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Abstract 

This work addresses the use of microwave techniques to determine quality parameters in 

cured meat. The first approach is online monitoring of weight loss in the meat curing process, 

which is a significant measurement for the meat industry because the weight loss is used as 

a method of tracking the curing process. Currently, weight loss is measured by using 

ordinary weighing scales, which is a time-consuming and impractical technique. Thus, a 

novel method is required to simplify the process by implementing an online monitoring 

technique.  

In this work, a set of microwave sensors were modelled using High Frequency Structure 

Simulation Software and then constructed and tested. Weight loss of the sample and change 

in the S11-parameter illustrated a strong linear relationship (R2 > 0.98). The prediction model 

then was developed using the Partial Least Squares method, which exhibited a good 

capability of microwave sensors to predict weight loss, with R2
p (prediction) = 0.99 and root 

mean square error of prediction (RMSEP) = 0.41. 

The second approach is to determine water activity (aw) in cured meat, which is the parameter 

that describes available water for microorganisms and influences different chemical 

reactions in the product. For the cured meat industry, aw is the only moisture related 

measurement that is an accepted Hazard Analysis and Critical Control Point plan. This is 

important for safety reasons, but also for energy optimisation since curing requires controlled 

continuous temperature and humidity.  

Currently, aw is being measured by the meat industry using commercially available 

instruments, which have limitations, namely being destructive, expensive and time-

consuming. Few attempts to develop non-destructive methods to predict aw have used X-ray 

systems (namely Computed Tomography), Near Infrared (NIR) and Hyperspectral Imaging 

(HSI). Although the techniques provided promising results, they are expensive, impractical 

and not commercially available for the meat industry.  

The results from the microwave sensors demonstrated a linear relationship (R2 = 0.75, R2 = 

0.86 and R2 = 0.91) between the S11 and aw at 2.4 GHz, 5 GHz and 7 GHz, respectively. The 

prediction model exhibited a good capability of the sensors to predict aw (R2
p = 0.91 and 

RMSEP = 0.0173)
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Chapter 1  Introduction 

Products of certified high quality are increasingly sought by both consumers and 

manufacturers (Verbeke, 2011). Products in the meat industry are no exception to this rule 

( Verbeke et al. 2006; Verbeke et al. 2010), although it is a challenging task since the product 

exhibits considerable variability as a result of the natural raw material (Damez and Clerjon, 

2013). Therefore, a rapid measurement system for ensuring quality of the products would be 

beneficial for the meat industry.  

Meat curing is the process by which food products are preserved and flavoured, typically 

through the addition of salts, nitrates, nitrites or sugars and perhaps in combination with 

other cooking or smoking processes. For the cured meat industry, water activity (aw) is the 

only moisture related measurement that is an accepted Hazard Analysis and Critical Control 

Point (HACCP) plan (US Public Health Service, 2013). It is particularly important in 

intermediate, shelf-stable food products.  

Despite curing being used as early as 1300 BC in China, there are few techniques for 

monitoring the curing process with producers typically relying upon “rule of thumb” 

methods or crude measurements such as product weight or solidity. While fresh meat 

products have benefitted from the advent of sensor systems, with near-infrared (NIR) and 

X-ray based techniques being the most prevalent for applications such as meat composition 

monitoring (Prediktor, 2016), sorting (Tomra, 2016) and foreign object detection (i.e. 

detection of metal, plastic and bone shards) (Nielsen et al., 2013), these technologies have 

made little impact on the monitoring of cured meat production. Thus there is heavy reliance 

upon the experience of key workers within the industry which leads to problems of 

consistency if the instincts or opinions of those workers vary (Swiss Meat, 2014).  

These days, fresh meat can be purchased in local stores and supermarkets owing to use of 

mechanical refrigeration systems (Rentfrow, Chaplin and Suman, 2012). However, across 

much of Europe, cured meat products (see Figure 1.1) have retained a place in the consumer 

market.  
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Regional speciality dry-cured meat products, such as the premium, heritage dry-cured hams 

produced by Prolongo1, have been in Europe for centuries, and are engrained in European 

culture – it is well known for example as a key ingredient of the Mediterranean diet. Spain 

is the main producer of dry-cured ham products, followed by Italy, France, Germany, Poland 

and Greece. Consumption figures (yearly per capita) build a broader picture of the 

importance of dry-cured meats: Spain (4.4 kg), Italy (2.4 kg), France (0.9 kg), Belgium (0.6 

kg) and Germany (0.4 kg), and there is a growing market in the UK for premium product 

domestically-produced charcuterie (Resano et al., 2011).  

In Norway, dry-cured ham consumption is 0.46 kg per capita and traditional dry-cured lamb 

(fenalår) is estimated at 0.12 kg per capita – while this is lower than ham products in other 

European countries. There is growing interest in traditional products and in how they can be 

used in supporting and developing local, tourist and even export markets, and thereby 

maintaining and creating local businesses in remote areas in the West-Nordic regions.  In 

2012, a federation of nine manufacturers of fenalår received the geographically protected 

designation “Fenalår from Norway”, and in 2015 deals were made with both France and 

Switzerland to begin exports under this brand (Berglund, 2015). 

  
(a) (b) 

Figure 1.1. (a) Traditional ham curing process in Spain and (b) an example of a finished 

dry-cured ham product. 

 

                                                 

1 Prolongo (Spanish Meat Company) is one of the project partners that is interested in investigating a novel 

non-destructive sensing technology. Their involvement is to provide a knowledge about the production of cured 

meat products, validation and commercialisation of the technique. http://www.prolongo.com/?lang=en  

http://www.prolongo.com/?lang=en
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The concept of aw was introduced over fifty years ago to describe the state of water in food 

(Ibarz and Barbosa-Canovas, 2014). In 1953 (Gustavo V. Barbosa-Cánovas, Anthony J. 

Fontana, Schmidt and Labuza, 2007), William James Scott showed that aw is the parameter 

that governs microbial growth in food not the water content, as most people thought. Four 

years later, he established the concept of a minimum aw for microbial growth. Now, food 

manufacturers regularly use aw to determine whether or not a product is susceptible to 

microbial propagation (Carter and Fontana, 2008).  

Currently, there are a number of commercially available aw instruments (Cole-Parmer, 

2016b; Labcell Ltd, 2016b; Rotronic Instruments Ltd, 2016) that are used by the meat 

industry and research institutions. However, the techniques have some disadvantages that 

limit their use in the manufacturing process. The drawbacks of the methods are as follows: 

 Destructive – this is the key disadvantage, as all existing methods require a sample 

to be cut from a curing meat product. This causes a disturbance in the curing process 

owning to the area of the sample cut being unevenly cured, which would require 

extra time for the area to be cured. In addition, each tested sample has to be disposed 

of after the measurement is complete, which leads to waste of the product. 

 High cost – the cost could be a problem for small manufacturers, who are the majority 

in cured meat industry (more detail is provided in section 2.5). 

 Time-consuming – this becomes an issue when over 20-30 samples are measured, 

which would require over 5 hours (more detail is provided in section 2.5).  

The limitations of the existing aw measurement techniques are the drivers for this research. 

Therefore, the successful outcome of this investigation will provide the meat industry with 

a non-destructive, low cost and time-efficient technique to determine aw in cured meat and 

meat products.   

Electromagnetic (EM) sensors, namely those, which operate at radio or microwave 

frequencies, are widely used in a variety of industrial sectors.  Examples include, civil 

engineering materials analysis (Adous, Quéffélec and Laguerre, 2006), timber imaging 

(Goy, Martin and Leban, 1992), chemical processing (Gradinarsky et al. 2006; O. 

Korostynska et al. 2014a; O Korostynska et al. 2014b) and medicine (Olga Korostynska et 

al. 2014c; J. H. Goh et al. 2013a; Mason et al. 2013; J H. Goh et al. 2013b). However, there 
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has yet to be a significant impact of these sensors in the food industry, with the majority of 

such technology there being centred on cooking or sterilisation. However, researchers from 

Built Environment and Sustainable Technologies (BEST) Research Institute in Liverpool 

John Moores University (LJMU) have demonstrated the first potentially non-invasive 

solution for measurement of water holding capacity (Mason et al., 2016) and aw (S. G. 

Bjarnadottir et al., 2015) in meat products based on EM wave sensors operating at 

microwave frequencies. Therefore, there is the belief that further benefits could be brought 

to the cured meat industry; this belief is supported by other authors in the field (Clerjon and 

Damez, 2009). The particular benefit of the technology is its non-invasive nature, which, in 

contrast with current techniques, holds the potential to eliminate fears over instrumentation 

contributing to food contamination, which has disastrous consequences for consumers and 

suppliers. Another significance of the new sensor system will be a cost reduction by 

minimisation of the product waste, which is disposed of when the HACCP requirements are 

not met. In addition, meat industry is interested in time reduction of the meat curing process 

to reach higher annual turnover by determination of aw in real time. 

Currently, the curing process is controlled by simply measuring the solidity and weight of 

the product, and the key element is an experienced worker with the right instinct. The worker 

squeezes a meat product and estimates aw, which may lead to human error and over drying 

the product. Firstly, over drying will be costly for the company, as the temperature (usually 

12-14 °C) and humidity (usually 75%) of the environment has to be controlled. Secondly, 

over drying causes a thick crust on the surface of the meat, which prevents the inside 

moisture from escaping. This means that the outside of the meat product is dried and safe to 

consume, whereas the inside might not be as it still contains high levels of moisture (high 

aw) (Wright, 2011). Thus, a non-invasive and non-destructive sensing system will solve these 

issues, namely providing enhanced knowledge of aw that will reduce the timing of the drying 

process. This will reduce expense on energy-consuming dryers and improve the productivity.          

The system will afford opportunities for dry-cured meat manufacturers to adapt and change 

recipes in line with healthy eating guidance, such as that offered by the World Health 

Organisation (World Health Organization, 2004) and the European Food Information 

Council (EUFIC, 2017). For example, the use of frequent or continuous aw prediction will 

enable manufacturers to monitor the effect of reducing the salt levels in their products and 



  Introduction 

5 

work toward launching low-salt derivatives. It will go further than other initiatives in this 

field, such as the FP7 ProCured project (Cordis, 2015), since the developed method of aw 

prediction enables simple through life product monitoring.  This will clearly have a huge 

positive impact on societal health since reducing salt intake will reduce the risk of high blood 

pressure, heart disease and strokes for European Union (EU) citizens, as most countries are 

above the 6g per day salt intake targets.  Thus, the impact of this will be felt at national and 

European levels through reduced mortality and healthcare costs. In England and Wales 

alone, a recent study estimated that a 3g reduction in mean daily salt intake by adults would 

lead to up to 20,000 fewer deaths annually, and healthcare savings of £260 million per year 

(ActionSalt, 2016).  In the European context, a 2015 study of 9 European countries 

(including Spain, Italy, UK and Scandinavia) projected that a 30% decrease in current salt 

intake levels would result in 632,000 fewer strokes, 708,400 fewer cases of heart disease, 

and 495,600 fewer deaths (Hendriksen et al., 2015). Sausages, ham, bacon and other 

processed meats appear to increase the risk of people dying young. Diets high in processed 

meats are linked to cardiovascular disease, cancer and early deaths (Gallagher, 2013). The 

evidence shows that eating processed meat increases a risk of colorectal cancer (Canadian 

Cancer Society, 2016). In 2006, there were an estimated 3,191,600 cancer cases diagnosed 

and 1,703,000 deaths from cancer in Europe. One of the most common form of cancers was 

colorectal cancers (4,102,900, 12.9%) which caused 207,400 deaths (Ferlay et al., 2007).  

1.1. Aim and Objectives  

The aim of this investigation is to develop a rapid non-destructive method to predict aw in 

cured meat using microwave spectroscopy. 

Objectives of this project are to: 

 Research the importance of aw measurement in the meat curing process, 

commercially available aw meters and recent research undertaken for aw prediction 

in cured meat. 

 Investigate electromagnetic wave theory for design and simulation of 

electromagnetic wave sensors and theoretical model of a meat sample using High 

Frequency Structural Simulation (HFSS) software. 
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 Construct sensor and carry out an experimental work to monitor weight loss and 

water activity in meat. 

 Develop a predictive model from the experimental data for determination of aw in 

dry-cured meat.  

1.2. Statement of Novelty  

This thesis describes the development of a novel low-cost, time-efficient and non-invasive 

microwave sensor for measuring water activity in cured meat, which is currently not 

available for the meat industry. The research will demonstrate the potential use of the 

microwave sensor to provide a rapid measurement system for ensuring quality of the 

products. 

1.3. Overview of the Thesis  

In order to achieve the aim and meet the objectives of this research, the thesis is structured 

in chapters. The first Chapter has discussed the importance of water content and specifically 

aw in meat and meat products, the problems faced in monitoring the meat drying process and 

determination of aw in cured meat by the meat industry. 

In Chapter 2, a literature review will start by focusing on aw and aw measurements. It then 

will describe and evaluate state of the current commercially available techniques to measure 

aw in cured meat used by the meat industry. Moreover, the recent research carried out to 

develop non-destructive techniques to predict aw in cured meat will be reviewed. This will 

lead to highlighting a need to investigate electromagnetic wave sensors to develop a non-

destructive method for determination of aw in cured meat and meat products.     

In Chapter 3, the theory of electromagnetic waves will be introduced, particularly microwave 

sensing system as a proposed technique to monitor water activity in cured meat products. 

Different sensor structures and their characteristics will be described and their features will 

be compared in order to select the most suitable sensor for this investigation. In addition, the 

description of substrate and feed techniques of the microstrip sensors will be presented. 



  Introduction 

7 

In Chapter 4, the design process of the research will be described, namely design, 

simulations, sample preparation, experimental approaches and data analysis. The chapter 

will start with the design process and provide the flow diagram of the research methodology. 

This will follow with the description of the samples preparation, continuous and discrete 

monitoring. The last section will describe the data processing and the development of the 

prediction models.  

In Chapter 5, the sensor design, implementation and validation will be provided. The first 

section of the Chapter will present the HFSS models of the sensors and a meat sample. In 

section 5.2, the simulation results of five microwave sensors are presented. Section 5.3 walks 

through the detailed procedure of the physical construction of the sensors and comparison 

of experimental and simulation measurements of the sensors in the air. The last section will 

provide the validation of the theoretical model.  

Chapter 6 will provide real-world experimental results obtained using sensor versions 1, 2 

and 3 for continuous monitoring of weight loss of meat samples in the curing process. Results 

obtained from all three sensors will be processed, plotted and analysed to develop a 

prediction model for monitoring of the meat curing process using a microwave sensor 

system. 

In Chapter 7, the real-world experimental results obtained from sensor versions 3, 3.1 and 

3.2 for discrete monitoring for prediction of water activity will be shown; and also the results 

obtained from the prototype sensor version 3 in the LJMU laboratory and in the Norwegian 

pilot plant owned by Animalia.  

Chapter 8 will summarise the objectives of the research and conclude the investigation and 

the recommendations for relevant future work will also be discussed. 
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Chapter 2  Literature Review 

In this chapter, the literature review will begin by focusing on water activity (aw) and meat 

curing techniques. Then, currently available aw measurement instruments will be critically 

reviewed, followed by a further critical review of relevant sensors or techniques for non-

invasive water activity measurement, which remain in the research domain. Finally, a 

summary of the key findings of the literature review will be provided, along with discussion 

of the need for a new method for water activity determination. 

2.1. Water Activity 

The accepted definition of water activity is “the partial vapour pressure of water in a 

substance divided by the standard state partial vapour pressure of water” (Food and Drug 

Administration, 2014). However, to understand the importance of water activity in the 

context of food, it is necessary to understand that the microorganisms that grow on or in food 

products rely on water. In addition, water activity is an indicator of the water available for 

the growth of microorganisms, and does not necessarily directly relate to the total water 

content of a product. The researchers in the food industry define the concept of water activity 

as follows (Al-Muhtaseb, McMinn and Magee, 2002): 

𝑊𝑎𝑡𝑒𝑟 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑝

𝑝0
=

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦

100
  (2.1) 

Where p is the partial pressure of water in the food and p0 the vapour pressure of pure water 

at the same temperature. 

Microorganisms absorb water by moving it across the cell membrane. This water movement 

mechanism depends on the aw gradient — on water moving from a high aw environment 

outside the cell to a lower aw environment within the cell. When aw outside the cell becomes 

low enough, it causes osmotic stress: the cell cannot take up water and becomes dormant. 

The microorganisms are not eliminated; they just become unable to grow enough to cause 

infection. Different organisms cope with osmotic stress in different ways, and therefore the 

minimum level of water activity for different organisms to survive varies; some types of 

moulds and yeasts have adapted to withstand very low aw levels (Food and Drug 

Administration, 2015). 
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The knowledge of aw provides a possibility to identify which bacteria (Heller, 2001; 

Vesterlund, Salminen and Salminen, 2012), moulds (Mathlouthi, 2001; Rosso and Robinson, 

2001), or fungi (Pardo et al., 2004) can grow on and in it. By reducing aw, the growth of 

certain classes of microbes can be eliminated, namely E.coli, listeria and campylobacter. In 

1999, over 143 people were made ill by consuming dry-fermented salami, which contained 

E.coli in British Columbia, Canada. In 2011, the listeria was found in a sample of imported 

dry-cured ham and 5,700 pounds of product were recalled (Frame, 2012).   

Water activity is a control step and an integral part of many HACCP plans (López-Malo and 

Alzamora, 2015). Table 2.1 shows aw limits for many common microorganisms. These well-

established microbial growth limits have been incorporated into Food and Drug 

Administration (FDA) and other regulations (Decagon Devices, 2012). 

Table 2.1. Water activity and growth of microorganisms in food (Decagon Devices, 2012). 

Range of 

aw 

Microorganisms  Products  

1.00-0.95 Pseudomonas, Escherichia, 

Proteus, Shigella, Klebsiella, 

Bacillus, Clostridium perfringens 

Highly perishable (fresh) foods and 

canned fruits, vegetables, meat, 

fish, milk, and beverages 

0.95-0.91 Listeria, Salmonella, Vibrio 

parahaemolyticus, C. botulinum, 

Serratia, Lactobacillus, 

Pediococcus, some moulds,  

Cured meat (ham), some cheeses 

(Cheddar, Swiss, Muenster, 

Provolone), bread, tortillas 

0.91-0.87 Many yeasts (Candida, Torulopsis, 

Hansenula), Micrococcus 

Fermented sausage (salami), 

sponge cakes, dry cheeses, 

0.87-0.80 Most moulds (mycotoxigenic 

penicillia), Staphyloccocus aureus, 

most Saccharomyces (bailii) spp., 

Debaryomyces 

Most fruit juice concentrates, 

sweetened condensed milk, 

syrups, jams, jellies, 

soft pet food 

0.80-0.75 Most halophilic bacteria, 

mycotoxigenic aspergilli 

Marmalade, marzipan, glacé fruits, 

beef jerky 

0.75-0.65 Xerophilic molds (Aspergillus 

chevalieri, A. candidus, Wallemia 

sebi), Saccharomyces bisporus 

Molasses, raw cane sugar, some 

dried fruits, nuts, snack bars, snack 

cakes 

0.65-0.60 Osmophilic yeasts (Saccharomyces 

rouxii), few molds (Aspergillus 

echinulatus, Monascus bisporus) 

Dried fruits containing 15-20% 

moisture; some toffees and 

caramels; honey, candies 

0.60-0.20 No microbial proliferation  Dry pasta, flour, cookies, dried 

vegetables  
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Water activity is the only moisture related measurement that is an accepted HACCP control 

point. It is particularly important in intermediate, shelf-stable food products. In combination 

with pH, aw determines which of these intermediate-moisture foods are considered 

potentially hazardous by the FDA (US Public Health Service, 2013) . 

2.2. Meat Curing 

Meat curing is the application of salt, colour fixing ingredients, and seasoning in order to 

impart unique properties to the end product (Ray, 2010).  Some techniques involve adding 

sugar, nitrite, nitrate and sometimes phosphates and ascorbates to meats for preservation, 

colour development, and flavour enhancement (Marriott, Graham and Extension, 2000).  The 

functions of the most popular ingredients used in curing are as follows. 

Salt: 

 Provides a characteristic flavour to impart a cured meat taste. 

 Acts as a preservative through growth inhibition and destruction of microorganisms. 

 Enhances the transport of other cure ingredients throughout the muscle by osmotic 

movement of salt itself. 

 Dehydrates meat tissue to reduce bacterial growth. 

Sugar: 

 Provides a characteristic flavour to impart a cured meat taste. 

 Counteracts the harshness of salt. 

 Provides an energy source for microorganisms, which convert nitrate to nitrite during 

a long-term cure. 

 Provides a surface colour characteristic of aged ham if caramelised sugar is used. 

Nitrates and nitrites: 

 Contribute to the characteristic cured flavour. 

 Contribute the characteristic reddish-pink colour of cured meat. 
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 Prevent growth of a food poisoning microorganism known as Clostridium botulinum, 

which can occur in foods that require heat processing. 

 Retard the development of oxidative rancidity and rancid taste. 

 Prevent warmed-over flavour in reheated products. 

The ingredients may be in either dry or liquid form and applied either to the surface of meat 

or in meat by some injection techniques (artery pumping or stitch pumping). The artery 

pumping method involves injecting a brine solution into the meat’s artery by using a long 

needle connected with a hose to a pump. The stitch pumping technique is based on applying 

the solution under the pressure to the surface of the meat with a bank of needles connected 

to a pump (Meats and Sausages, 2016). Dry-cure is the oldest curing method in which the 

curing ingredients are rubbed on the surface of the meat. The dry sugar cure method can be 

used under wider temperature variations and will have less spoilage problems under 

unfavourable curing conditions (Ray, 2010). A simple and time-tested dry-curing formula 

for 12-14 lbs piece of meat requires the following ingredients: 

 8 lbs salt 

 3 lbs sugar 

 2 oz. sodium nitrate 

 1/2 oz. sodium nitrite 

The length of curing is typically 7 days per inch of thickness (Ray, 2010). For instance, if a 

ham joint weighs 12-14 lbs and measures 5 inches at its thickest point, then it should be 

cured for 35 days. Another important consideration is to be sure the cure is rubbed into the 

aitchbone joint and hock end of the ham to avoid bone sour. The temperature range should 

be high enough for the meat to cure properly and dry, but low enough so harmful bacteria 

and mould does not grow. Ideal temperatures for dry-curing are between 10-15 °C (Ray, 

2010).   

Prolongo is a Spanish meat company that has produced high quality sausages and hams since 

1820, which is located in Valle del Guadalhorce (Prolongo, 2016). The curing process of 

hams in Prolongo is illustrated in Figure 2.1 that consists of four stages, namely salting, salt 

equalisation, washing and curing. Firstly, the hams are buried underneath a pile of salt as 



   Literature Review  

12 

shown in Figure 2.1 (a). Then, the samples are placed in large containers for salt equalisation 

that is demonstrated in Figure 2.1 (b). Next, the salt is washed off from the samples [see 

Figure 2.1 (c)], which are then hung in the temperature and humidity controlled dryers for 

the curing process [see Figure 2.1 (d)]. This is a multi-stage process, so there are a number 

of drying rooms/chambers used in different conditions. The final product is shown in Figure 

2.2 (a), which is called “Jamon Curado Duroc” (cured ham). In addition, Figure 2.2 presents 

some other Prolongo’s cured meat products, namely “Salchichon Tunel Pimienta” (Tunnel 

Peppered Salami), “Chorizo Lomo Tunel Pinienta” (Tunnel Peppered Chorizo), “Salami 

Extra”. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.1. Meat curing process at Prolongo; (a) hams buried underneath a pile of salt, (b) 

salt equalisation, (c) washing process and (d) curing process. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.2. Cured meat products from Prolongo (2016); (a) “Jamon Curado Duroc” (cured 

ham), (b) “Salchichon Tunel Pimienta” (Tunnel Peppered Salami), (c) “Chorizo Lomo Tunel 

Pinienta” (Tunnel Peppered Chorizo) and (d) “Salami Extra”. 

2.3. Commercially Available Water Activity Meters 

This section will present the current methods to measure aw in food products and provide 

examples of commercially available instruments that are based on those methods. There are 

three most commonly used techniques by the manufactures of aw meters, namely chilled 

mirror dew point, resistive electrolytic hydrometer and capacitive electrolytic hydrometer. 

The most popular aw measurement devices in the meat industry are AquaLab, Rotronic and 

Novasina. The basic characteristics of the instruments and their measurement techniques 

(sensor type) will be provided in this section. The key features of these devises, namely the 

sensor type, accuracy, measurement time and cost are illustrated in Table 2.2. 
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Table 2.2. Water Activity meters from key manufacturers.  

Device Sensor 

Type 

Accuracy 

(aw) 

Meas. 

Time (s)* 

Non-

invasive 

Self-

calibrate 

No sample 

preparation 

Portable Price***(€) 

AquaLab 4TEV Dew point ±0.003 <600     10,300 

AquaLab 

Pawkit 

Capacitive ±0.02 600     2,000 

Novasina 

LabMaster-aw 

Resistive 

electrolytic 

±0.03 <600     10,900 

Novasina  

LabStart-aw 

Resistive 

electrolytic 

±0.002 420     5,850 

Rotronic  

HygroPalm23-
aw 

Dew point ±0.05 600-

2100** 
  Invasive probe 

available 
 3,800 

Rotronic 

Hygrolab 
 C1 

Dew point ±0.005 600-

2100** 
  Invasive probe 

available 
 6,795 

* Includes sample preparation (300s) where device is invasive and self-equilibration (warm-up) period stated 

by manufacturer is less than this period 

** These devices have a “quick” mode, which automatically provides a value after 5 minutes with reduced 

accuracy. 

*** Based on survey of distributors across Europe 

2.3.1. Chilled Mirror Dew Point  

Chilled mirror dew point measurement is a primary method for determining vapour pressure 

that has been in use for decades (Devine and M. Dikeman, 2004). Dew point instruments are 

accurate, fast, simple to use, and precise. The measurement range of commercial dew point 

meters is 0.030 to 1.000 aw with a resolution of ±0.001 aw and an accuracy of ±0.003 aw. 

Measurement time is typically less than 5 minutes. However, the instruments must be 

warmed up (the standard warming up time recommended by manufacturers is 15 minutes). 

In addition, the verification of the equipment is strongly recommended, which can be carried 

out using the verification solution standards from the manufacturers. The verification 

requires 5-20 minutes depending on the temperature equilibration time.  

The dew point instruments contain a sealed chamber with a mirror, optical sensor, internal 

fan and infrared thermometer. The measurement of the water activity is taken by 

equilibrating the temperature of a sample within the headspace of the chamber. A 

thermoelectric (Peltier) cooler precisely controls the mirror temperature, and a thermocouple 

behind the mirror accurately measures the dew point temperature when condensation starts. 

The exact point at which condensation appears is detected using an optical reflectance 

sensor. This sensor emits infrared light onto the mirror, and reflected light is detected. When 

condensation occurs on the mirror, a change in reflectance is registered and the dew point 
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temperature is measured. At the same time, the sample temperature is measured with an 

infrared thermometer (thermopile), and both temperatures are used to calculate water activity 

(Gustavo V. Barbosa-Cánovas, Anthony J. Fontana, Schmidt and Labuza, 2007). 

2.3.1.1. Aqualab Pre Water Activity Meter 

The Aqualab Pre (see Figure 2.3) is a robust entry-level water activity meter with stripped 

down form. The instrument requires minimum maintenance. The Aqualab Pre uses the dew-

point method that is a primary measurement of water activity. Therefore, the calibration of 

the system is unnecessary; however, a verification check of the device is required for 

accurate results. The Aqualab Pre has a solid repeatability as it holds the sample at 25°C, 

thus temperature fluctuations will not affect readings of a sample. Water activity is 

temperature dependent; measuring at the same temperature every time assures consistency 

in readings. Its basic 0.01 aw accuracy enables users to add aw testing at the line, loading 

dock, or offsite facility (Labcell Ltd, 2016b).  

  

Figure 2.3. AquaLab Pre Water Activity Meter (Labcell Ltd, 2016b). 

2.3.1.2. AquaLab Series 4TE - Laboratory Specification Water Activity Monitor 

Decagon's AquaLab Series 4TE (see Figure 2.4) water activity (aw) meter is fast and precise 

measurements of aw or ERH (Equilibrated Relative Humidity). The Aqualab Series 4TE is 

the most recent development of AquaLab. As with its predecessors, measurements are fast 

(typically less than 5 minutes excluding time for warming up, verification check and 

temperature equilibration of a tested sample) and accurate to ±0.003 aw. The Series 4 features 

a "clamshell" opening sensor block design to allow easy sampling. It allows users to pre-

define the sampling temperature using the keypad on the front of the instrument. 

Temperatures of between 15 and 50 oC can be set to allow samples to be warmed or cooled 
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to within 0.2 oC. The new design of AquaLab also features internal data storage allowing 

measurements to be taken, safely recorded and then downloaded to PC. Using the AquaLink 

4 Software, measurements can be organised and viewed and the user can create reports based 

on the pertinent information. 

  

Figure 2.4. AquaLab Series 4TE (Decagon Devices, 2017)  

2.3.1.3. Rotronic HygroLab C1 

ROTRONIC provides a high-end laboratory device called the HygroLab C1 (see Figure 2.5) 

for aw measurements with up to four probes. Connect station probes and insertion probes for 

measuring aw in cheese, meat, tobacco, building materials, animal feed, pharmaceuticals 

products and much more. ROTRONIC also provides a validated software HW4, which can 

be used for remote monitoring with charting and data recording functions (Rotronic 

Instruments Ltd, 2016). 

HygroLab C1 has the following features 

 4 input channels for HC2 station probes or HC2 insertion probes can be connected 

for measurement of aw, RH and temperature 

 aw Quick function for fast measurement results (typically 4-5 minutes) 

 Audible alarm to indicate completed measurement 

 Saves up to 2,000 data records with %RH, °C/°F, date and time 
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Figure 2.5. Rotronic HydroLab C1 (Rotronic Instruments Ltd, 2016). 

2.3.1.4. Rotronic HYGROPALM - HP23-A 

The HP23 is a multifunction hand-held indicator with data logging capability. The HP23 can 

be used in many different applications such as the spot check measurement of HVAC 

installations and manufacturing processes, the measurement of seeds, pharmaceutical 

powders and other materials in bulk, the measurement of paper stacks and rolls, etc. The 

HP23 is also a calibrator that can be used to read and adjust other instruments from 

ROTRONIC that are based on the AirChip 3000 technology. 

Each of the two probe inputs can be configured to accept either a digital HygroClip 2 

humidity-temperature probes (factory default) or an analogue probe measuring any signal 

such as barometric pressure, air velocity etc. The HP23 has a real time clock to keep track 

of the date and time when recording data and is powered with either a standard 9 V alkaline 

battery or with a rechargeable battery (Rotronic, 2012). 
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Figure 2.6. Rotronic HYGROPALM - HP23-A (Rotronic, 2012). 

2.3.2. Resistive Electrolytic Hygrometer 

Many commercial instruments based on the electric hygrometer sensor are available for 

measurement of water activity (aw). One of the electric hygrometers is resistance-type sensor. 

The work principle of the sensor: a material (either a salt film or proprietary hygroscopic 

polymer film) changes its electrical response as a function of relative humidity. Depending 

on the water vapour pressure of the surrounding air, water will adsorb or desorb within the 

sensor and alter the electrical properties of the hygroscopic material. The sensor must be 

calibrated to convert the resistance value to units of aw. In these instruments, a sample is 

placed in a sealed chamber containing the sensor. The sample, air, and sensor must come to 

vapour and thermal (if not temperature compensated) equilibrium for accurate aw 

measurements. Overall, these instruments measure the entire aw range from 0 to 1.0 aw with 

a resolution of ±0.001 aw and an accuracy of between 0.01 and 0.02 aw  (Gustavo V. Barbosa-

Cánovas, Anthony J. Fontana, Schmidt and Labuza, 2007).  
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Electric hygrometers offer a reliable means for measuring aw, provided some precautions are 

taken. Requirements for careful calibration, determining the equilibration time and the 

influence of temperature, must be considered to ensure accurate and reproducible readings. 

Equilibration time required for various products to reach a constant aw value (a change of 

<0.01 aw) increases at higher aw and the following precautions must be taken for reliable 

measurement:  

 aw value is taken when the reading (0.001 unit) has been constant for 10 minutes  

 Humidity sensors are calibrated regularly to compensate for drift 

 A separate calibration curve is made for each sensor 

 Sensors are calibrated at the same temperature at which samples are measured 

(Gustavo V. Barbosa-Cánovas, Anthony J. Fontana, Schmidt and Labuza, 2007).  

Difference in temperature between the sample and sensor can cause large errors. At high aw, 

a 0.1°C temperature difference results in a 0.006 aw error. If aw is high and sample 

temperature is above sensor temperature, water can condense on the sensor. The 

equilibration time varied from 20 minutes to 24 hours depends on the humidity range and 

food material due to both thermal and vapour equilibration. Sample temperature must be 

known to obtain accurate aw measurements (Sablani, Rahman and Labuza, 2001). Some 

instruments do not measure sample temperature; thus, they require careful temperature 

control or have long read times to allow thermal equilibration. Without careful control and 

measurement of temperatures in the regions occupied by the sample and the sensor (or 

allowing enough time for thermal equilibration), no meaningful data can be collected (Reid, 

2001). Product literature on modern electric hygrometers suggests short read times, although 

these claims have not been verified.  

2.3.2.1. Novasina LabMaster-aw 

Novasina LabMaster-aw (see Figure 2.7) is a professional laboratory instrument for a very 

precise measurement of aw in food, drugs, cosmetics etc. The temperature of the 

measurement chamber may be set in the range from 0oC to 50oC and kept consistently within 

an accuracy of ±0.2K. This instrument runs the most used aw measuring technology, the 

electrolytic resistive principle (Cole-Parmer, 2016a).  
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Figure 2.7. Novasina LabMaster-aw (Cole-Parmer, 2016a). 

2.3.2.2. Novasina LabStart-aw 

The LabStart-aw meter is simple-to-operate, which provides basic measurement functions, 

yet still having built-in automatic equilibrium detection and the well-proven resistive-

electrolytic sensor technology as employed in all Novasina aw meters. As standard, the 

LabStart-aw is supplied with one re-useable humidity calibration standard, which provides a 

very economical solution to precision aw measurements in one simple kit. Furthermore, the 

calibration standard is an easy method for verification of the instrument’s high performance. 

The LabStart-aw is a typical starter instrument and should be used where a rough idea about  

aw level is required, like in production. As higher aw-levels require a temperature-controlled 

measurement chamber, the LabStart-aw should be used for measuring samples in the medium 

range up to 0.8 aw maximum. 

The accuracy of ±0.03 aw might be too low for quality assurance requirements, so it is not 

recommended to use it for that purpose. 
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It comes with the automatic equilibrium detection, 1 re-usable SAL-T standard and the 

Novasina electrolytic resistive sensor technology. 

Anywhere that a quick and reasonable aw reading is required without being too concerned 

about accuracy and repeatability. Water activity in the range of 0.4-0.6 aw gives the best 

results, so mainly powders and drier materials should be measured with the LabStart-aw 

(Novasina, 2016). 

 

Figure 2.8. Novasina LabStart-aw (Novasina, 2016). 

2.3.3. Capacitive Electrolytic Hygrometer 

Some aw instruments use capacitance sensors to measure aw. An example of such an 

instrument is the 4-inch AquaLab Pawkit aw meter (see Figure 2.9), which was originally 

designed for government inspectors. It is a reliable aw instrument for use on-the-go (Labcell 

Ltd, 2016a).  

Changes in the electrical capacitance of the polyamide layer of the sensor occur as the RH 

of the chamber changes. Such instruments compute the RH of the headspace by monitoring 

the change in electrical capacitance. When the aw of the sample and the RH of the air are in 
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equilibrium, the measurement of the headspace humidity gives the aw of the sample (Labcell 

Ltd, 2016a). 

 

Figure 2.9. AquaLab Pawkit (Labcell Ltd, 2016a).  

In addition to equilibrium between the liquid phase water in the sample and the vapour phase, 

the internal equilibrium of the sample is important. If a system is not at internal equilibrium, 

one might measure a steady vapour pressure (over the period of measurement) which is not 

the true aw of the system. An example of this might be a baked good or a multi-component 

food. Initially out of the oven, a baked good is not at internal equilibrium; the outer surface 

is at a lower aw than the centre of the baked good. One must wait for a period of time (could 

take up to 40 minutes depending on the temperature of the sample) in order for the water to 

migrate and the system to come to internal equilibrium. It is important to remember the 

restriction of the definition of aw to equilibrium. Temperature plays a critical role in aw 

determination. Most critical is the measurement of the difference between sample and 

capacitance sensor temperature. Accurate measurements with this type of system require 

good temperature control (Decagon Devices, 2015).  

2.4. Water Activity Measurement in the Research Domain 

In this section, different investigations to develop non-destructive methods to predict aw in 

cured meat will be discussed. These techniques are: Computed Tomography (CT), Near 

Infrared (NIR) and the Hyperspectral Imaging (HSI). Furthermore, in section 2.4.4 the 

microwave cavity sensor developed by the researchers from Liverpool John Moores 

University (LJMU) to predict aw in cured meat will also be presented. Although, the cavity 
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type sensor demonstrated good results for aw determination, the technique is destructive, 

leading to the aim of this work to develop and demonstrate a non-destructive method for 

determination of aw in cured meat and meat products. The comparison of these methods are 

summarised in Table 2.3. 

Table 2.3. Comparison of research based methods for aw prediction. 

Device Sensor Type R2 RMSECV Non-invasive Self-calibrate No sample 

preparation 

Portable Price(€) 

Computed  
Tomography 

X-Ray 0.832 0.0099 A sample 
placed inside 

the system 

   >50,000 

Near Infrared Near Infrared 
Spectroscopy 

0.618 0.0141 A sample 
placed under 

the system 

   >7,000 

Hyperspectral  

Imaging 

Visible Light 0.906 0.0090 A sample 

placed under 
the system 

   >20,000 

Microwave 

Cavity Sensor  

Microwaves  0.910 N/A A sample 

placed inside 
the system 

   >1,000 

2.4.1. Computed Tomography 

Computed tomography (CT) is an imaging procedure that uses special X-ray equipment to 

create detailed pictures, or scans, of areas inside the body. This method is mostly used in 

medicine (National Cancer Institute, 2016). However, CT has also been used in food science 

for different purposes (Santos-Garcés et al., 2010) as it is able to distinguish biological 

tissues (Seeram, 2009). This shows that CT technology can be used for a wide range of 

applications, namely to estimate pig carcass composition (Font Furnols, Teran and Gispert, 

2009) or to determine moisture content and water holding capacity in Atlantic cod fillets 

(Kolstad, Morkore and Thomassen, 2008). Segtnan (2009) used CT to study curing and 

salting processes in salmon fillets as there is a strong correlation between salt content and 

CT values. The method was also used to study curing and salting processes in cod (Haseth 

et al., 2009) and dry-cured ham (Vestergaard, Risum and Adler-Nissen, 2004; Vestergaard 

et al., 2005) 

Santos-Garcés in his paper (Santos-Garcés et al., 2010) states that aw in meat products is 

highly correlated with moisture and salt contents, which can be predicted using CT. Based 

on this statement, he expected that CT technique (see Figure 2.10) could be used to develop 

a predictive model for aw determination in cured meat products. Therefore, the objective of 
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his work (Santos-Garcés et al., 2010) was to develop models for the local prediction of salt, 

water and aw within dry-cured hams during the drying process using CT.  

 

Figure 2.10. Scan of dry-cured ham using computed tomography (Font, Fulladosa and 

Garcia-Gil, 2013). 

 

Santos-Garcés (2010) selected three different Regions of Interest (ROIs) from each 

tomogram: Biceps femoris muscle (BF), Semimembranosus muscle (SM) and 

Semitendinosus muscle (ST) (see Figure 2.11). 
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Figure 2.11. The location of the slice was at 10 cm from the aitchbone in the distal direction, 

at the widest part of the ham. A CT image (tomogram) showing a cross-sectional slice of a 

dry-cured ham at the end of the resting period. (Santos-Garcés et al., 2010). 

Santos-Garces et al. (2010) developed the predictive model for aw using samples from all 

three regions Biceps femoris (BF), Semimembranosus (SM) and Semitendinosus (ST) 

samples (muscles) of the meat. During the study, it was investigated whether the fat content 

of the samples produces an essential disturbance in the predicted parameters. Thus, two 

different approaches were used: one including fat content as a covariate in the regression 

models; and the second approach removing ST samples (as they contained the highest level 

of fat) from the calibration samples set to improve the models. In addition, specific models 

were developed for each type of muscle as the chemical characteristics of muscles are 

different and can influence the predictions. 

Table 2.4. Prediction models for aw using different sets of samples. 

Data Set RMSEC R2 RMSECV 

All Data  0.01 0.832 0.0099 

All Data + fat (with ST samples) 0.0074 0.908 0.0076 

BF 0.0053 0.949 0.0091 

SM 0.0051 0.956 0.0082 

ST 0.0087 0.842 0.0089 
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(Santos-Garcés et al., 2010) concluded that model for prediction of aw during the drying 

process was accurate enough (as it can be seen in Table 2.4) to consider CT as a useful tool 

for controlling and optimising the dry-cured ham elaboration processes. However, a fat 

content had a negative impact (RMSECV = 0.0099 and RMSECV = 0.0076 for samples 

without and with fat consideration, respectively) on the accuracy, which makes this method 

unreliable if the fat content is not considered. 

2.4.2. Near Infrared 

Near Infrared (NIR) spectroscopy is a part of the electromagnetic spectrum with the 

wavelength range of 780-2526 nm, which corresponds to the wave number range 12820-

3959 cm-1. The most prominent absorption bands occurring in the NIR region are related to 

overtones and combinations of fundamental vibrations of -CH, -NH, -OH (and -SH) 

functional groups (Reich, 2005). 

NIR spectroscopy is well suited for measurement of moisture because water shows strong 

absorption bands in NIR, namely the first overtone of -OH stretching at around 6800–7100 

cm−1 (1470–1408 nm) and the combination band of -OH stretching and bending at around 

5100–5300 cm−1 (1960–1887 nm). However, the NIR method must be carefully calibrated 

against a reference method, and appropriate reference calibration standards of known 

moisture content have to be generated. This calibration phase is time consuming and requires 

the use of chemometrics (Corredor, Bu and Both, 2011). Additionally, NIR suffers from 

poor sampling due to the low penetration depths of NIR waves (Green et al., 2005; Austin 

et al., 2013). 

Collell (2011) in his paper describes the ability of NIR reflectance spectroscopy to predict 

moisture, aw and NaCl content at the surface of dry-cured ham during the process. He 

conducted a test on the surface of 98 hams using a Fourier Transform (FT) NIR spectrometer 

(see Figure 2.12) and two probes (on-contact and remote) during the process.  
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Figure 2.12. Remote measurement probe: Spectral acquisition setup on the gracilis muscle 

(Collell et al., 2011). 

Prediction models of aw for both remote and on-contact measurements are demonstrated in 

Table 2.5. The model based on the remote measurement probe yielded poor results with 

determination coefficient R2 = 0.62 and RMSECV = 0.0141. The prediction model 

developed based on data from on-contact measurements showed even weaker results, with 

R2 = 0.451 and RMSECV = 0.0169. Based on this investigation, it can be concluded that 

NIR spectroscopy is not capable of predicting aw. Perhaps the technique requires an 

improvement or further investigation. 

Table 2.5. Prediction models for aw determination of dry-cured ham samples. 

Probe R2
 RMSECV 

Remote 0.618 0.0141 

On-contact 0.451 0.0169 

2.4.3. Hyperspectral Imaging 

Hyperspectral remote sensing exploits the fact that all materials reflect, absorb, and emit 

electromagnetic energy, at specific wavelengths, in distinctive patterns related to their 

molecular composition. Hyperspectral imaging (HSI) sensors in the reflective region of the 



   Literature Review  

28 

spectrum (sometimes referred to as imaging spectrometers) acquire digital images in many 

contiguous and very narrow (nominally about 0.010 µm wide) spectral bands that typically 

span the visible, near-infrared, and mid-infrared portions of the spectrum (0.4-2.5 µm). This 

enables the construction of an essentially continuous radiance spectrum for every pixel in 

the scene. Thus, HSI data exploitation makes possible the remote identification of ground 

materials-of-interest based on their spectral signatures (Manolakis and Shaw, 2002). 

Liu et al. (2013) from South China University of Technology and National University of 

Ireland carried out an investigation on non-destructive prediction of aw of porcine meat slices 

by HSI during the salting process. Experimental work was undertaken by placing pork 

samples on the conveyer belt and then moving them to the field of view of the camera and 

scanning line by line for each salting period. The experimental setup is shown in Figure 2.13. 

 

Figure 2.13. Schematic diagrams of main components of the hyperspectral imaging system 

(Liu et al., 2013). 

Once the data was collected from the sensor system, a prediction model was developed to 

determine aw of meat slices during salting process. HSI (400-1000 nm) of pork slices were 

acquired at different periods of the salting process. The first model to predict aw was 

developed by using Partial Least Squares Regression (PLSR). The model provided 

acceptable results with R2 
prediction = 0.909 for aw. Based on the identification of the optimal 

wavelengths weighted using regression coefficients from the PLSR models, they compared 

three linear calibration algorithms including PLSR, Principle Component Regression (PCR) 

and Multiple Linear Regression (MLR). The comparison of the algorithms demonstrated that 

the optimized regression models had better performance with MLR model with R2
prediction = 



   Literature Review  

29 

0.914 and Root Mean Square Error of Prediction (RMSEP) = 0.007 for prediction of aw. The 

performance of PLSR (full and simplified), PCR and MLR models for aw parameters is 

shown in Table 2.6. 

Table 2.6. Performance of PLSR (full and simplified), PCR and MLR models for salt and 

aw parameters. 
  

Calibration Cross-validation Validation 

Parameter Model R2
c RMSEC R2

cv RMSECV R2
p RMSEP 

aw PLSR-full 0.916 0.008 0.906 0.009 0.909 0.007  
PLSR 0.932 0.007 0.922 0.008 0.91 0.007  
PCR 0.925 0.008 0.918 0.008 0.913 0.007  
MLR 0.942 0.007 0.927 0.008 0.914 0.007 

Based on the outcome of this study, Liu et al. (2013) concluded that the prediction models 

were accurate enough to consider HSI as a useful tool for controlling and optimizing the 

meat salting process. Industrial relevance: This feasibility study demonstrated that 

hyperspectral imaging offers the possibility for process monitoring and control and for 

optimization of key parameters during salting process in the meat industry. 

2.4.4. LJMU Microwave cavity sensor  

Researchers from the BEST Research Institute at LJMU have developed a microwave cavity 

type sensor that is illustrated in Figure 2.14. The sensor showed the potential of using 

microwaves in determination of Water Holding Capacity (Abdullah et al., 2014; Mason et 

al., 2016) and measuring aw in dry-cured ham (Bjarnadottir et al., 2014). The latter 

investigation was undertaken between BEST Research Institute (LJMU) and Animalia 

(Norwegian Meat and Poultry Research Centre, Oslo). The results obtained from this study 

demonstrated an acceptable linear correlation (R2 = 0.91) between aw and amplitude shift at 

4.93 GHz (see Figure 2.15). These results indicate that microwave measurements might be 

a promising technique for determination of aw for the process control of dry-cured hams, 

however this is a destructive measurement, which requires further investigation (Bjarnadottir 

et al., 2014).  
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Figure 2.14. Microwave cavity sensor (Mason et al., 2016). 

 

Figure 2.15. The correlation between the amplitude at 4.93 GHz and the water (Bjarnadottir 

et al., 2014). 
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2.5. Summary 

Water activity (aw) is the only moisture related measurement that is an accepted HACCP 

control point. It is a management system, which regulates procedures to make sure the food 

produced is safe to eat. Based on the requirements of the HACCP system aw is used as the 

main factor to determine shelf life of the product in food industry. Since aw influences 

different chemical reactions in the product as well as the survival and the resistance of 

microorganisms. This makes aw essential in production of cured meat, as it becomes an 

indicator of when the curing process is completed, and the product is ready for sale. This is 

important for safety reasons, but also for energy optimisation since curing requires high 

temperature and humidity. Currently commercially available aw meters provide high 

accuracy. However, all existing methods to determine aw in meat and meat products are 

destructive, which limits their continuous use during production, as samples must be 

disposed of after the measurement is complete. Additionally, the destructive nature is not the 

only disadvantage of the current techniques. The cost of the commercially available desktop 

aw meters based on received quotations varies between £5,000 and £13,000 (e.g. Novasina 

LabTouch aw Instrument cost £6,685.20 (Cole-Parmer, 2016b) and Novasina LabMaster 

Advanced aw Meter cost £12,514.80 (Cole-Parmer, 2016a)), however a portable aw meter is 

also available from AQUALAB (cost £2,000) (AQUALAB, 2016). The destructive manner 

of the measurement and high-cost are not the only limitations of this technology. To obtain 

an accurate measurement, the meters have to be calibrated or validated and the temperature 

of the sample has to be equilibrated as well. Figure 2.16 illustrates a flow chart of aw 

measurement process used by commercially available instruments. As can be seen in the 

Figure 2.16, the whole process of aw measurement can take 40-100 minutes, which makes 

the technology time-consuming.  

 

Figure 2.16. Flow chart of aw measurement by commercially available devices. 

Sample Preparation

•5 minutes

Device Preparation 
(warm-up)

•15 minutes

Device equilibration

•5-60 minutes

Measurement 

•5-20 minutes
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This motivated researchers to investigate into developing non-destructive methods to 

determine aw in cured meat products using X-Ray, Computed Tomography (CT), Near-

Infrared (NIR) and Nuclear Magnetic Resonance (NMR). Although the investigation 

showed the potential of using these techniques to predict aw in cured meat products, the cost 

of the instrumentation required is very high. In addition, the size of this equipment 

(specifically NMR and CT) is large and is not practical for rapid measurements. Finally, 

none of these technologies has gone further than an experimental work and they are not 

commercially available for the meat industry. Thus, the meat industry still requires a non-

destructive method to determine aw in cured meat.  
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Chapter 3 Introduction to Electromagnetic 

Waves and Design Considerations of 

Microwave Sensor 

This chapter will introduce the electromagnetic waves, particularly microwave sensing 

system as a proposed technique to monitor water activity in cured meat products. Different 

sensor structures and their characteristics will be described and their features will be 

compared in order to select the most suitable sensor for this investigation. The desired 

frequency range for this investigation is 2-6 GHz owing to potential results obtained using 

the cavity sensor (see Figure 2.14) in previous work by the Built Environment and 

Sustainable Technologies (BEST) Research Institute (LJMU) in collaboration with the 

Norwegian Meat and Poultry Research Centre. Selected sensor structure will be studied in 

more detail to obtain satisfactory experimental results. The experimental work will be carried 

out with two approaches, namely discrete and continuous measurements. The discrete 

approach will be undertaken to determine water activity, which is an indicator of the safety 

of a product. The continuous measurements will be carried out for weight loss determination 

of cured meat, as it is the current industrial method to track the drying process of the product.    

3.1. Electromagnetic radiation  

In a tremendous intellectual leap, in 1873 James Clerk Maxwell suggested the existence of 

electromagnetic waves and predicted mathematically their properties before anybody had 

ever observed, or even thought of, such a phenomenon. Since then, scientists and 

communications engineers have used this radiation for a myriad of purposes. 

Electromagnetic waves can typically be described by any of the following three physical 

properties: the frequency f, wavelength λ, or photon energy E. The Figure 3.1 shows the 

electromagnetic spectrum and some of the applications for which they are used. The 

spectrum covers an enormous range with wavelengths ranging from the size of an atom to 

almost the size of the universe. The corresponding photon energies occupy a similar range, 

from the unmeasurable to the highly dangerous (Lawson, 2005). 
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Figure 3.1. Electromagnetic Radiation Spectrum (Lawson, 2005). 

Microwaves are electromagnetic waves that operate in the frequency range between 0.3GHz 

to 300GHz. Currently, microwaves are used in many applications but the first use was as a 

microwave radio telephone system in 1934 that was operated between England and France 

at 1.8GHz. In addition, the magnetron was developed in 1937, and found its use in a high-

power microwave generation system, which is currently used in microwave ovens. Another 

important application based on the microwave spectroscopy is a radar system that is used by 

the military (Stutzman and Thiele, 2013). 

3.2. Microwave Sensor Systems  

Microwave sensing technology is a developing approach successfully used in various 

industrial applications, namely for real-time non-destructive measurements. The principle of 

this method is based on the interactions of microwaves with a material under test (MUT), 

which changes the velocity of the signal, i.e. attenuates or reflects the signal. Due to these 

changes, the permittivity of the material also changes and results in frequency shifts or 

attenuation of the incident electromagnetic signal. By considering how transmitted (S21) and 

reflected (S11) microwave powers vary at discrete frequency intervals, the change in the 

signal can be linked to the composition of the object under test (Korostynska et al. 2014).  

Buschmüller (2008) investigated use of microwave resonance technology, which utilises the 

interaction between water molecules and changing electromagnetic fields. The measuring 
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frequency of the employed sensor was predetermined by the resonance wavelength of the 

microwave-induced resonator. The resonance frequency depends on the geometries of the 

employed sensors. If the resonator is loaded with materials, an increasing storage of electric 

field energy can be observed, which leads to a decreasing resonance frequency. The 

permittivity, which gets excited by the storage of energy, significantly changes in relation to 

the water content. In addition, the wet material disposes energy of the resonator, which 

results in an increasing width of the resonance waves.  

Since resonators respond very sensitively, a high accuracy of measurement is possible. 

While an increasing water content leads to a decreasing resonance frequency, the frequency 

bandwidth increases simultaneously (see Figure 3.2). The broadening of the detected 

resonance frequency band is caused both by the product moisture and by the material load 

in the focus of the sensor. By considering frequency and bandwidth simultaneously and 

comparing it to the unstressed resonator in air, two independent properties become available, 

which enable the determination of the moisture content of a MUT. Therefore, a moisture 

content of a material can be obtained using microwave spectroscopy (Buschmüller et al., 

2008).  

 

Figure 3.2. Microwave resonance curves. With increasing water content, the microwave 

resonance frequency decreases, while the frequency bandwidth increases. Resonance curves 

in air (solid line). Resonance curve in wet material (dash line) (Buschmüller et al., 2008). 
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A standard microwave sensor system consists of three parts, namely a sensor head, vector 

network analyser (VNA) and graphical user interface (GUI). A block diagram of a 

microwave sensor system is demonstrated in Figure 3.3. VNA is an instrument that is widely 

used for Radio Frequency (RF) design applications and enables the performance of RF and 

microwave devices to be characterised in terms of network scattering parameters, or S 

parameters. VNA offers high number of sweep points, which provides more sensitive signal 

readings. The VNA data can be presented using magnitude, phase and complex data (real 

and imaginary).   

 

Figure 3.3. Block diagram of microwave sensor system. 

The GUI has full control of the system, i.e. it initialises the VNA, configures desired 

parameters (e.g. S-Parameters, frequency range etc.), captures key information from a sensor 

head via VNA, analyses data/reflected signal and displays suitable parameters/information 

on a PC/laptop screen (e.g. Plotted/numerical data or predicted values of measurements). 

3.3. Design Considerations for a Microwave Sensor  

In this section, design considerations for a microwave sensor will be discussed. This work 

borrows heavily from antenna theory, however since the aim is to develop a sensor, structure 

and devices are referred to as such and the design considerations may vary owing to the 

different operating requirements.  An antenna is defined by the IEEE as a “transmitting or 

receiving system that is designed to radiate or receive electromagnetic (EM) waves” 

(Antenna Standards Committee, 1983).  

There are different types of EM sensors, which can be designed in different shapes and sizes, 

namely, a cavity resonator, wire (dipole, loops), aperture, microstrip and arrays. These are 

the most common EM sensors and a configuration of each one of them has a radiation pattern 
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and design parameters, in addition to their benefits and drawbacks (Fung, 2011). In sub-

section 3.3.1, advantages and disadvantages of these sensors will be described in order to 

select the most suitable sensor for this investigation. The selection will be based on three 

main aspects, namely low cost, low profile and easily reproducibility of the sensor. The cost 

of the device must be competitive with the current commercially available instruments as 

the majority of the cured meat companies are small or medium-sized. Therefore, the 

companies cannot afford expensive equipment. The second aspect is low profile that is a 

significant design consideration owing to a nature of the product, i.e. varies sizes/shapes of 

cured meat products (see Figure 2.2). The final parameter of the sensor’s design is its ability 

for high scale production.  

Sub-section 3.3.2 will present patch type sensors, their structure and mathematical equations, 

which are necessary to calculate dimensions and resonance frequency of sensors. Another 

essential consideration in designing patch sensors are feeding techniques that will be 

discussed in sub-section 3.3.3. Finally, the third important aspect in the sensor design is its 

substrate, which will be introduced in sub-section 3.3.4. 

3.3.1. Electromagnetic Sensors 

A dipole is one of the most popular sensors as a modelling building block and in direct 

application, specifically the half-wave dipole. The structure of the sensor is simple with a 

straight wire fed in the centre that makes it a widely used sensor in communication and other 

applications. The amplitude distribution of the sensor is sinusoidal with a maximum at the 

centre owing to the simple and accurate model of the sensor as shown in Figure 3.4 

(Stutzman and Thiele, 2013).   
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Figure 3.4. The half-wave dipole. (left) Current distribution. (right) Radiation pattern 

(Stutzman and Thiele, 2013). 

A dipole antenna that is split in half at its centre feed point and fed against a ground plane 

called monopole antenna. The monopole antenna has the same currents and charges as on 

the upper half of its dipole counterpart. However, the dipole antenna has twice the terminal 

voltage. This behaviour is caused by the gap width of the input terminals, i.e. the dipole 

antenna has twice the input terminals and the same electric field over twice the distance that 

gives twice the voltage. Thus, the monopole antenna has half the input impedance that of the 

dipole counterpart (Stutzman and Thiele, 2013). A traditional monopole antenna is shown 

in Figure 3.5. 

 

Figure 3.5. A traditional monopole antenna (Stutzman and Thiele, 2013). 



Introduction to Electromagnetic Waves and 

Design Considerations of Microwave Sensor 

39 

 

Loop antenna is a simple and low-cost antenna type that can take many different forms, 

namely rectangular, square, triangle, ellipse and circle. Loop antennas are usually classified 

into two categories, electrically small and electrically large. Electrically small antennas are 

those whose overall length (circumference) is usually less than about one-tenth of a 

wavelength (C < λ/10). However, electrically large loops are those whose circumference is 

about a free-space wavelength (C ∼ λ). Most of the applications of loop antennas are in the 

HF (3–30 MHz), VHF (30–300 MHz), and UHF (300–3,000 MHz) bands (Balanis, 2005). 

The loop sensor found its application in the water industry for water pipe leak detection 

using electromagnetic waves (Goh et al., 2011). 

 

Figure 3.6. Loop sensor [Adopted from (Mess-Elektronik, 2016)]. 

The helical antenna is characterised by high gain, wide bandwidth and circular polarisation. 

Theses parameters make helical antenna unique in a wide range of applications, namely 

satellite communications, radio astronomy, TV signal transmission and wireless networking. 

The helical antenna combines two radiating elements, such as the dipole and loop antennas. 



Introduction to Electromagnetic Waves and 

Design Considerations of Microwave Sensor 

40 

A helix becomes a linear antenna when its diameter approaches zero or pitch angle goes to 

90o. However, a helix of fixed diameter can be seen as a loop antenna when the spacing 

between the turns vanishes (a = 0o). The rigorous analysis of a helix is extremely 

complicated. Therefore, radiation properties of the helix, such as gain, far-field pattern, axial 

ratio, and input impedance have been investigated using experimental methods, approximate 

analytical techniques, and numerical analyses (Ogherohwo and Barnabas, 2015). 

 

Figure 3.7. Helical sensor (Balanis, 2005)  

The microstrip patch sensor is a single-layer design, which consists generally of four parts, 

namely patch, ground plane, substrate, and the feeding part. The sensors can be classified as 

single element resonant sensors. The sensor is a very radiating metal strip located on one 

side of a thin non-conducting substrate, the ground plane is the same metal located on the 

other side of the substrate. The metallic patch is normally made of thin copper foil plated 

with a corrosion resistive metal, such as gold, tin, or nickel (Alsager, 2011). The most 

common microstrip patch sensor is presented in Figure 3.8. This type of sensor has found its 

application in underwater wireless sensor networks (Abdou et al., 2013). 
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Figure 3.8. Microstrip patch sensor (Nitikanikks, 2017). 

Phased array is a sensor system that consists of multiple sensor elements. Usually an array 

sensor is a combination of two or more patch sensors that are collected with a networking 

technique. The sensors have been traditionally used for military applications for the last few 

decades. Nowadays, they are used in other industries, namely for communication and radar 

applications (Ehyaie, 2011). A common design of the phased array sensor is shown in Figure 

3.9. 

 

Figure 3.9. Phased array sensor (Ehyaie, 2011). 



Introduction to Electromagnetic Waves and 

Design Considerations of Microwave Sensor 

42 

Aperture sensors were introduced to increase more sophisticated forms and the utilisation 

of higher frequencies. The sensors can be very conveniently flush-mounted on solid 

materials, namely on the skin of aircraft and spacecraft and covered with a dielectric materiel 

for protection in hazardous conditions of the environment. Therefore, the sensors are often 

used for aircraft and spacecraft applications. Figure 3.10 presents a pyramidal horn sensor, 

which is one of the forms of aperture antennas (Balanis, 2005). This type of sensor found its 

application in monitoring water infiltration on concrete flat roofs (Kot et al., 2016).  

 

Figure 3.10. Aperture antenna (Balanis, 2005). 

Phased array sensors are expensive to produce with the cost increasing with more radiating 

elements. Phase shifters, numerous feeds, and multiple cables are required. In addition, the 

building and assembly of a phase array will require more time than other sensor 

configurations being considered. Aperture sensors also can be very expensive depending on 

what type of material is used. Dimensions of a horn sensor are more complicated and may 

be hard to manufacture. Microstrip sensors can be built at a low cost by using cheaper 

substrate material (see section 3.3.4 for more details on substrate materials), and conductor 

material for the radiating elements and ground plane. Laser cutters can be used to cut out the 

shapes of the design and this can be quick. Moreover, microstrip sensors are lightweight as 

they can be made with a thin substrate and conductive foil (Fung, 2011). 

Microstrip patch sensor is selected over other sensors for this investigation owing to meeting 

the criteria chosen for suitable sensor development. Microstrip sensor is lightweight and can 

be designed in a flexible size and shape, which enables one to conduct measurements with 

different sized meat and meat products. In addition, the production cost of the sensor can be 
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reduced by using low cost substrate material, which makes the overall price of the sensor 

affordable for small businesses.  

3.3.2. Patch sensor design 

3.3.2.1. Structure 

The patch type sensors belong to the class of resonant sensors. A rectangular patch sensor is 

presented in Figure 3.11. It is resonant when the length, L is around half multiples of the 

resonance frequency. The patch type sensor consists in general of three major layers, ground 

plane, substrate and patch (Balanis, 2005). 

 

Figure 3.11. Structure of a rectangular patch sensor (Balanis, 2005). 

 

 

Figure 3.12. Common forms of patch layer (Balanis, 2005). 
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Figure 3.11 shows that the patch layer is rectangular but other common forms of patch layer 

are shown in Figure 3.12. Rectangular and circular patch layers are used often instead of 

triangular because it is easier to derive the mathematical expression for the model (Balanis, 

2005). Therefore, the first sensor will be designed in rectangular shape. 

3.3.2.2. Size Reduction of Patch Sensors 

Meat products can be found in a variety of sizes depending on the type of the meat products 

as well as industrial marketing. The required sensor must be able to align with a size of a 

specific meat product. Consequently, the size reduction methods of patch sensors will be 

presented.  

The common method for reducing the size of the patch sensor is to utilize a high permittivity 

dielectric substrate. However, the sensor are more expensive and have narrow bandwidth. 

To solve the above issues, many design techniques of the patch sensor have already been 

proposed, such as the inserted slot (Wong and Wu, 1997) the corrugation structure (Lee et 

al., 2003), the iris structure (Seo and Woo, 2004), and the shorting pin (Waterhouse, 1995). 

But, these design methods have drawbacks in their design, namely a complex structure and 

low performance for miniaturisation (Jang, Kim and Kim, 2012). Therefore, the design 

methods of the size reduced patch sensor with metamaterial technology have been 

investigated by a number of authors (Lee et al., 2007; Zhao, Lee and J. Choi, 2011; Garg, 

Verma and Samadhiya, 2012), specifically split ring resonators (SRRs) or complementary 

split ring resonators (CSRRs) (Jang, Kim and Kim, 2012).  

Metamaterials are artificially engineered materials designed to provide material properties 

not readily available commercially. They can be designed to realise materials with near zero 

values of permittivity; negative permittivity or permeability; or simultaneous negative 

permittivity and permeability. The concept of metamaterials as well as metamaterials 

structures have also been used to design various types of antennas with enhanced 

performance, such as high gain as well as improved efficiency. Additionally, they have been 

used for the miniaturisation of antennas (Sharawi, Khan and Mittra, 2015). 
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The SRR was originally proposed by Pendry in 1999, and is the metamaterial resonator 

having the negative permeability (Pendry et al., 1999). Two concentric metallic rings with a 

split on opposite sides form the SRR structure. This behaves as an LC resonator with 

distributed inductance and capacitance that can be excited by a time-varying external 

magnetic field component of normal direction of resonator. This resonator is electrically 

small LC resonator with a high quality factor. Based on the Babinet principle (Tan and 

Mcdonald, 2012) and the duality concept, the CSRR is the negative image of SRR, and the 

basic mechanism is the same for both resonators except for the excited axial electric field. 

With adjustment of the size and geometric parameters of the CSRR, the resonance frequency 

can be easily tuned to the desired value (Jang, Kim and Kim, 2012). 

3.3.2.3. Calculations for a rectangular patch sensor dimension. 

To design one simple rectangular patch sensor the following parameters need to be 

calculated: length, width and eventual feed line for microstrip sensor. 

Length of sensor: 

 

Figure 3.13. Fringing field (Balanis, 2005). 

To calculate the length of the patch sensor, the fringing fields that occur need to be taken 

into account. The fringing field occurs at the end of the patch. The electric field does not end 

abruptly at the edges and therefore creates the “fringing fields”. These fields can be 

represented as two radiation slots, which means that the patch looks electrically larger than 



Introduction to Electromagnetic Waves and 

Design Considerations of Microwave Sensor 

46 

the physical size. Therefore, the calculated length needs to be extended with the fringing 

factor ∆L so the sensor design is for patch with L= λ/2 and no fringing (Balanis, 2005). 

For a half - and quarter wave patch the resonate frequency is given in (3.1) (Balanis, 2005). 

𝑓𝑟 =
1

2√𝜀0𝜇0(𝐿+2∆𝐿)√𝜀𝑒𝑓𝑓
    (3.1) 

Where: 

𝜀0 is the permittivity in vacuum 

𝜇0is the permeability in vacuum  

∆𝐿 is the fringing factor  

𝑒𝑒𝑓𝑓 is the effective electric constant which take the fringing field outside the patch into 

account (Garg, 2001). 

Effective electric constant given by formula (Balanis, 2005) 

𝜀𝑒𝑓𝑓 =
𝜀𝑟+1

2
+ (

𝜀𝑟−1

2
) √1 + 12

ℎ

𝑊
 ,    

𝑊

ℎ
> 1    (3.2) 

Fringing factor given by formula  

∆𝐿 = 0.412ℎ [
𝜀𝑒𝑓𝑓+0.3

𝜀𝑒𝑓𝑓−0.258
] [

𝑊

ℎ
+0.264

𝑊

ℎ
+0.8

]   (3.3) 

To optimise the length and resonance frequency with formula (3.1), a praxis value for L is 

used. 

𝐿 = 0.48𝜆𝑔~0.49𝜆𝑔      (3.4) 

𝜆𝑔 =
𝑐

𝑓𝑟√𝜀𝑟
       (3.5) 

where c is the velocity of light in vacuum. 

The width of the patch gives by formula:  
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𝑊 =
1

2𝑓𝑟√𝜇0𝜀0
√

2

𝜀𝑟+1
     (3.6) 

It is recommended that the width of the patch is in following interval (Al-Sajee and Hamad, 

2011) 

𝐿 < 𝑊 < 2𝐿       (3.7) 

3.3.2.4. Calculations for a circular patch sensor dimension 

The actual radius of the circular patch sensor can be obtained by 

𝑎 =  
𝐹

√{1+ 
2ℎ

𝐹𝜋𝜀𝑟
[ln(

𝜋𝐹

2ℎ
)+1.7726]}

                     (3.8)  

Where, 

𝐹 =
8.791𝐸+09

𝑓𝑟√𝜀𝑟
                (3.9) 

fr = operating frequency  

a = patch radius  

h = thickness of the substrate  

εr = dielectric permittivity of the substrate  

3.3.3. Feed techniques 

There are many methods to feed the patch and all have their advantages and disadvantages. 

These feeding methods can be classified into two groups, contacting and non-contacting. For 

the contacting methods, the patch sensor feeds directly to the patch and for the non-

conducting method, electromagnetic field coupling is used to transfer the power to the patch. 

The most essential characteristics to be considered for this investigation are simplicity of a 

fabrication to reduce the cost and complexity as the main goal is to commercialise the 

sensing system. However, also retaining good reliability of the sensor’s performance as low-



Introduction to Electromagnetic Waves and 

Design Considerations of Microwave Sensor 

48 

cost does not compensate low performance. Therefore, the justification of the selection of 

the feeding technique was based on these two aspects.   

3.3.3.1. Microstrip Line Feeding 

The microstrip line consists of a conducting strip connected to the patch. The microstrip line 

has often the same thickness as the patch but the width is smaller. The technique is very 

simple to design and analyse, and that is why this method is widely used. In addition, the 

technique is very easy to manufacture (Alsager, 2011). Figure 3.14 shows how to use 

microstrip as feed technique. 

 

Figure 3.14. Microstrip line feed (Balanis, 2005). 

3.3.3.2. Coaxial Feeding 

The coaxial feed method is one of the most common feed techniques. The inner conductor 

of the coaxial goes through the substrate from ground to the patch and the outer conductor 

is connected to the ground plane (Balanis, 2005). Figure 3.15 shows how to use coaxial probe 

as feed technique. 
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Figure 3.15. Coaxial feeding method. 

3.3.3.3. Coaxial probe with capacitive feed 

The difference between the usual coaxial feed and this method is that the inner conductor of 

the coaxial does not go the whole way up to the patch and the end of the inner conductor is 

connected to a circular plate. If a regular probe were used, a larger inductance would be 

introduced, which results in impedance mismatch. To cancel the inductance a reactance 

needs to be added. This feeding method with the capacitive disk does that (Balanis, 2008). 

Figure 3.16 shows how to use coaxial probe with capacitive feed as feed technique. 

 

Figure 3.16. Coaxial probe with capacitive feed method. 
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3.3.3.4. The aperture-coupled patch 

There are two layers of substrate below the patch. The substrate layers are separated with a 

ground plane. A microstrip line is placed below the lower substrate layer. The energy is 

coupled to the patch from the microstrip line by a slot in the patch. Figure 3.17 shows how 

to use the aperture-coupled patch as feeding technique (Balanis, 2005; Edling, 2012). 

 

Figure 3.17. The aperture-coupled patch (Balanis, 2005). 

3.3.4. Substrate 

Substrate materials play an essential role for the patch sensor design. The substrates have 

many properties that should be considered: the dielectric constant, loss tangent, their 

variation with temperature and frequency, homogeneity, isotropic, thermal coefficient and 

temperature range, dimensional stability with processing and temperature, humidity and 

aging, and thickness uniformity of the substrate. One of the properties that the substrate has 

is permittivity. The permittivity is associated with how much electrical charge a material 

(substrate) can store in a given volume. The permittivity (𝜀) is complex and has one real part 

(𝜀') and one imaginary part (𝜀'') (Edling, 2012). 

𝜀 = 𝜀′ − 𝑗𝜀"      (3.8) 

The loss tangent (tan𝛿) measures the amount of electrical energy converted to heat in the 

dielectric and accounts for the power losses in passive devices such as the transmission line 
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or patch sensor and defined as the ratio between the real part and imaginary part of the 

complex permittivity (James and Hall, 1989; Edling, 2012). 

tan(𝛿) =
𝜀′

𝜀"
      (3.9) 

The relative permittivity or dielectric constant (𝜀𝑟) is the ratio between the real part of the 

complex permittivity and the permittivity of vacuum (𝜀0 = 8.854 ∙ 10−12𝐹/𝑚). 

𝜀𝑟 =
𝜀′

𝜀0
      (3.10) 

Since the speed of propagation in a given medium is: 

𝑐 =
1

√𝜀𝜇
=

1

√𝜀0𝜀𝑟𝜇0𝜇𝑟
=

𝑐0

√𝜀𝑟𝜇𝑟
[𝑚 𝑠⁄ ]    (3.11) 

The dielectric constant affects the speed, it will also affect the wavelength and frequency: 

𝜆 =
𝑐

𝑓
=

𝑐0

𝑓√𝜀𝑟
[𝑚]     (3.12) 

One common type of substrate is dielectric substrates. The substrate is used to fulfil two 

different factors, mechanical support for the structure and determining the electrical 

characteristics of the circuit or sensor (Edling, 2012).  

Five different substrates Bakelite, FR4 Glass epoxy, RT-Duroid 5880, Taconic TLC and 

Benzocyclobuten, which are used for the fabrication of microstrip patch sensors, have been 

studied. A rectangular patch type sensor was modelled and simulated with the substrates 

using High Frequency Structural Simulation (HFSS) software. The purpose of this 

simulation was to select the most suitable substrate for this investigation and the criteria used 

in the selection were performance (namely return loss) and the dimensions of the sensor. The 

HFSS model of the sensor is shown in Figure 3.18. 
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Figure 3.18. HFSS model of rectangular edge-fed patch sensor. 

The return loss of the five substrates are plotted against frequency and displayed in Figure 

3.19. FR4 substrate provides better return loss (-15 dBm) as compared to the other four 

substrates for the same resonant frequency.  

 

Figure 3.19. Return loss vs. frequency from the five substrates. 
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Characteristics of the substrates are shown in Table 3.1, namely the parameters and 

dimensions of a rectangular patch sensor with five different substrates. As can be seen from 

this table, FR4 substrate has better performance and in addition has the second smallest 

dimensions among the substrates after Bakelite. However, the return loss of Bakelite 

substrate is 4 dBm (about 5%) less than the return loss of FR4. Thus, the FR4 substrate will 

be given preference over other four substrates in this investigation.     

Table 3.1. Characteristics of common substrates. 

Characteristics  FR4 RT-

Duroid 

5880 

Taconic 

TLC 

Bakelite Benzocyclobuten 

Dielectric 

Constant (𝜺𝒓) 

4.4 2.2 3.2 4.8 2.6 

Loss Tangent 

(tanδ) 

0.02 0.0009 0.003 0.002 0 

Frequency 

(GHz) 

1.95 1.95 1.95 1.94 1.95 

Return 

Loss (dBm) 

-15 -11 -12 -11 -10 

Return  

Loss (%) 

96.84 92.06 93.69 92.06 90.00 

Patch Length 

(mm) 

35.45 49.82 41.47 33.96 45.92 

Patch Width 

(mm) 

45.64 59.29 51.75 44.04 55.90 

Substrate 

Length (mm) 

77.90 98.40 87.10 75.50 93.30 

Substrate 

Width  

154.43 207.27 176.95 148.76 193.21 

Substrate 

Height (mm) 

1.57 1.57 1.57 1.57 1.57 
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3.4. Summary 

This chapter introduced the electromagnetic waves, which could be potentially used to 

determine water activity in cured meat and meat products. As a part of electromagnetic 

waves, microwave spectrum was highlighted as the most suitable frequency range for this 

investigation, particularly the 2-6 GHz frequency range owing to a previous study (see 

section 2.2.4). Theory and concepts for the most common electromagnetic sensors were 

presented. Patch was chosen as the most suitable type/structure of sensor owing to its 

capability, low-cost of its production and most importantly its design flexibility. The latter 

is an essential criterion in the design consideration due to the nature of the cured meat 

products, i.e. various shapes and sizes of the product (see Figure 2.2). In addition, different 

structures of patch sensors and their characteristics were described, namely feeding 

techniques, dimensions and equations to calculate the size and resonant frequency were 

provided. Finally, the most common dielectric substrates for the sensor were reviewed and 

FR4 substrate was selected for this investigation owing to the simulation results illustrated 

in sub-section 3.3.4. The simulation results showed the lowest return loss (-15 dBm) and the 

second smallest dimensions among all five substrates. The sensor utilized for this simulation 

was a rectangular planar type with a transmission line feeding technique that resonates at 2 

GHz, which demonstrated good performance in the simulation.  

The preliminary experimental work will be conducted using this sensor; however, the 

frequency range between 1-6 GHz will be recorded in order to analyse the full spectrum of 

the desired frequency range (2-6 GHz). Frequencies from 1 GHz will be included owing to 

the potential of a resonant frequency shift (decrease) when the sensor is loaded with a wet 

material (meat sample) based on the theory in section 3.2. An additional advantage of this 

frequency range is it contains two ISM (industrial, scientific and medical) band frequencies, 

namely 2.45 GHz and 5.8 GHz. This means that the sensor can be commercialised as an 

industrial (meat industry is the main target), scientific or medical application/device. 
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Chapter 4 Research Methodology 

The aim of this investigation is to develop a rapid non-destructive method to predict water 

activity (aw) in cured meat using microwave spectroscopy. In this chapter, the design process 

of the research will be described, namely design, simulations, sample preparation, 

experimental approaches, data analysis and how to validate the theoretical models. The 

chapter will start with the design process and provide the flow diagram of the research 

methodology. Then, section 4.2 will introduce the HFSS (High Frequency Structural 

Simulation) software. In section 4.3, the sample preparation of the meat samples will be 

provided in detail. Section 4.4 will demonstrate the experimental setup of the continuous 

monitoring (monitoring of drying process) approach undertaken in this investigation. This 

section will be followed by the illustration of the second experimental approach, i.e. discrete 

monitoring for prediction of aw in cured meat products. Finally, section 4.6 will describe 

procedures of data processing and prediction models development based on collected data.    

4.1. Design process  

A flow diagram of the research methodology is demonstrated in Figure 4.1. The first stage 

of this investigation was to review the literature on the existing methods/techniques to 

monitor the meat curing process and mainly to determine the water activity (aw) parameter. 

Based on the literature review, it was ascertained that commercially available techniques to 

determine aw are high-cost, time-consuming and destructive. In addition, new methods for 

aw determination were reviewed and it was concluded that they still have not met the 

industrial requirements, i.e. some of them were more expensive than the current state of the 

art and others impractical owing to sample preparation requirements of the techniques. Build 

Environment and Sustainable Technology (BEST) research institute developed a cavity type 

sensor and conducted a research to determine aw in cured meat samples. Although, the results 

were promising and showed a potential for aw determination, the technique did not meet one 

of the requirements, i.e. the technique was destructive. Therefore, microwave technology 

systems were explored to develop a non-destructive sensing technique to determine aw in 

cured meat products. 
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Figure 4.1. Flow diagram of a methodology. 

Various structures of microwave sensors were investigated and the most suitable type was 

selected for this investigation. The main criterion of selection was based on the design 
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flexibility of the structures owing to the nature of the product, which comes in various shapes 

and sizes (e.g. shown in Figure 4.2). Thus, a number of patch type sensors were modelled, 

constructed and tested. A theoretical model of a meat sample was also designed, simulated 

and then validated. The validation of the model was carried out monitoring the drying 

process of fresh meat using the sensor. The validation process is presented in section 5.4 in 

more detail. The requirements for the validation was an agreement with the results obtained 

from a simulation of the theoretical models, which are presented in sections 5.2 (model with 

salt) and 5.4.1 (model without adding salt). 

 

Figure 4.2. Cured meat products from Roma’s (Romas, 2016). 

Once the requirements were met, i.e. a good agreement between simulation results from a 

theoretical model and a real-world experimental work, the main experimental work was 

conducted. This was carried out in two approaches, namely continuous monitoring of the 

drying process and discrete monitoring for aw prediction. The first approach is a current 

industrial technique to track the curing process and the second approach is an indication of 

the safety of a product. The experimental setups of both approaches are illustrated in sections 

4.4 and 4.5 for continuous and discrete monitoring, respectively. 
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The next stage of the process was analysis of collected data and development of prediction 

models, which is demonstrated in section 4.6. Finally, after completing the experimental 

work and data analysis, a prototype of the most suitable technique was tested in the meat 

industry. The industrial testing was conducted in the Norwegian pilot plant owned by 

Animalia.    

4.2. Design and Simulations 

ANSYS HFSS software is the industry standard for simulating 3-D, full-wave, 

electromagnetic fields. Its gold-standard accuracy, advanced solvers and high-performance 

computing technologies make it an essential tool for engineers tasked with executing 

accurate and rapid design in high-frequency and high-speed electronic devices and 

platforms. HFSS offers state-of the-art solver technologies based on finite element, integral 

equation, and asymptotic and advanced hybrid methods to solve a wide range of microwave, 

RF and high-speed digital applications (ANSYS, 2016).  

A relationship between dielectric properties and moisture content of foods has been studied 

by a number of authors (Sharma and Prasad, 2002; Sipahioglu and Barringer, 2003; 

Venkatesh and Raghavan, 2004; Lizhi, Toyoda and Ihara, 2008). When the field changes its 

polarity rapidly, only the water molecules can follow this change as they are small and have 

a strong dipole. This movement requires energy, which is drawn from the electromagnetic 

field. This loss of energy, which depends on the number of water molecules, is detected. 

When the product containing water is passed over the sensor, the resonance frequency 

decreases and the bandwidth of the resonance curve increases (due to losses of microwave 

energy inside the material) (Corredor, Bu and Both, 2011). This means that if a meat sample 

is placed on the sensor (see section 5.3.2) similar changes are expected to occur on the 

resonance frequency. 

4.3. Sample preparation. 

Sample preparation for all experiments followed the same procedure. The experimental 

design is shown in Figure 4.3. Pork loins from 60 pigs were purchased from a local slaughter 

house for this investigation. Each loin was deboned, back fat removed and cut into 
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approximately 100 × 70 × 50 mm pieces (each loin produced two samples). Sliced meat 

samples are shown in Figure 4.4 (a).  

 

Figure 4.3. Design of experiment for the dry-cured ham model analysed in this study. 

The desired weight loss was 40 % of initial weight as, generally, dry-cured meat products 

have 30-35 % weight loss in the final product (Fellows, 2000). In order to achieve a final 

salt concentration of approximately 5.5 % in the 30 % weight loss, all pieces had 3.85 % 

[see Figure 4.4 (b)] salt added prior to vacuum packing. Then all pieces were stored vacuum 

packed [see Figure 4.4 (c)] for two weeks at 4°C [see Figure 4.4 (d)] during salting and salt 

equalization. After salt equalisation, the pieces were unsealed and placed inside an 

incubation system (see Figure 4.5) at 12-14°C and 72-74 % relative humidity (RH) for 

microwave measurements until the samples obtained the desired weight loss. 

 

3.85% 
salt

• 3.85% by weight of 
the meat sample

2 weeks

• Salting and Salt 
equalisation 

40%
• Weight loss

120 
• No of samples  

5 
• No of replicates 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.4. (a) Sliced meat samples, (b) salted meat sample (c) vacuum sealed sample and 

(d) meat samples inside temperature and humidity monitored refrigeration system. 

 

Figure 4.5. Incubation system. 
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4.4. Continuous Monitoring of Drying Process 

The aim of this part of the investigation was to monitor the drying process of a meat, i.e. 

weight loss as it is the current method of tracking curing in industry. Currently, the weight 

loss of meat samples/products is determined by using weighing scales. A common meat-

drying chamber is shown in Figure 4.6. The picture was taken in a Spanish meat company 

called Prolongo. As can be seen in Figure 4.6, there are hundreds of legs curing in the 

chamber, which makes the weighing task time-consuming and complicated. Therefore, a 

real-time monitoring of weight loss of the product would be beneficial for the meat industry 

which is currently lacking such a technique.  

 

Figure 4.6. Dry-curing lambs’ legs in Prolongo, Spain. 

The experimental setup (shown in Figure 4.8) comprises two patch sensors mounted on top 

of two electronic weighing scales. Both sensors are connected to a PC via a Vector Network 

Analyser (VNA). The VNA and both weighing scales are connected to a computer for data 

acquisition via the LabVIEW interface, and are placed inside an incubation system to 

maintain a consistent temperature (approx. 13°C, ± 1°C). Temperature and humidity inside 

the incubation system are monitored by the temperature and humidity sensor, which is 

attached to the wooden board in the middle of the incubation system.   
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The sample is placed on a bespoke plastic “water runoff system” designed to prevent water 

pooling on the weighing scales once lost from the meat. The sensors are fixed on top of the 

samples with a weight (see Figure 4.8) to prevent the sensors from moving and falling off 

the samples. The sensor version 3 [see Figure 4.8 (b)] is taped to the “water runoff systems” 

as the weights used for the sensors version 1 and version 2 could not keep it on the meat 

sample. The weights and the tape did not have any effect on the sensors’ readings.  

To promote air circulation and promote water loss two fans are fixed inside the incubation 

system, pointed at the meat samples and the “water runoff systems”. Both fans are connected 

to a power supply via a relay that is used to switch off the fans while the measurements are 

taken. The purpose of this is to avoid incorrect weight measurements as the scale is sensitive 

to small changes in air pressure. The fans are switched off for 10 seconds (it takes about 10 

seconds for them to fully stop) in order to take the measurements and then the fans are turned 

back on.  The scales are zeroed once the sensors and two “water runoff systems” are fixed 

to them, before placing the meat samples on them. The block diagram of the experimental 

setup is shown in Figure 4.7. 

Measurement from the sensors is provided by using the S11 parameters from the VNA. Data 

acquisition (i.e. S11, temperature and weight) took place once per hour over a period of 7 

days (at this point the samples lost >40% of the initial weight). General weight loss of the 

final product is in the range of 30-35% of the initial weight loss. Therefore, the experimental 

work is stopped when the weight loss of the meat samples reaches 40%. The VNA was 

configured to record the full spectrum (from 9kHz to 13.6GHz) with 4000 sweep points 

(maximum points available on this instrument, i.e. ZVL 13GHz). Prior to the experiment, 

the coaxial cables, that connect the sensors to the VNA, are calibrated using the calibration 

kit for the ZVL 13GHz VNA instrument. 
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Figure 4.7. Block diagram of the incubation system. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.8. Experimental setup for monitoring of the meat drying process with (a) scales for 

monitoring weight loss, drip catchers/fans to move excess moisture away from sensor ((a) 

and (b) version 1, (c) version 2 and (d) version 3) and (b) humidity/temperature sensing to 

monitor drying condition inside incubation system.  
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4.5. Discrete Monitoring for Prediction of Water Activity in 

Cured Meat 

This section presents an experimental work, which was undertaken to predict aw in cured 

meat products. The sensors version 3, version 3.1 and version 3.2 were used for this 

experimental work that was replicated eleven times in which each measurement was made 

five times. In total, 83 samples (24-hour post slaughter meat samples/pork loins from the 

same slaughter house) were measured with the sensors. Moreover, once the measurements 

from the sensors were completed, aw measurements were taken using AquaLab aw meter [see 

Figure 4.9 (c)]. In addition, the sensor was tested on 14 cured meat products in the meat 

industry (Norwegian pilot plant owned by Animalia).  

Measurements were provided by using the S11-parameter from the Vector Network Analyser 

(VNA) since the sensor is a single port structure. Data acquisition (i.e. S11 and aw) took place 

once every 24 hours over a period of 7 days; at this point the meat samples obtained the 

desired drop of aw-value that is below 0.85. Figure 4.9 (b) shows the experimental setup (the 

sensor is connected to a VNA, which in turn is connected to a desktop computer running a 

bespoke LabVIEW interface) and Figure 4.9 (c) illustrates AquaLab aw meter. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.9. (a) Meat samples placed inside an incubation system at 12-14°C and 72-74 % 

RH for curing process, (b) experimental setup for measurement of S11 parameter using 

sensor and (c) AquaLab aw meter used for correlation purposes. 
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4.6. Data Processing and Prediction Models 

Once the data gathering is completed, the next stage of the investigation is data 

processing/analysis. Each measurement was replicated five times or more and then the mean 

value was calculated from the data owing to the general trend of the repeated measurements. 

One of the essential parts of the data processing was to compare the real measurements with 

the simulation results to examine the agreement between the two. The initial comparison 

was undertaken with the shift of the resonant frequency and then the changes in attenuation 

of the spectrum (i.e. S11-Parameter). 

One of the challenges during data processing was selecting the strongest correlation between 

the reflected signal and changes in meat samples (i.e. weight loss and water activity) as the 

spectrum contained 4000 sweep points. Therefore, a LabVIEW program was developed for 

the purpose of automatically correlating x variable (weight loss or water activity) against y 

variable (electromagnetic spectrum). The program correlates two variables and saves the R-

squared values (4000 in this case) in an excel file in less than 20 minutes. The LabVIEW 

program is shown in Figure 4.10.   

 

Figure 4.10. LabVIEW program for R-squared determination. 
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Once the data was pre-processed, Partial Least Squares Regression (PLSR) analysis was 

applied to create a prediction model. The PLSR technique was selected for this investigation 

owing to its ability to handle many independent variables, even when predictors display 

multicollinearity, i.e. predictor variables (electromagnetic spectrum in this case) in a 

multiple regression model are highly correlated, meaning that one can be linearly predicted 

from the others with a substantial degree of accuracy.  

The PLSR has a number of advances, which include creating independent latent variables 

directly based on cross products involving the response variable(s), making for stronger 

predictions, robustness in the face of data noise and missing data and ability to model 

multiple dependents as well as multiple independents (Garson, 2016). PLSR method is 

implemented as a regression model in numerous analytical software packages, namely SPSS, 

SAS, PROC PLS and can also be used in such a powerful software development tool as 

MATLAB.  

The PLSR analysis was carried out using MATLAB (R2013b version) software. In order to 

conduct the analysis, the PLS library was downloaded and then added to the search path of 

MATLAB as shown in Figure 4.11. The library and source codes are written by (Li, Xu and 

Liang, 2014) MATLAB 7.10.0 (R2010a) and freely available for scientific use. The 

MATLAB codes and instructions how to apply this PLSR technique is provided in Appendix 

B. 
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Figure 4.11. Adding PLSR library to the search path of MATLAB. 

4.7. Summary 

This chapter described the design process of the research methodology, which will be 

implemented to complete this investigation. There are two different approaches that will be 

taken in this study, namely continuous monitoring of the drying process and discrete 

monitoring to determine water activity in cured meat products. The first approach is to 

monitor the weight loss of the product, as it is a current method to track the drying process 

used by the meat industry. The second approach, i.e. discrete monitoring for water activity 

determination, is an indicator of the safety of a product. It introduced the HFSS simulation 

software and what is expected from the simulation work.  Finally, it illustrated the techniques 

of data processing and prediction used in this study. 
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Chapter 5 Sensor Design, Implementation 

and Validation 

This chapter will provide design of utilised sensors, their implementation and validation of 

the sensors and theoretical models for this investigation. Section 5.1 will present the HFSS 

models of the sensors and theoretical model of meat samples. The simulation results obtained 

from the sensors with the theoretical model will be demonstrated in section 5.2. Sensor 

implementation, i.e. EAGLE models, printing procedure and comparison between 

simulation and experimental results of the sensors in air will be illustrated in section 5.3. The 

following section 5.4 will present validation of the theoretical model, including HFSS 

simulation results, experimental setup and real-world experimental results. 

5.1. Sensor Design  

The initial sensor utilised in this study was a rectangular patch type sensor, which resonates 

at 2 GHz [see Figure 5.1(a)]. The shape and resonant frequency of the sensor has followed 

the methodology used during previous research undertaken by LJMU and Animalia 

Research Centre (S G Bjarnadottir et al., 2015). Dimensions and resonant frequency of the 

sensor were calculated using equations/formulas from section 3.3.2.2. The dimensions of the 

second sensor [see Figure 5.1 (b)] were adjusted to increase the resonant frequency to 2.4 

GHz as this is an ISM (Industrial Scientific and Medical) band, which enables the proposed 

sensor prototype to be commercialised. The sensor version 3 [see Figure 5.1 (c)] was 

calculated using equations in section 3.3.2.4. The sensors version 3.1 and 3.2 were developed 

by reducing the size of the sensor version 3.  
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(a) 

 
(b) 

 
(c) 

 

Figure 5.1. Top view of sensors (a) version 1, (b) version 2 and (c) version 3. 

The top and bottom view of the HFSS models of version 3.1 and version 3.2 is illustrated in 

Figure 5.2 (a) and Figure 5.2 (b), respectively.  

 

 
(a) 

 

 
(b) 

Figure 5.2. Top and bottom view of HFSS models of sensors (a) version 3.1 and (b) version 

3.2. 
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Return loss of the sensors with and without the CSRR (see sub-section 3.3.2.2 for more 

detail) cells is shown in Figure 5.3 (a) and Figure 5.3 (b) for version 3.1 and version 3.2, 

respectively. The version 3.1 has three high performing (return loss below -10 dB is desirable 

as above 90% of the power is reflected) resonance frequencies at 2.87 GHz (-34 dB), 4 GHz 

(-17 dB) and 5 GHz (-21 dB) with the CSRRs, whereas the return loss of all troughs of the 

sensor without the CSRR cell is above -7 dB, that means less than 80% of power is reflected. 

The return loss of the version 3.2 is also improved to -32 dB (99.94% reflected power) at the 

2.58 GHz resonance frequency. Additionally, as can be seen in the Figure 5.3, the resonance 

frequencies are decreased when the CSRR cells are etched on both sensors.  

 
(a) 

 
(b) 

Figure 5.3. Return loss of sensors (a) version 3.1 and (b) version 3.2 with CSRR and without 

CSRR cells. 

The dimensions (length = 60 mm, width = 60 mm and height = 10 mm) of the sample are 

setup so it would cover the patch area of the sensor as demonstrated in Figure 5.4. The 

material was assigned as water because raw meat consists of approximately 75% of water. 

However, relative permittivity and dielectric loss tangent of pure water are 81 and 0 

respectively at 2.45 GHz, while relative permittivity and dielectric loss tangent of raw pork 

meat are 54 and 0.33, respectively.  
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(a) 

 
(b) 

 
(c)  

(d) 

 
(e) 

 

Figure 5.4. Theoretical models of sensors (a) version 1, (b) version 2, (c) version 3, (d) 

version 3.1 and (e) version 3.2. 

5.2. Sensor Simulation Results  

The water activity of a product could be derived from its dielectric properties. The water 

molecule is the main component that relaxes, and it can be assumed that dielectric values 

correspond to the average behaviour of the water molecules. The higher the binding of water 

to food matrices such as protein chains, the lower the water activity and lower the relaxation 

frequency because this prevents water molecule from easily following the alternative electric 

field. Hence a study of dielectric relaxation spectra and in particular relaxation frequency, is 

likely to offer a solution to access water activity (Clerjon, Daudin and Damez, 2003).  

Thirteen simulations were completed in HFSS by decreasing the relative permittivity of the 

sample (from 54 to 30, decrementing by two values) and one more simulation without the 

sample (sensor in an air vacuum). Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8 and Figure 

5.9 demonstrate HFSS simulation results from sensors version 1, 2, 3, 3.1 and 3.2. The 
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results are provided by S-Parameter (i.e. S11, reflection coefficient). The resonance frequency 

of all sensors is decreased and bandwidth is increased when a modelled meat sample is 

placed on the microwave resonance sensors owing to dielectric constant of loaded material. 

The theory behind this behaviour of the resonant frequency and bandwidth is provided in 

section 3.2: “If the resonator is loaded with wet materials, an increasing storage of electric 

field energy can be observed, which leads to a decreasing resonance frequency. The 

permittivity, which gets excited by the storage of energy, significantly changes in relation to 

the water content. In addition, the wet material disposes energy of the resonator, which 

results in an increasing width of the bandwidth.” 

 

Figure 5.5. HFSS simulation results for sensors version 1. 
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Figure 5.6. HFSS simulation results for sensors version 2. 

 

Figure 5.7. HFSS simulation results for sensors version 3. 
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Figure 5.8. HFSS simulation results for sensors version 3.1. 

 

Figure 5.9. HFSS simulation results for sensors version 3.2. 

The changes that occurred during the simulation (resonance frequency shift and changes of 

the attenuation) were correlated against relative permittivity to understand whether there is 

a relationship between these changes. Figure 5.27 (a) demonstrates a very strong linear 

correlation (R2 = 0.87, R2 = 0.99 R2 = 0.99 R2 = 0.94 R2 = 0.99 for sensors version 1, 2, 3, 
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3.1 and 3.2, respectively) between relative permittivity and resonance frequency shift. Figure 

5.27 (b) illustrates a strong linear relationship (R2 = 0.99, R2 = 0.99 R2 = 0.95 R2 = 0.98 R2 

= 0.96 for sensors version 1, 2, 3, 3.1 and 3.2, respectively) between amplitude changes and 

the relative permittivity. As was mentioned earlier, the dielectric constant of a material 

relates to its water content. The simulations demonstrated a linear relationship between 

changes of the resonance frequency and the dielectric constant of the material. This means 

that the sensor can be used for monitoring the meat drying process by creating a linear 

prediction model. 

 
(a) 

 
(b) 

Figure 5.10. Results from HFSS simulation of meat curing process imitation using sensor 

version 1; correlation between relative permittivity and (a) resonance frequency shift, with 

R2 = 0.87 and (b) S11 change at 1.7 GHz, R2 = 0.99. 

 
(a) 

 
(b) 

Figure 5.11. Results from HFSS simulation of meat curing process imitation using sensor 

version 2; correlation between relative permittivity and (a) resonance frequency shift, with 

R2 = 0.99 and (b) S11 change at 2.2 GHz, with R2 = 0.99. 
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(a) 

 
(b) 

Figure 5.12. Results from HFSS simulation of meat curing process imitation using sensor 

version 3; correlation between relative permittivity and (a) resonance frequency shift, with 

R2 = 0.99 and (b) S11 change at 2.4GHz, with R2 = 0.95. 

 
(a) 

 
(b) 

Figure 5.13. Results from HFSS simulation of meat curing process imitation using sensor 

version 3.1; correlation between relative permittivity and (a) resonance frequency shift, 

with R2 = 0.94 and (b) S11 change at 3.67GHz, with R2 = 0.98. 

 
(a) 

 
(b) 

Figure 5.14. Results from HFSS simulation of meat curing process imitation using sensor 

version 3.2; correlation between relative permittivity and (a) resonance frequency shift, 

with R2 = 0.99 and (b) S11 change at 2.5GHz, with R2 = 0.96. 
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5.3. Sensor Implementation 

Once the simulation stage was completed, the physical construction of the sensors was 

conducted. The process consisted of two main steps, namely designing the sensors on  

EAGLE software and etching the copper with a CNC routing machine.  

5.3.1. EAGLE Models of the Sensors  

EAGLE (Easily Applicable Graphical Layout Editor) is a PCB (Printed Circuit Board) 

design software, which is developed by CadSoft (CadSoft US, 2016). The software contains 

a number of functions, such as a schematics editor, a PCB editor and auto-router module. 

The most common use of this software is a design of electronic schematics and layouts of 

PCB boards. As the sensors do not require any electronic schematics at this stage of the 

investigation, only the PCB layout editor is used. All five sensors were drawn separately 

using the EAGLE software as it can be seen in Figure 5.15 and Figure 5.16.  

 
(a) 

 
(b) 

 
(c) 

Figure 5.15. PCB layouts of sensors (a) version 1, (b) version 2 and (c) version 3 in 

EAGLE software. 
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(a) 

 

 

 

  
 

(b) 

Figure 5.16. PCB layouts of sensors (a) version 3.1 ((left) top and (right) bottom) and (b) 

version 3.2 ((left) top and (right) bottom) in EAGLE software. 
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5.3.2. Printing of the Sensors using CNC Routing Machine   

The physical construction of the sensors was carried out by printing them on PCB boards 

using a Bungard CCD2 Computer Numerical Control routing machine, which is shown in 

Figure 5.17. The machine is connected to the PC that contains RoutePro 2000 CCD-control 

software where sensors’ layout files were loaded for drilling and the routing. The eagle files, 

i.e. board layout files were converted to Hewlett-Packard Graphical Language format in 

order to load them into the machine. Then, ABViewer software was used to open the files 

prior to loading them in the CCD-control software. 

 

Figure 5.17. CNC Routing machine connected to a PC. 
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(a) 

 
(b) 

 

 

 

 

 
(c) 

 

Figure 5.18. Top view of the sensors (a) version 1, (b) version 2 and (c) version 3 

fabricated with the CNC Routing machine. 
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(a) 

 
(b) 

Figure 5.19. (a) Top and (b) bottom views of the Sensor version 3.1. 

 
(a) 

 
(b) 

Figure 5.20. (a) Top and (b) bottom views of the Sensor version 3.2. 

5.3.3. Simulation and Experimental Measurements of the Sensors in Air.  

This sub-section provides the simulated and measured results of return loss for sensors 

version 1, 2, 3, 3.1 and 3.2 (results are shown in Figure 5.21, Figure 5.22, Figure 5.23, Figure 

5.24 and Figure 5.25, respectively). The relatively good agreement is seen between the 

measured and simulated return loss curves.  
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Figure 5.21. Demonstrating the modelled and measured return loss of sensor version 1. 

 

 

Figure 5.22. Demonstrating the modelled and measured return loss of sensor version 2. 
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Figure 5.23. Demonstrating the modelled and measured return loss of sensor version 3. 

 

Figure 5.24. Demonstrating the modelled and measured return loss of sensor version 3.1. 
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Figure 5.25. Demonstrating the modelled and measured return loss of sensor version 3.2. 

   

  

5.4. Validation of the Theoretical Model 

5.4.1. HFSS Simulation  

HFSS simulation was undertaken prior to preliminary experiment to validate a potential of 

the electromagnetic sensors to determine the weight loss of a meat sample. Figure 5.26 

illustrates HFSS results obtained using a theoretical model of sensor version 1. It can be seen 

in Figure 5.26 that a resonant frequency decreases when a relative permittivity of a dialectic 

material increases. This imitates moisture loss of a modelled meat sample, i.e. the drying off 

process. Figure 5.27 shows a very strong linear relationship between frequency shift and 

decrease of relative permittivity, with R2 = 0.99. 
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Figure 5.26. HFSS simulation that imitates a meat drying process (e represents an epsilon, 

i.e. relative permittivity). 

 

Figure 5.27. Results from HFSS simulation of meat drying process imitation; correlation 

between relative permittivity and resonance frequency shift, with R2 = 0.99.  
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5.4.2. Experimental Setup 

Pork loin steaks were acquired from a local supermarket for a preliminary experimental 

work, and stored at 5 °C.  Rather than salting the meat at this stage, it was the intention to 

let the meat dry naturally to determine the sensor response in the unsalted condition and 

compare the results with the theoretical model.   

The meat samples were cut into approximately 70 × 50 × 15 mm pieces and placed on top 

of a bespoke water run-off system, designed for rapid removal of drips from the meat, which 

would otherwise skew weight measurements.  The tray was situated on top of a set of digital 

scales so that the weight of the sample could be continuously recorded during the drying 

process.  This arrangement was placed within a refrigerator which was set to approximately 

5°C, ± 2°C. The temperature was monitored throughout the experimental procedure. The 

block diagram of the experimental setup is illustrated in Figure 5.28. 

To promote air circulation and water loss, a fan (a standard PC fan) was fixed inside the 

fridge. The fan was connected to power supply via a relay (see Figure 5.29) which is used to 

switch off the fan while the measurements are taken. The relay was under control of 

LabVIEW program, which was turning the relay off for 10 seconds prior to the 

measurements. The purpose of this is to avoid incorrect weight measurements as the scale is 

sensitive to small changes in air pressure.  The scale was zeroed once the sensor and “water 

runoff” system were fixed to it, and before placing the meat sample on it. 
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Figure 5.28. Block diagram of the experimental setup. 

  

(a) (b) 

Figure 5.29. (a) Experimental setup inside the refrigerator, showing the water run-off 

system, digital scales, meat sample, sensor and fan system used to promote rapid drying and 

reduce water residue; (b) the relay system for controlling fan via LabVIEW. 

Once the meat was in place, the sensor was positioned on top of the sample and fixed in 

place.  A conformal polypropylene based spray coating was applied to the sensor (both 

radiating and ground planes) to eliminate issues with corrosion, which could cause damage 

to both the meat sample and the sensor. 
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The sensor was connected to a Vector Network Analyser (VNA, model Rohde and Schwarz 

ZVL13), which in turn was connected to a desktop computer running a bespoke LabVIEW 

interface (see Figure 5.30) for continuous capture of S-Parameters (namely S11).  The system 

was utilised in order to conduct an experimental work over a period of 28 days.    

 
(a) 

 
(b) 

Figure 5.30. (a) Vector Network Analyser and (b) LabVIEW interface utilised for 

continuous automated measurements over the experimental period of 28 days. 

Measurement from the patch sensor was provided by using the S11-parameter from the VNA 

since the sensor is a single port structure. Data acquisition (i.e. S11, temperature and weight) 

took place once per hour over a period of 5 days; at this point typically, the loin samples 

have lost > 40% of their original weight through shedding of loosely bound and immobilised 

water, and the experiment may be halted. Weight and S11 measurement were then correlated 

to determine the relationship between weight loss of the meat and change in EM signature 

from the sensor. Temperature was measured to ensure stability within the refrigerated 

environment during the experimental work; a temperature of 5 °C was maintained, ± 2 °C 

(measurement error in a standard fridge). 

5.4.3. Real-world Experimental Results  

Figure 5.31 shows the S11 measurements that were taken every hour (i.e. 24 times per day) 

over a period of 5 days.  Measurements of the weight loss of the sample also were taken at 
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the same time during the experiment. The measurements from 12-hour intervals over 5-day 

period are presented in the Figure 5.31.  

 

Figure 5.31. Readings from the electromagnetic wave sensor; measurements were taken 

once per hour in the frequency range 1-6 GHz; for clarity data from 1-2.5 GHz is presented, 

with measurements from 5 hour intervals over a 4 day period. 

It can be seen in Figure 5.31 that there is a noticeable change in EM signature, namely 

decrease of the resonance frequency and increase of the bandwidth of the sensor. The change 

is thought to be caused by the decreasing amount of water in the meat sample, which would 

have a significant impact on its dielectric properties. This means that theoretical simulation  

for the microwave absorption using the sensor agrees well with the experimental results.    

The change, which occurs, is present quite broadly within the measured spectra, particularly 

due to the broadband nature of the sensor used. The largest change in sensor output is 

experienced at approximately 3 GHz, although the smaller changes that occur in the 1-2 GHz 

region are highly repeatable.  

Figure 5.32 illustrates a linear correlation between weight loss of the meat sample and (a) 

the resonance frequency increase, with R2 = 0.98 and (b) S11 increase at 2 GHz, with R2 = 
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0.99. This means that the sample weight loss in the experimental environment can typically 

be represented by a linear model. 

 
(a) 

 
(b) 

Figure 5.32. Linear correlation between weight loss and (a) frequency shift and (b) 

amplitude shift at 2 GHz 
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5.5. Summary 

In this study, five electromagnetic wave sensors were modelled using High Frequency 

Structural Simulation software (HFSS) and then constructed. The first sensor designed for 

this investigation was a rectangular patch type sensor (Sensor version 1) that resonates at 2 

GHz with a transmission line feeding technique. Then, the dimensions of the sensor were 

reduced by increasing the resonant frequency from 2GHz to 2.45GHz and changing the 

feeding method from transmission line to coaxial probe fed technique. These amendments 

led to the development of sensor version 2. The next enhancement of the sensor was a 

modification of its shape (i.e. from rectangular to circular type sensor) as the corners of a 

rectangular structure became an issue when meat samples started shrinking after a certain 

time. However, the resonant frequency (2.45GHz) and the feeding technique (coaxial probe 

fed) of the sensor (version 3) was left the same. The size of the sensor version 3 was reduced 

owing to requirements for smaller meat products, which led to the development of sensors 

version 3.1 and 3.2. To validate the theoretical models a preliminary experimental work was 

conducted using sensor version 1. The real-world experimental results demonstrated a good 

agreement with the simulation results that are presented in sections 5.4.1 and 5.4.3, 

respectively.  
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Chapter 6 Continuous Monitoring of 

Drying Process  

In this chapter, the use of sensors version 1, 2 and 3 to monitor the meat curing process will 

be demonstrated. Results obtained from all three sensors will be processed, plotted and 

analysed to develop a prediction model for monitoring of the meat curing process using a 

microwave sensor system. 

6.1. Sensor Version 1 

6.1.1. Real-world Experimental Results  

This section provides the results from the experimental work undertaken with sensor version 

1 to monitor the meat curing process. Figure 6.1 shows the S11 measurements, which were 

taken once per hour (i.e. 24 times a day) during one week. Measurements of the weight loss 

of the sample also were taken at the same time during the week. It can be seen in Figure 6.1, 

that there is a noticeable change in EM signature. The change is thought to be caused by the 

decreasing amount of water in the meat sample.  The sample was not touched or moved 

during the experimental work, and all other conditions, such as temperature and light 

remained nominally the same during the test. Additionally, there is a decrease of the 

resonance frequency and change in an attenuation of the signal similar to the results obtained 

from the HFSS simulation (see Figure 5.5). When a meat sample is placed on the sensor, an 

increasing storage of electric field energy can be observed which leads to a decreasing 

resonance frequency. The permittivity, which gets excited by the storage of energy, 

significantly changes in relation to the water content. In addition, the wet material absorbs 

energy of the resonator, which results in an increasing width of the resonance waves. While 

the meat sample starts to lose the moisture content, the resonance frequency increases and 

the amplitude decreases simultaneously. 
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Figure 6.1. Readings from the electromagnetic wave sensor; measurements were taken once 

per hour in the frequency range 1-6 GHz, but for clarity data measurements from 5 hour 

intervals and from 1-2.5 GHz are presented. 

Figure 6.2 (a) demonstrates the linear correlation between weight loss and resonance 

frequency shift, with R2 = 0.85. The added salt increased the conductivity of the meat sample, 

which led to the decrease of the penetration capability of the sensor. Consequently, the 

sensitivity of the measurements were reduced. Figure 6.2 (b) presents linear correlation (R2) 

between weight loss and S11 change across the full frequency spectrum, i.e. from 1 GHz to 

6 GHz frequency range. The strongest linear correlation was determined between S11 change 

at 4.5 GHz and weight loss, with R2 = 0.99 (see Figure 6.3). 
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(a) 

 
(b) 

Figure 6.2. Correlation of weight loss and (a) resonance frequency, with R2 = 0.85 and (b) 

R2 between weight loss and S11 change across the full frequency spectrum (sensor version 

1). 
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Figure 6.3. Linear fit between weight loss and S11 change at 4.5 GHz, with R2 = 0.99. 

To visualise graphically the performance of the PLSR models, the measured values obtained 

from the laboratory measurements and its predicted values resulting from 4-5 GHz frequency 

range, are plotted and displayed in Figure 6.4. The PLSR model exhibited a great capability 

to predict weight loss with R2
prediction = 0.99 and with Root Mean Square Error of Prediction 

(RMSEP) = 0.41. 
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Figure 6.4. Measured and predicted weight loss from sensor version 1.  

6.1.2. Discussion 

The sensor showed high potential to be used for on-line monitoring of the meat curing 

process. However, the microstrip line feeding technique became an issue during replications 

of the experimental work due to the influence of the line on the signal. The sample had to be 

positioned exactly on the patch area of the sensor and avoid the direct contact of the meat 

sample with the microstrip line. Additionally, the technique increased the size of the sensor, 

which became a problem when the meat started shrinking while curing. The shrinkage led 

to an appearance of air gaps between the flat surface of the sensor and the deformed surface 

of the meat sample that is thought to be causing faulty measurements as part of the 

microwave radiation can reflect back or escape before reaching the surface of the sample. 

Figure 6.5 illustrates the usual deformation of the (a) meat sample during the test and (b) 

cured meat sample.   
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(a) 

 
(b) 

Figure 6.5. Deformed shape of the meat samples due to curing process. This figure 

presents (a) a meat sample under the test and (b) a meat sample at the end of the curing 

process. 

Two modifications to the sensor will be applied to solve the issue, namely increasing the 

resonance frequency from 2 GHz to 2.45 GHz and changing the microstrip feeding line 

technique to the coaxial probe feeding method. These amendments will reduce the size of 

the sensor.  

6.2. Sensor Version 2 

6.2.1. Real-world Experimental Results  

In this section, the results from the experimental work carried out using sensor version 2 to 

monitor the meat curing process will be presented. Figure 6.6 shows the S11 measurements, 

which were taken once per hour (i.e. 24 times a day) during one week. Measurements of the 

weight loss of the sample also were taken at the same time during the week. It can be seen 

in Figure 6.6, that there is a noticeable change in EM signature. The change is thought to be 

caused by the decreasing amount of water in the meat sample. Additionally, there is a 

decrease of the resonance frequency and reflected power (i.e. S11). 
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Figure 6.6. Readings from the electromagnetic wave sensor; measurements were taken once 

per hour in the 1-6 GHz frequency range. 

Figure 6.7  demonstrates the linear correlation between weight loss and resonance frequency 

shift, with R2 = 0.79. A linear correlation (R2 value) between weight loss and S11 change 

across the full frequency spectrum (1-6 GHz) is shown in Figure 6.8. The strongest linear 

correlation was determined between weight loss and S11 change at 5 GHz, with R2 = 0.99 

(see Figure 6.9). 

 

Figure 6.7. Correlation of weight loss and resonance frequency, with R2 = 0.79. 
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Figure 6.8. Linear correlation between weight loss and S11 change across the full frequency 

spectrum (sensor version 2). 

 
Figure 6.9. Correlation of weight loss and S11 at 5 GHz, with R2 = 0.99. 
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The frequency range between 4.5-5.5GHz was selected as an optimal frequency range for 

development of a prediction model. Figure 6.10 demonstrates the PLSR model that exhibits 

a great capability to predict weight loss with R2
prediction = 0.99 and with Root Mean Square 

Error of Prediction (RMSEP) = 0.24. 

 

Figure 6.10. Measured and predicted weight loss from sensor version 2 using PLSR 

prediction model. 

6.2.2. Discussion 

Although the size of the sensor was reduced, the shape of the rectangular sensor was still a 

problem due to the uneven surface of the cured meat. Mainly, the corners of the sensor 

caused the difficulties. Thus, the alternative option to resolve the issue was modelling a 

circular type sensor. The shape of the sensor is not the only difference between these two 

types of sensors. The rectangular type sensor has linear polarisation whereas the circular 

sensor has circular polarisation that were described in section 2.5. There is one more type of 

polarisation called elliptical polarisation. However, this would not be the best choice as the 

design of the sensor is larger than the design of the circular sensor. Therefore, it was decided 

to model circular type sensor that resonates at 2.45 GHz frequency (ISM band).    
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6.3. Sensor Version 3 

6.3.1. Real-world Experimental Results 

In this section, the results from the experimental work carried out using sensor version 3 to 

monitor the meat curing process will be presented. Figure 6.11 (a) shows the S11 

measurements that were taken once per hour (i.e. 24 times a day) during one week. 

Measurements of the weight loss of the sample also were taken at the same time during the 

week. Figure 6.11 (b) presents measurements from 5-hour intervals and from the 2-3 GHz 

frequency range for clarity data. It can be seen in the Figure 6.11, that there is a noticeable 

change in EM signature. The change is thought to be caused by the decreasing amount of 

water in the meat sample. There is a strong absorbing peak at 2.1 GHz and it achieves a 

maximum return loss of -1.5 dB (29.21%) when the moisture loss of the sample is 10%. The 

absorbing peak position moves to higher frequencies with decreasing weight of the sample 

and achieves 2.3 GHz with a return loss of -4.5 dB (64.52%) when the weight loss reaches 

40%. 

 

(a) 
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(b) 

Figure 6.11. Readings from the electromagnetic wave sensor; measurements were taken 

(a) once per hour in the frequency range 1-6 GHz and (b) but for clarity data measurements 

from 5 hour intervals and from 2-3 GHz are presented. 

Figure 6.12 demonstrates the linear correlation between weight loss and resonance frequency 

shift, with R2 = 0.94. This means that theoretical simulation (see Figure 5.10) for the 

microwave absorption using the sensor agrees well with the experimental results. A linear 

correlation (R2 value) between weight loss and S11 change across the full frequency spectrum 

(1-6 GHz) is shown in Figure 6.13. The strongest linear correlation was determined between 

weight loss and S11 increase at 5.5 GHz, with R2 = 0.97 (see Figure 6.14).  
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Figure 6.12. Correlation of weight loss and resonance frequency, with R2 = 0.94. 

 

Figure 6.13. Linear correlation between weight loss and S11 change across the full frequency 

spectrum (sensor version 3). 
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Figure 6.14. Correlation of weight loss and S11 at 5.5 GHz, with R2 = 0.97. 

To visualise graphically the performance of the PLSR models, the measured values obtained 

from the laboratory measurements and their predicted values resulting from 5-6 GHz 

frequency range, are plotted and displayed in Figure 6.15, respectively. The PLSR model 

exhibited a great capability to predict weight loss with R2
prediction = 0.99 and Root Mean 

Square Error of Prediction (RMSEP) = 0.57 for sensor version 3. 

 

Figure 6.15. Measured and predicted weight loss from sensor version 3 using PLSR 

prediction model. 
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6.3.2. Discussion 

The circular shape of the sensor solved the issues that occurred with rectangular type sensors, 

namely preventing full contact of the patch area of the sensor. Moreover, the sensor 

demonstrated good agreement with the theoretical model illustrating a good linear 

relationship (R2 = 0.94) between resonance frequency shift and moisture loss of the meat 

sample. Better linear correlation (R2 = 0.97) was determined between attenuation decrease 

at 5.5 GHz and the weight loss. 

6.4. Summary  

In this section, the following two points will be discussed: comparison between the results 

that were obtained using all three sensors and issues with the sensors and method for real-

time monitoring of the meat curing process. 

6.4.1. Summary of the Results 

The first experimental work was undertaken by using sensor version 1. The sensor 

demonstrated a significant potential in monitoring the meat curing process. Although the 

sensor did not meet the expectations of a strong linear correlation at 2 GHz, it did show a 

significant relationship at higher frequencies. The results acquired from the sensor, 

specifically an amplitude shift of the EM signal at 4.5 GHz correlated with weight loss of 

the meat sample showing a linear relationship with R2 = 0.99. The EM spectrum obtained 

over a one week period during the drying process of the meat sample was used to create a 

predictive model for on-line monitoring of the process. The PLSR prediction technique was 

used to analyse and develop the model. A range between 4 GHz and 5 GHz frequency was 

selected as 4.5 GHz showed the highest linear correlation between the change in attenuation 

and weight loss of the meat sample. The PLSR model exhibited a great capability to predict 

weight loss (R2
prediction = 0.99 and RMSEP = 0.41) for sensor version 1. 

The sensor version 2 also showed a strong linear relationship between the reflected signal 

and weight loss of the meat sample with R2 = 0.98. However, the correlation occurred at 5 
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GHz rather than at 4.5 GHz as it did with version 1. PLSR analysis was also applied to the 

data to create a predictive model. The model showed a great potential in predicting weight 

loss of the meat sample, with R2
prediction = 0.99 and RMSEP = 0.24.  

The sensor version 3 illustrated better response during the monitoring of meat drying process 

than version 1 and version 2. First of all, the sensor demonstrated a strong agreement with 

the results obtained from the HFSS simulation. Particularly, a linear correlation between 

decrease of resonance frequency at 2.45 GHz and weight loss of the meat sample over one 

week period. The PLS prediction model was developed that showed a great predictive 

capability of the sensor with R2
prediction = 0.99 and RMSEP = 0.57. 

6.4.2. Issues with Continuous Monitoring 

The sensors version 1 and version 2 were tinned to eliminate issues with corrosion, which 

could cause damage to both the sample and the sensor [see Figure 6.16 (a)]. However, the 

corners of the sensor and the “weight” placed on top of the sensor oxidised [see Figure 6.16 

(b)] during the experimental work, (the corrosion appeared at the end of the experiment, i.e. 

after 6-7 days). However, the meat samples were not visibly damaged. Then, a conformal 

polypropylene based spray coating was applied to the sensor version 3 (both radiating and 

ground planes). In this case, the sensor showed signs of corrosion, which also stained the 

meat sample, as can be seen in Figure 6.17 (a) and Figure 6.17 (b), respectively. The coating 

prevented the corrosion of the sensor head and meat samples at earlier stages (first 3-4 days) 

of the curing; however, then the coating came off/dissolved owing to the interaction with 

chloride ions.  



 Continuous Monitoring of Drying 

Process 

107 

 
(a) 

 
(b) 

Figure 6.16. (a) Tinning 2 GHz rectangular patch sensors and (b) oxidized corners of the 

sensor and “weights” at end of the experiment.    

Corrosion 

 
(a) 

 
(b) 

Figure 6.17. (a) Conformal polypropylene based spray coated sensor version 3 and (b) 

oxidized meat sample at end of the experiment. 

Besides the issues with the corrosion, another problem was identified with this technique. 

Figure 6.18 demonstrates the uncured spots left on the meat samples after 7 days of 

continuous monitoring of the meat drying process. This is a big problem as the purpose of 

the curing process is to develop a crust on the external surface/layer of meat products to 

reduce the aw value. In addition, a staining has its own issues (aesthetics, contamination) but 

mitigation of the curing process will make the products affected unsafe. Therefore, this 

method of sensing would affect the safety of the product as it would not meet the HACCP 
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requirements. Based on the issues it was decided to conduct discrete measurements and stop 

the continuous measurements.  

Presence of a sensor prevents crust formation  

 

 
 

Crust 

 

Figure 6.18. Uncured spots (red circles) on meat samples that were caused by the presence 

of a sensor. 
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Chapter 7 Discrete Monitoring for 

Prediction of Water Activity in Cured 

Meat 

This chapter provides the real-world experimental results obtained using sensors version 3, 

3.1 and 3.2. In addition, the chapter presents results gathered using a hand-held prototype 

based on sensor version 3. The prototype is tested in the LJMU laboratory as well as in the 

Animalia Meat and Poultry Research Centre, Norway. Moreover, the prediction models for 

determination of water activity in the meat samples based on the data from the sensors 

version 3, 3.1, 3.2 and hand-held prototype are provided in this chapter.  

7.1. Sensor Version 3 

7.1.1. Real-world Experimental Results 

The measured values revealed that there were wide variations in water activity (aw) for the 

examined meat samples that ranged from 0.722 to 0.975. A wide range of variability in the 

reference values is important to generate stable calibration models to be used later in the 

prediction. 

The measurements were taken for a period of 7 months and the total of 83 meat samples 

were cured to investigate the capability of the microwave sensors to determine aw in the meat 

samples. The frequency range of 1-13 GHz with 4000 sweep points were configured in this 

experiment.   

It can be seen in the Figure 7.1, that there is a noticeable change in EM signature. The change 

is caused by the decrease of the relative permittivity of the meat samples owing to the 

moisture loss while curing. These changes leads to the reduction of water activity in the 

samples. Two changes occurred in the sensor’s response (see Figure 7.1), namely a decrease 

of the resonance frequency and reflected power (i.e. S11). The lower water content in the 

sample, the less power is lost/absorbed, which enables the sensor to track the changes. 
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Figure 7.1. Readings from the electromagnetic wave sensor; measurements were taken from 

83 cured meat samples over a period of 7 months in the frequency range 1-13 GHz. 

 

The comparison of water activity measurements obtained is shown in Figure 7.2 and 

demonstrates a reasonable linear relationship with the change of resonance frequency (R2 = 

0.72).  In addition, the second change (S11) of the sensor’s response was examined across 

the full frequency range (1-13 GHz) using the LabVIEW program (see Figure 4.10). The R2 

values between water activity and S11 across the full frequency range are shown in Figure 

7.3. The results demonstrated that the strongest linear correlation (R2 = 0.81) is between 

water activity and S11 change at 7 GHz (see Figure 7.4). 
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Figure 7.2. Correlation of aw and resonance frequency, with R2 = 0.72. 

 

Figure 7.3. Linear correlation between water activity and S11 change across the full 

frequency spectrum (sensor version 3). 
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Figure 7.4. Correlation of aw and S11 change at 7 GHz, with R2 = 0.81. 

7.1.2. Discussion 

The sensor demonstrated a potential in determining aw of cured meat samples at 7 GHz with 

R2 = 0.81. As the measurements were taken discretely, the oxidation did not occur either on 

the sensor or on the meat sample. However, to avoid the corrosion or damage of the sensor 

and the meat products it is essential to cover the sensor. Therefore, the next section will 

provide the results obtained using the prototyped sensor (i.e. the sensor was embedded inside 

a handheld prototype).  
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7.2. Hand-held Prototype and Industrial Testing 

The design of the hand-held prototype is shown in Figure 7.5. The sensor head is detachable 

from sensor body so it can be modified to suit preference and to avoid the modification of 

the sensor body. This particular sensor design enables a simple replacement of the sensor 

head, if the sensor head is improved or damaged. The sensor is embedded with plastic 

material to prevent metal-to-food contact.   

 

Figure 7.5. Design of the Hand-Held Prototype. 

This section provides results from two sets of experimental work using a hand-held prototype 

shown in Figure 7.6 (b). The first experimental setup is presented in Figure 7.6 (a) that 

comprises the prototype on the meat sample (pork loins) measuring the reflected power. The 

sensor is connected to a laptop via VNA for data acquisition using the utilised LabVIEW 

program for discrete measurements. The second experiment was undertaken following the 

same experimental setup (see Figure 7.7), i.e. taking discrete measurements of reflected 

power using the hand-held prototype. However, the experiment was carried out in the 

Animalia Meat and Poultry Research Centre, Norway on dry-cured lamb.    
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(a) 

 
(b) 

Figure 7.6. (a) Experimental setup with head of a hand-held prototype (b) hand-held 

prototype. 

 

Figure 7.7. Experimental work conducted in Norwegian pilot plant owned by Animalia, 

using hand-held prototype to measure dry cured lamb test products.  
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7.2.1. Real-world Experimental Results  

Figure 7.8 shows the S11 measurements of sample of pork chump end. There is a noticeable 

change in EM signature in the full measured spectrum (1-13 GHz). However, the strongest 

absorption is at 7 GHz frequency region and higher. The 2.4 GHz and 5 GHz frequencies 

also demonstrated a reasonable correlation against aw. 

 

 

Figure 7.8. Readings from the hand-held prototype; measurements were taken from 83 cured 

meat samples over a period of 7 months in the frequency range 1-13 GHz. 

The results obtained using the prototype demonstrated a stronger linear relationship between 

the changes in EM spectrum and aw than the measurements taken with the direct contact of 

the sensor [see Figure 4.9 (b)] with the meat samples. The frequency shift of the resonance 

frequency at 2.45 GHz and aw illustrated a reasonable linear agreement [R2 = 0.75, see Figure 

7.9 (a)]. The same linear relationship [R2 = 0.75, see Figure 7.9 (b)] was determined between 

aw and S11 change at the resonance frequency. However, the amplitude shift across the full 

frequency range was also investigated to determine aw. The R2 values between the amplitude 
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shift across the full spectrum and aw is presented in Figure 7.10. A stronger correlation 

coefficient was shown by S11 change at 5 GHz and aw, with R2 = 0.86 [see Figure 7.11 (a)]. 

Though, the highest degree of correlation was determined between the amplitude shift at 7 

GHz and aw, with R2 = 0.91 [see Figure 7.11 (b)]. 

 
(a) 

 
(b) 

Figure 7.9. Correlation of water activity and (a) resonance frequency, with R2 = 0.75 and 

(b) S11 at 2.37 GHz, with R2 = 0.75. 

 

Figure 7.10. Linear correlation between water activity and S11 change across the full 

frequency spectrum (hand-held prototype). 
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(a) 

 

(b) 

Figure 7.11. Correlation of aw and (a) S11 at 5 GHz, with R2 = 0.86 and (b) S11 at 7 GHz, 

with R2 = 0.91. 

The frequency range with the highest absolute values of weighted regression coefficients are 

selected as the optimal frequency range for hand-held prototype to predict aw, i.e. 6.5-7.5 

GHz frequency range. This optimal frequency range provided potential indication of changes 

in chemical components, namely, water content, which can account for quality change of 

parameters such as aw of the meat samples during dry-curing process.  

To visualise graphically the performance of the PLSR prediction models, the measured 

values obtained from the laboratory measurements and its predicted values resulting from 

6.5-7.5 GHz frequency range, are plotted and displayed in Figure 7.12. The PLSR model 

exhibited a good capability to predict aw, with R2
prediction = 0.91 and Root Mean Square Error 

of Prediction (RMSEP) = 0.0173. The MATLAB code and explanation of the code is 

provided in Appendix B. 
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Figure 7.12. Measured and predicted aw data (LJMU data only) from hand-held prototype 

using PLSR prediction model (see Appendix B for more details on this prediction model). 

7.2.2. Results based on Animalia data  

As the strongest linear relationship was determined between aw and amplitude shift at 7 GHz, 

data from Animalia at that frequency was added to the existing data cluster, i.e. to the data 

shown in Figure 7.11 (b). Although, the measurements were taken from different animal 

products (pork and lamb), no impact was made on correlation (R2 = 0.91) as it is shown in 

Figure 7.13. Blue colour data (dots) represents measurements taken in LJMU laboratory and 

the red colour data (dots) represents measurements taken in Animalia. This means that the 

sensors system is capable of predicting aw in various cured meat products, namely cured pork 

and lamb products without any data offset or complex calibration/manipulation. 
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Figure 7.13. Animalia data fitted into LJMU data cluster. 

The prediction model developed based on the LJMU laboratory data (see Figure 7.12) was 

applied on Animalia data, which is presented in Figure 7.14. The model also demonstrated 

a good capability of predicting aw in cured lamb with R2
prediction = 0.91 and RMSEP = 0.176. 

 

Figure 7.14. Measured and predicted aw data (LJMU and Animalia data) from hand-held 

prototype using PLSR prediction model. 
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7.2.3. Discussion  

The hand-held prototype demonstrated stronger linear relationships between aw and S11 

changes at 5 GHz and 7 GHz frequencies with R2 = 0.86 and R2 = 0.91, respectively. 

However, 2.4 GHz also illustrated good linear agreement with aw, with R2 = 0.75. In addition, 

the sensor was tested in the Animalia Meat and Poultry Research Centre, Norway. The 

measurements were taken from dry-cured lamb and the results demonstrated the data fits 

very well into the existing dataset, i.e. the measurements taken from pork loins in the LJMU 

laboratory. This shows a capability of this sensor system to be used on different types of 

cured meat products without any requirements of data offsets or calibration.    

On the other hand, the sensor head of the prototype can cause an issue with the smaller meat 

samples (see Figure 7.15). Therefore, the size reduction of the sensor was undertaken and 

two sets of sensors were modelled, constructed and tested (see section 7.3 for the results).  

 

Figure 7.15. Measuring a meat sample with prototyped sensor. 
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7.3. Sensors version 3.1 and version 3.2 

In this section, the results from the experimental work undertaken using sensors version 3.1 

and 3.2 will be provided. In addition, the prediction model based on the obtained data from 

sensors version 3.1 and 3.2 will be demonstrated in this section. 

7.3.1. Real-world Experimental Results 

Figure 7.16 and Figure 7.17 show the S11 measurements, which were taken over a period of 

5 weeks from the sensors version 3.1 and 3.2, respectively. In total, 37 meat samples were 

cured and measured with both sensors. The measurements were repeated 5 times during this 

experimental work.  

It can be seen in the Figure 7.16 and Figure 7.17, that there is a noticeable change in EM 

signature. The change is thought to be caused by the decreasing amount of water in the meat 

sample, which reduces aw. Both figures show a decrease of the resonance frequency and 

change of attenuation of the signal. There is a bigger shift of the second resonance frequency 

in both figures and smaller increase of first resonance frequency with decreasing aw.  

 

Figure 7.16. Readings from the sensor version 3.1; measurements were taken on 37 dry-

cured meat samples. 
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Figure 7.17. Readings from the sensor version 3.2; measurements were taken on 37 dry-

cured meat samples. 

The second resonance frequency of both sensors demonstrated a strong linear relationship 

with the decrease of aw, with R2 = 0.77 [see Figure 7.18 (a)] and R2 = 0.80 [see Figure 7.18 

(b)] for version 3.1 and version 3.2, respectively. 

The attenuation change of the reflected microwave signal across the full frequency range 

was also investigated to determine aw. The R2 values between the attenuation change of the 

reflected power (i.e. S11) across the full spectrum and aw is presented in Figure 7.19 (a) and 

Figure 7.19 (b) for sensors version 3.1 and 3.2, respectively. The strongest linear relationship 

(R2 = 0.80) between water activity and S11 change was determined at 3.8 GHz for sensor 

version 3.1 [see Figure 7.20 (a)]. The response from the sensor version 3.2 demonstrated 

similar linear coefficient (R2 = 0.80) between water activity and S11, however at 3.8 GHz. 
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(a) 

 
(b) 

Figure 7.18. Correlation of aw and resonance frequency, with R2 = 0.77 and with R2 = 0.80 

from the results obtained using (a) version 3.1 and (b) version 3.2, respectively. 

 
(a) 

 
(b) 

Figure 7.19. Linear correlation between water activity and S11 change across the full 

frequency spectrum from the sensors (a) version 3.1 and (b) version 3.2. 

  

Figure 7.20. Correlation of aw and (a) S11 at 3.8 GHz, with R2 = 0.80 for sensor version 3.1 

and (b) S11 at 3.6 GHz, with R2 = 0.80 for sensor version 3.2. 
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The measurements from sensors version 3.1 and version 3.2 were analysed using full 

spectrum, i.e. the 1-4 GHz frequency range. The PLSR technique was applied on the data; 

two prediction models were created. The sensors demonstrated lower capability to predict 

aw compared to hand-held prototype, with R2
prediction = 0.64 and RMSEP = 0.0468 for version 

3.1 and R2
prediction = 0.79 RMSEP = 0.0296 for version 3.2. The predicted and measured data 

is illustrated in Figure 7.21 (a) and Figure 7.21 (b) for sensors version 3.1 and version 3.2, 

respectively. 

 
(a) 

 
(b) 

Figure 7.21. Measured and predicted aw data from sensors (a) version 3.1 and (b) version 

3.2 using PLSR prediction model. 
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7.3.2. Discussion  

The size reduced circular patch sensors demonstrated a good linear relationship between aw 

and decrease of resonance frequencies of both sensors. The results illustrated a linear 

correlation (R2 = 0.80) at 3.8 GHz and 3.6 GHz for the sensors version 3.1 and version 3.2, 

respectively. However, the hand-held prototype showed a stronger linear relationship 

between aw and S11 change at 7 GHz, with R2 = 0.91. Further work could be done by applying 

other methods/techniques (mentioned in sub-section 3.3.2.2) to enhance the size of the 

sensor. In addition, various substrates could be investigated (mentioned in sub-section 3.3.4). 

7.4. Summary  

In this chapter, the results and prediction models for aw determination in cured meat samples 

using a set of microwave sensors, namely sensors version 3, version 3.1, version 3.2 and also 

hand-held prototype were provided. The sensor version 3 demonstrated a good linear 

correlation between aw and change in reflected power at 7 GHz frequencies, with R2 = 0.81. 

Then, the sensor was embedded into hand-held prototype and tested on the cured meat 

samples. The prototype illustrated a stronger linear relationship (R2 = 0.91) between aw and 

change in reflected power at 7 GHz frequencies. To measure smaller meat samples the size 

of the sensor was reduced using complementary split ring resonator technique and two sets 

of sensors (i.e. sensors version 3.1 and version 3.2) were selected from various designs based 

on the simulation results. The sensors then were tested and an experimental work was 

conducted to determine aw in cured meat samples. The results demonstrated a good linear 

correlation (R2 = 0.80) between aw and S11 change at 3.8 GHz and 3.6 GHz for sensors 

version 3.1 and version 3.2, respectively.  

Finally, PLSR technique was applied on data obtained from the hand-held prototype, sensors 

version 3.1 and version 3.2 to create a prediction model. The prototype exhibited a good 

capability to predict aw in cured pork loin and also in cured lamb using the same prediction 

model, with R2
prediction = 0.91 and RMSEP = 0.0173 on pork loin and R2

prediction = 0.91 and 

RMSEP = 0.0176 on pork loin and lamb combined. However, sensors version 3.1 and 

version 3.2 did not demonstrate as good a performance as the prototype (i.e. the higher error 
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of the smaller sensors makes the larger hand-held prototype favourable, currently). The 

comparison among these three sensors is presented in Table 7.1.  

Table 7.1. Comparison of prediction models between hand-held prototype, sensor version 

3.1 and sensor version 3.2. 

Sensor Data Time 

(sec)  

Training 

set 

Testing 

set 

R2
p RMSEP Repeatability 

Hand-held 

prototype  

LJMU  <5 40 38 0.91 0.0173 5 

 
LJMU + 

Animalia 

<5 40 38+14  0.91 0.0176 5 

Sensor 

Version 3.1 

LJMU <5 20 17 0.64 0.0468 5 

Sensor 

Version 3.2 

LJMU <5 20 17 0.79 0.0296 5 
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Chapter 8  Conclusion and Future Work 
8.1. Conclusion  

Water activity is the most important measurement in cured meat as it is the only moisture 

related measurement, which is accepted by HACCP control point. It is particularly important 

in determination of the shelf life of the product since it influences different chemical 

reactions in the product as well as the survival and the resistance of microorganisms. This 

makes aw essential in the production of cured meat, as it becomes an indicator of when the 

curing process is completed, and the product ready for sale. This is important for safety 

reasons, but also for energy optimisation since curing requires high temperature and 

humidity. Currently commercially available aw meters provide high accuracy. However, 

existing aw measurement techniques are destructive, which limits their constant use by the 

industry. This encouraged researchers to investigate use of novel sensing technologies to 

develop non-destructive methods to predict aw in meat and meat products. Promising results 

were achieved by using x-ray systems (namely Computed Tomography Scans), NIR and 

HSI. However, they had limitations such as high cost, large dimensions and they are not 

commercially available for the meat industry.  

Use of microwave resonance sensors in meat drying processes, was successfully investigated 

and established. The literature review showed that out of all investigated microwave sensor 

structures microstrip met the required design criteria, namely size flexibility, cost and 

reproducibility. Therefore, this sensor structure was selected for further investigation. 

Various microstrip patch type sensors were modelled, constructed and tested. 

Prior to the construction of the sensors, a HFSS (High Frequency Structural Simulation) 

model of the sensors and theoretical model of a meat sample was created and simulated. The 

simulation results demonstrated a strong linear relationship between the sensor response and 

theoretical model. Particularly, a linear correlation between the resonant frequency shift of 

the sensor and decrease of a dielectric constant of the theoretical model of the meat sample. 

Based on the simulation results, a sensor was constructed and tested in the laboratory.  

The first experimental work was undertaken by using rectangular planar type sensor that 

resonates at 2 GHz frequency (version 1). The sensor demonstrated a significant potential in 
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monitoring the meat curing process, which is a current method of tracking curing in the meat 

industry. Although the sensor did not agree with HFSS simulation results, i.e. did not 

demonstrate a strong linear correlation between the resonant frequency shift and the weight 

loss, it did show a significant relationship at higher frequencies. The results acquired from 

the sensor, specifically an amplitude shift of the EM signal at 4.5 GHz frequency correlated 

with weight loss of the meat sample, showing a linear relationship with R2 = 0.99.  

However, the transmission line feeding technique caused two issues: with the positioning of 

the sensor and the size. The patch area of the sensor had to be placed at the exact position on 

a meat sample, in order to obtain a repeatable measurement owing to a location of the feeding 

line. The size of the sensor caused an issue after a few days of curing due to the shrinkage 

process of a meat sample, which led to an air gaps between the sample and the sensor. 

Therefore, a new rectangular type sensor was modelled with coaxial probe fed technique and 

resonating at 2.45 GHz frequency (version 2). These two amendments reduced the size of 

the sensor and issues with the positioning of the sensor.  

The new sensor showed a strong linear relationship between the reflected signal and weight 

loss of the meat sample, with R2 = 0.98. However, the correlation occurred at 5 GHz rather 

than at 4.5 GHz as it did with 2 GHz sensor. Nevertheless, the reduction of the sensor did 

not solve the issue with the air gaps as the corners of the rectangular shaped sensor barred 

the full contact between the patch area of the sensor and the surface of the meat sample. 

Thus, a circular shaped patch sensor was designed and constructed using coaxial feeding 

technique with dimensions to resonate at 2.4 GHz (version 3). The sensor illustrated better 

response during the monitoring of the meat drying process than sensors version 1 and version 

2. It demonstrated a strong agreement with the results obtained from the HFSS simulation. 

Particularly, a linear correlation between a decrease of the resonant frequency (2.4 GHz) of 

the sensor and the weight loss of the meat sample. Additionally, the sensor illustrated a 

strong linear relationship between amplitude increase at 5.5 GHz and weight loss, with R2 = 

0.99.  

The data obtained from the sensors version 1, 2 and 3 were used to develop a predictive 

model for weight loss determination of meat samples. The Partial Least Squares Regression 

(PLSR) prediction technique was used to analyse and develop the model. Frequency ranges 
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between 4 - 5 GHz, 4.5 - 5.5 GHz and 5 – 6 GHz were selected to develop the predictive 

model for sensors version 1, version 2 and version 3, respectively. All three models exhibited 

a great capability to predict weight loss with R2
p = 0.99.  

Although, the microwave sensors demonstrated great results in determining the weight loss 

of meat samples, two issues were identified with the method during the experimental work. 

Firstly, a corrosion of the sensors and meat samples occurred in the middle of the curing 

process (after 3-4 days), even though two different methods were applied to protect the 

sensors, namely tinning and coating. The coating dissolved and came off, which is thought 

to be caused due to a continuous contact of the sensor with a sample (the sample was rubbed 

with salt, which could be the reason) for a period of 3-4 days. The second issue with the 

method was leaving uncured spots on the samples, where the sensors were located/attached 

for measurements. Therefore, this method of sensing would affect the safety of the product, 

as it would not meet the HACCP requirements. Based on the issues it was decided to conduct 

discrete measurements and stop the continuous monitoring. 

The size became an issue during the continuous measurements, thus the size reduction 

techniques were investigated and two sets of sensors were produced based on the sensor 

version 3. The sensors  (version 3 and two sets of size reduced sensors version 3.1 and 

version 3.2) were used for the determination of aw in cured meat samples, which is an 

indicator of the safety of a product. The results demonstrated a good linear correlation (R2) 

of 0.77, 0.77 and 0.80 between aw and the resonant frequency of the sensors version 3, 

version 3.1 and version 3.2, respectively.  

Then, the Partial Least Square Regression (PLSR) analysis was applied to develop aw 

prediction model on data obtained using sensors version 3, 3.1 and version 3.2. The PLSR 

model for the sensors exhibited a good capability to predict aw, with R2
p = 0.81 and RMSEP 

= 0.0294, R2
p = 0.64 and RMSEP = 0.0468 and R2

p = 0.79 and RMSEP = 0.0296, 

respectively.  

The hand-held prototype was developed and tested in the LJMU laboratory as well as in the 

industrial environment (in a Norwegian pilot plant owned by Animalia). The experimental 

results obtained in the laboratory demonstrated a good linear agreement between the 

prototype’s response and water activity, with R2 =0.91. The strongest linear correlation was 
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identified at the amplitude decrease of the electromagnetic signal at 7GHz. The PLSR 

technique was used to create a prediction model for this data to predict aw in cured meat 

samples. The model exhibited a good capability to determine the aw value in the samples 

with R2
p = 0.91 and RMSEP = 0.0173. The next stage of the investigation was testing the 

prototype in the industrial environment. The results illustrated a good agreement with the 

laboratory results, with R2 = 0.91. Then, the prediction model was applied to the cured meat 

products, which also demonstrated a good capability to predict aw, with R2
p = 0.91 and 

RMSEP = 0.0176. This shows that the microwave sensor has stronger linear correlation with 

the commercially available devices than Computed Tomography (R2 = 0.832) and Near 

Infrared (R2 = 0.618). While the correlation is similar to Hyperspectral Imaging (R2 = 0.906), 

the fact that the RF approach is completely portable and non-destructive make this a more 

desirable approach for the meat industry. 

The aim of this research was to develop a rapid non-destructive method to predict water 

activity in cured meat using microwave spectroscopy, which was established by meeting the 

set objectives. The contribution to knowledge is the experimental demonstration of the 

microwave sensors at low GHz frequencies, namely below 7GHz frequency to monitor and 

determine the parameters of meat and meat products, i.e. weight loss and aw prediction, 

which unlocks the potential of low-cost, rapid and non-destructive applications for the meat 

industry.  

The sensing system will enable the manufacturers of cured meat products to adapt and 

change their recipes in line with healthy eating guidance, such as that offered by the World 

Health Organisation (WHO) and the European Food Information Council (EUFIC). For 

example, the use of frequent or continuous aw prediction will enable manufacturers to 

monitor the effect of reducing the salt levels in their products and work toward launching 

low-salt derivatives. It will go further than other enterprises in this field, since the developed 

method of aw prediction enables simple through life product monitoring. This will clearly 

have a huge positive impact on social health since reducing salt intake will reduce risk of 

high blood pressure, heart disease and strokes for European Union (EU) citizens, as most 

countries are above the 6g per day salt intake targets. Thus, the impact of this will be felt at 

national and European levels through reduced mortality and healthcare costs. 
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Additionally, the novel system will provide an opportunity to improve the quality and 

consistency of products, as the manufacturers will be able to control every single product, 

which is not possible with the existing methods. Currently, manufacturers rely on an 

experienced worker with the right instinct, who estimates the water activity by simply 

squeezing the product. Therefore, the system will improve the efficiency by enabling even 

non-experienced workers to accurately measure water activity and control the curing process 

by using the implemented prediction model/algorithm. Finally, the system will provide 

enhanced knowledge of water activity that will decrease the timing of the drying process. 

This will reduce expenses on energy-consuming dryers and improve the productivity. 

8.2. Future Work 

Future work in developing this technique could consider a number of directions, which 

include: 

 The application of the prototype sensor to a range of different meat products, such as 

beef, lamb, chicken and fish, as well as wider food products including breads and 

other baked goods. 

 Enhancement of the sensor so that it may accommodate different shapes of food, and 

those with rough or uneven surface texture, as well as a broad range of water activity 

values (i.e. beyond the range of relevance to cured meat products where the focus of 

this work lay). 

 Increase sensitivity of the sensor through design of devices specifically for 5.8 GHz 

(ISM band) or 7 GHz, which should also assist in enabling the device to be smaller 

than that currently produced. 

 Development of the prototype so that it no longer relies upon a VNA system for 

operation, but rather houses the necessary electronics in an “all-in-one” hand held 

unit. 

 Commercialisation of the sensor for wider use in the food industry, for safety 

analysis, quality improvement and recipe development. 

It is notable that the current idea is the subject of a patent pending application in both the 

UK (application number 1515498.2) and Internationally (PCT/GB2016/052642), and 
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significant interest in the concept has been generated in Norway, Spain and Italy who are all 

key players in the production of high-value cured meat products. With this backing, and the 

evidence of effectiveness presented in this thesis, there is a strong potential for a 

commercially viable and successful tool, which is currently unavailable to industry. 
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The Sixth Automation and Analytical Management Group (AAMG) Conference, the Royal 

Society of Chemistry, Burlington House, Piccadilly, London, UK, 18/06/2014.  

A novel non-invasive and real-time 

electromagnetic wave sensor for the meat 

industry. 

Magomed Muradov, Alex Mason*, Muhammad Ateeq, Jeff Cullen and Ahmed Al-

Shamma’a    

BEST Research Institute  

School of the Built Environment  

Liverpool John Moores University 

Liverpool, L3 3AF, UK. 

Abstract: Accurate real-time monitoring and analysis of meat quality is a significant 

problem in the meat industry.  Changes in the meat properties, such as water loss, dryness, 

ageing and curing, are have direct impact on meat quality which makes them relevant 

parameters for the industry to quantify during processing.  This work presents development 

of a novel electromagnetic wave sensor operating at microwave frequencies for real-time 

analysis of meat samples. The sensor structure radiates low power electromagnetic waves 

which interact with the samples, altering the nature of this radiation depending on the 

aforementioned parameters.  This phenomenon has been characterised by correlation of 

laboratory based tests conducted alongside studies using the developed sensor.  These results 

are presented here, and demonstrate the viability of using electromagnetic wave based sensor 

for real-time non-invasive measurement of meat in the food industry. 

Keywords: microwave sensors; non-invasive monitoring; real-time meat analysis; food 

industry.  
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The Eighth International Conference on Sensing Technology (ICST 2014), Liverpool John 

Moores University, Liverpool, UK, 2-4 September 2014   

Real-time monitoring of meat drying 

process using microwave spectroscopy. 

Magomed Muradov*, Jeff D. Cullen, Badr Abdullah, Muhammad Ateeq, Alex Mason, Andy 

Shaw and Ahmed I. Al-Shamma’a. 

School of Built Environment 

Liverpool John Moores University 

Liverpool, UK 

*M.Muradov@2009.ljmu.ac.uk. 

 

Abstract. The objective of this investigation is to monitor the meat drying process and try to 

analyse the changes of the electromagnetic (EM) signature from a patch antenna during the 

process. The antenna has been modelled using High Frequency Structure Simulation 

Software (HFSS) and then constructed. The experimental work carried out by placing a meat 

sample on a scale inside the fridge and recording reflection coefficient (S11) and weight 

measurements 24 times (every hour) a day during one month at the frequency range of 

1GHz-6GHz. Then, the change in EM signature and weight loss is correlated and analysed. 

The results demonstrate a relationship between the reflection coefficient and weight loss of 

the meat sample. The weight of the sample drops down dramatically first week and then 

keeps steadily decreasing. Likewise, an amplitude shift is greater at the beginning of the 

drying process and then the shift stabilises.         

Keywords-component; dry-curing; microwave sensor; non-invasive sensor; real-time 

meat analysis. 
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Chapter: Next Generation Sensors and Systems. Volume 16 of the series Smart Sensors, 

Measurement and Instrumentation pp 221-233. Date: 29 July 2015. 

Real-Time Monitoring of Meat Drying 

Process Using Electromagnetic Wave 

Sensors. 

Magomed Muradov, Jeff Cullen, Alex Mason. 

Abstract: There are currently limited options for the meat producers for monitoring the 

water content of their products as they are processed or cured. Most existing methodologies 

are destructive, or require the use of probes which touch or penetrate the meat and lead to 

issues of contamination and damage. Thus, the aim of this investigation is to use an 

electromagnetic (EM) wave sensor to monitor the meat drying process and determine its 

suitability as a non-destructive and non-contact technique. The sensor has been modelled 

using High Frequency Structure Simulation Software (HFSS) and then constructed. 

Experimental work was conducted involving measurement of meat weight and EM signature 

(namely the S11 parameter in the frequency range 1–6 GHz) over a period of approximately 

1 week, with measurements recorded every hour. The change in EM signature and weight 

loss has been analysed and correlations drawn from the resultant data. The results 

demonstrate a strong relationship between the S11 measurement and weight loss of the meat 

sample (R2 = 0.8973), and it is proposed that this could be used as the basis for future 

industrial application for measuring meat products during drying processes, such as those 

used in curing. 

Keywords: Dry-curing Electromagnetic wave Non-invasive Sensor Real-time meat 

analysis. 
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Metropolitan University, Manchester, UK, 29/04/2015. 

Real-time Monitoring of Meat Drying 

Process using Microwave Spectroscopy. 

Magomed Muradov* and Alex Mason. 

School of Built Environment 

Liverpool John Moores University 

Liverpool, UK 

M.Muradov@2009.ljmu.ac.uk* 

Abstract. The aim of this investigation is to monitor the meat drying process and analyse 

the change in electromagnetic (EM) signature from a suitable sensor during the process. The 

sensor has been modelled using High Frequency Structure Simulation Software (HFSS) and 

then constructed.  Experimental work was conducted, involving measurement of meat 

weight and EM signature (namely the S11 parameter in the frequency range 1-6 GHz) over 

a period of one week (it takes approx. 1 week to lose 40% of weight, at which point the 

measuring is stopped), with measurements recorded every hour.  The change in EM signature 

and weight loss has been analysed and correlations drawn from the resultant data. The results 

demonstrate a strong relationship between the S11 measurement and weight loss of the meat 

sample, and it is proposed that this could be used as the basis for future industrial application 

for measuring meat products during drying processes, such as those used in curing. 

 

 

 

 

 

 

mailto:M.Muradov@2009.ljmu.ac.uk*


  Appendix 

150 

The Ninth International Conference on Sensing Technology (ICST 2015), Massey 
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Online non-destructive monitoring of meat 

drying using microwave spectroscopy. 

Magomed Muradov*, Jeff D. Cullen, Andy Shaw, 

Olga Korostynska, Alex Mason and Ahmed I. Al-

Shamma’a. 

 Stefania G Bjarnadottir and Ole Alvseike 
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Dept. Quality and Processing  

ANIMALIA, Norwegian Meat and Poultry 

Research Centre 

Lørenveien 38, PB 396 Økern, 0513 Oslo 

Abstract. The aim of this investigation is to monitor the meat drying process and analyse 

the change in electromagnetic (EM) signature from a bespoke sensor during the process. The 

sensor has been modelled using High Frequency Structure Simulation Software (HFSS) and 

then constructed and tested.  Experimental work was conducted, involving measurement of 

meat weight and EM signature (namely the reflected signal in the 1-6GHz frequency range) 

over a period of one week (it takes approx. 1 week to lose 40% of weight and then the 

measuring is stopped as the general weight loss of dry-cured meat is 30-35 % in the final 

product), with measurements recorded once per hour. The change in EM signature and 

weight loss has been analysed and correlations drawn from the resultant data. The results 

demonstrate a strong relationship between the reflection coefficient and weight loss of the 

meat sample, and it is proposed that this could be used as the basis for future industrial 

application for measuring the quality of meat products during drying processes, such as those 

used in curing.  

Keywords-component; dry-curing; microwave sensor; non-invasive sensor; real-time meat 

analysis. 
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Theoretical Basis and Application for 

Measuring Pork Loin Drip Loss Using 

Microwave Spectroscopy. 

Alex Mason 1,* ,  Badr Abdullah 1,  Magomed Muradov 1,  Olga Korostynska 1,  Ahmed Al-
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Norway 

Abstract. During cutting and processing of meat, the loss of water is critical in determining 

both product quality and value. From the point of slaughter until packaging, water is lost due 

to the hanging, movement, handling, and cutting of the carcass, with every 1% of lost water 

having the potential to cost a large meat processing plant somewhere in the region of €50,000 

per day. Currently the options for monitoring the loss of water from meat, or determining its 

drip loss, are limited to destructive tests which take 24–72 h to complete. This paper presents 

results from work which has led to the development of a novel microwave cavity sensor 

capable of providing an indication of drip loss within 6 min, while demonstrating good 

correlation with the well-known EZ-Driploss method (R2 = 0.896). 

Keywords: drip loss; microwave; sensor; water holding capacity; pork loin; meat 

processing 
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Abstract — Each stage of meat cutting and processing, from the moment of slaughter until 

packaging, results in the loss of water, the amount of which is critical in determining both 

meat product quality and value. Every 1% of lost water potentially costs a large meat 

processing plant in the region of €50,000 per day. Current standard practice of monitoring 

the loss of water from meat, or determining its drip loss, employs a destructive laboratory 

based test which takes 24-72 hours to complete. This paper reports on feasibility studies of 

using microwave spectroscopy as a cost-effective approach to measure pork loin drip loss. 

Notably, the developed novel microwave cavity sensor is capable of providing an indication 

of drip loss within 6 minutes, while demonstrating good correlation with the industry 

standard EZ-Driploss method (R2 = 0.896). 

Keywords— drip loss; microwave spectroscopy; water holding capacity; pork loin; meat 

processing. 
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Appendix B 

To build a calibration model that can predict water activity given its spectrum and evaluate 

its performance, the first step partitioning the data into a calibration/training set and a test 

set. The state-of-the-art Kennard-Stone (KS) is used for data partition: 

Rank=ks(X); %+++ Data partition using Kennard-Stone algorithm 

Xcal=X(Rank(1:40),:); 

ycal=y(Rank(1:40),:); 

Xtest=X(Rank(41:78),:); 

ytest=y(Rank(41:78),:); 

As a result, there is a calibration/training set and a test set, which contain 40 and 38 samples, 

respectively. The number of optimal latent variables (LV) needs to be determined before 

building a PLSR model. There are various ways for this task. Here 10-fold cross validation 

is used to give a reasonable choice (with the maximal number of nLV limited to 15): 

CV=plscv(Xcal,ycal,15,10);  %by default, 'center' is used for data 

pretreatment inside plscv.m. 

plot(CV.RMSECV,'bo-','linewidth',2); 

xlabel('number of latent variables'); 

ylabel('RMSECV'); 

set(gcf,'color','w'); 

Running the above codes, RMSECV (Root Mean Squared Error of Cross Validation) against 

number of LVs will be produced. The detailed output from cross validation can be obtained 

by simply typing "CV" in the command window.  

CV =  

 

                    method: 'center' 

             Ypred: [40x15 double] 

         predError: [40x15 double] 

            RMSECV: [1x15 double] 
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                Q2: [1x15 double] 

        RMSECV_min: 0.0210 

            Q2_max: 0.8776 

             optLV: 4 

So, using 4 components to build a PLS model may be a reasonable choice, where optLV is 

the suggested optimal number of latent variables for PLS modelling determined by the 

lowest RMSECV and Q2_max is the corresponding Q2. 

The PLSR prediction model can be built by simply running: 

PLS=pls(Xcal,ycal,4,'center');  %+++ Build a PLS model with 4 

components, pretreat method is 'center'. 

A structural data with a number of useful components, namely (X_scores), loadings 

(X_loadings), weight (W), W*(Wstar), regression coefficients (regcoef_pretreat) for 

pretreated data (X_pretreat, y_pretreat), regression coefficients(regcoef_original) for 

original input data (Xcal, ycal), R2, fitting error (RMSEF), variable importance in projection 

(VIP), SR(selectivity ratio) can be obtained by typing “PLS” in the command window: 

>> PLS 

PLS 

                      method: 'center' 

              X_pretreat: [40x300 double] 

              y_pretreat: [40x1 double] 

        regcoef_pretreat: [300x1 double] 

    regcoef_original_all: [301x4 double] 

        regcoef_original: [301x1 double] 

                X_scores: [40x4 double] 

              X_loadings: [300x4 double] 

                     VIP: [1x300 double] 

                       W: [300x4 double] 

                   Wstar: [300x4 double] 

                   y_fit: [40x1 double] 
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                fitError: [40x1 double] 

                tpscores: [40x1 double] 

              tploadings: [300x1 double] 

                      SR: [1x300 double] 

                     SST: 0.1439 

                     SSR: 0.1316 

                     SSE: 0.0123 

                   RMSEF: 0.0173 

                      R2: 0.9145 

The test set generated above can be used to evaluate the built PLS model using the following 

commands: 

[ypred,RMSEP]=plsval(PLS,Xtest,ytest); %+++ make predictions on 

test set 

figure; 

plot(ytest,ypred,'.',ytest,ytest,'r-'); 

xlabel('experimental'); 

ylabel('predicted'); 

set(gcf,'color','w'); 


