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ABSTRACT

The East Asian summer monsoon (EASM) is important for bringing rainfall

to large areas of China. Historically, variations in the EASM have had major

impacts including flooding and drought. We present an analysis of the impact

of anthropogenic climate change on EASM rainfall in Eastern China using a

newly updated attribution system. Our results suggest that anthropogenic cli-

mate change has led to an overall decrease in total monsoon rainfall over the

past 65 years, and an increased number of dry days. However the model also

predicts that anthropogenic forcings have caused the most extreme heavy rain-

fall events to become shorter in duration and more intense. With the potential

for future changes in aerosol and greenhouse gas emissions, historical trends

in monsoon rainfall may not be indicative of future changes, although extreme

rainfall is projected to increase over East Asia with continued warming in the

region.
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1. Introduction19

The East Asian summer monsoon (EASM) brings much needed water for agriculture to most20

of Eastern China. In recent decades southern provinces of China have experienced an increased21

frequency of severe flooding during the monsoon season. In contrast northern provinces of China22

have experienced an increase in severe summer droughts (for details of the northern drought /23

southern flood pattern see, for example, Qian and Zhou (2014), also see FloodList Copernicus24

project for examples, http://floodlist.com/tag/china). Understanding changes in past and future25

monsoon rainfall patterns can have important implications for water management and urban plan-26

ning.27

The Clausius-Clapeyron relation states that the atmosphere can hold 7% more moisture per28

degree of warming. Basic physical expectations are that a warmer world should experience in-29

creased amounts of rainfall. A simple interpretation of the Clausius-Clapeyron relation is that30

the total quantity of rainfall should increase by 7% per degree of warming globally. However,31

in reality different surfaces heat at different rates, and in the case of anthropogenically induced32

global warming, greenhouse gases do not cause the atmosphere to be heated equally at all levels.33

Additionally, the emission of aerosols can change cloud formation properties, alter the locations34

of cloud nucleation sites, and cause localised cooling. Changes in chemistry and thermodynamics35

mean that increases in temperature may not necessarily lead to a uniform increase in precipitation36

in all locations or at all intensities of rainfall.37

Heating of the lower troposphere as a consequence of increased concentrations of well mixed38

greenhouses gases (GHGs) leads to an increase in the height of the tropopause. GCM-based studies39

have argued that warming will cause increases in cloud height and stronger convection as a result40

(see Fowler and Hennessy 1995; Mitchell and Ingram 1992; Trenbeth et al. 2003). Other studies41
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have argued that surface warming leads to decreases in convective mass fluxes with the heating of42

the upper troposphere. It is instead argued that increases in horizontal transport due to an enhanced43

pattern of evaporation minus precipitation will cause increased convergence (e.g. Held and Soden44

2006). With an increased moisture content of the air, stronger convection or convergence will lead45

to more severe storms with higher hourly and total rainfall (Fowler and Hennessy 1995; Trenbeth46

et al. 2003; Held and Soden 2006).47

Several studies of global rainfall trends have found that global annual mean and total precip-48

itation has increased by 1–3% per degree of warming (e.g., Allen and Ingram 2002; Wu et al.49

2013; Donat et al. 2016). At the same time extreme rainfall, defined by upper decile daily total or50

Rx1day, has increased by 6–7% per degree of warming (e.g., Trenbeth et al. 2003; Westra et al.51

2013). The increase in extreme heavy rain is often found to be at the expense of light rain, with52

studies finding a decrease in the number of light rain days, or total rain from light rain events,53

coinciding with increased totals or frequency of heavy rain (e.g., Trenbeth et al. 2003; Ban et al.54

2015; Allen and Ingram 2002).55

Regional changes in rainfall totals and a changing distribution of rainfall between light and56

heavy events are also observed. In the current study we focus our attention on China. The annual57

rainfall climatology of China can be broadly split into two halves, a cold, dry winter monsoon58

from October to March, and a warm, wet summer monsoon from April to September. During the59

winter monsoon continental cold, dry air flows southwards from high latitudes, bringing a cold,60

dry winter. During the summer monsoon, warm moist air flows from the ocean to the south of61

China and converges with the cool dry air to the north. The convergence causes the formation of62

a rain band over the Indochina peninsula in China, and as the summer season progresses the rain63

band moves steadily northwards over Eastern China (and is known as the Meiyu), eventually as64

far north as Japan (where it is referred to as the Baiyu) and Korea (where it is referred to as the65
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Changma). Towards the end of the summer the rain band then retreats southwards (for a summary66

of the characteristics of the East Asian summer monsoon see Yihui and Chan 2005; Hsu et al.67

2014; Xue et al. 2015).68

As mentioned above, in recent years Southern China has seen more frequent incidents of flood-69

ing and Northern China has seen more frequent severe droughts during the monsoon season when70

compared to historical monsoon seasons. Changes in monsoon total rain, and changes in circu-71

lation patterns which dictate the most northern extent of the Meiyu front each year have been72

correlated with modes of natural variability, such as the Pacific Decadal Oscillation (PDO) (Zhu73

et al. 2011; Qian and Zhou 2014; Qian et al. 2014). Several studies have also noted changes in74

total summer rain which coincide with the increasing trend in global temperature (Liu et al. 2005;75

Zhai et al. 2004; Su et al. 2006; Fu et al. 2008), and some studies suggest links with local emis-76

sions of anthropogenic aerosols (e.g. Qian et al. 2009; Fu and Dan 2013; Deng and Xu 2015).77

Many studies also note a change in character of summer rainfall in Eastern China, with increases78

in numbers of heavy rain days and decreases in numbers of light rain days reported (Zhai et al.79

2004; Liu et al. 2005; Fu and Dan 2013; Fu et al. 2008).80

In this study we examine changes in the East Asian Summer Monsoon (EASM) rainfall over81

China using an ensemble of simulations from an atmosphere-only climate model representing82

present-day conditions with anthropogenic influences, and comparing these to an ensemble rep-83

resenting conditions without anthropogenic influences. We compare characteristics of light and84

heavy rain during the monsoon in model experiments with and without climate change and com-85

pare our results with those of previous observational studies.86
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2. Data87

We use a model ensemble from HadGEM3-A-N216, run in the atmosphere-only mode with88

prescribed historical sea surface temperatures (SSTs) from HadISST1 (Rayner et al. 2003). The89

resolution is approximately 0.5 x 0.8 degrees, equivalent to ∼50 km at the latitude range covered90

by China. The ensemble contains 15 members which include both anthropogenic and natural forc-91

ings (denoted ALL) from 1960-2015. This is compared with an ensemble of 15 runs of the same92

model which contain only natural forcings (denoted NAT), in which the SSTs have been adjusted93

to remove anthropogenic warming. This anthropogenic warming is calculated from the difference94

between the mean patterns derived from ALL and NAT simulations in 19 model ensembles from95

CMIP5 (Taylor et al. 2012). This pattern of SSTs is subtracted off the SSTs for the ALL experi-96

ment to provide the SSTs used in the NAT experiment. We also adjust the sea-ice concentration97

for the NAT experiment using simple empirical relationships between SSTs and sea-ice concen-98

trations. These methods and full details on model experiment setups are described in Christidis99

et al. (2013) and Ciavarella et al (2017, in prep).100

To verify the model output we use the APHRODITE observational gridded daily precipitation101

dataset for East Asia (Yatagai et al. 2012). This dataset runs from 1960-2007, and is gridded to102

approximately the same resolution as the model (0.5x0.5 degrees). Han and Zhou (2012) compare103

the APHRODITE dataset to daily rainfall records from 559 rain gauges spread over China. They104

find that the APHRODITE data shows very similar rainfall amounts for mean variables, such as105

seasonal total, and accurately characterises the progression of the seasonal rain band. However106

they find that the gridding of spatialy sparse station data in APHRODITE leads to underestimates107

of precipitation intensity and overestimates of precipitation frequency compared to the station data.108

They show that annual mean heavy rainfall totals are underestimated and light to moderate rainfall109
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totals are overestimated in the gridded data. A large difference is also found between the station110

and APHRODITE data for spatial patterns of trends in intense rainfall, and that the APHRODITE111

data underestimate trends in the recent northern drought / southern flood pattern compared to112

station data. With these limitations in mind, we use the APHRODITE data for model verification113

of seasonal rainfall characteristics, and focus on the model output for examining trends in rainfall114

and changes in extreme rainfall characteristics.115

For consistent comparison, we regrid both the observations and model to an identical 1x1 degree116

grid, taking daily area means over the cells within the 1x1 degree grid. A map of the mean and117

maximum numbers of stations per grid cell for APHRODITE between 1960 and 2007 is shown in118

the top row of Figure 1. As is clear in the figure, in Western China station coverage is spatially119

very sparse. Additionally, being a desert, the monsoon does not reach this region, so we exclude120

Western China from our analysis.121

3. Model evaluation and climatology122

For this study we define the monsoon season to be from the beginning of April to the end of123

August. Figure 2 shows the climatological rainfall, averaged over 1960-2000, for the monsoon124

season from 5-day total rainfall for 4 time slices throughout the monsoon season. Being a multi-125

decadal average the detailed features of the monsoon do not appear very strongly due to their126

spatial variation between years. However some indication of the general location of the Meiyu127

front can be seen in both observations and model. The model reproduces fairly well the spatial128

location of the observed rainfall and the progression of the locations of high and low rainfall129

throughout the monsoon season. However the model consistently overestimates the total rainfall.130

When normalised to the observations (dividing out by the East China area-mean ratio of observed131

7



total to model total, right hand column in Figure 2) the model appears qualitatively similar to the132

observed rainfall patterns.133

Figure 2 also shows the climatological (1960–2000) mean total seasonal rainfall and climato-134

logical seasonal maximum daily rainfall. As is again clear in this figure, the model reproduces135

quite well the spatial patterns of rainfall but tends to over-predict rainfall totals. When normal-136

ized the model mean appears qualitatively similar spatially to the observations. We use the raw137

(non-normalized) model output for the rest of our evaluation and for our analysis of the monsoon.138

We group areas of China into climatologically similar regions, indicated in Figure 1. We exclude139

regions with very low numbers of observation stations. These regions also tend to be in the desert140

parts of China and therefore receive very little rainfall annually and are not climatologically subject141

to rainfall as a result of the monsoon.142

The bottom rows of Figure 1 show the intensity distribution of daily precipitation total for all143

years between 1960-2000. This figure indicates how much daily total rainfall contributes to the144

total monsoon seasonal rain. For the central 4 regions the model reproduces the shape of the145

distribution well. However for all the regions the model peak of the distribution of daily rainfall146

contribution is at a somewhat larger value than is observed, and shows a fatter tail at the high daily147

total end of the distribution. However, as previously noted, the APHRODITE gridded data may148

underestimate the heavier end of the daily precipitation distribution. This could lead to a skewing149

to the lighter end of daily precipitation in the observations. Alternatively it could be that the model150

systematically overestimates daily rainfall in Eastern China during the monsoon season.151

Figure 3 shows the 1960-2000 climatology of 5-day consecutive (non-overlapping) total rain152

throughout the monsoon season for the regions shown in Figure 1. As in earlier figures, the model153

reproduces the spatial patterns and timing of the monsoon rainfall fairly well but overestimates the154

total rainfall. For three northern regions the model spread encompasses the observed totals. For155
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SEC the model spread and mean are close to the observed values but generally for the southern156

regions the mean 5-day totals are greater than observed.157

The reported under-estimation of extreme rainfall in APHRODITE (Han and Zhou 2012) may158

contribute to the discrepancy between observations and models. We also examine this claim using159

a small number of publicly available station data for China, which have undergone basic quality160

control. In Figure 4 we show the same as Figure 3 but for one station per region for 6 of 7 regions,161

compared with grid cells containing the station location in the model and APHRODITE data -162

station locations are indicated in the figure. Whilst the station is a point source, and the gridded163

data is a representation of a larger area this comparison gives a reasonable idea of how well the164

model and gridded observations perform. In Figure 4 it is generally clear that the station data 5-day165

rainfall totals are slightly higher than the APHRODITE data. As noted in Han and Zhou (2012),166

in Figure 4 the APHRODITE data shows notably lower total rain for heavy rainfall days than is167

recorded in the station data. This figure shows the model data to be more similar to the station168

data than the APHRODITE data. This comparison provides some crude measure of observational169

uncertainty. While the station data is a point source, estimates of 5 day total rainfall may be less170

biased than the larger grid box average from APHRODITE.171

When compared to APHRODITE our model reproduces the main features of the monsoon fairly172

accurately. Comparison with data from a few stations shows that the model also reproduces ex-173

treme rainfall. Although the model seems to generally overestimate rainfall totals compared to the174

observations, the offset between the two is fairly consistent, so for examining trends in monsoon175

rainfall the model should be adaquate.176

It is interesting to note that the model used here can reproduce the main features of the EASM,177

including the Meiyu front and its progression. This has been challenging for models in the past178

including many CMIP5 generation models. The improved resolution of models from N96 (as used179
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by most CMIP5 models) to N216 (as used by our model) has been shown to produce more realistsic180

precipitation globally (Demory et al. 2014) and regionally (Schiemann et al. 2014; Vellinga et al.181

2016), and more realistic monsoon systems (Johnson et al. 2016). Our model uses prescribed182

SSTs and sea ice coverage, one advantage of which being that it will capture many ongoing large-183

scale modes of natural variability, such as El Nino. This and the ‘correct’ forcing from sea surface184

temperature will allow a more accurate monsoon to be produced for a specific year than a coupled185

model. The physical realism of our model make it a suitable tool for studying changes in the186

characteristics of the EASM.187

4. Analysis of trends in monsoon rainfall188

We calculate anomalies with respect to the 1960-1979 mean value for the each of ALL and189

NAT and observations to illustrate trends in monsoon rainfall. Anomalies are only calculated for190

illustrative purposes, and do not inform the results shown below. We choose this baseline which191

is shorter than the more commonly used 1961-1990 baseline, in order that the reader might see192

changes in the metrics examined by eye.193

The time series in Figure 5 shows the seasonal total monsoon rain anomaly for the SEC region,194

and we use SEC as an example for the rest of the results presented. No clear trend is seen for the195

time series of the seasonal total monsoon rain and the interannual variability is large for all of the196

regions indicated in Fig 1. There is no clear difference between the ensemble means of the ALL197

and NAT forcings experiments for most of the timeseries, however there is a difference between198

the two for the most recent 5 years (2010-2015). The time series of mean daily total rainfall also199

shows no trend and large variability (not shown), and similarly variable time series, with lack of200

clear trends, are found for mean 5-day total rain, and maximum 5-day total rain. Since the time201

series data is very noisy, and trends are likely to be well within the internal variability, we focus202
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on the differences between the distributions of the ALL and NAT ensembles for the most recent203

15 years when presenting quantitative results.204

Figure 5 also shows the total number of dry days in the monsoon season (rainfall total less than205

1mm/day). For all regions the ALL forcings ensemble mean shows an increased number of dry206

days compared to the NAT ensemble mean, and the difference between the two ensembles appears207

greatest in more recent years suggesting an increasing trend in dry days in the ALL model. The208

variability of the model and the observations are again quite large and trends (if present) are not209

very clear. Given that the monsoon total rain shows no clear change, an increase in the number of210

dry days during the monsoon could imply an increase in rainfall total per day on wet days.211

Previous studies have noted changes in observed rainfall when the season is divided up into212

deciles of daily total rain (e.g. Liu et al. 2005; Fu and Dan 2013; Fu et al. 2008). For our model213

ensemble we divide all the wet days (total rain≥ 1 mm/day) in the monsoon season into deciles of214

daily total rain - where each decile contains 10% of the total seasonal rainfall. We define the decile215

bin edges using all the members of the NAT ensemble between 1960-2015. The upper and lower216

limits for each bin are then applied to the ALL forcings ensemble. Figure 6 shows the change217

in total rain in each decile for the last 20 years of data with respect to the 1960-1979 baseline218

climatology. Some regions show changes in the distribution of rainfall totals between deciles for219

the ALL ensemble mean. For the southern regions a clear increase can be seen in the lowest decile220

(bottom 10 % daily total rain), and at the same time a decrease in the total rain in the upper deciles221

for the ALL ensemble with respect to the NAT ensemble (see Fig 6). A decrease in rainfall from222

upper decile days and an increase in rainfall from lower decile days is the opposite of what is223

generally reported in the literature (e.g. Liu et al. 2005; Ma et al. 2017), however the literature224

reports results for observations which end in 2000-2006.225
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We also analyse the distribution (PDF) of daily totals (and numbers of days) within the 1st and226

10th deciles (ie, the top and bottom 10% daily total rainfall). For the 10th decile, comparing227

the ALL and NAT forcings experiments, the ALL ensemble has lower total rainfall and a lower228

number of days of rain, however the PDF (Fig 6) also shows a fatter tail at high values of mean229

rainfall per day. So even though the total rainfall in the 10th decile is less in the ALL ensemble230

than the NAT ensemble, the total rain in individual days is shifted to higher values (see Fig 6). We231

discuss this further below.232

In reality rain falls during storms, which may last several days. We divide the monsoon season233

up into storms, or events, of n-days in duration. An event is defined as a number of consecutive234

days where each day has total rainfall greater than 1 mm. The duration of an event is n days, the235

total rain which falls during an event is n day tot, and the mean rainfall per day during an event236

is intens (see Burke et al. 2016). We divide up the monsoon into events for each grid cell.237

In a time series of mean and maximum annual n days, n day tot and intens (not shown) there is238

no clear trend, no clear separation between ALL and NAT ensemble means and large variability.239

As illustrated above, changes in monsoon rainfall are more pronounced at the extreme light and240

heavy ends. In our previous paper (Burke et al. 2016) we found that for rainfall events in May 2015241

with high n day tot, intens increases and n days decreases in the ALL forcings ensemble compared242

to NAT. We examine the changes in n days and intens for the 95th percentile n day tot, where the243

95th percentile is defined from the NAT ensemble for events between 1960-1979. Figure 7 shows244

the time series (percent anomaly) of n days and intens for events in the 95th percentile of n day tot245

- both figures show 5 year means in order to show the signal more clearly without so much natural246

variability. In this figure a trend can be seen for increased intens and decreased n days with time,247

and a shift in the spread of the ALL ensemble in the same direction.248
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We remind the reader that our chosen threshold for a wet or rainy day is 1 mm/day. Given that249

this threshold for a rainy day is set relatively low, this will inevitably lead to us recording long250

duration events using our n days method. The most extreme consequence of this being that our251

rainfall events can last weeks; a continuous rainfall event of this magnitude would probably be252

unphysical in reality. Given the temporal resolution of data available to us we are not able to253

examine the ‘real’ duration of individual rain storms. However, the number of consecutive days of254

rain is an interesting metric with regards to flooding. The change in number of consecutive days255

of rain and the total rainfall in those days is also informative as to how the nature of rainfall during256

the monsoon season is changing as a result of anthropogenic forcings. As the EASM season257

progresses, the rain band (Meiyu front) moves northwards across East China and later retreats258

southwards again (as described in the introduction). As such most regions of East China will259

experience multiple wet and dry spells throughout the season. Our n days method allows us to see260

how anthropogenic forcings change in the progression and duration of the wet and dry spells.261

5. Change in likelihoods of extreme rainfall due to anthropogenic climate change262

We examine change in likelihood of the metrics for which we can see differences between the263

ALL and NAT experiment output described above using the most recent 20 years of model data264

(1996-2015). The change in probability, ∆P (sometimes refered to as ‘risk ratio’ in the literature),265

is given by ∆P = P(ALL)/P(NAT), where P(ALL) and P(NAT) are the probability of a metric ex-266

ceeding a given threshold in the ALL and NAT ensembles respectively. For each metric presented267

we define a threshold based on the NAT ensemble - these thresholds are the mean, 10th percentile268

or 90th percentile of the NAT ensemble depending on the metric examined. As such P(NAT) will269

be equal to 0.5 where we define our threshold to be the mean of NAT (etc).270
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P(ALL) is calculated by fitting a probability distribution function to the histogram of the variable271

considered, and taking the area under the curve above (or below) the threshold defined by NAT.272

This is illustrated in the PDF plots in Figures 5–7. We fit a gamma distribution to the normalized273

histogram for the variable considered, (as illustrated in the figures) using a maximum-likelihood274

estimation fitting routine (gamma.fit - freely available in scipy.stats). There are a minimum of275

300 data points in each fitted histogram (15 members x 20 years x points per year for metric276

in question), so there is sufficient data for a reliable fit - by eye the curves appear to fit well.277

We test the goodness of fit by calculating ∆P from the area under each histogram before fitting,278

and compare with the value of ∆P from the fits to the histograms. We find the values of ∆P279

from the histogram to be the same as those from the gamma fit to within 2% (ie ∆P(gamma fit)/280

∆P(histogram)=1.00±0.02, SD=0.05). The results from calculating ∆P with and without fitting281

are close enough that we are confident of the appropriateness of the gamma fit to represent the282

distribution of the data. These values derived with and without fitting are similar enough, and283

enough data is available to sample the distribution of values well, that fitting may not actually be284

necessary for examining extremes in this case.285

The maps in figs 5–7 also indicate which grid cells have ∆P which is significant at the 2σ286

level. The statistical significance of ∆P is determined by bootstrapping the data and fitting the287

resulting histogram with a PDF from which ∆P is calculated. The bootstrap is performed 1000288

times for each grid cell (with replacement). For some of the figures there are a large number of289

grid cells which aren’t significant at 2σ , and at a 1σ level the picture is generally the same but290

with the addition of the grid cells along the coastlines also being significant. However, given the291

contiguous large areas showing similar changes in distribution, a lack of statistical significance in292

individual grid cells may be indicative of the presence of weak trends. We report area mean values293

for ∆P and the change in the mean absolute value (also 10th and 90th percentile for monsoon total294
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rain and number of dry days respectively) for each variable and each region in Table 1. The change295

in mean absolute value is defined as the difference between the mean of the NAT and the mean of296

the ALL ensembles (similarly for the value of 10th and 90th percentiles). As is clear in the table,297

when averaged over larger areas the values of ∆P and the changes in absolute values of variables298

measured are indeed statistically significant in most cases.299

Figure 5 shows ∆P maps for the monsoon total rain and the number of dry days during the300

monsoon. Despite no clear difference between ensemble means and no clear trends being seen in301

the time series, the change in the probability distribution function of monsoon total rain between302

the ALL and NAT forcings ensembles is statistically significant (see also Table 1). Over all of East303

China the seasonal total rain is likely to be less, and the number of dry days during the monsoon304

is likely to be greater in the ALL ensemble compared to the NAT ensemble. The total rainfall305

during the monsoon season is 10–40% (∆P = 1.1–1.67) more likely to be below the NAT ensemble306

average in the ALL ensemble than the NAT ensemble. This is more severe in the south of the307

region of China examined than the north, see figure 5. The area-mean value of total monsoon308

rainfall is found to be 45mm less in the ALL ensemble compare to NAT. The decrease in mean309

annual rainfall ranges from tens of mm in northeast China to ∼100 mm or more in southern areas310

(the maximum decrease for an individual grid cell examined is 291mm). The area-average ∆P for311

total monsoon rainfall to be below the 10th percentile defined by NAT is 1.1, and the value of the312

10th percentile seasonal total is decreased by 49mm in the ALL-forcings world compared to the313

NAT-forcings world (East China area average).314

Similarly the likelihood of the number of dry days in the season being above the NAT average is315

∆P=1.4–2 in most of southern and eastern China, with an increase in the mean number of dry days316

of 3.6 days in the ALL ensemble. The area-mean likelihood of the number of dry days exceeding317
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the 90th percentile of the NAT ensemble is ∆P=1.9 in a world with climate change, with the 90th318

percentile number of dry days increased by 3.4 days in the ALL-forcings ensemble.319

Figure 6 shows ∆P maps for bottom 10% and top 10% daily rainfall totals (first and tenth320

deciles), and the mean rainfall per day in the top 10%. On average, there is likely to be more321

rainfall in the first decile and less rainfall in the 10th decile in the ALL ensemble compared to322

NAT. However the rainfall total on individual days in the 10th decile is likely to be greater in the323

ALL-forcings world - whilst this change is not statistically significant for the majority of individ-324

ual grid cells, it is statistically significant when we average over larger areas (see Table 1). The325

strongest results for this are in South East China - for the total rain in the 1st decile being above326

the NAT average ∆P=1.2, and for mean total rain in the tenth decile being below the NAT aver-327

age ∆P=1.25. However the likelihood of rainfall per day in the 10th decile being above the NAT328

mean in this area is ∆P=1.1 in the ALL ensemble. So in this region, anthropogenic forcings may329

be causing shift to more light rain and less heavy rain in the season, but even though heavy rain330

days are more infrequent, the total rainfall per day on heavy rain days is increased. The likelihood331

changes we find for the number of days in each decile are similar in value to those reported above332

for total rain per decile. However the absolute changes in number of days in each decile are of333

the order 0.1-0.5 days increase, or 0.5-1.0 days decrease, for first and tenth deciles respectively. It334

could be argued that over the period of time examined, 1960–2015, this change is small enough to335

not be observable.336

Figure 7 shows ∆P maps for the duration (n days) and intensity (intens) of rainfall events in the337

95th percentile of n day tot. For a NAT-forcings world average 95th percentile n day tot event, in338

an ALL-forcings world the event is 1.3 times (area average) more likely to be shorter in duration,339

and the daily total rain within each day of the event is 1.1 times more likely to be greater. On area-340

average, these events will be 1.8 days shorter, with the decrease in duration being more pronounced341
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in the south than the north (see figure). The mean rain per day in these extreme events is increased342

by 1 mm/day in the ALL ensemble compared to NAT. Thus we have found evidence that the343

intensity of the most extreme rainfall events is expected to increase due to anthropogenic forcings.344

6. Discussion345

Under anthropogenic forcings the model predicts that there is, on average, a decrease in the total346

monsoon rainfall, an increase in the number of dry days, an increase in the total rain which falls in347

the 1st decile of daily totals and a decrease in the total rainfall in the 10th decile of daily total rain.348

This gives a picture of a generally dryer monsoon. However, for extreme heavy rainfall events a349

different picture is given. The results show an increase in total rain per day in the 10th decile of350

daily total rain, and for the 95th percentile of n-day-total rainfall in events as defined above, the351

mean rainfall per day is increased and the number of days over which the rain falls is decreased. So352

whilst the total seasonal rain is generally reduced, and the distribution of daily total rain is shifted353

towards the lighter end, for heavy rain events the rainfall per day is increased and the duration of354

heavy rain events is decreased.355

The statistical significance of the changes reported per grid cell is strong for the general drying356

changes - monsoon total rainfall, number of dry days, increase in 1st decile days, shortening357

in duration of extreme events. The statistical significance per grid cell is weaker for increased358

tenth decile rain per day and increased intensity of heavy rain events. Figures 6 and 7 show359

comparatively few grid cells are significant at 2σ for these metrics compared to the drying metrics360

(at 1σ the coastal grid boxes also appear significant, but otherwise the figures are very similar,361

not shown). However, for regional averages on most metrics the results are statistically significant362

(see Table 1). The heavy rainfall changes are smaller in magnitude compared to the changes for363
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drying metrics for both grid cells and regional means. This suggests that the increase in extremes364

is a smaller effect than the overall drying.365

We have examined changes in the monsoon season, considering all the days from the beginning366

of April to the end of August as being in the season. As illustrated in figure 3, the rainfall within the367

season is very variable between dates and locations. It may be that our examination misses detail368

on shorter timescales and that changes in extremes are more or less pronounced on the monthly369

timescale than that reported for the whole season. We also do not examine changes in the timing370

or spatial extent of the monsoon season.371

We point out that our results are for model data and represent changes in likelihoods between372

model ensembles with and without anthropogenic climate change. As such the results presented373

here are predictions of the changes in monsoon rainfall as a result of anthropogenic forcing, which374

we might expect to see in observations.375

Whilst we have carried out some verification with the observations available to us, we suspect376

that the observations we have for this region are imperfect (as illustrated in figure 4). In order to377

verify the model and results presented here more detailed and up to date observational studies will378

be required. Unlike many CMIP5 generation models which struggle to reproduce extreme rainfall379

observed in reality, the model set-up used is able to produce the extremes of rainfall which are380

observed, and tends to over rather than under predict the extremity and frequency of heavy rainfall381

(however the observed gridded data we compare to may underestimate extreme rainfall).382

Physical basis and comparison with previous studies383

In recent years there have been reports of a southern flood / northern drought pattern during the384

summer monsoon (see introduction). A dryer monsoon season could easily lead to drought, and385

short intense rainfall bursts can lead to flooding. Long duration rainfall is generally needed to386
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alleviate droughts, so short but heavy rainfall events, once over, may allow a drought to persist.387

Examination of the mechanism which would cause extended drought over northern China but388

recurring flooding over southern China is outside of the scope of this study.389

Several previous model-based studies discuss intensifying convection as a result of global warm-390

ing leading to increased heavy rainfall, and depletion of light rain at the expense of this heavy rain391

(e.g. Trenbeth et al. 2003). The proposed mechanisms for this change are that global warming can392

lead to enhanced convection processes, an enhanced water cycle and increased convergence (su-393

per Clausius-Clapeyron). The heavy rainfall as the result of these processes is more extreme than394

in a world without anthropogenic climate change, and the result of intense downpours is that the395

precipitable water column is emptied, inhibiting subsequent light rainfall (Fowler and Hennessy396

1995; Fisher and Knutti 2016; O’Gorman and Schneider 2009). The recent observational work397

of Fisher and Knutti (2016) shows that globally very heavy daily total rainfall events in the 95th398

percentile or greater are notably increasing in frequency and this is reflected in current climate399

models. Generally, recent observational studies of global rainfall trends report a slight increase in400

total rainfall (e.g. Wu et al. 2013), however for heavy rainfall a significant increasing trend is con-401

sistently found (Donat et al. 2016; Westra et al. 2013; Ban et al. 2015; O’Gorman and Schneider402

2009).403

Over the area of East China, in the upper decile of daily rainfall total we see some weak shift to404

larger rainfall per day values, but we do not see a reduction in light rain (1st–2nd decile daily total405

rain). Perhaps by selecting the 90th percentile, rather than the 95th or 99th we are only seeing406

hints of this trend in our only moderate results for heavy rain increase. Similarly for our 95th407

percentile n-day-total rainfall, we see some weak indication of increased daily total, but it is not408

as impressive as that reported for global daily totals.409
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On more local spatial scales, some previous observational studies also report an increase in410

heavy rain and a decrease in light rain over China. For example Ma et al. (2017), observe a411

decrease in total rain from light rain days, and an increase in total rain from heavy rain days. Their412

reported change in light rain is weak statistically, and their reported change in heavy rain is larger413

and statistically stronger.414

Numerous observational studies have reported an increase in seasonal total rainfall over the415

period 1960-2000 for eastern China (Liu et al. 2005; Zhai et al. 2004; Wang and Zhou 2005; Su416

et al. 2006; Fu and Dan 2013; Fu et al. 2008; Qian and Qin 2007; Gemmer et al. 2003). However417

these changes are not uniformly spatially coherent, nor are the observed regions all defined to418

cover the same areas as each other, or as that examined here. Subsets of these works (Zhai et al.419

2004; Liu et al. 2005; Fu and Dan 2013; Fu et al. 2008; Su et al. 2006; Qian et al. 2009) also420

report increases in the number of heavy rain days and decreases in light rain days, and also with421

shifts in rainfall totals across daily deciles in a similar direction. The method by which deciles422

or thresholds for extreme rainfall totals are defined differs between most of these stuides, being423

defined for individual seasons in some, and annually in others. The regions studied also vary424

between publications, and deciles and extremes may be defied as an area average or within sub-425

regions. Additionally, these studies tend to end in 2000, near the start of our current climatology426

and given that they end 15 years ago it would be interesting to see if the results that they present427

continue in more recent years. Similarly to the result presented here, the trends reported by most428

literature studies tend to be statistically weak and the data noisy - this is a frequent issue for studies429

of precipitation.430

There are observational literature studies which are complementary to our findings. For exam-431

ple Xiao et al. (2016) examine the observed hourly peak total rainfall during the monsoon season.432

They find peak hourly rainfall is correlated with daily mean temperature, and that the number of433
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rain hours per day decreases with increasing temperature, with hourly precipitation extremes in-434

creased by 10% per degree increase of daily mean temperature. However they find daily extremes435

decrease by approximately the same amount - so extreme total rainfall is increasing but duration436

is decreased on the hourly timescale.437

Liu et al. (2005) find a 10% decrease in frequency of precipitation events between 1960-2000.438

Zhai et al. (2004) also report a decrease in number of rain days over East China between 1950-439

2000. They also find the daily rainfall total in the 95th percentile has increased with time, and an440

increased frequency of 95th percentile rainfall days in South and Eastern China during the warm441

half of year. However they find no statistically significant change in annual rainfall total.442

Precipitation is a notoriously difficult variable to measure accurately, perform trend analysis of,443

and detect changes in with any meaningful confidence. In the studies discussed above, several444

subtly different methods are used to detect changes in rainfall in subtly, but non-trivially, different445

ways. In an ideal world it would be beneficial to have a unified metric, or set of metrics by which446

changes in rainfall could be judged. This would help promote a clearer path to detecting and447

attributing changes and understanding what drives them.448

Future changes449

With future reductions in aerosol emissions and a continued increases in greenhouse gas emis-450

sions, historical trends in monsoon rainfall may not be indicative of future changes (Christensen451

et al. 2013). CMIP5 (Taylor et al. 2012) RCP8.5 model projections predict that east China summer452

season (JJA) will become wetter in future (see figure 12.22 in IPCC AR5 Chapter 12, Collins et al.453

(2013)), with a projected increase of approximately 20% in seasonal rainfall total by the end of the454

century with respect to the mean of 1986-2005. The projected changes are likely due to increases455

in GHGs and reduction in aerosols. Additionally, in line with our historical results, the maximum456

21



5-day precipitation and the number of consecutive dry days are projected to continue to increase457

for east China (see figure 12.26 of IPCC AR5 Chapter 12; also Chapter 14, page 1271, Christensen458

et al. 2013).459

In line with our results for historical changes in rainfall, in future, in a world with increased460

global warming, we might expect to see more short intense rainstorms, increasing the possibility461

of flash flooding. However, there may be fewer days of rain between extreme rainstorms, which462

can lead to drought. Alleviation of drought requires rain over an extended period, the shortening463

of rainstorms means that drought may be exacerbated.464

7. Conclusions465

We have presented the results of a historical model ensemble with and without anthropogenic466

influence on the climate system. We verify our model against observed climatology and find that467

it can reproduce the main features of the EASM. The model shows that, in the anthropogenic in-468

fluence scenario, the EASM is generally dryer overall, with a decrease in total rain and an increase469

in dry days. However the anthropogenic influence model also shows an increase in the intensity470

of heavy rain events. These changes could lead to increased likelihood of flash flooding during471

rainstorms, but also an increased likelihood or severity of drought in some locations.472

Historically a range of different results are found when exmaining observed rainfall in Eastern473

China during the summer and EASM season. These changes are not always consistent with those474

observed gloablly, which suggests localised forcings may be at play. However, given the range of475

methodologies and obeserved and modelled data available for investigating rainfall, this is an area476

which still warrants further study.477
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TABLE 1. Results by regions as indicated in Figure 1. Probability ratio, ∆P, values give the change in like-

lihood of the mean seasonal value of the variable considered for the ALL ensemble with respect to the NAT

ensemble. The absolute change is the change in the value of the variable considered for ALL ensemble with

respect to the NAT ensemble, for example, the mean seasonal rainfall total is X mm less. Results not statistically

significant at 2σ are highlighted in italics.

593

594

595

596

597

Variable NE NCC NEC CW SCC SEC SE

Total rainfall ∆P mean 0.8±0.01 0.8± 0.01 0.9±0.01 0.9±0.03 0.6±0.03 0.8±0.01 0.6±0.02

Mean change (mm) -28.3±1.72 -34.9±2.26 -13.5±2.38 -13.3±4.62 -110.0±6.56 -72.9±4.12 -146.2±9.15

∆P 10th percentile 0.9±0.01 0.9±0.01 1.0±0.01 1.0±0.01 0.8±0.01 0.9±0.01 0.9±0.01

Mean change (mm) -23.4±1.82 -33.9±2.93 -14.5±2.49 -13.3±4.98 -98.3±6.44 -48.65±3.27 -108.1±7.87

Dry days ∆P mean 1.2±0.01 1.3±0.02 1.2±0.01 1.1±0.04 1.5±0.02 1.4±0.01 1.6±0.01

Mean change (days) 2.0±0.13 3.6±0.25 2.1±0.08 1.0±0.31 5.9±0.28 4.1±0.13 6.5±0.11

∆P 90th percentile 1.4±0.03 1.9±0.07 1.5±0.04 1.4±0.10 2.6±0.11 1.8±0.03 2.5±0.06

Mean change (days) 2.0±0.20 3.6±0.28 2.0±0.16 0.9±0.36 5.7±0.35 3.8±0.16 6.0±0.18

First decile ∆P mean 1.0±0.01 1.0±0.01 1.0 ±0.01 1.1±0.02 1.1±0.02 1.0 ±0.01 1.2±0.02

total rain Mean change (mm) 0.1±0.03 0.1±0.06 -0.1±0.03 0.5±0.18 0.7±0.13 0.2±0.06 1.0±0.12

Tenth decile ∆P mean 0.9±0.01 0.9±0.01 1.0 ±0.01 1.0±0.02 0.8 ±0.02 0.9±0.01 0.8±0.02

total rain Mean change (mm) -12.1±0.97 -10.9±1.33 1.2±2.00 -1.8±2.17 -44.4±3.72 -25.7±2.44 -52.5±5.75

Tenth decile ∆P mean 1.0±0.01 1.1±0.01 1.1±0.01 1.0±0.01 1.0 ±0.01 1.0±0.01 1.1±0.02

rain per day Mean change (mm/day) 0.4±0.04 0.9±0.03 0.9±0.13 0.1±0.03 0.3±0.07 0.5±0.09 0.6±0.09

n days ∆P mean 0.8±0.01 0.8±0.01 0.8±0.01 0.8±0.02 0.7±0.02 0.8 ±0.01 0.6±0.01

Mean change (days) -0.6±0.04 -0.9±0.09 -0.6±0.04 -1.9±0.46 -2.6±0.21 -1.1 ±0.13 -4.9±0.29

intens ∆P mean 1.0±0.01 1.1±0.01 1.1±0.01 1.0±0.02 1.1 ±0.02 1.1 ±0.01 1.1±0.02

Mean change (mm/day) 0.4±0.12 0.9±0.10 2.2±0.20 0.1±0.04 0.7±0.14 1.3 ±0.21 1.4±0.2
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LIST OF FIGURES598

Fig. 1. Top row: 1960–2007 mean (left) and maximum (right) number of sations per square-degree599

grid cell from which the APHRODITE obervation data is constructed. Centre: China di-600

vided into climatologically similar regions. For verification we exclude areas of China with601

very low observation station density and very little total monsoon rainfall. Bottom rows:602

Precipitation intensity distribution (from area daily mean) for regions in China, climatology603

for 1960-2000 - the contribution of daily rainfall total to the total monsoon rainfall, black604

line is observations, red and green are ALL and NAT model experiments respectively (the605

green line is often hidden behind the red in these plots). . . . . . . . . . . . 31606

Fig. 2. Top 4 rows: 1960–2000 mean pentad climatology (5-day total rainfall, mm/5 days) for607

observations (centre) and ALL-forcing model ensemble mean (left), and model mean when608

normalized to the observed average (right). Second from bottom: Seasonal mean total rain609

(mm) for monsoon season for mean of 1960-2000. Bottom row: Maximum daily total rain610

(mm) for monsoon season, mean of 1960-2000. . . . . . . . . . . . . . 32611

Fig. 3. 5-day total rainfall time series throughout the monsoon season, averaged over 1960–2000.612

Regions corresponding to Figure 1 are indicated above panels. Red and green lines are all-613

forcings and natural-forcings ensemble means, red and green shading are ensemble range614

(appears brown where the two overlap). Black line is the observations. . . . . . . . 33615

Fig. 4. 5-day total rainfall time series throughout the monsoon season, averaged over 1960–2000.616

Blue line shows data for an individual station, indicated in the map with a blue dot. Black617

line is APHRODITE. Red and green lines are all-forcings and natural-forcings ensemble618

means. The APHRODITE, ALL and NAT are for the individual grid cell in which the619

station lies. . . . . . . . . . . . . . . . . . . . . . . . 34620

Fig. 5. Top row: time series for SEC of monsoon season total rainfall (left, anomaly with respect621

to 1960-1979) and total dry days during the monsoon (right). Colours as Fig 3. Middle:622

Histograms with fitted PDFs for the most recent 20 years of the time series (1996-2015)623

for ALL and NAT, black line indicates the mean of the NAT model, dashed line indicates624

the mean of ALL model, dot-dashed line indicates 10th and 90th percentile of NAT model625

for total rainfall and days below 1 mm respectively. Bottom: Probability ratio (∆P) maps626

between ALL and NAT models, with respect to the mean of the NAT model for all ensemble627

members between 1996-2015. Black crosses indicate grid cell where ∆P is not significant at628

a 2σ (95 percent) level. . . . . . . . . . . . . . . . . . . . . 35629

Fig. 6. Top: Fractional total rainfall change for 1996-2015 compared to 1960-1979 for each decile630

of daily rainfall for SEC. Left column: ∆P maps for 1st decile total rain (top), 10th decile631

total rain (middle) and 10th decile rain per day (bottom), with respect to the mean of the632

NAT model for all ensemble members between 1996-2015. Black crosses indicate grid cell633

where ∆P is not significant at a 2σ (95 percent) level. Right column: Histograms for the634

variables in the maps shown for SEC. Solid line indicates the mean of NAT, dashed line635

indicates the mean of ALL. . . . . . . . . . . . . . . . . . . . 36636

Fig. 7. Top: time series of intens (left, mm/day) and n days (right) for 95th percentile n day tot637

events for SEC. Middle:Histograms with fitted PDFs for variables examined for all events638

between 1996-2015 in ALL and NAT. Bottom: ∆P maps, with respect to the mean of the639

NAT model, for all ensemble members between 1996-2015, for events in the 95th percentile640

(w.r.t. 1960-1979) of n day tot. Black crosses indicate grid cells where ∆P is not significant641

at a 2σ (95 percent) level. . . . . . . . . . . . . . . . . . . . 37642
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FIG. 1. Top row: 1960–2007 mean (left) and maximum (right) number of sations per square-degree grid

cell from which the APHRODITE obervation data is constructed. Centre: China divided into climatologically

similar regions. For verification we exclude areas of China with very low observation station density and very

little total monsoon rainfall. Bottom rows: Precipitation intensity distribution (from area daily mean) for regions

in China, climatology for 1960-2000 - the contribution of daily rainfall total to the total monsoon rainfall, black

line is observations, red and green are ALL and NAT experiments respectively (the green line is often hidden

behind the red in these plots).
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FIG. 2. Top 4 rows: 1960–2000 mean pentad climatology (5-day total rainfall, mm/5 days) for observations

(centre) and ALL-forcing ensemble mean (left), and model mean when normalized to the observed average

(right). Second from bottom: Seasonal mean total rain (mm) for monsoon season for mean of 1960-2000.

Bottom row: Maximum daily total rain (mm) for monsoon season, mean of 1960-2000.
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FIG. 3. 5-day total rainfall time series throughout the monsoon season, averaged over 1960–2000. Regions

corresponding to Figure 1 are indicated above panels. Red and green lines are ALL-forcings and NAT-forcings

ensemble means, red and green shading are ensemble range (appears brown where the two overlap). Black line

is the observations.
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FIG. 4. 5-day total rainfall time series throughout the monsoon season, averaged over 1960–2000. Blue line

shows data for an individual station, indicated in the map with a blue dot. Black line is APHRODITE. Red and

green lines are ALL-forcings and NAT-forcings ensemble means. The APHRODITE, ALL and NAT are for the

individual grid cell in which the station lies.
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FIG. 5. Top row: time series for SEC of monsoon season total rainfall (left, anomaly with respect to 1960-

1979) and total dry days during the monsoon (right). Colours as Fig 3. Middle: Histograms with fitted PDFs

for the most recent 20 years of the time series (1996-2015) for ALL and NAT, black line indicates the mean of

the NAT ensemble, dashed line indicates the mean of ALL ensemble, dot-dashed line indicates 10th and 90th

percentile of NAT ensemble for total rainfall and days below 1 mm respectively. Bottom: Probability ratio

(∆P) maps between ALL and NAT ensembles, with respect to the mean of the NAT ensemble for all ensemble

members between 1996-2015. Black crosses indicate grid cell where ∆P is not significant at a 2σ (95 percent)

level.
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FIG. 6. Top: Fractional total rainfall change for 1996-2015 compared to 1960-1979 for each decile of daily

rainfall for SEC. Left column: ∆P maps for 1st decile total rain (top), 10th decile total rain (middle) and 10th

decile rain per day (bottom), with respect to the mean of the NAT ensemble for all ensemble members between

1996-2015. Black crosses indicate grid cell where ∆P is not significant at a 2σ (95 percent) level. Right column:

Histograms for the variables in the maps shown for SEC. Solid line indicates the mean of NAT, dashed line

indicates the mean of ALL.
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FIG. 7. Top: time series of intens (left, mm/day) and n days (right) for 95th percentile n day tot events for

SEC. Middle:Histograms with fitted PDFs for variables examined for all events between 1996-2015 in ALL and

NAT. Bottom: ∆P maps, with respect to the mean of the NAT ensemble, for all ensemble members between

1996-2015, for events in the 95th percentile (w.r.t. 1960-1979) of n day tot. Black crosses indicate grid cells

where ∆P is not significant at a 2σ (95 percent) level.
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