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Abstract 

Sludge settleability is considered one of the main drawbacks of sequencing batch reactors. The 

aim of this study therefore is to improve sludge settleability by introducing a novel, two-stage 

settling sequencing batch reactor (TSSBR) separated by an anoxic stage. The performance of 

the TSSBR was compared with that of a normal operating sequencing batch reactor (NOSBR), 

operating with the same cycle time. The results show a significant improvement in sludge 

settleability and nitrogen compound removal rates for the TSSBR over the NOSBR. The 

average removal efficiencies of NH3-N, NO3-N and NO2-N have been improved from 76.6%, 

86.4% and 87.3% respectively for the NOSBR to 89.2%, 95.2% and 96% respectively for the 

TSSBR. In addition, the average SVI30 for the NOSBR has been reduced from 42.04 ml/g to 

31.17 ml/g for the TSSBR. After three months of operation, there was an overgrowth of 

filamentous bacteria inside the NOSBR reactor, while the morphological characteristics of the 

sludge inside the TSSBR reactor indicated a better and homogenous growth of filamentous 

bacteria. 

Keywords: Filamentous bacteria; Nitrogen removal; Sequencing batch reactor; Sludge 

settleability; Wastewater treatment. 
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1. Introduction 

The continuing increase in industrial activities worldwide, is having an adverse impact on the 

environment. If not committed to protective government regulations, industrial plants can 

discharge highly toxic wastewater consisting of environmentally noxious materials, this 

constituting a serious threat to both the environment and humans  [1]. There are a significant 

number of technologies available for the treatment of industrial wastewater; biological 

treatment is no exception. The latter is considered one of the most convenient technologies for 

the treatment of industrial wastewater due to its manufacturing and operational cost 

requirements. In addition to cost considerations, biological treatment has proved to be an 

effective technology for removing high concentrations of pollutants. 

One of the common biological technologies is the activated sludge process (ASP), used 

worldwide for the treatment of domestic and industrial wastewater [2]. It consists of several 

reactors in which microorganisms degrade incoming wastewater and in doing so, grow and 

produce new microorganisms. After degradation is achieved, these microorganisms are 

separated from the treated wastewater by sedimentation. In order to sustain an active and high 

concentration of solids for the reaction treatment, some sediment solids should be removed  

from the system, others  recycled back into the aeration basin [3]. One of the drawbacks of 

ASP is that it requires a large footprint for its  treatment tanks [4]. 

Often industries are located within cities which makes it difficult to build a treatment system 

containing several tanks. In this case, alternatives are available such as sequencing batch 

reactors (SBR). The SBR is an activated sludge process that consists of a sequence of stages 

which operate in one tank following a time sequence.  These stages are fill, react, settle, draw 

and idle. It has been reported that SBRs require less area, are flexible to operate and can be 

operated automatically [5, 6]. However, solid-liquid separation, or sludge bulking, is still one 

of the most problematic issues with SBRs and ASPs in general [7, 8]. 
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Researchers have reported several reasons for this problem such as difficulty in handling 

sudden changes in the operating parameters [9, 10], microbial clustering behaviour [11], the 

overgrowth of filamentous bacteria [12, 13], foaming [14, 15], pin-point sludge [15, 16], poor 

macrostructure [15], poor flocculation properties [17] and floc size distribution [13, 18]. 

To overcome settling problems, researchers have been evaluating a variety of solutions, one of 

which is granulation technology. In specific environments, microbial self-agglomeration forms 

a granular biological polymer known as aerobic granular sludge (AGS) [19, 20]. It has many 

advantages such as high degradation abilities, significant settling velocity, a regular shape and 

compact structure [4, 20]. However, the stability of AGS may decline after extended periods 

of operation [21, 22]. In addition to stability loss, granulation technology has other problems 

such as high operation temperatures, a  long acclimatisation time and inefficiency when subject 

to low concentrations of organic wastewater [23, 24]. This means that granulation technology 

requires more research to address these issues. A different approach to overcoming settling 

problems is the addition of chemicals before the settling stage to improve the settling 

performance [25, 26]. However, this procedure raises the cost of treatment and results in more 

complex and toxic residual which has a negative impact on the environment [27]. Along with 

granulation sludge technology and chemical conditioning, researchers have been modifying 

operation strategies and trialling the addition of more stages to SBR treatment cycles to 

improve the treatment performance without additional costs due to increased cycle time [4, 28, 

29].  

The aim of this study is to improve sludge settleability by introducing a novel, two-stage 

settling SBR. This system will focuses on three issues. The first is to create a shock after the 

first settling stage and allow small flocs to climb together, merge with large flocs and settle 

again in the second settling stage. Secondly, the effect of this procedure will be assessed to 

examine the elimination of filamentous accumulation and improvement in the settling stage. 
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Finally, verification will be sought of whether separating the two stages of settling with a short 

anoxic stage enhances nitrogen removal efficiency by improving the denitrification stage. 

2. Materials and methods 

2.1 Activated sludge characteristics and synthetic wastewater 

The returned activated sludge (RAS) used in this study was collected from a treatment plant at 

Sandon Docks, United Utilities, Liverpool, UK. Synthetic wastewater was prepared every week 

by mixing the chemicals in Table 1 [30, 31] with deionized water. All reagents used in this 

study were purchased from Sigma-Aldrich, UK. 

Table 1: Composition of synthetic wastewater 

Chemicals Chemical formula Concentration 

Glucose C6H12O6 500 mg/l 

Magnesium Sulphate Heptahydrate MgSO4.7H2O 5 mg/l 

Sodium Bicarbonate NaHCO3 200 mg/l 

Ammonium Chloride NH4Cl 25 mg/l 

Potassium Nitrate KNO3 25 mg/l 

Monobasic Potassium Phosphate  KH2PO4 5 mg/l 

Iron(III) Chloride Hexahydrate  FeCl3.6H2O 1.5 mg/l 

Calcium Chloride Dihydrate  CaCl2.2H2O 0.15 mg/l 

2.2 Experimental setup and operation of the treatment reactors 

Four Plexiglas reactors were used in this study as shown in Fig. 1. The total volume of each 

reactor is 6.5 litres, 5 litres the working volume of each. For the aeration stage, an air pump 

was used to supply air at the rate of 1l/m, air diffusers used inside each reactor to produce fine 

air bubbles. Overhead stirrers were used for each reactor to achieve the anoxic stages. Three 

electronic sensors (probes) were positioned in each reactor to monitor the pH, oxidation-

reduction potential (ORP) and temperature. Dissolved oxygen (DO) was measured manually 

using a HACH portable meter. A 100 litre storage tank was used to store synthetic wastewater. 

One reactor was used for the normal operation sequencing batch reactor (NOSBR), a second 

reactor used as the two-stage settle sequencing batch reactor (TSSBR). The operation cycles 

for the NOSBR and the TSSBR are shown in Table 2, the time allocated for each cycle was 



5 
 

achieved using the same cycle as Chen et al. [32] after optimising the aeration time to find the 

optimal operation of the system. All the probes and the software used for recording 

measurements were purchased from Pico Technology, UK. 

 

Fig. 1. The configuration of the laboratory-scale SBRs (AFM: air flow meter; AP: air pump; 

DO: dissolved oxygen probe; IWW: Influent wastewater; EWW: effluent wastewater; LFM: 

liquid flow meter; ORP: oxidation-reduction potential probe; PP: peristaltic pumps; OS: 

overhead stirrer; pH: pH probe; SD: sludge draw; T: temperature probe). 

 

Table 2: NOSBR and TSSBR operation cycles 

NOSBR 

5.5 h 

Anoxic 

Fill 

Aerobic 

React 

Settle  Draw & Idle 

Time (min) 15 240 60 15 

       

TSSBR 

5.5 h 

Anoxic 

Fill 

Aerobic 

React 

Settle I Anoxic 

mixing 

Settle II Draw & Idle 

Time (min) 15 240 15 15 30 15 
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The treatment reactors were filled with 1.5 litres of RAS and 3.5 litres of synthetic wastewater. 

The pH of the reactors was maintained between 6.5 and 8.5. The temperature between 6 and 

15 ◦C (ambient temperature), this range was taken according to the weather in the UK, where 

the study was performed; it is the same range for the treatment plant that provides the RAS for 

this study. The RAS acclimatisation stage lasted 20-30 days. The reactors were operated with 

between 2500 and 3500 mg/l of MLSS, the MLVSS/MLSS ratio 0.83. The solids retention time 

(SRT) for both NOSBR and TSSBR was kept at 20 days to achieve the optimal operation for 

the system. This time was maintained by controlling the waste activated sludge for both 

systems (NOSBR and TSSBR) at the same rate. Influent and effluent samples were taken from 

each reactor to study treatment efficiency and settling performance and to compare the results 

between the NOSBR and TSSBR. The reactors were operated continuously for 3 months, the 

sampling and analysis performed twice a week. 

2.3 Analytical methods 

The concentrations of chemical oxygen demand (COD), ammonia-nitrogen (NH3-N), nitrate-

nitrogen (NO3-N), nitrite-nitrogen (NO2-N), mixed liquor suspended solids (MLSS), settled 

sludge volume (SSV) and sludge volume index (SVI) for the influent and effluent samples 

were measured according to standard methods [33], after filtering the samples through 0.45 µm 

filter paper. COD and nitrogen compounds removal efficiency was tested two days per week 

over a two-month period.  The settling performance was also tested two days a week but over 

a three-month period. 

2.4 Morphological study and image analysis procedure for the sludge 

Sludge settling is a critical issue in most treatment plants as it can increase the time needed for 

treatment which increases operation costs. The sludge volume index is the most common 

indicator of sludge settleability [34]. SVI has been use widely to test sludge settleability in both 
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laboratory scale and pilot plant scale studies [35]. The settleability of activated sludge systems 

can also be monitored and controlled through microscopic observation [13, 36]. Quantitative 

image analysis is a promising technique which has been used to study different problems in 

activated sludge systems [2, 13, 37, 38]. In this research, SVI30 was used to determine settling 

performance along with a quantitative study for sludge samples which targeted the filamentous 

bacteria as this is considered one of the main reasons for sludge settling problems as mentioned 

earlier.  

A light microscope (AX10, Zeiss, Germany) with a colour video camera (PixeLINK, Canada), 

was used to examine the morphological characteristics of the sludge by capturing images and 

analysing them via image processing software. Over the period of the study, samples were 

taken from both treatment reactors every other day to record differences in filamentous growth 

and the diversity of sludge characteristics between the reactors to relate this to sludge 

settleability. Pictures were taken under 100x magnification. Two microscope slides were used 

for each sample, and for each slide, 10µL of the sample was poured onto the slide using a 

micropipette [13]. A total of 80 images were captured for each sample (40 images per slide) to 

avoid bias. A quantitative study of the captured images was conducted by studying the ratio of 

total filament length per MLSS value (TL/MLSS), and the ratio of total filament length per 

sample volume (TL/ Vol).  This was achieved using the same method as Mesquita et al. [39]. 

Image acquisition, background pre-treatment, aggregate segmentation, filamentous 

segmentation and debris elimination were carried out as shown in Fig. 2, using MATLAB 9 

(The Mathworks, Natick, USA), following Mesquita et al.’s [39] procedure. 
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Fig. 2. Schematic representation of the image processing program. (a) Image acquisition, (b) 

background pre-treatment, (c) aggregate segmentation, and (d) filamentous segmentation and 

debris elimination. 

3. Results and discussion 

Two SBR reactors were used to examine the efficiency of the treatment and settling 

performance; the NOSBR (5.5 h cycle time) and TSSBR (5.5 h cycle time). The cycle strategies 

for NOSBR and TSSBR are shown in Table 2.  

3.1 Efficiency of the removal of COD and nitrogen compounds 

The efficiency of the removal of COD for the NOSBR and TSSBR are shown in Fig. 3a. The 

average efficiency for the removal of COD in the NOSBR and TSSBR were 93.7% and 93.1%, 

respectively, the average effluent 54.83 mg COD/l and 53.7 mg COD/l, respectively. The 

similarities in efficiency for both reactors could be due to the same reaction time and operating 

conditions. The anoxic stage in the TSSBR enhanced the efficiency of the removal of nitrogen 
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compounds as shown in Figs. 3b, 3c and 3d. The average efficiency of removal of NH3-N, 

NO3-N and NO2-N for the NOSBR was 76.6%, 86.4% and 87.3%, respectively with an average 

effluent of 1.87 mg NH3-N/l, 2.41 mg NO3-N/l and 2.23 mg NO2-N/l. The average efficiency 

of the removal of NH3-N, NO3-N and NO2-N for the TSSBR was 89.2%, 95.2% and 96%, 

respectively with an average effluent of 0.85 mg NH3-N/l, 0.81mg NO2-N/l and 0.75 mg NO2-

N/l. The reason for this could be the enhancement of the nitrogen cycle by offering an anoxic 

stage between the two settling stages in the TSSBR. During the anoxic fill, ammonia can be 

decreased by half [40], and denitrification might be occurring due to low DO concentrations 

and the presence of a carbon source. Ammonium was oxidized completely during the aeration 

stage while the remaining nitrate and nitrite was removed during the second anoxic stage in the 

TSSBR as shown in Fig. 4.  This is the reason why the nitrogen compounds were removed 

more effectively in the TSSBR in comparison to the NOSBR. These results substantiate the 

work of Chen et al. [4] who studied a step-feeding SBR and achieved high nitrogen removal 

rates using two aeration phases. Chen et al. [4] also stated that the anoxic condition during the 

feeding stage could result in a high rate of denitrification which in turn, leads to high nitrogen 

removal efficiency.  
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Fig. 3. The removal efficiency of NOSBR and TSSBR for a) COD, b) NH3-N, c) NO3-N, d) 

NO2-N. 
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Fig. 4. The concentration of NH3-N, NO3-N and NO2-N during one treatment cycle of a) 

TSSBR, b) NOSBR 

3.2 Solids settling performance  

As shown in Figs. 5a and 5b, the settling ability of the TSSBR is clearly better than the NOSBR. 

The average SVI30 for TSSBR and NOSBR was 31.17 ml/g and 42.04 ml/g, respectively. The 

quantitative microscopic study for filamentous growth reported the same result as shown in 

Figs. 5c and 5d. The average TL/MLSS for TSSBR and NOSBR were 1475.33 mm/mg and 

1594.34 mm/mg, respectively while the average TL/Vol were 139.70 mm/µl and 221.79 
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mm/µl, respectively. By plotting the results of TL/MLSS and TL/Vol with SVI30 results, a 

highly significant relationship was found as shown in Figs. 5e, 5f, 5g and 5h, which means that 

the total length of filamentous bacteria affects sludge settleability. Similar findings were 

reported by Schuler and Jassby [41] and Jassby et al. [2] in that  they also found a single linear 

relationship between SVI and filament content. 

During the first month, there was no clear difference between the morphological characteristics 

of TSSBR and NOSBR, as seen in Fig. 6. However, in the second and third months, the settling 

ability of the NOSBR dropped due to the filamentous growth inside the reactor as seen in Fig. 

6.  The morphological characteristics of the sludge inside the TSSBR reactor have better and 

more homogenous growth of filamentous bacteria as also seen in Fig. 6. 
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Fig. 5. a) Settled sludge volume for NOSBR and TSSBR, b) Sludge volume index for NOSBR 

and TSSBR, c) Total filament length per MLSS for NOSBR and TSSBR, d) Total filament 

length per the sample volume for NOSBR and TSSBR, e) Total filament length per the sample 

volume vs. SVI for NOSBR, f) Total filament length per MLSS vs. SVI for NOSBR, g) Total 

filament length per the sample volume vs. SVI for TSSBR, h) Total filament length per MLSS 

vs. SVI for TSSBR. 
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Fig. 6. 100x microscopic images of sludge sample for NOSBR and TSSBR during different 

ages (1 week, 1 month, 2 months and 3 months). 
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Over the three-month operation time, the sludge was kept at between 12-18 days of age, the 

MLSS concentrations between 2500 mg/l and 3500 mg/l for both reactors as seen in Fig. 7. 

There are two potential reasons for the improvements seen in the TSSBR.  The first could be 

due to breaking down the long settling stage into two stages and producing a shock in the 

anoxic mixing stage after the first settling stage.  This led to a better compaction of settled and 

non-settled particles as well as the break down of filamentous bacteria.  In consequence, a 

better settle was achieved. The anoxic mixing stage, between the two settling stages, has been 

optimised to get the most advantageous mixing time and speed, 15 minutes and 300 rpm, 

respectively. This was in agreement with Mata et al. [29] who reduced the settling time by 

20%, this giving a decrease in SVI from 325 ml/g to 67 ml/g. In the same vein, Guo et al. [7] 

achieved significant sludge settleability with anoxic feeding and recommended a mixing stage 

to improve settling. Mata et al. [29] found that SVI values decreased by reducing the settling 

time and allowing intermittent aeration to provide more air, this supporting the  first reason for 

improving the settleability in the TSSBR. 

The second reason for enhancing the settling performance in the TSSBR could be due to the 

minimisation of the anaerobic environment by breaking down the settling time from one hour 

into two stages: 15 minutes and 30 minutes, separated by a 15 minutes anoxic stage. This 

created a negative environment for filamentous bacteria leading to a halt in its growth and an 

enhanced settling performance in the TSSBR. This result is in agreement  with Guo et al. [7] 

who reported that with low DO concentrations (0.5 mg/l), sludge settling declined  (SVI> 200 

ml/g). Liao et al. [42] found that flocculation ability improved when increasing the DO level 

from 1-2.5 mg/l to 3.5-5.5 mg/l, which also supports the second reason for improvement, 

decreasing the long settling stage and increasing the DO level by mixing (anoxic stage). DO 

level was monitored in both NOSBR and TSSBR. In the settling stage, DO was 3.2 mg/l in the 

NOSBR, while it was 4.3 mg/l in the TSSBR due to the anoxic mixing stage in the TSSBR. 
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This result is in agreement with Ozbek and Gayik [43], who stated that oxygen transfer to the 

bioreactor increases through stirring. 

 

Fig. 7. MLSS concentration for NOSBR and TSSBR over the whole period of study. 

3.3 Statistical analysis  

Statistical analyses have been performed to assess the performance of the studied reactors, 

TSSBR and NOSBR, in terms of SVI and the removal of COD, NH3-N, NO3-N and NO2-N. 

Three key parameters were investigated; the standard deviation, outliers and the normality 

(according to Kolmogorov-Smirnov test) of the obtained results. The standard deviation 

describes the amount of variation in the parameter under investigation; the smaller the standard 

deviation, the better the consistency and quality of the treatment process [44-46]. The presence 

of outliers, which could be defined as extreme observations, indicates a poor and unstable 

performance, while the normality of the obtained results enhances the ability to model 

treatment performance [47-49]. Additionally, the significance of the difference in performance 

of TSSBR and NOSBR has been assessed using the t-test. 

The results obtained from the statistical analysis confirmed that the performance, in terms of 

SVI and the removal of COD, NH3-N, NO3-N and NO2-N in the TSSBR, is more reliable and 
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predictable than that of NOSBR. It can be clearly seen from the results (Table 3) that the 

standard deviation of the effluent SVI, NH3-N, NO3-N and NO2-N from TSSBR, is much lower 

than the same effluents in NOSBR, which indicates that TSSBR has better consistency and 

quality of treatment. In terms of outliers, the results of the statistical analysis (Table 3), indicate 

that the performance of TSSBR is stable as it does not show any extreme readings in effluents 

SVI, NH3-N, NO3-N and NO2-N. The performance of NOSBR was unstable over the studied 

period as it showed extreme effluent concentrations of both COD and NH3-N. Finally, in terms 

of the normality of the obtained results, the Kolmogorov-Smirnov test (ρ of K-S test) indicated 

that the effluents of both TSSBR and NOSBR followed a normal distribution (ρ of K-S test > 

0.05), except for NO3-N from NOSBR, which showed a skewed distribution. 

Finally, it should be noted that the calculated mean values of the removal of COD, NH3-N, 

NO3-N and NO2-N, by TSSBR and NOSBR, confirmed the superior performance of TSSBR. 

It can be seen from Table 3 that the SVI value of TSSBR is smaller than that of NOSBR, 

indicating that TSSBR had better sludge settleability than NOSBR. In addition, the outcomes 

of t-test confirmed the superior performance of TSSBR, in terms of SVI and the removal of 

NO3-N and NO2-N, where the statistical significance of the t-test (ρ of the t-test) of these 

parameters were 0.000, 0.001, and 0.044, respectively. Although TSSBR achieved higher 

removal of COD and NH3-N than NOSBR, the calculated value of ρ of the t-test was greater 

than 0.05, which indicates insignificance difference. 

Table 3: Results of the statistical analysis 

Parameter 

TSSBR NOSBR 

Mean Standard 

deviation 

Outliers % ρ of K-

S test 

Mean Standard 

deviation 

Outliers % ρ of K-

S test 

SVI 39.36 10.26 0 0.210 54.86 21.14 0 0.200 

COD 93.51 1.061 0 0.198 93.14 1.083 8.3 0.188 

NH3-N 89.24 3.42 0 0.200 76.66 5.31 8.3 0.200 
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NO3-N 95.24 1.38 0 0.220 86.44 4.32 0 0.028 

NO2-N 95.99 1.18 0 0.178 87.32 2.13 0 0.169 

3.4 pH, DO, ORP and temperature profiles 

The monitoring of pH, DO, ORP and temperature for the TSSBR and NOSBR, is shown in 

Fig. 8. The pH, DO, ORP and temperature values at the end of the 5.5 h treatment cycle 

fluctuated between 6.5-8.5, 0.4-6 mg/l, -122 to198 mV and 7-11 ◦C, respectively. In the 

activated sludge process, DO is related to the aerobic stage, while pH and ORP are related to 

the anoxic and anaerobic stages. The microbial activity in the SBR system is responsible for 

the variation in the DO profile. Bacteria utilize the DO in the system to oxidize COD and 

ammonia. At the first stage of the treatment, the anoxic fill, the ORP profile decreases due to 

the denitrification occurring in the presence of a carbon source in the influent wastewater and 

anoxic environment [50]. In the react stage, the aerobic condition, the oxidation of COD begins; 

this is seen by the increased concentration of ammonia in Fig. 4. In this stage, the DO profile 

increased continuously, while the ORP profile decreased. This might be due to the high 

concentration of COD in the system. This finding is in agreement with Li and Irvin [51], who 

stated that during the anoxic period, ORP dropped to −104 mV under high COD conditions 

(1317 mg/L), while ORP was still as high as 178mV under low COD conditions (88 mg/L). by 

160 minutes into the process, nitrification has started, this seen a decrease in ammonia and an 

increase in nitrite and nitrate concentrations, as shown in Fig. 4. At this stage, both DO and 

ORP profiles have increased dramatically [52]. Denitrification occurred at 225 minutes as 

shown in Fig. 4, identifiably by a decrease in nitrate concentrations. At  this stage, the ORP 

profile increased due to denitrification [53], while the DO profile remained constant.  At the 

settle stage, DO concentrations have decreased sharply towards the end of the treatment in the 

NOSBR, while in the TSSBR, the DO profile decreased at the first settle stage. Its values did 

not change after that because of the transfer of oxygen into the reactor in the anoxic mixing 
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stage, its values decreasing again in the second settling stage. Based on these results, pH, DO 

and ORP are considered important parameters that can indicate different behaviours in COD 

and nitrogen removal.  

 

Fig. 8. pH, DO, temperature and ORP profiles for one treatment cycle of a) TSSBR, b) 

NOSBR. 

Conclusion 

The efficiency of COD and nitrogen compound removal, along with the settling performance 

of normal operating sequencing batch reactors, were determined and compared with the 
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performance of a novel, two-stage, settling sequencing batch reactor to examine sludge 

settleability in the SBR as this is considered a major drawback for SBRs. The results obtained 

from this study showed that a TSSBR with a 5.5 h cycle time improved sludge settleability and 

enhanced nitrogen compounds removal efficiency, while COD removal efficiency for the 

NOSBR and TSSBR remained the same. The morphological characteristics of the sludge inside 

the TSSBR reactor, showed better and homogenous growth of filamentous bacteria in 

comparison to that in the NOSBR which showed overgrowth of filamentous bacteria. Finally, 

a significant linear relationship between the total filament length and SVI was found, this 

having a direct effect on sludge settleability. 
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