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ABSTRACT
Mass is a fundamental property of galaxy groups and clusters. In principle, weak gravitational
lensing will enable an approximately unbiased measurement of mass, but parametric methods
for extracting cluster masses from data require the additional knowledge of halo concentration.
Measurements of both mass and concentration are limited by the degeneracy between the two
parameters, particularly in low-mass, high-redshift systems where the signal to noise is low.
In this paper, we develop a hierarchical model of mass and concentration for mass inference,
we test our method on toy data and then apply it to a sample of galaxy groups and poor
clusters down to masses of ∼1013 M�. Our fit and model gives a relationship among masses,
concentrations and redshift that allow prediction of these parameters from incomplete and
noisy future measurements. Additionally, the underlying population can be used to infer
an observationally based concentration–mass relation. Our method is equivalent to a quasi-
stacking approach with the degree of stacking set by the data. We also demonstrate that mass
and concentration derived from pure stacking can be offset from the population mean with
differing values depending on the method of stacking.

Key words: gravitational lensing: weak – methods: statistical – galaxies: clusters: general.

1 IN T RO D U C T I O N

Galaxy groups and clusters are some of the largest structures in the
observable Universe. They give insight to the growth and evolution
of structure through the multiwavelength study of their properties.
Knowledge of the abundance and mass of these systems can be
used in combination to probe cosmological parameters through the
mass function (Voit 2005; Allen, Evrard & Mantz 2011). Although
mass is not a direct observable, it can be estimated in a number
of ways including hydrostatic mass from the X-ray emission of
the hot intracluster medium and the dynamical mass from the ve-
locity dispersions of galaxies. These estimators of mass rely on
assumptions that may be biased from the true halo mass, for ex-
ample X-ray masses could incur a bias of 10–30 per cent (Piffaretti
& Valdarnini 2008; Le Brun et al. 2014) from the assumption of

� E-mail: maggie.lieu@sciops.esa.int

hydrostatic equilibrium. What’s more, mass is generally observa-
tionally expensive.

If gravity is the main contributor to the formation of clusters,
then we would expect them to follow self-similarity (Kaiser 1986)
and have simple power-law relationships between mass and other
observable properties known as mass proxies (temperature, lumi-
nosity, etc.). These scaling relations are a useful alternative to obtain
mass measurements and are observationally cheaper. Nevertheless,
scaling relations provide a less accurate estimate of mass and are
influenced by the calibration cluster sample (Sun 2012; Giodini
et al. 2013).

Weak-lensing mass is a measure of the influence of the cluster
gravitational potential on the light path of background galaxies (see
e.g. Hoekstra et al. 2013, for a review) and the arising galaxy shape
distortion is known as shear. The effect is purely geometrical; it
is sensitive only to line-of-sight structures and does not make as
many assumptions as other methods, thus it provides a good esti-
mator of the true halo mass. However, lensing masses can suffer
from the large scatter and noise. In particular, galaxy groups are

C© 2017 The Authors
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<1014 M� making weak-lensing measurements particularly chal-
lenging due to the low shear signal-to-noise ratio (SNR) and indi-
vidual mass measurements in this context can be strongly biased
(Corless & King 2007; Becker & Kravtsov 2011; Bahé, McCarthy
& King 2012).

The NFW model (Navarro, Frenk & White 1997) provides a
reasonable description of the density profile of clusters, it is given
by

ρNFW(r) = ρs

(r/rs)(1 + r/rs)2
, (1)

where ρs is the central density and rs is a characteristic scale radius
at which the slope of the log density profile is −2. The NFW model
can be characterized by two parameters: halo mass M�

1 determines
the normalization and concentration c� = r�/rs determines the ra-
dial curvature of the profile. Whilst M is both a physical quantity
and a model parameter, c is less well defined; c is a parameter in
the NFW profile but may not be equivalent in other density profiles
(e.g. Einasto profile; Klypin et al. 2016). Concentration is diffi-
cult to constrain due its inherent covariance with mass (Hoekstra
et al. 2011; Auger et al. 2013; Sereno et al. 2015) and the degener-
acy is particularly high for individual weak-lensing measurements
of high-redshift, low-mass systems. Depending on the number of
background galaxies, even massive clusters with reasonable shear
SNR require the stacking of multiple clusters in order to constrain
concentration (Okabe et al. 2013; Umetsu et al. 2014). The radial
averaging when stacking helps to smooth out substructures; how-
ever, it can be hard to decide which clusters to stack and how to
stack them, especially if they span a wide range of redshift and
mass. Stacking results in a loss of information, and whilst stacking
systems of similar masses would minimize the information loss, we
note that mass is known a priori. Alternatively, SNR may seem an
appealing property to stack on; however, SNR does not necessarily
correlate as expected with mass (see e.g. fig. 3 of Lieu et al. (2016)
where redshift can be seen as a proxy for mass, since high-mass
clusters tend to be at higher redshifts due to a combination of their
formation and selection). One reason being that whilst massive clus-
ters have a higher weak-lensing signal, they are also subject to larger
noise because at high redshifts there are less background galaxies
and larger photometric redshift uncertainties.

It is therefore common to use a fixed concentration value
(Foëx et al. 2012; Oguri et al. 2012; Applegate et al. 2014), or a c–M
scaling relation based on numerical simulations to aid constraints
on mass (e.g. Duffy et al. 2008; Zhao et al. 2009; Bahé et al. 2012;
Dutton & Macciò 2014). The choice of c–M relation is again non-
trivial, as dark-matter-only simulations tend to produce high nor-
malization relations compared to those that include baryonic physics
and feedback (e.g. Duffy et al. 2010; Velliscig et al. 2014). It is also
sensitive to σ 8 and �M, where Duffy et al. (2008)’s c–M relation
(which assumes a WMAP5 cosmology) has 20 per cent lower con-
centrations than Dutton & Macciò (2014)’s relation (which assumes
the Planck 2013 cosmology). These issues will affect both mass and
concentration due to parameter degeneracies.

Accurate mass measurements are important for cluster cosmol-
ogy; however, traditionally, methods to obtain cosmological con-
straints from the data are divided into separate analyses and work
from the bottom-up. For example, observations are made and are
processed into data catalogues, the catalogues are used to obtain in-

1 M� is the mass within which the mean density is � times the critical
density at the cluster redshift.

dividual masses of some clusters where the data quality is adequate
to do so, a scaling relation fit is obtained for some mass proxy to
allow further mass estimates of clusters where the data quality for
mass is poor, and finally the cosmology can be obtained by fitting a
mass function. Not only is this inefficient, it is also suboptimal due
to the loss of information, possible introduction of biases and the
difficulty in consistent propagation of uncertainties at each step.

Here, we instead consider a Bayesian inference model that em-
beds the global problem into a forward modelling approach and
subsequently avoids these many issues. Hierarchical modelling is a
unified statistical analysis of the source population and individual
systems. The prior distribution on the individual cluster parame-
ters can be seen as a common population distribution and the data
can collectively be used to infer aspects of the population distri-
bution that is otherwise not observed. In traditional non-hierarchal
methods, introducing too few model parameters produces inaccu-
rate fits to large data sets and too many parameters runs the risk
of overfitting the data. By treating the problem as a hierarchical
model (see e.g. Schneider et al. 2015; Alsing et al. 2016; Sereno &
Ettori 2016), we have enough parameters to fit the data well when
possible; the population distribution accounts for a full statistical
dependence of all parameters when not otherwise constrained by
data. This ‘quasi-stacking’ approach enables improved estimates on
weakly constrained parameters such as concentration and masses of
low SNR clusters by incorporating information from the population
in a principled way.

In this paper, we propose a method to exploit the underlying
cluster population properties in order to improve constraints on
weak-lensing masses of individual groups and poor clusters. The
data are fitted with the assumption that the parameters originate
from the same underlying population. In the case of mass and
concentration, the distribution of the population mass and con-
centration is a prior on the corresponding individual cluster pa-
rameters. This method is therefore fully self-consistent with the
data and makes it possible to constrain concentration of each clus-
ter without the need of full stacking. It works well even with low
signal-to-noise data that will be important for future weak-lensing
surveys, where the observations may be shallow such as DES2

and KIDS.3

This paper is structured as follows: in Section 2, we describe in
detail the hierarchical model and outline how it can be used for
parameter prediction (Section 3). This is tested on toy data and sim-
ulations in Section 4 and applied to a typical shallow data sample in
Section 5. Discussions are presented in Section 6 and finally we con-
clude in Section 7. Throughout, the WMAP9 (Hinshaw et al. 2013)
cosmology of H0 = 70 km s−1 Mpc−1, �M = 0.28 and �� = 0.72
is assumed. All statistical errors are reported to 68 per cent cred-
ibility and all mass values are reported in units h−1

70 M�, unless
otherwise stated.

2 M E T H O D

Our model assumes each cluster can be described by n parameters.
We assume that the distribution of the parameters for a population
of clusters is described by a multivariate Gaussian with a global
mean n-vector μ and a n × n covariance matrix � that describes
the intrinsic scatter of each property and the covariances between

2 http://www.darkenergysurvey.org
3 http://kids.strw.leidenuniv.nl
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them. For now, we focus on the cluster mass M200, concentration
c200 and redshift z. Therefore n = 3,

μ =
⎛
⎝ ln(M200)

ln(c200)
ln(1 + z)

⎞
⎠ ,

and

� =
⎛
⎝ �11 �12 �13

�21 �22 �23

�31 �32 �33

⎞
⎠ =

⎛
⎝ σ 2

1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ 2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ 2
3

⎞
⎠ .

Here, the subscripts 1, 2, 3 on σ represent ln M200, ln c200 and
ln (1 + z), respectively, and ρ is the correlation coefficient.

The true distribution for the population mass should be the clus-
ter mass function that describes the number density of clusters of a
given mass and redshift (e.g. Tinker et al. 2008). Massive clusters
form from rare, dense peaks in the initial mass density fluctuations
of early Universe so are less abundant than poor clusters and low-
mass groups that form from smaller more common fluctuations.
However, the least massive systems are also the least luminous and
are therefore less likely to be detected than more luminous massive
clusters. This selection function causes a decrease in the number
of clusters observed at low mass due to survey sensitivity limits.
Although in detail, the cluster selection function will not be lognor-
mal; here, we justify the use of a lognormal distribution as an ap-
proximation to the cluster mass function and selection function (see
also Sereno et al. 2015). This is also motivated for conjugacy since
simulations of the cluster concentration mass distribution shows log-
normal scatter (Jing 2000; Bullock et al. 2001; Duffy et al. 2008;
De Boni et al. 2013) and the results of Lieu et al. (2016) show
redshift and mass distributions that are close to Gaussian.

2.1 Hyperparameters

It is common to call the parameters that describe the population
(μ and �) hyperparameters, and the priors on them, hyperpriors.
The covariance matrix � is a difficult parameter to sample since by
definition it must be both symmetric and positive definite. Therefore
for its prior, we take the Stan Development Team (2016a) recom-
mended approach, which decomposes � into a correlation matrix
� and a scale vector τ (Barnard, McCulloch & Meng 2000):

� = diag(τ )�diag(τ ), (2)

where τ is a vector of the standard deviations of the hyperparameter
μ that describe the population mean. The prior on τ is taken to be
a Gamma distribution with shape ατ = 2 and rate βτ = 3,

Pr(τ |ατ , βτ ) = βατ
τ

�(ατ , 1)
τατ −1 exp(−βτ τ ). (3)

This prior is chosen so as to prevent divergences (see Section 2.3)
in the sampling whilst allowing large values of variance. An LKJ
distribution prior (Lewandowski, Kurowicka & Joe 2009) is used
on the correlation,

Pr(�|ν) ∝ det(�)ν−1, (4)

where the shape parameter ν > 0. This distribution converges to-
wards the identity matrix as ν increases, allowing the control of
the correlation strength between the multiple parameters and conse-
quently the variance and covariance of parameters in the population.
A flat prior can be imposed by setting ν = 1 and for 0 < ν < 1, the
density has a trough at the identity matrix. However, to optimize

our code, we decompose the correlation matrix � into its Cholesky
factor L� and its transpose Lᵀ

�,

� = L� Lᵀ
� (5)

Pr(�|ν) =
K∏

k=2

LK−k+2ν−2
kk , (6)

and implement on L� an LKJ prior parametrized in terms of the
Cholesky decomposition setting ν=10, i.e. weakly preferring iden-
tity. For the global mean vector, we use a weakly informative prior

Pr(μ|μ0, �0) = 1√
2π�0

exp

[
− (μ − μ0)2

2�0

]
, (7)

where μ0=(32,1,0.3) and �0 = (1, 1, 1). The priors and hyperpriors
chosen in our model are consistent with the knowledge of these
systems, since we expect masses to lie between 1013−16 M� and
concentration between 0 and 10. Using the prior information helps
to regularize the inference and avoids numerical divergences since
the projected NFW profile is numerically unstable (in particular at
the Einstein radius). We test the sensitivity of our results to these
choices of hyperpriors in Section 6.1.

Rather than using the Gamma prior on the scale and the LKJ prior
on the correlation, it is more common in these sorts of hierarchi-
cal analyses to set the prior on � to be the scaled inverse Wishart
distribution (Gelman & Hill 2006). This choice is usually made for
its conjugacy on Gaussian likelihoods and simplicity within Gibbs
sampling. However, this distribution undesirably assumes a prior
relationship between the variances and correlations (see Alvarez,
Niemi & Simpson 2014, for a review on priors for covariance ma-
trices). In our sampling method, which we discuss in Section 2.3,
conjugate priors are not necessary and, in fact, the combined scale-
LKJ prior is more efficiently sampled and gives us control over the
diagonal elements of �.

2.2 Sample parameters

The parameters that describe the properties of the ith cluster xi

are assumed to be drawn from the population distribution. We
chose a centred parametrization to draw cluster parameters from
the population as the non-centred parametrization (Betancourt &
Girolami 2015) suffered from biases and subpar performance as
indicated by sampler diagnostics:

x ∼ N (μ, LLᵀ), (8)

where L is the Cholesky decomposition of �.
This re-parametrization is equivalent to drawing from a multi-

variate Gaussian but is less computationally expensive since the
covariance matrix is only decomposed once. It makes for more ef-
ficient sampling of the deformed regions of the parameter space
commonly found in hierarchical inference problems. The probabil-
ity of the parameters conditional on the global population takes the
form of a multivariate Gaussian distribution:

Pr(x|μ, �) =
∏

i

1√
(2π)n|�| exp

[
−1

2
(xi − μ)ᵀ�−1(xi − μ)

]
,

(9)

where n = 3 and

xi =

⎛
⎜⎜⎜⎝

ln
(
M

(i)
200

)
ln

(
c

(i)
200

)
ln

(
1 + z(i)

)

⎞
⎟⎟⎟⎠ .
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2.3 Model fitting

The full posterior can be written as

Pr(μ, �, x|d) = Pr(d|x)Pr(x|μ, �)Pr(μ)Pr(�)

Pr(d)
, (10)

where x are the individual cluster parameters and d are the data
(shear profiles and spectroscopic redshifts). The likelihood is

Pr(d|x) =
∏

i

1√
(2π)σi,z

exp

[
−

(
di,z − z (xi)

)2

2σ 2
i,z

]

×
∏

j

1√
(2π)σi,j

exp

[
− (di,j − g(ri,j , xi ))2

2σ 2
i,j

]
, (11)

where di, z and σ i, z are the observed redshift and associated uncer-
tainty of the ith cluster, di, j and σ i, j are the observed shear and
associated uncertainty of the ith cluster in the jth radial bin, z is the
redshift associated with parameters x, and g is the model shear at
the radius ri, j from the cluster centre. The model shear is a function
of the mass, concentration and redshift as computed according to
an NFW (Navarro et al. 1997) density profile (see the Appendix A).
Regardless of the shear SNR, we do not fix the concentration to
values from a mass–concentration relation; instead information on
the relationship between c–M flows through the population distri-
bution that is simultaneously fit to our data set. We treat the quoted
shear measurements as the fundamental data product, and assume
above in equation (11) that the sampling distribution for the shear is
Gaussian with width equal to the quoted shear uncertainties. In re-
ality, the fundamental data product of a weak-lensing measurement
is pixel-level images of background galaxies, and the summary of
this data by shear measurements induces a distribution that is not
Gaussian, but equation (11) is a reasonable and computationally
efficient approximation. See Schneider et al. (2015) for a discus-
sion of hierarchically modelled pixel-level likelihood functions for
shear maps; such models provide a more accurate representation
of the data but through a much more complicated and expensive
likelihood function. A graphical model of our posterior appears in
Fig. 1.

The Stan probabilistic coding language is used to implement
inference on our problem with the R interface Stan Development
Team (2016b). Stan samples from posterior distributions using a
Hamiltonian Monte Carlo (HMC) algorithm (Neal 2011; Betan-
court et al. 2016). HMC is a Markov Chain Monte Carlo (MCMC)
sampling method where proposed states are determined by a Hamil-
tonian dynamics model. This enables more efficient exploration of
the parameter space and hence faster convergence in typical prob-
lems that is crucial for problems working in high dimensions.

We run four chains with 1000 warm-up samples followed by
1000 monitored samples. Convergence is checked using trace plots,
histograms of the tree depth and calculation of the Gelman–Rubin
convergence criterion (R̂ < 1.1; Gelman & Rubin 1992). Sample
bias is also checked by monitoring the number of divergences in a
given sample. This diagnostic is specific to HMC, it indicates the
number of numerical divergences occurred whilst sampling and is
typical for regions of the parameter space that are hard to explore.
Any number of divergences could suggest a bias in the posterior
samples; however, it can be reduced by increasing the acceptance
probability, or by re-parametrizing the model.

Figure 1. A graphical model of the relationships between terms in our
posterior. Filled ellipses indicate quantities that are observed and therefore
conditioned-on in the analysis, whilst open ellipses contain parameters that
are fit, and dots indicate fixed quantities that are not probabilistically mod-
elled. At the top level, the (fixed) parameters controlling the hyperpriors
influence the distribution of μ and �. The parameters μ and � control the
distribution of masses, concentrations and redshifts of the individual clus-
ters. The mass, concentration and redshift of each cluster combine with the
(fixed) observational uncertainties to control the distribution of the shear
data.

3 PR E D I C T I N G FU T U R E DATA A N D S C A L I N G
R E L AT I O N S

In order to use the results from the hierarchical model to predict
parameters of future data, consider the following situation. We ob-
serve or produce noisy estimates of (some of the) parameters of a
previously unobserved system that we assume comes from the same
population, and we now wish to use the population-level fitting to
produce better estimates and/or predictions of parameters that we
did not measure. Let us assume that the observational uncertainties
are Gaussian, described by a mean μo and a covariance matrix �o.
(If a parameter is unobserved, then we can set the corresponding
diagonal element of the covariance matrix to ∞, indicating infinite
uncertainty about its value.) The true parameters of the system of
interest are

xT = {MT, cT, zT}, (12)

where we use MT, cT, zT as short-hand for the true underlying
parameters ln M200, ln c200, ln (1 + z). Combining the results of the
new observations with our population model results in a Gaussian
distribution for the true parameters of the system with via,

xT ∼ N (μT, �T), (13)

where

μT = �T

(
�−1μ + �−1

o μo

)
�T = (

�−1 + �−1
o

)−1
. (14)
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If we specialize to uncorrelated measurements, then

�−1
o = diag

(
σ 2

M, σ 2
c , σ 2

z

)−1
(15)

is a diagonal matrix with the uncertainties associated with each
measurement.

The posterior on the true parameters of an individual system is
a normal distribution about the weighted mean of the population
μ and the observable values μo. The uncertainties are similarly
dependent both on the population width � and the observational
uncertainty �o. A small observable uncertainty will cause the pa-
rameter to be dominated by the observed value, whereas a large
observable uncertainty will pull the parameter closer to the popula-
tion estimate. This effect is particularly useful for measurements of
low signal-to-noise data. Where observables are missing, for exam-
ple a measurement of a mass and redshift but no measurement of
concentration, the hierarchical model can still be used as described
above by setting σ c = ∞. In this particular case, the estimate of
μc

T would be weighted entirely by the population distribution at the
appropriate values of M and z. We now proceed to derive equation
(13).

Using Bayes theorem, the conditional distribution of the true
parameters can be written as

Pr(xT|xo, �o,μ, �)

∝ Pr(xo|xT, �o, μ, �) Pr(xT|�o,μ, �)

∝ exp

[
−1

2
(xo − xT)ᵀ�−1

o (xo − xT)

]

× exp

[
−1

2
(xT − μ)ᵀ�−1(xT − μ)

]

∝ exp

[
− 1

2

(
(xo − xT)ᵀ�−1

o (xo − xT)

+(xT − μ)ᵀ�−1(xT − μ)
) ]

.

The log posterior is thus proportional to a Gaussian distribution:

L = −1

2

(
(xo − xT)ᵀ�−1

o (xo − xT) + (xT − μ)ᵀ�−1(xT − μ)
)
.

The posterior mean of xt occurs at the maxima of the likelihood,
where the derivative of L is 0. The posterior variance is the inverse
of the negative second derivative of the L. The first and second
derivatives of the loglikelihood are

∂L
∂xT

= �−1
o (xo − xT) + �−1(μ − xt ), (16)

∂2L
∂x2

T

= −�−1
o − �−1. (17)

Setting ∂L/∂xT = 0 and solving for xT ≡ μT yields

μT = �T

(
�−1

o xo + �−1μ
)
. (18)

The variance �T is

�T = −
(

∂2L
∂x2

T

)−1

= (
�−1

o + �−1
)−1

, (19)

recovering the equations defined earlier.

3.1 Scaling relations

We can use the formalism above to derive scaling relations between
the parameters in our population model. A scaling relation is ob-
tained when two parameters are measured with zero uncertainty

and a third is unmeasured (i.e. with infinity uncertainty). For ex-
ample, to compare with existing c–M relations in the literature, we
can assume that we measure mass and redshift perfectly and with
no uncertainty, i.e. σ M = σ z = 0, xm

o = xm
T , xz

o = xz
T and measure

concentration with infinite uncertainty, i.e. σ o, c → ∞, implying
�−1

o,22 → 0

μc
T = �−1

12

�−1
22

(
μm − xm

T

) + �−1
23

�−1
22

(
μz − xz

T

) + μc. (20)

If we replace μc
T, xm

T and xc
T by ln (c200), ln (M200) and ln (1 + z),

respectively,

ln(c) = �−1
12

�−1
22

(μm − ln(M)) + �−1
23

�−1
22

(μz − ln(1 + z)) + μc, (21)

then we can rearrange into the familiar multiple regression form

ln(c) = α + β ln(M) + γ ln(1 + z), (22)

where

α = �−1
12

�−1
22

μm + �−1
23

�−1
22

μz + μc

β = −�−1
12

�−1
22

γ = −�−1
23

�−1
22

.

If we instead assume that concentration and redshift are measured
perfectly, we derive a different scaling relation that is algebraically
inequivalent to the above relation because of the different assump-
tions (σ M = 0 versus σ c = 0). In the event that any of these quanti-
ties are actually measured, with associated non-zero uncertainty, it
is better to use the full formalism from Section 3 (equation 13) that
takes into account measurement uncertainty than to substitute into
a scaling relation that ignores it.

4 TESTS ON SI MULATED DATA

We test our model on toy data by generating shear
profiles for 38 clusters, each with eight radial bins
spaced equally in log. The masses, concentrations and red-
shifts are drawn from an arbitrary multivariate distribution
of mean μ = {ln(2 × 1014), ln(3), ln(1 + 0.3)} and covariance
� = {(1.1,−0.1, 0.05), (−0.1, 0.4, 0.05), (0.05, 0.05, 0.01)}. We
note that the definition of the model in this form is not ideal since
the ln (1 + z) component in μ implies z can take negative values. It
would be more natural to be expressed in the form ln (z); however,
this would then not allow the direct inference of the c–M relation in
its commonly expressed form. The (1+z) factor comes from the ex-
pansion factor of the Universe so is therefore physically motivated.
For this reason, we make sure that the cluster redshifts are positive.
Trials of various levels of uncertainty on the shear measurements
are made and we are able to recover parameters to within 2 per cent
uncertainty with the exception of the mean population concentra-
tion that is biased increasingly low as the uncertainty on the shear
increases (Fig. 2). None the less, the fitted values agree within the
uncertainties and the bias is reduced significantly when increasing
the sample size from 38 to 200 clusters (Fig. 3), which is promising
for the application of this work on upcoming large cluster surveys.

We also test our model on the cosmo-OWLS cosmological hydro-
dynamical simulations (Le Brun et al. 2014). The large volume runs
consists of 400 Mpc h−1 on a side periodic boxes with 2 × 10243

particles, ideal for the study of cluster populations. We use the
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Figure 2. The bias in measured parameters for toy simulations. The subscripts 1, 2, 3 on μ represent the ln(M200[h−1
70 M�]), ln (c200) and ln (1 + z) population

components, respectively. Decreasing shear uncertainty (left) and increasing cluster sample (right) improves the ability to reproduce the truth.

Figure 3. The results of the toy simulations of 38 and 200 clusters with 10 per cent error on shear. The true population is shown by the red ellipse (95 per cent
region) and the black ellipse is based upon the fitted values of mean population parameters (note that it does not take into account the posteriors on the
population, only the point estimates μ and �). The red crosses indicate the input concentration and mass values and the white points show the mean of the
fitted values.

dark-matter-only run with WMAP7 cosmology, five source galaxies
arcmin−2 and 28 per cent shape noise. Clusters are drawn randomly
from the redshift slice z = 0.25 such that in the range of 13 ≤
log10(M500) ≤ 15, mass bins of 0.25 dex width contain 100 ob-
jects when possible. The total number of clusters in the sample is
632. Omitting the redshift component from our model, we recover
the cluster parameters and population estimates reasonably well
(see Fig. 4a). As expected, the constraints on mass are better than
those on concentration. At high mass, the data have high signal to
noise, so individually measured mass values give a good estimate of
the true number of clusters. However, at lower mass this is not true,
and consequently, we observe an overestimation of the clusters at
the mean mass of the sample. Meanwhile, the number of clusters
predicted from the population shows good agreement at all mass
scales (Fig. 4b). Implementation of the combined selection function
and halo mass function as a hyperprior distribution is complex and

will be important for cosmological inferences; therefore, we leave
it to a future paper.

The observed effect of parameter estimates influenced by the
population mean is a property of hierarchical models known as
shrinkage. It improves parameter estimates of both individual and
hyperparameters as the sample size increases. To demonstrate this,
we compare mass estimates to those obtained in a non-hierarchical
manner (Fig. 5a). Naively, one may believe that the shrinkage nature
is caused by the high-mass (and consequently high SNR) systems
dominating the fit and flattening the low-mass end; however, we
demonstrate that this is not the case. Whilst the high-mass systems
tend to have a higher signal to noise, quantitatively there are many
more low-mass clusters. For this reason, we see that the high-mass
bin moves down a lot more than low-mass bins when compar-
ing to masses determined in a non-hierarchical manner (note that
the axes are in log scale). More importantly, we again stress that
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Figure 4. Left: true mass and concentration (red) of 632 cosmo-OWLS clusters at z = 0.25 against fitted parameters in this work (black), the contour is derived
from the point estimates of the population parameters μ, � and inset is a comparison of masses. Right: a histogram of the true cluster masses from simulations
(black) and the comparison with the individual fitted masses in this work (red). The shrinkage can be seen clearly from the overestimation at ln (M200) = 32 in
the fitted values and the underestimation at tails. From the point estimates of the fitted population parameters (blue), we recover a much better fit to the truth
but this can be further improved if assume a population with the form of the cluster mass function rather than that of a Gaussian.

Figure 5. Left: comparison between hierarchical and non-hierarchical methods applied to cosmo-OWLS simulations. For clarity, objects have been grouped
into eight bins of 79 clusters ordered in mass. Right: comparison of masses inferred from the hierarchical method when the number of low-mass systems are
increased. All clusters (200) to the left of the vertical dotted line are included twice in the fit. Again for clarity, objects are binned to have equal number of
clusters in the ‘more low-mass’ run.

combining the masses of determined individually is subject to im-
proper propagation of errors and biases when used in future appli-
cations such as cluster mass function because of the information
loss in relying on point estimates. Using the population estimate on
the other hand correctly utilizes the full posterior of each cluster
system and therefore is not prone to this effect.

On the contrary, to ensure that the high-mass clusters are not
biased low by the shrinkage model, we rerun the hierarchical model
on a sample where the 200 lowest mass clusters are duplicated
(Fig. 5b). As expected, the highest mass clusters are not affected
by the increase in low-mass systems since their signal alone is
able to constrain the mass however at lower masses, the SNR

is lower and therefore more vulnerable to the increase in lower
mass systems.

5 A PPLI CATI ON TO DATA

5.1 Data

We further apply our method to observational data from Lieu et al.
(2016). Here, we provide a brief summary.

The sample consists 38 spectroscopically confirmed groups and
poor clusters that lie at 0.05 < z < 0.6 and span the low temperature
range of T300 kpc � 1–5 keV (Giles et al. 2016). They are selected in
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X-ray to be the 100 brightest systems4 and collectively lie within
both the Northern field of the XXL survey (Pierre et al. 2016) and
the CFHTLenS survey5 (Heymans et al. 2012; Erben et al. 2013).
The clusters are confined to z < 0.6 due to limited depth of the
CFHTLenS survey, this corresponds to a background galaxy cut of
∼4 arcmin−2. The sample is not simply flux-limited, the systems
are selected based upon both count rate and extension (see Pacaud
et al. 2016, for details).

We use shear profiles as computed in Lieu et al. (2016) that
are distributed into eight radial bins equally spaced on the log
scale. They use a minimum threshold of 50 galaxies per radial
bin which if not met is combined with the subsequent radial
bin. In the future, we intend to extend the method to the full
shear catalogue without binning. The errors on the shear are com-
puted using bootstrap resampling with 103 samples and incorpo-
rate large-scale structure covariance. All 38 clusters have spectro-
scopic redshifts, therefore we are able to use this information as data
within the model. Our model applied to the XXL data set is 123-
dimensional (3 × 38 cluster parameters and nine population-level
parameters).

5.2 Global estimates

The posteriors of the hyperparameters approximately follow
Gaussian distributions (Fig. 6). This justifies the use of the
posterior mean and standard deviation as the estimator of the

4 XXL-100-GC data are available in computer readable form via the XXL
Master Catalogue browser http://cosmosdb.iasf-milano.inaf.it/XXL and via
the XMM XXL Database http://xmm-lss.in2p3.fr.
5 www.cfhtlens.org

fits. For the global mean vector and covariance matrix, these
are

μ =
⎛
⎝ 32.718 ± 0.278

0.711 ± 0.357
0.239 ± 0.018

⎞
⎠ ,

� =
⎛
⎝ 1.379 ± 0.609 −0.014 ± 0.190 0.030 ± 0.022

−0.014 ± 0.190 0.593 ± 0.644 0.007 ± 0.018
0.030 ± 0.022 0.007 ± 0.018 0.013 ± 0.003

⎞
⎠ .

A comparison between the population z distribution and the distri-
bution of spectroscopic redshifts of the sample acts as a reassurance
that the model is indeed working. We also compare the posteriors
of μM and μc to the posteriors of M200 and c200 of the individual
clusters (Fig. 7). The individual concentration values are weakly
constrained resulting in posteriors that are dominated by the popu-
lation mean, whereas the individual masses are able to suppress the
influence of the mean mass. This demonstrates that independently
the individual clusters could not have constrained a concentration
value.

5.3 Mass estimates

We find smaller masses to those computed independently from the
individual shear profiles in Lieu et al. (2016, Fig. A1).

We calculate the weighted geometric mean between two mass
estimates of n clusters as

〈M1/M2〉 = exp

⎛
⎝

∑n
i=1 wi ln

(
M1,i

M2,i

)
∑n

i=1 wi

⎞
⎠ . (23)
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Figure 7. Left & centre: comparison of the posteriors for the population mean value (solid blue) and the posteriors for the individual clusters (solid grey) for
mass and concentration, respectively. A 1σ deviation marginal centred on the mean of the population mean distribution (dashed blue). Right: the z distribution
of the population plotted as a Gaussian centred on a mean and standard deviation obtained from the global mean vector and covariance matrix (dashed blue). It
agrees well with the spectroscopic redshift distribution of the sample (shown as a Gaussian kernel density estimate in solid grey). From this, we can conclude
that the data is able to constrain the individual cluster masses reasonably well, as the individual mass posteriors appear independent of the population mass
posterior. On the contrary, the individual concentrations are completely dominated by the posterior of the population concentration, which implies that without
the hierarchical model, individual cluster concentrations would not be possible.

The weight is expressed as a function of the error on the individual
mass measurements (σM1 , σM2 )

wi = 1

σ 2

ln
(

M1,i
M2,i

) =
[(

σM1,i

M1,i

)2

+
(

σM2,i

M2,i

)2
]−1

, (24)

and the error we present on the mean is calculated from the standard
deviation of 1000 bootstrap resamples. For an unbiased comparison,
we look at only non-upper limit measurements. Lieu et al. (2016)
find that the data quality limits their ability to constrain reliable con-
centration estimates so opt to fix concentration following the Duffy
et al. (2008) c–M scaling relation. In comparison to their masses,
we find a bias of 〈Mhierarchical/MDuffy〉 = 0.72 ± 0.02. The Duffy
relation is based on dark-matter-only N-body simulations and pre-
dicts concentrations that are much lower than those inferred from
observations. Also, c–M relations in general tend to suffer from
large scatter and therefore the choice of c–M relation will affect the
mass obtained. For an unbiased comparison, we compare to their
masses where the concentration is a fitted parameter and find that
〈Mhierarchical/Mfree〉 = 0.86 ± 0.05. However, it is clear that it is not
very informative to express the comparison in terms of a single num-
ber. The offset in mass is mass dependent, the hierarchical method
measures significantly larger masses for the upper limit/low-mass
systems, as they are pulled towards the population mean. The com-
parison of the marginalized posterior distribution functions of the
masses derived here and those derived independently with concen-
tration as a free parameter show reasonable agreement (Fig. A2 and
Table A1). The obvious outliers are the low SNR objects that when
treated individually show truncated posteriors at 1×1013 M�. This
truncation arises from the implantation of a harsh prior boundary
that is well motivated from the X-ray temperatures. For the same
clusters, our masses all lie above 1013 M� but with very different
values of mass, implying that even with a well-motivated prior, the
effect on mass can be significant. For the high-mass clusters, the
hierarchical method is systematically lower than those of Lieu et al.
(2016); however, we do not expect this to be due to a bias since
our tests on the cosmo-OWLS simulations (Section 4) have demon-

strated that an increase in the number of low-mass systems had no
effect on the inferred values of the high-mass clusters. The mass
estimates lie within 1σ of each other and difference may be a result
of the small sample size used and the lack of high-mass systems in
our sample. We expect our method to improve with sample size.

Smith et al. (2016) discussed alternative weight functions for
comparison of two sets of cluster mass measurements via a weighted
geometric mean calculation. They defined the weights for weak-
lensing masses in terms of σ M, in contrast to our choice of σ M/M,
arguing that for their sample the former definition was more closely
related to data quality than the latter, which tended to up-weight
more massive clusters. The Smith et al. (2016) sample spans a
smaller redshift and mass range than the sample that we consider
here. Therefore, issues relating to a mass-dependence of the weight
function are much less clear cut for our study than for Smith et al.
(2016). For simplicity in this proof of concept study, we therefore
adopt the more conventional weight function given in equation (24).

5.4 Shrinkage

In the hierarchical model, mass is shrunk towards to the global popu-
lation mean (Fig. 8). In comparison to the individually fitted masses
measured in Lieu et al. (2016), equivalent to a population with mass
variance σ 2

ln M = ∞, the hierarchical method is able to obtain better
constraints on weakly constrained masses. Further, shrinkage esti-
mates can be obtained by reducing the value of the relevant diagonal
element of the global covariance matrix. As σ 2

ln M → 0, the mass
estimates shrinks towards the global mean, which is equivalent to
the mass obtained by stacking all clusters.

Assuming all clusters have a single mass value, whilst allow-
ing concentration to be free we obtain a stacked mass estimate of
exp(ln M200) = 2.07 ± 0.79 × 1014 M� with a global concentration
value of exp (μln c) = 1.78 ± 1.72.

We can perform the same analysis for concentration, whilst al-
lowing mass to be free we obtain a stacked concentration estimate
of exp (ln c200) = 2.21 ± 1.44 with a global concentration value of
exp(μln M ) = 1.62 ± 1.01 × 1014 M�.
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Figure 8. Individual galaxy cluster mass shrinkage estimates show the individual mass estimates shrink towards the population mean as σ 2
ln M decreases. Each

cluster is represented as a different colour. The points show the fitted individual masses of clusters using the hierarchical method where σ 2
ln M is 1.38 and the

shaded region is the 1σ error. The stars and crosses are the individual masses following a non-hierarchical method (Lieu et al. 2016) where concentration is a
free parameter and where concentration is fixed to the Duffy et al. (2008) c–M relation, respectively.

A simultaneous fit for a single stacked mass and concentration
(i.e. both σ 2

ln M → 0 and σ 2
ln c → 0) results in 1.91 ± 0.70 × 1014 M�

and 1.60 ± 1.16, respectively. Hence, both parameters are in agree-
ment within the errors either based on stacking only on either one
of those parameters or both. The constraints on mass are stronger
than concentration as expected due to the difficulty in measuring
the latter.

The global means for the hierarchical fit were exp(μln M ) =
1.62 ± 1.04 × 1014 M� and exp (μln c) = 2.04 ± 1.68. Although
within the errors these results are consistent with the shrinkage
estimates, the mean mass is slightly smaller and the mean concen-
tration is slightly larger. Simple stacking is a more severe constraint
on M–c; blindly stacking clusters together can lead to incorrect mass
estimates. In particular, our constraint on concentration is poor and
therefore the mass estimates are not too sensitive to the concentra-
tion. More data are required to achieve a reliable estimate of the
mean concentration of the population.

5.5 Mass–concentration relation

Using equation (22), we obtain mean values of α = 1.09+5.11
−2.85,

β = −0.02+0.11
−0.36, γ = 0.59+1.54

−0.90 (Fig. 9). Note that the majority of the
individual masses lie within 1σ since it is based not on the means
of the masses but the posteriors. Here, the 1σ ellipse encompasses
a third of the combined individual posteriors.

We find concentrations that are typically smaller than Duffy
et al. (2008) and Dutton & Macciò (2014) though the slope of
our relation is compatible. We note that with the quality of the
data, we are unable to constrain concentration leading to large
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Figure 9. Concentration–mass relation. c values are computed for all M
values in the range using the equation (22) for each pair of μ and � sampled.
The mean and 1σ uncertainty is shown as the solid black and dotted lines,
respectively. The fitted covariance and mean of population concentration
and mass shown by red contours of 1σ , 2σ and 3σ confidence and therefore
appear misaligned from the fit. For comparison, we plot the c–M relations
from Duffy et al. (2008, solid purple line), Dutton & Macciò (2014, solid
green line) and Diemer & Kravtsov (2015, solid blue line) are shown at our
population mean redshift z = 0.27. The black points are the mean of the
individual log parameters.
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uncertainties on our regression parameters. Our data marginally
agree with a weak anticorrelation between concentration and mass
that is expected from simulations (e.g. Bullock et al. 2001). Low-
mass groups formed in early times when the mean density of the
Universe was larger, allowing concentrated cores to form. Massive
clusters formed later on through the accretion of groups. In the
literature, the concentration–mass relation is primarily estimated
using numerical simulations where the concentration parameters
are known exactly. Where a c–M relation has been measured from
observations, studies have relied on high signal-to-noise clusters
or stacking multiple clusters together to obtain a concentration es-
timate. We have already seen from the shrinkage estimates that
stacking can cause overestimation of concentration. We note that
the individual measurements of the ln 〈c200〉, ln 〈M200〉 are consis-
tent with the higher values of concentration seen in the literature;
however, our assumption that these parameters are lognormally dis-
tributed means that the correct values should be taken as 〈ln c200〉
and 〈ln M200〉 where the latter gives a result that is closer to the pos-
terior peak of both Pr(x) and Pr(ln (x)), where x is c200 and M200. Due
to the large uncertainties, our results are not able to rule out higher
concentrations (Fig. 7b). The c–M relations taken from the litera-
ture lie comfortably within the contours of the population mean and
covariance.

6 D ISCUSSION

6.1 Tests on priors

We test the influence of the priors on the toy data set. Recall that
μ ∼ N (μ0, σ

2 = 1) where μ0 = (32, 1, 0.3). For the 38 clusters
and 0.1 shear data uncertainties, the estimated population mean was
μ̄ = (33.18 ± 0.19, 0.98 ± 0.09, 0.26 ± 0.01). We vary the values
of μ0 and find that the weakly informative prior does not affect the
estimated population mean μ (see Table A1). For μ0[1] = (30, 31,
32, 33, 34), the mean of the posterior samples is 〈μ[1]〉 = 33.18 ±
0.19 and for μ0[2] = (−1, 0, 1, 2) we obtain 〈μ[2]〉 = 0.97 ± 0.09.

Testing the prior influence on the observational data, we again
find that it does not affect the mean population mass and only
weakly influences the estimation of the mean population concen-
tration. Recall the measured population mean was μ̄ = (32.72 ±
0.28, 0.71 ± 0.36, 0.24 ± 0.01). For the same varying values of
μ0[1] as above, we obtain 〈μ[1]〉 = 32.71 ± 0.13 and for μ0[2],
we obtain 〈μ[2]〉 = 0.63 ± 0.16. For the observational data at
the extreme hyperprior variants, we get handful of divergences
(<10/4000) even with a very high acceptance (0.999), as the prior
extends further into the unstable regions of the parameter space.
Given that the divergences remain sparse, we expect that the results
to not be strongly affected.

6.2 Comparison to literature

The concentration–mass relation is still a topic of interest since
the regression parameters throughout literature vary significantly
and observationally, the uncertainties are large (Sereno et al. 2015).
Observation based c–M relations tend to rely on stacking analyses
or samples of high signal-to-noise systems. We neither stack our
lensing signals nor limit our sample to a signal-to-noise threshold,
since this may lead to a bias. Here, we discuss and compare our
results to the literature.

Our data on average show lower concentration values compared
to the Duffy et al. (2008) c–M relation that is known to be lower than
many other simulation based c–M relations (e.g. Okabe et al. 2013;

Dutton & Macciò 2014). However, their relation assumes W M A P5
cosmology (we use W M A P9), and the inferred cosmology is known
to have a non-negligible effect on concentration (Macciò, Dutton &
van den Bosch 2008). Further, c–M relations based on numerical
simulations tend to lower normalizations in comparison to observa-
tional samples. This could be due to selection effects or the physics
included in the simulations.

Using cold dark matter simulations based on Planck cosmology,
Dutton & Macciò (2014) find a c–M relation whose evolution is
not described by others in the literature (see their fig. 11). Our
data suggest a slight positive redshift evolution, however, with large
uncertainties that are fully consistent with little or no evolution.
Like many simulation based studies (Klypin et al. 2016), they find
the Einasto density profile to be a better model for dark matter
haloes in comparison to the NFW profile; however, the significance
is more pronounced for massive systems. Gao et al. (2008) find
that the Einasto profile improves the sensitivity of concentration
estimates to the radial fitting range in particular for stacked clusters.
To implement this model, however, would require the introduction
of five extra hyperparameters and 38 parameters. More importantly,
baryon physics is expected to play a more significant role in low-
mass systems that are not included in these simulations. Feedback
affects both the normalization and slope of the c–M relation by
simultaneously decreasing the mass and increasing the scale radius,
and massive neutrino free streaming can further lower the amplitude
by reducing the mass (Mummery et al., in preparation).

Okabe et al. (2013) have shown that the NFW profile fits well to
the observations of stacked weak-lensing data. Our method imposes
a quasi-stacking so NFW may be appropriate. Compared to Duffy
et al. (2008) and Dutton & Macciò (2014), our relation are 41 and
49 per cent systematically lower, respectively, although only with
a significance of 1.04σ and 1.40σ lower. Our low concentration
is consistent within the uncertainties with the literature (Sereno
& Covone 2013); however, they consider higher redshift clusters
(0.8 <z < 1.5). Such low concentrations are typical for haloes
undergoing rapid mass accretion and tend to be less well fitted by
the NFW profile.

Concentration is also correlated to the halo mass accretion his-
tory that in turn depends on the amplitude and shape of the initial
density peak. In search for a universal halo concentration, Diemer
& Kravtsov (2015) instead fit concentration to peak height ν, their
relation is also higher than ours; however, they find an upturn at
high-mass (ν) scales. This flattening and upturn of the c–M relation
is also found in other studies (Bullock et al. 2001; Eke, Navarro &
Steinmetz 2001; Prada et al. 2012) and is attributed to there being
more unrelaxed haloes at higher mass. In our data, we too observe
an upturn at higher mass scales; however, the low SNR of low-mass
clusters will have larger concentration errors, so it is difficult to
confirm this with the current small cluster sample.

Bahé et al. (2012) use mock weak-lensing observations based on
numerical simulations to study the bias and scatter in M and c. They
find that substructure and triaxiality can bias the concentration low
(∼12 per cent) with respect to the true halo concentration, with the
effect of substructure being the dominant effect. It can also lead
to large scatter whilst having a much smaller effect on M200. We
expect this effect to be small on our sample because substructure
and triaxial haloes are more characteristic of massive clusters.

Recently, Du et al. (2015) use 220 redMaPPer (Rykoff et al. 2014)
clusters with overlap with CFHTLenS to calibrate an observations
c–M relation without stacking. They find a relation consistent with
simulations but with large statistical uncertainties. Their clusters
are slightly more massive than ours (M200 ∼ 1014−1015 M�), none
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the less their results suggest that the c–M relation is highly sen-
sitive to the assumed prior (their fig. 6.). They find that dilution
by contaminating galaxies and miscentring can negatively bias the
concentration values, we expect the latter to be more important in
this work since we use spectroscopic redshifts and a conservative
background selection, but our shear data are centred on the X-ray
centroid. By including priors based on richness and centring offset
in their model, their results change significantly. Consequently, we
expect our c–M relation to change in the future with the inclusion
of other cluster properties.

It is important to note that, like mass measurements, concen-
tration values observed using different methods and definitions
may vary. Concentrations derived from weak gravitational lensing,
strong lensing and X-ray are yet to reach agreement (Comerford &
Natarajan 2007).

Possible reasons that the low normalization of our c–M relation
include the assumed cosmology, internal substructure, halo triaxi-
ality or galaxy formation-related processes that expel baryons into
the outer regions of the halo resulting in a shallower density profile
(Sales et al. 2010; van Daalen et al. 2011). Also, as noted above,
neutrinos can also lower the amplitude. Centre offset is degener-
ate with the normalization of the c–M relation and neglecting any
miscentring could bias concentrations low (Viola et al. 2015). In
our work, we centre shear profiles on the X-ray centroids that may
not trace the centre of the dark matter halo as well as the BCG but
this should be accounted for since the inner radius of 0.15 Mpc is
excluded when fitting the NFW model.

Another important point regards the imposed multivariate
Gaussian model and how well it fits the data. Fig. 7 shows that
the posteriors of the individual cluster concentrations agree well
with the Gaussian prior; however, the masses appear more con-
strained by the single Gaussian fit. A mixture model of three or
more Gaussians may be a better prior for the mass; however, the ad-
ditional flexibility introduced will also affect our ability to constrain
concentration. For this work, there is no reason to believe that the
clusters do not originate from the same underlying population since
they are selected in the same way, however in the future if external
samples are to be included then the addition of further Gaussians
will be more important.

Sereno & Ettori (2015) and subsequent papers in the CoMaLit
(COmparing MAsses in LITerature) series compare and apply meth-
ods to analyse cluster masses and scaling relations in a homogenous
way whilst attempting to taking into account sample calibration is-
sues that may lead to discrepancies in mass and scaling relations.
Since in this paper, we only explore mass, concentration and red-
shift whilst the clusters are selected on X-ray count rate, we leave
observation biases to a future paper that will include observables
such as X-ray luminosity.

7 C O N C L U S I O N

We have developed a hierarchical model to infer the population
properties of galaxy groups and clusters, and present a method for
its correct usage to estimate of unknown parameters of additional
clusters that is superior to the ad hoc scaling relation. Nevertheless
familiar scaling relations can also be extracted. We apply the method
on toy data, hydrodynamical simulations and observational data.
Using this model, we are able to obtain weak-lensing mass estimates
of individual clusters down to 1×1013 M� without the need for
harsh prior boundaries and assumptions about the concentration,
even when the signal to noise is low. Below is a summary:

(i) We test the model on simulated toy data and find that the
agreement with the true cluster mass and concentration is good and
can further improve with increasing sample size and/or data un-
certainties. Our tests on realistic weak-lensing measurements from
hydrodynamical simulations similarly show promising agreement.

(ii) We then apply the method on a small sample of 38 low-mass
groups and clusters from the Lieu et al. (2016). Using this hierarchi-
cal method, we are able to achieve better constraints on both mass
and concentration without the compromise of upper limit measure-
ments or the use of an external concentration–mass relation. This
eliminates the bias introduced from calibrating with information de-
rived from a sample that may not be representative of our systems.
What’s more the concentrations used in Lieu et al. (2016) are de-
rived from dark-matter-only simulations, the missing physics could
invoke differences from observations. The tests on the simulations
is promising for the extension of this work to the full XXL sample
(�600 galaxy groups and clusters).

(iii) Eckert et al. (2016)’s study on the XXL-100-GC galaxy
clusters in the XXL survey find a very low gas fraction that requires
a hydrodynamical mass bias of MX/Mwl = 0.720.08

0.07 to reconcile
the difference. We measure masses on average 28 per cent smaller
compared to the mass estimates from Lieu et al. (2016) that may
be able to resolve the issue. We note, however, that at the low-mass
end, we measure higher masses compared to Lieu et al. (2016),
which would drive those gas fractions even lower.

(iv) The mean population cluster mass and concentration are
measured to be μM = 1.62 ± 1.04 × 1014 M� and μc = 2.04 ±
1.68. The shrinkage of individual masses towards the population
mean suggests that hierarchical modelling has a larger effect on
the low-mass systems where the SNR is low. Tests with shrinkage
of parameters suggest that blindly stacking clusters for mass and
concentration can bias the estimated value of the population mean.
Parametrizing a single concentration whilst allowing mass to be
free results in a concentration that is biased high compared to the
population mean by 8 per cent. Stacking both concentration and
mass to a single value on the contrary results in a positive mass bias
of 18 per cent and negative concentration bias of 22 per cent. This
is worrisome for studies that rely on single concentrations for mass
estimation those that blindly stack large samples of clusters.

(v) We estimate the concentration–mass relation from the under-
lying population obtaining a result that within the uncertainties is
consistent with the literature. We are able to recover the weak anti-
correlation between concentration and mass; however, we find that
the data suggest much lower concentrations than those previously
measured in observations and simulations. We attribute this to the
fact that observation based c–M relations rely on stacking analyses
that we do not use and as stated previously stacked concentration
estimates tend to be biased high. Our c–M relation suggests an evo-
lutionary dependence, however, within the errors is not able to rule
out no evolution.

Our method can be easily modified to incorporate more popula-
tion parameters such as X-ray temperature, luminosity, gas mass,
etc. The additional cluster information will help to improve the
constraints on mass predictions. In the future, we hope to extend to
cosmological inference by implementing a more accurate function
to describe the population of clusters, namely convolving the true
selection function with the cluster mass function. When the weak-
lensing data for XXL-South clusters becomes available, we will be
able to incorporate the additional systems to improve constraints
on our model as well as other cluster samples in the literature (e.g.
see Sereno et al. 2015). This work will be important for current

MNRAS 468, 4872–4886 (2017)



4884 M. Lieu et al.

wide field surveys (such as DES, KiDS, etc.) where the data may
be limited by the shallow survey depth, and for future big data sur-
veys (e.g. Euclid, LSST, e-ROSITA) who will need more efficient
ways to deal with processing the predicted quantities of data whilst
extracting the maximum amount of information from them.
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APPENDI X A : N FW DENSI TY PRO FI LE
M O D E L

The 3D NFW density profile is defined as

ρNFW(r) = ρs

(r/rs)(1 + r/rs)2
, (A1)

where the central density is

ρs = 200

3

ρcrc
3

ln(1 + c) − c/(1 + c)
. (A2)

Here, ρcr = (3H 2(z))/(8πG) is the critical density of the Universe
at redshift z, where H(z) is the Hubble parameter and G is Newton’s
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Figure A1. Comparison between our masses and those measured within
Lieu et al. (2016), where they assume a fixed c–M relation from Duffy
et al. (2008). Their upper limit measurements are shown in grey, where
the estimate is confined by the lower prior boundary of 1×1013 M�. The
dashed line is equality. Our mass estimates show a systematic difference
that is expected from the shrinking nature of the hierarchical model in that
for high-mass clusters we predict lower masses and low-mass groups we
predict higher mass values. The influence of the population distribution is
more pronounced for the low-mass systems, where the uncertainties on the
data are larger.

gravitational constant. We fit our data to the reduced gravitational
shear

gNFW = γNFW

1 − κ
, (A3)

where the convergence can be expressed as the ratio of the surface
mass density and the critical surface mass density κ = �/�cr and

�cr = c2

4πG

DS

DLDLS
, (A4)

where c is the speed of light and DS, DL and DLS are the an-
gular diameter distances between the observer-source, observer-
lens and lens-source, respectively. The shear is the difference
between the mean surface mass density and the surface mass
density

γNFW = � − �

�cr
. (A5)

To obtain � and �, we integrate the 3D density profile along the
line of sight l,

�(x) = 2
∫ ∞

0
ρNFW dl

= 2rsρs

x2 − 1
(1 − ξ ), (A6)

�(< x) = 2

x2

∫ x

0
x ′�(x) dx ′

= 4rsρs

x2

[
ξ + ln

(x

2

)]
, (A7)

where x = R/rs, R is the projected radial distance from the lens centre
and ξ is a fourth-order power series expansion as x approaches 1,

ξ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2√
1−x2

arctanh
√

1−x
x+1 if x < 0.98,

2√
x2−1

arctan
√

x−1
x+1 if x > 1.02,

1 − 2
3 (x − 1) + 7

15 (x − 1)2 − 12
35 (x − 1)3

+ 166
630 (x − 1)4 otherwise.

(A8)

MNRAS 468, 4872–4886 (2017)



4886 M. Lieu et al.

n0016
0.

0
0.

2
0.

4
P
(M

20
0)

n0022 n0024 n0025 n0026

n0032

0.
0

0.
4

P
(M

20
0)

n0080 n0081 n0083 n0087

n0089

0.
0

0.
4

P
(M

20
0)

n0091 n0214 n0216 n0220

n0225

0.
0

0.
4

0.
8

P
(M

20
0)

n0233 n0234 n0243 n0255

n0260

0.
0

0.
2

0.
4

P
(M

20
0)

n0262 n0267 n0269 n0273

n0274

0.
0

0.
2

0.
4

P
(M

20
0)

n0275 n0293 n0294 n0303

n0311

0.
0

0.
4

P
(M

20
0)

n0320 n0322 n0326

1e+13 1e+14
M200

n0328

1e+13 1e+14
M200

n0338

1e+13 1e+14
M200

0.
0

0.
4

P
(M

20
0)

n0341

1e+13 1e+14
M200

n0343

1e+13 1e+14
M200

Figure A2. The posterior distribution functions of the individual mass measurements (solid black line) and the fit statistic taken as the posterior mean (dotted
black line). The grey shaded regions show the posteriors of the individual masses from Lieu et al. (2016), assuming a free concentration parameter for
comparison. The posteriors of both methods are in reasonable agreement. The truncated prior used in Lieu et al. (2016) can be seen at 1013 M� for their clusters
where only an upper limit on mass is measured, whereas our posteriors do not incur a sharp prior boundary yet are still able to constrain a posterior peak.

Table A1. The results of the tests on the assumed priors. The table shows fitted values of the population means for various prior central values.

Toy data Observational data
Prior Fit value Prior Fit value

μ0[1] = 30 μ1 = 33.11 ± 0.18 μ0[1] = 30 μ1 = 32.53 ± 0.33
31 33.14 ± 0.18 31 32.64 ± 0.28
32 33.18 ± 0.19 32 32.72 ± 0.28
33 33.21 ± 0.18 33 32.80 ± 0.26
34 33.24 ± 0.18 34 32.86 ± 0.25

μ0[2] = −1 μ2 = 0.96 ± 0.09 μ0[2] = −1 μ1 = 0.44 ± 0.42
0 0.97 ± 0.09 0 0.57 ± 0.36
1 0.98 ± 0.09 1 0.71 ± 0.36
2 0.99 ± 0.09 2 0.79 ± 0.34
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