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Abstract

Using immune algorithms is generally a time-intensive process—especially
for problems with a large number of variables. In this paper, we propose
a distributed parallel cooperative coevolutionary multi-objective large-scale
immune algorithm that is implemented using the message passing interface
(MPI). The proposed algorithm is composed of three layers: objective, group
and individual layers. First, for each objective in the multi-objective prob-
lem to be addressed, a subpopulation is used for optimization, and an archive
population is used to optimize all the objectives. Second, the large number of
variables are divided into several groups. Finally, individual evaluations are
allocated across many core processing units, and calculations are performed
in parallel. Consequently, the computation time is greatly reduced. The
proposed algorithm integrates the idea of immune algorithms, which tend to
explore sparse areas in the objective space and use simulated binary crossover
for mutation. The proposed algorithm is employed to optimize the 3D terrain
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deployment of a wireless sensor network, which is a self-organization network.
In experiments, compared with several state-of-the-art multi-objective evo-
lutionary algorithms—the Cooperative Coevolutionary Generalized Differen-
tial Evolution 3, the Cooperative Multi-objective Differential Evolution and
the Nondominated Sorting Genetic Algorithm III, the proposed algorithm
addresses the deployment optimization problem efficiently and effectively.

Keywords: decision variable analysis (DVA), cooperative coevolution
(CC), large-scale optimization, message passing interface (MPI), 3D terrain
deployment, wireless sensor networks (WSNs)

1. Introduction1

Self-organization [1] refers to the automatic formation of an ordered struc-2

ture from an initially disordered system based on some type of rule. In the3

deployment optimization procedure of the wireless sensor network (WSN)4

[2], through self-organization, the wireless sensor nodes were optimized to5

maximize the Coverage, optimize Connectivity Uniformity and minimize De-6

ployment Cost. With the rapid development of sensor and wireless commu-7

nication technologies, WSNs have been applied to various fields. The work of8

[3] showed the air temperature monitoring application of the wireless sensor9

networks. Shen et al. [4] described the wireless sensor nodes for the medical10

service. Zhang et al. [5] illustrated the k-barrier coverage problem of the11

wireless sensor networks. Zhou et al. [6] researched on the energy issue, in12

which, clustering and data compression were studied; while, Zhang et al. [7]13

utilized the mobile sinks to alleviate the communication burden.14

Also, the response of the human immune system to antigens can be viewed15

as a process of self-organization. Based on this concept, the clonal selec-16

tion algorithm (CLONALG) [8] was proposed, which can be used for global17

optimization problems (GOPs) and multi-objective optimization problems18

(MOPs) [9]. Xue et al. [10] described the self adaptive artificial bee colony19

algorithm which is different from the immune algorithm and can also be a20

self-organizing procedure.21

In the real world, many problems require several objectives (usually con-22

flicting) to be considered simultaneously. Multi-objective evolutionary algo-23

rithms (MOEAs) [11, 12, 13] are capable of generating a plurality of solu-24

tions in a single run, which is convenient for approximating the Pareto front25

(PF). For NP-hard problems, evolutionary algorithms (EAs) [14, 15, 16, 17]26
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can usually converge to a near optimal solution using limited computational27

resources [18] within a reasonable time compared to brute force and deter-28

ministic methods.29

The first multi-objective immune algorithm (MOIA) was proposed in [19].30

In this study, the immune algorithm (IA) was combined with the genetic al-31

gorithm (GA), to improve the selection of individuals for evolution. Gong32

et al. [20] proposed the nondominated neighbor immune algorithm (NNIA),33

which was prone to select a small quantity of nondominated individuals in34

the sparse area for cloning, recombination and mutation. In [21], simulated35

binary crossover (SBX) and differential evolution (DE) were combined and36

applied to the cloned individuals in a hybrid evolutionary framework for37

MOIAs called HEIA, which performed well for both unimodal and multi-38

modal problems.39

EAs are based on an iterative evolution of the population (the solutions),40

which is time-consuming—especially for expensive problems. Distributed41

evolutionary algorithms (dEAs) [22, 23] allocate the tedious computational42

burden across numerous computational nodes, greatly reducing the required43

time. Cloudde [24] used DEs with various parameters to optimize multiple44

populations in a distributed parallel manner, yielding a promising perfor-45

mance from both effect and efficiency aspects. [25] provided a comprehensive46

study concerning parallel/distributed MOEAs. Using the multi-objective47

optimization algorithm based on decomposition (MOEA/D) [13], parallel48

MOEA/Ds (pMOEA/Ds) [26] [27] were proposed.49

Along with the arrival of “big data”, many problems become complex50

and it will be time-consuming and storage-consuming to solve them [28, 29].51

Similarly, many MOPs have a huge number of variables (more than 10052

variables [30]); some examples are classification [31], clustering [32], recom-53

mendation systems [33], and so on. However, the goal of traditional MOEAs54

is to solve multi-objective small-scale optimization problems (MOSSOPs);55

consequently, the traditional algorithms may be incapable of tackling multi-56

objective large-scale optimization problems (MOLSOPs) because of the “curse57

of dimensionality”. To optimize numerous variables, some promising ap-58

proaches first separate the variables into groups and then optimize them in59

a cooperative coevolutionary (CC) [34] manner. For large-scale global op-60

timization problems (LSGOPs), many grouping mechanisms have been ap-61

plied, including fixed grouping [34], random grouping [35], the Delta method62

[36], dynamic grouping [37], differential grouping (DG) [38], global differen-63

tial grouping (GDG) [39] and graph-based differential grouping (gDG) [40].64
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Antonio et al. proposed the cooperative coevolutionary generalized differen-65

tial evolution 3 (CCGDE3) method [41], which used fixed grouping.66

MOLSOPs differ from LSGOPs in that no single solution can optimize all67

the conflicting objectives, instead, a set of solutions should be generated to68

approximate the PF. In MOLSOPs, variables have different properties [42]69

that can be classified as follows:70

1. position variables, which affect only the diversity of the solution set;71

2. distance variables, which affect only the convergence of the solution72

set; and73

3. mixed variables, which affect both the diversity and the convergence of74

the solution set.75

Therefore, position variables should be permuted to approximate the PF76

as comprehensively as possible. However, distance variables should be opti-77

mized so they can closely approach the PF.78

To identify these variable types, the multi-objective evolutionary algo-79

rithm based on decision variable analyses (MOEA/DVA) [30] proposed a80

mechanism that used decision variable analyses (DVA) to categorize the po-81

sition and mixed variables as diversity-related variables and to categorize82

distance variables as convergence-related variables. The convergence-related83

variables were separated into several groups that were then optimized under84

the CC framework.85

Using multiple populations can contribute to the optimization perfor-86

mance. In cooperative multi-objective differential evolution (CMODE) [43],87

each objective was optimized by a subpopulation, and an archive was used to88

maintain good solutions and optimize all objectives. This approach achieved89

good experimental results.90

Compared to MOSSOPs, designing parallel/distributed MOEAs for MOL-91

SOPs will be more beneficial. In this paper, we propose the distributed paral-92

lel cooperative coevolutionary multi-objective large-scale immune algorithm93

(DPCCMOLSIA), which is aimed at solving MOLSOPs in an effective and94

efficient manner.95

The contributions of this paper can be summarized as follows:96

1. Each objective is optimized by a subpopulation. Thus, the exploration97

with respect to each objective is enhanced, and all objectives are com-98

prehensively optimized by an archive. Variables are grouped according99

to their properties and interactions, contributing to effective optimiza-100

tion.101
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2. The idea of IA is introduced, and more computational resources are102

used to explore sparse areas in the objective space. When combined103

with SBX, the performance can be enhanced.104

3. We construct a three-layer parallel structure. The evaluations of in-105

dividuals in different groups of multiple populations can then be per-106

formed in parallel, which greatly reduces the computation time.107

The remainder of this paper is organized as follows: Section 2 provides108

some preliminary information required for this paper. The details of the109

DPCCMOLSIA are discussed in Section 3. Then, in Section 4, we describe110

the experimental study and present the corresponding analyses. Finally,111

Section 5 concludes this paper.112

2. Preliminaries113

2.1. MOP and Variable Properties114

An MOP involves several objectives that usually conflict with each other;115

therefore, solving an MOP involves obtaining a set of solutions that approx-116

imate the PF. For the minimization problem, we have the following formula:117

Minimize F (X) = {f1 (X) , f2 (X) , ..., fM (X)} (1)

where X = (X1, X2, ..., XD) is a point in the solution space <D. Here, D118

is the number of variables, fi, i = 1, 2, ...,M , represents the objectives, and119

F (X) denotes the point that corresponds to X in the objective space, <M .120

Due to the conflicts among the objectives, the types of the different vari-121

ables involved can vary: these types can be classified as position, distance,122

and mixed variables. For instance, consider the following MOP:123 {
f1 = x1 + sin (4πx2) + ex3(x4−0.05) + x25
f2 = 1− x1 − cos (4πx2) + x23 + x34 + x25

s.t. xi ∈ [0, 1], i = 1, 2, 3, 4, 5.
(2)

where f1 and f2 are two objectives, and x1, x2, x3, x4 and x5 are decision124

variables.125

Fig. 1 illustrates the sampled solution sets by varying each variable in-126

dividually while holding the others constant at 0.5. From the image, we can127

determine the properties of the variables: x1 is a position variable, because it128

influences only the diversity; x2 is a mixed variable because it influences both129

the diversity and the convergence; x3 and x4 are distance variables, yet their130
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Figure 1: Image of solution sets for the MOP formulated in Eq. 2 by varying one variable
while fixing the others to 0.5.

relative positions change a little with varying values; and x5 is a distance131

variable, because it influences only the convergence.132

2.2. CC133

CC [34] divides a large number of variables into multiple subcomponents134

that are optimized separately. For the fitness evaluation, the target subcom-135
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ponent is recombined with the representatives of the other components to136

form a complete solution.137

2.3. Immune Algorithm138

CLONALG was proposed in [8]; its process is detailed in Algorithm 1. In139

CLONALG, an antibody denotes a candidate solution, the optimal solution140

is seen as the antigen, and the affinity represents the fitness.141

3. The Proposed Algorithm: DPCCMOLSIA142

Algorithm 2 lists the main steps in the framework of DPCCMOLSIA.143

These main steps are described in detail in the following subsections.144

3.1. Variable Property and Interaction Analyses145

Variables are classified as position variables, distance variables and mixed146

variables according to their influences on diversity and convergence. At the147

end of this process, the position variables and mixed variables are categorized148

as diversity-related variables and the distance variables are categorized as149

convergence-related variables. For the MOP formulated in Eq. 2, x1 and x2150

are classified as diversity-related variables, while x3, x4 and x5 are classified151

as convergence-related variables.152

3.2. Variable Grouping153

Because more than one objective exists, the interactions among variables154

are obtained with respect to all the objectives by adopting the idea of gDG155

[40]. The diversity-related variables are separated into a single group. We156

group the convergence-related variables according to the following idea: if157

two variables interact with each other for any objective to be optimized in158

the current subpopulation/archive, we consider them to be interacting. For159

example, for the MOP formulated in Eq. 2, x1 and x2 are diversity-related160

variables, so they are allocated to a single group. For the convergence-related161

variables, x3 and x4 interact in f1 and act independently in f2, so we allocate162

them to a single group in subpopulation 1 (only optimizing f1), to separate163

groups in subpopulation 2 (only optimizing f2), and to the same group in the164

archive (optimizing both f1 and f2); x5 is independent from other variables165

for both f1 and f2, so it is in another separate group.166
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Algorithm 1: CLONALG

Input: number of variables: D;
number of antibodies: NAb;
number of generations: Ngen;
antibodies: POPAb;
number of antibodies to be selected: Nsel.

Output: final antibodies: POPAb;
final affinities: AFFAb.

/* Initialization */

1 G = 0;
2 Randomly initialize POPAb;
3 Selected antibodies POPsel = φ, AFFsel = φ;
4 Reproduced antibodies POPrep = φ, AFFrep = φ;
/* Main Loop */

5 while G < Ngen do
6 AFFG

Ab = f
(
POPG

Ab

)
;

7 Selection according to AFFG
Ab:

POPG
Ab → POPG

sel, AFF
G
Ab → AFFG

sel;
8 Cloning according to AFFG

sel:
9 POPG

sel → POPG
rep;

10 Hypermutation:

11 POPG
rep → POPG+1

rep , AFFG+1
rep = f

(
POPG+1

rep

)
;

12 Insertion:

13 POPG
Ab + POPG+1

rep → POPG+1
Ab ;

14 G+ +;

Algorithm 2: DPCCMOLSIA

1 Initialization;
2 Variable property and interaction analyses;
3 Variable Grouping;
4 Parallelism implementation;
5 Optimization;
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3.3. Parallelism Implementation167

For MOLSOPs, especially expensive ones, parallelism can be beneficial.168

DPCCMOLSIA is a distributed parallel algorithm implemented using the169

MPI. In DPCCMOLSIA, the parallel structure has three layers.170

Assuming that there are NCPU CPU resources available, the variables171

are divided to NG
i groups. Here, i = 1, 2, ...,M + 1—that is to say, the172

subpopulations are represented by i = 1, 2, ...,M and the archive is repre-173

sented by i = M + 1. There are NP individuals in each subpopulation and174

in the archive population. And the importances of each subpopulation and175

the archive population are ωSUB and ωARC , respectively. Then, we have the176

following equation:177

NCPU
i =

NG
i × ωi∑
NG

i × ωi

×NCPU

s.t. i = 1, 2, ...,M + 1.
(3)

where178

ωi =

{
ωSUB if i = 1, 2, ...,M
ωARC if i = M + 1

(4)

and NCPU
i is the number of CPUs allocated to the i-th subpopulation or the179

archive.180

NCPU
i,j =

NCPU
i

NG
i

s.t. j = 1, 2, ..., NG
i .

(5)

where NCPU
i,j is the number of CPUs allocated to the j-th group in the i-th181

subpopulation or the archive.182

The evaluations of the individuals are allocated across the multiple CPUs183

in each group.184

NCPU
i,j,k =

NP

NCPU
i,j

s.t. k = 1, 2, ..., NCPU
i,j .

(6)

where NCPU
i,j,k is the number of individuals that are assigned to the k-th CPU185

of the j-th group in the i-th subpopulation or the archive.186

Therefore, based on the three-layer parallel structure, the evaluations of187

the individuals in each group of all M + 1 populations are conducted in188

parallel, which substantially reduces the computation time.189
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To guarantee the optimization performance, information must be shared190

among the groups. The communication strategy should be properly designed191

[44, 45], for this purpose, we adopt von Neumann topology.192

3.4. Evolution Combined with the Idea of IA193

The overall evolution process is provided by Algorithm 3. The evolution of194

each group in the subpopulations (Algorithm 4) or in the archive (Algorithm195

5) is described in the following subsections.196

3.4.1. Subpopulations197

In Line 2 of Algorithm 4, in the evolution, tour selection is employed to198

choose 2 individuals from the full population. Then in Lines 3 and 4, we199

use SBX to evolve variables in the target group and integrate with other200

variables to form a complete individual.201

X i,j =

{
SBX (Xi, Xr1 , Xr2 , j) if j ∈ index

Xr3,j otherwise
(7)

where X i is the generated new solution, Xi is the target parent individual,202

Xr1 and Xr2 are the 2 reference individuals, index is the set of variables203

optimized by the current group, and Xr3 is integrated with the optimized204

variables to form a complete solution, which has the following form:205

r3 =


i if r <

G

Ngen

r4 else if r′ < 0.5
r5 otherwise

(8)

Algorithm 3: Evolution

Input: generation number: Ngen.
Output: final population: POPfinal.

1 for G = 1→ Ngen do
2 Evolve all variable groups in the subpopulations (Algorithm 4) and

the archive (Algorithm 5) in parallel;
3 Exchange information among the groups;

4 Gather all the individuals from all groups to generate the final
population POPfinal;

10



Algorithm 4: Evolution of One Variable Group in Subpopulations

Input: number of individuals: NP ;
population: POP1.

Output: new population: POPnew1.
/* Evolution */

1 for i = 1→ NP do
2 Select 2 reference individuals;
3 Use SBX to generate offspring i;
4 Integrate other variables with the generated offspring to form a

complete solution;
5 Perform polynomial mutation;

/* Evaluation */

6 Allocate the generated solutions to the CPU resources in the group
and perform the evaluations in the CPUs in parallel;

7 Collect the fitness values from the CPUs;
/* Refinement */

8 Combine the generated solutions with the old population;
9 Obtain NP individuals based on their fitness values to the considered

objective→ POPnew1;
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where G is the number of the current generation and Ngen is the number of206

the maximum generation. Here, r and r′ are uniform random numbers in207

the range of [0.0, 1.0] and r4 and r5 are 2 selected individuals through tour208

selection. Then, in Line 5, polynomial mutation is performed.209

In Lines 6 and 7, to evaluate the newly generated solutions, we use par-210

allelism to alleviate the computational burden. This is the third layer of the211

parallel structure of DPCCMOLSIA.212

Finally, in Lines 8 and 9, the NP best individuals with respect to the213

considered objective are preserved.214

Algorithm 5: Evolution of One Variable Group in Archive

Input: number of individuals: NP ;
population: POP2;
maximum number of individuals to be selected: Nsel.

Output: new population: POPnew2.
/* Selection */

1 Select Nsel individuals according to the Pareto dominance and
crowding distance;
/* Clone */

2 Clone the selected individuals to a total number of NP ;
/* Evolution */

3 for i = 1→ NP do
4 Select 2 reference individuals;
5 Use SBX to generate the offspring i;
6 Integrate other variables to the generated offspring to form a

complete solution;
7 Perform polynomial mutation;

/* Evaluation */

8 Allocate the generated solutions to the CPU resources in the group
and perform evaluations on the CPUs in parallel;

9 Collect the fitness values from the CPUs;
/* Non-dominated sorting */

10 Combine the generated solutions with the old population;
11 Obtain NP individuals according to the Pareto dominance and

crowding distance→ POPnew2;
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3.4.2. Archive215

Traditionally, in each generation, all individuals take part in evolution.216

However, this paper introduces the idea of IA, in which, in each genera-217

tion, we select several best individuals and produce NP offspring, the whole218

process of which is illustrated in Algorithm 5. In detail, the selection of indi-219

viduals in Line 1 is determined by two criteria: non-dominance and crowding220

distance. If the number of nondominated individuals is less than Nsel, we221

select them all for cloning; otherwise, we select the Nsel individuals that have222

larger crowding distances. In the cloning process in Line 2, the number of223

clones of each selected individual is determined by the crowding distance.224

NC
i =

disti∑Nsel
i=1 disti

×NP, (9)

where NC
i represents the replications of selected individual i and disti is its225

crowding distance in the population, which is calculated as follows:226

disti =
M∑

m=1

distmi , (10)

where, distmi is the crowding distance of individual i with respect to objective227

m,228

distmi =


∞ if (i)∗ = 1

f̃
(i)∗+1
m − f̃ (i)∗−1

m

f̃NP
m − f̃ 1

m

otherwise
(11)

and f̃
(i)∗
m is the f i

m sorted in ascending order. Finally, (i)∗ is the new index229

of individual i in the sorted sequence.230

disti =

{
2× distmax

i if disti =∞
disti otherwise,

(12)

and distmax
i is the maximum crowding distance. Because there are ∞ values231

assigned to crowding distances, to calculate NC
i , we have to convert them.232

In Line 4 in the evolution process, we select 2 individuals from among233

the Nsel selected individuals if Nsel > 2; otherwise, the selection scope is the234

whole population. Then in Lines 5 and 6, we use SBX to generate the target235

individual. For the integration, r4 and r5 (Eq. 8) are 2 randomly selected236

individuals from the Nsel best individuals used for cloning when Nsel > 2 or237
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(a) Plain Terrain (b) Hilly Terrain

(c) Mountainous Terrain

Figure 2: Illustration of 3D terrain data.

from the whole population when Nsel ≤ 2. Then Line 7 performs polynomial238

mutation.239

Finally, in Lines 8 and 9, we combine the new individuals with the cur-240

rent population to obtain the NP best individuals according to the Pareto241

dominance and crowding distance. When the number of nondominated indi-242

viduals is less than NP , several dominated individuals are preserved.243

4. Experimental Research: Application to 3D Terrain Deployment244

of Heterogeneous Directional Sensor Networks245

4.1. 3D Deployment Problem and Terrain Data246

We use the 3D deployment problem proposed in [2], which includes three247

objectives: Coverage, Connectivity Uniformity and Deployment Cost. We248

also use the same real-world 3D terrain data (Fig. 2), which is composed249

of plain (Fig. 2(a)), hilly (Fig. 2(b)) and mountainous (Fig. 2(c)) terrains.250

These three terrains have different characteristics that are used to verify the251

proposed algorithm with respect to various conditions.252
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4.2. Parameter Setup253

We compare DPCCMOLSIA with CCGDE3 [41], CMODE [43] and the254

nondominated sorting genetic algorithm III (NSGA-III) [46] in addressing255

the deployment optimization problem.256

For all the algorithms, the optimization process is performed 20 times.257

The fitness evaluations (FEs) are set to 104 ×D: here, D = 102.258

To ensure a fair comparison, we set the population size, NP , to 120259

for all algorithms. Specifically, for CCGDE3, the population is split into260

2 subpopulations, each of which has 60 individuals. For CMODE, because261

there are 3 objectives that must be optimized, we used 3 subpopulations,262

each of which has 20 individuals, and set the maximum size of the archive263

to 120; for NSGA-III, we simply set NP to 120. For DPCCMOLSIA, each264

of the subpopulations and the archive population has 120 individuals, while265

the importance ratio of the subpopulation and the archive population is set266

to ωSUB : ωARC = 1 : 6, and we finally select 120 individuals.267

DE is used in CCGDE3, and F and CR are set to 0.5 and 1.0, respectively.268

SBX and polynomial mutation are used in NSGA-III and DPCCMOLSIA,269

and the distribution indexes are set to ηc = ηm = 20. The probabilities of270

crossover and mutation are set to pc = 1.0 and pm = 1.0/D, respectively.271

Additionally, for DPCCMOLSIA, we setNsel = 0.1×NP , and the number272

of CPUs used is 72.273

4.3. Performance Indicator274

Because the optimal solutions are unknown, we use the hypervolume (HV)275

indicator [47] and visualize all the obtained solutions. The higher is the HV276

indicator value, the better is the optimization performance.277

4.4. Results and Analyses278

First, we demonstrate all the obtained final nondominated solutions after279

20 runs of each algorithm on each of the three terrains in Fig. 3. Here, P −∗280

denotes the results on plain terrain, H−∗ denotes the results on hilly terrain,281

and M − ∗ denotes the results on mountainous terrain.282

As Fig. 3 shows, the characteristics are quite different for the different283

terrains, while for the various algorithms on the same terrain, the solutions284

are only slightly different.285

In general, for the plain terrain, all the algorithms perform better on the286

Coverage objective. For the hilly terrain, the algorithms tend to obtain good287

performance on the Deployment Cost objective. Finally, on the mountainous288
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Figure 3: Visualization of solutions on all terrains.
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terrain, the algorithms performances are all inferior to their performances on289

the other two terrains. We can comment on the above phenomena as follows:290

1. Because the plain terrain is flatter than the other two terrains, it is291

easier to achieve better Coverage.292

2. The hilly terrain has few changes in elevation, and algorithms tend to293

deploy the sensor nodes in the low-lying areas, thus guaranteeing better294

Deployment Cost.295

3. The mountainous terrain has severe elevation changes, which makes it296

much more difficult to address compared with the other two terrains;297

consequently, the algorithms exhibit poor performances on this terrain.298

In the following, we analyze the performances of the different algorithms299

on each terrain in detail.300

4.4.1. Plain Terrain301
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Figure 4: Convergence curves of HV on plain terrain.
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The convergence curves of the HV indicator are illustrated in Fig. 4.302

We can see that DPCCMOLSIA performs the best (0.785290), CMODE303

slightly worse (0.779786), NSGA-III is third (0.735985), and CCGDE3 per-304

forms the worst (0.631979). Moreover, DPCCMOLSIA has the fastest con-305

vergence speed, but improves less later in the process, similar to CMODE.306
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Figure 5: Visualization of solutions of plain terrain.

The visualization is shown in Fig. 5. In accordance with the HV indi-307

cator and considering the diversity and convergence of solutions, the overall308

performance of DPCCMOLSIA is the best.309

Coverage is an important factor to consider in WSN deployment prob-310
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lems. From the visualization, we can see that DPCCMOLSIA is able to ob-311

tain a very low fitness value (good performance) for the Coverage objective,312

which validates its performance. Because the plain terrain is quite flat, it is313

easier to optimize the objectives Connectivity Uniformity and Deployment314

Cost.315

On the whole, the performances of all the algorithms on the plain ter-316

rain can be ordered as follows: DPCCMOLSIA > CMODE > NSGA-III >317

CCGDE3.318

4.4.2. Hilly Terrain319
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Figure 6: Convergence curves of HV on hilly terrain.

The convergence curves of the HV indicator for all the algorithms on the320

hilly terrain are illustrated in Fig. 6.321

From the HV indicator, again, DPCCMOLSIA performs best (0.929553);322

CMODE is second (0.914022); NSGA-III is third (0.839551), and CCGDE3323
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is far worse (0.754544). The characteristics of all the algorithms are similar324

to those described above for the plain terrain.325
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Figure 7: Visualization of solutions of hilly terrain.

The visualization of the solutions are shown in Fig. 7. Generally, DPCC-326

MOLSIA more comprehensively approximates the optimal PF and still guar-327

antees good Coverage. As mentioned above, because the elevation changes in328

the hilly terrain are relatively small, the algorithms obtain a relatively good329

Deployment Cost. However, to achieve better Coverage, the sensor nodes330

should be deployed in higher areas, which results in a sharp increase in the331

fitness of the objective Deployment Cost, as can be observed in Fig. 7(c).332

20



Overall, the performances of the algorithms on hilly terrain can be ordered333

as follows: DPCCMOLSIA > CMODE > NSGA-III > CCGDE3.334

4.4.3. Mountainous Terrain335
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Figure 8: Convergence curves of HV on mountainous terrain.

The convergence curves of the HV indicator of DPCCMOLSIA, CMODE,336

NSGA-III and CCGDE3 on mountainous terrain are illustrated in Fig. 8.337

DPCCMOLSIA again obtains the highest HV indicator value (0.758215),338

CMODE is a little worse (0.733522), NSGA-III is third (0.674049), and339

CCGDE3 is the worst (0.556730). The characteristics of the different al-340

gorithms are similar to those on the plain and hilly terrains.341

Visualizations of the obtained solutions of all algorithms are shown in342

Fig. 9. Overall, the DPCCMOLSIA algorithm performs the best. Because343

mountainous terrain has severe altitude variations, it is much more difficult344

for the algorithms to achieve a good optimization performance.345
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Figure 9: Visualization of solutions of mountainous terrain.
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The performances of all four algorithms on mountainous terrain can be346

ordered as follows: DPCCMOLSIA > CMODE > NSGA-III > CCGDE3.347

Overall, comprehensively considering all the tested terrains, DPCCMOL-348

SIA achieves the best optimization results; CMODE is a little worse; NSGA-349

III is third; and CCGDE3 is well behind.350

Table 1: Average Computation Time of CCGDE3, CMODE, NSGA-III and DPCCMOL-
SIA and the Speedup Ratios with Respect to DPCCMOLSIA

AVERAGE TIME CCGDE3 CMODE NSGA-III DPCCMOLSIA

Plain terrain 2.32E+03 2.63E+03 2.52E+03 8.48E+011

Hilly terrain 3.40E+03 3.58E+03 3.67E+03 1.25E+02

Mountainous terrain 3.06E+03 3.25E+03 3.28E+03 1.13E+02

All terrains 2.93E+03 3.15E+03 3.16E+03 1.07E+02

Speedup Ratio 2.73E+01 2.94E+01 2.94E+01 /

1 Values in bold denote better performance.

Table 1 summarizes the computation time required by the various algo-351

rithms. Compared to the serial algorithms, the computation time of DPCC-352

MOLSIA is substantially reduced.353

5. Conclusion and Prospect354

In this paper, we proposed a distributed parallel cooperative coevolution-355

ary multi-objective large-scale immune algorithm (DPCCMOLSIA), which356

uses a three-layer parallel structure to substantially reduce the computation357

time. By decomposing the objectives and variables, the original complex358

MOLSOP is transformed into simpler, small-scale problems that are easier359

to address. We verified the effectiveness and efficiency of DPCCMOLSIA360

by testing it on a real-world problem in comparison with several other al-361

gorithms (CCGDE3, CMODE and NSGA-III). In the future, we will plan362

to continue the improvement of DPCCMOLSIA and test it on additional363

real-world problems.364
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