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Abstract 

Specificity is a core principle of exercise training to promote the desired adaptations for 

maximising athletic performance. The principle of specificity of adaptation is underpinned 

by the volume, intensity, frequency and mode of contractile activity and is most evident 

when contrasting the divergent phenotypes that result after undertaking either prolonged 

endurance or resistance training. The molecular profiles that generate the adaptive 

response to different exercise modes have undergone intense scientific scrutiny. Given 

divergent exercise induces similar signalling and gene expression profiles in skeletal muscle 

of untrained or recreationally active individuals, what is currently unclear is how the 

specificity of the molecular response is modified by prior training history. The time-course of 

adaptation and when ‘phenotype specificity’ takes place has important implications for 

exercise prescription. This context is essential when attempting to concomitantly develop 

resistance to fatigue (through endurance-based exercise) and increased muscle mass 

(through resistance-based exercise), typically termed ‘concurrent training.’ Chronic training 

studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy 

and strength but the mechanistic underpinning of this ‘interference’ effect with concurrent 

training is unknown. Moreover, despite the potential for several key regulators of muscle 

metabolism to explain an incompatibility in adaptation between endurance and resistance 

exercise, it now seems likely that multiple integrated, rather than isolated, effectors or 

processes generate the interference effect. Here we review studies of the molecular 

responses in skeletal muscle and evidence for the interference effect with concurrent 

training within the context of the specificity of training adaptation. 
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Abbreviations 

ACTN3, α-actinin-3 

AMPK, AMP-activated protein kinase  

ERR, estrogen-receptor-related receptors 

MAPK, p38 mitogen-activated protein kinase  

mTOR, mechanistic target of rapamycin  

NRF-1/2, nuclear respiratory factor-1 and 2  

PGC-1α, peroxisome proliferator activated receptor gamma coactivator-1 alpha 

PKB, protein kinase B 

PPARs, peroxisome proliferator-activated receptor coactivators  

S6K, 70KDa ribosomal protein S6 kinase  

VO2max , maximum oxygen uptake 

Wmax , Maximal workload (Watts) 

4E-BP eukaryotic initiation factor 4E-binding protein 

  



Introduction 

Athletic events are broadly classified as either “endurance-based” or “strength-power-

based,” with the one-dimensional demands underlying these divergent performance 

capacities imposing an uncomplicated stimulus for adaptation. Training to increase 

endurance capacity can be achieved through prolonged (>60 min), continuous or repeated 

intermittent bouts of submaximal contractions that, when performed for several months or 

years, elicit a variety of metabolic and morphological adaptations including mitochondrial 

biogenesis, fast-to-slow fibre-type transformation and shifts in substrate metabolism that 

favour fat- over carbohydrate-based fuels (Holloszy & Coyle, 1984; Hawley, 2002). In 

contrast, training to increase strength and/or power requires short duration (<60 s) maximal 

contractile activity and heavy resistance loading to stimulate the synthesis of myofibrillar 

proteins and muscle hypertrophy (Damas et al., 2015). Such training, even when performed 

over several months or years, elicits little or no change to the oxidative profile of the trained 

muscles, nor major shifts in the patterns of fuel utilisation (MacDougall et al., 1982).  

There are, however, numerous athletic disciplines where a combination of both 

muscular endurance and strength/power are required for successful performance. Under 

such circumstances endurance and resistance training are undertaken concomitantly as part 

of a periodised training programme (i.e., ‘concurrent training’). In the context of this review, 

concurrent training is used generically to describe a single training session during which an 

individual performs both endurance- and resistance-based exercise, and/or when an athlete 

incorporates both types of training on different occasions as part of a periodised training 

programme. During concurrent training muscle is repeatedly subjected to divergent 

contractile stimuli and the specificity of adaptive response is altered to such an extent that 

gains in hypertrophy, strength and power are typically attenuated compared to when 

resistance training is undertaken in isolation (Wilson et al., 2012). The simultaneous 

development of muscular endurance and strength/power arguably represents the highest 

complexity in exercise prescription, while from a molecular perspective it is an intriguing 

challenge to dissect the mechanistic bases for the interference effect on adaptive responses 

with contrasting contractile stimuli.   

 



Concurrent exercise training: Evidence for an ‘interference’ effect  

Thirty-five years ago Dr. Robert Hickson demonstrated impaired strength development in 

previously untrained males who incorporated both strength and endurance workouts into a 

10 week training programme (Hickson, 1980). Hickson termed the impaired strength gains 

with concurrent strength and endurance training the ‘interference effect’. Since that 

seminal work, the results from the majority of studies confirm that gains in muscle 

hypertrophy and strength are compromised when strength- and endurance-based training 

are undertaken concurrently (Dudley & Djamil, 1985; Hunter et al., 1987; Hennessy & 

Watson, 1994; Kraemer et al., 1995; Bell et al., 2000; Putman et al., 2004; Chtara et al., 

2008; Ronnestad et al., 2012; Jones et al., 2013). Even where the interference effect has 

been unclear (McCarthy et al., 1995; McCarthy et al., 2002; Balabinis et al., 2003; Häkkinen 

et al., 2003; Hendrickson et al., 2010; Lundberg et al., 2013), this can typically be attributed 

to the low volume and frequency of training undertaken, a limited intervention period 

and/or the training status of individuals under investigation. Indeed, a meta-analysis of 

concurrent strength and endurance training by Wilson and colleagues clearly demonstrates 

the negative effect of endurance exercise on muscle hypertrophy, strength and power that 

occurs in a frequency and duration dependent manner (Wilson et al., 2012). The mode of 

exercise may also have an impact on the magnitude of the interference effect with running 

likely to have a greater negative effect on strength development than cycling (Wilson et al., 

2012), possibly due to the eccentric component of running and concomitant muscle 

damage. Of note is training-induced gains in aerobic capacity are not compromised by 

concurrent strength and endurance training.  

In contrast to the impaired strength development when endurance training is 

undertaken simultaneously with resistance training, there is potential for combined strength 

and endurance training to amplify endurance performance (Ronnestad & Mujika, 2014). 

Hickson and co-workers (Hickson et al., 1988) combined heavy-resistance workouts (3 

sessions/week for 10 weeks) with the normal endurance training regimens of trained 

runners and cyclists who were already at a steady-state level of endurance performance. 

Despite no changes in VO2max there was a clear benefit of adding strength training to 

endurance training for both short-term (4-8 min) running and cycling performance and long-

term (~80 min) endurance cycling capacity.  



The data from concurrent training studies demonstrating attenuated muscle 

hypertrophy/strength compared to when resistance training is undertaken alone has lead 

researchers to question the underlying mechanism(s) responsible for this phenomenon. In 

this regard, quantifying changes in performance capacity and/or muscle morphology has 

failed to provide insight as to ‘how’ and ‘when’ these divergent exercise modes become 

discordant with respect to exercise-induced adaptations (Leveritt et al., 1999). Knowledge of 

the time-course of the molecular and performance changes occurring with concurrent 

strength and endurance training in various populations (athletes, the elderly) could provide 

valuable information for practitioners when designing exercise programmes that require the 

simultaneous development of muscular strength and endurance (Leveritt et al., 1999; Coffey 

& Hawley, 2007; Fyfe et al., 2014). Clearly, the biology underlying concurrent training 

responses may confer advantages beyond the athletic arena and has ‘real world’ impact.  

 

Are strength and endurance training molecularly incompatible? 

The molecular bases of skeletal muscle adaptations to exercise (i.e., increased mitochondrial 

mass, altered substrate metabolism, angiogenesis, or myofiber hypertrophy) involve 

increased expression and/or activity of key proteins, mediated by an array of signaling 

events, pre- and post-transcriptional processes, regulation of translation and protein 

expression, and modulation of protein (enzyme) activities and/or intracellular localization 

(Egan et al., 2016; Hawley et al., 2014). Multiple stimuli are associated with endurance- and 

resistance-based exercise, various signaling kinases that respond to these divergent stimuli, 

and numerous downstream pathways and targets of these kinases (Coffey & Hawley, 2007; 

Egan et al., 2016; Egan & Zierath, 2013). In addition, there is “cross-talk” between these 

various elements that combine to produce the integrated response to an exercise challenge 

and ultimately result in functional improvements and alterations in phenotype (Egan et al., 

2016; Hawley et al., 2015). The various signaling pathways involved in endurance- and 

resistance/strength-based adaptation are numerous and have been reviewed in detail 

elsewhere (Coffey & Hawley, 2007; Egan & Zierath, 2013; Hawley et al., 2014).  Briefly, 

endurance training adaptation requires the stimulation of several transcription factors 

(including nuclear respiratory factor-1 and 2 [NRF-1, NRF-2]) that bind to their promoters 



and activate transcription of genes that encode mitochondrial respiratory chain proteins. 

Not all promoters of genes transcribing mitochondrial proteins have NRF binding sites, so 

other transcription factors are involved in contractile-modulated mitochondrial biogenesis, 

including the estrogen-receptor-related receptors (ERR) and the peroxisome proliferator-

activated receptor coactivators (PPARs), which regulate expression of the mitochondrial 

fatty acid oxidative enzymes. The AMP-activated protein kinase (AMPK) and p38 mitogen-

activated protein kinase (MAPK) are two other important signaling cascades that converge 

upon the regulation of PGC-1α and consequently the regulation of mitochondrial biogenesis 

(Figure 1). Resistance training adaptation is less defined than endurance training with 

regard to specific signaling pathways or critical nodes that are necessary to generate 

hypertrophy. The mechanistic target of rapamycin (mTOR) complex 1 has been 

characterized as a focal point for hypertrophy with an important role in contraction-induced 

increases in muscle protein synthesis. The most well-defined effectors of mTOR signaling are 

proteins implicated in translational control: 70KDa ribosomal protein S6 kinase (S6K) and 

eukaryotic initiation factor 4E-binding protein (4E-BP) (Philp et al., 2011) (Figure 2). 

 

We (Coffey et al., 2009a; Coffey et al., 2009b) and others (Jones et al., 2015) have 

examined the acute effect of temporal proximity and exercise order of resistance and 

endurance/high-intensity exercise bouts on translational signaling and transcription of 

select genes implicated in exercise-induced adaptation in recreationally trained humans. 

While we have observed some differences in the magnitude of effect in kinase 

phosphorylation of regulators of translation such as S6K and rpS6, and mRNA content of 

PGC-1α and myogenic regulatory factors, the overall responses in the ‘metabolic’ and 

‘myogenic’ pathways were often similar regardless of exercise mode and any differences 

moderate (Coffey et al., 2009a; Coffey et al., 2009b). Jones and colleagues (Jones et al., 

2015) were also unable to clearly differentiate between acute signalling responses in human 

skeletal muscle with alternate concurrent exercise order compared with resistance exercise 

alone. The impact of exercise order notwithstanding, other studies have compared 

molecular responses of combined endurance and resistance exercise versus single-mode 

exercise and show similar or enhanced signaling and gene responses with concurrent 

exercise in moderately trained or recreationally active individuals (Apro et al., 2013; 

Lundberg et al., 2014b; Apro et al., 2015; Kazior et al., 2016). An important consideration 



when comparing the outcomes of studies of single mode versus concurrent exercise bouts is 

that more often than not, the contractile stimulus to the working muscles (i.e., the total 

work performed) is vastly different. In an attempt to mitigate the influence of total work on 

acute molecular responses, Donges and co-workers (Donges et al., 2013) studied sedentary, 

middle-aged men who performed separate single resistance and aerobic exercise bouts, and 

a concurrent exercise bout comprising 50% of the total work undertaken during each of the 

resistance and aerobic exercise bouts. They reported no meaningful change in S6K and 

AMPK phosphorylation between the different exercise modes, comparable increases in 

skeletal muscle myofibrillar protein synthesis with concurrent compared with resistance 

exercise, and similar rates of mitochondrial protein synthesis between concurrent and 

aerobic exercise.   

The inability to match total work as well as the type of stimulus and/or exercise 

mode make comparisons between the results of studies of concurrent training difficult. 

Indeed, differences in experimental design and dependent variable selection that often limit 

the knowledge gained from studies using only performance-based outcomes (Leveritt et al., 

1999) also confounds information gained from investigations that have measured molecular 

responses to divergent exercise modes. However, perhaps the primary factors determining 

the molecular profiles generated by concurrent exercise are the training status of subjects 

and inter-individual responses. We previously hypothesised that training history would 

impact the concurrent training response due to an underlying incompatibility in the training-

induced phenotype when undertaking an opposing exercise stimulus (Coffey et al., 2006). To 

investigate this we studied highly trained athletes with a prolonged history of either 

endurance or strength training (but not concurrent training) who performed both an acute 

bout of exercise in their specialised discipline and then ‘‘crossed over’’ and undertook a 

bout of unfamiliar exercise (Coffey et al., 2006). Muscle biopsies were taken at rest, 

immediately and 3 h post exercise. AMPK phosphorylation increased after cycling in 

strength-trained but not endurance-trained subjects. Conversely, AMPK and S6K 

phosphorylation was elevated after resistance exercise in endurance- but not strength-

trained subjects. These early signaling responses to divergent exercise stimuli in skeletal 

muscle from well-trained humans clearly demonstrate that prior training history alters the 

exercise specific signaling responses involved in single mode adaptations to training and 



that a degree of "response plasticity" is conserved at opposite ends of the endurance-

hypertrophic adaptation continuum.  

Compared to trained athletes, untrained individuals have a greater capacity to 

activate the molecular machinery in muscle in response to contractile activity because any 

overload stimulus induces large perturbations to cellular homeostasis regardless of the 

mode of exercise (Benziane et al., 2008b; Perry et al., 2010; Nader et al., 2014). Given the 

generic ‘molecular footprint’ generated in untrained individuals in response to different 

exercise modes, it seems reasonable to conclude that training history has a large bearing on 

any molecular signature induced by concurrent training (Figure 3). In addition, individual 

variation in both the molecular and functional responses to exercise is likely to impact on 

the precision to detect molecular incompatibility with concurrent training. The 

characterisation of individual responses is not a new phenomenon, but the results of studies 

of individuals undertaking resistance and endurance training in isolation suggest that ‘low 

responders’ to each exercise stimulus may be as high as 25% (Timmons et al., 2005; Phillips 

et al., 2013; Gurd et al., 2016). Intuitively, it might be expected that the number of ‘low 

responders’ would double (or at least increase) after concurrent compared to single mode 

training, but the little data currently available suggests that individuals are not 

systematically low or high responders when exposed to different training stimuli (Karavirta 

et al., 2011).  Nonetheless, the variation of human responses to divergent stimuli adds 

complexity to the molecular bases of the interference phenomenon.  

 

The specificity of training adaptation in skeletal muscle 

Differences in the skeletal muscle phenotype and the associated performance capacities of 

highly trained endurance- compared to resistance-trained individuals are clear (Coffey et al., 

2006). These phenotypes result from adaptation in response to the cumulative overload 

generated by individual bouts of exercise repeated over days, months and years of training. 

Detailed characterisation of the time-course of adaptation over such extended periods has 

proved difficult to study. Instead, we are left with the results of investigations that have 

determined acute responses or outcomes to short-term training interventions (weeks to 

months) to underpin our current understanding of the adaptation process. The work of 

Perry and colleagues (Perry et al., 2010) provides the first time course of molecular sequelae 



in human skeletal muscle that accompany repetitive training stimuli. These workers 

examined the time course of responses of mitochondrial biogenesis and fusion/fission 

proteins, along with selected transcriptional and mitochondrial mRNAs and proteins in 

human skeletal muscle during a ~2 week intervention period in which individuals performed 

7 bouts of high-intensity training. They demonstrated that the repeated, transient increases 

in mRNA induced after each exercise session were necessary to elicit the sustained increases 

observed in the content of transcription and metabolic proteins. Of note was that even 

during such a short-term intervention, the mRNA responses to exercise were attenuated as 

the muscle adapted to the exercise challenge, even in the face of an increasing training 

intensity. Increases in mitochondrial proteins occurred within five days and following three 

sessions of high-intensity interval training, while at the end of the 2 weeks, VO2max had also 

increased by 12% (Perry et al., 2010). Similar characterisation of the chronic time-course of 

adaptation to resistance training is currently lacking. Nevertheless, it is interesting to 

consider the extent to which the molecular profiles generated in skeletal muscle may differ 

following acute bouts of concurrent exercise.  

The work of Atherton and colleagues (Atherton et al., 2005) provided an elegant 

example of the specificity of the adaptation response to divergent contractile overload, 

albeit in rodent skeletal muscle, which is highly homogenous with respect to fibre type and 

metabolic potential. High frequency intermittent (60 × 3 s, 100 Hz) or low frequency 

continuous (3 h, 10 Hz) electrical stimulation was used to mimic resistance- or endurance-

like overload. The results demonstrated that ‘resistance-like’ overload exclusively promoted 

an ‘anabolic signature’ but little activation of the metabolic pathways involved in 

upregulating mitochondrial biogenesis and oxidative metabolism. In contrast, the 

endurance-like stimuli resulted in a coordinated up-regulation of metabolic pathways with 

putative roles in mitochondrial biogenesis, but little or no activation of the anabolic 

pathways. To explain the specificity of adaptive responses to the divergent contractile 

overload, the authors hypothesised the existence of an ‘AMPK-PKB switch’. However, since 

that study, there has been little data from human exercise studies to support the hypothesis 

of a simple ‘AMPK-PKB switch’ to explain specificity of training adaptation. 

Following the work of Atherton and co-workers (Atherton et al., 2005), and in an 

attempt to explain the molecular underpinning of the specificity of training, AMPK and 



mTOR became focal points for many exercise studies. There are a number of instances 

showing that acute bouts of resistance and endurance exercise generate similar post-

exercise signaling responses in skeletal muscle where endurance exercise upregulates 

mTOR-mediated signaling (Mascher, 2007; Benziane et al., 2008a; Wilkinson et al., 2008; 

Camera et al., 2010) and resistance-based exercise increases AMPK phosphorylation (Dreyer 

et al., 2006; Koopman et al., 2006; Wilkinson et al., 2008). Furthermore, elevated AMPK 

activity does not supress mTOR mediated signaling when endurance exercise is undertaken 

prior to resistance exercise (Apro et al., 2015).  It would be easy to dismiss the AMPK-PKB 

‘switch’ hypothesis to explain the molecular bases of training specificity and simply conclude 

that there is an inability to extrapolate the findings of animal research in humans. On the 

other hand, it could be argued that the electrical stimulation model of contractile overload 

employed by Atherton and colleagues (Atherton et al., 2005) and the subsequent molecular 

response observed in rodent skeletal muscle are in fact more representative of adaptation 

responses to the extreme regimens of highly trained athletes than untrained individuals 

undertaking low/moderate exercise loads.  

The transcriptional changes in skeletal muscle induced by resistance and endurance 

exercise also provide evidence of similar molecular responses. Yang and co-workers (Yang et 

al., 2005) and Louis and colleagues (Louis et al., 2007) compared the acute time-course of 

mRNA content of metabolic, myogenic and proteolytic mRNA targets after bouts of 

divergent exercise and show gene profiles that are remarkably comparable for endurance 

running and resistance exercise. However, most studies aimed at determining the 

adaptation response of single exercise modes do not typically quantify candidate gene 

expression of targets associated with the ‘alternate’ type of exercise: such lack of measures 

limit our current understanding of the specificity of training. It is also becoming evident that 

individual gene responses may not mirror chronic functional changes in the muscle (i.e., 

increased protein abundance) and the study of the phosphoproteome (Hoffman et al., 2015), 

transcriptome and functional gene clusters offer a more powerful analytical approach to 

discovering the unexplored complexity of acute exercise signaling. While several studies 

have determined the transcriptome response to resistance (Raue et al., 2012; Phillips et al., 

2013; Thalacker-Mercer et al., 2013; Nader et al., 2014) and endurance training  (Timmons 

et al., 2005; Timmons et al., 2010) in untrained individuals over prolonged (6-20 week) 



periods, a direct comparison between the transcriptome profiles of resistance- and 

endurance training-induced gene expression has not be undertaken.  

Despite the advancing knowledge of molecular changes with specific exercise modes 

fundamental questions remain unanswered. Principal among them within the context of 

concurrent training is what is the time course for adaptation to a ‘trained’ state and if/when 

does specificity in adaptive responses occur in skeletal muscle (Figure 3)?  If modest gains in 

muscle size can be achieved after endurance training in untrained individuals (Konopka & 

Harber, 2014)(Figure 4a) but not trained cyclists (Ronnestad et al., 2010)(Figure 4b), and 

oxidative potential can be enhanced by resistance training in the muscle of untrained 

individuals (Tang et al., 2006)(Figure 4a) but decreases in powerlifters/bodybuilders 

(MacDougall et al., 1982)(Figure 4b), this has important implications for understanding 

molecular responses and training induced phenotype. It seems reasonable to suggest that 

when previously sedentary or recreationally active individuals commence any concurrent 

training programme, the response to the two exercise modes is additive and promotes a 

generic adaptation in the absence of a true specificity of training effect.  Accordingly, we 

propose that the molecular bases for the ‘interference effect’ may be indistinguishable in 

such individuals, particularly if the total work in the single modes of training is not matched. 

Given the practical difficulties associated with accessing muscle biopsies from highly trained 

athletes, and differences in the modes and complexity of periodised training for different 

sports, unravelling the molecular bases for the interference effect will likely remain a 

scientific conundrum for some time. 

 

Potential molecular candidates to explain the interference effect 

The complexity of sensing and transducing a contractile stimulus and its subsequent 

conversion to a stable molecular response dictates almost countless potential sites of 

regulation of exercise-induced adaptation. The AMPK signaling cascade has been considered 

a major pathway through which endurance training-induced responses may impair muscle 

hypertrophy and strength with concurrent training. Studies in cell culture and animal 

models provide compelling evidence for the cross-talk between AMPK and mTOR signaling 

pathways, and support the notion that activation of AMPK-related pathways suppresses 



translation through decreased S6K and 4E-BP phosphorylation (Bolster et al., 2002; 

Thomson et al., 2008; Lantier et al., 2010; Egawa et al., 2014). However, there is little 

evidence to support a direct AMPK-induced impairment to rates of myofibrillar protein 

synthesis and resistance training-induced muscle hypertrophy in humans. This may be, in 

part, related to the combination of limited muscle sampling time points and the temporal 

patterns of activation of the various signaling machinery. Complicating the issue is that the 

AMPKα1 isoform has recently been associated with promoting satellite cell activation and 

muscle regeneration (Fu et al., 2015), which contrasts the conventional role of AMPK as a 

‘metabolic sensor’ in skeletal muscle. AMPK phosphorylation and activation has also been 

demonstrated following acute bouts of resistance exercise indicating that contraction-

induced AMPK activation is not solely restricted to an endurance-like training stimulus 

(Dreyer et al., 2006; Koopman et al., 2006). For now it appears safe to conclude that 

exercise-induced increases in AMPK-signaling are not the sole moderators underlying the 

molecular bases of the interference effect observed with concurrent training. 

 

PGC-1α is an exercise-responsive transcriptional co-activator that has been described 

as a master regulator of oxidative metabolism and mitochondrial biogenesis, promoting 

many of the adaptations to endurance training in skeletal muscle (Hood, 2009). A single 

bout of endurance exercise induces a rapid and sustained increase in PGC-1α gene and 

protein in skeletal muscle (Mathai et al., 2008), whereas muscle-specific overexpression of 

PGC-1α results in a large increase in functional mitochondria (Lin et al., 2002). The specific 

proteins generated through expression of different PGC-1α isoforms display differential 

regulation and tissue distribution and, most importantly, exert specific biological functions 

(Martinez-Redondo et al., 2015). PGC-1α4, a transcript from the PGC-1 α gene, is 

abundantly expressed in skeletal muscle and appears to play a role in the adaptive response 

to exercise, particularly in the setting of resistance training (Ruas et al., 2012; White et al., 

2014). This protein does not appear to regulate the same set of oxidative genes induced by 

PGC-1α but, rather, activates the expression of IGF-1 while concomitantly suppressing 

myostatin (an inhibitor of muscle cell differentiation and growth) pathways. Accordingly, the 

PGC-1α protein and PGC-1α4 isoform could play a role in modulating the training response-

adaptation after concurrent exercise. In this regard, Ruas and co-workers (Ruas et al., 2012) 

have shown that after training consisting of either endurance exercise, resistance exercise, 



or a combination of both endurance and resistance exercise, increases in PGC-1α4 are 

confined to resistance-only and combined exercise training programmes, with no changes in 

this transcript after endurance-only training (Ruas et al., 2012). Few human studies have 

been undertaken to examine the specificity of activation of the various PGC-1α isoforms. 

However, in contrast to the early results from Ruas et al. (Ruas et al., 2012), others have 

failed to show a specificity of adaptation response in PGC-1α isoforms with acute bouts of 

endurance compared to resistance exercise or indeed differences in expression with 

resistance versus concurrent exercise bouts albeit in untrained individuals (Ydfors et al., 

2013; Lundberg et al., 2014a). Of note, Nader et al. (Nader et al., 2014) showed PGC-1α4 

expression was not induced in the muscle of untrained subjects in response to an acute 

bout of resistance exercise undertaken at the beginning of a 12 week training programme, 

but was selectively up-regulated by the same exercise session at the end of the intervention 

period. Taken collectively, these data provide further support that training status is a major 

regulator of the molecular response to exercise, and suggest that exercise-induced PGC-1α 

isoform-specificity may provide clues to mechanisms underlying the molecular bases of the 

interference effect with concurrent training.  

Satellite cells are niche stem cells located in skeletal muscle with the capacity to 

promote adaptation through the contribution of new myonuclei within existing muscle 

fibres and/or myocytes that can fuse and form new myofibres (Dumont et al., 2015). 

Accordingly, the role of muscle satellite cells has generally been associated with the 

hypertrophy response through regeneration and repair of myofibres, and subsequent 

muscle growth. Babcock and co-workers (Babcock et al., 2012) have undertaken the only 

study to date to determine whether aerobic exercise might attenuate satellite cell 

responses important to hypertrophy within the concurrent training context. They found that 

a conventional resistance exercise bout transiently increases muscle fibre satellite cell 

density (~38%) after 4 days recovery, but the addition of a 90 min cycling bout (~60% Wmax) 

undertaken immediately after resistance exercise completely suppressed this response. 

They proposed that the altered satellite cell response when aerobic exercise is undertaken 

following resistance exercise contributes to the interference effect with concurrent exercise 

(Babcock et al., 2012). It should be noted that resistance and aerobic exercise independently 

have the potential to induce satellite cell responses for skeletal muscle remodelling 



(Joanisse et al., 2013; Bellamy et al., 2014). Joanisse and colleagues (2013) have shown that 

aerobic interval training (6 weeks, 3 session/week) expands the muscle satellite cell pool 

and increases satellite cell activity without subsequent hypertrophy, indicating exercise-

induced satellite cell activation in skeletal muscle is not limited to resistance exercise. It may 

be that the satellite cell activity generating nonhypertrophic adaptation with endurance-

based exercise compromises the resistance exercise-induced satellite cell response for 

hypertrophy. The different exercise modes also appear to generate a fibre type specific 

satellite cell response which may also increase the complexity in delineating its role in the 

specificity of adaptation and any incompatibility with concurrent training (Babcock et al., 

2012; Joanisse et al., 2013; Bellamy et al., 2014). Consequently, more work is needed to 

elucidate the satellite cell contribution to aerobic and resistance training adaptation, and 

the potential to modify the training response with concurrent training. 

 Advances in our understanding of how individual genotype may determine athletic 

potential may also influence the capacity to adapt to concurrent training. The α-actinin-3 

(ACTN3) gene has emerged as a candidate that may influence exercise performance capacity. 

Early studies of elite endurance- and strength/power-trained athletes provided data 

indicating that ACTN3 gene deficiency, which prevents its subsequent protein expression in 

type II muscle fibres, may be unfavourable for the development of muscular power but 

could promote an endurance-like phenotype (Eynon et al., 2013; Eynon et al., 2014). Eynon 

and co-workers (Eynon et al., 2014) compared the ACTN3 genotype of team sport athletes 

with endurance and power athletes. They showed the ACTN3 genotype (577RR) associated 

with muscular power was underrepresented in team sport compared with power athletes, 

but that the distributions of the polymorphism that may promote endurance capacity 

(R577X) were similar between team sport and endurance athletes. These findings are 

supported by Massidda and colleagues (Massidda et al., 2015) who also showed ACTN3 

genotype was not different between endurance and elite team sport athletes. To better 

understand the potential influence of genotype in determining exercise training adaptation, 

invasive studies with large subject cohorts that quantify the magnitude of adaptive response 

associated with specific genotype following prolonged periods of single mode and 

concurrent training would be required. Nonetheless, as concurrent training is a prerequisite 

for performance in many team sports, the potential for using genetic screening to identify 



an individual’s capability to adapt to divergent exercise modes is intriguing. The results of 

studies using candidate gene analysis have generated largely inconclusive findings and 

characterising genetic variants that may be responsible for specific phenotypes will continue 

to be a difficult proposition (Wang et al., 2013).  

Although major breakthroughs in the knowledge of how exercise activates numerous 

cellular, molecular, and biochemical pathways have been observed during the past decades, 

evidence linking such effects to specific performance outcomes has proved elusive and a 

challenge for future research. In the final analyses, when considering the multiplicity, 

complexity and redundancy of the many signaling cascades involved in endurance- and 

resistance exercise-induced responses, it seems unlikely that a few select proteins could 

mediate such events and explain the interference effect. Indeed, we have previously 

suggested that changes at the transcriptional level may be more likely to elucidate the 

mechanistic underpinning of exercise-specific adaptive profiles (Camera et al., 2010). While 

the various ‘‘omics’’ technologies and the application of computational and systems biology 

approaches to problems in exercise biology should facilitate future progress, it is likely that 

multiple integrated, rather than isolated, effectors or processes are required to generate 

the interference effect. 

 

Summary 

While the study of concurrent training has received less attention than that of single mode 

training for endurance or strength/power, existing evidence supports the existence of an 

interference effect of endurance training on resistance training induced muscle hypertrophy 

and strength. Importantly, the specificity of the molecular training responses with divergent 

exercise modes and the time-course over which these events occur provides the essential 

context in which concurrent training adaptation and performance outcomes should be 

evaluated. Recommendations to individuals to undertake divergent exercise modes on 

different days to avoid adaptation interference with concurrent training is over simplistic 

and not representative of the ‘real world’ scenarios under which athletes train. The 

demands and management of professional athletes often restricts the “optimal” timing for 

different exercise modes within a periodised programme. In this review we have limited 



discussion to the effects of endurance- on resistance-based training adaptation and have 

not even begun to consider the effects of alternate modes of exercise (e.g., high-intensity 

sprint training, plyometrics) that would undoubtedly add complexity to the training 

adaptation responses and the ensuing interference effect. The molecular profiles generated 

by endurance and resistance exercise are complex, an effect that is magnified when 

individuals undertake concurrent training. Are we guilty of over-looking the obvious or 

simply making the issue more complicated than it is? For example, it is possible that acute 

residual fatigue (from the previous exercise session) and/or chronic fatigue (due to 

undertaking a greater total work load to match adaptive responses of single mode training) 

are generating the interference effect. If so, such training would surely induce marked 

metabolic consequences and result in a unique “molecular footprint” directly proportional 

to the energetic demands of training? If this were the case then such a ‘footprint’ should 

have the potential to inform the ‘how’ and ‘when’ of concurrent training in order to 

minimise interference and optimize adaptation. A decade ago we reviewed the molecular 

bases of training adaptation (Coffey & Hawley, 2007) and while the application of molecular 

techniques to exercise biology during the past decade has provided novel insight into the 

molecular pathways engaged in both acute and chronic responses to exercise, our progress 

in understanding how concurrent training creates an ‘interference effect’ at the molecular 

level has been less than spectacular. Consequently, the challenge to bridge the gap between 

‘basic’ and ‘applied’ sciences remains and there should be no shortage of work for the 

exercise scientist who dares to mix their exercise modes! 
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Abstract figure  

Schematic of the complexity of concurrent endurance and resistance training compared with 

single mode training within the context of the specificity of training adaptation principle. (A) 

The classic model whereby repeated bouts of single mode training (i.e., either endurance- or 

resistance-based) generate a specific molecular profile that results in mitochondrial 

biogenesis and improved resistance to fatigue, or hypertrophy and enhanced 

strength/power in skeletal muscle. (B) Alternate paradigm in which individuals commence 

training in either single mode or concurrent endurance- and resistance based exercise and 

transition from untrained to trained status. The exercise stimulus initially generates a 

‘general adaptation profile’ but as training continues, ‘specificity of adaptation’ responses 

are generated, and there is incompatibility and adaptation interference with concurrent 

training whereby endurance training attenuates hypertrophy/strength. The precise time-

course and molecular events underpinning these processes is presently unknown. 

Figure 1. Putative mediators of exercise-induced regulation of peroxisome proliferator 

activated receptor gamma coactivator-1 alpha (PGC-1α).  Dashed lines show the primary 

sensors of contractile activity, solid lines show secondary mediators of signalling pathways 

proposed to up regulate PGC-1α expression. The adenosine monophosphate kinase (AMPK) 

is an energy sensing protein, reactive oxygen species (ROS) are a metabolic by product of 

oxidative metabolism, which in concert with the p38 mitogen activated protein kinase 

(MAPK) all respond to the metabolic stress generated within skeletal muscle by exercise. 

Modulation of cellular calcium concentration with contraction upregulates Calmodulin 

kinase (CaMK) and/or Calcineurin proteins, which also act as a metabolic signal for 

adaptation responses. Together, these intermediaries coordinate complex signalling 

pathways regulating PGC-1α expression and subsequent mitochondrial biogenesis and 

angiogenesis in skeletal muscle (Lira et al., 2010; Olesen et al., 2010).  

 

Figure 2. Proposed mechanical activation of signals leading to increased translation and 

ribosome biogenesis in skeletal muscle.  Dashed lines show the primary sensors of 

contractile activity, solid lines show secondary mediators of signalling pathways proposed to 

ultimately up regulate protein synthesis. Calcium, focal adhesion kinases (FAK) and integrin 



linked kinases have each been proposed as mechanosensors that initiate the signal that 

generates greater subsequent activity of the mechanistic target of rapamycin complex 1 

(mTORC1). The downstream effectors of mTORC1 are the 70KDa ribosomal S6 protein kinase 

(S6K) and eukaryotic initiation factor 4E binding protein (4E-BP) that have been shown to 

have key roles in promoting translation initiation and ribosome biogenesis (Philp et al., 

2011).  

 

Figure 3. Hypothetical time-course for skeletal muscle and functional adaptation from the 

untrained to a trained state.  

In the first days/weeks when an individual commences training, the initial skeletal muscle 

adaptation responses are similar between single mode and concurrent training adaptation 

as are any functional performance measures. During this early phase the mechanosensors 

and subsequent mechanotransduction of the adaptive signal fails, at least in part, to 

differentiate between the endurance- and resistance-like stimuli often undertaken at low-

moderate intensity and volume. As training progresses (i.e., months-years) repeated bouts 

of divergent exercise begin to generate a specificity of training adaptation that initiates 

transformation of the skeletal muscle phenotype. The change in phenotype coincides with 

the need for greater training loads to disrupt homeostasis and promote further adaptation 

which results in impaired responses to concurrent training compared with single mode 

training. The impaired adaptive response with concurrent versus single mode training is 

exacerbated with increasing training history. 

 

Figure 4. Adaptation to training in skeletal muscle of untrained compared with trained 

individuals. 

Schematic showing (A) the potential for endurance training (blue, hatched bars) to induce 

modest hypertrophy and resistance training (red, hatched bars) to promote oxidative 

capacity in the untrained state. The capacity for the different exercise modes to promote 

adaptive responses associated with the “opposing” exercise also contributes to a lack of 

meaningful interference during concurrent training (black) with short-term training in 



untrained or recreationally active individuals. (B) Specificity of adaptation with prolonged, 

intense training in well-trained athletes shows no significant “cross-over” effects between 

exercise modes. Resistance training does not impair continued development of oxidative 

metabolism and endurance capacity but endurance training compromises gains in 

hypertrophy and strength with concurrent training (black). 
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