Meloro, C, Hudson, A and Rook, L

Feeding habits of extant and fossil canids as determined by their skull geometry

http://researchonline.ljmu.ac.uk/id/eprint/7670/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
Feeding habits of extant and fossil canids as determined by their skull geometry

C. Meloro¹, A. Hudson¹ & L. Rook²

¹ Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
² Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italy

Keywords
Canidae; geometric morphometrics; skull shape; diet; hypercarnivore.

Abstract
The canids belong to one of the most prominent families of mammalian carnivores. Feeding adaptations of extant species is well documented by field observations; however, we are still missing palaeoecological insights for many enigmatic fossil specimens. We employ geometric morphometrics to quantify skull size and shape in extant and fossil members of the Canini tribe, inclusive of jackals and wolf-like taxa. Skull data are tested to identify correlates of dietary adaptations in extant species for predicting adaptations in fossils. Main vectors of shape variation correlate with the relative skull-palatal length, the position of the upper carnassial tooth and the anterior tip of the secondary palate. Allometry occurs in the palatal shape but size explains only a small fraction (about 4%) of shape variance. Although we quantified only palatal and tooth shape for the inclusion of fragmentary fossils, discriminant function analysis successfully classify extant Canini in dietary groups (small, medium and large prey specialist) with 89% of accuracy. The discriminant functions provide insights into many enigmatic specimens such as Eucyon adoxus (=small prey), fossil jackal-like from Koobi Fora formation (=small prey) and the Plio-Pleistocene Old World canid guild (Canis etruscus, C. arnensis and Lycaon falconeri). Clearly, both skull size and shape are excellent predictors of feeding habits in Canini thus also provide information about fossil taxonomic affinities.

Introduction
Members of the family Canidae have successfully invaded every continent, except Antarctica, occupying a multitude of ecological niches, which is a testament to their adaptability in the present and in the past (Sillero-Zubiri, Hoffmann & Macdonald, 2004). The most updated molecular phylogeny (Lindbald-Toh et al., 2005) identified distinct clades within the Canidae: the redfox-like clade, the South American clade, the wolf-like clade and the grey and island fox clade. This study will focus on the wolf-like clade (tribe Canini), which exhibit one of the most complete fossil record in the Old World (Tedford, Taylor & Wang, 1995; Tedford, Wang & Taylor, 2009). Tedford et al. (2009) recently provided a morphological phylogeny merging both extant and fossil species, although functional morphology of many enigmatic fossil specimens is still obscure and difficult to characterize (e.g. the genus Eucyon, or the wolf-like Canis etruscus; Cherin et al., 2014).

The wolf-like clade had an explosion of forms during the Plio-Pleistocene so that biochronology considers such a proliferation of species in the Old World into a separate faunal event (the wolf event, c. 2.0 Ma; Azzaroli, 1983; Azzaroli et al., 1988; Torre et al., 1992, 2001; Rook & Torre, 1996; Sardella & Palombo, 2007; Rook & Martinez-Navarro, 2010; Sotnikova & Rook, 2010). Palaeoecology of many of these canids represented by a coyote-like (C. arnensis), a small wolf-like (C. etruscus) and an African hunting dog-like (Lycaon falconeri) was pioneered by Kurtén (1974) and Palmqvist, Arribas & Martinez-Navarro (1999) and later reconsidered by Meloro (2011) in a study on mandible shape. Here we aim to investigate skull shape that is expected to provide better insights into feeding ecology of extant, hence fossil Canini.
Hignst-Zaher & Astúa, 2013) and the canines are closer to the fulcrum, both creating a more powerful bite force (Christiansen & Adolfsen, 2005; Christiansen & Wroe, 2007). This is interpreted as an adaptation to kill large prey and can be detected in living and extinct canid tribes (Van Valkenburgh & Koenig, 1993; Van Valkenburgh et al., 2003; Andersson, 2005; Slater, Dumont & Van Valkenburgh, 2009).

Early morphometric attempts on Canidae general morphology already elucidated cophenetic similarities in relation to their taxonomy and ecology (Clutton-Brock, Corbet & Hills, 1976). By focusing on palatal and upper teeth morphology with geometric morphometric techniques, we intend to capture both size and shape aspects relevant to interpret fossil species. Geometric morphometrics has the advantage of allowing clear data visualization in multivariate shape space (Adams, Rohlf & Slice, 2004, 2013; Lawing & Polly, 2009). In addition, shape distances can be employed to infer morphological similarities: this is a straightforward way to compare data between living and fossil specimens (Caumul & Polly, 2005; Meloro et al., 2008; Meloro, 2011). Due to the tendency in canids of increasing body mass towards their evolution in relation to ecological feeding specialization (Van Valkenburgh, Wang & Damuth, 2004), we will also explore skull size as possible proxy for predicting diet in extant and fossil species.

Materials and methods

Sample size

Skulls belonging to 102 specimens (85 extant and 17 fossils) were included in this study (Supporting Information Appendix S1). Our sample is representative of the broad diversity within the *Canis* clade including jackals and wolf-like ecomorphs (nine extant and 10 fossil species, Table 1). All extant specimens belong to wild captured individuals. Both male and female skulls were used indiscriminately because sexual dimorphism is considered a negligible source of variance to infer dietary adaptations from the skulls. Indeed, sexual dimorphism within canids is generally small (Gittleman & Van Valkenburgh, 1997) and the gender is unknown for many fossil specimens.

For fossil species, we used the nomenclature finalized by Tedford et al. (2009). The small genera *Eucyon* and *Cynotherium* (with the species *Eucyon adoxus* and *Cynotherium sardous*) were also considered for their unequivocal affinities with extant *Canis*-like species (Lyras et al., 2006; Rook, 1992, 2009).

Data capture

Digital photographs were collected on skulls positioned in ventral view by Meloro using a Nikon 995 at a 1-metre distance. A spirit level was positioned on the palate of the skull to ensure parallelism between camera optical plan and the flattest region of the skull. On each skull, 15 landmarks were recorded by Hudson in the palate region to capture details of tooth and cusp positioning using the software tpsDig2 ver. 2.17 (Rohlf, 2013a; Fig. 1). Landmarks 1–2 record the width of the incisor arch, 3–4 the relative size of canine, landmark 5 is at the anterior tip of P3, 6 to 10 relative size of the upper carnassial (P4) together with the positioning of the main cusps, 10–14 covers the M1 morphology and landmark 15 is the most posterior point delimiting the end of the palate.

Cusp positions were recorded on P4 and M1 as good proxy for dietary adaptations but also to understand possible phylogenetic affinities between extant and fossil taxa (cf. Rook & Torre, 1996; Brugal & Boudadi-Maligne, 2010). The posterior part of the skull and the zygomatic arch were not covered by landmarks because they were not present in many of the analysed fossils.

Intra-individual error in landmarking was assessed using three landmarked replicas for three specimens. There were no differences in the variance of coordinates’ values between replicas [analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA) $P > 0.9$].

Geometric morphometrics

Landmark coordinates were aligned using generalized Procrustes superimposition (Rohlf & Slice, 1990) with the software tpsRelw ver. 1.53 (Rohlf, 2013b). The software

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Skull sample sizes of extant and fossil canid species together with assigned dietary grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Status</td>
</tr>
<tr>
<td>Canis lupus*</td>
<td>Extant</td>
</tr>
<tr>
<td>Canis dingo</td>
<td>Extant</td>
</tr>
<tr>
<td>Canis latrans</td>
<td>Extant</td>
</tr>
<tr>
<td>Canis aureus</td>
<td>Extant</td>
</tr>
<tr>
<td>Canis adustus</td>
<td>Extant</td>
</tr>
<tr>
<td>Canis mesomelas</td>
<td>Extant</td>
</tr>
<tr>
<td>Canis simensis</td>
<td>Extant</td>
</tr>
<tr>
<td>Cuon alpinusb</td>
<td>Extant</td>
</tr>
<tr>
<td>Lycaon pictus</td>
<td>Extant</td>
</tr>
<tr>
<td>Eucyon adoxus</td>
<td>Fossil</td>
</tr>
<tr>
<td>Cynotherium sardous</td>
<td>Fossil</td>
</tr>
<tr>
<td>Canis africanus</td>
<td>Fossil</td>
</tr>
<tr>
<td>Canis antonii</td>
<td>Fossil</td>
</tr>
<tr>
<td>Canis arvensis</td>
<td>Fossil</td>
</tr>
<tr>
<td>Canis chilensis</td>
<td>Fossil</td>
</tr>
<tr>
<td>Canis dirus</td>
<td>Fossil</td>
</tr>
<tr>
<td>Canis etruscus</td>
<td>Fossil</td>
</tr>
<tr>
<td>Canis cf. mesomelas</td>
<td>Fossil</td>
</tr>
<tr>
<td>Canis mosbachensis</td>
<td>Fossil</td>
</tr>
<tr>
<td>Canis lupus (Grotta Romanelli)</td>
<td>Fossil</td>
</tr>
<tr>
<td>Canis lupus (Spain)</td>
<td>Fossil</td>
</tr>
<tr>
<td>Lycaon falconeri</td>
<td>Fossil</td>
</tr>
</tbody>
</table>

a Includes subspecies (*Canis lupus gigas* and *Canis lupus pambasileus*).

bIncludes subspecies (*Cuon alpinus dukhnensis* and *Cuon alpinus javanicus*). Small, mesocarnivore feeding on small prey; Medium, mesocarnivore feeding on medium prey; Large, hypercarnivore feeding on large prey.
performed three operations: translation, rotation and scaling to transform the original 2D coordinates of landmarks into shape coordinates. A principal component analysis of the covariance matrix of the shape coordinates was then computed. Shape variation along each principal component axis was visualized using a thin-plate spline (Bookstein, 1991). Thin-plate splines visualize shape variation assuming that the average consensus configuration has no deformation and line on an infinite metal plane whose bending describe shape changes (Zelditch, Swiderski & Sheets, 2004).

The size of landmark configuration was extrapolated from the raw coordinates via centroid size (\(\text{centroid size} = \sqrt{\text{mean squared distance from each landmark to centroid of the landmark configuration}} \) Bookstein, 1989). In order to scale centroid size to the mean, natural log transformation was used (cf. Meloro et al., 2008).

Feeding categories

For each extant species, a feeding category was assigned following multiple references. Van Valkenburgh (1989) grouped extant carnivores into three dietary categories: hypercarnivores, mesocarnivores and hypocarnivores. However, because there are no hypocarnivores in the sample for this study, Palmqvist et al.’s (1999) grouping of canids was also considered. Using both categorizations as a template, diet categories were assigned as small prey (mesocarnivore, mostly feeding on rodents and lagomorphs), medium prey (mesocarnivore that can include a wider range of prey sizes) and large prey (hypercarnivore, mostly preying on large ungulates). Extant jackals and the Ethiopian wolf belong to the category ‘small prey’, while the grey wolf, the African wild dog and the dhole are categorized as ‘large prey’ (cf. Slater et al., 2009). The coyote and the dingo were categorized as ‘medium prey’ because of their broad adaptability in also hunting large prey in group (Gese, Rongstad & Mytton, 1988; Lingle, 2002; Sillero-Zubiri et al., 2004; Christiansen & Wroe, 2007; Letnic, Ritchie & Dickman, 2012).

Data analyses

Differences in skull size and shape due to diet were preliminary tested using ANOVA and parametric and non-parametric MANOVA. Due to the large number of independent shape variables, a selection of principal components (the one explaining at least 95% of variance) was employed to validate MANOVA models based on the full set of shapes (cf. Meloro & O’Higgins, 2011).

Additionally, allometry was tested in order to identify the possible influence of size on shape data (Mitteroecker et al., 2013). A multivariate regression was employed to identify and visualize allometric signal in the whole sample of 102 skulls using thin-plate spline.

Discriminant function analysis was employed to provide prediction for fossil species using diet categories as factor and shape coordinates and natural log centroid size as independent variables. To considerably reduce the number of independent dietary predictors, a stepwise procedure was applied: a variable was entered into the model if the probability of its \(F \)-value was bigger than 0.05 and was removed if the probability was less than 0.10. Meloro (2011) consistently demonstrated the importance of including mandibular size as a predictor of feeding adaptation in Carnivora. We expect this to also hold for skull size in canids.

An UPGMA cluster analysis was employed to identify cophenetic similarities between fossil and extant specimens. Averaged shape coordinates were first computed for each extant and fossil species, then Procrustes distances calculated to construct the clustering UPGMA tree (cf. Meloro, 2011).

![Figure 1](image-url) Skull of *Canis adustus* showing the landmark locations placed on each specimen. (1) tip of the snout defined by middle point between the first two frontal incisors, (2) posterior tip of the third incisor, (3) anterior tip of canine, (4) posterior tip of canine, (5) anterior tip of the third premolar, (6, 7, 8, 9, 10) outline of carnassial tooth, (11, 12) cusps of molar, (13) anterior tip of molar, (14) posterior tip of molar, (15) junction of the stiff and hard palate. The distance between 3 and 4 describe canine length. The distance between 6 and 10 describe carnassial tooth length. The distance between 1 and 15 describes snout length. Deviation of the specimens analysed from the consensus configuration of landmarks are shown below the skull. Scale bar equals 1 cm.
Results

Skull shape

Variability in skull shape is significantly reduced by using principal component analysis, with the first 12 PC axes explaining 95.26% of total shape variance. PC1 and PC2 explain 45.76% and 15.60% of total variance, respectively, and their combination show substantial differences between small jackal-like and large wolf-like species (Fig. 2). At the extreme negative of PC1, *C. simensis* is represented by a thin and slender palate with relatively short incisor row and canine but long snout, on the opposite of PC1 *L. pictus* together with *Cuon* share a much larger palate with relatively larger upper carnassial and M1. PC2 is highly influenced by position of landmark 15 and separates jackals and hypercarnivore *Lycaon-Cuon* from grey wolf and coyote. Fossil canids are evenly spaced in different areas of the morphospace and tend generally to occupy less extreme scores with the exception of *L. falconeri* (at the extreme positive PC1 and negative PC2).

MANOVA shows significant differences between diet in skull shape (represented by the first 12 PCs; Wilk’s lambda = 0.164, $F = 8.677$, d.f. = 24, 142, $P < 0.0001$). Same applies when non-parametric MANOVA is computed after permuting Euclidean distances between dietary groups 9999 times ($F = 16.74$, $P < 0.0001$).

Skull shape differs significantly also between dietary categories (Wilk’s lambda = 0.050, $F = 3.88$, d.f. = 52, 58, $P < 0.0001$).

Skull size and allometry

Skull size (here represented by ln centroid size of the landmark configuration) was normally distributed across dietary categories (P-values after Kolmogorov–Smirnoff always > 0.06). This allowed us to perform an ANOVA test that shows significant differences between small, medium and large prey consumers ($F = 22.963$, d.f. = 2, 82, $P < 0.0001$; Fig. 3a). Due to significant differences in homogeneity of variance test (Levene statistic 5.702, d.f. = 2, 82, $P = 0.005$), Dunnett’s T3
was employed. This test shows significant differences in size between all the diet categories ($P < 0.025$ in all pairwise comparisons).

A significant allometric component was also detected even if ln centroid size explains only a very small fraction of total shape variance (Wilks’ lambda $= 0.343$, $F = 5.531$, d.f. = 26, 75, $P < 0.0001$; 4.11% of variance). Indeed, deformation grids depicted only a small deformation occurring mostly in the canine and upper carnassial (P4) areas (Fig. 3b). A closer inspection of allometry shows significant negative correlation only between ln CS and PC3 (10.12% of variance, Spearman $r = -0.541$), PC8 (1.85% of variance, Spearman $r = -0.281$) and PC10 (1.20% of variance, Spearman $r = -0.119$).

Dietary discrimination

After stepwise, only five out of 30 shape coordinates and ln centroid size were selected by the discriminant function analysis. Two significant discriminant functions (DFs) were extracted to differentiate dietary groups (DF1: 93.8% variance, Wilk’s lambda $= 0.113$, $F = 173.66$, d.f. = 12, $P < 0.0001$; DF2: 6.2% variance, Wilk’s lambda $= 0.733$, $F = 24.691$, d.f. = 5, $P < 0.0001$).

Percentage of correctly classified cases after cross-validation is high (small = 86.5%; medium = 86.7% and large = 93.9%).

DF1 was positively and significantly loaded on ln CS ($r = 0.314$), Procrustes coordinate X of the landmark 6 (the anterior tip of P4, $r = 0.251$), and negatively on coordinate Y for landmark 1 (tip of the snout, $r = -0.586$). DF2 correlated positively with coordinate Y of landmark 3 (anterior tip of the canine, $r = 0.841$) and negatively on coordinate X of landmark 11 (M1 paracone, $r = 0.478$), Y for landmark 13 (anterior tip of M1, $r = 0.398$).

The deformation grids were obtained after regressing DF scores versus shape coordinates. They show how species adapted to kill large prey at the positive DF1 are characterized by a shorter and thicker muzzle opposite to species adapted to kill small prey (Fig. 4). Medium prey specialists exhibit intermediate DF1 scores and negative DF2 scores. They are discriminated by ‘small prey’ due to a thin and long muzzle with relatively bigger carnassial (P4) and M1 (Fig. 4).

Fossil specimens are predicted to cover the whole range of dietary adaptations of extant Canini (Table 2). Species represented by multiple specimens are sometimes predicted into more than one category with the exception of the dire wolf for which both specimens are consistently categorized as predators of large prey. *Eucyon adoxus*, *Cynotherium sardous*, *C. cf. mesomelas* and one specimen of *C. arnensis* and one of *C. etruscus* follow within the ‘small prey’ category, while *C. lupus* from Romanelli, one specimen of *C. arnensis* and one of *C. chihliensis* follow within category ‘medium prey’. All large fossil hypercarnivores are classified as ‘large’ (Table 2).

Clustering

The UPGMA based on Procrustes distances yields a cophenetic cluster with a high cophenetic correlation...
(r = 0.882). There is a mix of ecological and taxonomic signal with some fossil taxa clustering together due to their unique affinities (e.g. *E. adoxus* with *C. cf. mesomelas* from Olduvai Gorge). The fossil hunting dog *L. falconeri* is clearly an out-group that allows identifying three main groups: (1) a cluster showing the affinity of the extant Ethiopian wolf (*C. simensis*) with the prehistoric *C. arnensis*; (2) a cluster that separates extant jackal-like forms (inclusive of the fossil hypercarnivore *C. antonii* and wolf-like *C. etruscus* and *C. mosbachensis*) from grey wolf cluster inclusive of the dingo and the dire wolf; (3) hypercarnivore cluster inclusive of fossil *C. africanus*, extant *Lycaon* and *Cuon* and a fossil grey wolf from Spain.

Discussion

With no doubt, skull size and shape of extant Canini can strongly be linked to their feeding habits (Van Valkenburgh & Koepfli, 1993; Van Valkenburgh *et al.*, 2003; Andersson, 2005; Slater *et al.*, 2009; Damasceno *et al.*, 2013). By investigating only the palate, we critically limited the amount of size and shape information, but demonstrate that this area is ecologically and taxonomically informative. Indeed, MANOVA and ANOVA show significant differences between feeding categories redefined to fit the broad dietary variation observed in the Canini tribe (Sillero-Zubiri *et al.*, 2004).

The palate of species adapted to hunt small prey is thin, longer and characterized by relatively shorter P4 and M1. All these adaptations can be observed in extant jackals and especially in the Ethiopian wolf (*C. simensis*) that occupy the extreme morphological variation on the first PC (Fig. 2). This confirms early morphometric observation by Rook & Azzaroli Puccetti (1996) and functional morphology by Slater *et al.* (2009). In contrast, the grey wolf, African hunting dog and the dhole cluster together in the morphospace (Fig. 2) for
their typical hypercarnivorous traits (Van Valkenburgh, 1991): a short and broad muzzle with larger incisors and canine (cf. Andersson, 2005) and relatively larger upper carnassial. All these features correlate with higher bite forces (Christiansen & Wroe, 2007; Damasceno et al., 2013), hence the ability to kill prey much larger than themselves. Not surprisingly, these morphologies are well separated from the other feeding groups, supporting the highest classification rate in the discriminant function analysis.

In agreement with previous findings on the mandible, it is not only palatal shape that is a good discriminator of diet in extant Canini but also size (cf. Meloro, 2011). The ecological continuum observed in Canini diet is reflected into skull morphology so that intermediate sized dogs (the coyote and the dingo) show intermediate skull shapes allowing them to expand feeding niches under different circumstances. Indeed, the medium size canid hunters possess relatively larger upper carnassial and M1 but retain a longer and thin snout (in the case of the coyote) or have a broad palate but not so extreme as in C. antonii or Lycan (the dingo in Fig. 2).

It is important to note that although an allometric component was detected in our data, it accounts only for a small percentage of shape variance. When size generally explains large portion of shape variance, it is common practice to use ‘size-free’ shape residuals, although this correction generally does not provide additional insights (cf. Meloro et al., 2014). Mitteroecker et al. (2013) recently argued the necessity to take size into account by actually adding, and not removing this variable from subsequent analyses. Our results confirm such assertion, thus supporting the combined interpretation of palatal size and shape to infer palaeoecology of fossil species.

Fossil genera Eucyon and Cynotherium cluster well within the morphological variation of extant Canini confirming previous taxonomic observations on their affinities (Rook, 2009; Lyras, van Der Geer & Rook, 2010). The principal component plot shows similar scores between these taxa and the extant jackals, both clustering within the range of the side-striped jackal (Fig. 2). Consequently, the dietary reconstruction as specialist hunter of small prey fits well with previous attempts for the Cynotherium (cf. Abbazzi et al., 2005; Lyras et al., 2006) and underlines the strong affinity of Eucyon (at least for the species E. adoxus) with jackals.

Dietary reconstruction for Plio-Pleistocene dogs confirms the puzzling evolution of the Etruscan wolf (C. etruscus) and the coyote-like C. arnensis while supporting the hypercarnivorous traits of L. falconeri, C. antonii and C. africanaus (cf. Rook, 1994; Tedford et al., 2009). Both C. etruscus and C. arnensis specimens occupy more than one dietary classification in agreement with previous studies (Meloro, 2011; Cherin et al., 2014; Flower & Shcreve, 2014). However, there is a clear size partitioning with the Arno dog being classified as ‘small-medium’, while only one C. etruscus is predicted as ‘small prey’ with the others grouped into ‘large prey’ category. Due to ecological character displacement, it is possible that morphological variation in these taxa was broad and influenced by presence or absence of larger competitors (García & Virgós, 2007).

Diet of the large American dire wolf fits consistently with previous palaeoecological reconstructions (Anyonge & Baker, 2006; Meloro, 2011, 2012), while new insights emerge for C. chihliensis from the lower Pleistocene of China. Tong, Hui & Wang (2012) identified a mosaic of features combining hypercarnivorous dentition with a relatively small size compared with the grey wolf. Consequently, the size constraint on hunting behaviour supports our prediction of C. chihliensis as an adaptable hunter within the ‘medium’ category (cf. dingo,
see also Fig. 2). For the middle Pleistocene *C. mosbachensis*, a large-size categorization also seems likely based on its morphofunctional similarity to the grey wolf (cf. Flower & Shreve, 2014). Diet prediction for the wolf of Romanelli cave also fits within the category ‘medium’. Although Sardella *et al.* (2014) confirmed its taxonomic affinity to the grey wolf, they also pointed out how its smaller size confounded previous taxonomic attempts of this species into golden jackal or *C. mosbachensis*. The grey wolf is highly flexible in size and ecology (Sillero-Zubiri *et al.*, 2004). Such flexibility has been observed in prehistoric specimens (Flower & Shreve, 2014) as well as ancestral forms supporting possible eceological differentiation in the past. Comfortably the fossil grey wolf from Spain is predicted as large prey specialist.

The enigmatic *Canis cf. mesomelas* from Koobi Fora deserves a separate note. Werdelin & Lewis (2005) and Werdelin & Peigné (2010) reviewed the rich Plio-Pleistocene East African carnivore fauna. Taxonomy of jackals is not clear yet and there seems to be evidence for different ecomorphotypes in hominin fossil sites. Our analysis suggests the Koobi Fora specimen being adapted for hunting small-sized prey. Interestingly, the UPGMA analysis (Fig. 5) supports shape similarity not with extant jackals, but with the Mio-Pliocene genus *Eucyon* suggesting that it was a distinct (but ecologically equivalent to the extant jackal) morphotype.

For the other taxa, the UPGMA cluster analysis shows a mixed signal based on shape data. P4 and M1 morphology are phylogenetic characters in Canini (Tedford *et al.*, 2009) although the presented UPGMA (Fig. 5) cannot disentangle the ecological from the phylogenetic signal (cf. Meloro, 2011).

The clustering of *C. africanus* within *Lycaon-Cuon* confirms the grouping proposed by Rook (1994). However, the palate of *L. falconeri* from Valdarno and that of *C. antonii* are highly distinct from *C. africanus*. Ecogeographical and temporal variation could explain such a pattern even if larger and more complete sample is needed to prove this assertion. The grouping of *E. adoxus* with the jackal from Koobi Fora suggests how distinct the morphology is from these Plio-Pleistocene forms with no extant relatives, even if their smaller size supports ecological similarities with jackals and coyotes. *Cynotherium* is also enigmatically positioned (although outside of the wolf cluster) while the cluster of *C. etruscus* with *C. adustus* also does not support the wolf phylogenetic hypothesis (cf. Tedford *et al.*, 2009). Interestingly, recent research on African jackals supports the identification of a North African wolf subspecies (*C. lupus lupaster*) that was morphologically ascribed to the golden jackal (Gaubert *et al.*, 2012), suggesting how puzzling morphological characters can be, not only in fossil but also in extant species. The Romanelli grey wolf is an out-group within the wolf cluster while the dire wolf is grouped with the dingo and grey wolf. Extant *Lycaon* and *Cuon* cluster together consistently with their hypercarnivorous feeding habits.

Members of Canini clearly occupied a broad range of ecological niches since the Pliocene then differentiating during Early Pleistocene with the evolution of modern taxa (Sotnikova & Rook, 2010). Such a rapid differentiation resulted in a high flexibility of ecomorphological skull traits whose combination provides robust palaeoecological insights.

Acknowledgements

We are grateful to the curators of different museum institutions for kindly providing access to osteological collections: P. Jenkins, L. Tomsett, R. Portela-Migues, A. Salvador, D. Hills, J.J. Hooker, P. Brewer and A. Currant (British Museum of Natural History, London); E. Cioppi (Museo di Storia Naturale Università di Firenze, Florence); M. Reilly and J. Liston (Hunterian Museum and Art Gallery, University of Glasgow, Glasgow); B. Sanchez, J. Morales, J. Cabarga and J. B. Rodriguez (Museo Nacional de Ciencias Naturales, Madrid); A. Kitchener (Royal Museum of Scotland, Edinburgh); E. Gilissen and W. Wendelen (Royal Museum for Central Africa, Tervuren); E. Mbua, M. Mungu, F. Nderitu and O. Mwebi (Kenya National Museum, Nairobi). Visits to the Museo Nacional de Ciencias Naturales y Royal Museum of Central Africa were supported by the Synthesys grants ‘Feeding habits in extinct European carnivores’ (ES-TAF 858) and ‘Ecomorphology of extinct African carnivores’ (BE-TAF 4901) to C. Meloro while part of the comparative analyses were supported by Synthesys grants ‘Craniodental morphometric analysis of living and fossil jackals’ FR-TAF 3311 and BE-TAF 3607 to L. Rook. Access to the collections of National Museum of Kenya was kindly granted by the Governments of Kenya and Tanzania and the Leverhulme Trust project ‘Taxon-Free Palaeontological Methods for Reconstructing..."
Environmental Change’ (F/00 754/C). Finally, we would like to thank two anonymous reviewers and the journal editor for their insights and care that considerably improved the quality of our manuscript.

References

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Appendix S1. List of extant and fossil skull specimens of Canidae.