,1 

4" 
wl, l 

2 4 

" X1 2 
4" 

W12 2 
2 

3" X3,2 
3" 

w3,2 
1 5 
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Table A2.2 Structure model of leakage in pipelines 

FAR Attributes 
in level-1 

Attributes 
in level-2 

Attributes 
in level-3 

Attributes 
in level-4 

Weight s 
of 
attributes 
in level- 
1 

Weights 
of 
attributes 
in level- 
2 

Weights 
of 
attributes 
in level- 
3 

Weights 
of 
attribute 
in level- 
4 

Grade 

L 

Grade 

S 

X1 O 'l 

Xit Xi1 X1.1 wil wil wil 3 3 

4' X1,2 4' WI, 2 
2 3 

X3 
1.2 X4" 2.1 

3 
w1.2 4" w2.1 

1 3 

4" X2,2 4' M, 2 
1 4 

X3 1.3 X4" 3,1 
3 w1,3 4" w3.1 

2 3 

a" X3,2 4" w3,2 2 3 

X4 3,3 X5" 3,1 
w4 3,3 ßy5' 3,1 

3 3 

5' X3,2 S" w; 3,2 
2 4 

s" X33 5" w33 2 3 

X14 X4'1 3 
w1,4 4" wa, t 

2 2 

4" X4,2 4" w4,2 3 4 

2 X 
1,2 

3" X 
2,1 

2 
w1,2 

3" 
w2.1 1 5 

3" X2,2 
3" 

w2,2 2 5 

3' X2.3 3' w2.3 3 5 

2 X1,3 X3,1 4" X1,1 
2 

w1.3 
3 

w3.1 
4" 

w1.1 
3 5 

a X1,2 4" 
w1.2 3 5 

3' X3,2 3' w3.2 1 4 
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f 

Table A2.3 Structure model of leakage in gas holders 

FAR Attributes 
in level-1 

Attributes 
in level-2 

Attributes 
in level-3 

Attributes 
in level-4 

Weight 
of 
attributes 
in level- 
1 

Weight 
of 
attributes 
in level- 
2 

Weight 
of 
attributes 
in level- 
3 

Weight 
of 
attribute 
in level- 
4 

Grade 

L 

Grade 

S 

X1 0,1 

2 X1.1 3 X1.1 4 X 1,1 
5' X 
1.1 

2 
W1,1 

3 
Wi. l 

4 Wi, l 
5" 

W11 1 4 

s' X1,2 S" W1,2 1 5 

5" X1,3 5' W13 3 
3 3 

5" X1.4 5" W14 4 
1 4 

s" XI. 5 
5' WI, 5 

2 5 

X5 X1,6 S. W1.6 2 2 

a X1.2 5' X 
2,1 

4 WI, 2 
5' W2.1 1 3 

s' X2.2 S" W2,2 1 4 

s" X2,3 5' W2.3 2 4 

S' X2,4 S" 
W2 4 

1 2 

X3 
1.2 X 4' 2.1 

3 
W12 2 

4' 
W2,1 

2 3 

a" X2.2 4' W22 2 
1 4 

4* X2,3 4* 
w2,3 3 3 

3 X1.3 4 X3,1 
5" X1, l 

3 
w3 4 

W31 1 
5" 

Wl, l 
2 2 

X5" 
1,2 

5" w12 1 3 

V X 3,2 
5" X 
2,1 

a W3.2 
5" W2 1 

1 2 

s" X2,2 5' W2,2 2 2 2 

x2 X1,2 3' X2.1 2 W1,2 
3" 

W2.1 1 5 

3' X2,2 3' 
W2,2 1 5 

3" X2,3 3' 
W23 3 

2 3 
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2 X1.3 3" X3.1 2 
W13 3 

W31 1 $ 

3' X3.2 3 
w3 2 

2 3 

Table A2.4 BRIs of gas wells 

Xý ... TPFNz TPFNj' TPFNIS 

X3 3' 0 0 0.1 0.2 0.8 0.9 1 1 0.00 0.00 0.10 0.20 

X4" 1.1 
0.1 0.25 0.25 0.4 0.6 0.75 0.75 0.9 0.06 0.19 0.19 0.36 

4" X12 0.1 0.25 0.25 0.4 0.8 0.9 1 1 0.08 0.23 0.25 0.40 

XS" � 
0.1 0.25 0.25 0.4 0.6 0.75 0.75 0.9 0.06 0.19 0.19 0.36 

5" X1.2 0.3 0.5 0.5 0.7 0.1 0.25 0.25 0.4 0.03 0.13 0.13 0.28 

S" X1,3 0 0 0.1 0.2 0.3 0.5 0.5 0.7 0.00 0.00 0.05 0.14 

x3 0 0 0.1 0.2 0.6 0.75 0.75 0.9 0.00 0.00 0.08 0.18 

5" X3,2 0.1 0.25 0.25 0.4 0.3 0.5 0.5 0.7 0.03 0.13 0.13 0.28 

S" X2,1 0.1 0.25 0.25 0.4 0.6 0.75 0.75 0.9 0.06 0.19 0.19 0.36 

5* Xi2 0 0 0.1 0.2 0.3 0.5 0.5 0.7 0.00 0.00 0.05 0.14 

S" X2.3 0.6 0.75 0.75 0.9 0.3 0.5 0.5 0.7 0.18 0.38 0.38 0.63 

X2 a 
0 0 0.1 0.2 0.3 0.5 0.5 0.7 0.00 0.00 0.05 0.14 

4" X2,1 0 0 0.1 0.2 0.1 0.25 0.25 0.4 0.00 0.00 0.03 0.08 

4" X2.2 0.3 0.5 0.5 0.7 0.3 0.5 0.5 0.7 0.09 0.25 0.25 0.49 

ý, 4" 
2.3 

0 0 0.1 0.2 0.6 0.75 0.75 0.9 0.00 0.00 0.08 0.18 

4" X4,1 0.1 0.25 0.25 0.4 0.6 0.75 0.75 0.9 0.06 0.19 0.19 0.36 

a X4,2 0.3 0.5 0.5 0.7 0.3 0.5 0.5 0.7 0.09 0.25 0.25 0.49 

ý, 4" 
4,3 

0 0 0.1 0.2 0.3 0.5 0.5 0.7 0.00 0.00 0.05 0.14 

4" X4,4 0.3 0.5 0.5 0.7 0.1 0.25 0.25 0.4 0.03 0.13 0.13 0.28 

4" X4,3 0.3 0.5 0.5 0.7 0 0 0.1 0.2 0.00 0.00 0.05 0.14 

X3 i 
0.1 0.25 0.25 0.4 0.3 0.5 0.5 0.7 0.03 0.13 0.13 0.28 
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4" X3,2 0 0 0.1 0.2 0.1 0.25 0.25 0.4 0.00 0.00 0.03 0.08 

4" X 5,1 
0.6 0.75 0.75 0.9 0.1 0.25 0.25 0.4 0.06 0.19 0.19 0.36 

4" X5.2 0.3 0.5 0.5 0.7 0 0 0.1 0.2 0.00 0.00 0.05 0.14 

4" X S, 3 
0.3 0.5 0.5 0.7 0 0 0.1 0.2 0.00 0.00 0.05 0.14 

4" X5,4 0.3 0.5 0.5 0.7 0 0 0.1 0.2 0.00 0.00 0.05 0.14 

X3* 2,1 
0.1 0.25 0.25 0.4 0.8 0.9 1 1 0.08 0.23 0.25 0.40 

3" X2,2 0 0 0.1 0.2 0.6 0.75 0.75 0.9 0.00 0.00 0.08 0.18 

3" X2.3 0.3 0.5 0.5 0.7 0.3 0.5 0.5 0.7 0.09 0.25 0.25 0.49 

X, j 
X 3' 

3,2 

4" X1,1 

4" X1,2 

XS" 
1.1 

5" X1.2 

5' X1,3 

S" X3.1 

XS" 
3,2 

S' X2.1 

S" X 
2,2 

s" X2,3 

XS" 
2.4 

4" X2.1 

4" X2.2 

Table A2.5 Intersection results of all the evaluated risks over TPFNR 

' TPFNLý 

0.00 0.00 0.10 

0.06 0.19 0.19 

0.08 0.23 0.25 

0.06 0.19 0.19 

0.03 0.13 0.13 

0.00 0.00 0.05 

0.00 0.00 0.08 

0.03 0.13 0.13 

0.06 0.19 0.19 

0.00 0.00 0.05 

0.18 0.38 0.38 

0.00 0.00 0.05 

0.00 0.00 0.03 

0.09 0.25 0.25 

0.20 

0.36 

0.40 
0.36 

0.28 

0.14 

0.18 
0.28 

0.36 

0.14 

0.63 

0.14 

0.08 
0.49 

1 I 0.45 0 0 

0 0.43 0.83 00 

0 0.31 1 0.1 0 

0 0.43 0.83 00 

0.1 0.65 0.65 00 

1 0.94 0.2 00 

110.35 00 

0.1 0.65 0.65 00 

0 0.43 0.83 00 

1 0.94 0.2 00 

0 0.73 0.6 00 

1 0.94 0.2 00 

1 0.7 000 

0 0.27 1 0.3 0 
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4" X2,3 

4" X41 

4" X4.2 

4" X 
4,3 

4' X4,4 

4" X 
4.5 

4" X3.1 

V X32 

4" X3.1 

X5,2 

X 4" 
5,3 

4* X3,4 

3" X2 

X 3" 
2,2 

3" X2,3 

0.00 0.00 0.08 

0.06 0.19 0.19 

0.09 0.25 0.25 

0.00 0.00 0.05 

0.03 0.13 0.13 

0.00 0.00 0.05 

0.03 0.13 0.13 

0.00 0.00 0.03 

0.06 0.19 0.19 

0.00 0.00 0.05 

0.00 0.00 0.05 

0.00 0.00 0.05 

0.08 0.23 0.25 

0.00 0.00 0.08 

0.09 0.25 0.25 

0.18 

0.36 

0.49 

0.14 

0.28 

0.14 

0.28 

0.08 

0.36 

0.14 

0.14 

0.14 

0.40 

0.18 

0.49 

110.35 00 

0 0.43 0.83 00 

0 0.27 1 0.3 0 

1 0.94 0.2 00 

0.1 0.65 0.65 00 

1 0.94 0.2 00 

0.1 0.65 0.65 00 

1 0.7 000 

0 0.43 0.83 00 

1 0.94 0.2 00 

1 0.94 0.2 00 

1 0.94 0.2 00 

0 0.31 1 0.1 0 

110.35 00 

0 0.27 1 0.3 0 

Table A2.6 Normalised fuzzy risk 

X 3' 
3,2 

4' X1,1 

4" X1,2 

S" X1,1 

s" X1,2 

XS" 
1,3 

3" X3,1 

s" 
`Y3.2 

VL, 

110.45 00 

0 0.43 0.83 00 

0 0.31 1 0.1 0 

0 0.43 0.83 00 

0.1 0.65 0.65 00 

1 0.94 0.2 00 

110.35 00 

0.1 0.65 0.65 00 

L 

0.41 0.41 0.18 0.00 0.00 

0.00 0.34 0.66 0.00 0.00 

0.00 0.22 0.71 0.07 0.00 

0.00 0.34 0.66 0.00 0.00 

0.07 0.46 0.46 0.00 0.00 

0.47 0.44 0.09 0.00 0.00 

0.43 0.43 0.15 0.00 0.00 

0.07 0.46 0.46 0.00 0.00 
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S" X21 

So 

X2,2 

s" X2.3 

X50 
2,4 

4" Ä2,, 
4" X2,2 

4' X2,3 

4' X4,1 

4' X4,2 
4" X4,3 

4" X4,4 

6" X4,5 

4" X3,1 

4" X32 

V4. X 3,! 
4" 

`Y3,2 

V X5,3 

4" X3.4 

3' X21 

P X2,2 

3' X2.3 

0 0.43 0.83 00 

1 0.94 0.2 00 

0 0.73 0.6 00 

1 0.94 0.2 00 

1 0.7 000 

0 0.27 1 0.3 0 

11 035 00 

0 0.43 0.83 00 

0 0.27 1 0.3 0 

1 0.94 0.2 00 

0.1 0.65 0.65 00 

1 0.94 0.2 00 

0.1 0.65 0.65 00 

1 0.7 000 

0 0.43 0.83 00 

1 0.94 0.2 00 

1 0.94 0.2 00 

1 0.94 0.2 00 

0 0.31 1 0.1 0 

110.35 00 

0 0.27 1 0.3 0 

204 

0.00 0.34 0.66 0.00 0.00 

0.47 0.44 0.09 0.00 0.00 

0.00 0.55 0.45 0.00 0.00 

0.47 0.44 0.09 0.00 0.00 

0.59 0.41 0.00 0.00 0.00 

0.00 0.17 0.64 0.19 0.00 

0.43 0.43 0.15 0.00 0.00 

0.00 0.34 0.66 0.00 0.00 

0.00 0.17 0.64 0.19 0.00 

0.47 0.44 0.09 0.00 0.00 

0.07 0.46 0.46 0.00 0.00 

0.47 0.44 0.09 0.00 0.00 

0.07 0.46 0.46 0.00 0.00 

0.59 0.41 0.00 0.00 0.00 

0.00 0.34 0.66 0.00 0.00 

0.47 0.44 0.09 0.00 0.00 

0.47 0.44 0.09 0.00 0.00 

0.47 0.44 0.09 0.00 0.00 

0.00 0.22 0.71 0.07 0.00 

0.43 0.43 0.15 0.00 0.00 

0.00 0.17 0.64 0.19 0.00 



Table A2.7 Result of the first stage of aggregative risk assessment 

Xds VL '- L M 11 VII Xj s,: VL L M H : ý. 
.c- 

: 
wýJ, ; 

S" X1 
1 

4 X1 
1 

. 0.00 0.34 0.66 0.00 0.00 0.250 . 0.153 0.427 0.420 0.000 0.000 0.330 

s" X1 
2 ' 0.07 0.46 0.46 0.00 0.00 0.500 

s" X1 
3 . 0.47 0.44 0.09 0.00 0.00 0.250 

Xs" 3 1 X4 1 3 
, 0.43 0.43 0.15 0.00 0.00 0.220 . 0.149 0.456 0.395 0.000 0.000 0.330 

X3 2 ' 0.07 0.46 0.46 0.00 0.00 0.780 

xs" x4 2.1 0.00 0.34 0.66 0.00 0.00 0.290 1.2 0.126 0.459 0.415 0.000 0.000 0.330 
s" X2 2 . 0.47 0.44 0.09 0.00 0.00 0.110 
e's X2 
3 0.00 0.55 0.45 0.00 0.00 0.44 

X50 
4 2 , 0.47 0.44 0.09 0.00 0.00 0.16 

Table A2.8 Result of the second stage of aggregative risk assessment 

X, j VL L M H . VH ' w, ýý" XJ� VI- 
... _LM 

H- Vli 
. X3 
2 . 0.41 0.41 0.18 0.00 0.00 

4' X1 
1 

3 X 
. 0 0.43 0.83 0 0 0.500 3 '1 0.000 0.370 0.915 0.050 0.000 
a' X1 
2 . 0 0.31 1 0.1 0 0.500 
aX X 3 
1.1 0.153 0.427 0.420 0 0 0.330 1 1 . 0.141 0.443 0.406 0.000 0.000 

x4 
0.149 0.456 0.395 0 0 0.330 

Xa 
1.2 0.126 0.459 0.415 0 0 0.330 
a" 

1 
X2 3 X 

. 1 0.7 0 0 0 0.37 1.2 0.620 0.612 0.468 0.114 0.000 
Xa' 2.2 0 0.27 1 0.3 0 0.38 

a' X2 
3 . 1 1 0.35 0 0 0.25 

a' X4 1 
3 X 

. 0 0.43 0.83 0 0 0.22 1, a 0.362 0.617 0.614 0.066 0.000 
a' X4 2 . 0 0.27 1 0.3 0 0.22 
a' X4 3 ' 1 0.94 0.2 0 0 0.12 
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4" X4 
4 0.1 0.65 0.65 0 0 0.22 

4" X4 
4 5 , 1 0.94 0.2 0 0 0.22 
4" X3 

1 x3 ý' 
. 0.1 0.65 0.65 0 0 0.5 1.3 0.550 0.675 0.325 0.000 0.000 

4" X3 2 
. 1 0.7 0 0 0 0.5 

4" X5 1 
3 

`Y , 0 0.43 0.83 0 0 0.25 1.5 0.750 0.813 0.358 0.000 0.000 
4" X5 2 ' 1 0.94 0.2 0 0 0.25 

X5 3 ' 1 0.94 0.2 0 0 0.25 
4" X5 4 . 1 0.94 0.2 0 0 0.25 

3" X2 
1 . 0.00 0.22 0.71 0.07 0.00 

3" X2 
2 

' 0.43 0.43 0.15 0.00 0.00 

X2 3 0.00 0.17 0.64 0.19 0.00 

Table A2.9 Result of the third stage of aggregative risk assessment 

X, j' VL M H VII 
., 

, w, t Jj X; VL L M 
`r. .. 

H VH 
3' X 0.200 X 3.2 0.41 0.41 0.18 0.00 0.00 13 0.082 0.378 0.768 0.040 0.000 

x3 
3.1 0.000 0.370 0.915 0.050 0.000 0.800 

x3 'Yi 1 0.141 0.443 0.406 0.000 0.000 0.290 1 0.456 0.628 0.437 0.027 0.000 
X3 

1.2 0.620 0.612 0.468 0.114 0.000 0.11 
X3 1.4 0.362 0.617 0.614 0.066 0.000 0.22 

'Y >. 3 0.550 0.675 0.325 0.000 0.000 0.09 
X3 

1.5 0.750 0.813 0.358 0.000 0.000 0.29 
X3' 

1 2 
2 X . 0.00 0.22 0.71 0.07 0.00 0.25 1.2 0.065 0.213 0.552 0.122 0.000 

3' X2 
2 . 0.43 0.43 0.15 0.00 0.00 0.15 

3' X2 
3 
, 0.00 0.17 0.64 0.19 0.00 0.55 

206 



Table A2.10 Result of the fourth stage and final AA of well leakage 

vi L, M 11 , 'V1i 'J wa LM 11 YH ; °. vY, ° 
Y2 0 280 1 X 1.3 ' 0.082 0.378 0.768 0.040 0.000 . oi 0.181 0.355 0.424 0.040 0 

'Yz 1.1 0.456 0.628 0.437 0.027 0.000 0.610 L6 (P) 0.014 0.077 0.276 0.577 0.858 
z X1.2 0.065 0.213 0.552 0.122 0.000 0.11 X 0.170 

Table A2.11 BRIs of gas holders 

Xj . TPFNL TPFNs TPFNLä 
V X3.1 

P X3 
2 

Xs1. 1 

Xs" 
12 

X5 
1.3 I.; 

S" X1.4 

s" 
1 115 

X5. X1.6 

S' X21 

XS" 
2,2 

XS" 
2,3 

s" X24 

4' X21 

4" XZ. 
Z 

4' X2.3 

Xs" ,. l 
X1S. " 

2 

S" X21 

3" X2.2 

000.1 0.2 

0.1 0.25 0.25 0.4 

000.1 0.2 

000.1 0.2 

0.8 0.9 11 0.00 0.00 0.10 0.20 

0.3 0.5 0.5 0.7 1 0.03 0.13 0.13 0.28 

0.6 0.75 0.75 0.9 1 0.00 0.00 0.08 0.18 

0.8 0.9 11 0.00 0.00 0.10 0.20 

0.3 0.5 0.5 0.7 1 0.3 0.5 0.5 0.7 1 0.09 0.25 0.25 0.49 

000.1 0.2 1 0.6 0.75 0.75 0.9 1 0.00 0.00 0.08 0.18 

0.1 0.25 0.25 0.4 1 0.8 0.9 11 0.08 0.23 0.25 0.40 

0.1 0.25 0.25 0.4 1 0.1 0.25 0.25 0.4 1 0.01 0.06 0.06 0.16 

000.1 0.2 

000.1 0.2 

0.3 0.5 0.5 0.7 1 0.00 0.00 0.05 0.14 

0.6 0.75 0.75 0.9 1 0.00 0.00 0.08 0.18 

0.1 0.25 0.25 0.4 1 0.6 0.75 0.75 0.9 1 0.06 0.19 0.19 0.36 

000.1 0.2 0.1 0.25 0.25 0.4 1 0.00 0.00 0.03 0.08 

0.1 0.25 0.25 0.4 1 0.3 0.5 0.5 0.7 1 0.03 0.13 0.13 0.28 

000.1 0.2 1 0.6 0.75 0.75 0.9 1 0.00 0.00 0.08 0.18 

0.3 0.5 0.5 0.7 

0.1 0.25 0.25 0.4 

0.3 0.5 0.5 0.7 1 0.09 0.25 0.25 0.49 

0.1 0.25 0.25 0.4 1 0.01 0.06 0.06 0.16 

000.1 0.2 0.3 0.5 0.5 0.7 0.00 0.00 0.05 0.14 

000.1 0.2 0.1 0.25 0.25 0.4 0.00 0.00 0.03 0.08 

0.1 0.25 0.25 0.4 0.1 0.25 0.25 0.4 0.01 0.06 0.06 0.16 
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3" X2 1 , 000.1 0.2 0.8 0.9 11 0.00 0.00 0.10 0.20 
3" X2 2 . 000.1 0.2 0.8 0.9 11 0.00 0.00 0.10 0.20 
3" X2 

3 ' 0.1 0.25 0.25 0.4 0.3 0.5 0.5 0.7 0.03 0.13 0.13 0.28 

I 
3" Ä3,, 
3" X3,2 

sý X1.1 

s" X1.2 

S" X 
1,3 

5" X1.4 

X s" 
1, s 

s" X1,6 

" X2s. l 
" X2s, 
2 

S" X2.3 

S' X2,4 

4" X2.1 
4' X2.2 

4" X2.3 

XS" 
11 

sý X1.2 

" X2', 1 
So X2,2 

V X2,1 

Table A2.12 Intersection results of all the evaluated risks over TPFNR 

I TPFNzs 

0.00 0.00 0.10 0.20 

0.03 0.13 0.13 0.28 

0.00 0.00 0.08 0.18 

0.00 0.00 0.10 0.20 

0.09 0.25 0.25 0.49 

0.00 0.00 0.08 0.18 

0.08 0.23 0.25 0.40 

0.01 0.06 0.06 0.16 

0.00 0.00 0.05 0.14 

0.00 0.00 0.08 0.18 

0.06 0.19 0.19 0.36 

0.00 0.00 0.03 0.08 

0.03 0.13 0.13 0.28 

0.00 0.00 0.08 0.18 

0.09 0.25 0.25 0.49 

0.01 0.06 0.06 0.16 

0.00 0.00 0.05 0.14 

0.00 0.00 0.03 0.08 

0.01 0.06 0.06 0.16 

0.00 0.00 0.10 0.20 

1 1 0.45 0 0 

0.1 0.65 0.65 00 

110.35 00 

110.45 00 

0 0.27 1 0.3 0 

110.35 00 

0 0.31 1 0.1 0 

0.35 1 0.26 00 

1 0.94 0.2 00 

110.35 00 

0 0.43 0.83 00 

1 0.7 000 

0.1 0.65 0.65 00 

110.35 00 

0 0.27 1 0.3 0 

0.35 1 0.26 00 

1 0.94 0.2 00 

1 0.7 000 

0.35 1 0.26 00 

110.45 00 
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3" X2 
2 

3" X2,3 

0.00 0.00 0.10 0.20 

0.03 0.13 0.13 0.28 

110.45 00 

0.1 0.65 0.65 00 

Table A2.13 Normalised fuzzy risk 

[ 

P X3,1 

3' X3 2 

Xs1. " 
1 

So X1.2 

XS" 
I.; 

X1s. 4 X1504 

Xs1. " 
3 

XS' 
1,6 

S" X2.1 

XS" 
2,2 

S" X2 
3 

S' X2,4 

4' X2.1 

4" X2.2 

4" X2.3 

S X11 

S" X1.2 

S" X2.1 

S" X2.2 

3 X2.1 

3" X2.2 

II 

1 1 0.45 0 0 0.41 0.41 0.18 0.00 0.00 

0.07 0.46 0.46 0.00 0.00 

0.43 0.43 0.15 0.00 0.00 

0.41 0.41 0.18 0.00 0.00 

0.00 0.17 0.64 0.19 0.00 

0.43 0.43 0.15 0.00 0.00 

0.00 0.22 0.71 0.07 0.00 

0.22 0.62 0.16 0.00 0.00 

0.47 0.44 0.09 0.00 0.00 

0.43 0.43 0.15 0.00 0.00 

0.00 0.34 0.66 0.00 0.00 

0.59 0.41 0.00 0.00 0.00 

0.07 0.46 0.46 0.00 0.00 

0.43 0.43 0.15 0.00 0.00 

0.00 0.17 0.64 0.19 0.00 

0.22 0.62 0.16 0.00 0.00 

0.47 0.44 0.09 0.00 0.00 

0.59 0.41 0.00 0.00 0.00 

0.22 0.62 0.16 0.00 0.00 

0.41 0.41 0.18 0.00 0.00 

0.41 0.41 0.18 0.00 0.00 

0.1 0.65 0.65 00 

110.35 00 

110.45 00 

0 0.27 1 0.3 0 

110.35 00 

0 0.31 1 0.1 0 

0.35 1 0.26 00 

1 0.94 0.2 00 

110.35 00 

0 0.43 0.83 00 

1 0.7 000 

0.1 0.65 0.65 00 

110.35 00 

0 0.27 1 0.3 0 

0.35 1 0.26 00 

1 0.94 0.2 00 

1 0.7 000 

0.35 1 0.26 00 

110.45 00 

110.45 00 
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I3" 
X2"3 

1 

0.1 0.65 0.65 000.07 0.46 0.46 0.00 0.00 

Table A2.14 Result of the first stage of aggregative risk assessment 

Xq. VL 
... 

L 
. 

hI 
.. 

II VII 
.` 

ws , - ., 
Xr° 

` a. : `, i. .; S" . . 
ý.. _4e. fn.. 

. 
VH 

. 

Xs" 1 1 x4 1 1 
. 0.43 0.43 0.15 0.00 0.00 0.200 . 0.274 0.373 0.314 0.039 0.000 
s" X1 2 . 0.41 0.41 0.18 0.00 0.00 0.200 

Xý 54 
3 0.00 0.17 0.64 0.19 0.00 0.150 

s" 
4 

XI 
" 0.43 0.43 0.15 0.00 0.00 0.200 

Xi"s 
0.00 0.22 0.71 0.07 0.00 0.150 

50 X16 
0.22 0.62 0.16 0.00 0.00 0.100 

ý. s" 
2 1 

X4 1 2 
. 0.47 0.44 0.09 0.00 0.00 0.200 . 0.347 0.400 0.254 0.000 0.000 

s" X2 2 . 0.43 0.43 0.15 0.00 0.00 0.25 
s" X2 

3 0.00 0.34 0.66 0.00 0.00 0.3 
s" 

4 
X2 

. 0.59 0.41 0.00 0.00 0.00 0.25 

X5 X 4 X3 1 1.1 0.22 0.62 0.16 0.00 0.00 0.78 . 0.272 0.581 0.147 0.000 0.000 
s" X1 2 . 0.47 0.44 0.09 0.00 0.00 0.22 
s" X2 1 

x4 X3 2 
. 0.59 0.41 0.00 0.00 0.00 0.64 . 0.455 0.487 0.058 0.000 0.000 

' X2 2 , 0.22 0.62 0.16 0.00 0.00 0.36 

Table A2.15 Result of the second stage of aggregative risk assessment 

X, j VL L. ` ,M H Vli x'+d 
Xa X3 

º. 1 0.274 0.373 0.314 0.039 0.00 0.500 1.1 0.310 0.386 0.284 0.020 0.000 
x4 0.347 0.400 0.254 0.00 0.00 0.500 

4" X2 
1 

3 X 
" 0.272 0.581 1 0.30 0.00 0.33 1.2 0.330 0.561 0.719 0.099 0.000 

4" X2 
2 " 0.00 0.00 0.35 0.00 0.00 0.33 

Xa" 
2 3 ' , 0.455 0.487 0.83 0.00 0.00 0.33 
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X Xi 
31 0.272 0.581 0.147 0.000 0.000 0.5 3 0.364 0.534 0.102 0.000 0.000 
a X 
3.2 0.455 0.487 0.058 0.00 0.00 0.5 

Table A2.16 Result of the third stage of aggregative risk assessment 

X, j VL L M ii Vii w, jý X, ý VL L M H Vii 

X3' 
3 1 0.220 2 X 
. 0.41 0.41 0.18 0.00 0.00 1.3 0.145 0.449 0.398 0.000 0.000 

3" X3 
2 . 0.07 0.46 0.46 0.00 0.00 0.780 

3 X 2 X 
1.1 0.310 0.386 0.284 0.020 0.000 0.300 1.1 0.341 0.495 0.280 0.026 0.000 

X3 
1,2 0.330 0.561 0.719 0.099 0.000 0.2 

X3 
1.3 0.364 0.534 0.102 0.000 0.000 0.500 
3' X2 1 

2 X 
. 0.41 0.41 0.18 0.00 0.00 0.33 1,2 0.294 0.422 0.271 0.000 0.000 

3" X2 
2 
. 0.41 0.41 0.18 0.00 0.00 0.33 

3" 
3 

X2 
. 0.07 0.46 0.46 0.00 0.00 0.33 

Table A2.17 Result of the fourth stage and final AA of gas holder leakage 

X, j VL L M 11 NH J, 
w, ý rLMH. VL VH 

`Y13 0.145 0.449 0.398 0.000 0.000 0.220 X0.1 0.270 0.449 0.268 0.013 0 

'Y11 0.341 0.495 0.280 0.026 0.000 0.680 Lc (P) 0.014 0.077 0.276 0.577 0.858 
2 

`Y 1.2 0.294 0.422 0.271 0.000 0.000 0.1 X 0.120 

Table A2.18 BRIs of gas pipelines 

. X, *, : , TPFNi : .: TPFNS , o, ,.. , TPF Ný' 
. 

. 
`Y 3.2 0 0 0.1 0.2 0.6 0.75 0.75 0.9 0.00 0.00 0.08 0.18 
Xi 

1 l 0.3 0.5 0.5 0.7 0.8 0.9 1 1 0.24 0.45 0.50 0.70 
Xa" 

1 2 , 0.3 0.5 0.5 0.7 0.8 0.9 1 1 0.24 0.45 0.50 0.70 

X1 1 . 0.3 0.5 0.5 0.7 0.3 0.5 0.5 0.7 0.09 0.25 0.25 0.49 
4 X1 
2 . 0.1 0.25 0.25 0.4 0.3 0.5 0.5 0.7 0.03 0.13 0.13 0.28 

X21 
0 0 0.1 0.2 0.3 0.5 0.5 0.7 0.00 0.00 0.05 0.14 

XZ 2 0 0 0.1 0.2 0.6 0.75 0.75 0.9 0.00 0.00 0.08 0.18 
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s" X3.1 

s" X3 
3,2 

0.1 

0.1 

0.25 

0.25 

0.25 

0.25 

0.4 

0.4 

0.3 

0.6 

0.5 

0.75 

0.5 

0.75 

0.7 

0.9 

0.03 

0.06 

0.13 

0.19 

0.13 

0.19 

0.28 

0.36 
So X3 

3 
. 0.3 0.5 0.5 0.7 0.3 0.5 0.5 0.7 0.09 0.25 0.25 0.49 

4" X4 1 . 0.1 0.25 0.25 0.4 0.1 0.25 0.25 0.4 0.01 0.06 0.06 0.16 
44 X4 2 0.3 0.5 0.5 0.7 0.6 0.75 0.75 0.9 0.18 0.38 0.38 0.63 
3" X21 

0 0 0.1 0.2 0.8 0.9 1 1 0.00 0.00 0.10 0.20 
X2 2 . 0.1 0.25 0.25 0.4 0.8 0.9 1 1 0.08 0.23 0.25 0.40 

Table A2. I9 Intersection results of all the evaluated risks over TPFNR 

X, TPFNLs, 
3" X3.2 0.00 0.00 0.08 0.18 1 1 0.35 0 0 
4" X1 
1 ' 0.24 0.45 0.50 0.70 0 0 0.58 0.85 0.15 

X1 
. 0.24 0.45 0.50 0.70 0 0 0.58 0.85 0.15 
4" Xß 1 ' 0.09 0.25 0.25 0.49 0 0.27 1 0.3 0 

X1 2 , 0.03 0.13 0.13 0.28 0.1 0.65 0.65 0 0 
4" X2 

1 
. 0.00 0.00 0.05 0.14 1 0.94 0.2 0 0 

4" X2 2 ' 0.00 0.00 0.08 0.18 1 1 0.35 0 0 
5" X3 

1 . 0.03 0.13 0.13 0.28 0.1 0.65 0.65 0 0 
s" X3 2 . 0.03 0.13 0.13 0.28 0.1 0.65 0.65 0 0 
s" X3 3 . 0.09 0.25 0.25 0.49 0 0.27 1 0.3 0 
4" X4 1 ' 0.01 0.06 0.06 0.16 0.35 1 0.26 0 0 

X4 2 ' 0.18 0.38 0.38 0.63 0 0 0.73 0.6 0 
3" X2 
1 ' 0.00 0.00 0.10 0.20 1 1 0.45 0 0 

30 X2 2 . 0.08 0.23 0.25 0.40 0 0.31 1 0.1 0 
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Table A2.20 Normalised fuzzy risk 

X, j VL 
.L 

M li VII' : ,,; VI;: H 

. 3 X 
3.2 1 1 0.35 0 0 0.43 0.43 0.15 0.00 0.00 

1 
Xa" 

1 . 0 0 0.58 0.85 0.15 0.00 0.00 0.37 0.54 0.09 
4" X12 

0 0 0.58 0.85 0.15 0.00 0.00 0.37 0.54 0.09 

X11 
0 0.27 1 0.3 0 0.00 0.17 0.64 0.19 0.00 

X1 2 . 0.1 0.65 0.65 0 0 0.07 0.46 0.46 0.00 0.00 

X21 
1 0.94 0.2 0 0 0.47 0.44 0.09 0.00 0.00 

X2 2 . 1 1 0.35 0 0 0.43 0.43 0.15 0.00 0.00 
s" X3 

1 . 0.1 0.65 0.65 0 0 0.07 0.46 0.46 0.00 0.00 

X3 2 0.1 0.65 0.65 0 0 0.07 0.46 0.46 0.00 0.00 

sý X3 
3 . 0 0.27 1 0.3 0 0.00 0.17 0.64 0.19 0.00 

4" X41 

0.1 0.65 0.65 0 0 0.07 0.46 0.46 0.00 0.00 
40 X4 2 0.1 0.65 0.65 0 0 0.07 0.46 0.46 0.00 0.00 
3" X2 

1 
, 0 0.27 1 0.3 0 0.00 0.17 0.64 0.19 0.00 

3" X 
2,2 0.35 1 0.26 0 0 0.22 0.62 0.16 0.00 0.00 

Table A2.21 Result of the first stage of aggregative risk assessment 

X VL L M li : VIi, ý Xf°ý; ýVL. LM Vli 

1 X3 4 X 
. 0.07 0.46 0.46 0.00 0.00 0.2 3,3 0.014 0.315 0.613 0.057 0.000 

X3 = " 0.00 0.34 0.66 0.00 0.00 0.5 

s" X3 3 . 0.00 0.17 0.64 0.19 0.00 0.3 
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Table A2.22 Result of the second stage of aggregative risk assessment 

Xj" ° VL . L. M ., .'H VII ° w, j`: 
z Xijjý` ;. VL '. L M Vflý; ' 

4" X1 
1 0 . 50 3 X . 0 0.43 0.83 0 0 3.1 0.000 0.244 0.604 0.033 0 

4" X1 
2 . 0 0.31 1 0.1 0 0.50 

4" X11 3 
`Y 0 0.17 0.64 0.19 0 0.68 º, 1 0.022 0.263 0.582 0.129 0 

X4- 
1 2 
, 0.07 0.46 0.46 0 0 0.32 
4" X2 1 

3 X 
. 0.47 0.44 0.09 0 0 0.78 1,2 0.461 0.438 0.103 0.000 0 

4" X2 
2 . 0.43 0.43 0.15 0 0 0.22 

1 X3 4 
0.071 0.464 0.464 0 0 0.40 X13 0.054 0.424 0.511 0.011 0 

4" X 3, º 0.056 0.437 0.507 0 0 0.40 
X4 

3,3 0.014 0.315 0.613 0.057 0 0.2 
4' X4 1 X 
' 0.22 0.62 0.16 0.0 0 0.5 14 0.110 0.310 0.355 0.225 0 

4' X4 2 . 0 0 0.55 0.45 0 0.5 

Table A2.23 Result of the third stage of aggregative risk assessment 

X ,j VL L "M, 'IL, VI S.:: X, 2 VL L M 
.,. ,'H 

30 X 0.220 2 X 
3,2 0.41 0.41 0.18 0 0 >, 3 0.090 0.281 0.511 0.026 0 

Y 0.780 
3ý ' 0 0.244 0.604 0.033 0 
3 X X2 
1.1 0.022 0.263 0.582 0.129 0 0.20 1.1 0.123 0.365 0.425 0.087 0 

x3 
0.461 0.438 0.103 0 0 0.150 

X3 
1.3 0.054 0.424 0.511 0.011 0 0.40 

X i 1,4 0.110 0.310 0.355 0.225 0 0.25 
3" x3 
2 1 

2 X 
. 0.41 0.41 0.18 0 0 0.3 1.2 0.123 0.277 0.551 0.049 0 

3" 
2 

X2 
. 0 0.22 0.71 0.07 0 0.7 
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Table A2.24 Result of the fourth stage and final AA of gas pipeline leakage 

Xýjr. `VL' 'L M', Al -VII, 
X1.3 0.090 0.281 0.511 0.026 0.000 0.210 Xö 1 0.116 0.299 0.416 0.153 0.016 
Xx 

1.1 0.123 0.365 0.425 0.064 0.023 0.700 Lc (P) 0.014 0.077 0.276 0.577 0.858 
2 

'Y 1. = 0.123 0.277 0.551 0.049 0.000 0.09 X 0.241 

Table A2.25 Result of AA of an OGSS 

Risks of 
subsystems 

VL "L M. II, VII 
6Veights. 6f 

subsystems 

FAR of 
the 
OGSS r 

, VL I. MH VE 
_- 

Risk of gas i Y holder 0.270 0.449 0.268 0.013 0 0.16 . 0>1 0.164 0.351 0.403 0.076 0.006 
Risk of gas L (P) 
pipeline 0.116 0.299 0.416 0.153 0.016 0.38 G 0.014 0.077 0.276 0.577 0.858 
Risk of gas 
well 0.181 0.355 0.424 0.040 0 0.38 X 0.190 
Risk of gas 
compressor 0.100 0.381 0.513 0.006 0 0.08 
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Appendix 3 

Table A3.1 Gas well hazard probabilities 

Well pipeline Fault tree Ref. I lazard failure Well pipeline Fault tree Ref. Hazard failure 
hazard rate hazard rate 
1. Cementing job 111111 Linguistic term 16. PMV fail to 11142 Failure rate 

isolate 
2. A c 111112 Linguistic term 17. TCP failure H143 Failure rate 
3. Water 111113 Linguistic term 18. PWV leakage H144 Failure rate 
infiltration 
4.1 sigh 111121 Linguistic term 19. PT leakage H143 Failure rate 
temperature 
5. Type of well 111122 Linguistic term 20Flange failure H151 Failure rate 
completion 
6. Galvanic 111123 Failure rate 21. AVV failure 11152 Failure rate 
corrosion 
7. Tension stress 1111', Failure rate 22. AMV failure Hs Failure rate 
8. Carbonation of 111131 Linguistic term 23. AWV failure H, 54 Failure rate 
cement 
9Age of cement 111132 Linguistic term 24. Ground 1121 Failure rate 

movement 
10. Marine 11121 Failure rate 25. Ice collision H22 Linguistic term 
fouling 
1 l. l3io corrosion 11122 Failure rate 26. IIigh H23 Failure rate 

temperature 
12. Cement 11123 Linguistic term 27. Collision 11311 Linguistic term 
carbonation with ship 
13Abrasion of 11131 Failure rate 28. Fishing H312 Linguistic term 
well trawler 
14.1 Iydrate 11132 Linguistic term 29. Terrorist 1132 Linguistic term 
formation activity 
15. SSSV fail to 11141 Failure rate 
isolate 

Table A3.2 Expert judgments on BEs with unknown failure rate 

Well BEs judgements 
BEs 

EI E2 E3 
II11� L M L 
111112 M M H 
111113 M M M 

111121 M H H 

111122 L M L 
11113, M M M 
111132 L M M 
1! 123 M M M 
1i132 L VL L 
1122 VL VL VL 
11311 VL M L 
11312 L L L 
1132 VL VL L 
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Table A3.3 Aggregation calculation for the BE of H1111 

H1111 
E1 0.1 0.25 0.25 0.4 
E2 0.3 0.5 0.5 0.7 
E3 0.1 0.25 0.25 0.4 

SD12 1.25 
SD 13 1 
SD23 1.25 

AD(E1) 1.125 
AD(E2) 1.25 
AD(E3) 1.125 

RDA(E1) 0.321 
RDA(E2) 0.357 
RDA(E3) 0.321 
CD(E1) 0.335 
CD(E2) 0.328 
CD(E3) 0.335 

W1 0.35 
W2 0.3 
W3 0.35 
AG 0.165 0.332 0.332 0.498 
DF 0.332 
FP 0.002 

Table A3.4 Aggregation calculation for the BE of H1112 

H1112 
E1 0.3 0.5 0.5 0.7 
E2 0.3 0.5 0.5 0.7 
E3 0.6 0.75 0.75 0.9 
SD 12 1 
SD13 1.25 
SD23 0.75 
AD(E1) 1.125 
AD(E2) 0.875 
AD(E3) 1 
RDA(EI) 0.375 
RDA(E2) 0.291 
RDA(E3) 0.333 
CD(E1) 0.362 
CD(E2) 0.295 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.402 0.585 0.585 0.768 
DF 0.585 
FP 0.015 
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Table A3.5 Aggregation calculation for the BE of H1113 

HI113 
EI 0.3 0.5 0.5 0.7 
E2 0.3 0.5 0.5 0.7 
E3 0.3 0.5 0.5 0.7 
SD12 1 
SD13 1 
SD23 1 
AD(E1) 1 
AD(E2) 1 
AD(E3) 1 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.341 
CD(E2) 0.316 
CDE3 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.3 0.5 0.5 0.7 
DF 0.5 
FP 0.009 

Table A3.6 Aggregation calculation for the BE of H1121 

H1121 
EI 0.1 0.25 0.25 0.4 
E2 0.3 0.5 0.5 0.7 
E3 0.3 0.5 0.5 0.7 
SD12 1.25 
SDl3 1.25 
SD23 1 
AD(E1) 1.25 
AD(E2) 1.125 
AD(E3) 1.125 
RDA(EI) 0.357 
RDA(E2) 0.321 
RDA(E3) 0.321 
CD(E1) 0.353 
CD(E2) 0.310 
CD(E3) 0.335 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.229 0.411 0.411 0.593 
DF 0.411 
FI' 0.005 
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Table A3.7 Aggregation calculation for the BE of H1122 

H1122 
EI 0.1 0.25 0.25 0.4 
E2 0.3 0.5 0.5 0.7 
E3 0.1 0.25 0.25 0.4 
SD12 1.25 
SD 13 1 
SD23 1.25 
AD(El) 1.125 
AD(E2) 1.25 
AD E3) 1.125 
RDA(EI) 0.321 
RDA(E2) 0.357 
RDA(E3) 0.321 
CD(E1) 0335 
CD(E2) 0.328 
CD(E3) 0.335 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.165 0.332 0.332 0.498 
DF 0.332 
FP 0.002 

Table A3.8 Aggregation calculation for the BE of H1131 

H1131 
EI 0.3 0.5 0.5 0.7 
E2 0.3 0.5 0.5 0.7 
E3 0.3 0.5 0.5 0.7 
SD12 1 
SD13 1 
SD23 I 
AD(EI) 1 
AD(E2) 1 
ADE3 1 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.341 
CD(E2) 0.316 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.3 0.5 0.5 0.7 
DF 0.5 
FP 0.009 
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Table A3.9 Aggregation calculation for the BE of H1132 

H1132 
E1 0.1 0.25 0.25 0.4 
E2 0.3 0.5 0.5 0.7 
E3 0.3 0.5 0.5 0.7 
SD12 1.25 
SD13 1.25 
SD23 1 
AD(E1) 1.25 
AD(E2) 1.125 
AD(E3) 1.125 
RDA(E1) 0.357 
RDA(E2) 0.321 
RDA(E3) 0.321 
CD(E1) 0.353 
CD(E2) 0.310 
CD(E3) 0.335 
W1 0.35 
W2 0.3 
W3 0.35 
AG 0.229 0.411 0.411 0.593 
DF 0.411 
FP 0.005 

Table A3.10 Aggregation calculation for the BE of H123 

H1131 
EI 0.3 0.5 0.5 0.7 
E2 0.3 0.5 0.5 0.7 
E3 0.3 0.5 0.5 0.7 
SD 12 1 
SD13 1 
SD23 1 
AD(E1) 1 
AD(E2) 1 
AD(E3) 1 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3 0.333 
CD(E1) 0.341 
CD(E2) 0.316 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.3 0.5 0.5 0.7 
DF 0.5 
FP 0.009 

220 



Table A3.11 Aggregation calculation for the BE of H132 

H132 
EI 0.1 0.25 0.25 0.4 
E2 0 0 0.1 0.2 
E3 0.1 0.25 0.25 0.4 
SD12 0.825 
SD 13 1 
SD23 0.825 
AD(E1) 0.912 
AD(E2) 0.825 
AD(E3) 0.912 
RDA(E1) 0.344 
RDA(E2) 0311 
RDA(E3) 0.344 
CD(E1) 0.347 
CD(E2) 0.305 
CD(E3) 0.347 
wi 0.35 
W2 03 
W3 0.35 
AG 0.069 0.173 0.204 0.338868 
DF 0.19 
FP 0.0005 

Table A3.12 Aggregation calculation for the BE of H22 

H22 
E1 0 0 0.1 0.2 
E2 0 0 0.1 0.2 
E3 0 0 0.1 0.2 
SD 12 1 
SD13 1 
SD23 1 
AD(E1) 1 
AD(E2) 1 
AD(E3) 1 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.341 
CD(E2) 0.341 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0 0 0.1 0.2 
DF 0.077 
FP 2.3E-05 
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Table A3.13 Aggregation calculation for the BE of H311 

H31 1 
E1 0 0 0.1 0.2 
E2 0.3 0.5 0.5 0.7 
E3 0.1 0.25 0.25 0.4 
SD12 1.425 
SD13 1.175 
SD23 1.25 
AD(E1) 1.3 
AD(E2) 1.337 
AD E3) 1.212 
RDA(EI) 0.337 
RDA(E2) 0.347 
RDA(E3) 0.314 
CD(E1) 0.343 
CD(E2) 0.323 
CD(E3) 0.332 
W1 0.35 
W2 0.3 
W3 0.35 
AG 0.130 0.244 0.279 0.428 
DF 0.273 
FP 0.0015 

Table A3.14 Aggregation calculation for the BE of H312 

H312 
E1 0.1 0.25 0.25 0.4 
E2 0.1 0.25 0.25 0.4 
E3 0.1 0.25 0.25 0.4 
SD12 1 
SD13 1 
SD23 1 
AD(Ei) 1 
AD(E2) 1 
AD(E3) 1 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.341 
CD(E2) 0.316 
CD(E3) 0.341 
W1 0.35 
W2 0.3 
W3 0.35 
AG 0.1 0.25 0.25 0.4 
DF 0.25 
FP 0.0011 
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Table A3.15 Aggregation calculation for the BE of H32 

H32 
EI 0 0 0.1 0.2 
E2 0 0 0.1 0.2 
E3 0.1 0.25 0.25 0.4 
SD12 1 
SD13 1.175 
SD23 0.825 
AD(E1) 1.0875 
AD(E2) 0.9125 
AD(E3) 1 
RDA(E1) 0.362 
RDA(E2) 0.304 
RDA(E3) 0.333 
CD(E1) 0.356 
CD(E2) 0.302 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.034 0.085 0.151 0.268 
DF 0.137 
FP 0.00018 

Table A3.16 Importance level and TE probability of each MC 

MC probability 
TE 

probability=0.136 Importance measure Ranking of MCs 
0.0027 0.0197 17 
0.0154 0.1129 1 
0.0093 0.0681 6 
0.0051 0.0373 14 
0.0027 0.0197 17 
0.0065 0.0476 11 
0.0012 0.0087 20 

0.000045 0.0003 27 
0.0009 0.0065 22 
0.0135 0.0989 2 
0.0093 0.0681 6 
0.0075 0.0549 10 
0.0005 0.0036 24 
0.0085 0.0623 8 
0.0045 0.0329 16 
0.0078 0.0571 9 
0.0065 0.0476 11 
0.0099 0.0725 3 
0.0004 0.0029 25 
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0.0094 0.0689 5 
0.0095 0.0696 4 
0.0062 0.0454 13 
0.0008 0.0058 23 
0.00002 0.0001 28 
0.0051 0.0373 14 
0.0015 0.0109 19 
0.0011 0.008 21 
0.0001 0.0007 26 

Table A3.17 Gas holder hazard probabilities 

Gas holder Fault tree ReL 1lazard failure Gas holder Fault tree Ref. Hazard failure 
hazard rate hazard rate 
I. 1'RR failure ! 11111 Linguistic term 12.1nadequate 11122 Linguistic term 

strength 
2Automatic 111113 Linguistic term 13. Heavy load 11123 Linguistic term 
interruption not 
successful 
3. Manual tilling 111,13 Linguistic term 14. Coating 111311 Linguistic term 
interruption not 
successful 
4.1'V failure 11114 Failure rate 15. Atmosphric 111312 Linguistic term 

conditions 
5. PIA failure Hills Linguistic term 16. Gas 111321 Linguistic term 

components 
6. PS failure 1111116 Linguistic term 17-Internal H1322 Linguistic term 

coatin 
7. SRVs failure 111121 Failure rate 18. Ground H21 Failure rate 

movement 
R. RU failure 111112 Linguistic term 19. Liehtin 1122 Linguistic term 
9. Fire protection 111123 Linguistic term 20-Flood H23 Linguistic term 
failure 
10. ]TV failure 11,124 Linguistic term 21. Terrorist 1131 Linguistic term 

activity 
11 . Unsuitable 11121 Linguistic term 22. Inadequate 1132 Linguistic term 
material maintenance 
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Table A3.18 Expert judgments on BEs with unknown failure rate 

We ll BEs judgements 
IIEs 

E1 E2 E3 
H1111 M M VL 

111112 L VL L 
11111) M L L 
Hills L L L 
H1116 VL M VL 

111122 VL VL VL 

111123 L L M 
111124 M L M 
11121 M M M 

11122 L L VL 

11123 H L M 

}{ ý M M M 

}i H M M 
111321 H H M 
1i ,+ L M L 
}{, VL VL VL 
1123 VL M VL 
}} 31 L M VL 
}{ý VL L VL 

Table A3.19 Aggregation calculation for the BE of H1111 

H1111 

E1 0.3 0.5 0.5 0.7 
E2 0.3 0.5 0.5 0.7 
E3 0 0 0.1 0.2 

SD12 1 
SD13 0.575 
SD23 1.425 
AD(E1) 0.787 
AD(E2) 1.212 
ADE3 1 
RDA(EI) 0.262 
RDA(E2) 0.404 
RDA(E3) 0333 
CD(E1) 0.306 
CD(E2) 0352 
CD(E3) 0.341 
W1 0.35 
W2 0.3 
W3 0.35 
AG 0.197 0.329 0.363 0.529 
DF 0.357 
FP 0.003 
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Table A3.20 Aggregation calculation for the BE of H1112 

H1112 
EI 0.1 0.25 0.25 0.4 
E2 0 0 0.1 0.2 
E3 0 0 0.1 0.2 
SD12 0.825 
SDI3 0.825 
SD23 1 
AD(E1) 0.825 
AD(E2) 0.912 
AD(E3) 0.912 
RDA(E1) 0.311 
RDA(E2) 0.344 
RDA(E3) 0.344 
CD(E1) 0.33 
CD(E2) 0.322 
CD(E3) 0.347 
Wi 0.35 
W2 0.3 
W3 0.35 
AG 0.0330 0.082 0.149 0.266 
DF 0.135 
FP 0.0001 

Table A3.21 Aggregation calculation for the BE of H1113 

H1113 
EI 0.3 0.5 0.5 0.7 
E2 0.1 0.25 0.25 0.4 
E3 0.1 0.25 0.25 0.4 
SD12 0.75 
SD 13 0.75 
SD23 1 
AD(EI) 0.75 
AD(E2) 0.875 
AD(E3) 0.875 
RDA(E1) 0.3 
RDA(E2) 0.35 
RDA(E3) 0.35 
CD(EI) 0.325 
CD(E2) 0.325 
CD(E3) 0.35 
W1 0.35 
W2 0,3 
W3 0.35 
AG 0.165 0.33125 0.33125 0.4975 
DF 0.331 
FP 0.002 
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Table A3.22 Aggregation calculation for the BE of H1115 

111115 
El 0.1 0.25 0.25 0.4 
E2 0.1 0.25 0.25 0.4 
E3 0.1 0.25 0.25 0.4 
SDI2 1 
SD13 1 
SD23 I 
AD(EI) 1 
AD(E2) 1 
AD(E3) I 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.341 
CD(E2) 0.316 
CD(E3) 0.341 
W1 0.35 
W2 0.3 
W3 0.35 
AG 0.1 0.25 0.25 0.4 
DF 0.25 
FP 0.001 

Table A3.23 Aggregation calculation for the BE of H1116 

H1116 
E1 0 0 0.1 0.2 
E2 0.3 0.5 0.5 0.7 
E3 0 0 0.1 0.2 
SD12 1.425 
SD13 1 
SD23 1.425 
AD(E1) 1.212 
AD(E2) 1.425 
AD(E3) 1.212 
RDA(E1) 0.314 
RDA(E2) 0.370 
RDA(E3) 0.314 
CD(E1) 0.332 
CD(E2) 0.335 
CD(E3) 0.332 
W1 0.35 
W2 0.3 
W3 0.35 
AG 0.100 0.167 0.234 0.367 
DF 0.22 
FP 0.0008 
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Table A3.24 Aggregation calculation for the BE of H11 

H1122 
EI 0.1 0.25 0.25 0.4 
E2 0.1 0.25 0.25 0.4 
E3 0.1 0.25 0.25 0.4 
SD12 1 
SD13 1 
SD23 1 
AD(E1) 1 
AD(E2) 1 
AD(E3) 1 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.341 
CD(E2) 0.316 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.1 0.25 0.25 0.4 
DF 0.25 
FP 0.001 

Table A3.25 Aggregation calculation for the BE of Hli23 

H1123 
EI 0.1 0.25 0.25 0.4 
E2 0.1 0.25 0.25 0.4 
E3 0.3 0.5 0.5 0.7 
SD12 1 
SD13 1.25 
SD23 0.75 
AD(E1) 1.125 
AD(E2) 0.875 
AD(E3) 1 
RDA(E1) 0.375 
RDA(E2) 0.291 
RDA(E3) 0.333 
CD(E1) 0.362 
CD(E2) 0.295 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.168 0.335 0.335 0.502 
DF 0.335 
FP 0.002 
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Table A3.26 Aggregation calculation for the BE of H1124 

H1124 
EI 0.3 0.5 0.5 0.7 
E2 0.1 0.25 0.25 0.4 
E3 0.3 0.5 0.5 0.7 
SD12 0.75 
SD13 1 
SD23 0.75 
AD(El) 0.875 
AD(E2) 0.75 
AD(E3) 0.875 
RDA(E1) 0.35 
RDA(E2) 0.3 
RDA(E3) 0.35 
CD(E1) 0.35 
CD(E2) 0.3 
CD(E3) 0.35 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.24 0.425 0.425 0.61 

DF 0.425 
FI' 0.005 

Table A3.27 Aggregation calculation for the BE of H121 

H121 
EI 0.3 0.5 0.5 0.7 
E2 0.3 0.5 0.5 0.7 
E3 0.3 0.5 0.5 0.7 

SD12 1 
SD13 1 
SD23 1 
AD(E1) 1 
AD(E2) 1 
AD(E3) 1 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.341 
CD(E2) 0.316 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.3 0.5 0.5 0.7 
DF 0.5 
FP 0.009 
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Table A3.28 Aggregation calculation for the BE of H122 

H122 
E1 0.1 0.25 025 0.4 
E2 0.1 0.25 0.25 0.4 
E3 0 0 0.1 0.2 
SD12 1 
SDI3 0.825 
SD23 1.175 
AD(EI) 0.912 
AD(E2) 1.087 
AD(E3) 1 
RDA(EI) 0.304 
RDA(E2) 0.362 
RDA(E3) 0.333 
CD(E1) 0.327 
CD(E2) 0.331 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.065833 0.164583 0.19875 0.331667 
DF 0.192 
FP 0.0005 

Table A3.29 Aggregation calculation for the BE of H123 

H123 
E1 0.6 0.75 0.75 0.9 
E2 0.1 0.25 0.25 0.4 
E3 0.3 0.5 0.5 0.7 
SD12 0.5 
SD13 0.75 
SD23 0.75 
AD(E1) 0.625 
AD(E2) 0.625 
AD(E3) 0.75 
RDA(EI) 0.312 
RDA(E2) 0.312 
RDA E3) 0.375 
CD(E1) 0.331 
CD(E2) 0.306 
CD(E3) 0.3625 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.338 0.506 0.506 0.674 
DF 0.506 
FP 0.0096 
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Table A3.30 Aggregation calculation for the BE of H1311 

H121 
EI 0.3 0.5 0.5 0.7 
E2 0.3 0.5 0.5 0.7 
E3 0.3 0.5 0.5 0.7 
SD12 1 
SD13 1 
SD23 1 
AD(E1) 1 
AD(E2) 1 
AD(E3) 1 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.341 
CD(E2) 0.316 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.3 0.5 0.5 0.7 
DF 0.5 
FP 0.009 

Table A3.31 Aggregation calculation for the BE of H1312 

H1312 
Ei 0.6 0.75 0.75 0.9 
E2 0.3 0.5 0.5 0.7 
E3 0.3 0.5 0.5 0.7 
SD12 0.75 
SD13 0.75 
SD23 1 
AD(E1) 0.75 
AD(E2) 0.875 
AD(E3) 0.875 
RDA(E1) 0.3 
RDA(E2) 0.35 
RDA(E3) 0.35 
CD(E1) 0.325 
CD(E2) 0.325 
CD(E3) 0.35 
W1 0.35 
W2 0.3 
W3 0.35 
AG 0.395 0.581 0.581 0.765 
DF 0.581 
FP 0.015 
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Table A3.32 Aggregation calculation for the BE of H1321 

H1321 
E1 0.6 0.75 0.75 0.9 
E2 0.6 0.75 0.75 0.9 
E3 0.3 0.5 0.5 0.7 
SD12 1 
SD13 0.75 
SD23 1.25 
AD(EI) 0.875 
AD(E2) 1.125 
AD(E3) 1 
RDA(E1) 0.291 
RDA(E2) 0.375 
RDA(E3) 0.333 
CD(E1) 0.320 
CD(E2) 0.337 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.497 0.664 0.664 0.831 
DF 0.664 
FP 0.024 

Table A3.33 Aggregation calculation for the BE of H1322 

H1322 
EI 0.1 0.25 0.25 0.4 
E2 0.3 0.5 0.5 0.7 
E3 0.1 0.25 0.25 0.4 
SD12 1.25 
SD13 1 
SD23 1.25 
AD(E1) 1.125 
AD(E2) 1.25 
AD E3 1.125 
RDA(E1) 0.321 
RDA(E2) 0.357 
RDA(E3) 0.321 
CD(E1) 0.335 
CD(E2) 0.328 
CD (E3 0.335 
W1 0.35 
W2 0.3 
W3 0.35 
AG 0.165 0.332 0.332 0.498 
DF 0.332 
FP 0.0027 
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Table A3.34 Aggregation calculation for the BE of H22 

H22 
E1 0 0 0.1 0.2 
E2 0 0 0.1 0.2 
E3 0 0 0.1 0.2 
SD12 1 
SD13 1 
SD23 1 
AD(E1) 1 
AD(E2) 1 
AD(E3) 1 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.341 
CD(E2) 0.316 
CD(E3) 0.341 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0 0 0.1 0.2 
DF 0.077 
FP 2.3E-05 

Table A3.35 Aggregation calculation for the BE of H23 

H23 
EI 0 0 0.1 0.2 
E2 0.3 0.5 0.5 0.7 
E3 0 0 0.1 0.2 
SD12 1.425 
SD13 1 
SD23 1.42 
AD(E1) 1.21 
AD(E2) 1.42 
AD(E3) 1.21 
RDA(E1) 0.314 
RDA(E2) 0.370 
RDA(E3) 0.314 
CD(E1) 0.332 
CD(E2) 0.335 
CD 3 0.332 
wi 0.35 
W2 0.3 
W3 0.35 
AG 0.100 0.167 0.234 0.367 
DF 0.22 
FP 0.0008 
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Table A3.36 Aggregation calculation for the BE of H31 

H31 
EI 0.1 0.25 0.25 0.4 
E2 0.3 0.5 0.5 0.75 
E3 0 0 0.1 0.2 
SD12 1.26 
SD13 0.825 
SD23 1.43 
AD(EI) 1.04 
AD(E2) 1.35 
AD(E3) 1.13 
RDA(EI) 0.296 
RDA(E2) 0.382 
RDA(E3) 0.320 
CD(EI) 0.323 
CD(E2) 0.341 
CD(E3) 0.335 
W1 0.35 
W2 0.3 
W3 0.35 
AG 0.134752 0.251507 0.285053 0.452429 
DF 0.284 
FP 0.0017 

Table A3.37 Aggregation calculation for the BE of Hat 

H32 
E1 0 0 0.1 0.2 
E2 0.1 0.25 0.25 0.4 
E3 0 0 0.1 0.2 
SD12 1.175 
SD13 1 
SD23 1.175 
AD(E1) 1.087 
AD(E2) 1.175 
AD(E3) 1.087 
RDA(E1) 0.324 
RDA(E2) 0.350 
RDA(E3) 0.324 
CD(E1) 0.337 
CD(E2) 0.325 
CD(E3) 0.337 
W1 0.35 
W2 0.3 
W3 0.35 
AG 0.032 0.081 0.148 0.265 
DF 0.135 
FP 0.00017 
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Table A3.38 Importance level and TE probability of each MC 

MC probability TE probability--o. 0425 Importance measure Ranking of MCs 
0.0033 0.0774 5 
0.0001 0.0023 15 
0.0027 0.0633 7 
0.0002 0.0046 13 
0.0011 0.0258 9 
0.0008 0.0187 10 
0.0045 0.1053 4 
0.00002 0.0004 19 
0.0028 0.0657 6 
0.0056 0.1314 3 
0.0093 0.2183 2 
0.0005 0.0117 12 
0.0096 0.2253 1 
0.0001 0.0023 15 
0.00006 0.0014 17 
0.00003 0.0007 18 
0.00002 0.0004 19 
0.0008 0.0187 10 
0.0017 0.0399 8 

Table A3.39 Gas compressor hazard probabilities 

Compressor Fault tree Ref. Ilazard failure Compressor Fault tree Ref. Hazard failure 
hazard rate hazard rate 
1. Rotor failure I Lrll l Linguistic term 11. Impeller seal Hut Linguistic term 

failure 
2.13rush failure 111112 Failure rate 12. Alarm 113 Failure rate 

failure 
3. Engine failure 111113 Failure rate 13. Inadequate H14 Linguistic term 

backup 
4. Liner supply 111121 Linguistic term 14. Gas meter His Failure rate 
failure corrosion 
5. Switch failure 111112 Linguistic term 15. Small bore H16 Failure rate 

fitting failure 

6. Fuse unit 111123 Linguistic term 16. Current 1121 Failure rate 
failure turbidity 
7. Impeller 11121 Failure rate 17. Ground H22 Linguistic teim 
failure movement 
8. Impeller shaft 11122 Failure rate 18. Terrorist H31 Linguistic term 
failure activity 
9. Shaft bearing 11123 Failure rate 19. Incorrect 1132 Linguistic term 
failure operation 
10. Shaft seal 11121 Linguistic term 
failure 
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Table A3.40 Expert judgments on BEs with unknown failure rate 

Well BEs judgements 
BEs EI E2 E3 
iillll L M M 

111121 L L L 

111122 L M L 
111123 VL L L 

H121 M M M 

11122 M L M 

1114 VL VL M 
1122 M L M 
1131 L L L 
HI, I VL L L 

Table A3.41 Aggregation calculation for the BE of H121 

H121 
E1 0.3 0.5 0.5 0.7 
E2 0.3 0.5 0.5 0.7 
E3 0.3 0.5 0.5 0.7 

SD12 1 
SD13 1 
SD23 1 
AD(E1) 1 
AD(E2) 1 
AD(E3) 1 
RDA(El) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.341 
CD(E2) 0.316 
CD(E3) 0.341 
W1 0.35 
W2 0.3 
W3 0.35 
AG 0.3 0.5 0.5 0.7 

DF 0.5 
FP 0.009 
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Table A3.42 Aggregation calculation for the BE of H122 

H122 
EI 0.3 0.5 0.5 0.7 
E2 0.1 0.25 0.25 0.4 
E3 0.3 0.5 0.5 0.7 
SD12 0.75 
SD13 1 
SD23 0.75 
AD(E1) 0.875 
AD(E2) 0.75 
AD(E3) 0.875 
RDA(E1) 0.35 
RDA(E2) 0.3 
RDA(E3) 0.35 
CD(E1) 0.355 
CD(E2) 0.315 
CD(EI) 0.33 
Wi 0.36 
W2 0.33 
W3 0.31 
AG 0.237 0.421 0.421 0.605 
DF 0.4212 
FP 0.0055 

Table A3.43 Aggregation calculation for the BE of H14 

H14 
EI 0 0 0.1 0.2 
E2 0.1 0.25 0.25 0.4 
E3 0 0 0.1 0.2 
SD12 1.175 
SD13 1 
SD23 1.175 
AD(E1) 1.087 
AD(E2) 1.175 
AD(E3) 1.087 
RDA(E1) 0.324 
RDA(E2) 0.350 
RDA(E3) 0.324 
CD(E1) 0.342 
CD(E2) 0.340 
CD(E3) 0.317 
wi 0.36 
W2 0.33 
W3 0.31 
AG 0.034 0.085 0.151 0.268 
DF 0.137 
FP 0.0001 
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Table A3.44 Aggregation calculation for the BE of H22 

H22 
E1 0.3 0.5 0.5 0.7 
E2 0.1 0.25 0.25 0.4 
Ei 0.3 0.5 0.5 0.7 
SD12 0.75 
SD13 1 
SD23 0.75 
AD(EI) 0.875 
AD(E2) 0.75 
AD(E3) 0.875 
RDA(E1) 0.35 
RDA(E2) 0.3 
RDA(E3) 0.35 
CD(E1) 0.355 
CD(E2) 0.315 
CD E3 0.33 
W1 0.36 
W2 0.33 
W3 0.31 
AG 0.237 0.421 0.421 0.605 
DF 0.421 
FP 0.0055 

Table A3.45 Aggregation calculation for the BE of H31 

H31 
E1 0.1 0.25 0.25 0.4 
E2 0.1 0.25 0.25 0.4 
E3 0.1 0.25 0.25 0.4 
SD12 1 
SD13 1 
SD23 1 
AD(E 1) 1 
AD(E2) 1 
AD(E3) 1 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.346 
CD(E2) 0.331 
CDE3 0.321 
W1 0.36 
W2 0.33 
W3 0.31 
AG 0.1 0.25 0.25 0.4 
DF 0.25 
FP 0.0011 
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Table A3.46 Aggregation calculation for the BE of H32 

H32 
E1 0 0 0.1 0.2 
E2 0.1 0.25 0.25 0.4 
E3 0.1 0.25 0.25 0.4 
SD12 1.175 
SD13 1.175 
SD23 1 
AD(E1) 1.175 
AD(E2) 1.087 
AD E'1 1.087 
RDA(E1) 0.350 
RDA(E2) 0.324 
RDA(E3) 0.324 
CD(E1) 0.355 
CD(E2) 0.327 
CD E3 0.317 
wi 0.36 
W2 0.33 
W3 0.31 
AG 0.06 0.16 0.19 0.32 
DF 0.19 
FP 0.0005 

Table A3.47 Importance level and TE probability of each MC of compressor leakage 

MC probability TE probability=0.0401 Importance measure Ranking of MCs 
0.0093 0.229732891 2 
0.0055 0.135863538 4 
0.0085 0.209970922 3 
0.0001 0.002470246 8 
0.016 0.395239382 1 
0.0002 0.004940492 7 

0.000004 9.88098E-05 10 
0.000045 0.001111611 9 
0.00055 0.013586354 6 
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Table A3.48 Aggregation calculation for the BE of H1111 

H1111 
EI 0.1 0.25 0.25 0.4 
E2 0.3 0.5 0.5 0.7 
E3 0.3 0.5 0.5 0.7 
SD12 1.25 
SD13 1.25 
SD23 1 
AD(E1) 1.25 
AD(E2) 1.125 
AD E3) 1.125 
RDA(El) 0.357 
RDA(E2) 0321 
RDA(E3) 0.321 
CD(E1) 0.358 
CD(E2) 0.325 
CD(E3) 0.315 
W1 0.36 
W2 0.33 
W3 0.31 
AG 0.228 0.410 0.410 0.592 
DF 0.41 
FP 0.0051 

Table A3.49 Aggregation calculation for the BE of H1121 

H1121 
E1 0.1 0.25 0.25 0.4 
E2 0.1 0.25 0.25 0.4 
E3 0.1 0.25 0.25 0.4 
SD12 1 
SD13 1 
SD23 1 
AD(E1) 1 
AD(E2) 1 
AD(E3) 1 
RDA(E1) 0.333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.346 
CD(E2) 0.331 
CD(E3) 0.321 
wi 0.36 
W2 0.33 
W3 0.31 
AG 0.1 0.25 0.25 0.4 
DF 0.25 
FP 0.0011 
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Table A3.50 Aggregation calculation for the BE of H1122 

H1122 
E1 0.1 0.25 0.25 0.4 
E2 0.3 0.5 0.5 0.7 
E3 0.1 0.25 0.25 0.4 
SDl2 1.25 
SD13 1 
SD23 1.25 
AD(El) 1.125 
AD(E2) 1.25 
AD(E3) 1.125 
RDA(EI) 0.321 
RDA(E2) 0-357 
RDA(E3 0.321 
CD(E1) 0340 
CD(E2) 0.343 
CD(E3) 0.315 
wi 0.36 
W2 0.33 
W3 0.31 
AG 0.168 0.335 0.335 0.503 
DF 0.335 
FP 0.0028 

Table A3.51 Aggregation calculation for the BE of H1123 

H1123 
EI 0 0 0.1 0.2 
E2 0.1 0.25 0.25 0.4 
E3 0.1 0.25 0.25 0.4 
SD12 1.175 
SD13 1.175 
SD23 1 
AD(E1) 1.175 
AD(E2) 1.087 
AD E3 1.087 
RDA(E1) 0.350 
RDA(E2) 0.324 
RDA(E3) 0.324 
CD(E1) 0.355 
CD(E2) 0.327 
CD(E3) 0.317 
wi 0.36 
W2 0.33 
W3 0.31 
AG 0.064 0.161 0.196 0.328 
DF 0.19 
FP 0.0005 
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Table A3.52 Importance level and TE probability of each MC of compressor reduce 

quantity 

MC probability TE probability=0.0 12 Importance measure Ranking of MCs 
0.0051 0.423 1 
0.0006 0.049 5 
0.00054 0.044 7 
0.0011 0.091 3 
0.0028 0.232 2 
0.0005 0.041 8 

0.000006 0.0004 9 

0.00055 0.0456 6 
0.0009 0.0747 4 
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Appendix 4 

Table A4.1 Aggregation of judgment of Expert 2 for RCO1 with respect to IC 

WBEs 
1. Production packer 0 0 0.1 0.2 
2. SCSSV 0.3 0.5 0.5 0.7 
3. Com ]ction strin g 0.1 0.25 0.25 0.4 
SD(WBE12) 0.575 
SD(WBE13) 0.825 
SD WBE23 0.75 
AD(WBEI) 0.7 
AD(WBE2) 0.662 
AD WBE3 0.787 
RDA(WBE 1) 0.325 
RDA(WBE2) 0.308 
RDA WBE3 0.366 
CD(WBEI) 0.325 
CD(WBE2) 0.308 
CD E3 0.366 
Aggregation of Exl 0.129 0.245 0.2781 0.427 

Table A4.2 Aggregation of judgment of Expert 3 for RCOI with respect to IC 

WBEs 
1. Production packer 0.1 0.25 0.25 0.4 
2. SCSSV 0.6 0.75 0.75 0.9 
3. Com letion string 0.1 0.25 0.25 0.4 
SD(WBE12) 0.5 
SD(WBE13) 1 
SD E23 0.5 
AD(WBEI) 0.75 
AD(WBE2) 0.5 
AD WBE3 0.75 
RDA(WBE1) 0.375 
RDA(WBE2) 0.25 
RDA WBE3 0.375 
CD(WBE1) 0.375 
CD(WBE2) 0.25 
CD WBE3 0.375 
Aggregation of Ex 1 0.225 0.375 0.375 0.525 
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Table A4.3 Aggregation of judgment of Expert 1 for RCO2 with respect to IC 

WBEs 
1. Production packer 0.1 0.25 0.25 0.4 
2. SCSSV 0.3 0.5 0.5 0.7 
lCompletion string 0.3 0.5 0.5 0.7 
SD(WBE12) 0.75 
SD(WBE13) 0.75 
SD BE23 1 
AD(WBE1) 0.75 
AD(WBE2) 0.875 
AD E3 0.875 
RDA(WBE1) 0.3 
RDA(WBE2) 0.35 
RDA WBE3 0.35 
CD(WBEI) 0.3 
CD(WBE2) 0.35 
CD WBE3 0.35 
Aggregation of Exl 0.24 0.425 0.425 0.61 

Table A4.4 Aggregation of judgment of Expert 2 for RCO2 with respect to IC 

WBEs 
1. Production packer 0 0 0.1 0.2 
2. SCSSV 0.3 0.5 0.5 0.7 
3. Com letion string 0.1 0.25 0.25 0.4 
SD(W3E12) 0.575 
SD(WBE13) 0.825 
SD WBE23 0.75 
AD(WBEI) 0.7 
AD(WBE2) 0.6625 
AD WBE3 0.7875 
RDA(WBE1) 0.325581 
RDA(WBE2) 0.30814 
RDA WBE3 0.366279 
CD(WBE1) 0.325581 
CD(WBE2) 0.30814 
CD BE3 0.366279 
Aggregation of Exi 0.12907 0.24564 0.278198 0.427326 
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Table A4.5 Aggregation of judgment of Expert 3 for RCO2 with respect to IC 

WBEs 
1. Production packer 0.1 0.25 0.25 0.4 
2. SCSSV 0.6 0.75 0.75 0.9 
3. Com letion string 0.6 0.75 0.75 0.9 
SD(WBE12) 0.5 
SD(WBE13) 0.5 
SD BE23 1 
AD(WBE1) 0.5 
AD(WBE2) 0.75 
AD WBE3 0.75 
RDA(WBE1) 0.25 
RDA(WBE2) 0.375 
RDA WBE3 0.375 
CD(WBE1) 0.25 
CD(WBE2) 0.375 
CD WBE3 0.375 
Aggregation of Exl 0.475 0.625 0.625 0.775 

Table A4.6 Aggregation of three experts' rating with respect to IC 

Exert I1 0.24 0.425 0.425 0.61 
Expert 2 (E2) 0.13 0.245 0.278 0.427 
Expert 3 (E3) 0.475 0.625 0.625 0.775 
SD (E12) 0.845 
SD (E13) 0.8 
SD (E23) 0.645 
AD (E1) 0.822 
AD(E2) 0.745 
AD(E3) 0.727 
RDA(EI) 0.359 
RDA(E2) 0.325 
RDA(E3) 0.315 
CD(EI) 0.364 
CD(E2) 0.332 
CD(E3) 0.302 
Weight of expert 1 0.37 
Weight of expert 2 0.34 
Weight of expert 3 0.29 
Aggregation for 
RCOI 0.271 0.426 0.44 0.6 
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Table A4.7 RCO2 aggregation with considering CON 

Exert I (EI) 0.6 0.75 0.75 0.9 
Exert 2 (E2) 0.6 0.75 0.75 0.9 
Ex crt 3 E3 0.6 0.75 0.75 0.9 
SD (E12) 1 
SD (E13) 1 
SD (E23) 1 
AD (El) 1 
AD(E2) 1 
AD(E3) I 
RDA(E1) 0-333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.351 
CD(E2) 0-136 
CD(E3) 0.311 
Weight of exert 1 0.37 
Weight of exert 2 0.34 
Weiht of exert 3 0.29 
Aggregation for 
RCOI 0.6 0.75 0.75 0.9 

Table A4.8 Aggregation of the three experts' judgment on REL for RCO2 

Exert 1 (EI) 0.108 0.281 0.281 0.567 
Expert 2 (E2) 0.108 0.281 0.281 0.567 
Ex crt 3 E3 0.144 0.337 0.375 0.63 
SD (E12) 1 
SD (E13) 0.937 
SD (E23) 0.937 
AD (E1) 0.968 
AD(E2) 0.968 
AD(E3) 0.937 
RDA(EI) 0.336 
RDA(E2) 0.336 
RDA(E3) 0,326 
CD(E1) 0.353 
CD(E2) 0.338 
CD(E3) 0.308 
Weight of ex rt 1 0.37 
Weiht of ex rt 2 0.34 
Weiht of exp ert 3 0.29 
Aggregation for 
RCOI 0.12 0.29 0.31 0.59 
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Table A4.9 Aggregation of judgment of Expert 1 for RCO3with respect to IC 

WBEs 
l. Casin cement 0.1 0.25 0.25 0.4 
2. Casing 0.1 0.25 0.25 0.4 
3. Tubing hanger 0 0 0.1 0.2 
4. Well head 0.1 0.25 0.25 0.4 
5. Production tree 0.1 0.25 0.25 0.4 
6. Annulus valve 0.1 0.25 0.25 0.4 
SD(WBE12) 1 
SD(WBE13) 0.825 
SD(WBE14) 1 
SD(WBE15) 1 
SD(WBE16) 1 
SD(WBE23) 0.825 
SD(WBE24) I 
SD(WBE25) 1 
SD(WBE26) 1 
SD(WBE34) 0.825 
SD(WBE35) 0.825 
SD(WBE36) 0.825 
SD(WBE45) 1 
SD(WBE46) 1 
SD WBE5G 1 
AD(WBE1) 0.965 
AD(WBE2) 0.965 
AD(WBE3) 0.825 
AD(WBE4) 0.965 
AD(WBE5) 0.965 
AD EG 0.965 
RDA(WBEI) 0.170796 
RDA(WBE2) 0.170796 
RDA(WBE3) 0.146018 
RDA(WBE4) 0.170796 
RDA(WBE5) 0.170796 
RDA EG 0.170796 
Aggregation of cxl IC 0.085398 0.213496 0.228097 0.370796 
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Table A4.10 Aggregation of judgment of Expert 2 for RCO3with respect to IC 

WBEs 
1. Casin cemcnt 0 0 0.1 0.2 
2. Casing 0.1 0.25 0.25 0.4 
3. Tubing hanger 0.1 0.25 0.25 0.4 
4. Well head 0.3 0.5 0.5 0.7 
5. Production tree 0.1 0.25 0.25 0.4 
6. Annulus valvc 0 0 0.1 0.2 
SD(WBE12) 0.825 
SD(WBE13) 0.825 
SD(WBE14) 0.575 
SD(WBE15) 0.825 
SD(WBE16) 1 
SD(WBE23) I 
SD(WBE24) 0.75 
SD(WBE25) I 
SD(WBE26) 0.825 
SD(WBE34) 0.75 
SD(WBE35) 1 
SD(WBE36) 0.825 
SD(WBE45) 0.75 
SD(WBE46) 0.575 
SD WBE56 0.825 
AD(WBEI) 0.81 
AD(WBE2) 0.88 
AD(WBE3) 0.88 
AD(WBE4) 0.68 
AD(WBE5) 0.88 
AD WBE6 0.81 
RDA(WBE1) 0.163968 
RDA(WBE2) 0.178138 
RDA(WBE3) 0.178138 
RDA(WBE4) 0.137652 
RDA(WBE5) 0.178138 
RDA E6 0.163968 
Aggregation of cxl IC 0.094737 0.202429 0.235223 0.375709 
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Table A4.11 Aggregation of judgment of Expert 3 for RCO3with respect to IC 

WBEs 
1. Casin cement 0.1 0.25 0.25 0.4 
2. Casing 0 0 0.1 0.2 
3. Ttibing hanger 0.1 0.25 0.25 0.4 
4. Well head 0.1 0.25 0.25 0.4 
5. Production tree 0.3 0.5 0.5 0.7 
6. Annulus valve 0.1 0.25 0.25 0.4 
SD(WBE12) 0.825 
SD(WBE13) 1 
SD(WBE14) I 
SD(WBE15) 0.75 
SD(WBE16) 1 
SD(WBE23) 0.825 
SD(WBE24) 0.825 
SD(WBE25) 0.575 
SD(WBE26) 0.825 
SD(WBE34) I 
SD(WBE35) 0.75 
SD(WBE36) 1 
SD(WBE45) 0.75 
SD(Wi3E46) 1 
SD WBE5G 0.75 
AD(WBEI) 0.915 
AD(WBE2) 0.775 
AD(WBE3) 0.915 
AD(WBE4) 0.915 
AD(WBE5) 0.715 
AD WBE6 0.915 
RDA(WBEI) 0.17767 
RDA(WBE2) 0.150485 
RDA(WBE3) 0.17767 
RDA(WBE4) 0.17767 
RDA(WBE5) 0.138835 
RDA WBEG 0.17767 
Aggregation of exl IC 0.112718 0.247087 0.262136 0.411553 
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Table A4.12 Aggregation of three experts' rating with respect to IC 

Ex crt I (EI) 0.16 0.325 0.325 0.49 
Expert 2 (E2) 0.13 0.245 0.278 0.427 
Ex crt 3 E3 0.225 0.375 0.375 0.525 
SD (E12) 0.945 
SD (E13) 0.95 
SD (E23) 0.895 
AD (E1) 0.947 
AD(E2) 0.92 
AD(E3) 0.922 
RDA(E1) 0-339 
RDA(E2) 0.329 
RDA(E3) 0.330 
CD(E1) 0.354 
CD(E2) 0334 
CD(E3) 0.310 
Weight of expert 1 0.37 
Weight of expert 2 0.34 
Weight of expert 3 0.29 
Aggregation for 
RCOI 0.17 0.314 0.325 0.48 

Table A4.13 Aggregation of the three experts' judgment REL for RCO3 

Exert 1 E1 0.147 0.369 0.562 0.81 
Exert 2 (E2) 0.196 0.442 0.75 0.9 
Exert 33 0.147 0.369 0.562 0.81 
SD (E12) 0.9 
SD (E 13) 1 
SD (E23) 0.9 
AD (E1) 0.95 
AD(E2) 0.9 
AD(E3) 0.95 
RDA(E1) 0.339 
RDA(E2) 0.321 
RDA(E3) 0.339 
CD(E1) 0.354 
CD(E2) 0.330 
CD(E3) 0.314 
Weiht of exert 1 0.37 
Weiht of exert 2 0.34 
Weight of exert 3 0.29 
Aggregation for 
RCO1 0.16 0.393 0.624 0.84 

250 



Table A4.14 RCO3 aggregation with considering CON 

Expcrt I1 0.6 0.75 0.75 0.9 
Ex pat 2 (E2) 0.6 0.75 0.75 0.9 
Ex crt 3 E3 0.6 0.75 0.75 0.9 
SD (E12) I 
SD (E13) l 
SD (E23) 1 
AD (El) I 
AD(E2) 1 
AD(E3) I 
RDA(E1) 0333 
RDA(E2) 0.333 
RDA(E3) 0.333 
CD(E1) 0.351 
CD(E2) 0.336 
CD(E3) 0.311 
Wei ht of expert 1 0.37 
Weight of expert 2 0.34 
Weight of ex crt 3 0.29 
Aggregation for 
RCO1 0.6 0.75 0.75 0.9 

Table A4.15 Aggregation of judgment of Expert 1 for RC04 with respect to IC 

WBEs 
I. Casin cement 0.3 0.5 0.5 0.7 
2. Casing 0.1 0.25 0.25 0.4 
3. Tubing hanger 0.3 0.5 0.5 0.7 
4. Well head 0.3 0.5 0.5 0.7 
5. Production tree 0.6 0.75 0.75 0.9 
6. Annulus valve 0.3 0.5 0.5 0.7 
SD(WBE12) 0.75 
SD(WBE13) 1 
SD(WBE14) 1 
SD(WBE15) 0.75 
SD(WBE16) 1 
SD(WBE23) 0.75 
SD(WBE24) 0.75 
SD(WBE25) 0.5 
SD(WBE26) 0.75 
SD(WBE34) 1 
SD(WBE35) 0.75 
SD(WBE36) I 
SD(WBE45) 0.75 
SD(WBE46) I 
SD WBE56 0.75 
AD(WBE1) 0.9 
AD(WBE2) 0.7 
AD(WBE3) 0.9 
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AD(WBE4) 
AD(WBES) 
AD BEG 

0.9 
0.7 
0.9 

RDA(WBE 1) 0.18 
RDA(WBE2) 0.14 
RDA(WBE3) 0.18 
RDA(WBE4) 0.18 
RDA(WBE5) 0.14 
RDA BE6 0.18 
Aggrcgadon of cxl 
IC 0.314 0.5 0.5 0.686 

Table A4.16 Aggregation of judgment of Expert 2 for RCO4 with respect to IC 

WBEs 
1. Casin cement 0.1 0.25 0.25 0.4 
2. Casing 0.3 0.5 0.5 0.7 
3. Tubing hanger 0.1 0.25 0.25 0.4 
4. Well head 0.6 0.75 0.75 0.9 
5. Production tree 0.6 0.75 0.75 0.9 
6. Annulus valve 0.1 0.25 0.25 0.4 
SD(WBE12) 0.75 
SD(WBE13) I 
SD(WBE14) 0.5 
SD(WBE15) 0.5 
SD(WBE16) 1 
SD(WBE23) 0.75 
SD(WBE24) 0.75 
SD(WBE25) 0.75 
SD(WBE26) 0.75 
SD(WBE34) 0.5 
SD(WBE35) 0.5 
SD(WBE36) 1 
SD(WBE45) 1 
SD(WBE46) 0.5 
SD WBE56 0.5 
AD(WBE 1) 0.75 
AD(WBE2) 0.75 
AD(WBE3) 0.75 
AD(WBE4) 0.65 
AD(WBE5) 0.65 
AD WBE6 0.75 
RDA(WBE1) 0.174419 
RDA(WBE2) 0.174419 
RDA(WBE3) 0.174419 
RDA(WBE4) 0.151163 
RDA(WBE5) 0.151163 
RDA WBE6 0.174419 
Aggregation of cxl 
IC 0.286 0.444 0.444 0.603 
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Table A4.17 Aggregation of judgment of Expert 3 for RCO4 with respect to IC 

WBEs 
1. Casin cement 0.1 0.25 0.25 0.4 
2. Casing 0.3 0.5 0.5 0.7 
3. Tubing hanger 0.3 0.5 0.5 0.7 
4. Well head 0.6 0.75 0.75 0.9 
5. Production tree 0.6 0.75 0.75 0.9 
6. Annulus valve 0 0 0.1 0.2 
SD(WBE12) 0.75 
SD(WBE13) 0.75 
SD(WBE14) 0.5 
SD(WBE15) 0.5 
SD(WBE16) 0.825 
SD(WBE23) 1 
SD(WBE24) 0.75 
SD(WBE25) 0.75 
SD(WBE26) 0.575 
SD(WBE34) 0.75 
SD(WBE35) 0.75 
SD(WBE36) 0.575 
SD(WBE45) 1 
SD(WBE46) 0.325 
SD WBESG 0.325 
AD(WBE1) 0.665 
AD(WBE2) 0.765 
AD(WBE3) 0.765 
AD(WB E4) 0.665 
AD(WBE5) 0.665 
AD WBE6) 0.525 
RDA(WBEI) 0.164198 
RDA(WBE2) 0.188889 
RDA(WBE3) 0.188889 
RDA(WBE4) 0.164198 
RDA(WBE5) 0.164198 
RDA WBE6 0.12963 
Aggregation of cxl 
IC 0.326 0.476 0.489 0.651 
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Table A4.18 Aggregation of three experts' rating with respect to IC 

Ex crt I (EI) 0.314 0.5 0.5 0.686 
Ex crt 2 (E2) 0.331 0.5 0.5 0.667 
Expert 3 E3 0.326 0.476 0.489 0.652 
SD (E12) 0.999 
SD (E13) 0.985 
SD (E23) 0.986 
AD (E1) 0.992 
AD(E2) 0.992 
AD(E3) 0.986 
RDA(E1) 0334 
RDA(E2) 0.334 
RDA(E3) 0.331 
CD(E1) 0.352 
CD(E2) 0337 
CD(E3) 0.310 
Wei ht of ex crt 1 0.37 
Weight of expert 2 0.34 
Wei ht of expert 3 0.29 
Aggregation for 
RCOI 0.323 0.49 0.5 0.67 

Table A4.19 RCO4 aggregation with considering CON 

Exert I (EI) 0.6 0.75 0.75 0.9 
Expert 2 (E2) 0.6 0.75 0.75 0.9 
Expert 3 (E3) 0.8 0.9 1 1 
SD (E12) 1 
SD (E13) 0.825 
SD (E23) 0.825 
AD (EI) 0.912 
AD(E2) 0.912 
AD(E3) 0.825 
RDA(E1) 0.344 
RDA(E2) 0.344 
RDA(E3) 0.311 
CD(E1) 0.357 
CD(E2) 0.342 
CD(E3) 0.300 
Weight of expert 1 0.37 
Weight of expert 2 0.34 
Weight of expert 3 0.29 
Aggregation for 
RCO1 0.660 0.795 0.825 0.930 
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Table A4.20 Aggregation of the three experts' judgment on REL for RCO4 

Ex crt I (E1 0.041 0.17 0.21 0.364 
Exert 2 (E2) 0.041 0.17 0.21 0.364 
Ex crt 3 E3 0.104 0.256 0.316 0.656 
SD (E12) 1 
SD (E13) 0.863 
SD (E23) 0.863 
AD (E1) 0.931 
AD(E2) 0.931 
AD(E3) 0.863 
RDA(E1) 0.341 
RDA(E2) 0.341 
RDA(E3) 0.316 
CD(E1) 0.355 
CD(E2) 0.340 
CD(E3) 0.303 
Weiht of exert 1 0.37 
Weight of exert 2 0.34 
Weight of exert 3 0.29 
Aggregation for 
RCO1 0.06 0.2 0.24 0.45 
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Appendix 5 

1) Wanted and unwanted input 

A well barrier should withstand the environment and maximum anticipated differential 

pressure it may be exposed to over time (NORSOKD-010). Changes in input during the 

well life must be frequently assessed (change in well fluid composition, excessive 

pressure, scale, particles in the flow, etc. ). It is also important to consider unwanted 

input. For example, failure of the primary well barrier might result in high pressure on a 

secondary well barrier. 

2) Wanted and unwanted output 

The acceptable leak rate shall be zero, unless specified In situations where the function 

of the well barrier is weakened, but are still acceptable should be defined (NORSOK D- 

010). A specific leak rate criterion for the SCSSV and the SCASV (Surface Controlled 

Annular Safety Valve) is specified in NORSOK D-010, which originates from API RP 

14B. API RP 14B defines an acceptable leak rate, which is 15 SCF/min (-0.42 

SCNUmin) for gas, and400cm -/min for liquids. 

3) Boundary conditions 

a) Two well barriers shall be available during all well activities and operations 

(NORSOK D-010 and industry practice). In addition NORSOK D-010 states that "No 

single failure shall lead to uncontrolled outflow from the borehole/well to the external 

environment ". 

b) SSSV and SCASV valves should be placed minimum 50 in below seabed (NORSOK 

D-010). The setting depth requirement makes the SCASV less vulnerable to external 

events. The setting depths of the SCSSV and the SCASV are primarily dictated by the 

pressure and temperature conditions in the well. 

4) External threats (robustness) 

The well barriers shall be designed, selected and/or constructed such that it can operate 

competently and withstand the environment for which it may be exposed to over time 
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(NORSOK D-010). In addition to long term environmental exposure, robustness include 
the ability to function under all accident conditions, and events like earthquake, fire, 
loss of energy supply, sabotage, falling loads, etc. should also be assessed. 

5) System (availability) 

a) The primary and secondary well barriers shall, to the extent possible, be independent 

of each other (NORSOK D-010). Independence makes the system more robust, and also 
increases the availability. 

b) A SIL requirement to the well shut-in function should be established. It should also 
be controlled that the well shut-in function is able to fulfill this requirement in the well 
life. 

6) Support 

In the Facilities regulations (PSA, 2001b), section 47 it is stated that "Well barriers 

shall be designed so that their performance can be verified. " According to NORSOK 

D-010 "The physical location and the integrity status of the well barrier shall be known 

at all times". Verification of the performance of well barriers may be based on 
functional testing and condition monitoring (e. g., monitoring of changes in pressure). 
More specific, NORSOK D-010 states the following requirements to well barriers: 

i) A well barrier shall be leak tested, function tested or verified by other methods 
(NORSOK D-010). NORSOK D-010 also requires that "The SSSV, the production tree 

valves and the annulus valves shall be leak tested regularly". Common practice on the 
Norwegian Continental Shelf (NCS) is to test valves every 6 months. 

ii) The pressure in all accessible annuli (A, B and/or C annuli) shall be monitored and 

maintained within minimum and maximum pressure range limits (NORSOK D-010). 

The requirements listed reflect the requirements in Norway. The list is not complete 

when looking at a specific well. However, the categorization above gives an overview 

of the most important requirements and how the requirements influence the system. The 

categorization may also be used to include additional requirements from other countries 

or from internal operator guidelines. 
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