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ABSTRACT (248/250 words) 

Pain is known to interrupt attentional performance. Such interference effects seem to 

occur preferentially for tasks that are complex and/or difficult. However, few studies 

have directly manipulated memory load in the context of pain interference to test this 

view. Therefore, the present study examines the effect of experimental manipulations 

of both memory load and pain on three tasks previously found to be sensitive to pain 

interference. Three experiments were conducted. A different task was examined in 

each experiment, each comprising of a high and low cognitive load versions of the 

task. Experiment 1 comprised of an attention span (n-back) task, Experiment 2 an 

attention switching task, and Experiment 3 a divided attention task. Each task was 

conducted under painful and non-painful conditions. Within the pain condition, an 

experimental thermal pain induction protocol was administered at the same time 

participants completed the task. The load manipulations were successful in all 

experiments. Pain-related interference occurred under the high load condition, but 

only for the attention span task. No effect of pain was found on either the attentional 

switching or divided attention task. These results suggest that while cognitive load 

may influence the interruptive effect of pain on attention, this effect may be selective. 

Since pain affected the high load version of the n-back task, but did not interrupt 

performance on attentional switching or dual task paradigms, this means our findings 

did not completely support our hypotheses. Future research should explore further the 

parameters and conditions under which pain-related interference occurs. 
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INTRODUCTION (500/500 words) 

Pain functions to interrupt current concerns, warn of potential danger, and 

promote analgesic behaviour in oneself and from others [12]. This interruption can 

result in attentional focus to pain and away from other cognitive demand. Indeed pain-

related cognitive deficits have been shown in both chronic pain [11], and using 

experimentally-induced pain with healthy participants [7; 21; 22; 40]. The magnitude 

of this effect may be altered by the nature of the task with findings using experimental 

pain models finding greater effects on complex dual-task performance compared to 

more simple tasks [29-31], and meta-analyses showing that the effects of chronic pain 

are greatest for complex memory, attention, and executive function tasks [3; 4; 33]. 

Task complexity has therefore been identified as a potential moderator, and 

could help explain the variation found in pain interference effects. Using a series of 

modified Stroop tasks which varied in complexity chronic pain patients with high 

intensity pain were found to be generally slower and less accurate on all tasks and 

these effects were most pronounced when the task was more cognitively demanding 

[14].  

This effect of load is not limited to chronic pain population and such 

interference effects are also seen in pain-free adults who have been exposed to 

experimental noxious events. Bingel et al. [5] found that laser pain had a detrimental 

effect on participants’ performance on a 2-back but not a 1-back task (measures of 

attention span), which was taken to suggest greater sensitivity to pain interference 

under high-load conditions. However, when Legrain et al. [21; 22] examined the 

effects of painful laser sensation on n-back performance, they found greater 

decrements in the lower load version of the task (0-back vs. 1-back task). This was 

taken by the authors to suggest that load may actually help protect against 
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interruption, possibly by increasing distraction from pain and therefore lower pain 

experiences. Indeed, distraction paradigms also suggest that less pain is reported when 

performing a high load distraction task [2; 42]. 

These contradictory findings demonstrate that the role of cognitive load in the 

interruptive effect of pain on attention is still unclear. There are few studies that have 

systematically examined the effects of load on pain-related interference on tasks 

which required differing aspects of attentional control. Our primary aim was, 

therefore, to examine the effect of cognitive load on pain-related attentional 

interference. As we have shown previously that the interruptive effect of pain on 

attention is greatest within the domains of attention span, attentional switching and 

divided attention [29; 30], we decided to focus on these three areas. Given that Bingel 

et al. [5] found that pain affected the 2-back task but not the 1-back, and our previous 

findings of pain interference using the 2-back task, we judged that increasing the load 

would increase attentional interruption further. Our specific hypotheses were that pain 

would interrupt participant speed and/or accuracy on the three cognitive domains, and 

that this effect would be moderated by cognitive load: the greater the load, the greater 

the disruptive effect of pain.  

 

GENERAL MATERIALS AND METHODS 

Three experiments were conducted using similar methods, recruitment 

procedures, and testing protocols. Common features of the experiments are first 

described followed by their unique elements. 

 

Participants 
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Following institutional ethical committee approval (from the Department of 

Psychology, University of Bath) and provision of informed written consent, 63 

healthy adult participants were recruited from the University of Bath staff and student 

population into one of the three experiments. Participants reported that they were not 

currently in pain, had no existing chronic pain condition, and were not taking 

analgesic medication. Participants were paid for participation (£5). 

 

Materials 

The attentional tasks were designed and controlled using E-Prime II 

professional software [37]. Stimuli were presented on an Iiyama prolite B1902S TFT 

monitor, which was powered by a Viglen genie desktop computer with a 3GHz 

Pentium Intel Core 2 duo processor and 2Gb of RAM. Responses were made using a 

PST model 200a serial response box for the n-back and attentional switching tasks. 

For the divided attention task responses were made using a standard Viglen keyboard.  

 

Pain manipulation  

Participants completed each task twice: once in a no pain condition, and once 

in a pain condition. The order of pain testing as well as the order of the load condition 

was counterbalanced between participants in each experiment to create a factorial 

design.   

Pain stimulation was achieved through the use of a Medoc PATHWAY - 

Advanced Thermal Stimulator (ATS). This equipment is designed for use in clinical 

and research settings, and induces pain through a plate placed on the skin. The plate 

temperature increases or decreases, and is delivered and controlled through specialist 

hardware and software, designed for experimental purposes. 
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Participants’ pain thresholds were individually generated using a search 

protocol. A 30mm x 30mm thermode was attached to the participant’s right ankle. A 

baseline temperature of 320C was used from which participants were instructed to 

increase the temperature (by pressing a mouse button, each time the participant 

pressed the button a small increase of approximately .10C occurred) until they felt that 

it was ‘just painful’. After 15 seconds, participants were asked to confirm whether the 

sensation was still ‘just painful’. If participants reported that the sensation was either 

no longer painful or was more than just painful then they were asked to adjust the 

temperature and the 15 second threshold check was performed again until a reliable 

threshold was reached. 

Participants’ individual thermal pain levels were used to design a protocol for 

use during the experimental tasks. In the pain condition temperature started at 320C 

and increased at a rate of 80C/second to 10C above participants set pain threshold (up 

to a maximum of 480C, with all thresholds higher than this tested at 480C). The 

temperature then oscillated +/- 10C around the participant’s pain threshold at 

80C/second for 10 oscillations. After 10 oscillations the temperature returned to the 

baseline temperature (320C) at 80C/second and immediately repeated the above 

procedure. Therefore pain was present throughout the cognitive tasks. This technique 

was used in our previous studies [19; 30; 32]. 

 

Data Screening  

For all studies, participants' data were examined to ensure that they met 

parametric assumptions; all data were normally distributed, with skew values between 

-2.56 and 2.56 [8]. Data were examined for outliers, based on mean scores greater 

than three standard deviations above/below the group mean [39]. Outlying data was 
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detected for one participant in Experiment 1 (n-back) and one participant in 

Experiment 3 (divided attention). Exclusion of these data did not change the overall 

findings and therefore data are reported with all participants included.  

 

EXPERIMENT 1: Attention span  

Attention Span is the amount of information that can be processed at any one 

time [24]. The n-back task measures attention span by asking participants to indicate 

if a current stimulus matches one presented previously.  

 

METHOD 

Participants 

Twenty participants (11 female) were recruited for the test of attention span, 

with a mean age of 25.95 (SD=4.27).  

 

Materials and Procedure 

Participants completed the task at two levels of difficulty; a 2-back (low load) 

and 3-back (high load) task. For the 2-back condition each participant’s task was to 

report whether the current letter matched the letter presented two letters back (See 

Fig. 1). All 21 consonants were used in this task. Following 30 practice trials, 

participants were presented with a stream of 90 letters, each for 500ms, followed by a 

1500ms blank screen. Participants pressed a key with their right hand if the letter was 

the same as two letters previously, and another with their left hand if the letter was 

different. For the 3-back task participants indicate whether the current letter was the 

same as the one presented three letters back. For each task there were 30 target stimuli 
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presented and 60 non-target stimuli randomly distributed through the task, and the 

task lasted approximately three minutes.  

The outcome variables for the n-back task were the number of correctly 

identified targets (hits) and the number of times non-targets were identified as targets 

(false alarms). 

 

RESULTS 

 Means and standard deviations are reported in Table 1. To investigate 

whether pain affected n-back task performance, the number of hits (i.e., number times 

participants correctly identified when the current letter matched the letter presented 

two/three back) and number of false alarms (i.e., times that participants incorrectly 

indicated that the current letter was the same as two letters previously) were entered 

into a 2 (load condition: high load vs. low load) x 2 (pain condition: pain condition vs. 

no-pain condition) within-groups ANOVA.  

 For hits there was a significant main effect of load, F(1,19)=25.25, p<.001; 

participants identifying more hits in the low load condition compared to the high load 

condition. Although the main effect of pain condition was not significant, 

F(1,19)=2.59, p>.05, a significant interaction was found between pain and load 

condition, F(1,19)=5.10, p<.05. This interaction was examined using a simple main 

effects analysis, with a Sidak correction for multiple comparisons. When load was 

low (2-back), no significant differences were found between the pain and no-pain 

conditions (p>0.05). However, when the load was high (3-back), participants 

identified significantly fewer hits in the pain condition compared to the no-pain 

condition (p<.05). This suggests that pain negatively impacts upon attention span 

when the task is more demanding i.e., high load condition. 



 
 

9 
 

 

For false alarms there was a significant main effect of load condition, F(1,19)=8.54, 

p<.01; more false alarms were found in the high load (6.25) condition compared to 

the low load (2.80) condition. There was no main effect of pain condition, 

F(1,19)=.93, p>.05, and no significant interaction between these two variables, 

F(1,19)=.06, p>.05.  

 

EXPERIMENT 2: Attentional switching  

Task-switching paradigms are used to investigate executive control of 

cognition and the cost to performance of changing between tasks compared to 

repeating the same task [26]. Responses after task switches are typically slower and 

less accurate than task repetitions. These switch costs reflect an aspect of executive 

control processing, with some suggesting that task-switch costs in response time (RT) 

reflect the duration of an executive control process (e.g., [25; 27; 36].  

 

METHOD 

Participants 

Twenty participants (15 female) were recruited, with a mean age of 30.95 

(SD=8.27). 

 

Materials and procedure 

The current task was based on one described by Hester and Garavan [15]. 

Participants were first given one block of practice trials in which a memory list of 4 

items was used. Following this in the main trials participants were initially presented 

with a list of either two (low load) or five (high load) letters for 6 seconds on the 
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screen simultaneously, which they were asked to memorise. After an 8 second break 

for consolidation, participants were asked to complete one of two tasks. In both 

versions of the tasks, participants were presented with letters on the screen one at a 

time. If the letter was presented in black print they were asked to indicate if the letter 

had been in the memory list or not (by two forced choice responses i.e., yes or no). 

However, if the letter was presented in either green or red then participants were 

asked to indicate the colour (by a separate two forced choice response i.e., red or 

green) (see Fig. 2).  

The critical factor relates to the type of instruction given in any one trial, and 

how it relates to the previous trial. For some trials participants were given the same 

instructions (repeat trials) whereas on others they were given different instructions 

(switch trials). It was the increase in the magnitude of the difference (both in reaction 

times and accuracy) between repeat and switch trials under the different levels of the 

experiment (load, pain) which was the primary interest. 

Participants were presented with a total of 200 trials. Within each trial, the 

target item was presented until a response was made, or for a maximum of 2 seconds, 

whichever came sooner. 

 

RESULTS 

Means and standard deviations are available in Table 1. To investigate 

whether pain affected attentional switching, data were entered into two separate 2 

(load condition; high load vs. low load) X 2 (switch condition: switch condition vs. 

repeat condition) X 2 (pain condition: pain condition vs. no-pain condition) within-

groups ANOVAs.  
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For reaction times, data analysis revealed a significant main effect of switch 

condition, F(1,19)=62.80, p<.001; participants responded faster to repeat trials (806 

msec) than to switch trials (987 msec). This also revealed a significant main effect of 

load condition, F(1,19)=5.01, p<.05. Here faster responses were found in the low load 

(874 msec) condition compared to the high load condition (919 msec). There was, 

however, no significant main effect of pain, F(1,19)=.12, p>.05, nor any significant 

interactions; all F<1.5, all p>.05. 

 A similar analysis was conducted on the accuracy data. Here a significant 

main effect of switch condition was found, F(1,19)=22.41, p<.001. Participants were 

less accurate following a task switch (percentage correct =.84) compared to repeat 

(percentage correct =.88). There were no significant main effects of load condition, 

F(1,19)=.01, p>.05, or pain condition, F(1,19)=2.46, p>.05. There were no significant 

interactions between any of the variables; all F<1.5, all p>.05. 

 Increasing cognitive load, as predicted, reduces performance on the task. 

Pain, however, failed to affect performance. 

 

EXPERIMENT 3: Divided attention 

Divided attention can be considered to be the processing of more than one 

source of information simultaneously [43]. Divided attention is involved in most of 

the complex tasks performed in day to day life. When operationalised experimentally 

divided attention paradigms can comprise any combination of tasks which require the 

simultaneous performance of multiple tasks. 

 

METHOD 

Participants 
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Twenty-three participants (12 female) were recruited, with a mean age of 

29.01 (SD=10.32). 

 

Materials and procedure 

The divided attention task used in the current experiment was based on that 

described by Della Sala et al. [9]. Participants were informed of a primary task to 

perform, and that they would do this under three different conditions. In one condition 

they performed this task alone i.e., no divided performance. In the two other 

conditions the primary task was accompanied with a secondary task i.e., divided 

performance conditions. In one version of the divided performance condition the 

secondary task was a low cognitive load, and in the other it was a high cognitive load.  

The primary task involved presenting participants with two single digit 

numbers at random locations on the screen for 500ms. Participants were asked to 

press the space bar whenever they saw either the number ‘0’ or ‘5’ appear. For the 

two divided attention conditions, participants were also asked to remember a series of 

letters before performing the primary task. When they finished the task, participants 

were asked to recall these letters. For the low load divided condition, participants 

were asked to remember three letters, whereas in the high load condition participants 

were asked to remember a seven item span (see Fig. 3). Each of the memory lists was 

presented for 4 seconds.  

In an initial phase participants were given a block of practice trials in which a 

memory list of 2 items were used. In the main trials participants were presented with 

18 blocks of 60 trials (six blocks of 60 trials for each of the three divided attention 

conditions), and each block contained 12 targets. Each screen was presented for 

500ms and each stimulus occupied .7o of visual angle. The load manipulation was 
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made before each of the 18 number blocks and the order of the load tasks was 

presented in a random order. The task lasted approximately 12 minutes. The primary 

analysis of interest here is the reaction times and response accuracy to the number 

stimuli dependent on the number of items to be recalled.  

 

RESULTS 

Means and standard deviations are available in Table 2. To investigate 

whether pain or load affected divided attention performance a 2 (pain condition: pain 

vs. no-pain) x 3 (load condition: single task vs. low load divided vs. high load 

divided) within groups ANOVA was conducted.  

For the reaction time data, no significant main effect of pain condition was 

found, F(1, 22)=3.17, p>.05. However, there was a significant main effect of load 

condition F(2,44)=5.34, p<.01. Simple main effects analysis, with a Sidak correction, 

revealed that participants took significantly longer to respond to stimuli in the high 

load condition (536 msec) when compared to the single task condition (524 msec) 

(p<.01). There were no significant differences between the high load and low load 

(528 msec) (p>.05) conditions, or between the low load and single task conditions 

(p>.05). Finally, no significant interaction was found between these two variables, 

F(2,44)=.40, p>.05. 

For accuracy data a similar 2 x 3 ANOVA was performed. This revealed no 

significant main effects either of pain condition, F(1,22)=2.31, p>.05 or load 

condition, F(2,44)=.25, p>.05. No significant interaction was found between these 

variables, F(2,44)=.98, p>.05.  

For recall of the original list data was missing from the first 9 participants due 

to a technical error in the program. Due to this the ‘n’ is likely to small and non-



 
 

14 
 

representative to make inferential analysis of these date of added value. Examination 

of the mean data however suggests that participants were able to engage well with the 

task. 

DISCUSSION (1500/1500) 

Our investigation examined the role of cognitive load on pain-related 

attentional interruption. We modified three tasks shown to be sensitive to pain 

interruption [29] by manipulating cognitive load. Load manipulations were successful 

in all experiments: participants’ performed worse in the high load versions of the 

attention span, switching and divided attention tasks when compared to the low load 

versions. Our primary interest was to examine whether this load manipulation affected 

pain-related interference. Pain interacted with load to affect cognitive performance. 

Unexpectedly this was found on only one of the three tasks. Specifically, for the 

attention span task high cognitive load resulted in pain-related interference. 

Furthermore, this pain interference effect was only found in the high load attention 

span task. This pattern of effects is surprising because we have previously found pain-

related interference when using the low load (2-back) version [29; 30]. Furthermore, 

there is at least one additional study outside our own laboratory that found pain 

interference on the 2-back version of the attention span task [5].  

The current findings suggest that whilst load seems to exacerbate pain 

interference it may be selective and limited to certain tasks. This was not due to the 

order or practice effects as entering task order as a within groups factor showed no 

interactions detected with this variable. One can speculate that the effects are due to 

previous exposure to similar tasks [17] but there is no evidence to support this 

hypothesis and we were careful to use different samples. Further, despite the previous 

report of pain affecting switching, this did not emerge here [10; 12; 29; 30]. One 
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possibility is that the effects of pain interference on these tasks are small and highly 

sensitive, and hence simply unreliable. Perfect replication is rarely predicted by 

significance testing so we should perhaps be unsurprised at the inconsistency [16; 38]. 

However, we would expect partial replication if the effects of interruption are large 

and robust. 

Here we manipulated cognitive load based on working memory, it would 

therefore be interesting to explore the effect of alternative perceptual load paradigms 

(e.g. [35]). The load theory of selective attention and cognitive control proposed by 

Lavie et al. [20] suggests opposing effects of memory and perceptual load. In this 

account increasing memory load increases the interruptive effect of distractor stimuli 

due to the increased cognitive control required, whereas increasing perceptual load 

decreases distractor interference by reducing the individual’s ability to perceive this. 

We might therefore expect that lower perceptual load results in greater task 

interference. An additional consideration, are the differences between studies in 

definition of ‘low’ or ‘high’ loads. For example, Legrain et al. [21; 22] utilised a 0-

back and 1-back task to examine the effects of load, whereas we compared 2-back and 

3-back versions. The current study therefore placed a higher load on participants, at 

many or all stages of the research. We selected a 2- and 3-back task because our 

previous studies found pain-related interference on a 2-back task, and we reasoned 

that by increasing the load, this would increase the interference effect found [18; 29-

31]. 

A related issue to consider is our choice to focus on the structural features of 

the tasks (i.e. the cognitive task parameters). It is possible that this had the effect of 

relegating any functional concerns with the meaning of pain, natural prioritization of 

task, or individual differences. Indeed, it is possible that our structural approach 
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makes interruption effects highly sensitive to minor alterations in characteristics of 

experimental design, meaning that without exact replication (using exact materials, 

tasks, etc.) differences will emerge. We acknowledge a limitations with our study is 

that we did not examine individual differences, and that with a larger sample the 

effects of sex, age, IQ, and/or affective state could potentially appear. It is also 

possible that variation in pain threshold might be related to the magnitude of 

attentional interruption. Further work that allows for tests of individuals differences is 

warranted. 

Perhaps more intriguing is the possibility that load operates on interruption by 

pain in a non-linear fashion: load may influence pain with a U-shaped function. That 

is, the interruptive effect of pain is most pronounced when executive control is either 

not engaged or is fully engaged and so fails. In-between interruption is shielded, as 

suggested by Legrain et al. [22]. Here our proposal would be that low load tasks 

recruit limited attentional motivation and can be relatively easy to complete, and so 

pain is able to have a larger effect on the participant. However, at moderate load 

engagement increases and distracts people from pain. At the highest load we predict 

that the task would become ‘impossible’ and participants engagement would reduce 

leading to greater pain processing [34]. If this U-shaped pattern of pain-attention 

relationship is to be substantially supported then a more fine-grained examination of 

the effect of cognitive load with a greater number of levels is needed.  

One additional consideration is that different participants were used across the 

three reported experiments. This does not allow us to examine the pattern of 

interference across experiments by participant. Although a within participants design 

may have been desirable, this would have brought other problems, such as extending 

the time required to complete the high and low load conditions of each task, and thus 
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introducing fatigue into performance. It is also necessary to consider whether different 

outcomes would have been observed with larger sample sizes. In the current study, we 

sought to identify relatively large effect sizes based on previous research using similar 

tasks to designed to investigate the interruptive effect of pain on attention [29; 30]. It 

is however possible that larger samples may produce data with a greater signal to 

noise ratio.  

For future directions it will be useful to consider further the parameters and 

conditions under which pain-related interference occurs. Factors that might enhance 

people’s engagement with the attentional task and reduce the interruptive effect of 

pain on attention have been proposed. Verhoeven et al. [41] suggested giving 

participants additional motivation to perform well on attentional tasks, for example a 

financial reward. They found that the experience of pain can be reduced and 

performance increased, indicating that both top-down control of pain factors (e.g., 

avoidance of harm and threat value) as well as bottom-up saliency factors (e.g., 

intensity and novelty) are important [23]. Further research is required to consider 

which factors and in what combination pain interference is more or less likely to be 

observed. It should, however, be noted that findings about the effect of threat 

manipulations are mixed. Some studies find that manipulating the threat value of pain 

affects increases interruption [6], whereas others, using similar task to those here, 

have failed to find greater pain interference under high threat [30]. 

A second consideration for future research relates to our practice of using 

experimental pain in relatively static and controlled motivational environments. 

Naturally occurring everyday pain has fundamentally different qualities to those 

found in the laboratory [13], and we have argued that, although challenging, it is 

valuable (and may be necessary) to develop protocols for including people with 
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naturally occurring pain in studies of attentional interference [28]. Of particular 

interest given the frequency of the pain experience are those of headache or menstrual 

pain. Indeed we have provisionally shown the impact of headache and menstrual pain 

on task performance [1; 18; 31]. Important differences exist between experimentally 

induced and real world pain, in that the former is somewhat artificial and controllable. 

It would be intriguing to see, therefore, whether similar, or perhaps even stronger, 

pain-interference effects would be found in those presenting with a wide range of real 

world pains.  

Although these data are based on an experimental pain model there are 

potential clinical implications if these results are replicated in applied settings. 

Patients are frequently given large amounts of information to recall (i.e. medication 

schedules) upon discharge from services, as well as procedural information to process 

(i.e. physiotherapy). Competing information needs to be processed, updated and 

switched between, for treatment adherence. High levels of cognitive load when 

presenting this information may lead to sub-optimal processing and poorer outcomes. 

We therefore propose that clinicians might consider how information is presented and 

if they can reduce the need to hold information in memory. Patients may benefit from 

electronic reminders, or an indexed file that may help them to perform tasks better for 

their treatment.  

In conclusion, the present findings suggest that cognitive load may be 

selective in the influence it has on the interruptive effect of pain on attention. So far, 

the exact form of the influence of cognitive load is unclear and the effects are 

intriguingly inconsistent. This may provide indirect support for Legrain’s ‘shielding’ 

hypothesis that the interruptive effect of pain is most pronounced when executive 

control is idle or is fully engaged [22]. The affective-motivational features of pain 
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may be more important in predicting the interruption of pain rather than the structural 

features of the stimulus and competing task.  
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Table and figure captions 
 
 

Table 1 Means and standard deviations for the n-back and switching tasks under 

different levels of load and pain (Note: RT = reaction time) 

 

Table 2: Means and standard deviations for the divided attention task under different 

levels of load and pain (Note: RT = reaction time) 

 

 

Figure 1: Example of two-back task 

 

Figure 2: Example of the switching task 

 

Figure 3: Example of the divided attention task 
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Figure 1 
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Figure 2 
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Figure 3 
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Task  Low load High load 

  No pain Pain No pain Pain 

n-back Hits 23.35 (4.70) 23.25 (4.96) 21.00 (5.15) 18.85 (6.40) 

 False Alarms 3.20 (3.16) 2.40 (1.76) 6.85 (8.93) 5.65 (4.76) 

      

Switch Repeat (RT) 787 (126) 783 (126) 834 (164) 819 (127) 

 Switch (RT) 975 (194) 953 (167) 1007 (198) 1014 (201) 

 Repeat (accuracy) .85 (.20) .91 (.13) .85 (.23) .92 (.14) 

 Switch (accuracy) .82 (.19) .87 (.14) .81 (.21) .87 (.16) 

 

 
  



 
 

29 
 

Means and standard deviations for the divided attention task under different levels of 

load and pain 

 

Task Single task Low Load High Load 

 No-Pain Pain No-Pain Pain No-Pain Pain 

RT 526 (46) 523 (45) 532 (53) 524 (48) 540 (47) 533 (43) 

Accuracy .69 (.08) .71 (.08) .69 (.08) .70 (.08) .70 (.08) .69 (.07) 

Recall 

accuracy 

N/A N/A .95 (.13) .86 (.17) .69 (.22) .68 (.26) 

 

Note: RT = reaction time 

 
 


