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Abstract 

Abstract 

The requirements for ever faster circuits and higher packing density have driven the 

continuous downscaling of the transistor sizes in the last 50 years or so. This leads to 

higher electrical field and operation temperature and, in turn, accelerates the 

degradation. One of the most serious reliability issues for the current CMOS 

technology is the negative bias temperature instability (NBTI). This project will 

focus on investigating the NBTI and the positive charges responsible for it. 

Modern MOSFETs use gate dielectrics in the nanometer range and the degradation 

will recover rapidly. To suppress the recovery, high speed characterization technique 

is needed. In this project the measurement speed has been improved from 511S to 200 

ns for Id-Vg measurements and 800ns for C-V measurement. 

As a Hf-dielectric/SiON stack is replacing SiON as the gate dielectric, the task is to 

identify which layer of the stack dominates positive charging (PC). A main 

achievement in this project is the finding that PCs are dominated by the interfacial 

layer (IL) and they do not pile up at the HfSiON/(lL) interface. 

Evaluating the conventional threshold voltage shift measured by extrapolating 

transfer characteristics, ~ Vth(ex), underestimates the NBTI-induced degradation of 

drain current, ~Id. In this project we proposed the effective threshold voltage shift, 

!J.Veff, in order to evaluate the devices degradation correctly. 

III 



Abstract 

The next task was to develop a lifetime prediction method, based on ~ Veff. To 

predict the worst-case lifetime which is recovery free, a model for NBTI kinetics 

under operation gate bias was developed. This kinetics includes contributions from 

both as-grown and generated defects and it no longer follows a simple power law. 

Based on the new kinetics, a single test prediction method was proposed and its 

safety margin is estimated to be 50%. 

A fast single pulse charge pumping (SPCP) technique was developed in this project, 

reducing the measurement time to microseconds. By exploring the differences in the 

transient currents corresponding to the two edges of the gate pulse, the net charges 

pumped into devices can be obtained and their saturation level is used to evaluate 

interface states. For the first time, SPCP allows the recovery of interface states to be 

monitored with a time resolution in microseconds. The results show that the recovery 

of stress-induced interface states is substantial within 1 DOllS, which would be missed 

if conventional charge pumping were used. 
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1 A Review of the Degradation and Defects of 
MOSFETs 

1.1 Introduction 

We have witnessed the microelectronics-led revolution and its substantial impact on 

our everyday life in the last 50 years or so. The most successful microelectronic 

technology is the CMOS and it has captured over 90% of the market share now. This 

success heavily relies on the excellent insulating properties of gate silicon 

dioxides/oxynitrides and their near perfect interface with silicon. The gate silicon 

dioxides/oxynitrides are amorphous insulators with a large bandgap of about geV 

and high energy barriers for free electrons (3.2eV) and holes (4.8eV) from silicon [1]. 

They can be grown on Si with low defect density. 

To increase the packing density and the operation speed, the transistor size has been 

downscaled ever since the invention of integrated circuits in 1958. In 1965, Gordon 

Moore, one of the founders for Intel, predicted that the number of transistors used 

per chip would double every 18-24 months [2]. The semiconductor industry has 

followed his prediction since then and this is known as the Moore's Law [3,4] now. 

Before 1990s, the operation voltage of CMOS technologies was maintained at 5V, 

when the sizes ofMOSFETs were downscaled. This leads to an increase of electrical 

field within the devices, as shown in Fig.I.1 [5]. A higher field increases the leakage 

current and decreases the device lifetime. To control the leakage current and achieve 
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the required lifetime, the operation voltage has been reduced gradually since 1990. 

This allowed the electrical field being broadly kept as a constant in 1990s, but the 

electrical field is increasing again recently, as illustrated by Fig.I.I. Since the 

bandgap of silicon is 1.12e V and it does not change with downscaling, the operation 

voltage cannot be a lot lower than 0.8V. For a modem CMOS technology, the 

operation voltage is already close to I V, so that there is little room for further 

reduction of operation voltage. The electrical field is expected to increase further 

with downscaling in the future. The basic equation to calculate electrical field is 

shown in below 

E 
_ Vg - Vpoly - 0s - 0ms 

ox -
tox 

Where 0s is the substrate surface potential and 0ms is the work function. 

Fig.l.l Evolution of oxide and silicon electric fields showing 3 different scaling scenario periods [5]. 

A higher electrical field always accelerates the degradation of MOSFETs and 

shortens their lifetime. After device fabrication, the degradation can occur during the 
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device operation in a number of ways, including hot carrier stresses [6-15], gate 

dielectric breakdown [16-27], Fowler-Nordheim injections (FNI) [28-37], positive 

bias temperature instabilities [38-47], and negative bias temperature instabilities 

[48-62]. 

Degradation can also happen during device fabrication. For a modem CMOS 

technology, plasma processing is essential and plasma process-induced damages 

(PID) must be controlled [63-68]. The PID is most severe during the plasma etching 

of metals, where the metal wires connected to a floating gate act as antenna and 

collect charges. This builds up a high field over the gate dielectrics and can result in 

latent damage [63-68]. 

Apart from the high field-induced degradations mentioned above, irradiation is 

another source of device degradation. Here degradation can happen both during 

[69-74] and post [75-78] irradiation. During irradiation, the energetic photons can 

create electron-hole pairs in the gate oxides. The electrons are typically swept out the 

oxide, but holes will be captured and form positive charges [69-74]. After irradiation, 

interface states can increase continuously under a low positive gate bias [75-78]. 

In the rest of this chapter, a brief review will be given to the main degradation 

processes: section 1.2 on hot carriers, section 1.3 on time-dependent dielectric 

breakdown (TDDB), section 1.4 on the post-stress degradation, section 1.5 on latent 

defect creation, section 1.6 on positive bias temperature instabilities (PBTI), and 

finally section 1.7 on negative bias temperature instabilities (NBTI). Through this 
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reVIew, the rationa le for the se lection of research topics In this project will be 

explained. 

1.2 Hot carrier stresses 

Hot carriers are the energetic charge carrier that can cause damages to MO FETs. 

When MOSFETs operate in the ir saturat ion mode, Fig. l .2 shows that the conducti on 

channel w ill be pinched off and there is a space charge region near the dra in . Thi s 

result in a high lateral field that accelerates charge carriers. Some of the ' 1 ucky ' 

charge carriers can gain a high energy before colli sion. When they eventua lly collide 

w ith other atoms, they can cause damage. Since the hi gh field onl y ex i t near the 

drain, the hot carriers and the ir damage al 0 are loca li zed near the dra in . Although 

hot carriers induce damage in both nMOSF T and pMOSFETs, the damage i 

typicall y hi gher in nMOSF Ts, ince electron mobili ty i around three times of hole 

mobility in ilicon, a ll owing electrons gaining a high r speed and nergy for a given 

electrical fie ld . As a re ult, the attention wi 11 be focused on hot electron induccd 

damage in nMOSFETs hereafter. 

Vg <Vd 

I·· · : ~~:~:io:2~ __ -~ ________ _ 
/ ISpace charge 

Isub region 

Fig. I.2 Generation of hot carriers in the pace charge region when an nMO F T operate in the 

aturation region. 
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Hot carriers can cause damage in two ways: creating interface states and forming 

space charges in the dielectrics. At the interface between Si02 and silicon, the 

number of oxygen atoms is inadequate to bond every silicon atom, so that some 

silicon atoms have dangling bonds [79-81]. It is well accepted that these dangling 

bonds, so-called Pb centers, introduce states into the band gap of silicon [79-81]. To 

passivate these interface states, devices are annealed in an ambient containing 

hydrogen at a temperature around 400°C, which is a standard industry process. As 

illustrated in Fig.l.3, this leads to the formation of Si-H bonds: 

Si-H + H. 

Fig.l.3 Passivation of silicon dangling bonds at the Si02/Si interface by annealing in a hydrogen 

ambient. 

Through bombarding the interface, hot electrons can rupture the Si-H bonds and 

create interface states. 

Some hot electrons can gain enough energy to be injected into the oxides. They can 

then be captured by electron traps in the oxides, and form space charges, as shown in 

Fig.IA On the relative importance of interface state creation versus electron trapping 

in oxides, it is generally agreed that the hot electron induced damage is dominated by 

the interface state creation [6,7]. This is partially because the most severe hot 

electron stress occurs under the bias condition of V g=V d/2 [9], so that the gate of 
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nMOSFETs is negatively biased against drain, impeding electron injection into the 

gate oxide. For the high quality thin oxides used in modem CMOS technologies, 

there are few pre-existing electron traps [82-84] and steady electron trapping is 

difficult due to detrapping by tunneling. 

Trap 

Fig. 1.4 Formation of space charges in the gate oxide by capturing the injected hot electrons. 

To explain why the hot electron stress is most severe under Vg=Vd/2, two factors 

must be considered: the electrical field in the space charge region near the drain and 

the number of electrons passing through this region. On one hand, for a given Vd, an 

increase of Vg allows a larger number of electrons through the space charge region 

near the drain, resulting in more hot electrons initially. On the other hand, a higher 

Vg will reduce the difference between Vg and Vd and in turn the size of space 

charge region near the drain. A smaller space charge region gives weaker electrical 

field and less hot electrons. When Vg>Vd/2 approximately, the weakening field has 

a larger effect on the hot electrons than the increased number of electrons passing 

through it, so that overall hot electrons reduce. As a result, hot electrons are 

negligible at the steady state and they mainly occur during the switching of gate bias. 
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The hot electron induced damage has attracted a lot of attention since 1980s. When 

the channel length becomes smaller, the leakage between source and drain increases, 

since the pn junction at the source can be affected by the bias at the drain through the 

drain-induced barrier lowering (DIBL). To control the leakage current, the doping 

density of silicon has been increased, since a higher density of space charges will be 

able to better screen the source from the drain. Unfortunately, a higher density of 

space charges will produce a higher electrical field and in turn more hot electrons. 

The hot electron induced damage becomes so severe that it is generally accepted that 

it limits the lifetime of nMOSFETs. The lifetime of nMOSFETs used to be shorter 

than that of pMOSFETs for CMOS technologies earlier than the 0.18J.lm generation. 

At present, hot carrier induced degradation is still important and it is an industrial 

standard test for qualifying every new CMOS process. It is generally believed, 

however, that pMOSFETs have shorter lifetime than nMOSFETs due to the 

enhanced negative bias temperature instabilities (NBTI) for the current CMOS 

technologies, as to be described in section 1.7. As a result, a lot of attention has been 

switched from hot carrier induced degradation to the NBT! recently. This project 

will also focus on the NBT!, rather than hot carrier induced degradation. 

1.3 Time dependent dielectric breakdown (TDDB) 

For the early generation of CMOS technologies, gate oxide breakdown was typically 

caused by extrinsic defects, such as pinholes and contaminating species. There is 

little carrier injection into the gate oxides by Fowler-Nordheim tunneling during the 

operation and defect creation in the bulk of oxides is insignificant. As the oxide 
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thickness drops below - 3 run approximately, electrons can now pass through the 

gate oxide by direct tunneling during the normal device operation. Strictly speaking, 

the gate oxides are no longer an insulator in this case and the intrinsic breakdown of 

gate oxides becomes a severe problem for industry. 

When electrons are transported through gate oxides under a high electrical field, 

defects will be created. Although the number of electrons passing through the oxides 

is typically much higher than any other species, it is generally agreed that electrons 

will not create defects directly [16,28,85-90]. The electrons will release a damaging 

species that interacts with the oxides and generating defects. Agreement has not been 

reached on the identity of the damaging species. Some researchers [85-88] believe 

that they are hydrogenous species, while others [16,28,89,90] propose that they are 

holes. Recent experimental evidences show that both hydrogenous species and holes 

can cause defect creation [91]. 

Gate 

Oxide Defects 

Silicon 
Breakdown path 

Fig.I.5 The generated defects in the gate oxide overlap with each other and form a conduction path 

through the oxide, triggering the breakdown. 

The most successful model for oxide breakdown is the percolation model [16-19,22] . 

This model assumes that each created defect has a finite size and the defect 

distribution is completely random in the oxides. As the generated defects accumulate, 
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they overlap with each other and Fig.l.5 shows that a conduction path is eventually 

formed when the defect bridges the two electrodes, which triggers the breakdown. 

This model has been used to successfully predict the dependence of oxide 

breakdown on the gate area and the oxide thickness [16-19]. 

Different types of defects can be generated during the breakdown tests: interface 

states, electron traps, and hole traps, but they do not contribute equally to the 

breakdown [83]. The interface states are located at the oxide/silicon interface and do 

not agree with the random spatial distribution required by the percolation model. 

Hole trap generation is not thermally activated [83], disagreeing with the thermal 

acceleration of breakdown process [18,19]. Among the created electron traps, some 

of them can only be filled at low oxide field (e.g. 2MV/cm) and were referred to as 

"low-field traps", whilst others can capture electrons at an oxide field over 10 

MV/cm (the so called "high-field traps") [82,83]. The creation of low-field electron 

traps saturates as stress increases, so that they will not trigger breakdown. 

Among high-field traps, two capture cross sections are clearly identified, one is in 

the order of 10-13_10-14 cm2 and the other in the order of 10-15_10-16 cm2 [84]. The 

generation of traps with the smaller capture cross section again saturates as stress 

increases and cannot cause the breakdown. The creation of traps with a capture cross 

section in the order of 10-13_10-14 cm2
, however, does not saturate. Its distribution 

through the oxide is uniform on a macroscopic scale, in agreement with a statistically 

random distribution on a microscopic scale [83]. Its physical size of the order of 

nanometer also agrees well with the defect size independently determined by the 

breakdown tests [16,22]. This strongly supports that the high-field electron traps 
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with a capture cross section in the order of 10-13_10-14 cm2 is responsible for the 

oxide breakdown. 

It should be noted that the thickness of the gate oxides is around 1 nm for the 

state-of-the-art MOSFETs, which is comparable with the electron trap size. As a 

result, generating one electron trap will be sufficient to give a stress-induced leakage 

current (SILC) through the gate oxide and the overlap of two traps is sufficient to 

trigger breakdown for modem MOSFETs. 

Although a gate voltage ramp was used in the early breakdown tests, the standard 

breakdown test is carried out under either a constant voltage or a constant current 

nowadays. The time and electron fluency at the breakdown are recorded and the 

Weibull distribution is used to present the results. To achieve a reliable statistical 

distribution, the number of test samples has to be in the order of hundreds [27]. The 

test procedure for the time dependent dielectric breakdown (TDDB) is well 

established in industry now and this project will not address it further. 

1.4 Post-stress degradation 

The post-stress degradation was investigated after a device was subjected to either 

irradiation [75-78] or electrical stresses [92-98]. It was found that under a moderate 

positive gate bias (e.g. + 1 MV/cm), interface states build-up continues after 

terminating the stress. Three theories have been proposed: hydrogen transportation 

[75-78], trapped hole conversion [92] and hydrogen emission [98]. 
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The hydrogen transportation model was proposed mainly to explain the degradation 

post-irradiation [75-78]. Here, mobile hydrogenous species were formed in the bulk 

of dielectrics during the irradiation, as illustrated by Fig.l.6 After the irradiation, 

these mobile hydrogenous species gradually move to the Si02/Si interface under a 

positive gate bias. Once arrived at the interface, they create interface states through a 

reaction such as, 

Sb - SiH + H+ + e -+ Sb - Si. + H2. 

This reaction is considered to be rapid and the generation rate is believed to be 

controlled by the hydrogen transportation. Although this model has been used 

successfully to explain the delayed build-up of interface states following irradiation, 

it is found that the hydrogen transportation through a relatively thin oxides «15nm) 

is too fast to be responsible for the slow increase of interface states in the modem 

MOSFETs post electrical stresses [94-98]. 

Holes 
0 0 0 

< 
, Si02 Si Si02 Si , , 
H+', , H+ , > 

Vg<O 
H+H-l\ 

Vg>O H+H+ , , 
H+ H+ Ht, 11+ H+ 11+ , , 
H+II+II+ 

, 
H+ H+ , H+ , 

Irradiation under V g<O Post-irradiation under Vg>O 

Fig.I.6 A schematic illustration of the hydrogen transportation model for interface state generation 

post-irradiation. 
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The trapped hole conversion model is schematically shown in Fig.I.7 It is assumed 

that there are strained bonds near to the interface, which can be hole traps [92]. The 

bond is broken by capturing a hole. After the trapped hole is neutralized, the strained 

bond will not be restored. Instead, a weak or broken bond is produced, which acts as 

an interface state. This model predicts that the generation of interface states should 

be proportional to the number of holes detrapped. The experimental evidences, 

however, do not agree with this prediction [94-97]. 

o.........st'" 
Hole -7t / ........ 

~ Strained bond 
_Si_ Si- Si_Si_ Si-

I I I I I 
(a) 

Weak or 0-...... S(/ 
Broken-, / ........ 
bond 

_ Si_ Si- Si_Si_ Si-
I I I I I 

(b) 

Fig. 1.7 A schematic illustration of the trapped hole conversion model for interface state generation. 

The hydrogen emission model assumes that, following the neutralization of trapped 

holes, the emission of a neutral hydrogenous species is the rate-limiting process. To 

facilitate the discussion, the defect responsible for the post-stress degradation can be 

schematically represented by D-H. The hole trapping and detrapping can be 

schematically shown as: 

D-H + hole ~ D-H+ 

and 

D-H+ + electron ~ D---H. 
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After the detrapping, the original D-H bond can be weakened and is represented by 

the dashed line. This leads to the emission of neutral hydrogenous species, since the 

hydrogenous species is neutral, the defect should remain neutral. 

D---H -7 D + H. (1) 

Like the hydrogen transportation model, the hydrogen then moves to the Si02/Si 

interface and create interface states. Unlike the hydrogen transportation model, 

however, the generation rate is limited by the hydrogen emission process shown in 

(1), rather than its transportation. This model has been used successfully to explain 

the slow build-up of interface states following substrate hot hole stresses [98]. 

1.5 Latent defect generation 

The latent defect generation was reported after plasma processing. Fig.I.8 shows that 

the plasma etch induced damage can be annealed in forming gas at 400°C. The 

annealed sample, however, is not the same as the sample that did not experience 

plasma etching. When the plasma-etched and then annealed sample was stressed, the 

generated defect is substantially higher than that in a wet-etched one for the same 

electrical stress. This means that the defects created by the plasma process were 

made 'latent' by the forming gas anneal, but they were not eliminated. 
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Fig.I.8 Generation of latent defects by plasma etching. (a) is the interface states measured after 
plasma etching. (b) is the interface states after annealing the plasma etched sample. (c) is the interface 
states after electrical stressing the plasma-etched and then annealed samples. The dashed line is the 
interface states after the same electrical stress on a wet-etched sample [63]. 

It has been identified that the trapped holes and hydrogen exposure are the two 

essential conditions for the formation of latent defects. For example, Fig.l.9 shows 

that, if the trapped holes are neutralized before the hydrogen exposure by FN 

injection, the formation of latent defects is effectively suppressed. This observation 

leads to the proposal of the two-stage H2-cracking model [68]. In the first stage, H2 is 

cracked at a trapped hole site into reactive hydrogenous species, such as H+ and HO. 

These reactive hydrogenous species then react with the device to form the latent 

defects. Based on this model, the guide-line for suppressing the latent defects is that 

the positive charges in the oxides induced by plasma processing must be neutralized 

before the forming gas anneal [68]. 
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Fig.1.9 (a) Generation of latent interface states. After the substrate hole injection (SHI), one device 
was exposed to forming gas (FG) directly and another device was subjected to FN injection first and 
then the same FG anneal. When both devices were stressed by SHI again, the interface states created 
in the device with FNI is much lower than that without FNI (the dashed line). (b) shows the behavior 

of trapped holes. [68]. 
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1.6 Positive bias temperature instabilities (PBTI) 

Two different types ofPBTIs were reported. The first type is for pMOSFETs [38-41]. 

It is found that substantial amount of positive charges can be formed when a positive 

gate bias was applied to pMOSFETs at elevated temperature. The source of this 

PBTI has been identified as the defects involving both boron and water [38]. After 

exposing pMOSFETs to wet nitrogen, PBTI will increase substantially [38]. 

Moreover, Fig.l.! 0 illustrates that the water diffuses into the device through the gate 

edges [38]. This means that this type of PBTI for pMO FETs can be effectively 

suppressed through proper capsulation. 
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Fig.l.l 0 (a) A schematic diagram showing the nonuniform degradation of MOSFET's under PBTS. 
The degraded region is marked out by 'x'. (b) shows that the PBTI effect increases as channel length 
reduces, because the degraded region is a larger percentage of the whole channel for devices of 
smaller channel length. [38] 

The second type of PBTI is for nMOSFETs with high-k dielectric stacks. During the 

initial stage of high-k dielectric investigation, it is widely reported that substantial 

electron trapping occurs under a positive gate bias [42-47]. For a given positive gate 

bias, electron trapping increases the threshold voltage of nMOSFETs and reduces the 

driving current. The electron trapping is rapid and can reach a substantial level even 

during a typical transfer characteristics measurement with a time in the order of 

seconds. When this trapping-reduced drain current is used to estimate the electron 

mobility, an underestimation occurs. To extract the real electron mobility, pulse 

measurement with a time in the order of tens of microseconds must be used [42-45]. 

The pulse measurement is also essential for probing the real density of electron traps 

and assessing their capture cross sections [43,44]. Early work [99] used quasi-DC 
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measurement and only captured a fraction of electron traps, due to the detrapping 

during the measurement. This leads to a gross underestimation of the capture cross 

section [99]. It is found that the detrapping can be frozen, only when the 

measurement time is reduced to the order of tens of microseconds [43,44]. 

Unlike Si02 that has little pre-existing electron traps, the electron traps in Hf02 is 

as-grown, rather than generated by electrical stresses [100,10 1 ]. Despite of the 

difference between Hf02 and Si02, it is found that the two capture cross section of 

as-grown electron traps in Hf02 is similar to those for the generated electron traps in 

Si02: one in the order of 10.14 cm2 and the other in the order of 10.16 cm2 [44]. 

On the special location, it is reported that the as-grown electron traps are mainly in 

the high-k layer and there is little traps in the interfacial Si02 or SiON [100,101]. 

Importantly, Fig.l.l1 shows that electron trapping becomes negligible when the 

Hf-dielectric layer is thinner than 2 nm approximately, which is the relevant 

thickness for its real application in CMOS technologies. As a result, the electron 

trapping induced PBn for industrial nMOSFETs is not as severe as that observed 

earlier on Hf02 of 3 nm or thicker [100,101]. The PBn of nMOSFETs will not be 

addressed further in this project. 



Chapter J - A Review of the Degradation and Defects of MOSFETs - 19-

Fig.l.ll The location of as-grown electron traps in Hf-dielectric/Si02 gate stack is the shaded region. 
The electron-trapping induced PBn is insignificant for Hf-dielectric layer thinner than 2 nm. [10 I] 

1.7 Negative bias temperature instabilities (NBTI) 

Negative bias temperature instability (NBTI) takes place in pMOSFETs under 

negative gate voltage at elevated temperature. NBTI has a number of adverse effects 

on devices, such as a reduction of drain current and transconductance gm, and an 

increase of the magnitude of threshold voltage. It is the earliest instability reported 

for MOS devices. In 1967, Deal et al. [48] reported that both the interface trap 

density Nih and oxide charge density Nox, increased upon negative bias stress. The 

rate of increase of Nil and Nox was similar. 

The next milestone is the proposal of the reaction-diffusion model (R-D) by Jeppson 

and Svensson in 1977 [50]. In this model, the degradation will start with an 

electrochemical reaction at the Si02/Si interface, which converts the precursors (e.g. 

Si-H) into interface states and release a hydrogenous species. The hydrogenous 
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species then diffuse away from the interface and this diffusion process limits the 

generation of interface states. The R-D model successfully explains the power law 

dependence of the interface state generation against time. 

Fig.l.12 The transition of lifetime limitation mechanisms as a function of gate oxide thickness. When 
the thickness is below 3.5 nm, degradation due to NBTI becomes to limit the device lifetime [102J. 

NBTI received little attentions in the 1980s and most part of 1990s, since the efforts 

were focused on the hot carrier induced degradation in this period, as mentioned in 

section 1.2. As the downscaling continues, the boron penetration from the p+ poly 

gate through the gate oxides becomes a serious issue. To suppress boron penetration, 

an increasing amount of nitrogen has been used in the oxynitrides. Nitridation 

increases NBTI [102-104]. This, together with an increase of operation temperature 

and oxide field, have raised NBTI to such a level that pMOSFETs has shorter 

lifetime than the hot-carrier induced lifetime of nMOSFETs, as illustrated in Fig. 

1.12 [102]. As a result, the NBTI research has experienced a renaissance in the new 

millennium and it is the most important reliability issue for CMOS technologies now. 
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This project will focus on studying NBTI and developing the required 

characterization techniques. 
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2 Experimental Facilities and Techniques 

2.1 Introduction 

The standard system for wafer level tests typically involves a computer, a 

semiconductor parameter analyser, a pulse generator, and a probe station with 

micro-positioners, as illustrated in Fig.2.1. At the start of this project, such a system 

was already available in the laboratory and was used for the quasi-DC tests in 

Chapter 3. 

This test system is fully controlled by the computer through an IEEE 488 port. The 

control program was specifically designed for this system and was written in turbo C 

language. The probe station allows connecting the test devices at wafer level with the 

electronic equipment. The pulse generator is used to generate pulses required by the 

charge pumping measurements. The parametric measurement mainframe (Agilent 

E5270A) has 4 medium power source and measurement units (SMU), which can be 

used to supply/measure the gate, drain, well and substrate voltage/current. 

It typically takes 20~ 150ms for measuring one point by the industrial standard 

parameter analyzers, such as Agilent E5270A, 4145, 4155/4156 [1] and Keithley 

4200. To obtain a transfer characteristic, tens of points are needed and the total 

measurement time will be in the order of seconds. This kind of measurement is often 

referred to as quasi-static measurement or quasi-DC measurement. Two assumptions 
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in the quasi-DC measurement are that the measurement itself will not cause any 

degradation for the device under test (DUT) and there will be no recovery of 

degradation during the measurement. For MOSFETs with relatively thick oxides (e.g. 

>5nm), this is widely accepted. For thinner oxides, however, both recovery and 

degradation can occur during the quasi-DC measurement and it becomes essential to 

increase the measurement speed by using the pulse measurements [2-9]. 

r--- Semiconductor - Probe station 
with 

Computer micro-position 
ers 

- Pulse generator I--

Figure 2.1. A schematic diagram of the testing system. 

In this chapter, section 2.2 will describe the stress-measure-stress (SMS) 

methodology widely used for characterizing the reliability of MOSFETs. Section 2.3 

will cover the threshold voltage extraction from the quasi-DC transfer characteristic. 

Section 2.4 will describe the pulse technique existed in the laboratory and shows that 

the highest measurement speed achievable is 5J.1s. A major effort has been made in 

this project to improve the measurement speed and section 2.5 will show how the 

noise is minimized. Section 2.6 will demonstrate that the re-designed and improved 

system can achieve a measurement speed of 200 ns for Id-Vg measurement and 

800ns for the capacitance-voltage measurement. Finally, section 2.7 addresses how 

to correct the system delay and gate leakage and how to separate the displacement 

current from the drift current. 
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2.2 Stress-measure-stress methodology 

The common reliability test will start with characterising the properties of fresh 

devices, such as the threshold voltage, interface states, and charges in the gate 

dielectric [2,3,5-8]. These values will be used as the reference for measuring the shift 

of parameters during the stress due to degradation. To produce a measurable amount 

of degradation during a practical test time, the biases applied are typically 

considerably higher than that used in the real operation. The role of temperature is 

more complex. In some types of tests, such as negative bias temperature stress 

[2,3,10-12] and time dependent dielectric breakdown (TDDB) [13-15], it is often 

increased to accelerate the degradation. In hot carrier stress, however, room 

temperature is typically used. This is because an increase of temperature can lower 

the carrier mobility and the energy of hot carriers, resulting in lower degradation, 

even though the degradation process itself is thermally activated [16]. 

To monitor the extent of degradation, the stress is often interrupted at a preset time, 

so that the typical measurements, such as transfer characteristics and charge pumping, 

can be performed. The bias applied during the measurement is generally lower than 

the stress bias and its polarity can also be different from that of the stress bias. The 

implicit assumption is that this interruption will not disturb the degradation, but this 

is not true for thin dielectrics [2-9]. The common practice is to stress and measure 

the degradation at the same temperature, to minimize the interruption. Changing 

temperature of a thermal chuck is a slower process than the electrical measurements. 
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After recording the degradation, the stress bias is reapplied and the degradation 

continues. The degradation generally will not happen in a constant speed and the 

defect generation rate will slow down for longer stress. A power law kinetics is 

typically observed for the bias temperature stresses [17,18] and hot carrier stresses 

[16], with a power factor in the range of 0.1-0.5 for the former [17,18] and around 

0.2-0.4 for the latter [16]. As a result, a logarithmic time scale is often preferred to a 

linear time scale for setting the measurement points for probing the degradation 

[2,3,16-18]. 

2.3 Threshold voltage extraction from quasi-DC Id-Vg 

Threshold voltage, Vth, is one of the most important parameters for MOSFETs and 

its shift is often monitored during the electrical stresses. Traditionally, the threshold 

voltage is measured from the quasi-DC transfer characteristic by using extrapolation 

[2,3] and this will be described in this section. Recently, it is widely reported that the 

quasi-DC measurement is too slow and degradation can recover substantially during 

the quasi-DC measurement [2-9]. To minimize the measurement time, several new 

techniques have been developed recently, including on-the-fly (OTF) method [10,19], 

pulse technique [2,3,20], and the pulse Vg characterisation [3,20]. The pulse 

techniques will be given in section 2.4. 

By definition, a MOSFET will be off when Vg<Vth and switched on when Vg>Vth 

and the drain current Id is zero at Vth. In reality, a MOSFET will not be turned on 

suddenly and the Id will not be zero in the subthreshold region. This means that the 

evaluation of Vth will involve a certain degree of approximation. 
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The classical method for determining Vth is to extrapolating the quasi-DC Id-Vg 

measured at a sufficiently low drain bias (e.g. V d<O.l V) [2,3,20]. One example is 

given in Fig.2.2. After measuring Id-Vg, transconductance, gm=dId/dV g, is 

evaluated from it. Fig.2.2 shows that gm has a peak at a certain Vg(gm=max). The 

Id-Vg is then linearly extrapolated from V g(gm=max) to Id=O to find the Vth, as 

illustrated in Fig.2.2. After negative bias stresses, the Id-Vg was measured again to 

evaluate the degraded Vth and its shift, /). Vth. 

80 
--D- Fresh • 140 

70 -0- 1 ks stress 
120 60 V = -3.17V 

50 
95t 100 - T = 100°C -~ 40 80 ~ -"a 60 - 30 -E 

20 40 Cl 
Vtand 

10 its shift 20 

0.4 0.6 0.8 
0 

1.0 
IV I (V) 

9 

Fig.2.2 Typical experimental results obtained by using conventional technique. Id-Vg curves are 
measured before and after stressing the device for a certain period of time. After the stress, the Id-Vg 
curve is shifted towards higher IVgl. Threshold voltage is extracted by using maximum gm 
extrapolation method. The trans-conductance is first calculated by differentiating the Id-Vg curve and 
threshold voltage is defined as the gate-voltage axis intercept of the linear extrapolation on the Id-Vg 
curve at maximum trans-conductance. [20] 

2.4 The existing pulse technique and its shortcoming 

The principle of pulse technique for evaluating Vth is essentially the same as that for 

the quasi-DC Id-Vg technique. As illustrated by Fig.2.3, the stress is interrupted and 
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Id-Vg is recorded agam and the extrapolation is made from the maXlmum 

transconductance point. The difference is the measurement speed. A pulse generator 

is used here to replace the quasi-DC parameter analyzer as the voltage source for the 

gate bias. 

r------------- ---1 

Time 
Fig.2.3 Gate voltage waveform used by the UFP-ex and UFP-Vg techniques. '(n-l)' and 'n' indicate 
two neighboring measurement points. [3] 

The circuit used to implement the pulse technique is given in Fig.2.4. The drain to 

source bias, Vd, was pinned at a low level (e.g. -25 mY), supplied by a battery 

through a voltage divider and an operational amplifier. The gate bias was provided 

by an Agilent 81101A pulse generator and the typical width/rise/ fall time is 10/5/5 

fls, respectively. Both Vg and the YOU! in Fig.2.4 were recorded. The yOU! is converted 

to Id by, 

where the feedback resistor, R, typically has a value of 1 kO. 
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Fig.2A The circuit and it photograph u ed by the exi ting pul e technique. The drain current i 
converted from VOU1 through Id=(VouCVd)/R and Vd is et through a vo ltage divider and an operational 

amplifier. [3] 

ome typical Jd-Vg characteri tic meas LU'ed by using the ex i ting pul e technique 

are giv n in Fig.2.S. It can be seen that th re ults are good for a mea urement time 

(i.e. the pul e edge time) of SM or longer, but the Id wa eriously di storted for 
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shorter time. Fig.2.6 show that the typical split capacitance-voltage (C-V) 

characteristics measured by the existing pulse technique. It uses the relationship 

I=C*(dv/dt). Distortion is again observed when the measurement time is below 5J.ls 

for both the gate-to-channel capacitance, Cgc (Fig.2.6(a)), and the gate-to-body 

capacitance, Cgb (Fig.2.6(b)) . A lot of efforts have been made in this project to 

improve the measurement speed and the details are given in the next section. 

0.6 
Measurement Time 

0.5 

.-. 0.4 
<C 
E 0.3 'V -"C 

0.2 -
0.1 

2.7nm SiON 0.0 1iii:i'ili;f ___ IIIi'll'::~~_--1. __ --L-_--.J 

0.0 -0.4 -0.8 -1.2 -1.6 -2.0 

v (V) 
g 

Fig.2.5 Typical Id-Vg measured by the existing pulse technique. The measurement speed is limited at 

5~s. 
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Fig.2.6 Typical split C-V measured by the existing pulse technique. (a) The gate-to-channel 
capacitance and (b) The gate-to-body capacitance. Distortion can be observed when measurement 

time is less than 511S. 
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Fig.2.6 shows there is a sudden change in Cgb under the same voltage level when Cgc 
also present a sudden change. The reason is under this voltage level, conduction 
channel is created, charges in the conduction channel response the gate bias instead 
of the charges in the substrate. This change is rapid which will cause the sudden 
change in Cgb. 

2.5 Design and implementation of a high speed pulse 

technique 

2.5.1 High performance amplifier 

For the existing pulse technique, the operational amplifier used is the AD844, which 

has a relatively low bandwidth of 80MHz. This limits the measurement speed. It is of 

great importance to reduce the measurement time further. For pulse I-V 

measurement, it is reported that in order to measure the intrinsic Id-Vg, the 

measurement time has to be in the order of lOOns. In addition, the accuracy of the 

pulse C-V technique used in Chapter 5 relies on the ramp rate, dV/dt, since the 

displacement current is proportional to the ramp rate. 

To improve the measurement speed, one wide bandwidth and high gain op-amp (TI 

OPA657, 1.6GHz) is selected to replace the AD844. It has high precision 

Analog-to-Digital converter with very low input noise voltage and only requires a 

quiescent current of 14mA. This makes it suitable for the present application, since 

the low level signals can be significantly amplified in a single gain stage with 

exceptional bandwidth. 
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The designed circuit di agram wi th the new op-amp is shown in Fig.2.7. Like the 

existing technique, it was first implemented by using a veroboard, as shown in Fig. 

2.8. 

The test results given in Fig.2.9 show that the noise level of the circuit in Fig.2.8 is 

too large to be acceptable. This is addressed in the next section. 

+5V 
O.I ~F 6.8~ F 

+~ 

Input 
Outp ut 

6.8~F 

~ 
-5V 

Fig.2.7 The new OPA657 amp li fier circui t des igned for the pulse technique. 

Fig.2.8 The photograph of the fir t OPA657 pulse Id-Vg circui t. 
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Fig.2.9 Output ignal from the OPA657 pulse I-V circuit given in Fig.2.8 

2.5.2 Noise reduction 

The high n01 e level fo r the circuit given 111 Fig .2.9 sugge ts that the high 

performance op-amp req uire a ded icated as embly and layout. The printed circuit 

board (P B) wa u ed and attention is paid to minimize th poss ible no ise source. 

Afte r carefull y tudying R F circuit requirements, severa l noise source were 

id nti fied and add re sed, including ocketing, ground , ex terna l component , power 

upply, and layo ut. 

2.5.2.1 ocketin a 

A hown in Fig.2 .8, the tandard P B ocket wa oldered onto veroboard to allow 

connecti on f input signal cable. Thi type of ocketing wa not designed to hi eld 

nOI and interferenc for a high- peed circuit and mu t be replaced. 

The pin configw"ation of the n w OPA657 amplifi er i SO-8, designed for urface 
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mount. In order to solder the amplifier onto veroboard, extra wires were used to 

extend the length of the 8 pins. Such socketing however, is not recommended for a 

high-speed amplifier like the OPA657. The increased lead length and pin-to-pin 

capacitance introduced by the socket can create a troublesome parasitic network 

which makes it almost impossible to achieve a smooth and stable frequency response. 

Best results were obtained by soldering the OPA657 onto the board directly. [21] 

2.5.2.2 Ground plane 

A ground plane in PCB assembly is a layer of copper that appears to most signals as 

an infinite ground potential. This helps reducing noises and ensures that different 

signals have the same reference potential. It also makes the circuit design easier, 

allowing the designer to reach ground without having to run multiple tracks. The 

component needing ground is routed directly to the ground plane on another layer. 

[21] 

The improved circuit was assembled on a double layer PCB board, shown in Fig. 

2.10. The parasitic capacitance to ground is minimized for all 1/0 pins. Parasitic 

capacitance on the output and inverting input pins can cause instability. On the 

noninverting input, it can react with the source impedance and unintentionally limit 

frequency band. To reduce the unwanted capacitance, a window around the signal 

110 pins should be opened in the ground and power planes. Apart from these 

windows, ground and power planes should be unbroken elsewhere on the board. 
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Fig. 2. 10 The double layer P B board for the improved circuit. 

2.5.2.3 Selection and placement of ex ternal component 

areful election and placement of external component will pr serve the high 

frequency perfo rmance of lh OPA657. Re i tor should be of a very low reactance 

typ . urface-mount re i tor wo rk be t and allow a tighter overall layout. Metal film 

and carbon compo ition ax ially I aded re i tors provid good high-frequency 

p rformancc. Their lead lengths are made as short as possibl . Since the output pin 

and inverting input pin a1' the mo t s n itive ones to para itic capacitance, the 

feedback re i tor are po itioned a clo e a po ibl e to the output pin . Other network 

component uch a noninvel1ing input terminal re istor , should also be placed 

cl e to the packag . Even with a low para itic capacitanc shunting the external 

res i tor xce i Iy high r i tor value can create ignificant time con tant that 

degrade pcrformanc. Go d ax ial metal film or surface-mount re I tor have 

approxi mately 0.2 p in hunt wi th the re i tor. [2 1] 
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2.5.2.4 Power supply conditioning and layout 

To eliminate the noise from the input pin, the circuit was tested first under no input 

signal condition, which means there is no MOS device has been probed during the 

circuit test. This allows examining other noise sources, such as power supply and 

components layout. 

For the power supply section, based on the RP circuit noise requirement, the power 

supply connections should always be decoupled with capacitors. In Fig.2.7, the small 

decoupling capacitors on the supply pins are effective at high frequency and the large 

decoupling capacitors are effective at low frequency. The distance from the 

power-supply pins to the high-frequency 0.1 J.l.F decoupling capacitor is minimized to 

within 0.25". The ground and power plane should not be in close proximity to the 

signal 110 pins.[21] The voltage regulators are also essential to stabilize the voltage 

supply. 

The second circuit was designed after considering the possible nOIse sources 

mentioned above. The schematic circuit diagram is given in Fig.2.11 and a 

photograph of the pen circuit is given in Fig.2.l2. Fig.2.13 shows that the noise 

level was reduced to 600 mY. This is still too high to be acceptable and further 

improvement is essential. 



Chapter 2 - A Review of the Degradation and Defects of MOSFETs 

L 7805 +5V voltage regulator 

BAn 

r-~--#;;;;r:::t~ Oscilloscope 

~---+--~------4 

J2 Power 
supply 

V voltage regula tor 

.. SMA1 Pul e 
t:~ltJ;'----r===:::::::l~~:=~ generator 

I I 

Adaptors conn~ed to tested device 

Fig.2 .11 The schematic improved circuit 

Fig.2. 12 A photograph of the impr ved circuit. 

- 50-
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. , ---------------

Fig.2. 13. A fter the improvement, y tem noises were reduced to 600mV . 

2.5.2.5 Ca bling and furth er impl·ovements 

During the experiment, MC-lO- MA cable are needed lO connect lh 657 

amplifier circuit and th microposition r of the probe station, a ill u trated in hg. 

2. 14. In order to avo id impedance mi match, all y tem component must po e s 

50n impedance. h I ngth f M -to- M cabl i minimi zed. Moreover, B C 

cablc between circuit and 0 cilloscope mu t have the rune length in order to 

synchr ni e th multi ple output channel . 

Vari able r i tor replacement: The vari able re i tor in Fig.2.7 introduces noi into 

the y tem due to it turning mechani m. It i replaced by a ba ic ollage divider 

con i ting f two fi x d va lu re i tor . 
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Location of decoupling capacitors : The amplifier requires +/-SV power supply, each 

needs two decoupling capacitor and one voltage regulator. The small decoupling 

capacitors were placed as close as possible to the output pin. Test results show that 

the circuit had a better perfom1ance when the voltage regulator and the large 

decoupling capacitor were placed close to each other. 

SOmm 

Fig.2.14 S MC-to- MA B cable are using to connect testing device and circuit. 

The circuit wa re-designed again and i hown in Fig.2 . IS . 

Fig.2. IS The new circuit after 2nd re-de ign to include the further improvement. 
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The performance of the circuit afte r the second re-design is shown in Fig.2.16. When 

compared with Fig.2.13, the noi e in the output ignal is reduced significantly to 

about 30mV. There i , however, an oscillation in the signal and efforts were made to 

remove it. 

-­(1_2) 

Oe'e1.e ... 
Al l I,'''T :J ("I' /~;~~.-, <..~ ;1~" "~,~.. . ~; IJ 

.. ." • • ~' -I 

y 1 1,'" 
"u. ' t ,4 v -' 

Fig.2.16 The noise of output signal for the circuit in Fig.2. I S. 

2.5.2.6 hiclding and th e fin al circuit 

[n rder to c nnecl to oth r quipment within the re ting y tem, ri ght angle metal 

MA and B adaptor were a embled on the P B bard. Even with the ou t-laye r 

f the adapt r I ad Idered n the P B board and connected to the ground, the 

metal urfac till a l like ant nna and act a a ourc f noi e. To achie e beller 

hielding performanc , the e adapt r w re wrapped ith copp r wire and connected 

int cir uit 
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After minimizing all pos ibl e noi e sources and implementing the improvements, Fig. 

2. 17 shows that the system noise was reduced to within 5mV, which is acceptable for 

pulse measurements. The final circuit is given in Fig.2.18. 
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Fig.2.17 The noise of oUlpu t signal for the circuil in Fig.2. 18. 
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Fig.2. 18 The final circuit. 
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2.6 Improvements in measurement speed 

By using the circu it given in Fig.2 .18, Fig.2. 19 shows that the measurement speed 

has been improved from the previou 5J.ls to 200 ns for Jd-V g and 800 ns for C-V. 
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ig.2. 19 The creen hot of pulse mea urement of Id-Vg (a) and -V (b) . 
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2.7 Corrections and calibration 

2.7.1 System delay 

Fig.2.20 gives the pulse C-V test system configuration. 

c-v v,.....--. 
Pulse 
generator 

..------------iLICh1 

Fig.2.20 Pulse C-V test system configuration 

Ch2 

OSC 
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As shown in the figure above, a pulse is applied to gate and captured by the 

oscilloscope directly. At the same time, currents Isd and Ib flowing out of the device 

will be converted into voltage by this home-made circuit and captured by the 

oscilloscope. The gate-to-channel Cgc-V measurements with a pulse edge time, tm, 

of lOllS and IllS are given in Figs.2.21(a)&(b) respectively. Though good agreement 

has been observed between switching on and off edges when tm is lOllS, a parallel 

shift appears when tm reduces to I Ils. This is caused by the delay of the op-amp 

circuit. The gate voltage is directly fed into the oscilloscope. The signals 

corresponding to Isd and Ib, however, are converted through the op-amp and were 

delayed. The effect of system delay on the results is illustrated by Fig.2.22. It shifts 

the output signal towards negative Vg by /lV, when Vg was swept towards negative, 

which turned on a pMOSFET. Similarly, it shifts the output signal towards positive 
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Vg, when Vg was swept towards positive by I1V, which turned off a pMOSFET. 

Therefore, the difference between off-to-on and on-to-off edge will be twice of 11 V. 

The same explanation can also be applied to the gate-to-body Cb-V measurement 

given in Figs.2.23(a)&(b). 
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Fig.2.21 Cgc-V results at different measurement speed. (a) When measurement speed is lOllS, the 

system delay is negligible. (b) When measurement time is IllS, a clear shift occurs. 
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Fig.2.22 An illustration of the system delay on the results. The system delay induces a shift in the 
time scale for the output signal relative to Vg. 
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Fig.2.23 Cgb-V results at different measurement speed. (a) When measurement speed is lOllS, the 
system delay is negligible. (b) When measurement time is Ills, a clear shift occurs. 

This delay time, l-. T, is determined by the op-amp and it is a constant and 

independent of measurement conditions and devices. It can be obtained from 

l-.V/[dV/dt], where, l-.V is the delay induced shift, as illustrated in Fig.2.23(b), and 

dV/dt is its ramp rate. For a constant delay time, DV is proportional to the ramp rate, 

as shown by Fig.2.24. The system delay can be determined from the slope of the line 

in Fig.2.24 and it equals to 34.9 ns for the present circuit. 
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Fig.2.24 The relationship between ramp rate and the voltage shift. 

After taking this 34.9ns system delay time into account, the C-V results measured at 

different speed (Le. dV/dt) is corrected. Some examples are given in Fig.2.25(a) for 

Cgb-V and in Fig.2.25(b) for Cgc-V. It can be seen that the C-V from the two pulse 

edges merges and the agreement for different edge times, tm, is good for tIn as low 

as 800ns. 
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Fig.2.25 After correcting the system delay, off-to-on and on-to-off edge agrees well for a 
measurement time down to 800ns both Cgb (a) and Cgc (b). 

Fig.2.25 shows both Cgb and C gc data agrees well when measurement time is slower 

than 800ns, and distorted when measurement time is less than 800ns. System 

parasitic components are responsible for the distortion, since they cannot response to 

the rapid changing gate voltage. 
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2.7.2 Leakage current correction 

For modem MOSFETs, the thickness of their gate dielectrics has shrunk to the 

nano-meter range. As a consequence, leakage current increases exponentially. When 

applying the pulse technique to a 1.85nm dielectrics, the measured Cgc and Cgb are 

shown in Fig.2.27. At high IVgl region, curves for the off-to-on sweep start to 

deviate from those for the on-to-off sweep. This deviation is largest for the longest 

edge time and can be reduced only partially even at the shortest edge time. To 

correct for the gate leakage, the average value for the two edges can be used and the 

details will be presented in Chapter 5. Fig.2.28 shows that results after such a 

correction. 
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Fig.2.27 Impact of gate leakage current on the measured Cgc (a) & Cgb (b). The gate leakage causes a 
separation for the two C-Vs corresponding to the two pulse edges. 
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Fig.2.28 Results after correcting the gate leakage current for the data given in Fig.2.27. 
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2.7.3 Displacement current correction 

In section 2.7.1, the effect of system delay on C-V has been addressed and corrected. 

For the I-V measurement, the same system delay has to be corrected. Even after the 

system delay is corrected, Fig.2.29 shows that the pulse I-V still shows clear 

difference between on-ta-off and off-ta-on edges. This is because at high 

measurement speed, the displacement currents can contribute to the measured drain 

current considerably. As it is shown in Fig.2.30, on one hand, when the device is 

switched from off to on, the direction of the displacement current Igd is opposite to 

the drift channel current. On the other hand, when the device is switched from on to 

off, the directions of these two current become the same. This leads to the hysterisis 

in Fig.2.29. The shorter the edge time is, the larger the displacement current and the 

hysterisis become. 
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Fig.2.29 After the system delay correction, the pulse I-Vs still have hysterisis between the on-ta-off 

and off-ta-on edges. 
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ov ov 
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Fig.2.30 A comparison of the directions of drift current, Id, with the displacement currents for the two 

edges of the gate pulse. 

Because the displacement current direction is opposite for the two pulse edges, it can 

be corrected by using the average current as the drift current, namely, 

Id = (lcon-to-off) + ICoff-to-on)l!2 

After the correction, Fig.2.31 shows that Id become insensitive to the measurement 

time. 
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Fig.2.31 After the displacement current is corrected, pulse I-Vs are insensitive to the measurement 

time. 
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As the SiON thickness approaches 1 run, the gate leakage current increases rapidly 

and the power consumption is becoming intolerable. One of the most important 

developments for CMOS technologies is replacing SiON by high-k dielectric/SiON 

stacks, which is often described as an open heart operation for MOSFETs. In 2007, 

Intel announced that they used Hf-based dielectric/SiON stacks with metal gate for 

their 45 run CMOS technology [1]. This allows the industry to continue following 

the Moore's law longer than otherwise possible. 

The development of high-k dielectric/SiON stack has encountered many difficulties, 

such as process integration, low carrier mobility, and high instabilities. As mentioned 

in section 1.6, the electron-trapping induced PBT! of nMOSFETs was an obstacle in 

the early stage of developing high-k dielectric layer [2-7]. The problem was 

successfully overcome by using Hf-dielectric layer thinner than 2 run, where electron 

trapping becomes negligible [8,9]. 

As the POT! of nMOSFETs is suppressed, attentions have been switched to the 

positive charging induced NBT! of pMOSFETs. Unfortunately, it was reported that 

NET! can be significant even when the Hf-dielectric is thinner than 2run [10-13]. 

Fig.3.1 compares the impact of Hf-dielectric layer thickness on PBT! of nMOSFETs 
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with that on NBTI of pMOSFETs. As the Hf-dielectric layer becomes thinner, the 

reduction of PBTI-induced threshold voltage shift, ~ Vth, is dramatic and becomes 

negligible at l.5nm, the reduction of PBTI-induced ~ Vth is modest and it is still 

important even for a Inm Hf-dielectric layer [10]. The question is why NBTI has 

such a different dependence on the thickness from PBTI and finding the answer is 

the objective of this chapter. 
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Fig.3.1 A comparison of the impact of Hf-dielectric layer thickness on PBTI of nMOSFETs and 
NBTI of pMOSFETs. The filled symbols represent nMOSFETs. The instability is negligible in the 
nMOSFETs with a sub-2nm Hf-silicate. The open symbols represent pMOSFETs and considerable 

instability occurs in a sub-2nm Hf-silicate. [10] 

To answer the above question, one needs to know the difference in the spatial 

distribution of NOT! positive charges from that of POTI electron trapping. The 

determination of charge spatial distribution is a challenging task. Traditionally, 

photo-IV technique has been used to determine the spatial distribution of electron 

traps for thick dielectrics [14], but this is a quasi-DC measurement and is not suitable 
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for probing the spatial distribution of electron trapping in nm dielectrics [2-9]. In this 

work, we will assess which dielectric layer in the stack dominates the NBTI positive 

charging by systematically varying the thickness of one layer and keeping the other 

layer thickness fixed. To prepare the background for this work, a brief review will be 

first carried out on the recent progress in understanding the positive charging in Si02• 

The reported similarity and difference in NBTI between Hf-dielectric/SiON stack 

and Si02 also will be swnmarized. 

3.2 Recent progresses in understanding positive charges 

3.2.1 Types of positive charges 

Positive charging in Si02 has puzzled the international community for decades. 

Some positive charges behave so strangely that they are called by various names, 

such as anomalous positive charges [15], slow states [16] and border traps [17]. It 

has been reported recently that the anomalous behavior originates from the 

simultaneous presence of different types of positive charges in Si02: cyclic positive 

charge (CPC), anti-neutralization positive charge (ANPC) and as-grown hole 

trapping (AIIT) [18-21]. This framework for the classification of positive charges is 

illustrated by Fig.3.2. 

In Fig.3.2(a), positive charges were first formed during a substrate hole injection 

(SIll) with an oxide field of Eox=-5MV fcm. A Fowler-Nordheim electron injection 

was then used to neutralize them. This is followed by 

applying V g<O and V g>O 
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Fig.3.2 The presence of three different types of positive charges in a 5.5nm Si02• (a) shows the test 
sequence. Initially, positive charging built up during a substrate hole injection (SHI) under an oxide 
field of Eox=-SMV/cm, a n-well and p-substrate bias of 6V and 7V, respectively. The neutralization 
was under Eox=+8MV/cm. This was followed by applying Vg<O (Eox=-SMV/cm) and Vg>O 
(Eox=+SMV/cm) alternately, with all other terminals grounded. The neutralization (b) and charging 
(c) of cyclic positive charge (CPC) only involve electron tunneling at the same energy level. The 
anti-neutralization positive charge (AN PC) has an energy level above the conduction band edge of Si, 
making its neutralization difficult. For the same Eox=-SMV/cm, charging level without switching on 
SHI is well short of that with SHI, since as-grown hole traps (AHT) cannot be filled by holes near the 
top edge of Si valence band (c). [18] 
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Alternatively with an oxide field of Eox=±5MV/cm. Under Vg<O, some of the 

neutralized positive charges can be recharged without resuming hole injection. When 

the gate bias polarity is switched, part of the positive charges can be repeatedly 

neutralized and recharged, so that they are referred to as cyclic positive charge 

(CPC). The neutralization of some positive charge under V g>O is more difficult than 

their charging under V g<O and they are referred to as anti-neutralization positive 

charge (ANPC). 

Figs.3.2 (b) & 3.2 (c) show that the energy level of ANPC is higher than that ofCPC 

and is above the bottom edge of Si conduction band. This explains the difficulty for 

neutralizing ANPC. Under the same Eox=-5MV /cm, the recharging under V g<O 

without substrate hole injection (SHI) clearly did not reach the level when SHI was 

switched on. This indicates that some defects are difficult to recharge without 

accelerating holes in the substrate, as illustrated by Fig.3.2 (c), and they are as-grown 

hole traps (AHT) [18-21]. 

3.2.2 Similarity in NOTI defects between Hf-stack and SiON 

Fig.3.3 shows the behavior of positive charges formed in an Hf-silicate/SiON stack 

after negative bias temperature stress. A comparison with the positive charges 

formed in Si02 in Fig.3.2(a) indicates that the same three types of positive charges 

exist despite of the material difference [13]. This observation is reinforced by Fig. 

3.4 that shows that, on one hand, CPC is insensitive to the measurement temperature, 

since electron tunneling at the same energy level is not accelerated by thermal 

energy. On the other hand, the ANPC increases when the measurement temperature 
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reduces. This is because lowering temperature will reduce the number of free 

electrons at energy levels above Ec, so that more ANPC survives the neutralization. 

This dependence on temperature is the same as what was observed for positive 

charges in Si02 [18-21]. 
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Fig.3.3 Types of positive charges in Hf-silicate (70% Ht). The Hf-silicate was first stressed for a 

relatively long time (I8,662sec) under Vg= -2.8 V. The stress period is not drawn to scale here. To 
determine the types of positive charges, the sensing phase started with the neutralization carried out 
under Eox(EOT)=+6.5MV/cm, followed by applying Vg<O and Vg>O corresponding to 

Eox(EOT)=±5MV/cm, respectively. A comparison with Fig.3.2(a) indicates that the same three types 

of positive charges were formed in Si02 and Hf-dielectrics. [13] 

To further support that different types of positive charges exist in Hf-dielectric/SiON 

stack, Fig.3.5 compares the dependence of ANPC and CPC on stress time and 

temperature. While ANPC increases for longer stress time and higher temperature, 

CPC is insensitive to the time and temperature. Such differences in ANPC and CPC 

support that they originate from different defects. 
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Fig.3,4 Dependence of different types of positive charges on measurement temperature, The initial 
test sequence is the same as that in Fig.3.3. After measurement at the stress temperature of 150°C, the 
device was cooled down to 25°C and both CPC and AN PC were assessed again. It is clear that AN PC 
increases for lower measurement temperature, but CPC does not. [13] 
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stress temperature and time, but epe does not. [13] 



Chapter 3 - Dominant layer for NBTI positive charges in HI-based gate stack - 76-

3.2.3 Differences in NBTI properties between Hf-stack and SiON 

After reporting that the same framework can be used for positive charging in Si02 

and Hf-dielectric/SiON stack, the reported difference in the NBTI for these two is 

given in Fig.3.6. It can be seen that the power factor ofNBTI kinetics for Hf-stack is 

substantially lower than that for Si02• A close examination of the /). Vth for the 

Hf-stack at short stress time shows that there is a flat region in Fig.3.7. This flat 

region originates from the as-grown CPC in the Hf-stack, while the as-grown CPC is 

negligible in Si02, as shown in Fig.3.8. Fig.3.7 shows that how to remove the 

contribution of this flat region to the NBTI kinetics. After such a correction, Fig.3.6 

shows that the power factor of Hf-stack agrees well with that of Si02• 
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Fig.3.6 A comparison of the power factor of the NBTI kinetics for Hf-stacks with that for Si02• The 
power factor extracted from the totalll Vth (the symbol '0') is substantially less than that ofSi02. The 

symbol '.' is the power factor for llVthc shown in Fig.3.7. The result for Si02 was taken from rer. 22. 

[12] 
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Fig.3.7 The 'flat-then-rise' feature ofNBTI kinetics for Hf-stacks. The total ~ Vth is 'flat' when stress 
time is less than I sec and only starts 'rise' at longer time. The symbols '0' and '0' were measured by 
using pulsed and quasi-DC Id-Vg, respectively. The ~ Vthc (symbol '.') represents the rising part of 
~ Vth. The power factor increases from 0.092 to 0.26 when the total ~ Vth was replaced by ~ Vthc. The 
stress was at a gate bias of -2.5 V and room temperature. [12] 
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To explain why there can be a large amount of as-grown CPC in a Hf-stack, but not 

in SiOz, it has been pointed out that the samples experienced different amount of 

hydrogen exposure during their fabrication: the Hf-stack was prepared by ALCVD 

and SiOz was thennally grown. Fig.3.9 shows that when an SiOz MOS structure was 

subjected to an extensive hydrogenation, there could also be a large amount of 

as-grown CPC. 
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Fig.3.9 Dependence of epe in Si02 on stress level. For a device grade Si02, epe built up gradually 
with stress. After an extensive hydrogenation, epe in Si02 becomes insensitive to stress and behaves 
like the IIf-stack [9]. 

Through the above review, it becomes clear that the HfDz based dielectric has not 

introduced any new type of positive charges and its NBTI kinetics is similar to that 

of SiOz. This raises the possibility that the positive charging in the Hf-stack is 

actually dominated by the interfacial SiON layer, although this layer is generally sub 

1 nm and thinner than the Hf-dielectric layer. In the rest of this chapter, we will 

present unambiguous experimental evidence to show that this is indeed the case. 
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3.3 Test Samples 

To assess which layer in the Hf-dielectric/SiO stack dominates the positive charge, 

one wou ld like to vary the thickness of one layer and keep the rest of process 

conditions identical. Two groups of samples were used in this chapter: o ne with 

variable Hf-dielectric thickness and the other with variable interfac ial SiON layer 

thickness. 

Ideall y, one hope to change the Hf-dielectric layer thickness on the same wafer to 

minimize the potentia l wafer-to-wafer variations, but such samples were not available. 

In thi s work, Hf- ilicates (80% Ht) were prepared by atomic laye r depo ition to a 

thickness of 1,2 and 3nm on three IMEC-cleaned wafers. The interfac ial layer (lL) is 

fixed at 1 run for a ll three amples and the gate is Ti . Both the channel length and 

width is 1 I-lm . The max imum thickness ofHf-sili cates i limited to 3rull , since further 

increase can cause crysta lli zation of the film . 

The thickness of the interfacial layer is vari ed by uSlllg a slant-etched wafer, a 

illustrated in Fig.3.1 O. The HfSiON layer is fixed at 2 nm and the IL thickness changes 

between 1.7 and 3.6 nm across the wafer. 

HfSiON 

SiGN 

Fig.3 . IO A schematic illustration of the slant-etched wafer with variable interfac ial layer thickness. 
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3.4 The dielectric charges versus interface states 

To determine the dominant layer for positive charges in gate dielectric, ~Not, three 

samples with different thickness of HfSiON layers were used. The problem is that 

positive charges increase with stress level and a comparison of different samples is 

meaningful only if they were subjected to the same stress. Under the same effective 

oxide field, Fig.3.ll shows that the difference in their density of generated interface 

states, ~Dit, is negligible, confirming that they were subjected to the same stress level. 
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Fig.3.ll The density of interface states generated, t.Dit, in three samples of different HfSiON layers. 
The electrical field, Eox=-IIMV/cm, is the field strength over the equivalent oxide thickness. The 
negligible difference in t.Dit for the three samples confirms that they were subjected to the same stress 

level for a given time. 

Before assessing the spatial location of tNot in Hf-based stacks, we examine its 

relative importance to the NBTI-induced threshold voltage shift. As described in 

section 2.3, the classical measurement of threshold voltage is to linearly extrapolate 

the transfer characteristics from the Vg where the transconductance is at its maximum 
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to Id=O. The shift of threshold voltage measured in this way, I:l. Vth, contains 

contribution from both the generated interface states and the positive charges in the 

gate dielectric formed during the negative bias temperature stress (NBTS), so that 

!!J. Vth = !!J. Vth(!!J.Dit) + !!J. Vth(!!J.Not). 

Early works [23,24] reported that the generated interface states are acceptor-type 

above the midgap of Si and donor-type below the midgap. As a result, !!J. Vth(~Not) can 

be determined from the shift of gate voltage at the midgap of Si, where the net charge 

of interface states is negligible. 
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Fig.3.12 The threshold voltage shift, ~ Vth, and its two components. ~ Vth(~Not) and ~ Vth(~Dit) is 
the contribution from the positive charges in dielectric and the generated interface states, respectively. 
~ Vth(~Not) is clearly larger than ~ Vth(~Dit) for the Hf-based dielectric stack. 

Fig.3.l2 compares the contributions of !!J.Not and !!J.Dit to !!J. Vth. Initially, !!J.Dit is 

negligible and !!J. Vth is dominated by !!J.Not, since there are pre-existing CPC in the 

stack [12,13], as described in section 3.2.3. As stress time increases, the contribution 

of !!J.Dit rises and reaches about one third of !!J. Vth for the last point in Fig.3.12. 
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3.5 Volume distribution of dielectric positive charges 

3.5.1 Uniform volume distribution 

As the fust attempt for assessing the spatial distribution of positive charges, we study 

the case that they are uniformly distributed throughout the whole stack with a 

volume density of p. Vth(tlNot) is related to p by, 

tlVth(tlNoI) =- q·P · X~F _ q.p .[X 2 +2 . kIL . X ·X ] (3.1) 
IL IL}W , 

2· Eo . k HF 2· Eo . klL k HF 

where X is the dielectric layer thickness and k the dielectric constant (kHF= 16.3 for 

the Hf-silicates here). The subscripts 'HF' and "lL' represent HfSiON and interfacial 

layer, respectively. 
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Fig.3 .13 Uniform distribution of positive charges throughout the HfSiONI iON stack. The dashed 

line is the fitted curve with equation (3.1) and the poor agreement with test data indicates that positive 

charges are not uni formly distributed in the stack. The shaded area of the inset shows the location of 

positive charges. 
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Fig.3.13 plots the ~Vth(~ot) measured at different stress time for XHF=I, 2 and 

3nm. At a given time point, ~ Vth(~Not) at XHF=3nm and the equation (3.1) were 

used first to calculate the volume density p. This p is then used to predict the 

~Vth(~Not) at XHF=1 and 2nm based on equation (3.1). The predicted values are 

compared with the measured value for samples with XHF=1 and 2nm. It can be seen 

that the predicted value does not agree with the measured ones. For XHF=lnm, the 

predicted value is only about half of the measured value. As a result, the assumption 

of a uniform distribution throughout the stack does not agree with the test data. 

3.5.2 All charges in HfSiON layer 

The next assumption to examine is that all positive charges are located within the 

HfSiON layer with a volume density of PHF and there are no positive charges in the 

interfacial layer. ~ Vth(~Not) is related to PHF by, 

(3.2) 

Again at a given time point, ~ Vth(~Not) at XHF=3nm and the equation (3.2) were 

used to calculate the volume density PHF. This PHF is then used to predict the 

~ Vth(~Not) at XHF=1 and 2nm based on equation (3.2). The predicted ~ Vth(~Not) 

is represented by the two dotted lines in Fig.3.14 and they depart further from the 

test data. The predicted ~Vth(~Not) at XHF=lnm is only 15% of the test data, so 

that we can rule out that positive charges are dominated by the bulk of HfSiON. This 

is in sharp contrast with the location of electron traps, which are mainly in the 

Hf-dielectric layer. It also rules out the possibility that electron traps and positive 

charges have a common origin. 
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Fig.3.l4 All positive charges are located within the HfSiON and there are no charges in the interfacial 
layer. The dotted line is the fitted curve with equation (3.2) and the poor agreement with test data 
indicates that positive charges are not dominated by the HfSiON bulk. The shaded area of the inset 
shows the location of positive charges. 

3.5.3 All charges in the interfacial SiON layer 

Since positive charges are not dominated by the HfSiON layer, it is natural to 

examine whether they are dominated by the interfacial SiON layer. If one assumes 

that the interfacial layer has a volume density of PIL and PHF =0, tl Vth(tlNot) is 

related to PHF by, 

tlVth(MVot) = q·Pn .[X2 +2. kIL • X .X ] 
2 . e . k IL k IL HF' 

o IL HF 

(3.3) 

The predicted tl Vth(tlNot) based on equation (3.3) is represented by the two solid 

lines in Fig.3.lS and they are closest to the test data among the three assumptions 

made so far. This supports that the IL dominates positive charges. 
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Fig.3.IS All positive charges are located within the interfacial layer and there are no charges in the 
HfSiON. The solid line is the fitted curve with equation (3.3). The shaded area of the inset shows the 
location of positive charges. 

3.6 Sheet distribution of dielectric positive charges 

The difference between the prediction and test date in Fig.3.1S is still considerable, 

indicating that the positive charges are not unifonnly distributed in the interfacial 

layer. To explore the location of positive charge further and to improve the 

agreement between prediction and test data, the sheet distribution will be explored in 

this section. 

3.6.1 Positive charges at the HfSiON/SiON interface 

In comparison with conventional MOSFETs with SiON as gate dielectric, one new 

feature for an Hf-based stack is the presence of an HfSiONIIL interface and the 
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question is whether positive charges pile up at this interface. If one asswnes that all 

charges are at the HfSiONIIL interface with an area density of Q, it will give, 

q ·X .Q 
~Vth(Mlot)= _ HF • 

co· kHF 

(3.4) 

At a given time point, AVth(ANot) at XHF=3nm and the equation (3.4) were used 

first to calculate the area density Q. This Q is then used to predict the AVth(ANot) at 

XHF=l and 2nm based on equation (3.4). The predicted value is shown as the two 

dashed lines in Fig.3 .16 and it is less than half of the test data for XHF= 1 nm. 
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Fig.3.16 A comparison of test data (symbols) with the prediction (dashed lines) based on sheet 
distributions. The prediction is based on the equation (3.4) under the assumptions that the positive 
charges are at the HfSiONIIL interface. The thick gray line in the inset shows the location of positive 

charges. 

To further rule out the possibility that positive charges pile up at the HfSiONIIL 

interface, the dependence of AVth(ANot) on the IL thickness can be examined, by 

using the slant-etched samples described in section 3.3. Eq. (3.4) requires 

AVth(ANot) to be independent of IL thickness. This is against our test results in Fig. 
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3.17 that shows ~ Vth(~Not) increasing for thicker IL. It can be concluded that 

positive charges are not concentrated at the HfSiONIIL interface. 
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Fig.3.l7 Effects of interfacial layer thickness, X1F, on II Vth(IlNot). The HfSiON layer is fixed at 2nm. 
The solid line is fitted with eq. (3.5) by assuming that charges pile up at the substrate interface. 

3.6.2 Positive charges at the SiON/substrate interface 

After ruling out the HfSiONIIL interface, it is natural to study if positive charges pile 

up at the ILlSi interface. By assuming all charges at the substrate interface, we have, 

(3.5) 

The predicted value is shown as the two solid lines in Fig.3.18 and good agreement 

with test data is achieved. This supports that positive charges pile up at the 

ILlsubstrate interface. The smaller measured ~ Vth(~Not) at XHF= 1 run in Fig.3.l8 

results from a larger gate capacitance, when compared with that at XHF=3nm. 
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The assumption that positive charges pile up at the ILlsubstrate interface leads to the 

prediction that 11 Vth(I1Not) increases linearly with both the Hf-dielectric and 

interfacial layer thickness in equation (3.5). Fig.3.18 shows that this prediction 

agrees with the test data when varying the Hf-dielectric thickness. To further support 

this assumption, Fig.3.17 shows that this prediction also agrees well with the test 

data when the IL thickness is changed. It can be concluded that positive charges pile 

up at the ILlsubstrate interface. Consequently, a reduction of HfSiON thickness has 

little effect on positive charging. 
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Fig.3.tS A comparison of test data (symbols) with the prediction (lines) based on sheet distributions. 
The prediction is based on the equation (3.5) under the assumptions that the positive charges are at the 
ILlSilicon interface. The thick gray line in the inset shows the location of positive charges. 

To explain this pile-up, it should be noted that the oxygen vacancy, =Si-Si=, has 

been proposed as the main source for positive charges [25]. It is reasonable to 

assume that there are more =Si-Si=, when moving from dielectric towards silicon 

substrate. The data, however, does not give direct information on the origin or 

microscopic structure of positive charges. 
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3.7 Sensitivity to stress and measurement conditions 

The test results used up to here were obtained under an electrical field over the 

equivalent oxide thickness of Eox= -I I MV/cm and at 150°C. The measurement was 

carried out using quasi-DC transfer characteristics that took 6sec. The question is 

whether the dominant layer is sensitive to the stress bias and measurement speed. To 

test the impact of stress field, temperature, and measurement time, the devices were 

stressed under Eox=-l OMV /cm at room temperature. The pulse transfer 

characteristics were used, allowing the measurement time reducing from 6 sec to 5 J..lS 

[26-28]. Fig.3.19 compares the difference caused by the measurement time. 
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Fig.3.19 A comparison of test data with quasi-DC measurement and UFP measurement. The solid 
symbols present the data measured by UFP method. The empty symbols present the data measured by 

quasi-DC method. The difference will be explained in chapter 4 and 5. 

Fig.3.20 compares the test data with the predictions based on volume distribution of 

positive charges. The worst agreement is for the assumption that the HfSiON layer 
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dominates the positive charges and the agreement is still poor under the assumption 

of a uniform distribution through the stack. The best agreement is obtained for the 

assumption that the interfacial layer dominates the positive charges. 

Fig.3.21 compares the test data with the prediction based on sheet distribution. The 

difference between the test data and the prediction is substantial, when assuming that 

the positive charges are located at the HfSiON/SiON interface. The agreement is 

good under the assumption that the positive charges pile up at the interfacial 

layer/substrate interface. As a result, the conclusion of the interfacial layer 

dominating positive charging will not change with stress and measurement 

conditions. 
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Fig.3.20 A comparison of test data (symbols) with the prediction (lines) based on volume distributions. 
The prediction is under three assumptions: (i) PHF=PIF, dashed lines; (ii) PIF=O, dotted lines; and (Hi) 

PHF=O, solid lines. The pulse measurement time is 5l1sec. 
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Fig.3.21 A comparison of test data (symbols) with the prediction (lines) based on sheet distributions. 
The prediction is under two assumptions for positive charges: (i) at HfSiONIIL interface, dashed lines 
and (ii) at the ILlsubstrate interface, solid lines. The pulse measurement time is 5~s. 

3.8 Conclusion 

In this chapter, the recent progresses on understanding the positive charges in 

dielectric are reviewed. Three different types of positive charges were identified: 

as-grown hole traps, cyclic positive charges, and anti-neutralization positive charges. 

Despite of the difference observed in the NBTI kinetics for SiON and the 

Hf-dielecric/SiON stacks, it is found that the same framework applies to both of 

them. This indicates that positive charging could be dominated by the interfacial 

SiON layer in the stack. 

Efforts were focused on assessing the dominant layer for the stress-induced positive 

charge in Hf-based stacks by varying the thickness of fUSiON and interfacial layers. 

It is concluded that positive charges in the stack are indeed dominated by the 
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interfacial layer. It is ruled out that positive charges pile up at the HfSiONIIL 

interface. The results support that positive charges are located close to the 

ILlsubstrate interface. Consequently, unlike electron trapping, a reduction of 

HfSiON thickness will not reduce positive charges. 

Since the NBTI positive charging for the Hf-based dielectric stack is dominated by 

the interfacial SiON layer, the rest of this project will be carried out mainly on SiON 

samples. The process-to-process variations of SiON samples are smaller and there 

are more SiON samples available to this project. It is expected that the conclusions 

obtained from the SiON samples are also applicable to the Hf-based dielectric stacks. 
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4.1 

Effective threshold voltage shift and its use for 
lifetime prediction 

Introduction 

As described in section 2.3, one of the most common threshold voltage measurement 

technique is the linear extrapolation method with the drain current measured as a 

function of gate voltage at a low drain voltage of typically 50-lOOm V to ensure 

operation in the linear region [1-4]. One problem is that the threshold voltage shift 

measured by this extrapolation method, ~Vth(ex), cannot be used to evaluate the 

degradation of drain current under operation condition. FigA.l shows the difference 

between the measured drain current degradation and that calculated from ~Vth(ex) 

(see FigA.l). The degradation of drain current is considerably underestimated. 

The potential causes for this underestimation will be analyzed in section 4.2. One of 

the objectives of this chapter is to find a simple method for evaluating !:l Vth, that can 

be used to evaluate the drain current degradation under operation conditions. Section 

4.3 will show that this can be achieved by using the effective threshold voltage shift, 

!:lVeff. 

After evaluating ~ Veff, attention will be focused on how it can be used to predict the 

device lifetime. Predicting NBTI lifetime can be dangerous since it is difficult to 

assess its safety margin. The common technique uses gate bias Vg acceleration to 

reduce the test time. Although this technique has been widely used when !:l Vth is 

obtained from quasi-de measurements [5-8], its applicability to the UFP ~ Vth has 
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not been investigated. It has been widely reported that substantial recovery occurs 

during the quasi-dc measurement, so that the quasi-DC I.l Vth is considerably smaller 

than the UFP I.lVth [1-4]. 
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Fig.4.1 A comparison of the measured drain current degradation under V g=-1.2V with that estimated 

from ~ Vth( ex). The ~ Vth( ex) clearly underestimated the degradation of drain current. 

To convert from I.l Vth(ex) to Md/ Id current degradation, the following equation is 

used 

~I d ~ Vth(er) -- - ----'--~-

In section 4.4, it will be shown that the traditional Vg acceleration technique cannot 

be used to predict device lifetime, once the recovery is suppressed by the UFP 

technique. A new kinetic model for the UFP I.l Veff will be developed in section 4.5 

and, based on that, a new single test lifetime prediction technique will be proposed in 

section 4.6. Section 4.7 will show the applicability of this single test lifetime 
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prediction technique to samples fabricated by different processes and estimate the 

error margin. Finally, conclusions will be drawn in section 4.8. 

The MOSFETs used in this chapter were manufactured at interuniversity 

Microelectronics Research Centre (IMEC), Belgium. In order to test the applicability 

of the proposed NBTI dinetics and lifetime prediction method, samples from six 

different processes were sued, as shown in Table 4.1. The samples with silicon 

oxynitride (SiON) as the gate oxide have p+ poly-Si gate and four of them were 

plasma nitride for different time and one was thermally nitride. One HfSiON/SiON 

stack was also prepared by ALCVD with 80% Hf and a TiN gate. 

EOT 
Wafter No. Gate material Gate dielectrics (nm) 

A p+ poly-Si 12s plasma SiON 1.85 

B p+ poly-Si Plasma SiON 1.4 

C p+ poly-Si Thermal nitried SiON 2.7 

0 p+ poly-Si 45sec plasma nitrided SiON 2.0 

E p+ poly-Si 20sec plasma nitrided SiON 2.0 
2nm ALCVD HfSiON and 1 nm 

F TiN SiON 1.53 

Table 4.1 Samples used in this chapter 

4.2 Potential causes for the underestimation of AldlId by 

AVth(ex) 

There are two possible causes for the underestimation of drain current degradation 

shown in Fig.4.1 by Il Vth( ex): mobility degradation [9,10] and the impact of sensing 

Vg effect on AVth [1-3]. 
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Since II Vth(ex) is evaluated near to Id=O and the number of charge carriers in the 

channel is low, it is generally believed that II Vth( ex) mainly originates from charges 

both in the gate dielectrics and at the oxide/substrate interface [1-4] and the 

contribution from mobility degradation is insignificant. Under operation condition, 

however, the number of charge carriers in the conduction channel are substantial and 

the impact of mobility degradation on llldlId may be considerable [9,10]. Since 

II Vth(ex) hardly takes the mobility degradation into account, it may underestimate 

the current degradation. The evaluation of mobility degradation, !l~, however, can be 

problematic, controversial and undesirable for test engineers, as detailed below. 

To evaluate mobility, the split capacitance-voltage (CV) characteristic was 

traditionally used [10-12]. One problem is that CV measurement does not separate 

the inversion charge carriers captured by interface states from mobile charge carriers, 

since it is difficult to measure interface states near the band edges [13]. Another 

problem is that CV measurements sometimes take seconds [14-16] during which 

substantial NBTI recovery occurs [1-4,17,18]. A fast method is to measure the slope 

of Id/gmO,S versus Vg-Vth [9], where gm is transconductance. However, Id/gmo,s 

versus V g-Vth is not always linear [19]. This method is of limited use, since it only 

gives the low field mobility. 

Another method for estimating mobility is using the transfer characteristics, Id-Vg, 

measured at low drain bias, Vd [11]. It, however, requires knowing the threshold 

voltage, Vth. It has been shown that mobility evaluated in this way can be 

substantially underestimated if IV g-Vthl is overestimated [20]. It is proposed that 

Coulombic scattering from the NBII-induced charges is responsible for mobility 
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degradation, but this is controversial [21,22]. Moreover, NBTI-induced device 

lifetime was typically defined as the stress time for I!. Vth to reach a pre-specified 

value [5-8]. Introducing additional parameters like ~J..l will make such definition 

inapplicable and one must model both ~ Vth and ~J..l now. This is undesirable. 

The second potential cause for the underestimation of I!.IdlId by ~ Vth( ex) is the 

impact of sensing Vg on threshold voltage shift. Recently, it has been pointed out 

that the threshold voltage shift evaluated by the extrapolation method, I!. Vth( ex), 

underestimates the real threshold voltage shift under the operation condition, because 

~Vth increases with the sensing Vg [1-3] (see FigA.5). The sensing IVgl used by the 

extrapolation method is around Vth, which is typically around O.3V (see Fig. 4.3 (a)) 

and lower than the operation voltage of 1.2V. 

In this chapter, attempts will not be made to separate the potential contributions of 

each of the two causes to the underestimation. Instead, efforts will be made to find 

an effective parameter that can take into account the full degradation whatever are 

causes. 

4.3 Effective threshold voltage shift 

4.3.1 The concept of effective parameters 

When the quantity, distribution, or origin of a parameter is not known, the concept of 

"effective" or "equivalent" parameter is widely used. The "effective" parameter 

should have two properties: it has the same impact on the electrical performance of 

devices as the real parameter and it can be readily evaluated. 
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One example is the "equivalent oxide thickness (EOT)" for characterizing 

high-klSiON stack [16,20]. Although the real dielectric constant can have complex 

distribution across the stack, one can assume it being the same as Si02 and readily 

measure the EOT from the capacitance at strong inversion, so that the difficulty in 

determining its spatial distribution is avoided. 

Another example is the popular "effective density" for the trapped charges in gate 

dielectric [23]. Generally, we do not know the spatial distribution of trapped charges 

and its determination is difficult. In most cases, however, what is important is their 

impact on device performance. By assuming that they are at the SiON/substrate 

interface, we can determine their effective density from midgap voltage shift [24]. 

In the present case, the individual contribution from the ~ Vth(ex) and the ~~ to 

~IdlId is not known. The challenge is how to find a parameter that includes the 

effects of both ~Vth(ex) and ~~ on ~Id, without actually evaluating d~. In the next 

section, such a parameter will be selected. 

4.3.2 Selection of the effective parameter 

Two parameters have been used to characterize NBTI: dVth(ex) [1-3] and dIdlId [10]. 

The problem with dIdlId is its dependence on device size, WIL, and source/drain 

resistance, Rsd. Under a low Vd, one can use, 

Id = (CoxW / L)xj1x(Vg - Vth) X (Vd -IdRsd) (1) 

This leads to, 
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IlId = 1 [IlJL _ IlVth ] 
Id 1 + (CoxW / L )JL(Vg - Vth )Rsd JL (Vg - Vth) 

(2) 

Eq. (2) predicts a reduction of Md/Id for higher RsdWIL. To test it, Rsd is purposely 

increased by externally connecting a resistor to the drain. FigA.2(a) confinns the 

reduction of ~IdlId for larger Rsd and, consequently, ~IdlId obtained from one device 

cannot be used to predict ~IdlId for a device of different RsdW IL. Since RsdW IL can 

vary substantially [25], MdlId is not a preferred parameter. 

Eq. (2) shows that both ~Jl and ~ Vth contribute to Md. As described in the 

introduction, evaluating ~f..I. is problematic and controversial. It is therefore desirable 

to avoid it by attributing its potential effect on Md to an additional threshold voltage 

shift. Central to this chapter is to propose using an "Effective threshold voltage shift", 

~ Veff, which has the same effect on ~Id as the combined effect from ~f..I. and ~ Vth( ex). 

FigsA.2 (b) & (c) shows that such a ~ Veff is independent of Rsd, so that it has a clear 

advantage over MdlId. The extraction of ~Veff from standard NBTI tests will be 

addressed next. 
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Fig.4.2 Effect of source/drain series resistance, Rsd, on AIdlId (a) and AVeff (b). Rsd was increased by 
externally connecting a resistor, Rext. The AVeffand AId/Id were evaluated from the same set Id-Vg at 
Vg= -1.2 V. AldJId is sensitive to Rsd, but AVeffis not (c). 

4.3.3 Evaluation of the effective threshold voltage shift 

If we use subscript '0' and' l' to represent parameters before and after stress, at the 

same current, namely Ido=Idt. we have, 
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To attribute the effect of a varying fl on Id to a change in Vth, we assume that fl is a 

constant for a given (Vg-Vth), so that flo=fll. This leads to, 

AVeff=Vth1- Vtho= Vg1-Vgo. 

/). Veff can be evaluated from the gate bias shift under a constant Id, therefore. 
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Fig.4.3 (a) Evaluation of ~ Veff between the measurement point 'n' and 'n+ l' under a sensing 
IVgl=1.2 V. ~Veff(H) and ~Veff(L) represents ~Veffmeasured at Id(n) and Id(n+l), respectively. 
(b) The accumulative ~ Veff against stress time. 

A typical result is shown in FigA.3(a) for evaluating!J. Veffbetween two measurement 

p~ints 'n' and 'n+1 '. Under an operation gate bias, say Vg= -1.2V, one can use either 

Id(n) or Id(n+1) as the constant current level for measuring !J. Veff, as represented by 

d Veff(H) and!:l Veff(L), respectively in FigA.3(a). FigA.3(b) shows the accumulative 

!:l Veff against stress time and the difference in !J. Veff(H) and !1 Veff(L) is insignificant. 

On the time step size, it is found that one point per decade of stress time is adequate, as 

shown in FigAA. Eq. (3) also confinns that !J.Veff does not depend on RsdWIL, in 

contrast to !:lIdlId given by eq. (2). 
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Fig.4.5 shows the dependence of fl Veff on the sensing Vg. Ifl Vem clearly increases 

with IV gl and Ifl Vef~ at V g=-1.2V is substantially higher than the conventional 

IflVth(ex)l· 
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Fig.4.S Increase of IllVem with sensing IVgl. Under an operation bias, say IVgl=1.2V, IllVef~ is 
substantially higher than the conventional III Vth( ex)l. 
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4.3.4 Justification of the effective threshold voltage shift 

The objective for introducing d Veff is to characterize Id degradation without 

evaluating ~Jl. We now show that ~Veff can be such a parameter. The Id-Vg 

measured on a fresh device is used to determine the un-degraded mobility, Jlo, first. 

Both Jlo and dVeffis then used to determine ~Id/Id. FigA.6 confirms that the dld/Id 

calculated from d Veff agrees well with the measured one. 

FigA.6 also shows that if d Veff is replaced by the on-the-fly (OTF) technique [1], 

~Id/Id at V g=-1.2V is clearly overestimated. The OTF uses the stress V gst as the 

sensing Vg and Vgst is typically higher than the operation IVgl=1.2V. As a result, 

Id Vth(OTF)I>I~ Vef~ leads to the overestimation of ~Id/Id. 
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Fig.4.6 A comparison of measured Id degradation at Vg=-1.2V with that predicted from ,::\Veff, 
'::\Vtb(ex) and ,::\Vth(OTF). The stress was at Vgst= -2V. 
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4.4 An analysis of the traditional lifetime prediction technique 

One purpose for monitoring and evaluating the degradation is to predict device 

lifetime under real operation conditions. After evaluating effective threshold voltage 

shift, efforts will be made to use it for predicting the device lifetime. Specifically, the 

worst-case lifetime will be predicted, where the recovery of degradation will be 

suppressed by using the ultra-fast pulse measurement described in Chapter 2. The 

traditional Vg acceleration technique will be briefly reviewed first and its 

applicability to the worst-case lifetime prediction will then be investigated. 

4.4.1 The traditional Vg acceleration technique for lifetime 

prediction 

The NBTI lifetime is typically defined as the time for the threshold voltage shift, 

~Vth, to reach a preset level [5-8]. Under an operation gate bias, Vgop, the required 

lifetime is 10 years and the degradation under V gop can be too low to be measured 

reliably within a practical stress time. To predict the lifetime under a V gop, multiple 

accelerated tests are carried out with stress biases, V gsb higher than V gop. The 

accelerated lifetime is typically fitted with IVgstra [5,6] or exp(-IVgstD [7,8] and then 

extrapolated to V gop, so that the lifetime under V gop can be estimated. 

To demonstrate the traditional lifetime prediction technique, the IV gst/-a acceleration 

will be used as an example in the following. The IV gst/-a acceleration requires: 
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(4) 

where 'B' is a constant for a given temperature. At a device lifetime of t=t, Il Vth 

reaches the specified I'l Vth(t) and we have, 

1 I ~V (t) I m 
log( 1') = -log[ ; ] - -log(1 Vgst D 

n n (5) 

The equation (5) requires the loglll Vthl-Iog(t) being shifted in parallel for different 

Vgst and the power factor against time, 'n', being insensitive to Vgst. so that log(t) is a 

straight line against 10g(IV gst/). For the conventionalll Vth measured by extrapolating 

the quasi-DC Id-Vg, Figs.4.7(a) & (b) show that these requirements can be met, so 

that the prediction agrees well with measurement in FigA.7 (c). 
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Fig.4.7 Lifetime prediction by Vs acceleration technique for the conventional I::. V th(DC-ex) measured 
by extrapolating the quasi-DC Id-VS' (a) shows that I::.Vth(DC-ex) follows the power law. The 
horizontal dashed line represents 11::. V thl= 19 m V that is used to define the lifetime. (b) shows that the 
power factor is insensitive to the stress bias. The solid line represents the average power factor of 
n=0.1926. In this case, (c) shows that the prediction (solid line) agrees with the measurement (symbol 
'.'). 
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4.4.2 The inapplicability of traditional Vg acceleration technique 

for the worst-case lifetime prediction 

Fig.4.8(a) shows the typical NBTI kinetics when ~ Veff is evaluated from the UFP 

measurement and the recovery is suppressed. The traditional Vg acceleration method 

will be used for this set of data to investigate its applicability. When the Vg 

acceleration technique is used for predicting device lifetime, its safety margin is 

generally not known. To study its applicability to the set of data in Fig.4.8(a), 

however, one must assess the prediction safety margin. This requires directly 

measuring t!.. Veff at V gst=V gop' As V gop does not reduce proportionally with the SiON 

thickness, the oxide field during device operation has increased to such a level that 

Fig.4.8(a) shows that the t!..Veff at Vgop=-1.2V can now be reliably measured. This 

allows comparing the measured stress time for t!.. Veff to reach a given level under 

V gst=V gop with that predicted by using Vg acceleration, so that the safety margin of 

prediction can be estimated. 

In Fig.4.8(a), the last measured It!..Vef~ reached 60 mV under Vgst=Vgop and if one 

uses It!.. Vem=60 m V to define lifetime, the stress time for this last point will be the 

lifetime under Vgop=-1.2V. This measured lifetime is compared with the prediction 

based on Vg acceleration in Figs.4.8(b) and 4.8(c). Two popular Vg acceleration 

methods have been used in literature: IVgst/-a [5,6] and exp(-IVgsd) [7,8]. Figs.4.8(b) 

and 4.8(c) show that there is a substantial difference between the predicted and 

measured time and Vg acceleration cannot be used to predict lifetime in our case, 

therefore. 
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FigA.8 Inapplicability of Vs acceleration technique for predicting NBTI lifetime at Vgop=-1.2V 
measured by UFP technique. In (a), the dynamic behaviour ofl.1Vef~ under different stress bias, Vgsb 
is compared and the kinetics does not follow a simple power law. The horizontal dashed line 
represents I.1Vef~= 60 mV that is used to define the lifetime. In (b) and (c), the measured lifetime is 
compared with the predicted one based on IVgst!"" and exp(-IVgstl), respectively. The symbol '.' 
represents the measured lifetime under IVgstl=1.2V. The solid line was obtained by fitting the data at 
higher IV sstl. The error in prediction is substantial. 

To explore the reason for the inapplicability of the traditional Vg acceleration 

prediction method to the ~ Veff in Fig.4.8(a), it should be noted that 6 Veff in 

FigA.8(a) no longer follows a simple power law and logI6Vef~-log(t) at different 

Vgst is generally not a parallel shift, when the recovery is suppressed and Vgop=-1.2V 

is used as the sensing Vg. A clear example for the non-parallel shift is given in 

Fig.4.9. The V gst effect can no longer be separated into a 'pre-factor' like that in 

equation (4) and this explains the inapplicability of Vg acceleration technique to the 

case where recovery is suppressed. 
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Fig.4.9 The kinetics at different VgS! is not shifted in parallel for the UFP ~Veffsensed at IVgl=1.2V. 
The dashed curve was obtained by shifting the symbol 'x' downward in parallel. 

4.5 A new kinetic model for A Veff 

Since the existing lifetime time prediction technique cannot be applied to the 

condition where the recovery is suppressed, there is a need for developing new 

lifetime prediction method for the worst-case scenario. FigA.9 shows that the 

degradation under the operation gate bias V gop=-1.2V is large enough to be measured, 

once the recovery is suppressed and the sensing V g=-1.2V is used. In principle, the 

lifetime of a device can now be predicted from a single test under V g=-1.2V by 

extrapolating the stress to the allowed t::. Veff(t=t) for the lifetime definition, as 

schematically illustrated by FigA.I O. 
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FigA.IO A schematic illustration for the single test lifetime prediction technique. 
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The success of this technique will depend on the availability of a NBT! kinetic 

model for the extrapolation. When quasi-DC measurement was used, it is well 

known that the NBTI kinetics is a power law (see FigA.7). The data in FigA.I0, 

however, clearly do not follow a straight line. The kinetics no longer follows a 

simple power law against stress time when recovery is suppressed and efforts should 

be made to develop a model that can describe its dynamic behavior. For the !:J.. Veff 

under V gst=V gop=-1.2V, Fig.4.11 shows that an outstanding feature of the kinetics is 

the presence of a 'shoulder'. This indicates that there is an initial period when 

as-grown defects dominate and the saturation of their charging results in the 

'shoulder', At longer stress time, generation of new defects becomes increasingly 

important and is responsible for the rise above the 'shoulder'. 
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FigA.II The kinetic feature of the UFP L\ Veff sensed at IVgl=1.2V: a "shoulder", By combining the 
I SI order model for as-grown hole traps with the power law for defect generation, L\ Veff can be fitted 
over 10 orders of magnitude in time, as shown by the solid line. The dashed lines show that L\ Veff is 
dominated by as-grown hole traps initially, but the generated defects become important at longer 
stress time. 
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Fig.4.12 Effect of temperature on NBTI kinetics. The height of the shoulder is insensitive to 
temperature, but the generation of defects above the shoulder is thermally accelerated. 
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To support the above suggestion, two tests were carried out. In the first test, we 

checked the effect of temperature on the shoulder height. The saturation level of 

as-grown defects should be insensitive to temperature [16,27] and if it dominates the 

shoulder, the shoulder height should be insensitive to temperature. This is confirmed 

by Fig.4.12. Fig.4.12 also shows that the rise above the shoulder is thermally 

activated, supporting that defect generation is thermally accelerated. 

In the second test, we compare the charging and discharging rate of the defect 

responsible for the shoulder. As described in Chapter 3, early works [28-30] 

identified three different types of positive charges in the dielectric: 

anti-neutralization positive charges (ANPC), cyclic positive charges (CPC), and 

as-grown hole trapping (AHn. For self-completeness, this framework for positive 

charges is illustrated by Fig.4.13 again. ANPC has an energy level above the bottom 

edge of silicon conduction band, Ec, making its discharging more difficult than 

charging. CPC has an energy level close to Ec and its charging rate is similar to the 

discharging rate. In contrast, AHT is below the top edge of silicon valence band and 

that there are far more valence electrons for discharging than hot holes required for 

charging. As a result, AHT has the signature that discharging is much faster than 

charging. Fig.4.14 shows that, when the stress time corresponds to the shoulder, the 

charging and discharging properties of the defect agree with the signature of AHT, 

supporting that AHT dominates the shoulder. 
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Fig.4.13 Energy band diagram of different types of positive charges. The anti-neutralization positive 
charges (ANPC) have energy level above Ec, making them difficult to neutralize. The cyclic positive 
charges (epC) have energy level near to Ec, resulting in similar charging and discharging rate. The 
as-grown hole traps have energy level below the top edge of silicon valence band, Ev. Their charging 
requires hot holes, leading to charging slower than discharging. 
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Fig.4.14 A comparison of the charging and discharging rate for the as-grown defects. The stress time 
is 2.6sec that corresponds to the region where as-grown defects dominate. The discharging under 
V g>O is much faster than charging under Vg<O: a unique signature of as-grown hole traps (AHT). The 
solid lines are guides-for-the-eye. It should be noted that the rapid discharging within 5~s observed 
here was achieved by applying a positive gate bias. For normal NBTI test, however, positive gate bias 
was not applied and the AHT discharging at Vg=-1.2 V within 5~s was negligible. 
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On the kinetics, the charging of AHT generally follows the first order reaction model 

[31,32], while the generation of new defects follows a power law [5,33,34]. By 

combining these two, we have: 

AVe.fJ=Atn +c(l_e-t1tO
) (6) 

For a given stress temperature and bias, 'A', 'n', 'c', and t * are constants and were 

obtained by fitting test data with the least square errors and their values are given in 

Table 4.2. There is only one 'n' for the whole stress period and this 'n' is not the 

slope of the data in Fig.4.l1, namely n#d(logl~ V thl)/d[log(t)]. Fig.4.l1 shows that 

equation (6) can model the 'shoulder' and this simple physics-based model can fit 

the ~ Vth over ten orders of stress time. The two dashed lines represent the 

contribution from AHT and generated defects, respectively. AHT clearly dominates 

initially, but generated defects become more important for longer stress time. On the 

nature of degraded defects, the early works [1-4,28-32] show that both interface 

states and new hole traps are created by stresses. The new hole traps are further 

separated into anti-neutralization positive charges and cyclic positive charges, each 

with unique signatures. A detailed discussion, however, is out of the scope of this 

work. 
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Table 4.2. The wafers and the fitted parameters at 125°C 

Device Gate A 

number Dielectrics (mV/sec) n c(mV) t* (lJs) 

1.85nm 12s 

A Plasma SiON 0.23 0.36 11.91 30 

1.4nm 

B Plasma SiON 7.70 0.13 18.39 4390 

2.7nm 

C Thermal 

SiON 26.27 0.07 22.07 80 

2.0nm 45s 

D Plasma SiON 4.10 0.12 7049 740 

2.0nm 20s 

E Plasma SiON 3.91 0.12 1.89 110 

TiN,ALCVD 

F 2.0 nm/l nm 

flfSiON I 12.21 0.14 40.86 30 

SiON 

4.6 A single test lifetime prediction technique 

The principle of the single test lifetime prediction technique is already illustrated by 

FigA.IO. The required extrapolation range should be estimated. The affordable test 

121 
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time is typically in the order of days and the data were used to predict lifetime in 

years, so that a kinetic model should have the ability to predict at least two decades 

ahead. To test the prediction ability of a model, the test data in the last two decades 

are not used for fitting the model and the !:1 Veff at the last test point is considered as 

!:1Veff('t) and the time for the last point is treated as the measured lifetime 'tm, 

although 'tm is of course not the real device lifetime. 

The departure of kinetics from a simple power law was noted in the past and 

suggestions were made on how lifetime prediction method should be modified to 

take this departure into account [34,35]. One proposed method is only using the data 

with a stress time over 10 s to fit the power law against time [34], but there is no 

information on the prediction accuracy. Fig.4.15 shows that this method can 

overestimate 't by a factor of 75000. 

Another proposed method is to fit !:1 Veff(t)-!:1 Veff(l sec) with a power law [35], but 

FigA.16 shows that it underestimates t by a factor of 10. By applying the present 

model of equation (6) to the same set of data, FigA.l7 shows that good agreement is 

achieved between the measurement and the prediction with 'tp/'tm=1.03. 



Chapter 4 Effective threshold voltage shift and its use for lifetime prediction 

-> 
E -E" cu 

~ 

100 1.85 nm SION 
V = -1.2V 

gst 

125°C 

10 
0 

0 t 
0 

Data range 
for fitting 

1 
10-6 10-3 10° 103 

x75000 

'tm 'tp -- - - --.;; -

106 109 

Stress time (s) 

123 

Fig.4.IS Lifetime prediction based on the method proposed in ref. 34. All symbols are test data but 
only symbol "x" was used for fitting with a power law in the range of26.8 s < t < 2680 s. The thick 
dashed line is extrapolated from the fitted line for prediction. Tm is the time for the last test point and 
Tp is the predicted time. T is over-estimated by a factor of 75000. 
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Fig.4.16 Lifetime prediction based on the method proposed in ref. 35. All symbols are test data but 
only symbol "x" was used for fitting. ~ Vth(t) - ~ Vth(l s) (the symbol "+") was fitted with a power 
law and ~ Vth(l s) was then added back. The dashed line is extrapolated for prediction. Tm is the time 
for the last test point and Tp is the predicted time. This method under-estimates T by a factor of 10. 
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FigA.17 Lifetime prediction based on the present model: the equation (6). The test data is the same as 
those in FigsA.15 and 4.16 and only symbol "x" was used for fitting. Our model reduces the 
prediction error substantially and r.,ltm=l.03, here. The test sample is a plasma nitrided 1.85nm SiON. 

4.7 Applicability of the single test prediction method for 

samples fabricated by different processes 

Although a good prediction is achieved in FigA.l7, it is inadequate to demonstrate 

that a prediction method works for one process. For a prediction technique to be 

useful, it must be applicable to samples fabricated by a wide range of processes. We 

now test its applicability for four other SiON layers with different nitrogen 

concentrations and nitrided either by plasma or thermally. Moreover, an ALCVD 

HfSiON/SiON stack is also tested and the thickness of these samples is given in 

Table 4.1. Figs.4.18(a)-(e) shows that ~Veff follows equation (6) in all cases, 

although the 'shoulder' in some samples is less apparent. The prediction achieved a 
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safety margin of 50% or less in all processes tested, making us confident that the 

single test technique is generally applicable. 

Table 4.1 shows that the fitted power factors for different processes have a range of 

0.07-{).36, which agrees with the range reported by early works [36-42]. Early works 

reported that the variation of power factor could come from two sources: different 

hydrogenous species and different nitrogen densities and distributions. On the 

hydrogenous species, it was reported that the power factor for H+ [40], atomic 

hydrogen [41], and H2 [42] is 0.5, 0.25 and 0.16, respectively. On the nitridation 

effect, it was reported that an increase of nitrogen reduces the power factor [36,37]. 

Moreover, for the same area density of nitrogen, the power factor of a thermally 

nitrided SiON is typically lower than that of a plasma nitrided SiON [36]. The power 

factor in Table 4.1 agrees with these trends. The sample A has the lowest nitrogen 

density and the highest power factor. The sample C was thermally nitrided and has 

the lowest power factor. 



Chapter 4 Effective threshold voltage shift and its use for lifetime prediction 

-> 
E -

-> 
E -E" 
Cl) 

~ 

(a) 

10 

Extra­
Data for fitting polation 

1~~~~~~~~~~~~~ 

10-6 104 10.2 10° 102 104 106 

Stress tirre CS) 

100 1.4nm SiON 125 QC 

V
gst 

= -1.2V 
5 

'tp=3.08X10 s 

(a) 

10 

Extra-
Data for fitting polation 

1 
10.6 104 10.2 10° 102 10

4 106 

Stress tirre Cs} 

126 



Chapter 4 Effective threshold voltage shift and its use for lifetime prediction ]27 

100 
2.0nm SiON 45s Nitridation (c) 
T = 125°C 
V = -1.2V 

.., .., 
gst -> 

E 10 -iE" 
CD 

Extra-~ 
Data for fitting polation .. 

1 
10-6 10-4 10.2 10° 102 104 106 

Stress time (s) 



Chapter 4 Effective threshold voltage shift and its use for lifetime prediction 128 

-> 
E -

TiN gate high-k sample 
T=125°C 

100 V = -1.2V 
gst 

(e) 

Extra­
Data for fitting polatio 

1 ~ OL-~~--'---1 0.1...--3--'----'---1 0.1...-0--'----'---1 O.l...-3----L...----L...---I1 06 

Stress time (s) 

Fig.4. I 8 Applicability of the single test lifetime prediction technique for different fabrication 
processes: (a) 1.4nm plasma SiON, (b) 2.7nm thermal SiON, (c) 2.0nm 45sec plasma SiON, (d) 
2.0nm 20sec plasma SiON, and (e) 2.0nmll.Onm HfSiON/SiON stack prepared by ALCVD with TiN 
gate. The safety margin for the prediction is within 50% in all cases. 

4.8 Conclusions 

Evaluating NBTI-induced mobility degradation is problematic, controversial, and 

undesirable for test engineers. Central to this chapter is to propose using an effective 

threshold voltage shift, ~ Veff, as the single parameter for characterizing NB TI, 

which fully takes account of any potential contribution from mobility degradation. 

By assuming that mobility does not change under a constant (V g-Vth), the 

evaluation of mobility variation is avoided. A method for extracting ~ Veff has been 

proposed, which only requires standard NBTI tests and can be easily implemented. 
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The results show that Id degradation under operation gate bias predicted from ~ Veff 

is in good agreement with the measured data, but Md is substantially underestimated 

or overestimated if the ~ Vth( ex) or the OTF ~ Vth is used, respectively. ~ Veff is 

preferred over ~Id/ld for characterizing NBTI, since it does not depend on device 

size and source/drain series resistance. 

The ~ Veff is then used for the NBTI lifetime prediction in the worst case scenario 

where the recovery is suppressed and ~ Veff is sensed at the operation gate bias. In 

this case, the conventional Vg acceleration prediction is inapplicable, because the 

NBTI kinetics no longer follow a simple power law and an increase of stress bias 

does not lead to a parallel shift of logl~ Vef~. 

To predict the lifetime at the operation gate bias based on the UFP measurement, 

NBTI kinetics and defects are examined. An outstanding feature of the kinetics is the 

presence of a 'shoulder', which is insensitive to temperature and must be dominated 

by the charging of as-grown defects. The charging and discharging properties of the 

defect agree well with the signature of as-grown hole traps. By combining the first 

order model for the as-grown hole traps and the power law for generating new 

defects, ~ Veff can be modeled over ten orders of stress time. This kinetic model is 

then used to predict the NBTI lifetime, based on a single test at the operation 

temperature and bias. For the six different processes tested, the safety margin of the 

single test prediction technique is within 50%, which is substantially better than the 

methods proposed in early works. 
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s/ 

5.1 

A single pulse charge pumping technique for 

fast measurement of interface states 

Introduction 

The near perfect Si02/Si interface plays a major role in the success of silicon-based 

CMOS technologies. This high quality of interface, however, is achieved only after 

an anneal in a hydrogen environment. Without such an anneal, the typical interface 

states are in the order of 1012 cm-2 [1-3]. It is widely believed that the interface states 

originate from silicon atoms of a dangling bond [1], although different types of 

interface states have been reported [3,4], Annealing in hydrogen at a temperature 

around 400°C forms Si-H bonds and passivates the interface states. When compared 

with Si-O bonds, Si-H bonds at the interface are relatively weak and can be ruptured 

by a number of physical processes, such as irradiation [5-7], hot carriers [8-10], 

positive [11,12] and negative [13-18] biased temperature stresses. Moreover, the 

generation of interface states can continue even post irradiation [5-7] and electrical 

stresses [19-21]. It has been proposed that the generation of interface states controls 

the hot carrier lifetime of nMOSFETs [8], substantially degrades the lifetime of 

pMOSFETs due to the negative bias temperature instability (NBTI) [13-18], and 

reduce the transfer efficiency of charge coupled devices (CCDs). Characterizing 

interface states is an important task, therefore. 
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As mentioned in section 2.4, several techniques have been developed to measure 

interface states, such as high-frequency capacitance-voltage (HFCV), namely the 

Terman's method [22], quasi-static capacitance-voltage (QSCV) [23,24], 

conductance [23,24], subthreshold swing [25-27] and charge pumping [4,28-30]. All 

of these techniques, however, suffer from a common drawback: slow measurement 

speed and the typical measurement time is in the order of seconds [22-30]. It has 

been shown recently that the degradation measured at such speed is only a fraction of 

the real degradation, because of the rapid recovery of degradation after removing 

stresses [15-17,31,32]. Ultra-fast measurement techniques have been developed and 

the results show that measurement time has to be reduced to the order of 

microseconds to minimize the recovery [15-17,31,32]. However, these fast 

techniques are based on monitoring the transient transfer characteristics and the 

measured drain current is affected by both created interface states and charges 

trapped in the gate dielectrics [26,32]. The interface state density cannot be extracted 

from these fast measurements. The central task of this chapter is to develop a fast 

characterization technique that allows direct evaluation of interface states with a time 

in the order of microseconds. 

This chapter will be organized in the followings. Section 5.2 will analyze the 

potential of each existing technique for fast measurements and justify the selection of 

charge pumping method. The experimental setup for overcoming the shortcomings 

of the conventional charge pumping technique will then be described in section 5.3. 

Section 5.4 presents the principle of single pulse charge pumping (SPCP) technique 

and the formula needed for extracting interface states. Section 5.5 will calibrate the 

interface states measured by SPCP against those from the well-accepted charge 
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pumping technique. Section 5.6 examines the effect of pulse edge time on the 

measurement and section 5.7 presents the results for nMOSFETs. The issues and 

applicability ofSPCP to thin dielectric will be investigated in section 5.8. Section 5.9 

studies the recovery of interface states with a time resolution of microseconds. 

Finally, conclusions will be drawn in section 5.10. 

5.2 Selection of techniques 

The most sensitive and complete technique for measuring interface states is the 

conductance method, which can detect interface states as low as the order of 109 cm-2
• 

It also gives the capture cross section of interface states [23]. Unfortunately, this is 

the most time consuming technique. Under each gate bias, a conductance against 

frequency sweep is typically carried out, that can take tens of seconds. In addition, to 

find the interface potential under a given gate bias, a low frequency CV has to be 

measured. As a result, it is impossible to use this technique for fast measurements. 

The Terman's method is one of the first techniques used for measuring interface 

states, developed as early as in 1962 [22]. Although it measures capacitance at high 

frequency, this does not mean that it can be done at a high speed. During the 

measurement, the gate bias consists of a quasi-DC ramp and a small high frequency 

probing signal. The quasi-DC ramp rate must be sufficiently slow that the thermal 

equilibrium with interface states is maintained. The typical ramp rate used is 

between 5 and 50 mV/sec [24] and it can take over 20 sec to sweep one volt. The 

other CV techniques such as quasi-static CV and high-low frequency CV [22-24] all 
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require the same quasi-DC ramp for the gate bias, so that they cannot be used for fast 

measurements. 

The subthreshold swing (SS) technique [25-27] only requires measuring the transfer 

characteristics in the low gate bias region, making it suitable for samples with thin 

gate dielectrics where gate leakage is problematic for other techniques. Unlike 

charge pumping, the SS does not need a contact to the substrate, so that it can be 

applied to silicon on insulator devices, where a connection to the substrate is often 

not available. Unfortunately, this technique is also based on the assumption that the 

interface states are in thermal equilibrium with the gate bias sweep, so that fast pulse 

cannot be applied here. 

The charge pumping can be used for small MOSFETs and is a popular technique 

[4,28-30]. It is a technique that actually requires the interface states not being in 

thermal equilibrium with the measurement signal, offering the potential for fast 

measurements. Although the base level of gate bias pulse is often swept, such sweep 

is not essential. In principle, the interface states can be determined by measuring a 

single charge pumping current, so long that the gate bias pulse covers the range from 

flatband voltage to threshold voltage. Conventionally, multiple gate pulses are 

applied during the measurement and the measured charge pumping current is an 

average DC current. For a typical parameter analyzer, measuring one DC point will 

take 10-150 ms [17]. Although this is a significant improvement when compared 

with the seconds needed by other techniques, it is still too slow since recovery was 

observed in the order of microseconds [15-17,31]. One potential solution to the 

problem is to replace the DC current measurement by recording transient currents. It 
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will be shown that this is indeed achievable and a single pulse charge pumping 

(SPCP) technique will be developed in this Chapter. 

5.3 Devices and Experimental 

5.3.1 Devices 

The equivalent gate oxide thickness used in current industry is less than 2run and the 

gate leakage current can be substantial during the charge pumping measurement. To 

simplify the experimental conditions, a relatively thick (7.1 run) Si02 layer will be 

used first to develop the new SPCP technique, so that the interference from the gate 

leakage is eliminated. The pMOSFETs have a p+ poly-si gate and nMOSFETs have 

an n+ poly-si gate. The n well was doped to a level of 2x10 17cm-3 approximately. 

The channel length and width is IOx200!ll11. Each device has contacts to the well and 

substrate, allowing the substrate hot carrier injection being used to accelerate the 

generation of interface states [33]. 

The applicability of the SPCP to thin dielectrics will then be demonstrated on two 

samples. One of them is a plasma nitrided 2nm SiON with a p+ poly-si gate. The 

other is an HfSiON (lrun)/SiON (Inm) stack with a TiN gate and an equivalent 

oxide thickness of 1.22nm. Both samples have a channel length and width of 

1 Ox lOJlm. The detailed stress and measurement conditions used are given in the 

figure captions. 
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5.3.2 Experimental setup 

Fig.5.1 shows the experimental setup. The source and drain of a MOSFET is tied 

together and a pulse is applied to the gate. Three transient voltages were recorded by 

an oscilloscope: gate bias Vg and the outputs of two operational amplifiers, V(Isd) 

and V(lb). The transient current in the channel, lsd, and in the substrate, Ib, is 

converted from V(lsd) and V(Ib) by, 

(I) 

where R is the feedback resistance and is typically set at 10 Kn. 

A screen shot of the oscilloscope is shown in Fig.5.2(a) for a stressed device. It 

confirms that there are no voltage overshoots at Vg corners from measurement errors. 

Spikes, however, appear in both V(lsd) and V(Ib). To rule out that these spikes 

originate from parasitic effects such as geometric components [34], Fig.5.2(b) shows 

that they are absent in the screen shot for a fresh device. As a result, they must come 

from the stress generated defects and we will show how they can be used to extract 

interface states next. The gate bias pulse always has an equal rise and fall time, 

which is typically 6J.ls. 
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Fig.S.1 The experimental setup for the single pulse charge pumping (SPCP) measurements. 

5.4 The principle of single pulse charge pumping technique 

The gate bias switches from +1 to -3 V during the first edge of the pulse in Fig.5.2(a), 

which turns on the pMOSFET. During the pMOSFET switch on, displacement 

current of Cgc charges formed the current Isd. The corresponding transient channel 

current, lsd, is obtained by converting V(lsd) in Fig.5.2(a) through equation (I) and is 

plotted against Vg as the solid curve in Fig. 5.3(a). The pMOSFET is switched off 

during the second edge of gate pulse and the Isd also is given in Fig.5.3(a) as the 

dashed curve. To facilitate the comparison of Isd for the two pulse edges, we define 

Isd as positive for both edges, although Isd actually flows in the opposite directions 

since Vg is swept in the opposite directions in Fig.5.2(a). 

Fig.5.3(a) shows that Isd has a profound peak when switched from off-to-on, but this 

peak is absent during the on-to-off transition. To understand this difference, we 

analyze the charging and discharging of interface states during the edges. The charge 
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Fig.5.3 (a) The channel current corresponding to the two edges of the gate pulse in Fig.5.2(a). (b) 
Energy band diagrams under different operation conditions. '-', '0' and '+' represents negative, 
neutral and positive states and '0' and 'e' are holes and electrons. 

During the on-to-off switching, however, the recombination is between the positive 

donor-like states and electrons from the substrate and the charging of acceptor-like 

states also is by substrate electrons, as shown in Fig.5.3(b). Here the recombination 

and charging does not contribute to channel current and Isd is mainly a displacement 

current, explaining the lack of peak during the on-to-off transition. 

Based on the above explanation, the recombination and charging of states during the 

on-to-off switching requires an additional electron flow from the substrate and this 

should give rise to a peak in the substrate current, lb. The dashed curve in Fig.5.4 

shows that this is indeed the case. When compared with the peak in Fig.5.3(a), the 

'on-to-off peak in Fig.5.4 is broader. To explain this difference, we note from the 

inset of Fig.5.4 that the rise of capacitance from its minimum towards accumulation 

is not as sharp as that towards strong inversion. This is to say that the rise towards 
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accumulation occurs over a larger range of Vg. The rise of capacitance towards 

accumulation originates from electrons running towards the oxide/substrate interface 

from the substrate, during which electrons neutralize donor-like states and charge 

acceptor-like states and give rise to the 'on-to-oir peak. When it occurs over a 

larger range of Vg, it will take longer for a given dV g/dt. For a fixed amount of 

interface states related charges, a longer time results in a lower current and a less 

profound peak. 

It is intriguing that there is also a downward peak in the 'off-to-on' Ib in Fig.5A. Fig. 

5.2(a) shows that the location of this peak is the same as the Isd peak, so that it must 

be related to the interface states. During the 'off-to-on' transition and before the 

recombination occurring, there are negative acceptor-like states that are not in 

thermal equilibrium with gate pulse. These negative states cause a transient deep 

depletion. As they are neutralized by recombination, the deep depletion region 

collapses, resulting in an electron flow marked by 'r in the inset of Fig.5A. Since 'r 

is in the opposite direction from the off-to-on displacement current in substrate, it 

leads to the downward peak in Fig.5A. 



Chapter 5 - A single pulse charge pumping techniquefor fast measurement of interface states - J 47 _ 

Time (IlS) 

6 0 1 2 3 

5 

4 , , , , - 3 : If: 
et 

~ _____ • ____ __ I 

+Displacement 
::1 --- 2 electron flow 

..Q - 1 Ace 

0 
-1 v.(V) 

-2 0 2 

-3 -2 -1 0 1 

Vg (V) 

Fig.5.4 The substrate current corresponding to the two edges of the gate pulse in Fig.5.2(a). The 
top-left inset shows the deep depletion caused by negative states during 'off-to-on' switching. As the 
negative states are neutralized, the deep depletion collapses with an electron flow marked by 'r in the 
opposite direction of the displacement current. The bottom-right inset shows that the transition from 
the minimum capacitance to accumulation takes longer than that to inversion. 

The above analysis reveals that the differences in the transient currents for the two 

edges originate from interface states. We now explore how they can be used to 

extract interface states. To evaluate the amount of charges flowing in or out the 

device during switching, the transient current should be integrated against the edge 

time in Figs.5.3(a) and 5.4: 

and 

I 

AQ, = J[Ib(on-to-off)-Ib(ojf -to-on)}1t 
o 

t 

AQsd = f[IsiojJ-to-on)-Ision-to-off)]d1 
o 

(2) 

(3) 
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where L1Qb and L1Qsd is the net charges flowing into the device from substrate and 

source/drain, respectively. Despite of the different waveform of Isd and Ib, Fig.5.5 

shows that L1Qsd and L1Qb saturates at the same level, since they originates from the 

same interface states. The number of states per unit area, Nil. can be evaluated from 

this saturation level, 

Nit = AQsat/(q * L * W) (4) 

where L and W are channel length and width, respectively, and q is one electron 

charge. 
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Fig.S.S The net charge pumped into the devices from the substrate and the source/drain, calculated 

from the difference in the two curves in Figs. S.3(a) and 5.4 . .1Qsal is the saturation level. 
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5.5 Calibration of single pulse charge pumping technique 

To calibrate the SPCP method, the Nit extracted through eq. (4) will be compared 

with that from the conventional CP (CCP) technique for a 7.lnm Si02 sample. To 

create interface states, a high oxide field is often applied, which could break down 

the oxide before a large number of interface states were created. In order to generate 

large number of interface states at moderate electrical field, substrate hole injection 

(SIB) technique can be used [33]. Here, the n-welllp-substrate junction was forward 

biased during the stress, as illustrated in Fig.5.6. The source and drain were 

grounded and the holes flowing into the n-well were driven towards the interface by 

the positive bias applied on the n-well. They bombard the interface and accelerate 

the generation of interface states. 
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Fig.5.6 The interface states generated during the substrate hole injection (SHI) and their recovery 
under V8=O after the SHI. The inset schematic diagram shows the biases of SHI. The conventional 

charge pumping was used here for the measurement. 



Chapter 5 - A single pulse charge pumping technique for fast measurement of interface states - 150 -

To calibrate SPCP against CCP, the interface states must remain the same during 

both CCP and SPCP measurements. To ensure this, the device was allowed to 

recover for 10mins following stress and before measurements. Fig.S.6 shows that 

interface states become stable Smins after stress, so that they will not change for the 

subsequent CCP and SPCP measurements. Fig.5.7 shows that Nit extracted from 

SPCP agrees well with that from CCP under the same pulse edge time, justifying 

SPCP as a technique for measuring interface states. Although SPCP uses transient 

currents that have a lower accuracy than the DC current used by CCP, Fig.S.7 shows 

that interface states in the order of 1010 cm-2 can be reliably measured by SPCP. 
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Fig.S.7 Calibration of the single pulse CP technique against the conventional CP method. After stress, 
the device was allowed to recover with gate floating for 10 min before measurements. The interface 
states were first measured by conventional CCP and then by SPCP. The two measurements agree well 
when interface states remain steady during the measurements. 



Chapter 5 - A single pulse charge pumping technique for fast measurement ~f interface states - J 5 J -

5.6 Single pulse charge pumping with different pulse edge 

time 

The charge pumping occurs mainly during the edge time of the gate pulse and it is 

interesting to study the effect of pulse edge times. Figs.5.8(a)-(c) show the impact of 

pulse edge time on the measurement. A longer edge time leaves less interface states 

available for charge pumping [4], but good agreement between the SPCP and CCP is 

achieved for all edge times used here. 
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Fig.5.8 The impact of pulse edge times on the channel (a) and substrate (b) currents. (c) shows that 

the interface states extracted by SPCP agree well with that by CCP for all edge times used here. 
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Basically, the time of pulse edge time corresponding to the range of energy gap. As 

shown in fig.5.9, the faster pulse edge time will allow us to probe larger range of 

energy gap. 
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Fig.5.9 Different pulse edge time can probe different range of energy gap 

5.7 Applicability of SPCP to nMOSFETs 

Up to now, the test was carried out on pMOSFETs. In this section, tests are carried 

out on nMOSFETs. Fig.S.l 0 presents the waveforms of V(Isd) and V(Ib) for a 

stressed nMOSFET. Similar to the results of pMOSFETs, peaks can be observed in 

Fig.S.IO, especially for V(lsd). These peaks originate from the generated interface 

states, since they are absent for fresh sample. Figs.S.ll(a) and S.l1(b) compare the 

Isd and Ib for the two pulse edges. The Isd and Ib for the two edges are clearly 

different here due to charge pumping of the created interface states. 



Chap/er 5 - A single put. e charge pumping techniqlle/or lost mea lIremenl q/inlel}oce slales - /5-1 -

) 0>1 ~ <i)?, :V 0> 11 2.0 rrN I ~ .v 0"l11 I I' V ~ -.Q.J ?' 

Yg 

1 
/-- ~ 

I YO b) ,/ t I 
" 

/ 

On 
I.jl 

" 

, 
Y(l d) 

, 

ff! 

fig.5. l0 /\ creen hot of the ignal s when a gate pul e, Vg, i applied to a tre sed nMO FET. Apart 
from a change of polarity, 11 le the differences in V(ls(D and V(lb) for the two pulse edges. 



Chapter 5 - A single pulse charge pumpinf{ technique for fast measurement C?f interface states - 155 -

5.0 

4.0 -« 3.0 :1. -" 2.0 
Cl) - 1.0 

0.0 

-1.0 

4.0 
3.5 - 3.0 « 

:1. 2.5 - 2.0 .Q - 1.5 
1.0 
0.5 
0.0 

-0.5 

(a) 

0.0 

(b) 

0.0 

Strong Inversion ...... .--

2.0 4.0 6.0 

Time (J.1s) 

2.0 4.0 6.0 

Time (J.1s) 

Fig.5.ll The transient channel current (a), lsd, and substrate current (b), Ib' converted from the V(lsd) 
and V(lb) in Fig.5.9. After stress, clear differences are observed in both Isd and Ib between the two 

edges, caused by the stress induced interface states. 

By using equations (2) and (3), the ~Qsd and AQb are calculated and given in 

Fig.5.11. As expected, both AQsd and ~Qb saturates, since the number of interface 

states are limited. Importantly, AQsd and AQb saturate again at the same level, despite 

the different waveform OfIsd and Ib in Figs.5. 11 (a) and 5.11(b). The interface states 

per unit area, Nih can be evaluated from this saturation level by using the equation 

(4). 
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Fig.5.ll The net charges pumped into the device from the substrate (the solid line) and the source and 
drain (the dashed line). Although they have different shapes, both of them saturate at the same level. 

To calibrate the interface states evaluated by the SPCP technique, the results are 

again compared with those evaluated by the conventional charge pumping (CCP) 

technique. The pulse edge times used for the CCP are the same as those for SPCP, 

but the pulse was repeatedly applied for the CCP and the DC charge pumping current 

was measured. Care also was excised to ensure that the same number of interface 

states were present during both measurements. Fig.S.13 shows that the Nit extracted 

from SPCP agrees well with that obtained from CCP. When the stress increases, Nit 

obtained by both techniques increases in step and their ratio remains at one. 

Moreover, although the accuracy of transient measurements is generally not as good 

as that of DC measurements, Fig.S.l3 shows that the SPCP can be used to measure 

the degradation of Nit in the order of 1010 cm-2
, which is adequate for typical stress 

tests [10]. This gives us the confidence that the SPCP can be used to monitor the 
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transient behavior of interface states with a time resolution in the order of 

microseconds. 
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Fig.S.B Calibration of the single pulse CP technique (SPCP) against the conventional CP (CCP) 
method. The interface states were first measured by CCP and then by SPCP. The interface states 
measured by SPCP agree well with those by CCP. 

5.8 Applicability of SPCP to thin dielectrics 

The main challenge of thin gate dielectrics on interface state measurements is that 

the high gate leakage can bury the net charge pumping current. One example is given 

in Fig.S.l4 for a 2nm SiON layer. Unlike the 7.lnm sample in Fig.S.3(a) where Isd 

for two edges merges at high negative Vg , Fig.S.l4(a) shows the Isd now diverges 

due to gate leakage current through the channel, Igsd. During the off-to-on switching, 

the inset of Fig.S.l4(b) shows that the displacement current and Igsd is in the same 



Chapter 5 - A single pulse charge pumping technique for fast measurement of interface states - J 58 -

direction, resulting in the higher Isd for more negative Vg. For the on-to-off switching, 

however, the displacement current changes direction, but Igsd does not, so that they 

are in the opposite directions now. The inset of Fig.5.14(a) shows that the two Isd 

curves do not merge as Vg is swept towards the negative direction, so that the net 

charge pumped from the source and drain in Fig.S.14(b) does not have a saturation 

level, making the evaluation of interface states through equation (4) problematic. 

Fig.S.lS gives the corresponding substrate current. Although the two h also diverge 

for negative Vg, they still merge for the positive Vg, allowing the net pumped charge 

to saturate, as shown by the inset of Fig.S.IS. This makes the SPCP applicable to 

thin dielectrics. To explore why the gate leakage current Ig has less impact on Ib, we 

compare the DC leakage Ib and Isd in Fig.5.l6, which is caused by Ig. At the Vg 

where the transient Isd peaks in Fig.5.14(a), the leakage is well over two orders of 

magnitude higher than that where the transient Ib peaks in Fig.S.tS. This is because 

the work function difference is against electron tunneling to the gate from silicon 

valence band under I V> V g>OV where Ib peaks, but it assists the channel hole 

tunneling to the gate under -1 V<Vg< OV where Isd peaks, as illustrated by the inset 

of Fig.5.l6. 



Chapter 5 - A sinRle pulse charge pumping technique for fast measurement f?f interface states - 159 -

6 

4 

- 2 
<C 
::1. 0 -"'C 

VI - -2 

-4 

-6 

25 

20 -u 
~ 15 
..t 

I 

0 ..... 10 
)( -"'C 5 cJ 

<J 0 

-5 

-3 

0 

2.0nmSiON 

(a) 

............................................ . ~ 

,----iJ.. " '. " .\:;:..., ~======::J 
,;{ :: ~ ~\·l·····t····-···· .. ······ .. 

on-ta-off 

-2 

off-ta-on 

-1 
Vg (V) 

o 

on-ta-off 

1 234 

Time (1-15) 

1 
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The result for an HfSiON (I run)/SiON (I run) stack is given in Fig.5.l7. Here the 

two Ib can again be used to determine the net charge pumped and in turn the interface 

states. Fig.5.17 also shows that, after merging, the two Ib diverge again at longer 

time that corresponds to higher Vg and Ig. This leads to the up-swing of ~Qb after 

saturation in Fig.5.l7. The conventional CP technique measures the total charges 

pumped and this up-swing will be included in evaluating Nit. For SPCP, however, 

Fig.5.17 allows the high leakage region being excluded in measuring Nit, so that the 

SPCP is less vulnerable to the gate leakage. 
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Fig.S.17 A demonstration of the applicability ofSPCP for an HfSiON (1 nm) /SiON (I nm) stack. Nil 

can be evaluated from 6Qb before the leakage becomes important. 

Another advantage of SPCP over CCP is its better tolerance to the interference from 

defects in the dielectrics. For thin dielectrics, these defects in the dielectrics can 

communicate with the substrate mainly during the plateau of gate pulse [30], which 

contributes to the net pumped charges. In SPCP, however, the plateau region was not 
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used for measurements, so that the contribution from defects in the dielectrics is 

minimized. 

5.9 Recovery of stress-induced interface states 

Fig.5.6 shows that, when monitored by CCP, interface state recovery is apparently 

insignificant, in agreement with early work [26]. If this were true, it would mean that 

there were no needs for developing fast techniques for measuring interface states. 

The CCP measurement takes seconds and one possibility is that the recovery of 

stress-induced interface states is too fast to be captured by CCP. In the following, it 

will be shown that this is indeed the case. 

The inset ofFig.5.18(a) shows the test procedure to capture the fast recovery. Unlike 

the early work [15] that requires sweeping Vg from stress level, Vg is limited to 

within ± 1 V in the SPCP measurement here. The defects within the dielectric layer 

will be charged at the high negative stress level [31] and interfere with the 

measurement of interface states [30]. Through limiting Vg to within ±IV, this 

interference is suppressed for the SPCP measurement. After stress, the device is 

allowed to recover for a time oftr before the SPCP measurement. Fig.5.18(a) gives 

the L\Qb with tr as a parameter and Fig.5.18(b) plots the evaluated Nit against the total 

recovery time. To the best of our knowledge, for the first time, the recovery of 

interface states has been recorded with microseconds resolution. Within 8 JlS, the 

recovery is negligible, justifying that the SPCP speed in the order of microseconds 

used in this work will capture the stress-induced states in full. 
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Fig.5.18 Recovery of stress-induced interface states at microseconds scale. The test procedure is given 
in the inset of (a). After stress, recovery is allowed for a time of tr. The Nit is then monitored by 
SPCP. (a) gives the net charges pumped into the device after different tr. (b) shows the interface states 
evaluated against the total recovery time that is the sum of tr and the time for AQb reaching saturation. 
The test sample is a 2nm SiON. 
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Fig.5.18(b) shows that the recovery of generated interface states becomes observable 

after a few microseconds. This agrees well with the early results of the ultra-fast 

measurements, where recovery of degradation in drain current and threshold voltage 

also starts in the order of microseconds after terminating stresses [31,37,38]. 

Fig.5.18(b) also shows that the recovery becomes insignificant after lOOJls, in 

contrast with the continued recovery of drain current observed by the early work 

[31,38]. This difference can be explained by noting that the degradation in drain 

current originates from both the generated interface states and the positive charges 

trapped in the dielectric. It is well known that detrapping time increases 

exponentially with distance from the dielectric/substrate interface [1 D], leading to the 

continued recovery of drain current. 

The negligible recovery of interface states between 1 DDJls and 2Dmin explains why 

recovery is insignificant when measured by CCP in Fig.5.6. Since CCP can take 

seconds, the recovery is essentially over well before the completion of CCP 

measurements. As a result, the rapid recovery within lOOJls must be missed by CCP. 

The mechanism for this rapid recovery is not clear at present, but the SPCP 

technique opens the way for its exploration. 

5.10 Conclusions 

A fast single pulse charge pumping (SPCP) technique has been developed for 

characterizing interface states in this work to improve the measurement speed. It is 

based on the non-thermal equilibrium of interface states with the gate pulse, which 

gives rise to peaks in the channel and substrate currents and is responsible for the 
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differences in the currents corresponding to the two edges of gate pulse. These 

differences are used to evaluate the net charges pumped into the device and it has 

been sho\\n that interface states can be evaluated from the saturation level of the net 

charges. Although in principle either channel or substrate current can be used, the 

latter is preferred for thin dielectrics, since it suffers less from gate leakage. The 

SPCP has successfully reduced the measurement time to microseconds from the 

seconds needed by the conventional CP, CV, conductance and subthreshold swing 

techniques. It is also more tolerant to the interferences from gate leakage and defects 

within the dielectrics, since the contribution from the plateaus of the pulse to the 

measurement is excluded. By using SPCP, the recovery of stressed-induced interface 

states was examined with a time resolution in microseconds for the first time. It is 

found that the recovery is substantially within l0011S, which would be missed if the 

conventional techniques were used. Further recovery beyond IOOIlS, however, is 

insignificant. 
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6 Conclusions and Future Work 

6.1 Conclusions 

The work in this project has been focused on the negative bias temperature 

instabilities (NBTI) and the positive charges responsible for them. Chapter 1 

reviewed the important reliability issues and defects responsible for them and 

explained the rationale for the selection of research topics. Chapter 2 described the 

test facilities and efforts made to improve the measurement speed from 5J.ls to 200ns 

for Id-Vg measurements and 800ns for the C-V measurements. The main research 

works are divided into three parts and covered in the next three chapters: Chapter 3 

on the dominant layer for positive charges in Hf-dielectric/SiON stack; Chapter 4 on 

the effective threshold voltage shift and its use for a single test lifetime prediction 

method; and Chapter 5 on the development of a fast single pulse charge pumping 

method. Conclusions for each part are given below: 

6.1.1 The dominant layer for the positive charges in Hf-based 

dielectric stacks 

It has been reported that the same three types of positive charges exist in both SiON 

and Hf-based stacks: cyclic positive charges, anti-neutralization positive charges, 

and as-grown hole traps. Since the presence of Hf-dielectric layer has not introduced 
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any new type of positive charges, it is possible that positive charges in the Hf-stack 

are dominated by the interfacial SiON layer. What is missing is clear experimental 

evidence to confirm this possibility. This is chosen as the first topic, because, if the 

positive charging in the Hf-based stack is also dominated by the interfacial SiON 

layer, the rest of the project can then be concentrated on SiON samples that are 

relatively plentiful, in anticipation that the conclusion is also applicable to the 

Hf-based stack. 

By varying the thickness of HfSiON and keeping a fixed interfacial layers, the 

obtained test result clearly do not agree with either the assumption that positive 

charges are distributed through the stack or the assumption that positive charges are 

dominated by the bulk of Hf-dielectric layer. This means that the positive charges in 

the stack can only be dominated by the interfacial layer. If the positive charges were 

located at the Hf-dielectriclIL interface, the threshold voltage shift should be 

independent of the IL thickness. This is, however, against the observation that /). Vth 

increases with the IL thickness. The results support that positive charges are located 

close to the ILlsubstrate interface. Consequently, unlike electron trapping, a 

reduction of HfSiON thickness will not reduce positive charges and NBTI remains as 

an important reliability issue for future CMOS technologies. 

6.1.2 The effective threshold voltage shift and its application in 

lifetime prediction 

Evaluating NBTI-induced mobility degradation is problematic, controversial, and 

undesirable for test engineers. Central to this work is to propose using an effective 

threshold voltage shift, /). Veff, as the single parameter for characterizing NBTI, 
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which fully takes account of any potential contribution from mobility degradation. 

By assuming that mobility does not change under a constant (Vg-Vth), the 

evaluation of mobility variation is avoided. A method for extracting !:J. Veff has been 

proposed, which only requires standard NBTI tests and can be easily implemented. 

The results show that Id degradation under operation gate bias predicted from !:J. Veff 

is in good agreement with the measured data, but Id degradation is substantially 

underestimated or overestimated if the extrapolated !:J. Vth or the 'on-the-fly' !:J. Vth is 

used, respectively. A Veff is preferred over AIdlId for characterizing NB TI, since it 

does not depend on device size and source/drain series resistance. 

Based on A Veff, the NBTI lifetime prediction is investigated for the worst case 

scenario where the recovery is suppressed. In this case, the conventional Vg 

acceleration prediction is inapplicable, because the NBT! kinetics no longer follow a 

simple power law and an increase of stress bias does not lead to a parallel shift of 

loglA Vlhl. To predict the lifetime, NBTI kinetics and defects are examined. An 

outstanding feature of the kinetics is the presence of a 'shoulder', which is 

insensitive to temperature and must be dominated by the charging of as-grown 

defects. The charging and discharging properties of the defect agree well with the 

signature of as-grown hole traps. By combining the first order model for the 

as-grown hole traps and the power law for generating new defects, A Vlh can be 

modeled over ten orders of stress time. This kinetic model is then used to predict the 

NBTI lifetime, based on a single test at the operation temperature and bias. For the 

six different processes tested, the safety margin of the single test prediction 

technique is within 50%, which is substantially better than the methods proposed in 

early works. 



Chapter 6 -Conclusions and Future Work -174 -

6.1.3 A single pulse charge pumping technique for fast 

measurements of interface states 

The existing techniques for characterizing interface states typically take several 

seconds and the degradation can recover substantially during the measurement. In 

this work, the potential of the established techniques for fast measurements is 

analyzed. The conductance, high-frequency CV, quasi-static CV, and subthreshold 

swing all requires a gate voltage sweep that must be sufficiently slow to maintain the 

thermal equilibrium of interface states with the gate bias. This makes them 

fundamentally unsuitable for fast measurements. In contrast, charge pumping does 

not need this thermal equilibrium and can be used for fast measurement in principle. 

The speed of conventional charge pumping method, however, is limited by 

measuring a DC charge pumping current. 

In this work, a fast single pulse charge pumping (SPCP) technique has been 

developed for characterizing interface states to improve the measurement speed. It is 

based on the non-thermal equilibrium of interface states with the gate pulse, which 

gives rise to peaks in the channel and substrate currents and is responsible for the 

differences in the currents corresponding to the two edges of gate pulse. These 

differences are used to evaluate the net charges pumped into the device and it has 

been shown that interface states can be evaluated from the saturation level of the net 

charges. Although in principle either channel or substrate current can be used, the 

latter is preferred for thin dielectrics, since it suffers less from gate leakage. The 

SPCP has successfully reduced the measurement time to microseconds from the 

seconds. It is also more tolerant to the interferences from gate leakage and defects 
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within the dielectrics, since the contribution from the plateaus of the pulse to the 

measurement is excluded. By using SPCP, the recovery of stressed-induced interface 

states was examined with a time resolution in microseconds for the first time. It is 

found that the recovery is substantially within lOOJ.1s, which would be missed if the 

conventional techniques were used. Further recovery beyond 100J.1s, however, is 

insignificant. 

6.2 Future works 

Despite of the effort made in this project, many questions remain to be answered. 

These include, but are not limited to, the followings: 

NOTI lifetime prediction with recovery: 

In this project, a prediction method has been proposed only for the worst case 

scenario: zero recovery. In reality, different MOSFETs in a circuit will experience 

different levels of recoveries. For the quasi-DC measurement used in industry, a duty 

factor is introduced to take into account of the recovery. Since the NBTI kinetics will 

be different when recovery exists, the challenge is how to combine the model 

proposed in this project with the classical method to take recovery into account when 

predicting device lifetime in the future. 

Defects responsible for the fast recovery of interface states: 

Although the work shows that there is a fast recovery phase for the interface states, 

little is known about the defect responsible for it. Traditionally, interface states are 
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generally believed to originate from Pb centers. If there is only one type of interface 

states, one would expect that the recovery will continue as time increases. However, 

test results show that the recovery stopped abruptly after 100 IlS. This raises the 

possibility that the recoverable interface states are different from the non-recoverable 

ones. Further work is needed to explore this issue. 

NOT' for nanometer MOSFETs: 

The device sizes, such as 10 Ilm, used in this work are relatively large to increase the 

signal strength. For the devices in tens of nanometers, however, there can be only a 

few of defects created during the stress. There will be large device-to-device 

variations and challenge the classical definition for device lifetime. Further work is 

clearly needed in this area. 

NOT' for multi-gate MOSFETs and nano-wire MOSFETs: 

To increase the gate control on the substrate and reduce the drain-induced barrier 

lowering leakage current, multi-gate MOSFETs and nano-wire MOSFETs were 

investigated. There is little information available on their NBTI properties and one 

can expect that the device-to-device variations can be significant again. It is a 

question whether the lifetime prediction technique developed earlier is applicable to 

these devices. 

NOT' for other dielectric/semiconductor structures: 

As the downscaIing of silicon based MOSFETs approaches its end, a lot of attentions 

have been paid to the further improvement of transistor speed without downscaling 

its physical sizes. Both Germanium and 111-V semiconductor MISFETs have been 
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intensively investigated. The dielectric stack used in these transistors may not 

involve SiON and there is little data available on their instability. It is not clear 

whether NBTI will still be the most important reliability issue and what will be the 

physical process controlling the lifetime of devices. Will these MISFET of high 

mobility semiconductors more reliable than Si MOSFETs? Will they be ever stable 

enough to be used to build microprocessors? 
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