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ABSTRACT

Type IIP supernovae (SNe IIP) have recently been proposed as metallicity (Z) probes. The spectral models of Dessart et al. (2014,
MNRAS, 440, 1856) showed that the pseudo-equivalent width of Fe1r 15018 (pEWsg;5) during the plateau phase depends on the
primordial Z, but there was a paucity of SNe IIP exhibiting pEW5(g that were compatible with Z < 0.4 Z. This lack might be due
to some physical property of the SN II population or to the fact that those SNe have been discovered in luminous, metal-rich targeted
galaxies. Here we use SN II observations from the untargeted (intermediate) Palomar Transient Factory [(i)PTF] survey, aiming to
investigate the pEWs,g distribution of this SN population and, in particular, to look for the presence of SNe II at lower Z. We perform
PEWSso15 measurements on the spectra of a sample of 39 (i)PTF SNe II, selected to have well-constrained explosion epochs and
light-curve properties. Based on the comparison with the pPEWs;3 spectral models, we subgrouped our SNe into four Z bins from
Z =~ 0.1ZyuptoZ ~ 2 Z,. We also independently investigated the Z of the hosts by using their absolute magnitudes and colors and,
in a few cases, using strong-line diagnostics from spectra. We searched for possible correlations between SN observables, such as their
peak magnitudes and the Z inferred from pEWs;5. We found 11 events with pEWsg¢ that were small enough to indicate Z ~ 0.1 Z.
The trend of pEWsg;3 with Z matches the Z estimates obtained from the host-galaxy photometry, although the significance of the

correlation is weak. We also found that SNe with brighter peak magnitudes have smaller pEW 5,5 and occur at lower Z.

Key words. supernovae: general — Galaxy: abundances

1. Introduction

Type II supernovae (SNe) are the most common core-collapse
SN events (Li et al. 2011). They are characterized by hydrogen-
rich spectra (e.g., Filippenko et al. 1997), and their light curves
exhibit a fast rise to peak (Rubin et al. 2015, hereafter R15), fol-
lowed by a long (~90 d) plateau in the case of SNe IIP or by a
linear decline (>1.4 mag/100 d) in the case of SNe IIL. Anderson
et al. (2014) show that these two subclasses may actually be the
extremes of a continuum, with several objects showing interme-
diate light-curve slopes. The nature of the progenitors of SNe IIP
is well established: pre-explosion images at their locations show
extended (R = 500 Ry) red supergiants (RSGs) in the mass
range between 8.5 and 17 My (Smartt 2009).

Recently, Dessart et al. (2014, hereafter D14) have pro-
posed the use of SNe II as metallicity (Z) probes. In their work,
SN II spectral models (first presented in Dessart et al. 2013)

* The data are available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg. fr/viz-bin/qcat?]/A+A/587/L7

Article published by EDP Sciences

show that the equivalent width (EW) of metal lines such as
Fe1r 115018, 5169 depends on the Z of the SN progenitor, as
well as on the spectral phase. Also, the pseudo-EW (pEW) of
these lines, which is more easily measurable than the actual
EW, is a function of Z and phase. D14 measured the pEW of
Fe1r 45018 [hereafter pEWsg 5] in SN IIP spectra during the
plateau phase and compared it with the pEWsq;g of their spec-
tral models in order to determine the Z at the SN locations.
Fe1r 15018 was chosen because it is easy to observe in SN II
spectra and is less affected by line blending than the stronger
Fe1r 25169 line, whose pEW is also a proxy for Z. Anderson
et al. (2015a) recently presented ongoing investigations of the
correlation between the pEW5g;3 and the SN progenitor Z as
measured from the emission lines of 43 SN II host galaxies, at
least in the range between 12 + log(O/H) = 8.2-8.6.

Using spectral data mainly from the Carnegie Supernova
Project (CSP), D14 suggest that there is a lack of SNe IIP at
Z < 0.4 Zy. This could be a characteristic of the SN IIP pop-
ulation, thus providing clues to their progenitor evolution and
explosion mechanisms. However, it could also be a bias effect,
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since the CSP mainly observed SNe that were discovered by
targeting luminous and therefore metal-rich galaxies. Anderson
et al. (2015a) also show a lack of SNe II with small pEWsq;g
— that is, at low Z (see their figure 1a). LSQ13fn (Polshaw et al.
2016) shows a small pEWsgg, correspondingto Z ~ 0.1 Zg,
but it seems to reside in a solar-Z host galaxy. (On the other
hand, it has a large projected offset from the host-galaxy center.)
Whether the lack of SNe II at low Z is a bias effect or a property
of this SN class can only be tested with a larger sample of events
discovered by an untargeted survey.

The Palomar Transient Factory (PTF) and its continuation
(the intermediate PTF) are untargeted surveys, which allowed
the discovery of a large number of core-collapse SNe in a wide
variety of galaxies. Arcavi et al. (2010) studied the PTF SN
populations in dwarf galaxies, finding an excess of SNe IIb as
compared to the SN population in brighter hosts. Thanks to the
high cadence of PTF and iPTF [hereafter (i)PTF], for many
targets there are also good constraints on the explosion epoch.
Furthermore, the (i)PTF collaboration has access to many tele-
scopes for SN follow-up observations (Gal-Yam et al. 2011), and
it has collected a large number of high signal-to-noise ratio (S/N)
SN spectra that are needed to study the pEW of the metal lines.

An extensive sample of (i)PTF SNe II was investigated by
R15 with special focus on their early-time light curves. R15
established the explosion epochs for 57 events, whose spec-
tra show the strong Balmer P-Cygni profiles typical of SNe II.
Based on the light curves and the spectra of each SN, we subclas-
sified our SNe into SNe IIP or IIL. Objects with a decline rate
(s in Anderson et al. 2014) >1.4 mag/100 d during the plateau
phase and a low ratio between the EW of He in absorption and
emission were classified as SNe IIL. In Table A.1 we label the
SNe IIL with an asterisk “*”. Only five SNe IIL belong to our
sample of 39 SNe II.

Here we use the R15 (i)PTF SN sample to investigate the
presence of SNe II at low Z, by measuring their pPEWsg;s during
the plateau phase. We also check for the correlation between the
Z inferred from the pEW measurements and the values obtained
by studying the host-galaxy properties.

This Letter is structured as follows. In Sect. 2 the spectral
observations of the (i)PTF SN II sample are presented along with
the host-galaxy data. Section 3 describes the EW measurements
and the other host-galaxy Z measurements, along with the main
results. Our conclusions are summarized in Sect. 4.

2. Observations

We collected the optical spectra of the 57 SNe II presented by
R15, as obtained by the (i)PTF collaboration. We looked for
Fe 11 45018 in each of the spectra and identified the line in 39 dif-
ferent SNe. For many SNe this line is detected only in a single
spectrum, typically the last spectrum obtained during the plateau
phase. Even though Fe 11 15018 can sometimes be detected be-
fore the plateau phase, at those early epochs it is not useful for
distinguishing between low and high Z (D14), and that is why
only 39 out of 57 SNe were analyzed. For the SNe where the line
was detected at multiple epochs during the plateau phase, we se-
lected the spectrum with the highest S/N for further analysis.

The selected spectra were obtained with many different tele-
scopes and instruments, as summarized in Table A.1. Each spec-
trum has been reduced in the standard manner, including bias
and flat-field corrections, wavelength calibration using the spec-
trum of a comparison lamp, and flux calibration with the spec-
trum of a standard star observed on the same night.
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For each spectrum where Fe 11 45018 was identified, we es-
tablished the phase, based on the explosion date reported by R15.
The phase was corrected for time dilation based on the SN red-
shift (from R15), even though this correction is minimal for our
relatively nearby objects. (The average redshift of our sample
is z = 0.030.) The phase was determined with high accuracy
(x1.15 d on average) given the high cadence of (i)PTF.

We also collected photometry (ugriz) and optical spectra of
the host galaxies of our SNe from the Sloan Digital Sky Survey
(SDSS; Ahn et al. 2014). Of our 39 SNe, 35 are in the SDSS
footprint and have a detected host. An SDSS spectrum is avail-
able for only 14 of our galaxies. Using these data we are able to
independently check the Z estimates from pEWsg, .

3. Analysis and results

We measured pEWsg;3 with a MATLAB script based on the for-
mulae given by Nordin et al. (2011; see their Egs. (1) and (2)).
The uncertainty estimates include the error due to the pseudo-
continuum selection and that associated with the noise of the
spectrum. The boundaries of the continuum were selected man-
ually with the help of a smoothed spectrum on top of the original
data to guide the eye. We compared these EW measurements and
uncertainty estimates with those obtained with the IRAF splot
EW tool and found that the results were consistent.

We plot pEW5g;5 as a function of SN phase in Fig. 1, also
showing the models by D14 for different Z. We indicate pEWsq;g
measurements from D14, mainly from CSP SNe II. Also, the
PEWS5s018 values at +50 d presented by Anderson et al. (2015a)
are provided. Between ~60 and ~90 d, the pEW5(;5 values in-
ferred for the objects in our sample are on average lower than
what was previously presented in the literature. The untargeted
nature of the (i)PTF survey, along with its spectroscopic follow-
up capability, has allowed us to find a dozen SNe II (black sym-
bols in Fig. 1) whose pEWsg;s match spectral models having
Z = 0.1 Zy (black line in Fig. 1). In some cases these SNe
have even smaller pEW5g3 than what is expected from these
models. Only LSQ13fn (Polshaw et al. 2016) has a compara-
bly small pEWsg (see the magenta empty circle in Fig. 1). In
Fig. 2 we show a few examples of (i)PTF SN II spectra selected
among those with small pPEW5sg;s. This line is particularly faint,
but clearly detected given the high S/N of these spectra.

Because of the small number of available host-galaxy spec-
tra, we resorted to using the photometric measurements of the
SN host galaxies from SDSS to test whether the SNe with small
PEWs5sq1g are indeed in small metal-poor galaxies, and if those
with large pEW5g3 are in large, luminous, metal-rich galaxies.
First, we converted the r-band apparent magnitudes from SDSS
(Cmodel) to absolute magnitudes (Mpos(7)) using the distance
moduli presented by R15 and E(B — V)uw from Schlafly &
Finkbeiner (2011). Figure A.1 shows pEWsg3 versus Mo (r)
(excluding SNe IIL). Even if the phases of the spectra span at
least two months, there is a correlation between the two ob-
servables (Spearman test gives p-value = 0.007). In our sample,
SNe with pEWsg18 < —20 A never occur in galaxies fainter than
Mposi(r) ~ —19 mag. Then, using My (r), we obtained an es-
timate of the metal content (Zy,o) for each host via Eq. (1) of
Arcavi et al. (2010). We plot in Fig. 3 (top-left panel) the cumu-
lative distributions of Zjg for the host galaxies of the SNe with
PEWS5sq1g consistent with Zgy ~ 0.1,0.4, 1, and 2 Z.

We subdivided our SNe into these four Z bins based on
the distance of their pEWs5gg values from those of the mod-
els by D14 (see Fig. 1). It indeed seems that SNe with the
largest pEWsg13 at a given phase are in galaxies with the
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SNe IIL (i.e., they show a decline rate >0.014 mag d~! on the plateau). The spectral models by D14 indicating different Z are represented by
solid lines. Our SNe are subgrouped and color-coded in 4 subsets based on the pEW(t) model to which they appear closest. pPEW measurements
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Fig. 2. Examples of SN II spectra with small pEWsg;5. The Fe 11 45018
rest wavelength is marked by a vertical dashed line, the absorption min-
ima by vertical dashed segments. The spectra are normalized by their
median, offset by a constant (dashed horizontal lines), and shown in the
rest frame.

highest amounts of metals (see green line). Since the luminosity-
metallicity (LZ) relation from Arcavi et al. (2010, see also
Tremonti et al. 2004) is known to be affected by large dispersion,
we also estimate the host Z via the luminosity-color-metallicity
(LCZ) relation by Sanders et al. (2013). Making use of their
O3N2 calibration along with Mpo(g) and (g —r)nost for each host
in order to get the oxygen abundances, these abundances were
then converted into Zpes. In the top-right panel of Fig. 3, we
show that with this improved calibration the SNe with smaller
PEWSs018 (black and red lines) are also located in metal-poorer
galaxies.

To estimate the Z at the location of our SNe within their
hosts, we can correct the global Z of their hosts for the metallic-
ity gradient that is known to characterize galaxies (e.g., Pilyugin
et al. 2004; Taddia et al. 2013, 2015), where the nucleus is

1 1
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Fig.3. Top panels: global metallicity (Z'**) cumulative distributions
from the LZ (left) and the LCZ (right) relations. We subdivided the
SNe IIP into 4 Z bins based on their pPEWs;3 as compared to the mod-
els by D14. Bottom panels: as in the top panels, but Z is that at the SN

locations, as derived by assuming a (single) Z gradient for all the hosts.

typically more metal-rich than the outer parts. We used the de-
rived global Z as a proxy of the central Z, and then adopted
an average Z gradient of —0.47 R;SI (see Pilyugin et al. 2004).
The deprojected and radius-normalized distance for each SN
from its host center (see Table A.2) was estimated using the
SN and the host-galaxy coordinates, the host-galaxy radius, the
host-galaxy axis ratio, and the position angle as obtained from
SDSS (Ahn et al. 2014). In Fig. 3 we show the obtained SN lo-
cation cumulative Z distributions for the four SN groups based
on pEWsg s, using the LZ relation (bottom-left panel) and the
LCZ relation (bottom-right panel). With the LCZ calibration,
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Fig. 4. Cumulative distributions of the SN peak r-band absolute magni-
tude for the four Z bins based on pEW5;;5. SNe IIP at lower Z tend to
be more luminous.

PEWs05 is confirmed as a proxy for the actual SN host Z, with
the objects having smaller pEW5(;g located at lower Z. In all the
distributions of Fig. 3, we only included SNe IIP, but including
SNe IIL does not change the results significantly. Spearman tests
between Zgn from pEWsg1g and Zy,os (from both LC and LCZ)
reveal that there is a correlation with p-values <0.05. All the Z
estimates are reported in Table A.2.

The values of Z from pEWsgg cover a wider range than
those from LZ and LCZ (see Fig. 3, and also Anderson et al.
2016, their Fig. 10). The latter are obtained from O abundances,
whereas pPEW5sq;5 is essentially a measure of the Fe abundance.
The D14 models assume a constant [O/Fe], but at least in the
MW [O/Fe] is lower at higher [Fe/H] (e.g., Amarsi et al. 2015).
Therefore, SNe with low pEW5g;3 will be found at higher host-
galaxy Z (based on O abundance) than expected from the models
based on Fe abundance, and vice versa.

In Table A.2, we also report the Z measurements from the
emission lines of the few SDSS galaxy spectra that are available
and whose line ratios were consistent with no AGN contamina-
tion (Baldwin et al. 1981).

We tested if the different SN groups based on pEW5g;g have
different SN observables. The K-S tests show that there is no sta-
tistically significant difference among the four groups when we
compare the distributions of r-band rise time and r-band Am;s.
(SN properties were taken from R15.) However, we found that
there is a statistically significant difference between the low- and
high-Z SN groups when we compare their absolute r-band peak
magnitudes [Mgy*(r)]. These were corrected for the host extinc-
tion by measuring the EW of the narrow Na1 D (Turatto et al.
2003). SNe at lower Z (Z =~ 0.1; 0.4 Z;) tend to be more lumi-
nous than those at high Z (Z ~ 1;2 Zs), with only a 1% chance
of being drawn from the same distribution. The MgJ*(r) distri-
butions are shown in Fig. 4. The average peak magnitudes of
low- and high-Z SNe are (Mg*) = —17.3 mag and —16.6 mag,
respectively. In the inset of Fig. 4, we also show that pEW5gg
measured at different phases during the plateau correlates with
the SN peak magnitude. Models of SN II progenitors with ini-
tial mass =15 M, and different Z by Dessart et al. (2013) show
that the V-band peak should be fainter for low-Z SNe because
they explode with more compact radii, in contrast to our trend.
Howeyver, their M‘Sna"(r) range is narrower than 1 mag, whereas

N
our observed SNe span 4 mag.

L7, page 4 of 6

4. Conclusions

SNe IIP were known to occur at relatively high Z (Anderson
et al. 2010; D14). Thanks to the untargeted (i)PTF survey, we
have shown that SNe IIP also arise in relatively large num-
bers from progenitors consistent with Z =~ 0.1 Zy. The high
quality of the (i)PTF spectra allows us to also measure the
weakest Fe 11 45018 lines. The expected trend in pEW(7) with
Zhost 18 observed, although with weak significance. SNe IIP
with smaller pEW tend to occur in metal-poorer environments.
Spectral Z measurements are required to better calibrate the re-
lation and assess its dispersion (see, e.g., Anderson et al. 2015a).
SN IIP peak magnitudes correlate with Z, with more-luminous
SNe occurring at lower Z.
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Appendix A: Additional figure and tables

Table A.1. Log of spectral observations and pEW measurements.
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Fig. A.1. pEWs;5 versus M, Symbols are color-coded as in Fig. 1.

(i)PTF SN Phase? —pEW5g13  Telescope+Instrument Date
(d) (A) (UT)

09ecm 41.87(0.35) 18.88(1.04) Keck1+LRIS 2009 Oct. 23
09fma 93.66(1.05) 12.31(2.01) P200+DBSP 2010 Jan. 09
10bgl 34.35(0.97) 20.70(1.15) Keck1+LRIS 2010 Feb. 06
10gva 62.17(0.88) 2.37(0.26) Keck1+LRIS 2010 Jun. 12
10gxi 38.04(2.41) 10.64(2.02) P200+DBSP 2010 Jun. 13
10jwr 28.03(2.35) 10.77(0.60) Keck1+LRIS 2010 Jul. 07
10mug*  45.46(2.35) 10.72(1.28) P200+DBSP 2010 Aug. 14
100sr 88.53(0.91) 15.17(3.07) Lick 3-m+Kast 2010 Oct. 11
10pjg 56.91(2.39) 15.75(1.60) P200+DBSP 2010 Sep. 06
10qwz 62.87(1.47) 23.04(1.61) Lick 3-m+Kast 2010 Oct. 11
10rem 62.89(1.87) 16.41(0.75)  Keck2+DEIMOS 2010 Oct. 12
10vdl 53.84(1.95) 15.65(2.69) Keck2+DEIMOS 2010 Nov. 07
10xtq 64.82(0.45) 4.32(1.65) P200+DBSP 2010 Dec. 06
11ajz 99.12(0.94) 13.61(1.22) Lick 3-m+Kast 2011 May 13
11go 57.55(1.37) 25.57(2.84) P200+DBSP 2011 Mar. 10
11hsj 77.60(1.90) 16.61(1.16) Lick 3-m+Kast 2011 Sep. 29
11htj 110.21(1.46) 16.96(3.45) P200+DBSP 2011 Oct. 30
11igb 64.97(0.21) 16.95(0.24) Keck1+LRIS 2011 Sep. 26
11izt 37.34(2.41) 18.82(1.51) WHT+ISIS 2011 Aug. 31
11qax 83.47(0.40) 12.22(0.65) KPNO4m+RC Spec 2012 Jan. 26
12bro 44.18(0.37) 9.96(0.99) P200+DBSP 2012 Apr. 29
12bvh 89.80(0.95) 30.76(0.46) Lick 3-m+Kast 2012 Jun. 14
12cod* 57.91(1.88) 3.76(0.22) TNG+DOLORES 2012 May 31
12fip 38.47(0.94) 9.62(0.93) P200+DBSP 2012 Jul. 21
12fo 116.10(0.96) 19.53(0.66) Keck1+LRIS 2012 Apr. 29
12ftc 41.60(0.90) 9.69(0.93) P200+DBSP 2012 Jul. 27
12gnn* 42.30(0.94) 19.29(1.59) WHT+ISIS 2012 Aug. 21
12hsx 46.21(0.25) 15.77(0.90) WHT+ISIS 2012 Aug. 21
13aaz 74.24(1.42) 32.27(0.83) P200+DBSP 2013 Jun. 03
13akg 58.19(2.42) 19.82(0.54) Keck2+DEIMOS 2013 Jun. 06
13bjx 62.72(0.47) 22.82(0.62) P200+DBSP 2013 Aug. 03
13bld 33.95(0.45) 27.58(2.27) P200+DBSP 2013 Jul. 05
13cnk 56.82(0.44) 19.71(0.50)  Keck2+DEIMOS 2013 Oct. 04
13dkk 74.48(0.35) 12.54(2.39) P200+DBSP 2013 Nov. 26
13dkz 49.73(0.44) 14.73(0.80) P200+DBSP 2013 Nov. 02
13dla* 75.52(0.43) 16.50(5.79) Keck1+LRIS 2013 Dec. 02
13dqy 91.12(0.44) 11.04(0.47) P200+DBSP 2014 Jan. 06
14adz* 64.94(0.33) 14.75(0.87) Keck1+LRIS 2014 May 28
14aoi 68.05(0.05) 40.46(4.30) Lick 3-m+Kast 2014 Jun. 30

Notes.  From explosion date, and corrected for time dilation.
) SN IIL. The other objects are SNe IIP.
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