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Abstract  

The rewarding sensation of touch in affiliative interactions is hypothesised to be 

underpinned by an unmyelinated system of nerve fibres called C-tactile afferents (CTs). 

CTs are velocity tuned, responding optimally to slow, gentle touch, typical of a caress. 

Here we used evaluative conditioning to examine whether CT activation carries a 

positive affective value. A set of neutral faces were paired with robotically delivered 

touch to the forearm. With half the faces touch was delivered at a CT optimal velocity 

of 3cm/second (CT touch) and with the other half at a faster, non-CT optimal velocity 

of 30cm/second (Control touch).  Heart-rate and skin conductance responses (SCRs) 

were recorded throughout. Whilst rated equally approachable pre-conditioning, post-

conditioning faces paired with CT touch were judged significantly more approachable 

than those paired with Control touch.  CT touch also elicited significantly greater heart-

rate deceleration and lower amplitude SCRs than Control touch. The results indicate CT 

touch carries a positive affective value, which can be acquired by socially relevant 

stimuli it is associated with. 

 

Keywords: Social; Touch; C-Tactile Afferent; Affective Touch, Evaluative 

Conditioning; ECG; SCR 
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1. Introduction 

Motivated reactions to emotionally salient stimuli can be broadly grouped into two 

categories, aversive and appetitive. While aversive reactions are observed in response to 

environmental stimuli or contexts that threaten survival, ultimately leading to 

withdrawal or escape, the appetitive motivational system is activated by stimuli which 

promote survival, signalling for example, food, sex or social interaction (Bradley, 

Codispoti, Sabatinelli, & Lang, 2001; Lang & Bradley, 2010). In a range of social 

species, across the life span, affiliative behaviours are associated with activation of the 

brain’s reward systems and in sensory terms, touch is a key component of the rewarding 

value of such interactions (Dunbar, 2010; Loseth, Ellingsen, & Leknes, 2014; Walker & 

McGlone, 2013 for reviews).  

 

C-Tactile afferents (CTs) are a class of unmyelinated low threshold mechanoafferent 

found in the hairy skin of mammals (see McGlone, Wessberg, & Olausson, 2014 for 

recent overview). The specific response properties of these cutaneous afferents have 

been characterised using the electrophysiological technique microneurography. CTs 

respond optimally to a skin temperature stimulus moving across their receptive field at 

between 1-10cm/sec (Ackerley et al., 2014; Löken, Wessberg, Morrison, McGlone, & 

Olausson, 2009; Vallbo, Olausson, & Wessberg, 1999). This velocity tuning 

distinguishes them from larger diameter myelinated mechanoafferents, which respond 

linearly to stimuli of increasing velocity.  In contrast, CTs  show an inverted U shaped 

response function, responding less strongly to speeds that are either slower or faster 

than their preferred stimulus (Löken et al., 2009; Vallbo et al., 1999). Intriguingly, CT 

firing frequency is positively correlated with people’s perceptions of stroking touch 
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pleasantness. That is, the stimuli which CTs respond most strongly to are also those 

which are rated as subjectively most pleasant (Essick, James, & McGlone, 1999; Essick 

et al., 2010; Löken et al., 2009). While CTs are found as frequently as other C-fibres 

coding pain and itch in the hairy skin of the body, in humans they have never been 

found in the glabrous skin of the palms of the hands or soles of the feet (McGlone, 

Wessberg, & Olausson, 2014; Olausson, Wessberg, Morrison, McGlone, & Vallbo, 

2010).  

 

The social touch hypothesis proposes that CTs’ response characteristics and central 

projections make them ideally suited to signal the positive affective value of socially 

relevant tactile interactions (Morrison, Löken, & Olausson, 2010; Olausson et al., 

2010). Direct evidence that CT activating touch is rewarding comes from rodent studies 

where stroking the back of rats, at a CT optimal velocity, has been reported to induce 

dopamine release within the Nucleus Accumbens (Maruyama, Shimoju, Ohkubo, 

Maruyama, & Kurosawa, 2012). Additionally, selective pharmacogenetic activation of 

C-low threshold mechanoreceptors (CLTMs – the animal homologue of CTs), which 

respond to massage like stroking, promotes the formation of conditioned place 

preference (Vrontou, Wong, Rau, Koerber, & Anderson, 2013). In humans, 

psychophysical and fMRI investigations reliably show that CT optimal stimulation is 

preferred over slower and faster velocity stimulation (Essick et al., 1999; Löken et al., 

2009; Perini, Morrison, & Olausson, 2015) and leads to activation in reward related 

neural regions, such as the orbitofrontal cortex (Gordon et al., 2013; McGlone et al., 

2012; Trotter et al., 2016). Recently, using facial EMG, we reported that CT optimal 

velocity touch on the forearm, but not the glabrous skin of the palm, elicited a 
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significantly greater activation of the zygomaticus major (smile) muscle than did faster, 

non-CT optimal stroking (Pawling, Cannon, McGlone, & Walker, 2017). Given 

enhanced activity over this muscle is associated with processing pleasant stimuli 

(Bradley et al., 2001; Cacioppo & Tassinary, 1992; Larsen, Norris, & Cacioppo, 2003), 

this finding provides further evidence of the positive affective value of CT activation in 

humans. 

 

In the present study, we set out to further test the social touch hypothesis by 

determining whether touch, which optimally activates CTs, carries a positive affective 

value that can be acquired by previously neutral stimuli it becomes associated with. 

Evaluative conditioning refers to a change in the value of a neutral stimulus as a result 

of its repeated co-occurrence with a valenced stimulus (De Houwer, Thomas, & 

Baeyens, 2001; Hofmann, De Houwer, Perugini, Baeyens, & Crombez, 2010). Previous 

evaluative conditioning studies have reported reductions in explicit affective ratings and 

speeding of reaction times to neutral faces following repeated pairing with an 

unpleasant electrocutaneous stimulus (Andreatta & Pauli, 2015; Bradley, 2009; 

Petrovic, Kalisch, Singer, & Dolan, 2008). Here we paired the presentation of faces 

participants had previously rated as moderately approachable with touch delivered by a 

robotic tactile stimulator that was either CT optimal in terms of velocity (3 cm/sec – CT 

touch) or Non-CT optimal (30cm/sec – Control Touch). Our primary hypothesis was 

that, if CT touch carries a positive affective value, post conditioning we would see a 

significant increase in the explicit approachability ratings of CT-touch paired faces 

compared to those paired with Control touch. Secondly, given that positive emotional 

stimuli have been shown, like aversive stimuli, to capture attention, we included a dot 
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probe task as an additional, implicit measure of conditioning (Pool, Brosch, Delplanque, 

& Sander, 2016). Our hypothesis was that reaction times to faces paired with CT touch, 

having acquired a positive affective value, would elicit significantly faster reaction 

times than those paired with Control touch. 

 

Several previous studies have reported that social touch leads to a general increase in 

parasympathetic nervous system activity (Ditzen et al., 2007; Grewen, Girdler, Amico, 

& Light, 2005; Light, Grewen, & Amico, 2005). More specifically, CT optimal velocity 

touch has been reported to decrease the heart rate of both adults and infants to a 

significantly greater degree than faster or slower velocity stroking (Fairhurst, Löken, & 

Grossmann, 2014; Pawling et al 2017). Additionally, in both healthy controls and two 

rare neuronopathy patients who have lost all large myelinated afferents, CT targeted 

brush stokes have been shown to elicit a sympathetic response (Olausson et al., 2008). 

Physiologically, exposure to emotionally salient stimuli, either appetitive or aversive, 

initially leads to co-activation of the parasympathetic and sympathetic branches of the 

autonomic nervous system (Bradley et al., 2001; Lang & Bradley, 2010). Functionally, 

these reflex reactions capture attention, prioritising perceptual processing and prepare 

the body for action (approach or avoidance) (Bradley, Keil, & Lang, 2012; Löw et al., 

2008). Thus, during conditioning we collected both heart rate and skin conductance 

responses (SCR), measures of parasympathetic and sympathetic nervous system activity 

respectively and traditional indices of orienting (Bradley, 2009; Bradley et al., 2012; 

Löw et al., 2008). We hypothesised that if, as the social touch hypothesis suggests, CTs 

form the first stage of encoding socially relevant and rewarding tactile information, CT 
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targeted touch will elicit reflexive autonomic orienting responses, indicated by a 

decrease in heart rate and increase in SCR in comparison to Control touch. 



8 

 

2. Methods 

2.1 Participants 

Thirty-four participants (mean age 24 years +/- 3.4, 15 female) with no history of 

psychiatric illness of cardiac abnormalities and normal or corrected to normal vision, 

took part in exchange for shopping vouchers.  Positive And Negative Affect Scale 

(PANAS; Watson, Clark & Tellegen, 1985) scores revealed that participants were more 

positive than negative in their mood state on beginning the study (mean positive mood = 

33.56, SD = 5.61; mean negative mood = 14.25, SD 4.39, scale ranges 10 to 50). The 

study was approved by the LJMU Research Ethics Committee. 

 

2.2 Materials 

2.2.1 Face Stimuli 

Twenty-four emotionally neutral female faces (Kramer & Ward, 2010) were used. The 

photographs, originally taken against a white background, were cropped with an oval 

frame that showed just the head and upper shoulders. For all photographs, hair was tied 

back where necessary, so the full face including the forehead was visible. The resulting 

images were 800 x 1132 pixels in size, and onscreen the faces appeared at a size of 

approximately 10 x 14.5 cm.   

 

2.2.2 Rotary Tactile Stimulator 

Touch was delivered to the volar surface of the left forearm using a rotary tactile 

stimulator (RTS – Dancer Design).  The RTS can deliver touch, using a rotating probe 

‘arm’, with precise force & velocity (Essick et al., 1999; Löken et al., 2009). Touch was 

delivered at a force of 0.3 N using a probe with a stroking surface measuring 
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approximately 10 x 2 cm, coated in a soft, smooth, synthetic fabric.  The RTS interfaced 

with the PC delivering the conditioning task via parallel port triggers.  The two 

conditions of touch were:  CT touch (3 cm/sec x 2 strokes) and Control touch (30 

cm/sec x 3 strokes).  In both conditions, the RTS stroked backwards and forwards, 

starting proximally, over an aperture of 8.1 cm.  In the CT touch condition, stimulating 

at 3 cm/sec resulted in approximately 5700 ms of contact time between the RTS probe 

and the participant’s skin. In the Control touch condition at 30 cm/sec, contact time was 

approximately 1500 ms. 

 

2.3 Procedure 

After briefing and consent, participants completed the tasks as follows (see Figure 1): 

Firstly, seated at a desk, they completed the first iteration of the Ratings Task.  After 

this they were moved to a reclining chair and fitted with the electrodes for the 

physiological measures, before completing a short questionnaire on their current mood 

(PANAS; Watson, Clark, & Tellegen, 1988), after which the experimenter calibrated 

the RTS.  The participants then completed the Conditioning Task.  Next, the 

experimenter removed the electrodes and the participant returned to the desk, where 

they completed the Dot Probe task, and finally the second iteration of the Ratings Task, 

before being debriefed.   

 

2.3.1 Ratings Task 

The ratings task was presented using PsychoPy (Pierce, 2009).  First, participants 

passively viewed all 24 faces, presented in a random order, to reduce the chances that 

order effects might influence their later judgements.  Each face was presented centrally 
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for 1000 ms, preceded by a 500 ms fixation, and followed by a 500 ms blank screen (see 

Figure 1, row 1).  The participants then viewed an identical presentation of all 24 faces, 

once more in random order, but this time they were asked after each face, ‘How 

approachable do you find this person?’ The participants made their responses by 

clicking with the mouse on a horizontal, 11 point scale, from 0 ‘Not at all 

Approachable’, to 10 ‘Very Approachable’.  The second iteration of the ratings task, 

after Conditioning and Dot Probe tasks, was completed in an identical manner. 

 

2.3.2 Conditioning Task 

The Conditioning Task and Dot Probe Task were presented using E-Prime 2.0 

(Schneider, Eschman, & Zuccolotto, 2012). For each participant, the eight most 

neutrally rated faces from the first iteration of the Ratings Task were entered into the 

Conditioning Task.  Four faces were paired with touch at CT optimal speed (3 cm/sec – 

CT touch) and four with touch at non-CT optimal speed (30 cm/sec – Control touch). 

The task consisted of five blocks of sixteen trials each.  During a single block, each of 

the eight faces appeared twice, accompanied by its contingent touch from the RTS.  The 

order of trials was counterbalanced such that the same condition of touch never 

appeared more than twice in a row.  Each trial (see Figure 1, row 2) was initiated by the 

participant, after which a 2000 ms fixation appeared, followed by the face which 

remained on screen for 10,000 ms.  The face always appeared slightly to the left or right 

of centre (order counterbalanced, 50/50 contingency).  After 2000 ms of the face 

presentation, the RTS would initiate the touch stimulus.  The touch stimulus lasted 

approximately 8000 ms, including inter-stroke intervals.  After the face disappeared, 

there was a 2000 ms blank screen, followed by the presentation of one of two questions 



11 

 

(order counterbalanced, 50/50 contingency) – either ‘Is that the type of touch you would 

like to feel again?’, or ‘Was the face presented to the left or the right?’  The participant 

responded using pre-assigned mouse buttons (left = ‘yes’ / ‘left’; right = ‘no’ / ‘right’).  

The participant did not know at the start of the trial which question would be asked, thus 

the task required that they attend to both the face and touch stimulus.  There was a 

minimum inter-trial interval of 9000 ms. Prior to starting the task, participants 

completed a short practise with non-experimental faces. 

 

2.3.3 Dot Probe Task 

The Dot Probe Task consisted of four blocks of sixty-four trials.  At the start of each 

trial (see Figure 1, row 3) a fixation cross appeared centrally for 1000 ms, before being 

replaced by the presentation of two faces, one presented to the left and one to the right 

of centre, both on the vertical midline.  During blocks one and four, the faces remained 

on screen for 750 ms.  During blocks two and three, the faces remained on screen for 

1250 ms.  The two durations were used to examine whether any effects of attention 

capture were short, or sustained (eg di Pellegrino, Magarelli, & Mengarelli, 2011).  

When the faces cleared, a dot appeared behind either the left or right face, remaining on 

screen until the participant responded with a key press (Z for ‘left’, M for ‘right’).  

Participants were asked to respond as quickly and accurately as possible.  Importantly, 

the pair of faces in each trial always consisted of one face that had been paired with CT 

touch and one face that had been paired with Control touch.  The assignment of face 

condition to side of screen, and the side of screen on which the dot appeared, were 

counterbalanced and presented quasi-randomly (randomly but accounting for 

counterbalancing).  The task started with four practice trials using non-experimental 
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faces.   

 

2.3.4 Questionnaires 

After completing all the behavioural tasks, the participants completed a set of 

psychometric questionnaires. These data are not reported here, but are part of a related 

study of individual differences in perceptions of touch. 
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Figure 1:  The procedure each participant undertook during the experiment, including 

the time course of Trials in the Ratings, Evaluative Conditioning and Dot Probe tasks.  

Firstly, in the Ratings Task, participants rated the full set of 24 faces for approachability, 

before completing the Evaluative Conditioning Task, during which they saw their 8 most 

neutrally rated faces paired with either CT touch or Control touch.  After this the 

participant completed the Dot Probe Task, in which the face pairs consisted of one face 

previously associated with CT touch and one face previously associated with Control 

touch.  Finally, in a repeat of the Ratings Task, participants rated the full set of faces 

again for approachability.   

 

 

2.4 Psychophysiological Recordings 

Psychophysiological recordings were made using an AD Instruments Power Lab 

system, with an Octal bio Amp (AD Instruments) used to record the electrocardiogram 

(ECG), and a specialist amplifier (AD Instruments) used to record skin conductance 

level.  Recordings were sampled at 2000 Hz.  The ECG was recorded using a three-lead 

setup, and filtered online between 0.02 and 100 Hz, with an adaptive mains filter 

applied.  SCR was recorded using a constant current of 22 mV, with metal electrodes 

placed around the fingertips of the left index and middle fingers. 

 

2.5 Data Treatment and Analysis 

Two participants’ data (females, age = 19 and 25 years) had to be excluded due to 

failure of the RTS, meaning the final sample size was 32, which is comparable to 

previous similar studies (Andreatta & Pauli, 2015; Petrovic et al., 2008). All data were 

analysed using SPSS (IBM Corp. Released 2012. IBM SPSS Statistics for Windows, 

Version 21.0. Armonk, NY: IBM Corp) and R (R Core Team, 2013).  

 

2.5.1 Face approachability ratings 
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Wilks’ Lambda multivariate repeated measures ANOVA was used to investigate 

whether face approachability ratings were altered following conditioning. Initially, the 

model had two factors, both with two levels: time (ratings obtained pre / post 

conditioning) and touch (face paired with CT touch / Control touch). Model 

assumptions were checked by plotting model residuals in combination with verification 

that the Shapiro-Wilk test of normality for model residuals was not significant. When 

significant interaction effects were identified, they were further investigated using 

repeated measures ANOVAs with estimated marginal means comparison, or paired-

samples t-tests as appropriate.  

 

Change in face ratings for faces paired with CT touch and Control touch were compared 

to the change in ratings produced for the four most neutrally rated faces not used during 

the conditioning task for each participant (No touch paired faces). Thus, conditioning 

indices were calculated as the change in approachability ratings for CT touch or Control 

touch paired faces minus the change in ratings for No touch paired faces: 

i) CT touch Conditioning Index: (CT touch After – CT touch Before) – (No touch After 

– No touch Before) 

ii) Control touch Conditioning Index: (Control touch After – Control touch Before) – 

(No touch After – No touch Before) 

The resultant CT touch conditioning index data was found not to be normally 

distributed due to an outlier (male, age = 29 years) who’s CT touch conditioning index 

was more than three standard deviations less than the mean. This outlier was removed 

from the analysis, which allowed the assumption of normality to be met. 
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2.5.2 Dot Probe Task 

Reaction time (RT) data from the Dot Probe Task were cleaned by removing RTs from 

trials where the participant responded erroneously. Participants made a mean of 2.97 

errors (SD = 3.42). Following previously published protocols (Bradley, Mogg, & Lee, 

1997; Koster, Crombez, Verschuere, & De Houwer, 2004), trials where RTs were < 200 

ms or > 2000 ms were removed (mean ± SD number of trials per participant removed 

due to RT being < 200 ms: 0.063 ± 0.25, > 2000 ms: 0.25 ± 0.67). RT data was found to 

be positively skewed and thus not normally distributed. To reduce the influence of 

positive skew, median rather than mean RTs for each participant and condition were 

calculated, following previously published protocols (Bindemann, Burton, Langton, 

Schweinberger, & Doherty, 2007; Moore, Heavey, & Reidy, 2012). The residuals of the 

model were found not to be normally distributed and one participant (female, age = 29 

years) was identified as a significant outlier. Examination of model residuals identified 

this participant’s residuals for all 8 conditions were more than three standard deviations 

from the mean and for half of these conditions, the residuals for this participant were 

more than 5 standard deviations from the mean. This participant was therefore 

removed from the analysis (N.B. this was not the same participant as the outlier 

identified in section 2.5.1.). Additionally, data were square root transformed. Model 

residuals then met the assumption of normality. Data were analysed using Wilks’ 

Lambda multivariate repeated measures ANOVAs. 

 

2.5.3 ECG 

ECG and SCR data were missing for one participant due to a corrupted file (male, age = 

20 years), so datasets from 31 participants were analysed for both measures. The ECG 
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data were filtered using a 0.1 - 30 Hz bandpass filter and an R peak finder was used to 

generate inter-beat intervals (IBIs).  Change scores in IBI were created on a trial by trial 

basis, using the final two beats before the onset of the face during the conditioning task 

as a baseline (adapted from Gunther Moor, Crone, & Van Der Molen, 2010).  This 

resulted in positive changes denoting a slowing of heart rate and negative changes a 

speeding up of heart rate.  Artefacts were then removed on a participant by participant 

basis by generating boundaries of three standard deviations above and below the mean 

change score for every participant, including all beats across all trials in this calculation.  

Any trial that contained an IBI change that violated these boundaries was then removed 

from the analysis.  This resulted in the removal of an average of 1% of trials (Min = 0%, 

Max = 5%). The IBI data were analysed in terms of mean amplitudes, using repeated 

measures ANOVAs.  To divide the IBI data from each trial in terms of time, beat 

numbers 1 and 2 after the fixation period were analysed as responses to the face only, 

and beats 3 – 8 were analysed as responses to the touch stimulus. 

 

2.5.4 SCR 

Two separate examinations of the SCR data were made. The first examined skin 

responses to the presentation of the face, before the touch stimulus, in the conditioning 

task. The maximum value of the skin conductance level during the 1000 ms prior to the 

onset of the face on each trial was sampled – i.e the maximum value of the final 1000 

ms of the fixation period.  Next, the maximum value of the period from 1000 ms to 

5000 ms (in accordance with sampling guidelines from Boucsein et al., 2012; Dawson, 

Schell, & Filion, 2007, p. 225) after the onset of the face was sampled. A change score 

was calculated between these values by subtracting the baseline maximum from the 
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maximum of the window of interest. Only trials where this value exceeded 0.01 

microsiemens were considered to contain responses and were included in analyses.  An 

average of 68% of trials contained responses during this period (Min = 33, Max = 88).  

Two participants’ data (male, age = 19 years; female, age = 25 years) had to be removed 

from this analysis, because they did not generate enough responses to complete one cell 

of the ANOVA.  The second examination was of the period after the touch stimulation 

had begun.  The same procedure was applied, this time with the baseline maximum 

taken from the final 1000 ms of the period where the face was onscreen pre-touch, and 

change scores calculated between this value and the maximum value from the period 

1000 to 5000 ms after touch onset.  During this period 80% of trials contained responses 

of over 0.01 microsiemens.  The data from both examinations were analysed in separate 

repeated measures ANOVAs, with Speed of touch and Block as factors.   
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3. Results 

 

3.1 Comparison of the effect of conditioning with CT touch vs Control touch on face 

approachability ratings. 

Analysis of change in face approachability ratings following conditioning with CT touch 

compared to Control touch identified a significant Touch x Task interaction (F1,31 = 8.316, 

p = 0.007, partial η2 = 0.212), as presented in Figure 2A. Before conditioning, face ratings 

were comparable (CT touch paired faces: M = 5.52, SD = 0.83; Control touch paired 

faces: M = 5.51, SD = 0.87), t31 = 0.226, p = 0.823. After conditioning, faces paired with 

Control touch (M = 5.13, SD = 1.28) were rated significantly less approachable than those 

paired with CT touch (M = 5.55, SD = 1.23), t31 = 3.064, p = 0.004.  

 

To further investigate this interaction effect, we next compared changes in face ratings 

obtained following conditioning, to ratings changes for four faces that were initially 

equally neutrally rated but not included in the conditioning task. A paired samples t-test 

revealed average ratings for the touch paired faces before conditioning (M = 5.51, SD = 

0.85) were not significantly different to the No touch paired faces used in this analysis 

(M = 5.54, SD = 0.80), t31 = -0.523, p = 0.605). A significant Time x Touch interaction 

was identified (F2,30 = 4.842, p = 0.015, partial η2 = 0.244), as presented in Figure 2A. 
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Figure 2A: Change in face approachability ratings following conditioning. Before 

conditioning, all face ratings were comparable. After conditioning faces paired with CT 

Touch were rated significantly more approachable than both Control touch and No-touch 

paired faces. For CT touch paired faces, ratings were comparable before and after 

conditioning, whereas for Control touch & No touch paired faces, approachability 

ratings decreased following conditioning. Mean ± 95 % confidence intervals are shown. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 

 

 

Before conditioning, no differences were identified in approachability ratings for the 

faces in the three touch conditions (F2,30 = 0.146, p = 0.865, partial η2 = 0.010). After 

conditioning, a significant difference was identified (F2,30 = 5.603, p = 0.009, partial η2 = 

0.272). CT touch paired faces were rated significantly more approachable than either the 

Control touch (t31 = 3.058, p = 0.004) or the No touch paired faces (M = 4.98, SD = 0.79, 

t31 = 2.639, p = 0.013). Faces paired with Control touch and No touch paired faces were 

comparably approachable (t31 = 0.736, p = 0.467).  

 

To compare the conditioning effect induced by CT touch to that produced by 

Control touch, conditioning indices were calculated (see section 2.4.1). The results 
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obtained are presented in Figure 2B. A paired samples t-test identified the CT touch 

conditioning index (M = 0.73, SD = 1.02) to be significantly greater than the Control 

touch conditioning index (M = 0.27, SD = 0.91), t30 = 3.155, p = 0.004. This effect was 

also significant before removing the outlier identified in section 2.5.1 (t31 = 2.884, p = 

0.007).  

 

 

Figure 2B: CT touch induces a significantly greater conditioning effect on face 

approachability ratings than Control touch. Change in approachability rating of faces 

not used in the conditioning task, but rated before and after, was subtracted from the 

change in face rating induced by CT touch (CT conditioning index) and Control touch 

(Control conditioning index). The CT conditioning index was significantly greater than 

the Control conditioning index. Mean ± 95 % confidence intervals are shown. ** p = 

0.004. 

 

3.2 Dot Probe  

A within-subjects ANOVA was used to investigate the median RTs obtained from the dot 

probe task. The analysis design had 3 factors, each with two levels: Touch (CT / Control), 

Latency (slow, fast) and Position (left, right). Touch referred to whether the dot probe 

appeared in the position of the CT touch paired face or the Control touch paired face. 
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Latency referred to how long the faces were presented before being replaced by the dot 

probe (stimulus onset asynchrony (SOA)). For the fast condition, SOA was 750 ms. For 

the slow condition, SOA was 1250 ms. Position refers to whether the dot probe appeared 

on the left or right of the screen. No significant effects were identified, although the effect 

of touch approached significance (F1,30 = 3.627, p = 0.066, partial 2 = 0.108), with square 

root reaction time being greater for CT touch paired faces (M = 19.30, SD = 0.99) than 

Control touch paired faces (M = 19.23, SD = 0.95) and this data is presented in Figure 3. 

Before removal of the outlier identified in section 2.5.2, this effect of touch was also non-

significant (F1,31 = 2.363, p = 0.134, partial 2 = 0.071). 

 

 

Figure 3: Square root reaction time to the dot probe when it appeared in the position of 

the CT touch paired face (CT touch) compared to when it appeared in the position of the 

Control touch paired face (Control touch). Mean ± 95 % confidence intervals are shown. 

 

3.3 ECG data  
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 Initially the ECG data were entered into a repeated measures ANOVA, with the within-

subjects factors of Touch (CT touch, Control touch), Time (face period (beats 1 and 2), 

face and touch period (beats 3 to 8)), and Block (1, 2, 3, 4, 5). There was a significant 

main effect of Touch, (F1,30 = 4.2, p = 0.048, η 2 = .12), with CT touch producing a 

significantly greater deceleration of the heart than Control touch. There was also a 

significant Touch x Time interaction, (F1,30 = 6.6, p = 0.016, η 2 = .18).  This reflects the 

fact that during the first period of the trial, where only the face was present, there was no 

significant difference in deceleration for the two touch conditions, t30 = 0.38, p = 0.71.  

However, for the period of trial where touch was being applied, heart rate deceleration 

was significantly greater for CT than Control touch (t30 = 3.0, p = 0.005), see Figure 4. 

 
Figure 4:  Mean change in interbeat interval (IBI) during trials of the Evaluative 

Conditioning Task.  The bars in the left hand column represent the mean change from 

baseline in the first two IBIs of the trial, taken to represent change caused by the face 

stimulus alone.  The bars in the right hand column represent the mean change in IBI 

during beats three to eight, during the application of touch. Mean ± 95 % confidence 

intervals are shown. ** p < .01 for difference between CT touch and Control touch 

conditions. 
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3.4 SCR Results 

The SCR data from the period where the participant observed the face alone prior to 

touch, were entered into a repeated measures ANOVA, with the within-subjects factors 

of Touch (CT touch & Control touch) and Block (1, 2, 3, 4, 5).  The analysis of this period 

revealed no significant main effects or interactions. 

 
The SCR data from the period where the participant observed the face and received the 

touch stimulus (see Figure 5) were entered into a repeated measures ANOVA, with the 

within-subjects factors of Touch (CT touch & Control touch) and Block (1, 2, 3, 4, 5).   

The analysis revealed only a main effect of Touch (F1,30 = 6.5, p = 0.016, η 2 = .18), with 

significantly larger SCRs in response to Control than CT touch. 

 

 

Figure 5:  Mean change in Skin Conductance Response (SCR), during the Evaluative 

Conditioning Task, to the initial appearance of the face (bars in left hand column), and 
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the application of touch (bars in right hand column). Mean ± 95 % confidence intervals 

are shown. * p < .05 for the difference between CT touch and Control touch conditions. 

  



25 

 

4. Discussion 

To date, the majority of conditioning studies conducted in humans have used aversive 

rather than appetitive stimuli (for review see Hofmann et al., 2010), though see 

(Andreatta & Pauli, 2015). While previous studies have reported conditioning effects to 

a painful cutaneous stimulus (Petrovic et al., 2008), in the present study we used a 

tactile stimulus as an appetitive unconditioned stimulus. Specifically, in support of the 

social touch hypothesis (Morrison et al., 2010; Olausson et al., 2010), we have shown 

that touch, designed to optimally activate CTs, carries a positive affective value that can 

be passed to previously neutral stimuli through repeated co-occurrence. While all faces 

used in the study were rated equally approachable prior to conditioning, post 

conditioning faces paired with CT touch were significantly more approachable than 

faces paired with Control touch or those not paired with any type of touch.  

 

It is noteworthy that in the present study, we did not see a significant increase in ratings 

of approachability of CT touch paired faces, rather these faces did not show the same 

reduction in approachability as the other faces showed over the course of the study. This 

finding is consistent with those of Triscoli, Ackerley, & Sailer (2014) who reported that 

after 50 minutes of repeated stimulation, though pleasantness ratings of both types of 

touch declined, ratings of stroking at CT optimal velocity remained significantly higher 

than for faster, Non-CT optimal touch. However, the fact that in the present study there 

was also a drop-in approachability of No touch paired faces suggests that it was not the 

repetitive touch per se, but perhaps a reduction in the affective state of the participants 

over the course of the experimental session that reduced their approachability ratings of 

all but the CT touch paired faces. Further work is needed to determine explicitly what 
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impact the affective state of a participant has on both the conscious appraisal and 

implicit impact of touch. For example, in a context of social isolation or stress, we 

would predict CT activating touch would be perceived as more rewarding, where it can 

be seen functionally as helping to correct a need state (Cabanac, 1971; Ellingsen, 

Leknes, Løseth, Wessberg, & Olausson, 2016; Morrison, 2016). 

 

Consistent with previous studies, we saw a significantly greater deceleration in heart 

rate in response to CT versus Control touch (Fairhurst et al., 2014; Pawling et al., 2017). 

Greater cardiac deceleration has previously been reported in response to emotional 

versus neutral stimuli and is a classic component of the orienting response to 

motivationally salient stimuli (Bradley et al., 2001; Bradley et al., 2012; Lang & 

Bradley, 2010). However, in contrast to our hypothesis, while both types of touch 

elicited electrodermal responses, the SCR response to Control touch was significantly 

higher than to CT touch. Taken together, this suggests that while CT touch is more 

positively valenced, the Control touch was more arousing (Bradley et al., 2001). There 

was no significant effect of time in our measures of physiological responses, thus faces 

did not come to elicit the physiological responses elicited by the touch with which they 

were associated. This is not unexpected as evaluative conditioning is qualitatively 

distinct from classical conditioning and expectancy learning does not take place 

(Baeyens & De Houwer, 1995).  Thus, unlike Pavlovian fear conditioning for example, 

a change in response to the conditioned stimuli can only generally be seen by using 

direct measures of preference or evaluation, such as approachability ratings (Baeyens & 

De Houwer, 1995). 
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The dot probe task was included in the present study as an implicit measure of the 

relative attentional salience of the touch paired faces (Frewen, Dozois, Joanisse, & 

Neufeld, 2008; Koster et al., 2004; Moore et al., 2012). However, we found no 

significant effect of touch on task performance. In fact, in contrast to our hypothesis, on 

average, reaction times were faster on trials when the probe appeared behind Control 

than CT touch paired faces. This observation is consistent with the significantly higher 

arousal elicited by the Control touch (Pool et al., 2016). The fact we saw conditioning 

effects with our explicit but not implicit behavioural measure is in-line with previous 

literature, where evaluative conditioning effects are weaker and less consistent for 

implicit than explicit measures (see Hofmann et al., 2010 for meta-analysis). 

 

Our finding that somatosensory signals can influence affective processing is consistent 

with a previous study by Schirmer et al (2011), which reported that a brief, socially 

relevant tactile stimulus (light pressure applied to the forearm) modulated neural 

responses to affective visual images, irrespective of whether it was delivered by, or 

attributable to, a close friend or a computer controlled device. However, in order to 

elicit such effects, touch may need to have some social relevance, as in another recent 

study a vibro-tactile stimulus applied to the palm of the hand was not found to modulate 

neural or physiological responses to a range of emotional faces (Spapé, Harjunen, & 

Ravaja, 2017).  

 

While the present study was designed with a bottom-up approach, predicated on the 

differential response characteristics of myelinated and unmyelinated mechanosensory 

afferents, we acknowledge that in the real world, top-down effects, such as the context 
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in which social touch is experienced, will have a significant impact on how it is 

evaluated (Ellingsen et al., 2016; Gazzola et al., 2012; Suvilehto, Glerean, Dunbar, Hari, 

& Nummenmaa, 2015). For example, Gazzola et al (2012) reported that the same tactile 

stimulus elicited distinct neural responses depending on whether heterosexual male 

participants believed they were being touched by a male or female experimenter. 

Furthermore, Croy, Drechsler, Hamilton, Hummel, & Olausson, (2016) found neural 

responses to CT activating touch were modulated by the affective value of the broader 

sensory context it was delivered within. In their study, concurrent presentation of touch 

with an unpleasant odour dampened responses in affect related brain regions, including 

posterior insula cortex. Behaviourally, in the visual domain, Ellingsen et al (2014) 

found that touch was rated as significantly more pleasant when presented with a smiling 

versus a frowning face. Further work is needed to explicitly test the impact of social 

context on behavioural and physiological responses to CT targeted touch (Ellingsen et 

al., 2016). 

 

It should be noted that the stimuli used in the present study not only differed in terms of 

stroking velocity but also in terms of contact time on the skin, with the CT targeted 

touch trials involving four times as much skin contact as Control touch. This is 

consistent with previous research in this area, where the focus is on the bottom-up 

effects of tactile stimuli (Ackerley et al., 2014; Björnsdotter, Löken, Olausson, Vallbo, 

& Wessberg, 2009; Croy, Geide, Paulus, Weidner, & Olausson, 2016; McGlone et al., 

2012; Morrison, Bjornsdotter, & Olausson, 2011; Perini et al., 2015). To this end, 

stimuli are delivered at velocities designed to differentially activate cutaneous afferent 

nerves, and tend to be matched for the number of times the stimulus moves across the 
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receptive field of the nerves, rather than time in contact with the skin (though see 

Crucianelli, Metcalf, Fotopoulou, & Jenkinson, 2013; Kaiser et al., 2015; Lloyd, Gillis, 

Lewis, Farrell, & Morrison, 2013; Voos, Pelphrey, & Kaiser, 2013 for time matched CT 

targeted stimulation). In a recent study, we included two control conditions, one where 

stimuli were matched in terms of strokes and another where they were matched for skin 

contact time (Pawling et al., 2017). Across both behavioural and physiological measures 

used, we saw no significant differences between these two control conditions, with both 

producing significantly lower hedonic ratings and smaller decreases in heart rate than 

the CT targeted touch. Thus, while it is possible that the longer contact could account 

for the differential behavioural and physiological effects reported here, based on 

previous findings, we believe it is unlikely. 

 

A further limitation of the present study is the fact we did not explicitly ask participants 

if they were aware of the contingencies in the conditioning task. While contingency 

awareness is an important moderator of evaluative conditioning effects, explicit 

knowledge of the relationship between the CS and US is not necessary for conditioning 

to take place (Hofmann et al., 2010). With 4 different CSs for each of our two USs, the 

relationship is likely to have been harder for participants to learn explicitly than other 

studies with half the number of conditioned stimuli (eg Andreatta & Pauli, 2015; 

Petrovic et al., 2008). In addition, since both our tactile stimuli are rated as moderately 

pleasant, participants would have been unlikely to guess the study hypothesis and make 

their responses accordingly. Finally, given evaluations of the eight experimental faces 

were always made in the context of rating sixteen other task irrelevant faces, conscious 
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recall of which faces were paired with which specific type of stroking touch seems 

highly improbable. 

 

In conclusion, the findings from the present study provide further support for the social 

touch hypothesis (Morrison et al., 2010; Olausson et al., 2010), by showing that touch, 

specially targeted to optimally activate CTs, has a positive affective value that can be 

acquired by previously neutral stimuli it is associated with. Additionally, the pattern of 

responses observed from our combined measures of sympathetic and parasympathetic 

nervous system activity add further support to the hypothesis that touch targeted to 

optimally activate CTs is of specific social relevance and thus has a salience which 

captures attention (Bradley et al., 2001; Bradley et al., 2012; Lang & Bradley, 2010; 

Pawling et al 2017). In evolutionary terms, CT activating touch is likely to have gained 

its rewarding value because it signals the proximity of others, thereby conferring a 

survival benefit (Morrison, 2016).  
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