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Abstract
With over 200 pools, lakes and rivers supporting over 70 species of endemic

flora and fauna, the Cuatro Clenegas Basin, Coahuila, NE Mexico is an extremely

important and extensively studied area in terms of conservation. The

palaeoenvironment, however, is relatively understudied with only two reconstructions

published to date - Meyer [1973] and Minckley and Jackson [2008]. This project has

analysed a 15 m carbonate sediment core for multi-proxy palaeoenvironmental

information and combined this with stable isotope, modern hydrological and

geoarchaeological information in the Cuatro CienegasBasin.

This study has analysed water samples from 26 of the >200 pools, lakes and

rivers in the Cuatro Clenegas Basin suggesting an evaporative through-flow system,

buffered by groundwater reservoirs. Analysis of stable 6180CARB, 6
13CDlC and 6

13CORGANIC

isotopes aswell as pollen analysis, 14CAMS and U-seriesdating techniques hasallowed

a chronologically well constrained palaeoenvironmental reconstruction of the Cuatro

CienegasBasin. The results of this study suggest the Cuatro CienegasBasin contains

palaeoenvironmental information spanning at least the Late Pleistocene ("'85 ka BP)to

the present and has undergone extensive environmental and climatic change,

controlled by stadial-interstadial cycles. Data analysed in this study suggestthat stadial

conditions are climatically wetter, increasing the presence of temperate vegetation

types and moisture availability from groundwater discharge. Interstadial conditions are

climatically variable, punctuated by high variability in groundwater discharge and

increased presenceof arid vegetation species.

This study reports a new in situ human footprint trackway, combining the use

of stable isotopes and U-series dating, placing the footprint locality at 7.24 ka BP

during a climatically wetter period of the Holocene (Unit 7). The results of this study

suggest the importance of temperate vegetation types e.g. Carya during this wetter

period of the Holocene. The presence of nut and seed bearing vegetation would have

provided sustenance to the Coahuilan Indians and also emphasisesthe importance of a

groundwater reservoir in this arid region of northern Mexico, effectively buffering the

hydrological system in climatically variable interstadial conditions
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Preface

To achieve the aim of this research, extensive collection of raw data was

necessary. Field work was carried out in the Cuatro ClenegasBasin (CCB)over a four

week period in March 2008. The main focus during the first field work seasonwas to

collect two lake sediment cores; this was conducted in conjuction with the Technologia

en Control de Suelos y Concreto, S. A. de C. V. drilling company. In total, seven days

were spent collecting core samples including drilling, sedimentary analysis, sample

identification and sub-sampling. The remaining three weeks involved detailed

geomorphological mapping and observations of carbonate formations, including the

sampling of an in situ human footprint trackway for carbonate characterisation, stable

isotopic and U-series dating analysis. Sampling of a large (ID m) perched terrace was

also carried out and involved the use of professional climbing apparatus to obtain the

samples. All the work conducted in the CCBwas carried out in close collaboration with

the A.rea de Protecci6n de la Flora y Fauna Cuatro Clenegas (APFFCC)who allowed

accessto all areas of the CCB,also facilitating the collection of 26 water samples from

springs, pools, rivers etc. within the basin. Whilst collecting water samples the

opportunity was taken to sample modern flora and fauna for stable isotopic

characterisation to assist in planned dietary reconstructions on human samples.

Additional field work seasonswere conducted in January 2009 and 2010, for three and

two weeks respectively. Further geomorphological observations and measurements

were conducted during these trips with additional help from level 3 Geology and

PhysicalGeography students at UMU.

Unfortunately, becauseof permit restrictions from INAH (Instituto Nacional de

Antropologfa e Historia), collection and sampling of archaeological artefacts aswell as

sampling of human remains, both bone and hair, was not possible. These restrictions

have limited the discussion and conclusions of this thesis in relation to the material

culture and dietary patterns of the Coahuilan Indians. Human hair samples were

obtained from the Peabody Museum of Archaeology and Ethnology, Cambridge, USA

but because of the limited sample size, the results obtained only provided a basis for

future research rather than expanding current knowledge. Problems experienced

during U-series dating of tufa samples also limited the chronological control of the

palaeoenvironmental reconstruction of the CCB.Tufas had to be re-sampled because
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of contamination of original samples and subsequent changes applied to the chemistry

methodology of U-series analysis. A further 6 month setback to the dating of samples

was encountered between May and November 2009, as a result of the failure of the

mass spectrometer at NIGL, Keyworth, Nottinghamshire.
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2.10a [image from www.google.co.uk/earth]. Right - Elevation map of

water body locations, shown by hydrologic system, in the CCBwith the 6180

value ofthe water displayed next to each water body [elevation map after

Wolaver, 2005].

Fig. 2.34c Comparable maps showing water flow patterns of location II

(Fig. 2.34a). left - Water body locations in the CCB.Arrows mark the major

flow patterns between water bodies, inferred from changes in isotopic

composition of water. Names and locations of water bodies are as figure

2.10a [image from www.google.co.uk/earth]. Right - Elevation map of

water body locations, shown by hydrologic system, in the CCBwith the

6180 value of the water displayed next to each water body [elevation map

after Wolaver, 2005].

Fig. 2.34d Comparable maps showing water flow patterns of location III

(Fig. 2.34a). left - Water body locations in the CCB.Arrows mark the

major flow patterns between water bodies, inferred from changes in

isotopic composition of water. Names and locations of water bodies are

as figure 2.10a [image from www.google.co.uk/earth). Right - Elevation

map of water body locations, shown by hydrologic system, in the CCBwith

the 6180 value ofthe water displayed next to each water body [elevation

map after Wolaver, 2005].
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Fig. 2.34e Comparable maps showing water flow patterns of location IV

(Fig. 2.34a). left - Water body locations in the CCB.Arrows mark the

major flow patterns between water bodies, inferred from changes in

isotopic composition of water. Names and locations of water bodies are as

figure 2.10a [image from www.google.co.uk/earth]. Right - Elevation map

of water body locations, shown by hydrologic system, in the CCBwith the

0180 value ofthe water displayed next to each water body [elevation map

after Wolaver, 2005].

71

Fig. 2.35 Brine evolution and mineral deposition from west to east across 74

the CCB.Red - shows gypsum precipitation at laguna Grande with a

representative photograph (taken facing north). Green - shows tufa deposition

at the piedmont of the Sierra San Marcos y Pinos with a representative

photograph (taken facing south). Blue - shows salt deposition in the endorheic,

east side of the CCBwith a representative photograph (taken facing north east)

[aerial photograph from www.google.co.uk/earth].

Fig. 2.36 Poza Bafio Escobedo prior to canalization in the 1960's (left) and 76

30 years later in the 1990s (right) [image from Minckley, 1992].

Fig. 2.37 Poza Becerra prior to canalization in the 1960s (top) and 30 years 77

later in the 1990s (bottom) [image from Minckley, 1992J.

Fig. 3.1 Schematic model showing E-W cross section across the CCB- from 83

the meteoric water source in the limestone sierra (San Marcos y Pinos) to

the basin floor. local thrust faulting in the sierra provides a route for water

heated deep underground to surface due to increased head pressure in the

mountain. This recharge during climatically wetter periods causes water to

not only recharge in pozas but also as calcium carbonate depositing springs.
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Fig. 3.2 Photographs of CCBcalcium carbonate deposits; a) Laminar tufa 85

deposits, with a hammer for scale; b) Microbially deposited tufa displaying

characteristic annual laminations, with a coin for scale; c) reed and palm

frond encrustations in situ, with a lens cap for scale.

Fig. 3.3 Location of studied tufa deposits within the CCB; (a) a rim stone

pool complex, (b) a spring mound containing human footprints (see chapter 4),

(c) a fissure ridge complex (see appendix 1), (d) a perched terrace where

previous quarrying activity has occurred showing the sequence in detail

[image from google.co.uk/earth].

86

Fig. 3.4 Model for terraced "rim-stone pool" complex to the NW of the

piedmont of the Sierra San Marcos y Pinos [modified after Pentecost, 2005].

87

Fig. 3.S Location ofthe rim-stone pool complex. The red line highlights the 88

depositional area and line A-B represents the transect across the rim-stone

pools in Figure 3.8 [image from google.co.uk/earth].

Fig. 3.6 Large rim-stone pool complex. Although now inactive, no fissure

ridge or spring mound is present to have provided source waters.

89

Fig. 3.7 Photographs of vegetation preserved at the rim-stone pool complex; 90

a) bryophytic microfabric in the form of algal encrustations, preserved algae

is at the base of photo presented alongside modern day living algae;

b) bryophytic mesofabric preserved in a dam structure.

Fig. 3.8 Topographic transect of the rim-stone pool/dam complex. Vertical scale 91

is exaggerated so up-walls and drop-walls are more prominent. Samples Si and

52 were taken for U-series dating but subsequently not used.
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Fig. 3.9 Schematic showing perched terrace deposition [modified after

Pedley et al., 2003]. Fluviatile tufa deposition at the base of the terrace

is succeeded by springline and paludal tufa deposition. Incised fluvial

channels and bryophyte curtains are characteristic of these types of deposits.

Fig. 3.10 Location of the perched terrace in the CCB. The typical lobate

plain view is highlighted by the dashed red line and the extent of the

quarrying activity can be clearly seen with access tracks on the north, east

and south faces. Numbers 1-8 show where stratigraphic logs were taken

(Figs. 3.17, 3.18, 3.19, 3.20, 3.21) [aerial photograph

provided by Dean Hendrickson].

94

95

Fig. 3.11 Original photograph ofthe perched terrace taken by W. L. Minckley 96

in the 1960s [Minckley, 1969]. The original geomorphology of the terrace

can be seen (in comparison with the heavily quarried modern view in Fig. 3.12).

Fig. 3.12 Annotated photograph of the perched terrace in the CCB. The Sierra 96

San Marcos y Pinos to the left (east) of the terrace is heavily karstified. The

black dashed line shows the extent of the flat terrace top before quarrying

began.

Fig. 3.13 Annotated photograph of the perched terrace north face. The

black dashed line shows the extent of the flat terrace top before quarrying

began. The parallel red lines show the exposed studied section through the

underlying stratigraphy due to the construction of the upper north face access

road. * shows the location of figure 3.14. + shows the location of figure 3.15.

'" shows the location of figure 3.16.

Fig. 3.14 Red colouration suggesting hot fluid circulation and deposition

of FeO within the laminated limestone bedrock.
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Fig. 3.15 Photograph of 'jigsaw puzzle' clast observed in the perched terrace 99

conglomerate. The clast maintains its sub-rounded shape despite extensive

fracturing.

Fig. 3.16 Annotated photograph of inter-bedded conglomerate and laminated 99

calcium carbonate. Incised laminated tufa and poorly sorted, sub-rounded

conglomerate at the base suggest fluvial/flash flood deposition. A change from

clast supported to tufa matrix supported conglomerate up the section suggests

intermittent fluvial and spring activity at the perched terrace.

Fig. 3.17 Annotated photograph showing the locations of measured stratigraphic 101

logs 1, 2, 3, 7 and 8 (Fig. 3.18).

Fig. 3.18 Stratigraphic logs 1, 2, 3, 7 and 8. location of the stratigraphic logs 102

can be seen in Figures 3.10 and 3.17. Full stratigraphic descriptions can be

seen in appendix 1.2.

Fig. 3.19 Stratigraphic log 4 presented alongside an annotated photograph of 103

the logged section. Full stratigraphic descriptions can be seen in appendix 1.2.

See Figure 3.10 for exact log location.

Fig. 3.20 Stratigraphic log 5 presented alongside an annotated photograph of 104

the logged section. Full stratigraphic descriptions can be seen in appendix 1.2.

See Figure 3.10 for exact log location.

Fig. 3.21 Stratigraphic log 6 presented alongside an annotated photograph of 105

the logged section. Full stratigraphic descriptions can be seen in appendix 1.2.

See Figure 3.10 for exact log location.

Fig. 3.22 Annotated photograph showing the steeply dipping macrophyte 106

curtain on the front (west face) ofthe perched terrace. The red box is

enlarged in figure 3.23.
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Fig. 3.23 Enlarged photograph of figure 3.22. Steeply dipping macrophytic lOG

stem structures with subsequent stalactite growth. Stalactite growth is

indicative of a waterfall type structure.

Fig. 3.24 Abundant palm frond impressions towards the base of the tufa 107

sequence, hammer is presented as scale.

Fig. 3.25 Preliminary cS180CARB and cS
13CDlC isotopes for the perched tufa

terrace. Samples were taken at IG intervals down the sequence.

Photograph of the sampled section is also presented alongside isotopic data.

108

Fig. 3.26 Annotated map of the locations of the three tufa areas and their 111

proximity to each other. Red circles show the locations of each area. Black

arrows show the modern surface water flow direction within the main

through-flow system in the CCB(see chapter 2).

Fig. 3.27 Possible direction of water flow from rivers or flash floods

originating at the peak of the Sierra San Marcos y Pinos. The combination

of this and local faulting could have resulted in episodic river/spring tufa

precipitation during the Pleistocene.

115

Fig. 3.28 Possible direction of fluvial outflow from Sierra San Marcos y

Pinos into laguna Grande. Red line highlights the position of the gypsum

playa flats. The aerial photo was taken in 2008 and shows the final

location of laguna Grande before complete drying up in 2009 [image

from google.co.uk/earth].

119

Fig. 4.1 a) The two footprints preserved in tufa currently on display at the 123

Museo del Desierto, Saltillo [Gonzalez et 01.,2007] b) Example of a modern

poza where impressions of horse prints can be seen in the centre, preserved

under water in the fine carbonate sediment.
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Fig. 4.2 Locations of archaeological cave sites in Coahuila state, in particular 125

within the Cuatro Cienegas Basin shown by green squares. Red squares

represent towns and cities and black squares represent cave localities.

Fig. 4.3 Location of the in situ human footprint trackway in the Tierra

Blanca quarry within the Cuatro Cienegas Basin and proximity to the Mex-30

highway where the museum footprints were discovered [image from

google.co.uk/earth].

126

Fig. 4.4 Schematic showing development of a spring mound. a-d) Growth 128

of a mound where alternating (yellow and brown) layers of calcium

carbonate are deposited, initially down slope before the mound builds to

a higher elevation, depositing calcium carbonate upslope also; f) example

of Tierra Blanca spring mound - a fault controlled flowing artesian spring;

g) Tierra Blanca spring mound facies [modified after Pentecost, 2005].

Fig. 4.5 3D Laser scanned map ofthe in situ human footprint trackway 129

located at Tierra Blanca. Well preserved prints are designated 1-5 on the

diagram whilst eroded prints are not numbered. Three prints

(L-R-L sequence) are missing between prints 1 and 2 and a further three

(R-L-R sequence) are missing after print 5 [image courtesy of Prof. Matthew

Bennett, Bournemouth University, UK].

Fig. 4.6 Examples of the footprint trackway tufa a) Filamentous structure 131

observed within the tufa where the carbonate can be seen formed around

organic matter (dark areas are true pore spaces). b) Black surface

contamination observed in the upper most layer of the sampled footprint

tufa [images courtesy of Steve Noble, NIGL].

Fig. 4.7 Alternating porous/non-porous layers sampled for age profiling

within tufa sample 036521-7 with 23'1'h/U ages representative of adjacent

layer [image courtesy of Steve Noble, NIGL]. Arrow indicates orientation of

the sample - base to surface.

134
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Fig. 4.8 6180CARB and 6
13CDlC isotope values for Tierra Blanca tufa samples. 135

Pit stratigraphy is presented in the photograph with depths. Samples for

pollen analysis were taken from the surface and 0-9cm levels.

Fig. 4.9 Annotated stratigraphic log of the Tierra Blanca footprint site tufa. 136

The log was taken at N 26054'52.60" W 102009'11.70 in a small pit 5 m from

the footprint locality.

Fig. 4.10 Preliminary pollen data for Tierra Blanca tufa stratigraphy. TB Print 1 137

was taken at the surface so is plotted at 0 cm and 1-9 cm is plotted at 9 cm to

accentuate the stratigraphic change in pollen with such a low resolution (two

samples).

Fig. 4.11 Example of Carya (Hickory/Pecan) pollen present in the Tierra

Blanca footprint top level tufa.

140

Fig. 4.12 Stride length against speed for adult humans (circle), dogs (square) 143

and camels (triangle). Red line represents data for the human footprint

trackway in the CCB[modified after Alexander, 1989].

Fig. 5.1 Location ofthe Cuatro Cienegas Basin in Mexico (A and B) with the 147

Tierra Blanca Quarry site (C). Core Poza Tierra Blanca (PTB) location is marked

with a star [image from google.co.uk/earth].

Fig. 5.2 The major circulation patterns over Mexico in (a) winter (DJF)and 148

(b) summer (JJA).Dominant seasonal moisture sources are shown with

bold arrows. The CCBlocation is displayed as a red star [modified after Metcalfe

et al., 2000].

Fig. 5.3 Previous palaeoenvironmental studies conducted in the north of 149

Mexico and southern United States.

Fig. 5.4 Locations of cores PTB and CCM taken within the CCB. 157
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Fig. 5.5 The location of core PTB. Poza Tierra Blanca can be seen in the

foreground of the photograph. The Tierra Blanca footprint site can also

be seen as a small mound to the left of the photograph.

158

Fig. 5.6 The fragmented basal tufa of core CCM. The fragmented nature 161

ofthe tufa meant it was unreliable for dating due to the possible mixing

of older and younger stratigraphic layers.

Fig. 5.7 Alternating peat - marl- tufa stratigraphy of core PTB. Displayed 161

in the photograph is 2.4 m to 1.6 m in the core with well humified peat,

marl, organic marl and tufa all present.

Fig. 5.8 Thin sections of tufas from core PTB (taken at x40 magnification 169

under bright field illumination). Showing: (a) PTB317-318 - Quartz grain in

the centre ofthe slide (b) PTB317-318 - True pore space in-filled with organic

detritus (c) PTB339-341- True pore space where calcite crystals can be seen

surrounding organic carbonate matter (d) PTB355-356 - Mollusc sp. where no

detrital calcite can be seen (e) PTB355-356 - Possible pollen grain where

organic matter has been replaced by calcite during tufa formation (f) Possible

contamination where darker carbonate has in-filled tufa pore space.

Fig. 5.9 linear age/depth model constructed using only the 14CAMS dates 171

- 241 ± 26 cal yr BP (36 cm), 9,467 ± 68 cal yr BP (160 cm) and 28,051 ± 417

cal yr BP (368 cm).

Fig. 5.10 Linear age/depth model constructed using the 14CAMS dates - 172

241 ± 26 cal yr BP (36 cm), 9,467 ± 68 cal yr BP (160 cm) and 28,051 ± 417

cal yr BP (368 cm) - and U-series dates - 22130 ± 880 cal yr BP (317-356 cm)

and 56180 ± 2250 cal yr BP (1013-1020 cm).

Fig. 5.11 Calibrated 14CAMS and U-series dates versus depth using CLAM 174

[Blaauw, 2010]. Black line represents best mid-calibrated age and the grey

shaded areas represent a 95% confidence interval range.
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Fig. 5.12 Enlarged view of unit 1 613CORGANICand 6180CARBisotope trends with 181

C/N ratios, and organic content and CaC03 content by lOI (see appendix 2.2.2).

Fig. 5.13 Enlarged view of unit 2 613CORGANICand 6180CARBisotope trends with 182

C/N ratios, and organic content and CaC03 content by lOI (see appendix 2.2.2).

Fig. 5.14 Enlarged view of unit 3 613CORGANICand 6180CARBisotope trends with 183

C/N ratios, and organic content and CaC03 content by lOI (see appendix 2.2.2).

Fig. 5.15 Enlarged view of unit 4 613CORGANICand 6180CARBisotope trends with 184

C/N ratios, and organic content and CaC03 content by lOI (see appendix 2.2.2).

Fig. 5.16 Enlarged view of unit 5 613CORGANICand 6180CARBisotope trends with 185

C/N ratios, and organic content and CaC03 content by lOI (see appendix 2.2.2).

Fig. 5.17 Enlarged view of unit 6 613CORGANICand 6180CARBisotope trends with 186

C/N ratios, and organic content and CaC03 content by lOI (see appendix 2.2.2).

Fig. 5.18 Enlarged view of unit 7 613CORGANICand 6180CARBisotope trends with 187

C/N ratios, and organic content and CaC03 content by lOI (see appendix 2.2.2).

Fig. 5.19 Variations in C/N ratios and 613COICvalues in the core PTBsediment 190

column. Changes in sediment type to carbonate rich marl or tufa appears to

coincide with higher 613COICvalues with organic rich sediments coinciding with

much lower 613Colcvalues.

Fig. 5.20 613CORGANICVS.C/N ratios of organic sediments in core PTB.Ranges of 192

the four major 613Ccontributors - C4,C3,CAM and aquatic - are set according

to leng [2005] and Minckley et al. [2009] after Meyers [1994].

Fig. 5.21 Units 1 to 7 6180CARBand 613CoICisotope data for core PTSwith R2 193

covariance displayed. linear regression is shown by a trend line through the

data.
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Fig. 5.22 6180CARBand 613COlc isotope data for core PTSwith R2 covariance 195

displayed. Overall R2 covariance is shown by linear regression through the data.

Unit specific linear regressions have been omitted from the data graph for ease

of analysis although unit specific R2 covariance is shown.

Fig. 5.23 613CORGANICand 6180CARBisotope data for core PTB. Key upland wooded 198

pollen taxa are displayed, highlighting the mesic (temperate) taxa; xeric (arid)

taxa and continual (present throughout the whole sequence) taxa (the presence

of a particular species is displayed as a '+'). The chronology - three 14CAMS and

two U-series dates - is also presented.

Fig. 5.24 Percentage pollen data for mesic (temperate), xeric (arid) and wetland 199

taxa in core PTB presented alongside the chronology and a simplified

stratigraphy. Major upland and lowland species are displayed with high

resolution (5 cm intervals) analysis having been conducted on the upper 700 cm

ofthe core. Below 700 cm samples were taken at 50 cm intervals. Where <300

terrestrial pollen grains were counted, crosses (+) indicate the presence of an

individual pollen taxa based on 100 grains to 1000 tracers.

Fig. 5.25 Classical age/depth model (CLAM) applied to units 1-7. Top and 202

bottom dates are applied to each unit based on the cm scale age point estimates

predicted by CLAM. Hydrology ofthe CCB(open vs. closed system) is also

displayed based on 6180CARBvs. 613CDlc linear covariance (Figs. 5.21 and 5.22).

Fig. 5.26 Alternating bands of marl and peat within unit 1of core PTS.

Soft sediment deformation can be seen within the peat banding which is

a process of percussion coring.

204

Fig. 5.27 Modern peat formation in a marsh (clenega) area of the CCB.Peat 205

formation is the product of the drying process whereby grasses and mosses

populate the marshland, increasing biomass and creating peat.

xxxi



Fig. 6.1 Geology ofthe Cuatro Cienegas Basin with transect (A - B) used in 221

Figures 6.2 and 6.3 [modified after Badino et al., 2004; Rodriguez et al., 2005].

Fig. 6.2 Schematic model of stadial conditions in the CCBduring units 2, 223

4 and 6. Dominance of winter monsoon climate with hydrologically open

basin characteristics provided a stable basis for woodland expansion down

to the bajada level and wetlands suitable for mesic vegetation on the CCB

floor.

Fig. 6.3 Schematic model of non-stadial, high aridity conditions in the CCB 226

during units 1, 3, 5 and 7. These conditions currently prevail in the CCB.

Dominance of summer monsoon climate with hydrologically closed basin

characteristics caused by complex interplay between the NAM and ITCZ.

Decreased groundwater flow coupled with increased evaporation caused the

formation of salt flats and endorheic pools.

Fig. 6.4 Photograph displaying abundant Acoelorrhaphe wrightii palm frond 228

impressions and encrustations, towards the base of the perched tufa sequence.

Fig. 6.5Well preserved Sotol grass impressions in what is now a completely 229

dry area in the CCB.

Fig. 6.6 Locations of archaeological cave sites in Coahuila state, in particular 233

within the Cuatro Cienegas Basin (marked with green squares).
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Chapter 1: Introduction

1.1 Scientific background and justification

The arid or semi-arid zone covers the majority of the Earth's land surface

between latitudes 18· and 40· north and south of the equator, including northern and

southern Africa, the Middle East,southern South America and parts of central Asia and

Europe [NOAA, 2011]. This arid region of the world also includes Mexico, lying in the

northern hemisphere tropics, between latitudes 16°and 32° north.

Although there is clearly an opportunity for the study of climatic change in this

arid region of the Earth, very little work has been conducted, particularly when

compared to the arid regions of the United States of America, including the Great

Basin [Bryant, 1977; Bryant and Holloway, 1985; Van Devender, 1990; Winograd et al.

1992; Wright et al. 1993; Fawcett et al. 2011], and other arid or semi-arid regions

around the world [Brook et al. 1990; Schwalb et al. 1999; Kent-Corsonet al. 2009; Ortiz

et 01.2009 ].

Palaeoenvironmental work that has been conducted in Mexico has, however,

primarily focussed on records from central Mexico, particularly the Trans Mexican

Volcanic Belt (TMVB). There is a wide range of palaeoclimatic data available for this

region with well dated pollen sequencesspanning as far back as the late Pleistocene

("'44 ka BP) [Watts and Bradbury, 1982; Gonzalez Quintero, 1986; Straka and

Ohngemach, 1989], as well as detailed records covering the Holocene [Brown, 1985;

Xelhuantzi lopez, 1994; Parket al. 2010]. The majority of palaeoenvironmental studies

focussing on fossil freshwater diatoms also come from the TMVB. Detailed studies

[Bradbury, 1971, 1989; Caballero Miranda, 1997; Caballero Miranda and Ortega

Guerrero, 1998] have yielded long spanning ("'46 ka BP) records, comparable with

pollen records from the same region [Metcalfe et al. 2000].

Pollen and diatom proxy data are, however, susceptible to diagenetic effects

[Hobbs et al. 2010; Shimokawara et al. 2010] and are only abundant in certain

sediment deposits: pollen is generally confined to organic deposits and diatoms to

minerogenic deposits. The paucity of these deposits in arid Mexico coupled with

diagenetic effects has limited the palaeoenvironmental work and as a result, it is not
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uncommon to encounter palaeoenvironmental records containing discontinuous proxy

data.

The palaeoenvironmental record for arid northern Mexico, in comparison to

the TMVB, is relatively neglected. Packrat midden records for the late

Pleistocene/Holocene have provided a basis for detailed palaeoenvironmental records

in North America [Betancourt et al. 1990], particularly the desert region of Sonora [Van

Devender, 1990; Anderson and Van Devender, 1995], which straddles northern Mexico

and the American Southwest. Despite these midden studies providing an opportunity

for climatic reconstruction in northern Mexico, the proxy bearing deposits are scarce in

this arid region, leading to limited work having been conducted [Van Devender, 1990].

However, natural wetlands in arid to semi-arid regions across the American

Southwest, southern United States and northern Mexico are well documented,

providing a valuable resource for native flora, fauna and human populations [Haynes

and Agogino, 1966; Minckley, 1969; Davis et al. 2002; Haynes, 2008; Minckley et al.

2009]. These desert wetlands, or clenegas, can contain sediment deposits holding an

array of valuable information regarding both natural and human induced changes in

the terrestrial environment [Minckley and Brunelle, 2007]. These, often lengthy,

unconsolidated sequences of intercalated minerogenic and organic sediments may

provide information regarding climatic and environmental changes [last and Smol,

2001; leng and Marshall, 2004]. The sediment deposits from arid wetlands have been

shown to be the same as lacustrine sediment deposits [Minckley and Brunelle, 2007;

Minckley et al. 2009], which have been used to reconstruct past climate change on

both regional [e.g. Castiglia and Fawcett, 2006] and global scales [e.g. Vu et al. 1997],

and when combined with present day lake studies has elucidated the response of lake

systems to past and future climate changes [e.g. Johnson et al. 1991].

The use of oxygen and carbon isotope ratios eBol60 and 13C/2C expressed as

61BO and 613C respectively) of bulk carbonate lacustrine sediment have become

successful tools for palaeoenvironmental reconstructions. They have provided

information about atmospheric moisture and organic matter sources entering a lake

system, and thus any climatic and vegetation changes through time [e.g. Schwalb et al.

1999; Huang et 01.2001; Holmes et 01.2010]. Arid wetland deposits, being the same as
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lacustrine sediment deposits, should represent the same climatic and vegetation

changes through time and are thus an under-utilized repository of

palaeoenvironmental information. First, understanding the modern hydrology of a lake

or wetland system is important for the interpretation of any palaeoenvironmental

archives obtained, as any interpretation must take into account any likely changes to

hydrology that may have occurred in the past. The degree of hydrological 'closure',

determined through 6180 and 613C co-variance, is a useful tool in the determination of

hydrology, and thus palaeoenvironmental change [Leng and Marshall, 2004], and has

been used to good effect in showing past changes in hydrology [e.g. Talbot, 1990;

Johnson et al. 1991; Winter and Rosenberry, 1995; Li and Ku, 1997] and the various

sources for 6180 and 613e in sediments.

Proxy bearing deposits are, however, relatively scarce in many arid/semi-arid

regions around the world. Therefore, even though there may be clear evidence that

many of these regions have undergone significant environmental changes in the past,

poor preservation of proxy data means there is still great uncertainty surrounding

these changes. This thesis explores the potential of pollen, 6180 and 613e for a multi-

proxy research approach to reconstruct the palaeoenvironment of an arid wetland

region of northern Mexico. This is achieved by utilizing a study of modern hydrology

using 6180 and 613C isotopic values of water and comparing this study with, principally,

the 6180 and 613C record from a wetland sediment core, but also the pollen record.

Comparing high resolution isotopic studies with pollen records will allow the detection

of small scale, as well as large scale hydrological and palaeoenvironmental changes.

This thesis also addresses the use of terrestrial carbonate formations as

geomorphological indicators of past climate change in this arid wetland. A study of

how any inferred palaeoenvironmental change hasaffected human populations during

the Holocene is also an important component of this thesis.

Meyer [1973] conducted the only palaeoenvironmental reconstruction of the

Cuatro ClenegasBasin (CCB),analysing pollen from a 13 m sediment core to conclude

that no environmental change had occurred from "'31 ka BPto present, leading to a

high degree of endemism in the eeB associated with a long period of biogeographic

isolation and apparent environmental stability. This interpretation was first proposed

by Minckley [1969] and later supported by the pioneering pollen work of Meyer [1973].
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However, the high degree of floral and faunal endemism does not necessarily imply

environmental stability as is previously thought. The high mountain ranges

surrounding the CCBand presence of deep groundwater reservoirs and subsequent

groundwater discharge into the CCB'spools, lakes and rivers create riparian, marsh

and aquatic habitats that have the potential to create a unique desert wetland

refugium in a region that is known to have experienced environmental changethrough

the Late Pleistocene and Holocene [Metcalfe et al. 1997; Musgrove et al. 2001;

Metcalfe et al. 2002; Castiglia and Fawcett, 2006]. The discovery of a human footprint

trackway in the CCB in 2006 [Gonzalez et al. 2007] triggered a reinvestigation of

Meyer's original pollen data by Minckley and Jackson [2008]. They concluded that the

CCBhad undergone extensive climatic and environmental change from at least 16 ka

BP to the present. The contradictory nature of the only two palaeoenvironmental

studies in the CCB leaves a distinct gap in the understanding of climatic and

environmental change in northern Mexico on both a regional and global scale.

Multi-proxy environmental data has the potential of ensuring a robust

palaeoenvironmental record [e.g. Hammarlund et al. 2002], and the contradictory

palaeoenvironmental reconstructions and availability of arid wetland sediment in the

Cuatro CienegasBasin, located in the Chihuahuan Desert region of northern Mexico

provides a valuable opportunity to apply a multi-proxy approach to

palaeoenvironmental reconstructions in an arid region. Understanding how climatic

and environmental changes affect the CCB in the modern day, as well as on

Quaternary timescales, will increase understanding of this arid region in the context of

global climate change and also elucidate the response of human populations to

climatic and environmental change in an important, and little understood,

archaeological region of the Americas.

1.2 Project aim

The aim of this research is to examine the palaeoenvironmental evidence of

climate change and associated human responsesin the Cuatro ClenegasBasin(Fig.1.1)

from the Late Pleistocene to the present and to obtain a clear picture of the

palaeoclimate, hydrology and geoarchaeology, placing it within a regional and global

context. The Cuatro CienegasBasin provides a unique desert oasis with the potential
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to contain a long palaeoenvironmental record, back to and possibly beyond 30 ka BP

[Meyer, 1973]. Extraction of water for industry is currently threatening this fragile

desert ecosystem, making studies of hydrology and environmental change of the

utmost importance. The aim of this research is achieved with the following objectives:

• To investigate the palaeoenvironment of the Cuatro CienegasBasin from the

late Pleistocene/Holocene to the present through stable isotope and

palynological analysisof a 15 m sediment core located in the basin.

• To investigate modern hydrogeology and water flow patterns by stable isotope

analysis to obtain a conceptual hydrologic model, applicable to

palaeohydrological regimes.

• To explore the relationship between terrestrial tufa formations and previous

environmental and hydrological regimes within the Cuatro ClenegasBasin.

• To explore the relationship between palaeoenvironmental change and

consequent human response through integrating archaeological excavations of

human footprints with published studies of Coahuilan Indians.

1.3 Introduction to the Cuatro Ch~negasBasin study site

The Cuatro ClenegasBasin (CCB)is a 1400 km2 basin located in the state of

Coahuila, NEMexico (Fig. 1.1). Designatedan "Area de Protecclon de la Flora y Fauna"

(area of protection for flora and fauna) by the Cornlslon Nacional de Areas Protegidas

in 1994, the CCBis now recognised as unique and one of the most biodiverse wetland

ecosystems in the World.

Located in the Sierra Madre Oriental mountain range, the CCB lies

approximately 742 m a.s.l, surrounded on all sidesby Cretaceous Limestone mountains,

with peaks reaching over 3000 m. Over 200 pools (known locally as pozas), lagoons

and rivers exist in the CCB,fed by the surrounding karst environment and a deep

underground aquifer - the Cupido-Aurora aquifer - feeding hydrothermal groundwater

into over 70 of the pools [Johannessonet al., 2004; Rodriguezet al. 2005].

Earliest human presence in the basin, first documented by Palmer [1882], dates

from the Late Pleistocene/Early Holocene (12 ka BP) to the present based on well

stratified archaeological cave deposits in the mountains around the basin [Gonzalezet

al. 2007; Taylor, 2003; Turpin, 2003]. The early inhabitants were nomadic hunter-
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gatherers who were well adapted to the desert conditions and highly dependent on

the local environment for their subsistence.

100' 90'

Figure 1.1. (a) Location ofthe Cuatro Cienegas Basin within Mexico (b) Coahuila state borders the USA to the

north, separated by the Rio Grande (c) Black line shows the limit of the CCB, the area enclosed has been

declared a protected area [image from googJe.co.uk/earthj.

1.3.1 Pre-Quaternary geology of the Cuatro Cienegas Basin

The CCBforms part of the Coahuila Block in north-eastern Mexico and southern

Texas (Fig. 1.2). The "basement block" of the Coahuila Block is of Gondwanan origin

after the collision with the north-American continent (Laurentia) during the Taconic-

Ocloyic orogenic event (280 Mya) [Lehmann et al. 1999]. Lying south of the Ouachita-

Marathon suture, created during this event, and north of the California-Coahuila
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transform, the Coahuila Block is composed of granite and granodiorite, of Permian-

Triassic age, intruded into Permian orogenic sediments [Lehmann et al., 1999;

Dickinson and Lawton, 2001].

Figure 1.2. Contemporary geological map of Mexico and southern USA. TMVB-Trans Mexican Volanic Belt; CT-
Cayman Transform; MzTT-Tehuantepec Transform; CAS-Collision Acretion Suture; C-CT-California-Coahuila
Transform; CTT-Coahuila-Tamaulipas Transform; O-MS-Ouachita-Marathon Suture; Be-Belize; Cz-Cenozoic; Gu-
Guatemala; Ho-Honduras; Mz-Mesozoic; PZ-Palaeozoic; Sa-El Salvador [modified after Dickinson and Lawton,

2001).

The rift phase of the opening of the Gulf of Mexico is linked to the formation of

the Coahuila Block at the beginning of the Cretaceous [Badino et aI, 2004]. Shifting of

the more southern "Tampico Block" towards the east c.175 Mya created the Coahuila-

Tarnaulipas transform. At the same time dislocation inside the Coahuila Block, created

by the shifting Tampico Block, was compensated by extension (enlargement by

bulging), with the resultant faults from the extension allowing the intrusion of plutons

which in turn led to smaller fault blocks emerging within the Coahuila Block. One of

these fault blocks was the "Coahuila Peninsula" - now known as the Sierra El Granizo,

Sierra Australia and Sierra La Fragua (Fig. 1.3).
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Figure 1.3. Geological map of Cuatro Clenegas showing the major limestone outcrops and CCB recharge zone

[modified after Badino et 0/.,2004; Rodriguez et al., 2005].

At the time of the Coahuila-Tamaulipas transform formation, the fault blocks

surrounding the Coahuila Peninsula dropped below sea level, forming a carbonate

platform, which would later become the Sierra SanMarcos y Pinos, Sierra Menchaca,

Sierra LaPurisma and Sierra Madera (Fig. 1.3) [Badino et al., 2004]. Between 160 Mya

and 130 Mya the rift phase of the Gulf of Mexico was complete by which time the

region had begun to subside, with over 1000 m of carbonates deposited; these can be

seen today as the mountain ridges surrounding the CCB.The "Cupido" carbonate

platform began to form c.130 Mya from, what is now modern day Louisiana,south to

the Gulf of Mexico and also west - flanking the southern-most edge of the Coahuila

Peninsula. This platform composing the "Cupido Formation" limestone formed in

shallow lagoons where at the same time the "Lower Tamaulipas Formation"

(mudstones) formed beyond the margins of the Cupido platform in the deeper, oxygen

scarce waters [Lehmann et 01., 2001]. Deposition of the Cupido Formation up to a

thickness of sao m continued until11S Mya when sea levels began to rise once more,

thus creating deep anoxic waters from which the marls of the "La Peiia Formation"

were deposited up to a thickness of 20 m.
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The relative sinking of the Cupido platform, associated with the start of the

subduction in the west, resulted in the sea moving inland, covering the platform and

creating an eastward carbonate slope and a new Cupido platform margin 100 km west

of the original margin. Large lagoons formed beyond the new Cupido platform margin

to the east, where the "Acatita Formation" was deposited - a series of evaporate

sediments reaching up to 500 m thickness. Around 108 Mya, when the lagoons had

fully established the eastward carbonate slope, the "Aurora Formation" of limestone

muds began to sediment. The carbonate slope gradually reached further east, meeting

the open sea and enabling the "Upper Tamaulipas Formation" to form in the Gulf of

Mexico. The Cupido platform and Aurora Formation now form the Cupido-Aurora

aquifer, a deep lying confined aquifer flowing from the Bolson de Mapimi in the west

to the Gulf of Mexico [Badino et 01.2004].

The laramide orogeny affected northern Mexico during the Eocene(55-35 Mya)

[Badino et al., 2004; Molina-Garza et al., 2008] allowing the formation of the Sierra

Madre Oriental (including the Coahuila fold ridge) and marking the eastern most limits

of the deformation. The Coahuila fold ridge was created as a result of decollement

(sliding plane between surfaces) between the Cupido platform and the basement block,

creating the characteristic NW axial thrust-fold anticlines seen today in the CCB

limestone mountains (e.g. Sierra San Marcos y Pinos), whilst the basement block

remained unaltered. Tectonic activity during the Oligocene, Miocene and Pliocene (35-

2.5 Mya), as a result of the laramide orogeny, reactivated the SanMarcos Fault, raising

the northern block and creating strong thermal activity. These hydrothermal fluids

resulted in deposits of mixed metal sulphurs and mineral deposits such as fluoride that

can today be seen at the base levels of the limestone deposits in the area [McKee,

1990].

1.4 Chapter overview

The following chapters are split into individual studies, each providing an

experimental focus supported with available documentary evidence. Below is a brief

overview of the topics covered by each chapter.
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1.4.1 Chapter two: Reconnaissance isotope hydrology of the Cuatro Ch~negasBasin

A reconnaissance stable isotopic study of the waters of the Cuatro Cienegas

Basin has been undertaken utlizing stable 0180, 013Cand 00 isotopes to determine the

modern day water sources and subsequent flow regime. Modern water samples and

flow regime determination provide a conceptual hydrologic model for the Cuatro

Clenegas Basin, applicable to previous hydrological regimes in the basin. Samples of 26

pools, lakes and rivers from both the west and east sides of the Cuatro Cienegas Basin

have been analysed and discussed, providing a flow model to complement the

palaeoenvironmental chapter.

1.4.2 Chapter three: Terrestrial carbonate environments of the Cuatro Ch~negasBasin

This chapter describes, for the first time, the terrestrial carbonate formations

observed within the Cuatro Cienegas Basin and their individual depositional facies.

These carbonate formations have not been previously described in the Cuatro

Cienegas Basin and the origins of each carbonate formation are proposed, based on

the evidence observed compared with analogous carbonate formations from locations

around the world. In particular, a perched terrace, first described by W. L. Minckley

[1969] as a pluvial lake shoreline, is discussed in detail with comparisons drawn

between recent local and regional hydrologic models and climate reconstructions. This

chapter complements the hydrology and palaeoenvironmental chapters, providing

more detailed discussions and conclusions of the overall thesis.

1.4.3 Chapter four: Human occupation in the CCBand the in situ human footprint

trackway

This chapter investigates the ancient Coahuilan Indians of the Cuatro Cienegas

Basin. A report of a new in situ human footprint trackway is synthesised with Holocene

palaeoenvironmental records, archaeological excavations and archaeological reports.

The last formal archaeological excavations were conducted in the 1940s by Walter

Taylor with artefacts including sandals, arrow points and vegetal fibres categorized and

studied in detail over the last 60 years [Taylor, 2003; Turpin, 2003]. Preliminary stable

0180 and 013C isotope values of calcium carbonate sediments have been analysed

alongside U-series dating techniques allowing synthesis of the new isotopic

palaeoenvironmental record into the known, chronologcally well constrained pollen
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record. The most important archaeological sites are discussed within the

palaeoenvironmental and material culture records.

1.5.4 Chapter five: Multi-proxy palaeoenvironmental reconstruction of the Cuatro
Cienegas Basin

A multi-proxy study involving the use of stable 6180CARB,613CoICand 613CORGANIC

isotopes, C/N ratios, sediment LOI, pollen and radiometric dating techniques sampled

from a 15 m sediment core has been undertaken in the Cuatro Cienegas Basin. The

obtained dataset is brought into the modern context of climate and hydrology in the

Cuatro Clenegas Basin so that the palaeoenvironment can be reconstructed. The

chapter tests the null hypothesis: has the Cuatro Clenegas Basin (CCB) provided an

area of unique desert refuge, unresponsive to regional climatic and environmental

change, from the Late Pleistocene to the present? It is demonstrable that the Cuatro

Cienegas Basin displays evidence of climate and environmental change from the Late

Pleistocene to the present, complementing regional and global proxy data.
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Chapter 2: Reconnaissance isotope hydrology of

the Cuatro CiE~negasBasin

2.1lntroduction

The aim of this chapter is to investigate aspects of the hydrology, in particular

the flow regime, of the Cuatro CienegasBasin(CCB).Bystudying reconnaissancestable

oxygen (5180), hydrogen (50) and carbon (513C)isotopes, insight into the flow regime

in the modern day basin can be obtained, which may shed light on potential Palaeo-

flow regimes.

Very little is known about the hydrology of the CCBwith few studies to date

[Cortes et al., 1997; Johannesson et al., 2004; Rodriguez et al., 2005; Wolaver et al.,

2008]. It is, however, well established that groundwater flow systems are incredibly

important in arid to semi-arid regions, particularly in the Southern U.S. [Eakin, 1966;

Maxey, 1968; Gates et al., 1980; Ragab and Prudhomme, 2002; Hibbs and Darling,

2005; Scanlon et al., 2006; Herczeg and Leaney, 2011]. Human populations and

associated biota in arid regions rely on available water systems to survive. Such

systems are also often home to endemic populations that are remnants of previous

pluvial environments. The CCBis home to over 70 species of endemic flora and fauna

[Minckley, 1969] including fresh water stromatolites - the only ones of their kind in the

World [Badino et 01.,2004]. This high degree of endemism in the CCBsuggests a long

period of biogeographic isolation and such endemic species are highly sensitive to

slight changes in their habitat such as temperature change and decreases in water

quality and groundwater flow. Changes can be highly detrimental to species

populations and in an area closely linked with human dispersal throughout the

Americas, groundwater flow regime can both affect and be affected by human

populations. In the modern day environment there is a fine balance between

conservation of the natural environment, ecc-tourism and the need for survival -

irrigation of farmland, drinking water and sanitation. Understanding the flow regime

and water sources becomes paramount in such an economically poor region, as

overuse of the hydrologic system could lead to irreversible water table changes. This
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would not only be to the detriment of the current human inhabitants of the basin, but

could also lead to the breakdown of a very fragile and long standing ecosystem.

Such changes are particularly interesting for studies of palaeoenvironment as

modern conceptual hydrogeologic models can identify possible precursors to past

changes that may have effected human and faunal populations.

2.1.1 Stable isotope geochemistry

Research into the measurement of isotopes began as early as the 1920's [e.g.

Briscoe and Robinson, 1925]. Early research was, however, crude and the technical

development of stable isotope geochemistry, particularly the measurement of oxygen,

hydrogen and carbon didn't begin until the 1950's and 1960's [e.g. Craig, 1953 and

1961; Oansgaard, 1964]. Since the developmental research of the 1950's and 1960's

the use of stable isotope geochemistry has increased, leading to a greater

understanding of the subject area and allowing the interpretation of proxy

hydrological and environmental data [e.g. Gat and Issar, 1974; Carillo-Rivera et al.,

1992; Winograd et al., 1992; Andrews et al., 1992; Love et al., 1994; Andrews et al.,

1997; Harrington et ot., 2002; Guendouz et al., 2003; Andrews, 2006; Bernal et al.,

2011; Fawcett et al., 2011J.

Lighter (less neutrons) and heavier (more neutrons) isotopes exist for each

element and are conventionally written as the ratio of the heavy (rarer neutrons)

isotope to the light (more abundant) isotope e.g. 180/160, 13C/12e. Delta (0) is the

standard notation for reporting the ratio of the abundance of the heavy isotope to the

light isotope and is displayed in parts per mil (%0). Higher 0 values or lower 0 values

mean that the ratio of the heavier isotope to the light isotope is higher or lower

respectively, in the sample than the standard [Clark and Fritz, 1997; Leng, 2005; Sharp,

2007]. For example, a 013C value of -3%0 has a 13c/12e ratio that is 3 per mil, or 0.3

percent lower than the standard. The most commonly used standards from which 0180

and oBe deviations are measured are: the POB (PeeOee Belemnite) scale for terrestrial

carbonate sediments and the VSMOW (Vienna Standard Mean Ocean Water) scale for

water samples [for use of other reference standards see Sharp, 2007J.
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2.1.1.1 Stable isotopes in arid-zone hydrology

Reviews of the isotope systematics used in isotope hydrology have been

conducted in great detail [see Fritz and Fontes, 1980, 1986; Clark and Fritz, 1997; Leng,

2005; Aggarwal et al., 2005; Sharp, 2007], and as such this section is presented as an

overview of the main hydrological processesand controls on stable 180/60, 2H/H (D)

and 13C/2C isotopes, with a focus on arid/semi-arid zone hydrology.

Arid and semi-arid zones constitute the majority of the Earth's land surface

between 18 and 40· North and South with low and intermittent rainfall, leaving

groundwater as the only reliable water source [Herczeg and Leaney, 2011]. Stable

isotopic compositions of these water sources are affected by a number of processes

e.g. evaporation, and it is the affect of these processeson the most active parts of the

hydrological cycle that must be considered when interpreting isotopic data (Fig. 2.1).

Large,well mixed water bodies e.g. oceans, vary little in isotopic composition whereas

waters of a meteoric origin, derived from the oceans through evaporation e.g.

precipitation, can vary widely [Gat, 1996; Sharp,2007].

Figure 2.1. Schematic model of the hydrological cycle and the major sinks and fluxes of water within it (100
units constitutes the marine sink) [modified after Gat, 1996).
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In essence,Oceanwater is evaporated and condenses into precipitation and, in

turn, precipitation is transformed into three basic 'terrestrial reservoirs' that influence

the oxygen (0180) and hydrogen (00) isotopic ratio (composition) of lake water: 1) soil-

zone moisture, 2) groundwater and 3) surfacewaters [Lengand Marshall, 2004].

The carbon isotope ratio (composition) of lake water, however, is more

complicated as carbon is in the form of an anion in alkaline systems and as such the

controls of the carbon cycle are not completely climate related [Leng, 2005]. The

incorporation of carbon into lake water is affected by many processese.g. interaction

with atmospheric CO2 (Fig. 2.2), so is not simply controlled by the contents of

environmental water [Atekwana and Krishnamurthy, 1998; Myrbo and Shapley,2006].

Figure 2.2. Schematic model of the carbon cycle in lake water with the major sources of carbon and the effect
of each source on li13e isotope value of the water [modified after Gat, 1996).

In essence, the 0180 and 00 value of any lake water will be sourced from

atmospheric moisture, and thus precipitation, and the B13Cvalue of any lake water will

most likely be sourced from the total dissolved inorganic carbon (TOle) from the

surrounding catchment, via interactions with soil and the atmosphere [leng, 2005].

15



Oxygen and hydrogen

Meteoric water, or atmospheric water, is water that has fallen from the

atmosphere, including rain, hail and snow, and is the most important influencing factor

on the 6180 and 60 values of lake water. Craig [1961] outlined the baseline Global

Meteoric Water Line (GMWL) from which regional precipitation isotopic values can be

determined. Regressionof meteoric water data resulted in the expression60 = 86180 +

10, applicable to the isotopic composition of the majority of the worlds climates [Craig,

1961]. Deviations from the GMWL are observed with regional variations in

atmospheric moisture and therefore precipitation; responsible for the formations of

LocalMeteoric Water Lines(LMWL) [Rozanskiet al., 1993]. The isotopic composition of

precipitation in any given region is controlled, often by a combination of, six physical

processes:

1) Temperature: Dansgaard [1964] first noticed that surface temperature,

particularly in temperate regions, is strongly correlated with the isotopic

composition of meteoric water. This is termed Rayleigh fractionation; an open

system whereby condensate is continually removed from the vapour of an air

mass in under a fixed fractionation factor [see Gat, 1996 for further discussion

of Rayleigh fractionation in open, closed and steady state conditions]. In

arid/semi-arid zones, the air mass is less readily condensed because of higher

temperatures so 6180 and 60 values of the air masswill more closely reflect the

isotopic value of the parent water: ocean water (6180 value 0%0)[Gat, 1996;

Sharp,2007].

2) Continentality: precipitation from an air mass moving over a land mass, or

continent, will become isotopically lighter because it will experience more

cycles of precipitation, preferentially raining out the heavier 180 isotope [e.g.

Kent-Corson et al., 2009]. Arid regions will exhibit higher 6 values due the

continual recirculation of 160 through preferential evaporation.

3) Latitude: 6180 and 60 values of precipitation will be lower with increasing

latitude due to decreasing temperature and the air mass experiencing more

cyclesof precipitation, preferentially removing the heavier 180.

4) Altitude: Colder temperatures are experienced at higher elevations,

intensifying Rayleighfractionation and lowering the isotopic composition of the
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water [Sharp, 2007]. As an air mass is deflected up by a mountain it cools,

increasing rainout and decreasing the vapour content of the remaining air

mass, thereby lowering the 6180 and 6D values of the precipitation. The

altitude of precipitation that is the source for a recharging water body can

often be calculated by the oxygen isotopic composition of that water [e.g.

Johannessonet al., 2004].

5) The Amount effect: mean 6180 and 6D values of precipitation negatively

correlate with the amount of precipitation in tropical regions [Dansgaard,

1964]. More cyclesof precipitation and flash flooding will lead to isotopic ratios

being highly depleted in the heavy isotope in each subsequent rainfall, so 6

values are higher in months with low rainfall and lower in months with high

rainfall [e.g. Rozanskiet al., 1993]. However, in convecting arid/semi-arid air

masses, four further processes that can affect the isotopic composition of

precipitation must be considered: 1) falling droplets can exchange with rising

air vapour; 2) falling droplets incorporate more vapour as they fall, becoming

larger; 3) droplets can evaporate upon exiting the cloud; 4) droplets can

exchange with each other within the air mass [see Sharp, 2007, for further

discussion].

6) Seasonality: all of the aforementioned processes are affected by seasonality.

Changes in the dominant moisture source between summer and winter will

affect the isotopic composition of precipitation e.g. winter Pacific air massvs.

summer Gulf of Mexico air mass [Metcalfe et al., 2000]. Also, due to the

tendency for more rainfall to be lost to the atmosphere in summer than in

winter, isotopic ratios may become more depleted in the heavier isotope

[Herczegand leaney, 2011 after Fontes, 1994].

In the arid/semi arid zone, groundwaters in karst and other unconfined aquifers

usually display isotopic ratios that represent the weighted mean of meteoric water

inputs, displaying isolation from temperature, seasonality and amount effects e.g.

Carrillo-Rivera [1993] and Clark and Fritz [1997 after Ranket al., 1992]. A decrease in

the 6180 variability in water is observed with increasing depth and temperature, with

surface water bodies usually displaying isotopic ratios within 0.5%0 of the source

precipitation [e.g. Carrillo-Rivera, 1993]. However, groundwater sourced from deep
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lying aquifers may display a different isotopic composition to that of modern

precipitation in any given area if the recharge region is far away from the sample site,

with a different catchment altitude or residence time [e.g. Johannesson et al., 2004],

or if the aquifer contains palaeo-water. In the case of palaeo-water, Gat and Issar

[1974] showed groundwater isotope compositions are observably more negative than

that of the weighted mean precipitation. Further studies have since shown that the

stable isotopic composition of groundwater decreaseswith age along an inferred flow

path [love et al., 1994; Guendouz et al., 2003; Abdalla, 2009], leading to the possible

formation of palaeo-water.

Although groundwater is the primary water resource in arid/semi-arid zones

[Herczeg and leaney, 2011], water-air interactions (evaporation) from soil in the

unsaturated zone and surface waters remain the most influential processesthat can

affect 5180 and 5D values of lake water. Studies of soil pore water in the unsaturated

zone [Allison, 1982; Allison and Barnes, 1985; Fontes et al., 1986; Barnesand Allison,

1988; Songet al., 2009] have shown up to 1-2 m depth in a soil zone will be affected by

evaporative enrichment before any precipitation infiltrates down to the water table

before mixing with lake water. However, Allison [1982] observed mixing between

evaporated soil water and subsequent rainfall events, displacing the residual soil water

downward, results in groundwater isotopic values that can be "'2%0 and "'15%0

enriched in 180 and 2H (D) respectively, relative to the isotopic composition of local

precipitation.

It is not just soil water that can be affected by kinetic isotope effects, if two or

more lakes are joined by a surface flow system, progressively higher 5180 and 5D

isotope values of the water are observed the greater distance the water flows, as

increased contact with the warm, dry air increases preferential evaporation of 160

[Alllson and Barnes, 1985; Gat, 1996]. This progressive enrichment can lead to a local

Evaporation line [lEl] from which to basehydrological models [Leng, 2005].

Carbon

Groundwaters originate as meteoric water and infiltrate the soil and rocks

gaining dissolved inorganic carbon (Ole) along the way. The dissolution of CO2through

acid-base weathering of carbonate rock and soil results in groundwater rich in
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bicarbonate (HC03-) and carbonate (CO{) species. As well as DIC, groundwater will

invariably dissolve organic matter from the soil in the form of dissolved organic matter

(DOC). In ground and lake water, microbiological activity degrades the organic

compounds resulting in the evolution of redox conditions and methanogenic reactions.

All sources of carbon are linked through these acid-base and redox reactions but DIC

will give a better understanding of hydrologic pathways than DOC as there are various

sources for DIC: atmospheric CO2, soil CO2and organic/biogenic interactions (Fig. 2.2),

whereas DOC is derived from parent organic matter or fossil organic material [Clark

and Fritz, 1997; Atekwana and Krishnamurthy, 1998; Leng, 2005]. cS13Coicis the

dominant precursor for carbon bearing proxies e.g. carbonates, and is present in

terrestrial water bodies e.g. lakes and groundwaters [Leng, 2005]. cS13COICvalues of lake

water (Fig. 2.3), when used with other measurements, can be used to evaluate the

sources, sinks and fluxes of carbon in an environment and for any given water body

will reflect contributions from groundwater, streams, biogenic CO2 uptake and/or

release and atmospheric C02 invasion/evasion [Atekwana and Krishnamurthy, 1998].

Figure 2.3. Ranges of 613C values from natural compounds represented in lake water isotope values [modified

after Clark and Fritz, 1997].

19



However, in a groundwater sourced recharge system the cS13CDlC value of the

water body (or bodies) will mirror that of the groundwater and significant run-off

events can lead to dilution of the cS13COIC value [Taylor and Fox,1996; Yanget 01., 1996;
Atekwana and Krishnamurthy, 1998; leng, 2005].

See chapter 5 for more detail of controls on oxygen, hydrogen and carbon

isotopic composition of carbonate sediments.

2.1.2 Current topography and surface stream network

As discussed in Chapter 1, the CCBforms part of the Sierra Madre Oriental

mountain range, of which the elevation model for the current topography of the CCB

can be seen in Figure 2.4. The CCBfloor has an average elevation of 742 m a.s.1

although the west of the basin is on average50 m higher in elevation than the east of

the basin [Badino et 01., 2004].

Figure 2.4. Topography of the Cuatro Clenegas Basin. Elevations of the major limestone outcrops and CCB
recharge zone are shown [modified after Wolaver et 01., 20051.

Despite not being topographically dosed, as deep canyons exist between the

Sierra Madera and Sierra la Fraguain the NW of the basin; Sierra Menchaca and Sierra

Sacramento in the NE of the basin and the Sierra Granizo and Sierra San Marcos y
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Pinos in the SW of the basin (Figs. 2.4 and 2.5), the CCB currently acts as a

hydrologically closed basin system (endorheic) [Badino et al., 2004]. The CCBdisplays a

high degree of karstification with no surface hydrologic links between the basin and

any of the surrounding basins with the exception of streams originating on the high

peaks of the surrounding mountains (Fig. 2.5) [Badino et al., 2004; Rodriguez et al.,

2005; Wolaver et al., 2008]. Precipitation falls on the high mountain peaks before

either evaporating or entering the karst system. The topography observed today in the

CCBhas been created by precipitation eroding water courses through weaknesses in

the natural lithological structures of the Cretaceous limestone ridges. The effect of this

erosion, since the Laramide Orogeny in the Eocene(c.55 million years), can be seen as

deep canyons directly on the relief of the mountains and accumulation of alluvium on

the valley floor (Figs 2.4 and 2.5).

Figure 2.5. Topography of the Cuatro Clenegas Basin with possible stream locations from the high peaks of the

surrounding mountains. Black lines are roads and tracks. Blue lines are proposed water flow paths [modified

after Wolaver et ol., 2005].

Build up of thick alluvium sequences on the CCBfloor due to erosion is well

documented [Guzman, 2001; Badino et al., 2004; Rodriguezet al., 2005; Wolaver et al.,

2008], the exact depth is largely unknown, although it is estimated to be in the region
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of 200 m [Rodriguez et ol., 2005]. As well as alluvium, the effects of erosion can be

seen by the large alluvial fans that have deposited at the base of canyons (Fig. 2.6).

Figure 2.6. Alluvial fan deposits at the base of the Sierra Madera, the northern most boundary of the CCB.
Incised channels on the alluvial fan deposits suggest they are long standing features [image from
www.goog/e.co.uk/earth).

2.1.3 Hydrogeology of the Cuatro Ch~negasBasin

The CCB contains over 200 pools, lakes, springs and rivers. The water bodies are

highly variable in origin (e.g. groundwater, hydrothermal, precipitation) and as a result

can exhibit extreme variability in salinity (up to hyper saline), temperature (ranging

between l8°C and 35°C), water chemistry and spring discharge over small spatial areas

[Minckley, 1969; Johannesson et at., 2004; Evans, 2005; Rodriguez et al., 2005;

Wolaver et al., 2008].

Figure 2.7. Schematic of water inputs within the basin and flow within the carbonate strata [modified after
Badino et 01.,2004 and Rodriguez et 01.,2005).
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The main types of water body in the CCBare source springs (e.g. PozaBecerra,

Poza Escobedo), fed directly from upwelling water (Fig. 2.7); pools fed from surface

flow and lake systems [Minckley, 1969].

The Cupido-Aurora carbonate aquifer is known to recharge in the CCBand gives

rise to the hydrothermal pools, lakesand rivers [Johannessonet at., 2004; Rodriguezet

al., 2005; Wolaver et al., 2008]. Earlygroundwater flow models for the Cupido-Aurora

aquifer [Lesser Jones, 1967; Lesser and Lesser, 1988] show that in the vicinity of

Monterrey, Nuevo Leon, Mexico, water recharge occurs through exposed carbonate

platforms up to 150 km west of the city, within the Sierra Madre Oriental mountain

range, including the CCB,and north-west in the Bolson de Mapimi (Fig. 2.8). It is

hypothesised that water flows down the hydrologic gradient, created around 108 Mya

(seeChapter 1) from the Bolson de Mapimi in an east-southeast direction towards the

Gulf coastal plain. The hydrostatic pressures created by this flow in the limestone of

the aquifer have produced flowing artesian wells around the city of Monterrey and

coastal plains. Early flow models failed to explain large dischargesprings located in the

Sierra Madre Oriental and although fractures in the aquifer gives rise to springs in this

discharge zone the exact flow regime remains unknown [Johannesson et al., 2004;

Rodriguez et al., 2005; Wolaver et al., 2008]. More recent groundwater flow models

[Johannessonet al., 2004; Rodriguezet al., 2005; Evans,2005; Wolaver, 2005; Wolaver

et al., 2008] suggest that a significant component of groundwaters in the CCBare

recharged in the local mountain ranges surrounding the basin but the hydrothermal

pools located predominantly on the western flank, but also on the eastern flank, of the

Sierra SanMarcos and Pinos recharge from sources outside of the basin, thought to be

the CupidoAurora aquifer.
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The pools within the CCBvary in morphology and depth and can be explained

by their geographical position. The basin is effectively split in the middle (N-Saxis) by

the Sierra SanMarcos y Pinos with the basin floor west of this lying approximately 50

m higher than the floor to the east (Fig.2.4). The hot pools at the piedmont and to the

west of the Sierra San Marcos y Pinos are on the sub-vertical side of the Sierra and

generally exhibit higher water temperatures, +26.7 to +32.4·C (Fig. 2.9) [Minckley,

1969; Johannessonet al., 2004; Evans,2005]. Theseare fed directly from hydrothermal

sources, uprising through faults (e.g. Poza Becerra) and natural fissures in the

carbonate strata (Fig. 2.7). Hot pools to the east of the Sierra SanMarcos are on the

less sloping side of the Sierra and group nearer to the centre of the CCB;where the

relief is lower (Fig.2.9). Hydrothermal pools evident on the east side of the basin (Poza

Escobedo,+32·q are fed through a mix of deep hot water rising and meteoric water

from interstratal karst (Fig.2.7) [Minckley, 1969; Badino et 01.,2004].

It is interesting to note that pools <20·Cappear to group more densely further

south on the eastern flank of the Sierra San Marcos y Pinos (Fig. 2.9). No faults or

fracture zones are thought to be located in this region of the CCBwith the pools

forming through subsidence of the basin floor as underground sinkholes (created by

karstic flow) collapse e.g. LosHundidos [Badino et al., 2004]. Wolaver [2005] suggests

alluvial fans could be acting as reservoirs for interstratal karst, releasing captured

precipitation gradually throughout the year, creating <20·C water bodies. Similarly,

alluvial fans may also be preventing upwelling of hydrothermal groundwaters, causing

the low density of hot pools observed in the samearea (Fig.2.9).
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Figure 2.9. Water body temperature map for the CCB. Greater densities of hot pools (2S·C - 3s·C) are located

around the piedmont of the Sierra San Marcos y Pinos suggesting fault controls. Ambient pools (20·C - 2s·C )

cluster in a similar area to hot pools suggesting the possibility of mixing with colder pools. Ambient pools <20·C

appear to cluster in areas with alluvial fan deposits (see Fig. 2.4 also). Circles represent the temperature of the

pools sampled -larger circles represent higher temperatures. Overall map colours are a spatial representation

of water temperatures on the CCB floor, based on data collected [modified after Minckley, 1969 and Evans,

20051.

The CCB borders the physiographic boundary between the Sierra Madre

Oriental and the Bolson de Mapimi and therefore the groundwater flow regime

adheres to the proposed dominant east-southeast direction. However, the differing

water bodies of the CCBappear to suggest a very complex mixture of local and

regional karst water and groundwater recharge.
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2.2 Methods

2.2.1 Water sampling strategy

Water samples were collected for stable oxygen, hydrogen and carbon isotope

analysis from 14/3/08 - 17/3/08, using 26 pre-sterilized 250 ml polyethylene

terephthalate (PET) plastic bottles.

Water samples for analysis were collected from: 15 pools (Mex 30-2, Poza

Churince, Poza Tierra Blanca, Poza de Quintero, Poza Pronatura, Poza Azull, Poza Azul

2, Los Hundidos, Yucca Pond, Rim Pond, Poza Juan Santos, Poza Garrabatal, Poza

Anteojo, Poza Azul and Poza la Becerra); 3 springs (Mex 30-1, 'Bone Site' and Palm

Spring), 2 lakes (Laguna Grande and Laguna Churince); 2 rivers (Rio Mesquites and Rio

Mesquites 2), 2 streams (San Marcos and 'Fast Stream'); and 2 salt pools (Charco Rojo

and LasSalinas) (Table 2.1; and Figs. 2.10a, 2.10b, 2.10c, 2.10d and 2.10e).

To obtain the best possible range of water sources to best understand the

reconnaissance flow regime, locations of water bodies sampled were chosen for their

distribution in both the east and west areas of the CCBwith GPS coordinates logged.

Due to the CCB being a protected area, sampling localities were limited and as such

water body samples from the east of the CCBwere taken from two main localities: 1)

cold pools in close proximity to the Sierra San Marcos y Pinos (Poza Quintero, Paza

Pronatura and Los Hundidos) and 2) cold salt pools in the centre of the eastern basin of

the CCB (Las Salinas and Charco Rojo). Water body samples from the west of the CCB

were again focused around two main localities: 1) a mixture of hot pools (San Marcos,

Poza Churince, Laguna Churince and Poza Becerra) and a cold lake (Laguna Grande) in

close proximity to the fault zone of the Sierra San Marcos y Pinos and 2) a mixture of

hot pools (Poza Juan Santos, Poza Anteojo and Poza Azul), ambient pools (Mex 30-1,

Mex 30-2, Poza Azul I and Poza Azul II), ambient rivers (Rio Mesquites 1 and Rio

Mesquites 2) and cold pools (Poza Garrabatal, Palm Spring, Rim Pond, Fast Stream,

Bone Site, Poza Tierra Blanca and Yucca Pond) centred around the cienega (marsh)

area of the piedmont of the Sierra San Marcos y Pinos.

Calibration problems with the Hanna pH, ORP and temperature meter meant

that exact pH and temperature measurements were not taken. Instead qualitative

assessments of water body temperature ranges were made on-site using published
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water temperature data, sampled in April [Minckley and Cole, 1968; Winsborough,

1990; Minckley, 1992; Johannessonet al. 2004], and also with the help of APFFCCstaff

who have an in-depth knowledge of the CCBspools, lakes and rivers. The decision to

not re-sample water for temperature and pH from the 26 localities on subsequent

visits to the CCBwas taken. This was due to the later visits taking place in January, as

opposed to March when the original samples were taken, where differences in

seasonality, flow relatedness, source water, atmospheric temperature, wind and

evaporation flux could have adversely affected any repeated lab based analyses

[Hirsch et al. 1982; Michel, 1992; Vegaet al. 1998; Badeet al. 2004].
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Figure 2.10b. Enlarged map of location I (Fig. 2.10a). SM - San Marcos; PC - Poza Churince; LC- Laguna

Churince; LG - Laguna Grande; B - Poza Becerra [image from www.qooqle.co.uk/earths.

Figure 2.10c. Enlarged map of location II (Fig. 2.10a). G - Poza Garrabatal; 30-1- Mex 30-1; JS- Poza Juan

Santos; PS- Palm Spring; RP - Rim Pond; FS- Fast Stream; TB - Poza Tierra Blanca; YP - Yucca Pond; BS - Bone

Site; 30-2 - Mex 30-2; A - Paza Anteojo; RM1- Rio Mesquites; Azil - Paza Azul II; Az 1- Paza Azul I; Az - Poza

Azul; RM2 - Rio Mesquites 2 [image from www.qooqie.co.uk/eartht.
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Figure 2.10d. Enlarged map of location III (Fig. 2.10a). Q - Paza Quintero; P - Poza

Pronatura; LH - Los Hundidos [image from www.google.co.uk/earth].

Figure 2.10e. Enlarged map of location IV (Fig. 2.lOa). LS- Las Salinas; CR - Charco Rojo

[image from www.google.co.uk/earth).
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2.2.2 6180 and 6D method

Sample bottles were flushed and overfilled in the collection water three times

prior to collection. Samples were collected from the epilimnion

(30 cm below the air-water interface) and capped tightly before being stored in cooler

box, in the dark until they could be stored in a fridge. Samples were transported back

from Mexico in a refrigerated box and subsequently kept in a refrigerator at the NERC

(Natural Environment Research Council) Isotope Geosciences laboratory, Keyworth,

Nottingham until they were analysed at the same location (within 1 to 2 weeks of

sampling). The 250 ml water samples were equilibrated with CO2 using an Isoprep 18

device for oxygen isotope analysis with mass spectrometry performed on a VG SIRA.

For hydrogen isotope analysis, an on-line Cr reduction method was used with a

EuroPyrOH-3110 system coupled to a Micromass Isoprime mass spectrometer. Isotopic

ratios e80/160 and 2H/H) are expressed in delta units, 0180 and 00 (%0,parts per mil),

and defined in relation to the international standard, VSMOW (Vienna Standard Mean

Ocean Water). NIGL analytical precision (reproducibility) for water samples is ±0.08%0

for 0180 and ±1.0%0 for 00 (20').

2.2.3 Carbonate (Dissolved Inorganic Carbon) method

Dissolved Inorganic Carbon (Ole) analysis was conducted at the NERC Isotope

Geoscience Laboratory (NIGL), Keyworth, Nottingham. After precipitation of the

bicarbonate from the water samples, the bicarbonate was filtered to leave only fine

fraction material, before being washed with deionised water and dried at 40°C and

ground in agate. The carbonate was reacted with anhydrous phosphoric acid in vacuo

overnight at a constant 25°C. The CO2 liberated was separated from water vapour

under vacuum and collected for analysis. Measurements were made on a VG Optima

mass spectrometer. Isotope values (813e)are reported as per mil (%0)deviations of the

isotopic ratio (BC/2e) calculated to the VPDB scale using a within-run laboratory

standard calibrated against NBS standards. NIGL analytical precision (reproducibility)

for bicarbonate samples is normally better than ±0.1%0 for 813C (20').
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2.3 Results

2.3.1 Stable 6180 and 60

6180 and 60 isotope data for the 26 locations in the CCBare presented in Table

2.1 and are plotted by map area (Figs. 2.10a, 2.10b, 2.10c, 2.10d and 2.10e) on figures

2.11, 2.12, 2.13, 2.14 with figure 2.15 showing the overall spatial distribution of 6180

vs. 60 in the CCB. 6180 and 60 isotope data are also plotted by water body

temperature on Figures 2.16, 2.17, 2.18, 2.19 and 2.20 using linear regression to

investigate if water body temperature has an effect on the 6180 vs. 60 relationship.

Figure 2.15 shows 6180 and 60 isotope data for the 26 locations alongside the

LMWL (Local Meteoric Water Line) from Chihuahua [Cartes et al., 1997] and GMLW

(Global Meteoric Water Line [Craig, 1961]. 6180 and 60 values of precipitation in the

CCB are thought to be -8.3%0 and -55.8%0 respectively, although no meteoric water

line is available [Wassenaar et al., 2009]. The CCBis, however, geographically bound by

Monterrey and Chihuahua (Bolson de Mapimi) (Fig. 2.8) which have almost identical

meteoric water lines: 60 = 6.86180 + 1.85 and 60 = 76180 + 1.9 respectively [Cortes et

al., 1997]. The strong similarity in both LMWL's for Monterrey and Chihuahua suggests

that the CCB is likely to be similar, since the CCBforms part of the Chihuahuan Desert

and it is thought the Cupido-Aurora aquifer, providing groundwater to the CCB,

originates here [Johannesson et al., 2004; Rodriguez et al., 2005; Wolaver et al., 2008],

it is therefore reasonable to use the Chihuahuan LMWL. The similarity in LMWL also

suggests that the regional meteoric water sources arise from the same precipitation

sources - the Gulf of Mexico during the summer months and the Pacific Ocean during

the winter months [Johannesson et al., 2004].

All of the isotopic water samples plot to the right of the GMWL [Craig, 1961]

and the lMWL [Cortes et al., 1997] in the CCB (Fig. 2.15). Of the 26 samples, 22 of

them are grouped together with 6180 and 60 values of the water ranging from -6.92%0

to -5.67%0 and -50.3%0 and -44%0 respectively (Fig. 2.15). Poza Anteojo water plots

very closely to the LMWL with 6180 and 60 values of the water of -7.99%0 and -54.8%0

respectively (Figs. 2.12 and 2.15). Three main outliers are evident on Figure 2.15, all

plotting with positive 6180 values - Laguna Grande (6180 value of the water was

+1.17%0, 60 value of the water was -10%0), Las Salinas (6180 value of the water was
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+2.98%0, {jD value of the water was -2%0} and Charco Rojo ({j180 value of the water

was +4.97%0, {jD value of the water was +0.3%0}.These three samples have much

higher values of both {j180 and {jD relative to the other 23 samples, with laguna

Grande plotting 6.84%0 and 34%0 higher than los Hundidos (Fig. 2.15) for {j180 and {jD

respectively.

Using a linear regression line through the data for 23 water bodies (Fig.2.15), a

local Evaporation line (lEl) of 60 = 4.46180 - 19.5 is proposed. The lEl shows a high

correlation coefficient (R2 = 0.96) and crosses the lMWL at -8.3%0 and -55.8%0 (the

modern isotopic composition of precipitation in the CCB)for {j180 and 60 respectively.

Although laguna Grande, las Salinasand Charco Rojo water samples display positive

6180 values, they still plot very close to the proposed LEL.

However, Map III water samples (Figs.2.10d and 2.13) plot along the same LEl

as Maps I, II and IV (Fig.2.15). The possibility of a secondary flow system is interesting

as the first pool of the secondary flow system, PozaQuintero, displays a similar {j180

water value (-6.84%0)to that of PozaChurince (-6.92%0). However, PozaQuintero has

low water temperature «20°C) whereas Poza Churince has a higher water

temperature (>25°C-35°C) suggesting that, despite similarity in the isotopic

composition of their source waters, both pools have different sources and separate

flow systems. Map III samples being taken on the east flank of the Sierra SanMarcos y

Pinos, as opposed to the west flank (Maps I and II), and the adherence to the LEl

suggeststhe possibility of a secondary evaporative enrichment system.

34



Table 2.1. Water isotope values (0180, 00 and 013Cod, facies and location for samples taken in the CCB.
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2.3.1.1 Water body temperature vs. 6180 and 6D

6180 and [)D values of the water bodies are plotted by water body temperature

on Figures 2.16 (25°C - 35°C), 2.17 (20°C - 25°C), 2.18 «20°C), 2.19 «20·C minus

outliers) and 2.20.

Hot water bodies (25°C - 35°C) [)180 values range from -7.99%0 to -5.71%0

(Table 2.1; Fig. 2.16) with a mean value of -6.68%0 (n = 7). Taking away the main

outlier (Poza Anteojo) gives a 6180 range of -6.92%0 to -5.71%0, producing a slightly

higher mean value of -6.45%0 (n = 6). Ambient water bodies (20°C - 25°C) [)180 values

range from -6.37%0 to -5.75%0 (Table 2.1; Fig. 2.17) with a mean value of -6.15%0 (n =
6). Cold water bodies «20°C) [)180 values range from -6.84%0 to +4.97%0 (Table 2.1;

Fig. 2.18) with a mean value of -4.02%0 (n = 13). Taking away the three main outliers

(Laguna Grande, Las Salinas and Charco Rojo) gives a [)180 range of -6.84%0 to -5.67%0

(Table 2.1; Fig. 2.19), producing a much lower mean value of -6.14%0 (n = 10).

Hot and <20·C ambient water bodies (Figs. 2.16 and 2.18 respectively) display

very similar, good linear relationships (R2 = 0.99), adhering to the LEL (Fig. 2.20). The

three samples displaying the most 180 enriched water (Laguna Grande, Las Salinas and

Charco Rojo with 6180 of +1.17%0, +2.98%0 and +4.97%0 respectively) are all <20°C and

the one sample displaying the most 180 depleted water (Poza Anteojo with [)180 of

-7.99%0) is hot (2S·C - 3s·C). Figures 2.18 and 2.19 show <20·C water bodies with and

without the most 180 enriched waters respectively, the similar linear regression lines

(R2 = 0.99 and 0.96 respectively) suggest high [)180 values are not water body

temperature related as including them does not significantly change the correlation of

the samples. The similarity of the data between the two extremes of temperature

(2s·C - 3s·C vs. <20·C) also suggests water temperature of an individual water body

does not have a direct effect on the isotopic composition of that water body.

20·C - 2S·C ambient water bodies (Fig. 2.17) display a less strong linear

relationship (R2 = 0.74) than hot and <20·C ambient water bodies (both R2 = 0.99). All

the 20·C - 2s·C ambient water bodies plot within the -7.99%0 to +4.97%0 [)180 isotopic

range for 2s·C - 3s·C and <20·C water bodies (Fig. 2.20).
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2.3.26180 vs. 613CD1Cfrom water carbonate

6180 vs. 613CDlCisotope data for the 26 locations in the CCB are presented in

Table 2.1 and are plotted by map area (Figs. 2.10a, 2.10b, 2.10c, 2.10d and 2.10e) on

Figures 2.21, 2.22, 2.23 and 2.24 with Figure 2.2S showing the overall spatial

distribution of 6180vs. 613Co1cin the CCB.6180vs. 613Colcisotope data are also plotted

by water body temperature on Figures 2.26, 2.27, 2.28 and 2.29 using linear regression

to investigate if water body temperature has an effect on the isotopic composition of

the water samples. Pozas San Marcos, Becerra and Charco Rojo did not contain

sufficient amounts of bicarbonate for 613CDlCanalysis so do not plot on any of the

figures.

6180 vs. 613CD1Cfrom modern water samples are plotted in figure 2.26, 2.27,

2.28 and 2.29. They do not display a strong relationship with each other, ranging from

-21.6%0 to -9.2%0 (mean -14.8%0, n = 23). Hot water body {2S·C - 3Soq 613CDlCvalues

range from -19.8%0 to -13.2%0 {Table 2.1; Fig. 2.26} with a mean value of -15%0 (n =
5). linear regression through the hot water data indicates no relationship between

samples (R2 = 0.1). Ambient water body (20°C - 25°q 613CoiCvalues range from -21.6%0

to -10.4%0 {Table 2.1; Fig. 2.27} with a mean value of -13.6%0 (n = 6). Rio Mesquites

(RM1) appears to be an outlier with the lowest 613CDlCvalue (-21.6%0). Without this

water sample included, 613COICvalues range from -14.7%0 to -10.4%0 with a higher

mean value of -12%0 (n = 5). Linear regression through the ambient {20·C - 25°q water

data indicates no relationship between samples (R2 = 0.1). Cold water body {<20"q

013Co1cvalues range from -18.8%0 to -9.2%0 (Table 2.1; Fig. 2.28) with a mean value of

-14.4%0 (n = 12). linear regression through the cold {<20"q water data indicates no

relationship between samples (R2 = 0.04).
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2.4 Discussion

~18 ~U2.4.1 u 0 vs. u COIC

Without precise pH, temperature, water body morphology, soil carbon content

and oUCOICof regional groundwater from the CCB, it is hard to make exact

determinations as to the origin of 013CDlCof the 26 sampled water bodies. However,

the range of 013CDlCvalues (-21.6%0 to -9.2%0) from the 26 water bodies samples in

the CCB suggest each water body may experience an individual microclimate with

varying degrees of biogenic input, plant respiration, CO2 invasion from the

atmosphere, CO2 degassing and groundwater input, all of which can affect the 013CDlC

value of water bodies [Eakin, 1966; Taylor and Fox, 1996; Yang et al., 1996; Atekwana

and Krishnamurthy, 1998; Leng, 2005]. Water bodies with lower 13Co1cvalues, in the

range of -22%0 to -16%0 (Table 2.1; Fig. 2.10a), most likely reflect increased CO2

invasion from plant respiration and/or a higher degree of carbon isotope input from

CAM vegetation. Water bodies with higher 13Co1cvalues, in the range of -16%0 to -8%0

(Table 2.1; Fig. 2.10a) most likely reflect increased groundwater aquifer discharge into

the CCBand/or a higher production of CO2 in the catchment soils.

It is likely that all water bodies in the CCB will reflect some degree of

groundwater input and mixing of surface waters. Increased aquifer discharge into the

CCB could affect 13COICvalues of water bodies from increased input of 13Cenriched

water from carbonate dissolution. However, it is thought the regional Cupido-Aurora

aquifer has a relatively short residence time of water, in the region of 20 to 1500 years

[Badino et al., 2004; Johannesson et al., 2004; Wolaver, 2008], suggesting very little

dissolution of the aquifer limestone occurs. Bralower [1999] estimates the Cupido-

Aurora limestones to have 13COlCvalues of +2%0to +4.5%0 which suggests dissolution of

the Cupido-Aurora limestone would result in 13C enriched groundwater. The highest

13COICvalue recorded from the 23 samples was -9.2%0 so short residence time of

groundwater and increased aquifer discharge into the CCBcould be supported by this

data.

The CCB is currently considered to be a hydrologically closed basin [Badino et

al., 2004; Johannesson et al., 2004; Evans, 2005; Rodriguez et al., 2005; Wolaver et al.,

2008]. Leng [2005, after Leng and Marshall, 2004] suggests hydrologically closed lakes
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will display some degree of 6180LAKEWATERvs. 613COICcovariance, thought to be where R2

> 0.7. The 23 available water bodies sampled from the CCB display very little

covariance, where R2 ~0.1 (Figs. 2.26, 2.27 and 2.28), suggesting the CCB may be of

open lake hydrology. However, the complexity of the CCB hydrology, with the basin

having over 200 water bodies, suggests the possibility of a larger closed basin flow

system rather than a typical over flowing open lake [e.g. Li and Ku, 1997; Li et al.,

1997].

2.4.2 6180 vs. 6D

All 26 samples plot to the right of the GMWL and LMWL, suggesting they have

undergone some degree of evaporation, creating the LEL (Fig. 2.15). Poza Anteojo

(6180 = -7.99%0, 60 = -54.8%0) plots very close to the GMWL and LMWL, closely

reflecting modern precipitation 6180 value of -8.3%0 for the CCB [Wassenaar, 2009],

predominantly rained out on the high peaks (>3000 m a.s.l) of the surrounding

mountains [Badino et al., 2004). Poza Anteojo is the only water body that plots so

close to the GMWL and LMWL suggesting the other 25 water bodies may be of a

different origin.

Poza Churince displays the lowest 6180 value (-6.92%0) of the remaining 25

water bodies (Table 2.1) which is very similar to the precipitation value of Chihuahua

(-7.1%0 [Wassenaar, 2009]) where the Cupido-Aurora aquifer originates in the Bolson

de Mapimi, so the oxygen isotope composition of the Cupido-Aurora aquifer water

should reflect that of the Bolson de Mapimi. The Bolson de Mapimi has an average

elevation of 1200 m a.s.1[Van Devender and Burgess, 1985] so precipitation recharging

the Cupido-Aurora aquifer may be less subject than the CCB to the altitude effect,

whereby 180 is progressively rained out at increasing elevations creating a lower 6180

precipitation value at higher elevations. The Bolson de Mapimi has a lower rainout

elevation (1200 m a.s.l) relative to the CCB (> 3000 m a.s.l) so therefore has a higher

6180 precipitation value of -7.1%0, compared to -8.3%0 respectively. Johannesson et

al. [2004] calculated an approximate groundwater recharge elevation of 1200 - 1400

m a.s.1for the CCBgroundwaters, placing the Bolson de Mapimi within this range. The

similarity in oxygen isotope composition and calculated recharge elevation of 1200 -

1400 m a.s.1 of CCB groundwater, like that of Poza Churince, suggests the Cupido-
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Aurora aquifer provides a significant component of the CCBwater. The difference in

water oxygen isotope composition between PozaAnteojo and the remaining 25 water

body samples suggests they are of separate origins. Based on the extrapolated LEL

from the 26 water body samples and modern precipitation values, three separate

hydrologic 'systems' are evident in the CCB:

1) The first 'system' is independent of the through-flow systems and consists of

independent pools such as Poza Anteojo that are fed directly from the

interstratal karst and closely reflect the isotopic signature of local meteoric

water (Figs.2.30, 2.34a and 2.34c).

2) The first of two evaporative through-flow systems seen in the CCBpossibly

closely related to the Cupido-Aurora aquifer. The main through-flow system

begins at PozaChurince on the western flank of the Sierra SanMarcos y Pinos

before flowing around the piedmont towards the furthest pools with higher

6180 - LasSalinasand CharcoRojo - in the centre of the eastern side of the CCB,

consistent with progressive evaporation across the basin (Figs. 2.30, 2.31,

2.34a, 2.34b, 2.34c and 2.34e).

3) The secondary evaporative through-flow system occurs on the eastern flank of

the Sierra SanMarcos y Pinos, beginning at Pozade Quintero. The water here

flows north to Poza Pronatura before reaching Los Hundidos and joining with

the first through flow system at LasSalinasand Charco Rojo (Figs.2.30, 2.33,

2.34a, 2.34d and 2.34e).
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2.4.2.1Independent system

PozaAnteojo discharges towards the north of the CCBand has the lowest 0180

of the 26 samples (0180 -7.99%0) suggesting that it most closely reflects the high

elevation, low 0180 precipitation of the basin. Poza Anteojo lies within modern

precipitation values for the Chihuahuan desert [Cortes et al., 1997; Johannessonet al.,

2004; Wassenaar et al., 2009] and also plots on the lEl (Fig.2.30). This suggeststhat it

is fed from similar regional meteoric sources but is separate from the main or

secondary through-flow systems. Poza Anteojo could be fed directly from the

limestone karst system, arising from Sierra la Madera, but the warm temperature of

the water, +26.2·C [Johannesson et al., 2004], is higher than the CCBaverage mean

annual air temperature of 21.2·C [Badino et al., 2004] suggesting PozaAnteojo water

has some degree of deep thermal action or possible influence from the Cupido-Aurora

aquifer.

Rodriguez et al. [2005], suggest the Sierra Madera has a meteoric water

(precipitation) sourced karst reservoir which suggeststhe +26.2·CPozaAnteojo water

may be a process of focused channel recharge [e.g. Blaschet al., 2008]. Precipitation

occurs on the high> 3000 m a.s.1Sierra Madera, providing PozaAnteojo with water

that more closely reflects the oxygen isotope composition of CCBprecipitation that is

stored in a karst reservoir [Badino et al., 2004; Rodriguez et al., 2005]. This karst

reservoir may form a part confined aquifer, specific to the CCB,heated by insolation

and geothermal activity, similar to arid groundwater recharge areas in Arizona and

Texas [Kastning, 1983; Hogan et al., 2004; Blaschet al., 2008]. The Trinity aquifer of

the Edwards Plateau, Texasprovides a model from which to base the CCBwith three

separate, self contained aquifers within the carbonates feeding the groundwater

system [Kastning, 1983]. The CCBmay possibly have a similar system with two

aquifers, the regional Cupido-Aurora aquifer and a possible part confined aquifer. The

movement of water through the porous limestone by gravity creates a hydrostatic

head pressure, like those of Mammoth Hot springs, Wyoming and the American

Southwest [Barger, 1978; Guo and Riding, 1999; Blasch et al., 2008] resulting in

recharge at the base of the Sierra Madera from the part confined aquifer. Poza

Anteojo may be the result of this recharge, whereby the thermally heated CCB

meteoric water surfacesasan independent, self contained pool.
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2.4.2.2 Main through-flow system

The isotopic data suggests the main hydrologic feature in the CCBto be a

through-flow system originating to the west of the basin before flowing towards the

east (Figs.2.30, 2.31, 2.34a, 2.34b, 2.34c and 2.34e). PozasSanMarcos, Churince and

Becerra are where the main flow system originates (Figs. 2.34a and 2.34b), most

closely reflecting the oxygen isotope composition of the Cupido-Aurora aquifer water,

although PozaSan Marcos does not appear to form part of the through-flow system.

The waters on west side of the CCBoriginate from the local faulting (Fig. 2.7) [Badino

et 0/., 2004; Johannesson et 0/., 2004], where deep water enriched in dissolved ions

(i.e. LagunaGrande - 588mg/kg Ca,262mg/kg Mg [Johannessonet 0/., 2004]) up wells

through the local faulting to the surface, resulting in gypsum precipitation (see section

2.4.3).

PozasBecerra and Churince and LagunaChurince are very closely linked with

LagunaGrande by surface flow (Fig. 2.32b) with PozasChurince and Becerra both fed

directly from the fault line. Poza Churince (5180 -6.92%0) flows to Laguna Churince

(5180 -5.71%0), before flowing into Laguna Grande (5180 +1.17%0),which is much

more 180 enriched, possibly due to a high degree of evaporation (Fig. 2.34b). Laguna

Grande, despite being located at the beginning of the main through-flow system (Fig.

2.34b), has a much more 180 enriched water, so is further along the LEL(Figs.2.11 and

2.15). Laguna Grande is much larger and shallower than PozaChurince and Laguna

Churince and may experience a much larger degree of evaporative enrichment relative

to the water bodies in close proximity, resulting in a higher 6180 value (Fig. 2.31 and

2.34b). Without studying exact water body size and depth, exact amounts of

evaporation are unknown, so it is hard to substantiate exactly why Laguna Grande

displays a much higher 5180 value. Surface flow from Poza Churince and Laguna

Churince reaches Poza Becerra (6180 -6.63%0), the 0.29%0 enrichment observed

between PozasChurince and Becerra can possibly be accounted for by mixing of the

evaporatively enriched LagunaChurince water with the groundwater fed PozaBecerra

(Fig. 2.32b). However, discharge from the Cupido-Aurora aquifer in the CCB has

recently decreased with the observed disappearance of Laguna Grande in 2009

[APFFCC],possibly changing the isotopic composition of both the pool itself and also
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the through-flow system observed across the CCBsince this reconnaissance study was

conducted,
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t
N

Figure 2.32. a) Subterranean exchanges between ambient subterranean water and

hydrothermal groundwater at a depth of 1.5 m below surface level, highlighting the

complexity of the CCB hydrologic system. b) Aerial photograph showing surface flow from

Poza Churince into Laguna Grande (prior to complete drying of the lake) before flowing

from Laguna Churince to Poza Becerra [image from google.co.uk/earthJ.
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As the main through-flow system reaches the piedmont of the Sierra San

Marcos y Pinos (Figs. 2.34a and 2.34c) the specific flow pattern across the CCB

becomes a complex mix of ambient surface, ambient subterranean and hydrothermal

groundwater flow with a great deal subterranean exchanges between different flow

processes as is seen in clenegas (marshes) of the Sonoran desert [Minckley and

Brunelle, 2007; Minckley et al., 2009] (Figs. 2.32a and 2.34c). This complex hydrology

makes it particularly difficult to trace flow patterns between pools at the piedmont of

the Sierra San Marcos y Pinos. The close cluster of pools, including the Rio Mesquites,

are linked together by a complex clenega (marsh) flow system, first documented by

Minckley [1969] and later summarised in more detail by Badino et al., [2004]. The

cienega (marsh) displays high spatial variability of environments, water bodies and

sediments, ranging from carbonate muds to peats, allowing interchange of water

between the many pools in this area (Fig. 2.34c). The complex flow in this area of the

CCB creates mixed isotopic values of the water as the Rim Pond, Yucca Pond, Fast

Stream and Paza Tierra Blanca sites (Fig. 2.34c) appear further along the LEL than

expected in the main through-flow system (Fig. 2.31). The additional enrichment of

these sites, in particular Poza Tierra Blanca, is similar to that of laguna Grande where

relative size and shallow depth of the water body coupled with further surface flow

possibly increases evaporation, increasing the 6180 value of each water body.

Ambient (20'C to 2S"q water temperature of the clenega (marsh) system (Fig.

2.17) complements the isotopic data, however, when combined with some available

water body temperatures from Minckley [1969]. The Map B (Fig. 2.34c) system

originates at Poza Juan Santos (6180 -6.3S%0, +32.4·q and Poza Garrabatal (6180 -

6.58%0, +18.6·q with hydrothermal and cold water inputs respectively. The

hydrothermal water flows subsurface toward the Rio Mesquites (6180 -6.27%0, +24'Q,

mixing with colder Poza Garrabatal, decreasing in temperature from +32.4·C to +24·C.

This decrease in water body temperature combined with higher 6180 values towards

the east of the piedmont (Fig. 2.34c) suggests that the water also surfaces with some

degree of mixing and evaporation through the clenega (marsh) area before discharging

directly into the Rio Mesquites. Cooler surface water flow from Paza Garrabatal also

flows toward Poza Tierra Blanca and the smaller water bodies (Fig. 2.34c), resulting in

180 enriched water with no discernable temperature changes, +18.6·C to +18.4·C, as
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the cooler water has already equilibrated with the air temperature. This mixing of hot

(2S'C to 3S'C) and cold «20'C) water may create the ambient (20'C to 2S'C) water

bodies, explaining the weaker correlation coefficient (R2 = 0.74) observed in ambient

water bodies (Fig. 2.17).

Poza Azul (0180 -6.51%0, +32'C) water data suggests it to is sourced from the

Cupido-Aurora aquifer by a similar process to Poza Bano Escobedo (Fig. 2.7). Poza Azul

artificially flows into Pozas Azul I and II so both exhibit slightly higher 0180 values of -

6.16%0 and -6.24%0 respectively, before flowing into the Rio Mesquites 2 which

terminates at the LasSalinas and Charco Rojo endorheic pools (Fig. 2.34e)

2.4.2.3 Secondary through-flow system

The secondary through-flow system evident in the CCBoriginates on the east

side of the Sierra San Marcos y Pinos at Poza de Quintero before flowing to Poza

Pronatura and towards Los Hundidos (Figs. 2.33, 2.34a and 2.34d). The water bodies

plot on the CCB LEL, similar to the main through-flow system in figure 2.30, but are

located on the east flank of the Sierra San Marcos y Pinos creating a second similar

system. Poza de Quintero (0180 -6.84%0) has a very similar isotopic composition to

that of Poza Churince suggesting that it is sourced from the same Cupido-Aurora

aquifer groundwaters. However, unlike the hydrothermal water bodies sourced from

the Cupido-Aurora aquifer, Poza Quintero is a cold water body «20'C) suggesting the

secondary through-flow system may be sourced from a karst reservoir, similar to that

of Poza Anteojo.

Wolaver [2005] suggests alluvial fans in this area of the CCBmay be preventing

the upwelling of deep, thermal water and no faults are evident in the limestone strata

to suggest any direct upwelling. Johannesson et al., [2004] suggest pools with a 0180

value between -6.7%0 and -7%0 may be recharged at elevations of 1600 to 1800 m

a.s.l which is the elevation of the Sierra San Marcos y Pinos in the Map C area (Fig.

2.34a). The alluvial fans may be acting as reservoirs for precipitation falling at 1600 to

1800 m a.s.l, creating a more 'classic' cold water karst environment [Palmer, 1991;

Kaufmann and Braun, 2000; Gabrovsek and Dreybrodt, 2010] rather than the hot

water karst aquifer proposed for Paza Anteojo.

66



The secondary through-flow system could also form part of a larger, eastern

CCBflow system. Figure 2.9 shows greater numbers of water body formation, both hot

(2S·C to 3S·C) and cold «20·C), further south on the eastern flank of the Sierra San

Marcos y Pinos. A limited number of hot water bodies e.g. Poza Bafio Escobedo (Fig.

2.7) form on the eastern flank of the Sierra San Marcos through upwelling of hot water

where alluvial fans are not located [Badino et al., 2004; Wolaver et al., 2008]. These

may be a process of Cupido-Aurora aquifer water upwelling or focused channel

recharge at the beginning of a larger through-flow system, possibly similar to the main

through-flow system due to the similarity of the three sampled water bodies on the

lEL (Fig. 2.30).
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Figure 2.34a. Comparable maps showing water flow patterns. Top - Water body locations in the CCB.Arrows
mark the major flow patterns between water bodies, inferred from changes in isotopic composition of water.
Names and locations of water bodies are as figure 2.10a [image from www.googie.co.uk/earthl. Bottom-
Elevation map of water body locations, shown by hydrologic system, in the CCB[elevation map after Wolaver,

2005l·
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Figure 2.34b. Comparable maps showing water flow patterns of location I (Fig. 2.34a), Left - Water body
locations in the CCB.Arrows mark the major flow patterns between water bodies, inferred from changes in
isotopic composition of water. Names and locations of water bodies are as figure 2.10a [image from
www.qoooie.co.uk/eartnt. Right - Elevation map of water body locations, shown by hydrologic system, in the
CCBwith the 0180 value of the water displayed next to each water body [elevation map after Wolaver, 2005).
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Figure 2.34c. Comparable maps showing water flow patterns of location" (Fig. 2.34a). Left - Water body
locations in the CCB.Arrows mark the major flow patterns between water bodies, inferred from changes in
isotopic composition of water. Names and locations of water bodies are as figure 2.10a [image from
www.google.co.uk/earth). Right - Elevation map of water body locations, shown by hydrologic system, in the
CCBwith the 0180 value of the water displayed next to each water body [elevation map after Wolaver, 2005),
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Figure 2.34d. Comparable maps showing water flow patterns of location III (Fig. 2.34a). Left - Water body
locations in the CCB.Arrows mark the major flow patterns between water bodies, inferred from changes in
isotopic composition of water. Names and locations of water bodies are as figure 2.10a [image from
www.qooqie.co.uk/eartht. Right - Elevation map of water body locations, shown by hydrologic system, in the
CCBwith the 61BO value of the water displayed next to each water body [elevation map after Wolaver, 2005l.
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Figure 2.34e. Comparable maps showing water flow patterns of location IV (Fig. 2.34a). Left - Water body
locations in the CCB.Arrows mark the major flow patterns between water bodies, inferred from changes in
isotopic composition of water. Names and locations of water bodies are as figure 2.lOa [image from
www.qooqte.co.uk/eortbt. Right - Elevation map of water body locations, shown by hydrologic system, in the
CCBwith the 61BO value of the water displayed next to each water body [elevation map after Wolaver, 2005l.
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2.4.3 Evaporation and brine evolution across the CCB

Brine evolution is a process of surface water flow evaporation, particularly in

closed basin arid regions [Jones et al., 2008; Lowenstein and Risacher, 2008; Risacher

and Fritz, 2008; Kilic and Kilic, 2010], leading to progressive enrichment of dissolved

ions, precipitating differing minerals [Tucker and Wright, 1990]. Oxygen isotope

composition of the main through-flow system water bodies in the CCB suggests a

progressive evaporative enrichment of surface flow occurs as water flows from the

west, across the piedmont of the Sierra San Marcos Y Pinos, towards the east of the

basin (Figs. 2.30, 2.34a, 2.34b, 2.34c and 2.34e).

Laguna Grande lies on the west area of the basin at the beginning of the main

through-flow system with a 0180 value of +1.17%0 (Table 2.1). The 180 enriched water

of Laguna Grande is possibly a consequence of its large size and relative shallow depth

and, as previously discussed, may experience increased evaporation relative to the

other water bodies in that area. The water in Laguna Grande originates from Poza

Churince and has low alkalinity (116 mg/kg HC03) and high dissolved ions (588 mg/kg

Ca, 262 mg/kg Mg) [Johannesson et al., 2004]. As a result of this low ratio, where

HC03«Ca and Mg, gypsum is precipitated - as can be seen by gypsum dune formation

north and west of Laguna Grande (Fig. 2.35).

Water then proceeds to flow north towards Poza Becerra and into the cienega

(marsh) system, experiencing further evaporation of surface waters, increasing

alkalinity (200 mg/kg HC03) and reducing dissolved ions (360 mg/kg Ca, 105 mg/kg Mg)

[Johannesson et al., 2004] due to them being precipitated as the brine evolves. As the

ratio equilibrates, where HC03~Ca and Mg, precipitation of carbonates occurs - as can

be seen towards the piedmont of Sierra San Marcos y Pinos (Fig. 2.35). Figures 2.34a

and 2.34c show the close relationship of the pools in this area with carbonate rich

tufas being precipitated (Fig. 2.35).

The main through-flow system gradually reaches higher alkalinity in the eastern

area of the basin, towards the endorheic water bodies (Las Salinas and Charco Rojo)

known locally as Las Playitas (meaning beach or plains) because of salt flat deposition.

These pools are known to experience high levels of evaporation, precipitating salts and

minerals such as trona and nahcolite [Badino et al., 2004]. As the surface water flows
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towards the eastern area of the CCB,alkalinity increases (317 mg/kg HC03) with very

low dissolved ion concentrations (168 mg/kg Ca, 44 mg/kg Mg) [Johannesson et al.,

2004]. The high ratio, where HC03»Ca and Mg, results in salt mineral precipitation

(Fig. 2.35). The eastern area of the CCBis where the western (main) through-flow

system confluences with the eastern {secondary} through-flow system, before

becoming terminal where waters are evaporated, with the exception of a small man

made river, used for irrigation, flowing to the NEof the CCB.
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2.4.4 Modern human influence

Further to the isotopic data, human water exploitation within the CCB has a

considerable influence on the water table and systematics of both the hydrothermal

and freshwater springs, pools, lakes and rivers. The main extraction of water from the

CCB is for irrigation of over 3,983 hectares of pastureland [Badino et al., 2004] in the

Ocampo and Hundido Basins, north and west of the CCB respectively, used to grow

alfalfa (Medicago sativa) - a very water demanding crop used to feed cattle.

Other extractions of water within the CCB are for the purposes of sanitation

and drinking, after cleansing. Canals are used in the CCB to transport this water away

from the hydrologic system and have been in use for since the early 1900s [Minckley,

1969]. Four main canals are used in the CCBfor the extraction and transport water - 1)

Saca de Fuente 2) Becerra 3) Santa Tecla 4) Ejido El Venado. The Saca de Fuente (Saca

Salada) Canal is the largest, draining water from the eastern through flow system in

the CCB - Paza de Quintero, Poza Pronatura and los Hundidos as well Poza Bafio

Escobedo, Paza Tio Candido and Rio Mesquites. Saca de Fuente was completed in 1902

and is 80km in length, extracting lS00l/s through the NE exit of the CCB, towards

Nadadores.

The extraction of such large amounts of water has led to dramatic water level

drops in the past 40 years [Minckley, 1992; APFFCC] (Figs. 2.36 and 2.37), suggested to

be up to 4m in some pools [PRONATURA] but generally accepted to be around O.Sm

[Hendrickson and Minckley, personal comms.]. Rodriguez et al., [2005] suggest a

hypothesis that over extraction of water in the Hundido Basin, for industry, may be a

significant reason for the water level drop in the west of the CCB. Extraction in the

Hundido Basin is taken directly from the Cupido-Aurora aquifer, so may be reducing

discharge into the western, fault sourced water bodies in the CCB e.g. Poza Churince

and Poza Becerra. However, Minckley [1992] and Wolaver et al., [2008] suggest

hypotheses that over extraction of water through canalization may have a larger

contribution to water level drops in the CCB.

The Becerra Canal, completed in 1966, extracts water at a rate of 600l/s

towards the town of Cuatro Cienegas, from Poza Becerra at the start of the main

through-flow system in the CCBand has subsequently led to a large drop in water level
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in the pool [Minckley, 1992] (Fig. 2.36). This drop in water level has not only affected

PozaBecerra but, in late 2009, also caused the complete drying up of LagunaGrande

[APFFCq. Discharge, from the Cupido-Aurora aquifer, into the CCBtherefore may not

have been affected as hypothesised by Rodriguez et al. [2005]; rather, extraction of

water, through canalization, out of the hydrologic system is now exceeding discharge

into the hydrologic system. Wolaver et al. [2008] estimated inflow discharge from the

springs as approximately 3.5 x 107m3/year and canal outflow discharge as

approximately 5.3 x 107m3/year. This suggests the hypothesis of over extraction

through canalization is correct but, unfortunately, with so little data as to the exact

inflow/outflow (m3/year) ratio of water in the CCBit is hard to substantiate.

Figure 2.36. Poza Barlo Escobedo prior to canalization in the 1960's (left) and 30 years later in the 1990s (right)

[image from Minckley, 1992).
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Figure 2.37. Poza Becerra prior to canalization in the 19605 (top) and 30 years later in the

19905 (bottom) [image from Minckley, 1992).

2.SConclusions and future work

The Cuatro Clenegas Basin is a unique desert oasis located in NE Mexico,

supporting over 70 species of endemic flora and fauna as a direct result of

groundwater discharge. Despite the ecological importance of this site, very little is

currently known about the groundwater flow regime. Reconnaissancehydrological

isotope data (5180, 50 and 513C)presented in this chapter suggeststhe CCBis currently

functioning as a hydrologically closed basin with evaporative through-flow between

water bodies. Groundwater discharge in the CCBappears to be a complex mix of

hydrothermal groundwater originating from the Cupido-Aurora aquifer, ambient

meteoric karst water and water originating from the deep lying karst reservoir through
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focused channel recharge, culminating in a closed basin evaporative through-flow

system.

The LELslope (oD = 4.40180 - 19.5) indicates evaporation of surface waters is

changing the isotopic composition of the CCBsurface waters. Water body temperature

data suggeststhe observed evaporation of the CCBsurface water is not related to the

temperature of the water sampled, however, with a relatively small sample size (26

water bodies sampled from over 200 possible) this is hard to conclusively demonstrate

without further analysis.The 26 water bodies sampled within the CCBplot to the right

of the GMWL and LMWL, from which the LELhas been proposed and at least three

separate hydrologic systemshave been identified:

1) Local faulting on the Sierra San Marcos y Pinos is the main control of the

primary through-flow system in the CCB.Recharge from the regional Cupido

Aurora aquifer is supported by the 0180 and oD data and hot groundwater

discharge to the west of the Sierra San Marcos, before flowing towards the

terminal east of the basin consistent with previous conceptual flow models for

the CCB[e.g. Johannessonet al.,2004].

2) A similar, secondary, through-flow system is evident on the eastern flank of the

Sierra SanMarcos y Pinos,although hot groundwater appears to be prevented

from upwelling, suggestinga greater influence of meteoric karst waters.

3) An independent system (Poza Anteojo), closely reflecting the isotopic

composition of modern precipitation, is consistent with recharge in the Sierra

Menchaca, previously suggestedby Johannessonet al. [2004]. Focusedchannel

recharge is supported by the warm temperature of the water issuing from Poza

Anteojo.

Limited 013C01C data suggests the CCBis dominantly groundwater fed, with 13C

derived predominantly from soil CO2, however, conclusions as to the carbon source in

each water body are limited due to the nature of the study; better understanding of

the pools would result in better understanding of the complex sub-surface flow that is

evident throughout the CCB.Further geochemical studies would also assist in better

understanding the 013C01C pool in the CCB.
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Future isotopic work on the waters from the CCB is certainly warranted to

identify and constrain the hydrogeology of the CCB.Additional pools from both the

west and east could be sampled to better understand the nature of underground

mixing that is evident within the CCB,combined with detailed geochemical analysisto

better understand the mineralogy of the waters, both when surfacing and flowing

across the basin floor. Water balance equations coupled with flow regime from stable

isotopes could give a much better understanding of exact inflow/outflow dynamics in

the CCB,leading to the possible identification of specific areas in the basin from which

to extract water for industry.

The complete drying of laguna Grande, as a result of over extraction of water,

is a major concern in the CCB,with water extraction becoming an increasingly large

problem for the APFFCCin recent years. Observations of flow rate within the CCB

suggest the processes of canalization and water extraction has, in itself, become a

hydrologic flow system, disrupting the natural flow of water from the west of the basin

to the east. The evaporative through-flow systems and modern hydrologically closed

system identified in this chapter has provided a good model from which to base

previous hydrological regimes in the CCB. If applied to the palaeoenvironmental

reconstruction and terrestrial carbonate environments chapters, the current

hydrological flow regime could be used to identify similar palaeo-flow regimes in the

CCB,assisting in the identification of hydrological and/or climatic change. Combined

with palaeoenvironmental data, the modern hydrological data could become a useful

tool in the identification of ecosystemdamageand response, allowing for better future

management of the complex and fragile CCBecosystem.
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Chapter 3: Terrestrial carbonate environments of

the Cuatro Clenegas Basin

3.1lntroduction

The aim of this chapter is to describe preliminary observations of the terrestrial

carbonate formations and depositional processes seen in the CCB and to understand

the processes involved in carbonate formation and depositional modes associated with

each carbonate facies described. These carbonate deposits have not been previously

described from the CCBand the origins of each carbonate facies is proposed, based on

the modern hydrological data presented in chapter 2 and evidence presented within

this chapter.

3.1.1 Tufa and travertine formation

The terms tufa and travertine are both commonly attributed to calcium

carbonate deposits of a terrestrial origin [Guo and Riding 1994; Pentecost, 1995; Ford

and Pedley, 1996; Andrews et al., 1997; Pedley et al., 2003; Pentecost, 2005; Andrews

and Brasier, 2005; Shiraishi et al., 2008]. Calcium carbonates deposited from ambient

«40°) water sources such as fresh water springs and stream channels are termed tufas

[Guo and Riding, 1994; 1999; Pentecost, 2005; Omelon, 2006]. Tufas are considered to

be significant archives of palaeoenvironmental information as they not only record the

geochemical characteristics of their source water [Andrews et al., 1997, Andrews and

Brasier, 2005] but can also develop outside, in sun-lit areas, promoting a macro-

biological framework through photosynthesis [Pedley et al., 2003; Pentecost, 2005;

Brasier et al.,2010]. Calcium carbonates precipitated from hydrothermal (>40°C) water

sources are known as travertines [Guo and Riding 1994; 1999; Pentecost, 2005].

Travertines display less macrofacies diversity than tufas but can be distinguished by a

higher diversity of bacterial and/or physico-chemical microlithologies [Ford and

Pedley, 1996; Pedley et al., 2003].

The terms 'meteogene' and 'thermogene' within this chapter are adopted from

Pentecost [2005] and were originally used in the classification of different travertines.

However, classification of tufas and travertines is much discussed [Guo and Riding,
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1994; Pentecost and Viles, 1995; Pentecost, 1995; Ford and Pedley, 1996; Pedley et al.,

2003; Pentecost, 2005; Brasier et al., 2010], so consequently, the use of the terms

'meteogene' and 'thermogene' within this chapter is to better distinguish between the

component origins of tufas and travertines.

Meteogene tu/as

Calcium carbonate deposits formed from cold-water springs discharging

groundwater with a meteoric carrier are classed as meteogene tufas. Meteogene tufas

carry CO2derived from meteoric sources i.e. atmospheric CO2,soil carbon and form in

regions underlain by carbonates [Pentecost, 2005]. Meteogene tufas have Ca and

HC03- water values typically "'160mg/kg and "'480mg/kg respectively and low 013CDlC

values, ranging between -12%0 and +2%0 (mean -8.7%0). The predominantly negative

013COICvalues are thought to reflect the contribution of groundwater charged with soil

respired CO2(013CoICvalues of around -25%0) or causing the dissolution of limestone in

the case of superambient meteogenes (013COICvalues of around 0 to +2%0) [Deines,

1980; Pentecost, 2005]. Higher 013COICvalues in meteogene tufas can be attributed to

evaporation, CO2evasion, photosynthesis and/or dissolution of limestone [Barnes and

O'Neil, 1971; Andrews et al., 1997; Pentecost, 2005].

Meteogene tufas can be divided into two categories: Invasive, whereby

invasion of atmospheric CO2 into the carrier water leads to tufa precipitation and the

more commonly occurring Evasive, whereby evasion of CO2 from the carrier water

leads to tufa precipitation [Pentecost, 2005]. Invasive tufas occur less commonly and

are characterised by extremely low HC03- concentrations <40mg/kg and high pH >9.

These tufas will normally occur due to manmade circumstances e.g. lime burning sites,

but also in serpentinite regions e.g. California, associated with the subduction of

tectonic plates [Barnes and O'Neil, 1969]. Source waters leach through OH- enriched

soils, deposit dissolved CO2and HC03- as subsurface carbonate, subsequently allowing

C02 invasion and tufa precipitation when the water re-surfaces. Evasive tufas are more

commonly occurring and can be divided into two categories based on the temperature

of the source water:
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a) Ambient meteogenes

The term 'ambient meteogene tufas' applies to tufas deposited at or below

mean annual air temperature from cold water springs [Pentecost, 2005].

Ambient meteogenes have «s13CD1Cvalues ranging between -12%0 and -3%0 and

are characterised by a micritic, porous and often bio-rich fabric comprised of

calcite.

b) Superambient meteogenes

The term 'superambient meteogene tufa' is tentatively applied to tufas

deposited from source water that is up to 10·Cabove ambient air temperature

(mean annual air temperature) but <40·C (>40·C would be classed as

travertine) [Pedley et al., 2003; Pentecost, 2005]. Superambient meteogenes

have «s13CD1Cvalues between -6%0 and +2%0, overlapping with ambient

meteogene tufa and thermogene travertine values. However, superambient

meteogenes are discernable from ambient meteogenes through looking at the

calcium carbonate fabric and, in the case of thermogene travertine, are

discernable through HC03- as thermogene HC03- values are significantly higher

[Pentecost, 2005]. Superambient meteogenes are characterised by a micritic,

porous and often bio-rich fabric comprised of mainly calcite.

Thermogene travertines

Calcium carbonate deposits formed from thermally heated source water

(>40·Q are classed as thermogene travertines. Thermogene travertines are formed

when the source water carries high concentrations of thermally generated CO2 (from

thermal processes within or below the Earth's crust), capable of dissolving large

quantities of the surrounding limestone bedrock before degassing at the surface,

depositing CaC03 [Pentecost, 2005]. Thermogene travertines typically have Ca and

HC03-water values of around BO-BOOmg/kgand 400-4000mg/kg respectively and could

have possibly formed in the CCBduring wetter climatic periods where increased head

pressure from the surrounding mountains may have created increased hot spring

activity e.g. Pamukkale [Dilsiz et al., 2004] and Central Italy [Guo and Riding,1999] (Fig.

3.1).
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Thermogene travertines are associated with localised deposition in regions

with recent volcanic and/or tectonic activity and have exit temperatures at the surface

of >40·C [Pentecost, 2005]. CO2 degassing and CaC03 precipitation rates are elevated

in thermogene travertines and consequently they contain enriched and more constant

613CD1C values (-3 to +8%0) than meteogene tufas. The enriched 613CD1C values of

thermogene travertines can be partly attributed to non soil-zone carbon sources Le.

water-rock reactions and enrichments observed during rapid CO2 evasion [Pentecost,

2005] but it is also thought a significant magmatic contribution may exist [Yoshimura

et a/., 2004]. Thermogene travertines are characterised by a bacterial or

cyanobacterial, non-porous fabric - typically of aragonite crystals

200m (Spatial and vertical)15180 -8.3 ...." , ,
""" ~,,"',1 ~

Surface run-off
AE<PE

AlluvIum

E

Figure 3.1. Schematic model showing E-W cross section across the CCB - from the meteoric water source in

the limestone sierra (San Marcos y Pinos) to the basin floor. Local thrust faulting in the sierra provides a route

for water heated deep underground to surface due to increased head pressure in the mountain. This

recharge during climatically wetter periods causes water to not only recharge in pozas but also as calcium

carbonate depositing springs.

Calcium carbonate fabric

Mechanisms controlling the precipitation of calcium carbonate, particularly in

tufas, are related to differences in the physico-chemical (degassing of source waters)

and biological (bacterial biofilm) processes acting upon the water carrying dissolved

CaC03 in aqueous solution and are highly variable [Ford and Pedley, 1996; Pedley et

0/., 2003; Pentecost, 2005; Brasier et a/., 2010]. Frequently, both processes are

involved in the deposition of tufa carbonates leading to laminated microfabrics of

w
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alternating sparry (physico-chemical) and micritic (biofilm) carbonates (Fig. 3.2)

[Pedley et al., 2003]. Both micritic and sparry fabrics are comprised of calcite with the

former thought to be associated with biological mediation by microorganisms,

particularly cyanobacteria, or physical degassingof carbon dioxide, usually as a result

of high turbulence e.g. waterfall or cascade [Ford and Pedley, 1996; Pentecost, 2005].

These tufas carbonates may also display remnants of higher plant contributions e.g.

bryophyte and/or phytoherm mesofabrics seen in barrage or perched springline

deposits [Ford and Pedley, 1996], leaving cavities or pore space (branch and leaf

moulds) within the fabric (Fig. 3.2). Sparry fabrics are thought to be associated with

diagenetic infill of pore space or rapid degassingof carbon dioxide from areas of high

PC02to low PC02,not requiring biological mediation [Pentecost, 2005; Andrews and

Brasier,2005].

As well as the physico-chemical and biological processes, temperature of the

CaC03carrier water can also have an effect on the calcium carbonate fabric. Travertine

carbonates are deposited at temperatures >40·C and are commonly comprised of

dendritic calcite or aragonite fabrics due to a higher calcium carbonate precipitation

rate [Chafetz and Folk, 1984; Pentecost, 2005]. However, aragonite fabrics are more

rare and tend to form in more sulphide-rich water under what would be considered

disequilibrium conditions [Chafetz and Folk, 1984; Guo and Riding, 1994; Jones and

Renaut, 1995; Pentecost, 2005].

Microbial Influence on calcium carbonate formation

As previously mentioned both organic and inorganic mechanisms are involved

in the formation of meteogene tufas and thermogene travertines. The role of microbes

in calcium carbonate formation i.e. cyanobacteria, however, is less well understood

[Andrews et al., 1993; Andrews et al., 1997; Pentecost, 2005; Shiraishi et 01.,2008]. It is

generally accepted that calcium carbonate deposition by microbes can be in the form

of both meteogene tufa «40oq and thermogene travertine (>40·Q and is determined

by three main factors: the photosynthetic uptake of C02, the presence of a

polysaccharide sheath proving a favourable calcium carbonate nucleation site and

favourable calcium carbonate precipitation conditions such as slow flow locations e.g.

Pedley et 0/., [2003] paludal swamp model [Pentecost and Riding, 1986;Andrews et 0/.,
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1993; Andrews et al., 1997; Shiraishi et al., 2008]. The depositional factors, particularly

photosynthetic uptake of CO2, suggest microbial deposition of calcium carbonate to be

under disequilibrium conditions, unfavourable for the recording of

palaeoenvironmental data. However, photosynthetic microbial influence on 0180

values of calcium carbonate is thought to be negligible [Andrews et al., 1993; Andrews

and Brasier, 2005; Shiraishi et al., 2008] and, other than providing a site for CaC03

precipitation, microbial calcification appears to adhere to equilibrium deposition in the

form of annual laminations (Fig. 3.2) [Andrews and Brasier, 2005] potentially

containing important climatic and palaeoenvironmental archives [e.g. Andrews et al.,

1993; Andrews et al., 1997; Brasier et al., 2010].

Figure 3.2. Photographs of CCB calcium carbonate deposits; a) Laminar tufa deposits, with a hammer for

scale; b) Microbially deposited tufa displaying characteristic annual laminations, with a coin for scale; c) reed

and palm frond encrustations in situ, with a lens cap for scale.
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3.2 Calcium carbonate formation within the CCB

There are several sites with calcium carbonate deposits described here

in the CCB(Fig. 3.3), including (a) a rim-stone pool complex, (b) the Tierra Blanca spring

mound (see chapter 4), (c) a fissure ridge complex (see appendix 1.1) and (d) a perched

terrace.

The hydrology of any given site is an important factor in determining what type

of calcium carbonate is precipitated as differences in physical and ecological

environment i.e. vegetation, can determine the tufa fabric [Pentecost, 2005]. The

hydrology of the CCB is known to be extremely complicated [Johannesson et al., 2004;

Wolaver et al., 2008; Chapter 2] and climate has not remained stable over time. The

CCB is currently classed as a closed karstic system [Badino et al., 2004] with surface

water temperatures rarely higher than 32"C and as such it is unlikely that CO2 within

the source waters is of a thermal or magmatic origin. Circulation of meteoric water

within the Cupido-Aurora aquifer, deep underground [see chapter 2L is the most likely

thermal source as well as contributing, along with soil, to the carrier CO2•

Figure 3.3. Location of studied tufa deposits within the CCB; (a) a rim stone pool complex, (b) a spring mound

containing human footprints (see chapter 4), (c) a fissure ridge complex (see appendix 1.1), (d) a perched terrace

where previous quarrying activity has occurred showing the sequence in detail [image from google.co.uk/earth).
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3.2.1 Rim-stone pool/dam complex

Rim-stone pool complexes are meteogene tufa formations well documented

around the world [Pentecost, 2005; Cruz et 01., 2005; Omelon et 01., 2006]. Within this

chapter the term "rim-stone pool" is used alongside the term "dam" as definitions are

dependent on the author; both terms will be adopted in this chapter. Rim-stone

pools/dams are defined as vertical accretions of meteogene tufa, leading to the

pooling of water (Fig.3.4) [Pentecost, 2005].

Figure 3.4. Model for terraced "rim-stone pool" complex to the NW of the piedmont of the Sierra SanMarcos y

Pinos [modified after Pentecost, 2005).

The pooling of water leads to meteogene tufa precipitation in situ creating a

succession of dam-like structures, down-gradient through a water course. The wall

effectively damming the water course faces upstream and is known asthe 'up wall'. As

the water eventually tops the dam, the 'drop wall', across which the water flows,

completes the dam structure. The drop wall forms a steeper structure than the up wall

and is best used for determining total dam height - ranging between <lcm to >40cm

depending on factors such as source water flow speed, vegetation type (bryophyte vs.

phytoherm), microbial input and mineralogy of the source water [Pentecost, 2005].
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Inter-dam distance (100) is the distance between dams and defines the dam type. lOOs

range from centimetres to kilometres depending on the slope angle of the water

course and is seen as a distinguishable feature. Dams with 100 ranging 1cm-1m have

slope angles typically ~30° and are termed 'minidams' whereas larger lOOs ranging

from 1m->100m with slope angles typically ~SO are termed 'macrodams' [Pentecost,

2005].

3.2.1.1 Study site

The rim-stone pool complex is located lkm NE of Tierra Blanca quarry (N

26°55'37.1, W 102°08'90.6) and 1km N of the Mex-30 highway and piedmont of the

Sierra San Marcos y Pinos (Fig. 3.5).

102"

Figure 3.5. Location of the rim-stone pool complex. The red line highlights the depositional area and line A-B

represents the transect across the rim-stone pools in Figure 3.8 [image from google.co.uk/earth).

3.2.1.2 Preliminary research and methods

The rim-stone pool complex in the CCB is a special facies of tufa dam in that it

appears not to be directly sourced from a spring mound structure or fissure zone (Fig.

3.6) like microdams observed in Hungary [Pentecost, 2005] and macrodams observed
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in Turkey [Burger, 1985]. Instead the rim-stone pool structures are sourced from a

small pool at the top (highest point) of the complex. The source pool is part of the

cienega area discussed in chapter 2, forming part of the main evaporative through-

flow system observed in the CCB. Increased water input appears to cause overflowing

of this pool (as observed during heavy rainfalls in the CCB), the water flows down

gradient building another dam and this process continues down gradient, similar to

freshwater river tufa dams observed in Papua New Guinea [Humphreys et 0/., 1995].

As water input decreases, the pools furthest down gradient will dry first as the water

recedes back to the original pool.

Figure 3.6. Large rim-stone pool complex. Although now inactive, no fissure ridge or spring mound is present

to have provided source waters.

A 180 m cross-section transect of the tufa dam structure in the CCB was

conducted using a theodolite to investigate surface morphology and topography (Fig.

3.8). The theodolite was positioned at the edge of the contemporary pool (Fig. 3.8) at

the top of the rim-stone pool complex. Elevation measurements were taken at the

base of each up-wall, at the tip of each individual dam and at the base of each down-

wall. The presence of the rim-stone pool complex indicates that it was deposited

during a climatically wetter period as meteogene tufa is no longer being deposited.
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The preservation of the complex is excellent and individual dam structures can be

clearly seen, of which two samples at 51 and 52 were taken to be studied due to their

location at the top and bottom of the complex respectively. 51 and 52 sample locations

were chosen at the top and bottom of the complex to ascertain U-series dates for the

possible advance and retreat of water through the complex as it is assumed a

maximum age for the complex would be located at the top when water first over

spilled and a minimum age would be located at the base of the complex as this would

be the first area to become dry when the complex became inactive e.g. Moeyersons et

al. [2006]. The dam structures also contain well preserved bryophytic microfabrics and

mesofabrics (Fig. 3.7). Severe natural degrading to the tufa structures beyond 120 m

has made any structures that may have been present too damaged to study, although

broken fragments of tufa suggest it is likely that a continuation of the rim-stone

structures was there prior to degradation.

Figure 3.7. Photographs of vegetation preserved at the rim-stone pool complex; a) bryophytic microfabric in
the form of algal encrustations, preserved algae isat the baseof photo presented alongside modern day living
algae; b) bryophytic mesofabric preserved in a dam structure.
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The dam height, IDD and slope angle determine the classification of the rim-

stone pools into either microdams or macrodams [Pentecost, 2005]. The rim-stone

pool complex here appears to cross both categories of dam classification with 8 pools

displaying characteristics typical of microdams - 100 <1 m - and the remaining 19

pools displaying characteristics typical of macrodams -100 >1 m. The pools formed by

the series of dams seen in figure 3.8 cover 120 m of the 180 m cross-section transect

with the remaining 60 m of epigean tufa being too eroded for study. 27 separate pools

occur within the complex with lOOs ranging from 10 cm to 10 m in size and dam

heights ranging from 5 cm to 20 cm (Fig.3.8). The rim-stone pool complex losesa total

of 1.8 m in elevation over the 120 m transect giving an approximate slope angle of

0.86°. It is interesting to note at 70 m a change from macrodam 100 structures to a

cluster of 8 microdam 100 structures before changing back to macrodam structures at

94 m. Although the average slope angle for the entire transect is 0.86·, the 24 m

section of microdam 100 structures has a slope of 1.19° which should still class the

dam structures asmacrodams.

The slope angles of 0.86° and 1.19° should constitute that of a macrodam

structure «50) and be too shallow for that of microdams which are typically up to 35°.

Definitions can be misleading however, as no definition of an intermediate dam Le. a

dam with a slope of < 5° and 100 of <1 m, exists. Therefore the terms 'macrodam' or

'microdam' would appear inappropriate to this type of dam complex in the CCB;

instead the term 'mesodam' would be more appropriate.

A series of U-series dates will give a basis for future isotope work on the

complex. A high resolution chronology would show how the water, depositing tufa,

advanced and retreated. A gradual evaporative effect should be observed from the top

of the complex to the bottom due to evaporation of the flowing water, a model which

can then be applied on a larger scaleto the whole basin.
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3.2.2 Perched terrace

Perched terraces are not commonly occurring deposits and, globally, few have

been studied in detail. Perched terraces typically occur along terraced rivers or valleys

with steep sides [Ordonez et al., 1987; Ford and Pedley, 1996; Ortiz et al., 2009] and

are of a fluviatile (river), spring, lacustrine or paludal (swamp) origin, although each

origin type can occur with variable dominance over the course of the perched terrace

depositional period [Pedley et al., 2003; Ortiz et al., 2009].

Calcium carbonate precipitation on perched terraces is under normal

(equilibrium) circumstances of CO2 evasion from bicarbonate rich source waters

[Pedley et al., 2003; Brasier et al., 2010]. Although, because of the terraced valley

and/or steep slopes involved with the deposition of perched terraces, source waters

are generally fast flowing which can cause physical degassing of C02 resulting in

characteristic waterfall or cascade structures (Fig. 3.9) [Pedley et al., 2003]. Perched

terrace deposits are commonly lobate in plain view, attributed to the fast flowing

nature of the source water, and can form on a fluvial substrate that can be in the form

of braided channels [e.g. Ortiz et al., 2009].

Thesefluviatile tufas can be succeededby spring or paludal origin tufa in karstic

areas: as the river bed becomes eroded leaving the fluviatile tufa above the water line,

the perched spring line and subsequent tufa deposition becomes raised above

contemporary fluviatile activity and deposition [Pedley, 1993; Pedley et al., 2003; Ortiz

et al., 2009].

The successionof spring and paludal origin tufa can be seen in Figure 3.9 with

spring activity depositing calcium carbonate in a terrace like structure. The flat top

structure forms an ideal environment for shallow, paludal calcium carbonate

deposition. Stromatolitic crusts form on stable substrates in shallow, slow flowing

water and can be accompanied by algal mats or phytoherm cushions in the central

areas of the water. Macrophytes and bryophytes can also be observed on the fringe

areas of the water, the roots becoming encrusted by tufa under the water like those

observed in stream crusts in the UKand Spain [Pentecost, 2005; Ortiz et al., 2009].
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Speleothem formation

Springline tufa deposition

Fluviatile tufa deposition

Figure 3.9. Schematic showing perched terrace deposition [modified after Pedley et ol., 2003). Fluviatile tufa

deposition at the base of the terrace is succeeded by spring line and paludal tufa deposition. Incised fluvial

channels and bryophyte curtains are characteristic of these types of deposits.

3.2.2.1 Study site

The perched terrace is located in the SW of the CCB on the west flank of the

Sierra San Marcos y Pinos (N 26048' 61.2, W 1020 09' 05.4), approximately 100 m from

the Mex-30 highway (Fig. 3.10). The site was originally described as a palaeo-shoreline

of a pluvial lake [Minckley, 1969 (Fig. 3.11)] but has since remained unstudied. This

isolated terrace is located SOm above the CCBfloor and is the only such deposit within

the CCB.

The terrace has undergone substantial change as a result of quarrying activity

during the past 40 years. The consequence of this quarrying activity can be seen when

comparing Figure 3.11 (Minckley, 1969] and Figure 3.12 (contemporary photograph

taken in 2010). The overhang of tufa has been almost completely quarried, leaving a 10

m tufa cross-section laterally through the terrace. Because of the construction of

quarry access to the east, the rear of the terrace has been almost completely removed,

with two access roads cut away from the north face of the terrace (Fig. 3.10).
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Figure 3.10. Location of the perched terrace in the CCB. The typical lobate plain view is highlighted by the

dashed red line and the extent of the quarrying activity can be clearly seen with access tracks on the north,

east and south faces. Numbers 1-8 show where stratigraphic logs were taken (Figs. 3.17, 3.18, 3.19, 3.20, 3.21)

[aerial photograph provided by Dean Hendrickson].
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Figure 3.11. Original photograph of the perched terrace taken by W. L. Minckley in the 1960s [Minckley, 1969J.
The original geomorphology of the terrace can be seen (in comparison with the heavily quarried modern view
in Fig. 3.12).

SOm

Figure 3.12. Annotated photograph of the perched terrace in the CCB.The Sierra SanMarcos y Pinos to the left
(east) of the terrace is heavily karstified. The black dashed line shows the extent of the flat terrace top before
quarrying began.
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3.2.2.2 Preliminary research and methods

Stratigraphy

a) North face

To determine the perched terrace origin, the stratigraphy of the deposit was

studied. First, a 50 m section on the upper north face access road was studied to

determine the underlying stratigraphy of the terrace (Fig. 3.13). The section

description is compiled through a series of spatially linked observations (Figs. 3.13,

3.14, 3.15 and 3.16). At the base of the stratigraphy there is a 20 m thick section

consisting of finely laminated Cretaceous limestone bedrock dipping 30° in a northerly

direction, consistent with the dip direction of the plunging anticline of the Sierra San

Marcos y Pinos [Badino et al., 2004]. Red discolouration and alteration along the

laminated planes in the limestone (Fig. 3.14) suggest the possibility of hot fluid

circulation depositing FeO minerals [e.g. Pires et al., 2010]. Local faulting at the rear of

the terrace structure, at the base of the Sierra San Marcos y Pinos, is a possible spring

location and source of hydrothermal water.

Figure 3.13. Annotated photograph of the perched terrace north face. The black dashed line shows the extent
of the flat terrace top before quarrying began. The parallel red lines show the exposed studied section through
the underlying stratigraphy due to the construction of the upper north face accessroad. • shows the location
of figure 3.14. + shows the location of figure 3.15. - shows the location of figure 3.16.

Overlaying, unconformably to the laminated Cretaceous limestone, is a 20 m

layer of conglomerate. The clasts consist of sub-rounded to rounded limestone,

medium sandstone and laminated limestone, ranging from 1 cm to 30 cm. The

conglomerate is not well consolidated with random sorting of clasts in a caliche
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(calcium carbonate cement [e.g. Zhou and Chafetz, 2009]) matrix, no apparent grading

is present and also no channels appear to be present within this conglomerate layer.

Figure 3.14. Redcolouration suggesting hot fluid circulation and deposition of FeOwithin the laminated
limestone bedrock.

The conglomerate lying unconformably on top of the limestone suggests

possible flash floods, debris flows or hyperconcentrated flows. 'Jigsaw puzzle' clasts

[e.g. Fulop, 2001] are characteristic of hyperconcentrated flows and are observed

within the conglomerate layer (Fig. 3.15). Towards the top of the conglomerate bed is

a 4 m 'iens' of calcium carbonate containing rounded clasts of limestone, similar to

those of the conglomerate bed. The calcium carbonate 'lens' is below a second bed of

conglomerate indicating the calcium carbonate deposition was contemporaneous with

the conglomerate deposition, suggesting the possibility of a fluviatile meteogene tufa

[Pedley et al., 2003; Ortiz et ol., 2009].

The second conglomerate bed is approximately 6 m thick and leads into the 10

m thick calcium carbonate cap on the sequence. Like the calcium carbonate 'lens'

lower in the sequence, the second conglomerate inter-beds with the overlying calcium

carbonate terrace, forming incised channels into the underling laminated calcium

carbonate and containing sub-rounded to rounded clasts (Fig. 3.16).
98



Figure 3.15. Photograph of 'jigsaw puzzle' clast observed in the perched terrace
conglomerate. The clast maintains its sub-rounded shape despite extensive fracturing.

Figure 3.16. Annotated photograph of inter-bedded conglomerate and laminated calcium carbonate. Incised
laminated tufa and poorly sorted, sub-rounded conglomerate at the base suggest fluvial/flash flood
deposition. A change from clast supported to tufa matrix supported conglomerate up the section suggests
intermittent fluvial and spring activity at the perched terrace.
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b) South and west faces

A series of eight detailed stratigraphic logs were measured on the south and

west faces of the perched terrace to investigate the depositional history of the calcium

carbonate terrace cap (Figs.3.10, 3.17,3.18,3.19,3.20,3.21; for detailed stratigraphic

descriptions see appendix 1.2).

All stratigraphic logs from the south face of the perched terrace - logs 1, 2, 3, 7

and 8 (Figs. 3.17 and 3.18) - display inter-bedded conglomerates and laminated

calcium carbonate deposits at the base.Conglomerate beds at the baseof logs 1, 2 and

3 are overlain by laminated calcium carbonate beds displaying horizontal bedding

planes. The basal conglomerate beds, particularly in logs 1, 2 and 3 (Figs. 3.18 and

appendix 1.2), contain imbricated gravel channels, suggesting intermittent fluvial

activity between calcium carbonate deposition. Moving along the E-W axis of the

perched terrace (from log 1 to log 8 (Figs. 3.17 and 3.18)), channelling of the

conglomerate beds becomes less prominent, particularly in log 7, with deposition in

sheets displaying reverse grading, characteristic of hyperconcentrated flows. Despite

the observed horizontal bedding planes within the calcium carbonate units there

appears to be little to no lateral continuity, particularly between logs 2, 3, 7 and 8,

suggesting complex spatial deposition of both the laminated calcium carbonates and

conglomerates. Section h of log 1, section a of log 2 and sections a, b, c of log 3 (Fig.

3.18) display some lateral continuity, although the calcium carbonate units in logs 2

and 3 contain vugs and solution fractures respectively, not observed in Log 1, again

highlighting the lack of spatial continuity within the laminated calcium carbonate units.

Section b of log 7 can be tentatively matched with log 3 as both contain mottled sand

and solution fractured calcium carbonate, however, conglomerates in log 3 display

evidence of channelling that is not evident in section b of log 7. The observed complex

spatial deposition of the perched terrace is possibly as a result of apparent braided

channelling (Fig.3.16) and vegetation growth, observed asmicrite filled vugs (Fig.3.18,

appendix 1.2). These observations are characteristic of fluvial and paludal facies

meteogene tufa deposition [e.g. Pedleyet al., 2003].

No major hiatuses are observed within the 10 - 12 m calcium carbonate

sequence at the top of the perched terrace (Figs.3.19, 3.20, 3.21 and appendix 1.2)
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suggesting no major interruptions in deposition. Large hydrofracture structures are

observed in logs 4 and 5 (Figs. 3.19, 3.20 and appendix 1.2) suggesting the fluid

circulation observed in the north face limestone (Fig. 3.14) may have been of a thermal

nature and possibly the source for the laminated calcium carbonate deposits observed

throughout the whole sequence. Bryophytic and macrophytic crusts can be seen

throughout the sequence with submergent Chara and Typha species the most

prominent macrophytes, forming a cascade type feature on the west face of the

perched terrace (Figs. 3.22 and 3.23) as well as large fossil palm frond encrustations

abundantly well preserved at the base of the calcium carbonate sequence (Fig. 3.24).

Figure 3.17. Annotated photograph showing the locations of measured stratigraphic logs 1, 2, 3, 7 and 8 (Fig.

3.18).
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Figure 3.19. Stratigraphic log 4 presented alongside an annotated photograph of the logged section. Full

stratigraphic descriptions can be seen in appendix 1.2. See Figure 3.10 for exact log location.
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Figure 3.20. Stratigraphic log 5 presented alongside an annotated photograph of the logged section. Full

stratigraphic descriptions can be seen in appendix 1.2. See Figure 3.10 for exact log location.
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Figure 3.21. Stratigraphic log 6 presented alongside an annotated photograph of the logged section. Full

stratigraphic descriptions can be seen in appendix 1.2. See Figure 3.10 for exact log location.
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Figure 3.24. Abundant palm frond impressions towards the base of the tufa sequence,

hammer is presented as scale.
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A total of 16 samples were taken from a 10 m section in alternating biogenic -

non-biogenic layers (Fig. 3.25). For the full methodology used see chapter 5.
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6180 613C

Figure 3.25. Preliminary c5180CARB and c5
13CDlC isotopes for the perched tufa terrace. Samples were taken at 16

intervals down the sequence. Photograph of the sampled section is also presented alongside isotopic data.

The 6180 isotope value of the carbonate remained relatively constant

throughout the section but observed an overall increase from -6%0 to -4.9%0. The

lowest 6180 isotope value of -6.9%0 is observed at sample 14 at approx. 9 m depth.

The 6180 isotope value of the carbonate sequence, until this point, is gradually
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decreasing, but becomes more constant after ranging between -5.8%0 and -6.2%0. The

largest increase in the [)180 sequence occurs between samples 10 and 9 (approx. 6.5 m

to 5.85 m) where [)180 shifts from -5.9%0 to -4.4%0, an increase of +1.5%0. The [)180

isotope value of the carbonate decreases after this shift with the largest decrease from

-4.4%0 to -5.1%0 (+0.7%0), before becoming more constant with values ranging

between -5.8%0 and -6.2%0, similar to those seen earlier in the sequence. A similar

increase is again observed between approx. 65 cm and 0 cm (samples 2 and 1), where

a 0.9%0 shift from -5.8%0 to -4.9%0 is observed.

The [)13C isotope values of the carbonate display a gradual decrease through

the sequence from -1.5%0 to -2.6%0. The highest [)13C isotope value of +0.2%0 (sample

12) is observed at approx. 7.8 m after a gradual increase from -1.5%0 at sample 16

(approx. 10 m). A recurring pattern follows the highest [)13C isotope value where a

large decrease from -0.5%0 to -1.9%0 (-l,4%o) at approx. 567 cm (samples 10 to 9) is

observed before increasing to -1.1%0 at approx. 441 cm (sample 7) and decreasing

again to -1.8%0 at approx. 315 cm (sample 5). The largest increase in the [)13Cvalue of

the carbonate (-1.8%0 to -0.3%0 (+1.5%0)) is observed between approx. 315 cm and

252 em (samples 5 and 4) before values decrease gradually to the lowest [)13C value of

the sequence: -2.6%0 at 0 em (sample 1). Both [)180CARBand [)13COIC isotope values

appear to display a recurring pattern throughout the carbonate sequence.

Tufa samples from the top and base of the sequence were sent to Dr. Gilbert

Price (The University of Queensland) for preliminary U-series dating. Dates of 128 -

130 ka BP and 480 - 500 ka BP were obtained for the top and bottom of the tufa

sequence respectively (Fig. 3.25). However, any interpretation must be made with

caution since these dates suggest the sequence spans a time period of 350 - 372 kyr.

Up to c.23 kyr may have elapsed between each sample, where deposition of calcium

carbonate may not have been continuous, containing unknown hiatuses, and large

increases or decreases in the isotope values of the carbonate may not be seen, in the

current data set.
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3.3 Discussion

Hydrology is very important for determining the mechanisms of calcium

carbonate deposition within the CCB. Modern day reconnaissance hydrology of the

CCB has been discussed in chapter 2 and, combined with the data presented in this

chapter; two models of calcium carbonate deposition will be proposed and discussed:

1) Calcium carbonate deposition during the Mid-late Holocene and study sites

within the modern hydrological system: Tierra Blanca spring mound, the

rim-stone pool/dam complex and the fissure ridge complex.

2) Calcium carbonate deposition away from the modern hydrological system,

during the Late Pleistocene: the perched terrace.

3.3.1 Calcium carbonate deposition within the modern hydrological system

The main hydrological through-flow system, discussed in chapter 2, originates

to the west of the CCB before flowing to the east. The close proximity of the spring

mound, fissure ridge complex and rim-stone pool/dam complex (Fig. 3.26) and the

location of all three within the hydrologic through-flow system suggest that calcium

carbonate deposition and increased hydrostatic head pressure may have occurred at

similar times at all locations. Tierra Blanca spring mound has a minimum age of 7.24 ka

BP, based on U-series dating of the footprint horizon (see chapter 4), placing its

hydrologic activity within the Mid Holocene. Thus, a Mid-Holocene age is inferred for

a" of the calcium carbonate formations located within the modern hydrological main

through-flow system for the CCB (see chapter 2) as the 7.24 ka BP spring mound is

located within close proximity to the fissure ridge complex and rim-stone pool/dam

complex. The presence of the inactive calcium carbonate formations within this system

suggests a synchronous period of greater hydrostatic pressure and possibly climatically

wetter conditions when active [Pentecost, 2005], similar to calcium carbonate

deposition seen in Pamukkale, Turkey [Altunel and Hancock, 1993].

The relatively constant 613CoIC isotope values of -1.1%0 to -0.4%0 (see chapter

4) of the Tierra Blanca calcium carbonate fall within the known range of thermogene

travertine, however, the comparatively high 613ColC of the surrounding limestone

mountains (+2%0 to +4%0 [Bralower et al., 1999]) suggests that increased water-rock

reactions, expected in the source water for thermogene travertine deposition, are not
110



occurring as 813COIC values would be expected to be higher than those observed in the

Tierra Blanca calcium carbonate. The fenestral microfabric as well as the 813Co1cof the

Tierra Blanca spring mound calcium carbonate suggests the source water was of a

heated meteoric origin, incorporating some 813COIC from the surrounding limestone

bedrock, before depositing superambient meteogene tufa [Pentecost, 2005; Sharp,

2007; see chapter 4 for a more detailed discussion] adding to the hypothesis that

increased precipitation on the high peaks of the surrounding mountains increased

hydrostatic head pressure, causing geothermally heated meteoric water to surface and

deposit meteogene tufa as a spring mound structure.

Tlem Bllnca sprlnl mound I
JQ

.....- --,0
I Fissure rld,e complex I

t
N

SOOm

===Mex-30 road
--- Rivers/canal
___ •• Surface flow

Figure 3.26. Annotated map of the locations of the three tufa areas and their proximity to each other. Red
circles show the locations of each area. Black arrows show the modern surface water flow direction within
the main through-flow system in the CCB(seechapter 2).

Further to the isotopic data, vegetation preserved within the tufa of the rim-

stone pool (see section 3.2.1) and fissure ridge complexes (see appendix 1.1) - Typha
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sp, and Dasylirion sp. - are species that form in the modern day aquatic ecosystem

[Badino et al., 2004]. Agave and Opuntia pollen preserved in the tufa of Tierra Blanca

spring mound [see chapter 4] are also species currently growing in the modern day

terrestrial ecosystem suggesting the environment of the CCBhas remained relatively

unchanged since at least 7.24 ka BPand possibly up to 30 ka BP.This hypothesis of

long-term environmental stability was first proposed by Minckley [1969] and furthered

by Meyer [1973] and Badino et al. [2004]. The floral and faunal endemism observed

within the CCB [Minckley, 1969; Meyer, 1973; Minckley and Jackson, 2008] is an

important factor in the determination of climatic conditions, as to be endemic suggests

a long period of biogeographic isolation and/or climatic stability or moderation of

climatic instability e.g. refugia [Fjeldsaet al., 1999].

The presence of inactive tufa facies does not necessarily mean climatic

conditions have varied dramatically as vegetation species, including xeric species

(Agave and Opuntia), have remained the same. Previous studies of the Chihuahuan

desert [Meyer, 1973; Bryant, 1977, 1985; Metcalfe, 1997] have noted wetter and drier

periods throughout the Mid-Late Holocene but none have inferred any dramatic

temperature shifts in the region suggesting increased regional effective moisture,

without cooling regional temperatures. Wetter climatic conditions in the CCBwould be

conducive to geothermally heated source waters depositing tufa at the surface,

expanding what is now the modern hydrologic through-flow system, through the

means of greater hydrostatic head pressure causing fissure ridges and artesian wells in

close proximity to fault zones. Studies at Pamukkale, Turkey [Altunel and Hancock,

1993; Dilsiz et al., 2004] have shown five modes of thermogene travertine

precipitation, three of which are similar to the three discussed here, all in close

proximity to each other. Travertine precipitation at Pamukkale increases during

climatically wetter periods due to greater mixing of cold groundwater and deep

thermal fluid whilst the hydrogeology of the area remains the same.A similar model of

tufa precipitation could be applied to the CCB:the modern hydrologic system produces

hot springs and pools (~35·C), precipitating tufa, whilst the past hydrologic system

appears to have precipitated tufa on a larger scale due to higher hydrostatic head

pressure from increased effective moisture. like Pamukkale, the CCBhydrogeology

may have remained the same, precipitating tufa in episodes through wet and dry

112



shifts, leading to these now inactive tufa facies being located within the modern main

through-flow system. Both the CCB and Pamukkale are now semi-arid regions and

precipitate tufa on a relatively small scale whilst episodic wet transitions have

produced larger scale tufa formation in the past.

3.3.2 Calcium carbonate deposition away from the modern hydrological system

3.3.2.1 Perched tufa terrace of fluvial, spring and paludal origin

The location of the perched terrace indicates it is not within the modern active

hydrologic system {Fig. 3.3} and can be considered to not be directly related to the

other three inactive tufa facies. The location coupled with the 013CCARBisotope values

between -2.6%0 and +0.2%0 {Fig. 3.25} suggest that the source water is of a

superambient meteoric origin, depositing meteogene tufa [Pentecost, 2005].

The preserved vegetation impressions within the 10 - 12 m tufa sequence are

mainly those of the modern environment - Typha sp. and bryophyte {mosses} crusts -

but toward the base of the sequence there are large well preserved palm frond

encrustations {Fig. 3.24}. The species of palm appears to be that of Acoelorrhaphe

wrightii or Serenoa repens, both of which do not currently grow in the CCB.

Acoelorrhaphe wrightii is the most probable species as it is native to the flooded areas

or swamps of Central America and SEMexico, consistent with the spatial discontinuity

observed in the horizontal laminated tufas (Fig. 3.18) and microbially deposited tufa

indicative of a paludal (swamp) environment [Pedley et al., 2003]. Serenoa repens is

endemic to SEUnited States and is indicative of woodland areas so is unlikely to be the

fossilized species. Acoelorrhaphe wrightii is an indicator of a more humid, equatorial

climate in the CCB and is located in the sequence above a conglomerate bed that is

interbedded with tufa. Preliminary U-series dating at the base of the tufa sequence

suggests an age of 480 to 500 ka BP. At this point in the sequence (sample 16, Fig.

3.25) the 0180CARBvalue is at -6%0 before a gradual shift to the lowest 0180CARBvalue of

the sequence (-6.9%0) at 8.7 m (sample 14, Fig. 3.25), possibly indicating a shift to

wetter climatic conditions with increased 160 input from fresh water. The proposed

wetter climate in the CCBaround 480 to 500 ka BP coincides with the onset of glacial

conditions in MIS 12 where regional cooling and wetting is observed in Nevada

[Winograd et al., 1992] and New Mexico [Fawcett et al., 2011]. The presence of the
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conglomerates and palm frond impressions at the suggested climatically wettest part

of the sequence could indicate flash flooding events or fluvial activity resulting in

fluviatile tufa formation [Pedley et al., 2003; Pentecost, 2005; Ortiz et al., 2009]. The

conglomerate forms incised channels within the tufa (Fig. 3.16) suggesting they are of

a fluvial origin at this point. There is no observable evidence of channels in the

conglomerate lower down the terrace stratigraphy and, lying unconformably, suggests

these conglomerates are of possible flash flood origin as opposed to the later fluvial

conglomerates. A prolonged period of increased effective moisture could have

resulted in palm growth and a fluvial/swamp environment as well as increasing

hydrostatic head pressure in faults located in the Sierra San Marcos y Pinos, resulting

in spring activity. Red colouration of the Cretaceous limestone underlying the perched

terrace (Fig. 3.14) suggests FeO deposition by circulation of thermal fluids and large

hydrofractures observed within the calcium carbonate sequence (Figs. 3.19, 3.20 and

appendix 1.2) also corroborate the theory of hydrothermal spring activity. A series of

episodic rivers originating from a large canyon to the east of the terrace and spring

activity from the Sierra San Marcos y Pinos faults [Dickinson and Lawton, 1999; Badino

et al., 2004] could have created a perched tufa terrace sequence within the CCB like

those observed in Spain [Ortiz et al., 2009].

However, it is worth noting that spring activity is highly dependent on

groundwater flow and regional climate [Pentecost, 2005]. For such a long depositional

period - c.370 kya - it is expected that spring/river activity would cease in drier

climatic periods creating a hiatus, although no obvious hiatuses appear to occur in the

perched terrace structure. It is also hard to determine the length of time any spring

has been activity depositing tufa. Observed erosion in the CCB is seen as large alluvial

fans at the base of canyons [Badino et al., 2004] suggesting a wet climate is needed for

erosion to occur. It is acknowledged that although during dry periods wind and

gravitational soil erosion is likely in the CCB, the effects of this would be minimal as is

seen in other arid regions around the world [Belnap and Gillette, 1998; Fecan et al.

1998; Enzel et al. 2012], however, spring activity in the CCB is directly linked to wetter

climate so heavy erosion during spring inactivity is unlikely. It is suggested here that

the possibility of depositional hiatuses within the perched terrace would not be easily

identifiable, while erosional hiatuses would be. Due to the height (off the basin floor)
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and location (away from the main hydrological through-flow system) of the perched

terrace it is unlikely large erosional periods would occur, creating a hiatus, in periods of

spring inactivity due to an arid climate but the possibility of a depositional hiatus is

more plausible. Haynes and Agogino [1966] and later Haynes [2008] report similar

depositional hiatus features in Clovis, New Mexico although the chronology is much

shorter than that of the CCB.

lkm

----- Tracks/paths

Figure 3.27. Possible direction of water flow from rivers or flash floods originating at the peak of the Sierra
SanMarcos y Pinos.The combination of this and local faulting could have resulted in episodic river/spring
tufa precipitation during the Pleistocene.
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3.3.2.2 Raisedpluvial lake shoreline

As discussed previously, preliminary U-series dating places the depositional

period of the perched tufa terrace between 480-500 ka BP and 128-130 ka BP.The

proposed depositional period and cyclical nature of the 6180CARB isotopic values (Fig.

3.25) could be an indicator of a long climatic sequence preserved within the tufa. The

apparent cyclicity could be representative of glacial/inter-glacial cycles although the

isotopic values range from -6.9%0 to -4.4%0 with the largest positive shift of +1.5%0

and do not appear to have large enough isotopic shifts for this to be the case.

However, as mentioned earlier in this chapter, the lack of larger isotopic shifts in the

data does not necessarilymean they did not occur, as larger positive or negative shifts

e.g. ±2.1%0[Winograd et 01., 1992], characteristic of onset or termination of glacial

events, may have been missed by the coarse sampling resolution used in this pilot

investigation.

The possible cyclicity observed within the 6180 value of the carbonate could

also indicate another terrestrial carbonate environment associated with terrace

structures. An alternating pluvial lake/closed basin system, as first suggested by

Minckley [1969], has been proposed by Wolaver et al. [2008]. Previous hydrological

work conducted by Rodriguez et al. [2005] suggestsa catchment area to the CCBof

3030 km2, providing regional groundwater flow surfacing at the CCB.However, Echelle

and Echelle [1998] hypothesized a larger surface hydraulic connection between the RIO

Grande, CCBand RIONazas as part of an extensive pluvial lake system in the late

Holocene. ExtensivePalaeo-lakeshave been previously documented in the Chihuahuan

desert [Metcalfe, 1997, 2002; Echelle and Echelle, 1998] including laguna Mavran,

which existed up until the late 1900s. The surface connection no longer exists to the

CCBthough the vast Cupido-Aurora aquifer is thought to be a remnant of this large

surface system [Rodriguez et al., 2005; Wolaver, 2008].

Evidence of this possible pluvial lake system exists in the CCBin the form of

raised alluvial fans to east of the Sierra San Marcos y Pinos as well as large river cut

canyons to the far-east/north east of the basin, thought to be former drainage

channels. The rounded clasts and braided channels present within the perched tufa

terrace do suggest they are of a fluvial origin as earlier mentioned but instead of
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episodic flash flooding events, a more sustained fluvial system could have been

possible. Rodriguez et al. [2005] 14Cdated the perched tufa terrace to 17 ka BP,

although the exact sample location is not stated, conflicting directly with the new U-

series dates obtained here of 128-130 ka BP and 480-500 ka BP for the top and bottom

of the sequence respectively. The conflicting dates and techniques used make

comparing the data difficult, although the post LGM (Last Glacial Maximum) date of 17

ka BP would suggest the presence of a pluvial lake system in the CCB, at this time, is

unlikely as studies have shown that the climate in NE Mexico and Trans-Pecos became

progressively more arid during this time [Metcalfe, 1997, 2002; Musgrove et al., 2001].

Increased moisture at this time, however, is possible. Melt water influx from the

Laurentide ice sheet has been noted in the Gulf of Mexico and increased speleothem

growth on the Edwards Plateau, Texas between 15 and 12 ka BP [Kennett and

Shackleton, 1975; Musgrove et 0/.,2001]. This influx event is a possible source of water

for a pluvial lake environment at this time although it is noted that regional climate

would more likely have become increasingly arid due to a northward shift of the ITCZ

and a change to summer atmospheric moisture source [Peterson et al. 2000; Clark et

al. 2001; Escobar et al. 2012].

Wolaver et al. [2008] suggests, further to geomorphological evidence, evidence

for a huge thickness of cobbles and limestone clasts, similar to those at the perched

terrace, underlying the CCBfloor alluvium. The underlying cobbles, overlain by various

marl facies and alluvium of at least 15 m depth, suggest an extensive pluvial lake

system may have existed in the CCB. However, the raised elevation of the perched

terrace from the basin floor (+50 m) would suggest either uplift of the terrace occurred

or a pluvial lake of enormous magnitude existed. The location of local faulting, behind

the terrace, could have resulted in uplift although palaeomagnetic studies by

Gonzalez-Naranjo et al. [2008] suggest that no uplift in the region surrounding and

incorporating the CCB has occurred since at least 44 Mya, as well as there being no

observable evidence of recent fault movement at the perched terrace itself.

3.3.3 Complexity of the CCBhydrology

A pluvial lake in the CCBwould have had approximately 1400 km2 surface area

and up to 40 m depth, if no uplift of the terrace occurred, and would be expected to
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have a remnant shoreline comprising beach deposits, similar to lakes King and

Sacramento in the Trans-Pecos region of the Chihuahuan desert [Hawley, 1993]. No

such deposits exist in the CCB [Badino et 01, 2004; Rodriguez et 01., 2005; Wolaver et

01., 2008] although the location of the now ancestral Laguna Grande could have

provided an area for a playa lake. Large gypsum deposits now occupy the playa flats

(Fig. 3.28), the location of Laguna Grande, indicating the presence of a once large playa

lake. Large hyper-saline lakes also suggest former playa lake systems existed on the

east side of the CCB although no gypsum deposits exist to indicate a major drying

event like Laguna Grande to the west. This, however, could be the result of the

through-flow nature of the CCB hydrology (see chapter 2) which, as suggested earlier

in this chapter, would have become a larger scale through-flow system in climatically

wetter periods whilst maintaining the same brine evolution system.

Laguna Grande may, formerly, have been a playa lake fed by fluvial outflow

from surrounding canyons but onset of more arid conditions led to the lake being fed

by surface flow from springs. As discussed in chapter 2, before the complete drying in

2009, Laguna Grande was fed by surface flow from Poza Churince (Chapter 2, Fig.

2.32b), which itself is a hydrothermal spring, highlighting the lateral and stratigraphic

complexity of the CCB. Lateral geomorphologic characteristics of the CCB can change

substantially over short distances «10 m) meaning sampling strategies have to be

carefully planned. Limestone cobbles and conglomerates found underlying the desert

alluvium [Wolaver et al., 2008] may not be present in all directions creating the

possibility of misinterpretation of what is believed to be pluvial lake data.
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Figure 3.28. Possible direction of fluvial outflow from Sierra San Marcos y Pinos into Laguna

Grande. Red line highlights the position of the gypsum playa flats. The aerial photo was taken in

2008 and shows the final location of Laguna Grande before complete drying up in 2009 [image

from googie.co.uk/earthj.

3.4 Conclusions and future work

The CCBhas a complex depositional system and based on observations and the

data available, two separate episodes of increased effective moisture are suggested to

have influenced the hydrology and consequent calcium carbonate formation within

the CCB.

The first episode, associated with the perched tufa terrace, appears to be

unrelated to the modern day hydrology of the CCB. New evidence presented within

the chapter suggests two possible origins for the perched terrace:
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1) Alternating fluviatile/spring line deposition of the terrace with fluvial outflow

into a playa lake, possibly laguna Grande.

2) Pluvial lake deposition as first suggested by Minckley [1969] and later Wolaver

et al. [2008], where geomorphologic evidence preserved in canyons in the CCB

suggests the occurrence of a vast pluvial lake system.

Preliminary 6180CARB and 6
13COIc isotopic data from this study suggests the

perched terrace is of a meteoric origin and the preservation of vegetation and

apparent continuous deposition of the calcium carbonate sequence may represent a

climate record to at least 120 ka BP and possibly back to 500 ka BP. The cause of the

isotopic variability through the perched terrace section is hard to identify based on the

limited data points available, however, the perched calcium carbonate terrace has the

potential to contain a valuable climatic archive for this region which, based on

preliminary U-series dates presented, may contain glacial and interglacial cycles.

Fluvial/flash flood conglomerates inter-bedded with tufa and palm frond impressions

at the base of the large calcium carbonate sequence, containing no apparent hiatuses,

suggest a sustained fluviatile/spring sequence. Stratigraphic logging of the perched

terrace sequence also suggests the conglomerates are channelled, cutting incised

channels into underlying tufa deposits, further corroborating fluvial influences.

However, the raised elevation of the perched terrace sequence from the CCB

floor as well as large geomorphological features observed by Minckley [1969] and

Wolaver et al., [2008] suggest a vast pluvial lake system. There has been no tectonic

uplift in the CCBsince at least 44 Mya to account for the perched terraces elevation of

the CCB floor and there is also no clear evidence of lake shore lines or wave cut

terraces. It is proposed here that a fluviatile/spring sequence is a more likely origin for

the perched tufa terrace, although a higher resolution 6180 and 613C climate study

coupled with further detailed stratigraphic logging, thin section tufa characterisation

and a detailed U-series chronology is needed to permit definitive conclusions.

The second episode of increased effective moisture appears to have directly

affected what is now the modern hydrology without changing the hydrogeology. The

7.24 ka BP age of the spring mound and its close proximity to both the rim-stone

pool/dam complex and fissure ridge complex, within the modern hydrological through-
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flow system suggests the climate was much wetter during the Late Pleistocene/Early

Holocene whilst preserved vegetation suggests that the wetland environment

remained relatively similar. The data discussed in this chapter indicates the

hydrogeology has remained the same from the past to the present but has fluctuated

between hydrologically open and (modern) closed basin systematics.

During wetter periods, the modern hydrologic system observed in the CCB

(chapter 2) appears to have become larger scale due to increased hydrostatic head

pressure from increased atmospheric moisture, possibly causing playa lakes in parts of

the CCB.The work conducted within the palaeoenvironmental reconstruction chapter

can better help understand the exact timing and dynamics of tufa deposition during

wetter and drier periods. The preservation of in situ human footprints in what is

suggested to be a wetter period also indicates the importance of palaeoenvironmental

controls on tufa deposition in the CCBand the affect this may have had on the earliest

human populations.
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Chapter 4: Human occupation in the CCB, and the
depositional context for the in situ human
footprint trackway

4.1lntroduction

This chapter aims to provide an overview of the Coahuilan Indian cultural

tradition and to link the archaeology with the palaeoenvironment in which the

Coahuilan Indians were living. This chapter provides a study of an in situ human

footprint trackway that utilizes new preliminary stable isotope and pollen data and U-

series dating methods to investigate changing climate and its impact on human

populations in the CCB.These new data will be integrated with a review of available

documentary and archaeological evidence of the Coahuilan Indians. This will provide

an idea of the environment in which they lived and the subsequent adaptations

undertaken in the changing Holocene climate in the NEof Mexico.

In 1961, during the construction of the Mexico Highway 30 just outside the

town of Cuatro CiE~negas,two human footprints preserved in tufa were discovered and

are currently stored in the Museo del Desierto, Saltillo (Fig. 4.1a) [Gonzalez et 01.,

2007]. The two unambiguous footprints were put on display in the museum in 1999, by

which time, the precise location of discovery had been forgotten. The two footprints

are well preserved with mud rims clearly visible between the toe impressions and also

between the toes and the ball of the foot. This indicates a soft carbonate surface was

present at the time of impression, ascan be seen in some modern day rim-stone pools

(Fig. 4.1b). A preliminary U-series date of 10.5 ka BPwas obtained for the footprints

[Gonzalez et 01., 2007]. The approximate location where the footprints were

discovered was known by the locals of the town and led to the discovery of a new in

situ human footprint trackway in 2006 [Gonzalezet 01., 2007; 2009].
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Figure 4.1. a) The two footprints preserved in tufa currently on display at the Museo del Desierto, Saltillo

(Gonzalez et 0/., 2007]. b) Example of a modern poza where impressions of horse prints can be seen in the

centre, preserved under water in the fine carbonate sediment.

4.1.1 Human occupation and the CCBcultural tradition

Throughout the late Pleistocene, into and during the Holocene, humans

occupied Northern Mexico and Southern USA.The Coahuilan Indians of the CCBare

known to have been nomadic hunter-gatherers but conditions were wetter during the

late Pleistocene into the Holocene in these now arid/semi-arid areas making living

conditions more favourable, leading to long periods of human occupation and

producing well stratified archaeological cave deposits in the Cuatro Cienegas Basin

[Palmer, 1882; Taylor, 1956, 1964, 1966, 1968, 2003; Terry et al., 2006]. The unique

desert ecosystem and a wide range of flora and fauna in the basin made it an ideal

place to hunt and live. Cavesand rock shelters in the surrounding mountains were

used as habitation sites, mortuary cavesand ritual sites, most with expansiveviews of

the basin. 'Frightful Cave' [Fig. 4.2], first discovered by Walter Taylor in the 1940s, is

the most extensively studied cave with roughly 50% of the cave floor having been

excavated producing hundreds of sandals, stone points, vegetal fibre artefacts and

human hair that have been usedto produce a basechronological sequence throughout

what he outlined as three major cultural complexes for the Coahuilan Indians:

1. Cienegas Complex (10 ka BP to 7 ka BP) - this is the first of Taylor's

archaeological complexes and encompasses the most ancient phases of the

Coahuilan Indians. The most common artefacts associated with this complex

include human hair, sandals, snake rattles and, more interestingly, the

presence of animal bones consisting of grizzly bear (Ursus arctos horribilis), elk
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{Cervus canadensis} and buffalo {Bison bison} [Gilmore, 1947]. The species

present within this complex suggesta cooler, wetter climate than today.

2. Coahuila Complex {7.5 ka BP to 1 ka BP} - the second, and most important

complex identified by Taylor. The most common artefacts include lithic arrow

points, wooden clubs and vegetal fibre artefacts, such as sandals and 'combs'

used for scarification. Interestingly, within this complex, the use of seed and

nut grindstones and the presence of chewed vegetal fibre ('quids') suggestsa

shift to more harsh, arid conditions where collection and storage of foods was

necessarytogether with the useof cacti [Taylor, 1966].

3. Jora Complex {1 ka BPto 0.4 ka BP}- the most recent cultural complex. The

presence of smaller lithic tips, for use with bows, and lithic scrapers suggests

closer relations with nomadic groups from other areas of Coahuila and possibly

the Trans-Pecosregion of the USA-Mexicoborder. In particular, close ties with

the Comarca lagunera people have been suggested, represented by the human

burials of Cuevade la Candelaria {Fig.4.2}.

Taylor concluded that the three cultural complexes shared one common

cultural tradition that became modified throughout the course of the Holocene

[Taylor, 2003]. Taylor's conclusion of the modification of one common cultural

tradition throughout the three cultural complexes relates to the suggested constant

presence of water. Taylor [1964] suggested the hypotheses of 'tethered nomadism'

and 'water territoriality', in that exploitation of different resources was undertaken

radially from a water source, resulting in reduced cyclesof nomadism and the need to

regularly return to the initial water source, effectively tethering the Coahuilan Indians

to the CCB. Taylor also suggeststhat a type of social control may have been in place

on water sources, particularly as the environment became more arid. Occupation sites

tend to be on the lower slopes of the mountains suggesting these were the more

favourable locations; within close range of basin floor water sources and woodland

vegetation at higher elevation up the mountain canyons [Badino et al., 2004].
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Figure 4.2. Locations of archaeological cave sites in Coahuila state, in particular within the Cuatro Cienegas

Basin shown by green squares. Red squares represent towns and cities and black squares represent cave

localities.

Toward the end of the Coahuila complex, Taylor notes the progressive change

of tools and vegetal items such as sandals indicated reduced social stability as the

progressive disappearance of post-glacial woodland and animals led the Coahuilan

Indians to become more reliant on the xeric succulents, such as the prickly pear cactus

(Opuntia sp.) [Taylor, 1972].

The vegetation of the CCB appears to have provided the majority of vegetal

fibre used in sandal, basket, net and mat production throughout all the cultural

complexes. This has subsequently provided an excellent material culture chronology

for the Coahuilan Indians [Taylor, 1956, 2003; Turpin, 2003]. However, very little

chronological work has been performed directly on human material; the only direct

dating of human samples in the CCB is provided by a 14C AMS date of 5.3 ka BP from
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bone collagen of an individual found in cave CM-lOg (Fig. 4.2). After considering the

additional U-series date of 10.5 ka BP on the museum human footprints [Gonzalez et

0/., 2007] with the 5.3 ka BP date on bone collagen, there is still very little direct dating

evidence of human occupation in the CCB making this report on the new in situ

footprint trackway important for future studies of the Coahuilan Indian chronology.

4.2 Study site

20'

30'

110· 100·

Figure 4.3. Location of the in situ human footprint trackway in the Tierra Blanca quarry within the Cuatro
CienegasBasin and proximity to the Mex-30 highway where the museum footprints were discovered [image
from qooqle.co.uk/eorthi.
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The footprint trackway is located at the Tierra Blancaquarry approximately 500

m west of the piedmont of the Sierra SanMarcos y Pinos and Mex-30 highway (Grid

reference: N. 26°54.526, W. 102°09.117) (Fig. 4.3). The site is located on an ancient

spring mound in the centre of the main hydrological through-flow system in the CCB

[see chapter 2] and approximately 100 m from the sediment core location [seechapter

5].

4.2.1 Tierra Blanca spring mound

Spring mounds are the most commonly occurring tufa formations, documented

around the world, most notably in Iran [Damm, 1968]. Varying facies of spring mounds

have also been documented in New Mexico, Wyoming (Mammoth Hot Springs),

Slovakiaand Australia [Harrington, 1948; Scheuer and Schweitzer, 1985; Ponder, 1986;

Pentecost,200S].

Spring mounds are formed when heated source water exits at the surface

under large hydrostatic pressure, depositing calcium carbonate [Pentecost, 2005]. The

calcium carbonate forms a dome at the surface which can range from <1m to >100m in

height, dependent on determining factors such as local topography, flow rate at the

surface, head pressure and degree of carbonate supersaturation. High carbonate

saturation will result in a steep sided mound where C02 equilibration with the

atmosphere and calcium carbonate deposition will be quicker and low carbonate

saturation will result in a more shallow relief asCO2equilibration with the atmosphere

will be less therefore resulting in slower calcium carbonate deposition [Pentecost,

2005].

Spring mounds require a constant hydrostatic head pressure of considerable

force - often asmuch as7kg cm-2 - and this pressure is realised in artesian systems (Fig.

4.4) [Pentecost, 2005]. Artesian systemsoccur asa result of faulting, allowing water to

rise up through the fracture to the surface. Divergence of the artesian well from the

fault is realised if the fault does not reach the surface or reachesan impermeable body

of rock or sediment, known as an aquiclude [Neuman and Gardner, 1989; Pentecost,

2005]. Head pressure is provided by gravity whereby precipitation on higher ground is

forced down through the bedrock, creating a pressure great enough to force

groundwater out at the surface as a spring. Many mounds have a low relief consisting
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of sheet like layers of alternating micritic and sparry tufas, mantling the surrounding

topography (Fig. 4.4), often creating irregular shapes and 'shorelines' [Ford and Pedley,

1996; Pedley et al., 2003; Pentecost, 2005].

Figure 4.4. Schematic showing development of a spring mound. a-d) Growth of a mound where alternating

(yellow and brown) layers of calcium carbonate are deposited, initially down slope before the mound builds to

a higher elevation, depositing calcium carbonate upslope also; f) example of Tierra Blanca spring mound - a

fault controlled flowing artesian spring; g) Tierra Blanca spring mound facies [modified after Pentecost, 2005].

4.3 Description of in situ human footprint trackway

The footprints were discovered in situ at Tierra Blanca quarry, the site of an

ancient spring mound, after quarrying activity had exposed but not damaged them. In

total, five footprints are well preserved in the tufa whilst six are less well preserved,

having been either partially or completely eroded away. A 3D laser scanning technique
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has been applied by Prof. Matthew Bennett of Bournemouth University, to the in situ

track to record and preserve it in a digital format for future studies (Fig. 4.4).

Figure 4.S. 3D Laser scanned map of the in situ human footprint trackway located at Tierra Blanca. Well

preserved prints are designated 1-5 on the diagram whilst eroded prints are not numbered. Three prints (L-R-L

sequence) are missing between prints 1 and 2 and a further three (R-L-R sequence) are missing after print 5

[image courtesy of Prof. Matthew Bennett, Bournemouth University, UK).

The preservation of the in situ footprint track way is very similar to that of the

two footprints stored in the museum. Mud rims can be clearly seen around the toe

impressions and also between the toes and the ball of the foot (prints 1-5, Fig. 4.5), the

heel is also clear on three of the prints (1,2 and 5, Fig. 4.5) where the longitudinal arch

of the foot during walking can also be seen. Footprints preserved in the in situ

trackway average 27cm in length, an approximate modern equivalent of a size B.S.

Print 1 is that of a right foot and has a very well defined 'ball' of the foot and also a

very well defined heel impression. The toe impressions of print 1 are not well defined

but are preserved enough to be visible. A three metre gap follows print 1 where three

prints in a left-right-Ieft sequence are missing, if step length is to be assumed equal the

three metre gap leads to an average step of 75cm up to print 2 [Gonzalez et al., 2009].

Print 2 is that of a right foot and is the least well preserved of the five prints in figure

4.5. The toes are not visible and the ball of the foot is heavily eroded but still visible,
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the heel of print 2 however is clearly visible and very well preserved. The next

footprint in the sequence is named print 4 although it is the 3rd 'visible' print in the

sequence. Print 4 is that of a left foot and is in an excellent state of preservation - four

clearly defined toe impressions with only the s" (little) toe not visible. The ball of the

foot is also very well preserved across the width of the foot. The heel of print 4 is not

the best preserved in the sequence but an outline of the heel impression is visible

despite the shallow depth of the impression. Like print 4, the next footprint in the

sequence is named print 3, when it is actually the 4th print in the sequence. Print 3 is

that of a right foot where four toes are clearly visible and well preserved with the

exception of the 5th(little) toe. The instep of print 3 is also well preserved leading from

the ball of the foot through to the heel which, despite having a shallow impression, is

clearly visible. The last visible print in the sequence is print 5 and is that of a left foot.

Print 5 is the best preserved with the complete impression of the foot including toes 1-

5. The 1stand 2nd toes are very well preserved with deeper impressions showing as red

in colour on the elevation scale, toes 3-5 do not show on the elevation scale but are

visible to the eye as shallow impressions. The ball of the foot hasa shallow impression

but both the in and out-step leading from the ball of the foot to the heel are present

and the heel itself is very well preserved with a deep impression preserved. The

remaining three prints in the trackway are in a right-left-right sequence and have an

averagestep of 72cm [Gonzalezet al., 2009].

The overall average step (including both visible and eroded prints) of the in situ

human footprint trackway is 74.57cm (n = 11) - based on an average step of 75cm (1-

4), 76.7cm (5-7) and 72cm (8-11) [Gonzalezet al., 2009].
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4.4 Methods

4.4.1 Tufa sample description

A total of 14 tufa samples for U-series dating, stable 6180CARBand 613CCARB,and

pollen analysis were extracted from a small pit located 5 m from the footprint

trackway but containing the same stratigraphie layers. The tufas are petrologically very

pure comprising filamentous clusters of CaC03 crystals around organic matter {Fig.

4.6a}. XRFanalysis indicates the tufas comprise 52% CaO, 42% organic matter (LOI), 6%

S03 with traces of other oxides suggesting the tufas contain very little detrital Thorium.

However, contamination can be seen across the surface of the upper most tufa layer

{Fig. 4.6b} by <0.1 mm black granules. This contamination continues up to 5 mm below

the surface of the tufa and could be linked to modern heavy industry and extraction of

coal in the nearby city of Monclova.

Figure 4.6. Examples of the footprint trackway tufa a) Filamentous structure observed within the tufa where
the carbonate can be seen formed around organic matter (dark areas are true pore spaces). b) Black surface
contamination observed in the upper most layer of the sampled footprint tufa [images courtesy of Steve

Noble, NIGLJ.

4.4.2 U-series dating

The dating was performed at the NERC Isotope Geoscience Laboratory {NIGL},

Nottingham. Between 0.8 and 1.5 g of tufa carbonate was analysed per sample (~ 1 g)

which provides enough Uranium and Thorium for analysis. Samples were dissolved in

Teflon-distilled HN03. Trace HNOrinsoluble detritus was removed by centrifuging, and

the dissolved carbonate spiked with a 229Th/36U tracer calibrated against gravimetric

solutions prepared from Ames high-purity Th and CRM 112a U metal pieces. The tracer

and sample were equilibrated and then Th and U co-precipitated with FeOH [Edwards

et al., 1988] and purified using a two column chromatography procedure following
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Potter et al., [2005]. Uranium isotope ratio measurements were performed by thermal

ionization mass spectrometry (TIMS) on a Triton mass spectrometer using an RPQ high

abundance sensitivity filter and a combination of a Mascom ion-counting secondary

electron multiplier (SEM) and multicollector Faraday detectors. Sample uranium was

loaded onto zone-refined Re filaments and analysed in double-filament mode. Mass

fractionation was negligible based on the measured 235U/23BUratios in both samples

and the CRM 112a and UsOO standards analysed during the period when the tufa

samples were measured. Th was analysed on the Nu HR multicollector ICP mass

spectrometer using simultaneous ion- counting on three ETPSEM's. Intercalibration of

the relative gains and mass fractionation was monitored using an in-house 229Th _23D-rh

- 232Thsolution calibrated on the Nu HR in multicollector Faraday mode. During the Th

solution calibrations mass fractionation was corrected by simultaneous measurement

of the 235U/3BU ratio from admixed CRM 112a. All data were processed following

ludwig [2D03a] and plotted using in-built functions and graphics routines in Isoplot 3.0

[ludwig, 2003b] using the decay constants of Cheng et al., [2000]. All ages and errors

on isotope ratios are quoted at the 20 level.

4.4.3 Stable isotopes

The tufa sample material was ground in agate and equivalent of 10 mg of

carbonates was reacted with anhydrous phosphoric acid in vacuo overnight at a

constant 2s·e. The CO2 liberated was separated from water vapour under vacuum and

collected for analysis. Measurements were made on a VG Optima mass spectrometer.

Overall analytical reproducibility for these samples is normally better than 0.2%0 for

613e and 61BO (20). Isotope values (613C, 61BO) are reported as per mil (%0) deviations

of the isotopic ratios (13cl2e, 1BO/160) calculated to the VPDB scale using a within-run

laboratory standard calibrated against NBSstandards.

4.4.4 Pollen

Tufas for pollen analysis were prepped by Dr. Bruce Albert (University of

Durham) and were first pulverized in a mortar-and-pestle before Lycopodium tablets

(spores = 13,911) being added to large (20-50 cc) tufa samples. Samples were then

dissolved in large (1,OOO-2,sOOml)volumes of 20% Hel (Hydrochloric acid) for 48 hours

prior to a light (3 min.) H2S04 (Sulphuric acid) based hot acetolysis controlled by glacial
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acetic acid. No KOH (Potassium hydroxide) was employed as no humus was detected,

although where gypsum was detected, this was dissolved in a hot 0.2 m EDTA (Edetic

acid) salt solution. Care was taken to limit the latter treatment to a minimum because

of potential effects on pollen exines of a high pH solution. No HF (Hydrofluoric acid)

was employed, as almost all non-organics were removed using EDTA. After cleaning

and EtOH (ethanol) based dehydration, samples were dyed in a safranine and alcohol

solution and finally mounted in silicone oil for light microscopic (lM) work.

4.5 Results

4.5.1 U-series dating

The U-Th isotope data, calculated ages and initial 234U/238Uactivity ratios are

listed in Table 4.1. Also listed are two analyses of the McMaster speleothem powder

76001 that give an average age of 47.7 ± 2.3 ka BP, compared to the published TIMS U-

Th age of 47.6 ± 2.4 ka BP [U et al., 1989]. Uranium concentrations in the tufa samples

are relatively similar ranging between 1.99 and 2.141lg/g. 23<>rhl32Thactivity ratios for

the profiled portions of 036521-7 and the upper surfaces of pieces 036521-4 and

036521-5 range from 13.4 to 44.1 which falls within the range for accurate single

sample ages. 23<>rh/32Thactivity ratio is a monitor of the amount of non-radiogenic Th

contamination ("detrital" Th) in any given sample. Activity ratios above ....20 indicate

that correction for the detrital Th is small and has ± little effect on the calculated age

and so the single sample ages are robust. Ratios below this level (....20) indicate that a

relatively large correction is required and in these cases an isochron approach to

Uranium
Sample (Ilg/g) 23~h (Ilg/g) Initial 234U/38U 2~h/3~h Age (ka BP) Figure
036521-4 (TOpsurface) 2.0B 0.0177 1.916 ± 0.004 44.1 7.19 ± 0.10 N/A
036521-5 (Top surface) 2.07 0.0273 1.924 ± O.OOB 29.3 7.2B ± 0.12 N/A
Top surface coeval date 7.24 ± 0.13 4.6

036521-6 (Top surface) 2.07 0.063 1.933 ± 0.006 16.3 9.49 ± 0.31 N/A
036521-7 (Top surface) 2.14 0.OB32 1.932 ± 0.006 13.6 9.BO ± 0.35 N/A

036521-7 (Upper drilled
layer) 2.0B 0.0233 1.921 ± 0.002 36.9 7.B9 ± 0.12 4.6

036521-7 (Middle drilled
layer) 2.09 0.0244 1.917 ± 0.002 35.B 7.97 ± 0.13 4.6

036521-7 (Lower drilled
layer) 1.99 0.0207 1.924 ± 0.002 42.5 8.46 ± 0.12 4.6

036521-B (Top surface) 2 0.0793 1.931 ± 0.005 13.4 9.86 ± 0.52 N/A

McMaster 76001-12 0.77 0.006B 2.062 ± O.OOB 246.9 4B.56 ± 0.30 N/A

McMaster 76001-13 0.79 0.0069 2.060 ± 0.004 243.2 46.91 ± 0.36 N/A

Table 4.1. U-Th isotope data, calculated agesand initial 234U/38Uactivity ratios for the in situ footprint

trackway.
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dating the samples is more appropriate and accurate. Subsequently samples 036521-6,

036521-7 and 036521-8 (Top surface) were omitted from the top surface coeval date.

The age of the top surface of the tufa, which contains the in situ footprint trackway, is

7.24 ± 0.13 ka BP based on the average of the two upper surface ages. The depth

profiling analyses indicate that the various layers preserved in tufa piece 036521-7

have a range of ages that increase with depth, with the base layers being older than

the surface and uppermost layers as expected. The near-surface porous layer is dated

at 7.89 ± 0.12 ka BP, an intermediate porous layer at 7.97 ± 0.13 ka BP, and the

lowermost layer at 8.46 ± 0.12 ka BP (Fig. 4.7).

Figure 4.7. Alternating porous/non-porous layers sampled for age profiling within tufa sample 036521-7 with
23<Th/Uages representative of adjacent layer [image courtesy of Steve Noble, NIGL).Arrow indicates orientation
of the sample - base to surface.

1:13 d 1:180 .4.5.2 u COIC an u CARB Isotopes

613eo,c and 6180CARB isotope analysis has been conducted on the Tierra Blanca

footprint stratigraphy (Fig. 4.8). 14 layers were identified in the section by their

alternating porous - non-porous layers, indicative of a calm cienega (paludal) spring

mound environment (Fig. 4.9) [Tucker and Wright, 1992; Pedley et al., 2003;

Pentecost, 2005]. 613e and 6180 isotope values were taken at 10 intervals throughout

the section (Fig. 4.8). The 013e isotope value of the carbonate remained relatively

constant throughout the section with the highest value of -0.4%0 occurring at three

depths: 24.5-27cm (B), 23-24.5cm and 0-9cm. The lowest 013e value of -1.1%0 occurs

at 24.s-27cm (A) (Fig. 4.8). The 0180 isotope value of the carbonate gradually
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decreases from -2.9%0 to -6.2%0 suggesting a slight shift to a wetter climate towards

the top of the unit. A -2%0 shift is observed between 9-1Scm and the surface tufa

indicating a more sudden shift towards a wetter climate towards the top of the

sequence after previously being a more gradual shift.

Delta value (%0)

-6 -5 -4 -3 -2 -1

Stratigraphy

o

Figure 4.8 . .s
lB
OCARB and .s13Colc isotope values for Tierra Blanca tufa samples. Pit stratigraphy is presented in the

photograph with depths. Samples for pollen analysis were taken from the surface and 0-9cm levels.

13S



Scale (cm)
0...---- .......

88 noaa
• •••••••••• •••••••••

Section

m

a
a) Fine grained surface tufa containing footprints.
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b b) Very fine grained tufa. Non-spongy texture.

c c) Spongy, tubular tufa. Similar to (a) but hasa more
porous fabric.

d d) Highly crystallized, very hard, coarsely grained tufa.

e e) Very fine, spongy tufa. Similar to (a) but with some
calcite infill of pore spaces, possibly secondary infi!l.

f
f) Very hard, well consolidated crystalline tufa. Some
carbonate nodules and mollusc shells are evident.

g g) Very hard, well consolidated tufa. Similar to (f) but
lackscarbonate nodules and mollusc shells.

h h) Very hard, fine grained tufa. Similar to (b).

i) Very crumbly (degraded) spongy, tubular tufa. Porous
fabric, similar to (c).

j) Very hard, fine grained tufa. Similar to (h) and (b).

k) Spongy, tubular tufa with a porous fabric. Similar to
(i) and (c).

I) Spongy, tubular tufa with a porous fabric. Similar to
[k], (i) and (c) but mixed with very hard, fine material.

m) Very porous, crystallized tufa with a honeycomb
fabric. Unlike any other layer within the stratigraphy .

j
k

n
n) Very soft, unconsolidated, light coloured tufa.
Abundant mollusc shells present within the layer.

Figure 4.9. Annotated stratigraphie log of the Tierra Blanca footprint site tufa. The log was taken at
N 26"54'52.60" W 102·09'11.70 in a small pit 5 m from the footprint locality.
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4.5.3 Pollen

Preliminary pollen samples from the Tierra Blanca footprint locality are

designated here as TB Print 1 (Ocm) and TB 1-9 cm (excavated pit). These contain a

similar range of pollen taxa, including more commonly Pinus, Cupressae, Quercus,

Carya, Poacea, Chenopodiaceae, Asteraceae, Ambrosia, Ephedra and Leguminosae.

Also notable here are less common pollen types such as Potamogeton, Cyperaceae,

Rhus, Myrica, Salix, Alnus, Acacia, Centaurea, Geranium, Agave, Opuntia (fragmentary)

and an indeterminate trizonocolporate type (Leguminosae). Preliminary pollen data

(Fig.4.10) suggest a wet shift toward the top of the Tierra Blancatufa sequence (9cm-

surface). Regional upland taxa - Pinus and Quercus - increase from 20 to 254 grains/cc

and 13 to 22 grains/cc respectively whereas grasses (Poaceae) are seen to decrease

from 17 to 6 grains/cc. CCB floor taxa such as Poaceae and Cheno-Ams can be

misleading however, as observed by Meyer [1973], abundance data can indicate local

rather than regional pollen rain.

7

•. - • -t---- ·
10 ......2O.......4O... '~ ~ ~ ~ :~ ~ ~ ~ ~ ~ 20 40 &Cl ~ ~ :'1. ''1. ~ ''1. ~ '1.:'1. 20 40" 20 40 '" 10 '11 1

Total pollen (%)

Figure 4.10. Preliminary pollen data for Tierra Blanca tufa stratigraphy. TB Print 1 was taken at the surface so is

plotted at 0 cm and 1-9 cm is plotted at 9 cm to accentuate the stratigraphic change in pollen with such a low

resolution (two samples).
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4.6 Discussion

4.6.1 Palaeoenvironment

Stable isotopes

The relatively constant 613CDlc values throughout the tufa sequence at Tierra

Blanca quarry (Fig. 4.8), as discussed in chapter 3, suggests the calcium carbonate

deposited was subject to the hard water effect from the surrounding Cretaceous

limestone, the source water containing the dissolved CO2was of a thermogene origin

or the source water was of a heated meteoric origin [Pentecost, 2005]. False 14Cdates

obtained for living molluscs of 26.31 ± 1.7 ka BP from Poza Becerra [Silvia Gonzalez,

personal comms.] indicate that old carbonate contamination from the surrounding

Cretaceous limestone does occur in the CCB, although modern water samples [see

chapter 2] display 613Co1c values between -21.6%0 and -9.2%0 suggesting little or no

13C is sourced from the local Cretaceous limestone bedrock that has much more

positive 613Co1c values between +2%0and +4%0 [Bra lower et al., 1999]. However, unlike

Poza Becerra, the Tierra Blanca locality does not form part of the modern day through-

flow system and is currently not actively depositing calcium carbonate, suggesting the

Tierra Blanca tufas were formed by a different process, possibly through the means of

an artesian well surfacing as a spring mound (see section 4.2.1). Source waters from an

artesian well would originate as meteoric water in the surrounding mountains before

percolating down through the bedrock deep below the surface, reducing the influence

of atmospheric and soil C02 in percolation water - the main contributors to 613Co1c

values of CCBwater between -21.6%0 and -9.2%0. less influence of atmospheric and

soil CO2 (the more negative 613Co1c pool) would in theory increase the influence of

water-rock reactions that would result in positive 613COlc from the limestone bedrock

[Pentecost, 2005].

Any CaC03 deposited by this method when C02 degasses at the surface would

still contain some carbon sourced from the Cretaceous limestone surrounding the CCB

and some degree soil zone C02, although the 613Co1c values of the Tierra Blanca

calcium carbonate suggest this may be limited with some C02 invasion from the

atmospheric CO2[Ford and Pedley, 1996; Pentecost, 2005; Baldini et al., 2006].
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The presence of a tufa spring mound suggests that at 7.24 ± 0.13 ka BP the CCB

was substantially wetter than present as no such active spring mounds exist in the

present climate. Increased 'head pressure' is required to drive the flow of water from

deep below the surface, through increased precipitation at higher elevations, to

discharge at ground level. Pollen and diatom records [Van Devender, 1985; Anderson

and Van Devender, 1995; Metcalfe, 1997] from northern Mexico suggest that modern

day climate was established sometime after 4 ka BP although large gaps in the record

exist between c. 9.5 ka BP and 5 ka BP, particularly in the Bolson de Mapimi [Metcalfe,

1997], where diatom data are sparse indicating a drier climate. However, Van

Devender [1985] suggests the Chihuahuan desert experienced significant increases in

temperature and summer precipitation after 9 ka BP, increasing effective moisture

over the north of Mexico. The preliminary 15180values of the Tierra Blanca tufas

corroborate Van Devender's theory of a wetter climate c.9 ka BP as a gradual decrease

from -2.9%0 to -6.2%0 is observed from the base of the sequence (Fig. 4.8) with a

larger decrease of -2%0 observed between 9cm and the surface. Interestingly a date of

8.46 ± 0.12 ka BP (Table 4.1, Fig. 4.7) was obtained for the lower drilled layer of sample

036521-7 which corresponds to 0-9cm on figure 4.8 and subsequently the onset of a

more dramatic wet shift through to the surface and a date of 7.24 ± 0.13 ka BP. After

this point, the tufa forming process appears to end at Tierra Blanca suggesting a

change in hydrology and reduced effective moisture driving the head pressure that

formed the spring mound [Gonzalez et al., 2009]. Spaulding [1991, page 432] suggests

"aridity greater than that of the present between ca. 7000 and 5000 yr BP" in the

Mojave Desert, N. America which when coupled with data from the Bolson de Mapimi

[Metcalfe, 1997] and this study indicates a drier period from c. 7 ka BP to the

establishment of the modern climate c. 4 ka BP in Northern Mexico.

Pollen

Vegetation growing at high altitudes, or upland vegetation taxa, in arid regions

e.g. Pinus, Quercus and Cupressaceae are considered the most important for regional

climate change due to their limited range of environmental tolerances, thus higher

sensitivity to climatic instability, and pollen rain over large areas. As opposed to

lowland taxa (Poaceae, Cheno-Ams etc.) which tend to have a broad range of

environmental tolerances, thus lower sensitivity to climatic instability, and local pollen
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rain [Minckley and Jackson, 2008]. Pinus values, which approximate 50% in TB Print 1

and only 8% in TB 1-9cm, increase toward the surface of the Tierra Blanca tufa

sequence. It could be assumed that an event such as a fire, or a sustained period of

drier climate (or both) suppressed Pinus values in the latter sample (Fig. 4.10).

Gonzalez et al., [2009] report large amounts of charcoal in the layer 9-15 cm, just

before the suppressed Pinus values perhaps indicating burning of human origins or a

lightning strike causing dried vegetation to burn, as has been reported for the CCB

during the recent eight year drought period [APFFCq. However, with only two Pinus

pollen samples that could represent a regional pollen rain, an inference of a human

burning event or drier climate is speculative. Pollen spectra from Northern Mexico and

Southwest Texas [Van Devender, 1985; Anderson and Van Devender, 1995; Bryant,

1977; Bryant and Holloway, 1985] suggest late glacial woodland and parkland was

regionally declining c. 10 - 7 ka BP. Bryant and Holloway [1985] note, in the Lower

Pecos region of Texas in particular, that decreasing levels of Pinus in Hind's Cave and

Bonfire Shelter [Bryant, 1977] coincide with increasing levels of grasses and

interestingly Opuntia and Agave - used at this time by palaeoindian hunter-gatherers.

Bryant and Holloway do, however, mention that Pinus pollen collected in cave

locations in the Lower Pecos was sufficient to suggest upland areas or sheltered river

canyons were acting as refugia for more temperate species.

Figure 4.11. Example of Carya (Hickory/Pecan) pollen present

in the Tierra Blanca footprint top level tufa.

The last remaining temperate species offlora and insects are recorded c. 8.7 ka

BP [Van Devender, 1990] in the Lower Pecos around the same time Pinus appears to
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increase in the CCB (Fig. 4.10). With increased water availability from the Cupido-

Aurora aquifer and high (3020m) mountains surrounding the CCB it may have become

a desert refuge around this time until c. 7 ka BPwhen drier conditions took hold. Carya

(Hickory/Pecan (Fig. 4.11)) and Salix (Willow sp.) pollen are present, although in low

numbers of 5 and 4 grains respectively, in the footprint trackway tufa at Tierra Blanca

suggesting this theory may have substance as these are temperate, deciduous species

that will have grown at the side of the water bodies in the CCB.

4.6.2 Southward migration and activity of hunter-gatherers

Human footprints have been well documented in the Americas - Chile,

Nicaragua, California and Argentina [Dillehay, 2000; Williams, 1952; Rector, 1999;

Bavon and Politis, 1996, respectively after Gonzalez et al., 2009] - and, with the

exception of 12.5 ka BPprints in Chile, are dated to between 6 and 7 ka BP. With these

and the 10.5 ka BP museum footprints from the CCB, very sparse data is provided for

an area incorporating Meso and South America of over 20,000,000 km2
•

The CCB appears to have provided a desert refuge with plentiful water and

vegetation rich in desert succulents and fruit bearing trees. The possible shift to wetter

climatic conditions, suggested by decreased cS180CARB values and an increased regional

Pinus pollen spectra at 7.24 ka BP, places the in situ human footprint trackway within

the boundaries of Walter Taylor's [1956, 1966, 2003] 'Cienegas complex' (10 - 7 ka BP)

and 'Coahuila complex' (7.5 - 1 ka BP) in which he notes a markedly wetter climate -

with remains of grizzly bear, elk and buffalo identified during cave excavations in the

1940s [Gilmore, 1947] - gradually changing to a warmer, drier climate; a climatic shift

identified with the concept of changing craftsmanship and tool technology in light of

no environmental or climatic data. In this early work, Taylor [1964] suggests that in a

dry period water would become increasingly scarce, thus subsistence would become

less secure with a decline in craftsmanship in light of increased nomadism. During the

wetter 'Cienegas complex', hunting and skilled craftsmanship are seen with spatulate

bone awls, animal fur and bifaced stone tools. Technology that needed specialised

technique for multiple use in hunting [Taylor, 1966]. The transition into the 'Coahuila

complex' sees an increased focus on unifaced stone tool technology that had multiple

techniques for single use and an increase in the use of wood and fibre cordage [Taylor,
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1966]. This observed shift from craftsmanship and hunting, indicative of a settled

culture, to single use tools and reliance on wood and fibre cordage, due to the cultural

stresses of an increasingly dry climate and aridity, seen in the well stratified

archaeological deposits is a good indicator of drying climate during the transition of

these complexes. However, Taylor [1964] acknowledges the limitation of the 'tethered

nomadism' hypothesis in light of limited empirical evidence. Although it is an

interesting hypothesis, the 'tethered nomadism' argument clearly needs refining with

new studies and chronologies.

The presence of both Opuntia and Agave species in the footprint tufa layer

(Fig. 4.10) allude to this transitional environment in the CCBshowing more xeric

species establishing themselves alongside temperate Carya and Salix species.Opuntia

or the 'prickly pear cactus' is a fruit bearing desert succulent, consumed by the

Coahuilan nomads [Bryant, 1975; Taylor, 1966, 2003; Badino et al., 2004], flowering in

late spring/early summer. The presence of the pollen in the footprint tufa suggests

hunting and gathering activities occurred at this time of year along with cave

occupation - coprolites from Frightful Cave show the presence of Opuntia pollen

between 9.5 ka BPand 7 ka BPalong with a variety of other fruits, leaves, bulbs and

seeds [Bryant, 1975]. The presence of grindstones [Taylor, 1966] found in the same

cave site further indicates the reliance of grinding seeds and nuts (Carya and Pinus) of

which there would have been supply, if limited, both locally and regionally [Bryant,

1975, 1977].

The local and regional presenceof Agave plants at 7.24 ka BPwould have been

important for providing vegetal fibres necessaryfor the production of sandals, baskets

and ropes (amongst other technologies) [Taylor, 1966; Badino et al., 2004]. Agave

typically grows in the bajada, or 'monte', part of the CCBwhich is often near to canyon

mouths and cave sites inhabited by the ancient hunter gatherers for their favourable

location - both close to vegetal resources (Le. Agave) and to water sources [Taylor,

1956]. The signs of drying climate around 7.24 ka BPappear to mark the beginning of

Taylor's longest 'Coahuila complex'. In this complex Taylor [1966] notes extended

nomadism in the CCBas local resources became harder to come by, hunter-gatherers

expanded their search, becoming more dependent on fibrous plants and the water
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sources available whilst changing point technology indicated shifts in hunting practice,

possibly toward fish and aquatic fauna.

The footprint trackway is located on a raised spring mound structure which is

indicative of a calm cienega environment [Tucker and Wright, 1990]. With an average

(contemporary) foot size of 8.5 and step of 74.S7cm it can be assumed the footprints

are that of an adult human. Taking the average step into account, the stride length for

this particular hunter-gatherer is 149.14 cm and when placed into Alexander's [1989]

stride length vs. speed equation gives a speed of 1.7 m/s or 3.8 mph (Fig. 4.12). The

average adult walking speed is between 2.8 and 2.95 mph [Knoblauch et al., 1996]

indicating that this individual was travelling faster than averageand potentially hunting

a large animal such as a cervid (deer), of which hoof prints occur near-by the in situ

trackway [Gonzalezet al., 2009].

Figure 4.12. Stride length against speed for adult humans (circle), dogs (square) and camels (triangle). Red line

represents data for the human footprint trackway in the CCB [modified after Alexander, 1989).
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4.7 Conclusions and future work

With at least two different human footprint levels identified at 10.5 ka BPand

7.24 ka BP(from this study) in age, the Cuatro CienegasBasin (CCB)has a long period

of basin floor human occupation. The tufas sampled were sufficiently pure as to yield

accurate U-series dates at a young age for this dating method. The pure tufas and

reduced karst influence of the CCBwaters suggest that, although preliminary, the

isotopic sequence studied is accurate, and may provide a valuable climatic data

archive, able to be cross referenced with other archaeological sites in the Americas, in

particular the Trans-Pecosregion of the USAand NEMexico. The isotopic and pollen

study presented in this chapter has allowed a preliminary Mid-Holocene climate

pattern ofthe CCBto be inferred, providing a basisfor further work with the CCBtufas.

The isotope and pollen data suggest that despite the warming regional climate, the

CCBappears to have provided an area of unique refuge for late Pleistocene/Early

Holocene human populations from North America who would be migrating south away

from the tundra conditions of N. America. There was a favourable, temperate climate

providing food and water in the CCBsince at least 10.5 ka BP.As the ancient nomads

adapted to the increasingly hostile dry desert conditions, changing technologies and

hunting activities allowed these people to expand their ability to find resources leading

to longer cyclesof nomadism and possibly the expansion of their unique desert culture

into the regions surrounding the CCBuntil the arrival of the Spanish.

More extensive and detailed archaeological excavations are proposed for cave

and basin floor sites in the CCB.Thorough excavations would allow for the footprint

locality to be better placed into the CCBhuman occupation chronology whilst also

placing them within a detailed environmental phase. If environmental determinations

can be made they could then be collated with local and regional records allowing for

possible migratory routes and hunter-gatherer activity to be determined.

The presenceof the Tierra Blancaspring mound certainly suggeststhe CCBwas

substantially wetter around 7.24 ka BP.The U-seriesdates suggestthat further dating

of the Tierra Blanca tufas could yield a more accurate chronology throughout the

Holocene tufa sequence,which could then allow the environment in which the hunter-

gatherers were living to be synthesised into palaeoenvironmental reconstructions of
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the CCB. As well as U-series dating techniques, further stable isotopic work is

warranted. A good preliminary palaeoenvironmental record has been established,

providing an excellent platform on which to base further environmental and

hydrological determinations. Synthesisof human activities can then be placed within a

regional and global palaeoenvironmental context if the obtained isotopic and

hydrological data (from tufas) can be collated.
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Chapter 5: Multi-proxy palaeoenvironmental

reconstruction of the Cuatro Cienegas Basin

s.llntroduction

The main aim of this chapter is to investigate the palaeoenvironment of the

CCBusing a multi-proxy research approach. 180/60 and 13C/12C isotope ratios were

measured to allow the analysis of stable 6180 and 613C isotopes alongside pollen

samples taken from a 15 m sediment core. A timescale spanning the Late Pleistocene-

Holocene in the CCBis investigated. A further aim of this study is to reinvestigate the

hypothesis of environmental stability spanning the last 30 ka BP in the CCB,first

proposed by Meyer [1973] and later contradicted by Minckley and Jackson[2008]. The

contrasting nature of the studies has major implications for the controls of tufa

formation, hydrology and human occupation within the CCB.

5.1.1 Climate of the Cuatro Ch~negasBasin

The Cuatro ClenegasBasinfloor today averages742 m a.s.1and is "in shadow of

rain" [Badino et al., 2004], enclosed between the Sierra Madre accidental to the west

and the high peaks of the Sierra Madre Oriental to the east, cutting off the dominant

winds and humid air from the Pacific Ocean and Gulf of Mexico (GoM) respectively

[Badino et 01.,2004] (Fig.5.1).

The CCB is classed as a semi-arid desert environment. Annual evaporation

of >2000 mm/yr exceeds annual precipitation of <250 mm/yr with the majority of

rainfall occurring during the summer months [Badino et al., 2004]. Rain falls mainly in

September through a mixture of humid air from the GoM and rainout from the North

American Monsoon (Fig. 5.2). Individual rainout events can reach up to 40 or 50 mm,

although the surrounding mountains play an important role in precipitation patterns in

the CCB.Up to 350mm falls in the mountain regions surrounding the CCBdue to the

mountains forcing ascending movements of air which then cool down with higher

altitude, eventually releasing precipitation [Badino et 01.,2004].
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Figure 5.1. Location of the Cuatro Cienegas Basin in Mexico (A and B) with the Tierra Blanca Quarry site (C).
Core Poza Tierra Blanca (PTB) location is marked with a star [image from google.co.uk/earthj.

Air temperatures in the CCB have a large range. Average daily temperatures

range from +6.3·C to +24.6·C with peaks up to 40·C in June and July and troughs of O·C

during December and January. This gives an average annual temperature of 21.2·C on

the CCBfloor (742 m a.s.l), 16·C at 1500 m a.s.l and 13·C at 2000 m a.s.1 [Badino et 01./

2004].
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Figure 5.2. The major circulation patterns over Mexico in (a) winter (DJF) and (b) summer (JJA).
Dominant seasonal moisture sources are shown with bold arrows. The CCB location is displayed as a
red star [modified after Metcalfe et 01., 2000].
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5.2 Previous palaeoenvironmental studies

Comparatively few palaeoenvironmental studies of northern Mexico have been

conducted when compared to the number of studies in central and southern Mexico

[Metcalfe et al., 2000]. Only two studies have been conducted within the CCBitself,

although four important studies focusing around the Chihuahuan Desert and southern

United States have been undertaken (Fig.5.3).

USA

Mexico

Figure 5.3. Previous palaeoenvironmental studies conducted in the north of Mexico and southern United States.

Meyer [1973] produced the first palaeoenvironmental study of the CCB,

studying a 13 m sediment core. The exact location of the sediment core remains

unclear although, sedimentologically, several alternating peat/tufa layers were

described. Meyer [1973] proposed climate stability in the CCBfrom 31.4 ka BPto the

present through pollen analysis.Compositae dominated the sequence (55-83%of total

pollen), similar to contemporary CCB floor spectra, supporting the hypothesis of

environmental stability. Changes in upland Pinus and Quercus are noted throughout

the pollen sequence, indicating a fluctuating environment, although the expansion of

upland vegetation did not progress onto the CCBfloor. Inverse 14Cdates at the baseof

the 13 m core - 26.8 ka BPat 13 m and 31.4 ka BPat 11 m - suggestthe possibility of
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erroneous sampling procedures or pre-sampling contamination, such as re-worked

sediment. The apparent errors in the chronology of Meyer's study suggest the final

conclusion of environmental stability from 31 ka BPto the present may be incorrect.

Although the interpretation of pollen data may be correct indicating vegetational, and

therefore environmental, stability over the late Pleistocene to the present, the

inverted dates suggestthat the time spanof 31 ka BPto the present may be incorrect.

More recently, Minckley and Jackson [2008] studied a fossil packrat midden

taken from the Sierra San Marcos y Pinos in the CCBand combined this with a re-

investigation of Meyer's [1973] original pollen data. The midden is of glacial age - 16.9

ka BP- showing substantial climatic and ecological changes within the CCBover the

Late Pleistocene and EarlyHolocene.Woodland populated the CCBmountains down to

the bajada's (alluvial deposits) at the foot of the mountains from 16.9 ka BPto c. 11 ka

BP;migrating upwards as regional climate beganto warm into the Holocene.

Metcalfe et al., [2002] studied a laminated core taken from Alta Babfcorain the

Chihuahuan Desert. Using diatom assemblages they found the presence of a deep

water lake from at least 65 ka BP to 57 ka BP before shallowing and exhibiting

concentrated lake levels at 54.6 ka BP.Between c.ss ka BPand c.30 ka BPa summer

precipitation regime dominated the climate, punctuated by high variability in lake

levels. Southward displacement of the westerly storm tracks is widely accepted

between c.29 ka BP and c.l0 ka BP; causing wetter, cooler conditions in the

Chihuahuan Desert. This work was a continuation of that by Metcalfe et al., [1997]

where a diatom record spanning >11 ka BPto 2.5 ka BP was presented. Evidencefor a

deep water lake in Alta Babfcora is indicated prior to 11.06 ± 0.39 ka BP, before a

marked shallowing, corresponding to the Younger Dryas c.11.06 ka BPto 9.47 ka BP.

The diatom record becomes sparse at that point of the record suggesting a dry mid-

Holocene before wet conditions are re-established in the diatom record prior to 2.47

ka BP.

Musgrove et al., [2001] conducted detailed chronologies of four stalagmites in

the Edwards Plateau, Trans-Pecos region of Texas. Detailed hydrologic patterns and

climate change indications were extracted by studying growth rates of the stalagmites,

spanning 71 ka BPto the present. They found three periods of rapid growth - 71 ka BP
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to 60 ka BP, 39 ka BP to 33 ka BP and 24 ka BP to 12 ka BP - indicating these periods

had significantly increased moisture, corresponding in part with stadial-interstadial

cycles. The stalagmites all exhibit a large drop in growth rate between 15 ka BP and 12

ka BP, continuing up to the present, consistent with drying Holocene climate.

Elias and Van Devender [1990] studied a series of 50 packrat middens in the Big

Bend region of the Chihuahuan Desert, ranging in age from 36 ka BP to the present. A

diverse arthropod fauna was found, substantiating the hypothesis of mesic vegetation

of glacial age c.30 ka BP to 12 ka BP, in particular, mid-glacial (c. 30ka BP to 20 ka BP),

indicating a temperate, wooded environment. Late glacial (c.20 ka BP to 12 ka BP)

fauna were mainly comprised of grassland species indicating a cooler, wetter climate

for Chihuahua at that time. After 12 ka BP these temperate species were gradually

replaced by desert species up to 6 ka BP, after which species more indicative of severe

aridity became abundant, although temperate species were still found in the area up

until 2.5 ka BP.

Castiglia and Fawcett [2006] studied Holocene pluvial lake beach deposits in

the Chihuahuan Desert. Using 14CAMS dating of beach deposits they found the early,

mid and late Holocene was punctuated by periods wet enough to establish pluvial lake

systems. Four periods - 8456 ± 97 to 8269 ± 64 yr BP; 6721 ± 68 to 6110 ± 80 yr BP;

4251 ± 59 to 3815 ± 52 yr BP and 221 ± 33 yr BP - were found to be climatically wet

enough to support the presence of pluvial lakes.

Meyer's [1973] conclusions of climatic and environmental stability in the CCB

are contradicted by the findings of more recent, regional studies of northern Mexico

and southern United States. Therefore, the aim of this chapter is to test the following

null hypothesis: has the Cuatro Cienegas Basin (CCB)provided an area of unique desert

refuge for flora and fauna, unresponsive to regional climatic and environmental

change, from the Late Pleistocene to the present?

The use of stable isotopes (15180,cS13C) for palaeoenvironmental reconstructions

in northern Mexico has been completely neglected up until this point. This study will

explore, for the first time in this region, the use of isotopes as proxy environmental

indicators by analysing changes in 15180and CS13Cclimate signals. Alongside pollen
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samples taken from a 15 m sediment core it should be possible to reconstruct a multi-

proxy palaeoenvironmental record for the CCB for the first time.

5.3 Stable isotopes in lacustrine and wetland sediments

Stratigraphic changes in stable isotopic ratios eH/lH, 180/60, 13C/2C) in

lacustrine and wetland sediments can be attributed to changes in the steady state

composition of the water from which the sediment is being deposited. These changes

can be dependent on a number of factors, including temperature, atmospheric

moisture source and precipitation/evaporation ratio (E/P) [e.g. Schwalb, 2003; Schwalb

et of. 1999; liu et al. 2009]. Tvplcallv, lakes and wetlands produce primary mineral

precipitates which will be authigenic, such as calcite marl [e.g. Dean and Schwalb,

2000], or biogenic, such as ostracod and gastropod shells [e.g. Heaton et al. 1995;

Escobaret of. 2010], from which the stable isotopic ratios can be measured.

5.3.1 Oxygen

Oxygen exists in three isotopic forms - 160, 170 and 180 - with two of these of

importance in palaeoenvironmental studies - 160 and 180. Oxygen isotopes in

carbonate sediments will reflect the environment in which they were precipitated over

the course of a stratigraphic sequence [leng, 2005; Sharp, 2007]. Palaeoclimate studies

will often use observed stratigraphic changes in the oxygen isotope composition of

biogenic or authigenic carbonate to infer changes in temperature or the oxygen

isotope composition of the water, and carbonates have been shown to contain

significant archives of palaeoclimatic and palaeoenvironmental information [Andrews

et al., 1993, 1997; Vu et al., 1997; leng et al., 2001; Marsha" et al., 2002; Ortiz et al.,

2009; Brasier et al., 2010; Holmes et al., 2010 also see leng, 2005; Sharp, 2007 and

Hoefs, 2009 for further discussion].

The oxygen isotopic composition of lacustrine and wetland sediment archives is

predictable by thermodynamics in that the oxygen isotope composition of the

precipitating mineral is controlled by the temperature and isotopic composition of the

source water from which the mineral is precipitated, this is known as equilibrium

mineral precipitation [leng, 2005; Sharp, 2007; Hoefs, 2009]. Precipitation of calcium
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carbonate in carbonate sediments is usually an equilibrium reaction, principally caused

by the removal of CO2:

Degassing of source water will occur where waters with high PC02 (partial

pressure of carbon dioxide) emerge into an area of low PC02, consequently the water

will equilibrate with the surroundings, typically exchanging with atmospheric CO2, and

precipitate calcium carbonate. Provided it can be shown that a mineral is deposited in

equilibrium, fractionation equations (or palaeotemperature equations) can be used to

estimate past temperature and any changes of temperature within the sediment

archive [Dansgaard, 1964; Shemish et al. 2001; leng and Marshall, 2004; Sharp, 2007].

However, knowledge of what may have affected the isotopic composition of

the source water is vital to the interpretation of the oxygen isotope composition of the

carbonate; these effects are discussed in detail in chapter 2. Further to the processes

affecting the oxygen isotopic composition of the source water are processes that affect

the mineral deposition, principally calcite in the case of lacustrine and wetland

carbonates [leng and Marshall, 2004; leng, 2005; Sharp, 2007; Hoefs, 2009]. Kinetic

isotope effects, or disequilibrium effects, are associated with incomplete or modified

mineral precipitation. Disequilibrium mineral precipitation affects the 6180 value

contained within the mineral, causing the mineral to have an oxygen isotope

composition different to that predicted by thermodynamics, and can be attributed to

differing rates of mineral precipitation, pH, speciation controls (known as vital effects)

and microenvironmental changes [leng and Marshall, 2004; Sharp, 2007]. Further to

thls, disequilibrium processes are often interlinked with each other e.g. air

temperature changes will not only affect the oxygen composition of water from which

the carbonate is precipitating but will also affect the oxygen composition of rainfall,

amount of rainfall, water level and pH. However, disequilibrium processes can be quite

systematic e.g. some ostracods display species specific vital effects, between +0.3%0

and +2.5%0 [Holmes and Chivas, 2002]. As the vital offsets are species specific, as long

as the factors that offset the isotopic composition from equilibrium are known i.e. pH,

these vital effects can be accounted for when interpreting palaeoclimatic information

[leng and Marshall, 2004].

153



Palaeoclimate studies often rely on the analysis of bulk carbonate, or fine

fraction carbonate [Leng and Marshall, 2004]. Unless it can be shown that the

carbonate is from a single source component i.e. authigenic, any changes in the oxygen

isotopic composition of the carbonate may represent changes in the relative

abundance of source components (authigenic vs. biogenic) rather than actual

environmental or climatic change e.g. lake eutrophication and photosynthesis by algae

leads to a negative shift (> -3%0) in the oxygen isotope composition of fine fraction

carbonate. This offset can be attributed to increased mineral precipitation rates

incorporating more 160, effectively depleting 6180 value of carbonates relative to ones

precipitated in equilibrium [Fronval et al., 1995]. However, the change in source

component will often be related to a change in water body composition, such as pH,

depth etc. which will be a direct response to a change in climate or hydrology.

5.3.2 Inorganic carbon

Carbon exists in three isotopic forms, two of which are stable - 12Cand 13C -

and one of which is radioactive and unstable - 14c. All three are important for

palaeoenvironmental studies with 13C/2C isotope ratios displaying important

environmental changes and variations similar to those seen in 180/160 isotope ratios

[Drummond et al. 1995; Li and Ku, 1997; leng and Marshall, 2004].

DIC (Dissolved Inorganic Carbon) in waters is a useful proxy in the

determination of environmental processes, usually linked to climate change, which

may have affected a lake. Inorganic carbon isotopes are mainly derived from HC03-

(bicarbonate) and get incorporated into authigenic and biogenic carbonates, and

although the direct sensitivity of 613Co1c as a proxy for temperature change is low, the

613CDlCisotope value in a sample may represent the depositional environment [Leng,

2005]. There are three processes that control the inorganic carbon isotope

composition of lacustrine and wetland sediments:

1. Composition 0/ in/lowing waters - Plant respiration and production of CO2

by decaying organic matter in soils is responsible for the majority of carbon

in inflow waters. HC03- is the dominant carbon species at pH's between 7

and 10 and in equilibrium with C02,carbonate sediments will have 613CoiC

values up to 10%0 higher than the source water [Leng and Marshall, 2004
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after Romanek et al., 1992]. Terrestrially derived organic matter - C3and C4

plants - have 013Cvalues ranging from -20%0 to -32%0 and -17%0 to -9%0

respectively so based on Romanek et al. [1992], ground and river waters

have 013Co1cvalues that are generally low (-10%0 to -15%0), reflecting the

input of soil derived CO2. However, much higher 013COIC(-3%0 to +3%0)can

occur in karstic terrain with the dissolution of catchment limestone [e.g.

Andrews et al., 1997].

2. Interaction of water body with aquatic plants - the preferential uptake of

12C by aquatic plants and during photosynthesis in periods of high

productivity generally leads to increased 013COICvalues of carbonates.

However, the subsequent oxidation of bulk organic matter can lead to

013Co1clake water stratification and lower 013CDlCvalues at increasing water

depth due to a localised availability of 12C in CO2 from respiring sinking

organic matter, particularly in shallow lakes [Leng and Marshall, 2004].

3. CO2exchange of water with the atmosphere - the process of CO2 exchange

generally leads to high 013COICin carbonates due to the tendency of water

to equilibrate with the atmosphere which has 013Cvalues "'8%0 [Leng and

Marshall, 2004]. This is particularly noticeable in hydrologically closed

systems where 013Cwill tend to co-vary with 0180due to equilibration with

atmospheric CO2 and preferential evaporation of 160 respectively [Talbot,

1990].

5.3.3 Carbon isotopes in organic matter

DOC (Dissolved Organic Carbon) occurs in peaty lakes and ground waters and

reflects the organic carbon isotope composition (013CORGANdof the sediments, mainly

organic marl and/or peat [Meyers, 1994; Andrews et al., 1998; Meyers and Teranes,

2001; Meyers, 2003; Leng, 2005; Minckley et al., 2009]. DOC is influenced by both

initial biomass production and degradation, integrating all the different origins of

organic matter, depositional processes, photosynthetic pathways and also

preservation. The 013CORGANICvalue of soil organic matter represents the long term

isotopic composition of the standing biomass, consequently the 013CORGANICisotopic

composition of carbonates will be distinguishable by the metabolic pathway of carbon

fixation in plants [Amundson et al., 1994]:
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1. Plants that survive through C3 carbon fixation thrive in areas where sunlight

intensity and temperatures are moderate. These temperate vegetation types

represent the majority of the Earths biomass and are usually deciduous or

coniferous woodland plants with cS13CORGANICvalues ranging between -38%0 and

-22%0 with a mean of around -27%0 [Deines, 1980; Barbour and Billings, 2000].

2. Plants that survive through C4 carbon fixation thrive in arid areas due to their

efficiency in CO2 fixation and this efficiency leads to less water and energy loss

through photorespiration [Barbour and Billings, 2000]. The most common

forms of C4 plants are desert shrubs, grasses and bushes with cS13CORGANICvalues

ranging between -15%0 and -8%0 with a mean of around -12%0 [Deines, 1980].

3. Plants that survive through CAM fixation can thrive in both temperate and arid

environments but are more commonly found in arid areas, utilizing specific

microenvironments [Barbour and Billings, 2000]. CAM plants have 613CORGANIC

values that can vary between C3and C4 vegetation, with a range between -30%0

and -13%0 generally accepted to be correct [Osmond et al., 1973; Amundson et

al., 1994; Barbour and Billings, 2000].

In theory, higher cS13CORGANICvalues of carbonate indicate increased contribution

from C4 vegetation and a warmer-drier climate and lower 613CORGANICvalues of

carbonate indicate increased contribution from C3 vegetation and a wetter-colder

climate as C3 favours increased water and/or higher atmospheric CO2 [Aucour et al.,

1994]. However, it has been shown that some C3 plants can display carbon isotope

discrimination when placed under environmental stress, such as increased

salinity/aridity [Chaves et al. 2009] and altitude [Kohn, 2010; Diefendorf et al. 2010].

This discrimination during photosynthesis can increase uptake of BC, thus positively

skewing the 613CORGANICvalues in sediments.

Nitrogen can also be used as a proxy when determining 613CORGANICorigin. The

use of C/N ratios in sedimentary organic matter has been shown to be useful in

distinguishing between the input of terrestrial vegetation and aquatic vegetation/algae

[Meyers, 1994; Andrews et al., 1998; Minckley et al., 2009]. Aquatic plants tend to

have a greater proportion of N when compared to terrestrial plants so C/N ratios are of

great importance; increased C/N (>20) indicates increased terrestrial contributions

where decreased C/N «10) indicates increased aquatic algal contributions [Minckley et
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01., 2009]. Very little is known about CIN ratios in aquatic vascular plants

(macrophytes), but it is thought intermediate CIN values >9 and <20 indicate common

macrophytes [Lini et 01.2000].

5.4 Study site

During March 2008 a month was spent in the field. Two lake border sediment

cores were obtained, using an Acker split spoon corer, in two localities within the

Cuatro Cienegas basin - Core Paza Tierra Blanca (PTB) (N. 26° 54' 65.1, W. 102° 09' 15.8)

and Core Cuatro Clenegas Meyer (CCM) (N. 26° 54' 78.7, W. ioz: 07' 72.2) (Fig. 5.4).

Core PTB

\

10km

Figure 5.4. Locations of cores PTB and CCM taken within the CCB.

Poza Tierra Blanca (location of core PTB) has an approximate surface area of 50

m2, maximum depth of 1 m and is <20°(, The pool is located in the central marsh

(cienega] area of the main through-flow system in the CCB (see chapter 2) and is an

open pool with an emergent underground inflow stream entering the pool to the

south and an outflow stream exiting to the north, continuing the surface flow

throughout the marsh area. The inflow stream of Poza Tierra Blanca emerges from

underneath the CCB floor with reconnaissance isotopic data suggesting the pool is
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sourced from a mix of cold surface water and warmer Cupido-Aurora aquifer water,

however, the exact water source of Poza Tierra Blanca remains unclear due to complex

nature of the CCB surface water flow (see chapter 2). Core CCM was taken in the

approximate location of Meyer's [1973] sediment core to allow better comparison

between sediment descriptions and environmental data.

Figure 5.5. The location of core PTB. Poza Tierra Blanca can be seen in the foreground of the photograph.
The Tierra Blanca footprint site can also be seen as a small mound to the left of the photograph.

Because the CCB is a natural protected area with National Park status, cores

PTB and CCM were taken under very strict limitations from the APFFCC.Core PTBwas

originally intended to be taken from the centre of Poza Tierra Blanca but, the specific

permission granted only allowed the core to be taken on the edge of the pool in what

is now a marsh area (Fig. 5.5). The use of a percussion coring device resulted in some

sediment loss and re-sampling, so complete core recovery was not possible. Any

sediment re-sampling was attributed to the lack of a plug in the end of the split spoon

core, resulting in liquefied material at the beginning of each 60 cm core. The presence

of unfit (liquefied or re-sampled) sediment was determined in the field and the

material disposed of in the field prior to wrapping the remaining sediment for later

sub-sampling. The resulting recovery was "'60% from the 1500 cm long core.

Core Cuatro Cienegas Meyer (CCM) was omitted from all laboratory analyses

due to the very fragmented nature and limited recovery of sediments. In total, 421 em

of sediment, from the 900 cm core (46.8%), was missing which meant that analysis of
158



the core would have been too fragmentary over a relatively short core depth. The core

sediments were predominantly marls with varying degrees of organic detritus and

lithic fragments, no peat was present throughout the core and although tufa was

present at the base (890-897 cm) it was too fragmentary (Fig. 5.6) and therefore too

chronologically unreliable to date with U-series. The lack of peat or tufa in core CCM

meant that no accurate dating and therefore no chronological control would have

been possible and was subsequently discarded from further analysis.

5.5 Laboratory methods

Description and sampling of core PTB was conducted at the Centro de

Investigaci6n Cientifica de Cuatrocienegas. Core stratigraphy was described in detail

(see appendix 2.2.1) and samples were comprised of various carbonate facies (marl,

clayey marl) and peat (Fig. 5.7). Core PTB also included two sequences of tufa which

could possibly be linked to the in situ footprint track way tufa in the Tierra Blanca

Quarry. After description of core PTB, it was then sub-sampled contiguously for dating,

stable isotopes, pollen and loss on ignition (lOI) analysis at 1 cm intervals to a depth of

358 cm and every 3 cm (alternating for stable isotopes, pollen, lOI analysis) for the

remaining 1,142 cm. Pollen subsamples were taken by Dr. Tom Minckley to the

University of Wyoming for analysis whilst subsamples for dating, lOI and stable isotope

analysis were taken to liverpool John Moores University.

A total of 236 samples taken from core PTBwere prepared for c5180CARB, c5
13COIC

and c513CORGANIC analysis. Two methods of preparation were used (NB, All equipment

used during preparation was thoroughly washed with distilled water before being

used):

1. Preparation of cS180CARB, c5
13COIC samples removed any unwanted organic

fraction within each of the 236 PTB samples, leaving only fine fraction

carbonate for analysis. To remove the unwanted organic fraction from each

sample, 0.5 cm3 of sample was broken up in a pestle and mortar into <1 mm

size and placed in 500ml plastic tri-pour beakers before being immersed in 50

ml (5%) Sodium Hypochlorite (NaOH.CI) solution. NaOH.CI was used to digest
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the organic fraction of samples. Samples were allowed to dissolve in the

NaOH.CI for 12 hours; if by this time the reaction hadn't finished (an unfinished

reaction is identified by the sample fizzing upon the addition of 2 ml NaOH.CI

solution), an additional 10 ml solution was added every hour until the reaction

was complete. Samples were then sieved at 80 um to remove any larger

carbonate contaminants e.g. mollusc shells, that are subject to hard water

effect, before being decanted three times with distilled water in 500 ml tri-

pour beakers to remove any residual NaOH.CI contamination. Samples were

dried overnight at 40·e and ground into fine powder in a pestle and mortar for

analysis.

Peat samples contained a small amount of carbonate (lOI 950·e = 0.25% - 12.86%)

but this was not analysed because it was likely a contaminant derived from

dissolution and re-deposition of calcium carbonate derived from marl sediments

further up the sediment column.

2. Preparation of 613CORGANICremoved any unwanted carbonate fraction within

each of the 236 PTa samples, leaving only organic e for analysis. To remove

the unwanted carbonate fraction from each sample 2 cm3 of sample was

broken up in a pestle and mortar into <1 mm size and placed in 500 ml plastic

tri-pour beakers before being immersed in 50 ml (pure peat samples) or 100 ml

(organic rich marl/tufa) 0.5 M Hydrochloric Acid (HCI) solution. 0.5 M Hel was

used to digest the carbonate fraction of samples. Samples were allowed to

dissolve in the Hel for 12 hours; if by this time the reaction hadn't finished (an

unfinished reaction is identified by the sample fizzing upon the addition of 2 ml

Hel solution), an additional 10 ml or 20 ml (for peat and carbonate respectively)

solution was added every hour until the reaction was complete. Samples were

then sieved at 80 11mto remove any larger contaminants i.e. modern rootlets

and seeds, which could alter isotopic ratios and/or 14CAMS dating at a later

date. Samples were then decanted three times with distilled water in 500 ml

trl-pour beakers to remove any residual Hel contamination. Samples were

dried overnight at 40·e and ground into fine powder in a pestle and mortar for

analysis.
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Figure 5.6. The fragmented basal tufa of core CCM.The fragmented nature of the tufa meant it was
unreliable for dating due to the possible mixing of older and younger stratigraphic layers.

Figure 5.7. Alternating peat - marl- tufa stratigraphy of core PTB.Displayed in the photograph is 2.4 m to
1.6 m in the core with well humified peat, marl, organic marl and tufa all present.
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5.5.1.1 Organic and carbonate content by loss on ignition (LOI)

Loss on ignition was conducted on the sediments from 236 core PTB samples

(see appendix 2.1). The data was primarily used for determining the amount of sample

to use (mg) for c5180CARB,c513CCARBanalysis and c513CORGANICmass spectrometric analysis,

following the standard three step procedure set out in lamb [2004; after Dean, 1974]:

1. 19 sediment/sample was weighed and placed in a sterilized crucible of a known

weight. Samples were placed in a muffle furnace at 105·C for 12 hours to

measure % (g) loss of water per sample. Samples were then cooled to room

temperature in desiccators before being reweighed to ±O.lmg.

2. The reweighed samples were then placed back into the muffle furnace at 550·C

for 2 hours to measure % (g) loss of organics per sample. Samples were then

cooled to room temperature in desiccators before being reweighed to ±O.lmg.

3. Samples were returned to the muffle furnace and heated to 950·C for 4 hours

to determine C02 evolved from carbonate minerals, giving an approximation of

carbonate content (g). Samples were cooled to room temperature in

desiccators and reweighed to ±0.1mg.

After these three steps have been followed the following equations can then be

applied to calculate; a) Organic content of the sample (%); b) C02 content of the

sample (%); c) Carbonate (C03) content of the sample (%); and d) Calcium carbonate

(CaC03) content of the sample (%) [for more detail of the methods see Dean, 1974;

lamb,2004]:

a) LOlsso = (DW10S - DWsso)/DW10S)*100

lOlsso represents lOI at 550·C (as a percentage), DWlOS represents the dry

weight of the sample before combustion and DWsso represents the dry weight

of the sample after heating to 550·C (both in g). The weight loss should be

proportional to the amount of organic carbon contained in the sample.

b) LOlgso = (DWsso - DWgso)/DWlos)*100

lOlgso represents LOI at 950·C (as a percentage), DWssois the dry weight of the

sample after combustion of organic matter at 550·C, DWgsorepresents the dry

weight of the sample after heating to 950·C and DWlOS again represents the
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dry weight of the sample before any further combustions. The weight loss

should be proportional to the amount of C02 evolved from the sample.

c) C03TOTAL= LOlgso*1.36

C03TOTALrepresents the weight of carbonate in the sample (as a percentage),

lOlgso represents lOI at 950·C (as a percentage). Assuming a weight of 44 g

mol? for CO2 and 60 g mol" for carbonate (C03), the weight loss by lOI at

950·C multiplied by 1.36 should equal the weight of the carbonate in the

sample.

d) CaC03TOTAL= LOlgso*2.27

CaC03TOTALrepresents the weight of the calcium carbonate in the sample (as a

percentage), lOlgso represents lOI at 950·C (as a percentage). Assuming a

weight of 44 g mol" for CO2and 100 g mol" for calcium carbonate (CaC03), the

weight loss by lOI at 950·C multiplied by 2.27 should equal the weight of the

calcium carbonate in the sample.

5.5.2 U-series dating

A total of five samples for U-series dating were prepared. Core PTB tufas were

cut into 1cm slices for ease of storage and sampling. Material for analysis was removed

from several tufa pieces using a stainless steel end cutter. Cleaning of the carbonate

was conducted under a binocular microscope. Since the tufa pieces were delicate and

friable, great care was taken to avoid inadvertent disturbance of the U-Th systematics.

As Uranium breaks down into Thorium in a series of half lives (measurements of these

half lives provides dates), disturbance ofthe U-Th systematic can lead to false readings

of Uranium and/or Thorium thus producing false dates. Samples were broken down

into S3mm chunks using a medical scalpel and tweezers, cleaned in distilled water with

a fine tipped artists brush to remove contamination from any surfaces and accessible

pore spaces before an ultrasonic disintegration technique was applied for one hour to

remove any inaccessible contamination.

See chapter 4, section 4.4.2 for the full analytical methodology on U-series dating.
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5.5.3 14CAMS dating

A total of three samples for 14CAMS dating were taken from core PTB.Bulk

peat layers were sampled at 36 cm, 160 cm and 368 cm from the most organic rich

peat sediments contained within core PTB(see appendix 2.2.1 for peat description).

Samples were carefully studied under a binocular microscope to identify any

recognisable plant macrofossils such as seeds, roots or leaf matter, however all peat

samples were too well humified so did not contain enough macrofossil material for

dating. As no macrofossils were evident, 2 g of 'bulk peat matrix' (BPM)was prepared

for each of the three samples. Preparation of BPM involved carefully picking out any

recognisable contaminants i.e. modern aquatic plant rootlets, with tweezers to ensure

only reliable material was sent for dating. The prepared BPMwas sent to BETAanalytic,

Miami, USAfor 14CAMS dating.

5.5.4 Pollen

Pollen was extracted from the core material using the standard acid-base-acid

digestion procedure set out in Faegri et al., [1989]. Pollen tracers (Lycopodium) were

added to sediment subsamplesto identify if any pollen types were present in unusually

high numbers [for details of using pollen tracers see Bryant and Hall, 1993] - in this

case, counts of 300 terrestrial pollen grains to 1000 tracers. Pollen counts were

conducted for every 1m of core, giving an initial skeleton examined in more detail plot.

Higher density pollen counts were conducted on two sections of core PTB- 691 cm to

576 cm and 576 cm to 372 cm - to increase the resolution of the pollen study, aiding

the interpretation to be put alongside stable isotopic data. Pollen data are converted

into percentage data only if counts of terrestrial origin reached >100 grains, otherwise

data are presented aspresence/absence.

5.6 Results

Due to highly complex stratigraphy, plus hiatuses in the sampling (for detailed

stratigraphy see appendices 2.2.1 and 2.2.2), subdividing core PTBinto units could not

be determined solely by changes in the sediment column. Consequently, all data for

core PTB is separated into seven units based on qualitative assessmentof observed
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trends in the cS180CARBand cS13Coicisotope values as well as stratigraphic changes, to

allow more detailed analysisand interpretation of the 1,500 cm core PTS.

5.6.1 Core PTechronology

5.6.1.1 Potential problems in age/depth modelling of core PTe

The accumulation history of core PTS,like all sedimentary deposits, will have

an imperfect time series that is caused by alternating sediment types, hiatuses,

periods of non-deposition, erosion and dating errors [Sadler, 1981; Sommerfield,

2006].

Gaps in the sediment column of core PTSare observed at several intervals

throughout the sequence (Appendix 2.2). As discussed previously, these gaps are

largely attributed to liquefaction of sediment due to the percussive nature of the

Acker coring device [Last and Smol, 2002], leading to the on-site disposal of sediment

deemed unfit. However, carbonate deposits are particularly susceptible to secondary

processes such as dissolution, particularly in karst terrain [Wohl, 1993; Fritz and

Medlock, 1995], like the CCB.Channel incision and conduit formation, linking pools

and rivers through subsurface flow, in karst terrain is well documented [Wohl, 1993;

Badino et al. 2004; Jaillet et al. 2004; Becerril et al. 2010; Amatya et al. 2011] and can

create 'voids' within the carbonate sediment column. As well as liquefaction, it is

possible that gaps within the sediment core are subsurface voids, as observed in the

modern day flow system [Chapter 2, Fig. 2.32a]. These voids within the sediment

column can be interpreted as hiatuses, however, it is hard to know what type of

sediment is missing and the amount of section missing is not necessarily related to the

amount of time missing. A growing sequence of sediment can collapse due to self-

weight, a process known as autocompaction, and/or differential sediment compaction,

whereby organic and carbonate sediments compact at different rates [Allen, 1999;

Sommerfield, 2006; Joneset al. 2011].

Compaction of carbonate and organic sediments will have almost certainly

occurred in core PTS.However, it is very difficult to quantify compaction rates of peat

or carbonate sediments in Late Pleistocene/Holocene lacustrine or wetland sediments

[Jones et al. 2011]. To be able to quantify compaction rates for any single study site,

subsurface geotechnical properties are required alongside a detailed depositional
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history from site specific monitoring. The monitoring required to achieve this is

unrealistic in terms of both time and money. Compaction rate models have, however,

been developed [Kooi and de Vries, 1998; Allen, 1999; Meckel et al. 2006], although

these models focus on large, clastic sedimentary basins or, in the case of

autocompaction, coastal environments. Subsequently, the application of these models

to other sedimentary environments is problematic.

Increasing aridity can also create hiatuses in a sediment column whereby the

lake sedimentation ceases upon a lake drying out [Thomas, 2011]. This drying is

usually marked by a gypsum layer in arid regions [Curtis et al. 1996; Thomas, 2011],

however, as observed in the CCB [Chapter 2], drying in an arid wetland forms

terrestrial peat sediments. The continued sedimentation during arid periods in the

CCBreduces the chance of depositional hiatuses within the core PTBsediment archive.

As well as hiatuses and sediment compaction issues, organic lake sediments

are widely used for radiocarbon dating of the sediment archive. Organic lake

sediments used for radiocarbon dating are susceptible to contamination from old, 14C

depleted carbon residues e.g. catchment limestone, carried in the catchment water, a

process known as the hard-water effect [Walker, 2005]. The hard-water effect is

reflected in the plants and algae that photosynthesise sub-aquatically and can add

thousands of years to the apparent age of organic lake sediments [e.g. Shotton, 1972;

Child and Werner, 1999]. However, terrestrial plants photosynthesise directly with the

atmosphere, so peat formed from terrestrial plants should circumvent the hard-water

effect [Bowman, 1990]. Peat formation in the CCBis an indicator of a drying climate

and is formed in a semi-terrestrial environment, the sampled peat from core PTBwas

carefully checked for aquatic plant macrofossils and any unsuitable material removed.

5.6.1.2 14CAMS and U-series dating

Thin section analysis of the core PTB tufas indicated very little organic

contamination or secondary calcite precipitation before cleaning and preparation (Fig.

5.8). Any organic detritus (Fig. 5.8b) was removed during the ultrasonic disintegration

technique and possible secondary calcite precipitation (Fig. 5.8f) is not indicated by

detrital thorium ratios. All U-series samples obtained 1.5-1.9 ppm U with 23D-rh/32Th

activity between 77 and 594 (reliable 23Drh/32This accepted to be >20) and are
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displayed in table 5.1 alongside 14CAMS dates (from peats). All samples for 14CAMS

analysis contained sufficient uncontaminated material to produce reliable dates.

Conventional 14CAMS dates for PTB36, PTB160 and PTB368 (Table 5.1) were

calibrated using Calib 6.0 and IntCal09 [www.calib.qub.ac.uk]. Calib 6.0 is a 14C

calibration program based on the datasets outlined in Stuiver and Reimer [1993] and

Reimer et al., [2009]. U-series dating does not require further calibration from the

conventional ages produced, providing activity ratios are acceptable, and can be used

alongside calibrated 14Cdating techniques to produce an age/depth model [for further

discussion of U-series and 14Ccalibration see Reimer et al., 2004; van der Plicht et al.,

2004; Fairbanks et al., 2005; Blaauw, 2010].

In total, eight dates were obtained for core PTB (Table 5.1). All the dates are in

a good chronological order with the exception of four paired U-series dates - PTB317-

318, 321-322, 339-341 and 355-356 - that appear to be mixed. However, these four

dates are within range of each other's 20 calibration which is positive as further

refinement is still required on the U-series procedure. A coeval age of 22,150 ± 880 cal

yr BP is obtained for the four U-series dates which gives a good paired date with the

underlying 14CAMS date of 28,051 ± 417 cal yr BP obtained from bulk peat. The coeval

age of 22,150 ± 880 cal yr BP for the 317-357 tufa in core PTB, combined with the four

additional dates of core PTB, provides a reasonable chronology in order to base a

palaeoenvironmental interpretation to the core PTBsequence.
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Lab Lab code Sample Material Technique Conventional ±2 sigma Mid Calibrated
depth dated employed age (yr BP) calibration age (cal. Yr. BP)

(yr BP)

BETA PTB36 36em Bulk Peat 14CAMS 7o±4o 215-267 241 ± 26

BETA PTB160 160cm Bulk Peat 14CAMS 844o±5o 9399-9535 9467 ± 68

NIGL PTB317- 317-318 cm CaC03 U-series 2271o±91o 21800-23620 22710 ± 910

318

NIGL PTB321- 321-322 cm CaC03 U-series 2325O±93O 22320-24180 23250 ± 930

322

NIGL PTB339- 339-341 cm CaC03 U-series 2215O±89O 21260-23040 22150 ± 890

341

NIGL PTB355- 355-356 cm CaCO, U-series 204oo±82o 19580-21220 20400 ± 820

356

BETA PTB368 368cm Bulk Peat
14CAMS 2313o±13o 27634-28469 28051±417

NIGL PTB1013- 1013-1020 CaC03 U-series 5618o±225o 53930-58430 56180 ± 2250

1020 cm

Table 5.1. U-series and 14CAMS dates obtained for core PTB. #PTB 317-318, 321-322, 339-341 and 355-356
give an average age of 22130 ± 880 cal yr BP for the 317-356 tufa within core PTB which is used as a minimum

age for this tufa.
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Figure 5.8. Thin sections of tufas from core PTB (taken at x40 magnification under bright field illumination).
Showing: (a) PTB 317-318 - Quartz grain in the centre of the slide (b) PTB 317-318 - True pore space in-filled
with organic detritus (c) PTB 339-341 - True pore space where calcite crystals can be seen surrounding organic
carbonate matter (d) PTB 355-356 - Mollusc sp. where no detrital calcite can be seen (e) PTB 355-356-
Possible pollen grain where organic matter has been replaced by calcite during tufa formation (f) Possible
contamination where darker carbonate has in-filled tufa pore space.

5.6.1.3 Linear interpolation

Using only the 14C AMS dates - 241 ± 26 cal yr BP (36 cm), 9A67 ± 68 cal yr BP

(160 cm) and 28,051 ± 417 cal yr BP (368 cm) - a very good linear age/depth model is

produced (Fig. 5.9). However, with the stratigraphic hiatuses (see appendices 2.2.1

and 2.2.2), gaps of up to 208 em between 14C AMS dates and maximum depth of 368

cm for the 14C AMS dates, interpolation of linear age/depth through the entire 15 m
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sequence of core PTB,using only three 14CAMS dates for the top 368 cm of core PTB,

should be conducted with extreme caution, as outlined previously, and is thus

rejected.

With the addition of the U-series dates - 22,130 ± 880 cal yr BP (317-356 cm)

and 56,180 ± 2,250 cal yr BP(1013-1020 cm) - to the age/depth model (Fig.5.10), the

linear relationship remains good (R2= 0.97). Although a strong linear relationship is

indicated between the 14CAMS and U-series dates (R2 = 0.97), the regression only

passes through one data point (9,467 ± 68 cal yr BP at 160 cm depth (Fig. 5.10))

suggesting there is a degree of error based on the distance between the data points.

The first four data points, up to 368 cm (28,051 ± 417 cal yr BP)are stratigraphically

close as only 368 cm separates them, before a 645 cm gap to the final data point at

1,013 cm (56,180 ± 2,250 cal yr BP).This large gap between data points could form

part of the apparent error observed in the linear relationship, along with the

subsequent gap from 1,013 cm to the baseof core PTBat 1,500 cm.

However, criteria for linear age/depth model rejection were based on having

such large gaps between dates as well as stratigraphic hiatuses in core PTB.

Interpolation of any proposed linear age/depth model lacksprecision, assuggested by

figures 5.9, 5.10. Changes in sediment type, sediment accumulation rates and

compaction of sediment [e.g. Sommerfield, 2006] result in the use of large

assumptions between known ages and depths in the core. When constructing

chronologies using different methods for different periods of time, in this case 14C

AMS and U-series, drastic increases or decreases in accumulation rate can occur due

to the way time is compressed in older sections with missing units (thus slower

averages result) compared to recent sediments, which often show higher

accumulation rates. Recent sediments are stratigraphically more complete than older

sections which may contain hiatuses, like in core PTB.Sediment types i.e. marl, peat

and tufa, also deposit at differing rates to each other, based on pH, water

temperature etc. which can lead to apparent increases or decreases in sediment

accumulation rates. However, asdiscussedpreviously, this is hard to quantify.
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5.6.1.4 Smooth spline interpolation using 'classical' agemodelling (CLAM)

The core PTB chronology is shown in figure 5.11 and is based on cm scale

age/depth points generated from the three 14CAMS and two U-series dates (the

coeval date of 22,130 ± 880 cal. yr. BPwas used for the upper U-seriesdate) from core

PTB. Radiocarbon dates were calibrated using IntCal09 at 2-sigma analytical

uncertainty and the age model is based on a smooth spline regression that includes

the underlying non-Gaussianuncertainty in the calibrated age probability distribution.

Due to linear interpolation assuming abrupt changes in accumulation rate

occur exactly at the dated depths, as shown previously, this method of age/depth

modelling is rejected. A proposed alternative to linear interpolation is Bayesian or

piecewise linear age modelling. This modelling technique constantly updates the

probability of the age/depth model based on new information gained on a point by

point basis, at known calibrated ages [Blaauw, 2010]. This is generally accepted to

produce very reliable age/depth models when using a high resolution sampling

strategy [e.g. Blaauw and Christen, 2005], however, based on the low resolution

dating procedure (five dates through core PTB),this type of modelling was not chosen

as it would not have been able to model the gaps within the core PTB sediment

sequence accurately. A spline regression was chosen for the CLAMmodel as, through

repeated sampling of the calibrated age distributions, an approximation of the cores

accumulation history is built up based on the dated depths and their uncertainties

through subsets of the data (between, and including, dated depths).

Confidence intervals (95%)were estimated via 10,000 iterations of the smooth

spline age model using 'classical' age modelling (CLAM)[Blaauw, 2010].
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Figure 5.11. Calibrated 14CAMs and U-series dates versus depth using CLAM [Blaauw, 2010). Black line
represents best mid-calibrated age and the grey shaded areas represent a 95% confidence interval range.

The age model indicates a linear sedimentation rate of 0.017 ± 0.002 cm/yr

between 1,500 cm ("'84.9 cal ka BP) and 570 cm ("'31.1 cal ka BP) with a small increase

of sedimentation rate to 0.02 ± 0.001 cm/yr between 694 em ("'37.4 cal ka BP) and 570

cm ("'31.1 cal ka BP). An increase in sedimentation rate to 0.06 ± 0.03 cm/yr or a hiatus

is suggested between 570 cm ("'31.1 cal ka BP) and 372 cm ("'28 cal ka BPL although a

hiatus is unlikely due to the change being gradual through this section. A sharp

decrease to 0.01 ± 0.001 cm/yr is observed during the last glaciation between 372 cm

("'28 cal ka BP) and 200 em ("'12.1 cal ka BP). Sedimentation rate then returns to 0.017

± 0.001 cm/yr to the top of core PTB.
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Although age extrapolation beyond the oldest dated interval in an age model is

inadvisable [Blaauw et al. 2007; Blaauw, 2010], in this case below 1,020 cm, CLAM

produces multiple point age estimates through the model, so the spline curve applied

through unknown points will provide a reliable basal age approximation [Blaauw,

2010]. It is noteworthy that basal ages from this method should not be regarded as the

'truth' without much more substantial dating evidence. Interpolation of the spline

regression gives core PTB a maximum basal age of 84,900 ± 8,500 cal yr BP, however,

this and all other estimated dates through core PTB cannot be regarded as the 'truth'

as the age model created using CLAM is in a large part driven by the uneven interval of

the 14CAMS and U-series dating points. However, the error bound ages provide a

reliable age estimate based on the weighted means of point age estimates through the

model. Thus, stratigraphie consistency of the multl-proxv environmental data is

maintained regardless ofthe inherent possibility of substantial uncertainty and error in

the age model.

5.6.2 Stable 6180CARBand 613CORGANICisotopes and stratigraphy

Stable 6180CARBand 613CORGANICisotope data for core PTB are presented in

figures 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18 and appendix 2.2.2 along with core depth

(cm), stratigraphy, chronology (14CAMS and U-series), C/N ratios, and organic and

CaC03 content (% determined by LOI) primarily used to support the isotopic

interpretation. Data are analysed throughout the core across seven highlighted units.

Data units are structured qualitatively by isotopic ranges (%0) and trends in the

6180CARBand 613CDlCisotope values (see appendix 2.2.2). Missing or compressed areas

of core PTB will not be described within the results section. They are possibly a result

of the karst terrain where underground channelling can cause apparent gaps within a

core sequence or, more likely, a result of incomplete core recovery as mentioned in

section 5.4.

NB. Due to the low organic content of the marl sediments (LOI 550·C = 1.27%-12.98%)

a total of 92 613CORGANICdata points are available. C/N ratios are described in section

5.6.3 so will not be described in this section.
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Unit 1.1500 cm -1020 cm (Fig. 5.12)

.s180CARB - Data in this unit are extremely fragmentary and highly variable with the

lowest delta value of -14.3%0 at 1451 cm increasing to the highest delta value of -0.1%0

at 1425 cm. Immediately following this isotopic value increase is an isotopic value

decrease to -8.9%0, seen at 1422 cm. Throughout the unit, 6180CARB values do not

exhibit any prolonged stable periods although a small, relatively stable period can be

seen between 1354 cm and 1321 cm where isotope values of the carbonate range

from -7.4%0 to -9.6%0with a mean value of -8.2%0. However, despite fragmentary

data an overall trend can be observed through the unit where a mean gradual increase

from -10.3%0 (n = 15, 1500 cm - 1451 cm) to -6.2%0 (n =15, 1129 cm - 1084 cm) is

seen - a total mean increaseof +4.1%0over the course of the unit .

.s13CORGANIC - 14 data points are available in this unit. 613CORGANIC values across the 14

data points range from -13.2%0 to -21.7%0. Through the unit, 6
13

CORGANIC values

gradually decrease from -13.2%0 to -21.7%0 reflecting an overall negative shift.

cS13CORGANIC isotope values follow the 6180CARB trend in this unit.

Lithology - Unit 1 is dominated by organic marl, organic banded marl and carbonate

marl sediments. The most isotopically negative data points are associatedwith organic

banded marl where dark brown, organic rich sediments are finely inter-bedded with

much lighter brown, carbonate marl sediments. Between 1,469 cm and 1,451 cm,

where the lowest S180CARB values between -14.3%0 and -12.7%0 are observed, is

organic banded marl sediments. However, organic content (%) of the bulk organic

banded and organic rich marl sediments is still very low, between 1.7% and 12.9%,

which may indicate a short lived nature to any organic rich time periods.

Unit 2. 1020 cm - 986 cm (Fig. 5.13)

.s180CARB - Isotopic values in this unit remain stable within a small range of -7.4%0 to -

7.7%0 before a large negative shift of -6.1%0 to the lowest isotope value of the

carbonate observed in the unit,-13.5%o, between 989 cm and 986 cm.

.s13CORGANIC - Only four data points are available in this unit with the highest delta value

of -22.8%0 at 1020 cm before gradually decreasing to -24.7%0 at 995 cm. A sharp
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increase from -24.7%0 to -23.2%0 is seen between 995 cm and 989 cm, coinciding with

the negative shift observed in the cS180CARBisotope data.

Lithology - Unit 2 is comprised of tufa and mollusc rich carbonate marl sediments with

3 cm of organic rich marl between 989 cm and 986 cm. The tufa and mollusc rich

sediments are calcium carbonate rich (LOI 950·C = 83.4% to 84.6%) and coincide with

the constant cS180CARB isotope values. It is interesting to note that a negative cS180CARB

isotopic shift is associated with the change in sediment type to organic rich marl at 989

cm.

Unit 3, 986 cm - 694 cm (Fig. 5.14'

6180CARB - This unit contains the most isotopically negative values of the whole

sequence, ranging from -14.9%0 at 883 cm to -6.0%0 towards the end of the unit at

718 cm. After an initial increase from -13.5%0 to -8.5%0 at the beginning of the unit,

isotopic values of the carbonate begin to decrease from 943 cm to the most

isotopically negative data point of -14.9%0 at 883 cm. After this point isotopic values of

the carbonate steadily increase, although fluctuating, up to the highest delta value of

-6.0%0 at 718 em before the transition into unit four. An overall trend for the unit can

again be observed where, after an initial increase and decrease, oxygen isotope values

of the carbonate can be seen to steadily increase from a mean cS180CARB value of

-11.2%0 (n = 15,986 cm - 895 cm) to -8.1%0 (n = 15, 751 cm - 694 cm) - a total mean

increase of +3.1%0 over the course of the unit.

613CORGANIC - Only four data points are available in unit 3. The highest c513CORGANIC

isotope value is -12.8%0 ranging to the most negative cS13CORGANICvalue of -15.2%0. At

two depths - 889 cm and 883 cm - cS13CORGANICisotope values are higher than cS180CARB

isotope values, where cS13CORGANIC= -12.8%0; cS180CARB= -14.2%0 and cS13CORGANIC= -
14.8%0; c5180CARB= -14.9%0 respectively.

Lithology - Unit 3 is sedimentologically the most variable, comprising of carbonate

marl, fragmented marl, mollusc rich marl, organic banded marl and organic rich marl.

Again, variable sediment type appears to coincide with highly variable c5180CARBisotope

values with the more negative delta values associated with organic rich and organic

banded sediments, particularly between 900 em and 880 cm. Organic content remains
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low throughout the unit (LOI 550·C = 1.3% to 4.4%) although CaC03 content is highly

variable, peaking between 21.8% and 85% (LOI 950·Q in carbonate rich and mollusc

rich marl sediments, with the highest 6180CARBisotope values associated with these

sediments.

Unit 4. 694 cm - 570 cm (Fig. 5.15)

6180CARB- This unit is the first prolonged isotopically stable period in the sequence.

Oxygen isotope values of the carbonate range from -5.5%0 to -6.3%0 throughout the

unit, before 570 cm, where the 6180CARBvalue rapidly decreases to -7.9%0. Excluding

the final data point at 570 cm, the mean 6180CARBvalue for the unit is -5.76%0 (n = 27,

691 cm - 573 cm).

613CORGANIC- Data points mirror those of 6180CARBwhere the delta values remain

relatively constant. The highest 613CORGANICvalue in the unit is -19.5%0 at 573 cm

ranging to the lowest delta value, -21.9%0 at 640 cm. 613CORGANICvalues in this unit

decrease slightly at 688 cm - 679 cm, before stabilizing through the centre of the unit

and increasing to the highest 613CORGANlcvalueofthe unit at 573 cm.

Lithology - Unit 4 is the only unit within the core PTa sequence where sediment type

remains the same and is comprised of mollusc rich marl only. Unit 4 is

sedimentologically very similar to unit 2 (as it is largely comprised of mollusc rich marl),

and this is reflected in the similar 6180CARBisotope values and high CaC03 content (LOI

950·C 81.8% to 87.4%) of the sediments.

Unit 5, 570 cm • 372 cm (Fig. 5.16)

6180CARB- This unit contains a comparatively small data set when compared to unit

size. Oxygen isotope values of the carbonate range from the highest of -2%0 at 525 cm

to the lowest of -13%0 at 380 cm but are highly variable throughout the unit,

beginning on -5.9%0 at 540 cm, decreasing to -8.8%0 at 537 cm before a positive

isotopic shift to -2%0 at 528 cm. 6180CARBvalues gradually decrease after 528 cm to

-7.1%0 at 513 cm where after, delta values remain relatively constant between 510 cm

and 471 cm (ranging between -6.7%0 to -5.5%0). A large negative shift to -13%0, the

lowest delta value ofthe unit, at 380 cm follows a large gap from 471 cm.
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613CORGANIC- Only two cS13CORGANICvalues of the carbonate are available for this unit,

-19.8%0 and -16.7%0 at 534 cm and 471 cm respectively.

Lithology - Unit 5 is largely comprised of mollusc rich marl sediment with a 5 cm band

of organic rich marl between 470 cm and 465 cm. Interestingly, and opposed to the

relatively stable CaC03 content and cS180CARBisotopic values observed for this sediment

type in units 2 and 4, 0180CARBisotope values and CaC03 content of the mollusc rich

marl is highly variable in unit 5. The negative cS180CARBisotopic shift at 537 cm is

mirrored by low CaC03 content (LOI 950·C = 9%), followed by a positive 0180CARB

isotopic shift at 528 cm mirrored by higher CaC03 content (LOI 950·C = 65.9%).

However, the unchanging sediment type suggests this shift may have been over a

relatively short time period.

Unit 6,372 cm - 200 cm (Fig. 5.17)

6180CARB- This unit comprises the longest isotopically 'stable' sequence in core PTB.

Delta values range between the lowest value of -7.5%0 at 215 cm and the highest

value of -4.9%0 at 200 cm. Between 356 cm and 317 cm oxygen isotope values of the

carbonate remain within a ±0.7%0 range, the lowest delta value being -6.6%0 and the

highest delta value being -5.90/00,giving a mean value of -6.17%0 (n=28, 356 cm - 317

cm). A 77 cm gap follows this stable period before 240 cm, where cS180CARBvalues

appear to maintain stability. A small isotopic negative shift from -6.5%0 at 240 cm to

-7.5%0 at 215 cm is followed by a gradual increase in cS180CARBisotope values to -5.3%0

at 190 cm.

613CORGANIC- The most complete cS13CORGANICsequence throughout core PTB is displayed

in this unit. Delta values gradually decrease from -20.2%0 to -23.7%0 (the lowest

cS13CORGANICvalue of the unit) between 372 cm and 317 cm, a total decrease of -3.50/00

for this section of unit 6. After the 77 cm gap, 013CORGANICisotope values become more

variable. The highest delta value of the unit is -15.7%0 at 197 cm, occurring just before

the largest negative isotopic shift (-4.7%0) to -20.4%0 at 195 cm. The fluctuating values

in this part of the unit (240 cm - 190 cm) mirror the variable nature of the cS180CARB

isotope values at the same points.
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Lithology - Unit 6 is largely comprised of tufa, fragmented marl and carbonate marl

with 5 cm of peat at the beginning of the unit between 370 cm and 365 cm. Oxygen

and carbon isotope values of the carbonate, and organic and CaC03 content remain

relatively unchanged in the tufa and fragmented marl sediments but become more

variable within the carbonate marl sediments. Increasing organic content from 1.1% to

13.3% (lOI 550·C) is mirrored by decreasing CaC03 content from 93.8% to 33% (LOI

950·C) and a negative shift in c5180CARBisotope values between 240 cm and 200 cm.

Unit 7. 200 cm - 0 cm (Fig. 5.18)

6180CARB- Delta values at the beginning of this unit (190 cm - 177 cm) remain

relatively constant, ranging between -5.3%0 and -4.4%0 (±0.9%0). A sharp 'spike'

occurs at 186 cm when the c5180CARBisotope value decreases from -5.1%0 to -7.8%0

before increasing to -5.2%0 at 185 cm. c5180CARBisotope values in this unit are the

highest, most constant sequence throughout core PTB. c5180CARBisotope values begin to

decrease at 112 cm to -5.9%0 before becoming the most isotopically negative in the

unit (-10.6%0) at 16 cm.

613CoRGANle- Data points through unit 7 are variable. c513CORGANICisotope values

decrease at the beginning of the unit from the highest delta value of -17.8%0 at 179

cm to -23.4%0 at 173 em before steadily increasing back to -20.4%0 at 162 cm. A sharp

negative isotopic shift of 4%0 is observed between 175 cm and 173 cm. A large positive

isotopic shift from -24.4%0 at 119 em to -19.7%0 at 115 em is observed before a steady

decrease to -24.9%0 at 24 cm.

Lithology - Unit 7 is the most organic rich unit of the core PTB sequence. The unit is

comprised of peat, peaty marl and organic rich marl with some carbonate marl at the

beginning of the unit. The peat is well humified and has high organic content between

31.4% and 87.8% (lOI 550°C) and low CaC03 content between 0.24% and 5.1% (lOI

950·C). The organic rich and peaty marl sediments are disturbed by modern day

vegetation rootlet growth and have low CaC03 and organic content of <20% (lOI 9S0·C)

and <10% (lOI SSO°C)respectively.
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5.6.3 «s13CD1C vs. C/N ratios

Figure 5.19 shows 613CDlC isotope values and C/N ratios for sediments in

core PTB.For unit 3 no C/N ratios are available as low %Cin the organic sediments,

between 0.11% and 0.57% (mean = 0.23%, n = 24), meant that the C/N ratio

determination was not possible for this unit.

613CD1C isotope values in unit 1 range from -15.3%0 to -0.5%0 with a mean of

-9.6%0 (n = 75). Values are highly variable within the unit suggesting carbon sources

are wide ranging, displaying 613Co1cvalues similar to modern day water bodies within

the CCB(seechapter 2). Only four C/N values are available for unit 1, ranging between

15.3 and 19.1 which, when compared with 613CDlC values between -4.3%0 and -1.2%0

at the same depths (1,108 cm - 1,090 cm) suggests a higher component of aquatic

vegetation.

Unit 2 613CDlC isotope values range between -2%0 and -0.2%0, with sediments

comprising of tufa and carbonate rich marl, similar to the Tierra Blanca tufas (see

chapter 4). C/N ratios in unit 2 remain at a constant 17.1 before a sudden spike to

much higher values between 24.9 and 33.1. These shifts occur in the stratigraphie

section where 613Co1cvalues are at their lowest in the unit which may suggest a less

prominent groundwater carbon source at these points.

Unit 3 613Co1cvalues range between -15.6%0 and -0.8%0 with a mean of -12.6%0

(n = 56). Like unit 1, the 613CDlC isotope values are within the range defined for modern

day water bodies within the CCBsuggesting the carbon is sourced from predominantly

from soil respired and atmospheric CO2 with some possible influence from aquifer

sourced carbon toward the top of the unit where 613CDlC values are highest for the unit,

-0.8%0 at 718 cm.

Unit 4 613Co1c isotope values range between -3.1%0 and -0.3%0 with a mean of

-0.8%0 (n = 28), high values that are similar to unit 2. CIN ratios range between 14.5

and 19.3 for unit 2 which is consistent with aquatic vegetation. Carbonate rich marl

with mollusc shells is a similar lithology to unit 2 also, possibly suggestinghigher water

levels.
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Unit 5 613C01cisotope values range between -14.5%0 and +0.4%0with a mean of

-4.6%0 (n = 21). Like units 1 and 3, 613CDlC values are highly variable suggesting mixed

sources of carbon from soil CO2 in the very low delta values to aquifer sourced CO2 in

the higher delta values. Only three C/N ratios are available for unit 5 due to gaps in the

stratigraphy, however, it is interesting to note that that the two lowest C/N ratios -

12.07 at 474 cm and 13.5 at 471 cm - suggest aquatic vegetation, corresponding with

high 613CoIC values of +0.4%0 and -1.2%0 respectively. As suggested in previous units,

high 613CoIC values appear to correspond with low C/N ratios which may indicate higher

water levels and increased input of aquifer derived CO2•

Unit 6 613CoIC values begin with a very constant range of -1.1%0 to +0.2%0

(mean -0.56%0, n = 28) between 365 cm and 317 cm. 613CDlC values become slightly

more negative after this point ranging from -6.3%0 to -0.5%0 (mean -2.6%0, n = 23)

between 240 cm and 190 cm. C/N ratios are relatively constant from 365 cm to 317 cm,

ranging between 17.3 and 20.06 suggesting a mix of aquatic and terrestrial vegetation.

A larger range of C/N ratios - 10.6 to 18.88 - between 240 em and 190 em is consistent

with a larger range of 613CDlc values toward the top of unit 6 possibly suggesting

fluctuating lake levels.

Unit 7 613COIC values are very fragmentary with 11 of the 15 data points

between 188 cm and 177 cm. The range of 613CDlcvalues, between -13.4%0 and +0.3%0,

is highly variable and is reflected by the changing marl and peat sediment types and

highly variable C/N ratios, ranging between 13.38 and 33.13. Higher 613COIC isotope

values again correspond to low C/N ratios and marl sediments with lower 613C01e

isotope values and high C/N ratios corresponding to organic sediments, possibly due to

substrate change from marl to peat and terrestrial vegetation types populating the

peat sediments.

189



o

51015 1II J5 JII

C/N 6~ (%co, Unit

[EE] 0rpIIic ......

1:,,:1 MwlwIth ....

1illillJ1IIt.

IffiTI) CIrbonIIte mer! D MIaInI

F~I frIIIrnent.d mali

1 ""' I 0rpIIic Nnded mer!

f

,

Figure 5.19.Variations in CIN ratios and 613CoiCvalues in the core PTS sediment column. Changes in sediment
type to carbonate rich marl or tufa appears to coincide with higher 613CoICvalues with organic rich sediments
coinciding with much lower 613COICvalues.
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5.6.4 .s13CORGANICVS.C/N ratios

Figure 5.20 displays .s13CORGANICvs. CIN ratios of the organic sediments in core

PTB. To allow better interpretation of the data, each of the core PTB units (1-7) have

been plotted individually, with the exception of unit 3 where no CIN ratios were

available for the samples. low %C in the organic sediments of unit 3, ranging between

0.11% and 0.57% (mean = 0.23%, n = 24), meant that the CIN ratio determination was

not possible for this unit.

All samples (n = 76) fall within the ranges of C3, CAM and aquatic (algal and

macrophyte) vegetation. Unit 1(n = 4) plots within the boundaries of aquatic and low

CIN CAM vegetation types suggesting the organic matter is of algal and macrophytic

origin. Unit 2 (n = 4) plot within low range C3and high range CAM terrestrial vegetation

with the exception of one sample (813CORGANIC=-22.8%0, CIN = 17.1) that plots within

the macrophyte range. Unit 4 (n = 14) plots within the aquatic vegetation and on the

boundary of CAM vegetation suggesting the organic matter in this unit is

predominantly sourced from macrophytes. Unit 5 (n = 2) contains the fewest samples

and plots similarly to unit 4 between marginal aquatic and CAM vegetation types,

possibly suggesting a terrestrial rich organic matter source. The lower 813CORGANICin the

unit 5 samples suggests they may be sourced from predominantly CAM origins. Unit 6

(n = 29) all lie within C3 and aquatic vegetation ranges with the exception of five

samples, three of which plot within CAM with the final two plotting between CAM and

C4 vegetation types. The three samples plotting within the CAM range also fall within

the aquatic range suggesting these may be macrophyte in origin, however, the two

samples ranging between CAM and C4 suggest both aquatic and terrestrial organic

matter sources. Unit 7 (n = 23) predominantly plots within the low C3 and high CAM

ranges suggesting the organic matter is largely of terrestrial origin. Four samples plot

solely within the aquatic vegetation range suggesting unit 7 has some organic matter

sourced directly from marginal aquatic plants.
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5.6.5 cS180CARB and cS
13CDlC isotopic covariance

Unidirectional isotopic transitions, known as oxygen-carbon covariance, can

often be attributed to simultaneous evaporative drawdown and CO2 degassing in

hydrologically closed arid-region lakes [Talbot, 1994; Drummond et al. 1995]. Each of

the core PTB units (1-7) has been plotted individually to allow investigation of any

linear isotopic covariance (Fig. 5.21), with R2 data, to allow inter-unit comparison as

well as pollen, cS180CARB and cS13CORGANIC data comparison. Figure 5.22 displays units 1-7

plotted together with linear regression through the data showing a good correlation

(R2 = 0.667, n = 258).
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Figure 5.21. Units 1 to 7 li180CARB and li13CDlc isotope data for core PTB with R2 covariance displayed. Linear

regression is shown by a trend line through the data.
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Unit 1 data show a moderately high correlation (R2 = 0.557, n = 76) before the

transition into unit 2 where a drop to the lowest correlation of the seven units (R2 =
0.01, n = 10) is observed. Unit 3 shows a high correlation in the data (R2 = 0.685, n = 57)

which is the most similar R2 value to the overall data trend across the seven units. Unit

4 shows a drop to low correlation (R2 = 0.182, n = 28) before unit 5 shows a rise to a

moderate to low correlation (R2 = 0.28, n = 21). Unit 6 data display low correlation (R2

= 0.092, n = 51) before an increase into the final, unit 7 where linear correlation is at its

highest (R2 = 0.882, n = 15) throughout the entire sequence. Despite a moderately high

correlation of the seven units (R2 = 0.667, n = 258), when the units are analysed

individually an alternating high-low covariance pattern is observed. Units 1, 3, 5 and 7

show moderate to high correlation of (R2) 0.557, 0.685, 0.28 and 0.882 respectively

where units 2, 4 and 6 show low covariance of (R2) 0.01, 0.182 and 0.092 respectively.

Units 2, 4 and 6 display very low cS180CARBand cS13CDlCco-variance and are

interpreted as open-basin conditions for Poza Tierra Blanca. Unit 7 displays high

cS180CARBand cS13COICco-varianceand is interpreted as closed-basin conditions for Poza

Tierra Blanca. Units 1, 3 and 5 display moderate to high cS180CARBand cS13CDlCco-

variance and are interpreted as closed-basin conditions punctuated by periodic open-

basin conditions [e.g. Johnson et al. 1991 (where R2 = 0.45 was interpreted as closed-

basin conditions)]. During units 1, 3 and 5 Poza Tierra Blanca may not display high co-

variation due to the pool not experiencing closure over a prolonged period oftime [e.g.

Drummond et al. 1995; Li and Ku, 1997].
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Figure 5.22. 61BOCARBand 613COICisotope data for core PTB with R2 covariance displayed. Overall R2 covariance
is shown by linear regression through the data. Unit specific linear regressions have been omitted from the
data graph for ease of analysis although unit specific R2 covariance is shown.

5.6.6 Pollen

All pollen data is presented in figures 5.23 and 5.24. Figure 5.23 displays

presence (+) of key upland wooded taxa alongside stable 6180CARB and 613CORGANIC data.

Upland taxa have been isolated due to being more accurate indicators of local and

regional vegetation change, and therefore climate change [Minckley and Jackson,

2008]. Mesic (temperate indicators), xeric (dry indicators) and continual species have

been used to complement the stable isotope results. Figure 5.24 is to be used as a

reference point for specific data trends observed in figure 5.23, as discussing

percentage abundance as a Singular proxy of particular pollen taxa can be misleading,

particularly in arid environments, creating false interpretations e.g. Meyer [1973] used

an unchanging percentage abundance of desert floor pollen taxa Compositae to infer

arid climatic stability in the CCB.However, when increases in percentage abundance of
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upland pollen taxa - Pinus and Quercus - were considered, climatic instability could be

inferred [Minckley and Jackson, 2008].

Unit 1

There is very little pollen preservation within this unit, consequently; sampling

of the unit was low resolution (50 cm intervals). The only presence of non-continuous

pollen taxa is Fraxinus (Ash) at 14 m depth (Fig. 5.23). No pollen percentage data is

available for unit 1 due to poor pollen preservation.

Stratigraphically the smallest of the seven units, unit 2 contains more

prominent mesic (temperate) and wetland species throughout. Picea (Spruce), Carya

(Hickory) and Fraxinus represent the presence of key upland mesic taxa (Fig. 5.23)

along with percentage increases in Pinus (Pine) and Quercus (Oak) (Fig. 5.24). Wetland

taxa also experience an increase in unit 2 where Aster (Flowers), Amaranthaceae

(Chenopods), Poaceae (Grasses) and Cyperaceae (Sedges) all show large increases (Fig.

5.24). No xeric species are observed within unit 2.

Pollen preservation is poor at the beginning and end of unit 3. Picea, Betula

(Birch) and Fraxinus represent the presence of mesic taxa between 895 cm and 770 cm

along with the more xeric Celtus (Hackberry). Juniperus (Juniper), Quercus and Pinus

are also present between these depths in unit 3. A significant spike (>70%) of

Amaranthaceae is observed within this unit (Fig. 5.24) along with smaller increases of

Aster and Poaceae.

Higher resolution sampling was conducted throughout unit 4 due to excellent

pollen preservation. The presence of Abies (Fir) within the mesic taxa is important as

unit 4 is the only unit containing this species. Fraxlnus, Acer and Picea are present in

their highest abundances' in unit 4 along with Quercus and Pinus. Xeric taxa are

present alongside mesic taxa but in much lower numbers, Prosopis (Mesquite) and

Celtus are both present toward the beginning of the unit, reducing in numbers toward
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the middle (Fig. 5.24) when Agavaceae (Agave) become present in the unit. Wetland

Typha (Cattail), Poaceae and Amaranthaceae all show increaseswithin unit 4, Typha in

particular is interesting since it grows in open water.

Before the missing section toward the top of unit 5, pollen preservation is good.

A reduction of both mesic and xeric taxa is observed with the disappearance of Abies,

Carya and Celtus. Picea, Quercus, Pinus and Aster are all present in high numbers

before a sharp drop at approximately 500 em, just before the missing section.

Amaranthaceae and Cyperaceae reach their highest abundances of the whole

sequence in unit 5, with values dropping toward the top of the unit. Typha is also

present in small numbers within unit 5, both at the bottom and top of the unit.

Unit 6 contains very little preserved pollen. Mesic taxa are best represented

with Betula, Carya and Celtus present at the beginning of the unit along with the

continual Juniperus, Quercus and Pinus. At approximately 210 em Picea and Carya are

again present along with the greater presence of xeric taxa - Prosopis, Agavaceae and

Celtus. Largeabundance drops of Pinus and wetland Poaceae are observed toward the

top of the sequencealong with a small spike of Typha.

Fraxinus is the only mesic taxa present in unit 7, occurring alongside Celtus at

the beginning of the unit. Mesic speciesdisappear from the sequence at 100 em with

xeric taxa - Prosopis, Agavaceae and Celtus - establishing larger numbers toward the

top of the unit. Pinus and Quercus also increase in numbers toward the top of the unit.

Upland and wetland species of Aster drop in numbers at 100 cm also, alongside

Cyperaceae although Typha increase in numbers at this point.
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Figure 5.23. 613CORGANIC and 6180CARB isotope data for core PTB. Key upland wooded pollen taxa are
displayed, highlighting the mesic (temperate) taxa; xeric (arid) taxa and continual (present throughout the
whole sequence) taxa (the presence of a particular species is displayed as a '+'), The chronology - three 14C

AMS and two U-series dates - is also presented.
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5.7lnterpretation and discussion

Variations in core PTB carbonate 01BOand 013Care coupled with changes in

sediment lithology, such that higher delta values correspond with carbonate-rich layers

and lower delta values correspond with organic-rich layers. A simple explanation of

these variations is that they are responding to fluctuating climate change and changes

in water volume. However, as discussed in chapter 2, water in the CCB is derived from

at least two sources: 1) hydrothermal groundwater sources (Cupido-Aurora aquifer)

and, 2) recharge in the surrounding mountains, both with water residence times of

approximately 20-1500 years, so carbonate may display weighted average 01BOvalues

[Johannesson et 01.,2004; Badino et 01.,2004].

It is proposed that periods of arid climate are indicated by a decrease in

OlBOCARBand 613COICvalues in the organic rich sediments, as these shifts are mirrored

by a positive shift in the 013CORGANICvalues and increased organic content (Figs. 5.19,

5.22, 5.23 and appendix 2.2.2). A shift to naturally occurring eutrophic lake or marsh

conditions is supported by the presence of organic rich banding in the marl sediment

of core PTB where conditions would favour terrestrial vegetation and algal growth

leading to increased biogenic calcite precipitation by photosynthesis. The kinetic

fractionation of photosynthetically precipitated calcite would favour higher carbonate

precipitation rates, incorporating more of the lighter 160and leading to more negative

61BOCARBvalues [e.g. Fronval et al., 1995]. Lower 013COICin the organic rich sediment in

these arid periods is attributed to increased organic matter oxidisation in the water

column and sediment pore water. During these periods of proposed eutrophication

and desiccation it is likely a change in atmospheric circulation would be the driving

factor in lake level change. Moisture from the Gulf of Mexico arrives in N. Mexico with

lower 01BOvalues (-7%0) [Wassenaar et al., 2009] as well bringing drier atmospheric

conditions which may have contributed to any desiccation.

During wetter climate conditions, 61BOCARBand 613CoICvalues increase in the

min erogenic sediments and maintain constant values that more closely reflect the

61BOvalues of modern day water in the CCB (see chapter 2) and 013CDlCvalues tufa

sediments (see chapters 3 and 4). Higher 01BOCARBvalues in the proposed wetter

periods are attributed to increased authigenic calcite in the carbonate sediments and a
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shift to atmospheric moisture from the Pacific, bringing sustained and increased

rainout on the surrounding mountains and recharging the Cupido-Aurora aquifer in the

Bolson de Mapimi with higher cS180values (-6.9%0) [Wassenaar et al. 2009]. Isotopic

signals of wetland environments [Winter and Rosenberry, 1995; Rosenberry and

Winter, 1997; Clotts et al., 2009] show hvdrologicallv open systems maintain constant

cS180values due to the hvdrologicallv charged (increased water body) system having

lower sensitivity to variation in cS180input. Hvdrologicallv closed systems, however,

show highly variable cS180values due to the hvdrologlcallv de-charged (decreased

water body) system having a higher sensitivity to variations in E/P and atmospheric

moisture source, the main controlling factors of closed basin systems. In these wetter

periods, Core PTBcS13CDlCexhibits similar values to the Tierra Blanca tufa (see chapter 4)

due to increased recharge in the surrounding mountains with higher cS13CDlCvalues

attributed to increased dissolution of the surrounding catchment limestone.

It has been shown [see chapter 2, section 2.4.1] that water bodies in the

modern hydrological system do not co-vary with each other suggesting the flow

system to be hvdrologlcallv open. This open flow system is suggested to occur in a

larger, hvdrologlcallv closed basin, beginning in the west of the CCBbefore ending in a

series of highly evaporative endorheic pools in the east of the CCB. However, Poza

Tierra Blanca (the location of core PTB) is currently hvdrologlcallv open, with both

inflow and outflow streams. Therefore, a lack of cS180CARBvs. cS13COICcovariance from

core PTB is interpreted in terms of Poza Tierra Blanca displaying similar, or more

extensive, open hydrological conditions, similar to the modern system. Co-variation of

the cS180CARBvs. cS13CDlCisotope values from core PTB is interpreted as Poza Tierra

Blanca displaying closed hydrological conditions, indicating a period of aridity and

drying of the pool.

If atmospheric temperature was a controlling factor in the cS180CARBvalues of

core PTB, large shifts (>10%0 e.g. 1431-1422 cm (Fig. 5.12)) would represent unrealistic

temperature change of up to 2S·C, based on the we" established relationship for

equilibrium carbonates of a decrease of 0.24%0 for every l·C increase in temperature

[Dansgaard, 1964; Craig, 1965; Kim and O'Neil, 1997; Fricke and O'Neil, 1999; leng and

Marshall, 2004; Bernal et 01., 2011]. Such massive temperature fluctuation is an

unrealistic possibility in the CCBand is not supported by regional proxy data (discussed
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in more detail later in the chapter). Studies have shown the covariance of 6180CARB vs.

613Colc to be an important factor in determining hydrology [Talbot, 1990; Drummond

et 01.,1995; Li, 1997]. Based on low covariance (R2<0.7) indicating hydrologically open

conditions and high covariance (R2 >0.7) indicating hydrologically closed conditions

[Talbot, 1990], the seven units of core PTB have been categorised according to their R2

covariance (Fig. 5.25). However, moderate covariance (R2 between 0.3 and 0.6) can

generally be accepted to indicate transitional periods that have a mix of hydrologically

open and closed conditions [Shemish, 2011].

The c. 84 cal ka BP palaeoenvironmental history of the CCBwill be interpreted

using 6180CARB vs. 6
13COlc covariance of core PTB as well as varying 6180 and 613C

isotope values in the carbonate and organic sediments, sediment composition and

pollen. The co-variation data is to be used as an indicator of hydrological conditions in

the CCB,which can be used as a platform for further interpretation of proxy-data.

Depth (m) Unit
Umtage Hydrologic

(cal yr BP) system

Closed- 1 - 7 R'=0.882

- 2 12,156
±411

Open- 3 - 6 R' =0.092

28,051

- 4- ± 417
Oosed/Open

5 (transitional)- 5 - R' = 0.28
31,164

- 6 - ± 2,204 Open
4 R'=0.182

37,466
t-- 7 ± 2,528

~ 8- Oosed
3 R'=0.685

~ 9-
54,356

~10- 2
± 2,464 open If = .oc
56,380
± 2,639

t-- 11-

~12- Closedw/

1 open periods

>--- 13 - R'=0.557

~14-

t-- 15 84,905
± 8,449

Figure 5.25. Classical age/depth model (CLAM) applied to units 1-7. Top
and bottom dates are applied to each unit based on the cm scale age
point estimates predicted by CLAM. Hydrology of the CCB (open vs.
closed system) is also displayed based on cS180CARB vs. cS

13colc linear
covariance (Figs. 5.21 and 5.22).
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5.7.1 Unit 1. 84,900 ± 8,500 - 56,400 ± 2,600 cal yr BP

The chronology of core PTBcan only be accurately constrained to the lower U-

series date of 56,180 ± 2,250 cal yr BP,making unit 1 chronologically the least reliable

from core PTB.However, the extrapolated basal age of 84,900 ± 8,500 cal yr BP for

core PTBmeans that it is potentially one of the longest palaeoenvironmental records

obtained for N. America, although without accurate chronological control this

inference is hard to substantiate.

Covariancedata (Figs.5.22 and 5.25) suggest PozaTierra Blancato be largely a

closed system with stable 6180CARB values showing high variability. Sedimentologically,

the unit is largely comprised of banded organic marls displaying alternate layers of

marl and peat, dubbed 'the marble cakeeffect' (Fig.5.26, appendices 2.2.1 and 2.2.2).

With the CCBcurrently experiencing an 8 year drought [from APFFCCdata],

peat formation within the CCBis directly observed to be associatedwith drying events.

Within the basin, drying pools create a marsh area, increasing the bulk organic matter

before a complete drying of the water body creates a semi-terrestrial peat forming

wetland environment (Fig.5.27) [from my own observations and APFFCCobservations].

The alternating marl and peat suggests PozaTierra Blanca experienced rapid wetting

and drying events respectively, supported by the highly variable isotopic results where

more negative 6180CARB values are associated with the more organic rich sediments,

particularly between 1,469 cm and 1,451 cm, and where the lowest 6180CARB values

between -14.3%0 and -12.7%0 are observed within organic banded marl sediments.

These more negative 6180CARB values can suggest two possible theories: 1)

disequilibrium precipitation of carbonate as a result of a shift to eutrophic conditions

[e.g. Fronval et al., 1995]; 2) a change in the atmospheric circulation from Pacific

dominated to the Gulf of Mexico (GoM) dominated, where precipitation generally

displays more negative 6180 values [Wassenaar et al., 2009], rather than short term

trends in water influx and evaporation [e.g. Vu et al., 1997]. It is proposed that, rather

than 6
180 values from the moisture influencing the 6

18
0 value in the sediment, change

in atmospheric moisture source drives a drying climate, creating a peat forming

wetland.
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Over the course of the unit 013CORGANICvalues decrease from -13.2%0 (C4jCAM)

to -21.7%0 (CAMjC3) where 0180CARBvalues increase from -10.3%0 to -6.2%0 (Figs. 5.12,

5.20, and S.23) suggesting a gradual shift from a dry climate toward a wetter climate.

Records for the Trans-Pecos and Chihuahuan desert regions suggest substantially

wetter conditions than the present between 71 ka BP and 57 ka BP [Musgrove et al.,

2001; Metcalfe et ol., 2002]. This wetter period begins toward the centre of unit 1

(c.12.5 m, Fig. S.12) ending at the transition to unit 2. The upper missing section of unit

1 (1,020 cm - 1,076 cm) could possibly contain the majority of this wet period, with

unit 2 possibly displaying the final 1 kyr (Figs. S.12). 0180CARBvalues appear to begin to

stabilize between 1,140 cm and 1,076 cm again suggesting the missing section could

be the beginning of stable, hydrologically open conditions.

The continued presence of juniper, pine and oak (Fig. 5.23) throughout unit 1,

although in low numbers, support the hypothesis of open oak and pine woodland in

Chihuahua [Metcalfe et al., 2002]. The presence of other mesic species - Fraxinus,

Artemisia and Aster - toward the top of unit 1 also indicate a climatic wet shift at this

point, corroborated by stabilising 5180CARBvalues (Figs. 5.23 and 5.24), adding to the

theory of a hydrologically closed to open system transition within the unit.

Figure 5.26. Alternating bands of marl and peat within unit 1
of core PTB.Soh sediment deformation can be seen within
the peat banding which is a process of percussion coring.
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Figure 5.27. Modern peat formation in a marsh Icienega] area of the CCB. Peat formation is the
product of the drying process whereby grasses and mosses populate the marshland, increasing
biomass and creating peat.

5.7.2 Unit 2. 56,400 ± 2,600 - 54,300 ± 2,500 cal yr BP

Sedimentologically, unit 2 is carbonate dominated - carbonate marl and tufa

(Fig. 5.13 and appendix 2.2.1 and 2.2.2) - which in itself suggests this unit is climatically

wetter as increased precipitation recharge on the surrounding Cretaceous limestone

mountains may cause the formation of artesian springs on the CCBfloor (see chapters

2 and 4). The presence of tufa suggests an increase in groundwater input into the

hydrologic system, increasing spring activity and CaC03 dissolution [Ford and Pedley,

1996; Pedley et ol., 2003; Pentecost, 2005]. Unit 2 appears to be beyond the 71 ka BP

to 57 ka BPwet period for N. Mexico/S. United States, although the uncertainty within

the age/depth model and residence time of water discharging from the Cupido-Aurora

aquifer could possibly place this unit at the end of this wet period at 1,013 cm.

6180CARBvalues maintain a small range between -7.4%0 and -7.7%0 along with

very low R2 covariance (0.01); suggesting Poza Tierra Blanca in unit 2 is hydrologically

open, suggesting increased water in the CCB. It is widely believed that the periods of

increased moisture in N. Mexico are caused by the displacement of the westerly storm

tracks during glacial periods [Metcalfe et a/., 2002]. 6180CARBvalues in this unit are

similar to the modern day 6180LAKEWATERvalue of -5.68 %0 sampled at Poza Tierra
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Blanca (see chapter 2). The modern day pool is situated in the centre of a

hydrologically open evaporative through flow system in a larger closed basin system

suggesting the S180CARBvalues may indicate a similar flow system to the one observed

in the modern environment.

The evidence for increased moisture in the CCB could possibly indicate the

presence of a stadial period at this time. Musgrove et al., 2001 suggest that the wet

period - 71 ka BP to 57 ka BP - in S. Texas is a process of precessional orbital forcing,

increasing the dominance of the Pacific moisture source with increased winter

precipitation and maximum soil saturation. This model may also be applicable to the

CCB, as cooler temperatures associated with precession favour groundwater recharge

due to lower evaporation. It is shown (chapter 2) that Poza Tierra Blanca water, today,

is derived from the Cupido-Aurora aquifer that has flowed from the west of the basin,

experiencing evaporative effects as it flows. However, a wetter climate in the CCB is

thought increase head pressure of groundwater recharging in the local mountain range

resulting in the activation of artesian springs [Johannesson et al. 2004; chapters 3 and

4]. Tierra Blanca tufa S13CDlCvalues range from -1.1%0 to -0.4%0 and unit 2 S13CDlC

values range from -2%0 to -0.2%0. Thus, the activation of Tierra Blanca spring mound,

in close proximity to Poza Tierra Blanca, may have resulted in the pool being sourced

from increased local groundwater discharge. The modern day 613CDlCvalue of Poza

Tierra Blanca is -18%0 suggesting the catchment of the pool is derived more from soil

C02 and terrestrial plant matter which may indicate the wide carbon sources as the

water flows across the CCB floor (see chapter 2). The more positive 613CDlCvalues of

the carbonate in unit 2 suggest the source water has some influence from the

surrounding Cretaceous limestone. Increased dissolution of the Cretaceous limestone

from local precipitation would lead to increased bicarbonate in the water, accounting

for >10%0 variations in 613CoIC values in core PTB e.g. Lake Jih Tan [Stuiver, 1975],

indicating the possibility of more localised Pacific sourced moisture directly raining out

onto the CCB mountains and recharging into the hydrologic system, rather than

recharging from the Cupido-Aurora aquifer as is seen today.

The presence of mesic pollen taxa - Picea, Carya and Fraxinus - within unit 2

along with spikes of increased wetland taxa - Aster, Amaranthaceae and Poaceae -

also suggests the period 56,993 yr BP to 54,993 yr BP to be wetter.
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5.7.3 Unit 3. 54,300 ± 2,500 - 37,500 ± 2,500 cal yr BP

A change in diatom species suggests a shallowing of lake conditions in

Chihuahua c.57 ka BP [Metcalfe et al., 2002] with a dramatic shift to concentrated lake

levels at 54.6 ka BP. Towards the end of unit 2 and into unit 3, c.54 ka BP, a large

decrease of -6.1%0 is seen in the l)180CARBvalues (Figs. 5.13 and 5.14) which could

possibly indicate lake level decrease in the CCB,as is seen more widely in Chihuahua.

After this point, the l)180CARBisotope record in unit 3 is highly variable but

maintains an average of -11.2%0, slightly lower than the average of unit 1. Covariance

of 0.685 (R2) also suggests Poza Tierra Blanca is hydrologically closed along with the

highly variable l)180CARBvalues. Periodic desiccation and deflation are reported in

Chihuahua between 54.6 ka BP and 38.5 ka BP which is in part supported by the

l)180CARBand l)13CORGANICisotopic values, the pollen record and the alternating

carbonate marl/peat lithology (Figs. 5.14, 5.24 and appendices 2.2.1 and 2.2.2). like

unit 1, this may suggest a shift to eutrophic lake conditions driven by a change in the

dominate moisture source to the GoM, bringing more arid conditions. The presence of

key mesic taxa Picea, Fraxinus and Betula at 900 cm, 820 cm and 800 cm respectively

alongside spiked isotopic increases in the l)180CARBvalues (Fig. 5.23) suggest these

three points to be associated with greater groundwater recharge within the CCB and

coinciding with periods of deep water in Chihuahua [Metcalfe et al., 2002]. Percentage

abundance increases of wetland Aster, Amaranthaceae and Poaceae (Figs. 5.14, 5.23

and 5.24) also suggest these three points to be much wetter, despite the unit as a

whole displaying generally very negative 6180CARBisotopic values. The xeric Celtis

species is only present within the unit at 810 cm, coinciding with a decrease from

-10.1%0 to -14.2%0 in the l)180CARBvalues (Figs. 5.14 and 5.23). As mentioned

previously, 6180CARBvalues as low as -14.2%0 are not reasonable values to associate

solely with MAT change and atmospheric circulation change. lncluding the

aforementioned two, a number of other factors must contribute to such negative

6180CARBvalues, the main one being disequilibrium effects possibly due to

eutrophication and preferential uptake of 160 in the mineralization of calcite.

When the 613CORGANICvalues are within the isotopic range of C4 vegetation

(-12.8%0 at 889 cm) the 6180CARBvalues are at their lowest (-14.2%0), again suggesting
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decreases within the cS180CARB values indicate an arid shift and GoM dominated

moisture source. Complex interplay between the circulation patterns of the Pacific and

Gulf of Mexico due to climate forcing [Musgrove et al., 2001] could be important, as

shifts between summer and winter atmospheric patterns change source waters as well

as changing lake levels which could lead to periods of eutrophication and desiccation.

Isotopically lighter source waters, lower soil saturation and higher evaporation within a

summer, GoM climate could create an environment less conducive to groundwater

recharge within the pools of the CCB, creating a closed basin system, with periodic

episodes of increased water recharge coinciding with changes to winter dominated

conditions.

Toward the top of unit 3 cS180CARB values begin to increase with a transition

from an average of -11.2%0 to -8.1%0 observed, suggesting a possible transition into

hydrologically open conditions.

5.7.4 Unit 4. 37,500 ± 2,500 - 31,200 ± 2,200 cal yr BP

Musgrove et al., [2001] propose the Trans-Pecos region of Texas experienced a

significantly wetter period between 39 ka BP and 33 ka BP. During unit 4, Poza Tierra

Blanca exhibits hydrologically open characteristics with R2 covariance of 0.182 whilst

cS180CARB values maintain a fairly constant range between -5.5%0 and -6.3%0,

encompassing the modern cS
180LAKEWATER value for Poza Tierra Blanca of -5.68%0. Unit 4

exhibits slightly more positive S180CARB values than unit 2 but has similar low S180CARB

vs. S13CDlCcovariance and mesic pollen taxa. Again, like unit 2 and the Tierra Blanca

tufas (see chapter 4), unit 4 displays a limited range of S13CD1Cvalues between -3.1%0

and -0.4%0 (Fig. 5.19), suggesting the source water to be of a superambient meteoric

origin with karst sourced carbon. Interestingly, within unit 4, the carbonate-rich

sediment in Poza Tierra Blanca contains an abundance of hydrobiid snails, known to be

endemic to the CCB [Hershler, 1984; Hershler and Minckley, 1986; Badino et al. 2004].

Studies of these snails within the modern pools of the CCBhave shown them to live in

thermal pools with temperatures between 29·C and 37.8·C whilst favouring carbonate-

rich sediments and waters. The abundance of these snails within the sediment of unit

4 again suggests the water to be of a superambient meteoric origin and may indicate a
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hydrologic link to the active Tierra Blanca spring mound during climatically wetter

periods.

There is a presence of xeric pollen taxa within unit 4 - Prosopis and Celtus

toward the beginning (700 cm to 550 cm) of the unit before these two species

disappear and Agavaceae becomes present in small numbers (Fig. 5.24). The

disappearance of xeric pollen taxa is consistent with regional vegetation change,

where an emergence of mesic taxa as the dominant taxa is seen after 36 ka BP [Elias

and Van Devender, 1990]. Unit 4 contains the only presence of the mesicAbies species

at 670cm and 600cm suggestingthese two periods experienced much wetter and more

temperate climates, favourable for the growth of Abies [Schorn and Wehr, 1986].

613CORGANIC isotope values are between -19.5%0 and -21.9%0 (Figs. 5.15 and 5.23)

throughout unit 4 which fall into the low range of C3, high range CAM and aquatic

macrophyte vegetation suggesting the vegetation between 37,500 ± 2,500 cal yr BP

and 31,200 ± 2,200 cal yr BPwas better suited to more temperate and wet conditions.

The appearance of marginal aquatic vegetation e.g. Typha, and upland mesic

vegetation and CAM photosynthesizers e.g. Prosopis, in the pollen record corroborate

the CIN ratios in the range of aquatic macrophyte and CAMvegetation types (Fig.5.20).

Of the aquatic vegetation in unit 4, Typha is present for the first time in core PTBalong

with higher numbers of Poaceae and Amaranthaceae suggesting that this period was

much wetter than the previous hydrologically open period in unit 2. Fraxinus, Picea,

Acer, Pinus and Quercus all have their highest numbers in this unit also, with the mesic

taxa all exhibiting highest numbers toward the beginning and end of the unit,

suggesting the middle of unit 4 to be drier, coinciding with an increase in Prosopis (Figs.

5.23 and 5.24)

Toward the end of unit 4 and into unit 5 mesic and aquatic pollen taxa all show

a rapid decrease in numbers along with a large decrease in Pinus abundance,

coinciding with negative shift in 6180CARB values from -5.9%0 to -8.8%0 and a gradual

increase in the 613CORGANIC values from -21.3%0 to -19.8%0 (Figs. 5.15 and 5.16)

suggestingenhanced C4vegetation input and drying environment at c. 31 ka BP.
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5.7.5 Unit S. 31,200 ± 2,200 - 28,051 ± 417 cal yr BP

Relatively few data are available for unit 5 although low R2covariance of 0.28

suggests Poza Tierra Blanca is largely hydrologically open at this time. Metcalfe et al.,

[2002] suggest lake levels in Chihuahua to be highly variable up to 29 ka BP which is

consistent with very negative 6180CARB values at the beginning of unit 5 (Fig. s.16).

However, it is suggested [Elias and Van Devender, 1990; Huang et al., 2001] that

Chihuahua maintained C3 vegetation dominance, peaking at 27 ka BP. At 525 cm (Figs.

5.23 and 5.24) a large positive shift in the 6180 isotope value of the carbonate is

observed (-8.8%0 to -2%0, +6.8%0) synchronously with a large increase in upland and

wetland pollen taxa (Figs. 5.23 and 5.24). Upland mesic species - Pinus, Picea and

Artemsia - and wetland species - Amaranthaceae, Poaceae and Cyperaceae - all

increase suggesting the presence of a climatically wet period in unit 5. The wet shift

observed is not a prolonged event, but is short lived and high magnitude and could

possibly be related to the H3 Heinrich event c.30 ka BP [Bond and lotti, 1995; Vidal et

al., 1999; Roche et al., 2004] with a shift to a predominance of westerly storm tracks

and cooler and wetter conditions in the north of Mexico. The dumping of glacial water

into the N. Atlantic from the H3 event in interstadial conditions may have caused

wetter climate to be pushed down to N. Mexico from a much more northerly position,

although the timing (ka BP) of the H3 Heinrich event is debateable [Kirby and Andrews,

1999; Grousset et al., 2000].

Rapid carbonate rich sediment accumulation in Poza Tierra Blanca during unit 5

(198 cm deposited in c. 3 kyr) is consistent with higher water level and a climatically

wet period in the CCB,with flooding events causing rapid sedimentation as is seen at

San Bernadino cienega in the Sonora Desert [Minckley and Brunelle, 2007]. Again,

hydrobiid snails are present within the sediment for unit 5 suggesting that, like unit 4,

there may be a hydrologic connection with Tierra Blanca spring.

Toward the top of unit 5 and into unit 6 a 7.5%0 negative shift (from -5.5%0 to

-13%0) followed by a 7.8%0 positive shift (from -13%0 to -5.3%0) in 6180CARB values is

observed synchronously with decreases in numbers of mesic and wetland pollen taxa

(Figs. 5.16, 5.23 and 5.24). The presence of peat within the stratigraphy at this point,

14Cdated to 28,051 cal yr BP, suggests a shift to a closed hydrology and drying of Poza
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Tierra Blanca. This could be a process associated with catchment instability seen in

Chihuahua [Metcalfe et al., 2002] before the onset of full glacial conditions at the Last

Glacial Maximum (LGM). A rapid recovery of the hydrology is seen after this drying

event, possibly the result of increased displacement of the westerly storm tracks and

wetter climatic conditions.

5.7.6 Unit 6. 28,051 ± 417 -12,200 ± 400 cal yr BP

A much cooler, wetter climate for Chihuahua and Texas is proposed during the

LGM [Elias and Van Devender, 1990; Huang et al., 2001; Musgrove et al., 2001;

Metcalfe et al., 2002]. The presence of the Laurentide ice sheet is generally accepted

to be the reason for this with the southward displacement of the westerly storm tracks

and the Intertropical Convergence Zone (ITCZ) bringing a dominance of colder, wetter

conditions.

The presence of tufa within Poza Tierra Blanca, like unit 2, between 360 cm and

317 cm is a lithological indicator of much wetter conditions the CCBwith deposition of

tufa over a c.6 kyr period observed (Fig. 5.17). cS13CDlCvalues of the tufa range from

-1.1%0 to +0.2%0 for this period, again supporting a shift to wetter conditions

conducive to tufa deposition, similar to Tierra Blanca spring mound (see chapter 4).

Sparse pollen data is available at the beginning of the unit due to the presence of tufa

but constant cS180CARBvalues (between -6.6%0 and -5.9%0) and a low R2 covariance of

0.092 also support the suggestion that this period is much wetter. cS13CORGANICvalues

also remain relatively constant between 360 cm and 317 cm (-23.7%0 and -20.2%0)

(Figs. 5.17 and 5.23), with CIN ratios predominantly within low range C3 and

macrophyte vegetation types but with some high range CAM vegetation as well (Fig.

5.20). The continued presence of CAM vegetation species throughout core PTB,

however, may be misleading. Shifts from C3to C4vegetation types, and vice versa, will

typically show mixed cS13CORGANICisotope values and CIN ratios which may be

interpreted as CAM vegetation [Barbour and Billings, 2000; Sharp, 2007]. However, the

Chihuahuan Desert, in particular the CCB, does contain large numbers of CAM

vegetation types e.g. Agavaceae and Cactaceae, living in semiarid montane areas

[Kemp, 1983; Burgess and Shmida, 1988; Barbour and Billings, 2000; Badino et al.,

2004], as can be seen figure 5.24. Kemp [1983] states that C3 and CAM vegetation
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types are less dependent on soil moisture than C4 vegetation in arid areas with

changes in vegetation types more closely linked to temperature rather than moisture

availability with mesic microsites e.g. areas of pooled water, able to support C3 and

CAM vegetation in what is otherwise considered an arid area. This can be applied to

the CCBbut highlights the diversity of the CCBvegetation and the importance of proxy

pollen data to support the 613CORGANICisotope data.

A gap in the record after 317 cm up to 240 cm follows the stable hydrologically

open period. A 1.1%0 negative shift in the 61BOCARBvalues between 240 cm and 210 cm

(15,900 ± 800 to 13,100 ± 500 cal yr BP) coincides with a regional drying period in

Chihuahua c. 15 ka BP to 12 ka BP [Elias and Van Devender, 1990; Huang et al., 2001;

Metcalfe et al., 2002]. This regional drying can be attributed to the Bolling-Allerod

period where glacial melt water influx to the Gulf of Mexico (GoM) is proposed from

c.15 ka BP to c.12 ka BP [Kennett and Shackleton, 1975; Flower et al. 2004] which may

have caused a change in regional climate in Chihuahua and southern Texas. Reduced

sea ice and a northward shift in the ITCZ [Peterson et al. 2000; Clark et al. 2001;

Escobar et al. 2012] would have resulted in a shift to a GoM summer precipitation

regime causing the North American Monsoon (NAM) and ITCZ to briefly be dominant

drivers of climate, resulting in regional drying. A greater presence of xeric pollen taxa -

Prosopis, Agavaceae and Celtus - at this time is also a strong indicator of a shift to

more arid conditions in the CCB.

5.7.7 Unit 7.12,200 ± 400 cal yr BP - present

It is widely considered that the onset of arid conditions in the regions

surrounding the CCB began around the Pleistocene-Holocene boundary (c.12 ka BP to

10 ka BP) [Bryant, 1977; Bryant and Holloway, 1985; Van Devender, 1985; Elias and

Van Devender, 1990; Anderson and Van Devender, 1995; Huang et al., 2001; Musgrove

et 01., 2001; Metcalfe et 01., 2002; Minckley and Jackson, 2008]. Little isotopic data is

available for unit 7 although R2 covariance of 0.88 (the highest observed throughout

the PTBsequence) suggests this unit is hydrologically closed.

Decreasing numbers of regional upland mesic taxa coincides with increasing

numbers of xeric species c.10 ka BP to 7 ka BP, although some areas became refugia

for more temperate species [Bryant and Holloway, 1985]. Relatively constant 61BOCARB
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values and persistence of mesic pollen taxa into the beginning of unit 7 (Figs. 5.18 and

5.23) suggests the CCBmay have been a desert refuge up to at least 9,470 cal yr BP.

Castiglia and Fawcett [2006] add credence to this theory with the suggestion that a

period wet enough to support pluvial lakes in Chihuahua existed up to 8.27 ka BP. The

presence of a thick peat layer after 9,467 cal yr BP in core PTBsuggests that conditions

dried dramatically after the possible persistence of increased groundwater recharge.

The predominance of peat within the unit 7 stratigraphy suggests the Holocene

to be largely dry although the occurrence of xeric species as the dominant pollen taxa

does not occur until the top of the unit, consistent with full onset of arid conditions in

Chihuahua between 6 ka BP and 4 ka BP [Van Devender, 1985; Elias and Van Devender,

1990; Anderson and Van Devender, 1995; Huang et al., 2001; Musgrove et al., 2001;

Metcalfe et al., 2002; Minckley and Jackson, 2008].

5.8 Regional and global climate change or environmental stability in the CCB?

The time period covered by this study, based on the basal age of 84,900 ± 8,500

cal yr BP, encompasses the last glacial period, c.85 ka BP to 11 ka BP, almost in its

entirety. Stable isotope and pollen data in units 2, 4 and 6 suggests that these units

were hydrologically open and climatically wetter with a dominance of winter

conditions. These wet periods, particularly units 2 and 4, coincide with the Tahoe and

Tenaya stadial periods of the last glacial period, before the onset of full laurentide ice

sheet conditions (Tioga stadial) in unit 6 [Ehlers and Gibbard, 2004].

It is widely accepted that during the last glacial maximum the presence of the

laurentide ice sheet caused the southward displacement of the ITCZ and a dominance

of westerly trade winds, resulting in wetter conditions in central and northern Mexico

[Metcalfe et al. 2000; Musgrove et al. 2001; Stevens et al. 2012]. The same climatic

mechanism could be applied to the possible stadial periods, coinciding with units 2 and

4, in the CCBto propose the cause of the hydrologically open conditions in the basin at

these times. A southward shift of the ITCZ and dominance of westerly trade winds

bringing moisture from the Pacific would have caused cooler, wetter conditions in N.

Mexico, including the CCB (Fig. S.2). The timing of this transition has been the focus of

much debate [Metcalfe et al. 2000] but the possibility of cooler, wetter conditions

would allow for expansion of mesic and wetland vegetation species, observed in the
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pollen record, as well as increasing groundwater recharge from the Cupido-Aurora

aquifer, creating a hydrologically open system. The Cupido-Aurora aquifer originates in

the Bolson de Mapimi, in the Sierra Madre Oriental to the west of the CCB.Pacific

moisture sources are currently prevented from reaching the CCB because of the

presence of the Sierra Madre Occidental and Sierra Madre Oriental [Badino et 01.,

2004]. During climatically wetter periods, increased rainout from Pacific sourced

moisture could occur due to the presence of the mountains, recharging the Cupido-

Aurora aquifer and subsequently increasing groundwater flow in the CCB.Coupled

with increased groundwater flow, an increased moisture body from the west could

also provide rainout in the CCBitself, increasing local precipitation and recharge from

the main recharge zone of the Sierra San Marcos y Pinos. However, it is suggested

[Stevens et al. 2012] that these cooler and wetter conditions did not reach more

easterly basins in the central highlands of Mexico. Instead, a temperature depression

around the time of the LGM [Lozano-Garda and VasquezSalem, 2005] is proposed to

have reduced evaporation, thus relating various records of increased wetness to

reduced evaporation rather than increasedwinter precipitation. The timing of the wet

season is not clear and precipitation varied seasonally through the Late Pleistocene in

the eastern basins making the exact timing of wet/reduced evaporation periods hard

to substantiate and translate in to the record from the CCB.

The timing of the negative 0180CARB shift in core PTe at the top of unit 6

coincides with regional and global records of glacial meltwater dumping in the Gulf of

Mexico during the Bolling-Allerod period (....15 to 13 ka BP) [Kennett and Shackleton,

1975; Eliasand Van Devender, 1990; Metcalfe et al. 2000; Peterson et al. 2000; Clark

et al. 2001; Huang et al. 2001; Metcalfe et al. 2002; Flower et al. 2004; Escobaret al.

2012]. It is thought to have caused a northward shift in the ITez and a dominance of

Gulf of Mexico moisture source, which will have resulted in arid conditions within the

CCB.

The possibility of the CCBbeing controlled by regional cooling and wetting

during hydrologically open periods also has major implications for the climate controls

during hydrologically closed periods. Highly variable interstadial periods, originally

identified in the Greenland and Vostok ice cores [Dansgaard et al., 1993; Petit et al.,

1999], are observed within the CCBduring units 1, 3, 5 and 7. These hydrologically
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variable units display a lot more variability in the 6180CARBvalues suggesting changes in

regional moisture source and moisture volume, which are controlled by global climate,

are reflected in the CCB palaeoenvironment. Small increases and decreases observed

in units 1, 3, 5 and 7 (Figs. 5.12, 5.14, 5.16 and 5.18) most likely reflect weighted

average annual, decadal or centennial fluctuations in dominant moisture sources

and/or E/P relationships [Clotts et al., 2009]. However, larger isotopic swings not

associated with changes in sediment type could possibly reflect a response to global

climate fluctuations as observed in unit 5 (31,200 ± 2,200 to 28,051 ± 417 cal yr BP).

5.9 Conclusions and future work

Although core PTB is not chronologically well constrained past 1,013 cm depth,

the reliability of the 14Cand U-series dates above this depth give a good classical

age/depth model. Based on the age/depth model, a maximum age of 84,900 ± 8,500

cal yr BP for core PTB is proposed, possibly making this palaeoenvironmental record

the oldest in N. Mexico and one ofthe oldest in N. America.

Stable isotope values (0180CARB,013COlCand OBCORGANdand pollen in core PTB

yielded a multi-proxy record spanning the last "'84 ka, despite gaps in the sediment

column. Variations in 0180 and OBC values occur with changes in sediment lithology,

suggesting these variables responded to changes in CCB hydrology. Carbonate rich

sediments i.e. marl and tufa, are marked by higher, narrow ranging 0180CARBand OBCOIC

values and were deposited under higher water level conditions with an increased input

of groundwater sourced from recharge in the high mountains. Organic rich sediments

are marked by lower 6180CARBand 613COICvalues and were deposited during arid

periods where periodic desiccation and low water level created wetland environments.

6180CARBand 613COICcovariance displayed an alternating pattern of closed/open

basin hydrology in the CCB.Three units - 2 ("'56 to 54 cal ka BP), 4 ("'37 to 31 cal ka BP)

and 6 ("'28 to 12 cal ka BP) - support the notion of wetter climate conditions, through

open hydrologic conditions similar to the through-flow system seen today in the CCB,

that correlate well with known stadial periods [Ehlers and Gibbard, 2004]. The isotope

record supports regional interpretations of wet climate during stadial conditions where

the southerly shift of the ITCZ and predominance of westerly trade winds brought

moisture from the north Pacific. In these three periods, proxy pollen, C/N ratios and
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cS13CORGANICisotope values also suggest a dominance of mesic and wetland vegetation

types and montane woodland expansion to the CCBfloor. Four units - 1 ("'84 to 56 cal

ka BP), 3 ("'54 to 37 cal ka BP), 5 ("'31 to 28 cal ka BP) and 7 (-12 cal ka BPto present) -

support the notion of highly variable hydrologic conditions where complex interplay

between summer (northerly position of ITCZ) and winter (southerly position of ITCZ)

monsoon moisture sources is proposed to have controlled climate. Mid-high cS180CARB

and cS13CD1Ccovariance suggest Paza Tierra Blanca was highly susceptible to changing

hydrologic conditions, with increasingly closed lake conditions marked by periods of

desiccation coinciding with organic rich sediment deposition and possible lake

eutrophication. In these four periods, proxy pollen, C/N ratios and cS13CORGANICisotope

values also suggest a dominance of xeric vegetation types and the retreat of montane

woodland to the high mountain peaks.

The pollen, lithological and stable isotope data from core PTB suggest the CCB

is responsive to global climate change patterns. A high magnitude, short lived cS180CARB

shift in unit 5 ("'31 to 28 cal ka BP) coincides with the H3 Heinrich event, whereby

much wetter climate is proposed for the CCBdue to glacial meltwater pulses causing a

southerly shift in the ITCZ and westerly trade winds. A negative shift in the cS180CARB

record in unit 6 is interpreted as the transition from the LGM to the deglacial involving

a shift from wet climate, high water discharge conditions to arid climate, low water

discharge during the Bolling-Allerod period ("'15 to 13 cal ka BP). The

palaeoenvironmental record presented in this chapter is in agreement with regional

pollen and diatom records obtained from N. Mexico and also with moisture records

from the southern USA, suggesting the possibility of stadial-interstadial climate

controls [Peterson et al. 2000; Clark et al. 2001; Musgrove et al., 2001; Metcalfe et al.,

2000, 2002]. This suggests both that the stable isotopic and pollen data are accurate

and that the CCBclimate is in tune with regional climate patterns.

Key upland pollen data supported the cS180CARBand cS13CORGANICdata well,

adding credibility to the overall moisture balance in the CCB, suggested by the stable

isotopic data, and also highlighting the importance of a multi-proxy research approach

in a palaeoenvironmentally understudied and complex area.
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However, further work on the chronology of core PTBis still warranted, as an

absolute age/depth model of the core is still unknown. No tufa carbonate is available

at 15 m but, dependent of several parameters, dating of carbonate rich marls could be

possible, as shown by li et al., [1989], Schwarcz [1989] and Torfstein et al., [2009].

Further detailed coring work within the CCB is proposed as the marl and peat

sediments contain excellent palaeoenvironmental records that are chronologically

containable. It may be necessary to use an alternate coring method as the Acker

percussion corer does not line the hole, leading to possible re-sampling of sediment

and the nature of percussion coring leads to soft sediment deformation, liquefaction

and possible loss of sediment. A complete core sequence could be possible if a

combination of a livingston (or similar) and Acker corer is used. A livingston coring

method would increase the possibility of complete recovery of a core sequence within

the soft sediments but would not be able to penetrate the tufas within the sequence.

The use of the percussiveAcker coring method would result in tufa recovery whilst soft

sediment recovery would be achieved with a livingston coring method. The CCB's

response to global climate fluctuations is possibly reflected within the c5180CARB isotope

values. However, large shifts up to 10%0 for both c5180CARB and c5
13CDlC may not be

representative of actual environmental change. Disequilibrium effects and changes in

lake catchment and source water may be worth investigating in more detail to

determine any non-climate related changes in the palaeoenvironmental record. A

quantitative approach is needed on the modern day lacustrine sediments in the CCBto

identify the mechanisms driving any disequilibrium effects observed in the Palaeo-

record i.e. natural eutrophication or lake stratification. This is crucial to interpretation

of the proxy data as if disequilibrium effects can be identified and corrected in the

isotopic composition of the sediment archive, further more detailed fractionation

equations may be possible. This aspect of the CCBpalaeoenvironment, particularly

during interstadial conditions, warrants further research as a continuous depositional

sequence from the CCB could allow a long spanning environmental record to be

recorded and integrated within the global context.

As the CCBgroundwater flow, the main input of water in the basin, originates

predominantly in the Bolson de Mapimi, to the west of the CCB,further work could

involve detailed studies of hydrology at the source of the groundwater. Detailed

217



comparisons can then be made between the Bolson de Mapimi and CCBto determine

the full hydrological controls influencing the CCB.

This study has shown that although the CCB appears to have undergone

extensive environmental change over the Late Pleistocene/Holocene, contradicting

Meyer's [1973] hypothesis of environmental stability, the basin has remained relatively

hydrologically stable enabling the high degree of observed endemism. This

hydrological stability could be misinterpreted as environmental or climatic stability if a

multi-proxy research approach is not adopted, so great care has to be taken when

interpreting the palaeoenvironmental record of the CCB. However, further stable

isotopic, pollen and chronological work is required to conclusively demonstrate this

palaeoenvironmental change in the CCB.An alternate lake coring strategy could be

used to obtain a complete stratigraphic sequence which would allow for a complete

isotopic and pollen sequence to be obtained. A complete stratigraphie sequencewould

allow for a more accurate covariance data set also.
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Chapter 6: Discussion
This chapter provides an overall discussion of the study. By combining results

and common themes from previous chapters, an overall interpretation of

palaeoenvironmental change and its subsequent impact on human populations can be

determined.

6.1 Hydrology and palaeoenvironment of the Cuatro Ch!negasBasin

Data from modern day water bodies and core PTB sediments suggests the

hydrology of the CCB,aswell as the environment, has changed considerably over time

[see chapters 2 and 5]. Meyer [1973] suggested that pollen assemblages indicated

conditions in the CCBfrom the present up to, and possibly beyond 31 ka BP,were

stable. Minckley and Jackson [2008] later suggested that conditions had varied from

the Late Pleistocene, c.16 ka BP,to the present day based on pollen data from a pack

rat midden. It is also widely accepted that, regionally, wetter climate in the Late

Pleistocene/Holocene the north of Mexico is a result of the dominance of westerly

storm tracks and southward displacement of the ITCZcaused by the presence of a N.

American ice sheet [Metcalfe et al., 2000]. The isotopic and palynological record

obtained from core PTB[see chapter 5] demonstrated considerable variability within

the CCB hydrology and environment, supported by modern hydrological data in

chapter 2 and tufa geomorphological observations in chapter 3. The evidence suggests

hydrological and environmental changes are climatically driven, an interpretation

supported by regional climate reconstructions from both N. Mexico and the Trans-

Pecos (USA) (Table 6.1), and contradicting Meyers [1973] original conclusion of

environmental stability in the CCB.
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Table 6.1. Summary table comparing the palaeoenvironmental interpretation obtained from this study with
previous published studies from the Chihuahuan Desert and southern United States region.
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6.1.1 Climatically wet environments in the Cuatro Ch!negasBasin

The last known prolonged wet period in N. Mexico was during the lGM {"'24 ka

BP - 12 ka BP} [Metcalfe et al., 2000; Musgrove et al. 2001; Metcalfe et al. 2002]

{Table 6.1}. Evidence of this wet period is interpreted within the core PTBrecord as

hydrologically open {wet} conditions, displayed as an isotopically stable period within

the cS180CARB record in unit 6 {"'28 to 12 cal yr BP} with low cS180CARB vs. cS
13CDlC

covariance (Figs.5.17 and 5.21, chapter S).Two other periods - unit 2 ("'56 to 54 cal yr

BP) and unit 4 ("'37 to 31 cal yr BP) - within core PTBdemonstrated similar isotopic

stability and low covariance (Figs.5.13, 5.15 and 5.21, chapter 5) suggesting these, like

unit 6, may display hydrologically open characteristics with winter monsoon conditions

primarily providing the moisture source, possibly indicating stadial conditions in the

CCBbeyond the lGM (Figs.6.1 and 6.2; Table 6.1; also seechapter 5).

Figure 6.1. Geology of the Cuatro Cienegas Basin with transect (A-B) used in Figures 6.2 and

6.3 [modified after Badino et al., 2004; Rodriguez et al., 2005).

Musgrove et al. [2001] propose increasedmoisture in the Trans-Pecosregion of

the USA without the presence of an ice sheet. The three observed rapid growth

periods are mirrored by the apparent hydrologically open (wet) periods and increased

discharge in the CCB,displayed in units 2, 4 and 6 {Table 6.1}, suggesting that the CCB

hydrology is responsive to regional climate change caused by the southward

displacement of the ITCZand increased dominance of westerly trade winds bringing

moisture from the Pacific Ocean. The dominant moisture source from the west may
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have also been responsible for recharging the Cupido-Aurora aquifer, originating in the

Bolson de Mapimi to the west of the CCB [Badino et al. 2004; Johannesson et al. 2004;

Rodriguez et al. 2005]. Increased precipitation would increase water volume in the

aquifer which in turn would increase groundwater discharge in the CCB,expanding the

hydrological system [see chapters 2, 3 and 5]. Increased discharge would create a

hydrologically open lake system, similar to that seen in the modern day CCB [see

chapter 2], but on a larger scale, suggested from the presence terrestrial carbonate

formations and possible playa lake formation [see chapter 3]. lithological and stable

isotope data from core PTB also support this inference as carbonate rich sediments

(marl and tufa), particularly in unit 4 ("'37 to 31 cal ka BP), containing hydrobiid mollusc

shells coincide with higher 6180CARBand 613CoiCvalues (Figs. 5.15 and 5.19, chapter 5)

suggesting increased artesian spring activity, depositing tufa at Tierra Blanca spring

mound, from a thermal water source [see chapter 4 and 5].

Vegetation type in the CCB appears to be closely linked with the climate and

hydrology, particularly during the lGM (unit 6) [see chapter 5]. Because of the unique

hydrological conditions and mountainous terrain in the CCB, certain upland vegetation

types - Pinus (Pine), Quercus (Oak), and Juniperus (Juniper) - and wetland vegetation

types - Typha (Cattail) - are consistently present within the palaeoenvironmental

record (Figs. 5.23 and 5.24, chapter 5). However, variation in the percentage

abundance of these species along with the increased presence of mesic and wetland

plant species during units 2, 4 and 6 indicates a much wetter, more temperate climate

during these periods. This interpretation is supported by Elias and Van Devender [1990]

(Table 6.1), who suggest warm wet conditions prevailed at the beginning of the LGM

with insect species showing a propensity to woodland vegetation. Evidence of Carya

(Hickory) at the Tierra Blanca spring mound [see chapter 4] also suggests the presence

of hydrologically open (wet) conditions in the CCB. Carya requires a much more

temperate climate to grow with and is dependent on a large water resource. Increased

moisture input from the dominant winter conditions would increase hydrological flow

in the CCB, creating an environment able to sustain Carya whilst also increasing

wetland vegetation. These data spanning over 50,000 years provide evidence of a

broader distribution for many extant coniferous and wetland taxa onto the lower

slopes of mountains and CCBfloor that, today, are extinct from these lower ranges.
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6.1.2 Climatically variable environments in the Cuatro Cic~negasBasin

The CCB is currently considered to be a hydrologically closed basin [Badino et al.

2004; Johannesson et al. 2004]. Data from this study [see chapter 2] suggests a

hydrologically open evaporative through-flow system, in a larger closed basin, flowing

from the west between the pools, lakes, rivers and clenegas (marshes), before ending

in a series of hypersaline, endorheic pools to the east. Inactive terrestrial tufa facies

e.g. Tierra Blanca spring mound [see chapters 3 and 4] observed within the modern

through-flow system also suggest hydrologically closed conditions, as to be active,

increased water discharge and head pressure are needed for tufa deposition to be

achieved.

The current closed hydrological regime was established c.4 ka BP, coinciding

with evidence of regional drying (unit 7, ....12 cal yr BP to the present, Table 6.1). This

sustained period of closed basin hydrology provides an excellent regime from which

apply to previous isotopically variable periods identified in the CCB- units 1 (....84 to 56

cal yr BP), 3 (....54 to 37 cal yr BP) and 5 (....31- 28 cal yr BP) (Figs. 6.1 and 6.3, also see

chapter 5). Although high 6180CARB vs. 6
13COlC covariance data (Fig. 5.21, chapter 5) of

these periods suggest the CCB is predominantly closed hydrologically, the low water

table and low soil saturation created a highly changeable environment and periodic

wetting and desiccation of Poza Tierra Blanca, as indicated by the alternating

carbonate/organic rich sediments (Figs. 5.12, 5.14, 5.16 and 5.18, chapter 5). Poza

Tierra Blanca, being located at the centre of the evaporative through-flow system and

of shallow depth, would be particularly receptive to moisture changes [Shemesh, 2011;

Shemesh et al. 2001], possibly indicating the presence of climatically variable

interstadial conditions, also suggested by regional climate interpretations (Table 6.1). A

modern example of climate instability has been observed in the CCBwhere, as recent

as June 2010 [APFFCC], sudden hurricane conditions caused flooding and up to 3 m re-

filling of previously dry pools, indicating substantially wet episodes are likely during

hydrologically closed periods. Events such as these, assuming regular occurrence, may

partly explain isotopic variability in 6180CARB record during these periods (Figs. 5.12,

5.14,5.16 and 5.18, chapter 5).
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The isotopic variability within core PTB during hydrologically closed basin

conditions indicates dry and wet phases are represented 6180CARBvalue decreases and

increases respectively [see chapter 5]. These results are unusual as dry phases, in semi-

arid/arid regions, are usually represented by 6180 enrichment due to preferential

evaporation of 160, with wet phases represented by 6180 depletion due to preferential

rainout of 160 [Leng and Marshall, 2004]. Interestingly however, due the CCB

hydrology, the observed negative 6180CARBshifts appear to represent a disequilibrium

effect of increased organic sediment deposition, controlled by increasing aridity from a

change in the dominant moisture source to GoM. Increased dominance of xeric pollen

taxa e.g. Prosopis (Figs. 5.23 and 5.24, chapter 5) and increased 613CORGANICvalues of

organic matter, suggesting increased input of C4vegetation [see chapter 5]. It is likely

that during times of extreme drought, as is currently being experienced in the CCB,the

pools, lakes and rivers never become completely dry, instead the drying of the water

body creates a marsh environment, rich in organic matter [see chapter 2]. It is this

increase in organic matter and subsequent decomposition that appears to cause the

extreme negative shifts in c5180CARBvalues during dry periods. The large negative shifts

of up to 10%0 (Fig. 5.12, chapter 5) are not representative of actual environmental

change but apparent disequilibrium effects caused by a climatically dry phase.

Although evaporative enrichment is observed on surface flow in the modern

CCB hydrology, the fractionation effect of evaporation on the 6180LAKEWATERappears to

be minimal until reaching the endorheic, east side of the basin [see chapter 2]. Thus,

evaporation of the CCBsurface waters does not appear to control the 6180CARBrecord

during climatically dry periods.
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6.2 Terrestrial carbonate formation, hydrology and environment

Although the tufa deposits in the CCBhave not been previously described,

reports and studies worldwide indicate their importance in palaeoenvironmental

reconstructions [Andrews et al. 1993; Andrews et al. 1997; Pedley et al. 2003; Ortiz et

al. 2009; Brasier et al. 2010]. The presence of carbonate (tufa) formations in the CCB

are, in themselves, an indication of previous episodes of wetter climate and increased

hydrological outflow [see chapters 3 and 4]. Tufa in the CCBis deposited in the modern.
day environment, although on a much smaller scale than previous hydrological

regimes, as indicated by inactive tufa facies e.g. the perched tufa terrace [see chapter

3]. In this respect, the CCBis similar to Pamukkale,Turkey [Altunel and Hancock, 1993],

where increased tufa deposition is observed during climatically wet periods due to

higher rates of carbonate dissolution and increased hydrostatic head pressure. During

dry periods, tufa deposition still occurs on a smaller scale as sub-surface hydrogeology

remained unchanged. The suggestion of constant groundwater discharge has major

implications for the floral and faunal endemism observed in the CCB,as the stable

isotopic data in chapter 5 suggestswater to be always present despite fluctuations in

climate.

The tufas described in the CCB are all located in close proximity to the

piedmont of the Sierra San Marcos y Pinos, which is in the centre of the evaporative

through-flow system observed in the basin [see chapter 2] and also located close to

thrust faulting along the axis of the Sierra San Marcos y Pinos [see chapter 3]. The

location of the tufa formations suggeststhat their occurrence is due to increased local

and regional moisture input and the subsequent combination of reactivated fault

controlled hydrology and increased surface flow across the CCB.The varying facies of

tufa deposition e.g. Tierra Blanca spring mound [see chapter 4] and perched tufa

terrace [see chapter 3], are indicators of reactivated fault controlled hydrology.

Increased cS13CDlC values of the carbonate, between -2.6%0 and +0.2%0, of these two

particular tufa facies have been shown to suggest increased dissolution of the CCB

Cretaceous limestone by superambient meteogene water [see chapter 3], supporting

fault controlled hydrology [see chapters 3 and 4]. The constant hydrostatic head

pressures that are required to deposit the superambient meteogene tufa, which both

the spring mound and perched tufa terrace are composed of, are only achievable
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through increased precipitation at higher elevations creating enough pressure to force

groundwater discharge through faults and fissures, indicating a considerably wetter

climate. The wetter climate reactivating fault controlled hydrology also suggests

increased surface flow in the CCB; Tierra Blanca spring mound 613CDlC values of the

carbonate, between -1.1%0 and -0.4%0, are within 613CD1C value of the carbonate

range between -3.1%0 and +0.2%0 in core PTB during proposed hydrologically open

(wet) periods (Figs. 5.13, 5.15 and S.ll, chapter 5) providing further supporting

evidence.

Extinct rim-stone pool complexes provide further evidence that increased

surface flow has existed in the CCB [see chapter 3]. Currently, active pools exist on the

fringes of the rim-stone pool complex that, when a larger water body is present, would

expand, depositing tufa and creating a series of pools like those seen in the extinct rim-

stone pool complex. Although dating of terrestrial tufa formations is limited within the

CCB,a date of l,240 cal yr BPwas obtained for the spring mound complex [see chapter

41, placing at least this tufa facies within the Holocene, when regional conditions wet

enough to support pluvial lake formation are thought to have existed episodically

[Castiglia and Fawcett, 2006; Table 6.1].

Figure 6.4. Photograph displaying abundant Acoelorrhaphe wrightii palm frond impressions and

encrustations, towards the base of the perched tufa sequence.
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Figure 6.5. Well preserved Sotol grass impressions in what is now a completely dry area in the

CCB.

The importance of the CCB tufas as palaeoecological archives is also evident.

Preservation of both extinct and extant vegetation types of the CCB is excellent within

the tufas (Figs. 6.4 and 6.5) with direct fossil evidence of wetter conditions in what are

now completely arid areas of the basin [see chapter 3]. The wetland taxa preserved in

the tufa can be seen growing in the modern hydrological system in the CCB,suggesting

the hydrologic system of the CCB may have expanded as water volume increased

before retracting up to the modern day limit as water volume decreased, similar to

expansions and retractions of the hydrologic system observed in Pamukkale, Turkey

[Altunel and Hancock, 1993; Dilsiz et al. 2004]. In Pamukkale, increased thermal

circulation in previously wetter climatic conditions is attested by the existence of

calcium carbonate deposits around ancient spring emergences at altitudes of up to 500

m higher than the modern system [Dilsiz et al. 2004]. The thermal waters surfacing and

mixing with cold, shallow ground water changed the chemistry of the water,

facilitating calcium carbonate deposition. During the drying periods, calcium carbonate

deposition is suggested to occur at increasing depth below the discharge due to lack of

mixing with cold, shallow groundwater. This is observed by a deepening base level of

calcium carbonate deposition through time [Altunel and Hancock, 1993; Dilsiz et al.

229



2004]. This expansion and retraction of the Pamukkale hydrologic system suggests

there is a multi-layer aquifer system where deep thermal fluids only mix with cold,

shallow groundwater when hydraulic pressure is enough to force the thermal fluids to

the surface. The presence of inactive tufa facies in the CCBreinforces the theory of the

CCB hydrologic system expanding and retracting during wet and dry phases

respectively. The current hydrologic system is at lower elevations to the ancient spring

emergences, suggesting that there is reduced hydraulic pressure caused by decreased

recharge of precipitation at high altitude. The presence of a modern flow system

despite the observed reduction in hydraulic pressure from inactive tufa facies, further

suggests the CCBbenefits from a multi-layer aquifer system [see chapter 2]. The

suggested multi-layer aquifer system reduces the likelihood of the CCBcompletely

drying, furthering the implications of endemism being linked to water availability

within the basin.

6.3 Palaeoenvironment and archaeology

The survival strategy of the hunter-gatherers of the CCBappears to have been

controlled by atmospheric moisture and its subsequent control of water availability

and vegetation for food and material production. Excavations and reports by Taylor

[1956; 1964; 1966; 1968; 1972 and 2003] suggest the range of human occupation in

the basin spans from 9,300 ± 400 yr BP to the present over three archaeological

complexes; dating evidence from this study both augments and extends this existing

chronology for human occupation in the CCB.U-series dates of 10,500 yr BPand 7,240

yr BPfor the two footprint sites in the basin extend Taylor's chronology up to the late

Pleistocene-Holocene boundary, long before the onset of contemporary desert

conditions c.4 ka BP[Table 6.1].

Taylor [2003] also proposed the theories of 'tethered nomadism' and 'water

territoriality' to be key within all three of the CCB's archaeological complexes

throughout the Holocene due to the aridity of the Chihuahuan Desert. Whilst records

of climate change in the Chihuahuan Desert and Trans-Pecossuggest complete drying

and aridity at several stagesthroughout the Holocene [Table 6.1], the multi-proxy data

from this study [see chapters 2, 3 and 5; Table 6.1] suggests the CCBhas never

completely dried out.
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Habitation sites of Coahuilan Indians lie at the juncture between the mouths of

canyons and the alluvial fans, mountain regions known as the 'monte' [Taylor, 1964;

1966; 1968; 1972 and 2003]. Indeed, the majority of the well stratified cave deposits

associated with the Coahuilan Indians are located in the mountains surrounding the

CCB(Fig. 6.6). The main assumption to be made with these habitation sites is their

location is such that the nomads were close to both the primary food source - desert

succulents - and to a water source. Frightful Cave,Nopal Shelter, Fat Burro Caveand

CM-109 contain the most, and oldest, archaeological material including sandals, arrow

heads, grinding stones and vegetal fibre. However, in the archaeological record of

these habitation sites there is no evidence of vesselsfor the purpose of carrying water.

Dependable water sources and the lack of potable water in conditions of increasing

environmental aridity through the Holocene [see chapter 5; Table 6.1], would be the

limiting factor in extended cycles of nomadism to the surrounding Chihuahuan Desert

in search of food with low nutritional value. However, having a dependable water

source suggeststhe existence of social control assuring the right to pre-emptive use of

water [Taylor, 1964].

No society can survive with violent competition for primary resources; the

Mayan Civilization is thought to have collapsed due to social unrest in drought

conditions [Hodell et al. 1995; Curtis et al. 1996; Gill, 2000]. The continued, well

stratified archaeological record in the CCBhabitation sites attests to some form of

social control of water resources through times of extreme aridity or low population

density. The constant and dependable water sources in the CCBcombined with the

scarcity of available food sources adds credence to the theory that human occupants

were effectively 'tethered' to the basin.

The presence of the laurentide ice sheet over N. America may have

implications for a southward migration of fauna to the CCBfrom the onset of the LGM

c.24 ka BPto at least the first retreat of the ice c.1S ka BP.Stable isotope and pollen

data suggest the CCBmay have become a Chihuahuan Desert refuge during the LGM

with favourable coniferous wooded vegetation and increased, stable moisture

availability (Figs. 5.18, 5.23 and 5.24, chapter 5). Archaeological accounts discussthe

use of grinding stones and food storage in various localities in the CCB[Taylor, 1966;

1972]. Roasted and chewed agave leaves, or 'quids', are the most commonly found
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food resource in the occupation sites of the CCB. Not only was agave used as

sustenance, but also the fibrous leaves were utilized as material fibre for netting,

sandal production and sacks, suggesting agave to be the most important resource.

Caches of xeric vegetation such as mesquite, hackberry, pine and acacia seeds were

found in Frightful Cave throughout all three archaeological complexes along with dried

fruit, pads and seeds of prickly pear suggesting heavy exploitation of these resources

[Taylor, 2003], which will have become more important toward the end of the

Holocene when climate became drier and these xeric taxa increased in abundance.

Despite stable isotope determination of palaeodiet not being possible on the human

remains of the CCB due to lack of access to human skeletal material, pollen data

presented from core PTB (Figs. 5.23 and 5.24, chapter 5) indicates the increased

presence of nut/seed bearing trees such as hickory (Carya), mesquite (Prosopis), agave

(Agavaceae) and pine (Pinus) and also the presence of desert succulents such as prickly

pear (Opuntia) throughout the Holocene (unit 7). Vegetal foods, particularly in the Late

Holocene, would most likely have provided the largest proportion of the subsistence

strategy of the Coahuilan Indians

Occupation sites have produced a great number of faunal remains, most

commonly rabbits, deer and rodents but also megafaunal remains including bison

(Bison bison) and elk (Cervus canadensis) no longer native to the CCB [Gilmore, 1947],

indicating these fauna would have been a valuable food resource. It is likely these

megafauna existed in the CCBup to the beginning of Taylor's [2003] 'Coahuila complex'

c.7.S kyr BP, after which climate conditions became warmer and drier (Table 6.1).

However, it is possible these megafauna may have existed up to the onset of extreme

aridity c.4 ka BP as the climate appears to be highly variable up to this point with

episodic periods of increased moisture [Elias and Van Devender, 1990; Metcalfe et al.

2002; Castiglia and Fawcett, 2006]. Remains of the Columbian mammoth (Mammuthus

columbi) found in the CCB pools suggest these megafauna may have survived in the

CCB along with other megafaunal populations, however, without direct dating

evidence of the mammoth specimens found in the CCB,this is hard to substantiate.

232



, -.........- ....... ..Ao._.,,
\ ..,

..\,Trans-Pecos U.S.A.. ... '----•EncantadaCave

Coahuila

Durango

NopalShelter

ICuatro Cienegas
CaveCM-79. i. Jrightful Cave

Fat Burro Cave ~ •
Monclova•CaveCM-S6d CaveCM-109 Neuvo Leon

l00km

N

Figure 6.6. Locations of archaeological cave sites in Coahuila state, in particular within the Cuatro Cienegas

Basin (marked with green squares).

Stable isotope and pollen evidence of unit 7 ("'12 cal ka BP to present) indicates

climate instability (Fig. 5.18, chapter 5). Due to the suggested continual presence of

the pools, lakes and rivers throughout the Holocene, resources associated with the

aquatic aspect of the environment i.e. fish (Herichthys minckleyii), and freshwater

shrimp (Palaemonetes suttkusi) may have been utilized. Although not mentioned

within the archaeological records of the CCB, the in situ footprint location on Tierra

Blanca spring mound [see chapter 4] suggests some form of hunting and/or gathering

may have occurred around the pool location. This valuable food resource is known to

have been utilized in the Laguna District of Coahuila - Candelaria Cave and Coyote

Cave [Taylor, 1972] (Fig. 6.3) and the shared cultural traditions of Coahuilan Indian

tribes suggest that the hunter-gatherers of the CCB may have used aquatic food

resources in times of climate change and terrestrial food resource instability.
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6.4 Regional and global controls of hydrology and endemism

The stadial-interstadial cycles that are possibly observed within the seven units

of core PTBsequence during the last glacial period (c.8S ka BPto 11 ka BP) suggest that

the CCB is responsive to regional climate change in the north of Mexico and southern

United States and possibly global events, such as the H3 Heinrich ("'30 ka BP) and the

Bolling-Allerod ("'15 to 13 ka BP) (Table 6.1) [also see chapter 5]. This not only carries

major implications of environmental change in the CCB but also major implications

that floral and faunal endemism observed within the basin is not linked to

environmental stability as first proposed [Minckley, 1969; Meyer, 1973J but rather,

endemism is linked to constant water availability throughout the stadial-interstadial

cycles.

The expansion and retraction of the hydrologic system during hydrologically

open (stadial) and hydrologically closed (interstadial) periods respectively, can be

observed within the inactive tufa formations e.g. Tierra Blanca spring mound, rim-

stone pool complex, and contemporary pools, rivers and lakes in the CCB [see chapter

2J. Increased water discharge during the proposed hydrologically open (stadial) periods

(Figs. 5.13, 5.15 and 5.17, chapter 5) in the CCBand is supported by the, now, inactive

tufa formations observed in arid areas of the basin [see chapter 3J. Increased water

head pressure and groundwater discharge would have been required for these tufa

formations to be active. The dominant Pacific winter monsoon may have recharged the

Cupido-Aurora aquifer in the Bolson de Mapimi, to the west, creating increased

groundwater discharge in the CCB whilst increased precipitation in CCB itself would

create sufficient head pressure to force the groundwater to the surface.

Decreased water discharge during hydrologically closed (interstadial) periods

(Figs. 5.12, 5.14, 5.16 and 5.18, chapter 5), as is currently observed in the CCB,

indicates reduced regional moisture input and a dominant summer monsoon regime

controlled by the northward shift in the ITCZand NAM (Metcalfe et 0/.2000; Table 6.1).

This reduced aquifer recharge in the Bolson de Mapimi could lead to reduced

discharge of groundwater in the CCB, and reduced precipitation of summer monsson

conditions would lead to the formation of terminal, endorheic pools to the east of the

CCB. However, the 'reduced' hydrologic flow in the CCBduring interstadials does not
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cause the complete drying of groundwater fed pools, rivers and lakes, as can be seen

in the modern day environment. This may be the result of karst reservoirs and

sustained Cupido-Aurora aquifer discharge, with suggested residence times of up to

1500 years [Johannesson et al., 2004], with an inflow volume ~ evaporation volume,

effectively propping up the hydrologic system.

The possibility of the CCBhaving never before become completely dry has

major implications for endemism observed in the basin. Currently, over 70 species of

flora and fauna are endemic to the CCB;this is widely thought to indicate a large

period of biogeographic isolation [Badino et al., 2004] although it has been proposed

that a surface hydraulic connection existed at some point during Late Holocene

[Echelle and Echelle, 1998]. The suggested continual groundwater source of the CCB,

even during times of extreme aridity regionally in the Chihuahuan Desert, will have

facilitated a desert refuge since at least 56,180 ± 2,250 cal yr BP and possibly as far

back as 84,900 ± 8,500 cal yr BP. If biogeographic isolation has not occurred for a

sufficient period of time to allow speciesto become endemic, due to surface hydraulic

connections, the continual presence of water creating a refuge may be an important

reason as to why endemism does occur in the CCB.
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Chapter 7: Conclusion
7.1 Aims

The aim of this thesis was to examine the palaeoenvironmental evidence of

climate change and associated human responses in the Cuatro ClenegasBasin (CCB),

Coahuila State, NE Mexico from the Late Pleistocene to the present and to obtain a

clear picture of the palaeoclimate, hydrology and geoarchaeology. This would be

achieved by addressingthe following objectives:

• To investigate the palaeoenvironment of the Cuatro ClenegasBasin from the

Late Pleistocene/Holocene to the present through stable isotope and

palynological analysisof a 15 m sediment core located in the basin.

• To investigate modern hydrogeology and water flow patterns by stable isotope

analysis to obtain a conceptual hydrologic model, applicable to

palaeohydrological regimes.

• To explore the relationship between terrestrial tufa formations and previous

environmental and hydrological regimeswithin the Cuatro ClenegasBasin.

• To explore the relationship between palaeoenvironmental change and

consequent human response through integrating archaeological excavations of

human footprints with published studies of Coahuilan Indians.

All four of the above objectives have produced results. The work conducted on

the modern hydrology of the CCBsuggests the basin is currently functioning as a

hydrologically closed evaporative through-flow system, providing a useful model from

which to identify previous hydrological regimes. Two evaporative through-flow

systems have been identified, both surfacing from groundwater discharge on the

flanks of the Sierra SanMarcos y Pinosbefore flowing towards the east of the CBBinto

a series of terminal, endorheic pools. An independent system of evaporation-

precipitation fed pools was also identified, suggesting the possibility of re-circulated

water from an independent aquifer in the basin. Observations of brine evolution from

the west to the east of the CCBcorroborate the through-flow system identified from

the stable isotope data. Gypsum dunes in the west of the CCBare followed by tufa

formation at the piedmont of the Sierra SanMarcos y Pinos and salt flats in the east.
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The now inactive tufa formations in the centre of the throughflow system also attest to

the expansion of previous hydrological regimes in the CCB through increased

groundwater recharge.

The palaeoenvironmental work conducted in the CCB has demonstrated the

basin contains a long spanning - "'85 kyr - multi-proxy environmental record responsive

to both regional and global climate changes. Stable cS180CARB,cS13CDlCand cS13CORGANIC

isotopic, palynological and cS180CARBvs. cS13CDlCcovariance data complemented each

other we" suggesting the environment of the CCB has changed substantially from as

early as 84,900 ± 8,500 cal yr BP to the present. cS180CARB,cS13CDlCand cS13CORGANICand

cS180CARBVS.cS13CDlCcovariance displayed episodic open/closed hydrology across seven

alternating units from the Late Pleistocene, through the Holocene up to the present

day. Three hvdrologlcallv open periods - 56,400 ± 2,600 to 54,300 ± 2,500 cal yr BP

(unit 2), 37,500 ± 2,500 to 31,200 ± 2,200 cal yr BP (unit 4) and 28,051 ± 417 to 12,200

± 400 cal yr BP (unit 6) - appear to display stable, wetter climate conditions, coinciding

with stadial periods of last glaciation, including the lGM (unit 6). Unit 6 in punctuated

by a relatively short lived shift to arid conditions between "'15 and 13 ka BP,

interpreted as the sotltng-Alterod. These hvdrologlcallv open periods were punctuated

by down slope expansions of coniferous pine-oak woodlands and expansion of the

hydrologic system creating larger wetlands and pools able to sustain mesic and

wetland vegetation species such as hickory and typha respectively as we" as depositing

tufa structures such as rim-stone pools and spring mounds.

Further to the three periods of wetter climate and proposed open hydrology on

the CCB floor during the past "'85 cal ka BP, the perched tufa terrace identified away

from the modern hydrologic system indicated a substantially wet climate existed in the

basin between "'500 ka BP and "'130 ka BP. For the terrace to be deposited, conditions

wet enough to support playa and/or pluvial lake systems must have existed to create

sufficient hydrostatic head pressure. These wet conditions would have also created

flowing rivers in the surrounding canyons leading to the fluvial deposits observed.

Four hvdrologicallv variable periods - 84,900 ± 8,500 to 56,400 ± 2,600 cal yr

BP (unit 1), 54,300 ± 2,500 to 37,500 ± 2,500 cal yr BP (unit 3), 31,200 ± 2,200 to

28,051 ± 417 cal yr BP (unit 5) and 12,200 ± 400 cal yr BP to the present (unit 7) -
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appear to display highly variable conditions coinciding with interstadial periods of the

last glaciation characterised by rapid, short lived swings in climate. These may be

related to global climate events such as the H3 Heinrich event, at 30 ka BP(unit 5). The

hydrologically variable units display a retreat of pine-oak woodland to the high peaks

of the surrounding mountains with mesic vegetation species being replaced by xeric

species such prickly pear cactus and agave. The expansion of peat forming wetland

environments appears to coincide with drying events in the CCB,replacing deeper

water bodies, and causing what appears to be disequilibrium effects on the cS180CARB

values of carbonate lake sediments in core PTB.Any hydrological closure of the CCB

may not have been over extended time frames, this is refelcted in the weak cS180CARB

and cS13CDlC co-variation in units 1 and, in particular, S. The modern hydrologically

closed basin dynamics proposed for the CCBprovides a good model to apply to

previous hydrologically closed periods, suggesting the possibility that the CCBhas

never completely dried.

The survival strategy of the Coahuilan Indians of the CCBsince at least 10.5 ka

BP appears to have been controlled by atmospheric moisture and its subsequent

control of water availability and vegetation for food and material production. The

palaeoenvironmental data have demonstrated that climate and water availability

fluctuated dramatically throughout the Late Pleistocene and Holocene with episodic

drought conditions followed by periods wet enough to support pluvial lake formation,

particularly in the Early-Middle Holocene. However, palaeoenvironmental and

hydrological data suggest that, despite fluctuations in climate and water availability,

the CCBnever became completely dry, corroborating Taylor's [1964] hypothesis that

tethered nomadism was practised by the Coahuilan Indians. The Coahuilan Indians

must have been adaptable to environmental changes and archaeological evidence

attests to the importance of exploiting seeds and nuts when climate was wetter and

more favourable whilst exploitation of fruiting cactus ('quids') would have been

undertaken during times of aridity. The permanent water availability in the CCBwould

also suggest the exploitation of aquatic flora and fauna throughout the Holocene

although with no archaeological evidence this theory, though likely, is hard to

substantiate.
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7.2 Future work

Further work to gain a complete understanding of the hydrology of the CCBis

certainly warranted. More work is required categorising pool, lake and river

morphology leading to better understanding of the complex sub-surface water flow

observed in the CCB.This study has demonstrated the through-flow nature of the CCB

waters but understanding as to the origin and environmental controls of the water for

each pool is still largely unknown. Proposed future work includes further detailed

sampling of water from pools, lakes and rivers in both the west and east sides of the

CCBfor 6180 analysisto gain a more detailed understanding of surface flow acrossthe

basin and, more importantly, sub-surface flow patterns. Establishingan understanding

of sub-surface interactions between pools would help identify the source waters (Le.

Cupido-Aurora aquifer) for individual water bodies. Further measurements of pH,

temperature, mineralogy and 613CDlC of source waters, both in the CCBand the Bolson

de Mapimi, would also assist in determinations of hydrologic interactions, helping both

the identification of original water source and also surface flow patterns through brine

evolution. By providing a hydrological framework, determinations of how and where to

extract water for industry would help ease the socio-economic problems currently on-

going in the CCB.

The coring work conducted in the CCBhashighlighted the potential of the basin

for detailed palaeoenvironmental research. An incomplete stratigraphie sequence

(resulting from problems with the coring technique) limited the results of this thesis

but also indicated that the sediments contained largely uncontaminated material. The

possibility of disequilibrium effects on the carbonate sediments of core PTBhas limited

the conclusions of this thesis; further work in establishing disequilibrium effects is

certainly warranted. Understanding any disequilibrium effects Le. eutrophication, in

modern day carbonate sediments is critical, as understanding the factors that have

offset the isotopic composition from equilibrium will assist in accounting for these

effects when interpreting the Palaeo-record. Changesto the coring techniques utilised

are proposed to maximise sediment recovery. More dating work is required to

establish an absolute age/depth model by understanding the environmental controls

of sedimentation rate of the pools, lakes and rivers. Additional dating techniques are

needed to clarify the age/depth profile of the CCB. This study, however, has
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demonstrated the possibility of a continuous palaeoenvironmental record spanning

~500 ka BPby combining coring processeswith detailed sampling of the perched tufa

terrace. Further sampling for 0180 and ol3C isotopes should further enhance the

understanding of local hydrology and possibly regional and global climatic influences in

the CCB. This work would be combined with recent regional climate reconstructions

Le. Fawcett et al., [2011] to better understand regional controls of climate in the CCB

and northern Mexico during the last glacial-interglacial cycles.

Detailed excavations of cave sites and studies of museum collections are

another potential future avenue for new research in the CCB.The last known formal

excavations were undertaken in the 1940swith the majority of artefacts now stored in

museums, private collections or lost. Further archaeological excavations, particularly in

Frightful Cave, would not only allow further insights into the understanding of the

material culture of the Coahuilan Indians but also allow for more detailed

chronological work, adding constraints to Taylor's [2003] three archaeological

complexes [c.12 ka BP to 1 ka BP] and Turpin's [2003] subsequent relative sandal

chronology. The proposed sampling of human remains from the CCB,and possibly

surrounding areas, would allow for stable isotopic determinations of dietary patterns

and possible seasonal utilisation of food resources. The analysis of bone collagen

would provide an overall indicator of an individual's diet which could then be applied

to segmental analysis of hair keratin. Segmental analysis of hair would involve

sectioning the hair into two inch segments, providing possible 'snapshots' of dietary

seasonality.

7.3 Concluding remarks

The palaeoenvironmental and geoarchaeological records obtained in the

Cuatro ClenegasBasin (CCB)have provided a valuable source of information in regard

to both modern and past climate and its affect on floral, faunal and human populations.

The CCBis of great importance to understanding past climate change both regionally

and globally and its direct affect in northern Mexico. The CCBprovides a unique area in

which to study past environments as many parallels can be drawn within the modern

environment. Such areas are rare, and as such, the importance of conservation in the

CCB is elevated due to the increasing threat of industry and the subsequent over

extraction of water brought with it.
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This thesis has demonstrated the potential of the Cuatro Clenegas Basin to

contain detailed palaeoenvironmental records, applicable to regional and global

records, in a largely unspoiled area of the Chihuahuan Desert. The abundance of pools,

rivers and lakes in a large arid wetland area suggeststhat palaeoenvironmental records

definitely up to 56,180 ± 2,250 cal yr BP, beyond 84,900 ± 8,500 cal yr BP,and up to

possibly 500 ka BP are obtainable. The palaeoenvironmental, hydrological and

geoarchaeological data within the Cuatro Cienegas Basin and surrounding areas

certainly warrants further research. The conclusions reached in this study suggest that

future research in this region could prove important to arid/semi-arid regions, not just

on a local or regional scalebut also on aglobal scale.
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