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Abstract 

This paper presents a laboratory study on the use of Cement Kiln Dust (CKD) as an activator of fly ash 

when used in high volumes within concrete.  Two separate batches of fly ash and CKD were tested to 

assess the effect of material variability on binder properties and compressive strength gain.  Ternary 

blends of fly ash (55% - 65%), CEM 1 (30%) and CKD (5% - 15%) and quaternary blends that included 

moderate amounts (15% - 18.5%) of Ground Granulated Blast-Furnace Slag (GGBS) were prepared.  

Physico-chemical properties of individual binder materials were compared and concrete compressive 

strength was measured at 2 days, 7 days and 28 days.  Ternary blends of 60% fly ash, 30% cement 

and 10% CKD resulted in moderate early age and 28 day strength and addition of GGBS enhanced 

strength significantly due to increased ettringite formation.  Particle fineness, water demand and LOI 

content of fly ash and CaO and SO3 content of CKD were found to be the main physico-chemical 

factors that influence compressive strength gain. 

Key words:  Ash utilisation; cement kiln dust; GGBS; chemical properties; compressive strength. 

 

1. Introduction 

Reduction in Portland cement consumption is a key aim of the construction industry in reducing CO2 

emissions associated with construction.  Increasing the use of waste by-products as cement 

replacements was the major sector plan objective set out by UK Mineral Product Association (Mineral 

Products Association, 2011).  Although High Volume Fly Ash (HVFA) concrete benefits from increased 

long term strength and durability relative to Portland cement mixes, its early age strength is generally 

lower.  The pozzolanic reaction occurs relatively slowly which increases concrete setting times and 
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reduces the rate of early strength gain and these effects have been found to be more severe for 

higher levels of cement replacement (Kayali and Sharfuddin Ahmed, 2013, Bouzoubaâ and Lachemi, 

2001) The aim of this investigation is to use Cement Kiln Dust (CKD) to activate the cement 

replacement materials used to increase early age strengths of concretes containing high volumes of 

fly ash.  

Many investigations on HVFA concrete have aimed to ensure sufficient compressive strength is 

achieved by using a low water to cementitious materials ratio with the required workability achieved 

by the use of superplasticisers.Naik and Singh (Naik and Singh, 1991) used a melamine based 

superplasticiser to achieve water to cementitious materials ratio between 0.29 – 0.33 for fly ash 

proportions between 40% – 70%.  Compressive strength results for the mix containing 70% fly ash 

were only 2.3 MPa for 1 day testing but this increased substantially to 56.6 MPa after 28 days.  For 

lower replacement levels, higher early age strengths were observed but 28 day strengths were similar 

for all replacement levels.  Atis  (Atiş, 2003)investigated HVFA concrete mixes using a carboxylic type 

superplasticiser with similar mix proportions to Naik and Singh (1991) and found 1 day strength of 

only 1.8 MPa but moderate 28 day strength of 33.2 MPa for 70% fly ash.  Bouzoubaa and Lachemi 

(2001) and Yazici (Yazıcı, 2008) investigated production of self-compacting concrete containing high 

volumes of fly ash which takes advantage of improved fluidity and increased resistance to segregation 

of HVFA concrete mixes.  However, low early strength was also apparent in these investigations, 

particularly for higher fly ash contents.  

Physical and chemical properties of the ash have a significant effect on the strength gain of HVFA 

concrete.  Bouzoubaa and Fournier (Bouzoubaâ and Fournier, 2003) tested concrete made with ash 

from two different sources and found that concretes made with ash of higher CaO content and with 

finer particles generally achieved higher strengths. Bouzoubaa et al (Bouzoubaâ et al., 2001) carried 

out a range of testing on HVFA concretes where the cement and ash were pre-blended and ground 

and equivalent mixes where the cement and unground ash were added separately at the mixer.  They 

found that concretes made with the pre-blended binder had shorter setting times, greater 

mechanical properties and improved durability characteristics and they attributed the improved 

performance to increased ash fineness and improved homogeneity of the blend.  Jiang and Malhotra 

(Jiang and Malhotra, 2000) tested concretes with 55% fly ash from 8 different ash sources and 

observed higher strengths for concretes made with ashes of higher CaO content.  They also 

commented that higher equivalent alkali content and finer ash particles tended to increase strength. 
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Several investigations on HVFA concretes have examined the effect of inclusion of GGBS within the 

binder.  Zhu et al (Zhu et al., 2012) tested high binder content mortars with 30% cement, 40% – 70% 

fly ash and 0% – 30% GGBS.  They found that compressive strength increased at all ages with 

increasing GGBS content within the blend relative to the strength of the binary blend of 70% fly ash 

and 30% cement.  However, the main increase in strength was observed for just 10% inclusion of 

GGBS, particularly at early age (e.g. increases in 3 day strength relative to the binary blend were 27%, 

34% and 44% for 10%, 20% and 30% of GGBS respectively).  Compressive strength testing by Li and 

Zhao (Li and Zhao, 2003) found that a concrete made with 60% cement and 40% fly ash had 1 day 

strength 46% less than for the control 100% cement concrete mix.  However, measured 1 day 

strength of an equivalent mix with 60% cement, 25% fly ash and 15% GGBS was only 13% less than 

the control.   The enhanced early age strength when GGBS is included was attributed to a number of 

factors; GGBS reacts with hydrated lime from cement forming a secondary calcium silicate 

compound, which (along with ettringite and hydrated lime) precipitate around fly ash particles and 

increase the hydration rate of ash.  Also, when GGBS hydrates, it provides OH- ions and alkalis to the 

pore fluid which break down the glassy phase of fly ash. 

Cement Kiln Dust (CKD) is a by-product of the cement manufacture industry that is of similar 

composition to cement but typically contains higher proportions of alkalis and sulphates.  Its high 

alkalinity makes it suitable for activation of fly ash and GGBS with a view to enhancing early age 

reactivity.  However, Kunal et al (Kunal et al., 2012) highlight that CKD is highly variable and its 

properties are influenced by properties of raw materials, fuel used in cement manufacture and kiln 

type so this should be considered when using in such applications. 

Although a reasonable amount of literature is available on CKD – GGBS systems, literature on use of 

CKD to activate fly ash is quite scarce.  Babaian et al (Babaian. et al., 2003) investigated the reactivity 

of CKD – fly ash systems but the main emphasis of this investigation was the effect of grinding so no 

meaningful conclusions can be drawn in relation to unground binder constituents.  Wang et al (2004) 

investigated the effect of curing temperature and NaOH addition on the behaviour of CKD – fly ash 

systems.  They found compressive strengths as low as 2.1 MPa after 28 days for binders of 50% CKD 

and 50% fly ash without using elevated curing temperatures or NaOH addition although the strength 

increased to 10.1 MPa after 56 days.  Maslehuddin et al (Maslehuddin et al., 2010) investigated 

concrete mixes including cement, CKD and other cement replacement materials.  For their concrete 

mix with 70% cement, 20% fly ash and 10% CKD, they measured 3 day compressive strength of 30.3 

MPa (compared with 38.3 MPa for an equivalent mix with 100% cement).  They also tested a mix 

made with 80% GGBS, 15% CKD and only 5% cement and found a moderate 3 day strength of 23.0 
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MPa.  Chaunsali and Peethamparan (Chaunsali and Peethamparan, 2013)examined pastes with 70% 

CKD (from two different sources) and 30% of either fly ash or GGBS cured at an elevated temperature 

of 75 °C.  For both fly ash and GGBS mixes, they observed higher compressive strengths at all ages 

for mixes with the CKD that had the higher free lime and sulphate contents.  They noted that the 

higher free lime content led to greater C-A-S-H gel forming during the pozzolanic reaction and that 

the higher sulphate content and alumina content increased ettringite formation.  They also noted 

that the CKD that led to greater strengths had a smaller particle size throughout the particle size 

distribution range. 

The aim of this investigation is to evaluate the use of CKD in HVFA concretes with particular emphasis 

on early age strength.  Note that assessment of the effect of increased alkalis, sulphates and chlorides 

due to inclusion of CKD on the durability of such concrete mixes is beyond the scope of the current 

study.  The effect of physical and chemical properties of both the fly ash and CKD from two different 

sources is assessed and the effect of use of moderate amounts of GGBS within the blend is evaluated. 

 

2. Experimental work 

2.1. Binder materials 

All binders within this investigation were made up of CEM I 52.5 (referred to as CEM throughout this 

report), fly ash, CKD and in some mixes, GGBS.  Two batches of fly ash from different sources and two 

batches of CKD from the same source were collected for use in this study to establish the effect of 

binder material variation on resulting concrete properties.  Figure 1 shows Particle Size Distribution 

(PSD) plots for all raw binder materials determined using a Malvern Mastersizer 2000 with an MU 

sampler.  Median particle size from PSD results, Blaine fineness and density in accordance with BS EN 

196-6 and where relevant, standard consistence in accordance with BS EN 196-3 and activity index 

as defined by BS EN 450 were established and are presented in Table 1.  Scanning Electron 

Microscopy (SEM) images of both batches of fly ash and CKD taken by a JOEL 6060LV Scanning 

Electron Microscope are shown in Figures 2 and 3 respectively so that the particle morphology can 

be compared between batches.  The chemical composition of the raw binder materials was 

determined using X-Ray Fluorescence (XRF) carried out using a PAN analytical Axios Advanced XRF 

spectrometer and the resulting oxide proportions are given in Table 2.  The mineralogical 

composition of the binder materials was determined by X-Ray Diffraction (XRD) using a Bruker D8 

Advance with DaVinci and results are shown in Figure 4. 
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Figure 1: Particle size distribution plots of raw binder materials 

 

Table 1: Physical properties of raw binder materials 

 CEM FA 1 FA 2 CKD 1 CKD 2 GGBS 

D50 

(µm) 
13.5 17.1 9.0 28.4 22.8 9.8 

SSA (Blaine) 

(cm2/g) 
3493 4505 4092 1992 2489 4567 

Density 

(g/cm3) 
3.205 2.096 2.220 2.871 2.734 2.750 

Standard 

Consistency 
29% 34% 25% 64% 49% - 

Activity 

Index 
- 95% 106% - - - 
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(a)                                                                           (b) 

Figure 2: SEM images of (a) FA 1 and (b) FA 2 at different magnifications 
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                                       (a)                                                                               (b) 

Figure 3: SEM images of (a) CKD 1 and (b) CKD 2 at different magnifications 

Table 2: Oxide proportions (%) of raw binder materials 

 CEM FA 1 FA 2 CKD 1 CKD 2 GGBS 

SiO2 19.60 52.10 51.20 14.00 15.40 54.70 

Al2O3 4.71 19.60 24.34 3.92 3.80 40.87 

Fe2O3 3.25 7.10 10.17 2.27 2.55 0.80 

CaO 64.00 4.40 2.79 56.80 54.10 0.02 

MgO 1.17 2.00 1.46 0.94 0.97 0.24 

Na2O 0.27 1.06 1.28 0.44 0.56 0.20 

K2O 0.73 1.93 2.57 4.94 4.90 1.95 

SO3 2.94 0.54 0.26 4.96 3.84 0.00 

TiO2 0.26 0.87 1.01 0.22 0.23 0.02 

LOI 3.22 9.50 4.30 10.20 13.20 0.94 
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Figure 4: Powder XRD of raw binder materials (Q- quartz, C-calcite, L-lime, S-sylvite, H-hatrurite, P-

portlandite, A- anhydrite) 

 

2.2. Mix proportioning 

A total of 15 concrete mixes were cast using various combinations of the binder materials as detailed 

in Table 3.  Apart from the control mix (100C) that contained cement only within the binder, all other 

mixes contained 30% cement and the mix code describes the remaining binder constituents.  The 

code for the other constituents should be interpreted as follows: A1 / A2 represents fly ash 1 / 2, KD1 

/ KD2 represents cement kiln dust 1 / 2 and S represents ground granulated blast-furnace slag.  The 

number before each constituent represents the percentage of that constituent relative to the total 

binder content. 

Apart from binder material proportioning, all other constituents were kept constant throughout the 

test programme.  The total binder content was maintained at 580 kg/m3 and the water : binder ratio 

was 0.25 throughout.  Several researchers have used similarly high binder contents and low water : 

binder ratios when developing HVFA concrete (Poon et al., 2000, Yazıcı, 2008).  Fosroc Auracast 200 

polycarboxylate based superplasticiser was added at a dosage of 1 lit / 100 kg binder to all mixes.  
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River gravel with a notional maximum size of 10 mm was used as the coarse aggregate and sharp 

sand with a notional maximum size of 5 mm was used as the fine aggregate.  60% of the coarse 

aggregate and 40% of the fine aggregate was used throughout and the particle size distribution plot 

of this aggregate proportioning is shown in Figure 5.  A number of trial mixes were initially prepared 

to finalise the water content, superplasticiser content and aggregate proportioning to achieve a 

target slump of between 120 mm – 150 mm for the control concrete mix.  

Table 3: Binder constituents of concrete mixes 

 

 

 

 

 

 

Mix code CEM 

kg/m3 

FA 1 

(kg/m3) 

FA 2 

(kg/m3) 

CKD 1 

(kg/m3) 

CKD 2 

(kg/m3) 

GGBS 

(kg/m3) 

100C 580 - - - - - 

70A1 174 406 - - - - 

65A1-5KD1 174 377 - 29  - - 

60A1-10KD1 174  348 - 58  - - 

55A1-15KD1 174  319 - 87  - - 

60A1-10KD2 174 348 - - 58  - 

55A1-15KD2 174  319  - - 87  - 

55A1-15S 174  319  - - - 87  

50A1-5KD1-15S 174  290  - 29  - 87  

45A1-10KD1-15S 174  261  - 58  - 87  

45A1-6.5KD1-18.5S 174  261 - 37.7  - 107.3  

70A2 174  - 406  - - - 

60A2-10KD2 174  - 348  - 58  - 

55A2-15KD2 174  - 319  - 87  - 

45A2-6.5KD1-18.5S 174  - 261  37.7  - 107.3  
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Figure 5:  Particle size distribution of coarse aggregate (CA), fine aggregate (FA) and 60% coarse and 40% 

fine aggregate (combined) 

 

2.3. Experimental procedure 

All mixes were prepared in a pan concrete mixer and the dry constituents were mixed first.  The 

superplasticiser was diluted with some of the mixing water as per the manufacturer’s specifications 

and added to the mixer, followed by the remaining water.  Once mixed, nine 100 mm cubes were 

cast in accordance with BS EN 12390-2:2009 using a vibrating table compaction mode.  Samples 

within moulds were covered with polythene to reduce moisture loss and hardened samples were 

demoulded after 24 hours.  Cube samples were then cured under water at 20°C until required for 

compressive strength testing in accordance with BS EN 12390-3:2009 after 2 days, 7 days and 28 days 

after casting.  All compressive strength results presented are the average of three samples. 

  

3. Results and Discussion 

3.1. Effect of CKD content 

Figures 6 and 7 show graphs of compressive strengths for mixes that contain varying amounts of CKD 

with fly ash 1 and 2 respectively.  Compressive strengths of mixes containing 100% cement are also 

included in Figures 6 and 7 for reference.  However, it is acknowledged that a cement content of 580 

kg/m3 produces a high strength concrete whereas the aim of the HVFA concrete mixes is to achieve 

the compressive strength of a structural concrete grade with moderate early age strength. 
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For fly ash 1, contents of 0%, 5%, 10%, and 15% CKD 1 were tested and both 2 day and 7 day strength 

generally increased with CKD content (although there was little difference in the early age strength 

of mixes with 5% and 10% CKD).  The highest 28 day strength for the same mixes was achieved by 

the mix containing 10% CKD.  For fly ash 2, contents of 0%, 10%, and 15% CKD 2 were tested and the 

highest strength at all ages was achieved by the mix containing 10% CKD with the most significant 

difference in strength between mixes at 28 days.  Replacing 10% of the fly ash within the binder with 

CKD caused an increase in 28 day strength of 28.2% and 20.8% for fly ash 1 and 2 respectively (relative 

to the strength of the mixes containing 70% fly ash and 30% cement).  Results here show that 

inclusion of more than 10% CKD begins to have a negative effect on compressive strength, particularly 

at 28 days. 

Table 2 shows that both batches of CKD have appreciably higher alkali contents than the cement used 

(Na2O equivalents of 3.69 for CKD 1 and 3.78 for CKD 2 compared to 0.75 for cement).  Increased 

alkalinity of the blend due to incorporation of CKD accelerates the dissolution of the glassy phase of 

fly ash.  Also, high sulphate contents of the CKD’s increase stable ettringite formation when used with 

fly ash (Wang et al., 2004).  These effects have contributed to observed increases in strength. 

 

 

Figure 6: Compressive strengths of fly ash 1 mixes with varying amounts of CKD 1 
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Figure 7: Compressive strengths of fly ash 2 mixes with varying amounts of CKD 2 

 

3.2. Effect of inclusion of GGBS 

Figure 8 shows compressive strengths of fly ash 1 mixes that include varying amounts of GGBS and in 

some cases, CKD 1.  Firstly, it is noted that replacing 15% of the fly ash content with GGBS (without 

inclusion of CKD) caused increases in strength at all ages.  This correlates with the findings of Zhu et 

al (Zhu et al., 2012) and Li and Zhao (Li and Zhao, 2003) that replacing moderate amounts of fly ash 

with GGBS within the binder enhances strength gain.  For quaternary blends that include CKD, 

increases in compressive strength at all ages were observed.  2 day strengths of quaternary blends 

were impressive (all in excess of 16 N/mm2) and 28 day strengths were on a par with that for the 

100% cement mix. 

Inclusion of CKD increases the reactivity of the GGBS as well as the fly ash within the blend.  Chaunsali 

and Peethamparan (Chaunsali and Peethamparan, 2013) investigated the hydration process of CKD 

– fly ash binders and found that crystalline hydration products after 1 day were ettringite, calcium 

hydroxide and gypsum.  The same phases were also observed after 1 day in an earlier study on CKD 

– GGBS binders (Chaunsali and Peethamparan, 2011).  In these studies, ettringite formation was 

identified as contributing significantly to strength development, particularly at early age. 
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Figure 8: Compressive strengths of fly ash 1 mixes containing GGBS 
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(relative to fly ash 1) are also notable from Figure 4.  The presence of increased pozzolanically active 

amorphous phases in fly ash 2 was thought to be dominant in this reduction in crystal phases (Jones 

et al., 2006, Sadique et al., 2012). 

Figure 10 shows compressive strength results for pairs of concrete mixes from the experimental 

programme where the only difference between a mix pair is the fly ash used.  Comparison of strength 

results within a mix pair can highlight the interaction of both fly ashes with cement only, with cement 

and CKD 2 and with a combination of cement, CKD 1 and GGBS.  Generally, fly ash 2 mixes were 

stronger than the corresponding fly ash 1 mixes at all ages (with the 28 day strength of mix 45A1-

6.5KD1-18.5S being the exception).  The higher proportion of amorphous phases relative to 

crystalline phases in fly ash 2 is thought to be the main contributory factor to observed higher 

compressive strengths for fly ash 2 mixes.  However, the finer particle size and lower water demand 

(which would enable better concrete compaction for a fixed water content) would have also 

contributed to the superior performance of fly ash 2 mixes. 

Use of CKD 2 with fly ash 1 appeared to have a negative effect on strength (relative to the 70% fly ash 

1 and 30% cement mix).  However, blending CKD 2 with fly ash 2 caused an appreciable increase in 

compressive strength at all ages.  Figure 11 shows the difference in appearance of concrete cubes 

cast with both ashes blended with 10% CKD 2.  Crystalline efflorescence is apparent on the surface 

of the 60A1-10KD2 cube which may have adversely affected compressive strength.  Upon contact 

with water, ionic species from alkali sulphates (K+, Na+ and SO4
2-) within CKD dissolute in the liquid 

phase due to high solubility and form hydrates.  A high ratio of SO4
2- to available Al(OH)4 from the 

aluminate phase favours the formation of ettringite (AFt) (Taylor, 1997). The lower ionic bond 

between aluminate phase and alkali sulphates was thought to be responsible for dissolution of alkali 

salts and the observed efflorescence on the cube surfaces.  The higher visual porosity and surface 

fragmentation caused by the higher water demand of fly ash 1 would have also significantly reduced 

compressive strength. 

 



15 
 

 

Figure 9: Difference of colour between fly ash 1 and fly ash 2 

 

 

Figure 10: Compressive strengths of selected fly ash 1 mixes and corresponding fly ash 2 mixes 
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Figure 11: Difference of appearance of fly ash 1 and fly ash 2 cubes activated with CKD 2 

 

3.4. Effect of CKD variability 

Particle size distribution plots in Figure 1 show that CKD 2 is finer than CKD 1 throughout the particle 

size range.  This is supported by the Blaine fineness results from Table 1 and also SEM images from 

Figure 3.  Table 1 also shows that CKD 1 had a significantly higher water demand than CKD 2. 

When comparing the oxide concentrations for CKD 1 and CKD 2, the main differences are the higher 

CaO and SO3 concentrations and lower LOI content of CKD 1, Table 2.  However, the reduced crystal 

peaks of CKD 2 relative to CKD 1 would suggest that CKD 2 is likely to be more reactive, Figure 4.  In 

both CKD’s, major phases of lime (CaO), portlandite (Ca(OH)2), quartz (SiO2), anhydrite (CaSO4) and 

sylvite (KCl) are present. 

Figure 12 shows compressive strength results for fly ash 1 concrete mixes activated with CKD 1 and 

corresponding mixes activated with CKD 2.  The low strengths of mixes that combine fly ash 1 with 

CKD 2 are discussed in section 3.3.  Significantly higher strengths were observed when fly ash 1 was 

blended with CKD 1.  Chaunsali and Peethamparan (2013) identified higher free lime content and 

higher sulphate content of CKD improves strength development when blended with fly ash or GGBS.  

They found that more ettringite formed when the CKD with higher sulphate and alumina contents 

was used and that higher free lime contents of CKD increased the development of C-A-S-H gel.  In this 

investigation, the higher sulphate content of CKD 1 would have contributed to observed higher 

compressive strengths.  However, the physical properties of CKD 1 (coarser particle size and higher 

60A2-10KD2 60A1-10KD2 
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water demand) contradict the expected influence on compressive strength.  As CKD is a highly 

variable material (Kunal et al., 2012), further research on the effect of a broader range of physical 

and chemical properties of CKD on the strength development and long-term performance of HVFA 

concrete relating to any possible adverse effects of high amount of alkalis and sulphates is required. 

The further investigation of hydrates using SEM, XRD and TGA will also provide definitive 

understanding of future performance of HVFA concrete. 

 

 

Figure 12: Compressive strengths of selected fly ash 1 mixes with corresponding amounts of CKD 1 

and CKD 2 

 

4. Conclusion 

From the results of the current investigation, the following conclusions can be drawn: 

1. When considering ternary blends of cement, fly ash and CKD, 10% of CKD blended with 60% 

fly ash and 30% cement appeared to be a favourable binder proportioning in developing both 

early age and 28 day compressive strength. 

2. Notably high strengths were observed at all ages for quaternary blends that include 15% - 

18.5% GGBS and enhanced strength gains are primarily attributed to ettringite formation. 

3. Of the two ashes tested, the finer ash of lower water demand led to greater concrete 

strengths.  The lower LOI content and higher proportion of amorphous phases of this ash also 

contributed to increased strengths. 
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4. Of the two CKD’s tested, the CKD of higher CaO and SO3 content resulted in increased 

activation of fly ash.  However, as CKD is a highly variable material, further investigation of a 

broader range of physical and chemical properties of CKD’s in association with XRD and TGA 

analysis of hydrates at different ages is suggested. Analysing any possible adverse effects of 

high amount of alkalis and sulphates on long-term performance of this HFVA concrete also 

suggested. 
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