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New findings 1 

What is the central question of this study? 2 

Evidence is growing for the link between obesity, immune dysfunction and oxidative stress, but it is 3 

still not known how the properties and functions of spleen and spleen leukocytes are affected.  4 

What is the main finding and its importance? 5 

Obesity led to premature immunosenescence, manifested as oxidative stress and changes in leukocyte 6 

functions in mouse spleen. The oleic acid derivative 2-hydroxyoleate, and to a lesser extent a 7 

combination of EPA+DHA, could reverse most of the observed alterations, suggesting a potential 8 

therapeutic tool for obesity-related immune dysfunction and redox imbalance. 9 

 10 

  11 
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Abstract  1 

We aimed to investigate the effects of obesity on oxidative stress and leukocyte function in spleen of 2 

mice, and to assess whether supplementation with 2-hydroxyoleic acid (2-OHOA) or n-3 3 

polyunsaturated fatty acids (PUFA) could reverse those effects. Female ICR/CD1 mice (8 weeks old, 4 

n=24) received an obesogenic diet (22% fat for 4 weeks and 60% fat for 14 weeks). After 6 weeks, 5 

mice were split in three groups (n=8/group): no supplementation, 2-OHOA supplementation 6 

(1500 mg/kg) and n-3 PUFA supplementation (EPA+DHA, 3000 mg/kg diet). Eight mice were fed 7 

standard diet for the whole duration of the study (control group). At the end of the experiment, the 8 

following variables were assessed in spleens: levels of reduced (GSH) and oxidized (GSSG) 9 

glutathione, GSH/GSSG, xanthine oxidase (XO) activity, lipid peroxidation, lymphocyte chemotaxis, 10 

natural killer (NK) activity and mitogen (ConA and LPS)-induced lymphocyte proliferation. Obese 11 

animals presented higher GSSG levels (P=0.003), GSSG/GSH ratio (P=0.013), lipid peroxidation 12 

(P=0.004), XO activity (P=0.015) and lymphocyte chemotaxis (P<0.001), and lower NK activity 13 

(P=0.003) and proliferation in response to ConA (P<0.001) than controls. 2-OHOA reversed totally 14 

or partially most of the changes (body weight, fat content, GSSG levels, GSH/GSSG, lipid 15 

peroxidation, chemotaxis and proliferation, all P<0.05), while n-3 PUFA reversed the increase in XO 16 

activity (P=0.032). In conclusion, 2-OHOA, and to a lesser extent n-3 PUFA, could ameliorate the 17 

oxidative stress and alteration of leukocyte function in spleen of obese mice. Our findings support a 18 

link between obesity and immunosenescence and suggest a potential therapeutic tool for obesity-19 

related immune dysfunction. 20 

 21 

 22 

  23 
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Introduction 1 

Nutritional status is a key factor for a correct function of the immune system and the maintenance of 2 

health (De la Fuente & Miquel, 2009). States of malnutrition have been linked to higher vulnerability 3 

to infections and immune dysfunction. Malnutrition, however, is not restricted to nutrient deficiencies 4 

anymore, but it broadly refers to inadequate nutrition and nutritional imbalance, including excessive 5 

energy intake and obesity. Indeed, obesity has been associated with impaired immune function, which 6 

is reflected in an enhanced, non-resolved inflammatory response and compromised immune 7 

surveillance (Karlsson et al., 2010; De la Fuente & De Castro, 2012; Perez de Heredia et al., 2012; 8 

Hunsche et al., 2016). Obesity is also associated with oxidative stress when maintained for a long 9 

time, and it can be mediated by either a decrease in antioxidant defences and/or increased formation 10 

of oxidants. Oxidative stress in turn can damage cellular structures and trigger an inflammatory 11 

response, closing a detrimental feedback loop (Perez de Heredia et al., 2012; Matsuda & Shimomura, 12 

2013; Savini et al., 2013; Vida et al., 2014). Research on obesity and immunity has focused mainly 13 

on circulating leukocytes, but immune organs themselves can be compromised. The largest secondary 14 

immune organ in mammals is the spleen; it hosts macrophages, dendritic cells, plasma cells and a 15 

fourth of the body’s lymphocytes, and is involved in several functions, such as activation of T and B 16 

cells in response to blood-born antigens, antibody production, or clearance of circulating apoptotic 17 

cells (thus contributing to peripheral immune tolerance) (Cesta, 2006). Therefore, it is important to 18 

study the impact of obesity in the spleen and in spleen leukocytes. 19 

The last decades have witnessed a dietary transition toward a westernized dietary pattern, 20 

coincident with the rise of overweight and obesity in both developed and developing countries 21 

(Cuevas et al., 2009; Bezerra et al., 2014). In contrast, the Mediterranean diet has been linked to 22 

lower rates of obesity (Schroder et al., 2004), inflammation and oxidation (Savini et al., 2013). The 23 

Mediterranean diet has been reported to modulate the immune response and to exert anti-24 

inflammatory and antioxidant properties (Minich & Bland, 2008). This may be in great part due to its 25 

high content in monounsaturated (n-9 MUFA) and polyunsaturated (n-3 PUFA) fatty acids, which 26 
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have shown immunomodulatory actions (de Pablo et al., 1998; Padovese & Curi, 2009; Paschoal et 1 

al., 2013). N-3 PUFA have been more extensively studied in this respect (Calder & Grimble, 2002), 2 

while less attention has been paid to the effects of MUFA on the immune system, although they may 3 

contribute to reducing oxidative stress (Fitó et al., 2007). Evidence regarding whether dietary MUFA 4 

and n-3 PUFA affect the redox state and the function of leukocytes in spleen in obesity is nevertheless 5 

still scarce.  6 

The aims of the current study were to investigate the effects of obesity on markers of oxidative 7 

stress and leukocyte functions in spleen of mice, and to evaluate the impact of subsequent 8 

supplementation with n-9 MUFA and n-3 PUFA on these parameters. 9 

 10 

Methods 11 

Ethical Approval 12 

All experimental procedures were approved by the Committee for Animal Experimentation of the 13 

University Complutense of Madrid (ref. CEA-UCM 06/2012), and conducted in accordance with the 14 

guidelines and protocols of the Spanish Royal Decree 1201/2005 regarding the care and use of 15 

laboratory animals for experimental procedures. The authors acknowledge the ethical principles of 16 

Experimental Physiology, and confirm that the study was conducted in compliance with the animal 17 

ethics checklist as detailed by Grundy (2015). 18 

Measures were taken to ensure the well-being of animals and to minimize pain and suffering 19 

to the best of our possibilities (see methodological description below). Organ and tissue samples were 20 

obtained post-mortem. Animals were euthanized at the end of the study, by decapitation in the 21 

morning (8:00 a.m.), and no anaesthetic was used to this effect to save unnecessary suffering to the 22 

animals. This procedure is in agreement with the dispositions of the European Directive 2010/63/EU. 23 

 24 

Animal origin and housing conditions 25 
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Thirty-two female ICR/CD1 mice, 8 weeks of age, were purchased from Harlan Interfauna Iberica 1 

(Barcelona, Spain). The animals were housed in polyurethane cages (4 animals per cage) and 2 

maintained under standard laboratory conditions (12:12 h reversed light/dark cycle; lights on at 3 

8:00 pm, relative humidity of 50-60%, temperature of 22±2 ºC and adequate ventilation). During the 4 

first 5 days of acclimatization to the new environment, all mice were fed a standard maintenance diet 5 

(Teklad Global 14% Protein Rodent Maintenance Diet, reference 2014, Harlan Interfauna Iberica). 6 

 7 

Experimental groups and diets 8 

Animals were split into two groups: 8 mice kept receiving the maintenance diet for the entire duration 9 

of the study (18 weeks), constituting the control group, while the rest received a moderately fat-rich 10 

diet for 4 weeks (3.3 kcal/g, 22% calories from fat, 23% protein, 55% carbohydrates, ref. Teklad 11 

Global 2019, Harlan Interfauna Iberica), followed by an obesogenic diet (60% fat, 18.4% protein, 12 

21.3% carbohydrates, ref. TD. 06414, Harlan Interfauna Iberica) for a further 8 weeks (figure 1). 13 

At this point, the high-fat diet-fed mice were split into three groups: 8 mice kept receiving the 14 

obesogenic diet for the rest of the experiment (OD group), 8 mice were given the diet supplemented 15 

with 2-OHOA (1500 mg/kg diet) (OD-HO group), and 8 mice were given the diet supplemented with 16 

a combination of eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic (DHA, 22:6n-3) acids (1500 17 

+ 1500 mg/kg diet), for 6 additional weeks. The 2-OHOA is a synthetic derivative of oleic acid with 18 

a hydroxyl group in the α-position, and it is also known as 2-hydroxy-D9-cis-octadecenoic acid. The 19 

n-3 PUFA were extracted from fish (anchovy). All fatty acid supplements were provided by BTSA-20 

Biotecnologías Aplicadas, S.L. Upon reception of the supplements (2-OHOA in powdered form and 21 

n-3 PUFA in oil form), these were mixed at our facilities with the diet, which was of a malleable 22 

consistency, and then pelleted before being presented to the mice. Animals had free access to water 23 

and food during the entire study, and food intake was monitored on a weekly basis. 24 

 25 

Collection of spleen and leukocyte suspensions 26 
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 1 

Once animals were euthanized, their spleens were collected aseptically and freed from fat. One 2 

fragment of each spleen was stored at –80 ºC for the study of oxidative stress parameters. Another 3 

fragment of spleen was minced with scissors and gently pressed through a mesh screen (Sigma, St 4 

Louis, USA) to obtain cell suspensions. The cell suspensions were centrifuged in a gradient of Ficoll-5 

Hypaque (Sigma) with a density of 1.070 g/ml; cells from the interface were collected and suspended 6 

in Roswell Park Memorial Institute (RPMI) 1640 medium enriched with L-glutamine (PAA, 7 

Pasching, Austria) and supplemented with 10% heat-inactivated foetal calf serum (Gibco, Canada) 8 

and 1% gentamicin (100 µg/ml, Gibco). After a wash step, leukocytes were counted in a Neubauer 9 

chamber and their number adjusted to 106 cell/ml. Cell viability was routinely measured before each 10 

experiment by the trypan-blue exclusion test, and was higher than 95% in all experiments. All 11 

incubations were performed at 37 ºC in a humidified atmosphere of 5% CO2. 12 

 13 

Analysis of oxidative stress 14 

GSH and GSSG levels 15 

Reduced glutathione (GSH) is one of the most important anti-oxidant defence mechanisms in the 16 

organism, and as such a relevant marker of its antioxidant capacity. Both reduced and oxidized 17 

(GSSG) glutathione were determined in spleen using a fluorometric method (Hissin & Hilf, 1976). 18 

This is based on the reaction of a fluorescence probe, o-phthaldialdehyde (OPT), with GSH at pH=8 19 

and with GSSG at pH=12, which generates a fluorescence derivative. The spleen samples were 20 

homogenized (50 mg/ml) in sodium phosphate-EDTA buffer (0.1 M, pH=8) and proteins were 21 

precipitated by adding 5 μl of 60% perchloric acid. Homogenized spleen samples were centrifuged 22 

(9,500 g, 10 min, 4 °C) and supernatants were maintained in ice for measurement of GSH and GSSG 23 

levels. For GSH levels determination, 10 μl of the supernatant, 190 μl of sodium phosphate-EDTA 24 

buffer and 20 μl of OPT solution (1 mg/ml in methanol) were added to a 96-well black microplate 25 

and incubated at room temperature for 15 minutes. Fluorescence was determined in a microplate 26 
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reader using excitation at 350 nm and emission detection at 420 nm. For the determination of GSSG 1 

levels, 10 μl of the supernatant and 4 μl of N-ethylmaleimide (NEM, 0.04 M) were added to a 96-2 

well black microplate and incubated at room temperature for 30 minutes. Then, 186 μl of sodium 3 

hydroxide (NaOH, 0.1 N) with 20 μl of OPT solution were added to each well. After incubation (room 4 

temperature, 15 min), fluorescence was measured as previously described for GSH determination. 5 

The results were analysed with GSH and GSSG standard curves at different concentrations and 6 

expressed as nmol/mg protein. Protein concentration of the samples was measured following the 7 

bicinchoninic acid protein assay kit protocol (Sigma-Aldrich, Madrid, Spain). The GSSG/GSH ratio 8 

was then calculated for each sample. All assays were performed in duplicates. 9 

 10 

Xanthine oxidase (XO) activity 11 

XO activity was assayed by fluorescence in homogenates of spleen, using a commercial kit (Amplex 12 

Red Xanthine/Xanthine Oxidase Assay Kit, Molecular Probes, Paisley, UK). In the assay, XO 13 

catalyses the oxidation of purine bases (xanthine) to uric acid and superoxide anions. The superoxide 14 

anion spontaneously degrades in the reaction mixture to H2O2, which in the presence of horseradish 15 

peroxidase (HRP) reacts with Amplex Red reagent to generate the red-fluorescent oxidation product, 16 

resorufin. Tissue samples were homogenized in phosphate buffer (50 mM, pH=7.4) containing 1 mM 17 

EDTA and normalized to total protein. The homogenate was centrifuged (5,000 g) and the 18 

supernatant (50 µl) was collected and incubated with 50 µl working solution of Amplex Red reagent 19 

(100 µM) containing HRP (0.4 U/ml) and xanthine (200 µM). After 30 min of incubation at 37 ºC, 20 

measurement of fluorescence was performed in a microplate reader (Fluostar Optima, BMG Labtech, 21 

Biomedal, Spain), using excitation at 530 nm and emission detection at 595 nm. XO supplied in the 22 

kit was used as the standard. The results were expressed as international milliunits of enzymatic 23 

activity per milligram of protein (mU XO/mg protein). Protein content of the samples had been 24 

previously assessed by the bicinchoninic acid protein assay kit protocol (Sigma-Aldrich, Madrid, 25 

Spain). All assays were performed in duplicates. 26 



9 
 

9 
 

 1 

Lipid peroxidation 2 

Lipid peroxidation levels were determined by measuring the formation of malondialdehyde (MDA) 3 

using a colorimetric assay kit (BioVision, Inc., Mountain View, CA, USA). The spleen samples were 4 

homogenized (10 mg) in 300 μl of MDA lysis buffer with 3 μl butylhydroxytoluene (BHT) (X100) 5 

and then centrifuged (13,000 g, 10 min) to remove insoluble material. An aliquot (200 μl) of each 6 

supernatant was added to 600 μl of thiobarbituric acid (TBA) and incubated at 95 °C for 60 minutes. 7 

The samples were then maintained in an ice bath for 10 minutes and 200 μl from each 800 μl reaction 8 

mixture were placed into a 96-well microplate for spectrophotometric measurement at 532 nm. The 9 

results were analyzed with MDA standard curve at different concentrations and expressed as nmol/mg 10 

protein. Protein concentration of the samples was measured following bicinchoninic acid protein 11 

assay kit protocol (Sigma-Aldrich, Madrid, Spain). All assays were performed in duplicates. 12 

 13 

Leukocyte functions 14 

Chemotaxis assay 15 

The assay was carried out following the method previously described by De la Fuente and colleagues 16 

(2004). Chambers with two compartments separated by a filter of 3 μm pore diameter (Millipore, 17 

Ireland) were used. Aliquots of 300 μl of leukocyte suspensions were placed in the upper 18 

compartment, and 400 μl of the chemoattractant fMet-Leu-Phe (fMLF, Sigma), at a concentration of 19 

10-8 M, were placed in the lower compartment. After 3 h incubation, the filters were fixed and stained, 20 

and the number of lymphocytes on the lower face of the filters was counted in one third of them, with 21 

an optical microscope, and recorded as the chemotaxis index (CI). All the samples were assayed in 22 

duplicate. 23 

 24 

NK activity assay 25 



10 
 

10 
 

An enzymatic colorimetric assay was used for measurements of cytolysis of target cells (Cytotox 96 1 

TM Promega, Boerinher Ingelheim, Germany), based on the determination of the activity of the 2 

enzyme lactate dehydrogenase (LDH), and using tetrazolium salts, as previously published (De la 3 

Fuente et al., 2004). Briefly, target cells (YAC-1 cells from a murine lymphoma) were seeded in 96-4 

well U-bottom culture plates (Nunclon, Denmark) in RPMI 1640 medium without phenol red, at a 5 

concentration of 104 cell/well. Effector cells (leukocytes from spleen) were added at a concentration 6 

of 105 cell/well, thus obtaining an effector/target rate of 10/1. The plates were centrifuged at 250 g 7 

for 4 minutes to facilitate cell-to-cell contact and then incubated for 4 h. After incubation, plates were 8 

centrifuged again at 250 g for 4 minutes and LDH activity was measured in the supernatants 9 

(50 µl/well) by addition of the enzyme substrate with absorbance recording at 490 nm. The results 10 

were expressed as percentage of lysis. Each sample was assayed in triplicate. Three kinds of control 11 

measurements were performed: a target spontaneous release, a target maximum release and an 12 

effector spontaneous release. To determine the percentage of lysis of target cells, the following 13 

equation was used: % lysis = ([E-ES-TS]/ [M-ES-TS]) × 100 14 

where E is the mean absorbance in the presence of effector cells; ES is the mean absorbance of 15 

effector cells incubated alone (effector spontaneous release); TS is the mean absorbance in target cells 16 

incubated with medium alone (target spontaneous release), and M is the mean of maximum 17 

absorbance after incubating target cells with lysis solution (target maximum release). 18 

 19 

Lymphoproliferation assay 20 

Following the method previously described (De la Fuente et al., 2004), aliquots (200 µl) of leukocytes 21 

(106 cells/ml complete medium) were seeded in 96-well flat-bottomed microtiter plates (Numc, 22 

Roskilde, Denmark). Then, 20 µl of concanavaline A (ConA, 1µg/ml, Sigma, St Louis, MO) or 20 µl 23 

of lipopolysaccharide (LPS, Escherichia coli 055:B5, 1µg/ml, Sigma) were added per well. In order 24 

to assess spontaneous proliferation, 20 µl of complete medium were added to some wells instead of 25 

the mitogens. After 48 h of incubation at 37 °C in an atmosphere of 5% CO2, 0.5 µCi 3H-thymidine 26 
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(Du Pont, Boston, MA, USA) were added to each well. The cells were harvested in a semiautomatic 1 

microharvester 24 h later. Thymidine uptake was measured using a beta counter (LKB, Uppsala, 2 

Sweden). The results were expressed as 3H-thymidine uptake (cpm). All assays were performed in 3 

triplicates. 4 

 5 

Statistical analysis 6 

We tested the following hypotheses: 1) spleen from obese animals would be subjected to higher 7 

oxidative stress than those from controls; 2) leukocytes from spleens of obese animals would present 8 

altered chemotaxis, NK activity and proliferation in response to mitogens in relation to controls; 3) 9 

supplementation with 2-OHOA and n-3 PUFA would reverse the observed changes. 10 

Sample size was 8 per experimental group (unless otherwise specified), with assays being 11 

conducted in triplicates (NK activity and lymphoproliferation) or duplicates (the rest of assays). In 12 

those cases, the average value of the replicas was used. The results are expressed as mean ± standard 13 

deviation (SD), or median and interquartile range (IQR), depending upon normality of the data, which 14 

was checked by the Shapiro-Wilk test. For normally distributed variables (XO activity, MDA levels, 15 

CI, NK activity and proliferation), one-way ANOVA with Bonferroni post-hoc test were conducted 16 

to compare the four experimental groups. For non-normally distributed variables (body weight, GSH 17 

and GSSG levels and GSSG/GSH), the Kruskal-Wallis test was used to compare the four 18 

experimental groups, and Mann-Whitney was used to run pairwise comparisons when the Kruskal-19 

Wallis test was significant. Significance level was always set at P<0.05. All statistical tests were 20 

performed using IBM SPSS v23.  21 

 22 

Results 23 

Effect of the treatments on body weight gain 24 

The animals fed the obesogenic diet started gaining significantly more weight than the controls after 25 

five weeks of high-fat feeding (P=0.036). Supplementation with 2-OHOA resulted in progressive 26 
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reduction of body weight, and at the end of the experiment the average weight of the OD-HO group 1 

was significantly lower than that of controls (P=0.009). The supplementation with n-3 PUFA did not 2 

have a significant effect on body weight when compared to the OD group (figure 2). 3 

 4 

Effect of the treatments on the oxidative stress parameters in spleen 5 

The levels of reduced glutathione (GSH) were similar among experimental groups (P=0.518) (figure 6 

3A). On the contrary, the levels of oxidized glutathione (GSSG) and the GSSG/GSH ratios were 7 

significantly different between groups (P=0.003 and P=0.013, respectively). The OD group presented 8 

the highest values; treatment with 2-OHOA seemed to prevent or reverse the increase in both GSSG 9 

levels and GSSG/GSH, while n-3 PUFA seemed to ameliorate only the rise in GSSG/GSH (figures 10 

3B and 3C). Similarly, xanthine oxidase activity (figure 4) was different among experimental groups 11 

(P=0.015). The highest value corresponded to the OD group (P=0.032 vs control), and the increase 12 

was abolished by supplementation with n-3 PUFA (P=1.000 and P=0.032 vs control and OD groups, 13 

respectively), and partially by 2-OHOA (P=1.000 and P=0.114 vs control and OD groups, 14 

respectively). Lipid peroxidation (measured as malondialdehyde [MDA] levels) was also different 15 

among treatments (P=0.004), the differences being found between the OD and OD-HO groups 16 

(P=0.012), and between the OD-HO and OD-N3 groups (P=0.017) (figure 5). 17 

 18 

Effect of treatments on spleen leukocytes functions 19 

Significant differences were found among the experimental groups for the chemotaxis index (CI) of 20 

spleen lymphocytes (P<0.001), which was lowest in controls, and highest in the OD group. 21 

Supplementation with 2-OHOA partially prevented or reversed the increase in the CI (P=0.002 vs the 22 

OD group), while no significant effect could be attributed to n-3 PUFA supplementation (P=0.863 vs 23 

the OD group) (figure 6). In contrast, the natural killer (NK) activity of spleen leukocytes was higher 24 

in the control group than in all groups fed the obesogenic diet (P=0.003), with no statistical 25 
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differences observed between the OD group and the groups that received the fatty acid supplements 1 

(P=1.000 for both post-hoc contrasts) (figure 7). 2 

With regards to the proliferative capacity of lymphocytes, no significant differences were 3 

observed between groups in basal conditions (control group: 1395 ± 550; OD: 1283 ± 463; OD-HO: 4 

1363 ± 346; and OD-N3: 1193 ± 361 cpm). In response to stimulation by ConA, the OD group 5 

showed the lowest values of proliferation (P<0.001), a decrease that was totally reversed by 6 

supplementation with 2-OHOA and partially by supplementation with n-3 PUFA (figure 8A). In 7 

response to LPS stimulation, the obesogenic diet per se did not result in a significant alteration of the 8 

lymphoproliferative response, but the supplementation with 2-OHOA was accompanied by higher 9 

levels of proliferation, in comparison with both the control group (P<0.001) and the OD group 10 

(P=0.002) (figure 8B). 11 

 12 

Discussion 13 

The results of the current study support that the induction of dietary obesity during the juvenile period 14 

leads to the development of obesity, oxidative stress and impaired leukocyte function in spleen in 15 

adulthood. The supplementation with 2-OHOA, and to a lesser extent with n-3 PUFA (EPA+DHA), 16 

was able to partially or completely ameliorate the alteration of most leukocyte functions, and to 17 

improve the oxidative stress status in the obese mice. 18 

We found that 2-OHOA supplementation, but not n-3 PUFA, led to a progressive decrease in 19 

body weight. This was not accompanied by a decrease in food intake (data not shown). Our results 20 

agree with Vögler and colleagues (2008), who previously reported that 2-OHOA-treated mice 21 

experienced a decrease in body weight through reduction of adipose fat mass. With regards to n-3 22 

PUFA, despite a considerable body of evidence (Thorsdottir et al., 2007; Buckley & Howe, 2010), a 23 

recent meta-analysis indicated that PUFA supplementation does not promote anti-obesity effects in 24 

overweight/obese individuals, in agreement with our results (Du et al., 2015). 25 
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The obese animals in our study presented increased oxidative stress and altered function of 1 

leukocytes in spleen. Obesity is a risk factor for the progressive deterioration of cellular immune 2 

functions (Tarantino et al., 2013), and has been associated with premature immunosenescence, a 3 

situation of both oxidative and inflammatory stress (De la Fuente & De Castro, 2012; De la Fuente, 4 

2014). The pathophysiological mechanisms by which cellular immune functions are affected by 5 

obesity are still under investigation but the spleen may play an important role (Tarantino et al., 2013). 6 

The increased oxidative stress in our mice was manifested by higher GSSG, GSSG/GSH ratio, lipid 7 

peroxidation and xanthine oxidase activity levels. This suggests that obesity was accompanied by 8 

elevated formation of oxidants rather than a decrease in the levels of antioxidants, at least in the 9 

spleen. This is the first time to our knowledge that GSH, GSSG, and the GSSG/GSH ratio have been 10 

investigated in the spleen of dietary obese mice, but our results agree with previous studies that looked 11 

at other organs and/or species (Capel & Dorrell, 1984; Kolesnikova et al., 2013; Hunsche et al., 2016). 12 

An increased GSSG/GSH ratio has been associated with a number of diseases, including type-2 13 

diabetes (Lee et al., 2008), and it can therefore be a useful health marker in the assessment of obesity-14 

related comorbidities. In a similar manner, the activity of XO in thymus has been reported to be higher 15 

in obese rats than in normal weight controls (De la Fuente & De Castro, 2012), and to be elevated in 16 

obese children when compared to non-obese children (Chiney et al., 2011). In our study, the 17 

supplementation with unsaturated fatty acids proved to be effective at improving the oxidative state 18 

of obese mice; 2-OHOA supplementation reduced both GSSG levels and GSSG/GSH ratio, as well 19 

as MDA levels (the marker of lipid peroxidation), when compared to the OD group, while XO activity 20 

was decreased by n-3 PUFA supplementation (in relation to the OD group). Our results are in 21 

agreement with previous evidence showing that olive oil consumption can favour tissue antioxidant 22 

defence mediated by the glutathione system (De La Cruz et al., 2000), reduce lipid peroxidation levels 23 

(El-Kholy et al., 2014), and improve plasma antioxidant capacity (Pitsavos et al., 2005).  24 

In our study, obese animals presented as well higher chemotaxis, lower cytotoxic activity and 25 

lower mitogen-induced proliferation in spleen leukocytes. The chemotaxis capacity enables the 26 
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migration of circulating immune cells into tissues and their accumulation in infection or injury sites, 1 

in order to produce an adequate inflammatory and defensive response (Doherty et al., 1987). 2 

Understanding the significance of increased chemotaxis in our obese mice would require further 3 

research, as evidence available is not unanimous in this respect. On the one hand, decreased 4 

chemotaxis has been reported in neutrophils from genetically obese mice (Kordonowy et al., 2012), 5 

and in peritoneal immune cells from aged mice, which are in a state of oxidative stress (De la Fuente 6 

& Miquel, 2009). On the other hand, a rise in the chemotactic indices of spleen lymphocytes was 7 

observed in a mouse model of Alzheimer’s disease, another condition with a high oxidative situation 8 

(Giménez-Llort et al., 2008), while another study showed enhanced immune cell chemotaxis in mice 9 

fed a high-fat diet (Qiao et al., 2009). High-fat consumption has been reported to induce cellular 10 

adherence activation (Esser et al., 2013), which in turn is linked to oxidative stress (De la Fuente & 11 

Miquel, 2009). The increased chemotaxis observed in our study, therefore, is likely to be related to 12 

the oxidative stress state of the obese mice. It is important, however, to highlight that changes in 13 

chemotactic function can be dependent on the type of immune cells and organs analysed. 14 

Supplementation with 2-OHOA, but not with n-3 PUFA, was able to partially prevent or reverse the 15 

rise in the chemotaxis index associated with obesity in our mice. In agreement with our findings, 16 

previous studies have reported no effect of n-3 PUFA on neutrophil chemotaxis (Schmidt et al., 1996; 17 

Healy et al., 2000; Hill et al., 2007), although other authors did observe diminished neutrophil 18 

chemotaxis in response to these fatty acids (Lee et al., 1985; Luostarinen et al., 1992; Schmidt et al., 19 

1992; Sperling et al., 1993). In relation to 2-OHOA, our study is to our knowledge the first to report 20 

a significant amelioration of obesity-related changes in spleen leukocyte chemotaxis. 21 

Natural killer cytotoxic activity was lower in all the groups fed the obesogenic diet. These 22 

results are consistent with previous studies indicating that high-fat-fed mice, obese rats and obese 23 

humans suffer from diminished NK cell cytotoxicity (Morrow et al., 1985; Moriguchi et al., 1998; 24 

Lamas et al., 2004; O’Shea et al., 2010; De la Fuente & De Castro, 2012). NK cells constitute the 25 

most important defensive line against malignant and virus-infected cells. Thus, a decrease in their 26 
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activity renders the animals more susceptible to infections and tumours. Interestingly, similar changes 1 

in NK activity have been observed in old and prematurely aging animals (De la Fuente et al., 2004; 2 

De la Fuente & Miquel, 2009). In our study, neither 2-OHOA nor n-3 PUFA supplementation resulted 3 

in any improvement of NK activity, in agreement with previous work (Berger et al., 1993; Yaqoob 4 

et al., 2000). Therefore, we can speculate that changes in NK activity in our study were not directly 5 

linked to the oxidative stress status of the animals, but to other alterations associated with obesity 6 

and/or high fat intake. 7 

Finally, obesity in our study was accompanied by decreased lymphoproliferative response 8 

after stimulation with the mitogen ConA, but not with LPS or under basal conditions. ConA is a T-9 

cell mitogen, while LPS acts as a B-cell mitogen. These different mitogen actions could explain why 10 

the experimental treatments did not affect proliferation in all conditions, and suggest instead that 11 

obesity impacts specifically on certain types of immune cells (Perez de Heredia et al., 2015). In 12 

addition, we did not observe statistically significant differences in the percentages of CD3+ cells (T 13 

lymphocytes) and CD19+ cells (B lymphocytes) among the experimental groups (data not shown), 14 

which would be in agreement with the lack of proliferative response to LPS and also with the similar 15 

levels of lymphoproliferation in the basal state. We can only speculate at this point, but our results 16 

could suggest that obesity and/or the high-fat diet did not affect the basal proliferation capacity of 17 

lymphocytes per se, but could impair the ability of the spleen to respond to an offense by increasing 18 

the population of T lymphocytes specifically. More research is needed to understand the pathways 19 

and mechanisms by which obesity can impact lymphocyte maturation in spleen. Supplementation 20 

with 2-OHOA led to restored lymphoproliferation levels in response to ConA, and also resulted in 21 

higher proliferative response to LPS stimulation in our study, while n-3 PUFA supplementation did 22 

not affect significantly either ConA- or LPS-stimulated proliferation. Other authors, by contrary, have 23 

reported lower olive oil-induced lymphoproliferative response to both ConA and LPS, when 24 

comparing to other types of fat (de Pablo et al., 1998), and that n-3 PUFA could reduce in vitro 25 

lymphocyte proliferation (Peterson et al., 1998). Further research is required as well in order to 26 
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confirm the effects of both 2-OHOA and n-3 PUFA in modulating the proliferation of spleen 1 

leukocytes.  2 

Our study has certain limitations that should be addressed. Additional measures of anti-3 

oxidant markers, like total anti-oxidant capacity of the spleen, could contribute to confirm our 4 

hypothesis that oxidative stress in obesity is due to increased generation of oxidants rather than 5 

decreased anti-oxidant defence mechanisms. The analysis of the activity of the enzymes glutathione 6 

peroxidase and glutathione reductase could contribute to explain the results obtained in relation to 7 

levels of GSH and GSSG. Similarly, the analysis of the activity of the superoxide dismutase could 8 

shed light on the results obtained in relation to xanthine oxidase. Unfortunately, the amount of tissue 9 

available limited the number of analyses that could be conducted in the spleens. In this line, it would 10 

have also been interesting to analyse antioxidant markers in plasma, in order to confirm the oxidative 11 

stress state associated with obesity, but again the amount of blood available from each mouse was 12 

very limited and it was necessary to conduct a set of humoral and metabolic determinations. 13 

In conclusion, early induction of dietary obesity led to oxidative stress and impaired leukocyte 14 

function in mice, suggesting premature immunosenescence. Supplementation with 2-OHOA, and to 15 

a lesser extent with n-3 PUFA, was able to reduce body weight and to ameliorate the oxidative stress 16 

and alteration of several leukocyte functions in the spleen of obese mice. 17 

 18 
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FIGURES 1 

2 

Figure 1. Experimental design and timing. 2-OHOA: 2-hydroxyoleic acid; PUFA: polyunsaturated 3 

fatty acids; C: control; OD: obesogenic diet; OD-HO: obesogenic diet + 2-OHOA; OD-N3: 4 

obesogenic diet + n-3 PUFA. 5 

 6 

 7 
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 1 

Figure 2. Evolution of the body weight of mice in the four experimental groups (C: control; OD: 2 

obesogenic diet; OD-HO: obesogenic diet + 2-OHOA; OD-N3: obesogenic diet + n-3 PUFA; n=8 3 

animals/group). The dotted lines indicate, left to right, the beginning of the administration of the 4 

moderate-fat diet, the high-fat diet and the supplements. Arrows indicate the weeks when the average 5 

body weights started to differ significantly between controls and obesogenic diet-fed animals 6 

(P=0.036), and between the OD-HO group and the other two obesogenic-diet fed groups (P=0.011), 7 

as analysed by Kruskal-Wallis. 8 
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 1 

Figure 3. Levels of reduced (GSH) (A) and oxidized glutathione (GSSG) (B) and the GSSG/GSH 2 

ratios in the spleen homogenates of mice from the four experimental groups (C: control; OD: 3 

obesogenic diet; OD-HO: obesogenic diet + 2-OHOA; OD-N3: obesogenic diet + n-3 PUFA; n=7 4 

animals/group). All assays were performed in duplicates. Differences between treatments analysed 5 

by Mann-Whitney, *P<0.05, **P<0.01. 6 
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 1 

Figure 4. Xanthine Oxidase (XO) activity in the spleen homogenates of mice from the four 2 

experimental groups (C: control; OD: obesogenic diet; OD-HO: obesogenic diet + 2-OHOA; OD-3 

N3: obesogenic diet + n-3 PUFA; n=7 animals/group). All assays were performed in duplicates. 4 

Boxplots represent means, 95% CI, minimum and maximum values. Different superscript letters 5 

indicate significant differences as analysed by one-way ANOVA with post-hoc correction by 6 

Bonferroni, P<0.05. 7 
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 1 

Figure 5. Lipid peroxidation, measured as levels of malondialdehyde (MDA), in the spleen 2 

homogenates of mice from the four experimental groups (C: control [n=6]; OD: obesogenic diet 3 

[n=6]; OD-HO: obesogenic diet + 2-OHOA [n=4]; OD-N3: obesogenic diet + n-3 PUFA [n=5]). All 4 

assays were performed in duplicates. Boxplots represent means, 95% CI, minimum and maximum 5 

values. Different superscript letters indicate significant differences as analysed by one-way ANOVA 6 

with post-hoc correction by Bonferroni, P<0.05. 7 
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 1 

Figure 6. Chemotaxis index of spleen leukocytes of mice from the four experimental groups (C: 2 

control; OD: obesogenic diet; OD-HO: obesogenic diet + 2-OHOA; OD-N3: obesogenic diet + n-3 3 

PUFA; n=8 animals/group). All assays were performed in duplicates. Boxplots represent means, 95% 4 

CI, minimum and maximum values. Different superscript letters indicate significant differences as 5 

analysed by one-way ANOVA with post-hoc correction by Bonferroni, P<0.05. 6 
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 1 

Figure 7. Natural killer (NK) activity of spleen leukocytes of mice from the four experimental groups 2 

(C: control; OD: obesogenic diet; OD-HO: obesogenic diet + 2-OHOA; OD-N3: obesogenic diet + 3 

n-3 PUFA; n=8 animals/group). All assays were performed in triplicates. Boxplots represent means, 4 

95% CI, minimum and maximum values. Different superscript letters indicate significant differences 5 

as analysed by one-way ANOVA with post-hoc correction by Bonferroni, P<0.05. 6 
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 1 

Figure 8. Lymphoproliferative response to concanavalin A (ConA) (A) and to lipopolysaccharide 2 

(LPS) (B) of spleen leukocytes of mice from the four experimental groups (C: control; OD: 3 

obesogenic diet; OD-HO: obesogenic diet + 2-OHOA; OD-N3: obesogenic diet + n-3 PUFA; n=7 4 

animals/group). All assays were performed in triplicates. Boxplots represent means, 95% CI, 5 

minimum and maximum values. Different superscript letters indicate significant differences as 6 

analysed by one-way ANOVA with post-hoc correction by Tamhane (ConA) or Bonferroni (LPS), 7 

P<0.05. 8 


