EVOLUTIONARY
ENVIRONMENTAL MODELLING IN
SELF-MANAGING SOFTWARE
SYSTEMS

HENRY LEE FORSYTH MPhil., BSc (Hons)

A thesis submitted in partial fulfilment of the
Requirements of Liverpool John Moores University

For the degree of Doctor of Philosophy

December 2010

Abstract

Over recent years, the increasing richness and sophistication of modern software
systems has challenged conventional design-time software modelling analysis and
has led to a number of studies exploring non-conventional approaches particularly
those inspired by nature. The natural world routinely produces organisms that can not
only survive but also flourish in changing environments as a consequence of their
ability to adapt and therefore improve their fitness in relation to the external

environments in which they exist.

Following this biologically inspired systems’ design approach, this study aims to test
the hypothesis — can evolutionary techniques for runtime modelling of a given
system’s environment be more effective than traditional approaches, which are

increasingly difficult to specify and model at design-time?

This work specifically focuses on investigating the requirements for software
environment modelling at runtime via a proposed systemic integration of Learning

Classifier Systems and Genetic Algorithms with the well-known managerial
cybernetics Viable Systems Model.

The main novel contribution of this thesis is that it provides an evaluation of an
approach by which software can create and crucially, maintain a current model of the
environment, allowing the system to react more effectively to changes in that
environment, thereby improving robustness and performance of the system. Detailed
novel contributions include an evaluation of a variety of environmental modelling
approaches to improving system robustness, the use of Learning Classifier Systems
and genetic algorithms to provide the modelling element required of effective
adaptive software systems. It also provides a conceptual framework of an
Environmental Modelling, Monitoring and Adaptive system (EMMA) to manage the

various elements required to achieve an effective environmental control system.

The key result of this research has been to demonstrate the value of the guiding

principles provided by the field of cybernetics and the potential of Beer’s

cybernetically based Viable System Model in providing a learning framework, and

subsequently a roadmap, to developing self-managing autonomic systems.

The work is presented using a virtual world platform called “Second Life”. This

platform was used for experimental design and testing of results.

ACKNOWLEDGEMENTS

The author would like to thank the School of Computing & Mathematical Sciences at

Liverpool John Moores University for the support received during the production of
the thesis.

I would especially like to thank my supervisory team, Professor A. Taleb Bendiab
and Andy Laws for their patience and support during my studies.

Finally, I would like to thank my family for their understanding in terms of the

scarcity of time available for them. I’1l try my best to make up for it in the future.

Contents

ABSTRACT 2
CHAPTER 1: INTRODUCTION 13
1.1 Motivation.... . 13
1.2 ThESIS BIMS cucciiiieeiririsnsnninsseminisninessnnisiassnssissssssrsssersssessesnssesssssassnsssesassnsssesassssrsasnesassassnns 18
1.3 Novel contribution of the thesisciisiiiincnniesiineniessessisesesssssmsasnsesessssssassssserssenss 21
1.4 Outline of the rest of the thesis . . 23

CHAPTER 2: “THE GRAND CHALLENGE”, AUTONOMIC COMPUTING

& SELF-ADAPTIVE SOFTWARE SYSTEMS 27
2.1 “The Grand Challenge” . 27
2.2 Approaches to Developing Self-Adaptive Software Systems 36
2.3 “The BIiolOBICAl RESPONSE”uuiierrnirisicsroisisrersriossnsesssersnsessessosassassassonsasssrsansssasssrssessasssansasassrassss 41
2.4 So where are we now? 45
2.8 SUMMATY .oiereernncnnaossscsssnseerssassnssesses 47

3 A CYBERNETIC VIEW OF THE ENVIRONMENT AND ITS MODELS... 49

3.1 Cybernetics and the Environment . 49
3.2 Key Cybernetic Environmental Concepts 52
3.3 Conceptual view of the environment.. 56
3.4 Second Order Cybernetics and the Viable System Model 61
3.5 Summary 70

CHAPTER 4: AN APPROACH TO PROVIDE AN ADAPTIVE MODEL OF

THE ENVIRONMENT)|
4.1 Learning From The Environment 71
4.2 Possible approaches to solving the problem 76
4.3 Genetic Algorithms 77
4.4 Learning Classifier Systems 85
4.5 Prototype Proposal 91
4.6 Summary 94

CHAPTER 5: DESIGN & EVALUATION OF INITIAL EXPERIMENTAL
APPROACHES TO CONTROLLING AND MODELLING THE

ENVIRONMENT 95
5.1 The EXperimental Platform .. ccnmniiiiniiisiimcnintiniescssiersisssmnsesamssssssesseesssssansssessnsnessssonns 95
5.2 The technical aspects of performance on a virtual world simulator 99
5.3 Description and Rationale of the initial experiments 103
5.4 The RandOm EXPerimMEnt.......cccrenreiersraresnssisssnsnesassnsossosessisesssessassssssenmansssresssnsensssssssasssnsissse 111
5.5 The Static Model Experiment...... . 116
5.6 The Self-Management EXPeriment........ccccevisercenerrersrsaserssererasssssnssasassassssasasssnsassssasnsseses 123
5.7 The Hybrid Experiment . 126
5.8 Critical Evaluation of the Virtual World Experiments 131
5.9 SUMMArY ..t 133

CHAPTER 6: EMMA TESTBED DESIGN TO PROVIDE A MODEL OF THE

EXTERNAL ENVIRONMENT AND INTERNAL CAPABILITY.....cccoceeueeune 134
6.1 Introduction termriesesteseintteesereatssaneetsnnetisanasessannese 134
6.2 Metrics, Detectors, Effectors and Communication Channels 138
6.3 The development of EMMA prototype....... 143
6.4 The Structure of the Learning Classifier . 143
6.5 Matching Environment Messages to a Learning Classifier....... 146
6.6 Initial Parameterscoueuuee. . 148
6.7 Strategies FOr NO Matchccccecveenesssnnisnnssseesesssssssssassossesosssesnrsssnssses 159
6.8 The Genetic Algorithm Fitness Function . 170
6.9 The Bidding Process and Effecting Change in the Environment 173
6.10 The Genetic Algorithmcccsuaee . 176
6.11 Summary 178
CHAPTER 7: RESULTS AND EVALUATION 180
7.1 Demonstration of An Evolving External Model of the Environment 182
7.2 The Ghosting Effect . 189
7.3 Other Experimental Models of the Environment 195
7.4 Demonstration of an Evolving Internal Model of Capability 199

7.5 Other Internal Classifier Models of Internal Capability

205

7.6 Analysis of the Performance of the Prototype

206

7.7Analysis of the Performance of the Genetic Algorithm Performance and Convergence

7.8 Scalability Experimentation...

........... 209

211

7.9 Model Coverage and CUFrency...ccocecsssersnsessassessasens

217

7.10 Summary

218

CHAPTER 8: ADAPTIVE ENVIRONMENTAL MODELLING PROTOTYPE

SYSTEM EVALUATION

8.1 Overall Evaluation of the Project Work

219

219

8.2 Overall Evaluation of the Experimental Work

222

8.3 Online Training of the Prototype System

223

8.4 Comparison of Experimental Data

8.5 Sensitivity of LCS to Parameter Tuning..

224

224

8.6 Scalability of the EMMA prototype...

225

8.7 Comparison with other approaches

226

8.8 Summary

226

CHAPTER 9: CONCLUSIONS AND FUTURE RESEARCH

9.1 Thesis Summary

229

229

9.2 Summary of Contributions.

234

9.3 Future Research..... Ceereeesersanneseesnssaneseses

236

BIBLIOGRAPHY

APPENDIX A PROGRAM DESIGN FLOWCHARTS

APPENDIX B THE VIRTUAL WORLD CODE

B1 The In-World XML BroadCaster...cceuccarmsassasssssessissscsnsssonnens

239

248

276

B2 Converting Message From XML Broadcaster Into Commands to the Scripted Objects

B3 Scripted Object Listen and Restart Script

276

............. 278

279

B4 The Random Experiment

281

BS The Static Model..

282

B6 The Hybrid Model 287

B7 The Self Managing Controller 292
B8 Example of Self Managing Scripted Object (Box 1)....... 293
APPENDIX C EMMA PROTOTYPE SYSTEM CODE 296

Table of Figures

FIGURE 1 IBM’S AUTONOMIC COMPUTING REFERENCE MODEL......ccocirvmnriiniiiiniiniicneiieresiensennnens 31
FIGURE 2 IBM FOUR PART CONTROL LOOP ...c.uooiiiiitiitiitinniiiir e essesnssnsssssssessssrnssssssnns 32
FIGURE 3 AUTONOMIC COMPUTING MATURITY MODEL..........ccconiiiiiiinrrniniinicoteeessisnnsssessenes 34
FIGURE 4 VARIETY OF A “SIMPLE LIGHT-BULB SYSTEM” ..o ercceneessssssnssssserenes 52
FIGURE 5 THEORETICAL ENVIRONMENT OF A SYSTEM ...uriiiiiiiiiitiirtiicsesnnin s s nnnnes 57
FIGURE 6 THE SUBSTANTIAL ENVIRONMENT ..ot nsens e 58
FIGURE 7 BROADER SYSTEMS INCLUDING ENVIRONMENTAL SUBSYSTEMccoevrvirnnnnreiriresrenianees 61
FIGURE 8 BEER’S VIABLE SYSTEM MODEL.......cocoiitiiiirieitinineeiitniscsstsss s ssnssnessensssssssssatassessssres 64
FIGURE 9 SYSTEM 4 MECHANISM FOR INTERROGATING THE PROBLEMATIC ENVIRONMENT 66
FIGURE 10 AN OUTLINE VIABLE INTELLIGENT AGENT ARCHITECTUREoovevemmremrrrrincncrinnncncrennennnenns 67
FIGURE 11 REINFORCEMENT FEEDBACK LOOPcoueuiirirremreteirercreeeseneieeeenesee s ens st sesesenessssssssssenes 74
FIGURE 12 SELECTION USING A ROULETTE WHEELcocveriirieiertiecreeniie st sesesesssssossnans 79
FIGURE 13 SIMPLE CROSSOVER EXAMPLEccveicmieiciiccneteiieresseee st sesesensersrsseseremsesasssssanes 79
FIGURE 14 SIMPLE MUTATION EXAMPLEv.oveeeiriercinieree et sesee e aens s bessssstsbovossnans 80
FIGURE 15 GENERATION 1 OF THE BUTTERFLY POPULATIONcoovtrevierrieeerenenserenmemnesieensessesessosnans 81
FIGURE 16 GENERATION 1 AFTER WEAKEST BUTTERFLIES ARE LOST.......cocevrmeerirreemrmecsnrnenensrsnssesonsenes 82
FIGURE 17 GENERATION 2 OF THE BUTTERFLY POPULATIONc.ooeiriirrieirirerestnsenieesnssnsesnssssnssnenas 83
FIGURE 18 GENERATION 3 OF THE BUTTERFLY POPULATIONoceciimmerisiirincisisnsisiesessosmsssinssansonesas 84
FIGURE 19 HOLLAND’S CLASSIFIER SYSTEM.....coiiiiiiriiiririnciisnirenieecsnsencsnesnsneseaesenesssssonsssassaranas 87
FIGURE 20 THEORETICAL UNDERPINNING FOR THE PROTOTYPE SYSTEMcoovirimriiininieineeecnnens 91
FIGURE 21 THE VIABLE SYSTEM MODEL AND AUTONOMIC COMPUTINGccvvvvmvmernririuninnerernssnianses 92
FIGURE 22 THE PROTOTYPE SYSTEM, VSM’S SYSTEM 4 AND GA/LCSoovirriirniicsrinsinneseonssones 93
FIGURE 23 SECOND LIFE SERVER SERVICES.........ccoiiimririniiniinriieninciiisiniesnoseesnsssiossesenssanssesasassnens 97
FIGURE 24 EXAMPLE LSL CODEcviiiiiiiiiiicctrrtenccee st sscsesssssessss st et s sassssesnssssstesaasaas 101
FIGURE 25 EXAMPLE LSL CODEccvoiniiimntiniecticencieecie st st ssesns e sesbasasbesasnasnasasnsssstasanaans 102
FIGURE 26 SCRIPTED OBJECTS ON THE SIMULATOR.......ccovoiirmiirerinincnsrismesssonnssesisisisessssssssmessssnaes 105
FIGURE 27 THE CONTENTS OF THE 16 SCRIPTED OBJECTSccovtiermrecrrirmincrsisserisseressssmssssersessosans 106
FIGURE 28 DILATION MEASUREMENT GRAPHcccormimieirnunneniensrnnesnenireeosesessssenisssrsmsssessssssas 107
FIGURE 29 DILATION MEASUREMENT GRAPH AFTER CHANGEc.cccvicrererreecrecnrereerereneemsessessesessnns 107
FIGURE 30 CALCULATION OF THE FTIME METRIC.......cceteeriirterreteeninecinreenstsanasrenesesasiorerssnessenosensnnes 109
FIGURE 31 BACKGROUND FTIME READINGSc.ccvticmminunrrcerermnassosenessasssesssnssssssssssssnensssssssssessssrasnsaes 110
FIGURE 32 THE VALUES OF THE EXPERIMENTAL BOUNDARIES.........cccccervveeereneneereneresseroserersssennas 110
FIGURE 33 THE RESULTS OF RANDOM EXPERIMENT L.......ccciimiiriinineresiienerenissensiensereesnssnsnssnnsnns 112
FIGURE 34 THE RESULTS OF RANDOM EXPERIMENT 1 = 7uceriiieernninccneeensneeecnesensnssensssesnssones 113
FIGURE 35 THE RESULTS OF RANDOM EXPERIMENTS 1-16......ccoirnieirierneerninniesreesnniseessnensnsennesnenes 113
FIGURE 36 AVERAGE RANDOM EXPERIMENT BOUNDARY PERFORMANCEcccovvumvrvvmmennrirririnnne 114
FIGURE 37 RANDOM EXPERIMENT PERFORMANCE METRIC RESULTSovvriviiiieenienrneneneccrerenne, 114
FIGURE 38 RANDOM EXPERIMENT PERFORMANCE USING BASELINE + 0.5 GOAL......cccovvemirerenennne 115
FIGURE 39 AVERAGE FTIME OBSERVED FROM 10,000 ENVIRONMENTAL READINGS............cc.ccu...... 117
FIGURE 40 RESULTS OF STATIC MODEL EXPERIMENTATION PHASE..........ccceverrereinrieceenresnneenrnas 118
FIGURE 41 STATIC MODEL METRIC PERFORMANCE BY EXPERIMENTc.oucvevirrrerrcriireeirieerenenns 119
FIGURE 42 BOUNDARY HITS BY EXPERIMENT ...ttt see st e cnesenesanenes 120
FIGURE 43 STATIC MODEL BOUNDARY AVERAGE........coivvttmniieiiriiincisitennnnieninnecesesssessssesrsssssanes 120
FIGURE 44 PERFORMANCE OF ADJUSTED STATIC MODEL.......cccviiiiiicniinreennioneenennrereesneesessessesses 121
FIGURE 45 BOUNDARY PERFORMANCE OF ADJUSTED STATIC MODEL......ccociiveirerrcrrerererereesene 122
FIGURE 46 SELF MANAGING BOX PERFORMANCE.........cccceiitiiiiicinnenreenrnraneesseeressressrensensesseennenes 124
FIGURE 47 SELF-MANAGING BOX BOUNDARY PERFORMANCE............cccocmerierrenerincressesnnenerronsenes 124
FIGURE 48 SELF-MANAGING PERFORMANCE BY EXPERIMENTccccccceermrrnrerierrreereesennenrnseseersersnenns 125
FIGURE 49 PERFORMANCE OF THE HYBRID MODEL........ccoocnuieermeiriinirrinreneriiseeeiecseresesnessaressessannes 127
FIGURE 50 AVERAGE BOUNDARY PERFORMANCE OF THE HYBRID MODEL.......ccceeivrrvecerennererecesenres 127
FIGURE 51 HYBRID EXPERIMENT BOUNDARY PERFORMANCE BY EXPERIMENTcccererrmercresrennan 128
FIGURE 52 COMPARISON OF THE BEST AND WORST OF THE HYBRID EXPERIMENTS.ccorevererecenens 130
FIGURE 53 VIRTUAL WORLD EXPERIMENTS COMPARED BY METRIC PERFORMANCEcovvinennne 131
FIGURE 54 VIRTUAL WORLD EXPERIMENTS COMPARED BY BOUNDARY PERFORMANCE 132
FIGURE 55 SCRIPTED OBJECTS ON THE REGION SIMULATOR.......cconrineccrseecnssnsrrsrisseitossesisserssnsessons 140

FIGURE 56 EMMA PROTOTYPE CLASSIFIER STRUCTURE.......cocoiviiinititncccnnt et 144

FIGURE 57 REPRESENTATION OF CLASSIFIER CONDITION ELEMENT........ccocnmrriimiirnrinreiecsessnanes 144
FIGURE 58 CONVERTING THE MESSAGE TO AN ENVIRONMENTAL ACTION.......cccconmiiieirmisiecrnnnnnsannns 146
FIGURE 59 AN EXAMPLE OF THE MATCHING PROCESSccoviiniiiiiiitnii i snesissssssissssenne 147
FIGURE 60 CALCULATION OF THE CLASSIFIER SPECIFICITY ...ovvirrimeiiinieeiiiinrcninsncesteressnssseasnane 147
FIGURE 61 SPECIFICITY VALUE TO ENVIRONMENTAL MESSAGES MATCHEDcccvviiirirvenrvnnennnnns 148
FIGURE 62 RULE SET SIZE AND EXPECTED COVERAGE ANALYSIS.......ccoccovmnvrinmircvnirennnensereesurnesencens 149
FIGURE 63 EXAMPLE OF PROPORTION SELECT ...cciiimiiiiiiitiiiiiirisiinnst s ssnensssessaesenas 153
FIGURE 64 MUTATION RATES / RULE SIZE IN THE CONDITION ELEMENTcocvrermvrmmerinnimrisneneienes 157
FIGURE 65 MUTATION RATES / RULE SIZE IN THE MESSAGE ELEMENTccovmiiiriiiecnnressreneenes 158
FIGURE 66 EXPERIMENT 9 EXAMPLE OF LEARNING WITHIN A SINGLE ACTION CYCLEcccu.c.e. 159
FIGURE 67 EXPERIMENT 1 EXAMPLE OF CONVERGENCE IN THE CLASSIFIER SET.....covvuerievernrisnnsrerenes 161
FIGURE 68 AN ANALYSIS OF THE RANDOM CLASSIFIER SELECTION EXPERIMENTS 2-6......cccvvneeneee 162
FIGURE 69 SELECTION OF NEAREST MATCH CLASSIFIER ANALYSISccocnnivmmuminnniseinisnenseneienes 163
FIGURE 70 EXPERIMENT 10 CONDITION QUANTIFIER CONVERGENCEccooviiinmvinricninenennninnnsinens 164
FIGURE 71 PARENT PROTECTION EXAMPLEccoiiiiirrenirierereneeee e stsine s stenasssbssssassansssssasnssisaes 165
FIGURE 72 EXPERIMENT 15 PARENT PROTECTION {100 RULE-SET) «..ccovvremuemrtrinmcsrisireesisissseseseienns 167
FIGURE 73 ANALYSIS OF COVERING.........covmiiiiiriiiiciinicnressssessesesssassssesssonssssssssssssssssssnsssense 169
FIGURE 74 BID CALCULATIONcoiireiriiniriniirintiesstestesestenesssisesensssstsesasssessensnssssssssssrenessessasnssatantanons 170
FIGURE 75 VSM SYSTEM 4 & LEARNING CLASSIFIER SYSTEM COMPARISON ...ccouvemnrniniecninrninnaninnes 181
FIGURE 76 EXTERNAL MODEL — GENERATION 1.....coviiiiiiiiiiiniriininsiinnsernssnsrssssnesassnsneseressssnanes 183
FIGURE 77 EXTERNAL MODEL — GENERATION 4.......coiiiiiciiirnic et cnisne st esnsnsnessasiase 183
FIGURE 78 EXTERNAL MODEL — GENERATION 7....coovivirivriniiimieincnemiescneisreeveesrssssssssssssssnssasssssenss 183
FIGURE 79 EXTERNAL MODEL — GENERATION 10.....c.cciiimiiitiinnnoreisunnissssensissesmmesssnsssssessnenssnssossaese 184
FIGURE 80 EXTERNAL MODEL — GENERATION 13.......cioiiereiiiiicieniinnninisennsissssenscasssssnsassasssssssssases 184
FIGURE 81 EXTERNAL MODEL — GENERATION 16.....c..ccevimivirmrriniieniisriseiiessisansenssenssresnsssensssesanans 185
FIGURE 82 EXTERNAL MODEL — GENERATION 19....c.cocvmivriririnriiniinennniennireesinsssossssesessessssassens 185
FIGURE 83 EXTERNAL MODEL — GENERATION 22.......cccoviiiiiirinicininicierisisiisssessesissnssssessoressasessessaes 185
FIGURE 84 EXTERNAL MODEL — GENERATION 25....c.cvciiiviiiiiiiiiniiinnissiinenernsismesimessesesses 186
FIGURE 85 EXTERNAL MODEL — GENERATION 28........ccoveiriiiininsneennssreciesrississestosissssssissssessessesas 186
FIGURE 86 EXTERNAL MODEL — GENERATION 30.......covtviirmmicrmrereninoreneneerermesssossonsessscscnssmmsesensssecnens 186
FIGURE 87 SPECIFICITY OF CLASSIFIER RULE SET 1 ...cccvveeeriienierenisesirassesseesrsesnssesessssnssescnssssonssnans 187
FIGURE 88 ENVIRONMENTAL MODEL — GENERATION 50cceerererierrrcsisrereeserseserecsessesassessessssesnans 188
FIGURE 89 CONDITION SET ANALYSIS ...cviviiiorernititnnsmsssismnsssssrssiinessoresessesessessssesessnsssssessesssseseranans 189
FIGURE 90 THE GHOST ENVIRONMENTAL MODELcoviiuiiiniriairesinnesecteriensonnnassssneenssresassasesenees 189
FIGURE 91 SPECIFICITY OF THE “GHOST MODEL"coiiivnirircmerceniceesicnresesieesesroassenrsessssassssssennns 190
FIGURE 92 GHOST MODEL ANALYSIS OF FINAL CONDITION SETccoiimmninmnirecenrcniceeereneeereinenesennns 191
FIGURE 93 ENVIRONMENTAL MODEL 2 - 12 GENERATIONSoociiinrrieinrentrreenireennesienrannessessessens 191
FIGURE 94 ENVIRONMENTAL MODEL 2 — 25 GENERATIONS.....covtirrmienitiiniiistesieeseiensnereneens 192
FIGURE 95 ENVIRONMENT MODEL 2 - 38 GENERATIONSoovveiinimriieniinnitticteteeestnansssnennane 192
FIGURE 96 ENVIRONMENTAL MODEL 2 - 50 GENERATIONSoormrireiiriicecienisteccsneenienseassensens 193
FIGURE 97 SPECIFICITY OF THE CLASSIFIER RULE SET...cvvininiieinriniiiniirntciisensteccenenctsnnesesnnssens 193
FIGURE 98 ANALYSIS 2 OF FINAL CONDITION SET ..ottt ettt reesnees e aeseen 194
FIGURE 99 ANALYSIS 2 OF FINAL MESSAGE SET ..cviiiiiitntieieiitneni e tnnesstseeesenesnenessseesarnsecsens 194
FIGURE 100 ENVIRONMENTAL MODEL 3.....ccoviiiirnmennereninniisnnrtnsinnennissssecssssnsnesnessernssesassnesssesssese 195
FIGURE 101 ENVIRONMENT MODEL 4......ccciemiieivnennnnnisntsnriiisnseisitessisnesiesssemssssssssssssssessasssans 195
FIGURE 102 SPECIFICITY OF THE CLASSIFIER RULE SET (MODEL 4)........c.ovvverrrierreserecrnrevesensnesesenennees 196
FIGURE 103 ENVIRONMENT MODEL 5...ccoiieriiiiirinntnetiirnnisii et ensesoneessesssessssiesessssseesesssssssssssssns 196
FIGURE 104 SPECIFICITY OF THE CLASSIFIER RULE SET (MODEL 5)..ccvcvvvrivirenecrvenrerieererenseeererssvassennens 197
FIGURE 105 ENVIRONMENT MODEL B...ecuiiiiiiiiinnteniitciiiinitenviseersssineeneecressecstssssessessssossessessassnes 197
FIGURE 106 SPECIFICITY OF THE CLASSIFIER RULE SET (MODEL 6)..........cccvuerecmreneerenssnrersenssnsssreassasees 198
FIGURE 107 INTERNAL CAPABILITY MODEL — GENERATION O.....cuvevenirrrerrecrenereeresesearaseseessesenennees 199
FIGURE 108 INTERNAL CAPABILITY MODEL — GENERATION 10..........cciiririreeeneincneneeicserssmrsssenises 200
FIGURE 109 INTERNAL CAPABILITY MODEL — GENERATION 20.......cocvvveerrrercrnrrsieecressensssessssniaens 200
FIGURE 110 INTERNAL CAPABILITY MODEL — GENERATION 30......cccevnvveeneniernesnessenssemanennisnsesneanes 201
FIGURE 111 INTERNAL CAPABILITY MODEL — GENERATION 40........cccvorercreereercccreesnsssessanssnsssnensessanes 201
FIGURE 112 INTERNAL CAPABILITY MODEL — GENERATION 50.......c.coorurrirremercrerinnnnrsssnsnsesnsneess 202

10

FIGURE 114 INTERNAL CAPABILITY MODEL = GENERATION 70......c.oereeeieirinecreeeecneesneerensesessssasanns 203
FIGURE 115 INTERNAL CAPABILITY MODEL — GENERATION 80........coeviriirereireceeserreesssesseeressenes 203
FIGURE 116 INTERNAL CAPABILITY MODEL — GENERATION 90.........cocvveriniierereeeenreeeseneceneesessneens 204
FIGURE 117 INTERNAL CAPABILITY MODEL ~ GENERATION 100.........cemeiiririrereemcmeeeeemseeseseseesssesses 204
FIGURE 118 CAPABILITY MODEL 2 - ANALYSIS OF FINAL MESSAGE SETevveveeeeeeeeeeenseresssssssressnens 205
FIGURE 119 CAPABILITY MODEL 3 - ANALYSIS OF FINAL MESSAGE SET........cvutvememeecereeneeeeereseereneons 205
FIGURE 120 PROTOTYPE PERFORMANCE ANALYSISecvvrrererisneieinerensesieisesssssssssesssmssssssesnsssesasnns 206
FIGURE 121 PROTOTYPE PERFORMANCE ANALYSIS 2ouvuiiueeieceiieiaensessssssesesenseeseseessesesnsesssssssessans 207
FIGURE 122 PROTOTYPE PERFORMANCE ANALYSIS 3cooovvuverreeaienceneseeeesersasesesesmseeseessessenssenes 207
FIGURE 123 PROTOTYPE PERFORMANCE ANALYSIS 4covuverermaenncosieesesesnnscscsseessesseessessssesessnes 208
FIGURE 124 AVERAGE FITNESS OF EXPERIMENT 3 OVER 33 GENERATIONSvereemeerereeeeemecerenes 209
FIGURE 125 AVERAGE FITNESS OF EXPERIMENT 4 OVER 51 GENERATIONSoeoceereeereeessressssrenne 210
FIGURE 126 AVERAGE FITNESS/BEST CANDIDATE FITNESS OF EXPERIMENT 3cveveneereereeeeenene. 210
FIGURE 127 AVERAGE FITNESS / BEST CANDIDATE FITNESS OF EXPERIMENT 4 «...ovovvvrreenrses s 211
FIGURE 128 VISUALISATION OF THE SCALABILITY EXPERIMENTc..oomeemreeeeoeeeeeeeeeee e sesenen 212
FIGURE 129 SCALABILITY EXPERIMENT INITIAL ENVIRONMENTAL MODEL.....eoveceerreereresvvessreesessens 213
FIGURE 130 SCALABILITY EXPERIMENT — FINAL ENVIRONMENTAL MODELereeeereereeerereeerenne 213
FIGURE 131 SCALABILITY EXPERIMENT SPECIFICITY OF THE RULE SET......ouveremeneneoreeeoneneeerseseseneenone 214
FIGURE 132 SCALABILITY EXPERIMENT 2 — FINAL ENVIRONMENTAL MODELeoemeerneereererereseneeee 215
FIGURE 133 INTERNAL CAPABILITY MODEL ~ GENERATION 80.........cvouevreeeneereneceerenesererssssssesenesene 215
FIGURE 134 SCALABILITY EXPERIMENT 2 PERFORMANCE ANALYSIS........oovoreeneecerereeeeeresenseesoseneee 216
FIGURE 135 SCALABILITY EXPERIMENT 2 SPECIFICITY OF THE RULE SET......oucueeeeeresseeesreneresenenennens 216
FIGURE 136 EXAMPLE OF MODEL COVERAGEcuvuiveiiieraerenserersesienssssnsesssssonsenessssesesassessssssssssnssores 217
FIGURE 137 OUTLINE DESIGN OF RANDOM EXPERIMENTcooovervrimeieanecnseeemasseenenecennseserssesees 248
FIGURE 138 OUTLINE DESIGN OF STATIC MODEL EXPERIMENTcovuivrimeereceecseersesemseeneseessosesesenes 249
FIGURE 139 SELF-MANAGING GOAL BROADCASTERcvueuereereitsiiseescaseeseroseoseesessnsssesessssassssssssens 250
FIGURE 140 SELF MANAGING BOX QUTLINE DESIGNccevverrveieieniesecseneseseeneeeesesesssssessessssessssees 251
FIGURE 141 HYBRID MODEL OUTLINE DESIGNcceorevniuiiereereeeeneresereesssesssesessessssssssssssssessssmsseserss 252
FIGURE 142 THE OUTLINE DESIGN OF THE EMMA PROTOTYPE SYSTEM «..oemorrererreereeseereees s 253
FIGURE 143 CLASSIFIER RULE SET INITIALISATIONovuiueeieeeeeeeeeesseeresesesessesesssssesssesss s s eoes 254
FIGURE 144 REQUESTING GOAL FTIME VALUEvuuveececeennieeeeeeereeesseeeeseessseesessssessesssessessss e 255
FIGURE 145 REQUESTING FTIME READING......ccvvuruuriuirrieernensesesenseeeesesensssssessessesssssssesssssssssee s e 256
FIGURE 146 MATCHING MESSAGE CLASSIFIERS TO ENVIRONMENTAL MESSAGES.........vvvoveeeonn, 257
FIGURE 147 CALCULATE WINNING BID FROM MATCHING CLASSIFIERSvvevereerrerreeresessoesoeone 258
FIGURE 148 CLEAN UP BID LIST AFTER AUCTION......cuuvuuiureereeeceeseeeneeensseseassesssessessesesssessssoseseesenone 259
FIGURE 149 IMPOSE LIFE TAX ON ALL CLASSIFIERS .ouvvuveerenrennrnsersiaeceseeneeseessessessessasssessesessssesesensons 260
FIGURE 150 SENDING THE WINNING CLASSIFIER MESSAGE TO THE VIRTUAL WORLD EFFECTORS.... 261
FIGURE 151 REWARD / PUNISHMENT OF CLASSIFIERccvnmrrnmrenenisirireseseneceneressessesessesssems e, 262
FIGURE 152 MODEL EVALUATION REPORT GENERATIONcovviirirmmrunieresiereniessenesesesesseesessssesssnns 263
FIGURE 153 GENETIC ALGORITHM OUTLINE DESIGNc.ovrierennnitieceieceeereeeeeeeeeseee oo 264
FIGURE 154 GENERATE STATISTICS {USED IN GA PROCESS) ...cucevveuerruireieeniceeereneerereseemssseseeeseee e 265
FIGURE 155 SELECT PARENT CLASSIFIER (FOR BREEDING PURPOSES)ccvveeeeereeeeeeeeeoseseeeees 266
FIGURE 156 GENERATE PARENT CROSSOVER POINT TO BREED TWO CHILD CLASSIFIERS................ 267
FIGURE 157 SELECTING A CLASSIFIER TO BE REPLACEDcovvieuereeterrteneetirereereeeeee oot eeeeeeeee e 268
FIGURE 158 FINDING A CANDIDATE CLASSIFIER FOR POTENTIAL REPLACEMENTooovoeeeeoeoeven, 269
FIGURE 159 COMPARING CLASSIFIERS TO CALCULATE THEIR SIMILARITY .o 270
FIGURE 160 SPECIFICITY QUANTIFIED........c.erurerererrerreeerisrirenreresetenssessaesssssesssssssessnesesnees e sesesesee s 271
FIGURE 161 FIND CLOSEST CLASSIFIER USING SPECIFICITY QUANTIFIER.........ovevveeeereeeeeessseseesseensens 272
FIGURE 162 DEGRADE PROTECTION ON CLASSIFIER SET....ouvuiuitireececeeessseerssesessesessessssessssoee e 273
FIGURE 163 Bi-MUTATION PROCESSccccvurimrerreenerencrmerersinssessssesesessesssssssesssessssssssssssssssssssssssns 274
FIGURE 164 TRI-MUTATION PROCESSccvtrirtinirecerinsanensesiesssecsesceeseeesssersssesessssesssssssssssssessssesssnns 275

11

“Every Good Regulator Of A System Must Be A Model Of That

System”
(Conant & Ashby, 1970)

12

Chapter 1: Introduction

The growing complexity of software systems and their interaction with their external
environment continues to increase and requires software to adapt to its operating
environment in order to operate robustly and dependably. This adaptation is currently

largely achieved by human interaction such as traditional software maintenance.

A potential solution to this problem is to design systems that can reduce this
requirement for human interaction and perform some of the re-configuration
functions currently left to software development and maintenance teams. The
requirement for self-adaptive software is made more urgent by the fact that software
development is becoming more complex and unpredictable. External pressures such
as increasing competition and the requirement for 24/7 system availability has meant
that traditional software development techniques are likely to find it difficult to

satisfy the requirement for quality software.

Autonomic computing seeks to design, amongst other characteristics,
environmentally aware software systems, which is the main research topic of this
thesis, but some of the challenges remain largely unmet. This chapter is organised as
follows. Firstly, the topic of the thesis is presented with its aims. Secondly, the novel
contribution of the new approach posited within the thesis is presented. Thirdly, an
overview of the chapters of the thesis is presented. Finally, the chapter is

summarised.

1.1 Motivation

As software systems grow in complexity, it becomes unfeasible for humans to
monitor, manage, and maintain every detail of their operations (Dixon, Pham, &
Khosla, 2001).

The software engineering industry already is currently suffering from a burgeoning
software maintenance backlog due to increasingly frequent requirements change in

the “real world”. Lehman had identified this issue with his “Laws of Software

13

Evolution” and subsequent classification of e-type systems which are embedded in
the real world and thus become part of it, thereby changing it (Lehman & Weir,
1980). A key requirement was that

“it must continually evolve to satisfy the conditions, needs and operation
requirements of a changing environment at each moment in time”
(Lehman, 1998)

Further work performed by Lehman e al. suggested that virtually all systems require
continuous change, increased in complexity and experienced continuing growth
(Lehman, Ramil, Wernick, Perry, & Turski, 1997). It has been suggested that the
likely result of this problem will be that software development teams will
increasingly become maintenance teams therefore reducing their capacity to develop

new applications.

Laddaga (Laddaga, 1999) has identified further reasons why application complexity
is increasing:-
e Simple growth in problem size, as a result of success at previous problem
sizes and increased hardware capacity
e The fact that many applications are now more closely tethered to the real
world, actively utilising sensors and actuators, or being required to respond in
real time.
e The enmeshed nature of today’s applications — such as enterprise
requirements to link all the elements of business process where it is useful to

do so.

These new computational environments pose many challenges including the

“coherent coordination of vast numbers of elements, where the individual will have
limited resources and reliability and the interconnects between elements will be
irregular, local and possibly time-varying. In addition the physical embodiment of
these elements is strongly intertwined with the individual behaviour of the elements
and the global goal”

(Nagpal, 2004).

14

Arguably, it is easier to make a program that recovers from errors than it is to make a
program that goes to great lengths to avoid making any errors. The complexity of the
real world means that using traditional software development techniques results in
increasingly unwieldy, brittle software if the current method of trying to rigorously

define requirements from the outset is followed.

“The goal of self adaptive software is the creation of technology to enable programs
to understand, monitor and modify themselves”
(Laddaga, 1999).

Bose (Bose & Matthews, 2000) identified four main requirements that a self-adaptive
software system must meet:

¢ Detecting a change in context or a change in needs

¢ Knowing the space of adaptations

o Reasoning for adaptation decision

o Integrating the change

According to Laddaga (Laddaga & Robinson, 2000) therefore self-adaptive software
understands

e What it does?
o How it does it?
e How to evaluate its own performance?

e How to respond to changing conditions?

Hence, self-adaptive software must contain a set of performance goals, which will
ultimately drive the program to constantly evaluate and improve itself to satisfy the
goals. It must therefore be able to evaluate it own performance, which in turn
requires the system to hold a model of its own composition. The software must take
data from its operating environment, sensors, internal libraries etc and use this
information in a structured way. Should a self-adaptive program merely monitor its

performance and respond to tolerance levels or should it proactively seek to improve

15

performance continuously? There is an overhead associated with constant evaluation,

which may make over-evaluation wasteful of valuable resources.

This evaluation may well lead the software to utilise alternative algorithms in order
to improve performance. A library of alternatives will be available for the software to
choose from in order to successfully adapt, although this in itself limits the self-
adaptation of the system to those, presumably human produced alternatives. The
complexity lies in making sense of the various data to narrow down the choice of
alternatives that the program has to try. This is likely to involve the software being
able to use diagnosis, decision theory and deliberation in order to make the best

choice or at least reduce the potential choices to only the most promising.

This is now entering the field of Al as we seek to give the software an increasing
ability to learn and reason. This factor is a key component in enabling stable

software, which needs to respond to the need for change within acceptable tolerance

levels.

Al researchers have previously considered many pertinent questions such as:-

e What adaptations are possible for systems that learn from experience?

e How can systems change in response to new information?

e What kind of training should a learning program receive?

(Dean, Allen, & Alimonon, 1995)
The software would have to respond to changing conditions in order to maintain its
robustness in unknown situations and continue to function effectively. Meng (Meng,
2000) suggests that in order to maintain robustness self-adaptive software should
ideally consist of both feed-forward and feedback control models. He suggests that
the feed-forward (deliberative) component prescribes the predicted behaviour of the
system that guarantees consistency over a longer period while the feedback (reactive)

component adapts to local changes in its environment.
It has been identified that there are different levels of software adaptation that range

from relatively simple to complex. The First International Workshop on Self-

Adaptive software identified the high-level components required for self-adaptation

16

to take place. These included, amongst others, an environmental model, learning,

self-monitoring and a library of alternatives (Laddaga, Robinson, & Shrobe, 1999).

Robustness of self-adaptive software is a key requirement, which is difficult to
achieve when the software may be employed in complex or not well understood
environments. The measurement of robustness will be how well the software

operates in these very environments.

The challenge is to write software that is initially less complex than the environment
in which it is operating yet has the capacity to learn from and evolve to become at
least notionally equal to the complexity of the environment. The software will be
required to have the ability to evaluate its situation and use the resources available to

overcome any problems.

Some of the components required to achieve this are likely to include monitoring,
diagnosis, evaluation, testing and repair. Laddaga has identified evaluation as the
hardest and most important problem for self-adaptive software (Laddaga &
Robinson, 2000). It may be that software has to operate robustly with an analytic

problem without any historical environmental models available.

Laddaga suggests that is there is still much work to be done is terms of:-
e What classes of application require what forms of evaluation?
¢ Which tools will provide better evaluation capability?
¢ To what extent such tools will need to be specific to particular application

domains

A further challenge is to develop an architecture, which will simplify the design of
self-adaptive system software. Robinson (Robinson, 2000) suggests that by keeping
the program code separate from the diagnosis and synthesis code the core code can
remain simple and the synthesis code can be performed by a purpose built synthesis
engine. He suggests that such an architecture makes writing the code “much less of a
tangled web”. However, at the moment the specifications for adaptive software

architecture models are not forthcoming. It is vital that an effective reference

17

framework model is produced to enable this software to begin to be more effectively

produced.

Kephart acknowledged that “virtually every aspect of autonomic computing offers
significant engineering challenges” including monitoring and problem determination
which will provide the basis for adaptation, self-optimisation and re-configuration
(Kephart & Chess, 2003).

1.2 Thesis aims

The overall aim of the thesis is to study requirements for a machine learning
mechanism specifically in relation to a systems relationship with its environment. In
terms of environment a system can be viewed as either an “open” or “closed system”.
In an open system all interactions with the environment are considered whereas in a

closed system no interactions with an environment are considered.

The difficulty of producing an effective closed system is that it is often increasingly
difficult to specify the requirements for such a system unless it is an extremely well
defined problem. An effective open system presents a different set of challenges in
that the environment of such a system could effectively include everything that is not
part of the system. Specifying the environment of such an open system and the effect
of environmental change could therefore present a significant challenge when
considering modelling such a system.

The behaviour of systems is not determined exclusively by the internal properties of
the system but also by external factors occurring in the “real world”. Furthermore,
the behaviour of the system may also influence the external environment of the
system. This is increasingly the case when systems are tethered to “real world”
applications where there is considerable complexity in the environment. Previously,
programme designers attempted to predict every circumstance that the program
would encounter and provide a means for the program to respond to that. The
difficulty is that is it virtually impossible to accurately predict every possible

circumstance that may occur and hence the need for software maintenance.

18

There is debate over whether a model-based approach is required in to allow systems
to react to the environment. For a system to survive and fully exploit opportunities in
such an environment it seems reasonable to suggest that the system needs to hold a
“view” or “model” of the environment. Laddaga and Robinson (Laddaga &

Robinson, 2000), state that self adaptive systems will use this model to:-

o diagnose program failures and performance problems
e provide contextual basis for sub-goal and reconfiguration

e provide a basis for choosing new strategies for the computation

Whilst, without this model it may be possible to respond to environmental change,
the basis for this change would seem to be less convincing. It may well be that a
hybrid approach is taken where certain elements of the environment need to be
modelled whereas others do not. In Lehmann’s e-type systems, for example, the size
and complexity of the real-world situation makes it impossible to model these

systems completely.

This also raises the question of “model completeness”. A complete model of the
environment is only really achievable in a closed context. An open system suggests
that “completeness” cannot be achieved and therefore any model must be adaptive.
The difficulty in obtaining a complete model of the environment means that we must
consider the level of model completeness required to allow our systems enough

environmental information on which to choose their strategies.

The modelling of this “real world” environment is a tremendous research challenge
but is vital to the development of adaptive software. Desirable properties of adaptive
software related to the environment would be the ability to:-

¢ React to threats / opportunities presented by environmental change.

e Ideally, anticipating environmental trends to allow pre-adaptation to take

place.

e Allow historical modelling in terms of “learning” how the actions of our

system influence the environment.

19

The ability to react to threats/opportunities is the first step to allowing adaptive
software to survive in potentially hostile environments, but would only allow for a
“quick and dirty” adaptation to take place with systems constantly adapting in real
time to changes in the environment. Perhaps this is enough for many systems that
require timely “good” solutions to environmental instability rather than searching for
the “perfect” solution. Future enhancements would allow systems to perform
adaptation in a more controlled and planned way with increasingly optimum

solutions selected, which prediction and learning will facilitate.

Therefore, this work aims to study the generic requirements for a machine learning
mechanism to support runtime monitoring of a given adaptive software system’s

environment.

The specific objectives of this thesis include:

e To test the applicability of cybernetic thinking, and specifically the VSM
(Viable System Model), to the development of autonomic computing
systems.

e To test the applicability of Learning Classifier Systems and Genetic
Algorithms, in providing the learning required to develop an environmental
model.

e To evaluate an environmental modelling prototype by designing a set of
comparative experiments used in a controllable system and environment and
test the issues relating to the management of dynamically changing
environmental sensitivity.

e To present the design of a prototype control system (EMMA) Environmental
Modelling, Monitoring and Adaptive system that manages the major
environmental modelling and control functions required by software systems.

e To evaluate and generalise the results with a view to understanding how
runtime generated environmental models can be used as a service to support

self-adaptive software systems design.

20

1.3 Novel contribution of the thesis
The novel contributions of this thesis include:-

The use of learning approaches to provide for the development of a “current”
external model of the environment.

For a system to survive in a changing, and potentially changing environment, it
seems reasonable to suggest that the system to hold a “view” or “model” of the
environment. However, to provide a “complete” model of the environment is
becoming increasingly difficult at the design stage due to increasing environmental
complexity. Whilst, without this model it may be possible to respond to
environmental change, the basis for this change would seem to be less convincing.
The use of online-learning may provide a potential solution in providing an

evolutionary view of the environment in which the system is operating.

Colombetti et al. states that
“an optimal coupling of an agent with its environment is only possible if the
dynamical structure of the environment is somehow mirrored by the structure of the
agent’s representation of its own behaviour policy”
(Colombetti & Dorigo, 2000).

Learning has been used to provide a model of the environment and allows the system
to update this model over time to maintain model currency. By maintaining “model
currency”, the system can use this model as a basis for future adaptive choices. The
concept of an Environmental Modelling, Monitoring and Adaptive system (EMMA)
to manage the various elements required to achieve effective environmental

monitoring provides a novel contribution of the thesis.

Applies cybernetic thinking to the research problem of developing adaptive
environmental models.

Cybernetic thinking (and particularly managerial cybernetics) is used as a
fundamental underpinning to the development of an approach to generate and

autonomically maintain not only a current model of the environment but also an

21

internal model of system capability. This thesis seeks to emphasise the applicability
of a cybemetic approach to systems development and specifically in providing the
fundamental building blocks required in developing environmentally aware systems
able to monitor their external environment, but also provide appropriate responses to

environmental conditions.

Provides experimental data regarding the use of Learning Classifier Systems
(LCS) in a novel application area.

The thesis seeks to produce experimental data and evaluate the suitability of LCS as
an approach in an online environmental simulator. This online learning aspect is of
considerable interest in terms of assessing the suitability of the LCS approach in new

and novel environments.
This view is endorsed by Bacardit et al.

“of common interest are issues such as applying learners beyond the traditional
classification problems and extracting information from real-world datasets”

(Bacardit, Mansilla, & Butz, 2008).
Bull also suggests that

“future work must apply LCS to a wide range of problems and identify
characteristics which make the task suitable to solution with Learning Classifier
Systems”

(Bull, 2004)
Therefore this research will add to the body of knowledge in terms of the application
and suitability of LCS in this particular application domain but perhaps more

generally in online applications.

Provides novel design aspects in the development of Learning Classifier
Systems. Within the development of the prototype LCS there have been specific
novel implementation aspects developed as a consequence of the requirements of the

development of the EMMA system.

22

Demonstrates the potential applicability of virtual world experimental
platforms for research purposes.

The development of the prototype system has allowed increasingly complex and
turbulent environments to be controlled and generated to identify problems posed by
increasingly challenging environmental conditions for online systems. The
simulation has provided many of the building blocks required such as detectors,
effectors, communication channels etc. This thesis demonstrates the usefulness and

potential applicability of these platforms for future research projects and challenges.

1.4 Outline of the rest of the thesis
The remainder as the thesis is organised as follows:-

In Chapter Two, “The Grand Challenge, Autonomic Computing & Self-Adaptive
Software Systems”, IBM’s “Grand Vision” of autonomic computing, is outlined and
the major elements discussed within this chapter. A “biological approach” to
designing systems is analysed and seeks to discover what lessons can be learned
from successful systems in nature such as the human autonomic nervous systems, ant
colonies and the Darwinian approach of natural selection. These lessons can
potentially be applied when seeking to producing robust adaptive systems which can
effectively survive and indeed flourish in changeable and unknown environments
that would previously have “broken” systems designed using traditional software

development techniques.

In Chapter Three, “A Cybernetic View of the Environment and its Models”, we
discuss cybernetic theory and its relationship with autonomic systems and the
environment. We concentrate on the potential use of cybernetic theory as a roadmap
to designing software that can adapt and respond to its environment. Beer’s Viable
System Model (VSM) is discussed, with a specific focus on System 4 of this model
which is specifically concerned with the requirement to hold a model of both the
external environment of the system and an internal model of system capability. This

chapter also seeks to set out a conceptual definition of the environment.

23

In Chapter Four, “An Approach to Provide an Adaptive Model of the
Environment”, a potential solution to the problem of providing current models of the
environment which can evolve and adapt during run-time is presented. Learning
Classifier Systems / Genetic Algorithms are discussed and presented as a possible
approach to constitute the learning component of our Environmental Monitoring
Modelling Adaptive system (EMMA).

In Chapter Five, “Design & Evaluation of Initial Experimental Approaches to
Controlling and Modelling the Environment“, we present and evaluate an initial set
of experiments designed specifically to analyse the main issues involved with
controlling an environment in a virtual world simulation experimental platform. A
variety of experiments are presented including a static model control system and a
“hybrid” learning approach. The results of these initial experiments are presented and
form a baseline performance metric for the prototype systems results analysed later

in the thesis.

In Chapter Six, "EMMA Testbed Design to Provide a Model of the External
Environment and Internal Capability”, a detailed discussion of the proposed
Environmental Modelling, Monitoring and Adaptive system (EMMA) is presented.
This system outlines the motivation for the major design decisions taken during this

development.

In Chapter Seven, “Adaptive Environmental Modelling Prototype System Results”,
the results from a sample of experimental results obtained by the EMMA prototype
system are presented. We analyse and evaluate the prototype in terms of its ability to
develop and evolve a current model of the external environment, a model of the
internal capability of the system and also its ability to maintain performance levels,
with respect to a system goal. The issue of scalability of the prototype system is
discussed and experimental results demonstrating the issues and results of the

scalability experiments are presented and analysed.
In Chapter Eight, “Results and Evaluation”, an evaluation of the overall project

work and the experimental work of the Environmental Modelling, Monitoring and

Adaptive system (EMMA) prototype development is presented. The evaluation

24

discusses an overall evaluation of the project with respect to the original aims
outlined in Chapter 1. It also evaluates the experimental data in terms of the
difficulties presented by the use of LCS in producing environmental models. The
chapter concludes that this approach could be applied to other software systems, and
therefore more widespread applicability, although there are a number of challenges

remaining.

In Chapter Nine, “Conclusions and Future Research”, a summary of the thesis, the
contributions of the work as presented and the opportunities for further research in
this area are presented. We conclude that whilst the work has concentrated on one
particular aspect of the J-Reference model (System 4) as its environmental focus was
of most interest to the project undertaken. The result of the research undertaken may
allow further development to be undertaken to incorporate other aspects of the
Viable System Model in order to attain the full benefit of a cybernetic approach to

developing adaptive software to be realised.

25

“Controlling Complexity is the Essence of Computer

Programming”
(Kemighan & Plauger, 1976)

26

Chapter 2: “The Grand Challenge”, Autonomic Computing
& Self-Adaptive Software Systems

2.1 “The Grand Challenge”

Paul Horn (IBM, 2001) presented both a vision and a “Grand Challenge” to the
computing industry during a conference held in October 2001. This vision was to
solve the growing problems related to software complexity that was, it was
suggested, the single most important challenge facing the IT industry. This was to be
addressed by devolving some responsibility for software maintenance to the software
itself. The analogy of human autonomic systems was adopted as a guiding principle,

allowing computer systems to be built:

“that regulate themselves much in the same way our autonomic nervous system
regulates and protects our bodies”

(Horn, 2001).

According to Kephart, a phrase with biological connotations was deliberately chosen,

in that the

“autonomic nervous system governs our heart rate, body temperature etc., thus
freeing our conscious brain from the burden of dealing with these and many other
low level, yet vital, functions”

(Kephart & Chess, 2003).

This self management of systems is seen as of paramount importance because human
based management is often seen as the “largest factor in the Total Cost of Ownership
(TCO) of such systems” (Zhang, Lin, Lian, & Jin, 2004). As systems increase in
complexity and must increasingly respond to external events in real-time, the
difficulty of “tuning” to achieve desired quality of service requirements is likely to
become increasingly challenging using manual methods (Kandasamy, Abdelwahed,
& Hayes, 2004). It was recognised that a solution to this “challenge” would require a

long term effort by researchers in a diverse range of fields.

27

Traditional approaches to adaptation were seen as “unlikely to provide the required

sophistication of behaviour” and that any approach must offer the ability to

“abstract and isolate high level goals from low level actions, to integrate and act on

imperfect and conflicting information, and to learn from past actions to improve

Sfuture performance”

(Clark, Partridge, Ramming, & Wroclawski, 2003).

IBM identified a range of benefits to be realised by the use of autonomic computing

principles. These ranged from “short term benefits” such as a simplified user

experience through a more responsive, real time system and increased stability and

availability of systems, through to ‘“long term, higher order benefits” such as

constructing autonomic federated systems and collaborative systems.

IBM went on to suggest a wish-list of eight characteristics of autonomic computing

which consisted of the following:-

An autonomic computing system needs to "know itself” - Since a "system"
can exist at many levels, an autonomic system will need detailed knowledge
of its components, current status, ultimate capacity and all connections to
other systems, to govern itself. It will need to know the extent of its "owned"
resources, those it can borrow or lend, and those that can be shared or should
be isolated.

An autonomic computing system must configure and reconfigure itself under
varying and, in the future, even unpredictable conditions. System
configuration or "setup" must occur automatically, as well as dynamic
adjustments to that configuration to best handle changing environments.

An autonomic computing system never settles for the status quo - it always
looks for ways to optimize its workings. It will monitor its constituent parts
and fine-tune workflow to achieve predetermined system goals.

An autonomic computing system must perform something akin to healing - it
must be able to recover from routine and extraordinary events that might

cause some of its parts to malfunction. It must be able to discover problems

28

or potential problems, then find an alternate way of using resources or
reconfiguring the system to keep functioning smoothly.

e A virtual world is no less dangerous than the physical one, so an autonomic
computing system must be an expert in self-protection. It must detect,
identify and protect itself against various types of attacks to maintain overall
system security and integrity.

e An autonomic computing system must know its environment and the context
surrounding its activity, and act accordingly. It will find and generate rules
for how best to interact with neighbouring systems. It will tap available
resources, even negotiate the use by other systems of its underutilized
elements, changing both itself and its environment in the process - in a word,
adapting.

¢ An autonomic computing system cannot exist in a hermetic environment.
While independent in its ability to manage itself, it must function in a
heterogeneous world and implement open standards - in other words, an
autonomic computing system cannot, by definition, be a proprietary solution.

e An autonomic computing system will anticipate the optimized resources
needed while keeping its complexity hidden. It must marshal IT resources to
shrink the gap between the business or personal goals of the user, and the IT
implementation necessary to achieve those goals -- without involving the user
in that implementation.

(IBM, 2008)

The essence of autonomic computing is self management as captured by Kephart,

who suggested that:

“the intent is to free systems administrators from the details of systems operation and
maintenance and to provide users with a machine that runs at peak performance
24/7”

(Kephart & Chess, 2003)

Kephart further suggested that self management consisted of four main aspects which

were self-configuration, self-optimisation, self-healing and self-protection and that

29

over time “humans will need to make relatively less frequent, predominantly higher-
level decisions, which the system will carry out automatically via more numerous,
lower-level decisions and actions™ (Kephart & Chess, 2003). To achieve the effective
self management suggested previously it seems likely to require runtime adaptation.

Runtime adaptation can be explained as

“any automated set of actions aimed at modifying the structure, behaviour and/or
performance of a target software system while it continues operating”
(Valetto, Kaiser, & Phung, 2005).

IBM’s “Grand Vision” for autonomic computing also outlined a number of
challenges including:-
e The computing paradigm will change from one based on computational
power to one driven by data.
e The way we measure computing performance will change from processor
speed to the immediacy of the response.
e Improving network-monitoring functions to protect security, detect potential
threats and achieve a level of decision-making that allows for the redirection
of key activities or data.

e Smarter microprocessors that can detect errors and anticipate failures.

Adaptive software techniques may have a contribution to make in some or all of

these “challenging” areas.

IBM suggested a roadmap for the design of autonomic systems in their
“Architectural Blueprint for Autonomic Computing” series of articles (IBM, 2006).
The main purpose of the blueprint documents was to define concepts and constructs
for building self-managing abilities into system software. It sought to define the
architectural building blocks of these abilities and provide a model for their adoption.
The next section of the report will seek to provide an “overview” of the blueprint

document.

30

DIAGRAM
ON THIS PAGE
EXCLUDED
UNDER
INSTRUCTION
FROM THE
UNIVERSITY

Figure 1 provides an example of an autonomic computing reference architecture with

a number of building blocks including
¢ Knowledge sources
o Level | Managed Resources
e Level 2 Manageability Endpoints (called touchpoints in previous blueprint
documentation)
e Levels 3 & 4 Autonomic Managers

¢ Level 5 Manual Managers

Figure 1 IBM’s Autonomic Computing Reference Model

(IBM, 2006)

The lowest layer of this architecture consists of the managed resources, which could
be a hardware or software component, but must be able to be managed and by this
we mean sensed and effected. Level 2 seeks to incorporate a consistent standard
manageability interface to implement sensor and effector behaviour for the managed

resource.

The goal of Levels 3 and 4 is to automate some portion of the process using the

autonomic manager building blocks. The IBM vision of the autonomic manager is to

31

DIAGRAM
ON THIS PAGE
EXCLUDED
UNDER
INSTRUCTION
FROM THE
UNIVERSITY

provide four broad categories of self-management, namely self-configuration, self-
healing, self-optimising and self-protecting functionality. The main function of the
autonomic manager is to implement an intelligent control loop and to achieve this

there must be four distinct functions within this component, as in Figure 2 below.

Figure 2 IBM Four Part Control Loop

(IBM, 2006)

IBM (IBM, 2006) defines this four part control loop as consisting of the following:

o The monitor function provides the mechanisms that collect, aggregate, filter
and report details (such as metrics and topologies) collected from a managed
resource.

e The analyze function provides the mechanisms that correlate and model
complex situations (for example, time-series forecasting and queuing
models). These mechanisms allow the autonomic manager to learn about the
IT environment and help predict future situations.

e The plan function provides the mechanisms that construct the actions needed
to achieve goals and objectives. The planning mechanism uses policy
information to guide its work.

o The execute function provides the mechanisms that control the execution of a

plan with considerations for dynamic updates.

32

Knowledge sources will provide the autonomic manager with a variety of
information such as symptoms, policies, requests for change and change plans. There
will be data created by the autonomic managers that will also be stored for future use
including historical logs, metrics and experimentation results. This will allow learned
knowledge to be collected, allowing more appropriate and effective planned
responses in future. An autonomic manager should be able to load knowledge from a

variety of sources to perform additional tasks as appropriate.

IBM also define a Level Four orchestrating autonomic manager that “orchestrate”
other autonomic managers therefore offering control loops that have the “broadest

view of the overall IT infrastructure’.

IBM recognised that IT professionals may only be willing to delegate portions of the
control loop to the autonomic manager. Therefore, they recognise that there is likely
to remain a human managerial role that enables an IT professional to perform some
management functions manually. Placing this building block at the top of the
pyramid recognises that while human intervention is likely, it will probably differ
depending on the organisation, type of systems being automated etc. It may well be
that the human interaction may be goal specification for the system to autonomically
develop plans to satisfy these higher levels goals or perhaps the autonomic system
will be tasked with monitoring and suggesting plans but it will be the human element

that decides which plan to execute.

IBM’s blueprint document recognised that incorporating self-managing capabilities
into an IT organisation is an “evolutionary process” (IBM, 2006) and have developed
a maturity model called the “autonomic computing adaptation model” to help
businesses recognise where they are and what they need to do to increase autonomic

potential. The model is shown below in Figure 3.

33

DIAGRAM
ON THIS PAGE
EXCLUDED
UNDER
INSTRUCTION
FROM THE
UNIVERSITY

provide four broad categories of self-management, namely self-configuration, self-
healing, self-optimising and self-protecting functionality. The main function of the
autonomic manager is to implement an intelligent control loop and to achieve this

there must be four distinct functions within this component, as in Figure 2 below.

Figure 2 IBM Four Part Control Loop

(IBM, 2006)

IBM (IBM, 2006) defines this four part control loop as consisting of the following:

e The monitor function provides the mechanisms that collect, aggregate, filter
and report details (such as metrics and topologies) collected from a managed
resource.

e The analyze function provides the mechanisms that correlate and model
complex situations (for example, time-series forecasting and queuing
models). These mechanisms allow the autonomic manager to learn about the
IT environment and help predict future situations.

¢ The plan function provides the mechanisms that construct the actions needed
to achieve goals and objectives. The planning mechanism uses policy
information to guide its work.

o The execute function provides the mechanisms that control the execution of a

plan with considerations for dynamic updates.

32

At the closed loop level, the IT environment can automatically take actions
based on the available information and the knowledge about what is
happening in the environment

At the closed loop with business processes level, business policies and
objectives govern the IT infrastructure operation. Users interact with the
autonomic technology tools to monitor business processes, later the
objectives or both (IBM, 2008).

The control scope dimension (y axis) is defined by IBM as

At the subcomponent level, portions of resources are managed, such as an
operating system on a server or certain applications within an application
server.

At the single instance level, an entire standalone resource is managed, such as
a server or complete application server environment.

At the multiple instances of the same type level, homogeneous resources are
managed, typically as a collection, such as a server pool or cluster of
application servers

At the multiple instances of different types level, heterogeneous resources are
managed as a subsystem, such as a collection of servers, storage units and
routers or a collection of applications servers, databases and queues.

At the business system level, a complete set of hardware and software
resources that perform business processes is managed from the business
process perspective, such as a customer relationship management system or

an IT change management system (IBM, 2006).

Therefore IBM suggest that autonomic maturity can evolve in three dimensions

Automating more functions as the maturity level increases
Applying automated functions to broader resource scopes

Automating a range of tasks and activities in various IT management
processes (IBM, 2006).

35

2.2 Approaches to Developing Self-Adaptive Software Systems

Throughout the first decade of the 21% century there has been significant research
effort and contributions to the many challenges presented by the development of self-

adaptive and autonomic software systems.

Khalid e al. suggests that current projects mostly focus on one of two design
approaches, Externalisation and Internalisation.
¢ In the externalisation approach, modules enabling self-management lie
outside the managed system
¢ In the internalisation approach, application specific self-management is done
inside the managed system.
They state that the externalisation approach is more effective, and more common,
because it
“localises problem detection and resolution in separate modules. It provides a more
generic solution that can be used to enable autonomic behaviour in existing systems”

(Khalid, Haye, Khan, & Shamail, 2009)

A middleware based approach to the problem have been presented by, amongst
others, Ginis (Ginis & Strom, 2004) with their SMILE (Smart Middleware Light
Ends) prototype in which they sought to develop methods of automated system
management, continuous self optimisation and efficient incremental computation
techniques. Chen presented a solution for processing data streams that required the
middleware to evaluate the load at any given stage, and then decide how the value
should be adjusted (Chen & Agrawal, 2004).

Kumar ef al. presented their IFLOW autonomic middleware for implementing self-
management when building large scale distributed systems. This approach sought to
represent information flows using an information flow graph. They suggested that
“the advantage of reducing each of these models to a common abstraction is that one
can embed autonomic features into the middleware implementing this abstraction”

(Kumar, et al., 2006)

36

The Java Messaging Service (JMS) was used by Taton et al. to provide load
balancing in a clustered queue application (Taton, De Palma, Philippe, & Bouchenak,
2007). In 2008, Zhu recognised that a middleware must be able to provide a “timely
response” to important events and based their middleware on the existing Grid
infrastructure and Service Oriented Archicture (SOA) concepts to provide this

“timely response” (Zhu & Agrawal, 2008).

Kesaniemia ef al. stated that an issue with existing middleware platforms for multi-
agent systems was that they do not provide general support for observation, where
observation is considered to be an important mechanism needed for realising
effective and efficient co-ordination of agents. They proposed a framework called
Agent Observable Environment (AOE) sought to “integrate information from various
sources into one shared, observable state of the world” (Kesaniemi, Katasonov, &

Terziyan, 2009).

Evolution and emergent behaviour has been applied to the development of robust,
scalable systems with self-healing properties by Anthony (Anthony R. J., 2004),
Goldsby et al. (Goldsby, Cheng, McKinley, Knoester, & Ofria, 2008), Beckmann et
al. (Beckmann, Grabowski, McKinley, & Ofria, 2008) and Bisadi (Bisadi & Sharifi,
2009).

Anthony suggested that emergent systems tended to achieve

o Scalability through low-complexity communication strategies and total
decentralisation

¢ Robustness through the use of low-value messages and anonymous nodes

e Low-latency through one-way communications and autonomous decisions
based solely on nodes’ local views

o Stability through randomness and feedback

e Efficiency through using small numbers of short messages and limited use of

state information, thus having low processing overhead and storage

requirement.

(Anthony R. J., 2004)

37

Goldsby et al. used a digital evolution approach to control an intelligent robot (T-
ROT) which provided care and support for the elderly. They recognised that
concerns remained such as how the approach will scale when used with larger
applications and also that performance was dependent upon the complexity of the
task (Goldsby, Cheng, McKinley, Knoester, & Ofria, 2008). Beckmann et al. used
“digital organisms”, seeking inspiration from Darwinism, in conjunction with the
AVIDA digital evolution system to provide an iRobot with evolving behaviours.
(Beckmann, Grabowski, McKinley, & Ofria, 2008).
Bisadi proposed a self-healing mechanism based on cellular adaptation that considers
components as “black boxes” whose code need not be manipulated. They suggested
that this approach was beneficial in that it provided the opportunity

“to use commercial components whose codes are not accessible, as well as

increasing the robustness of the system and easing the maintenance of the system”
(Bisadi & Sharifi, 2009)

Reinforcement Learning has been applied in a number of “autonomic” prototype
system developments. Littman et al. used a learning algorithm for the purpose of
autonomic network repair. They stated that by implementing the prototype on a live
network had “helped illustrate the robustness of the basic idea”, and also indicated
that they should “revisit some of the underlying assumptions” used in the model
(Littman, Ravi, Fenson, & Howard, 2004).

In 2004, Chang et al. also used reinforcement learning to provide mobile ad-hoc
networks with improved packet routing decision, and node mobility, therefore
improving the connectivity of the network. They adapted the Q-Learning algorithm
to provide an adaptive packet routing algorithm. They found that results were
inconclusive and that one problem was that
“the learning agent can not distinguish between states where high network
performance is due to its own good actions, versus states where the high network
performance is due only to actions taken by other agents in the network”
(Chang, Ho, & Kaelbling, 2004)

One of the challenges provided by online reinforcement learning is potentially poor

performance whilst learning is taking place. Tesauro et al. proposed that a potential

38

solution to this issue is a hybrid reinforcement learning approach that they applied in
Data Centres. This consisted of “a model-based policy to immediately achieve a high
(or at least decent) level of performance as soon as it was implemented within a
system”. They stated that by running such a policy to obtain training data for
reinforcement learning, they maintained acceptable performance in the system at all
times. If significant re-training was required they fell back on the model based policy
to deliver an acceptable performance level whilst retraining took place. (Tesauro,

Jong, Das, & Bennani, 2006)

Seshia used online learning as a basis for self-repair using a simple network monitor
to repair faults. Seshia stressed that the proposed online learning strategy (termed
CE3), is not limited to network repairs but could, for example, be used in auto-tuners

to improve the performance of a system as it runs (Seshia, 2007).

The use of reinforcement learning to provide adaptive policy driven autonomic
management has been an area of interest to researchers. Bahati suggests that a key
question is whether “a model learned from the use of one set of policies could be
applied to another set of similar policies, or whether a new model must be learned
from scratch as a result of changes to an active set of policies”. Bahati illustrated
how a reinforcement learning model might be adapted to accommodate such changes
(Bahati & Bauer, 2009).

Researchers have been seeking to provide an underpinning architectural framework
for the development of autonomic systems. Some interesting approaches include the
use of utility functions (Walsh, Tesauro, Kephart, & Das, 2004), architectural design
patterns (White, Hanson, Whalley, Chess, & Kephart, 2004) and dynamic decision
points (Anthony, Pelc, Ward, Hawthorne, & Pulnah, 2008).

Increasingly we are seeing “real-world” applications of autonomic systems in
increasingly complex situations. Chess ef al. documented their work with the Unity

System which involved resource allocation between application environments
(Chess, Segal, Whalley, & White, 2004).

39

In 2007, Kephart et al. demonstrated that it was possible to get two autonomic
managers (one managing performance and one managing power) to work together in

order to achieve specified power-performance tradeoffs (Kephart, et al., 2007).

Xu et al. used fuzzy logic as an approach to data centre resource management. They
used fizzy models to “learn the relationship between the workload and resource
needs of virtual containers and to guide resource allocation based on online

measurements” (Xu, Zhao, Fortes, Carpenter, & Yousif, 2007).

Other recent adaptive applications include Peer to peer (P2P) information sharing
(Yeung, Yang, & Ndzi, 2009), Ambient assisted living (AAL) (Segarra & Andre,

2009) and adaptive network services (Strassner, et al., 2008).

The requirement of autonomic systems to be able to manage legacy systems has been
recognised as an issue which requires architectural development to manage the
complexities of such systems. In 2006, Griffith’s Kheiron framework attempted to
solve this issue by providing an approach to “retrofitting new functionality onto these
systems” for legacy systems written in languages such as C/C++ (Griffith & Kaiser,
2006). Calinescu proposed a model-driven framework which sought to develop

autonomic systems out of non-autonomic components (Calinescu, 2007).

Whilst there have been many impressive advancements in autonomic and adaptive
software development, they have tended to be applicable to specific problem
domains. There is still a lack of large-scale applications and a generalised framework

to provide a roadmap for realising the full vision of autonomic computing,

40

2.3 “The Biological Response”

It is interesting to observe the re-emergence of biological concepts in the light of
advances in autonomic and distributed computing. Babaoglu ef al. suggests that the
reason for this is that
“most of the biological structures have a number of “nice properties”, which include
robustness to failure of individual components, adaptation to changing conditions,
and the lack of reliance on explicit central co-ordination”

(Babaoglu, et al., 2006).

Beer et al. (Beer, Chiel, & Sterling, 1990) states that,
“all animal behavior is adaptive in that as an animal confronts its environment, its
behavior is continuously adjusted to meet the ever-changing internal and external

conditions of the interaction”

and that this behavior is goal-oriented, adaptive and robust. This behavior would
seem to have the attributes we would wish to instill in our software systems to

improve robustness in the face of environmental challenges.

It would not be sufficient to merely produce systems that merely “react” to the
environment but rather to develop systems that can search and learn from the
environment to produce better responses to be learned and developed for future
challenges. Burgess suggests that “biology is nothing more than a colossal search
algorithm, seeking organisms that can fit into an environment and play some role in
the ecological network” (Burgess, 2007). If this is indeed the case then these

searching capabilities are a desirable property of robust software systems.

Van Valens “red queen effect” of evolutionary theory describes the process whereby
a species facing increased competition from its rivals will attempt to evolve to
improve performance and ensure survival. Successful evolution results in increased
competition for its rivals prompting a reactive evolution to improve their own
performance, which again leads to increased competition for the original species and
the cycle continues (Van Valen, 1973). It does not require much of a stretch of the

imagination to view computer systems as being subjected to their own form of on-

41

going, accelerating red queen effect, as changing environmental conditions and an
intensifying pursuit of optimised performance demands the iterative emergence of
ever sleeker, fitter systems to manage instability and turbulence. This fitter rule set

would require the learning element identified earlier as a key component.

The analogy of designing software systems based on a biological regulation system
was an interesting one as it brought with it connotations of homeostatic regulation,
receptors, sympathetic and parasympathetic systems. This would suggest there may
be value in revisiting the research findings in the area of systems cybernetics (such as
the Viable System Model presented by Beer) as a potential framework for an

approach to the adaptive software development process.

In 1878, Bernard used the phrase “milieu interior” (or the environment within) and

defined the importance of internal stability as follows:

“The fixity of the milieu supposes a perfection of the organism such that the external
variations are at each instant compensated for and equilibrated. All of the vital
mechanisms, however varied they may be, have always one goal, to maintain the
uniformity of the conditions of life in the internal environment. The stability of the
internal environment is the condition for the free and independent life.”

(Bernard, 1879)

Drawing on this theme, Cannon introduced the term homeostasis or “steady state™ in
1932 to describe the coordination and co-operation between physiological processes
in the human body involving the brain and nerves, the heart, lungs, kidneys and

spleen etc to achieve a condition, which is relatively stable. He also suggested that

“the perfection of the process of holding a stable state in spite of extensive shifts of
outer circumstances in not a special gifi bestowed upon the highest of organisms but
is the consequence of a gradual evolution”

(Cannon, 1932)

Therefore, to some extent, homeostasis could be considered as “learned” through the

evolutionary process. The human nervous systems in its most simple terms monitors

42

internal and external changes and invokes appropriate responses in order to maintain
homeostasis and does so without conscious thought. The human nervous system is
often identified by autonomic researchers as a good example of a successful

sophisticated autonomic system.

A homeostatic system has been described by Parashar as

“a system that reacts to every change in the environment, or to every random
disturbance, through a series of modifications that are equal in size and opposite in
direction to those created the disturbance. The goal of these modifications is to
maintain internal balances”

(Parashar & Hariri, 2005).

The ability of a software system to autonomically maintain homeostasis would
enable these systems to become more robust and therefore another example of a
desirable trait in effectively making them “autonomic”. Kiciman (Kiciman & Wang,
2004) suggested an approach to building autonomic systems based on combining
autonomous intelligent agents in a well structured way. They illustrated that this
approach

“mirrors the structure of the human brain wherein there are clearly defined, function

specific processing centres connected by forward and backward communication
channels and adaptive feedback loops”
(Bigus, Schlonnagle, Pilgrim, Mills 111, & Diao, 2002).

The notion of self-organisation demonstrated by insect colonies (such as ants) is
often cited as an example of how emergent properties from interactions at an
individual level can develop. The concept of stigmergy introduced by Grasse in 1959
showed how “simple systems can produce a wide range of more complex
coordinated behaviours, simply by exploiting the influence of the environment”
(Serugendo, et al., 2004). This is important as it demonstrates how we may exploit

the environment to improve system robustness, stability and performance.

An approach suggested by Nagpal was that we should look at previous biological

studies into the ability of cells in an embryo to locally coordinate to develop into

43

complex organisms. The ability of this process to regulate in the face of failures and
natural variation can be used as a basis for designing robust algorithms that can

achieve similar goals as outlined as the vision of autonomic computing (Nagpal,
2004).

Ashby (Ashby, 1954) promoted the architecture of the “Ultra Stable System”, which
included two control loops. One of these loops controlled small disturbances and a
second loop that is responsible for adaptation when existing “behaviour sets” are
unable to maintain homeostasis. The classic example often used to describe this
concept is that of an automatic pilot that keeps an aeroplane horizontal in response to
turbulent air. If the ailerons were connected in reverse, the autopilot, in response to
air turbulence requiring some degree of “roll” to maintain its position, would
increase the roll and would persist in its wrong action to the very end. A secondary
control loop would mean that the system would recognise this deviation from
expected behaviour and goes through a process of adapting its behaviour until it finds

a scheme that does work in these circumstances.

However, to build software system applications that can react to environmental
changes it seems likely that “sophisticated monitoring is needed to collect and
provide information about the services and resources and the complete system itself”
(Trumler, Petzold, Bagci, & Ungerer, 2004). Monitoring, in itself, can be an
“expensive” overhead and therefore should ideally be targeted and adaptive in itself
to maximise benefits to a system. Nagpal illustrated this point with an example of
agents who broadcast an “aliveness” message to its neighbouring agents. The
frequency of aliveness messages from neighbours determines the speed that faults
can be detected but that faster response time comes with a higher cost of
communication (Nagpal, 2004). One of the key objectives of an environmental
monitoring system should be to achieve “the right balance between global
optimisation effort, local computational expense, negotiation time, and decision

quality”. We may not always require an optimum decision but rather a good but

timely decision.

The major difficulty in any system that monitors for problems is “knowing what the

monitor should be looking for”. Kiciman et al suggests that “negative identification”

44

may provide a solution. This concept relies on describing what a “good
configuration” looks like and then when this constraint is broken, it can be assumed
that there is a problem even though the problem may not have be seen before
(Kiciman & Wang, 2004).

Beer when talking about the practice of planning suggested that
“The plan has to be adaptive. By adaptation in the planning mode we may talk about
timely updating, about flexibility, about constant review and revisions as events
unfold”
(Beer S., 1991)

It is likely that the solution to realising autonomic computing will require a multi-
disciplinary approach with many research communities making contributions and
providing a major input to the long term successful implementation of autonomic

self-adaptive systems.

2.4 So where are we now?

Nine years after IBM’s “Grand Vision”, it is useful to reflect on the progress of the
computing research community in terms of delivering the vision outlined by Horn in
2001.

IBM has continued to actively promote applications of autonomic computing
throughout the period. An example of this would be research by IBM to achieve
autonomic management of power and performance in data centres, which primarily
focuses on achieving power savings without affecting service level agreements (Das,
Kephart, Lefurgy, Tesauro, Levine, & Chan, 2008).

Vassev et al. states that despite many such initiatives it is still not pervasive across
the IT industry and that the

45

“only significant progress of autonomic computing has been the integration of self-
managing autonomic features into individual products such as chips, databases and
network components”

(Vassev & Hinchey, 2009)

Cooter suggests that “in some respects, it looks like the concept [autonomic
computing] is still in the theoretical phase” (Cooter, 2010). Menasce and Kephart
(one of the authors of “The vision of autonomic computing™) conceded four years
later in 2007 that

“we 've by no means reached our destination. Although many autonomic components
have been developed and are proving useful in their own right, no-one has yet built a

large scale, fully autonomic computing system”
(Menasce & Kephart, 2007)

Despite progress in a number of areas related to autonomic computing, progress has
perhaps been slower than might have been expected. Dobson, writing in 2010,
suggested that “efforts since 2001 to design self-managing system have yielded many
impressive achievements, yet the original vision of autonomic computing remains
unfulfilled” (Dobson, Sterritt, Nixon, & Hinchey, 2010). Dobson further suggests the
term autonomic computing remains closely associated with the IBM initiative but
should be broadened to related initiatives such as “organic computing, bio-inspired
computing, self-organising systems, ultra-stable computing, autonomous and

adaptive systems, to name but a few”.

Huebscher et al. stated in 2008 that “though autonomic computing has become
increasingly interesting and popular, it remains a relatively immature topic” but that
once more disciplines and their established research becomes more involved,
autonomic computing will be “naturally embedded in the design process where all
system architectures will have reflective and adaptive elements” (Huebscher &

McCann, August 2008).

46

2.4 Summary

The requirement for more robust software that can self-manage significant aspects of
its operation including the ability to self-configure, self-heal, self-optimise and self-
protect through having the requisite functionality to respond and adapt to changes in
its operational environment is both seductive and compelling. The IBM “Grand
Vision” in conjunction with the Self-Adaptive Software research community has
provided significant advances in terms of visualising the likely requirements and
outlined the building blocks of such systems. There are a growing number of
examples of partial implementations appearing in the literature and continued

development across a number of areas in the future can be expected.

One of the less travelled areas of research concerns the problem of developing an
accurate and current model of the environment in which such adaptive systems will
operate. It would seem a compelling argument that holding a current model of both
the environment and also the current capability of the system allowing the system to
“know itself” are desirable additions to any adaptive system. As such they have a
view of the complex space within which they can adapt and that without these

properties the system could be only considered to be purely reactive.

In conclusion, while the original IBM “Grand Vision” has not yet been realised, it
was probably always going to be an evolutionary rather than revolutionary process.
There are and still remain many research challenges that require a multi and cross-
disciplinary approach to building software systems that can survive and flourish in
increasingly changing and complex environmental conditions. Despite the
reservations expressed regarding the progress of autonomic computing, the original
drive behind the vision that “in the future, more software will have to be adaptive,
changing itself to cope with new requirements or unforeseen circumstances or to
ensure resilience in harsh environments” (Black, Boca, Bowen, Gorman, &
Hinchey, 2009) adds weight to continued research in this area. Models of the external
environment and internal capability and how they can be developed during run-time
will increasingly become central to how systems can survive in these particular

circumstances and perhaps the natural world provides both inspiration and a roadmap

forwards.

47

“The Idea That Information Can Be Stored In A Changing
World Without An Overwhelming Depreciation Of Its Value Is

False”

Norbert Wiener

48

3 A Cybernetic View of the Environment and its Models

“Cybernetics: The science of control and communications in the animal and the
machine”

(Wiener, 1954)

Many of the issues discussed by the autonomic self-adaptive software community in
making complex systems that are both robust and able to adapt when faced by
environmental change have long been a significant area of study in cybernetics,

which in turn has long advocated the applicability of lessons from the natural world.
3.1 Cybernetics and the Environment

Modern cybernetics is viewed as a scientific discipline that began and gained
momentum in the late 1940s with the Macy Foundation Meetings (1946-1953) and
the publication in 1948 of the seminal book entitled “Cybernetics” by Norbert
Wiener. Early pioneers in the field included Wiener, Ross Ashby, Warren
McCulloch, Grey Walter, Gregory Bateson, Julian Bigelow and Margaret Mead. The
extreme cross disciplinary nature of this group should be noted, as they brought
together concepts in scientific disciplines as diverse as control theory, computing,
mathematics, biology, neurophysiology, psychology and philosophy. Francois
suggests that cybernetics as a discipline is still developing with it being “a meta-
language of concepts and models for trans-disciplinary use, still now evolving and
far from being stabilised. This is the result of a slow process of accretion through
inclusion and interconnection of many notions, which came and are still coming from

very different disciplines” (Frangois, 1999).

The driver for the study of cybernetics lies in the increasing complexity of systems
and a desire to regulate these systems but it could be argued that much of the
potential benefits of cybernetics have remained unrealised by the scientific
community. Powers suggested that cybernetics had gained only the smallest of
beachheads and that very few people had “a real sense of the kind of impact on the

scientific community that is the potential still sleeping in cybemnetics” (Powers,
1984).

49

The term “cybernetics” is derived from the Greek word “kybernetes” and was used
by Plato to describe a pilot or helmsman, who undertook the responsibility for
steering (or controlling) a boat. The responsibility of the helmsman was to maintain
the course of the boat in response to any deviation caused by weather and tidal
patterns. In this sense the helmsman used feedback from the environment to both
chart the position of the boat (perhaps using a lighthouse) and take real-time
corrective action if required and therefore could be considered a negative feedback
“control system”. In any control system, the notion of feedback is central to the
successful regulation of the system. Feedback can be defined as the use of
information resulting from the execution of a process, which is subsequently used to

alter the process in order to maintain a goal.

Regulation can be defined as the ability of a system to compensate in response to an
environmental input or output variable. In feedback regulation (or control as it is
technically referred to), an error signal is produced between the existing state of the
system and the desired regulation level. This error signal is acted upon operationally,
amplified in power, and fed to an actuator to operate a network which can influence
the regulated variable so as to reduce the error (Dictionary of Cybernetics and
Systems, 2010).

There are numerous examples of control systems that use feedback from sensors to
alter the process. An example could be the use of a Passive Infrared (PIR) sensor to
control the switching on of lights when someone enters a room and switching them
off when they leave. Another example is the often used example of a central heating
system that uses feedback (obtained from the thermostat in a room) to control the
switching on and off of the boiler to maintain room temperature at the required level.
These are examples of systems that use information obtained from a sensor that
allow the system to detect a change from the desired goal of the system, namely to
maintain temperature levels at the desired level. When a change or deviation from
the desired goal is detected, the system effects a change to correct the error.
Therefore, these systems are self regulating through the use of feedback and
subsequent corrective actions that they can effect. The timeliness of information on

the system state and any corrective action is crucial to the appropriateness of the

action taken by a system.

50

The study of the human body has played an important role in the development of
cybernetic thinking as the human body is seen as one of the most successful
examples of systems using self-regulation to promote robustness and survival. The
human brain is often seen as the most successful regulator of all, regulating the
human body and there are numerous examples of how this self-regulation is
manifested within the “human system”. The classic example is the maintenance of
body temperature through the use of perspiration and shivering in an attempt to
respond to feedback and control any the deviation of body temperature from its
“normal” operating temperature but also could include the production of antibodies
to neutralise foreign objects such as viruses to minimise the potential impact of
illness and infection, the dilation of the pupils in response to varying lighting

conditions etc.

These responses can be seen as an attempt to maintain homeostasis or equilibrium of
the system in response to changes its in operating environment. Ashby defined
“essential variables” as those system variables which have to be kept with specific
boundaries for the organism to survive (Ashby, 1956) and therefore the ability of a
system to enact change to bring these variables back to a state of homeostasis is vital.
Interestingly, as shall be seen later, these systems are classed as “autonomic” in the
medical literature, where “autonomic” is defined as “the part of the nervous system
responsible for control of bodily functions not consciously directed” (Oxford English

Reference Dictionary, 2002)

Animals and the natural world were also a rich source of inspiration for cybernetic
study in an attempt to understand systems of varying complexity and how they
respond to environment change both to maintain homeostasis and also explore their
environments to gain advantage from opportunities provided by the environment. If
we can capture an essence of how this is achieved then this may prove to a valuable

contribution to the development of environmentally aware, self-adaptive software.

51

3.2 Key Cybernetic Environmental Concepts

Variety

The term variety was coined by Ashby in a cybernetic context to represent the total
number of states that a system can adopt. By system state we mean a snapshot of the
unique values for each of the state variables at a particular moment in time. A simple
example of this concept is a system consisting of three light-bulbs that can either be
on or off at any moment in time. The variety of this system is considered to be the

total number of states that can the system can adopt (Figure 4).

Light 1 | Light 2 | Light 3
1 Off | Off | Off
27101 Off | On
3| O On | Of
4 | Off | On | On
5 7 O 1 Off | Of
6 On | Off | On
Ui On {-On | Off
LB On | On | On

Figure 4 Variety of a “Simple Light-Bulb System”

Therefore, the simple light-bulb system can appear to adopt eight states, although
this excludes exception states such as a light bulb being defective. Such exception
states can cause significant problems to a system as they are often unaccounted for
and consequently the system may not be able to respond to this particular system

state.

A recent example of this factor would be the European Organization for Nuclear
Research (CERN) particle accelerator which, in 2008, had major problems due to an
unbalanced longitudinal force which the support structures in the magnets were
inadequate to withstand. Therefore the system was unable to respond to the exception
state, in this particular instance, and the Large Hadron System was shut down to

allow for repair work to be undertaken.

52

To demonstrate how variety can increase significantly as system complexity
increases then if one more light-bulb is added to the system then the variety of the
system would increase from eight to sixteen potential states (again not including the

considerable problems caused by exception states).

In a control system variety is encountered in two main ways:
e The variety in terms of the potential number of disturbances that a system
can potentially be confronted with.
o The variety in terms of the potential number of responses (or actions) that the
control system can “respond” with to counteract the effect of the disturbance

and maintain homeostasis.
This situation was formalised by Ashby as:
The Law of Requisite Variety

“The variety of a regulator must be at least as large as that of the system it

regulates”
(Ashby, 1956)

Ashby’s view was that any control mechanism must have sufficient variety in terms
of its responses when compared to the variety of the disturbances that it faces to
maintain effective control of the system. This has been often quoted as that “only

variety can destroy variety” (Ashby, 1956).

One difficulty in this approach is that when seeking to control complex systems
increasingly tethered to real world environments, it soon becomes apparent that the
control system seeking to maintain homeostasis must absorb any increase in the
complexity of the environment it is trying to control, and provide a corresponding
variety of response. This is Ashby’s Law of Requisite Variety, which states that as a
system becomes more complex, the controller of that system must in turn become
more complex to respond to this increased variety. If the controller fails to absorb the

variety it will experience situations that are out of its control and to which it will

53

have no adequate response. This, in turn, may well threaten the survival of the

system.

There are two cybernetic approaches to control the problem of variety overwhelming
the controller of the system. Either the variety of the controlled system is reduced or
attenuated to the number of states that the controller can respond to or conversely the
variety of the controller is amplified to match or exceed that required to control the

situation. This can be achieved in a number of ways, for example

“Managers may autocratically use threats or even guns as amplifiers of their own
variety. And the most effective attenuator of environmental variety is often sheer
ignorance within this subsystem of how the environment actually works.
Management which is effective and ethical, however, will design the regulators, and
put them in place”

(Beer S. , 2004)

To ensure the effective control of a system, the Conant-Ashby theorem (Conant &
Ashby, 1970) states that “every good regulator of a system must be a model of that
system” to ensure effective control. To achieve this, would require the controller to
be or contain an “isomorphic” model of the system and its environment to be
controlled. Isomorphic comes from the Greek word meaning “equal shape”. By
isomorphic model, we essentially mean a one to one mapping between the
environment and the model. Obtaining such a model is problematic for complex

systems operating in turbulent and changeable environments.
Laws (Laws, Taleb-Bendiab, Wade, & Reilly, 2003) suggests that
“when such isomorphism is not possible as in highly complex systems, then the

regulator must be, i.e. contain, a strongly homomorphic model of the situation”

where homomorphic is a one-to-many mapping, meaning the model becomes an

abstraction of the environment and therefore is incomplete.

The quality of the model becomes of considerable importance if they are the primary

input into the control system. Schwaninger states that a process cannot be better than

54

the model on which it is based “except by chance because stochasticity can also

favour the fool, at any time” (Schwaninger, 2004).

The principle of incomplete knowledge suggests that the model in an “open” control
system is necessarily incomplete as “the moment information arrives, it is already
obsolete to some extent” and that models cannot be expected to attain “any form of

complete representation of an infinitely complex environment” (Heylighen F. ,
2000).

Therefore, when thinking about modelling an “open” environment, the homomorphic

model may well be have to be sufficient for our purposes.
The Law of Requisite Knowledge

“In order to adequately compensate perturbations, a control system must “know”

which action to select from the variety of available actions”
(Aulin, 1982)

While having sufficient variety within the control system to respond to disturbances
is necessary for control, it is not sufficient. The regulating system must also know
which action to select given a certain disturbance and therefore have some
knowledge related to the effectiveness of the action. Without this knowledge our
systems would be restricted to randomly selecting actions until it stumbled upon a
solution to the disturbance. Even once the correct action was chosen the system
would not necessarily store this knowledge and may have to continue to cycle
through its random actions the next time the system faced the same problem. Whilst
this might not be a particular problem with our simple light-bulb system consisting of
seven states, it is likely to be a significant problem for complex systems with
significant variety requiring control. Therefore, as variety increases for a control
system the requirement for a knowledge or learning element becomes increasingly

important to the performance of that system.

55

A good regulator will require an action for each condition it will face and will have
the ability to improve this knowledge over time. Feedback will be a necessary
requirement of an effective “learning” system as changes in the environment or
system may mean that whilst an action may successfully counter a disturbance today
it may not be the most appropriate choice tomorrow. This feedback “adds to the

knowledge base of intelligence required for the formulation of plans” (Achterbergh
& Vriens, 2002).

Another feature of a good regulator will be the ability to extend its repertoire of
actions by developing new actions in response to unforeseen environmental
conditions. This will enable the control system to increase the variety of its actions in

response to increased variety being observed in the environment.

3.3 Conceptual view of the environment

Hariri and colleagues suggests that we should consider the environment as consisting
of two distinct parts — internal and external. He further defines the internal
environment as consisting of “changes internal to the application that characterises
the runtime state of the application” whereas the external environment can be
thought of as “characterising the state of the execution environment” (Hariri,
Khargharia, Chen, Yang, & Zhang, 2006).

The theoretical environment of a system is everything that is not included in the
system (Figure 5). In effect, everything that is external to the system forms the
environment of that system and then potentially changes in distant sections of the
environment could eventually impact on the system in question, Such

“interconnectedness of all things” form a basis of chaos theory.

56

ENVIRONMENT

Figure 5 Theoretical Environment of a System

Experiments by Edward Lorenz in 1960 laid the foundations of chaos theory by
demonstrating that the behaviour of the atmosphere is unstable with respect to small
perturbations, which has since become known as the butterfly effect.

Lorenz asked the question of “whether the flap of a butterfly’s wings in Brazil set off
a tornado in Texas?” (Lorenz, 1972). An example of this theory is provided by
Stewart who suggested that

“The flapping of a single butterfly's wing today produces a tiny change in the state of
the atmosphere. Over a period of time, what the atmosphere does diverges from what
it would have done. So, in a month’s time, a tornado that would have devastated the
Indonesian coast doesn’t happen. Or maybe one that wasn’t going to happen, does”
(Stewart, 2002)

Lorenz proposed that

“If a single flap of a butterfly’s wings can be instrumental in generating a tornado,
so can all the previous and subsequent flaps and its wings, as can the flaps of the
wings of millions of other butterflies, not to mention the activities of innumerable

more powerful creatures, including our own species”

(Lorenz, 1972)

This means that is would be impossible to predict weather patterns at a sufficiently
distant future time. The butterfly effect would require us to consider this theoretical
environment of a system, however, in practice we usually want to restrict our interest

to a finite number of defined relations between the system and its environment rather

e

than consider the whole environment. This is the concept of the “substantial
environment” proposed by Klir et al. (Klir & Valach, 1967). Therefore, the concept
of the “all embracing environment” is replaced by the more restrictive concept of
“substantial environment”. The substantial environment of the system can be

considered as those elements that can affect or be affected by the system (Figure 6).

ENVIRONMENT

Figure 6 The Substantial Environment

Even taking the concept of a “substantial environment” is still problematic as it
would be necessary to identify all the essential factors that affect or are affected by a
system to enable this coupling with the environment to take place. In an adaptive
system the substantial environment is likely to change and therefore couplings will
change to reflect the turbulence of the environment. The ability of the system to
recognise and respond to such changes and shifts in the environment becomes
paramount to its ability to survive in that environment. In this sense, the system

“selects” the components of the substantial environment.

“We have seen that the individual organism in some sense determines its own
environment by its sensitivity. The only environment to which the organism can react
is one that its sensitivity reveals. The sort of environment that can exist for the
organism, then, is one that the organism in some sense determines. If in the
development of the form there is an increase in the diversity of sensitivity there will

be an increase in the responses of the organism to its environment, that is, the

58

organism will have a correspondingly larger environment. In this sense, it selects
and picks out what constitutes its environment.”

(Mead, 1934).

This concept of environmental sensitivity is an important element in developing what
constitutes the environment of the system as with an adaptive system this is likely to
evolve over time.
When systems change, as we must expect adaptive systems to, it is possible the
systems could become either

e More dependent on the environment (increasing number of variables

affecting the system) or
e Less dependent on the environment (a reduction in the number of variables

affecting the system)

This process will lead to an increase or decrease in the environmental sensitivity of
the system, which can be achieved by an increase or decrease of sensing and
environmental scanning. The more sensitive and responsive a system is to its
environment the better it can survive and adapt to environmental changes. However,
there is, of course, an overhead associated with environmental monitoring and
potentially a danger of information overload from a heightened environmental
sensitivity and consequently the need for effective management and filtering of
information being provided by the environment. This management will consist of

providing environmental data at the appropriate time and level.

Therefore, a successful adaptive system should be able to adapt its environmental
sensitivity to maintain optimum performance of the overall system. Some further
refinement of the composition of the “substantial environment” was provided by
Gallopin and Patten. Gallopin suggested that the environment could be divided into

e Purely Influencing Environment (that portion of the environment coupled to

elements of the system via its inputs but which the actions of our system can

not influence)

59

e Purely Influenced Environment (that portion of the environment coupled to
elements of the system via its outputs which the system can affect but can not
be affected by)

e Influencing / influenced Environment (that portion of the environment that
can both influence the system and are also influenced by it)

(Gallopin, 1981)

This approach is useful in classifying our learning requirements and how elements of
the environment need to be monitored. For example, a part of our environment that is
“purely influencing” may not require monitoring in terms of the effect that the
actions of our system had on this element of the environment as the system has no

“influence” over that aspect of the environment.

Also the “purely influenced” environmental elements will not affect the system even
though our system impacts on this element. Therefore our system may choose to

limit monitoring or even abandon it altogether.

On the other hand, Patten (Patten, 1978) suggests a classification system consisting
of

e Operational Environment

e Potential Environment

¢ Non-Environment

This approach is also of value as it breaks the environment into those elements that
currently affect the system, those that may affect the system in the future and those
that will not affect the system.

It may be that a combination of these two views of the environment will prove useful
in developing an effective model of the environment in terms of adaptive software

development.

It is easy to comprehend why the “influencing” environment would be important to

the system, however the “influenced” environment may also be of importance when

60

two or more interacting systems are considered together. It may be that the purely
influenced environment of one system is an influencing environment of an
interacting system. The most successful adaptive software is likely to use “feedback”
from the environment to lead to improvements and/or learning in our systems. If this
environmental element is likely to be important, the environment of the system

would need to be viewed as a subsystem (Figure 7).

BROADER SYSTEM INCLUDING ENVIRONMENT SUBSYSTEM

Environment
\ Sub-System

ENVIRONMENTOF BROADER SYSTE

Figure 7 Broader systems including environmental subsystem

This environmental subsystem may be necessary if we are interested in the

organisation and responses of the environment to system influences.

3.4 Second Order Cybernetics and the Viable System Model

The fundamental or first order cybernetic principles of the earliest cybernetic
investigators were extended by the likes of Von Foerster, Maturana, Pask and Beer to
understand the role of the observer on the regulation of systems, and leading to the
establishment of “second order cybernetics”, sometimes described as “the
cybernetics of cybernetics™ (Foerster, 2003). They suggested that whilst attempting
to study and understand a social system, observers were unable to separate
themselves from the system or prevent themselves from having an effect on it.
Applying this effect to a software system analogy we must be conscious of the effect
that monitoring a software system has on the system and indeed the environment. It
may well be the case that the very fact of monitoring the system could itself be

detrimental to the performance of the system. It may be impossible to quantify the

61

effect that observing the system has on the system as it is difficult to know how it

performs when observations are not occurring.

This second order cybernetics was increasingly concerned with autonomous systems
that sought to define their own goals rather than in the regulation of controlled
systems with pre-defined goals. Beer established a subset of the field of cybernetics,
namely managerial cybernetics, which attempted to apply cybernetic principles to the
management of human organisations. The main vehicle of managerial cybernetics
was the Viable System Model (VSM) Figure 8, which attempted to ensure the
“viability” of organisations by providing a “cybernetic model of organisation”. As
Beer had himself suggested that “complexity is the very stuff of today’s world” (Beer
S. , 1975) and therefore any viable system would need to be able to manage
complexity effectively. Variety is often considered as one of the measures of
complexity and therefore a requirement of viable system would be the ability to

manage the variety within the environment.

The VSM has subsequently been mapped onto a diverse range of business
organisations and indeed a whole country (Beer S., 1995). Cybernetic thinking may
provide a solution to this management of complexity from an autonomic computing
viewpoint. Viable systems have been defined as “being robust against internal
malfunction and external disturbances and have the ability to continually respond
and adapt to unexpected stimuli allowing them to survive in a changing and
unpredictable environment” (Laws, Taleb-Bendiab, Wade, & Reilly, 2003). To
achieve this goal the key cybernetic principles identified by Morgan (Morgan, 1986)
when talking about the applicability of cybernetics to business organisational

learning are relevant to adaptive software system design in that they must be able to

o Sense, monitor, and scan significant portions of their environment
¢ Relate this information to the operating norms that guide system behaviour
e Detect any significant deviations from these norms

o [Initiate corrective action when discrepancies are detected

62

These cybernetic goals outlined previously are closely related to the desirable
properties of autonomic and self-adaptive software as defined by IBM and the

research community currently investigating the area.

Leonard states that as the system is being buffeted by events in the environment it
must have
“the capacity to adapt in order to cope with them. The success of that adaptation
depends on the quality of the system’s intelligence about the environment and the
resources available to make use of that intelligence”

(Leonard, 2009).

These attributes again mirror many of those required for robust autonomic software
and therefore lends weight to the potential benefits of using cybernetic theory for

such system development.

The concept of viable systems that can adapt to changing environments would seem
to be applicable to the development of effective adaptive software systems especially
as one of the features of the VSM is its recursive nature, which makes it scalable to
systems of increasing size and complexity. Schuhmann suggests that systems are
“produced by observations, which are generated by their system. A system is always
an observer that gives birth to itself and vice versa. Enlightenment enlightens itself”’
(Schuhmann, 2004). It seems likely that our prototype will use the concept of
observing and learning from the environment to provide a model of the environment
for our particular system at a particular moment in time. Our sense of the
environment becomes central to the process of successful adaptation in that a
cybernetic view would maintain that “in order to make adaptation possible, the
environment provides much of the determination about how the organism should act”
(Bowker & Chou, 2009).

63

DIAGRAM
ON THIS PAGE
EXCLUDED
UNDER
INSTRUCTION
FROM THE
UNIVERSITY

Figure 8 Beer’s Viable System Model

(Beer S. , 1985)

64

There are six major systems of the Viable Systems Model which include:-

S1 Operations. System 1 performs the basic activities of the enterprise. These
activities require monitoring and management control in order to ensure that they are
working as expected.

S2 Co-ordination. System 2 performs the co-ordination of S1 activities within the
organisation as parts of S1 activities interact with each other. S2 seeks to limit the
occurrence of S1 activities experiencing instability in their operations.

S3 Control. System 3 could be considered as the optimising system within the VSM.
It is concerned with using existing resources and ensuring that it uses the data from
operations for effective decision making.

S3* Audit. System 3* provides the auditing facilities for intermittent audits of S1
activities to be performed. This provides data above and beyond normal reporting
procedures.

S4 Intelligence. System 4 is responsible for adaptation of the enterprise in response
to a changing environment. It uses information obtained from both a model of the
external environment and its own model of internal capability to develop plans.
Therefore, it is necessary that these models are current to ensure any decisions and
plans are based on up-to-date information.

S5 Policy. System 5 determines the policy development and overall purpose of the
enterprise. Policy is informed by the S4 Intelligence activities regarding

environmental models and current capability.

Beer suggests that the cybernetic properties embodied in the VSM emerge from the
“holistic performance of the entire system and they do not reside anywhere at all
least of all can any one of them be identified with any one subsystem” (Beer S. ,
1994).

In terms of the role of the environment and the application of the VSM model system
S4 is of most interest. S4 (intelligence) is concerned with making sense of what may
confront the system in the future by collecting and analysing information from the
environment i.e. identifying threats and benefits in time to either avoid or take

advantage of them.

65

Laws et al. described S4 as being “concerned with planning the way ahead in the
light of external environmental changes and internal organisational capabilities” and
that to ensure these plans are grounded in an accurate appreciation of the current
environment it needed to “contain an up-to-date model of organisational capability”
(Laws, Taleb-Bendiab, Wade, & Reilly, 2003).

Lewis states that the goal of S4 is to “define its boundaries, to model and monitor,
and to make predictions on future environmental trends” and that this would require

an in-built model which is a simplification of its environment (Lewis, 1997).

Schwaninger saw S4 as providing a comprehensive external orientation to the future,
the ability to grasp, diagnose and model (Schwaninger, 2006). The difficulty in
building these models is a significant consideration and one approach discussed by
Jackson (Jackson, 1991) and Gregory (Gregory, 2007) is by treating such systems as
black boxes with only the inputs and outputs clear but the internal workings
“shrouded from view”. This means that systems can be investigated without
knowledge or assumptions about its internal structure or parts that will not “shed any

light on how to manage such a system”.

Figure 9 System 4 Mechanism For Interrogating The Problematic Environment

66

Laws et al. has developed an outline viable Intelligent Agent Architecture (Figure

10) incorporating environmental change in the S4 (Intelligence) stage of the model.

suonuapuy

System Five

Deliberation |

World
Model

Process

o

»-——{;{—

Survi ing.

1 I:;:;
sTopuAu|
3
»ii
F3
£

Filtering
Process

-
2 Plans Status

_qEngir Al [Opportunity
-~ Scan Analyser ;

Internal Model
4

Overall Schedule Monitoring to next recursion

System Four
T
Planning Process §
Plan g
Library B
¥ Monitoring
R
I Overall| Plans
=}
) Resource
g s Bargaining
& §' Process
»
= System Three

E]

N\ T

e a

IMPIPS (€140

Local Plans o /\ Local Monitoring data
> /M

D o v e p—
Local Monitoring data

Local Monitoring data

‘——-——-—
Local Schedule

vy

Figure 10 An Outline Viable Intelligent Agent Architecture

Drawing on the structure of the VSM and incorporating the Beliefs, Desires and
Intentions (BDI) approach of the IRMA design (Bratman, Israel, & Pollack, 1988)
this model uses an opportunity analyzer to scan the environment for events which
may constitute either an opportunity or threat to the system. This is guided by the S5
desires model which holds the goal of the system at the current time. Information

from the environment is passed to S5 which holds a model of the “World” and S3

67

which deal with current system capabilities and planning, although planning in this
context is closer to plan selection and realisation based on the intentions determined
by S5. Beer realised the difficulty of effective planning in that “if the plan when
published is conceived out of a model that assumes complete information, it is
mistaken” (Beer S. , 1991).

The interface with the environment is vital for maintaining a current view of the

“world” to allow the system to adapt more successfully as

“The model identifies the necessary and sufficient communication and control
systems that must exist for any organization to remain viable in a changing
environment”

(Laws, Taleb-Bendiab, Wade, & Reilly, 2003).

There are a number of practical problems with the concept of the opportunity
analyzer including:-
¢ How do we scan the environment?
e What is the model of our environment (world view) likely to contain?
e What are we scanning for?
e How is filtering to be applied to avoid information overload?
¢ Can we forecast future changes in the environment to enable our systems to
become more predictive rather than strictly reactive which may improve
survivability?

e How can we scan what is important to our system?

To overcome some of these challenges it seems reasonable to suggest that a learning
approach may have a role to play. Feedback from the environment may be used in an
adaptive software system in order to “learn” a model of the environment and

therefore allow the system to make choices / decisions based on that model.
Using data received from detectors would be a potential method of modelling the

environment and therefore allow the system to improve its environmental model and

sensitivity over time.

68

Bousquet et al. (Bousquet, Boucheron, & Lugosi, 2004) roughly summarises the
process as

e Observe a phenomenon

¢ Construct a model of that phenomenon

e Make predictions using this model

This can be considered as part of a standard learning model, if it included an end
stage of looping back to the observation stage. They concede that the above
definition is very general and that the goal of machine learning should be to automate

this process and the goal of learning theory is to formalise it.

The goal of our system is to provide a basis for refining our models and predictions
as more data is obtained in order to provide more optimal predictions, which our

system can use as a basis for adaptive choices.

One of the key challenges to the development of effective adaptive software is the

ability to observe and interpret the environment in which it exists.

“Detailed, dynamically gathered information is essential to ensure the
composability, dependability and adaptability of softiware systems. Without such
information, it will not be possible to determine whether a system should be changed,
or to locate points of failure that need to be fixed”

(GIWG, 2001)

Dobson et al. suggests that the
“viability of environmental sensing — essential for effective science and policymaking
— therefore depends on sensor systems’ ability to self-manage in the face of a
changing environment”’

(Dobson, Sterritt, Nixon, & Hinchey, 2010).

We will need a system that can use detectors to collect observations from the
environment and interpret these observations to provide the systems with the
information requirements to subsequently make “good” decisions to improve

performance and robustness.

69

3.5 Summary

The research challenges outlined in Chapter 2 and the analogy with the natural world
as an inspiration has led to an investigation into the applicability of cybernetic
principles as a framework for developing environmentally aware software systems.
The field of cybernetics appears to have great applicability as an important piece of
the self adaptive puzzle as its primary focus is based on understanding complex
systems and the maintenance of homeostasis within those systems. Also, much of the
fundamental underpinning behind cybernetics comes from the natural world and the
complex systems within it. If we are to accept the marvel of the natural world in
producing robust and fit solutions and overcome the problems associated with
environmental change then we should seek to use the millions of years of experience

that nature has provided us with.

The Viable System Model provides a framework for designing complex yet
inherently robust systems and appears to have applicability to the design of software
systems as outlined by Laws ef al. (Laws, Taleb-Bendiab, Wade, & Reilly, 2003).
System 4 of the Viable System Model is of most interest to this particular research
problem and fundamentally requires that a system holds both a model of the
environment and also a model of the internal capability of the system. This element
will inform many of the requirements, of environmental management, of our system
such as detecting a change in context or a change in needs but also knowing the

space of adaptations that our system can effect.

By using cybernetic principles and conceptualising our view of the environment we
can seek to develop a learning approach that will enable our prototype system to
develop a current model of the environment and capability of the system and use this

information to make “good” decisions in relation to environmental change.

70

Chapter 4: An Approach to Provide an Adaptive Model of

the Environment

“Learning Is Not Compulsory ... Neither is Survival”

William Edwards Deming

4.1 Learning From The Environment

It is virtually impossible to define a complete and accurate environmental model
during design time for any but the most trivial of systems. Prolonged interactions
with the “real-world” would render such a model increasingly inaccurate over any
significant period of time. To embrace a truly cybernetic approach to designing our
systems then it seems reasonable to design a solution with the capability to construct

and maintain a current model of the environment.

To achieve this capability, the approach needs to be able to perform not only online
learning but also continuous learning to enable environmental change to be reflected
in the model to achieve, at least, a strongly homomorphic model of the environment.
This requirement for “active” learning is supported by Epshteyn et al. who suggest
that the “optimal policy computed offline in an imperfectly modelled world may turn
out to be suboptimal when executed in the actual environment” (Epshteyn, Vogel, &
DelJong, 2008).

Reinforcement learning is a well established machine learning technique and seems
to have applicability in the context of this particular research. If we can interact with
our environment through the combined use of detectors and effectors and can

measure the impact of our actions through appropriate metrics then we have the

fundamental building blocks necessary.

These building blocks potentially give the ability to interact with the environment by
ascertaining the effectiveness of actions on the environment but a further technique is
required for effective exploration of the environmental search space. This exploration

will enable a current model of the operational environment to be developed where a

7

system can respond appropriately to current environmental conditions. This
exploration will be an ongoing process whereby the model is adjusted to maintain its

currency and therefore value to the controlling system.

A re-occurring theme within this thesis has been taking inspiration from nature for
the solution to the problem of designing robust software. It seems appropriate to
continue this approach when considering potential approaches as to how this

prototype will actually be developed.

4.1.1 Online Learning

Online learning as an approach means that the system is “created” with no prior
knowledge about its environment and is forced to “learn” about it whilst making
operational decisions. Off-line training would mean that a system is given “training
data” with which to build up its knowledge before it is introduced into such a “live

environment”.

Das et al. found that the off-line model building approach was only applicable in
“low-dimensional state and action spaces” and that it would not be suitable for more
complex and larger scales applications (Das, Kephart, Lefurgy, Tesauro, Levine, &
Chan, 2008). Schulenburg et al. stated that continual re-training may not be the
answer in that it may be expensive and there is a potential problem about when to

switch from the old model to a new one (Schulenburg & Ross, 2002).

Therefore a desirable property of a modelling prototype system existing in complex
environments would seem to be the ability to build an effective model using on-line
and continuous learning rather off-line training as a general approach and also

include that of applicability and suitability for large-scale complex systems.

72

4.1.2 Reinforcement Learning

“Reinforcement learning is the study of how animals and artificial systems can learn
to optimise their behaviour in the face of rewards and punishments.”

(Dayan & Watkins, 2001)

The basic premise is that by using a system of reward and punishment in response to
an agents interaction with the environment, reinforcement learning can be utilised in
terms of exploring unknown and potentially complex environments. A definition

used by Yamada (Yamada & Yamaguchi, 2010) is that

“an agent selects and engages in behaviours with respect to sensory inputs obtained
Jrom sensors, As a result, learning is performed by repeating a cycle in which a

reward from the environment and sensory input for the next state are given.”

Kaelbling et al. found that reinforcement learning differed from supervised learning
in that:-

i) “After choosing an action the agent is told the immediate reward and the
subsequent state, but it is not told which action would have been in its
best long term interests”

i) “It is necessary for the agent to gather useful experience about the
possible system states, actions, transitions and rewards actively to act
optimally”

iii) “on-line performance is important: the evaluation of the system is offen
concurrent with learning”

(Kaelbling, Littman, & Moore, 1996)
According the Langlois et al. the goal of reinforcement learning is to
“choose the best action for the current state. More precisely, the task of
reinforcement learning is to use observed rewards to learn an optimal (or almost

optimal) policy for the environment”

(Langlois & Sloan, 2010).

73

Das et al. suggested that the solution to the problem of scalability and complexity
outlined later in Section 4.2 could be in the use of model based reinforcement
learning or a form of hybrid reinforcement learning which has shown “promising
initial results in learning policies in high-dimensional state spaces™ (Das, Kephart,

Lefurgy, Tesauro, Levine, & Chan, 2008).

Bull e al. found that evolutionary algorithms and reinforcement learning are
increasingly being used in the design of complex systems as more traditional
learning algorithms require “detailed knowledge of and control over the computing

substrate involved” (Bull, Budd, Stone, Uroukov, Costello, & Adamatzky, 2008).

4.1.3 Self-Adaptive Learning

A key component of a successful learning approach is the notion of reinforcement
learning. This element relies on the notion of feedback from the environment to
ascertain whether an action taken by the system has had a subsequent beneficial or
detrimental effect on the environment. Reinforcement learning should allow the
system to improve its response by using previously successful approaches when
subsequently facing the same environmental situation. An example of a

reinforcement feedback loop can be observed in Figure 11.

Controller Takes
Action based on

//’ Environmental

Reinforcement from Message Sends Instructions
Detected Change
Detectors

Measure Effect on Effectors Interpret

Changes on Instructions

Enviroment

Environment > Sends Detailed
Affected Controlled Objects e Instructions

Enact Instructions

Figure 11 Reinforcement Feedback Loop

74

This identifies a number of initial requirements for our design. We will therefore

require the following components:

vi)

vii)

viii)

An appropriate test-case system for the prototype Environmental
Modelling, Monitoring and Adaptive System (EMMA) to model and
attempt to control.

The development of an appropriate performance metric that can be
obtained from the test case system environment.

A detector to provide environmental data to our system.

An effecter that will enable our system to influence the environment of
the test case system.

The system must be able to evaluate the performance of its actions and
learn from these actions to provide improved performance over time.

The system should be able to dynamically adjust its “model” of the
environment so it always holds an appropriate model of the environment.
The system should be able to hold a view of its own capability and
therefore its ability to enact influence on the environment it is seeking to
monitor and control.

The system should include an element of historical learning in order to
inform future developments.

The system needs to be able to explore its environment and be able to

develop new approaches.

In an earlier chapter regarding the IBM “Grand Vision” we discussed how biological

regulation system connotations were deliberately used when discussing truly

adaptive systems. This, in turn, encouraged academics to look to the natural world,

which provided many examples of successful adaptation in the face of environmental

change and instability for possible solutions to the problem of complexity.

This, in fact, led to a re-examination of work, which it could be argued had

previously been under-utilised by the academic community. Holland had provided a

seminal body of work on the use of genetic algorithms to provide a robust search in

complex spaces (Holland J. , 1975). Genetic algorithms are search algorithms that are
based on the

75

“mechanics of natural selection and natural genetics. They combine survival of the
fittest among string structures with a structured yet randomised information
exchange to form a search algorithm with some of the innovative flair of human
search”

(Goldberg, 1989)

This work was supplemented in 1977 when Holland presented the first
implementation of his learning classifier system (Holland & Reitman, 1978). A
classifier system has been defined as a “machine learning system that learns
syntactically simple string rules (called classifiers) to guide its performance in an
arbitrary environment” (Goldberg, 1989). There have been further revisions and
refinements to this approach but perhaps it is only recently that the true value of this
approach is being realised in our goal of providing adaptive software that can

respond effectively to environmental change and instability.

Bull suggests that the reason for the waning interest in learning classifier systems
was that Holland’s full system “was somewhat complex and practical experience
Jfound it difficult to realise the envisaged behaviour / performance” (Bull & Lanzi,
2009). One approach to developing learning systems has been to train the system
using offline batch training data in order to provide the “learning” that the system
requires. However, there is a difficulty in obtaining this data in turbulent and
changeable environments where sufficient data cannot be obtained in advance. Gao
states that
“learning systems need to deal with the incrementally coming cases and the
feedbacks from the environments while such requirements are not necessary in batch
learning”

(Gao, Zhexue Huang, & Wu, 2007).

4.2 Possible approaches to solving the problem

Whilst recognising that there are a number of evolutionary approaches that could be
used to solve the research problem of developing an environmental model, it would
appear that an approach using Learning Classifier Systems (LCS) and Genetic

Algorithms (GA) is a valid experimental approach for the purposes of this thesis. As

76

Heylighen commented, when talking about cybernetics, “many of the core ideas of
cybernetics have been assimilated by other disciplines, where they continue to
influence scientific developments” (Heylighen F. , 2001). Asaro identified that
genetic algorithms were one of the many significant technical developments to have

been inspired by the field of cybernetics (Asaro, 2006).

LCS and GAs have similarities to Ashby’s cybernetic based definition of the ultra-
stable system in that his inner control loop could be considered to be the LCS whilst
the outer loop (providing adaptive behavioural change) could easily be represented

by the genetic algorithm element.

The rationale for this decision is based on the obvious links between cybernetics and
the complex adaptive systems movement, of which John Holland, who first devised

the notion of learning classifier systems (Holland J. , 1975) was a key contributor.

4.3 Genetic Algorithms

At this point in the thesis it is useful to provide an overview of genetic algorithms
and their development over the past decades. The fundamental essence of genetic
algorithms is rooted in the Darwinian view of the “survival of the fittest” and the fact
that genetic algorithms try to “refine a population of a problem solution through
experience with the trained data” (Sarkar & Sana, 2009). This effectively means that
searches of the complex space are not purely random but targeted as “stronger” string
structures are bred to provide targeted search points and improve performance.
According to Goldberg they work because “they combine survival of the fittest
among string structures with a structured yet randomised information exchange to
form a search algorithm with some of the innovative flair of human search”
(Goldberg, 1989). Genetic algorithms have been applied in applications such as the
finance based scheduling of large-sized projects activities where it was found to
perform robustly in terms of its effectiveness to search for optimal solutions (Abido
& Elazouni, 2010).

717

According to Goldberg (Goldberg, 1989) genetic algorithms are more robust than
traditional optimisation and search procedures because
e They work with a coding of the parameter set, not the parameters themselves.
e They search from a population of points, not a single point.
e They use payoff (objective function) information, not derivatives or other
auxiliary knowledge.

e The use probabilistic transition rules, not deterministic rules.

4.3.1 How Do Genetic Algorithms Work?

The fundamental basis of the strength of genetic algorithms lies in the reproduction
of increasingly fit structures in response to a particular problem domain. A “solution”
to the problem domain is represented as a set of “chromosomes”, where each
chromosome is composed of alleles (one allele can equal 0 or 1), which represent one
characteristic. Each set of chromosomes represent one “putative solution” and a
population of such “solutions” are initially randomly generated and then tested for
effectiveness. They are rewarded or punished accordingly and such rewards
contribute to the fitness or otherwise of each solution. In the breeding process, weak
solutions are discarded in favour of replacement “bred” from stronger solutions, and

then the process beings again.

This is achieved by three basic operators which are:-

i) Selection. The role of the selection operator is to select high strength
chromosomes to act as parents in the reproduction stage of the process.
The strength of the chromosome is determined by a reinforcement
learning process where good chromosomes have been suitably rewarded

and poorly performing chromosomes have been punished.

78

Classifier 2
12%

Classifier 1
25%

Classifier 3
13%
Classifier 6
13%
Classifier 4
Classifier 5 25%

12%

Figure 12 Selection Using A Roulette Wheel

ii) Crossover. Crossover involves exchanging a randomly selected segment
between the selected parents to produce “child” chromosomes. Booker et
al. suggests this is the key to understanding the strength of genetic
algorithms it that “a good building block is a building block that occurs in
good rules. The GA biases future constructions toward the use of good
building blocks” (Booker, Goldberg, & Holland, 1989).

Parent 1 Parent 2

1.1 Q-1 10 B e

Inerssi s

—

3 i 4 I A tERAT

Child 1 Child 2

Figure 13 Simple Crossover Example

iii) Mutation. The role of mutation is to prevent premature convergence and
to allow genetic material which may have been bred out of a population,

or indeed never existed in the population, to be introduced or reintroduced

79

back into the population. This ensures that any location in the search

space may be reached in the future.

‘ 1 LTI T 10

Figure 14 Simple Mutation Example

A proportion of the existing rule-set is replaced by “child” chromosomes during each

run of the genetic algorithm process.

These fundamentally simple building blocks produce a powerful mechanism for the

searching of complex spaces and producing fit rules to exploit the problem domain at

that particular moment in time.

4.3.2 A Simple example of the Genetic Algorithm using
Crossover

As genetic algorithms are inspired by the natural world we will use an example to
demonstrate the essence and strength of the approach to developing “strong”

solutions in response to environmental stimuli.

Assume that we have a population of butterflies where each butterfly consists of 8
chromosomes (either black or white). Assume an increased occurrence of the black

chromosome gives a butterfly a natural advantage over a butterfly with more white

chromosomes.

Therefore, butterflies with increased number of the black chromosome are more
likely to survive into subsequent generations. The initial population consists of eight
butterflies with an overall equal number of white and black chromosomes (i.e.

randomly generated)

80

Figure 15 Generation 1 of the Butterfly Population

The strength of the butterfly is calculated by the total of black alleles which exist in

its genetic make-up.
The total strength (in terms of black alleles) of this population of butterflies is 32.

At the end of a population generation the four weakest butterflies (in terms of black

alleles) are lost giving the population outlined in Figure 16.

81

3 - - - = = = = Strength 0

4 - - - - - - = Strength 0

7 - = = = = = = Strength O
8 - - = = = - — Strength O

Figure 16 Generation 1 after weakest butterflies are lost

The remaining strong butterflies breed to produce four offspring to replace the “lost”
butterflies.

Any random crossover point would produce similar results but for the purposes of
this explanation we will use a standard crossover point of 3 for this particular

generation.
At this point we

1. Breed butterflies 1 and 2 to create new offspring at position 3 and 4 (using

crossover point at Position 3)

2. Breed butterflies 5 and 6 to create new offspring at position 7 and 8 (using

crossover point at Position 3)

The 2™ generation butterfly population can be observed in Figure 17.

82

Figure 17 Generation 2 of the Butterfly Population

The strength of the population has increased from 32 to 44. This is due to the parent

butterflies “passing on” their black alleles to their children.
At this point it can be observed that the four “strongest” butterflies are 1, 3, 5 and 7.
These are the butterflies which will survive into the 3™ generation whereas butterflies
2,4, 6 and 7 will be lost during this generation.
For the 3™ generation we will

1. Breed butterflies 1 and 3 to create new offspring at position 2 and 4 (using

crossover point at Position 4)

2. Breed butterflies 5 and 7 to create new offspring at position 6 and 8 (using

crossover point at Position 4)

The 3™ generation butterfly population can be observed in Figure 18.

83

Figure 18 Generation 3 of the Butterfly Population

The strength of the population has increased from 44 to 51. This is again due to the
parent butterflies “passing on” their black alleles to their children. If this experiment
was continued the white alleles would be totally bred out of the butterfly population
in future generations (we are assuming there is no mutation in this particular

example).

If the environmental balance changed to favour butterflies having white alleles in
their genetic profile we would see a reversal of this process and black chromosomes
would ultimately be bred out of the population. For this to hold true we would
require at least one white chromosome left in the butterfly population to enable them

to “re-establish” themselves in the population.

If the white chromosome had been totally bred out of the population only the process
of mutation would allow the white allele to be reintroduced into the buiterfly

population.

Therefore the strength of genetic algorithms lies in their ability to combine “good

building blocks” with respect to the current environment, in order to allow the

84

strength of the population to increase over subsequent generations by breeding

stronger off-spring.

4.4 Learning Classifier Systems

To fully understand the value of classifier systems and their applicability to this
particular thesis research area we must look to Bookers er al. definition of the

particular the type of system that classifiers system were designed to address

They were
i) For environments where a “perpetually novel stream of data constitutes
an extremely complex and uncertain problem solving environment”
ii) When a system must “dynamically construct and modify the
representation of the problem itself”
iiiy For complex environments that “will contain concepts that cannot be

specified easily or precisely even with a powerful logic”
(Booker, Goldberg, & Holland, 1989)

Indeed, Holland himself states that “each of the mechanisms used by the classifier
system has been designed to enable the system to continue to adapt to its
environment, while using its capabilities to respond instant-by-instant to that
environment” (Holland J. , 2000).

In 1978 Holland presented the first implementation of a Learning Classifier System
(LCS) which was based on his work on genetic algorithms and was a ruled based

system. The rules used by the Holland’s LCS were in the form of
IF [Condition] THEN [Action]
Therefore when the condition was met then the action was taken by the system. This

could be compared with the development of expert systems, which used a similar

method but suffered from the requirement to have their knowledge (and therefore

85

rules) captured during the development of the system. Therefore a major issue is that
the rules envisaged at the design stage may not capture all of the domain space. This
was increasingly problematic as the complexity of systems and their environments

increased which may lead to a corresponding change in the domain space.

Learning Classifier Systems offered a potential solution to this issue because they
used two main elements:-

o Genetic Algorithms which sought out new rules that were not based on true
random generation but rather used a Darwinian “survival of the fittest”
approach to suggest likely successful areas of the complex space to search
for fitter rule strings. Such natural selection means that “those organisms
best able to acquire limited resources and convert them to offspring will
leave the most descendents and the genes controlling their behaviour will
increase in frequency” (Zimmerman, 2009). In terms of our work, such
organisms are represented by initial randomised responses (binary strings) to
the environment. These are evaluated on their ability to respond successfully
to environmental change allowing “stronger strings” to be identified and
subsequently “bred” to embed their strength in the population.

e Reinforcement Learning seeks to reward or punish rules depending on their
ability to achieve a desired response, such as beneficial change, from the
environment. Therefore, rules that are highly fit (in terms of their net worth
gained by the reward mechanism) are subsequently given preference over
other rules. The reinforced learning would subsequently guide successive

targeted searches for “better” rules.

Kovacs saw the interleaving of these two components as driving the population
toward a “minimal, fit, non-overlapping population” as a central element of Learning
Classifier Systems (Kovacs & Kerber, 2006). Holland suggested that these key
mechanisms made possible performance and learning without the characteristic of

brittleness associated with most expert systems in Al (Holland J. , 1986).

Designing decision making systems of this nature was often difficult and more and

more work began focusing on automated techniques able to “tune efficient decision

86

making systems while requiring less design effort from human experts” (Landau &
Sigaud, 2008).

The Classifier System as envisaged by Holland (Holland J. , 1975) is illustrated in

Figure 19.
________________________ Classifier System
MESSAGE LIST RULE LIST
[Match— 13 l THEN
Cond 1 Cond 2 Message
$ h
INPUT
MESSAGES i
! | oyTPUT
rﬂE§SAGES
POST: i
t ,
Input Bucket Brigade Output
Interface rom ety Z;":m" Interface
Detectors (generates new rules) Effectors
A T
Payoff
4&
Environment -«

Figure 19 Holland’s Classifier System

The three main components of a classifier system are:-

e Rule and Message system: Information is received from the
environment via detectors that activate rules (or classifiers) to cause
an action to be taken in response to environmental stimulus through

the system’s action triggers (or effectors). Goldberg (Goldberg, 1989)

87

captures the essence of this in that classifiers “combine
environmental cues and internal thoughts to determine what the
system should do and think next. In a sense it coordinates the flow of
information from where it is sensed to where it is processed to where

it is called to an action”.

Apportionment of credit system: There are a variety of methods for
rewarding classifier rules but the method advocated by Holland is the
“bucket brigade” algorithm that uses an auction amongst classifiers
where bids are based on a proportion of rule strength to give
preference to highly fit rules. Goldberg (Goldberg, 1989) suggests
that the bucket brigade may be most easily viewed as “an
information economy where the right to trade information is bought
and sold by classifiers. Classifiers form a chain of middlemen from
information manufacturer (the environment) to information consumer
(the effectors)”.

Genetic Algorithms: When genetic algorithms are used in learning
classifier systems, there are some elements that need to be

considered. This would include:-

o How often “new” rules are to be injected into the population?
This could be based on new rules being introduced in a
particular time period or only when the performance of the
existing classifiers is deemed to be unsatisfactory. It is a
system requirement that the effective management of the size
of the population being retained must be considered.
Rojanavasu supports this view in that he suggests that “a
large population size has a dramatic impact on the speed for
processing incoming data traffic” (Rojanavasu, Dam, Abbass,
Lokan, & Pinngern, 2009) as each time a data instance
arrives, the population needs to be scanned to find those rules
that match the incoming data instance. Consequently, he

suggests that using LCSs for systems requiring a large

88

population size (such as real time stream data mining) is

problematic.

o What proportion of the existing population of classifier rules
are to be retained? In our earlier discussion on genetic
algorithms there was no concept of existing “fit” strings
“surviving” into the next generation of the population.
However, it seems reasonable to suggest that if we are
looking to develop robust systems where we need to maintain
a high level of performance then we might want to maintain a
proportion of these fit strings in subsequent generations to

improve the chance of continued robust performance.

Whilst there were applications of Holland’s LCS to “real” problems including gas
pipeline control, space vessel power management and letter recognition, interest in

LCS waned perhaps due to the complexity of implementing Holland’s full system.

One of the earliest “parting of the ways” in LCS research approaches involved the
distinction between Michigan LCS and Pittsburgh LCS. The fundamental difference
between these two approaches is that in a Michigan LCS, the strongest rule in a
population of rules is the solution of the problem, whereas Pittsburgh LCS uses

multiples rule-sets where each population rule-set together represent the solution.

Bacardit et al. suggested that Michigan style LCS were a more appropriate solution
for online learning problems as Pittsburgh LCS “require a longer evaluation period
until the next generation evolve, since the fitness of the whole population rather than
of individual classifiers needs to be assessed” whereas Michigan LCS can usually be

“continuously evaluated and evolved by steady-state GA techniques” (Bacardit,
Mansilla, & Butz, 2008).

Further modifications have been proposed that have sought to increase understanding
and performance of learning classifier systems. Wilson continued to work with LCS
and proposed the Zeroth-level Classifier System (ZCS), which removed the message
list and rule bidding element of Holland’s LCS (Wilson S. , 1994). Wilson continued
to develop the classifier system and in 1995 presented his eXtended Classifier

System (XCS) (Wilson S. W., 1995). The major difference between XCS and earlier

89

classifier systems is that rule fitness is based on the accuracy of its predicted payoff
rather than the payoff actually received from the environment and the bucket brigade
approach was replaced by a form of Q-learning. There has been research focused on
the scalability and learning capacity of XCS systems. Stalph ef al. suggests that the
major factor impacting on learning capacity in XCS systems was in its population
size and therefore sought to measure the “minimal population size necessary to solve
a learning task” (Stalph, Butz, & Goldberg, 2009) and showed that a linear increase

in difficulty results in a polynomial increase in population size.

Bull suggests that only recently is the ability of LCS to solve complex real world
problems becoming clear and that “future work must apply LCS to a wide range of
problems and identify characteristics which make the task suitable to solution with

Learning Classifier Systems” (Bull, 2004).

Which form of LCS is most appropriate for which type of problem also needs to be
established, along with continued refinement of the architectures and improved
theoretical understanding. Hurst and Bull amongst others have continued to
experiment on applying Learning Classifier Systems in problem domains such as
robotic environments (Hurst & Bull, 2006) whilst the “father of LCS” John Holland

has also continued to work on practical uses for learning classifiers (Holland J. ,
2003).

Our work suggests that Learning Classifier Systems have a potentially important role
to play in realising the goal of autonomic software systems that can respond to
environment stimuli in an appropriate manner. This is achieved using genetic
algorithms to explore the complex space and the utilisation of reinforced learning to
allow for evaluation of the rules of “most promise” to be identified. The rule set
generated by this process may well provide the most appropriate adaptive
homomorphic model of both the external visible environment as well as a current
model of internal capability which allows our system to continue to operate robustly,

by making decisions based on appropriate models, in complex and turbulent

environments.

90

4.5 Prototype Proposal

The prototype will seek to use cybernetics and more specifically Beer’s Viable
System Model as a “learning framework” to provide the heuristics for the overall
system design. Learning Classifier Systems and Genetic Algorithms will be used to

provide a reinforcement learning mechanism approach in which to realise aspects of
System 4 of the VSM in software.

Figure 20 illustrates the some of the theoretical links between cybernetics and
Genetic Algorithms / Learning Classifier Systems. The obvious links include
inspiration from th'e natural world and the regulation of complex systems. It is
proposed that this application of a learning framework (provided by the VSM) and a
learning approach (provided by GA/LCS) provides a potential solution to the

challenge of providing environmental modelling during run-time.

* ASHBY'S "ULTRA
STABLE SYSTEM"
* COMPLEX ADAPTIVE
SYSTEMS MOVEMENT
{John Holland)
SURVIVAL OF THE
“INSPIRED B e GENETIC
CYBERNETICS il ALGORITHMS
LEARNING
MANAGERIAL CLASSIFIER
CYBERNETICS \ SYSTEMS
ALEARNING ALEARNING
* REGULATION OF MSPAC?;
COMPLEX SYSTEMS * REINFORCEMENT
* MULTHDISCIPLINARY LEARNING
AUTONOM'C * FINDS AND GENERATES
* INSPIRED BY THE RULES IN A CHANGING
NATURAL WORLD COMPUTING ENVIRONMENT (IB8M
OMEOR AR WISHLIST)
VIABLE SYSTEM MODEL
ENVIRONMENT

Figure 20 Theoretical Underpinning for the Prototype System

91

Figure 21 illustrates why the VSM may provide a broader learning framework, from
which autonomic systems may be developed in the future. The IBM wish-list can
potentially be mapped across to the VSM. This thesis is primarily concerned with
System 4 (environmental awareness) but this should not distract from the further

value potentially held by releasing the full VSM in software.

Systom 1 1
e : f P _| Autonomic
enviconment | A w j Identity
Il
Autonomic anticipation l_) | Autonomic
and environmental performance

awareness optimization

A
:

Systemn 3 System 1a I
Audit n

o X N 158
ST/
Y
via

Autonomic Re/
configuration
e attenuation 9! ?
,\-:;}3' o o <|| Autonomic healing
\ System 1b

utonomic
Self
Protection

Protection
| via
attenuation

Figure 21 The Viable System Model and Autonomic Computing

The challenges with unlocking this potential are many, but this thesis seeks to solve
one of the main issues, namely, how to replicate human creativity in software.
System 4 of the VSM relies on human creativity to achieve effective environmental
scanning / awareness. By using GA / LCS to emulate “human creativity” we are

attempting to overcome a significant barrier in the considerable challenge of realising
the VSM in software.

This will enable further development of autonomic systems based on the VSM to be

developed and implemented in the future.

92

Figure 22 illustrates in further detail how the prototype will seek to use GA / LCS to
realise System 4 of the VSM.

System 4 relies on two models to achieve environmental awareness. These models
consist of the external model of the environment and an internal model of capability.
The external model of the environment allows the prototype to develop the requisite
variety required, in cybernetic terms, to be able provide a response to varying
environmental conditions. The internal model of capability allows the prototype to
develop the requisite knowledge to be able to choose the most appropriate action

given an environmental condition.

mrmmunemmalmdddh mwmn&mtmmmmm

e el FEEEE ﬂz\oﬂﬂ BEE

SYSTEM 4
INTERNAL
MODEL OF
CAPABILITY
SECOND LIFE d :
SIMULATOR
REGION \//
KNOWLEDGE
EMMA PROTOTYPE

Figure 22 The Prototype System, VSM’s System 4 and GA/LCS

The condition element of the learning classifier will represent the external model of
the environment and the message action element will represent the internal model of
capability of the system. The ability to evolve these models will be provided by the

genetic algorithm which will enable new conditions and actions to be generated to

maintain the currency of these models.

93

4.6 Summary

The prototype system will be developed using Learning Classifier Systems as a
fundamental guiding design principle. It is not the only potential solution available
but matched the autonomic principles advocated by cybernetic theory. It contains
many of the building blocks required, such as reinforcement learning as a
fundamental underpinning, and the obvious biological and Darwinian principles of

survival of the fittest.

If we accept that genetic algorithms are extremely efficient at exploring complex
search spaces and have the ability through crossover and mutation to continuously
evolve to meet new environmental challenges then they seem an obvious candidate

as a technique for our prototypical environmental model system.

The condition element of the learning classifier will become our model of the visib
environment. At any particular time-period, it should reflect the environmental
messages being received via our detectors and therefore provide a model of the
current environment. The learning classifier condition will change over time to

reflect the changing environmental messages being received.

The action element of the learning classifier will become the prototype systems
model of the capability of the system. The message will be relayed to effectors in
response to environmental messages received via a system of detectors and so

becomes, in a sense,