

COLLABORATIVE INTRUSION DETECTION IN

FEDERATED CLOUD ENVIRONMENTS USING

DEMPSTER-SHAFER THEORY OF EVIDENCE

By

Áine MacDermott BSc (Hons), AFHEA

A thesis submitted in partial fulfilment of the requirements of

Liverpool John Moores University for the degree of Doctor of

Philosophy

September 2017

i

Acknowledgements

I would like to thank my Director of Studies, Professor Qi Shi for his support, guidance and

patience throughout the duration of my studies. I would also like to express my gratitude to

Professor Madjid Merabti and Dr Kashif Kifayat. The support, guidance, and opportunities

provided to me throughout the course of my research by my supervisory team have greatly

contributed to its successful completion.

My friends and family have been brilliant over the duration of this project, giving me advice

and comfort when needed. Special thanks to my parents Pat and Roisin, my aunt Kay, and my

amazing siblings Danny, Seán, & Aoife who have been so supportive and encouraging

throughout the duration of my studies. Thanks to my Bootle family Kate and Squishy too!

Special thanks go to the Department of Computer Science, Liverpool John Moores University

for their funding of this project and the encouragement I received. I would also like to thank

my colleagues and friends Paul Buck, Kirsty Lever, Tom Berry, Carol Oliver, Tricia Waterson,

Mohammed Algamedi, Will Hurst, Chelsea Dobbins, Dave Tully, to name a few. Additionally,

special thanks to Callum Green, Alex Hermon, Jamie Hubbard, and Laura Verdin.

ii

Abstract

Moving services to the Cloud environment is a trend that has been increasing in recent years,

with a constant increase in sophistication and complexity of such services. Today, even critical

infrastructure operators are considering moving their services and data to the Cloud. As Cloud

computing grows in popularity, new models are deployed to further the associated benefits.

Federated Clouds are one such concept, which are an alternative for companies reluctant to

move their data out of house to a Cloud Service Providers (CSP) due to security and

confidentiality concerns. Lack of collaboration among different components within a Cloud

federation, or among CSPs, for detection or prevention of attacks is an issue. For protecting

these services and data, as Cloud environments and Cloud federations are large scale, it is

essential that any potential solution should scale alongside the environment adapt to the

underlying infrastructure without any issues or performance implications.

This thesis presents a novel architecture for collaborative intrusion detection specifically for

CSPs within a Cloud federation. Our approach offers a proactive model for Cloud intrusion

detection based on the distribution of responsibilities, whereby the responsibility for managing

the elements of the Cloud is distributed among several monitoring nodes and brokering,

utilising our Service-based collaborative intrusion detection – “Security as a Service”

methodology. For collaborative intrusion detection, the Dempster-Shafer (D-S) theory of

evidence is applied, executing as a fusion node with the role of collecting and fusing the

information provided by the monitoring entities, taking the final decision regarding a possible

attack. This type of detection and prevention helps increase resilience to attacks in the Cloud.

The main novel contribution of this project is that it provides the means by which DDoS attacks

are detected within a Cloud federation, so as to enable an early propagated response to block

the attack. This inter-domain cooperation will offer holistic security, and add to the defence in

depth. However, while the utilisation of D-S seems promising, there is an issue regarding

conflicting evidences which is addressed with an extended two stage D-S fusion process. The

evidence from the research strongly suggests that fusion algorithms can play a key role in

autonomous decision making schemes, however our experimentation highlights areas upon

which improvements are needed before fully applying to federated environments.

iii

Table of Contents

CHAPTER 1 - INTRODUCTION__ 12

1.1 MOTIVATION __ 15

1.2 AIMS AND OBJECTIVES ___ 16

1.3 NOVEL CONTRIBUTIONS __ 19

1.4 PUBLICATIONS RESULTING FROM THIS RESEARCH __ 20

1.5 THESIS STRUCTURE ___ 22

1.6 SUMMARY __ 23

CHAPTER 2 - BACKGROUND ___ 24

2.1 CRITICAL INFRASTRUCTURE ___ 24

2.1.1 Cloud computing and critical infrastructure utilisation__________________________________ 26

2.1.2 Use case __ 27

2.2.3 Requirements for critical infrastructure __ 29

2.2 CLOUD COMPUTING ___ 31

2.3 CLOUD FEDERATIONS __ 35

2.4 SUMMARY __ 40

CHAPTER 3 – RELATED WORK __ 42

3.1 INTRUSION DETECTION AND INTRUSION PREVENTION _______________________________________ 42

3.2 COLLABORATIVE MONITORING __ 54

3.3 PLACEMENT OF SOLUTIONS ___ 56

3.4 RESEARCH CHALLENGES ___ 58

3.5 REQUIREMENTS FOR COLLABORATIVE INTRUSION DETECTION IN CLOUD ENVIRONMENTS ___________ 59

3.6 THRESHOLD ALGORITHMS __ 64

3.7 DECISION MAKING ALGORITHMS ___ 67

3.8 DEMPSTER-SHAFER (D-S) THEORY OF EVIDENCE __ 68

3.9 PROBLEM ANALYSIS __ 70

3.10 SUMMARY ___ 72

iv

CHAPTER 4 - SERVICE-BASED COLLABORATIVE INTRUSION DETECTION FRAMEWORK _ 73

4.1 OVERVIEW OF SERVICE-BASED COLLABORATIVE INTRUSION DETECTION FRAMEWORK _____________ 74

4.2 SERVICE-BASED COLLABORATIVE INTRUSION DETECTION ARCHITECTURE _______________________ 75

4.3 THRESHOLD CALCULATION ALGORITHMS – CUSUM AND EWMA ____________________________ 78

4.3.1 Monitoring Nodes___ 82

4.3.2 Super Node __ 85

4.3.3 C2 ___ 87

4.3.4 Cloud Broker __ 89

4.4 COLLABORATION ___ 91

4.5 BELIEF GENERATION USING DEMPSTER-SHAFER THEORY OF EVIDENCE __________________________ 94

4.6 EXTENDED D-S THEORY OF EVIDENCE FUSION PROCESS ____________________________________ 100

4.7 SUMMARY ___ 103

CHAPTER 5 – SYSTEM IMPLEMENTATION __ 104

5.1 ENVIRONMENT __ 105

5.2 CO-SIMULATING SCENARIOS ___ 114

5.3 COLLABORATIVE INTRUSION DETECTION APPLICATION _____________________________________ 118

5.4 SUMMARY ___ 127

CHAPTER 6 – EVALUATION ___ 128

6.1 SYSTEM EVALUATION __ 130

Summary of aims and objectives fulfilment ___ 130

Summary of design requirements evidence ___ 132

6.2 DEMPSTER-SHAFER __ 134

6.3 COMPARISONS TO EXISTING WORK __ 137

6.3.1 Cooperative intrusion detection ___ 137

6.3.2 D-S for intrusion detection ___ 139

6.4 SUMMARY ___ 141

CHAPTER 7 - CONCLUSIONS AND FUTURE DEVELOPMENTS ___________________________ 142

7.1 SUMMARY OF NOVEL CONTRIBUTIONS __ 143

v

7.2 THESIS SUMMARY ___ 145

7.3 FURTHER WORK __ 146

7.4 CONCLUDING REMARKS __ 148

REFERENCES __ 149

APPENDIX ___ 167

FURTHER STATISTICS ON SIMULATION DEVICES __ 167

PSEUDO CODE FOR EXCHANGE IN COLLABORATIVE INTRUSION DETECTION SCHEMA __________________ 171

DS_PROOFOFCONCEPT CODE ___ 174

vi

List of Figures

Figure 1-1: C2 role within the Cloud federation………………………………………………14

Figure 2-1: Attack interfaces in a Cloud Federation .. 38

Figure 3-1: Intrusion detection and associated attributes .. 43

Figure 3-2: Comparison of communication architectures for detection systems 49

Figure 4-1: Service-based collaborative intrusion detection in a Cloud federation 76

Figure 4-2: Monitoring node flow chart .. 85

Figure 4-3: SN flow chart .. 87

Figure 4-4: C2 and Broker flow chart .. 88

Figure 4-5: Hierarchical communication schema .. 92

Figure 4-6: Levels of communication .. 93

Figure 5-1: Overview of Cloud Federation topology .. 106

Figure 5-2: Cyber effects configuration ... 106

Figure 5-3: Cloud broker realm ... 107

Figure 5-4: CSP 2 domain.. 107

Figure 5-5: CSP 3 domain.. 108

Figure 5-6: CSP 1/Attacker Realm .. 109

Figure 5-7: Return infection status code excerpt ... 110

Figure 5-8: Send traffic to destination code excerpt .. 110

Figure 5-9: Infection probability adjustment ... 110

Figure 5-10: Server under attack domain... 111

Figure 5-11: Scan and clean script sample .. 111

Figure 5-12: Infected devices count ... 112

Figure 5-13: Ethernet delay within Cloud federation .. 114

Figure 5-14: Co simulation of single monitoring entity vs hierarchical structure 115

file:///C:/Users/Aine/Dropbox/Latest%20Thesis/Aine%20Final%20Thesis%20Edits/LJMU%20Thesis%20Aine%20MacDermott%20Final.docx%23_Toc495865789
file:///C:/Users/Aine/Dropbox/Latest%20Thesis/Aine%20Final%20Thesis%20Edits/LJMU%20Thesis%20Aine%20MacDermott%20Final.docx%23_Toc495865789
file:///C:/Users/Aine/Dropbox/Latest%20Thesis/Aine%20Final%20Thesis%20Edits/LJMU%20Thesis%20Aine%20MacDermott%20Final.docx%23_Toc495865789
file:///C:/Users/Aine/Dropbox/Latest%20Thesis/Aine%20Final%20Thesis%20Edits/LJMU%20Thesis%20Aine%20MacDermott%20Final.docx%23_Toc495865791

vii

Figure 5-15: Ethernet delay comparison of co-simulation of single monitoring entity vs

hierarchical structure .. 116

Figure 5-16: Ethernet traffic against Server ... 117

Figure 5-17: Runtime flowchart... 120

Figure 5-18: Enter Domain and IP address .. 121

Figure 5-19: Blocked user key return .. 121

Figure 5-20: Value on white list .. 122

Figure 5-21: Threat value ranges ... 122

Figure 5-22: IP assigned to list depending on the range of score .. 123

Figure 5-23: User added to grey list with low risk .. 123

Figure 5-24: Example hypothesis set generation for a threat score of 80 124

Figure 5-25: A belief generation of 0.6 ... 124

Figure 5-26: A belief generation of 0.0 ... 124

Figure 5-27: D-S belief fusion code... 125

Figure 5-28: D-S belief fusion from 3 CSPs .. 126

Figure 5-29: D-S belief fusion from 3 CSPs .. 126

file:///C:/Users/Aine/Dropbox/Latest%20Thesis/Aine%20Final%20Thesis%20Edits/LJMU%20Thesis%20Aine%20MacDermott%20Final.docx%23_Toc495865807

viii

List of Tables

Table 2.1: Cloud computing benefits and risks for critical infrastructure……………………30

Table 2.2: Cloud computing security threats per service level………………………………..34

Table 3.1: Comparison between centralised and distributed IDS desirable characteristics ... 50

Table 3.2: Intrusion detection techniques summary .. 60

Table 3.3: Comparison of existing techniques against collaborative intrusion detection

requirements ... 63

Table 4.1: Notations for Figure 4-1. .. 96

Table 4.2: Hypothesis sets of values for Belief values between 0 and 1. 96

Table 5.1: Cyber effects infected device count……………………………………………....114

Table 5.2: Comparison of Server statistics in co-simulation ... 118

Table 6.1: Possible status for an IDPS reaction ... 168

Table 6.2: Design requirements evidence .. 169

ix

List of abbreviations

AI: Artificial Intelligence

APT: Advanced Persistent Threat

BPA: Basic Probability Assignment

BPAF: Basic Probability Assignment Function

C2: Command and Control server

CIDS: Cloud Intrusion Detection System

CIIP: Critical Information Infrastructure Protection

CNSMS: Collaborative Network Security Management System

CPNI: Centre for Protection of National Infrastructure

CPU: Central Processing Unit

CSP: Cloud Service Provider

CUSUM: Cumulative Sum Control Chart

DDoS: Distributed Denial of Service

DES: Discrete Event Simulator

DoS: Denial of Service

D-S: Dempster Shafer

eDOS: Economic Denial of Service

ENISA: European Network and Information Security Agency

EWMA: Exponentially Weighted Moving Average

FIS: Fuzzy Inference Systems

FN: False Negative

FP: False Positive

HMI: Human Machine Interface

IaaS: Infrastructure as a Service

x

ICS-CERT: Industrial Control Systems Cyber Emergency Response Team

ICT: Information Communication Technology

IDPS: Intrusion Detection / Prevention System

IDS: Intrusion Detection System

IED: Intelligent Electronic Devices

IoT: Internet of Things

IP: Internet Protocol

IPS: Intrusion Prevention System

LDDoS: Low-rate Distributed Denial of Service

LGP: Linear Genetic Programming

MARS: Multivariate Adaptive Regression Splines

MN: Monitoring Node

NIST: National Institute of Standards and Technology

NMA: Node Monitor Agent

NSA: Node Supervisor Agent

OS: Operating System

PaaS: Platform as a Service

PLC: Programmable Logic Controller

RAT: Remote Access Trojan

RED: Random Early Drop

RRED: Robust Random Early Drop

SaaS: Software as a Service

SCADA: Supervisory Control and Data Acquisition

SLA: Service Level Agreement

SN: Super Node

SNMP: Simple Network Management Protocol

xi

SVM: Support Vector Machine

TCP/IP: Transmission Control Protocol / Internet Protocol

TN: True Negative

TNR: True Negative Rate

TP: True Positive

TPR: True Positive Rate

UTM: Unified Threat Management

VLAN: Virtual Local Area Network

VM: Virtual Machine

WSN: Wireless Sensor Network

12

Chapter 1

Introduction

Critical infrastructures are essential for the functioning of society and the economy; examples

include telecommunications, energy, oil, gas, and transport. Technologies associated with

operating and controlling the operations of these critical infrastructures are industrial control

systems, more commonly known as SCADA (supervisory control and data acquisition)

systems. In recent years, critical infrastructures have become increasingly interlinked and

networked, often connected to the Internet; consequently making these systems more

vulnerable and exposed to the threat of cyber-attacks [1]. In this thesis, critical infrastructures

are referred to as those whose disruption could have a high socioeconomic impact.

The critical infrastructure systems that support major industries, such as manufacturing,

transportation, and energy, are highly dependent on Information Communication Technology

(ICT) for their command and control. Whilst a high dependence on industrial control systems,

such as SCADA still exists, critical infrastructure systems are migrating to new communication

technologies. As a result, common communications protocols and open architecture standards

are replacing the diverse and disparate proprietary mechanics of industrial control systems —

this can have both positive and negative implications [2]. Cybercrime affects society as a

whole; not only threatens individuals’ privacy, but it may also potentially compromise a

country’s critical infrastructure and its ability to provide essential services to its citizens [3].

Exploitations that can affect countries’ infrastructure are usually infiltrated by simple or

sophisticated tools that can access mobile and other personal devices to infiltrate high-value

sectors, such as transportation, energy, or financial systems [3]. The consequences of an attack

on one of these could result in loss of life, economic damage or a devastating effect on the

operation of government services and military defence.

Operators of critical infrastructures, in particular the ICT that supports gas and electricity

utilities and government services, are considering using the Cloud to provision their high

13

assurance services. This is reflected in a white paper produced by the European Network and

Information Security Agency (ENISA) [4] in 2013, which provides specific guidelines in this

area, with particular emphasis on the technical, procedural/policy-based and legal implications.

The European Commission [4] has defined Critical Information Infrastructures as ICT systems

which are either, a) critical infrastructure themselves, or b) essential for the operation of other

critical infrastructures. Many operators do not have the infrastructure to support the growing

need for accurate predictive and historical simulations imposed by the adoption of renewable

energy sources and the on-going development of smart grids. To overcome this, Cloud

computing allows these operators to reduce or avoid over investment in hardware resources

and their associated maintenance [5].

While this may offer improved performance and scalability, the associated security threats

impede this progression. Availability issues and real world implications would be the main

concern for providers of critical infrastructure, depending upon the operations or services they

are hosting [6]. To address these concerns, a range of security measures must be put in place,

such as intrusion detection and prevention techniques, cryptographic storage, and network

firewalls. Several recent studies have proposed intrusion detection approaches that are tailored

to the needs of industrial installations. However, at this time, the more challenging problem of

integrating large scale critical infrastructure communications, intrusion detection and risk

levels in a comprehensive framework for distributed intrusion detection system (IDS) design

has not been addressed adequately [7].

Cloud computing is already a successful paradigm for distributed computing and is still

growing in popularity. However, many problems still linger in the application of this model

and some new ideas are emerging to help leverage its features even further. One of these ideas

is the Cloud federation, which is a way of aggregating different Clouds to enable the sharing

of resources and increase scalability and availability [8]. The federation of Cloud resources

allows an enterprise to distribute workloads globally, move data between disparate networks

and implement innovative security models for user access to Cloud resources. Federation

across different Cloud resource avenues allows applications to run in the most appropriate

infrastructure environments.

Based on the problem at hand, it is clear that the development of a Cloud-based intrusion

detection protection method for hosting critical infrastructure services in the Cloud

14

environment is required. However, the greater scalability and larger size of Clouds compared

to traditional service hosting infrastructure involve more complex monitoring systems.

Monitoring systems must be scalable, robust, and fast; and able to manage and verify a large

number of resources and effectively and efficiently. This has to be achieved through short

measurement times and fast warning systems, able to quickly identify and report performance

impairments or other issues, and to ensure timely interventions such as the allocation of new

resources. Therefore, monitoring systems and current IDS methods must be refined and

adapted to differing situations in Cloud environments.

Within this thesis, a methodology that develops a Service-based collaborative intrusion

detection framework in a federated Cloud environment is proposed. Our collaborative

architecture consists of four major entities: the Cloud broker, the monitoring nodes (MNs), the

local coordinators (Super Nodes - SNs), and the global coordinators (Command and Control

server - C2). The C2 is located within each CSP domain and is effectively a domain

management node. The C2 provides management of SNs and MNs, responses to attacks

detected and reported by SNs and/or the broker, and cooperates with adjacent domains when

polled which is illustrated in Figure 1-1.

Figure 1-1: C2 role within the Cloud federation

15

Once a belief that an attack is underway is generated, an alert is sent to a C2. The C2 queries

the broker, and if no information on the attack is possessed, a global poll procedure is taken,

where C2s in adjacent domains are queried. The broker fuses the information provided by the

C2s together and facilitates collaborative decision making – this in turn, could help trace the

source of attack to the domain of origin. The broker coordinates attack responses, facilitating

inter-domain cooperation, aiming to improve the resilience of the interconnected infrastructure.

The work that is presented in this thesis focuses on the problem of collaborative intrusion

detection within a Cloud federation and autonomous sharing of information. The proposed

solution looks towards improving the detection and prevention accuracy and speed in dealing

with a compromised domain via collaborative decision making. The approach will not detect

and prevent all intrusions but will focus on DDoS. There is no current solution that can provide

adequate protection for Cloud federations, as existing solutions instead provide inadequacies

which are detailed in Chapter 3.5. There is therefore a need to develop a collaborative Cloud

IDS that can overcome the challenges within this area, and this thesis presents such a solution

Service-based collaborative intrusion detection framework – “Security as a Service”.

1.1 Motivation

Adoption of Cloud technologies allows critical infrastructure to benefit from dynamic resource

allocation for managing unpredictable load peaks. Given the public awareness of critical

infrastructures and their importance, the public wants to be assured that these systems are built

to function in a secure manner [9]. Hence, appropriate security means have to be selected and

documented accordingly when developing such systems. Most existing technologies and

methodologies for developing secure applications only explore security requirements in either

critical infrastructure or Cloud computing.

Individual methodologies and techniques or standards may even only support a subset of

specific critical infrastructure requirements. Requirements based on security issues can be quite

different for these applications and for common ICT Cloud applications but need to be

considered in combination for the given context. Disruptions in one part of the infrastructure

may spread out through the system and have cascading effects on other sectors [10]. Critical

infrastructure protection relates to application processes, electronic systems, and information

stored and processed by such systems.

16

The concern is that critical ICT resources and information in Cloud systems might be

vulnerable to cyber-attacks or unauthorised access. The primary security concerns with Cloud

environments pertain to security, availability, and performance. Many attacks are designed to

block users from accessing services and providers from delivering services, i.e., Denial of

Service (DoS). Service providers may face significant penalties due to their inability to deliver

services to customers in accordance with regulatory requirements and Service Level

Agreements (SLAs) [53].

Due to the potentially high profile effects of attacks on critical infrastructure systems, these

industries have become even more attractive targets for cybercriminals [3] – and utilising Cloud

computing into their paradigm increases the system complexity and vulnerability. It is

imperative to develop a solution that can address the complexity of detecting attacks in a large

scale interconnected infrastructure [7]. Traditional network monitoring schemes are not

dynamic to cope with high speed networks such as Cloud networks, let alone Cloud federations,

as conveyed in Chapter 3. A number of approaches have been proposed to resolve the problem,

however they are insufficient. It is clear that an IDS alone cannot protect the Cloud environment

from attack. If an IDS is deployed in each Cloud computing region, but without any cooperation

and communication, it may easily suffer from a single point of failure. The Cloud environment

could not support services continually, as it is not always easy for the victim to determine that

it is being attacked, or where the attack is originating from.

DDoS is a serious and growing problem for corporate and government services conducting

business on the Internet. Resource management to prevent DDoS attacks is receiving attention,

as the Infrastructure as a Service (IaaS) architecture effectively ‘supports’ the attacker as when

the Cloud system observes the high workload on the flooded service, it provides more

computational resources in order to cope with it. Additionally, a unique type of attack is the

Economic Denial of Sustainability (eDoS) [11]. This type of attack is directly connected with

a DoS or DDoS attack, but has financial implications as well.

1.2 Aims and objectives

The research presented in this thesis has highlighted the security concerns for migrating critical

infrastructure services to the Cloud environment. This is predominantly caused by the

inadequacies and limitations of current security protection measures which fail to cope with

17

the sheer size and vast dynamic nature of the Cloud environment. The sensitive nature of

critical infrastructure services deems their protection critical, and their services additionally.

Attacks and failures are inevitable; therefore, it is important to develop approaches to

understand the Cloud environment under attack. Lack of collaboration among different

components within a Cloud federation, or among different CSPs, for detection or prevention

of attacks is a key focus of our work.

Additionally, our research focuses on maintaining the availability of the data, as previously

described, the service in question could be financial, organisational, or on demand. Protecting

the Cloud environment from DDoS attacks is imperative as these attacks can threaten the

availability of Cloud functionalities.

To address the security challenges in this area and provide solutions for the protection of critical

infrastructure services, we summarise our research aims as the following:

 Develop a Cloud-based intrusion detection method for hosting critical infrastructure

services in the Cloud environment having identified the limitations within existing

intrusion detection techniques.

 Create a model that can be tailored to the different Cloud environments as these may

comprise similar functionality but can differ depending on the services needed.

 Focus on the availability of services and assets, making sure the high value processes

continue to function regardless of what is occurring elsewhere.

In this thesis the above issues are addressed by proposing a collaborative intrusion detection

methodology which offers the following features:

 Monitoring system that can run in a non-intrusive and transparent manner to any

underlying virtualised infrastructure.

 Application adaptive which diminishes the need for re-contextualisation each time an

application and/or resource related parameter changes.

 Generates high-level application metrics dynamically at runtime by aggregating and

grouping low level metrics.

18

 Adopts a collaborative mitigation strategy, which focuses on:

o Containing the attack close to the source(s)

o Robustness to attack via a distributed mitigation architecture

o Autonomous sharing of threat information

The key objective of this research is to produce a methodology for the protection of critical

infrastructure services in the Cloud environment through collaborative intrusion detection. The

project objectives will be achieved by examining further the current approaches, and evaluating

and advancing the best methods and combination of approaches to be used.

A breakdown of our project objectives is provided below:

 Design of a collaborative Cloud-based framework that focuses on the monitoring and

protection of the critical infrastructure services in the Cloud computing environment.

This has been achieved by the development of our Security as a Service architecture for

CSPs within a Cloud federation.

 Demonstrate a solution and technique that can effectively monitor Cloud domains and

reliably help to secure and block threats, through efficient communication and

exchanging threat information before a threat could propagate throughout the network.

This approach is inspired by agent based intrusion detection but with a combination of

communication algorithms and a hierarchical monitoring structure will have

improvements in terms of scalability and message dissemination.

 Create a technique to analyse attack data in multiple domains and come to a decision

on its importance as to whether an anomaly has occurred. This has been fulfilled with

the application of the Dempster-Shafer (D-S) theory of evidence being used for belief

generation by monitoring entities, and data fusion by the Cloud broker to facilitate

collaborative intrusion detection.

 Develop appropriate assessment metrics to analyse if the methods proposed, or the

combinations of selected methods, effectively address the issue of infrastructure service

protection in the Cloud environment via collaborative intrusion detection. This has been

19

achieved via the comparison of our extended D-S fusion process to the works of Lo et

al. and a high level assessment using our design requirements in Chapter 2.6 – the

comparison outcomes to highlight the merits of our solution.

1.3 Novel contributions

The research within this thesis presents the principles, techniques, protocols and algorithms

adapted from other distributed computing paradigms to the development of our Service-based

collaborative intrusion detection framework, providing “Security as a Service” within Cloud

federations.

This thesis makes the following novel contributions to the field of intrusion detection within

Cloud federation environments:

1. A collaborative intrusion detection framework that can detect and prevent intrusion in

Cloud federations and/or collaborative domains in real-time via the autonomous sharing

of information. This features a novel application of the D-S theory of evidence

algorithm to detect intrusions and fuse generated beliefs for collaborative intrusion

detection, and an extension of D-S to include confidence values for conflicting

decisions. There is no current solution that can provide adequate protection for Cloud

federations, or identified solution which implements the D-S algorithm and produces

collaborative decisions in Cloud federations to improve upon the Cloud security

contribution.

2. The Cloud broker coordinates attack responses, both within the domain itself, and with

other domains, and is facilitating inter-domain cooperation. D-S is used to fuse the

generated beliefs and make a system-wide decision. This cooperation between CSPs

ensures that the scalable defence required against DDoS attacks is carried out in an

efficient way; aiming to improve the overall resilience of the interconnected

infrastructure.

3. Cumulative sum control chart (CUSUM) and Exponentially Weighted Moving Average

(EWMA) algorithms are used for adaptive threshold calculation. A local propagation

mechanism collects statistics at a local level via MNs, and in order to minimise

20

detection delay and reduce the communication overhead, this is propagated among

MNs using a gossip algorithm.

4. The main novel contribution of this project is that it provides the means by which DDoS

attacks are detected within a Cloud federation, so as to enable an early propagated

response to block the attack, particularly by the interdependent CSPs within the Cloud

federation. This is effectively inter-domain cooperation as these CSPs will cooperate

with each other to offer holistic security, and add to the defence in depth. The D-S

theory of evidence is used to facilitate this autonomous sharing of information, and to

fuse the generated beliefs to form a system-wide decision.

1.4 Publications resulting from this research

Work presented in this thesis has been peer reviewed and published in conferences and journals

throughout. The references for these publications are listed below.

Journal Papers

1. Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “An elastic scaling method for

Cloud security,” in The Journal of Internet Technology and Secured Transactions

(JITST), Volume 3, Issues 3/4, pp. 254 – 262, 2014, ISSN 2046-3723 (Online).

2. Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “Hosting critical infrastructure

services in the Cloud environment” in Inderscience International Journal of Critical

Infrastructures, 2015, Volume 11, No. 4, pp. 365 – 381.

3. W. Hurst and Á. MacDermott, “Evaluating the Effects of Cascading Failures in a

Network of Critical Infrastructures” in Inderscience International Journal of System of

Systems Engineering (IJSSE), 2015, Volume 6, No. 3, pp. 221 - 236.

4. Á. MacDermott, Q. Shi, and K. Kifayat, “Collaborative Intrusion Detection in

Federated Cloud Environments” in Science and Education Publishing Journal of

Computer Sciences and Applications, 2015, Volume 3, No. 3A, pp. 10-20.

5. C. Chalmers, M. Mackay, Á. MacDermott, “Securing the smart grid: threats and

remediation” in International Journal of Smart Grid and Green Communications, 2016,

Volume 1, No. 2, pp. 166-190, ISSN: 2052-2010.

21

Conference Papers

6. Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “Intrusion Detection for Critical

Infrastructure Protection,” in Proceedings of 13th Annual Postgraduate Symposium on

Convergence of Telecommunications, Networking and Broadcasting (PGNet 2012),

2012, pp. 224-229.

7. Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “Protecting Critical Infrastructure

Services in the Cloud Environment,” in Proceedings of the 12th European Conference

on Information Warfare and Security (ECIW), 2013, pp. 336–343.

8. Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “Detecting Intrusions in the Cloud

Environment,” in 14th Annual Postgraduate Symposium on Convergence of

Telecommunications, Networking and Broadcasting (PGNet 2013), 2013, pp. 336-343.

9. Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “Considering an elastic scaling

model for Cloud security,” in The 8th International Conference for Internet Technology

and Secured Transactions (ICITST-2013), 2013, pp. 150-155.

10. Á. MacDermott, W. Hurst, Q. Shi, and M. Merabti, “Simulating Critical Infrastructure

Cascading Failure,” in IEEE UKSim 16th International Conference on Computer

Modelling and Simulation (UKSim 2014), 2014, pp. 324-329.

11. Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “Security as a Service for a Cloud

Federation,” in 15th Annual Postgraduate Symposium on Convergence of

Telecommunications, Networking and Broadcasting (PGNet 2014), 2014, pp. 77-82.

12. Á. MacDermott, Q. Shi, and K. Kifayat, “Collaborative intrusion detection in a

federated Cloud environment using the Dempster-Shafer theory of evidence”, in 14th

European Conference on Cyber Warfare and Security (ECCWS), 2015, pp. 195-203.

13. Á. MacDermott, Q. Shi, and K. Kifayat “Detecting Intrusions in Federated Cloud

Environments Using Security as a Service", in IEEE 8th International Conference on

Developments in eSystems Engineering (DeSE 2015), 2015, pp. 91-96.

14. Á. MacDermott, Q. Shi, and K. Kifayat, “Distributed Attack Prevention using

Dempster-Shafer Theory of Evidence”, in Huang DS., Hussain A., Han K., Gromiha

22

M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer

Science, vol 10363. Springer, Cham, pp. 203-212.

Posters

Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “Cloud Federation & Security” in 15th

Annual Postgraduate Symposium on Convergence of Telecommunications, Networking and

Broadcasting (PGNet 2014), June 2014.

Á. MacDermott, and Q. Shi, “Collaborative Intrusion Detection in Federated Cloud

Environments”, Cutting Edge 2017 Conference, April 2017.

1.5 Thesis structure

The remainder of the thesis is arranged into six subsequent chapters; the order and contents of

these chapters are as follows:

Chapter 2 – “Background”, with contextual material on critical infrastructure and Cloud

computing. Each of the topics is detailed and then focuses specifically on its evident utilisation,

with particular focus on legal considerations, protection problems, and general issues that arise

due to its advancement. The Cloud computing paradigm has security vulnerabilities and threats

that need to be resolved, and through a Cloud-based IDS and collaborative intrusion detection

framework.

Chapter 3 – “Related Work”, an overview of the different types of protection and

preventative measures in place for intrusion detection in the Cloud environment is presented.

An in-depth critical review of related work and existing approaches within this area is

undertaken, and an observation of the evident inadequacies are conveyed. These help identify

the essential characteristics for our collaborative intrusion detection framework.

Chapter 4 - “Service-based collaborative intrusion detection framework” details the

design and architectural details for the novel solution. The entities within the architecture and

their functionality are conveyed, in addition to the algorithms and methods utilised. Our

extended D-S theory of evidence fusion process is outlined, in addition to requirements and

considerations for the implementation.

23

Chapter 5 – “System Implementation”, the implementation details of our intrusion detection

approach for federated Cloud environments are highlighted. We begin with an overview of the

architecture of the implementation and a discussion of its core components. Through the use

of Riverbed Modeler 18.0 [12], the effects of DDoS attacks on Cloud federations are conveyed

and analysed, and collaborative intrusion detection using the D-S theory of evidence is

demonstrated using a proof of concept developed in C#.

Chapter 6 – “Evaluation”, we evaluate our novel solution against the metrics we consider to

be the most important for determining the efficiency of a collaborative IDS. The solution is

evaluated using the requirements established in 3.8 which define the characteristics which

collaborative intrusion detection solutions must possess. The approach is also compared to

related work within this research field.

Chapter 7 – “Conclusions and future work”, we provide a thesis summary, present a

summary of our novelty, and express some concluding remarks. This chapter will also highlight

how the work can be built on for future research projects.

1.6 Summary

This chapter has presented an overview of this thesis, outlining research motivation, aims and

objectives, and highlighting the novel contributions. The increasing integration of critical

infrastructure services and sensitive data to the ICT paradigm offers great concerns for the

protection of these services and information. The more interconnected and available they

become, the more threats they are opening themselves up to. Traditional intrusion detection

mechanisms are not sufficient for protecting infrastructure services in the Cloud environment,

as many solutions do not have the economy of scale and are inefficient at processing data of

such a volume.

This chapter has provided further context on this emerging situation and identified a new and

novel solution to the problem: our Service-based collaborative intrusion detection framework.

In Chapter 2, background information to this problem is provided, focusing on the areas of

critical infrastructure, Cloud computing, and their evident utilisation. Research challenges and

requirements for collaborative intrusion detection will be identified and explored in the next

chapter, and details of how the proposed solution can meet these will be conveyed.

24

Chapter 2

Background

Critical infrastructures, such as the power grid and water distribution facilities, include a high

number of devices over a large geographical area. These infrastructures face a significant

increase in threats targeting their operations due to the growth in their use of industrial control

systems and their integration to networks. While this provides great capabilities for operation,

control, and business, this augmented interconnectedness also increases the security risks due

to the cyber related vulnerabilities they possess. The importance of protecting these

infrastructures has been particularly highlighted by the increase in malware designed to target

these systems and disrupt their functionality; examples include Stuxnet [13], Duqu [14] and

Flame [7]. Effective protection of critical infrastructures is crucial as it is apparent that existing

methods do not meet the security requirements of such interconnected infrastructures.

Infrastructures will inevitably fully grasp the benefits being offered by Cloud computing. Once

their services are in the Cloud environment, resourceful functionality is essential. There needs

to be an assurance that the Cloud computing environment can provide proficient protection of

the sensitive critical infrastructure data. The reality of today’s advanced malware and targeted

attacks is that 100% protection is not realistic. Reducing attack vectors and marginalising the

impact of an attack is a realistic approach. In this chapter background on Critical Infrastructures

and their protection problem is provided, and how Cloud computing can provide notable

advancements and benefits but can expose them to more attack vectors and vulnerabilities [15].

2.1 Critical infrastructure

The Centre for the Protection of National Infrastructure (CPNI) defines critical infrastructure

as “Those critical elements of national infrastructure (facilities, systems, sites, property,

information, people, networks and processes), the loss or compromise of which would result in

major detrimental impact on the availability, delivery or integrity of essential services, leading

to severe economic or social consequences or to loss of life” [16]. CPNI is focussed on

25

providing advice and assistance to those who have responsibility for protecting these most

crucial elements of the UK’s national infrastructure from national security threats. These

infrastructures have historically been physically and logically separated systems that had little

interdependence [17]. Nowadays modern critical infrastructures largely make use of

technologies where wireless sensor networks (WSNs) with open access have become an

integral part of virtually any critical infrastructure. Due to advances in ICT and efforts to

improve efficiency in these systems, these infrastructures have become increasingly automated

and interlinked.

Critical infrastructures are controlled by networked computers and can be defined as sectors

that would have a debilitating impact on national security if incapacitated [18]. Failures can

result in devastating impact on critical sectors, such as national defence, the economy,

communication, e-government systems, and society as a whole. Natural phenomena, system

errors, or cyber-attacks have the ability to produce failures, which cascade as a result of the

high level in interconnectivity between the infrastructures [19]. The resulting impact would

cover large sectors causing devastating consequences. Critical infrastructure protection has

now become a multi-disciplinary area, which requires interdisciplinary involvement.

Concern in the industry is how many of these infrastructures are dependent upon each other for

functioning [20]. Interdependencies among computers, communication, and power

infrastructures have increased security risks due to the complexity of the integrated

infrastructures. Critical infrastructure control systems may vary depending on the different

environments and infrastructure; additionally, they are created with different design goals

compared to traditional systems. Securing control systems is difficult as the usual security

assumptions and practices that are applied for protecting ICT systems are not sufficient. Each

point in the SCADA network is a potential entry point. This is in part due to the fact that little

work has been done to enhance their security because of the belief that they had no problem

[21]. The connectivity of SCADA networks increases the risk of cyber-attacks and the critical

need to improve the security of these networks. SCADA systems are rarely patched or updated

as engineers are often hesitant to do so due to concerns that the patch itself could potentially

negatively affect the operation of the system.

Critical infrastructure protection methods and resources deter or mitigate attacks and focus on

protecting those assets considered invaluable to society. Security experts around the globe are

26

now recognising the importance of effective simulation in planning the fight against the

growing cyber-threat. The consequences of failure can produce unexpected results and must be

planned for in order to prevent disasters escalating through a cascading effect [22].

2.1.1 Cloud computing and critical infrastructure utilisation

Due to virtually unlimited scalability of resources and performance, as well as significant

improvement regarding maintainability, it is inevitable that Cloud computing will eventually

reach the ICT services that are operating critical infrastructures [23]. These services have very

high requirements towards trustworthiness, i.e., dependability, security, and performance,

which cannot be provided by using the available off-the-shelf offerings [24]. Cloud computing

proposes that, one day, all levels would become virtualised, i.e. “everything-as-a-service.”

Critical infrastructure currently makes use of the benefits offered by general ICT services, so

benefiting from the intricate Cloud computing paradigm is expected. Critical infrastructures

provide essential utilities like water supply, electricity, or transportation. Such infrastructures

need to cope with variable usage, high flexibility, and failovers to work properly.

Modern IP-based critical infrastructure control systems allow more efficient control than

traditional systems. The variable workload, unpredictable usage spikes and outsourcing of data

handling, make the Cloud an interesting alternative for critical infrastructure ICT due to the

unlimited resource capabilities, ability to scale considerably, and storage advancements, i.e.

resources, outsourcing, backups, etc. Another advantage of using the Cloud in this context is

to aggregate data from the IP enabled control devices, which have limited resources and cannot

process data locally. This means that sooner or later infrastructure providers will use Cloud

applications for their systems and hence related issues need to be investigated [25] [26].

With the technical development and market growth in Cloud computing, organisations that

provide, operate and maintain ICT systems for critical infrastructure are making the decision

as to when they should make the paradigm shift. Cloud services can offer efficient access to

large ICT infrastructures that benefit from the economy of scale. Therefore, it would be highly

desirable to maintain irrecoverable and valuable data obtained from critical infrastructure

within secure Cloud infrastructures. The current issue is that existing security mechanisms,

including SLAs provided by current Cloud offerings, lack transparency. They cannot be

adopted, negotiated, or verified against institutional policies [23]. This issue has led to

27

hesitation from organisations that maintain sensitive data from pledging fully to the Cloud

Computing movement, thus disabling them from utilising Cloud services and critical

infrastructure fully.

The increasing flexibility and unpredictable usage of such utilities often means that many

challenges that can occur in the utility networks used. The usage of modern ICT systems to

control and manage critical infrastructure helps in dealing with such issues [9]. Many operators

do not have the infrastructure to support the growing need for accurate predictive and historical

simulations imposed by the adoption of renewable energy sources and the on-going

development of smart grids. Cloud computing allows these operators to reduce or avoid over

investment in hardware resources and their associated maintenance. Infrastructure vendors will

inevitably take advantage of the benefits Cloud computing has to offer [27].

2.1.2 Use case

Most industrial plants employ networked process historian servers storing process data and

other possible business and process interfaces. For example, direct file transfer from

programmable logic controllers (PLCs) to spreadsheets [28]. PLCs in the control system

generate a huge amount of data and logs. Logs of communication are stored in the historian

databases. These databases possess historical data that is being logged 24/7 from over 6,700

data points so that it could be easily accessible by both operators and engineers [29], [30].

These historian servers receive data from field control processors or front-end processors,

which issue control commands to and poll data from devices in field networks. The control

network typically contains assets such as the human-machine interface (HMI) and other

workstations, which run control system applications on conventional computer platforms. The

field network devices directly monitor and control a physical process, such as refining,

manufacturing, or electric power generation/transmission/distribution [31].

One way for critical infrastructure to utilise the Cloud environment would be for the historian

database to send these historical processes to a private Cloud. The use of a private Cloud to

audit the data from the system and process it more effectively would be valuable. This would

overcome the challenges associated with processing vast data sets generated by the control

systems. The Cloud environment is suitable as it has massive storage and computational

capabilities, is distributed and elastic, offering improved processing rates and efficiency

28

compared to current methods. Private Clouds grant complete control over how data is managed

and what security measures are in place.

This is two-folds though. This collection of data could be used to perform behavioural analysis

and modelling of this information flow – looking for trends and subtle changes in the data

would be beneficial in achieving state awareness. Behaviour modelling can take place without

affecting the system in any way. By monitoring the evolution of the plant process states, and

tracking down when the industrial process is entering into a critical state, it would be possible

to detect these attack patterns (known or unknown) aiming at putting the process system into a

known critical state by using state of commands. In control system architectures, the major

cyber-attack vector is the flow of network commands [32].

By processing the sensor data from the historian in a private cloud environment, the behaviour

of the infrastructure and use the critical state metric as a trigger for logging a chain of packets

can be analysed. It is possible to discriminate between critical states due to cyber-attacks and

critical states due to faults/physical attacks. A reference behaviour model could be

implemented with the use of Bayesian classification procedure associated to unsupervised

learning algorithms to evaluate the deviation between current and reference behaviour [33]. By

training with unsupervised learning algorithms, the log analysers can discover the inherent

nature of the dataset by clustering similar instances into classes.

A further advantage of using the Cloud in this context is to aggregate data from the IP-enabled

control devices, which have limited resources and cannot process data locally. Though there

are benefits of this connection, one of the main concerns with utilising critical infrastructure

services in the cloud environment is the threat of attack. Deploying high assurance services in

the Cloud increases cyber security concerns, as successful attacks could lead to outages of key

services, and/or disclosure of sensitive personal information.

Adoption of Cloud computing services allows critical infrastructure vendors to benefit from

dynamic resource allocation for managing unpredictable load peaks, storing of historical

process data (either on site in a private Cloud, or sharing among other related vendors in a

hybrid Cloud), federating into a larger Cloud, and large scale data analytics based on historical

data of consumers, to name a few.

29

2.1.3 Requirements for critical infrastructure

There are many benefits and limitations associated with the utilisation of Cloud computing by

critical infrastructure operators. In Table 2.1 some of these attributes are identified and

considerations for each point are made [34].

Table 2.1: Cloud computing benefits and risks for critical infrastructure

Cloud computing attribute Benefits Limitations

Agility
Ability to adapt to resource intensive

tasks, and scale up/down with ease.

Lack of efficiency in ability to scale to

match demand; and associated latency

costs.

Device and location

independence

Location and geographical

independence.

Consistency of data in terms of

connectivity, latency and performance

issues.

Real time response and

elastic performance

Quick response to fluctuations in

service demand and distribution.

Consistency of data with regards to

connectivity, latency and associated

performance issues.

Self-healing

Enhance the robustness and

resilience of critical infrastructure

and interdependent systems.

Self-repair may lead to system

inefficiencies or data accuracy as

underlying issues may remain

unsolved.

Virtualisation and

automation of services

Faster response time, disaster

recovery/planning, deployment of

security implementations.

Data security due to hypervisor and

VM vulnerabilities/misconfigurations/

exploitation.

Requirements in critical infrastructure regarding overall redundancy, data availability,

authenticity, secure access, and low latency network connectivity are typically higher than in

commercial applications. Critical infrastructure imposes much stronger requirements for

security, reliability, and resilience on Cloud computing environments. There are also more

stringent considerations for control of data, data-centric security requirements, protection of

data, and legal issues surrounding location of data.

Control

An SLA defines how the consumer will use the services and how the provider will deliver

them. Responsibilities of each party and remedies should be included. The SLA cannot be

30

adopted or negotiated, which often deters organisations from pledging fully to the Cloud.

Control is a common challenge as depending on which deployment model is chosen, control is

not always in the hand of the owner. Private Clouds allow organisations to shape how their

data is stored and controlled, and what security measures are in place.

Data-centric security approach

In general, a data-centric security approach must ensure that data protection mechanisms are

deployed across all provided security solutions and that data owners have the full control over

who has the right to use the data and what they are authorised to do with it. In addition,

institutional security policies and access rules can be specified and mapped to the Cloud

environment. Requirements-based security issues can be quite different for critical

infrastructure applications and for common ICT applications but need to be considered in

combination for the given context.

Protection

Since Cloud computing supports a distributed service oriented paradigm, multi-domain and

multi-users administrative infrastructure, it is more prone to security threats and vulnerabilities,

such as data breaches, data loss, service hijacking, DDoS attacks, and malicious insiders [35].

Tailored ID/IP mechanisms are essential. Compared to other systems and services in the Cloud

environment, a critical infrastructure requires a much higher level of assurance. One of the

risks in a multi-tenant environment is over provisioning of resources. Over provisioning of

resources results in resource contention and potential lack of availability, effectively creating

a DoS situation [36], and impacting on users of the Cloud service who depend on its continuity.

Legal issues

Legal requirements include data protection and regulatory requirements. Issues also surround

data being exchanged across multiple countries that have different laws and regulations

concerning data traversal, protection requirements, and privacy laws. Examples of such risks

include, but are not limited to: risks resulting from possible changes of jurisdiction and the

31

liability or obligation of the vendor in case of loss of data and/or business interruption [37].

There are also geographical requirements for healthcare data being stored.

2.2 Cloud computing

Cloud computing has emerged as a way to enable content providers to meet their application

needs through either Cloud development environments or through outsourced CSPs. There are

a variety of business models for Cloud infrastructure but they generally vary depending upon

the business requirements. The infrastructure is both physical in the form of processing, as well

as software that meets the needs of the user. An advantage of Cloud computing is that the

enterprises using the services do not need heavy investment in capital equipment. Software

services are provided by a vendor and paid for by a subscription or on the basis of the amount

of use. The National Institute of Standards and Technology (NIST) defines five essential

characteristics of Cloud computing [38]:

 On-demand self-service: A user should be able to acquire or release resources without

requiring outside human interference.

 Broad network access: Resources should be available over the network.

 Resource pooling: Resources are pooled to serve disparate customers on the same or

different physical machines. Resources can by dynamically assigned according to

customer demands; examples of resources include storage, processing, memory,

network bandwidth, and virtual machines (VMs).

 Rapid elasticity: Users can acquire, release, and scale resources in an elastic manner,

making the available resources appear unlimited from the client’s point of view.

 Measured service: The Cloud management layer constantly monitors, controls, and

reports resource use to both the provider and client, providing a metering capability.

CSPs usually build up large scale data centres and provide Cloud users with computational

resources in three delivery models, distinguished by their level of resource abstraction [27]

which are Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a

Service (IaaS).

32

 SaaS – CSP hosts applications and makes them available to the user over the Internet.

 PaaS – CSP provides a platform for customers to develop, manage, and run applications

without the need to own the physical infrastructure.

 IaaS – CSP provide virtualised computing resources over the Internet.

Security is a major concern in Cloud adoption; the focus on cybercrime at a global level has

led to “as-a-service” models for illegal activity. The cybercrime market now affords potential

criminals with a multitude of services, which means that deep technical expertise is not a

prerequisite [39]. Critical security issues include data integrity, user confidentiality, and trust

among providers, individual users, and user groups. Additionally, availability issues and real

world impact would be the main concern for providers of critical infrastructure, depending

upon the operations or services they are hosting [7], [40]. There are security issues at each level

of the Cloud computing paradigm; the application level, virtual level, and physical level.

The application level comprises SaaS, in which enterprises host and operate their applications

over the internet so the customers can access them. One benefit of this model is customers do

not need to buy any software licences or any additional equipment for hosting the

application(s). The virtual level includes PaaS and IaaS. PaaS provides a platform for building

and running customer applications. Enterprises can build applications without installing any

tools on their local systems and can deploy them with relative ease. IaaS provides a convenient

option for organisations by migrating the ICT infrastructure to the Cloud provider. This means

it is the responsibility of the CSP to tackle the issues of ICT infrastructure management, such

as configuring servers, routers, firewalls, to name a few. The physical level refers to the

infrastructure upon which Clouds are deployed.

Cloud deployment models include public, private, community, and hybrid:

 A public Cloud is available to the general public or large industry group, owned by an

organisation selling Cloud services. A third party provides infrastructure, platform and

software. The management, operational, and security requirements are provisioned and

shared between users and providers with an SLA [41].

33

 A private Cloud operates for a single organisation [41]. The infrastructure can be

located in the organisational unit or in a third party unit's data centre. Private Clouds

grant complete control over how data is managed and what security measures are in

place. There are two types of private Cloud:

o On-premise: A Cloud integrated into an organisation’s ICT process. These

Clouds are better suited for organisations which desire greater configurability

and control over their data infrastructure.

o External private Cloud: A Cloud platform that is hosted by an external Cloud

provider, but with the guarantee of privacy.

 A community Cloud is shared by several organisations, supporting a specific

community. The infrastructure is placed in more than one organisation in the

community or third party's data centre. Management and operational tasks are split

between the data centre owner, organisations and third party [42].

 A hybrid Cloud is a combination of more than one Cloud deployment model, as

previously described. All the infrastructure, platform and software are portable and can

switch between the deployment models in the hybrid architecture [43].

The adoption of this innovative architecture may introduce a number of additional threats that

vendors may not have considered. While there are many benefits to migrating to the Cloud

computing paradigm, there are security requirements and threats associated with each of its

service levels. Table 2.2 conveys these based on a survey of the literature performed in [41],

detailing the type of service user, requirements for this service and highlights examples of

associated threats.

34

Table 2.2: Cloud computing security threats per service level

Level Service level User Security requirements Vulnerabilities

Application

level

Software as a

Service (SaaS)

End client applies to

a person(s) or

organisation(s) who

subscribes to a

service offered by a

Cloud provider and

is accountable for

its use.

 Access control

 Application

security

 Communication

protection

 Data protection

from exposure

(remnants)

 Privacy in

multitenant

environment

 Software security

 Service availability

 Data interruption

 DDoS

 Disrupting

communications

 Exposure in network

 Impersonation

 Interception

 Modification of data

at rest and in transit

 Privacy breach

 Programming flaws

 Session hijacking

 Software

modification

 Software

interruption

 Traffic flow analysis

Virtual

level

Platform as a

Service (PaaS)

Infrastructure as a

Service (IaaS)

Developer:

Moderator applies

to a person(s) or

organisation(s) that

deploys software on

a Cloud

infrastructure.

 Access control

 Application

security

 Communication

security

 Cloud

management

control security

 Data security

(Data in transit,

data at rest, data

remanence)

 Secure images

 Virtual Cloud

protection

 Connection flooding

 DDoS

 Defacement

 Disrupting

communications

 Exposure in network

 Impersonation

 Programming flaws

 Software

interruption

 Session hijacking

 Traffic flow analysis

35

Physical

level

Physical data

centre

Owner applies to a

person(s) or

organisation(s) that

owns the

infrastructure upon

which Clouds are

deployed.

 Hardware security

 Hardware

reliability

 Legal not abusive

use of Cloud

computing

 Network

protection

 Network resources

protection

 Connection flooding

 DDoS

 Exposure in network

 Hardware

interruption

 Hardware theft

 Hardware

modification

 Misuse of

infrastructure

 Natural disasters

 Network attacks

Based on the problem at hand, it is evident that sufficient security metrics need to be developed

for protecting the sensitive data being stored in the Cloud environment. The ability to clearly

identify, authenticate, authorise, and monitor who or what is accessing the assets of an

organisation is essential for protecting an information system from threats and vulnerabilities.

The distributed and open structure of Cloud computing and services becomes an attractive

target for potential cyber-attacks by intruders. In the Cloud environment, where massive

amounts of data are generated due to high network access rates, an IDS must be robust against

noise data and false positives. Since Cloud infrastructure has enormous network traffic,

traditional IDSs are not efficient to handle such a large data flow. Due to the large data sets,

classification techniques require a huge amount of memory and central processing unit (CPU)

usage.

2.3 Cloud federations

Cloud computing hides resource availability issues, making this infrastructure appealing to

users with varying computational requirements: from storage applications to processing

intensive tasks. Large-scale parallel simulations often require computing time on high

performance computing machines and clusters. In a Cloud environment, resources are often

shared among multiple users, and the number and nature of the workload presented by these

users can vary over time. A Cloud federation is an association among different CSPs with the

goal of sharing resources and data [8].

36

In order to cope with the resource capacity limits of a single CSP, the concept of federating

multiple heterogeneous organisations is receiving increasing attention. The effects of an attack

on such an infrastructure can span from the loss of some data, to the potential isolation of parts

of the federation [41]. Protecting the federated Cloud against cyber-attacks is a key concern,

since there are potentially significant economic consequences [44].

Federated Clouds are a logical evolution of the centralised approach, they can enhance

reliability through physical partitioning of the resource pool and also to address communication

latency issues by binding clients to the nearest datacentre [45]. Furthermore, federated Clouds

are an interesting alternative for those companies who are reluctant to move their data out of

house to a service provider due to security and confidentiality concerns. By operating on

geographically distributed data centres, companies could still benefit from the advantages of

Cloud computing by running smaller Clouds in-house, and federating them into a larger Cloud.

A Cloud federation allows final users to transparently access resources and services, distributed

among several independent CSPs [52]. However, in the Cloud computing context there are a

lot of different interpretations for this idea, e.g. it is completely different if access must be given

for federated resources to a final user, as opposed to a Cloud application developer as there are

many actors involved in the federation.

The work of Rak el al. [46] identifies the following actors as key players in this scenario:

 Final Users: common users which access the Cloud and uses the Cloud services.

 Service Providers: acquire resources and services from the Cloud in a transparent way,

and offer them to Final Users.

 Service Developers: develop applications using the Cloud’s resources. Sometimes they

also use services developed by other parties.

 CSPs: Offer Cloud resources and services.

Cloud federations introduce new avenues of research into brokering policies such as those

techniques based on ensuring the required quality of service level or those aiming at optimising

37

energy efficiency [47]. The goals of brokering methods and policies in federated Clouds can

be found in different domains but the key goals are listed as follows [47]:

 Cost-effectiveness: federated Clouds provide a larger amount of resources, which may

help improve cost-effectiveness. These include improvement for both the user and the

provider such as, for a given cost, reducing the time to completion, increasing the

system throughput or optimising the resource utilisation.

 Acceleration: Cloud resources can be used to exploit an additional level of parallelism

by offloading appropriate tasks to Cloud resources.

 Conservation: federated Clouds can be used to conserve allocations, within the

appropriate runtime and budget constraints.

 Resilience: federated Clouds can be used to handle unexpected situations such as an

unanticipated downtime, inadequate allocations, or failures of working nodes.

Additional Cloud resources can be requested to ease the impact of the unexpected

situations.

 Energy efficiency: federated Clouds can facilitate optimising the energy efficiency of

Clouds as multiple objectives can be combined as needed. An example is combining an

acceleration objective with a resilience objective.

By providing security services from within the CSP infrastructure, enterprises are able to

deploy security policies and rules between each VM or between VM centres. A feature of the

CSP infrastructure is that enterprises can maintain corporate security policies and the data

collected about them with the VMs. This allows them to enforce security services in the

enterprise and the Cloud provider consistently [48].

Many issues need to be addressed in federated Cloud resource management with respect to

adaptability, flexibility, and standardisation. Performance metrics, such as bandwidth

overhead, security, and quality of experience, have to be considered while designing a resource

management or monitoring scheme for such environments. Intelligent computational and

cognitive software agents may provide flexible and adaptable services. Human reasoning can

38

be embedded in agents by using cognitive models and may provide better performance metric

values than traditional classical approaches [49].

Each interface can present specific vulnerabilities that can be exploited by malicious entities to

perform cyber-attacks:

 Cloud users,

 Service instances,

 CSPs.

Figure 2-1 illustrates these attack interfaces within a Cloud federation.

Figure 2-1: Attack interfaces in a Cloud federation

The interface between a service instance and a user can be considered as a client-to-server

interface, that is vulnerable to all types of attacks that are possible in common client-server

architectures, including SQL injection, buffer overflow, privilege escalation, SSL certificate

spoofing, phishing attacks, and flooding attacks [50]. The interface between a service instance

and a CSP is vulnerable to all attacks that a service instance can run against its hosting Cloud

systems, such as DDoS, and Cloud malware injection. In the same way, a malicious CSP of the

Cloud Federation may perform several attacks towards service instances running on it.

DDoS is a serious and growing problem for corporate and government services doing business

on the Internet [51]. Targets for DDoS attacks include the computational resources, the memory

Users

Service
Instances

CSPs

39

buffers, the application processing logic, the communications bandwidth, and the network

protocol, whereas their effects on the target system are the denial or degradation of provided

services [46] [52]. Resource management to prevent DDoS attacks is receiving attention, as in

these Cloud federations the IaaS architecture effectively supports the attacker as when the

Cloud system observes the high workload on the flooded service, it provides more

computational resources in order to cope with it. DDoS attacks are performed with the intention

of interrupting or suspending the communication capability of any networked device or service

by saturating the memory or bandwidth of the target device [34].

Haggerty et al. [53] define a DDoS attack as:

𝑥 distinct packets matching 𝑠 signatures in 𝑦 seconds to ℎ host.

They also convey that it is the mass of all packets directed at a victim that poses the threat,

rather than the packets themselves. For example, if resource management is not in place, a

compromised VM could allow an attacker to starve all of the other VMs within that Cloud of

their needed resources. By using resource management, a compromised VM can only affect

itself and none of the other VMs within the Cloud [54]. If the Cloud system notices the lack of

availability, it could move the affected service instances to other servers of the Cloud

federation. This results in additional workload for such servers, and thus the flooding attack

can propagate and spread throughout the whole Cloud federation [46], [47].

The effects of attacks can span from the loss of some data to the potential isolation of parts of

the federation. This could pose a substantial risk which is a great concern for critical

infrastructure vendors. Protecting the federated Cloud against cyber-attacks is a key concern,

since there are potential significant economic consequences. It is clear that Cloud federations,

and the CSPs present, will benefit significantly if there is a comprehensive IDS that evolves

based on their requirements. The security of applications and services provided in the Cloud,

against cyber-attacks, is hard to achieve for the complexity, heterogeneity, and dynamic nature

of such systems [44]. The collaboration of threat knowledge about both known and unknown

threats among collaborative peers within the enterprise network or with other Cloud services

providers will contribute to better incident detection and prevention. This will in turn enhance

Cloud security providing faster and more effective incident response.

40

Cross-domain data leakage of applications and the internal configurations of a Cloud member

need to be addressed to enable third-party monitoring and unified monitoring of federated

environments. Currently no monitoring data of a single or federated Cloud environment is

publicly available, and no workload traces of the monitoring solutions themselves exist to

analyse the data by statistical tools to acquire more insight into the monitoring process. An

autonomous monitoring tool for validation and performance measuring of heterogeneous

application sets deployed in a federated Cloud environment is required [49].

2.4 Summary

In this chapter, details on critical infrastructure and Cloud computing have been presented, in

addition to their evident security challenges. Important to note for this utilisation is overall

redundancy, data availability, authenticity, secure access, and low latency network connectivity

are typically higher than in commercial applications. Critical infrastructure imposes much

stronger requirements for security, reliability, and resilience on Cloud computing

environments. Issues also surround data being exchanged across multiple countries that have

different laws and regulations concerning data traversal, protection requirements, and privacy

laws. Examples of such risks include, but are not limited to, risks resulting from possible

changes of jurisdiction and the liability or obligation of the vendor in case of loss of data and/or

business interruption.

As evident, the joining of Cloud computing and critical infrastructure will provide many

benefits in the form of scalability, improved performance, reachability, and will be cost

effective for organisations and infrastructure vendors. However, the distributed and open

structure of Cloud computing and services becomes an attractive target for potential cyber-

attacks. Despite security issues slowing its adoption, Cloud computing has become a persistent

force; thus, security mechanisms to ensure its secure adoption are an immediate need. In this

scenario, conventional issues become even more sensitive and critical when dealt with in the

Cloud environment. For example, data security becomes more critical and difficult to deal with

because of the absence of administrative control of the data owner [55].

The complexity and scale of critical infrastructures, their strong security requirements and

increasing costs require comprehensive methodologies for provisioning cost effective

distributed IDSs. In the next chapter, a survey of existing work on detecting intrusions in the

41

Cloud environment is detailed, and existing approaches for protecting the Cloud environment,

and for detecting intrusions are compared. Challenges in this area will be highlighted, and from

this, an observation of the area and requirements will be apparent.

42

Chapter 3

Related work

This chapter focuses on critically analysing existing work and solutions, by outlining their

merits and highlighting their shortcomings. It aims to provide evidence to emphasise the

inadequacies of existing approaches and therefore justify the motivation behind this research.

We provide an overview of the existing frameworks, techniques, and approaches for detecting

intrusions in Cloud computing environments in Chapter 3.1. We assess the challenges

addressed by existing work and identify the limitations of the various proposed solutions

throughout. Based on the aims and objectives of the research, this exploration helps recognise

the research challenges as detailed in Chapter 3.4, and the identification of requirements for

collaborative intrusion detection in Cloud environments in Chapter 3.5.

3.1 Intrusion detection and intrusion prevention

The aim of this research is to create a Cloud-based solution capable of facilitating collaborative

intrusion detection and autonomous sharing of information within a Cloud federation. In order

to facilitate this, it is necessary to understand what techniques currently exist in similar research

areas and to determine their inadequacies when applied to a Cloud federation. This Chapter

will review and analyse intrusion detection techniques from various research domains within

computing.

Intrusion detection is defined as the process of monitoring the events occurring in a computer

system or network and analysing them for signs of possible incidents, which are violations or

imminent threats of violation of computer security policies, acceptable use policies or standard

security practices [56]. Figure 3-1 conveys a high level view of different attributes associated

within the area of intrusion detection, and these will be explored in the subsequent subsections.

43

Figure 3-1: Intrusion detection and associated attributes

Computers control national infrastructure components such as the water grid and power grid.

The integrity and availability of all these systems have to be protected against an increasing

number of threats. The field of ICT security has become vitally important to the safety and

economic well-being of society as a whole. Moreover, to expose privacy breaches, security

needs powerful intrusion detection/prevention systems (IDPSs) [56] and organisational

policies and procedures in place.

An IDS is a device or software application that monitors a network and/or information system

for malicious activities or policy violations. They respond to suspicious activity by warning the

system administrator, displaying an alert, and logging the event. An IDS can be defined as a

function that maps the data input into a normal or an attack event X either by means of absence

of an alert (0) or by the presence of an alert (1) respectively and is given by:

44

IDS : X →{0, 1}. (3.1)

To detect attacks in the incoming traffic, the IDS is typically parameterised by a threshold 𝑇.

It uses a theoretical basis for deciding the thresholds for analysing the network traffic to detect

intrusions. Changing this threshold allows the change in performance of the IDS. If the

threshold is very low, then the IDS tends to be very aggressive in detecting the traffic for

intrusions. However, there is a potentially greater chance for the detections to be irrelevant

which results in large false alarms. A large value assigned to the threshold on the other hand

will have an opposite effect; as being conservative in detecting attacks may lead to some being

missed [57]. The most common IDS shortcomings include their low detection efficiency, high

false positive rate and their vulnerability to attack based on centralised hierarchical structure

(depending on their configuration) [58].

An intrusion prevention system (IPS) operates the process of performing intrusion detection

and attempting to prevent the detected incidents. An IPS is a device or software application

that has all the capabilities of an IDS and can also attempt to stop certain incidents. IPSs provide

security at all system levels, from the operating system (OS) kernel to network data packets.

IPSs also have the ability to prevent known intrusion signatures, besides the unknown attacks

originating from the database of generic attack behaviours. IDSs and IPSs typically perform

extensive logging of data that is related to detected events which can be used to confirm the

validity of alerts, investigate incidents, and correlate events between the IDS and other logging

sources [59].

3.1.1 Data source

Differentiating IDSs based on their data sources can be classified as host-based, network-based,

or a hybrid (which is a combination of both data sources). Host-based IDSs provide local

intrusion detection and support by monitoring user behaviour over an application layer

protocol, such as the client-server protocol [60]. They run on an individual host or device on

the network, monitor the inbound and outbound packets from that device only and alert the

user or administrator if a suspicious activity is detected [61]. Network-based IDSs provide

global intrusion detection, where they provide level monitoring of traffic flowing through the

network and detect intrusions based on the nodes’ behaviour over the network. A network-

based IDS observes strategic points within the network to monitor traffic to and from all

45

devices on the network [61]. Hybrid IDSs combine network and host-based monitoring in order

to achieve maximum coverage, however there is an increase in system and security logs to

analyse and an increase in system accounting.

Much of the proposed academic research on IDSs in the Cloud environment has focused on

providing security mechanisms for specific security problems [62]–[94], while others adjust to

the differing statistics available depending upon their data source [71-77]. Hamad and Al-Hoby

[74] implemented the network-based Cloud Intrusion Detection Service (CIDS), which can be

deployed by CSPs to enable clients to subscribe with the IDS in a service-based manner. It is

a re-engineered version of Snort, which is an open source signature-based network IDS [75].

The model outperforms currently used solutions for service-based IDSs but at the same time

provides minimal overhead to the case of traditional IDS deployment for single network

protection. While it appears to be based on a network-centric approach, there are no details

provided on how this approach can scale with an increasing Cloud environment. The option of

a security service in a service-based manner is a future direction for CSPs so this approach is

insightful.

Dhage et al. [76], convey that when there is only one IDS in the entire network, the load on it

increases as the number of hosts increases. They highlight the challenge monitoring network

based actions in the Cloud environment, in addition to actions on each of the hosts present in

the network. An architecture in which mini IDS instances are deployed between each user of

the Cloud and the CSP is proposed. As a result, the load on each IDS instance will be less than

that on a single IDS and for this reason, the small IDS instance will be able to do its work in a

more efficient way. By proposing a model in which each instance of IDS has to monitor only

a single user, an effort has been made to create a coordinated design, which will be able to

gather appropriate information about the user, thus enabling it to classify intrusions in a better

way. The issue with such an approach is the mass of alerts that would be generated by all of

the monitoring entities, so a clearer information hierarchy and communication structure is

evidently needed.

Alsafi et al. [77] propose an integrated intrusion handling model for Cloud computing, which

combines anomaly-based and signature-based detection. Their focus is on stopping an attack,

rather than detecting it. Actions which their proposed method should take include terminating

the user session that is being used during the attack, and blocking access to the target from the

46

offending user account, IP address, or other attacker attribute. Their integrated model uses

signature matching with normal traffic profiling to enhance attack detection. They propose to

deploy their IDS in the VM itself as well as the virtual network in order to monitor the activities

within the system.

Additionally, the use of multi-agents to increase the accuracy and scalability in network IDS is

a thriving area [44] [78] [79] [80] [81]. It is suggested by Jansen et al. [82] that mobile agent

technology can be beneficial in achieving the ideal behaviour desired in an IDS. The deficiency

of a centralised IDS leads to the idea of multi or mobile agents. In an agent-based IDS there is

no central point of failure and agents can detect and take predefined actions against malicious

activity. The benefits of using a distributed model based on a mobile agent platform was

highlighted by Patil et al. [58] where the key attributes were overcoming network latency,

reducing network load, and being able to scale considerably. One challenge that would affect

the application of an agent-based system is the application of ground truth for dynamic agent

training [83], whereby training data and predefined information is needed for the functioning

of agents.

Molina et al. [84] propose ‘Distributed Architecture for Resource manaGement and

mOnitoring in CloudS’ (DARGOS), which is a monitoring support system for Cloud

environments which is built upon a data-centric publish/subscribe paradigm. DARGOS’s

distributed architecture is based on two entities called Node Monitor Agent (NMA) and Node

Supervisor Agent (NSA). NMAs are responsible for gathering monitoring data from the local

node and delivering these data to interested nodes. NSAs are responsible for collecting

monitoring data from remote hosts and making them available to final system administrators

through DARGOS local application programming interface (API) and visualisation tools.

As highlighted, there has been an increase in intrusion detection and intrusion prevention

methods for the Cloud environment [85-90]. Desired characteristics include optimised

performance, minimum error and maximum protection [86]. The ability to adapt to changes in

user behaviour and system behaviour over time is also anticipated. An IDPS should be part of

normal services and not affect the operation of the Cloud environment in any way. Many

solutions can only detect specific attacks, not unknown ones, and this is deterring the utilisation

of the environment. A hybrid IDPS is needed for protecting the Cloud environment from attack

with optimised performance and protection with a minimum error [86]. A hybrid approach

47

combines two or more network intrusion detection techniques; signature-based detection,

anomaly-based detection, and soft computing techniques. Using a hybrid approach can improve

the accuracy of the IDS when compared to individual approaches.

3.1.2 Data processing

Regardless of whether they operate at the network, host, or application level, both IDSs and

IPSs use one of two detection methods to classify and process data; anomaly-based or

signature-based (also known as misuse detection) detection.

Anomaly-based IDSs detect abnormal patterns that deviate from what is considered to be

normal behaviour [56]; examples include methods that are statistics-based [87], profile-based

[88], or model-based [89]. While they can come in the form of different approaches, the overall

method of detecting anomalous actions or behaviours is consistent. Anomaly detection does

not require prior knowledge of intrusion and can detect new intrusions. However, a drawback

of this is that they may not be able to describe what an attack is and may have a high false

positive rate. Two problems that contribute to the large numbers of false positives produced

include:

1) The decision whether an event should be classified as anomalous or as normal is made in a

simplistic way. Anomaly-based IDSs usually contain a collection of models that evaluate

different features of an event. These models return an anomaly score or a probability that

reflects the ‘normality’ of the event according to their current profiles. However, the system

is faced with the task of aggregating the different model outputs into a single final result

[90].

2) They cannot distinguish between anomalous behaviour caused by unusual but legitimate

actions and activity that is the manifestation of an attack. This leads to the situation where

any deviation from normal behaviour is reported as suspicious, ignoring potential

additional information that might suggest otherwise.

Misuse detection, commonly determined via signature-based IDSs, uses known patterns of

unauthorised behaviour to predict and detect subsequent similar attacks [91]. Examples of

misuse detection include approaches such as rule-based [92], state transition [17], and data

mining [72]. Signature-based IDSs monitor and analyse network packets and compare them

48

against the signature of the known threats. It is very effective in detecting known attacks or

threats that are predefined in the database of IDS. Nonetheless, this systems main disadvantage

that a new type of attack cannot be detected as its signature is not present [72]. Signature

databases must constantly be updated, and IDSs must be able to compare and match activities

against large collections of attack signatures. However, like anomaly-based detection

approaches, false positives and false negatives are an issue.

Machine learning techniques or artificial intelligence (AI) systems have been applied to

increase the efficacy of IDSs, however the focus is on improving the classifiers used [26].

Some of these techniques are neural networks, Linear Genetic Programming (LGP), Support

Vector Machine (SVM), decision trees, Bayesian networks, Multivariate Adaptive Regression

Splines (MARS) and Fuzzy Inference Systems (FIS) [70]. Viewed as a machine-learning

algorithm, a Gaussian process [75] uses lazy learning and a measure of the similarity between

points to predict the value for an unseen point from training data. In a Gaussian process, every

point in some continuous input space is associated with a normally distributed random variable.

Moreover, every finite collection of those random variables has a multivariate normal

distribution, i.e. every finite linear combination of them is normally distributed.

The control centre models each malicious event as a Gaussian process, realised by a collection

of random variables representing event features, such as the number of defective devices, and

malicious authentication ratio. It uses the collected reports as observations to form the prior

beliefs of the Gaussian process. Using the prior beliefs and observations, it computes the

posterior probability distributions of the process through regression [93]. Gaussian processes

are powerful nonparametric distributions over continuous functions that can be used for both

supervised and unsupervised learning problems.

Many supervised and unsupervised learning approaches from the field of machine learning and

pattern recognition have been using supervised learning approaches to classify their data. This

involves using labelled samples to train a classifier, but obtaining sufficient labelled samples

can be difficult, and requires the efforts of collaborative partners or expert connections. In

contrast, unlabelled samples can easily be obtained for many real world scenarios. Compared

to supervised learning approaches, semi supervised learning addresses this issue by considering

a large number of unlabelled samples together with the labelled samples to build a better

classifier [94].

49

In Mahmood and Agrawal [95], the focus is on ‘Principal Component Analysis Neural Network

Algorithm’ (PCANNA) which is used to reduce the number of computing resources, both

memory and CPU time required to detect an attack. Feature reduction is used to remove useless

information from the original high dimensional database of Cloud traffic data. A back

propagation algorithm is applied on reduced Cloud traffic data for classification. Their

contribution shows that dimensional reduction techniques help compact similar alerts and

correlate alerts coming from heterogeneous platforms on several sites to detect intrusions that

are more complex.

3.1.3 Architecture

Many IDSs employ a centralised architecture and detect intrusions that occur in a single

monitored system and/or network. Yet, centralised processers are not able to process collected

data from massive network or distributed attacks, as currently more and more attacks appear to

use a distributed architecture [59]. In centralised IDSs, the analysis of data is performed on a

fixed number of locations, whereas in distributed IDSs analysis of data is performed on a

number of locations that are proportionate to the number of available systems in the network.

Within Figure 3-2 these different architectures and differing ways information is aggregated

throughout are conveyed.

Figure 3-2: Comparison of communication architectures for detection systems

50

The scale of the data found in Cloud computing environments makes the application of existing

techniques unfeasible, as they are unable to carry out analysis within reasonable temporal

constraints. Table 3.1 presents a comparison between centralised and distributed IDS and their

key attributes [72]:

Table 3.1: Comparison between centralised and distributed IDS desired characteristics

Characteristic Centralised Distributed

Run continually A relatively small number of

components need to be kept running.

Harder because a larger number of

components need to be kept running.

Reliable The state of the IDS is centrally stored,

making it easier to recover it after a

crash.

The state of the IDS is distributed, making it

more difficult to store in a consistent and

recoverable manner.

Resist subversion A smaller number of components need

to be monitored. However, these

components are larger and more

complex, making them more difficult to

monitor.

A larger number of components need to be

monitored. However, because of the larger

number, components can crosscheck each

other. The components are also usually smaller

and less complex.

Minimal overhead Impose little or no overhead on the

systems, except for the ones where the

analysis components run, where a large

load is imposed. Those hosts may need

to be dedicated to the analysis task.

Impose little overhead on the systems because

the components running on them are smaller.

However, the extra load is imposed on most of

the systems being monitored.

Configurable Easier to configure globally, because of

the smaller number of components. It

may be difficult to tune for specific

characteristics of the different hosts

being monitored.

Each component may be localised to the set of

hosts it monitors, and may be easier to tune to

its specific tasks or characteristics.

Adaptable By having all the information in fewer

locations, it is easier to detect changes

in global behaviour. Local behaviour is

more difficult to analyse.

Data are distributed, which may make it more

difficult to adjust to global changes in

behaviour. Local changes are easier to detect.

Scalable The size of the IDS is limited by its

fixed number of components. As the

number of monitored hosts grows, the

analysis components will need more

computing and storage resources to

keep up with the load.

A distributed IDS can scale to a larger number

of hosts by adding components as needed.

Scalability may be limited by the need to

communicate between the components, and by

the existence of central coordination

components.

Graceful

degradation of

service

If one of the analysis components stops

working, most likely the whole IDS

stops working. Each component is a

single point of failure.

If one analysis component stops working, part

of the network may stop being monitored, but

the rest of the IDS can continue working.

51

Dynamic

reconfiguration

A small number of components analyse

all the data. Reconfiguring them likely

requires the IDS to be restarted.

Individual components may be reconfigured

and restarted without affecting the rest of the

IDS.

The greater scalability and larger size of Clouds compared to traditional service hosting

infrastructure involve more complex monitoring systems, which have to be more scalable,

robust, and fast. Such systems must be able to manage and verify a large number of resources

and must do it effectively and efficiently. This has to be achieved through short measurement

times and fast warning systems, able to quickly sport and report performance impairments or

other issues, and to ensure timely interventions such as the allocation of new resources.

Therefore, monitoring systems must be refined and adapted to different situations in

environments of a large scale and highly dynamic like Clouds [96].

Cloud computing pushes to the extreme the concept of resource sharing in an environment that

is inherently highly dynamic and with loads that are difficult to predict. Clouds are sometimes

deployed in many data centres and clusters of servers, each of them possibly equipped with

different characteristics and capabilities, i.e. in the same Cloud there could be clusters for CPU

intensive computation, such as media transcoding and data indexing, while others will be

optimized for input/output (I/O) throughput, such as media storage. As such, a Cloud

monitoring system should be aware of logical and physical groups of resources and should

organise monitored resources according to certain criteria so as to separate and to localise the

monitoring functions.

Another crucial issue is system scalability in terms of processing and bandwidth overhead: for

instance, medium-size Clouds data centres typically include hundreds of physical hosts and

thousands of VMs; whereas larger ones can include thousands of physical hosts with multiple

VMs (equipped with physical and logical sensors) for collecting monitoring data. These

frameworks can eventually generate a great amount of network traffic that consumes precious

network bandwidth; hence, the monitoring should be as least intrusive as possible by adopting

lightweight processing and communication solutions that limit additional overhead. It also

must assure timely monitoring data delivery.

A more network-centric approach is proposed by [68], in which they propose a distributed

architecture for high speed intrusion detection involving the deployment of classification

52

techniques to detect suspicious traffic patterns at the network layer. Moreover, the work of

Bakshi and Yogesh [97] takes an innovative approach to securing the Cloud from DDoS attacks

using an IDS in a VM. They propose the use of a virtual server to examine the security risks

associated with the Cloud environment, and attempt to offer emergency response by identifying

the source IP addresses involved in the DDoS attack. The virtual server would aim to respond

to the attack by transferring the targeted applications to VMs hosted in another datacentre.

While anomaly-based network intrusion detection capabilities are becoming available and new

schemes being explored [79], as with traditional IDS many key issues still remain to be solved

[58], [59], [98]–[100] . Key research challenges in IDS include reduction of false positives and

avoidance of false negatives, handling encrypted traffic, algorithms for effective content

matching, deep packet inspection at wire-speed, performance improvement, latency reduction,

behaviour-based detection, and environment awareness [101]. Decentralised network

architectures allow participating nodes to share workload with others and thus avoid

bottlenecks and single points of failure which are common weaknesses of centralised network

architectures.

3.1.4 Reaction

An IDS, depending on the response system, is classified as either passive or active. Passive

response is further divided into notification and manual response, whereas active response is

considered automatic. By contrast, in a manual response system a predefined set of response

options exists and is triggered by a security controller with the detection of an intrusion [102].

Intrusion responses are a series of actions and countermeasures when an intrusion is detected.

In order to guarantee the security of computer networks, these actions and measures can prevent

further attacks or restore the system to a normal state. These actions may come from human

intervention or from computers.

According to the level of automation, current intrusion response systems can be categorised as

notification systems, manual response systems, and automatic response systems. Notification

systems mainly generate alerts about the intrusion which is then used by the system

administrator to select an intrusion response [103]. A manual response system allows the

administrator to manually launch countermeasures against a detected intrusion by selecting

53

actions from a predetermined set of responses. In these two systems, the time duration within

the detection and response activation opens an opportunity for attackers.

These systems rely on predefined datasets of normal and abnormal behaviour definitions. Also,

many approaches rely on training data which can be classified through the use of appropriate

data classifiers. These can be applied pre and post processing and can improve the accuracy of

determining outliers from the data sets, but for real time monitoring can often have false

positives and false negatives, as they often do not adjust well to the real time system.

The work of Lee [104] proposes a multi-level IDS and log management method based on

consumer behaviour for applying IDS effectively to the Cloud system. They assign a risk level

to users’ behaviour depending on analysis of their behaviour over time. By applying differing

levels of security to the users, in theory this would increase usage of resources as it would be

based on the user behaviour over a period of time. Their method proposes the classification of

generated logs by anomaly levels. This is so that the system administrator analyses logs of the

most suspected users first.

Lo et al. [105] present a cooperative IDS framework for Cloud computing networks. They

deploy an IDS in each Cloud region, and each entity cooperates with each other through the

exchange of alerts to reduce the impact of DDoS attacks. A Snort-based IDS is implemented

and the three main modules are plugged into the system: block, communicate, and defence. A

cooperative agent is used to receive alerts from other IDSs, and they are analysed using a

majority vote in order to determine the accuracy of results. If deemed as a legitimate alert, the

blocking rule is implemented. By cooperative operation among these agents, an early detection

and prevention technique is implemented. Therefore, IDSs deployed in Cloud computing

regions except the victim one could prevent this kind of attack.

Distributed systems need to maintain a balance between communication overhead and the

addition of process power, as resources can become constrained. Since Cloud computing

supports a distributed service oriented paradigm, multi-domain and multi-users administrative

infrastructure, it is more prone to security threats and vulnerabilities, such as data breaches,

data loss, service hijacking, DDoS attacks and malicious insiders, to name a few [35].

54

3.2 Collaborative monitoring

Benefits of a collaborative monitoring scheme include greater efficiency and increased

monitoring accuracy, which are a result from the collective pooling of resources for a single

purpose. The structure of an IDPS is based upon two types: individual and collaborative. An

individual arrangement of IDPS is achieved by physically integrating it within a firewall. A

collaborative IDPS consists of multiple IDPSs over a large network where each one

communicates with each other. Each IDPS has two main functional components: detection

element and correlation handler. Detection elements consist of several detection components,

which monitor their own sub-network or host individually and generate low-level alerts. The

correlation handler transforms the low level alerts into a high level report of an attack [86].

For multi-tenant deployments, the monitoring system must also verify different requirements

in terms of information granularity, accuracy, and update frequency. The monitoring

infrastructure should be flexible enough to accommodate heterogeneous application-related

requirements and to harmonize various tenant needs [84].

A further challenge identified is the ability to detect the threat to the domain of origin, and alert

the user to their part in the attack, as it occurs or after the event. If DoS or spoofed traffic is

originating from a VM within a CSP, then they would be charged for the excess traffic. This is

an eDoS attack, due to the financial implications associated — the actual costings of such an

occurrence are beyond the scope of our work. It is not always easy for the victim to determine

that they are being attacked, or where it is coming from; as such, a Cloud-based monitoring

system with the ability to trace the source and improve resilience to attacks within Cloud

federation is essential.

The work of Calheiros et al. [106] conveys an InterCloud project through the use of agents

called Cloud Coordinators, and allows for an increase in performance, reliability, and

scalability of elastic applications. The architecture proposed for such a Cloud Coordinator

could be applied to the intrusion detection domain. The Cloud Coordinator is the element that

has to be present on each data centre that wants to interact with InterCloud parties. The Cloud

Coordinator is also used by users and brokers that want to acquire resources via InterCloud and

do not own resources to negotiate in the market.

55

In [107], Chen et al. aim to develop a new collaboration system to integrate a well deployed

Unified Threat Management (UTM) via the Collaborative Network Security Management

System (CNSMS). Such a distributed security overlay network coordinated with a centralised

security centre leverages a peer-to-peer communication protocol used in the UTM’s

collaborative module and connects them virtually to exchange network events and security

rules. The CNSMS also has a huge output from operation practice, i.e. traffic data collected by

multiple sources from different vantage points, and operating reports and security events

generated from different collaborative UTMs. As such, data is huge and not easy to analyse in

real-time, and it needs to keep them archived for further forensic analysis.

The work of Wang et al. [108] proposes the use of D-S’s theory of evidence to fuse local

information. In the process of applying D-S in IDS, firstly, each agent collects information in

its respective domain, and then the identification of some proposition is generated, which

serves as evidence. Based on these, the degree of confidence is assigned on each proposition.

As a basic probability assignment function (BPAF) and its corresponding frame of discernment

are called a body of evidence, each sensor therefore corresponds to a body of evidence. The

essence of multi-sensor data fusion is that within the same frame of discernment, different

bodies of evidence, depending on fusion rules, are fused into a resultant BPAF, upon which the

system makes the final decision based on decision rules.

Arachchilage et al. [109] convey the importance of collaborative parties having an established

guarantee about the type of information they will be sharing in order to protect sensitive

information. Their research focuses on the development of a taxonomy which can be applied

to trust domains, aimed at managing trust related issues in information sharing schemes. The

development of measurable trust characteristics is targeted at supporting collaboration and data

exchange within and across multiple organisations.

While progress has been made on the problem of collaborative monitoring, there still remain a

number of open problems that need to be addressed, such as [99]:

 Expressiveness – How to balance the trade-off between expressiveness of the

correlation algorithm and corresponding computational complexity during alert

correlation.

56

 Scalability – How to remove the need for a central controller in a Cloud-based IDS,

without sacrificing the overall performance.

 Accuracy – How to improve the detection accuracy, i.e. how to balance the trade-off

between the detection rate and false alarms.

3.3 Placement of solutions

Intrusion detection and prevention solutions are assessed on their capability to protect securely

in large-scale networks, but the placement of such a solution can affect how it monitors the

network. Non-intrusiveness is one of the key attributes for a monitoring entity, but monitoring

large scale Cloud environments requires strategic planning and engagement. Considerations

based on the size and the complexity of the architecture include: mobility of monitoring

entities, no central points, constrained bandwidth of links, and limited resources. Some of the

challenges remaining include questions on how to reinforce the intrusion detections and

response elements to cope with intrusion and response in parallel, in addition to the

coordination of information between monitoring entities, and management of multiple nodes.

Attacks and failures are inevitable; therefore, it is important to develop approaches to

understanding the Cloud environment under attack. Investigation into the appropriate points in

the Cloud to deploy monitoring and attack detection functionality is imperative [85].

The four areas considered for deployment are in the VM, in the hypervisor or host system, in

the virtual network, or in the traditional network.

 In the VM: Deploying a solution in the VM allows you to monitor the activity within

the system, and detect and alert on issues that may rise.

 In the hypervisor or the host system: Deploying a solution in the hypervisor allows you

not only to monitor the hypervisor, but anything travelling between VMs on that

hypervisor. It is a more central location for intrusion detection, but there may be

performance issues or dropping of some information if the amount is too large.

 In the virtual network/virtual local area network (VLAN): Deploying a solution to

monitor the virtual network allows you to monitor the network traffic between VMs on

the host, as well as traffic between the VMs and host. This 'network' traffic never hits

the traditional network.

57

 In the traditional network: Deploying a solution here allows you to monitor, detect, and

alert on traffic that passes over the traditional network infrastructure. However, this is

quite problematic as virtual traffic as it is encrypted may be missed.

Xin et al. [65] present their innovative approach in the form of an intrusion detection

mechanism for the Cloud computing environment. They propose a new intrusion detection

mechanism based on Cloud computing called “IDCC”, and it is designed to support wide

networks, offering high availability. Whereas, Montes et al. [110] implemented GMonE

“Global Monitoring systEm", a Cloud monitoring tool which is capable of being adapted to

different kinds of resources, services and monitoring parameters. GMonE performs the

monitoring of each element by means of GMonEMon, which abstracts the type of resource

(virtual or physical). GMonEMon service monitors the required parameters and then it

communicates automatically with the monitoring manager (GMonEDB) to send it the

monitored data. This communication is done through a standard Java Remote Method

Invocation (RMI) process.

Zhang et al. [111] propose a hierarchical IDS framework with a distributed monitoring

architecture. In their framework, an IDS module is distributed along the network on key

services, i.e. on control centres, community gateways and smart meters. The IDS module is

comprised of two components: classifier and recorder. The IDS module at the bottom layer

accepts raw input data from smart meters; the module at a higher layer accepts input from the

IDS module at the immediate lower layer invoking a hierarchical communication scheme

which in turn would reduce network latency and throughput associated with monitoring large

scale networks. As such, if an attack is detected by an IDS module, an alarm will be invoked

on the corresponding layer. If a detection decision cannot be made at a certain layer it will be

left for the upper to make it, since the upper layer has a wide scope of knowledge.

The optimal deployment location recognised is on the virtual network/VLAN. To communicate

between VMs, they talk over a virtual network. This would be a suitable place for an IDPS as

communicating occurs through this point, and it would be easier to build a nominal profile of

activities and behaviours. Additionally, the use of a module that uses signature analysis of

captured attack statistics, which also utilises a behaviour module to determine if the detected

occurrence is actually an attack, could be beneficial. This could in turn improve efficiency over

current methods that only utilise one method [85].

58

3.4 Research challenges

This chapter provides sufficient information to understand the challenges that are currently

faced in relation to collaborative intrusion detection within Cloud federations. This section will

summarise these research challenges.

 The first main challenge is due to the size and dynamic nature of the Cloud

environment, namely the architecture and structure, which poses problems for the

application of existing solutions. As Cloud environments, and Cloud federations, are

large scale, it is essential that any potential solution should scale alongside the

environment and have the potential to expand and scale considerably without any issues

or performance implications. As every Cloud service delivery model is different from

other similar service models, IDS techniques used for each Cloud service model also

differ [27].

 The second main challenge is the issue of system scalability. The accuracy and

efficiency of detection is important, but ensuring the solution is scalable and can deal

with large volumes of logs from different sources is problematic. Having a solution

with the ability to adapt to varying computational and network loads, in order to not be

invasive, is essential. It is difficult, however, to achieve a good balance between IDS

security level and system performance. Detecting intrusion patterns in the Cloud

environment involves looking for behavioural changes. This process could involve

anomaly-based detection for DoS/DDoS attacks, which must be robust against noise

data, false positives and false negatives produced.

 A further challenge is that existing federation models are designed for static

environments where priori agreements among the parties are needed to establish the

federation [112]. Security vendors may not exchange information, e.g. malware

reported from their customers, with other vendors because of privacy issues and

competition. Providing prompt updates against the latest threats is important to

dominate the market. Isolated antiviruses cannot obtain malware samples of zero-day

threats to be analysed and may fail to protect their customers. However, from the

customers’ perspective, if diverse security vendors collaborate with each other, by

means of providing feedback regarding the legacy of suspicious files, they may achieve

59

even better accuracy [113]. It is with this in mind, that the benefits of security vendor

collaboration, in our case, CSPs could benefit all parties involved.

3.5 Requirements for collaborative intrusion detection in Cloud environment

By using the information identified from the background research, it is possible to create a set

of requirements which define the characteristics that potential collaborative intrusion detection

solutions for the Cloud environment must possess - they combine the strengths and strive to

eliminate the weaknesses of the work discussed previously. These requirements can therefore

be used to assess the suitability of existing solutions, help to ensure the success of the proposed

solution, and to provide a useful mechanism to evaluate the solution at a high level. These

requirements were devised by examining the attributes of IDSs, monitoring schemes and their

application to Cloud environments.

These attributes are as follows:

 Accurate: It must produce low levels of detection errors.

 Adaptable: It must be able to adapt to changes that occur within the underlying

virtualised infrastructure, with considerations to roles, functionality, and structure.

 Collaborative: It should be able to exchange information and alerts within the

infrastructure in an autonomous manner, without the need for human intervention. It

should be able to take information and share it among key entities, receive and exchange

relevant information when polled.

 Configurable: Each component may be localised to the set of hosts it monitors, and

easier to tune to its specific tasks or characteristics.

 Dynamics: It must be able to cope with the adjusting behaviour and adaptive nature of

the underlying virtualised infrastructure in order to formulate an accurate

understanding.

 Efficient: Systems must operate seamlessly in real-time, and be able to manage and

verify a large number of resources, and do it effectively and efficiently.

60

 Graceful degradation of services: If one analysis component stops working, part of the

network may stop being monitored, but the rest of the monitoring schema can continue

working.

 Low maintenance: It must not require much human intervention or offline maintenance

to ensure accuracy or operation.

 Lightweight: It must be lightweight in terms of its resource and storage requirements

(e.g. behavioural profiles, signature databases, and access lists).

 No prior knowledge: The operation of the solution should not depend on prior

knowledge relating to the system and behaviour, due to the dynamic nature of the

underlying environment and information may become outdated.

 Novel threats: It must possess the ability to detect novel threats, as due to the

interconnected nature of Cloud federations, attacks may propagate from within the

federation.

 Reliable: It must be able to operate constantly, have a high level of availability, and

maintain an acceptable level of accuracy and efficiency. It must be able to recover from

faults and ensure information is stored in a consistent and recoverable manner.

 Scalable: It must be able to automatically scale alongside the expansion of the

underlying virtualised infrastructure, in order to adapt for its constantly changing needs.

These requirements will guide the research in terms of analysing the suitability of existing

techniques, and developing a solution that satisfies the identified criteria. Table 3.2 provides a

summary of the techniques discussed within this section, along with the benefits and drawbacks

when considering their application for detecting intrusions within a Cloud federation.

Table 3.2: Intrusion detection techniques summary

Technique Basic concept Sub techniques Benefits Drawbacks

Anomaly

detection-

based

Detect abnormal

patterns that

deviate from what

is considered to

be normal

behaviour.

1. Statistic based

2. Distance based

3. Rule based

4. Profile based

Ability to detect novel

threats.

No prior knowledge

about infrastructure

activity needed.

Cannot describe what

the attack is.

Can result in high false

positive or false

negative results.

61

5. Model based Accurate when deviance

matches profiles.

Signature

detection-

based

Use of known

patterns of

unauthorised

behaviour to

predict and detect

subsequent

similar attacks.

1. Misuse detection

2. Rule based

3. State transition

4. Data mining

5. State model

6. Expert system

7. String matching

It is very effective in

detecting known attacks

or threats that are

predefined in the

database of IDS.

Cannot detect novel

attacks.

If malicious activity

appears like normal

traffic to the system it

will never send an

alarm to administrator,

so like anomaly based

detection, false

positives and false

negatives is an issue.

Signature databases

must constantly be

updated, and IDSs

must be able to

compare and match

activities against large

collections of attack

signatures.

Machine

learning based

Intelligent and

adaptive

classification of

complex and

uncertain

behaviour.

1. Neural networks

2. LGP

3. SVM

4. Decision tree

5. Bayesian

networks

6. MARS

7. FIS

8. Clustering and

data outliers

Designed for complex

environments.

Tolerates incomplete

data.

Can adapt to the

behaviour of the

monitored environment.

Dependent upon

knowledge of

infrastructure

boundaries and goals.

Requires extensive

training of data and

classifiers.

Over classifying can

skew the results.

Higher resource

consumption.

Host-based

monitoring

Provide local

intrusion

detection and

support by

monitoring user

behaviour over an

application layer

protocol.

Host based

monitoring can be

applied either on the

VM or on the host

machines.

Host based monitoring

has access to a greater

spectrum of data sources

covering the OS, as well

as incoming and

outgoing traffic.

As host based IDS use

system logs containing

events that have actually

occurred, they can

determine whether an

attack occurred or not

with greater accuracy

and fewer false positives

than a network-based

system.

It is unable to match

the speed of network

monitoring.

Incurs resource and

performance

overheads.

Suited to individual or

isolated

systems/infrastructures.

Attacks can be

identified by looking at

log files, which often

gives the attacker time

to remove evidence of

an attack.

Network-

based

monitoring

Examines and

analyses the

traffic to and from

Can detect different

types of attacks in

VMs and hypervisor.

Easy to deploy and does

not affect existing

Network-based

monitoring cannot

62

all the devices on

the network.

It can scan all

inbound and out-

bound traffic and

detect various

types of instances.

systems or

infrastructures.

Once the attacks have

been detected from this

method the active

system immediately

takes necessary actions

to tackle the attacks.

Network-based IDS use

live network traffic and

perform real time

intrusion detection.

Therefore, the attacker

cannot remove evidence

of attack – this data can

be used for forensic

analysis.

detect the attacks inside

virtual networks.

Also the network traffic

within and outside of

the Cloud environment

cannot be decrypted to

analyse the network

traffic.

Generate many false

positives because of the

very fact that it detects

malicious packets in

real time and some of

these packets could be

from a trusted host.

Cannot give

information about

system activities,

whereas host based

monitoring can detect

policy breaches,

abnormal user activity,

user account

modification, etc.

Agent-based

monitoring

Agent-based

monitoring use

the independent

and autonomy

characteristics of

agents to increase

system scalability,

and improve the

problems caused

by failure of

single point,

improve the

system's fault

tolerance.

1. Multi-Agent

Distributed IDS

(MAIDS)

2. Autonomous

Agents For

Intrusion

Detection

(AAFID)

3. Intrusion

Detection Agent

System (ADI)

4. Intelligent Mobile

Agents for

Intrusion

Detection System

(IMA-IDS)

Agent-based monitoring

utilises multiple agents

to achieve different

modules of each

intrusion detection unit.

Each agent can

communicate with each

other, mutual

cooperation.

There is no central point

of failure and agents can

detect and take

predefined actions

against malicious

activity.

Scalability - agents

reduce the computational

load on the system by

dividing it into hosts.

Need a clearly defined

monitoring hierarchy

and roles for agents.

Centralised

monitoring

architecture

Data collected

from single or

multiple hosts.

All data shipped

to a central

location for

analysis.

N/A

A smaller number of

components need to be

monitored. However,

these components are

larger and more

complex, making them

more difficult to

monitor.

Single point of failure.

Impose little or no

overhead on the

systems, except for the

ones where the analysis

components run, where

a large load is imposed.

Those hosts may need

to be dedicated to the

analysis task

63

Hierarchical

approaches are

encouraged as they

scale better than the

centralised approach.

Distributed

monitoring

architecture

A distributed IDS

consists of

multiple IDSs

over a large

network, all of

which

communicate with

each other, or

with a server that

facilitates

advanced network

monitoring,

incident analysis,

and instant attack

data.

N/A

Ability to detect attack

patterns across an entire

corporate network, with

geographic locations

separating segments by

time zones or even

continents.

This could allow for the

early detection of a well-

planned and coordinated

attack.

Impose little overhead

on the systems because

the components

running on them are

smaller. However, the

extra load is imposed

on most of the systems

being monitored.

Network data rates are

very high.

Encryption of network

traffic is becoming

more popular.

Table 3.3: Comparison of existing techniques against collaborative intrusion detection requirements

Requirements met

Requirements not met

Requirements partially met

64

Table 3.3 compares the existing techniques discussed in this chapter against the requirements

established in Chapter 3.4. Taking the existing techniques, we identify if they: meet the

identified requirements, do not meet the requirements, or partially meet the requirements.

Partial requirements met would indicate that the technique could be tailored depending upon

the user requirements.

3.6 Threshold algorithms

While conducting the requirements analysis collaborative monitoring has been identified as the

most suitable technique for detecting intrusions in Cloud federations. It can be a highly

effective approach but relies on accuracy of its set-up, and the predefined threshold parameters

used to detect anomalous activities within the network.

The threat-awareness capability provides a key opportunity for an IDS to improve its detection

rate. It can be inferred that as the use of Cloud in organisations grows, so will the rate of DoS

attacks. These attacks against the Cloud are launched to deny service availability to end users.

While DDoS attacks tend to generate a lot of fear and media attention, they are by no means

the only form of DoS attack. Asymmetric application level DoS attacks take advantage of

vulnerabilities in web servers, databases, or other Cloud resources, allowing a malicious

individual to take out an application using a small attack payload – in some cases less than 100

bytes long [114].

For detecting such attacks there are a range of approaches considered in the literature [26],

[45], [62], [72], [102], [115]–[119]. Algorithms for detecting attacks in the Cloud environment

include adaptive threshold [115], Random Early Drop (RED) [120], RRED, and CUSUM. Each

of these is used by a variety of solutions in the area of network and Cloud security, but each

has differing benefits and drawbacks.

The adaptive threshold algorithm [115] detects anomalies based on violations of a threshold

that is adaptively set, based on recent traffic measurements. Seasonal variations and trends are

taken care of by using an adaptive threshold whose value is set based on an estimate of the

mean number of packets under consideration or the rate, either of which is computed from

recent traffic measurements.

65

RED takes a different approach, monitoring an average queue size and dropping packets based

on statistical probabilities. If the buffer is almost empty, all incoming packets are accepted. As

the queue grows, the probability for dropping an incoming packet grows too. When the buffer

is full, the probability has reached 1 and all incoming packets are dropped. In comparison,

RRED was proposed to improve the TCP throughput against DDoS attacks, particularly low

rate DDoS (LDDoS) attacks. Experiments have confirmed that the existing RED-like

algorithms are notably vulnerable under LDDoS attacks due to the oscillating TCP queue size

caused by the attacks. The RRED algorithm can significantly improve the performance of TCP

under LDDoS attacks [121].

LDDoS attacks reduce network service capabilities by periodically sending high intensity pulse

data flows. For their concealed performance, it is more difficult for traditional DoS detection

methods to detect LDDoS attacks; at the same time the accuracy of the current detection

methods for LDDoS attacks is relatively low.

Many algorithms, such as random sampling, do not take into account traffic dynamics. As a

result, they cannot guarantee the sampling error falls within a prescribed error tolerance level.

How to discover the evolving process of the network traffic and how to improve the accuracy

of real-time detection is problematic. For services in the Cloud environment, the

confidentiality, integrity, and availability of the data is of utmost importance. Our Service-

based intrusion detection framework will facilitate collaborative intrusion in a Cloud

federation, protecting the Cloud environment from DDoS attacks, as these attacks can threaten

the availability of Cloud functionalities and/or the services within.

CUSUM [122] involves the calculation of a cumulative sum. Samples from a process pt are

assigned weights Wt, and summed as follows:

𝑟0 = 0 (3.1)

𝑟𝑡+1 = max (0, 𝑟𝑡 + 𝑝𝑡 − 𝑤𝑡) (3.2)

When the value of r exceeds a certain threshold value, a change in value has been found. The

formula only detects changes in the positive direction. 𝑡 refers to a period of time.

http://en.wikipedia.org/wiki/Probability

66

There are preventive measures in place to protect against such attacks, but they seem to be

focusing on generic DDoS, where the characteristics mimic previous attacks of such nature.

However, the rise in high volume and low rate DDoS is a problem. They could be spread out

over a period of time, and have random high bursts, which can confuse the preventative

measures. Algorithms for detecting DDoS attacks in the Cloud environment often sample the

packets and drop any deemed to be malicious – these can often be false positives.

The use of algorithms for detecting attacks in the Cloud environments has the following

weaknesses:

 Sample packets are often inaccurate

 Vulnerability to unknown types of DDoS attacks

 Does not always ensure the accuracy of estimation and tends to over sample at peak

periods when efficiency and timeliness are crucial

 Random sampling does not take into account traffic dynamics

 Inefficient on LDDoS attacks

 Prone to error on high rate DDoS attacks

There is an emerging need for the traffic processing capability of an IDS to match the high

throughput of today’s high-bandwidth networks. Recent research has shown that the vast

majority of security solutions deployed today are inadequate for processing traffic at a

sufficiently high rate to keep pace with the network’s bandwidth [123]. Existing sampling

algorithms are poorly suited for this task, especially because they are unable to adapt to the

trends in network traffic. Satisfying such a criterion requires a sampling algorithm to be capable

of controlling its sampling rate to provide sufficient accuracy at minimal overhead [123]. The

adaptive threshold algorithm and CUSUM algorithm appear to be the most applicable for

detecting attacks in the Cloud environment. Algorithms based on change point detection, such

as CUSUM, can exhibit robust performance over a range of different types of attacks, without

being more complex.

67

3.7 Decision making algorithms

There are many decision making algorithms available in the literature, however by adopting a

vector-based voting solution the failure rate can be significantly reduced compared to non-

vector voting by about 50% [124]. If a voter is a yes/no decision maker, its output space is

binary; and if the output of a vote can be any value, its output space is infinite. The majority

vote produces an output among variant results, where at least (𝑛 + 1)/2 variant results agree.

The plurality voter is the relaxed form of majority voting, and implements m-out-of-n voting,

where it is less than a strict majority (e.g., 2-out-of-5 or 3-out-of-7 voting) [124].

The disadvantage of the widely used majority vote, as well as the plurality, is that they may

agree on incorrect variant results, where there is a consensus on identical incorrect inputs. In

other words, these voters cannot distinguish between agreed correct and agreed incorrect

variant outputs. The majority vote is often inaccurate, especially in automated approaches.

For example: assume a voter with 11 inputs received from software versions for which the

output space is binary (0, 1). Five versions have reliability 0.99 (type A versions), and six

versions have reliability 0.95 (type B versions). For a given notional correct input, the A-

versions output 0, and the B-versions produce 1. According to the majority voter, the correct

result is estimated to be 1. However, if the reliability information of variants is taken into

account in estimating the output, a more accurate output may be obtained [124].

This shows the benefit of using the extra information from variants during the voting process,

with the ultimate aim of having a more accurate result. A group of voters, which differ from

generic voters, use extra information such as the reliability level of variants, online diagnosis

information of modules, or various probabilistic information to improve voting performance,

which is known as a ‘hybrid voter’ [124]. This type of approach would generate a more accurate

output compared with the aforementioned voting algorithms.

D-S theory of evidence is an example of such an approach, and can solve the problem of

collaborative intrusion detection in the federated Cloud environment. The D-S theory offers an

alternative to the traditional probabilistic theory for the mathematical representation of

uncertainty. D-S applications range from expert decision support systems to multi-attribute

decision-making and data fusion [125]. The main advantage of this algorithm is that no a priori

68

knowledge of the system is required, thus making it suitable for anomaly detection of

previously unseen information [126]. A further point for decision making is the aspect of time

criticality, which includes both the responsiveness aspect of the system and the timeliness of

any related data being delivered within its designated time period.

3.8 Dempster-Shafer (D-S) theory of evidence

D-S theory of evidence in the context of distributed intrusion detection can demonstrate the

theory’s usefulness. Cooperative decision making is made after aggregating evidence using

this approach. As mentioned, some work in this area [105] uses a simple majority vote to reach

a decision when combining evidence, where the final decision is a binary decision. D-S

produces a judgement value between 0 and 1 that reflects the degree of belief in that judgement

[127]. The computational complexity of D-S increases exponentially with the number of

elements in the frame of discernment (θ). If there are 𝑛 elements in Θ, there will be up to 2n-1

focal elements for the mass function. Furthermore, the combination of two mass functions

needs the computation of up to 2n intersections. The D-S rule of combination is the procedure

to aggregate and summarise a corpus of evidences.

D-S theory is a probabilistic approach, which implements belief functions which are based on

degrees of belief or trust. Probability values are assigned to sets of possibilities rather than

single events [60]. In the decision making process, the uncertainty existing within the network

often leads to failure of intrusion detection or low accuracy. D-S was introduced as a

mathematical framework for the representation of uncertainty and analysing it in a quantitative

way. D-S theory introduces the concept of assigning beliefs and plausibilities to possible

hypotheses of each decision maker and provides a combination rule to fuse multi-modal

information. This theory allows each source to incorporate information with different levels of

evidence. This property provides a significant benefit, in that, it assigns a possibility mass to a

subset or interval; hence, the D-S theory based fusion approaches can efficiently address both

probabilistic (or objective) uncertainty and epistemic (or subjective) uncertainty [128].

Other methods such as using Bayesian and learning based approaches cannot provide these

benefits. They are dependent upon knowledge of infrastructure boundaries and goals, which

leads to extensive training of data and classifiers. The Bayesian approach requires complete

knowledge of both prior and conditional probabilities, which might be difficult to determine in

69

practice. Prior probabilities are often estimated from empirical data, or, in the absence of

empirical data, the assumption is that they are uniform or some other distribution. The Bayesian

approach is not well equipped to handle states of ignorance [127].

Collaborative intrusion detection has been considered in several contributions where data

provided by heterogeneous intrusion detection monitors is fused. Conversely, there is a trade-

off between accuracy and efficiency while the decisions are made in an IDS. Cognitive

algorithms, such as neural networks, have good adaptability but require a lot of training data,

which is hard to capture in a real network environment [129]. The main advantage of D-S is

that no priori knowledge of the system is required, i.e. state transition matrix or training data,

thus making it suitable for anomaly detection of previously unseen information [126].

Within the domain of intrusion detection, comparison of the performance of voting and

decision algorithms is complex for two reasons. Firstly, the large number of environmental

parameters that have a direct impact on the voter output, e.g. input data profile, fault/error type,

error probability distribution, reliability level of variants, number of variants, and the value of

acceptance thresholds. Secondly, the selection of an appropriate metric for the evaluation.

Furthermore, the metrics are application dependent; for example, where the output space of a

system is large and the probability of producing identical incorrect redundant results is low,

the number of agreed results, during a specific running time, is a suitable metric. Whereas if

the cardinality of voter output space is small and identical, incorrect redundant results are

probable, then the number of agreed and correct results is a suitable metric.

In other applications, the ratio of correct results to agreed results may be the most suitable

measure. Inevitably, the ranking of voter performance may change when using different

metrics. Examples of typical metrics used include the error detection ratio, false alarm ratio,

the number of normalised benign outputs, the number of normalised catastrophic outputs, and

the probability of producing a correct voter output [124].

According to Chen and Aickelin, the computational complexity of D-S increases exponentially

with the number of elements in the frame of discernment (Θ). If there are n elements in Θ, there

will be up to 2n-1 focal elements for the mass function. The combination of two mass functions

needs the computation of up to 2n intersections. The D-S rule of combination is the procedure

70

to aggregate and summarise a corpus of evidences. However, through literature [124], [126],

[136] and implementing our Service-based collaborative intrusion detection solution, the

limitations shown below are evident:

 Associative: for rule combination, the order of the information in the aggregated

evidences does not impact the result. A non-associative combination is necessary for

many cases.

 Non-weighted: rule combination implies all evidences are trusted equally. However, in

reality, trust on different evidences may differ, which means various factors should be

considered for each evidence.

3.9 Problem analysis

Anomaly-based IDSs are a principal focus of research and development in the field of intrusion

detection [56]. It is clear there are two main weaknesses in present-day IDS techniques [101].

One weakness is that they do not take into consideration the threat exposures in the network

while detecting intrusions, resulting in obtaining alerts for all types of events, many or most of

which may not be relevant to the operating environment. In the context of dynamic network

environments such as WSNs or Cloud networks, this approach may lead to a huge number of

unnecessary alerts. Depending on the frequency of changes to the network environment, this

may in turn affect the efficacy of the IDS or detection method itself.

A second weakness of present-day IDS techniques is that they are not devised to handle

dynamic network environments, as they use a stringently predefined set of signatures and

anomaly detection thresholds to detect intrusions. Furthermore, they are quite ignorant of any

changes to the operating environment that may eliminate or introduce vulnerabilities and threat

exposures. Due to this weakness, the monitoring technique may miss critical attacks and detect

intrusions that are not relevant due to changes to the environment. Hence, introducing a threat

awareness capability provides a key opportunity for an IDS to improve its detection rate [101].

From our analysis, it is clear that Cloud computing deteriorates the perception of perimeter

security. It has become impossible to place a virtual moat around an organisation’s castle, as

an abundance of services have been outsourced [15]. Security should be implemented in every

layer of the Cloud application architecture. It is important to note that the existing approaches

71

in this area do not tackle the protection of services migrating to the Cloud environment

efficiently. In current solutions, they provide theoretical intrusion methods for the Cloud

infrastructure, or for network protection, but these are not sufficient for our protection problem.

The distributed nature of the Cloud model makes it an even more attractive target for intruders.

The deployment of WSNs and mobile ad-hoc networks in applications such as emergency

services, warfare and health monitoring poses the threat of various cyber hazards, intrusions

and attacks as a consequence of these networks’ openness. Among the most significant research

difficulties in such networks’ safety is intrusion detection, whose target is to distinguish

between misuse and abnormal behaviour so as to ensure secure, reliable network operations

and services. Intrusion detection is best delivered by multi agent system technologies and

advanced computing techniques. To date, diverse soft computing and machine learning

techniques in terms of computational intelligence have been utilised to create IDPSs, yet the

literature does not report any reviews investigating the performance and consequences of such

techniques solving wireless environment intrusion recognition issues as they gain entry into

Cloud computing [80].

According to Zuech et al. [130], improvements to intrusion detection could be achieved by

embracing a more comprehensive approach in monitoring security events from many different

heterogeneous sources. The associated benefits of such an approach could offer a more holistic

view and greater situational awareness of cyber threats. The key problem being tackled is that,

as cyber-attacks have evolved and grown in sophistication, monitoring an ever increasing

number of event sources has grown in complexity. Intelligence awareness is a growing method

which is the capability of automated intelligence sharing and alerting across a myriad of

security systems, and a benefit is the ability to adapt, based on contextual or situational

awareness.

A monitoring system that can run in a non-intrusive and transparent manner to any underlying

virtualised infrastructure is an evident requirement within this area. Additionally, possessing

the ability to adapt to behavioural changes (i.e. resource related parameter changes) within the

system without the need for re-contextualisation each time. Design of a collaborative Cloud-

based framework that focuses on detecting intrusions within an interconnected infrastructure,

in combination with decision making and/or fusion algorithms is a must. As identified, one of

the key issues identified is the lack of communication between entities monitoring the systems,

72

or the sharing of information. Through efficient communication and exchanging threat

information, a threat could be prevented from propagating throughout a network.

3.10 Summary

This chapter has provided a summary of related work and existing approaches for detecting

intrusions in the Cloud environment. It has reviewed the identified techniques, providing an

overview and outlining the benefits and drawbacks when considering application to a Cloud

federation. This exploration has identified that there is a consensus in existing work on the need

for improved approaches for protecting infrastructure services in the Cloud environment, and

in Cloud federations [51], [74], [131]–[133]. This is a challenging and complex problem and

environment, as the confidentiality, integrity, and availability of data can have high

socioeconomic implications as there are more and more infrastructure services migrating to

this environment. Information in the Cloud environment comes from many sources and in

many formats.

During the literature review, each of the requirements identified in Chapter 3.5 were examined,

and it can be concluded that there are no currently defined methods that properly fulfil the

requirements for collaborative intrusion detection for Cloud federations. The review identifies

solutions that could be built upon and scaled to deal with the dynamic nature of the Cloud

environment. This chapter justifies why a novel approach and novel techniques are essential to

addressing the issue of protecting critical infrastructure services in the Cloud environment via

collaborative intrusion detection and autonomous sharing of information. The inadequacies of

existing solutions provide both the motivations and aims for the solution proposed in this thesis.

73

Chapter 4

Service-based collaborative intrusion detection framework

In this chapter, we provide the design of our Service-based collaborative intrusion detection

framework and the technical challenges that we address. The contents of this chapter are

structured as follows. An overall overview of our solution is presented in 4.1. A high level

overview of the framework is presented in 4.2, and a detailed explanation of the architectural

attributes. The algorithms used for threshold adaptation and belief generation are presented in

4.3 and 4.4, and the collaborative decision making process is highlighted in 4.5 - with the

extended D-S fusion process in 4.6. Lastly, 4.7 provides a summary of the framework.

In Chapter 3, we identified that there is a consensus in existing work on the need for improved

approaches for protecting infrastructure services in the Cloud environment, particularly in

Cloud federations. As such, Cloud defence strategy needs to be distributed so that it can detect

and prevent the attacks that originate within the Cloud itself and from the users using the Cloud

technology from different geographic locations. As the popularity of the services provided in

the Cloud environment grows rapidly, the exploitation of possible vulnerabilities grows at the

same pace [134].

It is obvious from Chapters 1-3 that there is a need for a new and capable collaborative intrusion

detection method to cope with the challenging structure, dynamic nature and scale of the Cloud

computing and Cloud federation environment. The literature review and survey of related work

in Chapter 3 has shown that there are no entirely suitable solutions, and has detailed the

limitations of existing solutions and the shortcomings of such techniques. Therefore, a novel

approach is required to establish autonomous intrusion detection in a Cloud federation via the

collaborative interconnected domains. CSPs within a Cloud federation are represented as

interconnected domains, and based on the proposed monitoring structure, the infrastructure is

dynamically provisioned to react and facilitate autonomous sharing of threat information via

Cloud brokerage and the hierarchical monitoring entities. This approach needs to adhere to the

aims and objectives established in Chapter 1.2 and the requirements outlined in Chapter 3.5.

74

This chapter proposes a novel approach to the problem through Security as a Service using our

Service-based collaborative intrusion detection framework. Our approach is proactive and

looks to identify patterns of traffic and behaviour, and through collaborative intrusion detection

conveys a security posture rather than purely alerting to attacks. The main requirement of our

solution is to provide protection for critical infrastructure services being hosted in the Cloud

environment, in particular within Cloud federations, through novel intrusion detection

techniques. Our solution encompasses the use of dynamic and multi-threshold-based

algorithmic approach, and autonomous sharing of information to improve resilience to Cloud

attacks.

4.1 Overview of Service-based collaborative intrusion detection framework

So far, this thesis has discussed in detail the extent of the limitations of existing solutions and

the challenges faced for collaborative intrusion detection within Cloud federations. In order to

resolve this, a novel solution has been devised called Service-based collaborative intrusion

detection framework, providing “Security as a Service” for Cloud federations [135]-[136]. A

high level overview of the key attributes and functionality of the solution includes an

autonomous information sharing schema by the monitoring entities, whereby collaborative

intrusion detection is facilitated.

It has been designed to ensure it fulfils the requirements established in Chapter 3.5 and that it

is non-invasive and transparent to the underlying virtualised infrastructure. It operates by

monitoring the live behaviour of the network in real-time, utilising pre-calculated CUSUM

profiles for network thresholds. These profiles and their calculated values are discussed in

Chapter 4.2. These algorithms are used to cope with the dynamic nature of the Cloud

environment, and by utilising adaptive thresholds, attacks can be identified. Our solution

generates high level application metrics dynamically at runtime by aggregating and grouping

low level metrics.

Our solution conveys knowledge acquisition in dynamic Cloud environments through

collaborative cooperation. Collaborative intrusion is achieved via the generation and exchange

of beliefs – detailed in Chapter 4.5 – based on observations of events within the network. Via

the use of a broker, the ability to collaboratively make a system wide decision and propagate

this through the interconnected domains is achieved.

75

4.2 Service-based collaborative intrusion detection architecture

CSPs within a Cloud federation are represented as interconnected domains, and based on the

monitoring structure, dynamically provision the infrastructure to react and facilitate

autonomous sharing of threat information via a Cloud broker. Brokering functions in federated

Clouds at the IaaS layer can be decomposed into two aspects: resource provisioning and

resource adaptation. In resource provisioning, the most appropriate mix of resource classes and

the number of nodes of each resource class are estimated so as to match the requirements of

the application and to ensure that the user objectives and constraints – i.e. throughput, precision

and efficacy – are satisfied [47].

It is necessary to continuously monitor the application execution and adapt resources to ensure

these objectives and constraints are fulfilled. Resource adaptation is responsible for

provisioning resources dynamically and at runtime. Examples of such provisioning are

assigning more physical CPUs to a given VM to speed up an application, or migrating VMs in

order to reduce the resource sharing or optimise the energy efficiency.

With a Cloud federation, it is a requirement that each CSP has to share Cloud-related

information with the federated Cloud providers. With this in mind, in our architecture, this

sharing of knowledge in our approach would involve security information about malicious

activities, new signatures, and suspicious IP addresses (with an SLA detailing such a

requirement). Our architectural knowledgebase encompasses a hybrid approach that combines

network intrusion detection techniques: signature-based detection, anomaly-based detection,

and soft computing techniques.

Using a hybrid approach can improve the accuracy of the IDS when compared to individual

approaches. Our Security as a Service entity would be deployed in the virtual network in each

CSP domain, and Figure 4-1 illustrates such a model. Conceptually, the architecture is

structured into the components presented in Table 4.1.

76

Figure 4-1: Service-based collaborative intrusion detection in a Cloud federation

Within our architecture, time criticality includes both the responsiveness aspect of the system

and the timeliness of any relevant data being delivered in its designated time period. The

autonomous sharing of information within the Cloud federation promotes that resilience is a

worthwhile and obtainable attribute.

Figure 4.1 shows how the key attributes are connected:

 Cloud broker

 Monitoring Nodes (MNs),

 Local coordinators (Super Nodes - SNs),

 Global coordinators (Command and Control server - C2).

The C2 provides management of SNs and MNs, responses to attacks detected and reported by

SNs and/or the broker, and cooperates with adjacent domains when polled. Characteristics of

77

each entity are detailed in Chapter 4.3.1 – 4.3.4, in addition to flowcharts illustrating their

interactions.

Table 4.1: Notations for Figure 4-1

Icon Attribute

Cloud Broker with database server of

signatures:

 Black list

 Grey list – local to each C2

 White list

Command and Control server (C2)

Super Node (SN)

Monitoring Node (MN)

Due to resource limitations in our test environment, a smaller amount of attributes were

included to demonstrate proof of concept but this distributed monitoring schema can be scaled

considerably. As stated in Chapter 2, Cloud environments and Cloud federations are large

scale, it is essential that any potential solution should scale alongside the environment and have

the potential to expand and scale considerably without any issues or performance implications

– this is achieved by the architectural design of our Service-based collaborative intrusion

detection solution.

The ‘Security as a Service’ inspired architecture operates by monitoring the actions of the

Cloud network in real time against pre-defined behavioural threshold profiles that take into

consideration adaptations in performance. CUSUM is used for monitoring change detection

78

[120], detailed in Chapter 4.3. Additionally, in conjunction the EWMA can be determined,

which is a statistic for monitoring the process that averages the data in a way that gives less

and less weight to data as they are further removed in time. By comparing live network

behaviour against these profiles, attacks against the network can be quickly detected and pre

alarms generated based on the frequency of occurrence.

4.3 Threshold calculation algorithms – CUSUM and EWMA

Within our Service-based collaborative intrusion detection architecture, network-based

intrusion detection is used to provide global intrusion detection, where it provides level

monitoring of traffic flowing through the network and detects intrusions based on the node

behaviour over the network. Related work within this research uses signature-based detection

schemes to detect violations within their networks but due to the dynamic nature of the Cloud,

an approach which considers fluctuations within this defined ‘norm’ is more appropriate.

Adjusting thresholds based on these fluctuations would improve the accuracy and efficiency of

our methodology, and lower the number of false positives and false negatives.

CUSUM is a sequential statistical analysis technique, which is used to monitor and detect

changes within any sequence of quantitative observations in some experiment, i.e. monitoring

for any sudden increase or decrease in the number of incoming messages or traffic fluctuations

[137].

CUSUM takes samples p𝑡 from a process and assigns weights W𝑡 to these values, which is

summed as follows: 𝑟0 = 0

𝑟𝑛+1 = max (0, 𝑟𝑡 + 𝑝𝑡 − 𝑊𝑡) (4.1)

When the value of r exceeds a certain threshold value, a change in value has been found. The

traffic threshold is given by:

(α+1)μ (4.2)

79

Where:

 𝑡: a period of time

 𝛼: alpha

 μ: is the measured mean rate

Unlike the adaptive threshold algorithms [115], [117], which consider only violations of the

threshold, the CUSUM algorithm considers the excess volume sent above the normal volume,

hence accounts for the intensity of the violations.

There have been attempts to determine the optimal level of each threshold but the best

performing approach is to use the standard deviation 𝜎 of the whole sequence. CUSUM is a

recursive equation, meaning that a new CUSUM value is dependent on the previous CUSUM

values. After a new input value to the sequence of the observations is obtained, it will be used

to find a new CUSUM value. CUSUM is computed according to the following equation:

𝐶𝑖 = 𝑂𝑖 − (𝜇o + 𝑍 + 𝜎) + 𝐶𝑖−1 (4.3)

Where:

 𝐶𝑖: is the most recent CUSUM value to be computed

 𝑂𝑖: is the most recent observation value

 𝜇0: is the overall observations mean value

 𝐶𝑖−1: is the previous CUSUM value

𝑍 is the reference value and is chosen about halfway between the target 𝜇𝑡−1and the control

value of the mean 𝜇1. 𝑍 is calculated by:

 𝑍 =
𝛿 .𝜎

2
 (4.4)

 𝛿 =
|𝜇𝑡− 𝜇𝑡−1|

𝜎
 (4.5)

80

If the shift was expressed by the standard deviation units, then 𝑍 is one-half the magnitude of

the shift and it is given by [137]:

 𝑍 =
|𝜇𝑖− 𝜇𝑖−1|

2
 (4.6)

As CUSUM computes the differences between the values and the average, it is able to detect

and plot small changes in a sequence of quantitative observations, so it can be employed for

detecting DDoS as it can detect any sudden or subtle changes in the incoming traffic [137].

An alarm is signalled when the accumulated volume of measurements 𝑔𝑡 that are above a

traffic threshold, exceeds the aggregate volume threshold ℎ. The threshold is set adaptively

based on recent measurements of the mean rate. The classic CUSUM formulation is effective

in change detection, however in an anomaly detection scheme there is no interest in the change

itself, focusing instead on the intensity of the anomaly. Depending on the sensitivity imposed

to the algorithm, it might result in many false positives [138].

Used in combination, CUSUM and EWMA have demonstrated an acceptable performance in

detecting different shifts from the process mean which could help account for intensive attacks

[138]. The EWMA chart plots the moving averages of data and assigns weights that decrease

exponentially from the present to the past. As a result, the average values are influenced more

by recent data points than older points. Equation 4.7 conveys this, illustrating how the relevant

information for detecting a change lies in the value of the log-likelihood ratio and its current

minimum value.

Where:

 𝜇̅𝑡: is the estimated mean rate

 𝛽: is the EWMA factor

 𝜇̅𝑡−1: is the mean rate estimated from measures prior to 𝑡

 𝐹𝑡: is the number of packets in the specified time interval

 𝜇̅𝑡 = 𝛽𝜇̅𝑡−1 + (1 − 𝛽)𝐹𝑡, (4.7)

81

If 𝐹𝑡 ≥ (∝ +1) 𝜇̅𝑡−1 then the alarm is signalled at time 𝑡 where (∝ > 0) is a parameter that

indicates the percentage above the mean value that considers the indication of anomalous

behaviour. However, including this as an indicator of anomalous actions would include a high

number of false positives as indicated by Siris et al. [116], whereby a modification that can

improve its performance is to signal an alarm after a minimum number of consecutive

violations of the threshold.

Equation 4.7 is adapted to take into consideration the tuning parameters of the CUSUM

algorithm, which are the amplitude percentage parameter ∝, the alarm threshold ℎ, the EWMA

factor 𝛽, and the length of the time interval over which traffic measurements are taken [116].

It returns a vector of the EWMA of an input vector 𝑔𝑡, computing the known variance from the

input vector and the cumulative sum over the input:

𝑔𝑡 = [𝑔𝑡−1 +
𝛼𝜇̅𝑡−1

𝜎2 (𝐹𝑡 − 𝜇̅𝑡−1 −
𝛼𝜇̅𝑡−1

2
)]+ (4.8)

Where:

 𝑔𝑡: is the input vector

 ∝: is an amplitude percentage parameter, which intuitively corresponds to the most

probable percentage of increase of the mean rate after a change (attack) has occurred.

 𝜇̅𝑡: is an estimate of the mean rate at time 𝑡 which is computed using an EWMA as in

equation 4.7.

 𝜎: is the standard deviation

 𝐹𝑡: is the number of traffic packets in the nth time interval

One of the key research challenges is owing to the size and dynamic nature of the Cloud

environment, namely the architecture and structure, which poses problems for the application

of existing solutions. CUSUM and EWMA in combination are appropriate threshold

calculation and adaptive monitoring approaches for detecting small shifts within a sequential

quantitative observation and its application for DDoS attacks is suitable as it constantly adapts

its value based on continuous measurements and remains insensitive to the normality

82

assumption [137]. This combination of algorithms helps the system adapt to the behaviour of

the underlying infrastructure and have more accurate detections, in comparison to a strict

threshold based scheme.

4.3.1 Monitoring Nodes

MNs try to deal with issues on a local level and communicate with their neighbouring nodes

regarding systems states and signatures, via the use of the gossip protocol as its premise is to

manage a large, unreliable resource pool without any central coordinator. The exchange of

information throughout the network is rampant, but messages and alerts need to be delivered

with high probability. These nodes contain a black and white list, and a local grey list. A pre-

alarm is triggered when a predefined threshold is violated, in utilisation with CUSUM and

EWMA as detailed in Chapter 4.3.

If there are 𝑀 nodes and each node gossips to log(M) + c other nodes on average, the

probability that everyone gets the message converges to e−e−c
, which is very close to 1 without

considering failures – where 𝑐 is a fixed parameter determined by the number of nodes, and

structure of the network topology, within the domain. The number of communications

necessary to spread global workload information to all the mapping nodes respects

log(M) /log (log(M)), which shows that it takes at most a logarithmic number of steps to reach

every mapping node [139].

With the gossip protocol [140] each node chooses a neighbour randomly to transmit a message.

Suppose that the node 𝑖 chooses node 𝑗 with probability 𝑃𝑖𝑗, where zero probability implies that

the two nodes are not within their communication range, and are therefore not neighbours. It

can be shown that the communication delay of disseminating a message from a single node in

the network to all M nodes in the network is Ο(log M/∅), where ∅ is the conductance of the

network, given by:

∅ = min
S:|S|≤M/2

∑ Piji∈S,j∈Sc

|S|
 (4.9)

Where:

 ∅: conductance of the network

83

 S: energy required to transmit the data

 M: nodes in the network

 𝑖: network node

 𝑗: network node

 𝑃𝑖𝑗: probability that the two nodes are within their communication range

The gossip protocol can have widespread broadcasting in an asynchronous style, but the

communication is quite random [119]. Using this approach however there is a need to ensure

that intrusions are detected fast and that information can disseminate throughout the federation

quickly. Using this approach to communicate pre alarms through the network would cause an

increase in network overhead, and a basic role of a monitoring entity is to be non-intrusive. In

order to deal with the scale of the Cloud environment, introducing hierarchy via the role of the

SN and local views is a more suitable approach.

The role of the SN, detailed in Chapter 4.3.2, to observe the pre-alarms generated by the MNs

could compliment the gossip based approach and improve the speed of message coverage.

Broadcasting the pre-alarms in this way would reduce the network throughput and associated

latency as, if every node in the network was to receive and forward the alarm packet, this would

consume a lot of energy. Specifically, a pre-alarm is sent when the observed value is compared

with a global threshold, such as using CUSUM for traffic volume dynamics – CUSUM is a

widely used anomaly detection algorithm that has its foundations in change point detection

[116].

In particular, an alarm is signalled when the accumulated volume of measurements 𝑔𝑡 exceeds

an aggregate volume threshold. When a pre-alarm is sent, monitoring nodes add it to their local

grey list.

Let a monitored value 𝑥𝑖 on the MN 𝑖 at time 𝑡 be:

xi (t), i ∈ [1, M], (4.10)

84

Where 𝑀 is the number of MNs involved in the monitoring task.

Given the global threshold 𝑇, the state at time t can be considered to be abnormal and trigger a

state alert if:

∑ xi (t)M
i=1 > T, (4.11)

which is referred to as a global violation [141].

𝑇 can be decomposed into a set of local thresholds 𝑇𝑖 for each MN 𝑖 such that:

∑ Ti ≤M
i=1 T. (4.12)

As a result, as long as the monitored value at any node is lower or equal to its local threshold,

the global threshold cannot be exceeded, i.e.

xi(t) ≤ Ti , ∀i ∈ [1, M] (4.13)

This is as:

∑ xi(t) ≤ ∑ Ti ≤M
i=1 TM

i=1 . (4.14)

In this case, MNs do not need to report their local values to the SN. In order to report a local

violation, MN 𝑖 sends a message to the SN with the value 𝑥𝑖(𝑡). The value of 𝑇𝑖 is decided

depending upon the local CSP but is calculated using the CUSUM algorithm where threshold

calculation is detailed in Chapter 4.3. Each MN is independent and treated equally to ensure

fair and accurate monitoring, and improve the reliability and efficiency of the monitoring

schema. Each entity has a level of trust and is acting in a trustworthy manner – this is

established in the assumptions identified in Chapter 5.1.

There is likely a case where ∑ xi (t)M
i=1 < T but a particular 𝑥𝑖 (𝑡) exceeds 𝑇𝑖 so it is important

to ensure the monitoring infrastructure can adapt to changes within the underlying

infrastructure to gather local and global information that is accurate to the domain under

observation – this is achieved using CUSUM and EWMA algorithms detailed in Chapter 4.3.

85

Figure 4-2 shows a flowchart conveying what operations the MN executes – beginning from

initial start-up and showing the flow of information for detecting anomalous actions within the

network.

Figure 4-2: Monitoring node flow chart

After adding to the local grey list, the MNs role loop back to the initial start-up in order to

adjust threshold algorithms to deal with the dynamic nature of the underlying Cloud

infrastructure. In addition, the MN deals with communications from other MNs, as a local node

may send a pre-alarm for them to add to their local grey list - this can occur during any stage

at run-time. For values that are already present in the local grey list the score is incremented

due to frequency of occurrence.

4.3.2 Super Node

A SN has a parent/child relationship with MNs under its management. The SN effectively

communicates upstream with the C2 to query any suspicious actions. In order to address the

86

problem of scale and network latency with centralised monitoring schemes, a hierarchical

scheme with clearly defined roles and communication structure is utilised. The hierarchy of

communication means network latency and throughput is reduced, and communication occurs

only when essential, or when thresholds are violated. The SN, based on the number of MNs in

its subnet, observes the generated alarms. When the pre-alarm count is more than or equal to

the threshold based on the number of MNs, a belief is formed that there is an attack.

Based on 𝑥𝑖 at time 𝑡, a belief is applied to the value:

Bel(ID, timestamp, BPA) (4.15)

Where Bel contains all the information associated to the observed occurrence, ID is an identifier

unique to 𝑥𝑖, timestamp corresponds to time 𝑡, and the BPA (Basic Probability Assignment)

which is a positive number between 0 and 1, and exists in the form of probability. For example,

a belief value of 0.8 corresponds to the belief that there is an attack, and the corresponding

hypotheses set information is detailed in Table 4.7 in Chapter 4.5. The SN then sends this belief

to the C2, who queries the broker . Beliefs can be formed based on the belief function

established and the associated hypothesis set.

Depending on established thresholds the belief generations could be associated with the

conditions below:

 ba: the belief that there is an attack – 0.7-1.0

 bn: the belief that there is not an attack – 0-0.3

 bna: the belief expressing an ambiguity between attack and no attack – 0.4-0.6

Figure 4-3 shows a flowchart conveying what operations the MN executes and how the SN

interacts and performs its tasks.

87

Figure 4-3: SN flow chart

If the amount of pre-alarms is not more than or equal to the alert threshold the SN goes back to

observing the MN alerts. However, if the amount of pre-alarms are more than or equal to the

defined alert threshold then BPA occurs – which is forwarded to the C2.

4.3.3 C2

The C2 is located within its designated domain and is a domain management node. The key

services that the C2 provides are the management of SNs and MNs, responses to attacks

detected and reported by SNs and/or the broker, and cooperation with adjacent domains when

polled. When a threat is detected in its domain, a belief is formed that an attack is underway.

The C2 queries the broker about the generated belief, to see if it is legitimate or not (as quite

possibly information on it could be known but the information might not have been propagated

88

yet). C2s possess black lists and white lists comprised of blocked IP addresses, and local grey

lists provided by the SN and MN which contain ambiguous observations. Figure 4-4 is a

flowchart illustrating how components and operations between the C2 and broker interact.

Figure 4-4: C2 and Broker flow chart

89

The C2 receives a query and associated belief hypothesis from the SN, and queries the broker

with this information. The broker checks if it possess information on the value in its databases

and returns the stored information to the C2 if present. Otherwise, the broker queries C2s in

other domains to check their grey lists and return a BPA based on their stored value, return a

BPA based on the queried value, or returns 𝑏𝑛𝑎 which is the belief expressing an ambiguity

between attack and no attack.

4.3.4 Cloud broker

There is a need for secure communication in a Cloud-based collaborative environment. The

question is then how to secure the intra-Cloud and inter-Cloud communications between the

collaborative services deployed in the Clouds. Management from a Cloud broker is important

as they provide the interoperability and portability of applications across multiple Cloud

environments. A Cloud broker may enhance, combine, or integrate services from multiple

CSPs in order to create new and value-added service offerings [135].

Currently, Cloud brokers offer tools to manage applications across multiple CSPs. In the future,

Cloud brokers will offer services based on their knowledge of the CSPs’ infrastructure [142].

In our solution, this information is used to offer Cloud CSPs “Security as a Service”, where the

broker uses the knowledge base of Cloud attacks and behavioural profiles to identify threshold

violations. The broker with its database server of signatures contains a black list, white list, and

grey list.

The black list contains signatures of traffic and behaviour blocked from the Cloud federation;

the white list contains signatures of permitted actions; and the grey list is a local list to each C2

that is used to store ambiguous observations with frequency of occurrence – the grey list is a

function mapping signatures to beliefs. Publish-subscribe is used to propagate this information

from the broker to adjacent C2s in order to reduce overhead and network latency.

Publish-subscribe models have been widely for tasks such as event notification and mobility

support services. Each subscriber maintains a local database that contains the latest values of

each topic instance and can locally perform query operations without generating any network

traffic. Using a data-centric approach decouples data sources and consumers: publishers and

subscribers share the same data model for data (topics) and can build distributed architectures

90

where the local application logic is decoupled from the data model. In the context of

collaborative intrusion detection, when a participant detects a possible attack in its monitored

sub-network, it generates an alert, which is reported to the higher entity which is known as

subscription [99].

When queried with a belief value about suspect actions, the broker invokes a global poll

procedure when a decision cannot be made. The broker then queries the C2s in adjacent

domains, and asks them to generate their own beliefs based on the presented information. They

check their local grey lists to see if they have encountered the suspect actions previously. Each

C2 generates their own belief, and the broker uses D-S to fuse the different beliefs and to create

a system wide decision.

This collaborative approach and sharing of information in turn can improve resilience to attack,

as within Cloud federations, system vulnerability Vs is increased due to the interdependent

services and multi tenants. Additionally, the data and services stored may have high availability

requirements. Within a system s, vulnerability V is the maximum vulnerability level over a set

of scenarios represented by 𝐷:

𝑉𝑠 = 𝑚𝑎𝑥(𝑉(𝐷)) (4.16)

Whereby, scenario vulnerability is defined by:

 𝑉(𝐷) = {𝑉(𝑑1), 𝑉(𝑑2) … … , 𝑉(𝑑𝐾)} (4.17)

Where 𝐾 is the number of scenarios to be evaluated; and d is an individual scenario.

The vulnerability of a scenario 𝑉(𝑑) through an access point is evaluated to determine its

potential damage using the weighted sum of the potential damages over a set 𝑢. Liu [143]

describes scenario vulnerability as:

 𝑉(𝑑) = ∑ 𝜋𝑗𝛾𝑗𝑗∈𝑢 (4.18)

Here, 𝜋𝑗 is the steady state probability that the system is attacked through a specific access

point 𝑗 which is linked to the system [143]. The damage factor 𝛾𝑗 represents the level of

91

damage on the system if the service is removed, and in the case of critical infrastructure data,

this would be availability of data and services. The data range for this can differ depending on

the scenario but for probability based approaches a value between 0 and 1, where 0 represents

no vulnerability and 1 represents catastrophic failure, but these can be established with the use

of risk logs or risk graph modelling. Within Cloud federations the benefits of resource

balancing and sharing outweighs the potential vulnerabilities, but the concern is that a

vulnerability could propagate throughout a federation based on the many access points

identified in equation 4.11.

The Cloud broker is an elastic scaling mechanism, but for the purposes of diagrams and testing

there is one broker within explanations. In the real world one broker would be a single point of

failure. As such, there would be multiple brokers which would sit behind a load balancer,

sharing a repository of information, and using the resources of the Cloud to adapt to workload

changes by provisioning and de-provisioning resources in an autonomic manner.

4.4 Collaboration

The size of the IDS is limited by its fixed number of components. As the number of monitored

entities grows, the analysis components will need more computing and storage resources to

keep up with the load. A distributed IDS can scale to a larger number of hosts by adding

components as needed. Scalability may be limited by the need to communicate between the

components, and by the existence of central coordination components. Distributed

collaboration among heterogeneous components within and across independent domains has

been indicated in recent literature [48], [63], [99], [113], [134], [144]. Collaboration among

agents in agent-based systems is commonplace, but applying this information exchange could

lead to increased situational awareness in interconnected infrastructures.

The cooperation of threat knowledge, both known attacks and unknown threats, among peers

within the enterprise network or with other CSPs will contribute to better incident detection

and prevention, enhancing Cloud security and providing more effective incident response

[145]. Information sharing in this approach is autonomous, which is conceived to be an

important aspect of this approach. Collaboration among CSPs in the federated Cloud could

offer holistic security to those CSPs in this agreement.

92

Decision making processes involve differing hierarchical structures, and varying roles for the

members within. The organisation of such structures varies widely, but each has been

considered greatly for our solution. The democratic-style and centralised-style both have

merits, as such has been determined that a combination of both would be the most beneficial

and meet the design requirements in Chapter 3.5. In a democratic-centralised-style structure

there is a leader member who relies upon the other members for information when making a

decision.

This hierarchical communication schema is conveyed in Figure 4-5, which outlines how

detection and correlation elements would communicate. Within such an approach, data is

distributed, which may make it more difficult to adjust to global changes in behaviour, whereas

local changes are easier to detect. The subordinate organisation members have limited power

in the decision-making process but interact with each other fully. Information exchange is more

structured and timely following this approach.

Figure 4-4: Hierarchical communication schema

Figure 4-5 shows how detection elements and correlation handlers work with regards to the

entities presented within the Service-based collaborative intrusion detection architecture.

Figures 4-2 – 4-5 show the execution of the workflow and present the flow of information

93

within the structural design. Detection elements consist of several detection components which

monitor their own sub-network or host individually and generate low level alerts. Then the

correlation handler transforms the low level alerts into a high level report of an attack [86]. The

biggest challenge in employing a sampling algorithm on a given network is scalability. For

intrusion detection algorithms, sampling costs are of paramount importance. Within our

approach, the communication architecture takes this into consideration and uses levels of

hierarchy for information sharing conveyed in Figure 4-5. The generation of alerts has to

exceed an expected threshold before this information is passed upwards to a superior attribute

in the scheme.

Figure 4-6 visualises the levels of communication occurring between each entity in our

solution. The hierarchical structure within our solution conveys how key entities exchange

information with one another, and how the information flows. For illustration purposes, a small

scale of entities is used but there can be more than one C2 within each domain — the

relationship between SNs and MNs is as described in Chapters 4.3.1 and 4.3.2. The solution

can scale considerably and based on the democratic-centralised communication style, entities

can be added with ease to their role.

Figure 4-5: Levels of communication

94

4.5 Belief generation using Dempster-Shafer theory of evidence

For collaborative intrusion detection, an extended D-S fusion algorithm is utilised. Via the

broker, D-S executes as a main fusion node, an entity with the role to collect and fuse the

information provided by the monitors, taking the final decision regarding a possible attack. In

the decision making process, the uncertainty existing in the network often leads to the failure

of intrusion detection or low detection rate. The D-S theory of evidence in data fusion has

solved the problem of how to analyse the uncertainty in a quantitative way [146].

The key attributes of D-S theory of evidence include:

The frame of discernment:

The frame of discernment is a completable set which describes all the sets in the hypothesis

space. Generally, the frame is denoted as θ, which is similar to a state space in probability

[129]. The elements in the frame must be mutually exclusive, and while the number of the

elements is 𝑛, the space will be 2n.

Basic probability assignment:

BPA is a positive number between 0 and 1, and exists in the form of probability. For a particular

event 𝐴 in 2θ (which is the hypothesis space), 𝑚(𝐴) characterises the degree of BPA

supporting or refuting evidence.

Belief function:

For 2θ ∈ [0,1],

Since 𝑚(𝐴) measures the belief that one commits to the set 𝐴 exactly and not to any proper

subset of 𝐴, to obtain the total belief committed to 𝐴, one must add to 𝑚(𝐴) the quantities

𝑚(𝐵) for all proper subsets 𝐵 of 𝐴 . Given a mass function 𝑚 , a belief measure and a

plausibility measure can be uniquely determined to obtain a total BPA committed to a particular

proposition. The belief function 𝐵𝑒𝑙 is defined as [128]:

Bel(A) = ∑ m(B)B⊆A (4.19)

95

where all 𝐵 ⊆ 𝐴; 𝐴 ∈ 2θ . 𝐵𝑒𝑙(𝐴) indicates the total evidence or belief that the element

belongs to the set 𝐴 (𝑥 ∈ 𝐴) as well as to the various subsets of 𝐴.

Plausibility function:

The plausibility Pl(A) is the sum of all the masses of the sets B that intersect the set of interest

A:

𝑝𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵|𝐵∩𝐴≠∅ (4.20)

The belief function and plausibility function are related by Bel(A) ≤ Pl(A). This is as D-S

allows for belief about propositions to be represented as intervals, bounded by two values,

belief (or support) and plausibility. Then calling [Bel(A), Pl(A)] the Belief Range. 𝑃𝑙(𝐴) is the

mass of A and the mass of all sets that intersect with A, i.e. those that could transfer their mass

to A or a subset of A [108].

Belief generation:

For pre-emptive warning, beliefs are generated and assigned to all subsets of possible outcomes

based on the established CUSUM thresholds defined using equation 4.8.

Based on an occurrence and monitored value 𝑥𝑖 at time 𝑡 , a belief is assigned with the

information:

Bel(ID, timestamp, BPA) (4.21)

Where:

 Bel: contains all the information associated to the observed occurrence

 ID: is a unique identifier to 𝑥𝑖

 timestamp: corresponds to time 𝑡

 BPA: is a value from 0 to 1 - the associated hypothesis sets are within the Table 4.2.

96

Mass, Belief and Plausibility based on the equations 4.19 and 4.20 are presented. Belief in a

hypothesis is comprised by the sum of the masses of all sets enclosed by it. A belief measures

the strength of the evidence in favour of a proposition 𝑝 , ranging from 0 (indicating no

evidence) to 1 (denoting certainty). Plausibility is 1 minus the sum of the masses of all sets

whose intersection with the hypothesis is empty. Or, it can be obtained as the sum of the masses

of all sets whose intersection with the hypothesis is not empty. The universal hypothesis

“Either” will always have a belief and plausibility assignment of 1.0 (having 100% belief and

plausibility) because this value is always true. For simulation purposes in Chapter 5, threat

values associated with each belief value are included also, and these reflect the range from 0-

100 correlating with belief values between 0 and 1.

Table 4.2: Hypothesis sets of values for Belief values between 0 and 1.

Threat Value Hypothesis Mass Belief Plausibility Belief Value

100 Attack 1.0 1.0 1.0

1.0 No Attack 0.0 0.0 0.0

 Either 0.0 1.0 1.0

90-99 Attack 0.9 0.9 0.95

0.9 No Attack 0.05 0.05 0.1

 Either 0.05 1.0 1.0

80-89 Attack 0.8 0.8 0.9

0.8 No Attack 0.1 0.1 0.2

 Either 0.1 1.0 1.0

70-79 Attack 0.7 0.7 0.8

0.7 No Attack 0.2 0.2 0.3

 Either 0.1 1.0 1.0

60-69 Attack 0.6 0.6 0.7

0.6 No Attack 0.3 0.3 0.4

 Either 0.1 1.0 1.0

50-59 Attack 0.5 0.5 0.7

0.5 No Attack 0.3 0.3 0.5

 Either 0.2 1.0 1.0

97

40-49 Attack 0.4 0.4 0.6

0.4 No Attack 0.4 0.4 0.6

 Either 0.2 1.0 1.0

30-39 Attack 0.3 0.3 0.4

0.3 No Attack 0.6 0.6 0.7

 Either 0.1 1.0 1.0

20-29 Attack 0.2 0.2 0.7

0.2 No Attack 0.3 0.3 0.8

 Either 0.5 1.0 1.0

10-19 Attack 0.1 0.1 0.4

0.1 No Attack 0.6 0.6 0.9

 Either 0.3 1.0 1.0

0-9 Attack 0.0 0.0 0.5

0.0 No Attack 0.5 0.5 0.0

 Either 0.5 1.0 1.0

Using equations 4.1 – 4.8, threshold calculation algorithms such as CUSUM and EWMA are

used to determine when a local threshold has been violated. As described Chapter in 4.3.2 –

4.3.4, belief generation occurs and this information is propagated to the relevant monitoring

entities.

Based on the assigned threat score, the associated hypothesis sets are associated. Within an

intrusion detection based system that monitors the underlying virtualised infrastructure, there

are four clear variables that would involve detecting violations. These variables would have a

BPA of { }, {attack}, {no attack}, and {attack, no attack}. { } represents an empty subset with

a value of 0, that corresponds to “no solution”. Whereas {attack, no attack} represents

uncertainty, i.e. it could be either.

The monitors, based on the local detection algorithms, produce a single belief for each focal

element and these would identify violations of local thresholds:

98

 ba: {attack}- threat value in the range of 0.7-1.0

 bn: {no attack}- threat value in the range of 0-0.3

 bna: {attack, no attack}- threat value in the range of 0.4-0.6

D-S combination rule:

D-S utilises orthogonal sum to combine the evidences, where ⨁ is the combination operator

[129]. The belief functions are defined, describing the belief in a hypothesis 𝐴 , as

Bel1(A), Bel2(A); then the belief function after the combination is defined as:

 Bel(A) = Bel1(A)⨁Bel2(A) (4.22)

The mass function after the combination can be formulated as:

m(A) = DSK−1. ∑ m1(Ai)Ai∩Bi=A m2(Bj) (4.23)

Here, 𝐷𝑆𝐾 is the Orthogonal Coefficient, and it is defined as:

DSK = ∑ m1(Ai)Ai∩Bi≠∅ m2(Bj) (4.24)

D-S combines the beliefs expressed by monitors to produce a single combined belief that is

finally compared with a set accumulative sum 𝑞 of beliefs. If the combined belief is greater

than 𝑞, an alarm is raised as this would indicate an attack [120]. If the output of a local detection

algorithm is close to ℎ, where ℎ is the detection threshold, 𝑏𝑛𝑎 increases to express a higher

belief on the uncertainty of an attack or normal operation.

D-S proposes the concepts: belief and plausibility, which can aid the theory to analyse the

“incomplete” or “missing” information quantitatively. In this way, the inference can guarantee

the accuracy of the decision. Evidence is fused to reach the goal that can determine the current

state of the network. A further step could include fitting time distribution curves, and this can

improve detection engine efficiency and applicability [129]. D-S’s theory of evidence can be

99

regarded as the expansion of Bayesian inference, whereas Bayes requires priori knowledge as

the foundation of inference.

Fusing beliefs based on equation 4.22, with reference to Table 4.2 conveys how belief, mass,

plausibility and threat values could aid collaborative intrusion detection.

Scaling equation 4.22 to consider more beliefs would be represented by:

Bel(A) = Bel1(A)⨁Bel2(A)⨁Bel3(A) (4.25)

Examples of the scaling of this algorithm to perform equation 4.25 are as below:

Take three monitor values - m1, m2 and m3.

The belief that the proposition is true for state Attack which is 0.8 and the values for m1 No

Attack = 0.1 with m1 Either = 0.1

Assessments m2 and m3 have the belief values with m2 Attack = 0.6, m2 No Attack = 0.3 and

m2({Either}) = 0.1

m3 associated values include Attack = 0.0, m3 No Attack = 0.5 with m3 Either = 0.5

Based on equation 4.23, the mass function after the combination can be formulated as:

m1,2,3(A) = (1/1-K) m1({Either})m2({Either}) m3({Either}) with:

DSK = m1({Attack}) m2({No Attack}) + m1({No Attack}) m2({Attack}) + m1({Attack})

m3({No Attack}) + m1({No Attack}) m3({Attack}) + m2({Attack}) m3({No Attack}) + m2({No

Attack}) m3({Attack}) = 0.8*0.3 + 0.1*0.6 + 0.8*0.5 + 0.1*0.0 + 0.6*0.5 + 0.3*0.0 = 1

So m1,2,3(A) = (1/1-1) *0.1*0.1*0.5 = n/a - cannot divide by 0

100

A further example would be: three monitor values - m1, m2 and m3.

The belief that the proposition is true for state Attack which is 0.5 i.e. m1 Attack = 0.5 and

similarly m1 No Attack = 0.1 with m1 Either = 0.1

Assessments m2 and m3 have the belief values Attack = 0.6, m2 No Attack = 0.3 with m2 Either

= 0.1

m3 associated values include Attack = 0.9, m3 No Attack = 0.05 with m3 Either = 0.05

Based on equation 4.23, the mass function after the combination can be formulated as:

m1,2,3(A) = (1/1-K) m1({Either})m2({Either}) m3({Either}) with:

DSK = m1({Attack}) m2({No Attack}) + m1({No Attack}) m2({Attack}) + m1({Attack})

m3({No Attack}) + m1({No Attack}) m3({Attack}) + m2({Attack}) m3({No Attack}) + m2({No

Attack}) m3({Attack}) = 0.5*0.3 + 0.1*0.6 + 0.5*0.05 + 0.1*0.9 + 0.6*0.05 + 0.3*0.9 = 0.63

So m1,2,3(A) = (1/1-0.63) *0.1*0.1*0.05 = 0.001351

4.6 Extended D-S theory of evidence fusion process

Assume two BPAs 𝑚𝑎 and 𝑚𝑏 represent the beliefs about values of a state within a specific

frame 𝜃. The use of the orthogonal coefficient in Equation 4.23 and normalisation in Equation

4.24 conveys that Dempster’s rule is mathematically possible only if 𝑚𝑎 and 𝑚𝑏 are not

conflicting, i.e. if there is a focal element 𝑦 of 𝑚𝑎 and a focal element 𝑧 of 𝑚𝑏 satisfying the

intersection (∩) of the two sets, (𝑦 ∩ 𝑧) ≠ ∅, such that they have no elements in common.

Merging two belief masses with the conjunctive rule defined above produces a sub-additive

basic belief assignment, meaning that the sum of belief masses on focal elements can be less

than one, in which case it is assumed that the missing or complement belief mass gets assigned

to the empty set. If desirable, the normality assumption m(∅) = 0 can be recovered by dividing

each belief mass by a normalization coefficient [147].

101

This rule is associative, and the normalisation in D-S’s rule redistributes conflicting belief

masses to non-conflicting ones, and tends to eliminate any conflicting characteristics in the

resulting belief mass distribution. This rule of combination can be applied to avoid this

particular problem by allowing all conflicting belief masses to be allocated to the empty set.

For rule combination, the order of the information in the aggregated evidences does not impact

the result, however a non-associative combination is necessary for many cases.

Cooperative decision making is made after aggregating these evidences using D-S. The

integration of the decisions coming from different IDSs has emerged as a technique that could

strengthen the final decision. Sensor fusion can be defined as the process of collecting

information from multiple and possibly heterogeneous sources and combining them to obtain

a more descriptive, intuitive and meaningful result [53]. However, rule combination implies all

evidences are trusted equally and that all sources have the same level of trust. However, in

reality, the trust on different evidences may differ, which means various factors for each

evidence should be considered.

Based on the identified limitations of the normalisation stage and weighted belief generation,

D-S for autonomous sharing of information for detecting intrusions has application limitations

as explained in Chapter 3.8. D-S when applied in an autonomous collaborative environment

should apply a weight of confidence when the belief generation occurs. If there are three CSPs

and one generates belief of an attack with a value of Ba 0.7, while the two remaining CSPs vote

Bna 0.5, based on the D-S combination in Equation 4.25, the combined decision would be that

there is no attack.

The issue here is that the CSP that generated the belief of attack can see there is clearly evidence

of an attack but this value has been deemed legitimate. There should be a way to overrule the

decision based on the strength of the associated trust or confidence value associated with the

decision, or to deal with it locally but to warn globally of the pre-emptive threat.

This situation requires a two stage fusion process. Post belief generation processing is needed

for application to this area to facilitate information exchange for defence. Via the inclusion of

confidence values when belief generation occurs, the accuracy of decisions can be improved.

Chapters 5 and 6 demonstrate how D-S can provide collaborative intrusion detection, however

there may be cases where the decision may be inaccurate.

102

When fusing the beliefs the group consensus may be that it is not an attack, but it would be

illogical for the domain of origin to not take action against the malicious occurrence. It could

be an attack to the domain that generated the belief, but one that is not currently exceeding

thresholds in other domains. While it is an issue in one, the others deem it not something

currently applicable to them.

With the extended D-S theory of evidence fusion process, the CSP would deal with the threat

locally if the domain is under attack, based on confidence values if there are conflicting

decisions.

Let 𝑃(𝑎) = [𝑃1
(𝑎)

… 𝑃𝐾𝑎
(𝑎)

] denote the 𝐾𝑎 possible confidence values G associated with choosing

𝑎 ∈ 𝐴 at time 𝑡𝑑.

The assigned confidence level 𝑝 ∈ 𝑃(𝑎) associated with deciding 𝑎 after waiting for a period

of 𝑡𝑐 = 𝑡𝑑 + 𝜏 is given as [148]:

𝑝 = 𝑃1
(𝑎)

 when 𝐿(𝑡𝑐) ∈ [𝐺𝑖−1,
(𝑎)

𝐺𝑖
(𝑎)

], (4.26)

where 𝐺0
(𝑎)

= − ∞ and 𝐺𝐾𝑎
(𝑎)

 = ∞ for each 𝑎 ∈ 𝐴 , and the value 𝜏 is known as the inter-

judgement time.

The remaining confidence parameters:

𝐺(𝑎) = [𝐺1
(𝑎)

… 𝐺𝐾𝑎−1
(𝑎)

]

are chosen such that 𝐺𝑖−1<𝐺𝑖 for each 𝑖 ∈ {1 … … , 𝐾𝑎 − 1}.

Adding a degree of confidence to each generated belief can improve the overall efficiency, and

deal with the issue of conflicting beliefs during fusion. Pre-emptive warning in a Cloud

federation could protect the local services of the CSP but proactively warn others of the

potential threat.

103

If the fused decision is “No Attack” but the belief of origin has a high confidence value, then

the domain of origin would take action against the suspect observation and send the belief value

to the broker to store in its local Grey list. Should an adjacent CSP query the broker regarding

the suspect IP in the future, the information from the origin CSP is present.

4.7 Summary

In this chapter, the design of the Service-based collaborative intrusion detection solution is

presented; a collaborative intrusion detection framework that can detect and prevent intrusions

in Cloud federations and/or collaborative domains in real-time via the autonomous sharing of

information. This features a novel application of the D-S theory of evidence algorithm to detect

intrusions and fuse generated beliefs for collaborative intrusion detection, and an extension of

D-S. The extended D-S approach aims to tackle the issue of conflicting decisions within

interconnected infrastructure, but used in combination with other computing techniques has the

ability to improve decision making schemas.

Within the solution, the Cloud broker coordinates attack responses, both within the domain

itself, and with other domains, and is facilitating inter-domain cooperation to improve upon the

Cloud security contribution. This cooperation between CSPs ensures that the scalable defence

required against DDoS attacks is carried out in an efficient way; aiming to improve the overall

resilience of the interconnected infrastructure. The D-S theory of evidence is used to facilitate

this autonomous sharing of information, and to fuse the generated beliefs to form a system-

wide decision. The design of the solution is tailorable to different Cloud environments and has

ability to scale considerably. Comparing the solution for distributed systems could involve

adapting the hierarchical C2/MN/SN structure to the working of master/slave architecture

model of distributed computing architecture where the master node has unidirectional control

over one or more slave nodes. In this instance, the task(s) are distributed by the master node to

the configured slaves and the results are returned to the master node. Distributed systems and

Cloud computing environments slightly refer to different things, however the underlying

concept between them is same. In the next chapter, an implementation of this solution is

presented and a scenario to simulate events for a proof of concept.

104

Chapter 5

System Implementation

In the previous chapter, the design of the Service-based collaborative intrusion detection

architecture was presented; comprising four tiers; Cloud broker, C2, SNs and MNs. Using our

“Security as a Service” method, collaborative intrusion detection is possible in a federated

Cloud environment. The system uses a Cloud broker to propagate information to the C2 entities

in each CSP domain – this is in the form of Black lists and White lists. MNs are used to observe

changes or suspicious activities in local domains, which are values stored in a grey list of

ambiguous observations. In order to keep communication latency reduced, SNs monitor the

alerts produced by MN and an alert is generated when a threshold based on the number of MNs

within their subnet is triggered.

In order to evaluate the success of our Service-based collaborative intrusion detection

framework, it is essential that a working implementation is used. This allows us to validate that

our solutions meets the aims, objectives and requirements affiliated with this development.

This chapter presents the implementation of a prototype of our Service-based collaborative

intrusion detection framework for infrastructure services in a federated Cloud environment.

The prototype enables the design presented in the previous chapter to be tested.

Collaborative security between CSPs in a Cloud federation can offer holistic security to those

in this scheme. Information sharing in this scheme is automated which is an important aspect

of the approach. For proof of concept, a lower number of entities are used but for future work

these will be expanded and the solution scaled. Dividing the system into domains makes the

system more scalable, and belief generation and sharing of threat information could be used as

a warning of an imminent attack.

Assumptions made:

 Each CSP present in the federation has an SLA specifying the sharing of information –

in this case it is of generated belief values, threat scores, and suspect IP addresses.

 Each entity has a level of trust and is not acting maliciously.

105

 Resource starvation and DDoS can propagate throughout the network; the performance

issues are explored, not the financial implications.

5.1 Environment

Using Riverbed Modeler 18.0 [12], attributes of our Service-based collaborative intrusion

detection architecture were implemented. Riverbed Modeler is a large and powerful software

tool which enables the simulation of heterogeneous networks with various protocols. Riverbed

Modeler consists of a high level user interface, which is constructed from C and C++ source

code. One specific benefit of using this simulator is that all processes contain code to record

performance metrics, which is favourable for observing both local and global statistics in our

solution.

Riverbed Modeler allows multiple scenarios to be created and compared during parallel

simulation, enabling comparisons between changes in the environment. As previously

mentioned, our federated Cloud environment can be represented as interconnected domains

which are dependent upon each other for operation. One of the key issues with Cloud

federations is that a fault within the network can propagate throughout the federation, effecting

key services of the CSPs present, so collaborative intrusion detection can benefit all parties

within the federation.

The network topology for the solution was implemented using the Object Palette which has

models, objects, and hardware ready for deployment; an empty scenario was created and

populated with the required devices and objects. Within the network, CSPs are represented by

interdependent domains named “Server Domain”, “Domain 1”, “Domain 2”, “Domain 3”, and

“Broker”, which are all connected to “node_0” which represents an IP Cloud connection. Each

of these CSPs is connected to sub-networks which contain the end users, routers and servers

necessary for the network topology. Hierarchy in a network topology is achieved using subnets

— which represent identical constructs in an actual network — allowing us to simulate end

users of the CSP, and how malicious actions from one could affect the interconnected domains.

These entities are connected via PPP_DS3 links which are used to connect nodes running IP

protocols, as conveyed in Figure 5-1. The background is not a geographical representation but

is a standard image used within the simulation package.

106

Figure 5-1: Overview of Cloud Federation topology

The Cyber Effects configuration module provided within Riverbed Modeler was enabled and

tailored to our scenario in order to introduce cyber effects and attacks into our scenarios – this

is shown in Figure 5-2. The DDoS attack profile was utilised, in addition to cyber effect scripts

and remedy profiles.

Figure 5-2: Cyber effects configuration

107

The Cloud broker, within the Broker realm, is depicted as an Ethernet workstation with cyber

effects remedy profiles configured, which is interconnected within the federation. Figure 5-3

illustrates this configuration. The broker sends information to the C2s in the adjacent domains

when it is necessary to scan and clean the network.

Figure 5-3: Cloud broker realm

Within each sub-network in the federation there are end users which can access the Cloud

resources. Within each realm a C2 is present and they monitor the devices within their subnet.

These devices represent legitimate users, and each of these devices has a range of infection

probabilities when the simulation is running.

Figure 5-4: CSP 2 domain

108

These workstations are connected to a domain server and a gateway router, which are then

connected to the Cloud IP in the main federation. These connections are illustrated in Figures

5-4 and 5-5.

Figure 5-5: CSP 3 domain

Within the network an attacker entity was introduced. In order to determine the effects of a

DDoS attack within the federation, the cascading effects an attacker within the network would

have on the other devices present was modelled.

The attacker domain is illustrated in Figure 5-6. The attacker has an attack profile — DDoS

attack — which is configured to start between 100 and 110 seconds into the simulation. When

the attack begins a script is sent to all nodes within the federation with the cyber effects profiles

enabled (in this case it is workstations within each sub-network), in an attempt to infect the

devices. A message is returned back to the attacker indicating whether the infection was

successful or not, as a code excerpt shows in Figure 5-7.

109

Figure 5-6: CSP 1/Attacker Realm

Figure 5-7: Return infection status code excerpt

110

Once this occurs, another script is sent to the infected nodes to start sending traffic to the server

in an attempt to flood this node with traffic, affecting availability of the device as shown in

Figure 5-8.

Figure 5-8: Send traffic to destination code excerpt

The server has been set with an IP address of 192.102.100.1, so this is where the infected

devices would send their requests. The attributes of these attack parameters can be changed by

modifying the device attributes, or adding profiles into the cyber effects configuration manager.

Currently the characteristics for the server are that it has an infection probability of 80%; this

parameter can be adjusted throughout to compare the effects within the network, as illustrated

in Figure 5.9. The server under attack domain is shown in Figure 5-10.

Figure 5-9: Infection probability adjustment

111

Figure 5-10: Server under attack domain

The broker node has a remedy profile configured, and this profile is also present with the C2s

in adjacent domains. The “Scan and Clean” script scans the network for infected devices and

cleans them, reducing the amount of traffic being sent to the Server – as shown in Figure 5-11.

Figure 5-11: Scan and clean script excerpt

112

Those nodes that are successfully cleaned will stop attacking the Server, and regain normal

operations within the federation. Through the Discrete Event Simulation (DES) the infected

device count can be analysed and visualised via the use of graphs.

From Figure 5-12, an exploratory phase where the attacker is scanning the network can be seen,

followed by a large spike in infected devices, and then there is a gradual decrease in infected

devices once the cleaning phase has initiated, leading to a complete cleanse occurring by the

11 minutes 45 second mark. This occurs due to the cyber effects script which sends and receives

confirmation of device infection, then device cleaning.

Figure 5-12: Infected Devices Count

While Figure 5-12 shows how the infected devices count fluctuates during the DES, statistics

collected on the infected devices are presented in Table 5.1.

In
fe

ct
ed

 d
ev

ic
e

co
u

n
t

DES duration

113

Table 5.1: Cyber effects infected devices count

Zone 0

Statistic Cyber Effects Infected Devices Count

Length 117

Number of values 117

Horizontal, min 0

Horizontal, max 706.64

Vertical, min 0

Vertical, max 32

Initial value 0.0

Final value 1.0

Expected value 24.33

Sample mean 8.75

Variance 110.20

Standard deviation 10.49

Figure 5-13 illustrates the ethernet delay that occurs during the scanning and cleaning of the

Cloud federation. Note that the spike in delay occurs two minutes into the simulation which is

when the DDoS attack begins. Ethernet delay within the federation is evidently affected by the

scanning and cleaning of the network during infection, and the abuse of resources as the attack

uses devices within the networks.

114

Figure 5-13: Ethernet delay within Cloud federation

5.2 Co-simulating scenarios

The links between critical infrastructures can be either dependent or interdependent.

Dependency is a unidirectional relationship whereas interdependency is a bidirectional

relationship where the capabilities of one infrastructure influence the state of another [149]. In

the case of Cloud federations, it could be argued that both of these relationships are evident,

but for the purpose of simulation the focus is on bidirectional interdependency. Each of the

CSPs need to be robust and resilient to random or unplanned faults/attacks, and keep the effects

of cascading failure in an interdependent network to a minimum.

In order to show proof of concept, a normal scenario of a federated Cloud environment was

implemented, and then compared to the same environment under duress. One of the CSPs

within the federation was flooded with traffic, which would cause the associated SN to generate

a belief that there is an attack underway.

Figure 5-14 illustrates the co-simulation of the single monitoring entity (Broker without C2s

monitoring their subnets) vs our hierarchical structure (Broker and C2s). It is important to

DES duration

E
th

er
n

et
 D

el
ay

 (
se

c)

115

analyse the effects of the monitoring entities on the network performance, and also the

hierarchical structure that is adopted.

Riverbed Modeler 18.0 facilitates this by performing co-simulation of two scenarios and allows

the user to select comparative metrics.

Figure 5-14: Co simulation of single monitoring entity vs hierarchical structure

Within Figure 5-14, the DES manager shows how there are two scenarios that will be run under

the same simulation conditions but have been adjusted to test differing architectures. Two

scenarios, run in parallel, will compare how they react and are affected by the attacker within

the network, and react to the attack via scanning/cleaning/communicating with the monitoring

entities. The co-simulation measured the effects of having one single monitoring entity on the

network (one central C2 with the responsibility of monitoring the whole network), compared

to having a more hierarchical based approach whereby there were C2s throughout the

federation in adjacent domains with defined roles and responsibilities.

Figure 5-15 shows the Ethernet delay in comparison to the two scenarios within the simulated

environment. With the communication structure adopted, the Ethernet delay was greatly

affected by the Broker and C2s due to the increased communications, in comparison to the

single monitoring entity.

116

Figure 5-15: Ethernet delay comparison of co-simulation of single monitoring entity vs hierarchical structure

As the parameters of the attack were the same and how the monitoring structure was affected

was a focus, it was evident how the attack propagated and targeted the server. The threshold

for the scenarios was determined by running the scenario number of runs necessary to achieve

a good estimate of a confidence level and the set of parameters that reflected the behaviour of

the system. Device infection probability was set to 80%, and the infected devices were set to

flood IP 192.102.100.1 (which is the server in the Server domain in both scenarios). The server

is set to an availability percentage of 90%, which corresponds to a SLA level of 90 %

uptime/availability.

Figure 5-16 shows how the traffic against the server increased with the Broker and C2s

architecture, as opposed to one C2, due to the increase in entities within the scenario.

DES duration

E
th

er
n

et
 d

el
ay

 (
se

c)

117

Figure 5-16: Ethernet traffic against Server

In contrast, as shown in Figure 5-16, the Server under attack receives less traffic with the single

monitoring entity compared to our hierarchical structure. The statistics from the co-simulation

are detailed in Table 5.2. Introducing the hierarchical monitoring via splitting the C2s into the

differing domains allows the C2s to scan and remedy the device infections as they would notice

these deviations quicker as they are closer to the sources.

Table 5.2: Comparison of Server statistics in co-simulation

 Latest Version-Broker and C2s-DES-1:

Server Domain.Server

Realm.Server.Ethernet.Traffic Received

(packets/sec)

Latest Version-Broker without C2s

monitoring their subnets-DES-1: Server

Domain.Server

Realm.Server.Ethernet.Traffic Received

(packets/sec)

Length 29 29

Number of values 29 29

Horizontal, min: 0 0

Horizontal, max: 1008 1008

Vertical, min: 0.083 0.083

Vertical, max: 2,939.88 2,710.11

Initial value: 0.08 0.08

Final value: 3.67 13.06

Expected value: 435.07 414.02

T
ra

ff
ic

 r
ec

ei
v
ed

 (
p

ac
k

et
s/

se
c)

DES duration

118

Sample mean: 435.07 414.02

Variance: 947,150.32 838,386.17

Standard

deviation:

973.22 915.64

Looking at the comparison of the server statistics in Table 5.2, there is a large standard

deviation in both scenarios. As the server was under attack it is understandable that the statistics

would be intensified but the DES provides a rudimentary analysis for the device.

At this stage of the simulation, the main purposes were to analyse:

 The role a broker could have with autonomous sharing of information

 The role of a single monitoring entity on the entire federation vs the C2s monitoring

their own sub domains

 How an attack within a Cloud federation could affect the interdependent services

present

 The associated throughput and delay

 What the DDoS attack effects are on the server.

Note: determining the role of monitoring entities on the federation is very much dependent on

the scale of the federation concerned. The scale of the simulated federation explores this matter,

but may not be appropriate in answering the question in general due to resource constraints.

5.3 Collaborative intrusion detection application

Next, the actions to be taken in the simulation, from the point where an intrusion is believed to

have been detected are shown. The integration of the decisions coming from different IDSs has

emerged as a technique that could strengthen the final decision. Sensor fusion can be defined

as the process of collecting information from multiple and possibly heterogeneous sources and

combining them to obtain a more descriptive, intuitive and meaningful result [57]. Related

work in the field of sensor fusion has been carried out mainly with one of the methods like

119

probability theory, evidence theory, voting fusion theory, fuzzy logic theory, or neural network

theory in order to aggregate information.

A major concern on studying information in a distributed system containing autonomous

entities is how to model an adversarial threat. Most traditional solutions have a common

assumption that all entities are well disciplined to follow the protocol properly, with the only

exception that an adversary may keep a record of all intermediate computation. It is difficult to

determine if an entity has the capability to change its input database or deviate from the protocol

in real world applications. Anomaly-based IDSs detect anomalies beyond a set threshold level

in the features they detect, whereas using threshold bounds gives more freedom in steering

system properties. Any threshold within the bounds can be chosen depending on the preferred

level of trade-off between detection and false alarm rates.

Figure 5-17 shows the runtime flowchart of our D-S fusion proof of concept which runs from

the point where a belief is generated about an observation. Implemented in C#, belief

generation and data fusion by the broker is conveyed, in addition to hypothesis tables and

associated belief information, i.e. belief value, mass, and plausibility. The flowchart is from

the perspective of a suspicious observation within a domain. When the program runs you

initially identify the domain you currently reside in, then enter an IP address. Based on the

entered value the program checks the entered value against the domain white, black, and grey

lists to determine if a value is known. If the value is on the white list then access is granted. If

the value is on the black list then access is denied. If the value is presently on a grey list then

the threat level is incremented, the associated value associated is returned, and if the value is

more than or equal to a defined threshold (in our simulation this value is 70), this information

is passed to the C2.

The C2 receives a query and associated belief hypothesis from the SN, and queries the Broker

with this information. The broker checks if it possess information on the value and returns the

stored information to the C2 if present. Otherwise, the broker queries C2s in other domains to

check their grey lists and return a BPA based on their stored value, return a BPA based on the

queried value. The broker fuses the generated beliefs and makes a system decision – relevant

lists are updated based on the score.

120

Figure 5-17: Runtime flowchart

121

Our implementation of our Service-based collaborative intrusion detection methodology has

three stages. For proof of concept, a lower number of entities are used to convey how

communication occurs and the information would be exchanged within the infrastructure;

future work would involve expanding this solution to cope with a larger scale.

Stages 1-3

Initially, the user is prompted to identify which C2 domain they are present in. Then an IP

address is entered into the program and the value is compared to the Black list, Grey list and

White list to see if the value is present. The actions are as below:

Figure 5-18: Enter Domain and IP address

Stage 1 - Value on Black list

When compared against the lists, if the IP address is in the Black list then the user is ‘Blocked’.

Figure 5-19: Blocked user key return

Stage 2 - Value on White list

The IP is entered and the value is compared against the lists. If the IP address is present on the

White list then the user is ‘Permitted Access’. The console outputs the other values from the

white list, and this is also a separate file that can be viewed.

122

Figure 5-20: Value on white list

Stage 3 - Value on Grey list

If not present on either list, the value is stored in the Grey list and given a threat value (randomly

generated numbers were used to determine this value – then the predefined threshold values to

determine its location on the list) which are used to form the belief. Hypothesis sets based on

all values between 0 and 1 are included within the program, as well as associated mass values

and plausibility functions – these can be found in Table 4.2 in Chapter 4.5.

Figure 5-21: Threat value ranges

Figure 5-21 shows the threat value ranges used, and the ability to increase/decrease the

associated risk due to occurrences on the list is also an option. Figure 5-22 shows the associated

outputs to the console depending upon the assigned score. The threat ranges used are based on

a maximum value of 100 and a minimum value of 0, and have been defined based on typical

grading criteria. Increased occurrences could cause the risk score to increase, e.g. beginning on

the white list, moving to the grey list, but then being promoted to the black list.

123

Figure 5-22: IP assigned to list depending on the range of score

In Figure 5-23, a user has a threat score of 30. This user has been added to the grey list with a

low risk assigned to it. If this IP address was to occur more frequently this assigned value could

increase and this IP moved up the list.

Figure 5-23: User added to grey list with low risk

124

For testing purposes a threshold of 70 was set to trigger belief generation and the associated

hypothesis values output. In Figure 5-24, an entered IP has been assigned a threat score of 80

as it is not presently on a list.

Figure 5-24: Example hypothesis set generation for a threat score of 80

This value is sent to the broker and compared against the Black and White lists, as this

information may not have been published to the C2s within the federation. The broker then

queries the adjacent monitoring entities and requests they generate a belief based on the original

value. Two examples of outputs from C2s are in the Figures 5-25 and 5-26 below.

Figure 5-25: A belief generation of 0.6

Figure 5-26: A belief generation of 0.0

125

The broker, using equation 4.25, takes the three belief values and fuses them together to make

a system wide decision. Sample code for this is shown in Figure 5-27 below – all D-S proof of

concept code is available in the Appendix:

Depending on the threshold established, this returned value would indicate if the belief is an

attack or not an attack. This decision would be updated to the lists either white or black for

each domain. Figure 5-28 illustrates belief fusion with an initial belief generation of 0.9, and

the returned values from the CSPs in other domains. In Figure 5-29, belief combination occurs

from an initial belief value of 0.7.

Figure 5-27: D-S belief fusion code

126

Figure 5-28: D-S belief fusion from 3 CSPs

Figure 5-29: D-S belief fusion from 3 CSPs

127

5.4 Summary

This chapter has detailed the implementation of our Service-based collaborative intrusion

detection solution and its subsequent attributes, as well as outlined how the collaborative

intrusion detection is implemented. For proof of concept the attributes of our solution were

simulated and the benefits and applicability of collaborative intrusion detection in federated

Cloud environments illustrated. Application of D-S theory of evidence for collaborative

intrusion detection has been implemented and its utilisation highlighted. The integration of the

decisions coming from different IDSs has emerged as a technique that could strengthen the

final decision. Federated Cloud environments are growing areas in terms of adoption by critical

infrastructure vendors, and large corporations, so our “Security as a Service” facilitates this

collaborative intrusion detection, and sharing of attack information among these different

service providers. For simulation purposes an IP address as the indicator of suspicion was used

but this is to demonstrate the application of the D-S algorithm for collaborative intrusion

detection. Tailoring the methodology presented in Chapter 4 to include attack signatures or

measurable profile information would expand the capabilities of our approach.

128

Chapter 6

Evaluation

In the Chapter 5, the Service-based collaborative intrusion detection framework was presented,

and collaborative intrusion in a federated Cloud environment was demonstrated. CSPs within

a Cloud federation are represented as interconnected domains, and based on the monitoring

structure, dynamically provision the infrastructure to react and facilitate autonomous sharing

of threat information. This architecture relies on a four-tier detection strategy with the elastic

Cloud facilitating inter-domain operation, the MNs and SNs reporting possible attacks in the

domains, and the C2s collaboratively issuing a response via the involvement of the Cloud

broker, and the D-S theory of evidence.

Within this chapter the solution is evaluated against the initial aims and objectives identified

in Chapter 1.2, the design requirements established in Chapter 3.5, and compared to other work

within this area. Particularly, when assessing the performance of our solution in a federated

Cloud environment, it is important to note that within the Cloud, resources are not a problem.

Resources can complement the speed of our autonomous information sharing scheme, so it is

more suitable looking at the effectiveness and accuracy of our novel approach. However, the

associated delay is an important issue that cannot be ignored, particularly when the federation

scale/size is large. DDoS attacks aim to starve Cloud resources, so while there are plenty, the

designed solution needs to ensure it can still function when resources may be constrained due

to an attack – fault tolerance is conceived to be an essential design requirement.

The effectiveness of an IDS is assessed on how capable the detection method is at making

correct attack detection. According to the real nature of a given event compared to a prediction,

four possible outcomes are shown in Table 6.1. These outcomes are known as the IDPS reaction

matrix.

129

Table 6.1: Possible status for an IDPS reaction

 Predicted

Normal Attack

Actual
Normal True negative (TN) False negative (FN)

Attack False positive (FP) True positive (TP)

TNs and TPs correspond to a correct IDS operation; that is, events are successfully labelled as

normal and attack. FPs refer to normal events predicted as attacks, while FN are attacks

incorrectly predicted as normal events [80]. Most of the systems reviewed used the same

evaluation metrics such as the detection rate and false alarm rate. While it is important to note

these evaluative metrics, our approach uses the algorithms presented in 4.3 – 4.7 to calculate

thresholds, generate pre-alarms and beliefs, and to make a system-wide decision.

Our aims and objectives are to identify the collaborative exchange of information as a key

deliverable. Using equation 4.25 a system-wide decision is made about a possible attack, but

the group consensus may not reflect the true nature of the domain of origin that generated the

belief – in other words, whilst it may be possible to force an FP in one domain, testing for

system-wide FP has proved problematic. This may be deemed as an FN locally, but using

equation 4.25 the information was fused and this was the collaborative decision. To deal with

these conflicting beliefs, our extended D-S fusion process was formulated to reduce the issue

with conflicting belief fusion locally.

A high FP rate that seriously affects the system’s performance can be detected, and an elevated

FN rate leaves the system vulnerable to intrusions. Both FP and FN rates ought to be minimised,

together with maximising TP and TN rates simultaneously. Based on Equations 6.1 – 6.6 and

the reaction matrix, a possible status for IDPS reaction is shown to quantify IDS performance

[80].

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒(𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
=

𝑛𝑜.𝑜𝑓 𝑡𝑟𝑢𝑒 𝑎𝑙𝑒𝑟𝑡𝑠

𝑛𝑜.𝑜𝑓 𝑎𝑙𝑒𝑟𝑡𝑠
 (6.1)

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒(𝑇𝑃𝑅) or Recall (R) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑛𝑜. 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑡𝑡𝑎𝑐𝑘𝑠

𝑛𝑜. 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 𝑎𝑡𝑡𝑎𝑐𝑘𝑠
 (6.2)

130

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒(𝐹𝑃𝑅):
𝐹𝑃

𝑇𝑁+𝐹𝑃
= 1 −

𝑇𝑁

𝑇𝑁+𝐹𝑁
 (6.3)

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒(𝐹𝑁𝑅):
𝐹𝑁

𝑇𝑃+𝐹𝑁
 (6.4)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
 (6.5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6.6)

There is a trade-off between the two metrics: precision and recall. As the number of detections

increases by lowering of the threshold, the recall will increase, while precision is expected to

decrease. The recall-precision characterisation of a particular IDS is normally used to analyse

the relative and absolute performance of an IDS over a range of operating conditions.

6.1 System evaluation

As the purpose of a monitoring structure is to be non-intrusive the theoretical design

requirement aimed to meet this objective. The role of the C2s, belief generation, fusion of

beliefs, and facilitation of actions via the broker, and communication exchange between

monitoring entities, have been implemented in a proof of concept program written in C#

conveying the benefits of collaborative intrusion detection. The system is being evaluated in

terms of satisfying the aims and objectives as defined in Chapter 1.2, and through successfully

accomplishing the design requirements identified in Chapter 3.5 – which defined the

characteristics that collaborative intrusion detection solutions for the Cloud environment must

possess.

Summary of aims and objectives fulfilment

Our initial project aim was the design of a collaborative Cloud-based framework that focuses

on the monitoring and protection of the critical infrastructure services in the Cloud computing

environment having identified the limitations within existing intrusion detection techniques.

This was achieved throughout Chapters 2 and 3 during which existing work was reviewed and

compared with the recent advancements in technology to define the desired requirements (in

Chapter 3.5). These were used to tailor and motivate the research direction which formed the

base knowledge for establishing Chapter 4 in the application of our Service-based collaborative

131

intrusion detection framework, providing “Security as a Service” for Cloud federations. This

also directed the utilisation and extension of D-S to facilitate collaborative intrusion detection

via autonomous sharing of information.

Placement of monitoring solutions within Cloud environments were explored, and while

optimal placement was deemed the virtual network, the solution can be tailored to differing

Cloud services. The methodological monitoring solution and the associated attributes can be

tailored to a diverse range of service models as these may comprise similar functionality but

can differ depending on the services needed. Additionally, the Service-based collaborative

intrusion detection framework supports robustness to attack via a distributed mitigation

architecture, making sure the high value processes continue to function regardless of what is

occurring elsewhere.

With regards to our project objectives, achievement of these will be detailed subsequently. Our

key objective was the design of a critical infrastructure protection framework that focuses on

the monitoring and protection of the critical infrastructure services in the Cloud computing

environment. This has been achieved by the development of our Service-based collaborative

intrusion detection framework for CSPs within a Cloud federation which is detailed in Chapter

4, outlining architectural components and collaborative decision making techniques for

intrusion detection. Through this, the objective for demonstrating a solution and technique that

can effectively monitor Cloud domains and reliably help to secure and block threats has been

met. This has been achieved by the development of a collaborative intrusion detection scheme

whereby attributes can communicate and exchange threat information before it could propagate

throughout the network.

A further objective was to create a technique to analyse attack data in multiple domains and to

reach a decision on its importance, as to whether an anomaly has occurred. This has been

fulfilled with the application of D-S theory of evidence being used for belief generation by

monitoring entities, and data fusion by the Cloud broker to facilitate collaborative intrusion

detection. Limitations of the application of D-S were identified following assessment of

whether the methods proposed, and/or the combinations of selected methods, effectively

address the issue of infrastructure service protection in the Cloud environment via collaborative

intrusion detection. This assessment allowed us to fulfil our objective and has been achieved

132

via the comparison of our extended D-S fusion process to the works of Lo et al., and a high

level assessment using our design requirements in Chapter 3.5.

Summary of design requirements evidence

Table 6.2 details the requirements for collaborative intrusion detection in Cloud environments

identified in Chapter 3.5 and highlights evidence of fulfilment for each associated attribute.

These requirements define the characteristics that collaborative intrusion detection solutions

for the Cloud environment must possess. These requirements can therefore be used to assess

the suitability of existing solutions, help to ensure the success of the proposed solution, and

provide a useful mechanism to evaluate the solution at a high level.

Table 6.2: Design requirements evidence

Design Requirements Evidence of fulfilment

Accurate Evidenced by D-S fusion in Chapter 4.5 and

experimentation in Chapter 5.

Adaptable Evidenced by application of theory developed in Chapter 4

to implementation in 4.3.

Collaborative Evidenced by implementation in Chapter 5.1-5.3 and

supported by architectural design in Chapters 4.1 and 4.2

Configurable Evidenced by implementation in Chapter 5 and supported

by architectural design in Chapters 4.1 and 4.2.

Dynamics Evidenced by algorithm selection in Chapters 4.3-4.6.

Efficient Evidenced by experiments in Chapters 5.1-5.3.

Graceful degradation of

services

Evidenced by experimental analysis in Chapters 5.1-5.3,

and supported by theoretical analysis in Chapter 4.

Low maintenance Evidenced by experimental analysis in Chapter 5.1-5.3,

architectural design in Chapter 4.2, and theoretical analysis

in Chapter 4.4.

Lightweight Evidenced by architectural design in Chapters 4.1-4.2, and

demonstrated in experimental analysis in Chapter 5.

No prior knowledge Evidenced by experimental analysis in Chapter 5.3 and

application of D-S in Chapters 4.5-4.7.

Novel threats Evidenced by theoretical analysis in Chapter 4.2 and

supported by algorithm design in Chapters 4.3-4.6.

Reliable Evidenced by experiment analysis in Chapter 5.2,

architectural design in Chapters 4.1 and 4.2, and choice of

algorithms from Chapters 4.3-4.6.

133

Scalable Evidenced by experimental analysis in Chapters 5.1 and 5.2

architectural design in Chapters 4.1 and 4.2, and choice of

algorithms from Chapters 4.4-4.7.

The Service-based collaborative intrusion detection framework – “Security as a Service” was

designed with fulfilment of these attributes in mind, in order to achieve the key characteristics

identified within the literature. Due to the dynamic nature of the Cloud environment it must be

able to adapt to changes that occur within the underlying virtualised infrastructure, with

considerations to roles, functionality, and structure – which was evidenced by application of

theory developed in Chapter 4 and architectural implementation in Chapters 4.1 and 4.2.

Graceful degradation of services, evidenced by experimental analysis in Chapters 5.1 – 5.3,

and supported by theoretical analysis in 4.4, ensure that if one analysis component stops

working, part of the network may stop being monitored, the rest of the monitoring schema can

continue working.

Collaboration was a key element also, as within Cloud federations association among different

CSPs with the goal of sharing resources and data is essential. The solution was designed to

facilitate the exchange of information and alerts within the infrastructure in an autonomous

manner, without the need for human intervention. The entities within can take information and

share it among key entities, receive and exchange relevant information when polled. Chapter

4.4 highlights these considerations and details the attainment.

The architectural design in Chapters 4.1 and 4.2 convey how each component may be localised

to the set of hosts it monitors, and tuned to its specific tasks or characteristics. Taking into

consideration the requirements in Chapter 3.5, the ability to automatically scale alongside the

expansion of the underlying virtualised infrastructure, in order to adapt for its constantly

changing needs was understood and the architecture designed accordingly. It must be able to

cope with the adjusting behaviour and adaptive nature of the underlying virtualised

infrastructure in order to formulate an accurate understanding. The solution must operate

seamlessly in real-time, and be able to manage and verify a large number of resources, and do

it effectively and efficiently - which is evidenced by the experiments in Chapter 5.

The solution must possess the ability to detect novel threats, as due to the interconnected nature

of Cloud federations, attacks may propagate from within the federation – which is evidenced

134

by theoretical analysis in Chapter 4.2 and supported by algorithm design in 4.3 – 4.6. The

operation of the solution should not depend on prior knowledge relating to the system and

behaviour, due to the dynamic nature of the underlying environment and information may

become outdated. This is achieved via the application of D-S theory of evidence and

contribution examined further in Chapter 6.3.2.

It can be concluded that our Service-based collaborative intrusion detection framework –

“Security as a Service” has met all of the design requirements identified in Chapter 3.5. It must

be noted that this evaluation reflects a high level evaluation of the attributes and configuration

of the framework. Additionally, it meets the project aims and objectives identified in Chapter

1.2.

6.2 Dempster-Shafer

Through simulation of the collaborative intrusion detection process, there have been some

issues identified when performing in the evidence aggregation. Highlighted by Chen and

Aickelin [126], two problems with the application of D-S for detecting intrusions are the

computational complexity associated and the conflicting beliefs management. This study

focuses on the computational complexity due to the increase of elements in the frame of

discernment, but our issue focuses on non-weighted belief generation and the problem that all

beliefs generated should have the same level of trust.

However, when performing the belief calculations using two values, based on equation 4.22,

the returned result is quite surprising. When comparing two high belief generations, the

assumption is that the combined belief value would also be a high number, however it is a

lower value. The correlation between high belief values and low fused outputs suggests that

the lower the fused output, the higher the risk. The same is understood for two fused low belief

values to generate a high fused output, which would be a low risk.

It is not clear if this is due to our calculations but these metrics have been compared on

numerous belief fusions and this is a similar occurrence. The mass value must be between 0

and 1 but not inclusive as this seems to skew the calculations, e.g. using a value of 0 would

render the combination calculation (m1, 2(A)) incalculable as you cannot divide by 0 which

would be a pertinent value. A coefficient value of 1 would leave the combination calculation

135

having to divide by 0 (1/1-1) which is an impossible calculation. Also, having a coefficient of

0 would give a negative risk output, which is also an unusable value.

With reference to the hypothesis set in Table 4.2 in Chapter 4.5, further examples can be seen

below:

Two monitoring entities, based on observation A generate beliefs. Monitor 1s BPA include:

Attack = 0.9, No Attack = 0.05, Either = 0.05. Monitor 2s BPAs include: Attack = 0.9, No

Attack = 0.5, Either = 0.05.

Based on equation 4.23 these beliefs are fused together and performed as below:

M12 (A) = (1/1-0.09) x 0.05 x 0.05 = 0.002747252747252

Where DSK is calculated by equation 4.24:

DSK = 0.9 x 0.05 + 0.05 x 0.9 = 0.09

The fused belief gives a value of 0.0027. The two BPAs for an attack were 0.9 so it is assumed

that when combined, they would generate a value within a similar range. The normalisation

phase distributes the weight and treats all evidences equally, so this is definitely a factor when

considering application for detecting intrusions.

A further example of D-S belief fusion is two monitoring entities, based on observation A

generate beliefs. Monitor 1s BPAs include: Attack = 0.5, No Attack = 0.3, Either = 0.2. Monitor

2s BPAs include: Attack = 0.5, No Attack = 0.3, Either = 0.02.

Based on equation 4.23, these beliefs are fused together and performed as below:

M12 (A) = (1/1-0.3) x 0.2 x 0.2 = 0.057142857142857

Where DSK is calculated by equation 4.24:

DSK = 0.5 x 0.3 + 0.3 x 0.5 = 0.3

136

The fused beliefs give a value of 0.057. The two BPAs for an attack were 0.5 so this fused

value falls within the range expected based on the presented information.

Two monitoring entities, based on observation A generate beliefs. Monitor 1s BPA include:

Attack = 0.1, No Attack = 0.6, Either = 0.3. Monitor 2s BPAs include: Attack = 0.1, No Attack

= 0.6, Either = 0.3.

Using equation 4.24, beliefs were fused together and performed as below:

M12 (A) = (1/1-0.12) x 0.3 x 0.3 = 0.10

Where DSK is calculated by equation 4.25:

DSK = 0.1 x 0.6 + 0.6 x 0.1 = 0.12

The fused beliefs give a value of 0.10. The two BPAs for Attack were 0.1, so a low fused belief

for attack was expected.

When observing generated beliefs and evidences, various factors for each evidential

circumstance should be considered. D-S when applied in an autonomous collaborative

environment should apply a weight of confidence when the belief generation occurs. If

everyone votes ‘no attack’, but there is clearly evidence of an attack on the domain of origin,

there should be a way to overrule the decision based on the strength of the associated trust or

confidence value associated with the decision. The algorithm is extended further to take this

into consideration, and is detailed in Chapter 4.6.

One further issue identified during our research is that of bandwidth consumption, which the

IaaS model facilitates during an attack. While there are evident benefits of the utilisation of

Cloud federations for CSPs, this interconnection effects the interdependent services within the

federation. In the IaaS model, while under attack, it tries to scale out and share resources from

other CSPs within the federation. The applicability of our “Security as a Service” mechanism

can help limit the reachability of such an attack, and block the attack before it devastates the

other CSPs.

137

The evidence from our research strongly suggests that D-S theory of evidence has grounds for

facilitating autonomous sharing of information but there are limitations that need addressing.

Our extended D-S approach aims to tackle the issue of conflicting decisions within

interconnected infrastructure, but used in a combination with other computing techniques it

could have the ability to improve decision making schemas.

6.3 Comparisons to existing work

Our Service-based collaborative intrusion detection framework – “Security as a Service”

solution has been designed with the complexities of dynamic Cloud federations in mind by

using the information identified from the background research to define the essential

characteristics that potential collaborative intrusion detection solutions for the Cloud

environment must possess. These requirements were devised by examining the attributes of

IDSs and monitoring schemes and their application to Cloud environments.

In order to highlight the progress made by this project within the field of collaborative intrusion

detection for Cloud federations, it is imperative that the work conducted throughout this project

is compared to that of our colleagues. Intrusion detection in some distributed environments,

e.g. federated systems/services/applications, would share similar characteristics to Cloud

federations from the intrusion detection point of view. Due to the constraints of our

implementation, our comparison to existing work is qualitative.

6.3.1 Cooperative intrusion detection

A cooperative IDS framework for Cloud computing networks is proposed by Lo et al. [105],

where they aim to provide secure and reliable services in a Cloud computing environment. One

of the security issues identified is how to reduce the impact of DoS or DDoS attacks in this

environment via federated defence. To provide such ability, IDSs are employed in each Cloud

region and exchange their alerts with each other. Majority voting is used to determine if the

alert is warning of an attack based on the number of alerts received by other IDSs.

The majority vote rule is a decision rule that selects alternatives which have a majority, that is,

more than half the votes. It is the binary decision rule used most often in influential decision-

making bodies, whereby the decisions of the numerical majority of a group will bind on the

whole group [150]. They perform a threshold check, i.e. Threshold = μ + λ × σ, to determine if

138

traffic has exceeded a predefined value. Cooperative operation is used to receive alert messages

delivered from other IDSs. After receiving these alerts, the cooperative agent makes a judgment

by executing the majority vote.

It is essential to understand that whilst the work undertaken in previous years was innovative

and ahead of its time, the rapid advancements in technology require regular reviews of the

systems designed to protect them – hence, it is imperative that our work is compared to that of

preceding work. As such, the design review in Chapter 3.5 takes into consideration the existing

approaches available to this research area and identifies their inadequacies for application to

the nouveau domain of federated Cloud systems. While Lo et al. [105] support the idea of

cooperative detection and sharing of information, their solution is elementary in nature when

considered for application to federation defence. Our “Security as a Service” solution has

adapted and tailored their ideology to a Cloud federation, taking into consideration the

aforementioned design requirements.

The work of Lo et al. [105] conveys a monitoring approach where their distributed IDS

aggregates data by individual monitoring entities within their architecture. The proposed IDS

is constructed of 3 modules: ‘Block’ – which blocks/drops bad packets, ‘Communication’ – to

send alerts, and ‘Cooperation’ – to gather alerts and make a decision. An IDS sends an alert

while suffering an attack and the premise of their collaborative aspect is to warn the other

domains of the potential attack. However, there does not seem to be an action for the IDS under

attack – “If the agent, finally, accepts these alerts, the system adds a new blocking rule into the

block table against this type of packet on the Cloud computing regions. Therefore, by this new

blocking rule, the Cloud computing regions except the victim one can avoid this type of attack.”

Our approach in comparison to this has extended the D-S fusion process to include a two stage

process to protect the domain of origin, when conflicting belief generation deems the

aggregated decision erroneous.

Their use of the adaptive threshold algorithms to detect traffic violations claims accuracy for

DoS and DDoS attacks, but this algorithm considers only violations of the threshold which can

be quite strict in nature. The Cloud environment is dynamic in nature and more adaptive

algorithms have been determined more applicable for such a complex infrastructure. The use

of CUSUM and EWMA to adapt to the underlying infrastructure shows how our approach

considers the excess volume sent above the normal volume, accounting for the intensity of the

139

violations, and achieving higher accuracy as a combination of both algorithms calculates and

re-establishes thresholds.

Additionally, they do not use the resources of the Cloud to protect against these network

attacks, but rather focus on their exchange of messages to cross domains. Cooperative agents

send/receive alerts from IDSs within other Cloud regions but there is no clear information

hierarchy. If there are 𝑛 sensors detecting intrusions, then 𝑛 𝑥 (𝑛 − 1) are exchanged and the

associated communications costs would be high [63]. Chapter 4.4 details our hierarchical

communication schema that utilises the resources and scale of the Cloud environment for

improved communication exchange.

6.3.2 D-S for intrusion detection

Other comparable work within this area proposing the use of D-S within their research does

not perform D-S belief fusion, rather they state the application and processes of the fusion

stages. Alem et al. [151] in their work on belief functions attempt to improve the efficiency of

IDS using D-S. They use D-S in combination with SVM and naïve Bayes classifiers, and fuzzy

logic. While they present their results in terms of identifying attacks, their experiments do not

detail how they use D-S in belief generation or for data fusion. Their use of training data, and

naïve Bayes, is an alternative to the usual stance of no priori knowledge being required when

using D-S. Their application of D-S is high level and our mathematical fusion or proof of

concept application to Cloud federations cannot be compared with this approach.

Nguyen et al. [152] propose approaches for dealing with conflicting mass values when

combining beliefs, however this is mainly an issue when dealing with a large numbers of

variables in a hypothesis set. Conflicting ratings occur due to the diversity of users, and this

could occur when applying D-S to a wider range of possibility observations. D-S for intrusion

detection would utilise BPAs of { }, {attack}, {no attack}, and {attack, no attack}. { }

represents an empty subset with a value of 0, that corresponds to “no solution”. Whereas

{attack, no attack} represents uncertainty, i.e. it could be either. The associated hypothesis sets

for application for intrusion detection would include a smaller number of variables, and

conflicting issues could be targeted by the inclusion of SLAs specifying levels of trust or

reputation based schemas.

140

Hu et al. [129] convey applicability of D-S for intrusion detection. Like our reasoning, the

choice of D-S is due to the fact that there is no need for state transition matrices and training

data to make uncertainty inferences. However, they include “Detection uncertainty” in

combination with D-S to accord for uncertainty or ignorance with an event. The objective

uncertainty varies with the degree of detection and can affect the observational results in the

combination module. While they present some experimental application of their approach, it is

unclear how D-S solves the issue of uncertainty. They do conclude that D-S has a ‘great

development prospect in the future’. They apply D-S in principle but have no mathematical

application to support their methodology, as such our D-S arithmetic and extended D-S fusion

process cannot be compared.

Siaterlis et al. [153] propose the use of D-S’s theory of evidence as the underlying data fusion

model for creating a DDoS detection engine. They state that the modelling strength of the

mathematical notation as well as the ability to take into account knowledge gathered from

totally heterogeneous information sources were some of the advantages of using D-S theory.

They have demonstrated their idea by developing a prototype that consists of a Snort pre-

processor-plugin and a Simple Network Management Protocol (SNMP) data collector that

provide the necessary input that through heuristics feeds the D-S inference engine.

In terms of the comparison, it is clear that the application of D-S to the field of intrusion

detection has its merits, however for the facilitation of collaboration among monitoring

components the complexity is increased. D-S offers an alternative to the traditional

probabilistic theory for the mathematical representation of uncertainty, and for collaborative

intrusion detection its main attribute is data fusion. The main advantage of D-S is that no priori

knowledge of the system is required, thus making it suitable for anomaly detection of

previously unseen information, however including heuristics or neural networks or other

machine learning techniques in order to improve the accuracy of results have been considered

[62].

Experimental results convey the evident benefits of D-S application to Cloud federations, but

there are limitations due to weighted belief generation and the normalisation factor when

combining the evidences – which can lead to conflicting beliefs. If the fused decision is “No

Attack” but the belief of origin has a high confidence value, then the domain of origin would

take action against the suspect observation and send the belief value to the broker to store in its

141

local Grey list. Our extended D-S theory of evidence fusion process takes this into

consideration and conveys this. The inclusion of trust based schemes, or reputation based

scoring inspired by WSN could be utilised also in this case [154], but these are considered for

future works.

6.4 Summary

This chapter has evaluated the Service-based collaborative intrusion detection architecture and

its fundamental components. As these results demonstrate, our solution facilitates collaborative

intrusion detection for federated Cloud services. The overall system was tested for

effectiveness and efficiency required by intrusion detection in Cloud environments. Our testing

illustrates the benefits of collaborative intrusion detection, and in particular autonomous

sharing of information. Our Service-based collaborative intrusion detection framework –

“Security as a Service”, used in conjunction with D-S and confidence values could be warning

of an imminent attack with a Cloud federation.

Additionally, how inter-domain cooperation for holistic security and improved resilience is

achievable in our environment is conveyed. Federated Cloud environments are growing areas

in terms of adoption by critical infrastructure vendors, and large corporations, so our Service-

based framework facilitates this collaborative intrusion detection, and sharing of attack

information among this differing populace – which in turn can help improve the Cloud

environments’ overall resilience to an attack.

142

Chapter 7

Conclusions and future developments

Cloud computing has emerged as a way to enable content providers to meet their application

needs through either Cloud development environments or through outsourced CSPs. Adoption

of Cloud computing services allows critical infrastructure vendors to benefit from dynamic

resource allocation for managing unpredictable load peaks, storing of historical process data

(either on site in a private Cloud, or sharing among other related vendors in a hybrid Cloud),

federating into a larger Cloud, and large scale data analytics based on historical data of

consumers, to name a few.

Given the public awareness of critical infrastructure and their importance, the public wants to

be assured that these systems are built to function in a secure manner and any technological

utilisation are secure; maintaining the confidentiality, integrity and availability of their data or

services. Cloud outages are unexpected events that occur within a Cloud infrastructure and

consequently affect the operations and availability of services placed within the Cloud. Should

this be critical infrastructure services, or important historical processes, this would be

damaging for the reputation of the infrastructure vendor, or for the CSP. Recognising the signs

of an attack quickly, and being able to limit the effect on operation is imperative.

When cyber-attacks and cyber disruptions happen, millions of users are potentially affected. A

cyber disruption in this context means a temporary or permanent loss of service, and users of

the Cloud service who rely on its continuity are affected. Design of a collaborative Cloud-based

framework that focuses on the monitoring and protection of the critical infrastructure services

in the Cloud computing environment is the main contribution of our work. Collaboration

among CSPs could ensure that they are up to date on different Cloud threats and emerging

vulnerabilities, as they are interdependent upon each other at times within the federation, i.e.

load balancing at peak times – one drawback from this interconnection is the increase in eDoS

attacks. The effects of eDoS/DDoS attacks can span from the loss of some data, to the potential

isolation of parts of the federation. Protecting the federated Cloud against cyber-attacks is a

key concern, since there are potentially significant economic consequences.

143

The evidence from our research strongly suggests that using D-S’s theory of evidence for belief

generation, in combination with the application of confidence values, can help improve the

accuracy of generated observations for autonomous sharing of information. The application of

D-S to Cloud federations and the inventive D-S extension presented in this thesis are

encouraging and show that the area of collaborative intrusion detection in federated Cloud

environments is worth pursuing further. The methodology and architectural monitoring

structure presented could also be adopted and expanded for application in areas such as WSN,

distributed systems, or the Internet of Things (IoT), as autonomous sharing of information is a

promising area.

Comparing the solution for distributed systems could involve adapting the hierarchical

C2/MN/SN structure to the working of master/slave architecture model of distributed

computing architecture where the master node has unidirectional control over one or more slave

nodes. In this instance, the task(s) are distributed by the master node to the configured slaves

and the results are returned to the master node. Distributed systems and Cloud computing

environments slightly refer to different things, however the underlying concept between them

is same. However for application to such interconnected domains where local views may vary,

machine learning techniques may improve the accuracy of detection.

Observations from different CSPs are correlated autonomously, in order to determine whether

similar behaviour that is indicative of an attack or other issues has been observed in their

domains. The integration of the decisions coming from different IDSs has emerged as a

technique that could strengthen the final decision. Federated Cloud environments are growing

areas in terms of adoption by critical infrastructure vendors, and large corporations, so our

Service-based collaborative intrusion detection framework facilities this collaborative intrusion

detection, and sharing of attack information among these different CSPs. Future efforts to

integrate assurance and auditing tools to ensure policy assurance among involved entities are

needed also.

7.1 Summary of novel contributions

The research presented in this thesis presents the principles, techniques, and algorithms that

can be adapted from other distributed computing paradigms to the development of a

collaborative intrusion detection framework that can detect and prevent intrusion in

144

collaborative domains. This features a novel use of the D-S algorithm to detect intrusions and

send alerts. To ensure our contribution, D-S evaluates evidence from multiple domains and

fuses the beliefs to establish whether an attack is occurring, has occurred or will occur.

The main novel contribution of this project is that it provides the means by which DDoS attacks

are detected within a Cloud federation, so as to enable an early propagated response to block

the attack, particularly by the interdependent CSPs within the federation. As such, this is

effectively inter-domain cooperation as these CSPs will cooperate with each other to offer

holistic security, and add to the defence in depth. The D-S theory of evidence is used to

facilitate this autonomous sharing of information, and to fuse the generated beliefs to form a

system-wide decision.

Providing service-based collaborative intrusion detection – “Security as a Service” in a Cloud

federation is achieved via the following novel contributions:

 A collaborative intrusion detection framework that can detect and prevent intrusion in

Cloud federations and/or collaborative domains in real-time via the autonomous sharing

of information. This features a novel application of the D-S theory of evidence

algorithm to detect intrusions and fuse generated beliefs for collaborative intrusion

detection, and an extension of D-S to include confidence values for conflicting

decisions. There is no current solution that can provide adequate protection for Cloud

federations, or identified solution which implements the D-S algorithm and produces

collaborative decisions in Cloud federations to improve upon the Cloud security

contribution.

 Within related work, the accuracy and efficiency of detection is important, but ensuring

the solution is scalable and can deal with large volumes of logs from different sources

is problematic. The Cloud Broker coordinates attack responses, both within the domain

itself, and with other domains, and is facilitating inter-domain cooperation. D-S is used

to fuse the generated beliefs and make a system-wide decision. This cooperation

between CSPs ensures that the scalable defence required against DDoS attacks is in an

efficient manner; aiming to improve the overall resilience of the interconnected

infrastructure.

145

 CSPs within a Cloud federation are represented as interconnected domains, and can

trace attacks back to their domain source by dynamically provisioning the infrastructure

to react – CUSUM and EWMA algorithms are used for adaptive threshold calculation.

A local propagation mechanism collects statistics at a local level via MNs, and in order

to minimise detection delay and reduce the communication overhead, this is propagated

among MNs using a gossip protocol. As Cloud environments, and Cloud federations,

are large scale, it is essential that any potential solution should scale alongside the

environment and have the potential to expand and scale considerably without any issues

or performance implications.

7.2 Thesis Summary

In this section, an overview of the thesis and our research for the design of a collaborative

Cloud-based framework that focuses on the monitoring and protection of the critical

infrastructure services in the Cloud computing environment is presented, in addition to a

summary of each of the thesis chapters.

In Chapter 1, the research area and our motivation behind the work being undertaken is

introduced. The aims, objectives, and novel contributions of the research are discussed, in

addition to a high level overview of the solution. Publications that have resulted from the

research undertaken are highlighted also.

In Chapter 2, background on critical infrastructure and Cloud computing is provided, in

addition to the evident security vulnerabilities and threats that need to be resolved is

highlighted. Critical infrastructure and Cloud utilisation requirements are highlighted, and the

need for Cloud-based protection mechanisms for services in Cloud federations.

In Chapter 3, related works in this area are discussed. An overview of the different types of

protection and preventative measures in place for intrusion detection in the Cloud environment

is detailed. Existing approaches are analysed and an observation of their evident inadequacies

presented. This information is used to determine specific requirements for proposing a novel

solution for this area.

Chapter 4 outlines the design and architectural details for the novel solution, in addition to the

algorithms and methods utilised. The entities present and their functionality are explained, and

146

requirements and considerations for the design are conveyed. The improved D-S two stage

intrusion detection method is outlined.

Chapter 5 outlines the implementation details of the intrusion detection framework for

federated Cloud environments. Through the use of Riverbed Modeler 18.0, the effects of DDoS

attacks to Cloud federations are conveyed and analysed, and collaborative intrusion detection

using D-S theory of evidence is demonstrated using a proof of concept developed in C#.

In Chapter 6, the novel solution is evaluated against the metrics we consider to be the most

important for determining the efficiency of a collaborative IDS. The solution was evaluated

using the requirements established in 3.5 which define the characteristics which collaborative

intrusion detection solutions must possess, and the approach is also compared to related work

within this research field.

Conclusions and future work are presented in Chapter 7. Within this chapter, a thesis summary

is provided, a summary of the project novelties, and some final concluding remarks. This

chapter will also highlight how the work can be built on for future research projects.

7.3 Further Work

Further work would involve testing the Service-based collaborative intrusion detection

methodology on a real Cloud-based test bed to compare. While the D-S algorithm has been

deemed as a scalable algorithm, it would be advantageous to compare the flexibility of the

algorithm and the Service-based collaborative intrusion detection framework to see how the

effects of the information exchange affect the network. The complex nature of process models

within Riverbed Modeler 18.0 meant the effects of the algorithm to the network couldn’t be

modelled effectively, so using a Cloud-based test bed would be an interesting option.

Adapting the Service-based collaborative intrusion detection architecture to focus on a wider

range of attacks would be a further enhancement. For simulation purposes, our application of

D-S for collaborative intrusion detection focused on demonstrating the applicability of the

algorithm – IP addresses were used as the information that was exchanged. However tailoring

the methodology to include attack signatures or measurable profile information would expand

the capabilities of the approach. The main advantage of D-S is that no priori knowledge of the

147

system is required, thus making it suitable for anomaly detection of previously unseen

information, however including heuristics or neural networks or other machine learning

techniques in order to improve the accuracy of results has been considered.

A further consideration for expansion is adapting the solution to make it a dual level IDS, where

there is a personalised experience for both CSP and Cloud users. Access control can help tailor

the IDS to suit their needs. Cloud consumers should not only have to depend on the CSPs’

security infrastructure. They need to be able to monitor and protect their own virtual existence

by enforcing additional security methods with other network security technologies. Giving the

user the ability to personalise their own security needs could be a beneficial enhancement via

SLA negotiation.

The methodology proposed could also be applied to WSN environments, or scaled considerably

to tailor to the Internet of Things (IoT). The IoT is a concept coined to cover the interconnected

infrastructure and utilities that are increasingly occurring. IoT is the interconnection of

uniquely identifiable embedded computing devices within the existing Internet infrastructure,

from smart meters in homes, remote sensors for gas and oil utilities, interdependent system-of-

systems: but the key issue is the fundamental problem with the interconnection of this “Internet

of Things”. They are creating a wider attack surface with billions of new devices. IoT inherits

the same monitoring requirements from Cloud, but the related challenges are further affected

by volume, variety, and velocity characteristics of IoT. Application of our Security of a Service

methodology to the IoT environment could provide an interesting testbed for collaborative

information exchange.

The IoT does not replace the existing ICT or operational technology networks; rather, it

enhances these networks and relies on them in many ways. Recognising all these aspects

working together, cyber security and physical security solutions must also work together with

a coordinated focus on threats. With an estimated number of 50 billion devices that will be

networked by 2020, specific attention must be paid to transportation, storage, access, and

processing of the huge amount of data they will produce [155]. Processing large quantities of

IoT data will increase as a proportion of workloads of data centres, leaving providers facing

new security, capacity and analytics challenges. Handling this data conveniently is a critical

challenge, as the overall application performance is highly dependent on the properties of the

data management service.

148

7.4 Concluding Remarks

In this thesis, a novel method for detecting intrusions in a federated Cloud environment has

been presented. In the related work section, an extensive survey of existing intrusion detection

methods was conducted, identifying the limitations in their scalability and efficiency. From

this, a methodology for detecting intrusions in the federated Cloud environment was

constructed, improving upon the inefficiencies of current approaches, and tackling the problem

with lightweight collaborative decision making. This inspired the design and implementation

of the Service-based collaborative intrusion detection architecture where CSPs collaborate for

holistic security. The “Security as a Service” entity is present in each CSP’s domain “as-a-

service” and automatically reacts to deviations from normal behaviour. The design of this

solution is small in scale for proof of concept but can embrace the resources and scale of the

Cloud environment. Through experimentation, the solution and associated attributes have been

validated, demonstrating that they can overcome the challenges for protecting critical

infrastructure services in the Cloud environment through collaborative intrusion detection. The

evidence from the research strongly suggests that fusion algorithms can play a key role in

autonomous decision making schemes, however our experimentation highlights areas upon

which improvements are needed before fully applying to federated environments.

149

References

[1] W. Hurst, M. Merabti, and P. Fergus, “Towards a Framework for Operational Support

in Critical Infrastructures,” in The 15th Post Graduate Symposium on the Convergence of

Telecommunications, Networking and Broadcasting (PGNet2014), 2014, pp. 1–4.

[2] Department of Homeland Security, “Configuring and Managing Remote Access for

Industrial Control Systems - CPNI Centre for the Protection Of National Infrastructure,”

Washington DC, USA, 2010.

[3] Trend Micro Incorporated, “Report on Cybersecurity and Critical Infrastructure in the

Americas,” Washington DC, USA, 2015.

[4] M. A. C. Dekker and ENISA, “Critical Cloud Computing-A CIIP perspective on cloud

computing services,” Greece, 2012.

[5] G. D. C. Rodrigues, G. L. Dos Santos, V. T. Guimaraes, L. Z. Granville, and L. M. R.

Tarouco, “An Architecture to Evaluate Scalability, Adaptability and Accuracy in Cloud

Monitoring Systems,” in The International Conference on Information Networking 2014

(ICOIN2014), 2014, pp. 46–51.

[6] Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “Hosting critical infrastructure

services in the cloud environment considerations,” International Journal of Critical

Infrastructures, vol. 11, no. 4, pp. 365–381, 2015.

[7] B. Genge, P. Haller, and I. Kiss, “A framework for designing resilient distributed

intrusion detection systems for critical infrastructures,” International Journal of Critical

Infrastructure Protection, vol. 15, pp. 3–11, 2016.

[8] C. B. Westphall et al., “Operation, Management, Security and Sustainability for Cloud

Computing,” Information Systems of the FSMA, vol. 13, pp. 30–50, 2014.

[9] S. Paudel and M. Tauber, “Security Standards Taxonomy for Cloud Applications in

Critical Infrastructure IT,” in 8th International Conference for Internet Technology and

[1] W. Hurst, M. Merabti, and P. Fergus, “Towards a Framework for Operational Support

in Critical Infrastructures,” in The 15th Post Graduate Symposium on the Convergence

of Telecommunications, Networking and Broadcasting (PGNet2014), 2014, pp. 1–4.

150

Secured Transactions (ICITST), 2013, pp. 645–646.

[10] C. W. Ten, G. Manimaran, and C. C. Liu, “Cybersecurity for critical infrastructures:

attack and defense modeling,” IEEE Transactions on Systems, Man and Cybernetics,

Part A: Systems and Humans, vol. 40, no. 4, pp. 853–865, 2010.

[11] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A survey of

intrusion detection techniques in Cloud,” Journal of Network and Computer

Applications, vol. 36, no. 1, pp. 42–57, Jun. 2012.

[12] Riverbed Technology Inc., “Riverbed Modeler,” Riverbed Support, 2017. .

[13] T. Miyachi, H. Narita, H. Yamada, and H. Furuta, “Myth and reality on control system

security revealed by Stuxnet,” in 2011 Proceedings of Society of Instrument and Control

Engineers (SICE) Annual Conference, 2011, pp. 1537–1540.

[14] McAfee Labs, “2012 Threats Predictions,” Santa Clara, CA 95054, 2012.

[15] Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “Detecting Intrusions in the Cloud

Environment,” in 14th Annual Postgraduate Symposium on Convergence of

Telecommunications, Networking and Broadcasting (PGNet 2013), 2013, pp. 336–343.

[16] CPNI, “Critical National Infrastructure,” 2017. [Online]. Available:

https://www.cpni.gov.uk/critical-national-infrastructure-0. [Accessed: 18-May-2017].

[17] K. E. Lever, Á. MacDermott, and K. Kifayat, “Evaluating Interdependencies and

Cascading Failures Using Distributed Attack Graph Generation Methods for Critical

Infrastructure Defence,” in IEEE 8th International Conference on Developments in

eSystems Engineering (DeSE 2015), 2015, pp. 47–52.

[18] M. Chander, “Protection of National Critical Infrastructure,” Defence and Security Alert,

pp. 54–58, 2013.

[19] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly, “Identifying, Understanding, and

151

Analyzing Critical Infrastructure Interdependencies,” IEEE Control Systems Magazine,

vol. 21, no. 6, pp. 11–25, 2001.

[20] R. Brewer, “Protecting critical control systems,” Network Security, vol. 3, pp. 7–10,

Mar. 2012.

[21] E. J. Byres, M. Franz, and D. Miller, “The Use of Attack Trees in Assessing

Vulnerabilities in SCADA Systems,” in IEEE International Infrastructure Survivability

Workshop (IISW’04), 2004, pp. 1–9.

[22] W. Hurst, M. Merabti, and P. Fergus, “Behavioural analysis for supporting critical

infrastructure security,” in 14th Annual Postgraduate Symposium on Convergence of

Telecommunications, Networking and Broadcasting (PGNet 2013), 2013.

[23] I. P. Chochliouros and OTE, “Discussion on the Challenges for the Development of a

Context for: SEcure Cloud computing for CRitical infrastructure IT (‘SECCRIT’),”

Greece, 2012.

[24] M. Scholler, M. Stiemerling, and A. Ripke, “Resilient deployment of virtual network

functions,” in 5th International Congress on Ultra Modern Telecommunications and

Control Systems and Workshops (ICUMT), 2013, pp. 208–214.

[25] M. Florian, S. Paudel, and M. Tauber, “Trustworthy Evidence Gathering Mechanism for

Multilayer Cloud Compliance,” in 8th International Conference for Internet Technology

and Secured Transactions (ICITST), 2013, pp. 529–530.

[26] T. Bernard, M. Baruthio, C. Steinmetz, and J.-M. Weber, “Cloud-based event detection

platform for water distribution networks using machine-learning algorithms,” in

Machine Learning for Cyber Physical Systems (Technologies for Intelligent

Automation), 2017, pp. 35–43.

[27] S. Iqbal, L. Mat, B. Dhaghighi, and M. Hussain, “On cloud security attacks: A taxonomy

and intrusion detection and prevention as a service,” Journal of Network and Computer

Applications, vol. 74, pp. 98–120, 2016.

152

[28] B. Zhu and S. Sastry, “SCADA-specific intrusion detection/prevention systems: a

survey and taxonomy,” Proceedings of the 1st Workshop on Secure Control Systems

(SCS), vol. 11, pp. 1–16, 2010.

[29] I. N. Fovino, A. Carcano, T. D. L. Murel, A. Trombetta, and M. Masera, “Modbus/DNP3

State-Based Intrusion Detection System,” in 2010 24th IEEE International Conference

on Advanced Information Networking and Applications, 2010, pp. 729–736.

[30] J. Verba, “Idaho national laboratory supervisory control and data acquisition intrusion

detection system (SCADA IDS),” in International Conference on Technologies for

Homeland Security (HST), 2008, no. 208, pp. 469–473.

[31] L. Briesemeister, S. Cheung, U. Lindqvist, and A. Valdes, “Detection, correlation, and

visualization of attacks against critical infrastructure systems,” in 2010 Eighth Annual

International Conference on Privacy Security and Trust (PST), 2010, pp. 15–22.

[32] A. Carcano, A. Coletta, M. Guglielmi, M. Masera, I. Nai Fovino, and A. Trombetta, “A

Multidimensional Critical State Analysis for Detecting Intrusions in SCADA Systems,”

IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 179–186, 2003.

[33] S. L. Scott, “A Bayesian paradigm for designing intrusion detection systems,”

Computational Statistics & Data Analysis, vol. 45, no. 1, pp. 69–83, Feb. 2004.

[34] A. Califano, E. Dincelli, and S. Goel, “Using Features of Cloud Computing to Defend

Smart Grid against DDoS Attacks,” in 10th Annual Symposium on Information

Assurance (ASIA ’15), 2015, pp. 44–49.

[35] R. Bhadauria, R. Chaki, N. Chaki, and S. Sanyal, “A Survey on Security Issues in Cloud

Computing,” in IEEE Communications Surveys and Tutorials, 2011, pp. 1–15.

[36] T. Steiner, H. Khiabani, and SANS Institute, “An Introduction To Securing a Cloud

Environment,” Swansea, 2012.

[37] K. Dahbur, B. Mohammad, and A. B. Tarakji, “A Survey of Risks, Threats and

153

Vulnerabilities in Cloud Computing,” in Proceedings of the 2011 International

Conference on Intelligent Semantic Web-Services and Applications - ISWSA ’11, 2011,

pp. 1–6.

[38] P. Mell and T. Grance, “The NIST Definition of Cloud Computing Recommendations

of the National Institute of Standards and Technology,” Gaithersburg, MD 20899-8930,

2011.

[39] R. Samani, “Cybercrime Exposed White Paper,” Santa Clara, CA 95054, 2013.

[40] K. Hwang and D. Li, “Trusted Cloud Computing with Secure Resources and Data

Coloring,” IEEE Internet Computing, vol. 14, no. 5, pp. 14–22, Sep. 2010.

[41] Á. MacDermott, Q. Shi, M. Merabti, and K. Kifiyat, “Considering an elastic scaling

model for cloud security,” in The 8th International Conference for Internet Technology

and Secured Transactions (ICITST-2013), 2013, pp. 150–155.

[42] R. Bhadauria and S. Sanyal, “Survey on Security Issues in Cloud Computing and

Associated Mitigation Techniques,” International Journal of Computer Applications,

vol. 47, no. 18, pp. 47–66, Jun. 2012.

[43] KPMG International, “The Cloud Changing the Business Ecosystem,” India, 2011.

[44] M. Ficco, L. Tasquier, and R. Aversa, “Intrusion Detection in Cloud Computing,” in

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet

Computing, 2013, pp. 276–283.

[45] O. Babaoglu, M. Tamburini, and U. Bologna, “Design and Implementation of a P2P

Cloud System,” in Proceedings of the 27th Annual ACM Symposium on Applied

Computing, 2012, pp. 412–417.

[46] M. Rak et al., “Security Issues in Cloud Federations,” in Achieving Federated and Self-

Manageable Cloud Infrastructures: Theory and Practice, 2012, pp. 176–194.

154

[47] D. Villegas et al., “Cloud federation in a layered service model,” Journal of Computer

and System Sciences, vol. 78, no. 5, pp. 1330–1344, Sep. 2012.

[48] Á. MacDermott, Q. Shi, and K. Kifayat, “Collaborative Intrusion Detection in Federated

Cloud Environments,” Journal of Computer Sciences and Applications on Big Data

Analytics in Intelligent Systems, vol. 3, no. 3A, pp. 10–20, 2015.

[49] V. Chang et al., “Federated cloud resource management: Review and discussion,”

Journal of Network and Computer Applications, vol. 77, no. October 2016, pp. 87–105,

2017.

[50] N. Gruschka and M. Jensen, “Attack Surfaces: A Taxonomy for Attacks on Cloud

Services,” in 2010 IEEE 3rd International Conference on Cloud Computing, 2010, pp.

276–279.

[51] N. Kumar and S. Sharma, “Study of Intrusion Detection System for DDoS Attacks in

Cloud Computing,” in 2013 Tenth International Conference on Wireless and Optical

Communications Networks (WOCN), 2013, pp. 1–5.

[52] Á. MacDermott, Q. Shi, and K. Kifayat, “Detecting Intrusions in Federated Cloud

Environments Using Security as a Service,” in IEEE 8th International Conference on

Developments in eSystems Engineering (DeSE 2015), 2015, pp. 91–96.

[53] J. Haggerty, Q. Shi, and M. Merabti, “Beyond the perimeter: the need for early detection

of denial of service attacks,” in 18th Annual Computer Security Applications

Conference, 2002, pp. 413–423.

[54] VM Ware Inc., “Securing the Cloud a Review of Cloud Computing, Security

Implications and Best Practices,” Tech Republic, Whitepaper, 2003. [Online]. Available:

http://www.techrepublic.com/resource-library/whitepapers/securing-the-cloud-a-

review-of-cloud-computing-security-implications-and-best-practices-copy1/.

[Accessed: 25-Jul-2013].

[55] M. Ali, S. U. Khan, and A. V. Vasilakos, “Security in cloud computing: Opportunities

155

and challenges,” Information Sciences, vol. 305, pp. 357–383, 2015.

[56] A. Patel, Q. Qassim, and C. Wills, “A survey of intrusion detection and prevention

systems,” Information Management & Computer Security, vol. 18, no. 4, pp. 277–290,

2010.

[57] C. Thomas and B. Narayanaswamy, “Sensor Fusion for Enhancement in Intrusion

Detection,” in Sensor Fusion - Foundation and Applications, 2011, pp. 61–76.

[58] N. Patil, C. Das, S. Patankar, and K. Pol, “Analysis of Distributed Intrusion Detection

Systems Using Mobile Agents,” in First International Conference on Emerging Trends

in Engineering and Technology, 2008, pp. 1255–1260.

[59] F. Sabahi and A. Movaghar, “Intrusion Detection: A Survey,” in The Third International

Conference on Systems and Networks Communications, 2008, pp. 23–26.

[60] J. F. C. Joseph, A. Das, B.-C. Seet, and B.-S. Lee, “Opening the Pandora’s Box:

Exploring the fundamental limitations of designing intrusion detection for MANET

routing attacks,” Computer Communications, vol. 31, no. 14, pp. 3178–3189, Sep. 2008.

[61] J. Peng, K. K. R. Choo, and H. Ashman, “User profiling in intrusion detection: A

review,” Journal of Network and Computer Applications, vol. 72, pp. 14–27, 2016.

[62] J. Bin, X. Huang, R. Liu, and Y. Ma, “A DDoS Attack Detection Method Based on

Hybrid Heterogeneous Multiclassifier Ensemble Learning,” Journal of Electrical and

Computer Engineering, vol. 2017, pp. 1–10, 2017.

[63] K. A and C. N. Modi, “An Efficient Security Framework to Detect Intrusions at Virtual

Network Layer of Cloud Computing,” in 19th International ICIN Conference -

Innovations in Clouds, Internet and Networks, 2016, pp. 133–140.

[64] Cloud Security Alliance, “The Treacherous 12: Cloud Computing Top Threats in 2016,”

USA, 2016.

156

[65] W. Xin, H. Ting-lei, and L. Xiao-yu, “Research on the Intrusion detection mechanism

based on cloud computing,” in Intelligent Computing and Intelligent Systems (ICIS),

2010, pp. 125–128.

[66] T. V. S. Jeganathan and T. A. Prakasam, “Secure the Cloud Computing Environment

from Attackers using Intrusion Detection System,” International Journal of Advanced

Research in Computer Science & Technology (IJARCST 2014), vol. 2, no. 2, pp. 181–

186, 2014.

[67] D. Parwani, A. Dutta, P. Kumar Shulka, and M. Tahilyani, “Various Techniques of

DDoS Attacks Detection and Prevention at Cloud: A Survey,” Oriental Journal of

Computer Science and Technology, vol. 8, no. 2, pp. 110–120, 2015.

[68] C. H. Ling, W. F. Hsien, and H. Min Shiang, “A Double Circular Chain Intrusion

Detection for Cloud Computing Based on AdjointVM approach,” International Journal

of Network Security, vol. 18, no. 2, pp. 397–400, 2016.

[69] S. Gupta, P. Kumar, and A. Abraham, “A Profile Based Network Intrusion Detection

and Prevention System for Securing Cloud Environment,” International Journal of

Distributed Sensor Networks, vol. 2013, no. 2, pp. 1–12, 2013.

[70] R. Devi, R. Kumar Jha, A. Gupta, S. Jain, and P. Kumar, “Implementation of Intrusion

Detection System using Adaptive Neuro-Fuzzy Inference System for 5G wireless

communication network,” AEU-International Journal of Electronics and

Communications, vol. 74, pp. 94–106, 2017.

[71] S. Y. (George) ; Ho, “Intrusion Detection - Systems for Today and Tomorrow,”

Swansea, 2017.

[72] A. Sahasrabuddhe, S. Naikade, A. Ramaswamy, B. Sadliwala, and P. Futane, “Survey

on Intrusion Detection System using Data Mining Techniques,” International Research

Journal of Engineering and Technology (IRJET), vol. 4, no. 5, pp. 1780–1784, 2017.

[73] A. Kumar Dalai and S. Kumar Jena, “Hybrid Network Intrusion Detection Systems: A

157

Decade’s Perspective,” in Proceedings of the International Conference on Signal,

Networks, Computing, and Systems. Lecture Notes in Electrical Engineering, 2017, pp.

341–349.

[74] H. Hamad and M. Al-Hoby, “Managing Intrusion Detection as a Service in Cloud

Networks,” International Journal of Computer Applications, vol. 41, no. 1, pp. 35–40,

Mar. 2012.

[75] T. Bui, D. Hernandez-Lobato, J. Hernandez-Lobato, Y. ; Li, and R. Turner, “Deep

Gaussian Processes for Regression using Approximate Expectation Propagation,” in

Proceedings of The 33rd International Conference on Machine Learning (PMLR 48),

2016, pp. 1472–1481.

[76] S. N. Dhage and B. B. Meshram, “Intrusion detection system in cloud computing

environment,” International Journal of Cloud Computing, vol. 1, no. 2/3, pp. 261–282,

2012.

[77] H. M. Alsafi, W. M. Abduallah, and A. K. Pathan, “IDPS : An Integrated Intrusion

Handling Model for Cloud Computing Environment,” International Journal of

Computing and Information Technology (IJCIT), vol. eprint arX, pp. 1–18, 2012.

[78] G. Hancock, DL, Lamont, “Multi agent system for network attack classification using

flow-based intrusion detection,” IEEE Congress on Evolutionary Computation (CEC),

pp. 1535–1542, 2011.

[79] W. Yu, C. Xiaohui, and W. Sheng, “Anomaly Network Detection Model Based on

Mobile Agent,” in 2011 Third International Conference on Measuring Technology and

Mechatronics Automation, 2011, pp. 504–507.

[80] S. Shamshirband, N. B. Anuar, M. L. M. Kiah, and A. Patel, “An appraisal and design

of a multi-agent system based cooperative wireless intrusion detection computational

intelligence technique,” Engineering Applications of Artificial Intelligence, vol. 26, no.

9, pp. 2105–2127, Oct. 2013.

158

[81] G. Bourkache, M. Mezghiche, and K. Tamine, “A Distributed Intrusion Detection

Model Based on a Society of Intelligent Mobile Agents for Ad Hoc Network,” 2011

Sixth International Conference on Availability, Reliability and Security, pp. 569–572,

Aug. 2011.

[82] W. Jansen, “Intrusion detection with mobile agents,” Computer Communications, vol.

25, no. 15, pp. 1392–1401, Sep. 2002.

[83] D. L. Hancock, “Multi agent systems on military networks,” 2011 IEEE Symposium on

Computational Intelligence in Cyber Security (CICS), pp. 100–107, 2011.

[84] J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Corradi, and L. Foschini,

“DARGOS: A highly adaptable and scalable monitoring architecture for multi-tenant

Clouds,” Future Generation Computer Systems, vol. 29, no. 8, pp. 2041–2056, 2013.

[85] Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “An elastic scaling method for

cloud security,” Journal of Internet Technology and Secured Transactions (JITST), vol.

3, no. 3/4, pp. 254–262, 2014.

[86] A. Patel, M. Taghavi, K. Bakhtiyari, and J. Celestino Júnior, “An intrusion detection and

prevention system in cloud computing: A systematic review,” Journal of Network and

Computer Applications, vol. 36, no. 1, pp. 25–41, Jan. 2013.

[87] H. A. Kholidy and F. Baiardi, “CIDD: A Cloud Intrusion Detection Dataset for Cloud

Computing and Masquerade Attacks,” in 2012 Ninth International Conference on

Information Technology - New Generations, 2012, pp. 397–402.

[88] R. Shea, S. Member, J. Liu, and S. Member, “Performance of Virtual Machines Under

Networked Denial of Service Attacks : Experiments and Analysis,” IEEE Systems

Journal, vol. 7, no. 2, pp. 335–345, 2013.

[89] A. Chonka and J. Abawajy, “Detecting and Mitigating HX-DoS Attacks against Cloud

Web Services,” in 15th International Conference on Network-Based Information

Systems, 2012, pp. 429–434.

159

[90] M. Mehdi, S. Zair, A. Anou, and M. Bensebti, “A Bayesian Networks in Intrusion

Detection Systems,” Journal of Computer Science, vol. 3, no. 5, pp. 259–265, 2007.

[91] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A Survey,” ACM

Computing Surveys, vol. 41, no. 3, pp. 1–58, Jul. 2009.

[92] C. Turner, R. Jeremiah, D. Richards, and A. Joseph, “A Rule Status Monitoring

Algorithm for Rule-Based Intrusion Detection and Prevention Systems,” Procedia

Computer Science, vol. 95, pp. 361–368, 2016.

[93] T. H.-J. Kim, K. Brancik, D. Dickinson, a. Perrig, and B. Sinopoli, “Cyber–Physical

Security of a Smart Grid Infrastructure,” Proceedings of the IEEE, vol. 100, no. 1, pp.

195–209, Jan. 2012.

[94] R. Aamir Raza Ashfaq, X.-Z. Wang, J. Zhexue Huang, H. Abbas, and Y.-L. He,

“Fuzziness based semi-supervised learning approach for intrusion detection system,”

Information Sciences, vol. 378, no. 1, pp. 484–497, 2017.

[95] Z. Mahmood and C. Agrawal, “Intrusion Detection in Cloud Computing environment

using Neural Network,” International Journal of Research in Computer Engineering

and Electronics, vol. 1, no. 1, pp. 1–4, 2012.

[96] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, “Cloud monitoring: A survey,”

Computer Networks, vol. 57, no. 9, pp. 2093–2115, Jun. 2013.

[97] A. Bakshi and Y. B. Dujodwala, “Securing Cloud from DDOS Attacks Using Intrusion

Detection System in Virtual Machine,” in Second International Conference on

Communication Software and Networks, 2010, pp. 260–264.

[98] O. Abouabdalla, H. El-Taj, A. Manasrah, and S. Ramadass, “False positive reduction in

intrusion detection system: A survey,” in 2nd IEEE International Conference on

Broadband Network & Multimedia Technology, 2009, pp. 463–466.

[99] C. V. Zhou, C. Leckie, and S. Karunasekera, “A survey of coordinated attacks and

160

collaborative intrusion detection,” Computers & Security, vol. 29, no. 1, pp. 124–140,

Feb. 2010.

[100] M. Auxilia and D. Tamilselvan, “Anomaly detection using negative security model in

web application,” 2010 International Conference on Computer Information Systems and

Industrial Management Applications (CISIM), pp. 481–486, Oct. 2010.

[101] S. Neelakantan and S. Rao, “A Threat-Aware Hybrid Intrusion – Detection Architecture

for Dynamic Network Environments,” CSI Journal of Computing, vol. 1, no. 3, 2012.

[102] S. Anwar et al., “From Intrusion Detection to an Intrusion Response System:

Fundamentals, Requirements, and Future Directions,” Algorithms, vol. 10, no. 2, p. 39,

2017.

[103] N. Stakhanova, S. Basu, and J. Wong, “A taxonomy of intrusion response systems,”

International Journal of Information and Computer Security, vol. 1, no. 1/2, pp. 169–

184, 2007.

[104] J. Lee, M. Park, and J. Eom, “Multi-level Intrusion Detection System and log

management in Cloud Computing,” in 13th International Conference on Advanced

Communication Technology (ICACT), 2011, no. 1, pp. 552–555.

[105] C.-C. Lo, C.-C. Huang, and J. Ku, “A Cooperative Intrusion Detection System

Framework for Cloud Computing Networks,” in 39th International Conference on

Parallel Processing Workshops, 2010, pp. 280–284.

[106] R. N. Calheiros, A. N. Toosi, C. Vecchiola, and R. Buyya, “A coordinator for scaling

elastic applications across multiple clouds,” Future Generation Computer Systems, vol.

28, no. 8, pp. 1350–1362, 2012.

[107] Z. Chen, F. Han, J. Cao, X. Jiang, and S. Chen, “Cloud computing-based forensic

analysis for collaborative network security management system,” Tsinghua Science and

Technology, vol. 18, no. 1, pp. 40–50, 2013.

161

[108] Y. Wang, H. Yang, X. Wang, and R. Zhang, “Distributed intrusion detection system

based on data fusion method,” in 5th World Congress on Intelligent Control and

Automation, 2004, pp. 4331–4334.

[109] N. Asanka, G. Arachchilage, C. Namiluko, and A. Martin, “A taxonomy for securely

sharing information among others in a trust domain,” in 8th International Conference

for Internet Technology and Secured Transactions (ICITST), 2013, pp. 296–304.

[110] J. Montes, A. Sánchez, B. Memishi, M. S. Pérez, and G. Antoniu, “GMonE: A complete

approach to cloud monitoring,” Future Generation Computer Systems, vol. 29, no. 8,

pp. 2026–2040, 2013.

[111] J. Zhang, “Anomaly based network intrusion detection with unsupervised outlier

detection,” in IEEE International Conference on Communications (ICC 2006), 2006,

pp. 2388–2393.

[112] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to Enhance Cloud Architectures

to Enable Cross-Federation,” in IEEE 3rd International Conference on Cloud

Computing, 2010, pp. 337–345.

[113] C. J. Fung, D. Y. Lam, and R. Boutaba, “A Decision Making Model for Collaborative

Malware Detection Networks,” Technical Report CS-2013-01, 2013.

[114] Cloud Security Alliance, “The Notorious Nine Cloud Computing Top Threats in 2013,”

2013, Cloud Security Alliance, 2013.

[115] A. Shaker Ashoor and S. Gore, “Anomaly Detection Algorithm Using Multi-agents,”

International Journal of Scientific & Technology Research, vol. 1, no. 3, pp. 54–57,

2012.

[116] V. A. Siris and F. Papagalou, “Application of anomaly detection algorithms for detecting

SYN flooding attacks,” Computer Communications, vol. 29, no. 9, pp. 1433–1442, May

2006.

162

[117] A. K. A. Agarwal, S. Johri, A. Agarwal, V. Tyagi, “Multi agent approach for network

intrusion detection using data mining concepts,” Journal of Global Research in

Computer Science, vol. 3, no. 3, pp. 29–32, 2012.

[118] C. Zhang, J. Yin, Z. Cai, and W. Chen, “RRED : Robust RED Algorithm to Counter,”

IEEE Communications Letters, vol. 14, no. 5, pp. 2–4, 2010.

[119] M. Matos, R. Oliveira, E. Deliot, and P. Murray, “CLON : Overlay Networks and Gossip

Protocols for Cloud Environments,” On the Move to Meaningful Internet Systems: OTM

2009. Springer Berlin Heidelberg, p. 549–566., 2009.

[120] A. G. Fragkiadakis, V. a. Siris, N. E. Petroulakis, and A. P. Traganitis, “Anomaly-based

intrusion detection of jamming attacks, local versus collaborative detection,” Journal of

Wireless Communications and Mobile Computing, vol. 15, no. 2, pp. 276–294, Jan.

2013.

[121] A. Sharma and N. Kumar, “Comparative Analysis of Low Rate Denial of Service Attack

in MANETs,” International Journal of Advanced Research in Computer Science and

Software Engineering, vol. 3, no. 7, pp. 1166–1175, 2013.

[122] A. A. Cárdenas, S. Amin, and Z. Lin, “Attacks Against Process Control Systems : Risk

Assessment , Detection , and Response Categories and Subject Descriptors,” 6th ACM

Symposium on Information, Computer and Communications Security, pp. 355–366,

2011.

[123] A. Patcha and J. Park, “An Adaptive Sampling Algorithm with Applications to Denial-

of-Service Attack Detection,” Proceedings of 15th International Conference on

Computer Communications and Networks, pp. 11–16, Oct. 2006.

[124] G. Latif-Shabgahi, J. M. Bass, and S. Bennett, “A Taxonomy for Software Voting

Algorithms Used in Safety-Critical Systems,” IEEE Transactions on Reliability, vol. 53,

no. 3, pp. 319–328, 2004.

[125] D. Hou, H. He, P. Huang, G. Zhang, and H. Loaiciga, “Detection of water-quality

163

contamination events based on multi-sensor fusion using an extented Dempster–Shafer

method,” Measurement Science and Technology, vol. 24, no. 5, pp. 1–18, May 2013.

[126] Q. Chen and U. Aickelin, “Anomaly Detection Using the Dempster-Shafer Method,” in

Proceedings of the International Conference on Data Mining (DMIN 2006), 2006, pp.

232–240.

[127] T. M. Chen and V. Venkataramanan, “Dempster-Shafer theory for intrusion detection in

ad hoc networks,” IEEE Internet Computing, vol. 9, no. 6, pp. 35–41, 2005.

[128] Y.T. Liu, N.R. Pal, A. Marathe, and C.T. Lin, “Weighted Fuzzy Dempster-Shafer

Framework for Multi-Modal Information Integration,” IEEE Transactions on Fuzzy

Systems, vol. PP, no. 99, pp. 1–16, 2017.

[129] W. H. Jianhua Li and Q. Gao, “Intrusion Detection Engine Based on Dempster-Shafer’s

Theory of Evidence,” in International Conference on Communications, Circuits and

Systems Proceedings, 2006, vol. 2, no. 2003, pp. 1627–1631.

[130] R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and Big

Heterogeneous Data: a Survey,” Journal of Big Data, vol. 2, no. 3, pp. 1–41, 2015.

[131] E. Khalil, S. Enniari, and M. Zbakh, “Cloud computing architectures based multi-tenant

IDS,” in 2013 National Security Days (JNS3), 2013, pp. 1–5.

[132] R. Vanathi and S. Gunasekaran, “Comparison of Network Intrusion Detection Systems

in Cloud Computing Environment,” in International Conference on Computer

Communication and Informatics (ICCCI -2012), 2012, pp. 1–6.

[133] L. Coppolino, S. D’Antonio, L. Romano, and G. Spagnuolo, “An Intrusion Detection

System for Critical Information Infrastructures using Wireless Sensor Network

technologies,” in 2010 5th International Conference on Critical Infrastructure (CRIS),

2010, pp. 1–8.

[134] S. Taghavi Zargar, H. Takabi, and J. Joshi, “DCDIDP: A Distributed, Collaborative, and

164

Data-driven Intrusion Detection and Prevention Framework for Cloud Computing

Environments,” Proceedings of the 7th International Conference on Collaborative

Computing: Networking, Applications and Worksharing, pp. 332–341, 2011.

[135] Á. Macdermott, Q. Shi, M. Merabti, and K. Kifayat, “Security as a Service for a Cloud

Federation,” in The 15th Post Graduate Symposium on the Convergence of

Telecommunications, Networking and Broadcasting (PGNet2014), 2014, pp. 77–82.

[136] Á. Macdermott, Q. Shi, and K. Kifayat, “Distributed attack prevention using Dempster-

Shafer theory of evidence,” in ICIC 2017. Lecture Notes in Computer Science, vol

10363. In: Huang DS., Hussain A., Han K., Gromiha M. (eds) Intelligent Computing

Methodologies., 2017, pp. 203–212.

[137] B. Elmasri, “Detection of Denial Of Service Attacks on Application Layer Protocol,”

University of Surrey, UK, 2014.

[138] V. Christodoulou and B. Yaxin, “A Combination of CUSUM-EWMA for Anomaly

Detection in Time Series Data,” in IEEE Conference on Data Science and Advanced

Analytics (DSAA), 2015, pp. 1–8.

[139] C. Ding, Y. Chen, T. Xu, and X. Fu, “CloudGPS : A Scalable and ISP-Friendly Server

Selection Scheme in Cloud Computing Environments,” in IEEE 20th International

Workshop on Quality of Service., 2012, pp. 5–13.

[140] G. Hu, W. P. Tay, and Y. Wen, “Cloud Robotics: Architecture, Challenges and

Applications,” IEEE Network, no. May/June, pp. 21–28, 2012.

[141] S. Meng et al., “Reliable State Monitoring in Cloud Datacenters,” in 2012 IEEE Fifth

International Conference on Cloud Computing, 2012, pp. 951–958.

[142] M. Mechtri, D. Zeghlache, E. Zekri, and I. J. Marshall, “Inter and intra Cloud

Networking Gateway as a service,” in 2013 IEEE 2nd International Conference on

Cloud Networking (CloudNet), 2013, pp. 156–163.

165

[143] C.-C. Liu, “Challenges and Opportunities of Electric Energy Systems of the Future,”

Dublin, 2012.

[144] S. Bharadwaja, W. Sun, M. Niamat, and F. Shen, “Collabra: A Xen Hypervisor Based

Collaborative Intrusion Detection System,” 2011 Eighth International Conference on

Information Technology: New Generations, pp. 695–700, Apr. 2011.

[145] F. F. Alruwaili and T. A. Gulliver, “CCIPS : A Cooperative Intrusion Detection and

Prevention Framework for Cloud Services,” International Journal of Latest Trends in

Computing, vol. 4, no. 4, pp. 151–158, 2013.

[146] C. Siaterlis, B. Maglaris, and C. C. N. General-, “Towards Multisensor Data Fusion for

DoS detection,” in 2004 ACM symposium on Applied Computing, 2004, pp. 439–446.

[147] A. Josang and S. Pope, “Dempster’s Rule as Seen by Little Coloured Balls,”

Computational Intelligence, vol. 28, no. 4, pp. 453–474, 2012.

[148] D. J. Bucci, S. Acharya, T. J. Pleskac, and M. Kam, “Subjective confidence and source

reliability in soft data fusion,” in 48th Annual Conference on Information Sciences and

Systems, (CISS 2014), 2014, pp. 1–6.

[149] W. Hurst and Á. MacDermott, “Evaluating the Effects of Cascading Failures in a

Network of Critical Infrastructures,” Inderscience International Journal of System of

Systems Engineering, vol. 6, no. 3, pp. 221–236, 2015.

[150] Boundless, “Winning an Election: Majority, Plurality, and Proportional

Representation,” Boundless Political Science Boundless, 2016. [Online]. Available:

https://www.boundless.com/political-science/textbooks/boundless-political-science-

textbook/campaigns-and-elections-8/elections-60/winning-an-election-majority-

plurality-and-proportional-representation-343-10694/. [Accessed: 01-May-2017].

[151] A. Alem, Y. Dahmani, and A. Hadjali, “On the use of Belief Functions to improve High

Performance Intrusion Detection System,” in 12th International Conference on Signal-

Image Technology & Internet-Based Systems, 2016, pp. 266–270.

166

[152] V. Nguyen and V. Huynh, “On Information Fusion in Recommender Systems Based-on

Dempster-Shafer Theory,” in IEEE 28th International Conference on Tools with

Artificial Intelligence, 2016, pp. 78–85.

[153] C. Siaterlis and B. Maglaris, “Towards multisensor data fusion for DoS detection,” in

2004 ACM symposium on Applied Computing, 2004, pp. 439–446.

[154] K. Hwang, S. Kulkareni, and Y. Hu, “Cloud Security with Virtualized Defense and

Reputation-Based Trust Mangement,” in 2009 Eighth IEEE International Conference

on Dependable, Autonomic and Secure Computing, 2009, pp. 717–722.

 [155] A. Botta, W. Donato, V. Perisco et al., “On the Integration of Cloud Computing and

Internet of Things,” in International Conference on Future Internet of Things and Cloud

(FiCloud), 2014, pp. 23-30.

167

Appendix

Further statistics on simulation devices

IP Processing Delay (sec)

Rank Object Name Minimum Average Maximum
Standard

Deviation

1, 2 Domain 1.Realm 1.R1 0.00002 0.000026 0.00014 0.00002289

3 Domain 2.Realm 2.R2 0.00002 0.000023 0.00005 0.00000690

4
Domain 3.Realm 3.User

Router
0.00002 0.00002 0.00002 0.00000077

5
Server Domain.Server

Realm.Server Router
0.00002 0.00002 0.00002 0.00000055

6
Broker.Broker

Realm.Broker Router
0.00002 0.00002 0.00002 0.00000057

IP processing day (sec)

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

Domain 1.Realm 1.R1Domain 2.Realm 2.R2Domain 3.Realm
3.User Router

Server
Domain.Server

Realm.Server Router

Broker.Broker
Realm.Broker Router

IP Processing Delay (sec)

Minimum Average Maximum Standard Deviation

168

Ethernet Delay (sec)

Rank Object Name Minimum Average Maximum
Standard

Deviation

1 Broker.Broker

Realm.Broker
0.00022 0.00022 0.00022 0.00000001

2 Server Domain.Server

Realm.infected_user_4
0.00020 0.00020 0.00021 0.00000173

3 Domain 3.Realm

3.user_4
0.000072 0.00018 0.0003 0.00011022

4 Domain 3.Realm

3.user_2
0.000080 0.00018 0.0003 0.00011021

5 Domain 3.Realm

3.user_1
0.000077 0.00017 0.0003 0.00010979

6 Server Domain.Server

Realm.Server
0.00015 0.00017 0.0002 0.00003755

7 Server Domain.Server

Realm.infected_user_19
0.00016 0.00016 0.0002 0.00000192

8 Domain 3.Realm

3.Cybil
0.000067 0.00016 0.0003 0.00010845

9 Domain 3.Realm

3.user_3
0.00007 0.00015 0.0003 0.00010604

10 Server Domain.Server

Realm.C2_1
0.00015 0.00015 0.0001 0.00000001

169

Ethernet delay (sec)

Point to point throughput (bits/sec)

Rank Object Name Minimum Average Maximum
Standard

Deviation

1 Server Domain.Server

Realm.Server <-> Server

Router [0] <--

60.000 2,661,335 18,366,169 6,059,989

2 node_0 <-> Server

Domain [0] -->
66.667 2,355,094 15,793,123 5,356,568

3 Domain 1.Realm 1.S1 <-

> R1 [0] -->
0.000 2,051,798 14,099,491 4,698,868

4 Domain 2.Realm 2.S3 <-

> R2 [0] -->
0.000 1,429,394 9,604,800 3,260,290

5 Domain 3.Realm 3.User

Router <-> S2 [0] <--
0.000 802,289 5,352,178 1,811,553

6 node_0 <-> Domain 3 [0]

<--
50.000 789,493 5,273,106 1,785,675

7 Domain 1 <-> node_0 [0]

-->
50.000 782,883 5,260,067 1,785,908

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

Ethernet Delay (sec)

Minimum Average Maximum Standard Deviation

170

8 node_0 <-> Domain 2 [0]

<--
33.333 782,863 5,260,067 1,785,471

9 Server Domain.Server

Realm.Server switch <->

Server Router [0] -->

0.000 270,774 2,789,839 696,731

10 Server Domain.Server

Realm.Server <-> Server

Router [0] -->

0.000 217,131 675,362 172,788

Point to point throughout (bits/sec)

0

5000000

10000000

15000000

20000000

Minimum Average Maximum Standard Deviation

Point to point throughout (bits/sec)

Server Domain.Server Realm.Server <-> Server Router [0] <--

node_0 <-> Server Domain [0] -->

Domain 1.Realm 1.S1 <-> R1 [0] -->

Domain 2.Realm 2.S3 <-> R2 [0] -->

Domain 3.Realm 3.User Router <-> S2 [0] <--

node_0 <-> Domain 3 [0] <--

Domain 1 <-> node_0 [0] -->

node_0 <-> Domain 2 [0] <--

Server Domain.Server Realm.Server switch <-> Server Router [0] -->

171

Pseudo code for exchange in collaborative intrusion detection schema

Within this section pseudo was written to determine the logic required for implementing the

message exchange between the entities in our model. This is a faster way of determining logic

prior to creating the final coded model.

//IP comes into the network

//if the IP is on black list

if(on black list){

 block user

}

//if the IP is on grey list

else if(on grey list){

 X = AssessActivity(); //determine what is being checked to assess the activity risk

 //return a value which will equate to risk

 //if percentage is over certain threshold - currently set to 70

 if(x = suspiciousActivity){

 //if percentage is at a high threshold

 if(suspiciousActivity = HIGH){

 if(at HIGH position on grey list){

 add to black list;

 contact Broker;

 }

 //contact Broker about suspiciousActivity to check against other server

lists

 call Broker;

 move to high position on grey list;

 }

 //if percentage is at a mid threshold

 else if(suspiciousActivity = MEDIUM){

 move to a mid position on grey list;

 }

 //if percentage is at a low threshold

172

 else if(suspiciousActivity = LOW){

 move to a lower position on grey list;

 }

 }

 if(non suspiciousActivity){

 //lower the IP's position on grey list (as their score is not currently suspicious)

 lower position on grey list;

 }

}

//if the IP is on white list

if(on white list){

 AssessActivity();

 if(non suspiciousActivity){

 //allow IP into network

 Allow access;

 }

 else{

 //do same checks which are in the grey list

 //will be in a function to be easy to call

 grey list checks;

 }

}

//if the IP is not on a list yet

else{

 AssessActivity();

 //if percentage is at a high threshold

 if(suspiciousActivity = HIGH){

 //contact Broker about suspiciousActivity to check against other server

lists

 call Broker;

 add to high position on grey list //while waiting for feedback

 }

 //if percentage is at a mid threshold

173

 else if(suspiciousActivity = MEDIUM){

 //contact Broker about suspiciousActivity to check against other server lists

 call Broker;

 add to mid position on grey list; //while waiting for Broker feedback

 }

 //if percentage is at a low threshold

 else if(suspiciousActivity = LOW){

 add to low position on grey list //while waiting for Broker

 }

 else{

 //if the activity is not suspicious, add IP to the white list

 add to white list;

 }

}

///////

//if Broker requests a check of grey list ->receive a check list request

check for IP on grey

//if the ip is on grey list

if(IP exists){

 //return the position on grey list

 //(risk value and any related information on it)

 return risk percentage (position on list)

}

else{

 //if the IP is not on the list

 return no information known

}

174

DS_ProofOfConcept Code

Broker.cs

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace DS_ProofOfConcept
{
 public class Broker
 {
 List<String[]> GreyList1;
 List<String[]> GreyList2;
 List<String[]> GreyList3;

 double S1A;
 double S1NA;
 double S1E;

 double S2A;
 double S2NA;
 double S2E;

 double S3A;
 double S3NA;
 double S3E;

 public Broker(String IP, double value)
 {
 Console.WriteLine("Retrieving Other Domain Belief Values...");
 //string _filePath = Path.GetDirectoryName(System.AppDomain.Current-
Domain.BaseDirectory);
 //StreamWriter GreyFile = new System.IO.StreamWriter(_filePath + @"\Cur-
rentListData\S" + Server + "GreyList.txt");
 GetOtherServerValues(IP);
 if (Program.Server == 1) { S1A = value /100; }
 if (Program.Server == 2) { S2A = value /100; }
 if (Program.Server == 3) { S3A = value /100; }

 Console.WriteLine("Domain Belief Values Retrieved.");
 Console.WriteLine("Values Returned From Grey List:");
 Console.WriteLine("CSP1 A: " + S1A + " CSP 2A: " + S2A + " CSP3 A: " +
S3A);
 Console.WriteLine("Calculating Outcome...");
 CombinationBelief();
 Console.WriteLine("Calculation Complete.");
 Console.WriteLine();
 }

 void CombinationBelief()
 {
 attackToThreeValue();

 double cooefficient = (S1A * S2NA) + (S1NA * S2A) + (S1A * S3NA) +
 (S1NA * S3A) + (S2A * S3NA) + (S2NA * S3A);
 double final = (1 / (1 - cooefficient)) * S1E * S2E * S3E;

175

 Console.WriteLine("CP1 A: " + S1A + " CSP1 NA: " + S1NA + " CSP1 E: " +
S1E);
 Console.WriteLine("CSP2 A: " + S2A + " CSP2 NA: " + S2NA + " CSP2 E: " +
S2E);
 Console.WriteLine("CSP3 A: " + S3A + " CSP3 NA: " + S3NA + " CSP3 E: " +
S3E);
 Console.WriteLine();
 Console.WriteLine("Outcome: " + final);
 Console.ReadLine();
 }

 public void attackToThreeValue()
 {
 if(S1A.ToString() == "0")
 {
 S1A = 0.5;
 S1NA = 0.4;
 S1E = 0.1;
 }
 else if (S1A.ToString() == "1.0")
 {
 S1NA = 0.0;
 S1E = 0.0;

 }
 else if (S1A.ToString() == "0.9")
 {
 S1NA = 0.05;
 S1E = 0.05;
 }

 else if (S1A.ToString() == "0.8")
 {
 S1NA = 0.1;
 S1E = 0.1;
 }

 else if (S1A.ToString() == "0.7")
 {
 S1NA = 0.2;
 S1E = 0.1;
 }

 else if (S1A.ToString() == "0.6")
 {
 S1NA = 0.3;
 S1E = 0.1;
 }
 else if (S1A.ToString() == "0.5")
 {
 S1NA = 0.3;
 S1E = 0.2;
 }
 else if (S1A.ToString() == "0.4")
 {
 S1NA = 0.4;
 S1E = 0.2;
 }
 else if (S1A.ToString() == "0.3")
 {
 S1NA = 0.6;
 S1E = 0.1;

176

 }
 else if (S1A.ToString() == "0.2")
 {
 S1NA = 0.3;
 S1E = 0.5;
 }
 else if (S1A.ToString() == "0.1")
 {
 S1NA = 0.6;
 S1E = 0.3;
 }
 else if (S1A.ToString() == "0.0")
 {
 S1NA = 0.5;
 S1E = 0.5;
 }
 else
 {
 Console.WriteLine("ERRORRRR ERRORRR");
 }

 if (S2A.ToString() == "0")
 {
 S2A = 0.5;
 S2NA = 0.2;
 S2E = 0.3;
 }
 else if (S2A.ToString() == "1.0")
 {
 S2NA = 0.0;
 S2E = 0.0;

 }
 else if (S2A.ToString() == "0.9")
 {
 S2NA = 0.05;
 S2E = 0.05;
 }

 else if (S2A.ToString() == "0.8")
 {
 S2NA = 0.1;
 S2E = 0.1;
 }

 else if (S2A.ToString() == "0.7")
 {
 S2NA = 0.2;
 S2E = 0.1;
 }

 else if (S2A.ToString() == "0.6")
 {
 S2NA = 0.3;
 S2E = 0.1;
 }
 else if (S2A.ToString() == "0.5")
 {
 S2NA = 0.3;
 S2E = 0.2;
 }

177

 else if (S2A.ToString() == "0.4")
 {
 S2NA = 0.4;
 S2E = 0.2;
 }
 else if (S2A.ToString() == "0.3")
 {
 S2NA = 0.6;
 S2E = 0.1;
 }
 else if (S2A.ToString() == "0.2")
 {
 S2NA = 0.3;
 S2E = 0.5;
 }
 else if (S2A.ToString() == "0.1")
 {
 S2NA = 0.6;
 S2E = 0.3;
 }
 else if (S2A.ToString() == "0.0")
 {
 S2NA = 0.5;
 S2E = 0.5;
 }
 else
 {
 Console.WriteLine("ERRORRR");
 }

 if (S3A.ToString() == "0")
 {
 S3A = 0.5;
 S3NA = 0.3;
 S3E = 0.2;
 }
 else if (S3A.ToString() == "1.0")
 {
 S3NA = 0.0;
 S3E = 0.0;

 }
 else if (S3A.ToString() == "0.9")
 {
 S3NA = 0.05;
 S3E = 0.05;
 }

 else if (S3A.ToString() == "0.8")
 {
 S3NA = 0.1;
 S3E = 0.1;
 }

 else if (S3A.ToString() == "0.7")
 {
 S3NA = 0.2;
 S3E = 0.1;
 }

 else if (S3A.ToString() == "0.6")
 {

178

 S3NA = 0.3;
 S3E = 0.1;
 }
 else if (S3A.ToString() == "0.5")
 {
 S3NA = 0.3;
 S3E = 0.2;
 }
 else if (S3A.ToString() == "0.4")
 {
 S3NA = 0.4;
 S3E = 0.2;
 }
 else if (S3A.ToString() == "0.3")
 {
 S3NA = 0.6;
 S3E = 0.1;
 }
 else if (S3A.ToString() == "0.2")
 {
 S3NA = 0.3;
 S3E = 0.5;
 }
 else if (S3A.ToString() == "0.1")
 {
 S3NA = 0.6;
 S3E = 0.3;
 }
 else if (S3A.ToString() == "0.0")
 {
 S3NA = 0.5;
 S3E = 0.5;
 }
 else
 {
 Console.WriteLine("ERROR");
 }
 }

 void GetOtherServerValues(String IP)
 {
 if (Program.Server != 3)
 {
 GreyList3 = PopulateCurrentWGBLists.readGreyCurrentInfo(3);
 //print out values of list to console and overwrite file
 for (int i = 0; i < GreyList3.Count; i++)
 {
 if (GreyList3[i][0] == IP)
 {
 S3A = Int32.Parse(GreyList3[i][1]) /100;
 }
 }
 }
 if (Program.Server != 2)
 {
 GreyList2 = PopulateCurrentWGBLists.readGreyCurrentInfo(2);
 //print out values of list to console and overwrite file
 for (int i = 0; i < GreyList2.Count; i++)
 {
 if (GreyList2[i][0] == IP)
 {

179

 S2A = Int32.Parse(GreyList2[i][1]) /100;
 }
 }
 }
 if (Program.Server != 1)
 {
 GreyList1 = PopulateCurrentWGBLists.readGreyCurrentInfo(1);
 //print out values of list to console and overwrite file
 for (int i = 0; i < GreyList1.Count; i++)
 {
 if (GreyList1[i][0] == IP)
 {
 S1A = Int32.Parse(GreyList1[i][1]) /100;
 }
 }
 }
 }
 }
}

180

PopulateCurrentWBGLists.cs

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace DS_ProofOfConcept
{
 class PopulateCurrentWGBLists
 {

 static String[] WhiteList;
 static List<String[]> GreyList = new List<String[]>();
 static String[] BlackList;

 public static string[] readWhiteCurrentInfo()
 {
 //gets file path position of current program directory
 string _filePath = Path.GetDirectoryName(System.AppDomain.Current-
Domain.BaseDirectory);
 _filePath = Directory.GetParent(Directory.GetPar-
ent(_filePath).FullName).FullName;
 //opens White List for reading from
 string wListRead = System.IO.File.ReadAllText(_filePath + @"\CurrentList-
Data\S1WhiteList.txt");

 //remove all spaces from file
 wListRead.Replace(" ", String.Empty);

 //string[] buffer = wListRead.Split(';');
 //WhiteList = new String[buffer.Length + 5];
 //WhiteList = buffer;

 //split up all IP's into string array
 WhiteList = wListRead.Split(';');

 return WhiteList;
 }

 public static string[] readBlackCurrentInfo()
 {
 //gets file path position of current program directory
 string _filePath = Path.GetDirectoryName(System.AppDomain.Current-
Domain.BaseDirectory);
 _filePath = Directory.GetParent(Directory.GetPar-
ent(_filePath).FullName).FullName;
 //opens Black List for reading
 string bListRead = System.IO.File.ReadAllText(_filePath + @"\CurrentList-
Data\S1BlackList.txt");

 //remove all spaces from file
 bListRead.Replace(" ", String.Empty);

 //split up all IP's into string array
 BlackList = bListRead.Split(';');

181

 return BlackList;
 }

 public static List<string[]> readGreyCurrentInfo(int Server)
 {
 //gets file path position of current program directory
 string _filePath = Path.GetDirectoryName(System.AppDomain.Current-
Domain.BaseDirectory);
 _filePath = Directory.GetParent(Directory.GetPar-
ent(_filePath).FullName).FullName;
 //opens Grey List for reading from
 string gListRead = System.IO.File.ReadAllText(_filePath + @"\CurrentList-
Data\S" + Server + "GreyList.txt");

 //removed all spaces from file
 gListRead.Replace(" ", null);
 string[] buffer = gListRead.Split(';');

 //for every value in the grey list 'buffer' array
 for (int i = 0; i < buffer.Length - 1; i++)
 {

 populateGreyList(buffer[i], i);

 }

 return GreyList;
 }

 public static void populateGreyList(String item, int i)
 {
 //remove all spaces from current value
 item.Replace(" ", null);
 //create array of the IP and threat level, being split at the ','
 string[] buffer = item.Split(',');
 //add these values to the list array 'GreyList'
 GreyList.Add(buffer);

 }

 }
}

182

Program.cs

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace DS_ProofOfConcept
{
 public static class Program
 {
 //public variables for all lists
 //Whitelist and Blacklist are arrays, whereas the Greylist is a list which
contain arrays (this will store two values currently).
 static String[] WhiteList;
 static List<String[]> GreyList;
 static String[] BlackList;
 public static int Server = 0;

 //Opens the console
 [DllImport("kernel32.dll", SetLastError = true)]
 [return: MarshalAs(UnmanagedType.Bool)]
 static extern bool AllocConsole();

 [STAThread]
 static void Main()
 {

 //shows console
 AllocConsole();
 while (true)
 {
 Console.WriteLine("Enter Server Number (1,2,3):");
 //Server = Int32.Parse(Console.ReadLine());

 //Populate three Lists in current class
 WhiteList = PopulateCurrentWGBLists.readWhiteCurrentInfo();
 GreyList = PopulateCurrentWGBLists.readGreyCurrentInfo(Server);
 BlackList = PopulateCurrentWGBLists.readBlackCurrentInfo();

 //Output request for user to console
 Console.WriteLine("Enter IP Address");
 //wait for user input
 String inputValue = Console.ReadLine();

 //split up using input at '.' to check if input is correct
 string[] llama = inputValue.Split('.');
 //while the amount of '.' is not equal to 4 (amount needed for accu-
rate IPv4)
 while (llama.Length != 4)
 {
 //repeat user request
 Console.WriteLine("Enter IP Address");
 //wait for user input
 inputValue = Console.ReadLine();
 //split user input at '.'

183

 llama = inputValue.Split('.');
 }
 //output current input and length for debugging
 Console.WriteLine(inputValue + " " + llama.Length);

 //make new instance for list checking
 ListChecking LC = new ListChecking();
 //check all lists for the ip and place or change position in lists if
needed
 String output = LC.ListCheck(WhiteList, BlackList, GreyList, input-
Value);
 //output the returned string from ListCheck
 Console.WriteLine(output);
 Console.WriteLine();

 //gets file path position of current program directory
 string _filePath = Path.GetDirectoryName(System.AppDomain.Current-
Domain.BaseDirectory);
 _filePath = Directory.GetParent(Directory.GetPar-
ent(_filePath).FullName).FullName;
 //opens White List file for writing
 StreamWriter WhiteFile = new System.IO.StreamWriter(_filePath +
@"\CurrentListData\S1WhiteList.txt");

 //print out values of list to console and overwrite file
 for (int i = 0; i < WhiteList.Length; i++)
 {
 //Console.Write(" White " + WhiteList[i]);

 if (i == 0)
 {
 WhiteFile.Write(WhiteList[i]);
 }
 else
 {
 WhiteFile.Write(";" + WhiteList[i]);
 }
 }
 //close the white file
 WhiteFile.Close();
 //Console.WriteLine();
 //opens Grey List file for writing to
 StreamWriter GreyFile = new System.IO.StreamWriter(_filePath + @"\Cur-
rentListData\S" + Server + "GreyList.txt");

 //print out values of list to console and overwrite file
 for (int i = 0; i < GreyList.Count; i++)
 {
 //Console.Write(" Grey " + GreyList[i][0]);
 GreyFile.Write(GreyList[i][0] + "," + GreyList[i][1] + ";");
 }
 //close the grey file
 GreyFile.Close();
 //Console.WriteLine();
 //opens Black List file for writing to
 StreamWriter BlackFile = new System.IO.StreamWriter(_filePath +
@"\CurrentListData\S1BlackList.txt");

 //print out values of list to console and overwrite file
 for (int i = 0; i < BlackList.Length; i++)
 {

184

 //Console.Write(" Black " + BlackList[i]);

 if (i == 0)
 {
 BlackFile.Write(BlackList[i]);
 }
 else
 {
 BlackFile.Write(";" + BlackList[i]);
 }
 }
 //close the black file
 BlackFile.Close();

 //read line holds the console in place until a key is pressed
 Console.ReadLine();
 }

 }

 //setting values of white list in this class, used when list is changed
 public static void setWhiteList(string[] WL)
 {
 WhiteList = WL;

 }
 //setting values of black list in this class, used when list is changed
 public static void setBlackList(string[] BL)
 {
 BlackList = BL;

 }
 /*public static void setGreyList(List<string[]> GL)
 {
 GreyList = GL;

 }*/
 }
}

ListChecking.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace DS_ProofOfConcept
{
 class ListChecking
 {

 //values decide what returned percentage equals which tier
 public int HIGHTHREAT = 70;
 public int MIDTHREAT = 40;
 public int LOWTHREAT = 20;

 //amount to increase threat level on grey list if threat detected
 //and in which tier

185

 public int highTeirIncreaseAmount = 50;
 public int midTeirIncreaseAmount = 20;
 public int lowTeirIncreaseAmount = 10;
 public int belowLowTierReduction = 5;

 //checking white and black lists for IP (done seperatly, use same method)
 public KeyValuePair<Boolean, int> checkthisList(string[] currentList, string
IP)
 {
 for(int i = 0; i< currentList.Length; i++)
 {
 if(currentList[i] == IP || currentList[i].Contains(IP))
 {
 return new KeyValuePair<Boolean, int>(true, i);
 }
 }
 return new KeyValuePair<Boolean, int>(false, 0);
 }

 //checking grey list for IP
 public KeyValuePair<Boolean,int> checkGreyList(List<string[]> greyList, string
IP)
 {

 for (int i = 0; i < greyList.Count; i++)
 {
 if (greyList[i][0] == IP || greyList[i][0].Contains(IP))
 {
 return new KeyValuePair<Boolean, int>(true, i);
 }
 }
 return new KeyValuePair<Boolean, int>(false, 0);
 }

 //checking lists trying to find if IP is on list and what threat it holds
 public string ListCheck(string[] WhiteList, string[] BlackList, List<string[]>
GreyList, string IP)
 {
 //scan all lists
 KeyValuePair<Boolean, int> BlackValue = checkthisList(BlackList, IP);
 KeyValuePair<Boolean, int> GreyValue = checkGreyList(GreyList, IP);
 KeyValuePair<Boolean, int> WhiteValue = checkthisList(WhiteList, IP);
 Console.WriteLine("Current List:");
 //if the IP is in the black list (Key will be true)
 if (BlackValue.Key)
 {
 Console.WriteLine("***BLACK***");
 //block IP
 return "Blocked User";

 }
 //if IP is in the grey list (Key will be true)
 else if(GreyValue.Key)
 {
 Console.WriteLine("***GREY***");
 //check for amount of threat detected
 int ThreatLevel = CheckThreat();
 //if the threat is within the high tier bracket for this attack
 if (ThreatLevel >= HIGHTHREAT)
 {

186

 //if the threat of IP is already above 70
 if(Int32.Parse(GreyList[GreyValue.Value][1]) > 70)
 {
 //make a new array of the new IP being added
 String[] array2 = { IP };
 //make new array the size of the Black List and new array list
to be the correct length
 String[] newArray = new String[BlackList.Length + ar-
ray2.Length];
 //combine black list and new array
 Array.Copy(BlackList, newArray, BlackList.Length);
 //combine old Black List and new values into the new array,
soon to become the black list
 Array.Copy(BlackList, 0, newArray, BlackList.Length, ar-
ray2.Length);

 //use method within the Program class to update value of Black
List to then be written
 //back to the black list file
 Program.setBlackList(newArray);

 //remove add to Black List
 Console.WriteLine("WARNING " + IP + " Added To Black List");
 //remove from grey list
 GreyList.RemoveAt(GreyValue.Value);
 //contact broker HERE
 return "Blocking User";
 }
 else
 {
 //otherwise change to a high threat status on grey list
 GreyList[GreyValue.Value][1] = Int32.Parse(GreyList[Grey-
Value.Value][1]) + highTeirIncreaseAmount + ""; ;
 Console.WriteLine(IP + " Threat Level increased to " +
GreyList[GreyValue.Value][1] + " on Grey List");
 return "User High Threat";
 }
 }
 //if the threat is within the Mid tier bracket for this attack
 else if (ThreatLevel >= MIDTHREAT)
 {
 //increase their threat status by the mid teir amount
 GreyList[GreyValue.Value][1] = Int32.Parse(GreyList[Grey-
Value.Value][1]) + midTeirIncreaseAmount + "";
 Console.WriteLine(IP + " Threat Level increased to " +
GreyList[GreyValue.Value][1] + " on Grey List");
 return "User Mid Threat";
 }
 //if the threat is within the Mid-tier bracket for this attack
 else if (ThreatLevel >= LOWTHREAT)
 {
 //increase their threat status by the mid teir amount
 GreyList[GreyValue.Value][1] = Int32.Parse(GreyList[Grey-
Value.Value][1]) + lowTeirIncreaseAmount + "";
 Console.WriteLine(IP + " Threat Level increased to " +
GreyList[GreyValue.Value][1] + " on Grey List");
 return "User Low Threat";
 }
 //if their threat is low
 else

187

 {
 //lower their threat status
 GreyList[GreyValue.Value][1] = Int32.Parse(GreyList[Grey-
Value.Value][1]) - belowLowTierReduction + "";
 Console.WriteLine(IP + " Threat Level decreased to " +
GreyList[GreyValue.Value][1] + " on Grey List");
 //if their threat status is below zero, they haven't caused is-
sues for a long time
 //remove them from grey list, add to white list
 if (Int32.Parse(GreyList[GreyValue.Value][1]) == 0)
 {
 //make a new array of the new IP being added
 String[] array2 = { IP };
 //make new array the size of the White List and new array list
to be the correct length
 String[] newArray = new String[WhiteList.Length + ar-
ray2.Length];
 //combine White List and new array
 Array.Copy(WhiteList, newArray, WhiteList.Length);
 //combine old White List and new values into the new array,
soon to become the White list
 Array.Copy(array2, 0, newArray, WhiteList.Length, ar-
ray2.Length);

 //use method within the Program class to update value of White
List to then be written
 //back to the White List file
 Program.setWhiteList(newArray);

 //add to white list
 //WhiteList[WhiteList.Length-1] = GreyList[Grey-
Value.Value][0].ToString();
 //remove from grey list
 GreyList.RemoveAt(GreyValue.Value);
 Console.WriteLine(IP + " Removed from Grey List");
 Console.WriteLine(IP + " Added to White List");
 return "No threat, Removed from Grey List, added to White
List";
 }
 return "No threat, User low level on Grey List.";
 }
 }
 //if IP is in the white list (Key will be true)
 else if (WhiteValue.Key)
 {
 Console.WriteLine("***WHITE***");
 //check threat level of current attack
 int ThreatLevel = CheckThreat();

 //if thread level is below the low threshold
 if (ThreatLevel <= LOWTHREAT)
 {
 //Allow Access
 return "Allow access, user on White List";
 }
 //otherwise there is an issue
 else
 {
 //if thread is over the High level tier
 if (ThreatLevel >= HIGHTHREAT)
 {
 //contact Broker

188

 //create buffer for adding IP to grey list with a high threat
list
 String[] buffer = { IP, ThreatLevel.ToString() };
 //add IP to grey list using buffer
 GreyList.Add(buffer);
 //remove IP from white list
 WhiteList.Except(new string[] {White-
List[WhiteValue.Value]}).ToArray();

 new Broker(IP, ThreatLevel);
 return "User added to Grey list for High risk";
 }
 //if threat is over the mid level tier
 else if (ThreatLevel >= MIDTHREAT)
 {
 //create buffer for adding IP to grey list with a high threat
list
 string[] buffer = { IP, midTeirIncreaseAmount.ToString()};
 //add IP to grey list using buffer
 GreyList.Add(buffer);
 //remove IP from white list
 WhiteList.Except(new string[] { WhiteList[WhiteValue.Value]
}).ToArray();
 return "User added to Grey list for Mid risk";
 }
 //if threat is over the low level tier
 else if (ThreatLevel >= LOWTHREAT)
 {
 //create buffer for adding IP to grey list with a high threat
list
 string[] buffer = { IP, lowTeirIncreaseAmount.ToString() };
 //add IP to grey list using buffer
 GreyList.Add(buffer);
 //remove IP from white list
 WhiteList.Except(new string[] { WhiteList[WhiteValue.Value]
}).ToArray();
 return "User added to Grey list for Low risk";
 }

 }
 }
 else
 {
 Console.WriteLine("***No List***");
 //check threat level of current attack
 int ThreatLevel = CheckThreat();

 //if threat level is below the low threshold
 if (ThreatLevel <= LOWTHREAT)
 {
 //make a new array of the new IP being added
 String[] array2 = { IP };
 //make new array the size of the White List and new array list to
be the correct length
 String[] newArray = new String[WhiteList.Length + array2.Length];
 //combine Whit list and new array
 Array.Copy(WhiteList, newArray, WhiteList.Length);
 //combine old White List and new values into the new array, soon
to become the White List
 Array.Copy(array2, 0, newArray, WhiteList.Length, array2.Length);

189

 //use method within the Program class to update value of Black
List to then be written
 //back to the black list file
 Program.setWhiteList(newArray);

 //Allow Access
 return "Allow access, user on White List";
 }
 //otherwise there is an issue
 else
 {
 //if threat is over the High level tier
 if (ThreatLevel >= HIGHTHREAT)
 {
 //contact Broker

 //create buffer for adding IP to grey list with a high threat
list
 String[] buffer = { IP, ThreatLevel.ToString() };
 //add IP to grey list using buffer
 GreyList.Add(buffer);
 new Broker(IP, ThreatLevel);

 return "User added to Grey list for High risk";
 }
 //if threat is over the mid level tier
 else if (ThreatLevel >= MIDTHREAT)
 {
 //create buffer for adding IP to grey list with a high threat
list
 string[] buffer = { IP, midTeirIncreaseAmount.ToString() };
 //add IP to grey list using buffer
 GreyList.Add(buffer);

 return "User added to Grey list for Mid risk";
 }
 //if threat is over the low level tier
 else if (ThreatLevel >= LOWTHREAT)
 {
 //create buffer for adding IP to grey list with a high threat
list
 string[] buffer = { IP, lowTeirIncreaseAmount.ToString() };
 //add IP to grey list using buffer
 GreyList.Add(buffer);

 return "User added to Grey list for Low risk";
 }
 }
 }

 return "Error";
 }

 public int CheckThreat()
 {
 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine();

 //do calculation!!

190

 Random rand = new Random();
 double random = rand.NextDouble();
 double NoAttack = 0;
 double Either = 0;

 string Attack = string.Format("{0:0.0}", Math.Truncate(random * 10) / 10);
 Console.WriteLine("Threat Score " + double.Parse(Attack) * 100);

 if(Attack == "1.0")
 {
 NoAttack = 0.0;
 Either = 0.0;

 }
 else if(Attack == "0.9")
 {
 NoAttack = 0.05;
 Either = 0.05;
 }

 else if (Attack == "0.8")
 {
 NoAttack = 0.1;
 Either = 0.1;
 }

 else if (Attack == "0.7")
 {
 NoAttack = 0.2;
 Either = 0.1;
 }

 else if (Attack == "0.6")
 {
 NoAttack = 0.3;
 Either = 0.1;
 }
 else if (Attack == "0.5")
 {
 NoAttack = 0.3;
 Either = 0.2;
 }
 else if (Attack == "0.4")
 {
 NoAttack = 0.4;
 Either = 0.2;
 }
 else if (Attack == "0.3")
 {
 NoAttack = 0.6;
 Either = 0.1;
 }
 else if (Attack == "0.2")
 {
 NoAttack = 0.3;
 Either = 0.5;
 }
 else if (Attack == "0.1")
 {
 NoAttack = 0.6;
 Either = 0.3;
 }

191

 else if (Attack == "0.0")
 {
 NoAttack = 0.5;
 Either = 0.5;
 }
 else
 {
 Console.WriteLine("ERROR");
 }

 double attackPlausability = 1 - NoAttack;
 double NoAttackPlausability = 1 - double.Parse(Attack);

 //Console.WriteLine("Hmmm!!!! " + Attack);
 String NoAttackPlausabilityFormatConversion;
 if(NoAttackPlausability == 1)
 {
 NoAttackPlausabilityFormatConversion = "1.0";
 }
 else
 {
 NoAttackPlausabilityFormatConversion = NoAttackPlausabil-
ity.ToString();
 }

 Console.WriteLine("---
------------------");
 Console.WriteLine("---Hypothesis-||--Mass--||---Belief--||-Plausibil-
ity||");
 Console.WriteLine("-----Attack --||-- " + Attack + " || " + Attack + "
|| " + attackPlausability + " ||");
 Console.WriteLine("---No Attack -||-- " + NoAttack + " || " + NoAttack
+ " || " + NoAttackPlausabilityFormatConversion + " ||");
 Console.WriteLine("-----Either --||-- " + Either + " || " + "1.0" + "
|| " + "1.0" + " ||");
 Console.WriteLine("---
------------------");

 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine();

 return Convert.ToInt32(Double.Parse(Attack)*100);
 }

