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ORIGINAL ARTICLE

An Adverse Outcome Pathway for Sensitization
of the Respiratory Tract by Low-Molecular-Weight Chemicals:

Building Evidence to Support the Utility
of In Vitro and In Silico Methods in a Regulatory Context

Kristie M. Sullivan,1 Steven J. Enoch,2 Janine Ezendam,3 Katherina Sewald,4

Erwin L. Roggen,5 and Stella Cochrane6

Abstract

Sensitization of the respiratory tract is an important occupational health challenge, and understanding the mech-
anistic basis of this effect is necessary to support the development of toxicological tools to detect chemicals that
may cause it. Here we use the adverse outcome pathway (AOP) framework to organize information that may
better inform our understanding of sensitization of the respiratory tract, building on a previously published
skin sensitization AOP, relying on literature evidence linked to low-molecular-weight organic chemicals and ex-
cluding other known respiratory sensitizers acting via different molecular initiating events. The established key
events (KEs) are as follows: (1) covalent binding of chemicals to proteins, (2) activation of cellular danger sig-
nals (inflammatory cytokines and chemokines and cytoprotective gene pathways), (3) dendritic cell activation
and migration, (4) activation, proliferation, and polarization of T cells, and (5) sensitization of the respiratory
tract. These events mirror the skin sensitization AOP but with specific differences. For example, there is
some evidence that respiratory sensitizers bind preferentially to lysine moieties, whereas skin sensitizers bind
to both cysteine and lysine. Furthermore, exposure to respiratory sensitizers seems to result in cell behavior
for KEs 2 and 3, as well as the effector T cell response, in general skewing toward cytokine secretions predom-
inantly associated with T helper 2 (Th2) response. Knowledge gaps include the lack of understanding of which
KE(s) drive the Th2 polarization. The construction of this AOP may provide insight into predictive tests that
would in combination support the discrimination of respiratory-sensitizing from non- and skin-sensitizing chem-
icals, a clear regulatory need.

Keywords: AOP, in silico, in vitro, respiratory sensitization

Introduction

The adverse outcome pathway (AOP) has gained pop-
ularity as a framework for structuring information at dif-

ferent levels of biological complexity relevant to a particular
adverse outcome (AO).1 It is thought that constructing AOPs
using available information on chemical response and re-

sponse–response relationships along known pathways will
allow the contextualization of results of predictive test meth-
ods across a diverse range of biological mechanisms.

Sensitization of the respiratory tract by chemicals is the
first stage in the development of chemical respiratory allergy,
an immune-mediated hypersensitivity reaction to an exoge-
nous low-molecular-weight chemical, which can result in
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asthma and rhinitis on repeated exposure and is an important
occupational health problem.2 Due to the severity and irre-
versibility of the adverse effect, identifying chemical respira-
tory allergens is of considerable regulatory, industrial, and
socioeconomic importance.3 Efforts to outline a framework
for assessment of potential respiratory-sensitizing chemicals
are underway.4 Currently, however, there are no standard-
ized, validated, and regulatory-accepted models for detecting
these chemicals or discriminating them from skin sensitizers,
potentially due to remaining gaps within the literature as to
the exact mechanistic steps leading to respiratory allergy.5

Another important issue in the development of predictive
test methods is the route of exposure in the sensitization
phase. Inhalation exposure is perhaps the most common ex-
posure route of concern for many substances, but there is ev-
idence that sensitization of the respiratory tract can be
induced via skin exposure as well.6–9 This knowledge has
implications for both the mechanistic understanding of the
pathway and the potential test methods that may be used to
detect respiratory sensitizers. Therefore, this article will con-
sider information from models using skin and lung exposure
(in vivo) and with dermal and respiratory cells and tissues
(in vitro/ex vivo). However, since the AOP framework ex-
cludes chemical-specific events upstream of the molecular
initiating event (MIE),10 a detailed discussion of exposure
or absorption/distribution/metabolism/excretion will not be
undertaken.

The construction of an AOP for this endpoint would allow
the following: (1) organization of available information to
identify remaining uncertainties and prioritize further re-
search, (2) highlighting of differences and similarities be-
tween skin and respiratory sensitization pathways, and (3)
improvement of existing or identification of novel predictive
models that, alone or in an integrated approach, could be
used to identify respiratory sensitizers.

Here we propose an AOP for sensitization of the respira-
tory tract by covalent binding of low-molecular-weight
organic chemicals to proteins, following the guidance pro-
vided by the Organization for Economic Cooperation and
Development (OECD) in its AOP Wiki Handbook.11 In
doing so we outline, based on the available literature, the
likely key events (KEs) and key event relationships (KERs)

relevant to the eventual AO. The outlines of this pathway fol-
low the already-published skin sensitization AOP.12 However,
the divergent AOs of the two pathways reflect differences in
the effector response (T helper 1 [Th1] vs. T helper 2 [Th2])
and other mechanistic details of at least some KEs13; these dif-
ferences are the focus of this effort. Therefore, the primary ev-
idence relied on to build this AOP must relate directly to
known low-molecular-weight organic chemicals to the exclu-
sion of chemicals that act via other mechanisms and therefore
require a separate AOP, for example, chloroplatinates. While
not relied on to build the AOP, information from skin sensiti-
zation and protein respiratory allergy may be used when rele-
vance can be established.

In brief, the AOP can be summarized as beginning with
covalent protein binding, potentially preferentially to lysine
nucleophiles in the lung or skin after respiratory or dermal
exposure to a low-molecular-weight organic chemical. This
protein binding causes the activation of stress response path-
ways and cellular danger signals, including oxidative stress,
cytokines, and chemokines released by epithelial and other
cells, leading to dendritic cell (DC) maturation and migra-
tion to the draining lymph nodes (DLN). Haptens can also
contribute to DC activation directly. Th2-skewed DCs in
the DLN signal activation and maturation of T cells, which
characterize the sensitization phase, resulting in chemical re-
spiratory allergy. Consistent with regulatory practice, sensi-
tization is considered the AO.14 A diagram of the AOP is
illustrated in Figure 1, and a cartoon is provided in Figure 2.
Details are described in this article and will be entered in the
OECD AOP Wiki.

The Key Events

Molecular initiating event: covalent protein binding

The initial KE, or MIE, for induction of the pathway lead-
ing to sensitization of the respiratory tract is, as for skin sen-
sitization, the formation of a covalent bond between a protein
and a low-molecular-weight organic chemical (defined as
chemicals consisting of only carbon, nitrogen, oxygen, sul-
fur, fluorine, chlorine, bromine, iodine, or hydrogen with a
molecular mass less than 1000 g/mol). Classic chemical ini-
tiators of this pathway include some acrylates, diisocyanates,

FIG. 1. A diagram of the proposed AOP.
AOP, adverse outcome pathway.
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and acid anhydrides. Clinical observation and experimental
in vivo studies lead to a somewhat unexpected conclusion
that protein binding—or haptenation—leading to respiratory
sensitization can occur via chemical exposure to either the
skin or the lung.15–17

There is extensive evidence in the literature for haptena-
tion being the MIE for respiratory sensitization.18–23 In gen-
eral, haptenation can be divided into five types of chemistry,
so-called mechanistic domains. These being acylation,
aliphatic nucleophilic substitution (SN1/SN2), aromatic nu-
cleophilic substitution (SNAr), Michael addition, and Schiff
base formation.20 There has been much research show-
ing that grouping chemicals into one of these mechanistic
domains (which are based around the chemistry of the
MIE) is the key first step in the nonanimal prediction of
toxicity for both skin and respiratory sensitization.24–28

These studies add further weight to the importance of the
haptenation event for the nonanimal prediction of respira-
tory sensitization.

The binding behavior of diisocyanates in particular has
been well studied. Wisnewski et al.29,30 demonstrate that hex-
amethylene diisocyanate (HDI) and 4,4¢-diphenylmethane
diisocyanate (MDI) react with glutathione (GSH) across an
in vitro physiologically relevant vapor/liquid-phase barrier
to form conjugates, which may ‘‘shuttle,’’ via a carbamoylat-
ing reaction, the chemical to bind with serum albumin.

Diisocyanates (MDI) react with GSH across an in vitro
physiologically relevant vapor/liquid-phase barrier to form con-
jugates, which may ‘‘shuttle,’’ via a carbamoylating reaction,
the chemical to bind with serum albumin. In contrast to skin
sensitization where cysteine and lysine are both key nucleo-
philes, experimental work has suggested that some respiratory
sensitizers appear to preferentially bind to lysine31–34; however,
an in chemico analysis of a larger set of respiratory sensitizers
indicates lack of a simple division between the reactivity pref-
erences of the two types of sensitizers, showing that certain
classes displayed a lysine preference, for example, anhydrides,
whereas others, such as diisocyanates, do not.35

FIG. 2. The proposed AOP
for respiratory sensitization
includes covalent binding of
low-molecular-weight chemi-
cals to lung or skin proteins
(a), the activation of inflam-
matory cytokines and che-
mokines and cytoprotective
gene pathways typical of a
Th2 immune response (b),
activation and migration of
Th2-skewed dendritic cells to
lymph nodes (c), T cell acti-
vation, proliferation, and po-
larization (d) leading to
sensitization of the respira-
tory tract. Th2, T helper 2.
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There is some evidence to support the hypothesis that the
binding behavior of respiratory sensitizers is related to the
eventual Th2-skewed immune response, with binding to ly-
sine on serum albumin in particular, as well as secretion of
type 2 cytokines, being associated with known respiratory
sensitizers, for example, trimellitic anhydride (TMA) and
fluorescein isothiocyanate (FITC).34

The biological hypothesis that lysine is the primary nucleo-
phile responsible for respiratory sensitization is supported by
the preference for harder electrophiles compared with those
that cause skin sensitization (lysine is a harder nucleophile
than cysteine).25 This is evidenced by the difference in the
coverage of the various mechanistic domains that show typical
respiratory sensitizers to be chemicals acting via the acylation
and Schiff base mechanisms rather than Michael addition
(a significantly important mechanism for skin sensitization).
Structure/activity analysis has shown the importance of elec-
trophilicity and protein crosslinking for respiratory sensiti-
zation for low-molecular-weight organic chemicals.25,36–40 A
detailed mechanistic chemistry analysis suggested that a re-
activity threshold existed that could be passed either by a
chemical’s intrinsic reactivity alone or by a combination of
reactivity and the ability to form multiple covalent bonds
with proteins leading to crosslinking.25 This existence of
such a threshold is in keeping with skin sensitization studies
that have consistently demonstrated that the rate of covalent
bond formation plays a key role in determining potency in
the local lymph node assay (LLNA).26,41,42 The mechanistic
rationale for this observation can be explained in terms of
the balance between the rate a chemical is cleared from a bio-
logical system versus the rate it reacts with a protein. The faster
the rate of covalent bond formation, the faster the haptenation
occurs and the greater the degree of sensitization (either skin or
respiratory). This importance of the rate of chemical reactivity
can also be considered as modeling the effective dose that an
individual receives of a given chemical; the faster the rate,
the higher the dose, the greater the degree of sensitization.

KE2: activation of cellular danger signals (inflammatory
cytokines and chemokines and cytoprotective
gene pathways)

The innate immune system plays a crucial role in the ini-
tiation of adaptive immune responses.43,44 It is a first-line of
defense against invading microbial pathogens and is acti-
vated via a range of pattern recognition receptors (PRRs)
that recognize conserved patterns present on pathogens,
that is, the toll-like receptors (TLRs) and the nucleotide-
binding domain leucine-rich repeat containing receptor
(NLR) family. These PRRs can be activated by endogenous
danger-associated molecular patterns (DAMPs), released
under oxidative stress and cell damage and include compo-
nents of the extracellular matrix generated after tissue injury,
for example, hyaluronic acid fragments, intracellular pro-
teins such as heat shock proteins and nonprotein DAMPs
such as uric acid crystals.45–47 NLR protein-3 (NLRP3) is
a PRR that belongs to the NLR family, a group of intracellu-
lar receptors activated by mitochondrial oxidative stress, for
example, by adenosine triphosphate and uric acid.48 On acti-
vation, TLR and NLRP3 activate innate immunity signaling
pathways leading to the release of proinflammatory cyto-
kines and chemokines. In recent years, increasing attention

has been paid to the role of the innate immune system in
asthma. The sentinel role of the innate immune systems
includes the activation of pathways by pathogen-associated
molecular patterns and DAMPs. By this, KEs during sensiti-
zation such as activation and migration of DCs are set into
motion.49 Proinflammatory molecules are also known to in-
duce the expression of surface molecules on immune cells
such as antigen-presenting cells (APCs), which are greatly
involved in the induction of adaptive immune responses.
Thus, whether an immune response or tolerance response
is induced in APCs depends not only on the presence of an-
tigenic properties of a substance but also on danger signals.

KER: protein binding (MIE) leads to activation
of cellular danger signals (KE2)

Since different cells express PRRs, including epithelial
cells, endothelial cells, macrophages, fibroblasts, and DCs,
it is likely that different cell types are involved. Since skin
exposure can result in respiratory sensitization, both tissue
types should be considered as cellular sources.

Hur et al.50 found that toluene diisocyanate (TDI)-human
serum albumin (HSA) conjugates increased reactive oxy-
gen species (ROS) production in A549 cells. Exposure of
reconstituted three-dimensional (3D) human airway epithe-
lia (MulcilAir�) to respiratory sensitizers TMA and MDI
elevated the levels of proinflammatory cytokines and chemo-
kines interleukin (IL)-6, IL-8, monocyte chemoattractant
protein-1 (MCP-1)/chemokine ligand (CCL)2, growth-
regulated oncogene-a (GRO-a)/C-X-C motif (CX)CL1, and
regulated on activation, normal T cell expressed and secreted
(RANTES)/CCL5.51 Similarly, typical respiratory sensitizers
caused an elevation of proinflammatory cytokines IL-1a
(TMA) and tumor necrosis factor (TNF)-a (glutaraldehyde)
in precision-cut lung slices.52

To elucidate which pathways respiratory sensitizers regu-
late, in vitro DNA microarray studies were performed in dif-
ferent human lung cell lines exposed to a limited set of
respiratory sensitizers. These studies were not able to identify
specific molecular pathways that were regulated by respiratory
sensitizers. They could identify activation of genes, related to
innate immune response. In human alveolar epithelial cells
(A549 cell line), for example, genes encoding for TLR2,
TNF-a, IL-1 receptor, and cytokine signaling pathways were
upregulated by HDI and TMA.53 NLRP3 has been demon-
strated to be important in respiratory sensitization by proteins,54

but the involvement in the induction of respiratory sensitization
by low-molecular-weight chemicals is unknown. In human ker-
atinocytes, the respiratory sensitizers MDI and TMA failed
to elevate intracellular proinflammatory IL-18 levels.55 Con-
flicting reports as to whether IL-18 is associated with a Th1
or Th2 immune response hamper interpretation of this result.

Finally, peripheral blood mononuclear cells (PBMCs)
in vitro take up HDI-HSA conjugates resulting in morpho-
logic changes, increased expression of genes associated with
antigen processing, and increased expression of proinflamma-
tory chemokine macrophage migration inhibitory factor (MIF)
and MCP-1 and PRRs that bind chitin, known to be associated
with asthma in humans. Similar morphological changes were
found after in vivo human exposure to controlled amounts of
HDI vapour.56 Curiously, TMA-HSA conjugates did not in-
duce MIF, MCP-1, or chitinase-1 production in PBMCs.
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Besides activation of PRRs, there are other ways to acti-
vate signaling pathways involved in innate immune re-
sponses. Some of these pathways, including the nuclear
factor erythroid-2 (Nrf2)-Kelch-like ECH-associated protein-1
(Keap1)-antioxidant response element (Nrf2-Keap1) and NF-
jB, are sensitive to the redox balance.57,58 Respiratory sen-
sitizers, being protein reactive, are known to have an impact
on thiol-redox homeostasis and GSH metabolism. HDI, for
example, upregulates genes related to thiol-redox homeosta-
sis and cytoprotective pathways in human airway epithelial
cells59 and macrophages.60 Conjugation of respiratory sensitiz-
ers to GSH leads to depletion of GSH61,62 and to a diminished
antioxidant defence, making the cells more vulnerable to toxic-
ity induced by respiratory sensitizers,58,63 resulting in activation
of cytoprotective pathways, such as the Nrf2-Keap1 pathway.

Under physiological conditions, the transcription factor
(Nrf2) is bound to the sensory protein Keap1. In response
to either oxidative stress64 or if there is a covalent interaction
between the cysteine residues on Keap1 and electrophiles,
Keap1 dissociates from Nrf2. Subsequently, Nrf2 accumu-
lates in the nucleus and triggers transcriptional activation
of cytoprotective genes.65 The significance of the Nrf2-
Keap1 pathway in respiratory sensitization is not as exten-
sively studied compared to skin sensitization, but in vitro
data for a limited number of respiratory sensitizers showed
that these are able to activate Nrf2-dependent genes both in
airway and skin epithelium.66–68 Activation of Nrf2-Keap1
by skin sensitizers has been explained by covalent interac-
tion of cysteine residues on Keap1 with cysteine-reactive
chemicals, leading to Nrf2 association and transcriptional
activation of genes. It is not fully understood how respiratory
sensitizers activate this pathway. Although respiratory sen-
sitizers are more likely to bind to hard nucleophiles such
as lysine,25 in chemico studies show that cysteine binding
occurs as well.21,69 Hence, Nrf2 activation may be a direct
result of covalent interaction with cysteine residues or an in-
direct result of GSH depletion and an altered redox balance.
The indirect activation of Nrf2-dependent genes was shown in
THP-1 cells exposed to acid anhydrides, which had a preference
to lysine in the direct peptide reactivity assay (DPRA70); how-
ever, actual Nrf2 and heme oxygenase-1 proteins accumulated
only minimally in the cells.

Finally, the canonical phosphatase and tensin homolog
(PTEN)-signaling pathway might be relevant for respiratory
sensitization.71 This pathway regulates cell survival signal-
ing pathways and plays a protective role in the pathogenesis
of asthma.72 In a mouse model of TDI-induced asthma, the
PTEN pathway was shown to play a protective role in asthma
pathogenesis, because it was involved in the regulation of IL-
17 induction and NF-jB activation.73 A more recent in vitro
study showed that the PTEN pathway was not consistently
induced by all respiratory sensitizers, since maleic anhydride
and 7-aminocephalosporanic acid failed to induce this path-
way68 but another diisocyanate, HDI, did.

In conclusion, evidence mostly from in vitro studies show
that respiratory sensitizers are able, via protein-chemical
conjugates, to generate cellular danger signals, including
induction of oxidative stress and proinflammatory cytokines
and chemokines. A link between oxidative stress and the
initiation of signal transduction pathways involved in in-
flammation and allergy has been shown.74 In the skin, for ex-
ample, oxidative stress may lead to activation of signal

transduction pathways such as NF-jB and p38 MAPK,
which leads to the release of cytokines and chemokines.
These inflammatory signals drive the maturation and activation
of DCs and promote the adaptive immune response.75 Some ev-
idence for this process by respiratory sensitizers is discussed
in the section on KE3: DC activation and migration.

KE3: DC activation and migration

DCs are referred to as a bridge between innate and adap-
tive immunity, and their maturation is an essential event in
the sensitization of an organism.76 DC activation results in
mature cells with a changed phenotype and function.77 The
most prominent changes include antigen-presenting capac-
ity, enhanced levels of major histocompatibility complex
(MHC) (Class II) and costimulatory molecules such as clus-
ter of differentiation (CD)54, CD80, and CD86, and recep-
tors that are essential for migration. These modified DCs
carry the hapten ‘‘message’’ to the lymph where they are pre-
sented to T helper cells for further action.

As with skin sensitization, the available in vitro and in vivo
evidence indicates that chemical-hapten conjugates cause
cellular ‘‘danger signals,’’ and also act directly on naive
DCs to trigger subsequent sensitization. The relationships
among KEs 1, 2, and 3 may provide insight into the mecha-
nistic events underlying immune response skewing toward a
Th2, and therefore respiratory sensitization, phenotype.

KER: protein binding (MIE) leads to DC
activation and migration (KE3)

Monocyte-derived DCs (Mo-DCs) and THP-1 cells exposed
to haptens with cysteine, lysine, or cysteine/lysine reactivity in-
duced the expression of Nrf2 pathway-related genes when ex-
posed to chemical sensitizers having cysteine and cysteine/
lysine affinities, while lysine-reactive chemicals (phthalic anhy-
dride [PA] and TMA) were less efficient.70 Also, these chemi-
cals did not prod the Mo-DCs to produce maturation markers
CD86 and CD83, while PA was able to modify THP-1 cells
to produce CD86 and CD54 markers.

Toebak et al.78 used Mo-DCs to investigate the polariza-
tion potential of TMA compared to contact and protein aller-
gens. In contrast to 2,4-dinitrochlorobenzene (DNCB) and
similarly to protein allergen Der p1, TMA led to a decreased
IL-12p70/IL-10 ratio and did not induce TNF-a or CXCL10
production, a demonstration of Th2-skewing. TMA was also
found to increase the production of the cytokines IL-10 and
IL-13, another hallmark of Th2 response, in DCs enriched
from human blood.79 Finally, TMA induced increased pro-
duction of IL-10 when incubated with precision cut lung
slices (PCLS) for 24 hours.52

In BALB/c mice, TDI applied to the skin led to TDI-
haptenated protein (TDI-hp) (skin keratins and albumin)
localization in the stratum corneum, hair follicles, and seba-
ceous glands within 3 hours, with intensity of staining follow-
ing a dose–response relationship.80 Subsequently, CD11b+,
Langerin (CD207)-expressing DCs, and CD103+ cells mi-
grated to regions of TDI-hp staining. These cells are involved
in antigen uptake and stimulation of effector T cells. Also, in
BALB/c mice, topical application of TMA induced rapid cy-
tokine secretion in the skin—namely IL-4 and IL-10, which
was not the case for the skin sensitizer DNCB. Increased
IL-4 and IL-10 were also detected in the DLN after TMA
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exposure, and DC migration to the DLN was confirmed, al-
though delayed behind DNCB-caused migration. Anti-IL-10
antibody ameliorated this response to TMA.81

Migration depends on the expression of chemokine recep-
tors and their respective CCLs, as well as on adhesion mol-
ecules, such as integrins. DCs express receptors for, and
respond to, constitutive and inflammatory chemokines and
other chemoattractants, such as platelet-activating factor
and formyl peptides. Much investigation has gone into
assessing the specific mechanistic events involved in skin
sensitizer-caused DC migration. Ex vivo studies with intact
human skin, epidermal sheets, and MUTZ-3-derived Langer-
hans cells (LC) show that fibroblasts mediate migration of
cytokine-matured LC via chemokines, including CXCL12,
CXCR4, and dermis-derived CCL2 and CCL5.82–84 The rel-
evance of these studies for respiratory sensitization is not
known. Some evidence indicates that IL-10, upregulated by
TMA, may block the migration of LC for a short period of
time to allow a Th2 phenotype to develop.79,81

KER: activation of cellular danger signals (KE2)
leads to DC activation and migration (KE3)

The presence of cellular danger signals at the local expo-
sure site plays a crucial role in the induction and amplification
of lung immune responses associated with respiratory sensiti-
zation. Silva et al.85 found that HDI increased ROS by inhib-
iting superoxide dismutase (SOD1) in THP-1 cells. This
inhibition may further encourage a redox environment via ma-
trix metalloproteinase (MMP reduction). Increased ROS also
led to extracellular signal-related kinase (ERK) signaling
pathway phosphorylation and the transcription of cytoprotec-
tive and maturation pathways (HMOX1 and CD83). Coincu-
bation with the antioxidant n-acetyl cysteine and SOD
decreased ERK phosphorylation.

KE4: activation/proliferation/polarization of T cells

In both respiratory and dermal sensitization, activated T
cells proliferate in the DLN, resulting in a primed population
of lymphocytes. Both respiratory and skin sensitizers lead to
T cell proliferation in vivo.86 However, as mentioned, there is
likely a difference in skewing of T cell proliferation, cyto-
kine release, and subsequent response3,87 between skin and
respiratory sensitizers. Data on such cytokine profiles have
mainly been derived from animals exposed via the skin or re-
spiratory tract to well-characterized respiratory sensitizers,
including TMA,88 FITC, PA, and TDI.89,90 Recent human
data have emerged that concurs with this pattern of response.
For example, Newell et al.91 have reported that weaker skin
sensitization occurs in individuals with atopic dermatitis,
who already have a systemic Th2 bias. In addition the cells
studied have been either peripheral blood or tonsil derived,
and therefore, it is currently unknown if results would be dif-
ferent for cells derived from the skin or respiratory tract.
Ouyang et al.92 found increased methylation of the IFNg
gene promoter in workers who had developed asthma to dii-
socyanates, suggesting downregulation of this Th1 cell
marker. In addition it has been reported that atopic status
can affect the stimulatory capacity and production of cyto-
kines by DC, which in turn affect T cell stimulation and sub-
sequent polarization of the immune response.79

KER: DC activation and migration (KE3) lead to activation/
proliferation/polarization of T cells (KE4)

Once activated DCs have migrated to DLN, they interact
with T cells, presenting MHC-associated immunogen for rec-
ognition. It is known that the efficiency with which, and path-
way by which, an antigen is processed and presented by a DC
can influence the subsequent immune response raised against
it. There is little known about many aspects of antigen process-
ing, such as uptake pathway, peptide generation, and MHC-
peptide complex stability and density, in chemical sensitiza-
tion of the respiratory tract. Differences may exist in how
skin and respiratory sensitizers are processed that may provide
key insight into how to distinguish such chemicals.

Hopkins et al.34 found increased expression of type 2 cy-
tokines in mouse lymph node cells after topical exposure to
TMA and FITC. T cell activation, proliferation, and polariza-
tion not only occur in response to antigen recognition but
also additional cytokine signals from the DC and other
cells such as the airway epithelia.51

AO: sensitization of the respiratory tract

The development of chemical respiratory allergy, defined
here as an immune-mediated hypersensitivity reaction to
an exogenous low-molecular-weight chemical resulting in
symptoms such as asthma and rhinitis, is a two-step process.
The first step (induction or sensitization) is when exposure
(which may be via various routes) leads to immunological
priming and sensitization of the respiratory tract. The second
step occurs when a sensitized person has subsequent expo-
sures of the respiratory tract to the same substance, resulting
in elicitation of clinical symptoms such as rhinitis and asthma,
with the latter characterized by breathlessness and wheezing,
airflow obstruction, bronchoconstriction, and tightness of
the chest.52 Reactions can be acutely life threatening or lead
to chronic occupational asthma.3 There is also often a long
lag phase (in some cases many months) between the two
steps described.

KER: activation/proliferation/polarization of T cells (KE4)
lead to sensitization of the respiratory tract (AO)

In brief, once antigen has been processed and presented by
DCs and Th2 cells activated (KEs 3 and 4), the differentia-
tion and clonal expansion of Th2 cells lead to production
of Th2 cytokines that induce immunoglobulin (Ig) class
switching to production of antigen-specific allergic antibody
(IgE) by B cells and clonal expansion of naive and memory B
cell populations.93 These antibodies are then found through-
out the body, in circulation and/or bound to Fce receptors on
cells such as mast cells and basophils in tissues, including the
respiratory tract. On subsequent re-exposure, antigen can
crosslink IgE bound to the surface of the aforementioned
cells and induce degranulation, releasing various mediators
that lead to the clinical symptoms of asthma and rhinitis.

The rapid onset of symptoms (within 1 hour and often
within minutes of exposure) of respiratory allergic symptoms
in sensitized individuals is indicative of an antibody-mediated
(type I hypersensitivity) mechanism. However, there is still
remaining uncertainty regarding the role of IgE in chemical
respiratory allergy, because specific IgE has not been demon-
strated in all subjects sensitized to chemicals. A number of
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authors have published recently on this issue and therefore it
will be not be discussed in detail here.13,94,95

Class switching to IgE is most commonly triggered when
Th2 or T follicular helper cells provide costimulatory signals
to antigen-stimulated B cells via CD40L-CD40 binding and
secreted cytokines (mainly IL-4 and IL-13), which turn on
the epsilon germ line transcript.96 The immediate precursor
of an IgE-switched B cell can be either a ‘‘naive’’ non-
switched B cell or mature IgG switched B cell, with the
routes to IgE described as direct (IgM to IgE) and indirect
(IgM via IgG to IgE) pathways, respectively. Davies
et al.97 reviewed the available data on this phenomenon
and argued that, in contrast to the conclusion of Xiong
et al.96 based on mouse data, it was likely that atopic IgE re-
sponses are characterized by a low IgG/IgE ratio, low B cell
memory, and modest affinity maturation, which fits more
with a direct pathway. Most recently, however, work pub-
lished by Looney et al.98 and Ramadani et al.99 indicates
that the indirect pathway is the predominant mechanism of
IgE production in humans. It is noted, however, that this phe-
nomenon has not been investigated specifically with respect
to chemical respiratory allergy and the data available are
based primarily on responses to protein allergens and para-
site antigens. In addition, the cells studied have been either
peripheral blood or tonsil derived, and therefore, it is cur-
rently unknown if results would be different for cells derived
from the skin or respiratory tract.

Antihapten antibodies have been found in mice treated
epicutaneously with skin and respiratory sensitizers, al-
though they produce qualitatively different immune re-
sponses, likely reflecting the different cytokine milieus
(Th1 or Th2) produced by the activated T cells in each
case. While IgG1 production occurred in response to both
groups of chemicals, the skin sensitizers DNCB and oxaz-
alone preferentially drove production of IgG2a, while the
respiratory sensitizers TMA and PA preferentially drove pro-
duction of IgG2b. In addition, only the respiratory sensitizers
were associated with an increase in serum IgE.87,100 To date,
analysis of hapten-specific antibody subclasses in humans
sensitized to skin and respiratory sensitizers does not appear
to have been undertaken.

IgE production can occur both in the germinal centers of
lymph nodes and locally in the airway mucosa, with the latter
reported to be linked to nasal polyps associated with chronic
rhinosinusitis and in response to inhaled protein allergens.101,102

The extent of germinal center involvement or local IgE pro-
duction in respiratory sensitizers is currently unknown.

While there is considerable evidence that DCs are likely
the most efficient APC for stimulating naive T cells, there
is evidence that IgE at the surface of allergen-specific IgE-
positive B cells and other APCs, such as alveolar macro-
phages, may also facilitate antigen presentation.103 A role
for airway and alveolar epithelial cells in antigen presenta-
tion and induction and maintenance of adaptive responses
is also becoming increasingly recognized.104

Most recently, data have been published on the cross talk
between DCs and different immune cells, including B cells,
showing that activated human B cells can regulate DC mat-
uration and function. Maddur et al.105 report that DCs receiv-
ing signals from BCR-activated B cells selectively induce
Th2 polarization via the OX-40 ligand and that the Th2
cells induced via this phenomenon are capable of stimulating

B cells to produce IgE, although the levels were low and var-
iable and further work with more donors is required. Again
the role of this phenomenon specifically related to respira-
tory sensitizers is currently unexplored.

Measuring KEs

Available methods to measure the KEs outlined in this ar-
ticle are discussed here. Currently, no validated test methods
are available for discriminating respiratory and skin sensitizers,
although some work with very small data sets has been done to
develop both in vitro and in vivo models. North et al.4 outline
advantages and disadvantages of a broader range of potential
test methods, which may contribute to a weight-of-evidence
(WoE) assessment of respiratory sensitization.

MIE: protein binding

Covalent binding can be detected using in chemico deple-
tion assays32,69,106,107 and is an OECD test guideline108; both
respiratory and skin sensitizers are detected.109 The rate of
covalent binding can also be measured.41 Dik et al. modified
the DPRA protocol to include two peptide depletion mea-
surement time points, and added high-performance liquid
chromatography mass spectrometry (MS) analysis of reac-
tion products, which improved predictive capacity.35

Other authors have worked to investigate the binding of
diisocyanates in vapor and liquid phases with LC/MS, MS/
MS, and ELISA, as well as, Western blot.29–31,34,110

In silico structural alerts can also be used to identify respi-
ratory sensitizers24,111 and build computational profilers.112

KE2: cellular danger signals (activation of inflammatory
cytokines and chemokines and cytoprotective
gene pathways)

It is not fully understood which cell types are the most im-
portant sources for the endogenous danger signals involved
in sensitization of the respiratory tract. Relevant cell types
representing cellular sources for danger signals are probably
alveolar and bronchial epithelial cells, keratinocytes, macro-
phages, DCs, natural killer cells, endothelial cells, and nerve
fiber endings.113 In particular, macrophages are able to re-
spond with high levels of, for example, cytokines and ROS
after stimulation of PRRs. Human cell lines representative
of the cells mentioned above might be used for the measure-
ments of danger signal induction. A limitation of the use of
submerged cell lines is that certain respiratory sensitizers hy-
drolyze in an aqueous environment, which may lead to neg-
ative results.114 Air/liquid exposure in 3D skin or airway
models might provide a more robust model although this
has not been explored in great detail.

There are no predictive markers for cellular danger or proin-
flammatory responses described for respiratory sensitizers yet.
The studies performed up until now did not result in any pro-
teins, genes, or molecular pathways that are consistently regu-
lated by a broad range of respiratory sensitizers or genes51,52,68;
however, only a few chemicals have been tested. Cytokine pro-
duction can be measured by ELISA or Bio-Plex systems either
in the supernatants or intracellular matrix. Cell systems that
can be used include also complex models such as the 3D epi-
thelial cell models, that is, MucilAir�51 and PCLS.52

Activation of innate immune response can also be assessed
using commercial immunoassays for signal transduction
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pathways, that is, p38 MAPK, JNK 1/2, and ERK 1/2. Other
possible detection methods, focusing on ROS production or
the induction of cytoprotective pathways, might be used as
well to assess the ability of chemicals to generate endogenous
danger signals (DAMPs). For ROS production, commercial
assays are available that can be applied. The induction of
Nrf2-KEAP1 can be assessed using the Keratinosens�66,67

or LuSens115 assays116 and by measuring gene expression
of Nrf2-dependent genes by quantitative polymerase chain
reaction (qPCR), that is, HMOX,70 although the utility of
this pathway for respiratory sensitizers is unclear. The
BEAS-2B cell line, coupled with microarray analysis, re-
veals the PTEN pathway as potentially useful.71 The predic-
tivity of these assays has not been studied with a large
number of respiratory sensitizers.

KE3: DC activation and migration

Studying the molecular mechanisms behind DC activation
and maturation is impeded by the fact that primary DCs con-
stitute a heterogeneous and minute population of cells among
many functionally specialized DC subpopulations. To cir-
cumvent this issue, various human myeloid cell lines (e.g.,
THP-1, U937, KG-1, and MUTZ-3) have been used both
for acquiring mechanistic understanding and for develop-
ment of predictive tests; this work is more advanced for
skin sensitizer assessment.70,117–119

The genomic allergen rapid detection (GARD) test is an
MUTZ-3-based assay for assessing chemical sensitizers uti-
lizing genomic biomarker prediction signatures to generate
prediction calls of unknown chemicals such as skin sensitiz-
ers, respiratory sensitizers, or nonsensitizers, including irri-
tants.120 Preliminary data on the performance of the GARD
for assessing chemical respiratory sensitizers using transcrip-
tional readouts of a genomic biomarker signature indicated
80% accuracy.121

There are several in vitro assays available to assess
DC maturation; the most advanced is the h-CLAT, which de-
termines changes in CD86 and CD54 levels on THP-1
cell.122,123 However, only limited data are available substan-
tiating its performance on chemical respiratory sensitiz-
ers.109 Several assays similar to the h-CLAT have emerged
over time and are currently in the process of being validated
(e.g., the MUSST measuring CD86 responses by U937 cells),
but again no or minimal information is available to assess
assay performance in detecting respiratory sensitizers.

The MUTZ-3 cell line is also being investigated for the
potential to assess the capacity of a chemical to induce LC
migration. The discriminating feature of the assay is that
irritant-induced migration is CCL5 dependent, while
sensitizer-induced migration is CXCL12 dependent. The
readout of the test is the ratio between migration toward
CXCL12 or to CCL5. Despite its complexity, the assay
seems to be relatively well transferable.124 While some respi-
ratory sensitizers have been assessed, it is unclear whether
this event will provide discrimination between skin and re-
spiratory sensitizers.117

KE4: activation/proliferation/polarization of T cells

In mice, induction of respiratory immune response, mea-
sured by lymphocyte maturation and proliferation in local
lymph nodes, can be detected using an LLNA protocol125

with subsequent cytokine fingerprinting or IgE testing126 al-
though inconsistencies prevent wider adoption.3,127

In humans, T cell proliferation and DC and T cell cytokine
profiles produced in response to chemical respiratory stimuli
have been measured in vitro.79,128

AO: sensitization of the respiratory tract

Allergen-specific IgE detection and measurement tech-
niques include skin tests (intradermal and subcutaneous
skin prick testing) and blood testing using immune assays
such as ELISAs and commercially available tests such as
ImmunoCAP�. For example, Bernstein et al.129 investigated
the ability of TMA skin testing to identify sensitized workers
and found that skin prick testing was positive in 8 of 11
workers with serum-specific IgE and intradermal testing in
a further two. It is important to note, however, that there
are technical challenges associated with detection and mea-
surement of specific IgE and IgG to chemical respiratory al-
lergens, including production of the correct protein conjugate
and timing of measurement.94,95 Immune assays such as
ELISA or ImmunoCAP are also used to investigate allergen-
specific antibody isotype profiles.130

Investigations into direct and indirect class switching in-
volve transcriptomic analyses of IgE heavy chain transcripts
and are challenging due to the scarcity of IgE-switched B
cells in human blood.97

Discussion

Evaluation of the AOP

We have outlined the available evidence supporting an
AOP for sensitization of the respiratory tract. This AOP fol-
lows the one already outlined for skin sensitization,12 with
the aim of highlighting evidence from known respiratory
sensitizers and opportunities for discrimination between
skin and respiratory sensitizers. According to the available
evidence, the domain of applicability of the AOP includes
mammals of either sex; ultimately, a regulatory interest in
protecting workers and consumers requires an emphasis on
confirmatory evidence and experimental models reflecting
the human situation.

Efforts to discern the mechanisms involved in respiratory
sensitization, including this one, are motivated by the need
for test methods and strategies to identify respiratory sensi-
tizers. While some do exist, none has reached the level of
regulatory acceptance necessary to be implemented globally
or regularly relied on. The utility of an AOP approach is that
all available and relevant information can be gathered and
transparently assessed according to recognized criteria.
This assessment subsequently informs potential regulatory
applications, which may include support for grouping and
read across of chemicals, identification of relevant and bio-
logically plausible test methods, support for the develop-
ment of Integrated Approaches to Testing and Assessment
(IATA), identification or characterization of hazard, or quan-
titative risk assessment.131

The potential regulatory applicability of any particular
AOP is informed by the degree of confidence in the biolog-
ical plausibility of each of the KERs, the degree of confi-
dence in the essentiality of the KEs, and the empirical
support for each of the KERs and the overall AOP.11
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Biological plausibility of the KERs. Each of the hypothe-
sized KERs is supported by evidence from studies with at
least one, and sometimes a few, known respiratory sensitizer.
The events fit with what is known in general for sensitization,
and the basic KEs outlined here are consistent with estab-
lished biological knowledge. However, further research is
needed to understand, for a larger number of chemicals,
the steps leading to a skewing of the effector response toward
Th2 and sensitization of the respiratory tract; therefore, the
WoE is considered to be ‘‘moderate.’’

Support for essentiality of each KE. Strong evidence ex-
ists for the essential nature of protein binding,18–23 cellular
danger signals,85 DC activation,79 and T cell activation in
the continuation of the subsequent KE, as shown by experi-
ments that block important features of each KE. In humans,
support for the Th2 skewing being associated with sensitiza-
tion of the respiratory tract rather than the skin comes from
studying the responses of individuals who already have an
immune response skewed in one direction or the other.79,91,92

Empirical support for KERs and overall AOP. The litera-
ture data available for this AOP specifically with respiratory
sensitizers are comparatively low; most studies use one or a
few classical chemicals. There are also remaining uncertain-
ties related to how respiratory sensitizers direct the immune
response toward a Th2 phenotype, how APCs present hap-
tens to effector T cells, and why responses home to the respi-
ratory tract even with dermal exposure. However, when
taken in the context of what is known about sensitization
in general and the consistency of the available evidence,
the WoE assessment for the KEs and the AOP overall is
judged to be ‘‘moderate.’’

Quantitative understanding of each KER. Quantitative
information on the relationships between KEs is low. Nayak
et al.80 provides a detailed temporal and dose–response anal-
ysis of TDI-induced protein binding, colocalization of im-
mune messenger cells, and migration to DLNs. However,
the quantitative relationship between one KE and another is
not known. For example, it is not known the level at which in-
tercellular ‘‘danger signals’’ (KE2) approach a threshold be-
yond which DC activation (KE3) is certain.

Other pathways/mechanisms. Currently, there are about
80 chemicals identified as respiratory allergens. Exposure
occurs primarily in occupational settings. AOs are asthma
and rhinitis. The biological mechanisms are often Th2 medi-
ated leading to the production of IgE and eosinophilic in-
flammation. However, this may not always be the case. For
example, human studies reveal PPD to be a respiratory sen-
sitizer,132 but it does not cause a Th2 cytokine response in
mice.133 Specific IgE is induced in some subjects, but not
in others, particularly for diisocyanate sensitization. Thus,
it is unclear whether IgE is mandatory or not. Notably, it
has to be mentioned that for protein-induced respiratory al-
lergy, the clinical understanding of the disease has been
changing dramatically during the last years. For many
years, asthma has been considered as a single disease with
a defined phenotype. It was assumed that the biology of sen-
sitization is based on Th2-mediated IgE production, migra-
tion of mast cells, and subsequent eosinophilic infiltration.

Nevertheless, clinical studies of cohort revealed that only
about 50% of all patients show a Th2-driven eosinophilic
inflammation of the airways. It also covers Th17-driven neu-
trophilic airway inflammation—an asthmatic phenotype that
also can be observed with chemical allergens. Nowadays,
asthma is considered as an umbrella disease with multiple
heterogeneous phenotypes, depending on the underlying im-
munology, pathology, symptoms, and the time of elicitation
during lifetime. Furthermore, the concept takes other envi-
ronmental and genetic influences into consideration. The de-
velopment of animal models reflecting the heterogeneity of
asthma phenotypes is still ongoing and shows in particular
the (i) irritant properties of the allergen, (ii) the route of ex-
posure during sensitization and elicitation, and (iii) the dose
levels of allergen define whether a Th2 or Th17 phenotype
develops.

For chemical allergens, less is known about the influence
of atopy, viral infections, and indoor and outdoor environ-
mental pollutants such as cigarette smoke. Of interest is
the influence of an additional coexposure to irritant if the
chemical allergen is present at low dose. Genetic susceptibil-
ity is also a variable of interest. Yucesoy et al.134 and Wis-
newski et al.,56 among others, have determined factors that
may affect the potential for a person’s sensitization potential
to diisocyanates, including genetic variants in antioxidant
defense genes and PRRs.

A number of studies have looked into the sensitization of
transition metal complexes, including one which outlines the
evidence for these complexes initiating sensitization not
through covalent bond formation, but rather through coordi-
nation complexes.135 The authors provide evidence that
these coordination complexes are not stable enough to sur-
vive the antigen processing that a covalent hapten undergoes.
Instead an alternative MIE is outlined in which these com-
plexes bind to cell surface proteins like MHC, bypassing
the intracellular antigen process. This initiating event fits in
with the observed cross-reactivity that appears to transcend
the trends one would expect based on the periodic table
(for example, complexes of Cr, a group 6 metal, cross sensi-
tizing with complexes of Co, a group 9 metal).136 It is thought
that the surface protein chelates the metal complex and
presents it to T-cells directly, requiring a separate AOP
from chemicals acting via covalent binding to proteins.

Future research needs

A common nonregulatory use for an AOP is to focus fu-
ture research by highlighting areas where lack of understand-
ing is impeding progress. That is, an AOP identifies gaps in
knowledge that should be filled to increase the regulatory
utility of that pathway and make advances in predicting the
AO, with the recognition that not all gaps in knowledge
can or must be filled.

From the evidence presented here, it is clear that our un-
derstanding of the development of respiratory sensitization
is growing. However, a better understanding of how differ-
ences in haptenation by these chemicals contribute to distinct
cellular responses, and how early DC gene changes contrib-
ute (or not) to the expression of maturation markers, will help
to increase the specificity of the available test methods.

A better understanding of human response and population
variability is also needed, along with a better quantitative
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understanding of the linkages between KEs. Additional stud-
ies using human cells and tissues are recommended.

Furthermore, as noted in the evaluation section, efforts to
fully understand this pathway and develop toxicological test
methods and strategies are hampered by a spare data portfo-
lio, as well as a lack of a robust set of harmonized reference
chemicals clearly identified as respiratory sensitizers. Pre-
vious authors have gathered preliminary chemical sets with
supporting rationale,25,137,138 and collating this information
and building a set of harmonized reference chemicals,
which can be used to optimize and characterize potential
test methods or strategies, are the clear next steps.

Regulatory applicability

Given the available (WoE) outlined above, we propose
that the AOP for sensitization of the respiratory tract outlined
here allows the identification of gaps in knowledge, research
needs, and potential test methods that may be developed fur-
ther using a larger set of respiratory sensitizers.

Conclusion

The AOP provides a starting point for the development of
methods and strategies that will fit into an IATA for the as-
sessment of potential respiratory sensitizers. The available
evidence highlights events that may be targeted in the devel-
opment of discriminatory test methods; likely candidates are
selective protein binding assays and DC-based Th2-related
assays (e.g., cytokine release).13

As with other AOPs, identification of the endpoints for
some of the proposed key steps has relied on event-based
cell and tissue culture models. The predictive validity of
these disease models for the human outcome is unclear and
needs to be confirmed by an assessment of their relevance,
reproducibility, and reliability.

Currently, MIE-based computational profilers have been
developed. Given the strong link between the MIE and the
rest of the AOP, these tools provide evidence as to the poten-
tial for a low-molecular-weight organic chemical to cause re-
spiratory sensitization. However, although protein binding is
necessary, it is not sufficient to the continuation of the path-
way. The assessment of additional respiratory sensitizers in
emerging test methods linked to the other KEs in this AOP
is urgently needed.
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