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Abstract

The control of blood pressure plays a vital part in homeostasis in humans. Poor
regulation of blood pressure has been associated with an increased risk of
events such as myocardial infarction, sudden cardiac death, and stroke. The
studies in this thesis are designed to explore sources of variation in human BP
control, and in particular to examine the interactions between BP status, activity
and circadian variation.

In study 1 the association between BP status and the acute exercise-mediated
change in BP was investigated. A total of 32 participants, with pre-exercise
MAP of 65-110mmHg, cycled for 30 min at 70% peak oxygen uptake. Systolic
and diastolic BP were measured (Portapres) before exercise and for 20 min
after exercise. Changes in BP were regressed against pre-exercise values, and
against the mean of pre- and post-exercise BP, an index known not to be prone
to the influence of mathematical coupling and regression-to-the-mean artefacts.
Correlations between pre-exercise BP and the exercise-mediated reductions
were typical of those previously reported (r = 0.37-0.62, P<0.05). Artefact-free
indices of BP status (pre- and post-exercise mean) did not correlate with
reductions in BP (P>0.05), which were moderated more by maximal oxygen
uptake and time of day (P<0.05). These data indicate that, if statistical artefacts
are not controlled for, the influence of BP status on the degree of PEH can be
spuriously exaggerated to the extent that other more important moderators of
BP change are masked.

In study 2 meta-analytical methods were used enhance the statistical power
and precision with which to explore the association between BP status and
exercise-mediated changes in ambulatory BP. Studies entered into the meta-
analysis were required to meet inclusion criteria of ambulatory monitoring
following exercise and comparisons to a control condition to minimize
regression-to-the-mean artefacts. Blood pressure status was a significant
moderator of PEH indicating that hypertensive patients will benefit from greater
reductions in BP. Age, BMI and V02max were also identified as significant
moderators PEH, indicating that older individuals with larger BMls and lower
fitness levels will benefit most from exercise. Pooled mean changes (95%CI) in
daytime and nocturnal SBP were -3.8 (-5.4 to -2.3) and -3.0 (-4.7 to -1.3),
respectively, and may be deemed as clinically significant reductions. Future
meta-analyses should investigate the effects of chronic exercise on ambulatory
BP and its cardioprotective effects.

In study 3 the acute effects of PA on BP and symptoms of OSA were examined
using blood pressure reactivity profiles during sleep and following waking.
Ambulatory BP and actigraphy data were collected between 20:00-10:00h in 11
OSA patients and 18 healthy controls. Blood pressure reactivity indices were
calculated (Jones et al., 2009) and compared between groups and over time
using general linear models. The greatest mean (SD) systolic BP reactivity in
the healthy controls was 15.4 (42.7) mmHg/activity count, occurring 0-2 hours
after waking, whereas the peak systolic BP reactivity of 12.7(14.4)
mmHg/activity count occurred during sleep in OSA patients (P<0.05). This
evidence of diminished nocturnal blood pressure control in response to activity
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may be associated with the peak incidence of MI in OSA, which occurs between
00:00 and 06:00 h (Kuniyoshi et al., 2008).

In study 4 the focus moved from acute activity to chronic, with an investigation
of leisure-time physical activity in OSA patients, in which the relationships with
BP, OSA severity and daytime sleepiness were examined. Levels of leisure-
time physical activity, estimated with self-reported activity questionnaires, were
not significantly different between OSA patients (n=96) and a healthy control
group (n=118). Compared with healthy controls, OSA patients displayed higher
SBP, DBP and MAP (P<0.05), but physical activity had no effect on BP in either
group when adjusted for age and gender (P>0.05). However, leisure-time
physical activity was associated with reduced 001 and daytime sleepiness
(Epworth Sleepiness Scale) in OSA patients (P<0.05). The differences in
daytime sleepiness between the lowest and highest activity groups were
comparable to the reductions found with CPAP treatment. Physical activity
would provide a useful treatment for OSA patients, potentially as an adjunct to
traditional CPAP therapy.

In study 5 the contribution of the mechanical and neural components of the
cardiac baroreflex to diurnal variation in BP control were investigated. In 12
healthy participants, the modified Oxford method was used to quantify
baroreflex gain for rising (Gup) and falling (Gdown) pressures in the morning
(0700h) and afternoon (1600h). A novel analysis method based on linear mixed
models (Atkinson et al., 2010) was employed to compare the integrated,
mechanical and neural gains between the two times of day. There was
significant diurnal variation in integrated gain, with an attenuated response in
the morning (Gup= 13.0 ±0.6; Gdown= 6.3 ±OA ms/mm Hg) when compared with
the afternoon (Gup= 15.1 ±0.6; Gdown= 12.6 ±OA ms/mm Hg). For rising
pressures the diminished integrated gain in the morning was caused by a
reduction in mechanical gain, whereas for falling pressures it was caused by a
reduction in neural gain. It is proposed that the high prevalence of
cardiovascular events in the morning is due to diminished mechanical
transduction of pressure into arterial distension at this time.

In study 6 postural influences on diurnal variation in cardiac baroreflex
sensitivity were investigated, and the contribution of mechanical and neural
baroreflex components were determined. Integrated baroreflex sensitivity was
reduced in the morning and afternoon when an upright posture was assumed,
and was primarily attributed to decreases in neural gain. Although observed at
both times of day, reductions in baroreflex sensitivity due to the change in
posture occurred to a greater extent in the afternoon. This caused the diurnal
variation that was reported in the supine position to be attenuated for rising BP,
and eliminated entirely for falling BP when participants changed to a standing
position.

The studies in this thesis have provided further knowledge and understanding of
sources of variation in human BP control, including the effects of BP status,
health status, fitness, physical activity, diurnal variation and postural changes.
Methodological issues in BP research, clinical applications, and mechanisms
responsible for BP regulation have also been addressed.
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Literature Review



1.1 Introduction
Human health relies upon the maintenance of a constant internal environment

within the body despite changes to the external environment, a concept termed

homeostasis (Cannon, 1929). This requires the strict regulation of physiological

variables within certain limits. Blood pressure is one such variable and the

consequences of poor regulation include increased risk of myocardial infarction,

sudden cardiac death and stroke (Muller et al., 1987, Elliott, 1998). Individuals

with high BP status (hypertension) are at greater risk of such events compared

with normotensives (Kannel, 1996), and therefore the management of both

acute and chronic BP is vital. The importance of maintaining BP above lower

limits should also be stressed, since falls in BP can have negative implications,

such as syncope. Orthostatic hypotension, for example, refers to large

reductions in BP due to poor control when an upright posture is maintained.

The aim of this review chapter is to synthesise and critically analyse the current

literature regarding BP control in humans. First, the reader is introduced to the

endogenous and exogenous components of blood pressure, with reference to

circadian variation in cardiovascular risk. Secondly, the BP responses to

physical activity are explored, with a specific focus on post-exercise

hypotension and influential factors such as participant characteristics and

exercise protocol. These responses are then discussed in the context of diurnal

variation. Thirdly, BP control, circadian variation and physical activity are

discussed with relation to obstructive sleep apnoea, a particularly relevant

clinical population due to the independent risk of hypertension and disturbances

to sleep associated with this condition. The final focus of this review is the

cardiac baroreflex, a key mechanism of blood pressure control and one

previously found to exhibit diurnal variation.

1.2Blood pressure and health status

1.2.1 Circadian rhythm of blood pressure

At rest, BP displays a circadian rhythm, with a typical peak to trough difference

in systolic BP of 20-30 mmHg (Pickering et al., 1982). The lowest pressures

tend to be during sleep and the highest after a person wakes up and becomes

active. This period is known as the "morning surge" in blood pressure and is

associated with a sudden activation of the sympathetic nervous system (Kaplan,
2



2003). A secondary peak can occur in the early evening. This pattern is

essentially the same in hypertensive patients, although the profile is shifted

upwards (Pickering et aI., 1982). However, some hypertensives exhibit a

diminished nocturnal fall in BP with less than a 10% reduction compared with

daytime BP, and are classified as 'non-dippers' (Verdecchia, 2000).

The circadian rhythm of BP has an endogenous component, meaning that it is

regulated, in part, by the body clock. Research suggests that the site of the

body clock is the suprachiasmatic nuclei (SCN), which consists of two clusters

of cells at the base of the anterior hypothalamus (Reilly et aI., 1997). Circadian

rhythms in humans serve an environmental anticipatory purpose to ensure that

the body is in the optimum physiological state for tasks associated with certain

times of day, such as sleep, eating, and physical activity. For example, after

peaking in the afternoon core body temperature begins to fall in preparation for

nocturnal sleep (Reilly et al., 1997). Environmental rhythms such as the

light/dark cycle are important for ensuring synchronisation of the body clock to a

24-hr period. Some physiological variables, such as core body temperature,

have relatively large endogenous components. However, BP is heavily

influenced by the environment and behaviour, and therefore has a substantial

exogenous component.

Factors such as the sleep-wake cycle, posture, ingestion of food (Pickering,

1988) and physical activity (Leary et al., 2002, Kario et al., 1999) can cause

marked changes in BP to the extent that the existence of an endogenous

component has been questioned (Kerkhof et al., 1998, Van Dongen et al., 2001,

Millar-Craig et al., 1978). The morning surge in BP, for example, is strongly

influenced by the levels of physical activity in the hours after waking (Leary et

al., 2002). Khoury et al., (1992) conducted a study specifically examining

whether the rise in BP began prior to or following waking. In this study,

participants either rose immediately or remained supine after waking and BP

was measured 1 h prior to and 60 to 90 min after waking. The BP changes

observed were 1/3 mm Hg upon waking compared with 7/5 mm Hg following

getting out of bed, suggesting that the rise in morning BP occurs mainly after

getting up and may be due to postural changes and/or an increase in activity.

Pickering (1988) examined changes in BP compared to rest and found on
3



average a 1017 mm Hg (SBP/DBP) reduction during sleep, a 9/10 mm Hg

increase during eating, and a 12/6 mm Hg increase during walking.

Further evidence of a large exogenous component includes research involving

travel across time zones (Fogari et al., 1997) and shiftwork (Baumgart et al.,

1989) in which participants' BP adjusted rapidly to the new rhythm. However,

work by Kitamura et al. (2000) indicated that the endogenous component of BP

is present, although small, when they found that shiftworkers exhibiting a

dipping BP profile became non-dippers on the first night shift, before adjusting

to a normal dipping BP profile. This initial resistance to rapid changes in lifestyle

suggests that the endogenous component exerted some influence on the BP

rhythm before adjusting to the new pattern. Constant routine studies, in which

environmental cues or 'zeitgebers' such as the light-dark cycle are removed,

provide further support for the existence of an endogenous component. Cosinor

analysis revealed amplitudes of between 5 and 15% (Shea et aI., 2005) or 5-10

mm Hg (Minors and Waterhouse, 1981), representing a small influence relative

to the exogenous component.

1.2.2 Incidence of cardio- and cerebro-vascular events

The incidence of cardiovascular events shows circadian variation similar to that

of BP at rest. Peak incidences of sudden cardiac death and myocardial

infarction occur between 06:00-12:00 hours (Figure 1.1), during the morning

surge of blood pressure (Muller et al., 1987, Muller et al., 1989, Willich et al.,

1989). It has been suggested that the steep increase in blood pressure after

waking may contribute to the triggering of atherosclerotic plaque rupture in the

arteries (Muller et aI., 1989), although there are other circadian-related factors

that may increase the likelihood of plaque rupture in the morning, for example,

platelete aggregation, catecholamine release and cortisol levels (Muller, 1999a).

It is speculated that the rupture of vulnerable atherosclerotic plaques leads to

thrombosis and to cardio- or cerebra-vascular events (Millar-Craig et al., 1978,

Johnstone et al., 1996). This hypothesis is consistent with findings from a meta-

analysis of the timing of stroke onset (Elliott, 1998), in which it was reported that

the greatest risk was between 06:00 and 12:00 h. According to the study

findings, which included a total of 11,816 strokes, there was a 49% increased

relative risk at this time compared with the number that would be expected if no
4



circadian variation were present. According to Elliot (1998), 1 in 8 strokes are

caused by the increase in BP or 'morning excess'.

Bursztyn et al. (1999) suggested that taking a siesta is related to the increased

incidence of cardiovascular events in the afternoon, which is supported by a

study by (Muller, 1999b) in which a secondary peak in sudden cardiac death

and onset of angina pain was reported in the evening between 18:00 and 19:00

h. In an earlier study it was found that BP during afternoon sleep is reduced to a

similar level as during night sleep which may lead to similar effects when arising

(Bursztyn et al., 1994). However, Naska et al. (2007) reported a 37% lower

coronary mortality in people who regularly take a siesta compared to those

people who do not, although there may be other lifestyle factors associated with

this population, such as diet and exercise, which had a greater influence. Much

of the research regarding circadian variation in BP is related to the increased

risks due to the morning BP surge, and therefore the control of rising pressures.

However, it has been hypothesised that BP control when pressures are falling

may also be attenuated at this time. Poor regulation of BP can affect cerebral

blood flow if mechanisms of cerebral autoregulation are unable to respond

adequately to changes in BP. Therefore there may be links with increased

orthostatic intolerance (Lewis et al., 2010) and risk of vasovagal syncope

(Mineda et al., 2000, Zoghi et al., 2008) reported in the morning.
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Onset of angina pain

Onset of angina pain (non-Q-wave) I-------J

Myocardial infarctions 1-----

Out-of-hospital sudden cardiac death
(n=2203) I----_J

Definite or possible sudden cardiac death
(n=429)

Definite sudden cardiac death (n=264) 1--__

00:00 06:00 12:00 18:00 24:00
Time of day (h)

Figure 1.1: Peak times of incidence (indicated by black bars) for a number of

acute cardiac events. Taken from Atkinson et al. (2006).

1.3 Blood pressure responses to physical activity

1.3.1 Post-exercise hypotension

Rapid reductions in arterial BP following exercise are now well-documented.

This 'post-exercise hypotension' (PEH) can occur within a few minutes following

the termination of exercise (Kraul et al., 1996), and may persist for 24 hours or

more during subsequent everyday activities and sleep (Jones et al., 2009a,

Fullick et al., 2009). However, conflicting findings exist regarding the duration

and magnitude of the pressure decrement post-exercise. In many studies in

normotensives BP has been measured for 1-2 h following exercise and initial

falls followed by a rise to baseline have begun after 5-8 minutes, usually with a

return to baseline at the cessation of measurement (MacDonald et al., 2000a).

Somers et al. (1991) found PEH to last for up to 2 h in normotensive individuals

and Pescatello et al. (2004b) reported PEH for up to 22 h in hypertensive

individuals. In a review by MacDonald (2002) the pooled average decrement in

pressure in studies reporting PEH, was approximately 8/9 (SBP/DBP) mm Hg in

the normotensive population, 14/9 mm Hg in the borderline hypertensive

population and 1017 mm Hg in the hypertensive population.
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Studies investigating the potential mechanisms of PEH have been contradictory,

which may suggest that several factors are involved. The BP reductions post-

exercise have been associated with reduced systemic vascular resistance (or

total peripheral resistance) that is not completely offset by increases in cardiac

output (Halliwill, 2001). However, the reasons for this are still under debate.

Some study results suggest that exercise causes the arterial baroreflex to be

reset leading to reduced sympathetic vascular nerve activity for a given

pressure, and therefore the blunted vascular responsiveness causes lower

blood pressures to be maintained (Halliwill et al., 1996). The authors suggested

that pre-synaptic inhibition of noradrenaline could cause the reduced

transduction of nerve activity to vasoconstriction. Another possibility is

vasodilation caused by histamine, which has been shown to block the release of

noradrenaline thus preventing vasoconstriction and causing a further drop in

vascular resistance (Lockwood et al., 2005). Further research is required to

unravel the complex mechanisms involved in the BP responses following

exercise.

1.3.2 Participant characteristics affecting post-exercise hypotension

There is large between-study variability with regards to investigations of PEH.

This may be due to differences in participant groups, exercise protocols or

methods of BP measurement. Some investigators have specifically examined

the time course of PEH using ambulatory monitoring (Brownley et al., 1996,

Forjaz et al., 2000), although findings are contradictory and do not emulate the

immediate response of BP. These confounding results may be due to the fact

that post-exercise activity was not controlled because participants were

monitored during their everyday routines. Pescatello and Kulikowich (2001)

suggest that the most important predictor of BP differences post-exercise is

directly related to baseline values and thus individuals with the highest baseline

BP status will exhibit a greater magnitude of PEH. They reported that baseline

SSP accounted for 37% (P = 0.001) and 26% (P = 0.018) of the variance in day

and night SBP post-exercise, respectively. These findings were averaged over

23 dynamic exercise studies consisting of 12 normotensive and 22 hypertensive

mixed gender groups. However, there are important methodological issues

relating to the use of initial BP to predict changes in BP. Previous findings, from
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both experimental studies and meta-analyses, may be questioned due to

potentially spurious correlations caused by mathematical coupling and

regression-to-the-mean statistical artefacts. These artefacts can compromise

the relationship when pre-exercise BP is used as the measure of BP status, and

can cause other potential moderators of BP change to be masked when pre-

exercise BP is entered as a predictor into multiple regression models. The

results of previous studies have been used to support claims made in position

stands regarding the most important moderators of exercise-mediated changes

in BP (Pescatello et al., 2004a). Given the importance of the relationship

between BP status and BP changes for the support of exercise as an anti-

hypertensive therapy, it should be explored whilst controlling for statistical

artefacts.

Despite risking spurious correlations caused by statistical artefacts there are

other studies using similar methods to come to the same conclusion that BP

status predicts PEH (Kenney and Seals, 1993, Thompson et al., 2001,

Pescatello et al., 2004b) and these findings have influenced position statements

on hypertension (Pescatello et al., 2004a). Some studies have reported no

reduction in BP following exercise in normotensive groups. Cleroux et al. (1992)

reported a significant decrement in SBP (-11 ± 2 mm Hg) and DBP (-4 ± 1 mm

Hg) in hypertensive individuals following 30 minutes of cycle ergometry at 50%

V0
2max

compared to 30 minutes of control period of rest, but the exercise

protocol had no significant effect on BP in normotensive subjects. Pescatello et

al. (1991) reported that post exercise DBP and MAP were lower by 8 ± 1 (P <

0.001) and 7 ± 1 mm Hg (P < 0.05), respectively, than the baseline values for

12.7 hours in mildly hypertensive subjects. However, MAP remained unchanged

in normotensive subjects and SBP increased by 5 ± 1 mm Hg (P < 0.001). On

the other hand, MacDonald et al. (1999) found that PEH could be elicited in a

normotensive population with both mild (50% V02max) and moderate (70%

V0
2max

) cycle ergometry. Reductions in systolic and diastolic blood pressure of

8/5 mmHg were reported. MacDonald et al. (1999) stated that although PEH

can be detected in normotensive individuals it was found to be less consistent

and smaller magnitude. The differences in BP responses associated with BP

status may be due to mechanisms of BP control, such as the baroreflex, that
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are more efficient in normotensives compared with hypertensives, therefore

preventing large and prolonged reductions in BP (MacDonald, 2002).

Studies of PEH have tended to be based upon the male population. However,

there have been some investigations into the effect of sex on BP responses to

exercise. Senitko et al. (2002) reported similar magnitudes of PEH in both

untrained and endurance trained men and women after a single 60 minute bout

of upright cycling at 60% V02max (-4 - 5 mm Hg; P < 0.05 vs. pre-exercise).

Brown et al. (1994) and Deschenes et al. (2006) also found no differences in

PEH between genders. However, Kenny et al. (2006) reported a significantly

greater decrease in MAP (P<0.05) in females (-14mmHg) compared to males (-

9mmHg). It would seem possible that these differences in gender may be

associated with varying effects of exercise during stages of the menstrual cycle.

However, Lynn et al. (2007) investigated the vascular responses of 14 males

and 14 females following 60 minutes of cycling at 60% V02peak. Women were

tested in the mid follicular, ovulatory and luteal phase. They reported that

menstrual phase and gender had no effect on the magnitude of PEH and that

the pattern of haemodynamic responses did not differ. The majority of studies

seem to suggest that gender and the menstrual cycle have little effect on PEH,

although there is currently limited research in this area. In terms of training

status, study findings are contradictory. Senitko et al. (2002) found no effects of

training status on PEH. However, in a study on professional footballers, those

players with the lowest maximal oxygen uptakes (V02max ) showed the greatest

reductions in DBP 60 minutes after a short maximal field exercise than those

with higher values of Vo2max• These findings were in DBP alone, as there was

no significant correlation between V02max and change in SBP. The

discrepancies between study results may be teased out with the use of meta-

analytical techniques. Meta-analyses provide greater statistical power and

precision by examining the effect size for a group of studies sharing the same

outcome measure. For example, a meta-analysis on acute PEH may include a

set of studies involving different subject cohorts with a range of ages, resting

BPs, BMls and training status. This may provide a clearer overall picture of the

effects of these participant characteristics on BP responses following exercise.
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1.3.3. Effects of exercise protocol on post-exercise hypotension

Given the range of exercise protocols used in studies of PEH it is possible that

some of the variance in results may be related to exercise mode, duration or

intensity. Significant BP reductions have been reported following a variety of

aerobic exercise including; walking (Kaufman et al., 1987), running (Rueckert et

al., 1996), and both leg and arm ergometry (MacDonald et al., 2000b). However,

comparisons are complicated by a large range of intensities and durations.

However, MacDonald et al. (2000a) stated that the duration of exercise does

not directly influence the duration of PEH. They reported no significant

difference between post-exercise SBP or DBP following 15, 30 and 45 minutes

of cycle ergometry at 70% Vo2max• Similarly, MacDougall (1994) found a similar

magnitude of PEH following 10,15,30 and 45 min of exercise at 70% V02max in

a normotensive and borderline hypertensive population. Conversely, Bennett et

al. (1984) found that the PEH in hypertensives increased with duration of

exercise. However, the protocol consisted of 10-min bouts of exercise

separated by 3-min rest periods during which BP was measured. A brief

reduction in BP immediately following exercise is often associated with pooling

of the blood in the vasodilated muscle beds; therefore these mechanisms may

be significantly different from those that cause PEH. However, Forjaz et al

(1998b) reported greater reductions in both SSP and DSP and a longer duration

of PEH in SSP following 45 minutes of exercise compared to 25 minutes of

exercise.

Many researchers have investigated the effect of exercise intensity on

subsequent PEH (Forjaz et al., 1998b, Forjaz et al., 2004, MacDonald et al.,

1999).When examining the effects of exercise intensity on PEH, the majority of

studies have employed sub-maximal cycle ergometry protocols at intensities

ranging between 40 and 100%, as indicated by measurements of V02max, heart

rate reserve or predicted maximal heart rate (Pescatello et al., 1991). However,

the effect of such characteristics on PEH is still not clear even in healthy

normotensive individuals. Forjaz et al., (1998a) found similar PEH following 45

min of exercise at intensities of 30, 50 and 80% of V02max in normotensive

subjects. Similarly, Pescatello et al. (1991) found no difference in the magnitude
10



of PEH observed following 30-min bouts of cycle ergometry at 40 and 70%

V0
2max

in a normotensive population. However, contrasting evidence does exist.

Forjaz et al. (2004) utilized the same protocol as their earlier study but altered

exercise intensities to 30, 50 and 75% V02max' They subsequently reported a

greater reduction in BP following more intense exercise. Additionally, Piepoli et

al. (1994) found a decrement only after maximal cycle exercise when compared

with moderate and low intensity exercise in normotensive sedentary volunteers.

According to Jones et al. (2007) the acute PEH response in normotensive men

varies following exercise bouts of varying intensities and durations, but the

response is consistent when the protocols are matched for total work done. The

researchers reported significant reductions in MAP during 20 minutes post

exercise following semi-recumbent cycling for 30 minutes at 70% V02max (-2 ±

4 mm Hg, P = 0.04) and 40% V02max for a time which corresponded to equal

total work done (-1 ± 6 mm Hg, P = 0.019). This suggests the magnitude of PEH

elicited is dependent upon total work done as opposed to exercise intensity or

duration.

The majority of researchers who have investigated the effect of both intensity

and duration on PEH have utilised continuous exercise protocols. However, it

has been found that the insertion of rest periods into an exercise bout mediates

a greater reduction in post exercise BP. Park et al. (2006) examined the BP of

prehypertensive adults for 12 h following accumulated physical activity,

continuous activity and control periods. It was reported that both SBP and DBP

were reduced for a longer duration following accumulated physical activity and

that SBP reduced by a greater magnitude (P = 0.045). Jones et al., (2009b)

provided further evidence for this claim with their findings that intermittent

exercise mediates a greater reduction in MAP compared with continuous

exercise, particularly when performed in the afternoon. Interestingly, it has been

proposed that these chronic benefits of exercise are explained by repeated

occurrences of acute PEH, and that the incremental capacity for greater

exercise intensity and duration as a training programme progresses merely

leads to more pronounced and prolonged acute PEH occurring over time

(Thompson et al., 2001). If exercise is to be used as a non-pharmacological

intervention in the management of BP, it is necessary to investigate the optimal
11



characteristics of the exercise required to induce PEH. Meta-analyses can be

used to combine previous study results and determine more precisely the

effects of certain exercise protocol characteristics, such as intensity, duration

and exercise mode, on BP responses.

1.3.4 Circadian variation in blood pressure responses to physical activity

Circadian variation in the response of blood pressure (BP) following continuous

exercise has been described by Jones et al. (2008b). Post-exercise

hypotension was absent or reversed when exercise was performed between

04:00-08:00 h. This BP response remained even after tight control of posture

and amount of sleep prior to exercise (Jones et al., 2008a). These studies

support the findings of previous investigations suggesting that the morning

surge in BP is, at least in part, explained by increases in physical activity at this

time of day (Millar-Craig et al., 1978, Leary et al., 2002). Given the popularity of

intermittent activities, Jones et al. (2009b) compared the post-exercise BP

reductions following a continuous and an intermittent protocol performed in both

the morning (08:00 h) and afternoon (16:00 h) on separate days. The

continuous protocol consisted of 30 min of continuous cycling and the

intermittent protocol of three 10-min bouts of cycling separated by 10-min of

rest. The exercise intensity was set at 70% V02max during both protocols to

match them for work done. Blood pressure was measured for 5-min before and

20-min following exercise. Following the intermittent protocol MAP was 8+1 mm

Hg lower compared with continuous exercise. There was significant diurnal

variation in MAP, with attenuated hypotension after morning exercise, although

this diurnal variation was less marked following intermittent compared with

continuous exercise. This study demonstrates variation in BP control caused by

both time of day and exercise protocol, and highlights the importance of

identifying the most beneficial exercise programs for anti-hypertensive therapy.

From the results of this study, a bout of afternoon exercise that is occasionally

interrupted with short rest periods would be recommended for lowering BP

acutely.

According to Leary et al. (2002) the morning surge in blood pressure is strongly

influenced by the levels of physical activity in the hours after waking. Karia et al.
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(1999) introduced a statistical index of BP reactivity, where physical activity in

individual participants (measured via actigraphy) is regressed against BP and

the slope calculated is the BP reactivity (to activity). Kario et al. (1999) reported

significant correlations between physical activity and BP in a sample of 160

adults. Jones et al. (2006) used this blood pressure reactivity index to

investigate the BP responses to everyday physical activity over a 24-hour

period in a clinical population of hypertensives (n=440). The highest reactivity of

SBP was observed between 8:00 AM and 10:00 AM indicating reduced BP

control coinciding with the time of day for peak incidence of cardiovascular

events (Muller et al., 1987). Systolic BP reactivity still showed statistically

significant 24-hour variation when the reactivity index time periods were ordered

in terms of time after waking. A secondary rise in SBP reactivity was reported in

the early afternoon, around the time when there is a secondary peak in the

onset of angina and out-of-hospital sudden cardiac death (Atkinson et al., 2006).

The predictive value of the BP reactivity index in terms of cardiovascular events

remains to be verified. This relatively straightforward analysis does not take into

account other variables linked with circadian variation in cardiovascular events,

such as platelet hyperactivity, hypercoagulability and hypofibrinolysis, blood

viscosity and increased vascular spasm (Muller et al., 1987,Willich et al., 1993,

Feng et al., 1999, Andreotti et al., 1988). However, it may potentially be a

simple tool for providing useful information within clinical populations associated

with hypertension and cardiovascular disease, such as obstructive sleep

apnoea (OSA).

1.4 Blood pressure and physical activity in the OSA population

1.4.1 Obstructive sleep apnoea

Obstructive sleep apnoea syndrome is a condition characterised by frequent

episodes of upper airway collapse during sleep, causing arousal from sleep in

order to re-establish airway patency and resume breathing. This leads to sleep

fragmentation and recurrent hypoxaemia and hypercapnea due to the

respiratory pause (Silverberg et al., 2002). Apnoea is defined as a complete or

almost complete cessation of airflow and hypopnoea as a ~30% reduction in

airflow accompanied by a ~4% drop in oxygen saturation. The apnoea-

hypopnoea index (AHI) represents the average number of these episodes per
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hour of sleep. A value of 5 or more indicates the presence of mild OSA; 15-30 is

moderate; and above 30 is termed severe OSA. Another index generally used

alongside AHI in determining the severity of OSA is the oxygen desaturation

index (001). This indicates the average number of oxygen desaturations ~4%

per hour of sleep, and is typically correlated with AHI (Svanborg et al., 1990).

Affecting up to 17% of the adult population, the prevalence of OSA is similar to

that of diabetes and asthma. However, the prevalence in obese patients

exceeds 30% (40-90% in morbidly obese) and up to 24% of middle-aged males

may show sub-clinical symptoms (Silverberg et al., 2002). According to a study

by Young et al. (1997) it was estimated that as many as 80-90% of OSA cases

are undiagnosed. Current treatment is continuous positive airway pressure

(CPAP), which provides a continuous flow of air via a mask to splint the upper

airway open during sleep. It has reported that CPAP is a successful treatment

for the reduction of AHI (Giles et al., 2006). However, compliance with this

treatment is often poor (Engleman et al., 1994), and it is therefore important to

explore alternative therapies for treatment of OSA.

1.4.2 Circadian variation of blood pressure in OSA

Obstructive sleep apnoea syndrome is an independent risk factor for

hypertension (Lavie et al., 2000, Nieto et al., 2000), with over half of patients

with essential hypertension also suffering from OSA (Silverberg et al., 2002).

Obstructive sleep apnoea has also been associated with increased risk of

stroke, cardiac arrhythmias, and heart failure (Parish and Somers, 2004).

Nagata et al. (2008) investigated the diurnal blood pressure variation in OSA

patients with a comparison of 24-hr ambulatory BP profiles. Patients with OSA

had higher mean 24-hr and night-time BP values compared to control patients

suffering from daytime sleepiness only. Further increases in BP were found as

the severity of OSA increased. These findings concur with those of Noda et al.

(Noda et aI., 1993) who found that patients with the greatest severity of OSA

had the highest night-time BP. The difference in systolic BP during waking and

sleep was correlated with AHI (r = -0.47, p<0.05), lowest 02saturation (r = 0.63,

p<0.005) and time spent below 90%02saturation (r = -0.47, P<0.05). This

confirms the importance of OSA severity in the elevation of nocturnal BP and

the potential for ambulatory BP monitoring in the diagnosis of severe OSA.
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It has been suggested previously that hypoxemia and hypercapnia caused by

the cessation of airflow activates the chemoreflex and leads to increased

sympathetic nerve activity (Somers et al., 1995). This causes peripheral

vasoconstriction which, alongside increases in cardiac output caused by

changes in cardioac transmural pressures, leads to surges in BP (Kuniyoshi et

al., 2008). However, it is currently unknown whether the high night-time BP in

OSA patients is also associated with greater activity at this time. It could be

speculated that individuals with OSA exhibit greater movement during the night

as a consequence of frequent sleep disturbances. Alternatively, BP responses

to a given level of physical activity may be accentuated during the night in OSA

patients. The high night-time BP found in OSA patients coincides with the peak

incidence for cardiac events in this population. Kuniyoshi et al. (2008) examined

the day-night variation of acute myocardial infarction (MI) in 92 patients where a

clear onset of chest pain had been identified. The frequency of MI was

compared between OSA and non-~SA groups for different times of day (Figure

1.2). In agreement with previous literature (Muller et al., 1987) the greatest

percentage of MI in the non-OSAS group (47%) occurred in the morning

between 06:00 and 12:00h. However, in the OSA group the peak incidence of

MI occurred between 00:00 and 06:00h (32%). Of all those having MI at this

time 91% had OSA. Although this study was limited due to the uncertainty of the

exact timing of MI, the data suggest that OSA patients are more likely to have

MI at night than any other time of day, which may be associated with night-time

surges in BP that lead to plaque rupture and cardiac thrombosis (Kuniyoshi et

al., 2008).

There is strong evidence in the literature indicating that BP responses to

exercise are subject to circadian variation. It has been hypothesised that

diminished BP control in the morning, during everyday physical activities for

example, may be associated with increased prevalence of cardiovascular

events. However, it remains unclear whether populations suffering from sleep

disturbances and/or disruptions to circadian rhythms, such as patients with OSA,

exhibit different 24-hr profiles of BP control and altered responses to physical

activity. Given the proposed link between BP responses to activity and the

occurrence of cardiovascular events, studies of BP reactivity in OSA patients
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may provide further insight into the altered circadian variation of BP control and

cardiovascular risk in this clinical population.

60

0.01n

0.003

n
D NoOSA
II OSA

o
Midnight -
5:59AM

6AM-
I 1:59AM

noon-
5:59PM

6PM-
I 1:59PM

Figure 1.2: Day-night pattern of myocardial infarction based on 4 6-hr time

intervals in OSA (n=64) and non-OSA (n=28) patients (Kuniyoshi et al., 2008).

There is evidence for improvement of BP control and diurnal BP profiles with

CPAP (Wilcox et al., 1993, Akashiba et al., 1999, Logan et al., 2003, Haentjens

et al., 2007). In particular, Logan et al. (2003) found that during a single night's

application, CPAP abolished OSA and reduced systolic BP (±SD) in stage 2

sleep from 138.3 ± 6.8 to 126.0 ± 6.3 mm Hg. Long-term use was successful in

improving 24-h SSP with a reduction of 11.0±4.4 mmHg after CPAP was used

for 2 months. Despite positive findings of attenuations in BP, research is still

ongoing to establish to what extent CPAP is effective in reducing

cardiovascular-related morbidity and whether there are useful adjunct or

alternative therapies, such as physical activity, that will provide an option for

those patients for whom compliance with CPAP is poor.
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1.4.3 Physical activity and OSA severity and symptoms

Sleep disturbance due to frequent apnoeic and hypopneic episodes often

causes severe sleepiness and fatigue during the day, thus reducing quality of

life (Silverberg et aI., 2002). These symptoms also increase the probability of

long-term sick leave (Sivertsen et al., 2008) and the risk of motor vehicle

accidents (Barbe et al., 1998, Teran-Santos et al., 1999). Previously

researchers have found that OSA symptoms, in particular daytime fatigue, are

not correlated with OSA severity. Aguillard et al. (1998) recorded daytime

sleepiness in 32 OSA patients using the Multiple Sleep Latency Test (MSLT).

Each participant performed a maximal exercise test to assess physical fatigue

whilst a fatigue severity scale (FSS) was used as a subjective measure. Results

showed high levels of self-reported fatigue and low physical work capacity.

Objective and subjective measures of fatigue were not correlated with OSA

severity as has been found since by Hong and Dimsdale (2003). However,

MSLT was not Significantly correlated with the FSS or exercise test suggesting

that daytime physical fatigue and sleepiness are independent OSA problems.

Hong and Dimsdale (2003) used measures of self-reported habitual physical

activity in 38 OSA patients to investigate the correlations with sleep

architecture, subjective well-being and OSA severity (respiratory disturbance

index). Regular physical activity was significantly correlated with higher SF-36

vitality (r =.54), higher Profile of Mood States vigor (r =.41), and less fatigue (r

=.46). These correlations remained even after controlling for RDI and BM!.

There was no correlation between OSA severity and physical activity,

suggesting that physical activity is better than OSA severity in predicting

perceptions of energy and fatigue. Peppard and Young (2004) reported that the

odds of having an AHI of over 15 significantly decreased with an increasing

level of exercise. It was found that individuals who exercise 1-2 hours every

week had 0.62 times the odds of having moderate or worse sleep disordered

breathing compared to those who did no exercise. More than 7 hours per week

reduced the odds further to 0.31 compared to the non-exercisers.

The findings of these previous studies have been inconsistent, with some

researchers suggesting that daytime sleepiness is correlated with the AHI, and

17



others suggesting that it is related to fitness and physical activity rather than

OSA severity. These discrepancies may be due to the definitions used to

describe daytime sleepiness and fatigue and the techniques employed to

measure them. It is likely that results of multiple sleep latency tests, sleepiness

questionnaires and measures of physical and subjective fatigue during exercise

describe distinctively different problems, all of which may be associated with

OSA. Although study results suggest that chronic physical activity may have an

important part to play in reducing the symptoms of OSA, there are certain

limitations to previous investigations, including sample size and the lack of

control for confounding factors, which may have led to important relationships

going undetected. A recent study by Basta et al. (2008) addressed this problem

and found significant effects of regular exercise on daytime sleepiness in OSA

whilst controlling for a range of patient characteristics. However the study

lacked comparisons of energy expenditure between OSA and the general

population and did not report the effects of physical activity on OSA severity

(AHI) or BP. The consequences of severe daytime sleepiness are very serious

and therefore optimizing treatment is extremely important. Results of previous

studies also suggest that those OSA patients with severe sleepiness have an

increased risk of developing hypertension (Kapur et al., 2008).

Successful interventions for reducing OSA severity and improving sleep quality

have typically included dietary interventions (Harman et al., 1982, Sampol et al.,

1998, Kajaste et al., 2004), soft tissue surgery (such as

uvulopalatopharyngoplasty) (Riley et al., 2000), and weight-loss surgery

(Charuzi et al., 1992, Pillar et al., 1994). Sampol et al. (1998) found that weight

loss through a dietary intervention caused substantial reductions in OSA

severity, sometimes reducing AHI to normal levels of <5events/hr. Weight-loss

surgery has also been found to elicit large initial reductions in AHI in OSA

patients following surgery, however Pillar et al. (1994) found significant

increases in AHI after only 5 to 10-yr follow-ups. It would seem that surgical

treatments are not only costly, but they often provide only short-term solutions.

Exercise training has also been proven to be beneficial, both as a separate

treatment (Norman et al., 2000) and as an adjunct therapy to CPAP

(Giebelhaus et al., 2000). Lifestyle interventions such as physical activity may

be crucial in providing more long-term reductions in OSA severity and
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symptoms. However, the efficacy of exercise as a treatment for hypertension

and cardiovascular risk in the OSA population warrants further investigation.

Physical activity interventions may have the potential for reducing BP as well as

daytime sleepiness, thereby reducing the risk of cardiovascular events and road

traffic accidents, and enhancing quality of life.

1.5 Blood pressure control via the cardiac baroreflex

1.5.1 Cardiac baroreflex

The arterial baroreflex is the key mechanism for the control of acute BP

(Benarroch, 2008) functioning via a negative feedback system. Low baroreflex

sensitivity has been reported to be a significant marker of cardiovascular

disease (La Rovere et aI., 1988) and is associated with myocardial electrical

instability, increased susceptibility to ventricular fibrillation and cardiac sudden

death (Billman et al., 1982). It is also associated with increased long-term

mortality following acute myocardial infarction (La Rovere et al., 1988) and

acute ischemic stroke (Robinson et al., 2003), indicating that appropriate

baroreflex regulation of autonomic outflow is crucial to maintenance of

cardiovascular health and homeostasis. The arterial baroreceptors are

mechanosensitive afferent nerve terminals located in the adventitia of the

carotid sinuses (innervated by the glossopharyngeal nerve) and aortic arch

(innervated by the vagus nerve). Increases in arterial BP cause mechanical

deformation of the vessel wall, which stimulates baroreceptor afferents to

provide excitatory input to neurons located in the nucleus tractus solitarius (NTS)

(Blessing, 2003). The cardiac baroreflex involves a direct input from the NTS to

a group of vagal preganglionic neurons located in the nucleus ambiguous,

which project to the cardiac ganglion neurons that inhibit the automatism of the

sinus (Spyer, 1994). This provides beat-to-beat control of heart rate, and

therefore serves to maintain BP within certain limits. The sympathetic baroreflex

involves a sympathoinhibitory pathway initiated by the NTS neurons that mainly

controls peripheral resistance (Oampney et al., 2003). The cardiac and

sympathetic baroreflexes appear to be regulated independently; the focus within

this thesis will be the cardiac baroreflex. This 'integrated' cardiac baroreflex

response of changes in heart rate to changes in BP can be separated into two
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components: the transduction of pressure into barosensory vessel stretch

(mechanical component), and the transduction of barosensory vessel stretch

into efferent autonomic outflow (neural component) (Hunt et al., 2001).

1.5.2 Assessment of baroreflex sensitivity

Cardiac baroreflex sensitivity or 'gain' is typically quantified by the responses in

R-R interval to changes in SBP (Hunt et al., 2001). This provides an estimation

of integrated baroreflex function. Many researchers use spontaneous methods

of assessing baroreflex gain, such as the sequence method, a-index, and

transfer function. These methods make use of naturally occurring oscillations in

SBP and R-R interval, which appear to be causally related. Spontaneous

methods are commonly used as they provide a non-invasive alternative to

pharmacological techniques. However, the accuracy of spontaneous methods

for determining baroreflex gain has been under question. Much of the variability

with the spontaneous methods can be explained by respiratory sinus arrhythmia

(Lipman et al., 2003), findings that have been confirmed by Tzeng et al. (2009)

who reported significant increases in the a-index and spontaneous up-

sequences with slow-breathing compared with fast-breathing. Lipman et al.

(2003) investigated the consistency in results between five spontaneous

methods (sequence method, a-index, transfer function, low-frequency transfer

function, and impulse response function) and pharmacologically-derived

baroreflex gain (modified Oxford method). The modified Oxford method involves

sequential injections of sodium nitroprusside (SNP) followed by phenylephrine

hydrochloride (PE) in order to characterise falling and rising pressures,

respectively (Hunt et al., 2001). The original Oxford method involves PE

injections only, and therefore only rising pressures. Although spontaneous

indices were found to correlate with the modified Oxford method, the Bland-

Altman method revealed limits of agreement as large as the baroreflex gain

itself, indicating weak agreement. Unlike baroreflex gain determined by the

modified Oxford method, none of the indices were related to barosensory vessel

distensibility, suggesting that findings from spontaneous methods predominantly

reflect vagally mediated heart rate variability (Lipman et al., 2003).
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Unlike the Oxford method (phenylephrine alone), the modified Oxford method

enables separate analysis of falling and rising pressures, whilst allowing the

evaluation of dynamic cardiac responses across a wide range of blood

pressures. Sodium nitroprusside is a vasodilator and therefore causes BP to fall,

whereas PE is an alpha-1 agonist and therefore causes a rise in BP via

vasoconstriction. According to Eckberg and Sleight (1992) cardiac baroreflex

gain is smaller for falls in pressure than rising pressure, a concept that was

termed hysteresis. This means that at identical pressures R-R interval is longer

with falling than rising pressure and therefore there is a change in set-point of

the SBP/R-R interval relation (Studinger et al., 2007). In the same way that

integrated gain can be quantified by the responses in R-R interval to changes in

SBP, the mechanical and neural components of the cardiac baroreflex may also

be determined with the additional measurement of carotid diameter using

ultrasound techniques. For mechanical gain changes in carotid diameter are

plotted against SBP, and for neural gain changes in R-R interval are plotted

against carotid diameter (Hunt et al., 2001). Linear regression of these pairs

yields a slope which is taken as baroreflex gain. Studinger et al. (2007) applied

these methods in 14 young healthy participants and found that hysteresis was

not derived solely from the mechanical component, but from interactions

between both mechanical and neural. The two components tended to act in

opposition to determine differences in set point between falling and rising

pressures, but acted in conjunction to determine differences in integrated

baroreflex gain.

Many other methods of assessing baroreflex function exist, such as neck

suction for example, which is a technique that directly stimulates the carotid

baroreceptors. However, this method would not allow for carotid artery imaging

to enable the separation of the mechanical and neural components. Also, the

two sites for baroreceptors causes the central nervous system to receive

conflicting information because when carotid baroreceptor activity is stimulated,

aortic baroreceptor activity is reduced to oppose it (Eckberg and Fritsch, 1993).

The modified Oxford method has an advantage since the baroreceptors

respond to actual physiological stimuli, i.e. falling and rising SBP. This method

may be questioned regarding direct drug effects on the barosensory vessels.

However PE, for example, causes vasoconstriction, which leads to an increase
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in SBP and increases in carotid artery diameter, thus any direct effects of the

vasoconstrictor on this vessel are overridden.

1.5.3Diurnal variation in baroreflex sensitivity
Many previous studies have identified diurnal variation in baroreflex gain, with

reduced gains following waking compared with during sleep (Pickering et al.,

1968, Smyth et al., 1969, Conway et al., 1983, Parati et al., 1988, Parati et al.,

1995). Conway et al. (1983) used the Oxford method (PE only) in 13

participants to compare baroreflex gain during sleep with 3 stages of

progressive mental arousal: awake with eyes closed, reading the newspaper,

and performing mental arithmetic. Mean (±SD) baroreflex gain was highest

during sleep (17.3 ± 2.4 ms/mm Hg) and was significantly and progressively

lower in each of the 3 stages of mental arousal (P<0.05). Baroreflex gain fell to

10.0 (± 2.7 ms/mm Hg) during mental arithmetic at the same time as BP rose

approximately 14.8 mm Hg above baseline daytime levels. These results

suggest that baroreflex gain, and therefore BP control, continues to fall after

waking as individuals become more alert. Bristow et al. (1969) investigated

baroreflex gain during sleep and waking using injections of angiotensin or

phenylephrine. Differences in baroreflex gain between sleep and waking were

not consistent between participants with some exhibiting higher gains during

sleep and other during waking. However, mean (±SD) baroreflex gain for

normotensives following waking was 14.8 (± 9.2 ms/mm Hg) compared to 3.0 (±

0.9 ms/mm Hg) for hypertensives. This poor BP control after waking in

hypertensives is consistent with the proposed mechanisms associated with the

high risk of cardiovascular events at this time.

Hossman et al. (1980) explored baroreflex sensitivity over a 24-hr period. In 5

healthy males noradrenaline was infused for a 15-min period every 3 hours

beginning at 09:00 h. Baroreflex gain was determined by regressing R-R

interval on SBP for each infusion. The highest gains were reported at 0300 and

1200h, and the lowest at 1500 and 0900h, which is consistent with previous

findings of high baroreflex gain at night and low gain in the morning after waking.

However, it is important to acknowledge that the use of steady state 1-

noradrenaline infusions as a means to assess dynamic baroreflex sensitivity

has been questioned (Diaz and Taylor, 2006). Infusions over 15-min periods
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allow the body time to recruit mechanisms to avoid large perturbations in BP. It

can be difficult to interpret the responses because the system has time to adjust,

and it is therefore important within the study to have a clear input in order to

examine the responses accurately. It could be argued that studies using drug

infusions are predominantly focused on steady state control of BP rather than

dynamic. Therefore, future studies of circadian variation in baroreflex gain ought

to involve bolus drug injections in order to decipher the dynamic responses of

the baroreflex.

Studies using spontaneous baroreflex indices have generally shown that the

highest gains occur during the night with reduced gains in the morning following

waking (Parati et al., 1988, Tochikubo et al., 1997, Nakazato et al., 1998).

However, the variations during the daytime have not been consistent between

studies. For example, Tochikubo et al. (1997) found the circadian variation to be

bimodal with a secondary peak in baroreflex gain at 19:00 and trough at 23:00,

whereas earlier research reported a peak at 23:00h. Nakazato et al. (1998)

reported no difference between morning (0700h) and evening (2300h) in

baroreflex gain determined by the sequence method. This technique involves

estimating gain non-invasively from spontaneous changes in BP by extracting

sequences of 3 or more beats where BP and R-R interval are continuously

changing in the same direction (Bertinieri et al., 1985). Although baroreflex gain

had a tendency to increase during sleep at night, this was not significantly

different from during wakefulness. Although this study involved naturally

occurring changes in BP, it may have been limited by the small ranges of BP

associated with spontaneous fluctuations, and by the relatively small sample

size (n=8). Nakazato et al. (1998) did, however, find significantly lower

sympathetic baroreflex sensitivity during sleep compared to wakefulness in the

evening before and following morning, which is the reverse of cardiac baroreflex

sensitivity.

Much of the previous research has focused on sleep/wakefulness differences

(Pickering et al., 1968, Smyth et al., 1969, Conway et al., 1983, Parati et al.,

1988) or involved spontaneous methods of determining baroreflex sensitivity,

(Parati et al., 1988, Tochikubo et al., 1997, Nakazato et al., 1998, Pagani et al.,

1988), the limitations of which have been discussed. These studies also only
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document diurnal changes in integrated baroreflex gain; it remains unknown

whether the differences in integrated gain are due to altered mechanical

transduction of pressure into barosensory vessel stretch and/or the neural

transduction of barosensory stretch into efferent autonomic outflow (Hunt et al.,

2001). It is repeatedly proposed in the literature that the high prevalence of

cerebro- and cardio-vascular events is related to the 'morning surge' in blood

pressure (Elliott, 1998, Muller et al., 1987). Investigations of the mechanisms

behind the diminished BP control in the morning may help to explain the

increased risk. Previous studies would suggest that circadian variation in the

cardiac baroreflex response plays a role in this, and therefore it is important to

examine the separate components of this mechanism to determine the site(s)

responsible for diminished control of BP. Given that diurnal variation has

previously been reported in carotid artery distensibility (Kool et al., 1991; 1992),

it may be speculated that vessel stretch responses to changes in BP may be

altered with time of day, therefore affecting the overall baroreflex gain. Clear

delineation of this mechanisms may allow clinical interventions to specifically

target these sites in order to enhance BP control and reduce the risk of

cardiovascular events.

1.5.4 Postural influences on baroreflex sensitivity

In many of the previous studies reporting diurnal variation in cardiac baroreflex

gain participants have been in the supine position (Hossmann et al., 1980,

Conway et al., 1983, Parati et al., 1988). However, this does not accurately

represent posture during everyday living. It would be more likely that individuals

are seated or standing in the first few hours after waking, when the peak occurs

in the incidence of cardiovascular events. A number of studies have been

performed to investigate the effects of orthostatic stress on baroreflex function.

The current consensus is that orthostatic stress reduces cardiac baroreflex

sensitivity (O'Leary et al., 2003, Hughson et al., 1994, Taylor and Eckberg, 1996,

Jasson et al., 1997, lellamo et al., 1996, Pickering et al., 1971, Bahjaoui-

Bouhaddi et al., 1998, Westerhof et al., 2006, Steinback et al., 2005, Steptoe

and Vogele, 1990, Saeed et al., 2009). However, other studies report either an

increase (Pawelczyk and Raven, 1989), or no change in the cardio-vagal arm of

the baroreflex (Cooper and Hainsworth, 2002). These discrepant findings may

be attributed to methodological differences such as the use of spontaneous
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techniques versus more invasive neck suction and pharmacological methods

(O'Leary et al., 2003).

Cooper & Hainsworth (2002) compared supine posture with 60 degree head

upward tilt using the neck chamber method. This technique involves the loading

and unloading of carotid baroreceptors by application of pressures of -30 and

+30 mmHg to a chamber fitted over the neck. The responses of R-R interval

were determined, as well as forearm vascular resistance (mean arterial

pressure/brachial artery velocity by Doppler ultrasonography). The authors

found that responses of R-R interval (i.e. baroreflex function) was not affected

by the postural change. However, forearm vascular responses to neck suction

and pressure during head upward tilt were enhanced in healthy patients.

However, there was no vascular effect of tilt in patients with orthostatic

intolerance, which may suggest that the sympathetic baroreflex controlling

peripheral vascular resistance is key to maintaining BP during orthostatic stress.

A large number of studies have reported significant reductions in cardiac

baroreflex gain, many of which have involved using spontaneous techniques.

Bahjaoui-Bouhaddi et al. (1998) used the spontaneous sequence method to

explore the effects of active standing and passive tilting on baroreflex gain in 13

healthy individuals. A significant reduction in cardiac baroreflex gain was found

following a postural change from supine (14.6 ± 2 ms/mm Hg) to active standing

(7.8 ± 1.2 ms/mmHg). Similar effects of 60 degree head upward tilt were

observed (8.8 ± 1.2 ms/mmHg). The number of spontaneous sequences

observed during active stand and passive tilt also increased, which reiterates

the changes in BP caused by postural stress and the ability of the baroreflex to

control them. Steinback et al. (2005) also used the sequence method to

investigate baroreflex gain between supine and 60 degree head upward tilt.

Similar to the previous study by Bahjaoui-Bouhaddi et al. (1998), the authors

found a diminished baroreflex gain caused by orthstatic stress. Additionally

Steinback et al. (2005) reported that carotid distensibility was significantly lower

with the tilt compared with when supine, with a positive correlation between

changes in distensibility and baroreflex gain between subjects (~=O.75, P<0.05).

The authors therefore concluded that orthostatic stress, induced via head

25



upward tilt, altered carotid artery mechanics, which contributed to diminished

BP control via the cardiac baroreflex.

Steptoe and Vogele (1990) reported reductions in baroreflex gain from sitting to

active standing using the sequence method. No differences were found

between participants with high-normal BP and low-normal BP, suggesting that

BP status was not influential on BP control at least while values remain in within

the normal limits. Westerhof et al. (2006) found a linear relationship (r = 0.99,

P<0.05) between reductions in baroreflex gain and the degree of othostatic

stress, induced by tilting, using spontaneous methods in both the frequency and

time domains. This suggests that baroreflex control of BP is progressively

attenuated as orthostatic stress increases.

The findings of Steinback et al. (2005) suggest that altered carotid artery

mechanics contributes to diminished BP control via the cardiac baroreflex

during orthostatic stress. Mattace-Raso et al. (2006) investigated the risk of

orthostatic hypotension associated with age-induced arterial stiffness in a cross-

sectional study of 3362 elderly men and women. Arterial stiffness, adjusted for

age, gender and MAP, was associated with orthostatic hypotension and greater

reductions in BP without significant differences in heart rate. These findings

suggest that arterial stiffness associated with aging may explain the reduced

baroreflex gain observed in older adults studied previously (Monahan, 2007).

Saeed et al. (2009) used transfer function analysis to investigate the

mechanical and neural components of the cardiac baroreflex in supine and

upright seated positions. A significant reduction in mean (±SO) integrated gain

was reported following a postural change from supine (17.1 ± 4.3 ms/mm Hg) to

upright sitting (9.8 ± 3.3 ms/mm Hg). The reduction in integrated gain was

associated with significant reductions in mechanical gain, which supports the

findings of Steinback et al. (2005) and Mattace-Raso et al. (2006) suggesting

that reductions in baroreflex function are vascular-related. However, the

accuracy of spontaneous techniques, such as transfer function analysis, has

recently been questioned due to the inconsistent results compared with

standard techniques where the system is actively engaged (Lipman et al., 2003).

Classic assessment of baroreflex gain using bolus injections if angiotensin

introduced by Smyth et al. (1969), and more recent techniques, such as the
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Oxford method, are based on the fact that baroreceptor responses are greatest

and most apparent in reponse to rapid changes in BP as opposed to stationary

or minimally changing pressures (Chapleau and Abboud, 1987). There is a lack

of studies investigating cardiac baroreflex responses to postural changes using

pharmacological techniques, such as the modified Oxford method, which in

contrast to spontaneous baroreflex indices, enables the robust assessment of

cardiac baroreflex function under near open-loop conditions. The separate

components of the cardiac baroreflex have also yet to be explored directly

during standing, which is clinically relevant given the well-documented effects of

upright posture on vasovagal syncope. The combined effects of time of day and

postural changes are also unknown. Investigations of these sources of variation

in BP control may help to explain previous study findings, such as the increased

orthostatic intolerance (Lewis et al., 2010) and risk of vasovagal syncope

(Mineda et al., 2000, Zoghi et al., 2008) reported in the morning.

1.6 Aims and objectives

The specific aims of this thesis are:
1. To investigate sources of variation in human blood pressure control, with

particular reference to the effects of blood pressure status, physical

activity and time of day.
2. To explore and apply the investigations above to a clinical population of

patients with obstructive sleep apnoea, who suffer from both circadian-

related issues and generally high blood pressure status.
3. To explore mechanisms responsible for diminished blood pressure

control in the morning in the general population.

The above aims will be achieved through the following objectives accompanied

by their respective hypotheses:

1. To investigate the importance of blood pressure status, amongst other

variables, in predicting post-exercise hypotension using both

experimental (chapter 4) and meta-analytical (chapter 5) approaches.

Hypotheses: Blood pressure status is not as important in predicting PEH

as has previously been suggested; There are other important moderators

of PEH that have previously been overlooked.
27



2. To examine blood pressure reactivity profiles during sleep and following

waking in obstructive sleep apnoea patients (chapter 6).

Hypothesis: Blood pressure reactivity in OSA patients is greatest during

sleep at night.

3. To investigate the relationships between leisure-time physical activity,

blood pressure, OSA severity and daytime sleepiness (chapter 7).

Hypothesis: Greater leisure-time physical activity is associated with lower

BP and less daytime sleepiness in OSA, independent of confounding

factors of BMI, age and gender.

4. To investigate the influences of time of day and posture on cardiac

baroreflex sensitivity, and to determine the relative contribution of the

mechanical and neural components (chapters 8 and 9).

Hypotheses: Integrated baroreflex gain is reduced in the morning due to

time of day effects on the mechanical component; Integrated baroreflex

gain is reduced with standing compared with supine due to changes in

the neural component, and that these posture-induced reductions are

greater in the morning than the afternoon.
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Chapter 2

General Methods
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2.1 Participants
All participants were informed of the details of the studies both verbally and in

writing prior to giving their written consent. All studies were approved by

Liverpool John Moores University Ethics Committee, except studies 5 and 6

which were approved by New Zealand Central Regional Ethics Committee and

took place at the University of Otago, Wellington, New Zealand. All studies

conformed to the Declaration of Helsinki. For laboratory-based experiments

participants were instructed to refrain from exercise and the consumption of

alcohol for 24 h prior to testing, as well as caffeine on the day of the study.

2.1.1 Healthy participants

Healthy participants were non-smokers and recreationally active, typically

engaging in low-ta-moderate intensity activity on 2-3 days/week. Individuals on

regular medication or with a known history of respiratory, cardiovascular, or

endocrine disease were excluded from participating.

2.1.2 Obstructive Sleep Apnoea patients

Obstructive sleep apnoea patients were recruited from Liverpool Sleep Clinic at

the Liverpool Heart and Chest Hospital. All had an apnoea-hypopnoea index

of >5 and were diagnosed using the gold standard technique of

polysomnography. Patients were excluded from participation if they had a

history of other respiratory or cardiovascular diseases, were receiving treatment

for hypertension, or were aged <18 or >65 yrs.

2.2 Physiological measurements

2.2.1 Continuous beat-ta-beat arterial blood pressure

Beat-to-beat arterial BP was measured continuously and non-invasively via

finger photoplethysmography (Portapres Model 2 [Study 1, Fig 2.1A] or

Finometer MIDI [Studies 5 & 6, Fig 2.1B], Finapres Medical Systems, Arnhem,

Netherlands). The 'Finapres' and 'Portapres' were developed by Wesseling et

al. (1993). The Portapres is suitable for exercise experiments provided that the

hand can be kept in a stable condition, such as when using a cycle ergometer.
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The Finometer MIDI has since been developed which is designed for optimal

performance when monitoring changes in haemodynamic variables.

Both the Portapres and Finometer are based on the volume-clamp method

introduced by the Czech physiologist Jan Penaz (1954). Firstly, the pressure in

the finger cuff is increased until it equals the pressure within the artery. At this

point the transmural pressure across the arterial walls is zero, meaning that the

artery is not collapsed but is at its unstressed (or unloaded) diameter

(Wesseling et aI., 1993). The pressure in the cuff is then adjusted as changes in

the artery diameter are detected by an infrared photo-plethysmograph, thus

'clamping' the artery at the unloaded diameter. The cuff pressure therefore

provides an indirect measure of intra-arterial pressure. The vital aspect of this

method is the accuracy in determining the unloaded pressure, which is variable

due to affects of haematocrit, stress and smooth muscle tone on artery

diameter. Therefore this must be corrected at regular intervals with periods of

constant cuff pressure, referred to as 'physiocal'. By applying a range of

pressures the cuff can be calibrated to equal the intra-arterial pressure once

again, before measurement continues. The physiocal automatic algorithm is

built into both the Portapres and Finometer.

A key limitation with finger photoplethysmography is that as the pulse pressure

is transmitted along the arteries of the arm the pulse waveform becomes

distorted. This variation in arterial waveform through the arterial tree can cause

discrepancies between brachial and finger BP. However, finger

photoplethysmography has been evaluated against simultaneous intra-arterial

monitoring (Parati et al., 1989) at rest and during laboratory tests involving rapid

changes in BP, including intravenous injections of phenylephrine. During 30

minutes rest the average difference between finger and intra-arterial BP was

6.5±2.6 mm Hg and 5.4±2.9 mm Hg for systolic and diastolic BP, respectively. A

high correlation was reported between the two methods for systolic (r = 0.98)

and diastolic (r = 0.93) BP. With regards to changes in BP during laboratory

tests, the average difference between the two methods did not rise above 4.2

and 1.9 mm Hg for systolic and diastolic BP, respectively. Assessment of

baroreflex function was also similar when using the two methods of BP

measurement. This ability to accurately track rapid increases and decreases in
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BP make this approach superior to manual or automatic sphygmomanometric

methods, with which the accuracy is reduced when the measurements are not

performed at rest (Mancia, 1983).

A.

B.

Figure 2.1: Finger cuff and Portapres (Part A) and Finometer MIDI (Part B) for

continuous measurement of beat-to-beat arterial pressure via finger

photoplethsmography (www.finapres.com/site)

2.2.2 Carotid artery diameter

Ultrasound imaging (Terason t3000, Burlington, MA, USA) was used to

measure beat-to-beat carotid artery diameter. A longitudinal section of the left

carotid artery < 2cm proximal to the bifurcation was imaged and recorded

(Camtasia Studio, TechSmith Co., Ltd, Okemos, MI, USA) for offline analysis

using custom edge tracking software. This method, described in detail by Black

et al. (2008), involves the identification of a B-mode user-selected region of
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interest (ROI) on the first frame of each recording. A pixel-density algorithm

automatically identifies the angle-corrected near and far wall e-lines for every

pixel column within the Ra!. The position of the edge is established by

determining the point where the pixel intensity changes most rapidly. Typically

B-mode ROls contain approximately 200-300 diameter measurements per

frame at 30 frames per second. The reproducibility of these diameter

measurements using this semi-automated software is significantly better than

manual methods, reduces observer error, and possesses an intra-observer

coefficient of variation of 6.7% (Woodman et al., 2001). Previous methods used

for determining carotid diameter in baroreflex research have involved acquiring

a series of carotid images triggered by the R wave of the ECG to gain

approximately a third of the cardiac cycle, encompassed end-diastolic and peak

systolic diameters. Using this technique researchers have previously had

problems with data acquisition, capturing images for approximately every other

cardiac cycle (Hunt et al., 2001). Although the portion of cardiac cycles captured

can be improved with faster hard drives, a benefit of the methods used in the

present study is the continuous measurement of carotid diameter so that no

information is lost.

2.3 Modified Oxford method and determination of baroreflex gain

Participants underwent baroreflex testing using the modified Oxford method

technique. A venous cannula was inserted into the right anticubita vein to allow

sequential intravenous bolus injections of 50-250 Ilg sodium nitroprusside (SNP)

followed 60 s later by 150-300 Ilg phenylephrine hydrochloride (PE). Doses

given for SNP and PE were typically 150 and 250iJg, respectively, although this

was adjusted depending on the subject's mass and their previous responses to

the drugs. Oxford tests were repeated until a valid trial was completed, i.e. the

drop and rise in systolic blood pressure were >15 mmHg relative to baseline

levels. All off-line data processing was performed using custom written software

in LabView B.2 (National Instruments, Texas, USA) on a Macintosh 2.26 GHz

MacBook Pro computer. Systolic BP values were matched to either the

concurrent heartbeat for R-R intervals >BOOms,or a one beat delay for shorter

heart periods (typically between 500 and BOOms).Baroreflex gains were

calculated separately for SNP and PE injections to identify the gain against

falling (Gdown)and rising (Gup) blood pressures. A principal advantage of the
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modified Oxford method is that it enables separate analysis of falling and rising

pressures, whilst allowing the evaluation of dynamic cardiac responses across a

wide range of blood pressures. Such ranges cannot be achieved with

spontaneous methods of assessing baroreflex gain.

Integrated gain was determined by plotting the R-R interval - systolic BP

relationship, which for Gdown began at the onset of the systolic BP decrease

following the SNP bolus injection and ended when systolic BP reached its nadir.

For Gup the section of data selected began at the nadir in systolic BP and ended

when pressure peaked following the bolus injection of PE. To identify and

remove the saturation and threshold regions, a piecewise linear regression

algorithm was applied to the raw data points to statistically identify breakpoints

that occur at the upper and lower ends of the data set (Figure 2.2). Following

this, respiratory related fluctuations in R-R interval and systolic BP were

accounted for by averaging R-R intervals across 2 mm Hg bins. The mechanical

and neural components of the baroreflex gain were calculated for both Gup and

Gdown, with exclusion of the same threshold and saturation regions removed for

integrated gain. For the mechanical component carotid diameter measurements

were plotted against systolic BP and for the neural component R-R intervals

were plotted against carotid diameter.
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Figure 2.2: Piecewise regression model for elimination of threshold and

saturation regions of the integrated baroreflex response to rising pressures.

Open circles (0) represent the threshold and saturation regions and the closed

circles (.) represent the linear portion of the baroreflex gain.

2.4 Linear mixed modelling

In contrast to previous studies of baroreflex function (Studinger et al., 2007,

Halliwill and Minson, 2002), we applied a linear mixed model to compare

baroreflex gains between two conditions (Atkinson et al., 2011). This method

controls for the fact that systolic BP and R-R interval data are collected using a

within-subjects design over time and are therefore correlated in nature. The

'subjects' factor is entered into the linear mixed model as a random effect, 'R-R

interval' is the dependent variable and 'systolic BP' is entered as a covariate. To

investigate the effect of a condition this was added as a fixed effect and a

condition x systolic BP interaction term was added as another covariate to allow

baroreflex gains to be compared. This approach improves precision by ensuring
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all data points are entered into the analysis in a single step (Lazic, 2010). The

linear regression method commonly used in the determination of baroreflex

gains is based on the assumption that x-y cases are mutually exclusive, i.e.

data pairs have been collected from independent participants. However, the

slope of the baroreflex response is made up of data pairs from one individual,

which clearly violates the assumption of case-independence. By controlling for

the correlated nature of the data, the linear mixed model not only reduces the

susceptibility to outliers in small samples, but the statistical power is greatly

improved compared with conventional summary measure analyses (Atkinson et

al.,2011).
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Chapter 3

Study 1

Acute variation in blood pressure following
exercise: an experimental approach

This work has been published in the Journal of Human Hypertension,
2010.
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Chapter 4

Study 2

Acute variation in blood pressure following
exercise: a meta-analytical approach
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4.1 Introduction

The relationship between an individual's general blood pressure status and the

magnitude of the acute exercise-mediated change in blood pressure has been

investigated in several past studies (Kenney and Seals, 1993, Thompson et al.,

2001, Pescatello et al., 2004b). The results of these studies have been used to

support claims made in position stands about the most important moderators of

the exercise-mediated change in BP (Pescatello et al., 2004a). Using the

experimental approach in chapter 3, it has already been shown that

mathematical coupling and regression-to-the-mean statistical artefacts can

compromise this relationship when pre-exercise BP is used as the measure of

BP status. Specifically, when appropriate controlling procedures were employed

in Chapter 4 (Oldham, 1962, Tu and Gilthorpe, 2007), the strength of the

association between BP status and changes in BP is over-estimated when pre-

exercise BP is designated as the indicator of BP status. The findings of chapter

3 also indicated that explorations into the influence of other potential

moderators of PEH may be compromised because the spuriousness of the

initial value - change correlation can mask the results of multiple regression

analyses when pre-exercise BP is included as a potential predictor of BP

change.

It is important to note that findings from published meta-analyses have also

been cited to support the claim that the magnitude of exercise-mediated BP

change depends on initial BP status. In a previous meta-analysis on the effects

of exercise on BP, baseline BP was included as a predictor and found to be a

strong correlate of PEH magnitude (Pescatello and Kulikowich, 2001). Following

a multiple regression analysis, these authors reported that exercise intensity

was not a significant predictor of the degree of PEH, concluding that change in

BP after exercise is a function of initial BP, with the groups with highest baseline

BP experiencing the greatest reductions post-exercise. Nevertheless,

mathematical coupling and regression to the mean would also be predicted to

exert spurious influences in such analyses.

It has been reported that PEH can persist for 24 hours or more during

subsequent everyday activities and sleep (Fullick et al., 2009, Jones et al.,

2009a), suggesting that exercise interventions are effective as anti-hypertensive
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therapies. Therefore, the aim of present study is to apply the approach adopted

in Chapter 3 to a meta-analysis, in order to examine in more detail what the true

relationship is between BP status and the acute exercise-mediated changes in

ambulatory BP over 24 hours.

It can be speculated that post-exercise measurements of BP which are further

apart in time from the pre-exercise measurements (e.g. a number of hours) may

result in smaller correlations between pre- and post-exercise values, and

therefore greater potential spuriousness between initial BP and change in BP

(Bartko and Pettigrew, 1968). Therefore, it is hypothesised that ambulatory BP

measurements taken on separate days leads to a greater attenuation of the

correlation between pre- and post-exercise BP compared with those seen in the

experimental study (chapter 3). However, limiting the meta-analysis to studies

that include a control ambulatory BP monitoring day is expected to reduce the

effects of regression to the mean to a certain extent because the initial BP data

is based on multiple readings. There are currently inconsistencies in the

literature regarding predictors of the magnitude of PEH, potentially due to

inadequate sample sizes. Therefore, the secondary aim of this meta-analysis is

to provide adequate statistical power to examine the importance of factors such

as age, BMI and maximal oxygen uptake in predicting acute changes in BP

post-exercise.

4.2 Methods

4.2.1 Data Sources
A literature search of peer-reviewed studies examining the acute effects of

exercise on ambulatory BP was conducted using MEDLINE and PubMed

electronic databases. The keywords and phrases employed in the online search

included 'post-exercise hypotension', 'blood pressure', 'ambulatory', 'exercise'

and 'physical activity'. Reference lists from published papers were examined in

order to identify any other relevant studies not cited in the online databases.

4.2.2 Study selection and data extraction
For inclusion in the meta-analyses studies had to meet the following criteria: 1)

study design included a randomised controlled trial or cross-over trial with

control phase; 2) participants were healthy normotensive or hypertensive adults;
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3) ambulatory blood pressure monitoring for a minimum of 5 consecutive hours

following exercise 4) acute aerobic exercise; 5) data available included pre and

post and/or change in mean SBP and/or OBP values with standard

deviation(SO) or another statistic allowing the calculation of SO.

Sixty-seven potential studies were initially identified via the literature search.

Fifty-three studies were eliminated according to the following exclusion criteria:

1) outcome measures of changes in BP were not separated into daytime and

night-time when ambulatory monitoring included night-time sleep; 2) diet,

medication or another influential factor was included in the intervention; 3) the

inclusion of populations with disease. The following data were extracted from

the 14 studies that were found to be eligible for meta-analyses: primary author's

name; year of publication; sample size; characteristics of participants (age, BMI

and V0
2max

if available); characteristics of the exercise protocol (mode, duration,

intensity). The primary outcome measures were the mean changes (and SO of

the change) in SBP and OBP following acute exercise compared with control.

Study selection and data extraction was verified independently by a reviewer.

Due to the experimental designs most studies were split, providing data for

changes in daytime SBP from a total of 24 participant groups (total participants,

n=451) from the 14 peer-reviewed studies. However, due to the availability of

data these numbers were reduced for night-time SBP changes (11 participant

groups, total n=238), daytime OBP changes (22 participant groups, total n=

437), and night-time OBP changes (8 participant groups, total n=174).

4.2.3 Statistical Analyses

pooling of results
Random-effects meta-analyses of the mean difference in BP following exercise

were performed using Comprehensive Meta-Analysis (Version 2, Biostat,

Englewood, NJ). Four separate meta-analyses were performed for daytime and

nocturnal changes in both systolic and diastolic BP. Ninety-five percent

confidence intervals (95% Cl) were calculated for the mean changes in BP for

each study. All of the studies included in the analyses comprised of a repeated

measures design with an experimental (post-exercise) and control condition (i.e.

ambulatory BP monitoring of everyday living following no exercise). Therefore,

the standard error calculated from the standard error of the differences between
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conditions was meta-analysed. Each study was assigned a weighting according

to sample size and between-subjects standard error.

Exploration of heterogeneity and publication bias

Heterogeneity of mean changes was examined with the Q-test and 12 value

associated with the fixed-effects model (Higgins et al., 2003). A Q statistic was

deemed statistically significant if P < 0.10 and 12 values of 25,50, and 75% were

used to indicate small, medium, and large heterogeneity, respectively. The

presence of publication bias was explored using Egger's regression intercept

and funnel plots.

Sensitivity Analysis

In comparison to the majority of the studies included in the meta-analyses, the

sample sizes were relatively large for studies by Ciolac et al. (2008) (n=50) and

Pescatello et al. (2004b) (n=49). Therefore, sensitivity analyses were performed

so that pooled mean changes in BP were re-calculated with the exclusion of

results from these studies.

Meta-regression analyses

Weighted meta-regression methods were used to examine the effects of

continuous variables on changes in ambulatory BP following exercise. The

reported exercise-mediated changes in daytime and nocturnal BP (i.e.

differences between exercise and control day) were meta-regressed against

control day and night BP (BP status), respectively. Despite the use of

ambulatory monitoring and control conditions in the meta-analysed studies,

mean BP (the mean of control and exercise-day BPs) was used as a measure

of BP status to ensure that statistical artefacts were minimised. Changes in BP

were also meta-regressed against participant characteristics of V02max (data

unavailable for 5 participant groups), age and BM!.

Subgroup analyses

A subgroup analysis was performed to investigate the effects of gender, with

studies split into 3 groups (males only, females only, and mixed). Subgroup

analyses were also performed to explore the influences of exercise mode (cycle

versus treadmill), duration (S30 versus >30 mins), and intensity (low versus
60



moderate). Moderate intensity exercise was defined as >58% V02max or >70%

maximum HR (McArdle et al., 2001). None of the studies included exercise

protocols that exceeded the set upper limit of moderate intensity exercise (80%

V02max)' and therefore analyses were limited to low and moderate intensity.

Mean differences between subgroups were determined with 95% confidence

limits. Alpha was 0.05 for all analyses.

4.3 Results

4.3.1 Overall changes in daytime BP

The overall weighted mean (95% Cis) changes in daytime SBP and DBP

following exercise were -3.84 mm Hg (-5.40 to -2.27, Fig. 4.1) and -1.81 mm Hg

(-2.58 to -1.04), respectively. Following a sensitivity analysis with the removal of

data from studies with large sample sizes (Ciolac et al., 2008, Pescatello et al.,

2004b), the overall weighted mean changes increased only very slightly to -4.14

mm Hg (-5.88 to -2.39) for SBP and -1.84 mm Hg (-2.69 to -1.00) for DBP.

The investigation of potential moderating factors on changes in BP is especially

relevant since large and statistically significant heterogeneity between studies

was revealed by the Q-test on SBP data (Q23 = 265.7, P<0.0005, 12 = 91%) and

OBP data (Q21 = 62.0, P<0.0005, 12 = 66%). Funnel plots revealed publication

bias for both SSP (Fig. 4.2) and OBP, indicating the possibility that studies with

relatively small sample sizes reporting no PEH (i.e. increases in daytime

systolic and diastolic BP following exercise) were not published. Eggers

regression intercept was -3.00 (-3.93 to -2.06, P<O.OOOS)for SBP and 1.09

(0.24 to 1.94, P=O.04) for OBP, confirming that the publication bias was

significant.
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Figure 4.2: Funnel plot of mean changes in daytime SSP vs standard error.

Large standard errors are indicative of a small sample size.

4.3.2 Overall changes in nocturnal BP

The overall weighted mean (95% Cl) change in nocturnal SSP following

exercise was -3.01 mm Hg (-4.69 to -1.50). However, the overall weighted

mean change for nocturnal DSP was very small (-0.61 mm Hg) with 95% Cis

overlapping zero (-3.04 to 1.81), and was therefore not significant (P=0.62). A

sensitivity analysis was performed with the removal of the study by Ciolac et al.

(2008). This analysis was for SSP only, as this study was not included in the

original analysis of nocturnal DSP. The overall weighted mean change in SSP

was reduced very slightly to -2.95 mm Hg (-4.68 to -1.21). Large, statistically

significant heterogeneity between studies was found for both SSP (Q10 = 32.0,

P<0.0005, 12 = 69%) and DSP (Q7 = 65.5, P<0.0005, 12 = 89%). Funnel plots

demonstrated no publication bias, confirmed quantitatively by Egger's

regression intercept, which was -1.99 (-4.14 to 0.17, P=0.13) for SSP and -2.51

(-7.92 to 2.91, P=0.40) for DSP.
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4.3.3 Meta-regression analyses

BP status

Daytime SBP and DBP status obtained from control periods of ambulatory

monitoring, were significant moderators of the respective changes in daytime

SBP and DBP following exercise (P<0.05). Mean BP (the mean of control and

exercise-day BPs) was then used instead of control BP as BP status. Mean

SBP and mean DBP were also found to be significant moderators of changes in

BP (Table 4.1). Higher daytime mean SBP was associated with greater

reductions in daytime SBP post-exercise (mean slope of meta-regression line =

-0.25, P<0.0005, Fig 4.3). This equates to a 1 mm Hg fall in post-exercise SBP

for every 4 mm Hg increase in SBP status. Nocturnal BP status was also a

significant moderator of nocturnal changes in SSP and DSP post-exercise,

when either control BP or mean BP was used (Table 4.1).

Table 4.1: Regression slopes (95% Cl) for moderators of changes in

ambulatory BP following exercise

Mean age

Daytime Daytime Nocturnal Nocturnal

SBP DBP SBP DBP

(95% Cl) (95% Cl) (95% Cl) (95% Cl)

-0.24 (-0.27 -0.14 (-0.21 -0.12 (-0.18 to -0.25 (-0.32 to

to -0.20)* to -0.07)* -0.05)* -0.19)*

-0.25 (-0.29 -0. 11 (-0. 19 -0.11 (-0.18 to -0.29 (-0.36 to

to -0.22)* to -0.04)* -0.04)* -0.22)*

0.06 (-0.03 to -0.12 (-0.21 -0.08 (-0.24 to -0.27 (-0.42 to

0.16) to -0.03)* 0.07) -0.16)*

-1.34 (-1.61 -0.09 (-0.34 -0.55 {-1.00 to -1.21 (-1.59 to
to -1.07)* to 0.16) -0.10)* -0.83)*

0.35 (0.22 to -0.10 (-0.19 0.10 (-0.07 to 0.45 (0.31 to
0.47)* to 0.00)* 0.28) 0.60)*

Moderator

variable

BP status

(Control BP)

BP status

(Mean BP)

Mean BMI

Mean VOZmax

*Significant moderator (P<O.05)
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Figure 4.3: Scatterplot showing the relationship between blood pressure status

(mean of control-day and exercise-day SBP) and mean changes in daytime

SBP. The slope of the regression line is -0.25 (95% Cl = -0.29 to -0.22).

Participant characteristics

Slopes and 95% confidence limits for all continuous variables are reported in

Table 5.1. Mean age was a significant moderator of changes in daytime DBP

(slope = -0.12, P=0.01) and nocturnal DBP (slope = -0.27, P<0.0005), but not

for changes in daytime or nocturnal SBP (>0.05). Increasing age was

associated with greater reductions in DBP post-exercise. Body mass index (BMI)

was a significant moderator of changes in daytime SBP (slope = -1.34,

P<0.0005, Fig 4.4), nocturnal SBP (slope = -0.55, P=0.02) and nocturnal DBP

(slope = -1.21, P<0.0005). Increases in BMI were associated with greater

reductions in BP post-exercise. However, mean BMI was not found to be a

significant moderator of changes in daytime DBP (slope = -0.09, P=0.47).

Finally, mean V0
2max

was a significant moderator of changes in daytime SBP

(slope = 0.35, P<0.0005) and nocturnal DBP (slope = 0.45, P<0.0005),

suggesting that lower mean V02max is associated with greater PEH. However,

V0
2max

was also found to be a significant moderator of daytime DBP (slope = -

0.10, P=0.04) but, unexpectedly, the direction of the relationship was reversed.

Given the extremely small slope it is unlikely that this result would be of any
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clinical significance, as will be discussed later. Mean V02max was not a

significant moderator of changes in nocturnal SBP (slope = 0.10, P=0.25).
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Figure 4.4: Scatterplot showing the relationship between mean body mass

index of participants and mean changes in daytime SBP. The slope of the

regression line is -1.34 (95% Cl = -1.61 to -1.07).

4.3.4 Subgroup analyses
The subgroup analysis for gender revealed no significant differences between

studies of males, females or mixed gender groups for changes in daytime or

nocturnal BP (P<0.05). Subgroup analyses also revealed that exercise protocol

characteristics were not significant moderators of the changes in BP. The

changes in daytime and nocturnal SBP and DBP following exercise were not

significantly different between low and moderate intensity exercise, between

cycling and treadmill exercise, or between exercise protocols of s and >30

minutes in duration (P>0.05).

4.4 Discussion
The results demonstrate that, across all the relevant studies, exercise mediated

mean reductions in daytime ambulatory SBP and DBP of approximately 4 and 2

mm Hg, respectively. Similar reductions were also observed in post-exercise

ambulatory nocturnal SBP (approx. 3 mm Hg), but the pooled mean reduction
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for post-exercise nocturnal DBP was not statistically significant. Using other

meta-analytical techniques, Staessen et al. (2001) found that a substantial part

of cardiovascular protection was gained from modest reductions of 5 mm Hg in

SBP via drug therapy. Although the pooled mean SBP reductions in the present

meta-analysis are marginally below this level and are acute in nature it is

possible that they may still be of clinical value. A reduction of 4 mm Hg in

hypertensive patients receiving felodipine resulted in a reduction in the

incidence of fatal and non-fatal strokes by 27% (95% Cl, 11 to 40%) over a 40-

month follow-up (Liu et al., 2005). Future studies should examine the chronic

effects of exercise training on blood pressure and its cardio-protective effects.

Although meta-analyses have been used to investigate the effects of aerobic

training (Fagard, 2001, Kelley et al., 2001), the main outcome measures were

changes in resting SBP and DBP, as opposed to ambulatory measurements

which are more relevant to the control of BP and related cardiovascular events.

The pooled mean changes in BP might mask particular studies which are

associated with larger reductions in BP. This notion can also be explored with

meta-analytical techniques. First, the association between BP status and

exercise-mediated changes in ambulatory BP were examined. Whether control

BP or mean BP was used, BP status was a significant moderator of SBP and

DBP during both day and night. Higher BP status was associated with greater

PEH, which provides support for exercise as an anti-hypertensive treatment. In

the experimental study (Chapter 4) changes in BP post-exercise were

regressed against pre-exercise BP determined from a 5-min baseline

measuring period. The strength of this association was over-estimated

compared with methods where statistical artefacts of regression to the mean

and mathematical coupling were controlled for. In the current study regression-

to-the-mean artefacts were reduced because exercise-induced changes in BP

were compared with a control condition, and BP status was determined using

multiple measurements (Le. ambulatory monitoring). It was hypothesised that

this type of experimental design in the meta-analysed studies would lead to

reduced spuriousness of correlations between BP status and changes in BP.

The results showed that the importance of BP status as a predictor of PEH was

not attenuated when mean BP was used. In fact, the gradients of the regression

slopes for daytime SBP and nocturnal DBP increased slightly when control BP
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was replaced with mean BP. This suggests that the measures taken to control

for statistical artefacts were successful in the current study. All studies included

in the meta-analysis involved two periods of ambulatory BP monitoring (control

and exercise). The control day provided the pre-exercise values, which were

divided into daytime and nocturnal periods where monitoring extended into

sleep at night. By determining pre-exercise BP over multiple readings the

influence of regression to the mean was reduced compared with the

experimental data (chapter 4) where pre-exercise BP was determined over a

short baseline period.

The minimisation of statistical artefacts with control conditions should

encourage the use of control trials in study designs when investigating the anti-

hypertensive effects of exercise and other therapies. However, the studies in

the present meta-analysis involved relatively short delays of approximately 2-3

days between ambulatory monitoring sessions. The greater spuriousness

associated with tests that are further apart in time (Bartko and Pettigrew, 1968)

means that experiments that include measurements performed weeks apart,

such as exercise training studies, may be more susceptible to statistical

artefacts. It is important in future investigations of the effects of exercise on

ambulatory BP that comparisons of post-exercise measurements are made

against a control period of ambulatory monitoring, or at least to a control group.

Large exercise-induced reductions in ambulatory SBP (>9 mm Hg) were

reported in a study that compared these post-exercise measurements to those

taken over a 15-min baseline period (Pescatello et aI., 1999). The changes in

SBP were attributed to the elevated post-exercise response suggested to be

present in hypertensive populations. This was despite falls of 4.9 mm Hg in the

same participants following a sham exercise condition. Changes of this

magnitude were not seen in normotensives for the sham condition, and

therefore the conclusions should be drawn with caution.

Assessment of publication bias using funnel plots and Egger's regression

intercept revealed that studies with relatively small sample sizes reporting no

reductions in SBP or DBP were not published. However, publication bias was

not present for changes in nocturnal SBP and DBP. It is suspected that this is

because the studies included in the meta-analysis that reported nocturnal BP
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also reported daytime values (often as the primary outcome) and therefore

publication was not biased by the significance of findings within the nocturnal

data. The current meta-analysis is limited by the publication bias present for

daytime BP changes, and future meta-analyses should aim to include data from

unpublished studies of post-exercise hypotension.

An advantage of meta-analytical methods is the ability to explore heterogeneity

in study results due to moderating factors. It was found that V02m,x was a

significant moderator of changes in daytime SBP and nocturnal DBP. According

to the regression slopes a decrease in V02m,x of 10 ml/kg/min was associated

with larger reductions in daytime SBP and nocturnal DBP of approximately 3.5

and 4.5 mm Hg, respectively. These findings concur with those of the

experimental data (chapter 4) in which a multiple regression model revealed

V0
2m

" to be a significant predictor of PEH, although in MAP and DBP only. As

the current results suggest, individuals with a lower V02m,x tended to

experience greater reductions in BP following exercise. It is worth noting that

although these results agree with previous findings (chapter 4), the regression

slope for daytime DBP was reversed indicating greater reductions in BP with

increasing V0
2max

• Meta-analytical techniques vastly improve precision and

power, however it is important to interpret the results with caution and consider

the clinical significance of the findings. Although this result was statistically

significant the upper confidence interval was extremely close to zero (-0.00413

mm Hg) so it remains possible that V02max has very little effect on daytime DBP

changes.

Age did not significantly influence SBP, but was found to be a significant

moderator of daytime and nocturnal DBP, with greater BP reductions

associated with increasing age. An increase in age of 10 years was associated

with reductions in daytime and nocturnal DBP of 1.2 and 2.7 mm Hg,

respectively. This relationship with age may be interpreted as a positive

outcome as it indicates that exercise is a useful tool for BP control amongst the

older population for whom hypertension is most prevalent. The nocturnal

reduction in particular may provide support for exercise interventions in aging
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non-dipping populations, although further research is warranted to confirm that

these effects would apply to this group of hypertensives. Park et al. (2005)

found that acute bouts of exercise in the morning and evening caused greater

nocturnal BP reductions in non-dippers than dippers. In the current study BMI

significantly moderated reductions in daytime SBP and DBP, and nocturnal

DBP. In the experimental data (chapter 4) neither age nor BMI were not found

to be significant predictors of PEH, although the study was limited to a younger

and healthier participant group with a mean ±SD age of 32 ±7.4 yrs and BMI of

24.7 ±2.9 kg/m2. A strength of the current study was the ability to investigate the

influences of these moderators with improved power and precision. However,

no significant differences were found between studies using males, females or

mixed gender participant groups. This finding concurs with previous reports of

similar magnitudes and durations of PEH in women to those found in men

(Birch et al., 2002, Lynn et al., 2007), although the nadir in BP may occur earlier

in females (Birch et al., 2002) and the mechanisms behind the reductions in BP

may also differ between genders (Senitko et al., 2002).

Despite being unable to identify age and BMI as predictors of PEH, the use of

mean BP as a predictor variable in the analysis of the experimental data meant

that other predictors of PEH were not masked by statistical artefacts. Time of

day for exercise was found to be a significant predictor of changes in SBP,

when previously it was masked by spurious correlations between pre-exercise

SBP and SBP changes. Due to missing information regarding time for exercise

in the meta-analysed studies time of day was not included as a potential

moderator in the present study. Of those studies where details of time of day

were given, the majority of experimental designs involved morning exercise to

allow for ambulatory BP monitoring throughout the rest of the day, thus limiting

the usefulness of time of day as a moderator in meta-regression analyses.

However, this would be an interesting aspect of exercise protocols to

investigate given the evidence in the literature for diurnal variation in acute BP

responses to exercise (Jones et al., 2008a, Jones et al., 2008b).

Exercise protocol characteristics did not influence the degree of PEH. There

was no significant difference in mean BP changes between studies involving

low intensity exercise versus those involving moderate intensities. This finding
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reflects those of Jones et al. (2007), who found that PEH is not dependent upon

exercise intensity but on the total amount of work done. Pescatello et al. (2004b)

also found that even though moderate intensity exercise evoked greater PEH

after 5 hours of ambulatory BP monitoring, low intensity exercise was equally as

effective over the course of 9 hours. In the current study there was no

significant effect of exercise duration. This may be attributed to the lack of range

in durations (20-50 mins) and very little spread within this range, leading us to

perform a subgroup analysis based upon protocols of s and >30 minutes. It

would therefore be instructive for future meta-analyses to include a computed

variable that takes into account both exercise intensity and duration in order to

assess the influences of the two components combined. There was also no

effect of exercise mode, with no significant difference between cycling and

treadmill exercise. Although this finding is positive for the flexibility of anti-

hypertensive treatment with exercise, the meta-analysis was limited because

treadmill protocols included both running and walking due to a lack of studies. It

is possible that this may have masked potential differences between cycling,

running and walking had they been analysed as three separate subgroups.

More studies are required to examine the effects of exercise mode on PEH,

which is currently biased towards cycle ergometry in the literature, perhaps due

to the relative ease with which physiological measurements can be taken during

this mode of exercise. Ambulatory monitoring provides a simple method of

recording BP measurements for any mode of exercise since equipment can be

fitted after the completion of the exercise protocol.

4.5 Conclusion

The current study demonstrates that exercise causes reductions in daytime and

nocturnal ambulatory SBP and DBP that are likely to be of clinical significance.

Meta-analytical methods were used to explore the association between BP

status and exercise-mediated changes in ambulatory BP. Blood pressure

status was a significant moderator of PEH indicating that hypertensive patients

will benefit from greater reductions in BP. The current findings highlight the

importance of including ambulatory monitoring and control conditions within

study designs to reduce the effects of regression to the mean. This is important

if study results are to influence position statements and the treatment of

hypertension. Age, BMI and V02max were also identified as significant
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moderators of reductions in BP, indicating that older individuals with larger BMls

and lower fitness levels will benefit most from exercise. These populations are

amongst those where hypertension is most prevalent and therefore these

results support the use of exercise as an anti-hypertensive therapy. There were

no effects of exercise protocol characteristics on the degree of PEH. However, it

would be of value for future studies and meta-analyses to investigate the

combined effects of exercise duration, intensity and mode to determine the

most beneficial protocols. The current study focuses on the BP responses to

acute exercise. However, for full investigations of the use of exercise as a

treatment for hypertension, future studies should examine the chronic effects of

exercise training on ambulatory BP and its cardio-protective effects.
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Chapter 5

Study 3

Circadian variation of blood pressure reactivity in
obstructive sleep apnoea
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5.1 Introduction
An interesting population model in which patients suffer from both circadian-

related issues and a generally higher BP status is people with obstructive sleep

apnoea (OSA). The condition is characterised by frequent episodes of upper

airway collapse causing arousal from sleep and is an independent risk factor for

hypertension (Lavie et al., 2000. Nieto et al., 2000). In this chapter, the diurnal

variation in the blood pressure responses to activity are explored and applied to

a clinical population of patients with OSA.

In the general population, BP exhibits a circadian rhythm with the lowest

pressures occurring during sleep at night and a rapid 'morning surge' following

waking (Kaplan, 2003). This diurnal variation in BP control coincides with the

incidence of cardiovascular events (Muller et al., 1987) and stroke onset (Elliott,

1998), which peak between 06:00 and 12:00 h. The morning surge in blood

pressure is strongly influenced by the levels of physical activity in the hours

after waking (Leary et al., 2002). In hypertensive patients, the reactivity of BP to

activity is greatest in the morning between 08:00 and 10:00 h (Jones et al.,

2006), potentially amplifying the risk of cardiovascular events at this time. In

OSA patients investigations have shown that night-time BP is elevated above

that of control patients suffering from daytime sleepiness only (Nagata et aI.,

2008). Further increases in night-time BP are observed as OSA severity

increases (Nagata et al., 2008, Noda et al., 1993). The high night-time BP found

in OSA patients coincides with the incidence for myocardial infarction in this

population, which peaks between 00:00 and 06:00 h (Kuniyoshi et al., 2008). It

is possible that BP reactivity may also be greater during sleep in OSA further

increasing the risk of cardiovascular events.

The aim of this study is to determine whether the time of day for peak BP

reactivity differs in OSA patients compared to healthy controls. Given the

disturbances to sleep and circadian rhythms of BP associated with OSA, it is

hypothesised that BP reactivity in OSA patients is greatest during sleep at night.

Such a different circadian profile may partly explain the increased risk of

cardiovascular events at this time. A secondary aim of this study is to assess

the use of clinic measurements of BP in diagnosing hypertension in OSA, and in

predicting day and night ambulatory BP.
74



5.2 Methods

5.2.1 Participants

Eleven male OSA patients (aged 48.5 ± 13.2) were recruited from the Liverpool

Sleep Clinic and 18 healthy controls (13 males, 5 females, aged 28.1 + 7.3)

were recruited from Liverpool John Moores University, to take part in the study.

5.2.2 Measurements

Participants underwent simultaneous ambulatory BP and activity monitoring on

a single day from 20:00 to 10:00 h. A TM-2421 ambulatory BP monitor (A&D,

Tokyo, Japan) was fitted to each participant's non-dominant arm following

calibration with a mercury sphygmomanometer. The monitor took readings of

SBP, DBP and HR every 15 minutes, except between 23:00 and 06:00 h where

recordings were reduced to one per hour in order to minimise sleep disturbance.

Mean arterial pressure (MAP) and rate pressure product (RPP) were calculated

following data collection. An actigraphy device was attached to each

participant's dominant wrist to monitor physical activity via accelerometry

(CamNtech Ltd, Cambridge, UK). Participants were asked to record the time

they went to bed and time of getting up. In the event that participants got up

after 08:00 h they were asked to continue with the ambulatory monitoring until

12:00h to ensure sufficient data was collected following waking. All OSA

patients completed at least 14hrs ambulatory monitoring, 7 of which completed

a full 24-hrs. In OSA patients measurements were also taken of height, mass,

clinic SBP and DBP, and OSA severity (AHI and 001 via polysomnography).

5.2.3 Data reduction

Mean activity data were calculated for every minute, and the score was

logarithmically transformed to correct for positive skew (Kario et al., 1999).

Activity data were averaged over the 15-minute period preceding each BP

measurement (Leary et al., 2002). The BP and activity data were divided into

seven 2-hour time periods relative to waking time. For each individual

participant and time period, a least squares regression slope was calculated for

the relationship between activity and SSP, DSP, MAP, and RPP (Kario et al.,

1999). For a separate analysis, ambulatory BP data for the 7 OSA patients who

completed 24-hr monitoring were divided into daytime (10:00-20:00h) and night-
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time (OO:OO-06:00h)and means were calculated for day, night and 24-hr SBP

and DBP.

5.2.4 Statistical analysis

Two-way mixed general linear models (GLM) were be used to examine

differences between OSA patients and healthy controls, firstly in the absolute

BP and then in mean reactivity indices over 2-hour time periods relative to time

of waking. The actigraphy data were also analysed independently of BP. A two-

way mixed GLM was used to compare 15-min mean activity (logged) over 14

hrs between OSA and healthy controls, relative to the time of getting up (10 hrs

pre- and 4 hrs post-getting up).

One-way repeated measures GLMs were used to compare ambulatory SBP

and DBP measurements (day, night, and 24-hr) to clinic SBP and DBP

measurements in 7 male OSA patients who completed 24-hr ambulatory

monitoring. Linear regression analyses were used to investigate the use of clinic

BP in predicting ambulatory BP. Finally, multiple regression analyses were used

to identify predictors of clinic SBP and DBP in all 11 OSA patients. Independent

variables entered into the regression model were age, BMI, collar size, AHI and

001.
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5.3 Results

5.3.1 Participants
The OSA patients were significantly older (48.5 ± 13.2 yrs) than the healthy

controls (28.1 ± 7.3 yrs, P<0.05). Additional information about the OSA patients

is contained in Table 5.1.

Table 5.1: Participant characteristics for OSA patients

Variable Mean ± SO

Age (yrs)

Height (m)

Mass (kg)

Body Mass Index (kg/m2
)

48.5 ± 13.2

1.78 ± 0.06

114.1±19.2

35.8 ± 5.4

Collar size (inches) 18.1±1.3

Apnoea Hypopnoea Index (events/hr)

Oxygen Desaturation Index (events/hr)

Clinic systolic blood pressure (mm Hg)

Clinic diastolic blood pressure (mm Hg)

44.0 ± 30.2

35.5 ± 33.1

153.3 ± 16.5

Clinic mean arterial pressure (mm Hg)

90.9 ± 5.3

111.7 ±6.4

5.3.2 Blood pressure

Ambulatory BP measurements were compared between OSA patients and

healthy controls. All participants completed ambulatory monitoring for a

minimum of 14 hrs, incorporating measurements prior to and during sleep, and

following waking. Data was analysed relative to the time of getting up reported

by each individual, which was confirmed with the actigraphy data. There was a

significant effect of health status (P<0.0005) with significantly greater mean

(±SD) SBP over 14hrs in OSA (131.3 ± 11.9 mm Hg) compared with controls

(111.7 ± 11.9 mm Hg). There was a significant effect of time on SBP (P=0.019),

with lower SBP during sleep than following waking. Despite trends for greater

dipping followed by a morning surge in SBP in controls compared with OSA
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patients (Fig 5.1), there was no significant interaction between time and health

status (P=0.145).
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Figure 5.1: Systolic blood pressure relative to waking in OSA patients and

healthy controls.

Mean (±SO) OBP was significantly greater over 14hrs in OSA patients (73.5 ±

2.0 mm Hg) compared with controls (63.9 ± 1.6 mm Hg, P<0.001). There was a

significant effect of time (P<0.0005), with lower OBP during sleep than following

waking, and a significant interaction between time and health status (P=0.042,

Fig 5.2). Mean arterial pressure was also significantly greater in OSA patients

(92.8 ± 2.4 mm Hg) compared with healthy controls (79.5 ± 1.9 mm Hg,

P<0.0005), and there was a significant effect of time (P<0.001), but no

significant interaction (P=0.099). Rate-pressure product was significantly

greater in OSA patients (8910 ± 1266) compared with healthy controls (6915 ±
1266, P<0.0005). There was a significant effect of time (P<0.0005), with
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reduced RPP at night, but no significant interaction between time and health

status (P=0.96).
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Figure 5.2: Diastolic blood pressure relative to waking in OSA patients and

healthy controls.

5.3.3 Blood pressure reactivity to activity

There was no significant difference in mean SBP, DBP or MAP reactivity

between healthy controls and OSA patients (P>0.05). There was, however, a

significant interaction between time and health status for SBP reactivity

(P<0.05). Greatest SBP reactivity in healthy controls occurred 0-2 hrs after

waking, whereas peak SBP reactivity in OSA patients occurred during sleep (4-

6 hrs prior to waking). Lowest SBP reactivity in OSA patients was during the

first 2 hours following waking (Fig 5.3). There was a trend for greater MAP

reactivity after waking in healthy controls compared to OSAS patients, but the

interaction between time and health status was not significant (P=0.18) Both

groups displayed similar patterns of DBP reactivity, with peak reactivity
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occurring 0-2 hrs after waking. There were no significant effects of time or

health status, nor interactions between them, on RPP reactivity (P<0.05).
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Figure 5.3: Systolic blood pressure reactivity relative to waking in OSA patients

and health controls.

5.3.4 Activity monitoring in OSA and healthy controls

Actigraphy data, measured over 14 hrs (relative to time of getting up), were

compared between OSA patients and healthy controls. There was no significant

difference in mean activity (logged ± SO) between OSA (3.2 ± 1.0) and controls

(2.8 ± 0.8, P=0.202). There was a significant effect of time (P<0.0005), with

reduced activity during sleep but no significant interaction between time and

health status (P=0.30, Fig 5.4).
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5.3.5 Clinic blood pressure and 24-hr ambulatory monitoring in OSA

Clinic SBP and DBP measurements were compared to ambulatory BP

measurements in 7 male OSA patients (Table 5.2). There was a trend for higher

clinic SBP (152.6 ± 19.0 mm Hg) compared with daytime ambulatory SBP

(134.8 ± 9.5 mm Hg), which approached significance (P=0.058). As would be

expected, clinic SBP (measured in the daytime) was significantly higher than

24-hr ambulatory SBP (130.3 ± 13.5 mm Hg, P=0.038) and night-time

ambulatory SBP (123.0 ± 20.1 mm Hg, P=0.041). Clinic DBP (88.1 ± 3.4) was

significantly higher than daytime (77.5 ± 4.8 mm Hg, P=0.007), night-time (65.1

± 10.6 mm Hg, P=0.002) and 24-hr ambulatory DBP (73.0 ± 7.4 mm Hg,

P=0.003). Linear regression analyses revealed that clinic BP was not a

significant predictor of day, night or 24-hr ambulatory BP (P>0.05).
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Table 5.2: Clinic and ambulatory blood pressure measurements for 7 male OSA

patients.

Patient Age Clinic Daytime Night-time 24-hr

diagnosis (yrs) SBP/DBP ambulatory ambulatory ambulatory

(mm Hg) SBP/DBP SBP/DBP SBP/DBP

(mm Hg)* (mm Hg)t (mm Hg)

Mild 48 154/91 146/86 137/72 143/83
OSA

Mild 60 151/93 131/81 95153 116/70
OSA

Moderate 31 128/89 127/76 130/78 125/74
OSA

Severe 24 148/82 150/73 155/77 154/77
OSA

Severe 34 146/89 126/70 124/62 124/65
OSA

Severe 58 150/86 131/69 103/55 120/63
OSA

Severe 58 191/87 133/88 118/59 130/79
OSA

*10:00 - 20:00h tOO:OO- 06:00h
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5.3.6 Blood pressure and OSA severity

Age, BMI, collar size, AHI and 001 were entered into multiple regression

analyses to determine significant predictors of clinic SBP and OBP in 11 male

OSA patients. Significant predictors of clinic SBP were AHI (P=0.007) and age

(P=0.038), explaining 69% of the variation in SBP. Increases in AHI of 10

events/hr and in age of 10 yrs were associated with increases in clinic SBP of

3.9 and 6.2 mm Hg, respectively. None of the variables entered into the multiple

regression model were predictors of clinic OBP (P<0.05).

5.4 Discussion
The main finding of this study is that systolic blood pressure reactivity is

greatest during the night in OSA, compared with healthy controls for which it

peaks following waking. Absolute blood pressure was also higher in OSA over

the 14-hr recording period. Secondary analyses revealed that clinic blood

pressure was higher than ambulatory measurements in a subgroup of OSA

patients and did not predict higher day, night or 24-hr ambulatory blood

pressure. Clinic systolic blood pressure was, however, associated with age and

OSA severity (apnoea-hypopnoea index).

Although there was no significant difference in the mean SBP reactivity between

healthy controls and OSA patients, the timing of peak reactivity differed

between groups. As hypothesised, peak SBP reactivity in OSA patients

occurred during sleep, around 4-6 hrs prior to waking. Interestingly, the lowest

SBP reactivity in OSA patients was during the first 2 hours following waking, the

time when BP reactivity was highest in the healthy controls, and in non-OSA

hypertensives (Jones et al., 2006). Greater increases in SBP for a given level of

activity during the night may increase the risk of cardiovascular events at this

time. Therefore, these findings may help to explain the increased risk of

myocardial infarction between 00:00 and 06:00 h in OSA (Kuniyoshi et al.,

2008). There were no significant differences in MAP reactivity, despite a slight

trend for greater MAP reactivity after waking in healthy controls compared to

OSA patients. Both groups displayed similar patterns of DBP reactivity, with

peak reactivity occurring 0-2 hrs after waking, suggesting that increased risk of

cardiovascular events is more likely to be associated with increases in SBP

rather than DBP. The unique profile of SBP reactivity may be a useful tool for
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providing information about the risk of sudden cardiac events in individuals with

OSA.

Mean SBP, OBP and MAP were significantly higher in OSA patients compared

to healthy controls over the 14-hr period. Healthy controls exhibited falls in BP

during sleep, and although there were no significant interactions between time

and SBP or MAP in this relatively small sample of OSA patients, there was a

trend for reduced dipping in the OSA patients. It has previously been found that

the nocturnal decline in BP is inversely related with cardiovascular mortality,

independent of overall 24-hr BP and other risk factors (Ohkubo et al., 1999).

Non-dipping status in individual OSA patients may heighten their cardiovascular

risk above that already associated with this population. This highlights the

importance of a thorough assessment for diagnosis of hypertension and may

have implications for clinical practice. Suzuki et al. (1996) found that of a

sample of 40 OSA patients 19 were systolic non-dippers, and that the

respiratory disturbance index was a significant predictor of non-dipping.

However, AHI and 001 were not significant predictors, and therefore it is

important to assess 24-hr ambulatory BP in all OSA patients and not just those

with high OSA severity. In the current study, a subgroup of OSA patients (n=7)

completed 24-hr ambulatory BP monitoring. Mean daytime (10:00-20:00 h),

night-time (00:00-06:00 h) and 24-hr ambulatory BP measurements were

compared with clinic BP. These specific times were chosen in order to remain

consistent with previous studies (Staessen et al., 1991, Owens et al., 1999).

Transition times (06:00-10:00 hand 20:00-00:00 h) are typically not included in

the day and night-time mean blood pressures because bed rest between

individuals is not consistent for these periods, and cannot be used reliably

(Staessen et al., 1991). In the current study clinic DBP was significantly higher

than daytime ambulatory OBP, and there was a strong trend for higher clinic

SBP compared to daytime ambulatory SBP. There was no significant

relationship between clinic BP and day, night or 24-hr ambulatory BP,

suggesting that BP readings performed in the clinic do not reflect ambulatory

BP and may be subject to effects of white-coat hypertension. These findings

strengthen the case for ambulatory monitoring for diagnosis of hypertension and

assessment of dipping status in OSA. Measures of absolute BP and BP
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reactivity may provide further information regarding cardiovascular risk in

individual patients.

Despite the differences in clinic and ambulatory BP, there were significant

relationships between clinic SBP, age and OSA severity. Increases in AHI of 10

events/hr and in age of 10 yrs were associated with increases in clinic SBP of

3.9 and 6.2 mm Hg, respectively. Other variables, including BMI, collar size,

and 001 were not significant predictors of BP, although a larger sample size,

including both genders and a greater variance amongst independent variables

may allow important predictors of BP to be identified.

Rate-pressure product (RPP) is another measure that can provide useful

information regarding cardiovascular risk (Forjaz et al., 1998a). It is the product

of SBP and HR, and there is significant evidence to suggest that it is associated

with myocardial oxygen consumption (Kitamura et al., 1972, Gobel et al., 1978).

Rate-pressure product was significantly greater in OSA patients (8910 ± 1266)

compared with healthy controls (6915 + 1266, P<0.0005). Both groups exhibited

reduced RPP during sleep but the pattern was shifted upwards in OSA patients.

Cardiovascular risk increases with elevated RPP (Robinson, 1967, Dentry et al.,

1970), thus providing further evidence of increased cardiovascular risk in the

OSA population.

It may be speculated that there are increases in activity at night in OSA due to

frequent sleep disturbances. However, there was no significant difference in

activity between OSA and controls in the current study, which may suggest that

reduced nocturnal dipping is due to the greater BP reactivity and/or an

endogenous component. However, the 15-min means used in the current study

may have masked short bursts of activity so that no differences were identified

between the groups. Activity during sleep, measured using actigraphy, is

commonly used to assist the diagnosis of sleep and circadian rhythm disorders

and is recognised by the American Academy of Sleep Medicine as a useful

adjunct for clinical assessment (Morgenthaler et al., 2007). However, activity

tends to be assessed over short epochs (e.g. 30 sec) and a validated algorithm

is used to determine whether the patient is asleep or awake for each epoch so

that total sleep time can be estimated (Oakley, 1997). The measurement of BP
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within in this time frame for assessment of reactivity would require more

invasive techniques, and it is unclear whether actigraphy would detect the

majority of apneic events which lead to the increases in BP.

A key limitation of the current study is the use of a young healthy control group,

rather than a group of hypertensives matched for characteristics such as age,

gender and BMI. However, the BP reactivity profile found in the healthy control

group is comparable to that previously identified in hypertensives (Jones et al.,

2006). The study was also limited by the number of BP measurements taken

during sleep, which were reduced to minimise sleep disturbances, meaning that

BP reactivity slopes calculated for the sleep period contained fewer data points

that those before 23:00 h and after 06:00 h. It is therefore possible that the BP

reactivity values for sleep may have been more susceptible to the influence of

outliers. However, the consistency of the control group reactivity profile to

previous studies, where measurements were taken every 20-mins during sleep

(Jones et al., 2006), indicates that the method was robust.

5.5 Conclusion

Unlike healthy controls and hypertensive patients, OSA patients show a unique

profile of BP reactivity, with a peak occurring during sleep. This may explain, in

part, the higher nocturnal blood pressures and incidence of myocardial

infarction during the night in this population. Given the discrepancies between

clinic and ambulatory measurements of BP, the present study strengthens the

argument for ambulatory monitoring for all OSA patients. The methods used for

determining BP reactivity profiles may provide useful information regarding risk

of sudden cardiac events in individual OSA patients.
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Chapter 6

Study 4

Chronic effects of leisure-time physical activity
on blood pressure and symptoms of obstructive

sleep apnoea
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6.1lntroduction

The prevalence of obstructive sleep apnoea (OSA) is rapidly increasing, and yet

it has been estimated that as many as 80-90% of OSA cases are undiagnosed

(Young et al., 1997). Although knowledge of the condition has grown over the

years, many OSA patients still go untreated (Silverberg et al., 2002). The

condition, which is characterised by frequent episodes of upper airway collapse

during sleep, is an independent risk factor for hypertension (Lavie et al., 2000,

Nieto et al., 2000). Obstructive sleep apnoea has also been associated with

increased risk of stroke, cardiac arrhythmias, and heart failure (Parish and

Somers, 2004). Sleep disturbance due to frequent apnoeic and hypopneic

episodes causes other symptoms, such as severe sleepiness and fatigue during

the day, thus reducing quality of life (Silverberg et al., 2002). These symptoms

also increase the probability of long-term sick leave (Sivertsen et al., 2008) and

the risk of motor vehicle accidents (Barbe et al., 1998, Teran-Santos et al.,

1999). Results of previous studies suggest that the problems of BP control and

daytime sleepiness may be connected and that severe sleepiness in OSA

patients increases the risk of developing hypertension (Kapur et al., 2008).

Successful interventions for reducing OSA severity and improving sleep quality

have typically included soft tissue surgery (such as uvulopalatopharyngoplasty)

(Riley et al., 2000), weight-loss surgery (Charuzi et al., 1992, Pillar et al., 1994)

or dietary interventions (Harman et al., 1982, Sampol et al., 1998, Kajaste et al.,

2004). However, exercise training has also been proven to be beneficial, both

as a separate treatment (Norman et aI., 2000) and as an adjunct therapy to

CPAP (Giebelhaus et al., 2000). Given the wealth of evidence relating OSA with

hypertension, it is important to examine the effects of treatments on blood

pressure to establish the most beneficial therapies for reducing hypertension

and therefore the risk of cardiovascular events. However, the efficacy of

exercise as a treatment for hypertension and cardiovascular risk in the OSA

population warrants further investigation.

Successful treatment of daytime sleepiness in OSA patients is vital, given the

risks associated with road accidents and also the severe effect it can have on

quality of life. The relationships between OSA severity and symptoms of

daytime sleepiness and fatigue have been investigated previously (Aguillard et
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al., 1998, Hong and Dimsdale, 2003). However, findings of these studies have

been inconsistent, with some researchers suggesting that daytime sleepiness is

correlated with the AHI, and others suggesting that it is related to fitness and

physical activity rather than OSA severity. These discrepancies may be due to

the definitions used to describe daytime sleepiness and fatigue and the

techniques employed to measure them. It is likely that results of multiple sleep

latency tests, sleepiness questionnaires and measures of physical and

subjective fatigue during exercise describe distinctively different problems, all of

which may be associated with OSA. Although study results suggest that chronic

physical activity may have an important part to play in lessening the symptoms

of OSA, there are certain limitations to previous investigations, including sample

size and the lack of control for confounding factors, which may have led to

important relationships going undetected. A recent study by Basta et al. (2008)

addressed this problem and found significant effects of regular exercise on

daytime sleepiness in OSA whilst controlling for a range of patient

characteristics. However the study lacked comparisons of energy expenditure

between OSA and the general population and did not report the effects of

physical activity on OSA severity (AHI) or BP. The aim of the current study is to

investigate the chronic effects of leisure-time physical activity on BP, OSA

severity and daytime sleepiness. It is hypothesised that greater leisure-time

activity is associated with lower BP and less daytime sleepiness in OSA,

independent of potentially confounding factors such as BMI, age and gender.

6.2 Methods

6.2.1 Participants
Ninety-six patients (78 males) attending the Liverpool Sleep Clinic and 118

healthy controls (77 males) took part in the study. Participant characteristics of

the two groups are given in Table 1. The OSA group consisted of patients with

mild (n=25), moderate (n=26) and severe (n=45) OSA, with AHI ranging from

5.1 to 113. The study was given NHS ethical approval and all participants gave

their written informed consent before taking part.
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6.2.2 Measurements

A leisure-time physical activity questionnaire, adapted from a standard

questionnaire developed by Lamb and Brodie (1990), was used to estimate

values of energy expenditure over a 2-week period in OSA patients and healthy

controls. Using an extensive list of leisure-time activities patients were asked to

report the time spent performing physical activity during the previous two weeks.

These data were then converted into metabolic equivalents (METs) where 1

MET is the energy expended by sitting quietly and equates to 4.2KJ/kg/hour/m2

(McKeag and Moeller, 2007) from which the number of total KJ over the

fortnight were calculated for each participant. Participant characteristics of age,

gender, BMI, SBP, DBP and MAP were recorded. For OSA patients, the

apnoea-hypopnoea index (AHI) and oxygen desaturation index (001) were

recorded in order to determine the severity of the sleep apnoea. The Epworth

Sleepiness Scale (ESS) questionnaire was also completed by each OSA patient.

This is a measure of the probability of falling asleep in certain situations and is

quantified on a scale of 0-24, with higher values indicating a greater chance of

sleep during the daytime (Johns, 1993).

6.2.3 Grouping of participants - energy expenditure

Participants were divided into groups according to estimated leisure-time

energy expenditure. In order to promote and maintain health, it has been

recommended that adults undertake a minimum of 30 min moderate exercise

per day for 5 days a week (Haskell et al., 2007). This amounts to approximately

840 KJ per day (Pate et aI., 1995) and therefore a minimum leisure-time energy

expenditure of 4200 KJ per week is recommended. Participants were divided

into 3 groups. Due to the large number of patients reporting physical activity

levels of above the 8400 KJ per fortnight recommendation these participants

were divided into 2 groups using a median split. Therefore the patients were

assigned to the following physical activity groups: low «8400 KJ, n=37);

moderate (8400 to 23,100 KJ, n=30); and high physical activity (~23,100 KJ,

n=29). The control group was divided according to the same energy

expenditures and therefore sample sizes for the three groups above were 35,

41 and 42, respectively.
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6.2.4 Statistical Analyses

Multivariate general linear models were performed with physical activity group

as a fixed factor and age, BMI and gender as covariates. The first analysis

included OSA patients and controls. The dependent variables entered were

SBP, DBP and MAP, with physical activity and health status (i.e. OSA or

healthy control) as fixed factors, in order to assess the relationships between

BP, physical activity and health status. For the second analysis, involving OSA

patients only, AHI, 001 and ESS were entered as dependent variables to

investigate the relationships between physical activity, OSA severity and

daytime sleepiness. Linear regression analysis was used to determine the

slopes between continuous covariates and dependent variables.

6.3 Results

6.3.1 Participants

Table 6.1 provides patient characteristics for OSA patients and healthy controls.

Measures of OSA severity (AHI and 001) and daytime sleepiness are available

for OSA patients only. Blood pressure (SBP, DBP and MAP) was significantly

higher in the OSA group (P<O.0005). The mean age and BMI of the OSA

patients were significantly greater than healthy controls (P<O.0005), and the

proportion of females within the group was lower. This highlights the need to

control for these characteristics when investigating the effects of health status

on blood pressure, and therefore the following analyses include covariates of

age, BMI and gender where appropriate. There was no significant difference in

mean fortnightly energy expenditure between OSA and controls (P<O.05).
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Table 6.1: Participant characteristics for OSA patients and healthy controls.

Variable

Age (years)

Gender (male/female)

Body Mass Index (kg/m2)

Systolic blood pressure (mm Hg)

Diastolic blood pressure (mm Hg)

Mean arterial pressure (mm Hg)

Estimated energy expenditure

(KJ/fortnight)

Apnoea-hypopnoeaindex

(events/hr)

Oxygen Desaturation Index

(events/hr)

Epworth Sleepiness Scale (0-24)

OSA patients Healthy controls

(n=96) (n=118)

51 ± 10 37.9 ± 11.7t

78/18 77/41

35.9 ± 7.64 23.5 ± 2.3t

141.2 ± 17.8* 123.1 ± 14.3t

88.3 ± 11.7* 78.9 ± 9.0t

105.9 ± 12.0* 93.7 ± 10.0t

18,126 ± 19,761 17,118 ± 14,972

36.2 ± 26.9

30.4 ± 30.1

10.9 ± 5.6

* n=74; t significantly lower than OSA (P<O.0005)

6.3.2 Blood pressure and OSA

There was a significant effect of health status on SBP, DBP and MAP

(P<0.0005), with significantly higher blood pressures in the OSA patients

compared with healthy controls while controlling for age and gender (Figure 6.1).

There was no significant effect of physical activity group on SBP, DBP and MAP

(P>0.05). There was, however, a significant effect of age on blood pressure

(P<0.005) and linear regression analysis revealed that for every 1-yr increase in

age, SBP, DBP and MAP increased by 0.7, 0.3 and 0.4 mmHg, respectively.

There was a significant effect of gender with lower SBP and MAP in females

(P<0.05), although no effect of gender was found for DBP (P=0.183).
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Figure 6.1: Systolic blood pressure (SBP), diastolic blood pressure (OBP) and

mean arterial pressure (MAP) in obstructive sleep apnoea (OSA) patients

versus healthy controls

6.3.3 Physical activity and OSA severity

The AHI and 001 provide quantitative measures of OSA severity. There was no

significant effect of physical activity group on AHI (P=0.355) or 001 (P=0.140),

despite trends for reduced OSA severity with increasing energy expenditure.

There was, however, a significant difference of 13.8 (±7.0%) in 001 between

the low physical activity and high physical activity groups (P=O.05, Figure 6.2).

There was a significant effect of BMI on AHI and 001 (P<O.0005) and linear

regression analysis revealed that for every 1 kg/m2 increase in BMI, AHI and

001 increased by 1.5 events/hr and 1.7 events/hr respectively. However, there

was no significant difference in BMI between the three physical activity groups

(p<O.05).
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Figure 6.2: Apnoea-hypopnoea index (AHI) and oxygen desaturation index

(001) across the 3 physical activity groups, *Significantly different from the low

activity group (P<0.05)

6.3.4 Physical activity and daytime sleepiness

The ESS was used as a measure of subjective daytime sleepiness. There was

a significant effect of physical activity on daytime sleepiness (P=0.019), with

significantly lower ESS scores (±SD) in the high activity group (10.9 ±5.8) and

moderate activity group (9.2 ±4.4) compared with the low activity group (12.9

±5.8, P<0.05) (Figure 6.3). Daytime sleepiness was not significantly different

between the moderate and high physical activity groups (P=0.512). However,

linear regression analysis indicated that AHI was a significant predictor of

daytime sleepiness (r =0.30, P=0.003), although an increase of 0.06 in ESS

score for every unit increase in AHI would not be considered clinically significant.
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Figure 6.3: Daytime sleepiness (Epworth Sleepiness Score) across the 3

physical activity groups, *Significantly different from low activity group (P<0.05).

6.4 Discussion

Obstructive sleep apnoea was associated with higher systolic, diastolic and

mean arterial pressure compared with healthy controls, when adjusted for age

and gender. However, levels of leisure-time physical activity had no effect on

blood pressure in either OSA patients or healthy controls. Physical activity also

had no effect on AHI, although significant differences were found in 001

between the low activity and high activity groups. Physical activity had a

significant effect on Epworth Sleepiness Score, with reduced daytime

sleepiness in the two more active groups compared with the low activity group.

Therefore, the main finding of this study is that increases in leisure-time

physical activity may reduce key symptoms of OSA, but are less successful in

reducing blood pressure or OSA severity independent of changes in BMI, age

and gender.

Obstructive sleep apnoea patients whose energy expenditure equated to less

than the recommended amount of physical activity (8600 KJ/fortnight) suffered

from significantly more daytime sleepiness than those performing the

recommended amount or above. Hong and Dimsdale (2003) reported that
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higher levels of self-reported physical activity were associated with greater

subjective well-being and reduced fatigue, but the study did not include a

specific measure of daytime sleepiness. Aguillard et al. (1998) reported that

measures of physical and subjective fatigue were correlated with fitness, and so

it could be speculated that regular physical activity reduces daytime fatigue in

OSA patients. However, the authors found that daytime sleepiness, assessed

using the multiple sleep latency test (MSLT), was not correlated with fitness.

This contradicts the current findings, although a direct comparison is difficult

due the use of fitness versus leisure activity. It is important to note, however,

that the association between fitness and fatigue reported by Aguillard et al.

(1998) was not independent from BMI, which was found to be a significant

predictor of fatigue and is likely to be related to fitness. It should also be noted

that of the two indicators of fitness only maximal heart rate achieved was

correlated with fatigue. Maximal oxygen uptake, a standard measure of fitness,

was not correlated with fatigue. In the current study covariates were included in

the analyses and therefore the significant effect of physical activity on daytime

sleepiness was independent of BMI and also gender. Basta et al. (2008)

investigated the effects of physical activity on daytime sleepiness in OSA.

Similar to the present study, a physical activity questionnaire was used to

estimate energy expenditure. However, in contrast with the current study

participants were asked to estimate the average time spent per week on

particular activities. It may be speculated that this method leads to an over-

estimation of energy expenditure reported by the individual patients. In the

current study patients were questioned on their physical activity retrospectively,

giving details of activities performed in the previous two weeks. It is likely that

this approach may provide a more accurate representation of actual physical

activity levels. Despite these differences in data collection, the current findings

are consistent with those of Basta et al. (2008) who found that weekly energy

expenditure was associated with daytime sleepiness when adjusted for patient

characteristics. However, caution must be taken when drawing conclusions,

because the relationship between physical activity and sleepiness could be in

either direction. It is possible that individuals with naturally higher daytime

sleepiness find it more difficult to be physically active.
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There have been inconsistencies in the literature as to whether OSA severity is

correlated with physical activity. In the present study we found no significant

effects of self-reported physical activity on AHI, a finding that supports those of

Hong and Dimsdale (2003) who reported no correlation between respiratory

disturbance index and self-reported habitual activity. However, Peppard and

Young (2004) reported that performing 3-6 hrs of exercise per week reduced the

odds ratio (95%CI) for having an AHI of over 15 (moderate OSA) to 0.39 (0.19-

0.80) when compared to 0 hrs of exercise. Despite no effects of physical activity

on AHI in the current study, there was a significant reduction in 001 in the most

physically active group when compared with the least active group. This would

suggest that leisure-time physical activity may have some benefits in reducing

OSA severity, even if it is limited to reducing the level of oxygen desaturation

during sleep rather than the number of apneoas and hypopnoeas.

Body mass index was correlated with AHI and 001. A reduction of 1 kg/m2 in

BMI was associated with a reduction in AHI and 001 of 1.5 events/hr and 1.7%,

respectively. Although leisure-time physical activity was not directly associated

with AHI it may reduce the number of apnoeas indirectly via weight loss. In the

current study there was no significant difference in BMI between physical

activity groups, although there are other factors not measured such as energy

intake and work-related physical activity that may account for this. Previous

studies have found that weight loss can cause substantial reductions in OSA

severity, sometimes reducing AHI to normal levels of <5 events/hr (Sampol et

al., 1998). Many weight-loss interventions previously studied have involved

surgical procedures (Charuzi et al., 1992, Pillar et al., 1994, Valencia-Flares et

al., 2004). Not only are these forms of treatment costly, but they often provide

only short-term solutions. Despite large initial reductions in AHI in 14 OSA

patients following surgery, Pillar et al. (1994) found significant increases in AHI

after only 5 to 10-yr follow-ups. Therefore lifestyle interventions such as

physical activity may be crucial in providing more long-term reductions in OSA

severity and symptoms. Exercise training interventions have been shown to

reduce OSA severity, both in exercise-only interventions (Norman et al., 2000)

and as adjunct therapy to continuous positive airway pressure (CPAP)

(Giebelhaus et al., 2000). The promotion of mild-ta-moderate intensity leisure-

time activities may be a suitable treatment option for OSA patients. In the
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current study mean changes (95%CI) in ESS scores between the more

physically active groups compared with the least active group were -3.7 (-6.3 to

-1.0) and -2.7 (-5.5 to 0.1). These differences in daytime sleepiness between

activity groups compare with mean changes (95%CI) found for parallel-group

studies, -3.8 (-4.6 to -3.1), and crossover designs, -1.8 (-2.6 to -1.1),

investigating the effects of continuous positive airway pressure (CPAP) (Giles et

al., 2006). This is the current treatment for OSA, which has been reported to be

successful in the reduction of AHI (Giles et al., 2006). There is also strong

evidence for improvement of BP control and diurnal BP profiles with CPAP

(Wilcox et al., 1993, Akashiba et al., 1999, Logan et al., 2003, Haentjens et al.,

2007), particularly in OSA patients suffering from excessive daytime sleepiness

(Robinson et al., 2006). However, compliance with this treatment is often poor

(Engleman et al., 1994), and therefore physical activity may provide a useful

alternative or adjunct therapy for CPAP. Lifestyle interventions involving weight

loss via low calorie diets have been found to reduce AHI and improve sleep

quality in patients with mild OSA (Tuomilehto et al., 2009), and therefore weight

loss via physical activity may provide a suitable treatment for OSA patients for

whom surgery is deemed unnecessary.

In the current study greater leisure-time physical activity levels had no

significant effect on SBP, DBP or MAP. In an experimental study of weight loss

in OSA patients Tuomilehto et al. (2009) reported minor reductions in BP.

Although the mean changes were not significantly different from baseline, there

were BP reductions in a number of OSA patients substantial enough to allow

them to discontinue anti-hypertensive treatment following the trial. The lack of

direct relationships between BP and physical activity may be due to limitations

in the BP measurements, which in the current study were taken in the sleep

clinic. In some individuals clinic BP is exaggerated from normal ambulatory

values, a phenomenon known as white-coat hypertension (Pickering et aI.,

1988). More reliable BP values for the diagnosis of hypertension may be

obtained from 24-hr ambulatory recordings of BP (Mancia, 1990). Further

research is needed to determine the effects of chronic physical activity on

ambulatory BP in OSA patients. Other methodological considerations for the

current study include the use of self-reported activity surveys, the accuracy of

which may be questioned. More direct measures of physical activity, such as
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accelerometry, may have provided a more reliable measure. The validity of the

Epworth Sleepiness Scale has also been investigated, in terms of its ability to

reflect objective measures of sleepiness. According to Chervin et al. (2000) the

ESS was significantly associated with self-rated problem sleepiness but not with

objective sleepiness measured via the Multiple Sleep Latency Test (MSLT) or

OSA severity (AHI). However, previous validation studies have found significant

correlations between ESS, AHI and MSLT scores (Johns, 1993). Although

linear regression analysis in the present study indicated that AHI was a

significant predictor of ESS, the gradient of the slope was very small and

therefore was unlikely to be of clinical relevance. Despite discrepancies in the

literature, the ESS provides a simpler and less time-consuming alternative to

the MSLT, and continues to be used regularly in both research and clinical

settings. Finally, caution must be taken when describing relationships between

variables, because cause and effect cannot be assumed with the current study

design. For example, in present study patients with low activity levels on

average suffer from greater daytime sleepiness. It may be concluded that

physical activity has a role to play in reducing daytime sleepiness. However, it

also possible that daytime sleepiness causes individuals to be less active and

therefore the causal relationships require clarification with experimental designs.

6.5 Conclusion

The current study provides further evidence that OSA is associated with

hypertension, independent of age and gender. Leisure-time physical activity

was associated with reduced daytime sleepiness and 001 following adjustments

for patient characteristics. Although physical activity was not associated with

reductions in AHI or BP, exercise interventions may reduce these indirectly via

changes in BM!. Therefore, interventions focusing on leisure-time activities may

provide useful alternative or adjunct therapy to traditional CPAP treatment. The

effects leisure-time physical activity on OSA severity, symptoms and BP in

combination with CPAP requires further investigation via experimental methods.
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Diurnal variation in the mechanical and neural
components of the cardiac baroreflex
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Chapter 8

Study 6

Postural influences on diurnal variation in
baroreflex gain
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8.1 Introduction

The baroreflex is a key mechanism for blood pressure (BP) homeostasis

(Benarroch, 2008). It has previously been shown that cardiac baroreflex

function varies with time of day (Hossmann et al., 1980, Conway et al., 1983,

Parati et al., 1988) and that diminished integrated gain in the morning can be

attributed to changes in the mechanical or neural component depending on

whether BP is rising or falling, respectively (chapter 7). These diurnal effects

have been described when participants are in the supine position. However,

there are many activities in day-to-day living that produce physiological

challenges and that have been associated with changes in baroreflex function,

such as exercise (Willie et al., 2011) and the assumption of an upright posture

(O'Leary et al., 2003). The risk of vasovagal syncope is greatly increased in the

morning (Mineda et al., 2000, Zoghi et al., 2008), which may be associated with

insufficient baroreflex function to maintain adequate BP during orthostatic stress

(Cooper and Hainsworth, 2002). Despite evidence for diurnal variation in

orthostatic tolerance (Lewis et al., 2010), there is little information on the

alterations in baroreflex function with postural changes in relation to time of day.

A number of studies have been performed to investigate the effects of

orthostatic stress on baroreflex function. The current consensus is that

orthostatic stress augments vascular sympathetic baroreflex sensitivity (O'Leary

et al., 2003) and reduces cardiac baroreflex sensitivity (O'Leary et al., 2003,

Hughson et al., 1994, Taylor and Eckberg, 1996, Jasson et al., 1997, lellamo et

al., 1996, Pickering et al., 1971, Saeed et al., 2009). However, other studies

report either an increase (Pawelczyk and Raven, 1989), or no change in the

cardio-vagal arm of the baroreflex (Cooper and Hainsworth, 2002). These

discrepant findings may be attributed to methodological differences such as the

use of spontaneous techniques versus more invasive neck suction and

pharmacological methods (O'Leary et al., 2003). Following a controlled

incremental orthostatic challenge to presyncope (600 HUT with 5-min

incremental stages of lower body negative pressure) Lewis et al. (2010) found

that reductions in baroreflex function from baseline, assessed via spontaneous

methods (alpha index), were not significant between morning and afternoon

trials. However, the rate of decline was significantly greater in the morning (-

0.87 ± 1.07) than in the afternoon (-0.16 ± 0.35 ms/mm Hg-1min-\ as was the
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time to presyncope consistent with the observation that baroreflex gain is

diminished in the morning. However, time of day differences in baroreflex

function with changes in posture from supine to standing have not been

investigated using the gold standard Oxford method, which in contrast to

spontaneous baroreflex indices, enable the robust assessment of cardiac

baroreflex function under near open-loop conditions.

Therefore, the first aim of this study is to use the modified Oxford method to

determine the combined influences of posture and time of day on cardiac

baroreflex function. Previous findings (chapter 8) indicate diminished integrated

gain in the morning compared to afternoon whilst supine. It is hypothesized that

integrated gain is reduced with standing compared to supine, and that these

posture-induced reductions are greater in the morning. Therefore, the diurnal

variation in gain previously observed when supine is accentuated for standing

posture. The second aim is to investigate the contribution of mechanical and

neural components to changes in baroreflex gain in order to unravel the

mechanism responsible. Although this research question has been addressed

previously (Saeed et al., 2009), the validity of the closed-loop-spontaneous

transfer function method used has recently been under question (Kamiya et aI.,

2011). Given that diminished baroreflex gain with orthostatic stress is thought to

involve parasympathetic nervous system withdrawal resulting in a reduction of

available vagal nerve activity with which to regulate heart rate (Hughson et al.,

1994), it is hypothesized that changes in integrated gain with standing are due

to alterations in the neural component.

8.2Methods
8.2.1 Participants

Six healthy subjects (4 males, 2 females) with a mean ± SD age of 24.5 ± 4.3

(range: 21-33 yr) and body mass index of 21.5 ± 2.6 kg/m2 were recruited for

the study. The participants were a sub-sample of those who participated in the

previous study of diurnal variation in baroreflex gain (chapter 7).

8.2.2 Measurements

Beat-to-beat BP via photoplethysmography (Finometer, TNO-TPD Biomedical

Instrumentation) and electrocardiogram (ECG lead CM5, Corometrics Neo-Trak
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502) were recorded non-invasively. To account for potential drift, finger blood

pressure measures were verified at the brachial artery in the contralateral arm

by sphygmomanometry. These measures were acquired continuously via an

analog-to-digital converter (Powerlab/16SP ML795; ADlnstruments, Colorado

Springs, CO, USA) at 200 Hz per channel. Analysis was performed offline using

the arterial BP and ECGwaveforms to determine the timing of the R waves and

beat-to-beat values for systolic (SBP), diastolic (DBP) and mean arterial

pressure (MAP). Ultrasound imaging (Terason t3000, Burlington, MA, USA)

was used to measure beat-to-beat carotid artery diameter, which was analysed

using custom edge tracking software as has been previously described. All off-

line data processing was performed using custom written software in LabView

8.2 (National Instruments, Texas, USA) on a Macintosh 2.26 GHz MacBook Pro

computer.

8.2.3 Experimental Protocol

All trials were completed in a temperature-controlled laboratory (22-23°C). A

venous cannula was inserted into the right anticubita vein and, following a 15-

minute stabilization period in the supine position, baseline data were recorded

for 5 minutes. Participants then underwent baroreflex testing using the modified

Oxford method technique, completing a supine and a standing trial separated

by a minimum of 15 minutes. Participants completed this protocol at two times

of day: morning (0700h) and afternoon (1600h). Testing sessions were

separated by a minimum of 48 hours and completed in a counterbalanced

fashion. For the morning trial a standardized carbohydrate meal was consumed

at 0500h and for the afternoon trial two identical meals were consumed at

0500h and 1400h in order to keep dietary intake as consistent as possible

between testing sessions.

Oxford trials were repeated until a valid trial was completed, i.e. the drop and

rise in blood pressure were >15 mmHg relative to baseline levels. Doses given

for SNP and PE were typically 150 and 250l-lg, respectively, although SNP was

reduced for standing trials to approximately 100l-lgdepending on the individual's

mass and previous responses to the drugs. Integrated, mechanical and neural

baroreflex gains were determined using custom-written software (LabVIEW 8.2,

National Instruments, Texas, USA) as described in chapter 2.3.
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8.2.4 Statistical Analysis
Linear mixed models, as described in chapter 2.4, were used to compare

baroreflex gains between supine and standing trials. Values are means ± SE

unless otherwise stated. All data were analyzed using SPSS 17 (SPSS,

Chicago, IL).

8.3 Results

8.3.1 Participants
All participants completed at least one supine and standing Oxford trial in both

the morning and afternoon. Following an assessment of the quality of the

recordings the data for one female was excluded, and therefore analyses of

integrated baroreflex gain were based on n=5 (4 males, 1 female). Due to

difficulties in obtaining carotid diameter measurements during the standing trials,

the mechanical and neural gains for some participants were excluded, limiting

the sample sizes for the secondary analyses to n=4 (Gdown morning trials); n=3

(Gdown afternoon trials); and n=4 (Gup afternoon trials).

8.3.2 Baseline cardiovascular variables

Table 8.1 shows average resting values over a 5-minute baseline period for

supine and standing trials in both the morning and afternoon. There was no

significant diurnal variation in baseline HR, SBP, DBP or MAP. The diurnal

variation in carotid diameter found in Chapter 7 during supine rest remained

significant in the current study (P=O.037). Baseline measures of HR and DBP

were significantly greater during standing compared with supine posture

(P<O.05), with trends for increased SBP (P=O.13) and MAP (P=O.064).

Conversely, carotid diameter was significantly reduced with standing compared

to supine; trends that were consistent at both times of day.
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Table 8.1: Summary of baseline cardiovascular variables for supine and

standing postures in the morning and afternoon (n=5).

Variable Morning Afternoon

Supine Standing Supine Standing

Heart rate

(beats/min) 62.4 ± 13.6 80.5 ± 17.1* 59.6 ± 14.3 78.5 ± 17.8*

Systolic blood

pressure(mm 118.8±14.7 137.0±21.9 127.9±23.3 137.2±23.6
Hg)

Diastolic blood

pressure (mm

Hg)

Mean arterial

pressure (mm

Hg)

Carotid

Diameter (mm)

57.9 ± 5.3 76.3 ± 21.5* 61.9 ± 8.6 77.1 ± 10.9*

76.3 ± 6.3 93.3 ± 21.9 79.8 ± 10.6 94.9 ± 14.5

5.68 ± 0.50 5.33 ± 0.57* 5.85 ± 0.63t 5.39 ± 0.80*

* P < 0.05 vs. Supine; t P<0.05 vs. Morning

8.3.3 Postural influences on diurnal variation in integrated baroreflex gain

Table 8.2 shows the integrated Gup and Gdown for supine and standing postures

at both times of day. There was significant diurnal variation in integrated gain for

Gdown and Gup when participants were in a supine position (P<0.05). The

assumption of an upright posture caused significant reductions in Gdown and Gup

(P<0.05). For Gdown the greatest reductions were observed in the afternoon,

falling from 14.3 ± 0.7 ms/mm Hg (supine) to 5.4 ± 0.4 ms/mm Hg (standing). In

the morning Gdown was reduced from 6.2 ± 0.5 ms/mm Hg (supine) to 4.9 ± 0.4

ms/mm Hg (standing), which although significantly different from each other

(P=0.04) eliminated the diurnal variation in Gdown whilst standing (P= 0.42,

Figure 8.1). Although the diurnal variation was still highly significant for Gup in

the standing position (P<0.0005, Figure 8.2), the difference between morning
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and afternoon was reduced from 5.6 ± 1.3 (supine) to 2.7 ± 0.5 ms/mm Hg

(standing).

Table 8.2: Integrated baroreflex gains and correlation coefficients for supine

and standing trials in the morning and afternoon.

Morning Afternoon

Supine Standing Supine Standing

Gdown Integ rated

gain (ms/mm 6.2 ± 0.5 4.9 ± 0.4* 14.3 ± 0.7t 5.4 ± 0.4*
Hg)

R value ± SE 0.96 ± 0.015 0.95 ± 0.009 0.98 ± 0.007 0.93 ± 0.014

Gup Integrated

gain (ms/mm 11.7±0.7 3.6 ± 0.4* 17.3±1.1t 6.3 ± 0.3*t
Hg)

R value ± SE 0.89 ± 0.042 0.82 ± 0.037 0.96 ± 0.015 0.89 ± 0.037

* P < 0.05 vs. Supine; t P<0.05 vs. Morning
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Figure 8.1: Integrated Gdown for supine and standing postures in the morning

and afternoon.

8.3.4 Mechanical and neural components

Table 8.3 shows mechanical and neural gains for supine and standing trials at

both times of day. Due to difficulties in obtaining carotid diameter during some

of the standing trials, the results do not include a number of trials that were

eliminated from the analyses on the basis of quality (assessed subjectively).

Significant reductions in neural gain from supine to standing were found for

falling pressures in the afternoon (P<O.0005,n=3) and rising pressures in both

the morning (P<O.0005, n=5, Figure 8.3) and afternoon (P<O.0005, n=4).

Although significant changes were found for neural Gdown in the morning

(P=O.029, based on n=4), the results indicated an increase with standing with

no changes in the mechanical component despite reductions in integrated gain.

Significant mechanical changes with posture were found in the afternoon, with

reductions in Gup (P=O.002,n=4) and, increases in Gdown (P=O.001,n=3).
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Table 8.3: Mechanical and neural baroreflex gains and correlation coefficients

for supine and standing trials in the morning and afternoon.

Morning Afternoon

Supine Standing Supine Standing

Gdown

Mechanical gain 0.011 0.011 0.009 0.026

(ms/mm Hg) ± 0.001 ± 0.001 ± 0.001 ± 0.005*t

R value ± SE 0.70 ± 0.084 0.83 ± 0.086 0.79 ± 0.027 0.67 ± 0.135

Gup Mechanical

gain (ms/mm 0.011 0.010 0.019 0.012

Hg) ± 0.001 ± 0.001 ± 0.001t ± 0.002*t

R value ± SE 0.84 ± 0.030 0.71 ± 0.058 0.88 ± 0.063 0.81 ± 0.077

Gdown Neural

gain (ms/mm 239.4 396.1 1018.8 99.0

Hg) ± 50.2 ± 33.0* ± 129.7t ± 24.5*t

R value ± SE 0.62 ± 0.055 0.88 ± 0.040 0.80 ± 0.018 0.64 ± 0.082

Gup Neural

gain (ms/mm 670.2 197.1 567.7 229.6

Hg) ±69.5 ± 38.3* ±69.5 ± 40.1*

R value ± SE 0.79 ± 0.026 0.55 ± 0.069 0.93 ± 0.027 0.74 ± 0.097

* P < 0.05 vs. Supine; t P<O.05vs. Morning
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8.4 Discussion
The main findings of the study are that (1) standing posture was associated with

significant reductions in integrated gain at both times of day, (2) postural-related

reductions in Gdown were greater in the afternoon, thus eliminating the diurnal

variation in baroreflex gain for falling pressures, and (3) postural-related

reductions in Gup were similar for morning and afternoon, maintaining the

diurnal variation in gain for rising pressures. Our secondary aim was to

investigate the contribution of mechanical and neural components to changes in

baroreflex gain. Our results indicate that the falls in integrated gain with upright

posture were predominantly associated with reductions in the neural component

as hypothesized, although the limitations associated with these findings are

discussed later.

In the present study a change in posture from supine to standing was

associated with reduced integrated baroreflex gain, supporting the findings of

many previous studies (O'Leary et al., 2003, Hughson et al., 1994, Taylor and

Eckberg, 1996, Jasson et al., 1997, lellamo et al., 1996, Pickering et al., 1971,

Saeed et al., 2009). Lewis et al. (2010) explored the changes in baroreflex gain

with regards to postural influences and time of day. Baroreflex gain was

determined using spontaneous methods before and after an incremental

orthostatic challenge. The contrasting nature of the orthostatic challenges and

assessment of baroreflex function between the current investigation and the

study by Lewis et al. (2010) make comparisons difficult. However, evidence of

the postural influences on baroreflex function in relation to time of day are

presently lacking in the literature. In contrast to Lewis et al. (2010), who

reported no significant differences in baseline (supine) baroreflex gain between

the morning and afternoon, the present findings suggest significant diurnal

variation in supine baroreflex function with diminished gains in the morning.

These results are consistent with previous evidence of diurnal variation in

supine subjects (Hossmann et al., 1980, Conway et al., 1983). Lewis et al.

(2010) reported that although the rate of decline in baroreflex gain was greater

in the morning compared with the afternoon, there was no significant diurnal

variation in the gain values identified at presyncope. In the current study there

was no significant difference in Gdown between morning and afternoon when
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participants were in the standing position, but significant diurnal variation was

still apparent for Gup. Although Lewis et al. (2010) reported that the decline in

BP was greater in the morning, the lack of diurnal variation in Gdown during

standing suggests that the increased risk of syncope in the morning is not due

to poor BP control via the cardiac baroreflex. The diminished cardiac baroreflex

gains observed with falling pressures when standing would appear to increase

the risk of syncope irrespective of time of day. Other mechanisms must be

involved that lead to the elevated risk of syncope in the morning. It is possible

that the increased risk in the morning may be due to inadequate maintenance of

BP through the sympathetic baroreflex at this time. Orthostatic hypotension as a

result of venous pooling stimulates an increase in sympathetic outflow and

parasympathetic inhibition, leading to peripheral vasoconstriction and increased

heart rate and contractility (Naschitz et al., 2006). Studies have shown that the

sympathetic baroreflex is enhanced when an upright posture is assumed

(O'Leary et aI., 2003), however diurnal variation in these responses to posture

has not been examined to date. Lewis et al. (2010) reported lower initial

cerebral blood flow velocity in the morning compared to afternoon, which may

explain the more rapid time to presyncope at this time of day, as opposed to the

physiological state when presyncope is eventually reached. Alternatively, it is

possible that cerebral hypoperfusion is related to impaired cerebral

autoregulation in the morning. However, pilot studies (unpublished) have

detected no significant diurnal variation in cerebral autoregulation.

The findings of the current study indicate that the ability of the cardiac

baroreflex to cope with rising pressures is reduced when an upright posture is

assumed, particularly in the morning. The risk of cardiovascular events is

greatest between 0600 and 1200h (Muller et al., 1987), as is the risk of stroke

(Elliott, 1998). The response to increases in BP that occur while individuals are

in the standing position may be reduced due to diminished baroreflex gain, thus

increasing the risk of cardio- and cerebro-vascular events in vulnerable

populations.

The results of the current study indicate that the falls in integrated gain with

upright posture were predominantly associated with reductions in the neural

component. Significant reductions in neural gain from supine to standing were
125



found for falling pressures in the afternoon and rising pressures at both times of

day. Nevertheless, the reductions in baroreflex gain for rising pressures in the

afternoon were also associated with significant changes in the mechanical

component. There was also evidence of reductions in carotid diameter with

standing compared to supine, supporting previous findings of reduced carotid

diameter with upright sitting versus supine postures (Saeed et al., 2009). The

examination of the contributions of mechanical and neural components to

changes in baroreflex gain was limited by the elimination of some of the trials

due to the quality of the carotid imaging. It should be reiterated that the results

ought to be interpreted with caution, since some of the analyses do not include

data from all 5 participants. Some unexpected results were observed, including

increases or lack of changes in component gains despite overall reductions in

integrated gain. Therefore, where significant results were found the individual

participant responses have been examined to investigate the consistency of the

response. The finding of reduced neural gain for falling pressures in the

afternoon and rising pressures at both times of day was supported by consistent

responses between participants, i.e. every participant included in the analysis

displayed a reduction in neural gain from supine to standing. Significant

reductions in mechanical Gup with the standing posture were found in the

afternoon, and although decreases were seen in all 4 participants included in

the analysis, the reductions in 2 participants were marginal. From these findings

it may be speculated that the neural component is the most influential

component associated with reductions in integrated baroreflex gain when an

upright posture is assumed. These results support the hypothesis that

diminished baroreflex gain is associated with parasympathetic withdrawal and

therefore reduced vagal nerve activity with which to regulate heart rate

(Hughson et al., 1994). However, further studies are warranted to investigate

these initial findings. Saeed et al. (2009) examined the contributions of the

components of the cardiac baroreflex to differences in gain between supine and

sitting positions. They found that diminished integrated gain associated with an

upright-seated position was due to reductions in the vascular (mechanical) arm

of the baroreflex. However, the validity of closed-loop-spontaneous transfer

function analysis, as used by Saeed et al. (2009), has been questioned (Kamiya

et al., 2011). The modified Oxford method used in the present study allows a

near open-loop analysis of the cardiac baroreflex system.
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8.5 Conclusion
The findings of this investigation support those of previous studies in suggesting

that baroreflex gain is reduced when an upright posture is assumed. Analyses

of the baroreflex components indicate that reductions in neural gain when in the

standing position may be the cause of the diminished integrated gain, although

further studies are warranted. This is the first study to use standard

pharmacological methods to examine the effects of time of day on postural

differences in gain. Diurnal variation in baroreflex gain is eliminated when BP

falls during the standing position, yet is maintained during stand when BP is

rising. These results suggest that the increased risk of syncope in the morning

is not associated with diurnal variation in cardiac baroreflex function, and that

other mechanisms, such as the sympathetic baroreflex or cerebral

autoregulation, are behind the increased morning risk. The existence of diurnal

variation in Gup even after postural changes suggests that the risk of

cardiovascular events in the morning remains, irrespective of whether an

individual is supine or standing. Further investigations are needed to unravel the

mechanisms behind the interactions between time of day and postural changes.
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Chapter 9

Synthesis of findings
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9.1 Conclusions
The work undertaken in this thesis was designed to explore the control of BP in

humans, providing new data in key areas that warranted further research. The

aims of this thesis were: 1) to investigate sources of variation in human blood

pressure control, in particular the effects of blood pressure status, physical

activity and time of day; 2) to explore and apply the investigations above to a

clinical population of patients with obstructive sleep apnoea, who suffer from

both circadian-related issues and generally high blood pressure status; and 3)

to explore mechanisms responsible for diminished blood pressure control in the

morning in the general population. These aims have been achieved through

completion of a series of studies reported within this thesis. These separate

studies were designed according to the specific objectives laid down in the

introduction. Thus the following conclusions can be made:

1. Blood pressure status was a significant predictor of acute BP changes

following exercise. However, when statistical artefacts of regression to the

mean and mathematical coupling are not controlled for, it can lead to spurious

results and the masking of other important moderators of blood pressure

responses.

2. Obstructive sleep apnoea patients exhibited a unique systolic BP reactivity

profile, with peak reactivity at night. which may help to explain the increased risk

of myocardial infarction at this time in this population.

3. Leisure-time physical activity was associated with reduced daytime

sleepiness in patients with OSA, and may be a useful adjunct therapy to CPAP.

4. Diminished cardiac baroreflex sensitivity in the morning was due to reduced

mechanical gain when BP is rising, and therefore therapies targeting the

mechanical component may reduce the cardiovascular risk in the morning.

Diminished baroreflex sensitivity in the morning in response to falling BP was

due to reduced neural gain.

5. Cardiac baroreflex sensitivity was reduced in the morning and afternoon

when an upright posture was assumed, and was primarily attributed the
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decreases in neural gain. Although observed at both times of day, reductions in

baroreflex sensitivity due to the change in posture occurred to a greater extent

in the afternoon. This caused the diurnal variation that was reported in the

supine position to be attenuated for rising BP, and eliminated entirely for falling

BP when participants changed to a standing position.

9.2lmplications
The conclusions drawn from the studies in this thesis have implications for the

future work of researchers, clinical populations, in particular OSA and

hypertensive patients, and also the general population. The specific implications

of each study are outlined below in relation to these groups.

9.2.1 Implications for researchers

The studies in this thesis provide further knowledge of BP control and the

influence of physical activity, time of day, and BP status, as well as related

mechanisms and methodological issues. The main conclusion from study 1was

that the importance of BP status in predicting PEH can be exaggerated when

statistical artefacts of regression to the mean and mathematical coupling are not

controlled for. Researchers should be aware of the problems of spurious

correlations when initial and change values are entered into correlation or

regression analyses, particularly when interpreting the results of previously

published studies. In future studies researchers should control for these

artefacts, not only to minimise spurious correlations, but to ensure that other

important predictor variables are not overlooked. This is the case for any study

involving initial and change values, but is particularly vital for studies

investigating the effectiveness of interventions to enhance aspects of health,

especially when the results will provide evidence for position statements and

guidelines. Study 2 provided evidence to show that using an appropriate study

design can minimise the effects of regression to the mean and mathematical

coupling. In studies of BP responses to exercise or other interventions,

researchers are advised to use ambulatory BP measurements on a control day

and post-intervention day. The use of multiple measurements rather than a

small number of baseline values reduces these statistical artefacts, and

therefore minimises the chance of spurious correlations and allows other

important moderators of BP to be identified.
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Study 3 involved the use of BP reactivity profiles, which may be a useful tool for

determining cardiovascular risks in patients. However, further research is

needed to evaluate its predictive value and to examine its potential use in other

populations. The findings of study 3 also highlight the importance of taking into

account physical activity when making BP measurements, particularly given the

effects of time of day on BP responses to activity. Time of day should be

controlled for when investigating BP responses to exercise or other

physiological challenges. In study 4 it was found that physical activity was

associated with reduced daytime sleepiness, although the cause-effect

relationship should be interpreted with caution. In the future researchers should

explore the use of physical activity interventions with longitudinal studies,

potentially in conjunction with CPAP. Given the results in this thesis, it is

recommended that ambulatory BP monitoring is used as it is more relevant and

reliable than clinic measurements. Researchers should also control for patient

characteristics such as age, gender and BM!.

Studies 5 and 6 provided further information about the components of the

integrated baroreflex response involved in diurnal variation and changes in

posture. This has implications for future studies in which researchers are

investigating potential treatments or interventions to reduce the risk of

cardiovascular events and syncope. From the current study results it would be

recommended that the mechanical component is targeted for improving control

of rising BP, and that the neural is targeted for falling BP. Further research is

needed to confirm the findings of study 6, in which the neural component was

found to be reduced when changing from supine to standing. Given the

significant differences seen between morning versus afternoon, and supine

versus standing, these two studies also highlight the need to control for time of

day and posture when assessing baroreflex function.

9.2.2 Implications for clinical populations

The results of study 1 indicated that V02ma" was a significant predictor of PEH,

with greater reductions in BP in the less fit individuals. This has implications for

clinical populations of hypertensive patients in whom fitness tends to be lower.
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The results suggest that these individuals will benefit most from the BP-lowering

effects of post exercise. Time of day for exercise was also a significant predictor,

and the findings indicate that hypertensive patients should exercise in the

afternoon rather than the morning to gain the greatest reductions in BP

following exercise. Although study 1 results suggest that the importance of BP

status in predicting PEH has been exaggerated in previous studies, the results

from study 2 confirm that it does still play a role alongside other moderators.

This is a positive outcome for the promotion of exercise as an anti-hypertensive

treatment. Hypertensive populations should be encouraged to exercise regularly,

particularly since the results show that individuals with high BP will benefit most

from the BP-lowering effects of exercise.

The results of study 3 indicate that BP reactivity is high at night is OSA patients.

This may explain, in part, why the risk of MI is elevated at this time in this

clinical population. Better BP control, particularly a night, is needed in these

patients. This may involve the use of CPAP and combined with other treatments.

In study 4 it was found that leisure-time physical activity in OSA patients was

not related to BP, suggesting that other possibilities for interventions will need to

be pursued. On the other hand, physical activity was associated with lower

daytime sleepiness, which is a key symptom that can lead to increased risk of

road traffic accidents, sick leave and reduced quality of life. Further research in

the form of longitudinal studies is needed to determine the cause and effect in

this relationship. Finally, an increase in physical activity should help to reduce

BMI, which was associated with OSA severity (AHI, 001). Therefore, it is

recommended that OSA patients combine CPAP therapy with a healthy diet and

regular exercise in order to lose weight, control their BP and reduce their

daytime sleepiness.

Although studies 5 and 6 involved young healthy participants, the results may

help to unravel the mechanisms involved in diurnal variation in BP control

associated with elevated cardiovascular risk in the morning. The results

highlight that BP control is worse in the morning, suggesting that clinical

populations, such as those with atherosclerosis and/or hypertension, should

avoid intense exercise in the morning as well as other stress-inducing activities.

The mechanical component of the baroreflex response was the site responsible
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for most of the reduction in control of rising BP is the morning. It is

recommended that individuals aim to improve their vascular health, for example

though regular aerobic exercise, in order to enhance this component and

improve their BP control when most at risk. Study 6 revealed that even when

changing to a standing posture baroreflex function is reduced further and

control of rising BP is still worse in the morning than the afternoon.

9.2.3 Implications for the general population

The results of study 1 apply to the general population as well as clinical

populations. It is recommended that exercise is performed in the afternoon for

the greatest BP-lowering effects post exercise. In study 2 it was found that age,

BMI and '~O~n""were significant predictors of PEH. This has implications for the

general population because those individuals who are older, overweight and

unfit and therefore most at risk of developing hypertension, should benefit most

from the BP reductions following exercise.

The results of study 3 confirmed previous research findings that BP reactivity is

greatest in the morning in the general population. Therefore in older populations,

where the risk of cardiovascular events begins to increase, it is recommended

that morning exercise is avoided because BP responses to activity are higher at

this time. Although no significant relationships between leisure-time physical

activity and BP were identified in study 4 in the control group, this study may

have been limited by the use of one-off clinic BP measurements. It has been

suggested that ambulatory BP measurements are more accurate and reliable

and therefore may have been more successful in indentifying the benefits of

exercise, which is recommended for maintaining healthy BP levels in the

general population.

Studies 5 and 6 highlight the need for maintaining a healthy lifestyle within the

general population. Although the studies are in the young healthy volunteers,

the diurnal variation is still present in BP control with a reduced ability to cope

with rises and falls in BP in the morning. The mechanical component was

identified as the site primarily involved in this reduced morning baroreflex

response. Carotid distensibility has been shown to reduce with age (Monohan
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et aI., 2001) and therefore it is important for the general population to maintain

vascular health through exercise and diet in order to avoid large reductions in

baroreflex function.

9.3 Recommendations for future research
There are several potential areas for future research that have emerged from

the studies reported in this thesis. These are predominantly concerned with:

physiological mechanisms involved in diurnal variation in BP control in both

healthy and clinical populations; and the effectiveness of chronic physical

activity in the improvement of BP control in hypertensives and other clinical

populations. Some recommendations for future research include:

9.3.1 The chronic effects of exercise training on ambulatory BP: A meta-

analysis.
The meta-analytical approach applied in study 2 revealed reductions in BP

following acute exercise deemed to be of clinical significance. It seems a logical

progression to investigate the effectiveness of chronic exercise on blood

pressure and its cardio-protective effects. Although meta-analyses have been

used to investigate the effects of aerobic training (Fagard, 2001, Kelley et al.,

2001), the main outcome measures were changes in resting SBP and DBP, as

opposed to ambulatory measurements, which are more relevant to the everyday

control of BP and related cardiovascular events. Future meta-analyses should

aim to investigate the combined effects of exercise duration, intensity and mode

to determine the most effective protocols for BP control. It is important to note

that mathematical coupling and regression-to-the-mean may influence any

proposed anti-hypertensive intervention involving initial BP status and BP

changes, and therefore should be controlled for.

9.3.2 Blood pressure reactivity profiles in clinical populations

Following the identification of BP reactivity profiles in OSA patients that differ

substantially to those found in health controls (study 3) and hypertensives

(Jones et al., 2006), similar techniques may be applied to populations with sleep

disorders other than OSA or those suffering from daytime sleepiness only. This

will determine whether the reactivity profile is unique to OSA or whether other

populations with sleep- and circadian-related disturbances may be at risk of
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nocturnal cardiovascular events. Shift workers may provide an interesting non-

clinical population to consider for future studies of BP reactivity. Further

investigations with large sample sizes are required to determine the

effectiveness of BP reactivity profiles as a tool for identifying individuals at risk.

9.3.3 Physical activity as an adjunct therapy to CPAP for reducing

symptoms and severity of OSA

In study 4 leisure-time physical activity was associated with reduced ODI and

daytime sleepiness in OSA patients. Although cause and effect cannot be

assumed with cross-sectional study designs, it is possible that physical activity

would provide a useful treatment for reducing OSA severity and daytime

sleepiness in OSA patients. Future studies should use experimental designs to

examine the potential of physical activity interventions as an adjunct to

traditional CPAP therapy. Given the discrepancies between clinic and

ambulatory measurements of BP in OSA patients reported in study 3, potential

anti-hypertensive benefits of combined exercise and CPAP therapy should be

assessed using ambulatory BP measurements.

9.3.4 Diurnal variation in cardiac and sympathetic baroreflex function in

healthy and clinical populations

The findings of studies 5 and 6 contribute to the understanding of mechanisms

involved in BP control, including how diurnal variation in the separate

components of the cardiac baroreflex may potentially contribute to greater risk

of cardio- and cerebra-vascular events. Although it is important to initially

delineate these mechanisms in healthy individuals in order to document the

'normal' physiological responses, the study of young healthy individuals is

limited in as far as generalising the results to clinical populations. Future studies

should follow up the findings of studies 5 and 6 in clinical populations

associated with hypertension and cardiovascular disease. Patients with OSA

would be a particular interesting population to study, especially given the altered

circadian profiles of BP control reported in this thesis. The studies in this thesis

have focused on the baroreflex control of heart rate. However, the control of

peripheral resistance via sympathetic nerve activity is also important. Future

studies should investigate both cardiac and sympathetic baroreflex function,

given the influence of both these mechanisms on the maintainenance of
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cardiovascular homeostasis (Rudas et al., 1999). In addition to this, exploration

of diurnal variation in baroreflex function following exercise may help to explain

circadian variation previously found in BP responses to activity.
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