Individual calibration of accelerometers in children and their health-related implications

http://researchonline.ljmu.ac.uk/7033/

LJMU Research Online

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
Individual calibration of accelerometers in children and their health-related implications

Individual PA calibration and health implications

physical activity, accelerometry, threshold, children

Lynne M. Boddy1, L.M.Boddy@ljmu.ac.uk **
Conor Cunningham2, Cunningham-C15@email.ulster.ac.uk
Stuart J. Fairclough3,4 Stuart.Fairclough@edgehill.ac.uk
Marie H. Murphy2, mh.murphy@ulster.ac.uk
Gavin Breslin2, g.breslin1@ulster.ac.uk
Lawrence Foweather3, L.Foweather@ljmu.ac.uk
Rebecca M. Dagger4, Daggerb@hope.ac.uk
Lee E.F. Graves1, L.E.Graves@ljmu.ac.uk
Nicola D. Hopkins1, N.D.Hopkins@ljmu.ac.uk
Gareth Stratton6,7 G.Stratton@swansea.ac.uk

1. The Physical Activity Exchange, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, 62 Great Crosshall Street, Liverpool, L3 2AT.
2. Sport and Exercise Sciences Research Institute, Ulster Sports Academy, University of Ulster, Jordanstown Campus, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, UK.
3. Department of Sport and Physical Activity, Edge Hill University, St Helens Road, Ormskirk, L39 4QP
4. Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
5. Department of Health Sciences, Liverpool Hope University, Hope Park, Liverpool, L16 9JD, UK.
6. Applied Sports Technology, Exercise and Medicine Research Centre, College of Engineering, Swansea University, Bay Campus Fabian Way Swansea SA1 8EN
7. School of Sports Science, Exercise and Health, the University of Western Australia, Perth, Australia.

** Corresponding Author: Dr. Lynne M. Boddy,
The Physical Activity Exchange,
Research Institute for Sport and Exercise Sciences,
Liverpool John Moores University,
62 Great Crosshall Street,
Liverpool,
L3 2AT
Email: L.M.Boddy@ljmu.ac.uk
Tel: 0151 231 4275

Abbreviated Title: Children’s Activity-health associations using different intensity cutpoints

Article Type: Original research article

Author Contributions: Contributors: LMB; analysed the data. LMB, CC, GS and SJF; wrote this manuscript. LMB and GS; designed and conceived the REACH Y6 study. LMB, LF, RG, LEFG and NDH; acquisition and analysis of REACH Y6 data in Liverpool, MHM, CC, GB;
acquisition and analysis of data in Ulster. GS, MHM, SJF, CC; substantial contribution to
writing and critical review of the article. All authors approved the article prior to submission.

Funding: This study was funded by Liverpool John Moores University and by the University
of Ulster.

Disclosure: There are no conflicts of interest for this study.

Author declaration: This study has not been published elsewhere and is not being considered
for publication elsewhere.

Acknowledgments

We would like to thank the participants, parents, schools and researchers involved in the
REACH Y6 study. We would also like to thank Nicola Lyons, Dr Paul Newland, Dr Jeff Jones
and Dr Marcus Auth for Alder Hey Children’s NHS Foundation Trust for their key input in
arranging phlebotomy and biochemical analysis and Dr Giles Aldworth from the Ulster
Hospital for his involvement in this study. We would also like to acknowledge the contribution
of Professor Non Thomas who passed away in 2012 for her expert advice and support when
setting up this project. This study was funded by Liverpool John Moores University and Ulster
University.
Abstract

This study compared children’s physical activity (PA) levels, the prevalence of children meeting current guidelines of ≥60 minutes of daily moderate to vigorous PA (MVPA), and PA-health associations using individually calibrated (IC) and empirical accelerometer cutpoints. Data from 75 (n = 32 boys) 10-12 year old children were included in this study. Clustered cardiometabolic (CM) risk, directly measured cardiorespiratory fitness (CRF), anthropometric and 7 day accelerometer data were included within analysis. PA data were classified using Froude anchored IC, Evenson et al., 2008 (Ev) and Mackintosh et al., 2012 (Mack) cutpoints. The proportion of the cohort meeting ≥60mins MVPA/day ranged from 37%-56% depending on the cutpoints used. Reported PA differed significantly across the cutpoint sets. IC LPA and MPA were predictors of CRF (LPA: standardised β = 0.32, p = 0.002, MPA: standardised β = 0.27 p = 0.013). IC MPA also predicted BMI Z-score (standardised β = -0.35, p = 0.004). Ev VPA was a predictor of BMI Z-score (standardised β = -0.33, p = 0.012). Cutpoint choice has a substantial impact on reported PA levels though no significant associations with CM risk were observed. Froude IC cut points represent a promising approach towards classifying children’s PA data.
Introduction

Regular participation in physical activity (PA) in childhood is associated with reduced cardiometabolic risk (Andersen, Riddoch, Kriemler, & Hills, 2011), improved bone health (Boreham & McKay, 2011), reduced adiposity (McMurray & Ondrak, 2013), and improved psychological well-being (Biddle & Asare, 2011). PA guidelines state that children should accrue at least 60 minutes of daily moderate to vigorous PA (MVPA) to receive health benefits (WHO, 2010). The accurate measurement of PA is essential to investigate the associations between PA and health, estimate the prevalence of inactivity, and identify children in need of intervention. Accelerometry is the most commonly used objective method for assessing free-living PA in children, and has acceptable validity and reliability (Cain, Sallis, Conway, Van Dyck, & Calhoon, 2013). Despite this, no consensus exists with regards to the treatment of accelerometer data and inconsistent use of cutpoints presents challenges when quantifying the prevalence of inactivity (Ekelund, Tomkinson, & Armstrong, 2011), making comparisons between studies (Hislop, Bulley, Mercer, & Reilly, 2012) and establishing the relationship between PA and health outcomes (Bailey, Boddy, Savory, Denton, & Kerr, 2013).

Previous research has compared the classification accuracy of published thresholds (PTs) in youth using calibration studies, and recommended that researchers use Evenson’s (Evenson, Catellier, Gill, Ondrak, & McMurray, 2008) cutpoints to classify children’s PA (Trost, Loprinzi, Moore, & Pfeiffer, 2011). However, the empirical cutpoints examined by Trost et al. (2011) applied universal cutpoints to all children, with only one age-specific cutpoint included in the analysis (Freedson, Pober, & Janz, 2005). Such cutpoints fail to account for wide variations in accelerometer counts observed between children when engaging in PA at equivalent intensities (Rowlands, 2007). Subsequently researchers have proposed the use of individually calibrated (IC) approaches to improve the classification of children’s PA (Mackintosh, Fairclough, Stratton, & Ridgers, 2012).
One method of deriving individual cutpoints, particularly when using hip-mounted accelerometers, is to adjust cutpoints to account for limb length using relevant biomechanical theory. The Froude (Fr) number (Minetti, 2001) offers one solution to the standardisation of cutpoints for individuals, by taking the length of a given characteristic, in this case leg length, into account. Froude numbers are calculated using the equation: \(\text{Fr} = \frac{v^2}{g \times l} \) where ‘\(v \)’ is the speed, ‘\(g \)’ represents gravitational acceleration and ‘\(l \)’ is the length of the characteristic. The theory of dynamic similarity suggests that geometrical bodies have similar gait dynamics if the Fr number is kept constant (Alexander, 1989). For example, the Fr number of 0.25 represents optimum walking speed and Fr 0.5 is the point at which running occurs in most bipedal bodies, including humans (Kram, Domingo, & Ferris, 1997). Therefore for a given Fr number and related walking speed gait dynamics should be relatively consistent between participants, which in turn allows for a simple method of creating individualised and comparable thresholds. Despite its potential utility, few studies have utilised the Froude approach to individually calibrate accelerometer cutpoints (Boddy et al., 2014). As PA is positively associated with health, the potential to better examine these relationships with more precise estimates of PA is important, especially as relationships between PA and variables such as CRF and adiposity are often weaker than may be expected. To date no have examined differences in reported PA or PA-health associations between IC and empirically derived group level cutpoints. Therefore, the aims of this study were to compare children’s physical activity (PA) levels, the prevalence of children meeting current guidelines of 60 minutes of daily moderate to vigorous PA (MVPA), and PA-health associations using individually calibrated Fr (IC) and empirical accelerometer cutpoints.

Methods

Participants and Settings

The data for this analysis were taken from the REACH Year 6 study (Boddy et al., 2014). Seventy-five children (n = 32 boys) 10-12 years of age agreed to take part in the study which had ethical clearance from the respective institutional ethics committees. The study was
conducted in Liverpool, England (2010, n = 39) and Belfast, Northern Ireland (2011, n = 35).

Each participant attended one school-based blood sampling session and one laboratory testing session. Participants also wore an accelerometer to quantify PA over seven days.

Procedure and Measurements

Anthropometrics: Stature, sitting stature to the nearest 0.1cm (Seca Ltd. Birmingham, UK) and body mass to the nearest 0.1kg (Seca Ltd. Birmingham, UK) were assessed using standard techniques (Lohman, Roche, & Martorell, 1988). Waist circumference was measured to the nearest 0.1cm. Body mass index (BMI), BMI Z-scores (Cole, Freeman, & Preece, 1995) and somatic maturation (Mirwald, Baxter-Jones, Bailey, & Beunen, 2002) were calculated. High-resolution ultrasound (Terason, t3000; Aloka, London, UK) was used to assess flow mediated dilation (FMD) and % FMD calculated using the equation: ((Peak artery diameter - Baseline artery diameter)/ Baseline artery diameter)*100) was calculated. Blood pressure (BP) was measured on the left arm after 15mins rest in a supine position using an automated BP monitor (Omron Healthcare UK Limited, Miton Keynes, UK).

Cardiorespiratory fitness assessment: After treadmill familiarisation, participants completed an individually calibrated continuous, incremental (2mins stages) treadmill (both sites: HP Cosmos, Traunstein, Germany) protocol to volitional exhaustion using online gas analysis (Liverpool: Jaeger Oxycon Pro, Viasys Health Care, UK, Ulster: COSMED, Quark, Italy) to measure peak oxygen uptake (VO$_{2}$peak). Treadmill speeds for the first two stages of the test were anchored to Froude numbers 0.25 (MPA) and 0.5 (VPA) for each participant. For this study leg length was used as the characteristic. An example equation to calculate treadmill speed for an individual with a leg length of 0.67m for a Fr number of 0.25 would be: treadmill speed (m/s) = √(0.25*(9.81* 0.67)), which would result in a speed of 1.28 m/s or 4.61 km/h.

Participants wore an ActiGraph accelerometer (ActiGraph GT1M, MTI Health Services, Pensacola, FL) at the right hip and heart rate monitor (Polar Electro Oy, Kempele, Finland)
set to record using 5 second epochs throughout the treadmill protocol. The highest 15-second average oxygen uptake was used to represent VO$_{2}$peak (ml/kg/min) for each participant.

Blood sampling: On a different day to the laboratory visits, children attended their school sites to provide a fasting venous blood sample. Experienced phlebotomists obtained ~ 10ml of venous blood following an overnight fast. Samples were taken between 8.30 and 10.30am. After providing a sample children were given breakfast. Blood samples were transported to the pathology laboratories at Alder Hey Children’s Foundation NHS Trust or the Ulster Hospital for analysis. Blood was analysed for triglycerides, cholesterol, high density lipoprotein cholesterol (HDL-c), glucose, adiponectin, and high sensitivity C-reactive protein (CRP) using assay methods that were standardised between sites. Blood markers were used in combination with FMD%, blood pressure and waist circumference to calculate a clustered cardiometabolic risk score by standardising individual risk components and summing them to create a continuous clustered risk variable. This approach has been used in several similar studies (Andersen, Hasselstrom, Gronfeldt, Hansen, & Karsten, 2004; Anderssen et al., 2007; Boddy et al., 2014; Buchan, Young, Boddy, & Baker, 2014).

Physical activity assessment: Children wore an ActiGraph (ActiGraph GT1M) uniaxial accelerometer on their right hip during waking hours for seven consecutive days. The monitors recorded activity using 5 second epochs to account for the sporadic nature of children’s physical activity (Baquet, Stratton, Van Praagh, & Berthoin, 2007). Periods of 20 minutes of consecutive zero counts (1 minute spike tolerance) were used to define a non-wear period and these periods were subtracted from daily wear time (Catellier et al., 2005). Children were included within analysis if they wore the monitor for a minimum of 9 hrs on any three days (Mattocks et al., 2008).

PA data were classified into light (LPA), moderate (MPA), vigorous (VPA) and moderate to vigorous PA (MVPA) intensities using three sets of intensity cutpoints: two sets of empirical cutpoints: Evenson et al., 2008 (Ev) and Mackintosh et al., 2012 (Mack). The Mack
thresholds were generated from data derived from a field-based observational protocol with children of the same age and from a similar geographical location as those included within this study and were included to provide an additional comparison. PA was also classified using individually calibrated (IC) cut points. Sedentary time was defined as ≤100 counts per minute for all cut point sets (Fischer, Yildirim, Salmon, & Chinapaw, 2012). Individually calibrated cut points were generated using the data from the VO$_2$ peak treadmill protocol. Froude 0.25 and 0.50 represent the thresholds for optimum walking speed and the transition between walking and running. The average counts for the middle 90 seconds (18 epochs) of the two Fr stages (Fr 0.25 and Fr 0.50) were used to represent MPA and VPA thresholds for each individual. The middle 90 seconds were selected to avoid the transitional periods between the Fr.25 (walking) and Fr.5 (running). To examine the energy cost associated with each Fr threshold metabolic equivalents were calculated for Fr.25 and Fr.5 stages using the gas analysis data (1 MET = 4.59 VO$_2$ ml/kg/min; (Ridley & Olds, 2008) and compared to the energy costs outlined by Harrell et al. (2005). This gas analysis data was simply used to assess the MET values associated with the Fr stages for each individual.

Data analysis

Differences in anthropometrics, clustered risk, VO$_2$ peak, sedentary time and PA components (MPA, VPA, MVPA) were examined by sex using MANCOVA, controlling for accelerometer wear time. The prevalence of those reaching ≥60mins MVPA per day was calculated for each cutpoint set. Differences in PA intensities were examined using repeated measures ANOVAs by cutpoint. To investigate the association between PA components and health markers (VO$_2$ peak, BMI Z-score, waist circumference, clustered cardiometabolic risk) multiple regression was employed controlling for sex, maturation, BMI and wear time. For each dependent variable three multiple regression models, one for each cutpoint, were created. Where BMI was used as a dependent variable it was excluded as a covariate. All analyses were completed using SPSS V21.0 (SPSS Inc, IBM). Alpha was set at P ≤ 0.05.
Results

Unadjusted mean participant characteristics and adjusted mean anthropometric, VO\textsubscript{2}\text{peak}, sedentary time and PA values for boys and girls are illustrated in tables 1 and 2 respectively. Boys were significantly less mature, had higher VO\textsubscript{2}\text{peak} and accrued more LPA and MPA than girls.

TABLE 1 ABOUT HERE

TABLE 2 ABOUT HERE

The IC cut points ranged from 1234-4476 counts per minute for MPA and 3192-9357 counts per minute for VPA. The mean oxygen consumption (VO\textsubscript{2} ml\textperiodcentered kg-1\textperiodcentered min-1) and MET values (1 MET = 4.59 VO\textsubscript{2} ml\textperiodcentered kg-1\textperiodcentered min-1) achieved during the treadmill stages Fr0.25 and Fr.5 were 20.1 ml\textperiodcentered kg-1\textperiodcentered min-1 (SD = 4.2 ml\textperiodcentered kg-1\textperiodcentered min-1), 4.4 METs and 31.2 ml\textperiodcentered kg-1\textperiodcentered min-1 (SD = 7.4 ml\textperiodcentered kg-1\textperiodcentered min-1) 6.8 METs respectively. These values are proximal to those commonly used to represent MPA (≥4 METS+) and VPA (≥6 METS) in the PA literature. Data from Harrell et al (2005) calculated for children aged 8-12 years confirm that participants were working at an intensity approximately equivalent to moderate intensity during Fr 0.25 (Harrell et al. (2005) values: VO\textsubscript{2} = 18.3 ml\textperiodcentered kg-1\textperiodcentered min-1) and approaching high intensity activity during Fr 0.50 (Harrell et al. (2005) values: VO\textsubscript{2} = 38.5 ml\textperiodcentered kg-1\textperiodcentered min-1).

The proportion of children meeting ≥60mins/day MVPA varied depending on the cutpoints used. According to the Mack cutpoints 56% met ≥60mins/day MVPA, whereas 49% and 37% achieved 60mins according to Ev and IC cutpoints respectively. The results of the repeated measures ANOVAs between cutpoint sets can be viewed in Table 3. Significantly higher MPA was reported using the Mack (MPA = 51.6 mins/day) cutpoints in comparison to the Ev (MPA = 38.4 mins/day) and IC cutpoints (MPA = 44.3 mins/day). Ev cutpoints (VPA = 25.9 mins/day) recorded higher VPA than Mack (17.8 mins/day) and IC
(13.0 mins/day). Significantly less LPA was observed using the Mack (195 mins/day) cutpoints in comparison to IC (209 mins/day) and Ev (200.3 mins/day), the difference between IC and Ev LPA was also statistically significant.

RESULTS OF MULTIPLE REGRESSION FOUND THAT IC LPA AND MPA WERE SIGNIFICANT PREDICTORS OF VO_{2}\text{peak} (R^2 for the model = 0.55, LPA: standardised beta = 0.32, t= 3.24, p = 0.002, MPA: standardized beta = 0.27, t = 2.57, p = 0.013) IC MPA was also a significant predictor for BMI Z-score (R^2 for the model = 0.31, standardised beta = -0.35, t = -2.96, p = 0.004). Ev VPA was a significant predictor for BMI Z-score (R^2 for the model = 0.32, standardized beta = -0.33, t = -2.59, p = 0.012), Mack data were not significant predictors for any health variables, however Mack VPA approached statistical significance as a predictor for BMI Z-score (R^2 for the model = 0.29, VPA standardized beta = -0.23, t = -1.98, p = 0.052). No significant PA-clustered risk score associations were observed irrespective of cut point set used.

DISCUSSION

The aims of this study were to compare children’s physical activity (PA) levels, the prevalence of children meeting current guidelines of 60 minutes of daily moderate to vigorous PA (MVPA), and PA-health associations using individually calibrated Fr (IC) and empirical accelerometer cutpoints. In this study the proportion of the cohort meeting current guidelines for daily MVPA ranged from 37% - 56% depending upon the cut point used. A number of studies have shown differences in PA prevalence depending on the choice of cut points used to analyse data (Hislop et al., 2012; Reilly et al., 2008). For example, a review by Ekelund et al. (2011) highlighted that the reported prevalence of children and young people meeting current PA guidelines ranged across six studies from 1% and 100%, with authors suggesting that the variability could be largely attributed to the different intensity cutpoints used between studies. At a 4 MET intensity (approximate to MPA) recommended counts per minute have
ranged widely from 1400 to 3600 (Cain et al., 2013). In this study, IC cut points derived from
the treadmill-based protocol ranged from 1234-4476 for MPA, with a mean MET value of 4.4
(range 2.49-7.04 METs) and 3192-9357 for VPA (mean MET value of 6.8, range 3.83-12.33
METs). This demonstrates the substantial variation that exists in the biomechanical efficiency
of movement (e.g. stride length, stride pattern) between children of a similar age completing
the same activity, and provides support for the use of IC cut points that take account of
individual differences.

This study also revealed significant differences in the classification of LPA, MPA and VPA
depending upon the cutpoint used. The discrepancies in the classification of PA intensities
observed may be in part due to the differing methods used to define each of the cutpoint
thresholds. For example, the IC cut points used in this study were derived from the application
of biomechanical theory, which is in contrast to the empirical cut points derived from
laboratory based (Ev) or field-based (Mack) energy expenditure. Although it is well
documented that the application of different cut points results in differences in estimates of
activity intensity (Trost et al., 2011), to date, none of the published papers have compared the
classification of activity intensity between IC and empirical cut points. Our findings suggest
that researchers should be cautious about the universal application of cut points which fail to
account for individual differences between participants, particularly with evidence suggesting
wide variations in step counts between children when engaging in PA at equivalent intensities
(Rowlands, 2007). The application of more specific cutpoints may provide an opportunity to
reduce sample size requirements within studies due to better estimates of primary outcome
measures.

Despite calls for raw data processing techniques to remove the reliance on proprietary counts
based data, this approach still requires the use of cutpoints or acceleration thresholds to
classify raw acceleration signals, therefore the findings of this study apply in the raw data
analysis context. To remove the requirement of cutpoints, pattern recognition or machine
learning approaches to classify accelerometer data have been proposed. Despite the potential utility of this approach, the majority of PA research conducted to date using accelerometers still utilizes proprietary counts data and applies group-level thresholds to the data, therefore the IC approach proposed within this paper is recommended. The range in prevalence and classification of PA resulting from the application of different cut points underscores the need for a consensus on accelerometer thresholds to quantify PA intensity. The array of thresholds used by researchers makes comparison between studies problematic, leading to conflicting conclusions (Hislop et al., 2012). The inconsistent use of these thresholds is also a major issue when attempting to quantify the prevalence of inactivity (Ekelund et al., 2011), has impacted upon PA policy making for children (Bailey et al., 2013) and the relationships between PA and health outcomes (Bailey et al., 2013). For example, in their comparison of three published thresholds (Chu, McManus, & Yu, 2007; Rowlands, Thomas, Eston, & Topping, 2004; Vanhelst et al., 2010) Bailey et al. (2013) reported a range of different associations between PA and health outcomes such as blood pressure, waist circumference, cardiorespiratory fitness and metabolic markers such as glucose and triglycerides. In our study, although the estimates of the intensity of PA differed according to thresholds used, relationships detected with the clustered cardiometabolic risk score were consistent. However, the IC cut points had the strongest associations with VO₂peak, an important independent predictor of cardiometabolic risk (Andersen et al., 2011). This may be due to the methods utilized to create the IC cutpoints and the treadmill-based VO₂peak protocol. Whether the approach of individually calibrating PA thresholds according to limb length is as effective at predicting energy expenditure across a range of different activities warrants further investigation. Furthermore, the empirical cutpoints used in this study were created using field-based protocols that included a range of typical daily activities. The differences described between these methods and the IC approach may relate to the protocols used to generate the cutpoints, rather than the accuracy of the cutpoints per se.
When compared to the use of a portable metabolic unit (Ev) or PA observation (Mack), it appears that the treadmill-based calibration protocol used in this study was more effective in accounting for individual differences in biomechanical efficiency of movement (e.g. limb length, stride length/frequency) by matching the accelerometer counts to changes in speed and resulting PA intensity. Whereas in previous research, the observed relationships between CRF and PA in children have been weaker than expected, for example weak-moderate standardized regression coefficients (0.14-0.33) between aerobic fitness and PA have been reported (Kristensen et al., 2010), the present findings suggest that IC cut points highlight stronger associations between children’s PA and CRF than are often reported. Moreover, there is a growing body of evidence that links CRF to cardiometabolic disease risk in children (Anderssen et al., 2007) (Boddy et al., 2014). Therefore, our findings have important implications for researchers investigating the associations between activity status, CRF and health, and practitioners referring inactive individuals for lifestyle intervention.

Strengths and Limitations: This is the first study to examine differences in reported PA, and PA-health relationships between Fr IC and empirically derived cut points. The generic cutpoint method is less time consuming than completing laboratory calibration studies involving multiple activities and portable calorimetry or observation. Despite this, the individual calibration approach used within this study does not take into account movement patterns other than walking and running, and although the majority of children’s activity is ambulatory the method may not accurately classify other types of movements completed by children. The method also did not merge the VO2 data from the fitness assessment that would have provided energy expenditure data. This was purposeful to allow the examination of the thresholds based on the Fr number alone, rather than a more complex hybrid threshold approach. An evolution of this method could be proposed that utilises VO2 data to examine whether the precision of the thresholds is improved, however this was beyond the scope and aims of the current study. In addition, the Fr number could result in non-ecological walking patterns which are not representative of ‘usual’ walking speeds. It is important to note that
maturational factors may influence metabolic efficiency and therefore energy expenditure within this population. The influence of maturation on energy expenditure was not explored within this study, mainly because of the repeated measures nature of the analysis when comparing thresholds, however warrants consideration when working with populations within this age range. This study used a range of established and emerging risk factors to provide a robust estimate of cardiometabolic risk. However, the participants involved in this study were healthy children, which may account for the lack of associations observed between the PA data and cardiometabolic risk scores. Stronger PA-health associations may be apparent in a population exhibiting greater cardiometabolic risk. The treadmill measure of VO$_2$peak is considered the reference standard, though standardised protocols were used, data were taken using different gas analysis systems in Liverpool and Ulster (Oxycon Pro and COSMED) which may influence comparability between the VO$_2$peak estimates.

Conclusion

This study has demonstrated that the application of different intensity thresholds has an impact when determining the proportion of children meeting current daily PA guidelines. To make accurate evidence based recommendations, a consensus on appropriate accelerometer thresholds for quantifying PA intensity is needed. IC cut points provide evidence of a stronger association between children’s PA and CRF than is often reported. This finding has important implications for researchers and practitioners investigating the associations between activity status, CRF and health and referring inactive individuals for lifestyle intervention. Additional research is needed with larger cohorts to fully examine the potential of using IC cut points to classify children’s PA.
References

Table 1. Raw mean [SE] participant characteristics by sex

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boys (n = 32)</th>
<th>Girls (n = 43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>10.47 [0.57]</td>
<td>10.5 [0.75]</td>
</tr>
<tr>
<td>Maturation offset (years)</td>
<td>-2.64 [0.71]</td>
<td>-0.95 [0.68]</td>
</tr>
<tr>
<td>BMI Z-score</td>
<td>0.65 [0.86]</td>
<td>0.53 [1.24]</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>64.4 [6.4]</td>
<td>65.7 [9.57]</td>
</tr>
<tr>
<td>VO$_2$peak (ml/kg/min)</td>
<td>45.55 [9.71]</td>
<td>40.81 [8.7]</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>63 [6.2]</td>
<td>62.1 [6.7]</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>103.6 [11.9]</td>
<td>102.3 [12.1]</td>
</tr>
<tr>
<td>FMD %</td>
<td>8.39 [3.24]</td>
<td>8.54 [4.26]</td>
</tr>
<tr>
<td>C-Reactive Protein (mg/L)</td>
<td>0.38 [0.29]</td>
<td>0.94 [1.32]</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>0.64 [0.2]</td>
<td>0.78 [0.28]</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>4.17 [0.67]</td>
<td>4.21 [0.54]</td>
</tr>
<tr>
<td>HDL-C (mmol/L)</td>
<td>1.59 [0.31]</td>
<td>1.49 [0.38]</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>4.71 [0.34]</td>
<td>4.63 [0.3]</td>
</tr>
<tr>
<td>Adiponectin (µg/mL)</td>
<td>10.58 [5.4]</td>
<td>11.14 [6.78]</td>
</tr>
<tr>
<td>Clustered CM risk</td>
<td>0.18 [4.01]</td>
<td>-0.38 [3.71]</td>
</tr>
<tr>
<td>Sedentary Time (mins/day)</td>
<td>440.4 [41]</td>
<td>458.8 [41.2]</td>
</tr>
<tr>
<td>Activity Type</td>
<td>Mean (SD) 1</td>
<td>Mean (SD) 2</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>IC LPA (mins/day)</td>
<td>220 [46]</td>
<td>200.7 [33]</td>
</tr>
<tr>
<td>IC MPA (mins/day)</td>
<td>52.4 [36.3]</td>
<td>38.3 [24.7]</td>
</tr>
<tr>
<td>IC VPA (mins/day)</td>
<td>14.2 [9.7]</td>
<td>12.2 [17.7]</td>
</tr>
<tr>
<td>IC MVPA (mins/day)</td>
<td>66.6 [37.5]</td>
<td>50.4 [31.9]</td>
</tr>
<tr>
<td>Accelerometer wear time</td>
<td>716.8 [49.2]</td>
<td>716.6 [116.9]</td>
</tr>
</tbody>
</table>
Table 2. Mean values [SE] for boys and girls adjusted for wear time (MANCOVA output, n = 61).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boys</th>
<th>Girls</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>10.45 [.13]</td>
<td>10.49 [.12]</td>
<td>.833</td>
</tr>
<tr>
<td>Maturation offset (years)</td>
<td>-2.63 [.14]</td>
<td>-0.89 [.13]</td>
<td>< 0.001</td>
</tr>
<tr>
<td>BMI Z-score</td>
<td>0.62 [.21]</td>
<td>0.70 [.18]</td>
<td>.776</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>64.0 [1.6]</td>
<td>67.0 [1.5]</td>
<td>.173</td>
</tr>
<tr>
<td>VO\textsubscript{2} peak (ml/kg/min)</td>
<td>46.39 [1.61]</td>
<td>39.28 [1.44]</td>
<td>.002</td>
</tr>
<tr>
<td>Clustered CM risk</td>
<td>-0.047 [.75]</td>
<td>-0.282 [.67]</td>
<td>.816</td>
</tr>
<tr>
<td>Sedentary Time (mins/day)</td>
<td>438.6 [7.7]</td>
<td>457.8 [6.9]</td>
<td>.069</td>
</tr>
<tr>
<td>IC LPA (mins/day)</td>
<td>221.5 [7.4]</td>
<td>196.3 [6.6]</td>
<td>.014</td>
</tr>
<tr>
<td>IC MPA (mins/day)</td>
<td>53.5 [5.9]</td>
<td>37.4 [5.3]</td>
<td>.047</td>
</tr>
<tr>
<td>IC VPA (mins/day)</td>
<td>14.0 [3.1]</td>
<td>12.6 [2.8]</td>
<td>.741</td>
</tr>
<tr>
<td>IC MVPA (mins/day)</td>
<td>67.5 [7.0]</td>
<td>50.1 [6.2]</td>
<td>.066</td>
</tr>
</tbody>
</table>
Table 3. Adjusted mean [SE] physical activity across the three cutpoint sets

<table>
<thead>
<tr>
<th>Activity</th>
<th>Individually Calibrated (IC) Minutes/day</th>
<th>Mackintosh et al. 2012 (Mack) Minutes/day</th>
<th>Evenson et al., 2008 (Ev) Minutes/day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SE</td>
<td>Mean SE</td>
<td>Mean SE</td>
</tr>
<tr>
<td>VPA</td>
<td>13.0* 1.7</td>
<td>17.8† 1.7</td>
<td>25.9 2.0</td>
</tr>
<tr>
<td>MPA</td>
<td>44.3^^ 3.6</td>
<td>51.6^ 2.4</td>
<td>38.4 1.8</td>
</tr>
<tr>
<td>LPA</td>
<td>209.0‡ 4.1</td>
<td>195.0† 3.7</td>
<td>200.3 3.8</td>
</tr>
</tbody>
</table>

*Ev > IC (p < 0.001), †Mack > IC (p < 0.001), ‡Ev > Mack (p < 0.001), ^Mack > IC (p = 0.005) ▲Mack > Ev (p < 0.001), ‡IC > Mack (p < 0.01) and IC > Ev (p = 0.006).