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Abstract 

In this thesis, thermodynamic-based mathematical modelling is combined with 

experimental in vitro extracellular flux analysis in order to assess drug redox cycling 

and cellular bioenergetics. It is widely accepted that pharmacological activity of 

certain classes of drugs (e.g. anticancer, antimalarial) is related to their ability to 

accept one or two electrons. However, pharmacological activity via redox cycling is 

an understated mechanism of toxicity associated with many classes of drugs. In 

particular, oxidative stress as a result of redox cycling plays a pivotal role in the cause 

of cardiac toxicity. For example, doxorubicin is an anti-neoplastic drug used to treat 

cancer. It has strong links to redox cycling-induced cardiac toxicity associated directly 

with elevated levels of reactive oxygen species (ROS) and oxidative stress within the 

mitochondria. The underlying mechanisms of redox cycling is very difficult to 

elucidate, due to the fleeting existence of the radical species. However, assessment 

of such cellular bioenergetics can be ameliorated with the aid of computational 

assistance. In chapter 2 the development of a novel thermodynamic-based in silico 

model of doxorubicin redox cycling is described, which is parameterized using data 

from in vitro extracellular flux analysis. The model is used to simulate mitochondrial-

specific ROS, with its outputs confirmed against in vitro data.  Chapter 3 describes 

construction of a pH-dependent thermodynamic model of hepatic glycolytic flux, 

used to determine the role of the monocarboxylate transporter 1 flux during 

extracellular acidification. Finally, chapter 4 describes a thermodynamic-based in 

silico model of mitochondrial bioenergetics, capable of simulating oxygen 

consumption rates of a cohort of in vitro human primary hepatocyte data. The model 

is finally used to simulate perturbations in key bioenergetic variables and reaction 

fluxes, illustrating the resulting changes on mitochondrial pH, membrane potential 

and subsequent oxygen consumption rates.  
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1.1 Background 

1.1.1 Quantitative Systems Pharmacology  

Quantitative systems pharmacology (QSP) is a term used to describe a relatively 

modern interdisciplinary scientific field that has presented itself at the forefront of 

biological, pharmacological and biomedical based research and development. There 

are many definitions for QSP. However, the majority tend to conform to a set of 

fundamental principles which lead to a personal definition based upon my own 

experience:  

 Quantitative systems pharmacology is the study of biological systems via the 

iterative integration of mathematical computational models with experimental 

techniques, in order to investigate drug pharmacology. 

It is no coincidence then that as computational power has rapidly developed, so too 

has the prominence of systems pharmacology. Although greater computational 

power is pivotal for the prevalence of systems pharmacology, the true need for this 

flexible discipline is its ability to explore current experimentally derived knowledge 

of intricate biological systems by processing this information on a whole cell, network 

or systematic scale. Furthermore, mathematically probing such systems facilitate 

quantification and manipulation of often theoretical or inaccessible pharmacological 

scenarios. The benefits of which go much further than reduction of costs, by guiding 

experimentation, observing multiple outputs and providing valuable mechanistic 

insights.  

QSP is an essential tool for assessing and predicting mechanisms of adverse drug 

reactions. The ability to quantitatively assess mechanisms of toxicity is a true 

accolade for this discipline. For example, measuring biological rates of reactions and 

the corresponding effects on a systems as a whole is arduous and often impossible. 

For example drug redox cycling is a common understated mechanism of toxicity, 

whereby a compound can spontaneously cycle between a reduced and oxidised state 

at the expense of cellular energy 1. The rate of these reactions can vary over 11 orders 
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of magnitude, leaving experimental observation an extremely difficult task based on 

the time scale of these processes alone. However, QSP can account for reactions 

occurring at such rates, while simultaneously providing a platform for exploration of 

the effects of such toxicity on a systemic level. QSP can be implemented on the 

investigation of xenobiotics in extremely complex biological situations, such as within 

the mitochondria.  

1.1.2 Redox Cycling 

Redox cycling can be defined as the continuous reduction and oxidation of a 

compound, moiety or system 2. Fundamentally, this can be described on a chemical 

level as the cycling of single or double electron reduction and oxidations, where 

oxidation is a loss of electrons, and reduction is the gain of electrons. In the 

descriptions within this thesis, when describing movement of electrons, double 

headed arrows denote the movement of a pair of electrons, whereas a single headed 

or “fish hook” denotes the movement of a single electron. Similarly, once electrons 

have moved from one compound / moiety to another, a (–) sign indicates two 

electrons, whereas a ( . ) dot indicates a single electron or free radical. Note, each 

electron possesses a relative charge of -1.  

1.1.2.1 Redox Cycling Chemistry: Quinones & Radial Species 

Redox cycling is a chemical phenomenon associated with many classes of 

compounds, with the quinone moiety which we denote by (Q), arguably the most 

well-known 3.  Quinones are some of the oldest organic molecules in existence, with 

traces found on interstellar dust observed on board the NASA spacecraft STARDUST 

4. That said, it is then unsurprising to find that the quinone structure is not only 

present physiologically, but is crucial to our survival, playing a fundamental role in 

mitochondrial energy production in every cell by facilitating electron transfer 5.  

The ability of the quinone moiety to redox cycle is governed by its ability to stabilize 

the addition and removal of an electron without deviation from its original structure. 

Figure 1-1 Shows the classic quinone triad, which includes two sequential single 
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electron reductions to form the semiquinone radical (SQ.-), and the fully reduced 

hydroquinone (H2Q), illustrating how the quinone / quinol ring system remains 

unchanged.  

 

 

Figure 1-1: Quinone redox triad. Sequential single electron reductions / oxidations 

yielding the Q/SQ/H2Q triad. Q, SQ and H2Q are shown in blue, pink and red respectively. 

Rx describes ring substituents.  

1.1.2.1.1 Electronic and Steric Effects, Redox Potential Eo’ and the Nernst Equation 

The ability to gain or donate electrons can be categorized into two areas: electronics 

and sterics 6. With respect to electronics, the ease of acceptance of an electron, and 

therefore reduction of the quinone, can be quantified by the half-cell reduction 

potential, otherwise known as the redox potential (Eo’), expressed in either volts (V) 

or millivolts (mV). Eo is the standard reduction potential measured under standard 

conditions: temperature, T = 25 oC, quinone concentration = 1.0 M, pH 0.0 when in 

aqueous solution and at a pressure of 100 kPa (0.986 atm). Standard reduction 

potentials are relative to a standard hydrogen electrode, which is used as a reference 

as it yields a potential of 0.0 V at all given temperatures 7. While this is useful in 

standard chemistry, it is desirable to describe a reduction potential at non-standard 

conditions, i.e. physiological conditions: pH 7.0, 37 oC. Fortunately, the reduction 

potential can be described at non-standard conditions in terms of thermodynamics 

using the Nernst Equation (1-1), where R is the universal gas constant equal to 

8.3144598 J mol−1 K−1, T is the temperature in Kelvin, F is the Faraday constant equal 
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to 9.6485 ×104 C mol-1 , n is equal to the number of electrons in the reduction reaction 

and Qr
 is the reaction quotient for the half cell reaction equal to the ratio of the 

reduced and oxidised species ([R]/[O]). If log10 is used rather than natural log, the 

Nernst equation can be described as Equation (1-2). 

 
𝐸 =  𝐸𝑜′ − 

𝑅 𝑇

𝑛 𝐹
ln 𝑄𝑟 

(1-1) 

 𝐸 =  𝐸𝑜′ − 
59.1

𝑛 
log10 𝑄𝑟 . (1-2) 

It is possible to confuse reduction and redox potentials when changing between 

chemistry and biological contexts. The term redox potential will refer to the reduction 

potential for non-standard physiological conditions (denoted Eo’ henceforth). With 

this understanding of redox and reduction potentials, it is possible to understand the 

relationship between redox potential and the likelihood of quinone reduction in 

terms of electronics. 

The overall relationship follows that the more positive the redox potential, the more 

readily the reduction. Similarly, the more negative the potential, the harder reduction 

becomes. Like all chemical reactions, the proclivity for a reaction to proceed depends 

upon the stability of the products. In this instance, how stable is the resulting reduced 

forms SQ.- or H2Q. The substituents on the Q or SQ.- ring system directly influence the 

redox potential in terms of electronics, depending on whether the group is electron 

donating (EDG) or electron withdrawing (EWG). Common EDGs such as alkyl groups 

donate electron density into aromatic systems. As a result, the addition of alkyl 

groups renders the quinone less electrophilic (electron accepting) and therefore 

harder to reduce. Consequently, the redox potential for a quinone with EDG 

substituents is expected to become more negative. Conversely, EWGs such as halides 

Cl or Br, remove electron density from aromatic systems thus increasing the Q or SQ.- 

electrophilicity. Subsequently, the redox potential tends to become more positive 

with increased EWG substituents, rendering the Q or SQ.- more readily reduced. 



Chapter 1: General Introduction 

 

12 

Figure (1-2) shows how the differences in electronics with respect to EWGs and EDGs 

affect the redox potential of a quinone.  

 

Figure 1-2: Increase in EWG (Cl) renders the Eo’ more positive, more electrophilic 

and easier to reduce 7.  

EWGs and EDGs form the majority of the electronic considerations with respect to 

redox cycling, illustrating how changes in the electronic configuration effects the 

electrophilicity of a quinone and thus its ability to be reduced or oxidised. Another 

aspect to consider when analysing factors that dictate whether a chemical reaction 

will occur is steric effects. Steric effects are the term given to describe the physical 

chemical space around the molecule and the subsequent effects these have on the 

proclivity of a successful chemical reaction. Steric effects can be further categorized: 

steric hindrance (or buttressing effects) and steric shielding. With respect to a 

quinone, Figure 1-3 illustrates how large groups bonded around the aromatic ring 

sterically hinders access of an impending nucleophile, thus showing the importance 

of the physical chemical space of a compound and its ability to react with other 

compounds.  

+650 
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Figure 1-3: Thiol Michael addition at two quinone sites showing relative percentage 

chance of successful addition dependent on sterical hindrance.  

1.1.3 Redox Cycling Pharmacology & Toxicity 

1.1.3.1 Redox Cycling Toxicity  

Pharmacological activity of many classes of compounds is hinged on their ability to 

accept one or two electrons 8,9. The need for compound activation via generation of 

a radical species prompts the formation of unwanted reactive metabolites, 

mitochondrial toxicity, ROS and futile redox cycling, occurring at the expense of 

cellular reduction power 10. The predominant cause of toxicity due to redox cycling 

compounds rests on their tendency to generate ROS causing oxidative stress, through 

single electron reduction of molecular oxygen to form a superoxide radial (O2
.-), 

followed by dismutation into hydrogen peroxide (H2O2) 11,12. ROS are generated at 

multiple sources including cytokine activity, NADH/NADPH oxidase, uncoupling of 

mitochondrial electron transport 13. It is no surprise then that redox cycling induced 

ROS formation is common at sites of high oxygen concentration such as the 

mitochondria, which also provide a source of electrons for the redox cycle 14. The 

quinone motif is arguably the best defined in terms of redox cycling and its associated 

toxicity and is rightly considered a structural alert 3. A common quinone motif 

containing redox cycling compound is the anthracycline antibiotic doxorubicin 15. 

Doxorubicin is used in a myriad of chemotherapy regimens to treat both 
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haematological and solid tumours via DNA intercalation, inhibiting topoisomerase II-

dependent regulation of double strand breakage 16. Despite its therapeutic purpose, 

doxorubicin-induced cardiac toxicity is associated with a host of mechanisms: free 

radical formation, lipid peroxidation, mitochondrial dysfunction and DNA damage to 

name but a few. Despite this, substantial evidence supports doxorubicin-induced 

oxidative stress due to redox cycling as the frontrunner in clinically relevant 

cardiotoxicity. Doxorubicin ROS generation follows the same principals as generic 

quinone redox cycling, reduction of the doxorubicin quinone motif, facilitated by 

mitochondrial reductases, yields a semiquinone radical 17, which in turn reduces 

molecular oxygen forming O2
.- and H2O2  while simultaneously reforming the parent 

doxorubicin 18. Mitochondrial based doxorubicin induced toxicity can be attributed 

to the high affinity between doxorubicin and the mitochondrial phospholipid 

cardiolipin, which is located in the inner mitochondrial membrane, playing a major 

role in mitochondrial structure, function and energy metabolism 19. Cardiac cells are 

amongst some of the most mitochondria rich cells within the body, consequently, 

disproportionate amounts of doxorubicin accumulate in the mitochondria, elevating 

ROS levels, prompting disruption to bioenergetics and subsequently toxicity 20,21. This 

rational can be applied to any mitochondria rich tissue, or cells that utilise 

mitochondrial bioenergetics as the predominant source of cellular ATP 22.   

1.1.3.2 Biological Redox Cycling Systems 

Biological redox cycling systems fall into three main categories: glutathione redox 

systems, thioredoxin systems and the pyridine nucleotide system 23. Each of these 

systems is crucial for cellular homeostasis, with perturbations in them leading to 

possible cell death.  

Glutathione (GSH) is a unique tripeptide that is invulnerable to peptidase cleavage 

due to its γ-type structure (L- γ-glutamyl-L-cysteinyl glycine). As a result, GSH is a 

stable molecule with multiple biological responsibilities. For example, GSH serves 

predominantly as a ROS antioxidant/scavenger, with an affinity to react with 

electrophiles, ROS and reactive nitrogen species (RNS) alike 24. Its thiol chemistry 
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allows GSH to exist in both a reduced (GSH) and oxidized (GSSH) form, thus 

completing its own redox cycle system. According to the Nernst Equation (1-1), the 

reduction potential for most cell types ranges from -150 to -260 mV for the GSH redox 

couple 25. GSH itself acts as an antioxidant, mopping up ROS and radical species by 

working in concert with other redox couples such as NAD-NADH, contributing to the 

overall redox-status of the cell 26.  

The pyridine nucleotide (PN) redox couple is inextricably linked to the GSH couple 

and consequently plays a role in cellular defence against radical species and ROS. The 

pyridine nucleotide system describes the relationship between reduced and oxidized 

nicotinamide adenine nucleotide in its non-phosphorylated and phosphorylated form 

(NADH/NAD+ and NADPH/NADP+). The PN is essentially the linchpin in maintaining 

re-reduction of GSSG into useful GSH, with a reduction potential of 400 mV, it 

provides the electrons necessary to complete the cycle 23. Together, the GSH couple 

and PN couple are the foundation for cellular redox status and subsequently anti-

oxidative stress defence.  

1.1.4 Reactive Oxygen Species (ROS) & Bioenergetic Relationship 

Reactive oxygen species (ROS) is a collective term that describes oxygen derived free 

radical species. ROS play a fundamental role in cell signalling under normal 

physiological conditions. Consequently, cellular ROS homeostasis is tightly regulated 

by highly specialized ROS scavenging systems such as superoxide dismutases (SODs), 

glutathione turnover and general antioxidants 27. Like many biological metabolites, 

ROS serve as a double edged sword, capable of initiating damage to cells and their 

organelles, leading to much more severe pathologies including cancer, pulmonary 

hypertension, heart failure and retinopathy 14. All of these potential toxicity 

outcomes depend on several factors: ROS location, ROS radical type and potential 

obstructions to detoxification such as enzymopathies. The most common ROS 

cascade has already been eluded to: conversion of molecular oxygen to hydrogen 

peroxide via superoxide radicals, with processes that uncouple electron transport 

being a major contributor to the production of ROS 28.  
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A strong link exists between cellular bioenergetics and ROS, with the mitochondria 

responsible for the vast majority of ROS formation, specifically from complex I and 

complex III of the electron transport chain. Approximately 1-2% of all oxygen 

consumed in the mitochondria is converted into O2
.- which in the presence of metal 

ions can be converted into the highly reactive hydroxyl radical (.OH) through Fenton 

chemistry 23. Elevated mitochondrial ROS and radical species is known to result in 

deleterious effects such as MtDNA damage and consequently cell death 29. Over 10 

different potential mitochondrial ROS forging systems are known, including 

tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase and pyruvate 

dehydrogenase 30. Pharmacological agents that induce ROS, such as redox cycling 

compounds, have the potential to yield mitochondrial toxicity. Importantly, 

experimentally assessing redox cycling is very difficult owing to the fleeting existence 

of radical species, particularly in a biochemical environment, as radical species are 

recycled back to their original structures as part of cellular redox protective 

mechanisms. 

1.1.5 Biochemical Thermodynamics 

1.1.5.1 Thermodynamic Definitions and Concepts 

Thermodynamics is a branch of physical chemistry used to describe and understand 

relationships of multiple forms of energy. This field may be applied in terms of 

chemical thermodynamics, where concepts such as temperature, chemical potential, 

free energy and entropy are utilised, or applied to understand transportation and 

transformation of mass and transduction of free energy.  

Thermodynamics are defined by four laws: 

0. If two systems have the same temperature as the third, then they have the 

same temperature as one another 

1. The total energy of an isolated system is conserved 

2. The entropy of an isolated system does not decrease 
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3. The minimal entropy of a system is achieved at the temperature of absolute 

zero.  

The zeroth law describes an empirical definition of temperature with respect to the 

thermal equilibrium of multiple systems, used to decide whether two systems are at 

equal temperature without bringing them into contact.  

The first law of thermodynamics describes essential energy conservation, whereby 

energy may be converted from one form to another, but is unable to be created or 

destroyed. This allows the description of a closed thermodynamic system (i.e. it does 

not exchange any matter with its surroundings, nor is subject to any external forces), 

whereby the internal energy is equal to the difference between the heat supplied to 

the system, and the amount of work by the system on its surroundings.  

The second law of thermodynamics states that heat energy cannot spontaneously 

move from a system of low temperature to a system of higher temperature, without 

additional energy. It also introduces the term Entropy (denoted S), which is a 

thermodynamic quantity that represents the unavailability of a system’s thermal 

energy for conversion into mechanical work. This is also more often referred to as 

disorder. The second law therefore may also describe that entropy always increases 

with time, meaning thermodynamic equilibrium is a state with maximum entropy.  

Finally, the third law states that, as the temperature of a system approaches absolute 

zero, its entropy (disorder) approaches a constant. The third law may be best likened 

to the movement of water molecules at different temperatures. For example, at high 

temperatures, water may exist as a gas whereby its movement is free and essentially 

random (this may be considered as high entropy or disorder). As it cools, water 

molecules in the liquid phase move less freely and so the entropy of the system 

decreases. Finally, at low temperatures, water molecules in solid phase can no longer 

freely move but instead are only capable of vibrating within ice crystals, meaning 

lower entropy. If the water reached absolute zero, all molecular motion would cease, 

meaning a state of zero entropy.  
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While the laws of thermodynamics may seem abstract and somewhat excessive with 

respect to biochemical processes, it is the underlying relationships between heat, 

mass and energy that govern biochemical and biophysical processes 31.  

1.1.5.2 Gibbs free energy and reaction spontaneity 

Gibbs free energy, G, is the energy that can be used to perform work associated with 

a chemical reaction. The associated Gibbs free energy of a reaction (ΔG) measured in 

Joules (J), is described in Equation (1-3): 

 𝛥𝐺 =  𝛥𝐻 − 𝑇𝛥𝑆  , (1-3) 

where ΔH is enthalpy change (heat change, measured in J), T represents temperature 

in kelvin (K) and ΔS represents entropy change measures in J/K. This equation can be 

described in terms of standard-state conditions, which is much more useful for 

biochemical investigation. Namely, Equation (1-4) describes Gibbs free energy of 

reaction for standard conditions (ΔG0): 

 𝛥𝐺0 =  𝛥𝐻0 − 𝑇𝛥𝑆0  , (1-4) 

where standard conditions are assumed, namely: T = 298.15 K; partial pressures of 

gasses, (1 atm); and concentration of aqueous solutions are 1 M.  

Gibbs free energy of reaction can be used to determine the spontaneity of a 

biochemical reaction by calculating the change in free energy that occurs when a 

compound is formed, otherwise known as Gibbs free energy of formation, ΔGf
o. 

Equation (1-5) describes the standard free energy of a reaction from the 

corresponding standard-state free energies of formation.  

 𝛥𝐺0 =  𝛴𝛥𝐺𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
0 − 𝛴𝛥𝐺𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

0   .  (1-5) 

The value for ΔGo coupled with the value for ΔHo, can be used to determine the 

reaction spontaneity. When ΔHo > 0, the reaction is endothermic or consumes heat. 

When ΔHo < 0, the reaction is exothermic or releases heat. This allows classification 

of a reaction based upon heat changes.  
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When ΔGo > 0, the reaction is endergonic or non-spontaneous. Conversely, ΔGo < 0, 

the reaction is exergonic or spontaneous. When ΔGo = 0, the reaction is at 

equilibrium.  

The signs of ΔHo and ΔSo, relate thermodynamics to the likelihood of a reaction to 

proceed at standard conditions, namely:   

1) If a reaction is favourable for both entropy (ΔSo > 0) and enthalpy (ΔHo < 0), 

then the reaction will be spontaneous at any temperature (ΔGo < 0). 

2) If a reaction is unfavourable for both entropy (ΔSo < 0) and enthalpy (ΔHo > 

0), then the reaction will be non-spontaneous at any temperature (ΔGo > 0). 

3) If a reaction is only favourable for one of either enthalpy or entropy, then 

equation (1.3) must be used to determine spontaneity.  

These relationships are fundamental to the biochemical processes that form cellular 

bioenergetics. Crucially, not all biochemical processes are spontaneous. In fact, many 

processes have ΔGo > 0 and therefore must be linked to other reactions with ΔGo < 0 

in order to occur. Combined processes occur if the global ΔGo is less than zero. It is 

worth noting here that although this method allows the description of a processes 

occurrence, it does not describe the rate at which a process will occur. This concept 

is pivotal during cellular energy production.   

1.1.5.3 Cellular Energy: Negative ΔGo of ATP Hydrolysis  

Adenosine triphosphate (ATP) is a small molecule integral for the flow of cellular 

energy. Free energy is stored in this molecule in the terminal phosphate bond which 

may be released when hydrolysed, forming adenosine diphosphate (ADP) and 

inorganic phosphate (Pi) (Figure 1-4). Energetically, it is considerably unfavourable to 

add a phosphate group to ADP to generate ATP and as such, it is the very same energy 

that becomes available to do work once the terminal phosphate bond is broken. 

Ultimately, energy from food is stored in the terminal bond and is utilized by a 

plethora of cellular reactions including biosynthesis, transport mechanisms and 
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mechanical work.  ATP is therefore commonly known as the energy currency of the 

cell.  

 

Figure 1-4:  ATP hydrolysis. Terminal phosphate bond in ATP is cleaved by water to 

produce ADP and Pi. Sequential hydrolysis breaks further phosphate bonds until adenosine 

monophosphate (AMP) is left, releasing chemical energy stored in each of the bonds.  

The Gibbs free energy change can be calculated for the ATP hydrolysis reaction:        

ATP ⇋ ADP + Pi, given for any reversible reaction the equilibrium constant, Keq , is 

equal to the concentration of the products, divided by the concentration of the 

reactants, shown in Equation (1-6): 

 𝐾𝑒𝑞 =
[𝐴𝐷𝑃][𝑃𝑖]

[𝐴𝑇𝑃]
 , (1-6) 

where ΔG0 and Keq are related by the expression:  

 ∆𝐺𝑜 = −𝑅𝑇 ln𝐾𝑒𝑞 . (1-7) 

Equation (1-7) describes the free energy under standard conditions at equilibrium. 

However, cellular conditions are at neither standard conditions nor are the unit 

concentrations typically at equilibrium. Instead, calculation of the free energy of ATP 

hydrolysis under physiological conditions can be calculated using Equation (1-8). ΔGo 
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for this reaction is approximately -31.0 kJ mol-1  31 and so the free energy for ATP 

hydrolysis under physiological conditions is: 

 ∆𝐺 = ∆𝐺𝑜 + 𝑅𝑇 ln𝐾𝑒𝑞 , 

where 

(1-8) 

 ∆𝐺 = −31.0 + 8314 × 310 ln[40 × 10−6 × 5 × 10−3 ×  5 × 10−3],  

 giving  

 ∆𝐺 = −57.1 𝑘𝐽 𝑚𝑜𝑙−1 .  

Cellular bioenergetics may be described thermodynamically as such, allowing precise 

quantification of movement of energy.  

1.1.6 Cellular Bioenergetics 

Having introduced ATP as the energy currency of the cell, as well as quantitatively 

describing the chemical energy stored within the phosphate groups using 

thermodynamics, it is appropriate to now describe the cellular mechanisms whereby 

ATP is generated: glycolysis and oxidative phosphorylation. 

 

 

 

 

 

 



Chapter 1: General Introduction 

 

22 

1.1.6.1 Glycolysis 

Glycolysis describes the metabolic pathway that produces energy in the form of ATP 

via the utilization of glucose (schematic shown in Figure 1-5). 
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Figure 1-5: Schematic illustrating the catabolism of glucose into pyruvate and 

lactate with the concomitant generation of ATP. Enzymes (Purple): GLK, 

Glucokinase ; G6Pase, glucose-6-phosphatase; PGI, Phosphoglucose isomerase; 

PFK, phosphofructokinase; ALD, aldolase; TPI, triosephosphate isomerase; GPD 

(GAPDH), glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate 

kinase; PGM, phosphoglycerate mutase; ENO, enolase; PYK, pyruvate kinase; LDH, 

lactate dehydrogenase. Metabolites: GLC, glucose; G6P, glucose-6-phosphate; F6P, 

fructose-6-phosphate; Pi, inorganic phosphate; F16P, fructose-1,6-phosphate; 

BPG, 1,3-bisphospho-glycerate; DHAP, dihydroacetone-phosphate; NAD, 

nicotinamide adenine dinucleotide [O]; NADH, nicotinamide adenine dinucleotide 

[R]; PG2, 2-phosphoglycerate; PG3, 3-phosphoglycerate; PEP, 

phosphoenolpyruvate, PYR, pyruvate; LAC, lactate. 

Overall, the glycolytic pathway consists of twelve enzymes that catabolise glucose 

from a 6-carbon molecule to 3-carbon molecules that include pyruvate and lactate. 

Its primary function is to generate 2 x ATP molecules, 2 x NADH and 2 x pyruvate 

molecules, which are later processed to form a substantial amount of ATP via the 

tricarboxylic cycle (TCA) and oxidative phosphorylation. Glycolysis may be considered 

as three stages; priming, splitting and energy trapping. Priming includes the first three 

reactions, whereby glucose is trapped in the cell by phosphorylation. Splitting 

involves cleavage of glucose between carbon 3 and 4, which is achieved by the next 

two enzymes. Finally, the energy trapping process is completed by the final 6 

enzymes of the pathway generating 4 x ATP molecules.   

1.1.6.2 Oxidative Phosphorylation 

Oxidative phosphorylation (OXPHOS) describes a two tiered process whereby ADP is 

phosphorylated in an aerobic fashion. Occurring within the mitochondria, OXPHOS is 

responsible for around 95% of ATP formation in animal cells and as a result, 

mitochondria are commonly referred to as the powerhouse of the cell 32. ATP is the 

cellular currency because of the free energy stored in the terminal phosphate bond, 

the very same bond formed during OXPHOS 33. Consequently, phosphorylation of 
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ADP requires energy to occur, delivered by the respiration or oxygen consumption 

half of OXPHOS, rendering these two processes inextricably linked. OXPHOS occurs 

within the mitochondrial membrane, a highly specific membrane compared to most 

other cells that is highly specific with respect to passive permeations across it, 

allowing small weak acids, water-dissolved gasses and lipophilic compounds through, 

remaining impermeable to any charged ions, allowing passage only during 

participation in specialized transport proteins. It is this that gives the membrane its 

notorious and important potential (ΔΨm). This unique distribution of protons across 

the membrane, also known as the proton motive force, is the driving force of ATP 

synthesis linked together by chemiosmotic coupling
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Figure 1-6: Schematic of the electron transport chain and oxidative phosphorylation. Dashed lines represent movements of electrons.  
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In physiological conditions the respiratory chain acts as a proton pump, catalysing 

electron transfer from reduced variables NADH and FADH2 to terminal molecular 

oxygen, which serves as an electron dump at the end of the chain forming water 

(Figure 1-6). The concomitant electron flow through the electron transport chain 

results in a reduction of Gibbs potential. In other words, a large amount of free energy 

is released, of which the majority is used to pump protons from the matrix to the 

intermembrane space. The ΔΨm reflects the unequal distribution of protons and is 

between -180 to -200 mV on the inside (matrix side) and positive on the outside. It is 

this very distribution of protons across two mitochondrial compartments with 

different pH values that forces ATP synthesis to occur, simultaneously driving protons 

utilising this free energy (Figure 1-6).  

1.1.6.3 Warburg Effect 

The majority of in vitro investigations centre around immortalized carcinoma cell 

lines due to their robustness and ability to be cultured for extended periods, as 

opposed to primary cell lines that are relatively short lived and difficult to manipulate. 

The compromise for this experimental reproducibility is a significant loss of 

functionality, particularly in hepatocarcinoma cell lines where prominent drug 

metabolizing enzymes such as the cytochrome (CYP) family have diminished 

expression 34. Nevertheless, immortalized cell lines are used for a large proportion of 

drug toxicity assays despite their caveats.  

The use of cancer cells rather than primary cells presents another problem as they 

heavily rely on glycolysis as a source of cellular energy. The reason for this metabolic 

switch favouring glycolysis even in the presence of oxygen is still unknown 35. 

However, switching to “aerobic glycolysis” has been suggested to aid circumvention 

of several other difficulties. For example, increased cellular proliferation forming 

solid tumours can promote regions of hypoxia, hindering efficient oxidative 

phosphorylation. Oncogenic mutations facilitate increased uptake rates of glucose to 

such an extent that often there is surplus glucose with respect to cellular demands in 

the form of proliferation or bioenergetics. Although ATP energy demands are high in 
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proliferating cells, it is counterintuitive for proliferating cells to facilitate oxidative 

phosphorylation via the conversion of all glucose into CO2 in order to maximize ATP 

production, as glucose is needed elsewhere in the cell. For example, aside from 

energy production, glucose is the primary source of carbon chains that are required 

to generate other essential macromolecules such as acetyl-CoA for fatty acids, ribose 

for nucleotides and other biomass. Up to 90% of glucose in carcinoma cell lines is 

converted into the waste product lactate. However, in doing so, the cell ensures a 

healthy turnover of NADH 36.  

When modelling hepatic glucose metabolism using a hepatocarcinoma cell line it is 

pivotal to understand the differences between the bioenergetics and driving forces 

of a primary cell line and that of an immortalized cell line. Primary liver cells will act 

to buffer extracellular / plasma glucose concentrations via the storage of glucose as 

glycogen by glycogenolysis. However, hepatocarcinoma cells will bypass this storage 

mechanism in favour of a more inefficient method of high rate glucose metabolism.  

1.2 Methods 

1.2.1 Biochemical Simulation Environment (BISEN) 

Mathematically modelling large scale systems containing a large number of reactions 

or transporter processes is inherently difficult, time consuming and error prone 37. 

The Biochemical Simulation Environment (BISEN) is a tool that generates sets of 

differential equations and associated computer programs for simulating biochemical 

systems within the Matlab software.  BISEN considers “user-specified multi-

compartment systems of enzymes and transporters accounting for the detailed 

biochemical thermodynamics, rapid equilibria of multiple biochemical species and 

dynamic proton and metal ion buffering” 37. Such software alleviates the strains of 

error and inefficiency and is a powerful tool in the arsenal of any mathematical 

metabolic modeller.  



Chapter 1: General Introduction 

 

28 

1.2.1.1 Biochemical species and reactants  

In order to describe how BISEN works, we must first make some definitions and 

distinctions. As such, for the duration of this thesis, conventional notation in 

biochemical thermodynamics will be adopted. First, we must distinguish between a 

biochemical species and a biochemical reactant. A biochemical species refers to a 

unique chemical compound such as ATP4-, or Mg2+. A biochemical reactant is a 

compound that is the sum of all its interconvertible biochemical species. For example, 

ATP is a reactant that represents its related species: ATP4-, HATP3-, MgATP2- etc. This 

distinction is important as it allows us to describe with greater clarity the ubiquitous 

nature of ATP. For example, in its fully dissociated form ATP exists as the ATP4- 

species, carrying a net -4 charge. However, at a pH of ≈ 7, ATP can exist in the 

protonated form HATP3-. This is important when modelling changes in pH as BISEN 

allows computation of a dynamic proton / metal ion time course, also capturing the 

dynamics of a desired species at different ionic strengths, and the resulting changes 

on the overall pH and vice versa. For visualization, we can use the example of HATP3- 

dissociating to yield ATP4- and H+, in a solution of ionic strength of ≈ 0.25 M with an 

acid-base dissociation constant of 6.47, where pK is –log10Keq and Keq is the 

dissociation reaction equilibrium constant 38. 

The equilibrium expression is: 

 𝐾𝑒𝑞 = 10−𝑝𝐾 =
[𝐴𝑇𝑃4− ][𝐻+]

[𝐻𝐴𝑇𝑃3−]
  . (1-9) 

Assuming the system is in equilibrium and the total concentration of ATP is equal to 

the sum of its protonated and unprotonated forms ATP4-, HATP3-, then  

 [𝐴𝑇𝑃] = [𝐴𝑇𝑃4−] + [𝐻𝐴𝑇𝑃3−], (1-10) 

 = [𝐴𝑇𝑃4−] +
[𝐴𝑇𝑃4−][𝐻+]

𝐾𝑒𝑞
, (1-11) 

 = [𝐴𝑇𝑃4−] (1 +
[𝐻+]

𝐾𝑒𝑞
). (1-12) 
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This then allows us to express molar fractions of ATP as 

 [𝐴𝑇𝑃4−]

[𝐴𝑇𝑃]
=

1

1 + [𝐻+]/𝐾𝑒𝑞
 & 

[𝐻𝐴𝑇𝑃3−]

[𝐴𝑇𝑃]
=

[𝐻+]/𝐾𝑒𝑞

1 + [𝐻+]/𝐾𝑒𝑞
. 

(1-13) 

Equation (1-13) can be used to track the relative molar fractions of ATP as a function 

of pH, illustrating how the species fraction may vary as a result of a change in pH. 

(See Figure 1-7.) 

 

Figure 1-7: Molar fractions of ATP4- and HATP3- as a function of pH at pK= 6.7, 

generated using Equation (1-13). 

The ability to have complete control over ionized fractions as a function of pH is 

crucial when modelling process that may change the pH of a system, as this in turn 

could alter the state of any species in a system depending on its pKa. Furthermore, 

when considerably different biological systems, such as the skin or the liver, or 

biological compartments, such as the cell cytoplasm or the mitochondrial matrix, one 

must be strict in assigning an accurate pH, as species or any compound will exist in a 

specific ionized state in these compartments and this may be the difference between 

an inhibitory or activating, efficacious or toxic effect. 
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1.2.1.2 Biochemical reactions 

Having set out how BISEN treats biochemical species and reactants one can now 

describe how the suite uses this to describe a biochemical reaction. A chemical 

reaction that is stoichiometrically correct may be unbalanced in terms of mass and 

charge. For example, Equation (1-14) represents ATP hydrolysis with unbalanced 

charge and mass, whereas Equation (1-15) balances charge and mass:  

 𝐴𝑇𝑃 ↔ 𝐴𝐷𝑃 + 𝑃𝑖 , (1-14) 

 𝐴𝑇𝑃4− + 𝐻2𝑂 ↔ 𝐴𝑇𝑃3− + 𝐻𝑃𝑂2− + 𝐻+. (1-15) 

Expressing biochemical equations in the format of Equation (1-15) allows BISEN to 

apply thermodynamics via the use of ∆G0. A complete description of how 

thermodynamics is incorporated into the system is better explained in Chemical 

Biophysics 38. Briefly, each biochemical equation has its own associated equilibrium 

constant and ∆rG0 that is independent of pH, but dependent upon changes to 

temperature and ionic strength. Overall, this allows favourability of a reaction to 

change as a result of a pH change in an environment that has a finite buffer capacity 

39.  

1.2.1.3 Computing a dynamic pH time-course 

Having discussed how BISEN treats reactants, species, biochemical reactions and the 

thermodynamics that surround them, one can use this information to describe their 

interactions with protons and metal ions to explain how BISEN computes a dynamic 

pH time course. pH is simply –log10[H+] and as a result, is a function of net changes in 

proton concentration within the system. Therefore, computing a pH time course 

using BISEN is achieved by accounting for total proton conservation between 

biochemical reactions and species-proton stoichiometry. The rate of proton 

consumption in a biochemical reaction is equal to the reaction flux multiplied by its 

associated proton stoichiometry. The dynamic buffer capacity of the system is also 

required and this is defined as the number of strong base equivalents in the medium 

40. These are then used to calculate the rate of change of pH by applying this 
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calculation of proton consumption for all reactions simultaneously, divided by the 

medium buffer capacity. The rate of change of pH of a BISEN derived system is 

therefore a function of the sum of proton and metal cation binding with all 

biochemical species and the overall system buffer capacity. 

1.2.1.4 BISEN model construction 

In order to use BISEN to construct a pH-dependent thermodynamically driven model, 

the kinetic equations must be defined in an appropriate file (a BSL file) using the 

appropriate syntax to allow Matlab to construct a model. Each biochemical reaction 

or transporter BSL file is then used in a final BSL file which includes all global variables, 

compartment volumes and their corresponding water fractions, assignment of 

transporter and biochemical reactions to their corresponding compartment and 

which kinetic model term to use from each individual BSL file. Using the Glucokinase 

biochemical reaction BSL file as an example, each BSL file used to house a kinetic term 

must obey the following format.  

 

First, the model is defined. In this instance, the model is an enzyme kinetic term 

describing the Glucokinase (GLK) reaction. Multiple versions of this kinetic term are 
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allowed, but since in this case there is only one version, the notation E.GLK.1 is used. 

If another model of this enzyme were to be described in this file, the same format 

would be used but the model would be described as E.GLK.2 etc. This difference is 

used to distinguish which model of that biochemical reaction is used when BISEN 

constructs the model. Next, any allosteric reactants are defined under the simple 

syntax of allosteric-reactants before the equation. After this step, the kinetic term 

can be described including assignment of parameter values if known. If not, a 

parameter may be set to “unspecified” allowing later allocation once the model has 

been constructed in Matlab. BISEN is capable of calculating an equilibrium constant 

Keq for a biochemical reaction using free energies assigned in an associated database. 

This is achieved by simply writing the equilibrium constant Keq within the BSL file as 

Keq. For a user specified value for this constant, the reaction abbreviation can be used 

as a suffix, for example Keq becomes Keq_GLK.  

1.2.2 Extracellular flux analysis (EFA) 

Assessment of cellular bioenergetics as a function of whole cell environments is 

measured via high throughput extracellular flux analysis (EFA) systems that monitor 

oxidative phosphorylation and glycolytic flux in real time. This is achieved by 

measuring mitochondrial respiration (oxidative phosphorylation) as cellular oxygen 

consumption rate (OCR) and glycolytic flux as extracellular acidification rate (ECAR). 

While OCR remains a robust well used output indicative of oxidative phosphorylation, 

the true source of ECAR is as yet relatively ambiguous 41. At present, lactic acid is 

considered responsible for the majority of ECAR. However, recent studies also show 

that respiratory acidification may also contribute via the generation of carbonic acid 

42.  
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Combining OCR and ECAR provides a powerful platform to assess cellular 

bioenergetics (a schematic of OCR & ECAR and their interactions is shown in Figure 

1-8) with OCR and ECAR measurements. It is becoming ever easier to glean 

information about the underlying mechanisms of drug induced mitochondria toxicity, 

particularly with respect to oxygen flux 43. However, extracellular acidification rate 

(ECAR) measurements currently are utilized far less regarding cellular bioenergetics 

than their oxygen consumption counterparts. The nature of cellular ATP production 

lends credibility to the bias of OCR over ECAR measurements, as approximately 95% 

of cellular ATP is generated from oxidative phosphorylation in physiological scenarios 

41. However, during mitochondrial function impairment, glycolysis accelerates to 

counteract diminished ATP generation. In some cases however, this compensatory 

Figure 1-8: Schematic illustrating fundamental components of EFA, with particular 

emphasis on highlighting EFA outputs ECAR and OCR, as well as the link between the 

two bioenergetic systems.  
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process simply isn’t enough to prevent eventual cell death 44. Nevertheless, glycolytic 

flux has been shown to play an important role in cellular bioenergetic homeostasis 

45.  

1.2.3 Mitochondrial Superoxide (MitoSOX) Assay 

Detection of mitochondrial specific ROS or superoxide is achievable using a 

specialized fluoroprobe within the MitoSOX assay. This method offers selective 

detection within live cells that has been validated using confocal microscopy 46. This 

approach was used to quantify changes in mitochondrial superoxide / ROS levels after 

exposure to doxorubicin in order to test the redox cycling models ability to accurately 

predict organelle specific ROS levels based on thermodynamics. The results were 

obtained via the following method: 

MitoSOX Assay: 5 µl of MitoSOX reagent (1 µM) was added to each well and 

incubated in the dark for 5 minutes. The supernatant was removed and retained 

before trypsinising the cells. Cells were re-suspended in the retained supernatant 

before centrifuged at 2000 rpm for 5 minutes. The supernatant was discarded and 

the cell pellet was re-suspended in HBSS (300 µl) and then plated in duplicate (100 

µl) in a white flat-bottomed 96-well plate. Fluorescence was measured at an 

excitation and emission of 396 and 579 nm respectively using a VarioSkan flash plate 

reader. Cell lysates were prepared from the remainder of the sample using a sonic 

probe. Protein content was determined using a Bradford assay and all data was 

normalized to mg of protein/well. 

Statistical Analysis: Data values are expressed as mean ± SD. D’Agostino and Pearson 

Omnibus normality test was used to detect normality. One-way ANOVA and 

Dunnett’s post-test were used to analyse all parametric data.   Statistical analysis was 

conducted using Graphpad Prism 5 software. 
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1.2.4 Cell Viability Assays – MTT & ATP 

There are many ways in which to detect and quantify cytotoxic effects of compounds 

on cells in vitro, measuring different biological outputs via different detection 

methods, including tetrazolium reduction, reaszurin reduction, protease markers and 

ATP detection.  

The MTT cell viability involves tetrazolium reduction and was the first homogenous 

cell viability assay developed for high throughput screening. MTT is a positively 

charged compound that readily penetrates viable eukaryotic cells and has been 

utilized in thousands of published research papers. Its mechanism of action is 

quantified via absorbance spectroscopy, where the tetrazolium moiety is reduced 

into a coloured formazan product. Viable cells convert MTT into this purple formazan 

product whereas dead cells do not. Exploitation of this factor allows easy 

quantification of cell viability 47.  

The ATP assay is an alternative cell viability probe, which measures ATP using firefly 

luciferase, with ATP having been accepted as a robust marker of viable cells. The ATP 

assay is the fastest assay to use, the most sensitive and is less susceptible to artifacts 

than alternative viability assays. Its output is luminescence, which is independent of 

an incubation step with viable cells whereby a metabolic process is required. The 

benefit of using two different methods to detect cell viability is minimization of 

uncertainty of the assay outputs 47.  

1.2.4.1 MTT & ATP Assay Methods 

HepG2 cells (2 x 104) were plated in flat-bottomed 96-well plates in triplicate and 

allowed to adhere overnight. 

MTT Assay: Cells were exposed to a range of concentrations of menadione and 

doxorubicin (0.005-100 µM) and incubated for 24 hours. A solution of 3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium Bromide (MTT) in Hanks balanced salt 

solution (HBSS) was prepared (0.5 mg ml-1) and 20 µl was added to each well and 

incubated for a further 2 hours. Finally, 100 µl of a lysing buffer (N,N-
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dimethylformamide 50% v/v; sodium dodecyl sulphate 20% w/v) was charged to each 

well before further incubating for 4 hr. Samples absorbance’s were measured  at a 

test and reference wavelength of 570 and 590 nm respectively with a plate reader 

(MRX, Dynex).  

ATP Assay: Cells were exposed to a range of concentrations of menadione and 

doxorubicin (0.005-100 µM) and incubated for 24 hours. ATP content of the cells was 

measured using a Cell Titer-Glo kit following the manufacturer’s instructions. 20 µl of 

assay reagent was added to each well and shaken for 1 minute. 100 µl from each well 

was then plated onto a white 96-well flat-bottomed plate and the luminescence was 

measured using VarioSkan flash plate reader. 

1.2.5 COSSAN: Sensitivity Analysis 

Mathematical modelling and simulation is widely applied alongside theory and 

experimentation during scientific research, with sophistication of model outputs 

increasing according to development of methods and computational power. That 

said, perhaps the greatest challenge in using such approaches is the inherent 

variability and uncertainty that comes from in silico modelling. Variability arises from 

the different sources of information used to construct a model which can be reduced, 

whereas uncertainty will always be prevalent since it is impossible to perfectly model 

absolutely everything or predict future outcomes for which there exists no 

experimental data. Quantification and understanding of model sources of 

uncertainty is therefore crucial for the credibility of model simulations. Sadly, 

uncertainty quantification within the biological and pharmacological community is 

still very much in its infancy, owing predominantly to the computationally intensive 

and often difficult methods required in order to investigate it. Fortunately, there are 

sophisticated toolsets available for quantification of uncertainty, with COSSAN 

arguably one of the best.  

COSSAN is an open-source MATLAB based software used to quantify, mitigate and 

manage uncertainty and risk. The software was developed at the Institute of Risk and 
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Uncertainty at the University of Liverpool 48. This toolset offers advanced algorithms 

for rational quantification and propagation of model uncertainties, specifically 

located within parameter selection. COSSAN is an efficient approach to facilitate the 

linking of deterministic codes with stochastic analysis. Its predominant operations 

include: uncertainty quantification (UQ), simulation-based reliability analysis, 

sensitivity analysis, meta-modelling, stochastic finite elements analysis (SFEM) and 

reliability-based optimization (RBO). These advanced methods allow construction of 

robust frameworks for the rational treatment of parameter uncertainties.  

Sensitivity analysis is the investigation of how variation in the input of a mathematical 

model leads to uncertainty in its simulated outputs, either qualitatively or 

quantitatively. Mathematical models often rely on large parameter sets which have 

the proclivity to be imprecisely known. Moreover, multiple different parameter 

values or indeed a distribution of parameter values may elicit the desired simulated 

output. As such, it is important to grasp the relationship between parameter space 

and model output.   

For assessing the uncertainty, sensitivity and quality of experimentally motivated 

model parameters, the COSSAN toolset can be implemented via the following 

methodology:  

1. For each of the initial parameter estimates, define a parameter sample 

space by assigning a probability distribution to each parameter.  

2. Generate multiple values for each parameter from each distribution using 

Latin Hypercube Sampling (LHS). 

3. Evaluate the model at each combination of parameter values using Monte 

Carlo simulations and compare outputs to experimental data. 

4. Reduce the difference between outputs and error with respect to the 

experimental data and hone an improved parameter set using a Nelder-

Mead approach. 
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1.2.6 Principal Component Analysis & Multinomial Logistic Regression  

1.2.6.1 Principal Component Analysis  

Principal component analysis (PCA) is a statistical method that transforms a dataset 

of possibly correlated variables into groups of linearly uncorrelated called principal 

components, via an orthogonal transformation. By doing this, each principal 

component describes the variance sequentially for each dimension of data. This 

method is commonly used to elucidate strong patterns in dataset, making it easier to 

explore and visualize. For example, investigating a dataset with two dimensions such 

as time and concentration, these can be plotted in a plane. However, if it desirable to 

measure variation, PCA determines a new coordinate system, reducing two 

coordinate values into a single value for each data point. In doing so, this gives the 

new single axis scope to view greater variation. Similarly, for 3D situations with 3 sets 

of data, PCA analysis can be used to project this into a 2-dimensional space, by 

rotation of the axis. For higher dimensional data, obviously it is impossible to plot 

more than 3 dimensions, rather, each principal component is ranked, with the first 

principal component describing the highest variance, with each principal component 

following sequentially describing less variance.  

PCA was used to visualise three sets of percentage change data for a 24 patient 

cohort of human primary liver cell samples, in order to discern any correlation 

between these changes and each patients reserve glycolytic capacity before 

statistical analysis using multinomial logistic regression.  

1.2.6.2 Multinomial Logistic Regression  

Multinomial logistic regression is a classification-based statistical method used to 

predict a nominal dependent variable given multiple independent variables, differing 

from binomial logistic regression by accommodating a dependent variable with more 

than two categories. For example, multinomial logistic regression can be used to 

understand which clinical biomarker, X, Y or Z, best describes an endpoint based on 
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age and length of compound exposure. This method allows both age and length of 

exposure be used to describe a classification, in this instance X,Y or Z.  

1.3 Pharmacological & Mathematical Motivation 

Redox cycling is an understated mechanism of toxicity that is associated with many 

classes of pharmaceutical compounds, ranging from anti-malarial to anti-cancer 

efforts. Often, efficacy of a compound depends on the ability for it to undergo a single 

or double electron reduction. The quinone motif is perhaps the most well-known 

redox cycling moiety and as such, is a structural alert. Doxorubicin is an anti-

neoplastic compound that contains the quinone motif with strong links between 

redox cycling based cardiac toxicity associated specifically within the mitochondria. 

Unfortunately, detecting and quantifying redox cycling in vitro is extremely difficult 

owing to the fleeting existence of radical species. This prevents predicting this 

mechanism of toxicity from being easily detected during pre-clinical development of 

compounds. With the development of mathematical and computational methods, in 

silico representation of redox cycling and complex bioenergetics is achievable, 

especially when coupled with advanced versatile in vitro techniques such as 

extracellular flux analysis. Combining thermodynamic driven models that represent 

the fundamental properties of chemical and bioenergetic processes allows detailed 

mechanistic investigation into redox cycling and cellular bioenergetics, with 

particular emphasis on the in vitro methods used to assess them. To date, no 

mechanistic deterministic mathematical models of quinone redox cycling exist, nor 

for any in silico models of doxorubicin specific models capable of simulating a 

dynamic time-course of redox cycling induced ROS formation. With respect to cellular 

bioenergetics, in silico models do exist, however, they are undetailed and lack in 

mechanistic detail. Furthermore, ambiguity over the source of ECAR during EFA 

remains prevalent, despite the ability to differentiate between glycolytic and 

respiratory contributions to acidification. As such, a thermodynamic-based pH-

dependent model of cellular bioenergetics would aid better understanding of 

glycolytic flux output during EFA, as well as lend credibility to ECAR as a valuable 
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experimental output. Finally, thermodynamic-based models of mitochondrial 

bioenergetics can be used to better understand the inhibition of electron transport 

chain complexes and dissipation of mitochondrial membrane potential by 

mitochondrial poisons. In better understanding these qualitatively compared to 

experimental data, and being able to accurately recapitulate the in vitro EFA 

representations in silico, allows mathematical and computational assistances in novel 

compound effects on mitochondrial bioenergetics, as well as current poorly 

understood ones.  

1.4 Thesis Outline 

Chapter 2 describes a novel thermodynamic-based in silico model of quinone redox 

cycling used to simulate doxorubicin induced ROS formation within the mitochondria. 

The model is coupled with a novel cell-free extracellular flux analysis assay whereby 

changes in pH are used to estimate kinetic model parameters. The model is used to 

successfully predict in vitro mitochondrial superoxide formation for 6, 16 and 24-hour 

data when considering cell viability.  

With extracellular flux analysis used throughout this thesis to assess redox cycling 

and cellular bioenergetics, chapter 3 investigates the role of proton and lactate efflux 

in the role of extracellular acidification during EFA. The ambiguity over the true 

source of glycolytic derived acidification coupled with the underutilization of ECAR as 

an in vitro output, prompted the detailed thermodynamic-based pH-dependent 

model of hepatic glycolytic flux, which is the first of its kind with respect to liver 

enzyme kinetics capable of simulating a mechanistically accurate pH time-course. The 

model is validated against in vitro EFA data for hepatocarcinoma cells, while 

considering respiratory contributions to acidification via quantification of media 

buffering power. The model simulates changes in glycolytic flux as a function of 

perturbations in extracellular glucose concentration, simulating physiological, 

hyperglycaemia and hypoglycaemic conditions, showing a switch in monocarboxylate 

transporter 1 (MCT1) directionality, allowing the model to import lactate as a small 
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carbon molecule to be processed via gluconeogenesis in order to generate cellular 

energy ATP.  

Finally, chapter 4 describes an in silico model of mitochondrial bioenergetics that 

includes oxidative phosphorylation, the tricarboxylic acid cycle, metabolite transport 

and passive permeations between three compartments, cytoplasm, intermembrane 

space and the mitochondrial matrix. The model is again thermodynamic-based and is 

used to simulate in vitro EFA oxygen consumption. The mechanistic detail of the 

model construction is used to investigate levels of inhibition of mitochondrial 

complex I, III, IV, V and ΔΨm as a function of exposure to Rotenone, Antimycin A, 

oligomycin and FCCP for in vitro primary hepatocyte data from 24 human patients. 

Statistical analysis was used to compare the ability of patient data percentage 

changes versus model parameter changes to predict glycolytic reserve capacity.  
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2.1 Chapter Aims 

1. To construct a thermodynamically driven mathematical model of quinone 

redox cycling, capable of generating time course profiles of radical species 

formation. 

2. To develop a new method to characterize parameter values using 

extracellular flux analysis in vitro.   

3. To use the combined in silico – in vitro platform to investigate the 

mechanism of quinone redox cycling using known redox-cycler / anti-cancer 

drug doxorubicin as an example. 

2.2 Mathematical Modelling  

2.2.1 Quinone Physicochemical & Thermodynamic Model 

The proclivity of a quinone to accept an electron, or be reduced, is dependent upon 

its reduction potential, Eo’, as discussed in 1.1.2. This method of assessing 

susceptibility via its reduction potential is applicable to all other chemical 

compounds, most importantly perhaps, it can be applied to reactive oxygen species 

(ROS). Furthermore, the ability for a quinone, in this case a semiquinone (SQ.-), to 

donate the electron to generate the ROS may also be quantified via the 

thermodynamic linking of both reduction potentials.  

Thermodynamic favourability of the reaction between the SQ.- and molecular oxygen 

can be gauged by considering Eo’ for the (Q/ SQ.-) and (O2/ O2
.-), where the Eo’  for (O2/ 

O2
.-) is -180 mV 49. The reaction equilibrium constant can also be calculated using 

Equation (2-1). 

 𝐸0′(𝑂2/𝑂2
.−) − 𝐸0′

(𝑄/𝑆𝑄.−) = (
𝑅𝑇

𝐹
) ln𝐾𝑒𝑞 .              (2-1) 

Where R is the universal gas constant (8.314 J/mol K); T is the temperature in Kelvin 

and Keq is the reaction equilibrium constant.  



Chapter 2: Modelling Redox Cycling:  Model Formulation and Development 

 

44 

In essence, according to Equation (2-1), if the Eo’ (Q/ SQ.-) is lower than the Eo’ (O2/O2
.) 

then the equilibrium will lie to the right-hand-side favouring O2
. Formation. Similarly, 

if the Eo’ (Q/ SQ.-) is higher than the Eo’ (O2/O2
.) then the opposite is true, favouring 

the reverse reaction, and thereby leaving superoxide formation ultimately 

thermodynamically unfavourable. However, it is important to recognize that, 

regardless of which side of equilibrium is favoured, these reactions are reversible and 

therefore superoxide formation can occur even if the reverse rate constant is higher 

than the forward. The production of superoxide is then a function of other biological 

or chemical factors that influence the position of equilibrium, such as detoxification 

by superoxide dismutase enzymes (SOD) 7.  

Reduction potentials for a myriad of quinone compounds have been published, along 

with their relative forward and reverse rate constants for the formation of superoxide 

from molecular oxygen, calculated using Equation (2-1) 7. Furthermore, these 

reduction potentials are also inextricably linked to the quinone pKa values, as 

hydroquinones are weak diacids with pKa values typically in the range of 9-11. pKa 

values are extremely useful and well utilized for describing the electron density on an 

atom with which a hydrogen bond is formed. This gives the optimum opportunity to 

consolidate these crucial physicochemical thermodynamic properties into a 

mathematical framework from which rate constants may be obtained given any 

reduction potential or pKa value for a quinone containing compound. This model will 

be denoted the physicochemical thermodynamic quinone model (PTQM) henceforth.  

The PTQM accounts for multiple quinone reduction potentials, rate constants for 

formation and pKa values for different quinone compounds. 12 structurally different 

quinone compounds were used to construct the PTQM, covering a large reduction 

potentials (-500 – 100 mV) and rate constants (log 4 – log 10 M s-1). The model 

facilitates generation of a rate constant for the formation of superoxide from a 

semiquinone radical given a reduction potential or pKa, or vice versa by relating the 

reduction potential of these compounds to their pKa values, and then to the forward 

and reverse rate constants for superoxide formation. Values for reduction potentials 
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and pKa values for a group of quinone motif-based compounds, as well as the 

corresponding rate constants for formation of superoxide from the semiquinone 

radicals  were taken from 7, and used to generate the PTQM. From these values, 

activity relationships were established between pKa, reduction potential, superoxide 

formation and glutathione conjugate formation.  

 

Figure 2-1: Reduction potential – pKa model. Corresponding pKa and reduction potential 

values for para-hydroquinone compounds were consolidated into a mathematical 

framework, allowing computational estimation of a reduction potential from a pKa value 

should the reduction potential be unavailable. Compounds: a. ubiquionol-1, coenzyme Q-

1; b, tetramethyl-1,4-hydroquinone; c, 2,3,5-trimethyl-1,4-hydroquinone; d, plastoquinol-

1; e, 2,6-dimethyl-1,4-hydroquinone; f, 2-methyl-5-isopropyl-1,4-hydroquinone; g, 2,3-

dimethyl-1,4-hydroquinone; h, 2,5- dimethyl-1,4-hydroquinone; i, 2-ethyl-1,4-

hydroquinone; j, 1,4-hydroquinone; k, 2-chloro-1,4-hydroquinone; l, 2,6-dichloro-1,4-

hydroquinone; m, 2,5-dichloro-1,4-hydroquinone 7. 

 

Figure 2-1 shows the relationship between pKa and reduction potential, illustrating 

the general trend of decrease in reduction potential results in an increase in pKa. The 

electron density of a proton is reflected in its associated pKa value, with the greater 
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the electron density it shares with the atom it forms the hydrogen bond with, the 

greater the negative chare remaining once removed, i.e. the greater the negative 

charge, the higher the pKa value. This directly correlates to the ease of reduction of 

a quinone, as the more negative the reduction potential, the harder it is to reduce.   

 

 

Figure 2-2:  Reduction potential superoxide formation rate constant model. Quinone 

reduction potential thermodynamic data was consolidated into a mathematical 

framework in order to facilitate superoxide rate constant determination for a range of 

reduction potentials. The models were fitted using data from 7, using the Matlab fitting 

tool, allowing ameliorated curved fitting compared to source fit. The responsible parent 

quinone for the semiquinone radicals: a, 1,4-benzoquinone; b, methyl-1,4-benzoquinone; 

c, 2,3-dimethyl-1,4-benzoquinone; d, 2,5-dimethyl-1,4-benzoquinone; e, 2,6-dimethyl-1,4-

benzoquinone; f, duroquinone; g, 2-methyl-1,4-naphthoquinone; h, 2,3-dimethyl-1,4-

naphthoquinone; i, anthraquinone; j, Mitomycin; k, Adriamycin; l, AZQ: 2,5-diaziridinyl-

3,6-bis(carbethoxyamino)-1,4-benzoquinone. 

Figure 2-2 illustrates the relationship between reduction potential and the 

subsequent rate constants for superoxide formation, generating an activity 

relationship. The forward rate constant follows the likelihood of electron donation 

onto molecular oxygen from the relevant SQ.-, whereby the more negative the 

reduction potential, the higher forward the rate constant (kf). A less readily reduced 

SQ.- possesses a more negative reduction potential and as such, will seek to rapidly 

A B 
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donate its surplus electron to molecular oxygen if it itself reduced, hence the higher 

rate constant of formation (kf) of superoxide. The reverse rate (kr) constant follows 

the opposite rational, with the more negative the reduction potential, the slower the 

rate.  

The final set of data to consolidate into this framework is the relationship between 

the reduction potential and the rate constant for the formation of glutathione 

adducts (Q-GSH) via irreversible Michael addition.  Figure 2-3 shows how increases in 

reduction potential correspond to a linear increase in the formation rate constant. 

An increase in reduction potential reflects a more readily reducible quinone, which 

in turn results in increased proclivity for radical species formation. As such, the rate 

at which GSH adducts form, is concentration dependent based upon mass action, and 

therefore will also increase. Figure 2-1,Figure 2-2 and Figure 2-3 form the primary 

construct of the PTQM model, from which, information regarding reduction 

potential, pKa, superoxide formation rate constants and glutathione reaction rate 

constants may be obtained. 
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Figure 2-3: Reduction potential GSH adduct rate constant model. Quinone reduction 

potential thermodynamic data was consolidated into a mathematical framework in order 

to facilitate superoxide rate constant determination for a range of reduction potentials. 

The models was fitted using data from 7, using the Matlab fitting tool, allowing ameliorated 

curved fitting compared to source fit. The responsible parent quinone for the semiquinone 

radicals: a, 1,4-benzoquinone; b, methyl-1,4-benzoquinone; c, 2,6-dimethyl-1,4-

benzoquinone; d, 2,5-dimethyl-1,4-benzoquinone; e, 2,3,5-trimethyl-1,4-benzoquinone.  

The three models relating reduction potential to superoxide and glutathione adduct 

formation were then housed in a single model fronted with a graphical user interface 

(GUI) (Figure 2.4). This facilitates open access for all users, particularly those who are 

unfamiliar with fitting algorithms or coding. The PTQM GUI works by entering a 

reduction potential followed by clicking “Generate”, which displays the 

corresponding forward and reverse rate constants (kf and kr) for semiquinone 

induced superoxide formation and the rate constant for glutathione adduct 

formation. If the reduction potential for the quinone is unknown, then a pKa value 

may be entered followed by clicking “Generate” once to generate the reduction 

potential, then clicking “Generate” a second time to display the rate constants.  
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Figure 2-4: Physicochemical thermodynamic quinone model GUI. Users are able to input a 

reduction potential or pKa value to obtain specific rate constants for quinone based redox 

cycling.  

2.2.2 Preliminary Redox Cycling Model 

The initial chemical redox cycling model was based on the well characterized quinone 

moiety, notorious for their redox cycling ability as described in Chapter 1. The model 

was constructed around the Q/SQ.-/H2Q redox triad (Figure 1-1), coupled with in vitro 

EFA as a method of quantifying the rate of redox cycling experimentally. As 

mentioned above, the anti-cancer drug doxorubicin was used as the initial quinone 

containing compound.  

Firstly, the redox chemistry was described mathematically using mass action based 

kinetics, incorporating the thermodynamically derived rate constants for doxorubicin 

generated from its reduction potential, obtained from the PTQM. The initial model 

iteration included the redox triad, as well as the double electron reduction from the 

quinone to the hydroquinone and the formation of O2
.-. Table 2-1 and Table 2-2 list 
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the initial model reactions, along with a description and their corresponding kinetic 

equations. The model is depicted as a schematic in Figure 2-5. 

 

Figure 2-5: Initial redox cycling model schematic. The model captures the redox cycling of 

a quinone motif and molecular oxygen to form superoxide. Q, quinone; SQ.-, semiquinone 

radical anion; H2Q, hydroquinone; O2
.-, superoxide radical anion.  

 Reaction Equation Description 

R1 Q ⇋ SQ Single electron reduction 

R2 SQ ⇋ H2Q Single electron reduction 

R3 SQ + O2 ⇋ Q + O2
.- Superoxide formation 

 

Table 2-1: Initial quinone redox cycling model reactions accompanied with a description 

Reaction Equation 

R1 kf1 [Q] - kr1 [SQ] 

R2 kf2 [SQ] - kr2 [H2Q] 

R3 kf3 [SQ] [O2] - kr3 [Q] [O2
.-] 

 

Table 2-2: Initial quinone redox cycling model kinetic equations 

Using the redox potential Eo’ (Q/SQ.-) = -292 mV for doxorubicin, the corresponding 

rate constants, calculated by the PTQM (Figure 2-4), kf3 and kf3 for R3 are 9.2285 × 107 

and 6.6984 × 105 M s-1 respectively 7,50. The remaining unknown rate constants were 

assigned arbitrary values of 1 prior to fitting to experimental data. The initial 

parameter estimates were varied, but this had no effect on the values of optimized 

parameters. 
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The model was constructed by describing the relationship between these reactions 

in the form of a coupled system of ordinary differential equations (ODEs), namely 

(2-2): 

 𝑑𝑄

𝑑𝑡
=  −𝑅1 + 𝑅3 , 

𝑑𝑆𝑄 

𝑑𝑡
=  −𝑅2 + 𝑅1 − 𝑅3 , 

𝑑𝐻2𝑄 

𝑑𝑡
=  𝑅2 , 

𝑑O2
.− 

𝑑𝑡
=  𝑅3 . 

 

(2-2) 

This model is a reduced representation of quinone redox cycling as stoichiometric 

accounting for proton H+ and electron (e-) is omitted. Instead, it is assumed that 

proton concentration is constant at pH 7, as this is the pH whereby the Eo’ has been 

calculated 7. Furthermore, this model assumes that the electrons are abundantly 

available, allowing dynamics of electron number to be omitted. Molecular oxygen 

(O2) concentration is also held constant in the model, allowing simulation of a state 

of normoxia. In order to ease the inevitable transition from the initial chemical 

specific model to a pharmacologically relevant experimentally validated model, the 

oxygen concentration is captured by multiplying the kf3 by the oxygen molar 

saturation 1.3 × 10-4 M, obtained from an 18 % oxygen concentration in unbuffered 

pH 7 media.   

Regardless of the simplicity of the initial model there are fundamental characteristics 

that must be captured in order to inquisitively model quinone redox cycling. The 

model has been initially developed to account for two single electron reductions, and 

one double electron reduction to represent full quinone to hydroquinone reduction. 

The importance of including both reduction platforms falls into a mechanistic 
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boundary, as while it is confirmed that the quinone moiety is able to be reduced 

under both single and double electron reduction methods - how important either 

mode of reduction will be highlighted below. In this instance, the single-step double 

electron reduction (Q ⇋ H2Q) is included implicitly by the two single electron 

reduction reactions R1 and R2, allowing the double reduction to become a function of 

the stability of the SQ.- radical species. Thus, a highly unstable radical will further 

reduce to the H2Q. Finally, all parameters are positive by definition.  

2.2.3 Stability Analysis 

Local model stability can be investigated using standard linear stability analysis at for 

model equilibrium, which occurs at steady state denoted by (QEq, SQ.-Eq, H2QEq, O2
.-

Eq). To facilitate the analysis, the model can be simplified by taking into account that 

the sum of concentration of the three quinone derived variables Q, SQ.- and H2Q is 

equal to the initial amount of Q placed in the system, Qi. Therefore, the variable H2Q 

can now be replaced in Table 2-2 with Equation (2-3): 

 𝐻2𝑄 = 𝑄𝑖 − 𝑄 − 𝑆𝑄 . (2-3) 

Now, by setting the right-hand sides of the equations in the system Equations (2-2) 

to zero, and after simplification, we get the following steady state concentrations: 

 
𝑄𝐸𝑞 =

𝑄𝑖 𝑘𝑟1𝑘𝑟2

𝑘𝑟1𝑘𝑟2 + 𝑘𝑟2𝑘𝑓1 + 𝑘𝑓1𝑘𝑓2
 , 

𝑆𝑄𝐸𝑞 =
𝑄𝑖 𝑘𝑟1𝑘𝑓2

𝑘𝑟1𝑘𝑟2 + 𝑘𝑟2𝑘𝑓1 + 𝑘𝑓1𝑘𝑓2
 ,  

𝑂2
.−𝐸𝑞 =

 𝑘𝑓1𝑘𝑓4

𝑘𝑟1𝑘𝑟4
 . 

                     (2-4) 

In particular, we note that there is only one steady state for this system.  

Calculating the Jacobian matrix (J) for this system (2-2), we get: 
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𝐽 =  (

−k𝑓1 − 𝑂2
.− k𝑟3  k𝑟1  +   k𝑟3, −Q  k𝑟3

 k𝑓1 −  k𝑟2  + 𝑂2
.− k𝑟3 − k𝑟1 −  k𝑟2  −  k𝑓2  −  k𝑝4 Q  k𝑟3

 −𝑂2
.−  k𝑟3  k𝑝3 −Q  k𝑟3

) . 

 

 

Evaluating the eigenvalues of J in the case where Q = QEQ, O2
.-EQ, and considering the 

sign of the real parts of the resulting eigenvalues allows local stability to be 

determined. The expressions for these eigenvalues (𝜆) in the general case are rather 

lengthy, but with the preliminary parameters set as outlined in on page 49, we have: 

 𝜆1 = − 0.9728 +  0.000850i ,  

𝜆2 = − 2.7846  +  0.0007650i , 

𝜆3 = − 2.4727 × 105 . 

 

Information regarding stability of the steady state system can be ascertained by 

examination of the eigenvalues, specifically, if the real parts are negative then the 

steady state is locally stable. Conversely, if the real parts are positive then the steady 

state is locally unstable. In this instance, the preliminary model complex eigenvalues, 

with negative real parts. Therefore, the unique equilibrium point is asymptotically 

stable, with its critical point being a spiral point, with trajectories decaying towards 

the critical point.   

These eigenvalues however, are a function of partial arbitrarily set parameter values. 

While these parameter values will always be positive, different parameter sets may 

yield unstable unique equilibrium points. At this point, the model is not 

representative of any experimental data and therefore to investigate parameter 

selection would be trivial.  A range of parameter values were substituted to 

determine whether they change the sign of the real part, which showed that the real 

parts remained negative over a wide range of parameter variations.  
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2.2.4 Preliminary Simulations 

Calculation of doxorubicin specific rate constants for kf3 and kf3, leaves 4 unknown 

parameters, which as we describe above were initially assigned arbitrary values of 1. 

Initial simulations therefore are arbitrary by definition. Nevertheless, model 

simulation provides a graphical platform stimulating motivation for further model 

development once experimental data has been generated. Furthermore, initial 

simulations provide qualitative intuition regarding the suitability of the model in its 

current form. The preliminary time course simulation and steady state simulations 

were generated by integration of the ODE system using the variable-order stiff solver 

ode15s in Matlab. Initial simulations depicted in Figure 2-6 show chemical transition 

from the initial quinone (Qi 1 M) to the fully reduced hydroquinone (H2Q) via the 

semiquinone radical (SQ.-) including generation of the superoxide radical (O2
-.) 

Regardless of the model being in its infancy, qualitative insights can be made. As 

expected, the model captures the thermodynamically favourable formation of 

superoxide from the SQ.- given the doxorubicin specific rate constants.  

 

Figure 2-6: Combined initial variable time course simulation illustrating final variable 

product destination. 

The preliminary model at this stage is unable to quantitatively capture chemical redox 

cycling without experimentally informed parameter derivation. However, 

preliminary model simulation outputs can be compared to the calculated variable 
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steady state values obtained during the stability analysis to confirm numerical 

accuracy of the ODE solution. Substituting the parameter set on page 49 into the 

unique equilibrium steady state on page 52, yields numerical values for variable 

steady states (Q*, SQ*, SOX*) which can be compared to the simulated steady state 

values (Q*
sim, SQ*

sim, SOX*
sim). 

𝑄∗ = 0.3333 M, 

𝑆𝑄∗ = 0.3333  M, 

𝑂2
.−∗ = 0.0179 M, 

𝑄𝑠𝑖𝑚
∗ = 0.3333 M; 

𝑆𝑄𝑠𝑖𝑚
∗ = 0.3333  M; 

𝑆𝑂𝑋𝑠𝑖𝑚
∗ = 0.01791 M. 

Which are therefore in agreement.  

Now, in order to parameterize the model more accurately, it must be aligned with 

experimental data.  

2.3 In vitro Biochemical Redox Cycling 

As described in chapter 1, detecting and quantifying radical chemistry kinetics is 

extremely difficult owing to the fleeting existence of the radical species. This 

motivates alternative approaches, whereby rather than measuring concentration of 

radical species, chemical stoichiometry can be monitored as a function of reaction 

flux. 

According to the initial model, for complete reduction from Q to H2Q, a total of 2 H+ 

atoms are consumed. Conversely, for every complete oxidation, two protons will be 

ejected. This reaction stoichiometry can be exploited as a method of quantifying the 

rates of these reactions. In particular, if proton flux can be measured as a function of 

time and quinone concentration Equation (2-5), namely using: 

 Q + e- ⇋ SQ.- + e- + 2 H+ ⇋ H2Q . (2-5) 
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2.3.1 Novel EFA Redox Cycling Assay Development 

EFA is an experimental technique used to measure the rate of change of proton and 

oxygen concentration outside of a cellular environment, as described in chapter 1. In 

this instance, the technique can be implemented in a cell free environment 

measuring the PPR of the solution within the transient microchamber.  

EFA proton efflux output can be expressed either as a function of pH or as a proton 

production rate PPR, with a rate of change in proton concentration rather than a rate 

of change of pH preferable when mathematical alignment is the overall endpoint. 

Considering the transient microchamber and the method by which the EFA measures 

the PPR, it is imperative that the EFA measures PPR flux prior to addition of the 

quinone compound so as to capture the immediate chemical dynamics. Therefore, 

the inbuilt injection system was used to charge the compound to the solution, 

providing the best platform to capture the rapid kinetic changes expected.  

Arguably the most critical consideration to make when attempting to measure 

compound redox cycling is the reaction pH. Changes in pH can affect the ionic form 

of a drug depending upon its pKa value, by presenting opportunity to exist purely in 

its unionized, completely ionized or as an equilibrium of both. In in vitro 

pharmacological experiments, a physiological pH of 7.4 is preferred, facilitating a 

closer physiological relationship. Here, solution pH may affect whether an auto 

reduction or auto oxidation will occur to initiate a redox cycle. Furthermore, should 

redox cycling in a specific bio-compartment wish to be investigated where the pH 

deviates from 7.4, such as the stomach where the pH is considerably more acidic (pH 

1.5 – 3.5) or within an erythrocyte where the pH is a function of oxygen saturation, 

this can be accomplished by adjusting the reaction solvent pH accordingly.  

In order to maximize the ability to translate the assay into a pharmacologically 

relevant scenario, the assay was designed to mimic a typical EFA assay. As such, 

unbuffered seahorse EFA medium was used as the reaction solvent, devoid of 

glucose, with the pH set to 7.0.  
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The initial mathematical model is again centred on the thermodynamic driven 

kinetics of doxorubicin as the initial quinone of interest, as the generation of O2
.- is 

favourable according to its redox potential at pH 7, and doxorubicin is also proven to 

be capable of redox cycling in pharmacological scenarios. As such, the assay was 

performed using doxorubicin as the test compound.  

In order to facilitate future comparisons of the combined system to 

pharmacologically relevant information, compound concentration and solvent 

selection were influenced by toxicological studies of doxorubicin administration to 

cellular systems, namely, using biologically relevant concentrations.  

2.3.1.1 Materials  

All seahorse consumables were purchased from Seahorse Biosciences (North 

Billerica, Ma, USA), doxorubicin was purchased from sigma Aldrich (Dorset, UK).  

2.3.1.2 Injection preparation 

Doxorubicin stock solution (10 mM), was serially diluted in unbuffered seahorse assay 

medium to prepare 6 concentrations: 400, 300, 200, 100, 80 and 40 µM in 100 % 

DMSO. Compound solutions were set to a final pH of 7 using HCl and KOH when 

necessary. Final compound dilution occurs post injection giving a final concentration 

of 50, 35, 25, 12.5, 10 and 5 µM inside the well.  

2.3.1.3 Extracellular flux analysis    

200 µl of XF calibrant was added to each well of a 96 well XF utility plate. The sensor 

cartridge was then placed on top of the utility plate, submerging the sensors fully in 

the calibrant. The utility plate and sensor cartridge was then incubated overnight at 

37oC in a CO2 free incubator. 

The pH of the unbuffered XF assay medium was set to 7.4 using HCl and KOH when 

necessary and then incubated at 37oC in a CO2 free incubator. 25 µl of each 

doxorubicin concentration was added to the injection port A of each well of the 

sensor cartridge. Each doxorubicin concentration was plated in triplicate. Ports above 
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wells devoid of media were charged with the equivalent volumes of assay media in 

order to maintain injection pressure across the plate. The utility plate was inserted 

into the flux analyser and allowed to calibrate, and then removed once complete. 

Prior to analysis, the XFe96 instrument (Seahorse Biosciences, North Billerica, MA, 

USA) mixed the assay media in each well for 10 min to allow the oxygen partial 

pressure to reach equilibrium. Extracellular flux analysis was conducted 

simultaneously measuring ECAR (PPR) and OCR. The first three measurements were 

used to establish a baseline rate. All measurements include a 3 min mix, allowing the 

probe to retract and collapse the transient micro chamber. This allows oxygen 

tension and pH in the microenvironment to restore to normal.  

Doxorubicin was injected after the third measurement (16 min) and the resulting 

changes in PPR and OCR were measured for a further 20 measurements (150 min) 

yielding the basal response.  

2.3.2 EFA Redox Cycling Results & Discussion  

EFA was used to measure the rate of change of proton production / consumption 

before and after injection of doxorubicin into unbuffered XF media at pH 7. Three 

different concentrations of doxorubicin 50, 25 and 12.5 μM were analysed for an n = 

3. Compound injection occurred at t = 16 min Figure 2-7. 
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Figure 2-7: EFA PPR profile for doxorubicin at 50, 37.5, 25, 12.5, 10 and 5 μM. Negative 

PPR indicates proton consumption rather than production. Each dataset is the average of 

n=3 experiments expressed with its standard deviation. A) Shows entire EFA results 

including compound injection peak. B) Shows steady negative PPR from t=3000 s 

onwards. Compound injection time is labelled “Inj” on the x-axis.   

 

Changes to overall well pH were also measured (e.g. using conventional EFA as rates 

of change of proton concentration to pH via -log [H+]). Figure 2-8 shows the pH profile 

for the same experiment.  
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Figure 2-8: pH profile for doxorubicin at 50, 25 and 12.5 μM shown in blue, red and green 

respectively. Control compound free data is shown in purple. Each dataset is the average 

of n=3 experiments expressed with its standard deviation.  

There are three predominant characteristics of the doxorubicin EFA profile. The first 

and most obvious is the initial spike increase in PPR for all six concentrations 

immediately after compound injection (Figure 2-7). Each data point on the plot 

represents the PPR directly after a 3-minute solution mix within the well, specifically 

measured in the transient microchamber. Compound injection occurs at t = 16 min, 

in between measurements 2 and 3. Therefore, the increase in proton production rate 

is caused by introduction of doxorubicin to the media. The resulting change in pH is 

due to the increased dissociation of the hydroxyl group as depicted in Figure 2-9.  
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Figure 2-9: Doxorubicin phenol acid dissociation. Phenol hydroxyl group highlighted in red 

in both scenarios, with the right-hand side representing the phenol anion and dissociated 

proton. 

Proton dissociation from doxorubicin would therefore increase the measured PPR 

and subsequently increase the acidity of the well, represented by a decrease in pH. 

Indeed, the concomitant measurement of system pH in Figure 2-8 shows this exact 

decrease in pH, which is relative to the concentration of doxorubicin charged thus 

confirming that the acid dissociation is responsible for the initial increase in PPR at 

measurement 3.  

The second characteristic is the trend between the different concentrations of 

doxorubicin. As the concentration of doxorubicin decreases, so too does the relative 

PPR, specifically after injection (as seen in Figure 2-7). Moreover, the pH profile in 

Figure 2-8 shows that the increase in acidity, and decrease in pH, is relative to the 

concentration of doxorubicin injected, i.e. the greater the concentration of 

doxorubicin charged, the more protons able to dissociate from the compound 

resulting in an increase in acidity (drop in pH).  

The final important characteristic of the doxorubicin PPR EFA profile is the eventual 

negative PPR shown for all concentrations. Negative PPR indicates a proton 

consumption, rather than production. In this experiment, increasing the 

concentration of doxorubicin increases the amount of protons available to dissociate, 

which yields a more negative PPR output.  
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Additionally, interpretation of the pH plot in Figure 2-8 indicates that the EFA well 

acidity does not return to that of prior to the introduction of doxorubicin, further 

lending credibility to the hypothesis parent compound remains dissociated.  

With regards to the reduction chemistry, the consumption of protons yielding a 

reduction reaction is shown in Equation (2-5). This equation illustrates that 2 H+ are 

used in the final reductive step in the quinone redox triad, whereby the SQ.- is fully 

reduced to the H2Q. Utilization of this chemistry would therefore suggest that the 

rate of proton consumption measured in Figure 2-7, is equal to the rate of reduction 

of the SQ.- to the H2Q. Similarly, should the PPR profile have remained positive, this 

flux would be representative of the reverse reaction. 

2.4 In silico – in vitro Model Coupling & Model Expansion 

PPR data generated in (2.3) provides an in vitro platform to which our mathematical 

model could be aligned with. The PPR shown in Figure 2-7 corresponds to the 

reduction reaction in Equation (2-5). With respect to the mathematical model, this 

corresponds to the reaction R2 from Table 2-1. Regardless of the omission of H+ as a 

model variable, the PPR is implicit within this reaction and may expressed as R2 

reaction flux, providing stoichiometric balance is maintained by doubling the flux 

output, as two H+ are consumed for every unit flux.  

It is visible from (2.2) that the model in its current form is unable to simulate a 

negative flux for the reaction R2, with the model at steady state, R2 = 0 = R3 (from the 

H2Q and O2
.- equations), which then gives R1 = 0 = R2 from the Q and SQ.- equations.  

2.4.1 Initial Model Fitting 

As outlined above, the preliminary model uses arbitrary values of 1 for the four 

unknown parameters k, kf1, kr1, kf2 and kr2. New values for these parameters were 

obtained by fitting the model to the doxorubicin EFA data (Figure 2-7) for 50 µM, 

using the non-linear optimization function, fminsearch, in Matlab.   
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Figure 2-10: Initial model fitting to doxorubicin 50 µM EFA data. Main plot illustrates the 

entire EFA time course, with the insert figure illustrating steady state region.  

The fminsearch function finds the minimum of an unconstrained multivariable 

function using a derivative-free method, using the Nelder-Mead simplex algorithm 51. 

In essence, it finds the minimum distance between the model and the data by 

perturbing the assigned parameters. In this instance, all initial parameter values were 

equal to 1, with changes in initial starting parameters having no effect on final 

parameter selection.  

The initial fit between the model and the in vitro data captures the qualitative profile, 

but falls considerably short of recapitulating the EFA data quantitatively (Figure 2-10). 

As we can see, the model is unable to produce a negative PPR output. The inability of 

the model to match the data in its current form may be a result of one of two things: 

either the model is lacking in mechanistic detail with respect to redox cycling 

chemistry, or the approach to link proton consumption / production to quinone redox 

cycling via a surrogate in vitro method is not feasible, or both. To assess these issues, 

the chemistry of quinone redox cycling was assessed and compared to the 

mathematical model. 
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2.4.1.1 Redox cycling model expansion  

The initial redox cycling model provided an initial platform to compare the qualitative 

changes in the redox cycling EFA data, including the fundamental chemical reactions 

between Q, SQ.-, H2Q and O2
.- in the form of single electron reductions. However, this 

model is incapable of reproducing the quantitative dynamics of the experimental 

data (namely, negative PPR, i.e. R2 < 0 at steady state). This has led to the derivation 

of an improved description of the model in order to incorporate an additional redox 

reaction known as comproportionation.  

Comproportionation is also known as synproportionation and is used to describe the 

potential chemical reaction between two reactants of the same element or moiety 

when they exist in different oxidation states, forming a product with the same 

oxidation state. Depending upon the thermodynamics, comproportionation of Q and 

H2Q to form SQ.- is possible, when the value of the mass action expression is not equal 

to the equilibrium constant. This unique property of a redox cycling reaction will 

change the overall reaction stoichiometry, as two SQ.- comproportionation to yield 

the parent Q and the fully reduced H2Q as shown in Equation (2-6). The result of the 

addition of the comproportionation reaction is that when Q and H2Q are present, SQ.- 

will always exist:  

 2 SQ.- ⇋ Q + H2Q . (2-6) 

Figure 2-11 shows the new model schematic, with new reaction equations shown in 

Table 2-3.  
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Figure 2-11: Quinone redox cycling model. All reactions are reversible and denoted with a 

solid double-headed arrows. The dashed single-headed arrow does not represent a 

reaction, rather, effective accumulation of SQ.- in order to facilitate the 

comproportionation reaction R3. Each reaction is denoted R1-4 with corresponding term 

found in Table 2-3.  

 

Reaction Equation Description 

R1 Q ⇋ SQ.- Single electron reduction 

R2 SQ.- ⇋ H2Q Single electron reduction 

R3 2 SQ.- ⇋ Q + H2Q Comproportionation  

R4 SQ.- + O2 ⇋ Q + O2
.- Superoxide formation 

 

 

Table 2-3: Expanded quinone redox cycling model. All reactions are reversible and 

denoted with double-headed arrows. Each reaction is accompanied with a description of 

its mechanism.  

The new set of reaction equations are shown in Equations (2-7): 

 𝑑𝑄

𝑑𝑡
=  −𝑅1 + 𝑅4 + 𝑅3 , 

𝑑𝑆𝑄 

𝑑𝑡
=  −𝑅2 + 𝑅1 − 𝑅4 − 2𝑅3 ,  

(2-7) 
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𝑑𝐻2𝑄 

𝑑𝑡
=  𝑅2 + 𝑅3 , 

𝑑O2
.− 

𝑑𝑡
=  𝑅4 . 

Initial parameter values remained the same as the preliminary model, with the 

addition of the comproportionation parameters assigned arbitrary values of 1 prior 

to model fitting.  

2.4.2 Expanded model fitting & stability analysis  

New values for the model parameters were obtained by fitting the model to the 

doxorubicin EFA data (Figure 2-7) for 50 µM, using the same method described in 

2.5.1.  With the comproportionation reaction added, the model was better able to 

align with 50 µM EFA data (Figure 2-12). 

  

Figure 2-12: Expanded model fitting to doxorubicin 50 µM EFA data. Main plot illustrates 

the entire EFA time course, with the insert figure illustrating steady state region. 
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The expanded model including the comproportionation reaction was significantly 

better at fitting the EFA data with respect to the 50 µM doxorubicin concentrations 

than the initial model, namely, negative PPR is possible. The fitting generated new 

values for the rate constants shown in Table 2-4. The new parameter values can be 

assessed as reaction pairs, as each pair can be converted into an equilibrium constant 

Keq, using Keq = kf/kr. For reactions 1, 4 and 7, the forward rate constant kf is larger 

than the reverse rate constant kr and therefore favours the forward reaction, that is, 

the production of SQ.- and O2
.-. For reactions 2 and 3, the opposite is true, i.e. the 

reverse rate is favoured. If kf1 < kr1, then redox cycling would be thermodynamically 

unfavourable. The predominant caveat with this fit is the recapitulation of the initial 

ionization, i.e. the PPR spike at t = 1000. The model grossly over estimates this feature 

during simulation. However, the most important feature is the steady state redox 

cycling occurring at t = 3000 s onwards, depicted in the figure insert. For this, the 

model is capable of not only reaching the same order of magnitude as the data, but 

recapitulating the actual data at specific time points.  

Rate 

Constant Value 

 

Units 

kf1 11.1785 s-1 

kr1 9.7857 s-1 

kf2 10.9181 s-1 

kf2 13.4391 s-1 

kf3 7.8184 M-1 s-1 

kr3 10.7783 M-1 s-1 

kf4 9.2285×107 s-1 

kr4 6.6984×105 s-1 
 

Table 2-4: Expanded quinone redox cycling model parameters. 
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With these new set of parameters, the model was simulated at the experimental 

concentrations 50, 37.5, 25, 1235, 10 and 5 µM as an initial test of parameter 

adequacy. Figure 2-13 shows the models ability to recapitulate the in vitro EFA data 

with the fitted parameter set for this wide range of concentrations. It is important to 

note that this parameter set coupled with the comproportionation is necessary to 

replicate the experimental data. Before investigating the uncertainty of these 

parameters, the stability analysis can now be repeated to include the experimentally 

derived parameters along with the additional reaction.  
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Figure 2-13: EFA doxorubicin experimental concentration simulations. Parameters generated through initial 50 µM data fitting were used to 

simulate the 5 other concentration outputs, compared to experimental data. 
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2.4.2.1 Stability analysis  

Local model stability was investigated using the method described in 2.3.3. By setting 

the right-hand sides of the equations in the system (2-7) to zero allows the steady 

states to be calculated. In this instance, two steady states are possible. This leads to 

two possible steady state concentrations for each variable in the model, namely:  

 𝑄𝐸𝑞 =  1.628 × 10−5 & 1.862 M , 

𝑆𝑄𝐸𝑞 = 1.860 × 10−5 & − 3.145 M , 

𝑂2
.−𝐸𝑞 =  0.0204 & − 0.0302 M . 

                     (2-8) 

Using the optimized parameters obtained in the previous section. 

Obviously, it is impossible to have negative variable concentrations. As such, the 

unique equilibrium point that yields positive variable concentrations was used to 

calculate system stability.  

Calculating the Jacobian matrix (J) for the equilibrium point allows the local stability 

to be determined, which in turn allows calculation of the corresponding eigenvalues 

(𝜆), this yields: 

 𝜆1 = −0.0088856 , 

𝜆2 =  −19.259 , 

𝜆3 =  −2.57386 × 104 . 

 

Distinct negative real eigenvalues yield a node phase portrait, suggesting the 

equilibrium point is locally asymptotically stable. From this information, the 

trajectories of the phase portrait will move towards the equilibrium point, without 

oscillating about the equilibrium. This stability analysis can be compared to the 

preliminary model for insight into the importance of the comproportionation 

reaction. Both sets of eigenvalues for the preliminary and expanded model have 

negative real parts, suggesting both system unique stability points are asymptotically 
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stable. However, the preliminary model includes imaginary parts which means the, 

trajectories spiral towards the critical point, which is not observed in the 

experimental data, e.g. Figure 2-7.  

2.4.3 Sensitivity Analysis 

Sensitivity analysis describes the process whereby the output of a model is assessed 

as a function of its inputs. That is to say, sensitivity analysis allows determination of 

uncertainty within the model parameter space, which in turn influences the reliability 

of the model output. Sensitivity analysis can be conducted locally or globally. Local 

sensitivity analysis assesses one factor at a time, i.e. changes in a single parameter 

and the resulting effects on the model output. This method can be limiting, as results 

may be sensitive on location in the parameter space. Global sensitivity analysis, 

however accounts for a wider range of possible parameter variations, while also 

considering parameter interactions. As such, global sensitivity analysis was 

performed on the redox cycling model in order to determine the most sensitive 

model parameters and will now be described. 

2.4.3.1 Parameter sensitivity 

The COSSAN toolset was used to conduct global sensitivity analysis on the 

doxorubicin quinone model using the following workflow: 

1. Definition of model and its input and output parameters. 

2. Assignment of a probability density function to each input parameter. 

3. Generate an input matrix through which an appropriate random sampling 

method e.g. (Latin Hypercube). 

4. Assess the influence or relative importance of each input parameter on 

the output variable. 

This method elucidates the effect of the input parameter variability on the model 

output, while simultaneously investigating the interaction between parameters. This 

is accomplished using Sobol sampling, yielding sensitivity indices (Sobol indices) 

which are importance measures for quantifying sensitivity. 
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The COSSAN software platform was used for this sensitivity analysis. First, to assign a 

probability distribution around each of the model parameters, (kf1, kr1, kf2 , kr2 , kf3 , 

kr3). 1000 parameter sets were then generated using Latin Hypercube sampling from 

these sampling distributions. The global sensitivity analysis was then performed, with 

“PPR” as the model output used for comparison. Estimation of sensitivity / Sobol 

indices using these 1000 samples was then performed, followed by uncertainty 

propagation where the uncertainty in input parameter values were translated into 

model output variances with respect to PPR, as shown in Figure 2-14. The 

quantitative contribution for each parameter to model output variance is given by 

the total effect index, showing positive and negative relations on model outputs for 

each parameter. The larger the normalised sensitivity measure is, the more sensitive 

this parameter is to model output. 

 

Figure 2-14: Sensitivity indices versus input parameters for model PPR production. Each 

bar represents the normalized total effect index.   

The total sensitivity effect in Figure 2-14 highlights the most sensitive parameters 

with respect to model PPR output, with kf1 and kf3 the most sensitive, both of which 

positively effect PPR output. It makes sense that kf1 is the most sensitive parameter, 

as this governs essentially all conversion of Q to SQ.- and H2Q, ultimately responsible 

for all reactions downstream of the initial reduction. The forward rate constant for 
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the comproportionation reaction, R3, is ranked as the second most sensitive 

parameter, giving credibility to the importance of including the comproportionation 

reaction to the model, also suggesting that the comproportionation reaction may in 

fact be the predominant mechanism in which the parent Q is regenerated. All other 

model parameters have similar sensitivity index size as well as having a negative 

effect on PPR model output, suggesting that increases in parameters kr1, kf2, kr2 and 

kr3 reduce the model PPR output.  

2.4.4 Superoxide Detoxification Expansion 

Reactive oxygen species formation and detoxification is a very tightly regulated 

process within the cell, responsible for pivotal signalling processes including 

programmed cell death 23.  Furthermore, cellular defence mechanisms against 

oxidative stress as a function of elevated ROS levels is extremely efficient, with highly 

specialized enzymes such as superoxide dismutases and glutathione peroxidases at 

the forefront, adept at swiftly quenching further radical species formation 52. 

However, regardless of the rapidity of these processes, thresholds exist whereby ROS 

can overwhelm detoxification processes, especially when futile redox cycling occurs 

at the expense of cellular reducing power (NADH) in catalytic fashion, causing toxicity 

in many forms, often resulting in cell death 1. One example includes superoxide 

induced mitochondrial dysfunction, as these organelles are highly aerobic and 

electron rich around the electron transport chain 53. Increased levels of superoxide 

within the mitochondria activate mitochondrial KATP channels, which increase 

membrane potential ΔΨ, and in turn generates more ROS 54. 

In order for the redox cycling model to be applicable within a toxicological setting, 

such detoxification processes must be included in order for the model to provide 

quantitative pharmacological insights. As such, we now explore superoxide 

dismutase mediated O2
.- detoxification within the model framework.  
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2.4.4.1 Superoxide Dismutase Role in Redox Signalling and Oxidative Stress 

Defence 

Superoxide dismutases (SODs) form the predominant cellular defence against 

elevated cellular superoxide anions 55. There are three different isoforms in 

mammals, specific to different cellular compartments. These consist of: 

Mitochondrial SOD, which has a manganese (Mn) catalytic active metal (MnSOD); 

cytoplasmic SOD, (Cu/ZnSOD) which utilizes copper-zinc catalytic metals; and, 

extracellular SOD, which utilizes only copper metal for its activation (CuSOD) 55.The 

responsibility of SOD is to convert O2
.- into hydrogen peroxide (H2O2) which then 

prevents both further radical species formation such as the highly reactive hydroxyl 

radial (.OH), as well as facilitating protective cellular signalling and gene expression 

via H2O2. Even though ROS such as O2
.- 

 and H2O2 are pivotal for such bio-function, 

ROS levels actually act as a double-edged sword, possessing desirable and toxic 

effects:  

 2O2
.- + 2H+ → O2 + H2O2 .    (2-9) 

Equation (2-9) describes the reaction between superoxide and SOD, with 

consumption of H+ and reformation of molecular oxygen included. The initial redox 

cycling model was constructed and parameterized with the omission of SOD, since 

this reaction also consumes protons, which could have obstructed determining the 

kinetics of the redox cycling. Fortunately, SOD enzyme kinetics are well described, 

parameterized and validated within the literature 52. Perhaps the best example of this 

lies within the integration of mitochondrial energetics by Kembro et al. 52. In this 

publication, the kinetics of both cytoplasmic and mitochondrial isoforms of SOD are 

described. SOD will be added to the model, specifically, mitochondrial SOD, in order 

to allow the model to simulate organelle specific superoxide detoxification. 

2.4.5 SOD & ROS Scavenging Expansion 

In order to simulate ROS / superoxide profiles with physiological relevance, the 

complementary ROS scavenging systems must be considered and included. Complete 
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detoxification of superoxide ends after SOD mediated H2O2 formation is converted 

into H2O by glutathione (GSH) 26 shows the complete detoxification pathway along 

with the enzymes used accomplish it.  

 

Figure 2-15: Schematic process illustrating superoxide radical detoxification / scavenging. 

ROS, enzymes and reducing agents are coloured red, blue and pink respectively. X shows 

the downstream results of GSH depletion and the resulting cellular damage.  

Three enzyme mediated reactions facilitate superoxide / ROS scavenging: SOD; 

glutathione peroxidase (GP); and, glutathione reductase (GR) 26. GP mediates the final 

detoxification of hydrogen peroxide by using GSH as the reducing agent, generating 

H2O and oxidised glutathione (GSSG) simultaneously. GR then is responsible for the 

reformation of the GSH reducing / scavenging agent, accomplished by reducing GSSG 

at the expense of cellular reducing power, NADPH. Fundamentally, this scavenging 

process is a cascade of redox reactions whereby concomitant reduction and oxidation 

of cellular metabolites facilitate the complete reduction of O2
.- into harmless water. 

ROS induced toxicity as a function of a futile redox cycle may occur as a result of 

overwhelmed scavenging ability in the form of depleted GSH or NADPH. This form of 
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toxicity is prevalent in many situations, such as ionizing radiation herbicides, 

antimalarial and sulfadrugs to name but a few 1.  

In order to model removal/detoxification of superoxide, all three enzyme mediated 

radical scavenging processes must be included. Unfortunately, modelling the 

dynamic processes that synthesize and maintain cellular redox state, NADPH/NAD 

lies outside the scope of this work and as such, NADPH/NAD redox state can be 

maintained. This then allows the GSH/GSSG ratio to be to be the focus of the 

modelling, which is extremely useful, as GSH depletion work is a staple in assessing 

compound toxicity within both academic research and the pharmaceutical industry.  

Fortunately, research and kinetic modelling of these ROS scavenging systems are 

extensive therefore allowing swift recapitulation of this process mathematically into 

our modelling framework. Kinetic terms and parameters for mitochondrial SOD, GR 

and GP were taken from Kembro et al. 52. The combined ROS/redox cycling model 

illustrated in Figure 2-16. 

 

Figure 2-16: Redox cycling / ROS detoxification expansion model schematic.  

New kinetic terms for each of the scavenging reactions (SOD, GP and GR) taken from 

Kembro et al. 52, were added to the model as follows: 
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Superoxide Dismutase 

𝑆𝑂𝐷 =

2 𝑘1 𝑘5 (𝑘1 + 𝑘3 (1 +
[P]
𝐾𝑖

)) 𝑒𝑡[A]

  𝑘5 (2 𝑘1 + 𝑘3 (1 +
[P]
𝐾𝑖

)) + [A]𝑘1 𝑘3 (1 +
[P]
𝐾𝑖

)

. 

Where [A] = [O2
.-], and [P] = [H2O2] 

Parameter Value Units 

k1
 1.2 × 103 M-1 s-1 

k3
 24 M-1 s-1 

k5 2.4 × 10-4 s-1 

Ki 5.0 × 10-4 M 

et 3.0 × 10-4 M 

   

 

Glutathione Peroxidase 

𝐺𝑃 =
𝑒𝑡[P] − [A]

Φ[A] + Φ2[P]
. 

Where [A] = [GSH], and [P] = [H2O2] 

Parameter Value Units 

et 1.0 × 10-4 M 

φ 5.0× 10-3 Ms-1 

φ2 0.75 Ms-1 
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Glutathione Reductase 

𝐺𝑅 =
𝑘1𝑒𝑡

1 +
𝐾𝑚𝐴

[A]
+

𝐾𝑚𝐵

[B]
+

𝐾𝑚𝐴

[A]
+

𝐾𝑚𝐵

[B]

. 

Where [A] = [GSSG], and [B] = [NADPH] 

Parameter Value Units 

et 8.0 × 10-4 M 

k1
 2.5 × 10-3 Ms-1 

KmA 6.0 × 10-5 M 

KmB 15 M 

   

The model system of ODEs can be described by Equations (2-10). Note, reactions are 

redefined with respect to Figure 2-16: 

 𝑑𝑄

𝑑𝑡
=  −𝑅1 + 𝑅4 + 𝑅3 , 

𝑑𝑆𝑄 

𝑑𝑡
=  −𝑅2 + 𝑅1 − 𝑅4 − 2𝑅3,  

𝑑𝐻2𝑄 

𝑑𝑡
=  𝑅2 + 𝑅3 , 

𝑑O2
.− 

𝑑𝑡
=  𝑅4 − 𝑆𝑂𝐷 , 

𝑑𝐻2𝑂2 

𝑑𝑡
=  𝑆𝑂𝐷 − 𝐺𝑃 , 

𝑑𝐺𝑆𝐻 

𝑑𝑡
=  −𝐺𝑃 + 𝐺𝑅 , 

𝑑𝐺𝑆𝑆𝐺

𝑑𝑡
=  0.5 (𝐺𝑃 − 𝐺𝑅), 

(2-10) 
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𝑑𝑁𝐴𝐷𝑃𝐻 

𝑑𝑡
=  0 , 

𝑑𝑁𝐴𝐷 

𝑑𝑡
=  0 . 

Initial variable conditions are taken from the same source as the kinetic parameters 

52, and are shown in Table 2-5.  

Variable Value Units 

GSH 1.65 × 10-3 M 

GSSG 1.32 × 10-3 M 

NADPH & NADH 7.50 × 10-5 M 

O2
.- 6.39 × 10-9 M 

H2O2 8.23 × 10-7 M 

Q 5.00 × 10-7 M 

SQ 0 M 

H2Q 0 M 
 

Table 2-5: Model initial conditions for ROS scavenging system.  

The model is now able to simulate basal ROS devoid of the presence of doxorubicin. 

Note, NADPH and NAD are fixed at constant values by setting their ODE to equal zero.  

Simulation of the model without the presence of quinone predicts basal scavenging 

dynamics. Figure 2-17 illustrates the model’s ability to simulate detoxification 

mitochondrial ROS in the form of superoxide and hydrogen peroxide. Note that while 

cellular / mitochondrial ROS will always exist, complete removal occurs in our model 

as production of superoxide (i.e. basal superoxide formation) as a function of quinone 

redox cycling is not considered. The most important aspect of this simulation is the 

maintenance of steady concentrations of GSH/GSSG which is in-line with literature 

values 52, as it is GSH that will fundamentally be responsible for complete 

detoxification, as GSH detoxifies the hydrogen peroxide ROS SOD by-product.  
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Figure 2-17: ROS scavenging simulations. Model simulation shows detoxification of superoxide into hydrogen peroxide resulting in complete ROS removal. 

GSH/GSSG scavenging couple remains steady. 
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2.5 Model predictions & Experimental Validation 

The doxorubicin specific quinone redox cycling model is capable of simulating a time 

course profile of radical species that exist fleetingly in vitro and in vivo. In order to 

assess the quality of the model, it is desirable to validate against additional 

experimental data. Unfortunately, time course data of quinone redox cycling is 

unavailable, hence the construction of this model. However, it is possible to measure 

superoxide levels in cellular compartments, such as the mitochondria, using the 

MitoSOX assay. Superoxide formation within the mitochondria is exceptionally 

common, with between 1 and 3% of all oxygen consumption forming O2
.- as a function 

of electron leakage from the electron transport chain 28. Furthermore, elevated ROS 

within the mitochondria as a result of doxorubicin redox cycling is a postulated mode 

of cardiotoxicity, due to the mitochondria rich highly energetic cardiomyocyte cells 

16. As such, its administration is severely limited regardless of its antineoplastic 

properties for a host of malignancies 56. Doxorubicin is capable of auto oxidation, 

however, in a buffered physiological environment it may be reduced by 

mitochondrial completing the redox cycle and, in turn, initiating a ROS cascade that 

overwhelms cellular / organelle oxidative stress defences.  The most useful 

application of our new mechanistic mathematical model would therefore be to 

simulate the increase in mitochondrial O2
.- levels, considering basal superoxide 

formation, whilst simultaneously assuming mitochondrial reduction as implicit.  

2.5.1 Doxorubicin-Induced Mitochondrial Superoxide Formation 

Prior to determination of mitochondrial ROS levels, cell viability must be ascertained 

for a series of concentrations of doxorubicin, followed by calculation of the drug IC50 

value for the cell type (see pages 81-84). The IC50 concentration describes the 

concentration which results in 50 % cell viability.  Cell viability as a function of 

exposure to doxorubicin was determined using HepG2 cells a 24 hours utilizing the 

MTT and ATP assays as separate methods of assessing cytotoxicity.   
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All drug solutions were prepared in Me2SO and diluted leaving the final solvent 

concentration <5% (v/v) for each incubation. Measurement of Cytotoxicity using MTT 

and ATP Assays: HepG2 cells (2 x 104) were plated in flat-bottomed 96-well plates in 

triplicate and allowed to adhere overnight. Cells were maintained in DMEM high 

glucose medium supplemented with foetal bovine serum (10% v/v), sodium pyruvate 

(1% v/v), HEPES buffer (1% v/v) and pen-strep (1% v/v). Cells were incubated at 370C 

in 5% CO2 humidified air.  

MTT Assay: Cells were exposed to a range of concentrations of doxorubicin (0.005-

100 µM) and incubated for 24 hours. A solution of 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyl-tetrazolium Bromide (MTT) in Hanks balanced salt solution (HBSS) was 

prepared (0.5 mg ml-1) and 20 µl was added to each well and incubated for a further 

2 hours. Finally, 100 µl of a lysing buffer (N,N-dimethylformamide 50% v/v; sodium 

dodecyl sulphate 20% w/v) was charged to each well before further incubating for 4 

hr. Samples absorbance’s were measured  at a test and reference wavelength of 570 

and 590 nm respectively with a plate reader (MRX, Dynex). 

ATP Assay: Cells were exposed to a range of concentrations of doxorubicin (0.005-

100 µM) and incubated for 24 hours. ATP content of the cells was measured using a 

Cell Titer-Glo kit following the manufacturer’s instructions. 20 µl of assay reagent was 

added to each well and shaken for 1 minute. 100 µl from each well was then plated 

onto a white 96-well flat-bottomed plate and the luminescence was measured using 

VarioSkan flash plate reader. Data values are expressed as mean ± SD. D’Agostino and 

Pearson Omnibus normality test was used to detect normality. One-way ANOVA and 

Dunnett’s post-test were used to analyse all parametric data.   Statistical analysis was 

conducted using Graphpad Prism 5 software. 
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Figure 2-18: Chemosensitivity of HepG2 cells towards Doxorubicin Exposure. Cytotoxicity 

was assessed using MTT and ATP assays after exposure to doxorubicin for 24hr at a range 

of concentrations (0.005-100 µM), for 3 independent experiments. Increase in dosing 

concentrations of doxorubicin leads to an overall decrease in % cell viability for all graphs. 

* = <0.05 P; ** = <0.01 P; *** = < 0.001 P confidence.   

Figure 2-18 shows the doxorubicin induced cytotoxicity in HepG2 cells determined 

using the MTT and ATP cell viability assays. From these data sets, the IC50 value for 

doxorubicin in HepG2 cells for 24 hour exposure was calculated to be 13.36 µM. The 

results from the cell viability assay provide a platform from which appropriate 

concentrations of doxorubicin may be used during the assessment of mitochondrial 

superoxide levels using the MitoSOX assay. There are, however, considerations to be 

made. The initial model was constructed using concentrations which, according to 

the cytotoxicity assays, may cause significant reduction in cell viability. It is important 

to capture the changes in ROS at these concentrations regardless of the cytotoxicity 

evident in vitro as doing so will allow investigation of the model’s ability to cope with 

a known cytotoxic concentration, especially in terms of model GSH depletion. Also, 

as described in 1.2.3, the MitoSOX assay is notorious for detecting other ROS specific 

to the mitochondria. This should be taken into consideration when trying to replicate  

results within the model.  
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2.5.1.1 In vitro doxorubicin-induced mitochondrial superoxide formation 

Doxorubicin induced mitochondrial superoxide concentration changes were 

determined using the MitoSOX assay. HepG2 cells (1 x 105) were plated in flat-

bottomed 24-well plates and allowed to adhere overnight. Incubation conditions 

were identical to that described in the cytotoxicity investigation.  

MitoSOX Assay: 5 µl of MitoSOX reagent (1 µM) was added to each well and 

incubated in the dark for 5 minutes. The supernatant was removed and retained 

before trypsinising the cells. Cells were re-suspended in the retained supernatant 

before centrifuged at 2000 rpm for 5 minutes. The supernatant was discarded and 

the cell pellet was re-suspended in HBSS (300 µl) and then plated in duplicate (100 

µl) in a white flat-bottomed 96-well plate. Fluorescence was measured at an 

excitation and emission of 396 and 579 nm respectively using a VarioSkan flash plate 

reader. Cell lysates were prepared from the remainder of the sample using a sonic 

probe. Protein content was determined using a Bradford assay and all data was 

normalized to mg of protein/well.  

Figure 2-19 shows the fold increases of mitochondrial superoxide as a function of 

doxorubicin exposure after 6, 16 and 24 hours in HepG2 cells. Concentrations above 

75 µM yielded significant increases compared to the control which is devoid of 

doxorubicin for all time points. Additional significance is predicted for 50 µM at 6 

hours. Overall, increases in concentration in doxorubicin at each time-point yields a 

proportional increase in mitochondrial superoxide. Levels of superoxide increase 

between 6 and 16 hours, followed by subsequent decreases in fold changes between 

16 and 24 hours. This decrease is most likely accredited to the cell cytotoxicity as 

confirmed in Figure 2-18, where at 24 hours concentrations greater than 13.33 µM 

are predicted to result in 50 % cell death. The correlation between elevated 

mitochondrial superoxide levels as a function of doxorubicin concentration and cell 

death suggest that both concentration and length of exposure play a role in potential 

increased mitochondrial superoxide concentration mediated cell death.  
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Figure 2-19: Assessment of doxorubicin induced mitochondrial superoxide. Mitochondrial superoxide fold increases as a function of doxorubicin exposure was measured 

using the MitoSOX assay at a range of concentrations (12.5 – 100 µM) for three independent experiments. Results yielded significant increases in mitochondrial 

superoxide. * = < 0.05 P, ** = < 0.01 P, *** = < 0.001 P confidence. 
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The final experiment was to assess the in silico models ability to recapitulate the 

increases in mitochondrial superoxide given as the inputs of the concentration of 

doxorubicin, its reduction potential, duration of exposure, coupled with the 

mitochondrial specific ROS scavenging mechanisms. 

Figure 2-20 shows the comparison between the MitoSOX data and model simulations 

for various concentrations of doxorubicin (12.5 – 100 µM) at 6, 16 and 24 hours. For 

the 6 hour simulations, the model adequately simulates fold increase in ROS for the 

lower concentration range, with overestimation of ROS between 50 and 100 µM. For 

the 16 hour simulation, the model accurately simulates ROS increase as a function of 

doxorubicin concentration, with almost all simulations falling within the error bars of 

the MitoSOX data. The simulations for 24 hours, however, exceed the MitoSOX data 

considerably, especially for the higher concentration ranges. It should be noted that 

the model does not consider cell viability, especially at that time point for the high 

doxorubicin concentrations. Figure 2-18 shows the decreases in cell viability as a 

function of these concentrations and as such, the model failing to recapitulate the 

reduced cell output is a good potential reason for such excessive ROS levels predicted 

at 24 hours by the mathematical model.  
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Figure 2-20: MitoSOX assay vs model simulations for doxorubicin redox cycling. Fold increases in mitochondrial superoxide as a function of doxorubicin exposure 

was compared to the fold increase in model ROS for doxorubicin at 12.5, 25, 50, 75 and 100 µM at 6, 16 and 24 hours. Black error bars are from the MitoSOX data 

Figure 2-19. 
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In order to test this hypothesis, the in silico model ROS output was normalized at 24 

hours according to the predicted experimental decreases in cell viability. First, a 

simple model was constructed by fitting a line to the cell viability data in Figure 2-18 

in order to be able to enter a concentration of doxorubicin and generate a % decrease 

in cell viability. A single order polynomial fit described by (2-11) fit the model with an 

R2 value of 0.96: 

 𝑓(𝑥) = 𝑃1𝑥
2 + 𝑃2𝑥 + 𝑃3 , 

where P1 = -2.05 P2 = 15.01, P3 = 91.96 and x = dose.  

(2-11) 

 

The model was the re-simulated accounting for depletion of cell viability by reducing 

model output as a function of calculated cell death, and compared to the previous 24 

hour simulations show in Figure 2-21.  

 

Figure 2-21: Normalizing model ROS output according to in vitro cell viability data. Black 

error bars are from MitoSOX data, simulations after cell viability normalisation show 

significantly improved resemblance to in vitro MitoSOX data. 
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As we can observe in Figure 2-21, accounting for cell death as a function of 

doxorubicin concentration at 24 hours allows significantly better model predictions 

of mitochondrial ROS levels.  

2.6 Chapter Discussion 

This chapter describes the development of a novel in silico model of quinone redox 

cycling, specifically doxorubicin, that is thermodynamically based in mechanistic in 

construction, and mechanistic in nature. The physiochemical properties of a plethora 

of quinones are consolidated into a mathematical framework from which compound 

specific reduction potentials and the corresponding equilibrium rate constants can 

be obtained. Unknown kinetic parameters for the doxorubicin redox cycling model 

were obtained using a novel surrogate in vitro extracellular flux analysis assay where 

the rates of proton consumption and production are measured in real time. The use 

of cell-free EFA as a surrogate to predict rate constants is not without its uncertainty. 

This approach is hinged upon doxorubicin’s ability to auto-oxidate, as well as re-

reduction without the presence or aid of reducing agents or reductase enzymes. It is 

well documented in the literature that doxorubicin is capable of auto-oxidation in 

cellular compartments which are well tightly buffered. Within the cell-free in vitro 

EFA method, doxorubicin redox cycling is possible due to two crucial reasons: First, 

the unbuffered assay media, which allows doxorubicin to dissociate at pH 7 and 

second, free dissolved oxygen in the media for which electrons may be dumped 

allowing auto-oxidation. Unbuffered assay media assists in the dissociation of 

electron density around the quinone and adjacent hydroquinone motifs, prompting 

formation of a stable semiquinone radical. Auto-oxidation can be confirmed through 

oxygen consumption during EFA which is doxorubicin concentration dependent. 

The model required additional mechanistic information in order to recapitulate the 

EFA data, specifically, the addition of the comproportionation reaction where 

iterations of the same variable in different oxidation states are able to rearrange 

themselves. This addition allowed the model to simulate 6 different concentrations 

of EFA data using only one dataset to parameterize the model. The model was 
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expanded to include mitochondrial specific ROS detoxification mechanisms, centred 

around glutathione metabolism and superoxide dismutase, the kinetic terms and 

parameters for which were taken from the literature. The model was simulated to 

illustrate its ability to detoxify literature based levels of ROS while simultaneously 

keeping the GSH/GSSG redox couple in-tact. The final test for the model was to be 

able to predict in vitro doxorubicin-induced mitochondrial ROS formation. For this, in 

vitro levels of mitochondrial ROS were quantified using the MitoSOX assay on HepG2 

cells after exposure to doxorubicin for 6, 16 and 24 hours. The MitoSOX assay probe 

detects mitochondrial superoxide via a reaction with a specialized hydroethidine 

compounds and superoxide, which yields fluorescence. This probe is able to localize 

to the mitochondria as it contains a triphosphonium salt, which targets the 

mitochondrial membrane. Unfortunately, the major caveat with using this probe is 

that there can be considerable overlap between fluorescence spectral outputs. That 

is, fluorescence from reactions between the probe and other ROS cannot be 

completely distinguished. This can be circumvented to some extent using high 

performance liquid chromatography (HPLC) but in this instance, it is easier and 

acceptable to assume that output from the MitoSOX assay is representative of 

mitochondrial ROS in general. With that in mind, model simulations of mitochondrial 

ROS are equal to the sum of mitochondrial superoxide and hydrogen peroxide.  

Simulations of these time-points proved the model able to predict mitochondrial ROS 

well for 6 and 16 hours, but overestimates for 24 hours, due to the model not 

accounting for cell viability. ATP and MTT cytotoxicity assay data for 24 hours 

exposure to doxorubicin was used to normalize model ROS production, bringing 24 

hour simulation to within the error bounds of the in vitro data. The ability to simulate 

this in vitro data suggests several important things: EFA in vitro cell-free assay is a 

suitable to ascertain kinetic parameters based on proton consumption and 

production in this instance. It proves that using thermodynamic and chemistry based 

methods, combined with experimental data, can facilitate in silico prediction of 

cellular organelle-specific doxorubicin induced ROS formation is possible, despite the 
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fleeting existence of radical species. Finally, it lends credence to the non-specificity 

of the MitoSOX assay, as the model uses total ROS to simulate the MitoSOX data.
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3.1 Introduction  

Extracellular flux analysis (EFA) is gaining momentum as a versatile, high throughput 

method of assessing cellular bioenergetics for a plethora of biological points of 

interest, boasting inclusion in over 1500 peer reviewed publications, and is commonly 

used as a method of investigating drug-induced mitochondrial dysfunction in a wide 

variety of different cellular systems 43,57,58. EFA, using any of the XF analysers 

(Seahorse instruments), is accomplished by the use of biosensors within a specialised 

sensor cartridge that measure rates of oxygen consumption and proton efflux. The 

majority of investigations centre on changes in cellular respiration, quantified by 

deviations in oxygen consumption rate (OCR), with up until recently, the concomitant 

ECAR measurements which are assumed to be indicative of glycolytic flux. 

Respiratory contributions to ECAR may be easily quantified by measuring the 

buffering power (BP) of the EFA media, allowing quantification of the media’s ability 

to manage changes in pH, while also considering the maximum amount of H+ 

generated per oxygen molecule consumed 41,42. Depending upon the experimental 

conditions and cell type ECAR may be either almost entirely respiratory, or almost 

entirely glycolytic 41. Despite this, separation of glycolytic specific acidification 

remains largely underutilized. Such neglect to differentiate between the two outputs 

may stem from the ambiguities surrounding the source of ECAR. Glycolytic 

acidification is widely accepted to be a function of lactic acid efflux into the 

extracellular space, with subsequent weak acid dissociation occurring at 

physiologically relevant media pH (7.0 – 7.4) as a result of lactic acid having a pKa 

value of 3.86 59.  

The biological complexity of cellular bioenergetics coupled with EFA intricacies has 

prompted the construction and use of the mathematical-based approach described 

in this chapter. Mathematical models present notable benefits to biological research, 

often by stimulating the logical consolidation of the essential elements of a complex 

system needed to construct a model, in turn eliciting useful reduced representations. 

The application of these mathematical techniques enables a deeper understanding 
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of the fundamental qualitative and quantitative features of a complex system. 

Consequently, mathematical modelling can guide experimentation, generate 

testable hypotheses and simulate sometimes difficult biological scenarios in a time- 

and effort-efficient manner. Several mathematical models of hepatic glucose 

metabolism exist with an exciting variety of uses including hormonal regulation of 

glucose metabolism, hepatocellular respiration and bioenergetics and even a 

comprehensive model of the human hepatocyte used to explore liver physiology 60–

62. However, current models of hepatic glucose metabolism fail to include pH-

dependence and the resulting changes to reaction equilibria and enzyme kinetics. 

Furthermore, current mathematical models that focus specifically on hepatic cellular 

bioenergetics in combination with EFA are lacking in metabolic network depth and as 

a result, authors tend to link ECAR to pyruvate generation, rather than proton release 

into an extracellular environment, and omit respiratory contributions to ECAR 

altogether 62.  

This chapter describes a unique pH-dependent, thermodynamically-driven kinetic 

model of hepatic glycolysis, capable of computing a comprehensive dynamic pH time 

course that is representative of EFA ECAR measurements. The model captures the 

rapid binding and unbinding of protons and metal ions with all modelled biochemical 

species in order to compute a total proton stoichiometry. Accounting for complete 

proton stoichiometry is crucial, as model ECAR/PPRgly output is calculated by using 

lactate/H+ efflux through the liver-specific monocarboxylate transporter 1 (MCT1) 63. 

The model is aligned with in vitro liver specific experimental data, such that simulated 

ECAR changes are a function of lactate/H+ efflux. ECAR sensitivity is determined 

during sensitivity analysis, yielding the most sensitive model parameters coupled to 

the respective biochemical reactant. The model was subsequently used to predict 

changes in extracellular acidification during in vitro media removal, eliciting the 

potential metabolic and physical consequences with respect to ECAR that would not 

be possible experimentally. This model is the first of its kind with respect to 

simulating ECAR/PPRgly via the MCT1 as a function of hepatic glycolytic rate only, by 

deducting respiratory contributions to extracellular acidification. 
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Aims: 

1. To construct a pH-dependent thermodynamic model of hepatic glycolytic 

flux. 

2. Measure glycolytic flux of HepG2 cells in vitro accounting for respiratory 

contributions to acidification. 

3. To align the model with in vitro experimental data 

4. To compare model outputs to ECAR and proton production rate in vitro 

outputs. 

5. To use the model to explore the role of lactic acid, compartment volume 

and the extracellular concentration of glucose on ECAR, to assess the 

sensitivity of ECAR with respect to extracellular pH, and to investigate 

model areas responsible for redox state sensitivity. 

3.2 Mathematical Modelling  

3.2.1 Current Models 

With the liver being the fundamental organ in regulating plasma glucose 

concentrations in vivo, coupled with the clinical relevance of glucose related diseases 

such as diabetes, mechanistic mathematical models of hepatic glucose metabolism 

already exist. For example, the MitoSYM model 62, uses a “pyruvate-to-lactate” 

metabolic flux to compute ECAR, essentially modelling ECAR as a function of pyruvate 

metabolism. While the MitoSYM model manages to recapitulate experimental ECAR 

trends using this method, taking this approach allows for very little mechanistic 

interpretation regarding the glycolytic status. The MitoSYM model is particularly 

basic in its inclusion of glycolysis, modelling only glucose uptake and glucose-6-

phosphate (G6P) production, the first two of ten enzyme-mediated reactions in the 

glycolytic pathway. As a result, production and utilisation of NADH is not explicitly 

modelled. This is a cause for concern as NADH is an integral linking molecule between 

glycolysis and oxidative phosphorylation via the TCA cycle. Consequently, a vital 

component that links the two dominant bioenergetic pathways is instead 

represented as a phenomenological element that is once again dependent upon 
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pyruvate. Using pyruvate to represent ECAR, NADH turnover and the NADH/NAD 

ratio, coupled with expressing glycolytic flux via glucose uptake and G6P production, 

is somewhat ambitious in a model that aims to support the evaluation of compounds 

in drug development. It is noted, however, that ECAR as a function of glycolytic flux 

in the MitoSYM model is not the primary focus of the model. Moreover, it is 

appreciated that in the realm of systems biology one always strives to construct the 

simplest model that may yield robust insights. This is particularly true as the MitoSYM 

model is a smaller Tenon in the larger DILI-SYM Mortise 62.  

Perhaps the most comprehensive model hepatic glucose metabolism is the 2012 

König model 61, which accounts for glucose metabolism in its entirety, including 

hormonal regulation of hepatic glucose production (HGP) and hepatic glucose 

utilisation (HGU) used to quantify hepatic contribution to glucose homeostasis 61. This 

is a kinetic model validated using 25 different experimental data sets capable of 

simulating hepatic glucose metabolism under varying physiological states. 

Furthermore, this model simulates primary hepatic situations with the inclusion of all 

major glucose metabolism pathways such as glycolysis, gluconeogenesis and 

glycogen metabolism within human hepatocytes. The model utilizes integrated 

hormonal regulation via the inclusion of interconvertible phosphorylation states of 

key enzymes used to simulate changes in insulin, epinephrine and glucagon and their 

resulting hormonal effects on glucose metabolism. The model reveals the high 

capacity of the liver to buffer extracellular glucose concentrations during dynamic 

fasting and postprandial situations. Undoubtedly a powerful tool, the model is not 

without caveats of its own. It is obvious that the focus of this model is glucose 

homeostasis, however, this has been accomplished at the expense of setting integral 

metabolites as constant. For example, the model sets ATP, ADP, AMP, NADH, H+ and 

inorganic phosphate (Pi) as constant values throughout simulations, arguably the 

most important variables in cellular bioenergetics. Preventing dynamic variation of 

these model constituents could perhaps encumber overall function of glycolysis as a 

source of cellular energy in the form of ATP, which in turn, artificially regulates redox 
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and energy homeostasis within the model. Yet, this remains the most comprehensive 

kinetic model with a copious amount of experimental liver-specific validation.  

In essence, the MitoSYM model is aligned with our intention of describing hepatic 

glycolytic flux using EFA, but lacks mechanistic depth, whereas the König model 

presents outstanding mechanistic metabolic detail, but is centred on hormonal 

regulation of glucose metabolism, rather than bioenergetic output. Furthermore, 

both of these models fail to include pH-dependence, and thermodynamics during 

their enzyme kinetics. Including thermodynamic control, and as a result, pH-

dependence is crucial when modelling cellular bioenergetics as it is fundamental 

thermodynamics in the form of proton gradients and free energies that govern the 

majority of ATP synthesis within the cell during oxidative phosphorylation. 

The overall in silico motivation to modelling hepatic glycolysis is to generate a 

thermodynamic driven, pH-dependent model of cellular glycolytic flux that is detailed 

enough to provide mechanistic insights into cellular bioenergetics, while 

simultaneously being able to recapitulate in vitro EFA measurements. The model will 

be the first of its kind to achieve this, whilst also accounting for the respiratory 

contributions to acidification during EFA. 

3.2.2 Pathway Selection 

Hepatic glycolytic flux describes the utilization of glucose via glycolysis and as such, 

the in silico model will primarily comprise of glycolysis, described in Chapter 1. 

However, the liver is the predominant organ responsible for maintaining plasma 

glucose homeostasis, therefore, other subsidiary pathways must be considered when 

constructing a model that essentially recapitulates glucose metabolism. 

3.2.2.1 Glycogenolysis 

During times of diminished glucose plasma concentrations, glucose can be generated 

from glycogen stores as a source of intermediary energy. This process is called 

glycogenolysis and occurs predominantly in the liver and muscle tissue. This process 

plays a key role in aiding the liver in its function of buffering plasma glucose levels 
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and is stimulated by the hormones glucagon and epinephrine. The overall pathway 

proceeds via Figure 3-1. 

 

Figure 3-1: Schematic illustrating fundamental components of glycogenolysis. Enzyme-

mediated reactions are shown in green. Enzymes: GP, glycogen phosphorylase; G1PI, 

glucosephosphate isomerase; G6Pase, glucose-6-phosphatase. Substrates: GLY, glycogen; 

Pi, inorganic phosphate; G1P, glucose-1-phosphate; G6P, glucose-6-phosphate and GLC, 

glucose. 

3.2.2.2 Gluconeogenesis 

As well as depleting glycogen stores, glucose can be generated from small short chain 

carbon molecules such as lactate, pyruvate and oxaloacetate. In essence, this may be 

considered as reverse glycolysis as many of the steps are the opposite of those found 

in the glycolytic pathway (Figure 3-2). This metabolic process occurs predominantly 

in the liver where up to 70 % of extracellular lactate is removed from the plasma and 

catabolized via gluconeogenesis.  
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Figure 3-2: Gluconeogenesis. Double-headed reaction arrows illustrate reaction 

reversibility and as such, subsequent conversion of lactate via pyruvate into glucose.  

Figure 3-2 illustrates the transformation of lactate into glucose via a series of enzyme-

mediated reactions. Lactate re-enters the cell via the MCT1 transporter, which is then 

converted back into pyruvate via LDH. Pyruvate is versatile, it can be utilized in the 

mitochondria via oxidative phosphorylation generating ATP, or converted back into 

glucose, depending upon what is physiologically needed.  

After establishing the pivotal pathways in human hepatic glycolytic flux, one must 

decide which pathways will be included in the model. The glycolysis pathway forms 

the backbone of glycolytic flux and so must be included in the model. If modelled 

carefully, the reverse of the glycolysis pathway will inherently yield a form of 

gluconeogenesis and therefore this will also be included in the model. Enzymes: PK, 

pyruvate kinase; LDH, lactate dehydrogenase; MCT1, monocarboxylate transporter 

1; OXPHOS, oxidative phosphorylation. Substrates: PYR, pyruvate and LAC, lactate. 

Glycogenolysis is arguably the most important part of glucose metabolism in the liver 

as the majority of glucose is stored as glycogen. Furthermore, in vivo, the liver plays 

perhaps the most important role in buffering plasma glucose concentration during 

periods of fasting or hypoglycaemia maintaining a strict concentration range 
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between 3 and 9 mM. This is achieved by using hepatic glycogen stores in order to 

export glucose when it is needed in vivo. However, considering the Warburg effect in 

carcinoma cell lines and the diminished amount of glycogen storage, glycogenolysis 

as a metabolic system will be omitted, better allowing our model to represent 

glycolytic flux within an immortalized cell predominately used for bioenergetic 

toxicity assessment such as HepG2 cells. 

3.2.3 Initial Model Construction  

The glycolytic flux model is based on the kinetic model of human hepatic glucose 

metabolism presented by König et al. 61, gaining its pH-dependency and interwoven 

thermodynamics by constructing it using the BISEN toolset. The model comprises of 

14 enzyme mediated kinetic reactions and 2 transport fluxes between a two-

compartment system representing the cellular cytoplasm where glycolysis is located 

and the extracellular space (Figure 3-3)(Table 3-2). Through these 16 enzyme-

mediated processes a total of 26 biochemical reactants are utilised, with their 

compartment location denoted with the suffix _c and _e for cytoplasm and 

extracellular species respectively (Table 3-1 and Table 3-2). Model variables are 

described in mM units and time is represented as minutes yielding reaction and 

transport fluxes, J, with the units: mM min-1. 
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Figure 3-3: Schematic of human hepatic glycolytic flux model. Biochemical model 

comprising of two compartments: cytoplasm and extracellular space. Glycolytic enzymes 

are shown in purple, transporter reactions are depicted as blue rectangles and oxidative 

phosphorylation is portrayed in orange. Reaction descriptions can be found in Table 3-2.  
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Variable Abbreviation Compartment 

Initial  

Concentration (mM) 

Glucose GLC Cytoplasm 5.000  

ATP ATP Cytoplasm 2.800  

ADP ADP Cytoplasm 0.800  

Glucose-6-phosphate G6P Cytoplasm 0.120 

Fructose-6-phosphate F6P Cytoplasm 0.005 

Inorganic phosphate Pi Cytoplasm 5.000  

Fructose-1,6-phosphate F16P Cytoplasm 0.020 

1,3-bisphospho-glycerate BPG Cytoplasm 0.300 

Fructose-2,6-phosphate F26P Cytoplasm 0.004  

Dihydroxyacetone-phosphate DHAP Cytoplasm 0.300 

Glyceraldehyde-phosphate GHAP Cytoplasm 0.100 

NAD NAD Cytoplasm 1.220 

NADH NADH Cytoplasm 0.00056 

2-phospho-D-glycerate PG2 Cytoplasm 0.030 

3-phospho-D-glycerate PG3 Cytoplasm 0.270 

Phosphoenolpyruvate PEP Cytoplasm 0.150 

Pyruvate PYR Cytoplasm 0.100 

Lactate LAC Cytoplasm 0.500 

Protons H Cytoplasm 6.8 (pH) 

Magnesium ions Mg Cytoplasm 5.000  

Potassium ions K Cytoplasm 8.000  

Glucose GLCe Extracellular 5.000  

Lactate LACe Extracellular 0.000  

Protons He Extracellular 7.4 (pH) 

Magnesium ions  Mge Extracellular 0.000  

Potassium ions Ke Extracellular 0.000  

    
 

Table 3-1: Model biochemical reactants including their corresponding abbreviation, 

allocated compartment and initial concentration. 
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Reaction Abbreviation Description 

Glucokinase GLK GLC + ATP  ADP + G6P + H 

Glucose-6-phosphatase G6Pase G6P + H2O GLC+ Pi 

Phosphoglucose isomerase PGI G6P ⇋ F6P 

Phosphofructokinase PFK F6P + ATP  F16P + ADP + H 

Fructose-1,6-bisphosphatase FBP1 F16P + H2O  F6P + Pi 

Aldolase ALD F6P ⇋ DHAP + GAPH 

Triosephosphate isomerase TPI DHAP ⇋ GAPH 

Glycerald-3-P dehydrogenase GAPDH GAPH + Pi + NAD ⇋ BPG + NADH + H 

Phosphoglycerate kinase PGK BPG + 2 ADP ⇋ PG3 + 2 ATP 

Phosphoglycerate mutase 1 PGYM PG3 ⇋ PG2 

Enolase / phosphopyruvate hydratase  ENO PG2 ⇋ PEP 

Pyruvate kinase PYK PEP + 2 ADP + H ⇋ PYR + 2 ATP 

Lactate dehydrogenase LDH PYR + NADH + H ⇋ LAC + NAD 

Glucose Storage (Glycogenolysis) FD GLC  Ø 

Glut-2-transporter GLUT2 GLCe ⇋ GLC 

Monocarboxylate transporter 1 MCT1 LAC+ H⇋ LACe + He 

   
 

Table 3-2: Model enzyme-mediated reactions including abbreviation and description. Single-

headed reaction arrows indicate irreversible, double arrows indicate reversible reactions. 

A complete mathematical description of all kinetic rate equations and their allocated 

parameter values used to construct the model will now be presented, followed by a 

description of the enzyme role within the pathway and model. All terms and values 

are derived from the Konig model 61,  unless stated otherwise. Units for each 

parameter are also presented. Biochemical reactants are presented in square 

brackets, for example GLC is [GLC]. A schematic of the complete model is shown in 

Figure 3-3, where biochemical reactants are positioned in their corresponding 

compartments. 

3.2.3.1 Glycolytic Flux Reactions  

Glucokinase (GLK): 
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𝐽𝐺𝐿𝐾  = 𝑣𝑚𝑎𝑥  𝑔𝑘𝑓𝑟𝑒𝑒

[𝐴𝑇𝑃]

𝑘𝑚
𝐴𝑇𝑃 + [𝐴𝑇𝑃]

 
[𝐺𝐿𝐶]𝑛

[𝐺𝐿𝐶]𝑛 + (𝑘𝑚
𝑔𝑙𝑐

)
𝑛 , 

where 

                                                                                 

 
𝑔𝑘𝑓𝑟𝑒𝑒  =

[𝐺𝐿𝐶]𝑛𝑔𝑘𝑟𝑝

[𝐺𝐿𝐶]𝑛𝑔𝑘𝑟𝑝 + (𝑘𝑔𝑘𝑟𝑝
𝐺𝐿𝐶 )

𝑛𝑔𝑘𝑟𝑝
 (1 − 

𝑏𝑔𝑘𝑟𝑝[𝐹6𝑃]

[𝐹6𝑃] + 𝑘𝑔𝑘𝑟𝑝
𝐹6𝑃 ) . 

 

Parameter Value Units 

n 1.60×100 

 
𝑘𝑚

𝑔𝑙𝑐
 7.50×100 mM 

𝑘𝑚
𝐴𝑇𝑃 2.60×10-1 mM 

𝑛𝑔𝑘𝑟𝑝 2.00×100  

𝑘𝑔𝑘𝑟𝑝
𝐺𝐿𝐶  1.50×101 mM 

𝑘𝑔𝑘𝑟𝑝
𝐹6𝑃  1.00×10-2 mM 

𝑏𝑔𝑘𝑟𝑝 7.00×10-1  

𝑣𝑚𝑎𝑥  2.52×10-2 mM min-1 

 

Glucokinase (GLK) is regulated by the glucokinase regulator protein which is a 

competitive inhibitor for glucose. The regulatory binding mechanism of this protein 

is dependent upon glucose and fructose-6-phosphate (F6P) and in turn alters the km 

for glucose.  

Glucose-6-phosphatase (G6Pase): 

 

 
𝐽𝐺6𝑃𝐴𝑆𝐸  = 𝑣𝑚𝑎𝑥 

[𝐺6𝑃]

𝑘𝑚
𝐺6𝑃 + [𝐺6𝑃] 

 . 
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Parameter Value Units 

𝑘𝑚
𝐺6𝑃 2.00×100 mM 

𝑣𝑚𝑎𝑥  1.89×10-2 mM min-1 

 

Glucose-6-phosphate isomerase (PGI): 

 

 

𝐽𝑃𝐺𝐼  =

𝑣𝑚𝑎𝑥

𝑘𝑚
𝐺6𝑃  ([𝐺6𝑃] −

[𝐹6𝑃]
𝐾𝑒𝑞

)

1 + 
[𝐺6𝑃]

𝑘𝑚
𝐺6𝑃 +

[𝐹6𝑃]

𝑘𝑚
𝐹6𝑃

 . 

                                                                                 

   

Parameter Value Units 

𝐾𝑒𝑞 5.17×10-1 
 

𝑘𝑚
𝐺6𝑃 1.82×10-1 mM  

𝑘𝑚
𝐹6𝑃 7.10×10-2 mM 

𝑣𝑚𝑎𝑥  4.20×10-1 mM min-1 

 

Phosphofructokinase (PFK): 

 

𝐽𝑃𝐹𝐾  = 𝑣𝑚𝑎𝑥 (1 +
[𝐹16𝑃]

𝑘𝑎
𝐹16𝑃 )(

[𝐺6𝑃][𝐴𝑇𝑃]

𝑘𝑖
𝐹16𝑃𝑘𝑚

𝐴𝑇𝑃 + 𝑘𝑚
𝐹6𝑃[𝐴𝑇𝑃] + 𝑘𝑚

𝐴𝑇𝑃[𝐹6𝑃] + [𝐴𝑇𝑃][𝐹6𝑃]
) . 
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Parameter Value Units 

𝑘𝑚
𝐴𝑇𝑃 1.11×10-1 mM 

𝑘𝑚
𝐹6𝑃 7.70×10-2 mM  

𝑘𝑖
𝐹16𝑃 1.20×10-2 mM 

𝑣𝑚𝑎𝑥  7.18×10-2 mM min-1 

𝑘𝑎
𝐹16𝑃 1.00×10-3 mM 

 

Fructose-1,6-bisphosphatase (FBP): 

 

 
𝐽𝐹𝐵𝑃  =

𝑣𝑚𝑎𝑥

1 +
[𝐹26𝑃]

𝑘𝑖
𝐹26𝑃

(
[𝐹16𝑃]

[𝐹16𝑃] + 𝑘𝑚
𝐹16𝑃) . 

                                                                                  

Parameter Value Units 

𝑘𝑖
𝐹26𝑃 1.00×10-3 mM 

𝑘𝑚
𝐹16𝑃 1.30×10-3 mM  

𝑣𝑚𝑎𝑥  4.33×10-1 mM min-1 

   

 

Aldolase (ALD): 

 

𝐽𝐴𝐿𝐷  =

𝑣𝑚𝑎𝑥

𝑘𝑚
𝐹16𝑃 ([𝐹16𝑃]

[𝐺𝐴𝑃𝐷𝐻][𝐷𝐻𝐴𝑃]
𝐾𝑒𝑞

)

1 +
[𝐹16𝑃]

𝑘𝑚
𝐹16𝑃 +

[𝐺𝐴𝑃𝐷𝐻]

𝑘𝑖
𝐺𝐴𝑃𝐷𝐻 +

[𝐷𝐻𝐴𝑃]([𝐷𝐻𝐴𝑃] + 𝑘𝑚
𝐺𝐴𝑃𝐷𝐻)

𝑘𝑚
𝐷𝐻𝐴𝑃 𝑘𝑖

𝐺𝐴𝑃𝐷𝐻 +
[𝐹16𝑃][𝐺𝐴𝑃𝐷𝐻]

𝑘𝑚
𝐹16𝑃𝑘𝑖2

𝐺𝑅𝐴𝑃

 . 
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Parameter Value Units 

𝐾𝑒𝑞 9.76×10-5 mM 

𝑘𝑚
𝐹16𝑃 7.10×10-3 mM  

𝑣𝑚𝑎𝑥  4.20×10-3 mM min-1 

𝑘𝑚
𝐷𝐻𝐴𝑃  3.64×10-2 mM 

𝑘𝑚
𝐺𝐴𝑃𝐷𝐻 7.10×10-3 mM 

𝑘𝑖
𝐺𝐴𝑃𝐷𝐻 5.72×10-2 mM 

𝑘𝑖2
𝐺𝑅𝐴𝑃 4.2×10-1 mM 

 

Triosephosphate isomerase (TPI): 

 

 

𝐽𝑇𝑃𝐼  =
𝑣𝑚𝑎𝑥

𝑘𝑚
𝐷𝐻𝐴𝑃

(

[𝐷𝐻𝐴𝑃] −
[𝐺𝐴𝑃𝐷𝐻]

𝐾𝑒𝑞

1 + 
[𝐷𝐻𝐴𝑃]
𝑘𝑚

𝐷𝐻𝐴𝑃 +
[𝐺𝐴𝑃𝐷𝐻]

𝑘𝑚
𝐺𝐴𝑃𝐷𝐻

) . 

                                                                                   

Parameter Value Units 

𝐾𝑒𝑞 5.45×10-2 mM 

𝑘𝑚
𝐷𝐻𝐴𝑃 5.90×10-1 mM  

𝑣𝑚𝑎𝑥  4.20×10-3 mM min-1 

𝑘𝑚
𝐺𝐴𝑃𝐷𝐻 4.20×10-1 mM 

 

Glyceraldehydephosphate dehydrogenase (GAPDH): 
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𝐽𝐺𝐴𝑃𝐷𝐻  =

𝑣𝑚𝑎𝑥
𝑘𝑁𝐴𝐷 𝑘𝐺𝐴𝑃𝐷𝐻𝑘𝑃𝑖

([𝑁𝐴𝐷][𝐺𝐴𝑃𝐷𝐻][𝑃𝑖] −
[𝐵𝑃𝐺][𝑁𝐴𝐷𝐻]

𝐾𝑒𝑞
)

(1 +
[𝑁𝐴𝐷]
𝑘𝑁𝐴𝐷

) +(1 +
[𝐺𝐴𝑃𝐷𝐻]
𝑘𝐺𝐴𝑃𝐷𝐻

) + (1 +
[𝑃𝑖]
𝑘𝑃𝑖

)+(1 +
[𝑁𝐴𝐷𝐻]
𝑘𝑁𝐴𝐷𝐻

)(1 +
[𝐵𝑃𝐺]
𝑘𝐵𝑃𝐺

) − 1
 . 

 

Parameter Value Units 

𝐾𝑒𝑞 8.68×10-2 
 

𝑘𝑁𝐴𝐷 5.00×10-2 mM  

𝑣𝑚𝑎𝑥  4.20×10-3 mM min-1 

𝑘𝑚
𝐺𝐴𝑃𝐷𝐻 5.00×10-4 mM 

𝑘𝑃𝑖 3.90×100 mM 

𝑘𝑁𝐴𝐷𝐻 8.30×10-3 mM 

𝑘𝐵𝑃𝐺  3.50×10-12 mM 

 

Phosphoglycerate Kinase (PGK): 

 

 𝐽𝑃𝐺𝐾  

=

𝑣𝑚𝑎𝑥

𝑘𝐴𝐷𝑃 𝑘𝐵𝑃𝐺
([𝐴𝐷𝑃][𝐵𝑃𝐺] −

[𝐴𝑇𝑃][𝑃𝐺3]
𝐾𝑒𝑞

)

(1 +
[𝐴𝐷𝑃]
𝑘𝐴𝐷𝑃

) +(1 +
[𝐵𝑃𝐺]
𝑘𝐵𝑃𝐺

) + (1 +
[𝐴𝑇𝑃]
𝑘𝐴𝑇𝑃

)+(1 +
[𝑃𝐺3]
𝑘𝑃𝐺3

) − 1
 . 

 

Parameter Value Units 

𝐾𝑒𝑞 7.00×100 
 

𝑘𝐴𝐷𝑃 3.50×10-1 mM  
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𝑣𝑚𝑎𝑥  4.20×10-3 mM min-1 

 𝑘𝐵𝑃𝐺  2.00×10-3 mM 

𝑘𝐴𝑇𝑃 4.80×10-1 mM 

𝑘𝑃𝐺3 1.20×100 mM 

 

Phosphoglycerate mutase (PGM): 

 

𝐽𝑃𝐺𝑀  =

𝑣𝑚𝑎𝑥 ([𝑃𝐺3] −
[𝑃𝐺2]
𝐾𝑒𝑞

)

[𝑃𝐺3] + 𝑘𝑃𝐺3(1 +
[𝑃𝐺2]
𝑘𝑃𝐺2

)
 . 

 

 

 

 

Enolase (ENO): 

 

𝐽𝐸𝑁𝑂  =

𝑣𝑚𝑎𝑥 ([𝑃𝐺2] −
[𝑃𝐸𝑃]
𝐾𝑒𝑞

)

[𝑃𝐺2] + 𝑘𝑃𝐺2(1 +
[𝑃𝐸𝑃]
𝑘𝑃𝐸𝑃

)
 . 

 

Parameter Value Units 

𝐾𝑒𝑞 1.84×10-1 
 

𝑘𝑃𝐺3 5.00×100 mM  

𝑣𝑚𝑎𝑥  4.20×10-3 mM min-1 

𝑘𝑃𝐺2 1.00×100 mM 
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Pyruvate Kinase (PK): 

 

 𝐽𝑃𝐾 = (1 − 𝛾)𝑣𝑑𝑝 + 𝛾𝑣𝑝 ,  

where  

𝑣𝑑𝑝  = 𝑣𝑚𝑎𝑥  𝛼𝑖𝑛𝑝
𝑑𝑝 (

[𝑃𝐸𝑃]𝑛
𝑃𝐸𝑃

[𝑃𝐸𝑃]𝑛𝑃𝐸𝑃
+ (𝑘𝑝𝑒𝑝,𝑖𝑛𝑝

𝑑𝑝
)
𝑛𝑃𝐸𝑃)(

[𝐴𝐷𝑃]

[𝐴𝐷𝑃] + 𝑘𝐴𝐷𝑃
) , 

and 

𝑣𝑝  = 𝑣𝑚𝑎𝑥  𝛼𝑖𝑛𝑝
𝑝 (

[𝑃𝐸𝑃]𝑛
𝑃𝐸𝑃

[𝑃𝐸𝑃]𝑛𝑃𝐸𝑃
+ (𝑘𝑝𝑒𝑝,𝑖𝑛𝑝

𝑝
)
𝑛𝑃𝐸𝑃)(

[𝐴𝐷𝑃]

[𝐴𝐷𝑃] + 𝑘𝐴𝐷𝑃
) , 

given  

(𝛼𝑏𝑎𝑠𝑒
𝑝 + (1 − 𝛼𝑏𝑎𝑠𝑒

𝑝 )𝑓) , 

(𝛼𝑏𝑎𝑠𝑒
𝑑𝑝 + (1 − 𝛼𝑏𝑎𝑠𝑒

𝑑𝑝 )𝑓) , 

and 

𝛼𝑖𝑛𝑝
𝑑𝑝  = (1 − 𝑓)(𝛼𝑑𝑝 − 𝛼𝑒𝑛𝑑) + 𝛼𝑒𝑛𝑑 , 

                                                                                  

Parameter Value Units 

𝐾𝑒𝑞 5.45×10-1 
 

𝑘𝑃𝐺2 1.00×100 mM  

𝑣𝑚𝑎𝑥  3.60×10-3 mM min-1 

𝑘𝑃𝐸𝑃 1.00×100 mM 
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𝛼𝑖𝑛𝑝
𝑝  = (1 − 𝑓)(𝛼𝑝 − 𝛼𝑒𝑛𝑑) + 𝛼𝑒𝑛𝑑 , 

𝑘𝑝𝑒𝑝,𝑖𝑛𝑝
𝑑𝑝  = (1 − 𝑓)(𝑘𝑝𝑒𝑝

𝑑𝑝 − 𝑘𝑝𝑒𝑝
𝑚𝑖𝑛) + 𝑘𝑝𝑒𝑝

𝑚𝑖𝑛 , 

𝑘𝑝𝑒𝑝,𝑖𝑛𝑝
𝑝  = (1 − 𝑓)(𝑘𝑝𝑒𝑝

𝑝 − 𝑘𝑝𝑒𝑝
𝑚𝑖𝑛) + 𝑘𝑝𝑒𝑝

𝑚𝑖𝑛 , 

with 

𝑓 =
[𝐹16𝑃]𝑛𝑓𝑏𝑝

[𝐹16𝑃]𝑛𝑓𝑏𝑝 + (𝑘𝑓𝑏𝑝
𝑑𝑝

)
𝑛𝑓𝑏𝑝 . 

 

 

 

 

 

 

 

 

 

 

Phosphofructokinase is one of several integral enzymes involved in hepatic glycolysis 

as it has an interconvertible phosphorylation state denoted 𝛾. If 𝛾 = 1, the enzyme is 

modelled in its phosphorylated state and therefore simulates the presence of the 

hormone insulin leading to increased glycolytic flux. If 𝛾 = 0, the enzyme is modelled 

in its dephosphorylated state and therefore simulates the presence of the hormones 

epinephrine and glucagon which reduce glycolytic flux. When modelling carcinoma 

Parameter Value Units 

𝑛𝑃𝐸𝑃 3.50×100 
 

𝑛𝐹𝐵𝑃 1.80×100  

𝑣𝑚𝑎𝑥  4.62×10-2 mM min-1 

𝑘𝑝𝑒𝑝
𝑑𝑝  1.10×100 mM 

𝑘𝑚𝑖𝑛
𝑑𝑝

 8.00×10-2 mM 

𝛼𝑑𝑝 1.00×100  

𝛼𝑝 1.10×100  

𝛼𝑒𝑛𝑑 1.00×100  

𝑘𝑓𝑏𝑝
𝑑𝑝  1.60×10-4 mM 

𝑘𝑓𝑏𝑝
𝑝  3.50×10-4 mM 

𝛼𝑏𝑎𝑠𝑒
𝑑𝑝  8.00×10-2  

𝛼𝑏𝑎𝑠𝑒
𝑝  4.00×10-2  

𝑘𝐴𝐷𝑃 2.30×100 mM 
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cells such as HepG2 cells, glycolytic flux is increased compared to that of normal cells 

due to the Warburg effect explained earlier. Therefore, when modelling 

hepatocarcinoma glycolytic flux, any interconvertible phosphorylation states kinetic 

equations use  𝛾 = 1. 

Lactate dehydrogenase (LDH): 

 

𝐽𝐿𝐷𝐻  =

𝑣𝑚𝑎𝑥

𝑘𝑚
𝑃𝑌𝑅 𝑘𝑚

𝑁𝐴𝐷𝐻 ([𝑃𝑌𝑅][𝑁𝐴𝐷𝐻] −
[𝐿𝐴𝐶][𝑁𝐴𝐷]

𝐾𝑒𝑞
)

(1 +
[𝑁𝐴𝐷𝐻]
𝑘𝑚

𝑁𝐴𝐷𝐻 ) (1 +
[𝑃𝑌𝑅]
𝑘𝑚

𝑃𝑌𝑅 )(1 +
[𝐿𝐴𝐶]

𝑘𝑚
𝐿𝐴𝐶 )(1 +

[𝑁𝐴𝐷]
𝑘𝑚

𝑁𝐴𝐷 ) − 1
 . 

 

Parameter Value Units 

𝐾𝑒𝑞 2.78×10-4 
 

𝑘𝑚
𝑃𝑌𝑅 4.95×10-1 mM  

𝑣𝑚𝑎𝑥  1.26×10-2 mM min-1 

𝑘𝑚
𝑁𝐴𝐷𝐻 2.70×10-2 mM 

𝑘𝑚
𝐿𝐴𝐶  3.20×10-1 mM 

𝑘𝑚
𝑁𝐴𝐷 9.84×10-1 mM 

 

Glucose transporter 2 (GLUT2): 
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𝐽𝐺𝐿𝑈𝑇2  =

𝑣𝑚𝑎𝑥

𝑘𝑚
𝐺𝐿𝐶 ([𝐺𝐿𝐶𝑒] −

[𝐺𝐿𝐶]
𝐾𝑒𝑞

)

1 +
[𝐺𝐿𝐶𝑒]

𝑘𝑚
𝐺𝐿𝐶 +

[𝐺𝐿𝐶]

𝑘𝑚
𝐺𝐿𝐶

 . 

Parameter Value Units 

𝐾𝑒𝑞 1.00×100 
 

𝑘𝑚
𝐺𝐿𝐶  4.20×101 mM  

𝑣𝑚𝑎𝑥  4.20×10-3 mM min-1 

 

 

Monocarboxylate transporter 1 (LACT): 

 

 

𝐽𝐿𝐴𝐶𝑇  =

𝑣𝑚𝑎𝑥

𝑘𝑚
𝐿𝐴𝐶 ([𝐿𝐴𝐶𝑒] −

[𝐿𝐴𝐶]
𝐾𝑒𝑞

)

1 +
[𝐿𝐴𝐶𝑒]

𝑘𝑚
𝐿𝐴𝐶 +

[𝐿𝐴𝐶]

𝑘𝑚
𝐿𝐴𝐶

 . 

Parameter Value Units 

𝐾𝑒𝑞 1.00×100 
 

𝑘𝑚
𝐿𝐴𝐶  8.00×10-1 mM  

𝑣𝑚𝑎𝑥  5.42×10-3 mM min-1 

 

 

Monocarboxylate transporter 1 is the liver specific enzyme responsible for transport 

of lactic acid. Lactate is transported in its anionic form as LAC- with co-transportation 

of a proton. This is due to the lactic acid having a pKa value of 3.82 which as a result 
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means at pH 7.4 this weak carboxylic acid will exist in its dissociated form. This is very 

important when modelling extracellular acidification.  

 Glycogenolysis   (FD):  

 

 
𝐽𝐹𝐷  =

𝑣𝑚𝑎𝑥  [𝐺𝐿𝐶]𝑛

𝑘𝑚
𝐺𝐿𝐶𝑛

+ [𝐺𝐿𝐶]𝑛
 . 

Parameter Value Units 

𝑛 1.00×100 
 

𝑘𝑚
𝐺𝐿𝐶  9.00×100 mM  

𝑣𝑚𝑎𝑥  1.00×100 mM min-1 

Glycogen storage in HepG2 cells is almost non-existent due to effects previously 

described in this chapter. However, there will be a level of storage and glucose 

regulation within the cell that exists outside the scope of this model. To account for 

intracellular glucose regulation, the essence of glycogenolysis has been captured 

using the glycogenolysis term JFD. This expression is used to prevent intracellular 

glucose concentrations from exceeding physiological levels of intracellular glucose 

for the model. HepG2 cells in standard in vitro cell culture are exposed to glucose 

concentrations approximately 5-fold higher than physiologically realistic levels. In 

order to prevent intracellular glucose concentration from inevitably equilibrating to 

that of the extracellular environment, a km value of 9 mM has been estimated 

(hyperglycaemic condition). The other two parameters n and vmax have been assigned 
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arbitrary values of 10 and 1 respectively for the initial model, with the view to amend 

these values to match experimental data in later work.  

3.2.3.2 BISEN Inputs 

Each kinetic term was written into corresponding biochemical BSL file as described in 

1.2.4.1. Compartment volumes and corresponding water fractions were set in the 

overall BSL construction file. In this model, the cytoplasm compartment represents 

the total intracellular volume occupied by 25×103 cells, calculated using the density 

of liver tissue and the average radius of a HepG2 cell. Using a value of 9×10-6 m for 

the cell radius r 64, and assuming cells are spherical, the volume of 25×103 cells V1, 

was calculated using Equation (3-1). 

 𝑉1 = 
4

3
 𝜋 (9.0 × 10−6)3. (3-1) 

This yields a single cell intracellular volume of 3.0536×10-15 m3. The density of liver 

tissue is 1.077 g ml-1 65 and 1 m-3 = 1 L at this density. Using these values and scaling 

up from a single cell to 25×103 cells gives a total intracellular volume of 7.364×10-8 L.  

The extracellular volume in this model does not represent the entire well volume but 

the microchamber volume. This is because EFA lowers a fluorescent measuring probe 

approximately 200 µm above the cell monolayer at the bottom of the well to measure 

OCR and ECAR creating a transient microchamber. These measurements are 

repeated every 3 minutes, until the gradient of OCR / ECAR is linear. This indicates a 

constant rate of consumption / production in the microchamber before the probe is 

retracted. The contents of the well are then allowed to equilibrate before the next 

measurement cycle. As a result, all measurements are a function of the 

microchamber volume as opposed to the entire well. Therefore, the extracellular 

compartment volume is equal to the microchamber volume which is 2.0×10-6 L 66. The 

compartments are set in the BSL construction file as a fraction of the total volume. 

The total volume occupied by the cells and microchamber as a percentage of the total 

model volume is 0.0368 and 99.9632 % respectively, with the total water fraction for 

both compartments being initially set to 1. There are 2 variables set constant in the 
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cytoplasm compartment: H+ and Pi. As the tricarboxylic cycle (TCA) has not been 

modelled, the source of intracellular proton production is also therefore omitted. To 

prevent complete intracellular proton depletion, intracellular pH was fixed at pH 6.8 

by keeping H+ constant, however, for the initial simulation intracellular pH was not 

clamped in order to observe the variable time course and determine if its changes 

were qualitatively sound. Intracellular inorganic phosphate was held constant at 5 

mM, as it was also held constant in the Konig model 61. Intracellular free phosphate 

is carefully maintained in cellular physiology by mechanisms not included within this 

model and was therefore held constant also. In the extracellular compartment, free 

magnesium and potassium ions were also held constant as the media used in EFA is 

an unbuffered solution. 

3.2.4 Preliminary Simulations & Model Development 

The BISEN toolset generated a pH-dependent model of hepatic glycolytic flux 

represented as a system of ordinary differential equations (ODEs) (Table 3-3), that 

are pH-dependent with respect to enzyme kinetics.  

    

d[GLC] /dt =  - JGLK + JG6PASE - JFD +  JGLUT2   

d[ATP] /dt  =  - JGLK - JPFK + 2 JPGK + 2 JPYK   

d[ADP] /dt  =   JGLK + JPFK - 2 JPGK - 2 JPYK   

d[G6P] /dt  =  JGLK - JG6PASE -  JPGI  

d[F6P] /dt  =  JPGI - JPFK +  JFBP1 

d[Pi] /dt  =   0 

d[F16P] /dt  =  JPFK - JFBP1 -  JALD 

d[BPG] /dt  =   JGAPDH - JPGK 

d[F26P] /dt  =   0 

d[DHAP] /dt  =  JALD - JTPI 

d[GHAP] /dt  =  JALD + JTPI - JGAPDH 

d[NAD] /dt  =  - JGAPDH + JLDH 

d[NADH] /dt  =  JGAPDH - JLDH 

d[PG2] /dt  =  JPGK - JPGYM 

d[PG3] /dt  =   JPGYM - JENO 

d[PEP] /dt  =   JENO - JPYK 

d[PYR] /dt  =   JPYK - JLDH 

d[LAC] /dt  =   JLDH - JLACT 

d[GLC_e] /dt  =   - JGLUT2 

d[LAC_e] /dt  =   JLACT 
 

Table 3-3: Hepatic glycolytic flux model ODEs, excluding ion equations.  
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Variable time course and reaction flux simulations were generated by integration of 

model equations using the variable-order stiff solver ode15s in Matlab 2015b, 

coupled with relative integration and absolute integration tolerances of 1.0 ×10-4 and 

1.0 ×10-10 respectively. An additional solver option setting the maximum solver step 

size “MaxStep” was used, set to 5.0 ×10-2. For time course simulations, steady state 

solutions are reached when changes in all variable concentrations do not exceed the 

size of the absolute integration tolerance for a time interval of ≥2000 seconds. Rather 

than derive a steady state mathematically, this definition of a steady state is better 

suited to represent a large scale dynamic system. The initial preliminary simulation 

was conducted over a 300 minute time period. The primary aim of the initial 

simulations was to establish whether or not the BISEN toolset could successfully 

construct a model that could reproduce the well-defined states previously achieved 

in the literature. 

Initial model simulations over a duration of 300 minutes yielded dynamic variable 

curves that deviate from initial conditions only slightly for the majority of the 

variables, predominantly remaining within the same order of magnitude, shown in 

Figure 3-4. A dynamic pH time course was simulated accounting for differences in pH 

in both cytoplasm and extracellular compartment. This was accomplished using the 

method described in chapter 1 and is a function of total proton stoichiometry within 

the model. The initial decrease in intracellular pH suggest an increase of intracellular 

proton concentration caused by an imbalance in the intracellular proton 

stoichiometry. Extracellular pH also decreased as a result of the MCT1 transporter 

successfully pumping protons into the extracellular environment.  

Variable time course solutions failed to equilibrate by the end of the simulation. The 

reactions that influence the variables F16P, GAP, and DHAP were examined and 

altered in order to correctly reflect the homeostasis conditions in the unperturbed 

system.  

In order to investigate variables of concern, the reaction fluxes of the model were 

simulated as a method of assessing which reactions, aside from those directly linked 
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to these variables, which may be causing instability. Figure 3-5 shows the total flux, 

J, of each reaction within the model during the simulation. The majority of the 

reaction fluxes were constant over the simulation, however, FBP and PYK were still 

in a dynamic state as the simulation concluded. Unsteady flux through the FBP 

reaction shown in the FPB flux plot in Figure 3-5 presented a possible explanation for 

instability of the F16P variable and therefore this variable and its associated reactions 

were examined first.
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Figure 3-4: Plots showing the initial variable time course simulation of the hepatic glycolytic flux model.  
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Figure 3-5: Plots showing the initial reaction flux time courses of the hepatic glycolytic model.  
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Plotting the individual reaction fluxes shows discrepancies in production and 

consumption fluxes specific to the variables of concern. Figure 3-6 highlights the 

reaction fluxes responsible for three variables of concern and one flux balanced 

variable BPG. The most important part of these simulations are the black cross and 

red circle plots that are the total production and consumption fluxes respectively. If 

the model were at steady state, these two plots would be the same shown in the F6P 

plot. The GAP plot shows only slight imbalance between the production and 

consumption with the two plots almost aligned. The DHAP flux plot clearly shows an 

imbalance of production and consumption fluxes, with the red consumption flux 

approximately 0.5 mM min-1 lower.  

The F16P flux terms are of higher concern as the production and consumption terms 

are neither close nor appear to be converging. In fact, towards the latter stages of 

the simulation they appear to diverge. From this qualitative flux balance analysis, it 

was decided that F16P is at this point the variable of highest concern, provoking 

investigation of the reactions responsible for its consumption and production. 
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Figure 3-6: Variable specific flux analysis: Reaction fluxes responsible for production and consumption of specific variables were separated by showing production 

flux simulations in black and consumption fluxes in red. The sum of all production and consumption fluxes are plotted with crosses and circles respectively. F16P, 

DHAP and GAP are variables of concern, with F6P plotted as an example of balanced production and consumption 
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As previously discussed, there are significant pathway omissions in the BISEN 

generated pH-dependent model compared to the glucose metabolism model from 

which the kinetic terms were selected. For example, the pH-dependent model 

excludes glycogenolysis and the mitochondria along with its components. Focusing 

on differences between the two models around the F16P variable, two enzyme 

reactions were omitted directly linked to the production and consumption of F16P, 

phosphofructokinase (PFK2) 2 and fructose-2,6-bisphosphatase 2 (F26P) (Figure 3-7). 

Omission of these enzymes may be responsible for the discrepancy highlighted in the 

flux balance analysis of F16P either by decreasing production flux of F16P via the FBP 

reaction from F26P, or increasing the consumption flux via the PFK2 reaction. Since 

F26P is held constant within the pH-dependent model used only as an allosteric 

reactant, it was decided to implement a removal term in the model for F16P in the 

form of a linear decay within the FBP reaction. The new kinetic term for FBP now 

includes a mass-action-based decay term with a new parameter kfbp1 which was 

manually adjusted to 2.0 ×10-3. 

 
𝐽𝐹𝐵𝑃  =

𝑣𝑚𝑎𝑥

1 +
[𝐹26𝑃]

𝑘𝑖
𝐹26𝑃

(
[𝐹16𝑃]

[𝐹16𝑃] + 𝑘𝑚
𝐹16𝑃)+ 𝑘𝑓𝑏𝑝1[𝐹16𝑃]. 

    

(3-2)                            

 

 

Figure 3-7: Enzyme mediated removal and production omitted from the pH-dependent 

model. 
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The initial simulation was repeated to include the new FBP kinetic term, as well as 

setting any variable that is devoid of a sink to constant. This included extracellular 

pH, extracellular lactate and extracellular glucose. Furthermore, the simulation 

duration was extended to 3.0×104 minutes to allow the model to reach a steady state. 

A steady state of the model was shown by this extended variable time course 

simulation and flux balance analysis simulation in Figure 3-8 and Figure 3-9 

respectively. Using both variable and flux simulations allows the model to be viewed 

on a component and system scale, as the fluxes are often described as the variables 

of the system. The variable concentrations must conform to the demands of the 

system in order to balance its fluxes in a steady state. Figure 3-8 and Figure 3-9 

illustrate the models capability of having a steady state that satisfies both a 

component and system level. 
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Figure 3-8: Plots showing variable quasi-steady state time courses with amended FBP reaction.  
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Figure 3-9: Plots showing variable specific flux balance analysis time courses for the hepatic 

glycolytic model. Reaction fluxes responsible for production and consumption of specific 

variables were separated by showing production flux simulations in black and consumption 

fluxes in red. The sum of all production and consumption fluxes are plotted with crosses 

and circles respectively. 

3.2.5 In silico ECAR Simulation 

The first aim of this chapter was to construct a pH-dependent model of hepatic 

glycolytic flux capable of accurately generating ECAR outputs to be used 

synergistically with in vitro extracellular flux analysis. Now that a model has been 

constructed and shown to reach a quasi-steady state that makes qualitative and 

quantitative sense for both variable and reaction fluxes, a preliminary plot of ECAR 

may be simulated. That is, having model steady state values that are near to the initial 

conditions that are measured.  
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ECAR is a measurement used to indicate overall glycolytic flux during EFA, used in 

combination with OCR. It is widely accepted that increased ECAR, often as a response 

to impaired mitochondrial function, is reflective of cellular capability to circumvent 

compromised energy metabolism. Regardless of the complexity of cellular energy 

metabolism, cancer cell energy metabolism has gained interest as a therapeutic 

target 67. In EFA, ECAR is measured by a sensor probe containing a fluorophore 

capable of detecting proton extraction from a monolayer of cells. The probe itself 

descends into the well trapping approximately 2 µl of media above the monolayer 

creating a transient microchamber 200 µm above the cell surface. This process occurs 

at 5 to 8 minute intervals allowing the probe to measure the proton concentration 

change continuously for 2 to 5 minutes until the rate of change is linear. The gradient 

of this slope is calculated to determine the rate of proton efflux (ECAR). Once this 

process is complete, the probe is withdrawn from the well allowing the contents of 

the microchamber to re-equilibrate with the rest of the well.  

The pH-dependent model computes a dynamic pH time course by accounting for total 

proton stoichiometry enabling accurate simulation of proton efflux into the 

extracellular compartment. Having already discussed how liver systems use the MCT1 

co transporter to facilitate the transportation of lactic acid in the form of lactate and 

protons at physiological pH, the efflux of protons and lactate are stoichiometrically 

equal and therefore the MCT1 flux values as a function of time were used to model 

ECAR.  

In silico ECAR and PPRgly was simulated as a function of the MCT1 transport flux, 

JMCT1, expressed in mM min-1. Conversion from in silico transport flux of mM min-1 

to the in vitro PPR pmol min-1 measurement was accomplished using Equation (3-4), 

and total model ECAR (mpH min-1) was converted using Equation (3-3). Note, this 

conversion equation also includes normalization for experimental protein content, 

where PNF is the protein normalization factor which is equal to the total protein 

content per well: 
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𝐸𝐶𝐴𝑅 =
(− log 10 (

 𝐽𝑀𝐶𝑇1

1 × 103 ) ) 1 × 10−3

𝑃𝑁𝐹
 , 

(3-3) 

 

 
𝑃𝑃𝑅 =

1 × 109 (𝐽𝑀𝐶𝑇1)

𝑃𝑁𝐹
 . 

 (3-4) 

This first converts the flux concentration from mM to M, followed by transforming 

mM into pH and then into mpH, yielding mpH min-1. The changes in volume from the 

cell to cytoplasm was also accounted for as the ECAR measurement is taken in the 

microchamber and is therefore not a function of the whole well volume. To account 

for this, the flux is then expressed as a function of the size difference of the 

microchamber compared to the total well volume. The total amount of media in the 

well is 200 µl and the microchamber volume is 2 µl therefore the flux was multiplied 

by 1.0 ×10-3 thus scaling the flux to the size of the microchamber. Finally, like most 

experiments involving cells, final output values are normalized by protein content. 

EFA ECAR data is usually expressed as mpH min-1 µg protein-1 or mpH min-1 well 

protein-1. For this reason, the scaling factor must be malleable depending on which 

format the ECAR data is returned.                                                      

Model ECAR was simulated for PNF values that encompasses both mpH min-1 µg 

protein-1 and mpH min-1 well protein-1 for the 25×103 cell seeding densities. At that 

seeding density, biologically relevant PNF values range between 1 and 10 (Figure 

3-10).  
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Figure 3-10: Changes in ECAR as a function of cellular protein content. PNF represents the 

protein normalisation factor in Equation (3-3).  

When ECAR is a positive value and remains positive during experimentation, this 

conversion method is appropriate. However, converting proton concentration in mM 

into pH involves using a logarithmic transformation, which can lead to imaginary or 

complex solutions if the ECAR passes from negative to zero yielding an infinite ECAR. 

This is evidently not present in in vitro experimentation but the problem is not 

inherent in the model, rather, in the experimentation itself. The benefit of 

mathematically simulating ECAR directly from a transporter flux rather than 

calculating after measuring a change in concentration is that it is possible to ignore 

the role of the probe, thus generating an immediate and unhindered flux. As such, in 

vitro experimentation does not require such unit conversion as mpH min-1 is the unit 

output as a result of having to measure ECAR rather than calculate the transporter 

flux. Regardless, infinite ECAR is unacceptable. Therefore, calculation of ECAR will 

include absolute values allowing circumvention of this problem, providing care is 

taken when expressing the direction of the flux. 
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3.3 In vitro Hepatocarcinoma ECAR  

Having constructed a liver specific pH-dependent model of glycolytic flux that is 

capable of simulating ECAR, the next step was to align it with in vitro data in order for 

it to be considered mechanistically useful. The experimental plan was designed to 

investigate the effects of extracellular glucose and lactate on ECAR, and to generate 

an ECAR profile representative of glycolysis only. In order to generate data 

comparable to outputs from the literature, the HepG2 cells used were cultured in 

high glucose (25 mM) before and during plating onto the 96 well assay plate. The 

experimental objective was to inject 10 different concentrations of glucose after the 

1 hour glucose free assay media incubation prior to EFA while measuring ECAR before 

and after injection.  

3.3.1 Methods 

3.3.1.1 Materials 

All seahorse consumables were purchased from Seahorse Biosciences (North 

Billerica, Ma, USA). Human hepatocarcinoma (HepG2) cell line was purchased from 

the European Collection of Cell Cultures (Salisbury, UK). DMEM (high glucose, 25 

mM), HEPES buffer, foetal bovine serum and collagen (1 Rat tail) were purchased 

from Invitrogen (ADDRESS). Acetic acid, Hanks balanced buffer solution and sodium 

pyruvate were purchased from sigma Aldrich (Dorset, UK). All other reagents were 

purchased from Sigma Aldrich (Dorset, UK).  

3.3.1.2 Cell Culture 

HepG2 cells were maintained in DMEM high-glucose media (glucose 25 mM) 

supplemented with foetal bovine serum (10% v/v), L-glutamine (2 mM), sodium 

pyruvate (1 mM) and HEPES (1 mM). Cells were incubated at 37oC under humidified 

air containing 5% CO2. Cells were used up to passage 17. 
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3.3.1.3 Extracellular Flux Analysis  

HepG2 cells were collected on the day of the experiment by trypsinisation and then 

washed thrice with serum- and glucose-free media. The cells were then plated onto 

a collagen coated (50 µg/ml in acetic acid 0.02 M), XF 96-well cell culture microplates 

(2.5 × 104 cells /100 µl medium/well) overnight in high glucose (25 mM). Culture 

medium was removed from all wells and replaced with 175 µl of unbuffered glucose 

free Seahorse Assay media, supplemented with sodium pyruvate (1 %v/v) and L-

glutamate (1% v/v) pre-warmed to 37oC. Cells were incubated in a CO2 free incubator 

at 37oC for 1 h. Before rate measurement, the XFe96 Instrument (Seahorse 

biosciences, North Billerica, MA) mixed the assay media in each well for 10 min, 

allowing the oxygen partial pressure to equilibrate. OCR and ECAR were measured 

simultaneously thrice, establishing a baseline rate. For each measurement, there was 

a 3 min mix followed by 3 min wait time to restore normal oxygen tension and pH in 

the transient microenvironment surrounding the cells. Glucose injections (0.1 – 25 

mM) occurred at the end of the basal measurement cycles at 16 min, followed by 10 

further measurements. The overall assay duration was 95 min. 

3.3.1.4 BCA Protein Quantification  

Post-extracellular flux analysis, assay medium was removed from all wells. 50 µl of 

ATP releasing agent was charged to each well and the plate was shaken (1 min, 300 

RPM). A standard curve was prepared using the BSA stock (2 mg BSA/ml in ATP 

releasing agent). Working reagent (WR) was prepared by adding 50 parts bicinchonic 

acid to 1 part copper sulphate. 5 µl of cell lysate was plated into a clear 96 well plate 

followed by the addition of 200 µl of WR before incubation (37oC, 30 min). The 

absorbance was then measured at 580 nm on a Labsystems Multiskan plate reader. 

Protein content was then calculated by comparing known protein concentration 

absorbance from the standard curve. Protein concentrations were then used to 

normalize the extracellular flux data giving overall rates of ECAR and OCR as mpH min-

1 well protein-1 and pmol min-1 well protein-1, respectively. 
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3.3.1.5 Buffering Capacity  

EFA assay media buffering capacity was measured at 37 oC using a pH probe. HCL (0.1 

M) was charged in 6 x 20 µl aliquots to 10 ml of assay media, while changes in pH 

were recorded. Media buffering power was calculated from the gradient of the line 

of best fit after plotting the change in pH vs nmol H+ added per 7 µl. 

3.3.1.6 Statistical Analysis  

Statistical significance was ascertained using Prism 5 software via a one way ANOVA, 

with values expressed as a mean ± standard deviation (S.D) taken from four 

independent experiments (n=4). 

3.3.2 Extracellular Flux Analysis Results  

The effects of changes in extracellular glucose concentration (0-25 mM) on ECAR and 

OCR for HepG2 cells was examined. ECAR was expressed in mpH min-1 mg protein-1, 

including respiratory contributions to acidification, and OCR as pmol/min per mg 

protein. In this experiment, bioenergetic measurements are normalized to total well 

protein content and for basal readings prior to glucose injection (Figure 3-11). Prior 

to EFA, the cells were starved for 60 min in media devoid of glucose. While the 

relationship between glucose concentration and ECAR/OCR is minimal, there is a 

definitive switch in energetic metabolism from respiratory to glycolytic, prior to 

accounting for respiratory acidification, post exposure to glucose. The introduction 

of glucose following a minor starvation period induces an increase in ECAR and 

decrease in OCR. This is hypothesized to be the result of an increase in glycolytic 

energy metabolism, which generates ATP from glucose at a faster rate than oxidative 

phosphorylation. The ability of carcinoma cell lines, including HepG2, to exhibit this 

phenomena is well characterized and has been reported previously 67. Average ECAR 

increased significantly after introduction of all concentrations of glucose compared 

to no introduction of glucose (P-values < 0.001). Average OCR after the introduction 

of all concentrations of glucose apart from 0.1 and 1 mM, was a significant decrease 
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compared to no introduction of glucose (P-values < 0.001). Complete description of 

significant changes can be found in the Appendix A. 

 

Figure 3-11: The effect of extracellular glucose on ECAR and OCR.  HepG2 cells were 

exposed to serial concentrations of glucose (0.1-25mM) at t = 16 min (dashed line). ECAR 

and OCR is expressed in colour according to the colour bar in mpH/min per mg protein 

(basal) and pmol/min per mg protein (basal), respectively.  Measurements indicated are 

an average of n=4. 

3.3.3 EFA Media Buffering Power & PPRgly Calculation 

EFA glucose-free media buffering power (BP) was calculated after measuring changes 

in pH after the addition of hydrochloric acid (HCL), using the gradient of the line of 

best fit for the data (Figure 3-12). The calculated value for EFA unbuffered media of 

0.0005 mpH/nmol H+ in 7 µl, calculated as the gradient of the line of best fit, ranks 

considerably lower than for various other types of media, as shown in Table 3-4. 

However, this is somewhat unsurprising as EFA media is inherently unbuffered by 

default to facilitate the detection of small changes in acidity rather than mask them. 
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Figure 3-12: The buffering power of unbuffered glucose-free EFA media was measured by 

adding 0.1 M HCl aliquots to 10 ml of media, followed by calculating the gradient of the 

slope from the resulting pH change. 

 

Assay medium  BP Composition Reference 

EFA unbuffered 

medium   
5 × 10-4 

sodium pyruvate (1 %v/v) and L-

glutamate (1% v/v), pH 7.4 37oC  
This chapter  

KRPH 0.1% BSA 4.5 × 10-2 

2 mM HEPES, 136 mM NaCl2, 2 mM 

NaH2PO4, 3.7 mM KCl, 1 mM MgCl2, 0.1% 

w/v fatty-acid-free BSA, pH 7.4, 37oC 

68 

KRPH 1.0% BSA 3.5 × 10-2 

2 mM HEPES, 136 mM NaCl, 2 mM 

NaH2PO4, 3.7 mM KCL, 1 mM MgCl2, 

0.1% w/v fatty-acid-free BSA, pH 7.4, 

37oC 

 68 

minimal TES Buffer 1 × 10-2 

1.3 mM CaCl2, 120 mM NaCl, 0.4 mM 

KH2PO4, 3.5 mM KCL, 2 mM MgCl2, 20 

mM TES, 15 mM glucose 0.1% w/v fatty-

acid-free BSA, pH 7.4, 37oC 

 68 

XF DMEM 1× 10-1 
5 mM glucose, 2 mM glutamine, 0.4 mM 

sodium pyruvate, pH 7.4, 35oC 
 68 

XF RPMI 4.10×10-2 

(Bicarbonate-free) 11 mM glucose, 2 

mM glutamine, 1 mM NaH2PO4, pH 7.4, 

35oC 

68 

Table 3-4: Buffering power and composition of different types of media.  
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Determination of the media BP allows for the calculation of the buffering capacity 

(BC) and respiratory contributions to ECAR. The BC can be entered directly into the 

EFA analyser to account for the media BP for its readings and is therefore extremely 

useful for future experiments. Buffering capacity is calculated from the 

experimentally determined BP using (3-6). 

 

 

where 

𝐵𝐶 = 
1.0 × 10−9

𝐵𝑃
=  2.0 × 10−6  (

pH
nmol

H+in 7μL

7μL
), 

(3-5) 

 

 
𝐵𝑃 = 5.0 × 10−4   (

pH

nmol
H+in 7μL).   

(3-6) 

 

Total proton production rate (PPRtot) was calculated in Equation (3-7), using the 

average experimentally derived ECAR post glucose injection for 5 mM glucose (10.2 

mpH min-1 mg protein-1) (Figure 3-11) divided by the BP. 

 
𝑃𝑃𝑅𝑡𝑜𝑡 =

𝐸𝐶𝐴𝑅

𝐵𝑃
= 2.04 × 104  (

pmol H+

minmg protein
). 

(3-7) 

 

Subsequently, the respiratory contributions PPRresp were calculated using Equation 

(3-7), where pK1 is the overall pKa for CO2 (aq) + H2O  HCO3- = 6.093, max H+/O2 is the 

derived acidification for the metabolic transformation of glucose oxidation = 1, OCRtot 

= 17.78 pmol O2 min-1 mg protein-1 for 5 mM over 10 measurements, OCRrot = 5.17 

pmol O2 min-1 mg protein-1 .Thus, 

 
𝑃𝑃𝑅𝑟𝑒𝑠𝑝 = (

10pH−pK1

1 + 10pH−pK1
)(

max𝐻+

O2
) (𝑂𝐶𝑅𝑡𝑜𝑡 − 𝑂𝐶𝑅𝑟𝑜𝑡),

=  1.09087 × 101 (
pmol H+

minmg protein
). 

(3-8) 
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Finally, using Equations (3-9) and (3-10), PPRgly was calculated by subtracting 

respiratory acidification contributions from the total proton production rate giving a 

PPRgly value of 3.0389 ×104 pmol H+ min-1 mg protein-1: 

 𝑃𝑃𝑅𝑡𝑜𝑡 = 𝑃𝑃𝑅𝑔𝑙𝑦 + 𝑃𝑃𝑅𝑟𝑒𝑠𝑝 , 

giving  

(3-9) 

 

 
𝑃𝑃𝑅𝑔𝑙𝑦 = 𝑃𝑃𝑅𝑡𝑜𝑡 − 𝑃𝑃𝑅𝑟𝑒𝑠𝑝 = 2.0389 × 104  (

pmol H+

minmg protein
) . 

(3-10) 

 

The difference between PPRgly and PPRresp of 11 pmol H+/ min per mg protein is 

relatively small. This is unsurprising as the unaltered EFA data in Figure 3-11 implies 

an inverse relationship between ECAR and OCR and therefore minimal respiratory 

contributions to ECAR. Nevertheless, regardless of this particular cell lines proclivity 

to fund ECAR with predominantly glycolytic acidification, it is a worthy and facile 

endeavour for the sake of understanding the cellular bioenergetic output. 

3.4 In silico – In Vitro Coupling & Sensitivity Analysis 

3.4.1 Sensitivity Analysis 

Testing the sensitivity of a metabolic model with respect to its parameters is a crucial 

way of assessing its robustness. Variables that are most receptive to parameter 

perturbations can be identified by measuring changes in time-course simulations 

following parameter variation and, consequently, parameters that must be treated 

with care when measured and used can also be defined. Sensitivity analysis may be 

presented in many forms depending upon the state of the system. For this model, we 

elected to measure the percentage mean change of the jth variable with respect to a 

-99% to +400% change in the ith parameter (Equation (3-11)). We define Vj as the jth 

variable over time; Vj
ibase is the jth variable over time with the base value for the ith 

parameter; Vj
ival is the jth variable over time with a perturbed value for the ith 

parameter; with ival ϵ [-99,400%] of its base value. We denote Mean (Vj(t)) as the 
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mean value of the jth variable over the time course t ϵ [0,300]mins, where || denotes 

absolute value. 

 % absolute change
relative to   

parameter change 

=  𝑚𝑎𝑥

[
 
 
 
 
 
 
|
𝑚𝑒𝑎𝑛 (𝑉𝑗

𝑖𝑣𝑎𝑙(𝑡)) − 𝑚𝑒𝑎𝑛 (𝑉𝑗
𝑖𝑏𝑎𝑠𝑒(𝑡)) ×  100

𝑚𝑒𝑎𝑛 (𝑉𝑗
𝑖𝑏𝑎𝑠𝑒(𝑡))

|

|
(𝑖𝑣𝑎𝑙 − 𝑖𝑏𝑎𝑠𝑒)

𝑖𝑏𝑎𝑠𝑒
x 100|

]
 
 
 
 
 
 

. 

 

(3-11) 

 

A parameter is classed as mildly sensitive (MS) if a change in any variable as a result 

of parameter manipulation is between 1 - 10% absolute mean change relative to the 

parameter change, and sensitive (S) if >10% is observed over a 300-minute simulation 

(Figure 3-13). Sensitivity analysis presented 8 sensitive parameters: 

phosphofructokinase (PFK) Vmax (MS), triosephosphate isomerase (TPI) Keq (MS), 

dihydroxy-acetone phosphate (DHAP) Km (MS), glyceraldehyde dehydrogenase 

(GAPDH) Keq (MS), Km NAD (MS), lactate dehydrogenase (LDH) Vmax (MS), MCT1 Keq (S) 

and Vmax (S). The two most sensitive parameters with respect to lactate, Keq and Vmax 

for the MCT1 transporter are expressed as % mean change of its initial value, (Figure 

3-14). With two out of three MCT1 transporter parameters registering as sensitive, 

parameter selection for this enzyme mediated reaction must be carefully considered, 

especially when MCT1 transporter flux is to be used for simulating ECAR.  
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Figure 3-13. Sensitivity analysis. 78 model parameters were varied between -99% to +400% 

of their default values to identify the maximum % mean change in any variable and provide 

a measure of sensitivity relative to parameter change variation. The 8 most sensitive 

parameters are annotated.  

Figure 3-14 shows the effects of changes in Vmax MCT1 and Keq MCT1 on 

intracellular lactate concentrations. The initial parameter was altered from -99 % to 

+400 % in 21 iterations, as shown with the 21 bars for each plot. Evidently, 

intracellular lactate concentration is more sensitive to the MCT1 equilibrium constant 

than the Vmax. However, both parameters satisfy the sensitive criteria threshold 

(Figure 3-13).  
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Figure 3-14. Sensitive model parameters illustrating changes in intracellular lactate 

concentration. % mean changes in intracellular lactate concentration as a function of 

sensitive parameter manipulation are shown compared to their initial steady state 

condition. Lactate is more susceptible to changes in the equilibrium constant, Keq, than to 

the Vmax of MCT1 co-transporter kinetics.  

 

3.4.2 Model Parameterization: Cytoplasm Lactate Content  

In order to accurately choose the values for the identified sensitive parameters, the 

model was fitted to in vitro intracellular lactate concentration. Luk et al. measured 

the intracellular lactate concentration of HepG2 cells during their study of the effects 

of miR-122 on pyruvate kinase 69. Their data was used for comparison of the model 

simulations of the cytoplasm concentration of lactate over an extended time course 

of 48 h. Initial simulations were improved upon by fitting the two sensitive 

parameters of the MCT1 (Figure 3-15). Parameter adjustment was performed using 

unconstrained nonlinear optimization as described in the methods section, such that 

Vmax MCT1 and Keq MCT1 values adjusted from 33 mM min-1 and 1, to 2.0 x 10-3 mM 

min-1 and 1.15 x 102 respectively, where equilibrium constants are unitless.     
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Figure 3-15: Intracellular lactate concentration after 48 h: Model intracellular lactate 

concentration was aligned with experimental data from HepG2 cells after 48 hr. Model 1 

simulation represents the lactate concentration pre-parameter adjustment with all model 

parameters obtained from the literature, with Model 2 simulation indicative of post-

parameter adjustment.  

Steady state cytoplasm levels of lactate in the model prior to parameter adjustment 

were approximately three times higher than in vitro amounts. Minor adjustment to 

the MCT1 Vmax parameter provided a more comparable in vitro – in silico 

intracellular steady state concentration of lactate, while simultaneously leaving other 

variable and flux steady state concentrations largely unaltered (% changes in steady 

states given in the supplementary information). 

3.4.3 Model Validation: Simulating EFA PPRgly & ECAR 

The model was validated by comparison pf EFA PPRgly and ECAR experimental data 

that was not used for the original parameterization. The model was used to recreate 

EFA analysis data obtained experimentally (Figure 3-11) generating both profiles for 

ECAR and PPRgly using the MCT1 flux term. Furthermore, the model was used to 

simulate EFA, capturing the cell incubation and media change prior to EFA, assessing 

the model’s ability to respond to extracellular changes that are cannot be measured 

experimentally. The in vitro experiment therefore consists of a 1440 min (24 h) 
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incubation in high glucose environment (25 mM), followed by extracellular lactate 

and glucose removal during a 60 min incubation in unbuffered media prior to EFA. 

Glucose is reintroduced at t = 1500 min after the end of the glucose-free incubation, 

followed by 120 min of measurements. The model simulation was normalized to the 

average protein content of the respective wells (Figure 3-16).  

Simulated ECAR and PPRgly is in good accordance with experimental observations. 

Simulated ECAR was expectedly short of experimental values, owing to the omission 

of respiratory contributions within the model. The model was able to accurately 

simulate PPRgly using the MCT1 flux only, suggesting that lactate/H+ is likely 

responsible for glycolytic extracellular acidification, which is in good agreement with 

the literature70–72. As is apparent in Figure 3-16, the model is better suited to 

recapitulate PPRgly rather than ECAR, likely due to the model comprising of glycolytic 

acidification mechanisms only. It is then unsurprising that simulated ECAR falls short 

of experimental data. The model simulates the changes in extracellular acidification 

as a function of changes in extracellular environment at t1 where extracellular glucose 

and lactate are removed, as well as t2 when 5 mM of glucose is introduced (Figure 

3-16). The resulting PPRgly is therefore a function of extracellular homeostasis, 

suggesting that extracellular glucose and lactate concentration play a greater role in 

ECAR and PPRgly levels than expected.  
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Figure 3-16:  ECAR and PPRgly simulation. A, model simulation of ECAR (solid line) compared to in vitro ECAR (triangles) normalized to protein content, taken from 5 

mM glucose EFA results (Figure 3-11) B, model simulation of PPRgly (solid line) compared to in vitro PPRgly (triangles) normalised to protein content for 5 mM glucose 

experiments. PPRgly data was taken from EFA results (Figure 3-11) followed by adjusting each ECAR measurement for respiratory contributions, as well as extracellular 

media buffering power. At t1 all extracellular model variables are reset to zero to mimic in vitro media change, at t2 glucose is reintroduced at 5 mM, using this 

concentration as the initial parameter and rate expressions from the literature are based on this concentration.  Full simulation time course can be found in the 

supplementary information.  
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Model concentration steady state values are compared to a range of possible values 

sourced from the literature. In general, the model is in good accordance with these 

ranges, however, several values are situated outside of the ranges. It should be noted 

that this model is designed to recapitulate a specific in vitro scenario, rather than a 

generic in vivo / in vitro system such as generic monolayer cell culture or isolated 

hepatocytes. Furthermore, the effects of the extracellular volume that this model is 

tasked with replicating is obviously different to a physiological situation. For example, 

intracellular lactate concentration in the model is a function of the extracellular 

concentration in the transient micro chamber of EFA. Consequently, when simulating 

a media change, removal of lactate in its entirety drastically affects the intracellular 

lactate concentration by the laws of mass action. Regardless, variables of 

bioenergetic importance such as ATP, ADP, and PYR are located within the bounds of 

literature ranges.  

Variable Model [mM] Literature range [mM] 

GLC 4.7996 3.61 – 6.85 

ATP 2.7203 0.49 – 3.430 

ADP 0.8797 0.5 – 1.38 

G6P 0.0336 0.06 – 0.205 

F6P 0.0096 0.011 – 0.1 

Pi 5.0000 3.64 – 5.74 

F16P 0.3699 0.016 – 0.03 

BPG 0.0040 0.3 

F26P 0.4560 0.004 

DHAP 0.0769 0.012 – 0.052 

GHAP 1.0519 0.0014 – 0.228 

NAD 0.2049 1.2200 

NADH 0.1687 0.0006 

PG2 0.4637 0.007 – 0.049 

PG3 0.0810 0.048 – 0.41 

PEP 0.0956 0.092 – 0.27 

PYR 0.1146 0.059 – 0.271 

LAC 0.0054 0.12 – 2.347 
 

Table 3-5: Literature and model variable concentration comparison. All literature values 

for variables are sourced from the liver specific glucose metabolism models, compiled 

within the supplementary materials of 61. 
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3.5 Model Predictions 

3.5.1 The Effects of Extracellular Glucose, Lactate and pH Perturbations on ECAR 

and PPRgly 

Simulated extracellular acidification is representative of both lactate and H+ and as 

such, the effects of changes in extracellular glucose, lactate and H+ concentrations on 

PPR were simulated in order to determine the effects on extracellular acidification.  

 

Figure 3-17. Effects of extracellular glucose concentration on ECAR and PPRgly experimental 

simulations. Simulation follows in vitro setup, with all extracellular variables removed at 

t=20 followed by a glucose-free 60 min incubation before reintroduction of glucose at t= 

80. A, model simulation of ECAR as a function of 3, 5, 7 and 25 mM extracellular glucose. 

B, model simulation of PPRgly as a function of 3, 5, 7 and 25 mM extracellular glucose. 

Concentration selection is based on in vitro conditions simulating high glucose 25 mM, 

hyperglycaemia (7 mM), physiological (5 mM) and hypoglycaemia (3 mM).   

Our model predicted no change in either ECAR or PPRgly with respect to perturbations 

in extracellular lactate concentration or pH (data not shown). Adjustment of 

extracellular glucose concentrations yielded diversity in both ECAR and PPRgly. 

Extracellular acidification was simulated at four specific extracellular glucose 

concentrations in order to simulate hypoglycaemia (3 mM), physiological basal (5 

mM), hyperglycaemia (7 mM) and the in vitro standard high glucose (25 mM). The 

simulated experiments follow the same protocol of that used in Figure 3-16, where 
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the model is simulated devoid of glucose followed by extracellular glucose exposure, 

in this instance at t = 80 min. Figure 3-17 highlights the simulated differences 

between PPRgly and ECAR. As glucose concentration increases, ECAR decreases. 

However, as glucose concentration increases, PPRgly increases. While ECAR and PPRgly 

may appear to be inversely related with respect to extracellular glucose 

concentration, this is not the case, as ECAR output fails to recapitulate MCT1 

directionality. The liver is the predominant organ responsible for maintaining blood 

concentrations; capable of releasing glucose during periods of hypoglycaemia, and 

storing/utilizing glucose during hyperglycaemia 73. Furthermore, the liver is especially 

capable of utilizing extracellular lactate as a fuel source to generate glucose under 

the process of gluconeogenesis 74,75. It is unsurprising then that the model is capable 

of generating a negative flux during PPRgly
 simulations during hypoglycaemia (Figure 

3-17 B).  

3.5.2 The Effects of Extracellular Glucose Concentration on Energy Metabolism 

The resulting changes in model energy metabolism as a function of extracellular 

glucose perturbation were simulated in the form of ATP, ADP and pyruvate 

concentrations (Figure 3-18). ATP and ADP are directly related and simulations exhibit 

an inverse relationship between the two variables: as expected due to 

gluconeogenesis, as extracellular glucose concentration decreases, ATP 

concentration increases with ADP concentration decreasing. Similarly, cytoplasm 

pyruvate concentrations also decrease suggesting pyruvate utilisation. With 

respiratory energy production omitted in this model the fact that as extracellular 

glucose decreases the MCT1 transporter instead favours the uptake of lactate (Figure 

3-17), suggests that gluconeogenesis is responsible for increases in ATP.
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Figure 3-18. Effects of extracellular glucose concentration on model energy metabolism. A, model simulation of ATP as a function of 3, 5, 7 and 25 mM 

extracellular glucose. B, model simulation of ADP as a function of 3, 5, 7 and 25 mM extracellular glucose and C, model simulation of pyruvate as a function of 

3, 5, 7 and 25 mM extracellular glucose. Concentration selection is based on in vitro conditions simulating high glucose 25 mM, hyperglycaemia (7 mM), 

physiological (5 mM) and hypoglycaemia (3 mM).   
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Decreases in cytoplasm pyruvate concentrations will also affect respiratory energy 

metabolism, as cytoplasmic pyruvate is an indirect precursor for oxidative 

phosphorylation 76,77. 

3.5.3 Suitability of Using MCT1 Flux to Simulate ECAR & PPRgly 

MCT1 is one of several isoforms of the MCT family that is liver specific, responsible 

for the rapid proton-linked movement of monocarboxylates, such as L-lactate, across 

the plasma membrane. In general, tumour cells express higher levels of MCT to 

maintain an appropriate intracellular pH environment for growth 63. This is crucial for 

tumour homeostasis as energy production tends to be glycolytically sourced rather 

than respiratory owing to hypoxia / anoxia. Consequently, efflux of protons is 

essential to regulate intracellular pH. Furthermore, lactic acid is metabolised via 

gluconeogenesis 78. As such, the model must be capable of recapitulating these 

biologically important scenarios when aligned with cell line data.  

The model is able to switch MCT1 flux direction during simulation as a function of 

changes in extracellular glucose concentration. The method used to apply the MCT1 

flux term to PPRgly is therefore very suitable. However, the concomitant ECAR 

simulations for the same perturbations in extracellular glucose concentration give 

asymptotic peaks (Figure 3-19). Switching between a positive and negative flux when 

simulating influx to efflux using MCT1, causes asymptotic artefacts when using the 

proposed method of converting model flux output in mM min-1 to mpH min-1, due to 

the use of the logarithms. It is therefore reasonable to expect such artefacts in the in 

vitro data as the lactate / H+ flux direction changes.  



Chapter 3: Modelling Cellular Bioenergetics: Hepatic Glycolytic Flux Model 

 

148 

 

Figure 3-19: Effects of MCT1 directionality on ECAR and PPRgly simulations. A, model 

simulation of ECAR as a function of 3, 5, 7 and 25 mM extracellular glucose. B, model 

simulation of PPRgly as a function of 3, 5, 7 and 25 mM extracellular glucose. Concentration 

selection is based on in vitro conditions simulating high glucose (25 mM), hyperglycaemia 

(7 mM), physiological (5 mM) and hypoglycaemia (3 mM).   

In practice, in vitro ECAR EFA outputs will avoid such spikes when using high glucose 

(25 mM) which ensures ample substrate for glycolysis. However, switches in 

metabolic direction from glycolysis to gluconeogenesis are more probable during 

glucose-free experiments where galactose is used as the sugar source. Such 

experiments are commonly utilised when assessing drug-induced mitochondrial 

toxicities when cells are often exposed to a glucose free environment in order to 

inhibit net ATP production from glycolytic activity so that cells are completely reliant 

on  oxidative phosphorylation for ATP production 79. However, in this instance it is 

very likely that small substrates such as extracellular lactate will be utilised as a 

respiratory substrate via gluconeogenesis which, in turn, may lead to asymptotic 

ECAR artefacts in the data. As a result, the model implies that PPR data is a more 

robust method of assessing extracellular acidification as such artefacts are avoided 

such as that observed in Figure 3-19 (5 mM). 
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3.6 Chapter Discussion 

3.6.1 Conclusion 

A novel pH-dependent model of hepatic glycolytic flux was constructed and used to 

simulate in vitro HepG2 ECAR and PPRgly. Mathematically expressing glycolytic rate as 

a function of the MCT1 is unique to this work and as such, gives credence to lactate 

and proton efflux as the predominant driving force of PPRgly. Extracellular flux analysis 

using HepG2 cells elucidated the relationship between ECAR and OCR dependent 

upon extracellular glucose concentrations. Specifically, a distinct metabolic switch 

was observed from respiratory to glycolytic activity when cells were exposed to 

glucose after brief fasting (60 min). Measuring the buffering power of EFA media 

allowed for the determination of respiratory contributions to ECAR thus enabling the 

separation of ECAR due strictly to glycolytic acidification. These calculations 

highlighted that glycolysis is the predominant driver for extracellular acidification. 

This work illustrates the important discrepancies between ECAR and calculated 

PPRgly, with ECAR simulations falling short of experimental data. Furthermore, the 

occurrence of asymptotic peaks, produced as a result in changes in transporter 

directionality as a function of using logarithms when converting from molarity to pH, 

were illustrated. Direct use of PPRgly is therefore shown to be more accurate when 

simulating experimental data, as well as providing better clarity during the metabolic 

switch from glycolysis to gluconeogenesis. We therefore strongly recommend the use 

of PPRgly rather than ECAR as an indicator of cellular glycolytic rate. Effects of 

extracellular glucose on ECAR, PPRgly and energy metabolism suggest that the model 

is capable of simulating switches in metabolic state depending upon extracellular 

environments, specifically, switching to gluconeogenesis during hypoglycaemia in 

order to generate ATP. Overall, the model demonstrates that MCT1 flux, and 

subsequently H+/lactate flux, in the context of glycolytic flux is more than capable of 

recapitulating in vitro PPRgly. These findings support lactic acid as the predominant 

source of glycolytic acidification, while simultaneously illuminating the shortcomings 

of using ECAR as an indicator of glycolytic rate. The construction and simulations of 
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this model are testament to the quality of parameterized models currently available 

in the literature, as well as the development of toolsets such as BISEN that aid the 

generation of multi-compartment systems of ODE’s that account for dynamic ionic 

buffering and thermodynamics. Overall, the model highlights the inadequacy of using 

ECAR as an indicator of glycolytic rate when glycolytic specific acidification is so 

readily accessible. Furthermore, modelling the glycolytic rate as a function of the 

MCT1 transporter flux in terms of PPRgly facilitates negative flux expression 

depending upon transporter directionality, avoiding asymptotic results when using 

logarithms to recapitulate ECAR. Finally, this work could impact the way extracellular 

flux analysis results are expressed in the field of bioenergetics, recommending the 

use of PPRgly rather than ECAR when measuring glycolytic energy metabolism.  



Chapter 4: Modelling Cellular Bioenergetics:  Human Mitochondrial Respiration 

 

151 

 

 

 

 

 

4 Chapter 4: Modelling Cellular Bioenergetics: Human 

Hepatic Mitochondrial Respiration 

 

 

 

 

 

 

 

 

 

  



Chapter 4: Modelling Cellular Bioenergetics:  Human Mitochondrial Respiration 

 

152 

4.1 Introduction  

Drug induced liver injury (DILI) is a leading cause of attrition during drug 

development. According to the World Health Organisation (WHO), DILI is one of the 

most serious adverse drug reactions and is the fifth leading cause of death related to 

liver diseases, accounting for 20-40% of all instances of clinical hepatic failure 80,81. As 

such, pre-clinical assessment of DILI during drug development is essential. DILI is both 

compound- and patient- dependent with a plethora of possible causes. Mitochondrial 

toxicity has emerged as one of the multifactorial contributors to DILI, the 

understanding and prediction of which has been recently improved due to the 

amelioration of screening methods, including the glu/gal assay and, extracellular flux 

analysis through Seahorse Bioscience XF analysers 44,82–84. The role of mitochondrial 

toxicity within DILI appears to be a mechanistic liability as drug induced mitochondrial 

dysfunction can lead to oxidative stress by de-energizing the cell and inducing 

apoptosis 85,86.  

Drug induced mitochondrial toxicity (DIMT) presents itself as a major aetiology of 

DILI, with a considerable number of metabolic based mechanistic points of interest. 

The scale of this problem is apparent, as 50% of drugs with black-box warnings for 

DILI contain mitochondrial liabilities 87.  Perhaps the most notable classification of 

mitotoxic compounds are those that inhibit the electron transport chain, thereby 

directly preventing ATP synthesis 88. Extracellular flux analysis, in the form of a “Mito-

Stress test” (Figure 4-9), whereby the electron transport complexes and 

chemiosmotic coupling are sequentially inhibited and uncoupled respectively using 

classical mitotoxic poisons, is particularly suited to examining the mechanism of such 

compounds. The resulting changes in oxidative phosphorylation during the Mito-

Stress test are captured in the form of an oxygen consumption rate (OCR) profile and 

this profile may then be used to investigate new DIMT by simple comparison, 

allowing specific electron transport complex inhibition to be assigned. This method 

of detection and quantification of DIMT is performed using whole, intact cells and is 

therefore a function of its whole cell environment, allowing compensatory 
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mechanisms such as glycolysis, when applicable, to alleviate toxicity. This provides a 

realistic physiologically relevant framework from which to better understand and 

predict DIMT 43.  

The identification of mitochondrial liabilities early in the drug development pipeline 

is crucial to the prevention of DIMT and potential DILI. Subsequently, pharmaceutical 

companies are now actively exploring new in vitro, in vivo and in silico tools and 

technologies in order to tackle drug safety 89. Unfortunately, although DIMT is 

screened early during preclinical development, current screens suffer from low 

specificity, and there is little translational power to predict whether the presence of 

DIMT will lead to DILI. This is compounded be a distinct lack of animal models 

available, as well as the idiosyncratic nature of most DIMT. This, coupled with the 

complexity of mitochondrial biology which differs tissue to tissue, makes 

investigation of DIMT extremely difficult. In order to circumvent this, the current 

model for mitochondrial toxicity screening is an iterative process which utilises in 

vitro almost entirely. Initial in vitro screens facilitate early structure activity 

relationship (SAR) studies and cell-based assays illuminate initial compound toxicity. 

If after these initial screens mitochondrial aetiology is suspected, further studies 

using isolated mitochondria are performed. If a positive result follows, mechanistic 

studies are performed which examine OXPHOS respiration, permeability transition, 

ROS and RNS, membrane potential (ΔΨ) and mitochondrial DNA status (mtDNA) 90.  

The efficiency and translatability of this process could be significantly increased with 

the application of a highly mechanistic, thermodynamically-driven model of 

mitochondrial bioenergetics. This would be particularly powerful if linked directly to 

the output of EFA. This chapter describes the development of such a model, as well 

as its ability to recapitulate primary hepatocyte bioenergetics responses to the 

classical ETC inhibitors oligomycin, FCCP, rotenone and antimycin A.  The model is 

then used to explore the relationships between ETC complexes and OCR, as well as 

the potential mode of action of doxorubicin on mitochondrial activity as a function of 

elevated mitochondrial ROS.   
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4.2 Mathematical Modelling  

4.2.1 Current Models  

Arguably the most relevant mathematical model with respect to mitochondrial 

toxicity, quantified in terms of OCR, is the MitoSYM model. This model is liver specific 

and was developed specifically to translate in vitro compound screening data into 

predictions of DILI, via combination with DILIsym 62. DILIsym is a multiscale 

computational model of DILI, designed to be used during drug development to 

provide enhanced understanding of DILI hazard posed by individual molecules. The 

model boasts inclusion of the essential biochemical pathways associated with 

hepatocellular bioenergetics such as glycolysis, mitochondrial respiration, electron 

transport chain activity and mitochondria membrane potential. In the study by Yang 

et al., the authors investigate the ability of the DILIsym model to reproduce the EFA 

outputs of HepG2 cells following perturbations in extracellular glucose, oligomycin 

and FCCP concentrations. The authors openly state that their model comprises only 

of the basic requirements.  For example, they use only 8 state variables and 7 reaction 

fluxes to describe hepatocellular bioenergetics. While the ability of the MitoSYM 

model to reproduce the in vitro data using such reduced representation of the 

biological complexity, the capability of the model to yield any detailed mechanistic 

insight is limited due to this simplicity. It should be noted that the MitoSYM model is 

a smaller cog in the overall DILIsym machinery, as such it can be speculated that this 

simplified model would be more suitable to incorporate. However, claims that such 

a rudimentary model can “help reduce the resources burden associated with 

screening compounds for DILI risk” should be treated with caution. Overall, MitoSYM 

represents a strong first step to link in silico, and in vitro outputs in order to assess 

and bioenergetic toxicity with respect to extracellular flux analysis and DIMT. 

A considerably more detailed model of mitochondrial respiration is the 2013 model 

from Kembro et al., which focuses on mitochondrial energetics, redox and ROS 

metabolic networks 52. This model is a two-compartment model that considers 

OXPHOS and matrix-based processes within the mitochondria, while focusing 
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predominantly on ROS formation, scavenging and effects on ETC. Importantly, the 

model recapitulates the essential bioenergetic mitochondrial processes, including 

specific modelling of all ETC complexes, ΔΨ and the TCA cycle. The model itself is 

used to simulate the qualitative features and order of magnitude of hydrogen 

peroxide emission, as well as and the dynamics observed after treatment of GSH 

scavenging inhibitors. The model is elegant in terms of its mechanistic detail and 

ability to explore ROS dynamics within the mitochondria. However, it is unfortunately 

not specific to any particular organ, rather, the authors provide a set of parameters 

with a focus to mainly on qualitative outputs rather than quantitative. Furthermore, 

the authors do not strive to match the model outputs to the in vitro EFA outputs. 

Finally, perhaps the most detailed and mechanistically relevant models of 

mitochondrial bioenergetics are those constructed by the Beard group which include 

several iterations of  models for cardiac mitochondrial bioenergetics, constructed to 

include pH-dependence and thermodynamic control using the BISEN software (see 

introduction for details). This model has had several iterations and expansion from 

2005. It began life as a relatively simple biophysical model of mitochondrial 

respiratory system and oxidative phosphorylation 91. In 2006, it was expanded to 

include modelling of oxygen transport and cellular energetics in order to explain 

observations on in vivo cardiac energy metabolism 92. Of particular interest and 

relevance to this thesis, is in the study of computational modelling of the 

mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite 

transport and electrophysiology 93. 

The model has then further been applied to the study of detailed enzyme kinetics 94, 

and also investigating phosphate metabolite concentrations and ATP hydrolysis 

potential in normal and ischemic hearts 95. The model has been expanded and utilized 

to simulate experimentally observed phenomena on cardiac energetics during heart 

failure 96, and also to explore feedback regulation and time hierarchy of oxidative 

phosphorylation in cardiac mitochondria 97. The most recent use of this model was to 



Chapter 4: Modelling Cellular Bioenergetics:  Human Mitochondrial Respiration 

 

156 

explore catalytic coupling of oxidative phosphorylation, ATP demand and reactive 

oxygen species generation 53.  

These models have been parameterized and validated with a myriad of experimental 

data and as such, after over a decade of being used for research, are highly regarded 

in the field. 

Ultimately, all of the described models are based on the fundamental 

thermodynamics that govern enzyme kinetics and subsequently variable 

concentrations. These models encompass cellular metabolites as moieties defined by 

their unique binding constants to proton and metal ions and, as a result, generate a 

unique proton stoichiometry that is inherently pH-dependent. Gibbs free energy and 

effects of changes in temperature on the equilibria and kinetics of biochemical 

reactions are incorporated into the models in order to give thermodynamic control 

39,98. This sophisticated level of mechanistic detail, accompanied by the detail with 

respect to mitochondrial bioenergetics, TCA cycle and metabolite/ion transport 

makes these models the ideal starting place to develop a combined in vitro – in silico 

effort to investigate DIMT. 

4.2.2 Current Model Construction  

In this study, the construction of our mitochondrial respiration model (Figure 4-1) 

was based on the kinetic model of oxidative phosphorylation, TCA cycle, metabolite 

transport and passive permeations presented by the Beard group. Additionally, the 

model was constructed using the BISEN toolset, thus providing its pH-dependency 

and interwoven thermodynamics. Our version comprises of 62 state variables, the 

metabolism of which are described by 11 enzyme mediated TCA reactions, 7 

transporters, 9 passive membrane permeation reactions, 4 substrate / ion transport 

reactions and 12 enzyme / transporter mediated oxidative phosphorylation 

reactions, that include proton leaking. These processes are contained within a 3 

compartment model comprising of cytoplasm, denoted by (_c), intermembrane 

space (_i) and mitochondrial matrix (_x). Model variables are described using 
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molarity as units and time is represented as seconds, yielding reaction and transport 

fluxes, J, with the units: M s-1.  

Aims  

1. Construct a thermodynamic, pH-dependent model of human hepatic 

mitochondrial respiration. 

2. Simulate hepatic cellular oxidative phosphorylation, represented via OCR. 

3. Simulate perturbations in oxidative phosphorylation as a function of classic 

mitochondrial stress poisons, recapitulating in vitro primary human hepatic 

OCR changes. 
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Figure 4-1: Mitochondrial 

respiration model. Orange 

rectangles represent ETC, purple 

circles represent TCA cycle and 

green rectangles represent 

transporters and double headed 

arrows represent membrane 

passive permeations. Detailed 

descriptions of the enzyme and 

transport reactions are found in 

Table 4-3. 
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Model state variables are described according to their compartment, concentration 

and unit. A full list of model variables, parameters and reactions are given in Table 

4-1, Table 4-3 and Table 4-4. 

Variable Description 
Initial 

Value 
Units 

IM Space Species (i) 
  

[Cred]i       
Reduced cytochrome c concentration in the IM 

space 
3.49×104 M 

[ATP]i        ATP concentration in the IM space 1.13×102 M 

[ADP]i        ADP concentration in the IM space 7.24×10-5 M 

[AMP]i        AMP concentration in the IM space 4.03×10-7 M 

[PI]i         Inorganic phosphate concentration in the IM space 2.28×10-4 M 

[H+]i          H+ concentration in the IM space 7.94×10-8 M 

[Mg]i         Mg2+ concentration in the IM space 1.00×10-3 M 

[K]i          K+ concentration in the IM space 1.30×10-1 M 

[PYR]i        Pyruvate concentration in the IM space 7.48×10-5 M 

[CIT]i        Citrate concentration in the IM space 1.66×10-4 M 

[AKG]i        α-ketoglutarate concentration in the IM space 9.75×10-8 M 

[SUC]i        Succinate concentration in the IM space 3.58×10-5 M 

[MAL]i       Malate concentration in the IM space 1.27×10-4 M 

[ASP]i        Aspartate concentration in the IM space 1.19×10-5 M 

[GLU]i        Glutamate concentration in the IM space 7.38×10-5 M 

[FUM]i        Fumarate concentration in the IM space 1.50×10-5 M 

[ICIT]i       Iso-citrate concentration in the IM space 1.50×10-5 M 

[PO2]          concentration in the IM space 2.50×10 1 M 

dPsi         concentration in the IM space 1.78×10 2 M 

    
Matrix Variables (x) 

    
[H+]x           H+ concentration in the matrix 5.73×10-8 M 

[ATP]x       ATP concentration in the matrix 2.84×10-3 M 

[NADtot]x      NAD concentration in the matrix 2.97×10-3 M 

[ADP]x        ADP concentration in the matrix 7.16×10-3 M 

[AMP]x        AMP concentration in the matrix 1.00×10-6 M 

[GTP]x        GTP concentration in the matrix 1.43×10-3 M 
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[GDP]x       GDP concentration in the matrix 3.57×10-3 M 

[PI]x         Inorganic Phosphate concentration in the matrix 3.92×10-4 M 

[NADH]x       NADH concentration in the matrix 2.49×10-3 M 

[QH2]x        Reduced Unbiquinol concentration in the matrix 5.14×10-4 M 

[OAA]x        Oxaloacetate concentration in the matrix 5.12×10-11 M 

[ACCOA]x      Acetyl-CoA concentration in the matrix 2.98×10-3 M 

[CIT]x        Citrate concentration in the matrix 4.21×10-4 M 

[ICIT]x       Iso-citrate concentration in the matrix 1.16×10-5 M 

[AKG]x        α-ketoglutarate concentration in the matrix 1.80×10-7 M 

[SCOA]x       Succinyl-CoA concentration in the matrix 2.18×10-7 M 

[COASH]x      CoA-SH concentration in the matrix 9.47×10-6 M 

[SUC]x        Succinate concentration in the matrix 6.35×10-5 M 

[FUM]x        Fumarate concentration in the matrix 7.41×10-5 M 

[MAL]x        Malate concentration in the matrix 2.34×10-4 M 

[GLU]x        Glutamate concentration in the matrix 1.02×10-4 M 

[ASP]x        Aspartate concentration in the matrix 1.53×10-8 M 

[K]x          K+ concentration in the matrix 9.37×10-2 M 

[Mg]x         Mg2+ ion concentration in the matrix 9.86×10-4 M 

[CO2tot]x     Total CO2 concentration in the matrix 2.14×10-2 M 

[PYR]x        Pyruvate concentration in the matrix 9.69×10-5 M 

[COQ]x Oxidised Ubiquinol concentration in the matrix 5.12×10-11 M 

    
Cytoplasmic Species (c)  

  

    
[PYR]_c        Pyruvate concentration in the cytoplasm 7.50×10-5 M 

[CIT]c       Citrate concentration in the cytoplasm 1.66×10-4 M 

[AKG]c        α-ketoglutarate concentration in the cytoplasm 9.75×10-8 M 

[SUC]c        Succinate concentration in the cytoplasm 3.58×10-5 M 

[MAL]c        Malate concentration in the cytoplasm 1.27×10-4 M 

[ASP]c        Aspartate concentration in the cytoplasm 1.19×10-5 M 

[GLU]c        Glutamate concentration in the cytoplasm 7.38×10-5 M 

[FUM]c        Fumarate concentration in the cytoplasm 1.50×10-5 M 

[ICIT]c       Iso-citrate concentration in the cytoplasm 1.50×10-5 M 

[PCr]c        Phosphate creatine concentration in the cytoplasm 2.68×10-2 M 

[AMP]c        AMP concentration in the cytoplasm 4.03×10-7 M 

[Cr]c         Creatine concentration in the cytoplasm 3.44×10-2 M 

[ATP]c        ATP concentration in the cytoplasm 1.13×10-2 M 
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[ADP]c       ADP concentration in the cytoplasm 7.49×10-5 M 

[PI]c         
Inorganic Phosphate concentration in the 

cytoplasm 
2.29×10-4 M 

[H+]c          H+ concentration in the cytoplasm 7.94×10-8 M 

[Mg]c         Mg2+ concentration in the cytoplasm 1.00×10-3 M 

[K]c          K+ concentration in the cytoplasm 1.30×10-1 M 

  

Table 4-1: Mitochondrial respiration model. All state variables were adopted from 93,96. 

 

Parameter Description Value Units 

RT    
Universal Gas Constant (R) 

Temperature (T) 
2.5775 kJ  mol-1 

F  Faraday constant 0.096484 kJ mol-1 mV-1 

Vcyto Cytoplasm volume 0.6801 (ml mito / ml cell) 

Vmito Mitochondria volume 0.2882 (ml mito / ml cell) 

Wx Matrix water space fraction 0.8425 ml water (ml cytoplasm-1) 

Wi IM water space fraction 0.0724 ml water (ml mitochondria-1) 

Wm Mitochondrial water space 0.7238 ml water (ml mitochondria-1) 

Wc Cytoplasm water space fraction 0.6514 ml water (ml mitochondria-1) 

γ 
Outer membrane area per mito 

volume 
5.99 µm-1 

Ρm Mitochondria protein density 2.73×105 (mg Protein) (l mito)-1 

nA H+ stoichiometric coefficient 3 Unitless 

ΡPI Mt membrane inorganic phosphate 

permeability 

327 µm sec-1 

   

ΡA 
Mt membrane nucleotice 

permeability 
85 µm sec-1 

θ ANT Parameter 
  

kO2 Kinetic constant for complex IV 1.20×104 M 

β Matrix buffer capacity 0.01 M 

CIM Inner membrane capacitance 6.75×10-6 mol (l mito) -1 mV-1 

Bx Matrix buffering parameter 0.02 M 

KBx Matrix buffering parameter 1.00×107 M 

Ψ Mitochondrial membrane potential 1.77×102 mV 
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Table 4-2: Model parameters not related to reaction terms. All parameters that are fixed 

within the model including thermodynamic constants, compartment volume and water 

fractions are described here and taken from 93,96. 

 

Flux  Description Units 

Mitochondrial 

Reactions 
  

JCI Complex I M s-1  

JC3 Complex I M s-1  

JC4 Complex IV M s-1  

JF0-F1 F0F1-ATPase (ATP Synthase) (Complex V) M s-1  

JANT Adenine nucleotide translocase M s-1  

JPIHt Phosphate-hydrogen co-transporter M s-1  

JHL Proton leak M s-1  

JKH Mitochondrial K+ / H+ release M s-1  

JPD Pyruvate Dehydrogenase M s-1  

JCS Citrate synthetase M s-1  

JAC Aconitase M s-1  

JISOD Isocitrate dehydrogenase M s-1  

JAKG α-ketoglutarate dehydrogenase M s-1  

JSU Succinyl-CoA synthetase M s-1  

JSC Succinate dehydrogenase M s-1  

JFUM Fumarase M s-1  

JMA Malate dehydrogenase M s-1  

JNDK Nucleoside diphosphokinase M s-1  

JGO Glutamate oxaloacetate transaminase M s-1  

JAK Adenylate kinase M s-1  

   
Mitochondrial Transport Fluxes 

 
JPYRH Pyruvate - H+ co-transporter M s-1  

JGLUH Glutamate - H+ co-transporter M s-1  

JCITMAL Citrate - Malate antiporter M s-1  

JAKGMAL α-ketoglutarate - malate antiporter M s-1  

JSUCMAL Succinate - malate antiporter M s-1  
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JMALPI Malate - phosphate antiporter M s-1  

JASPGLU Aspartate - glutamate antiporter M s-1  

JPIt Phosphate transport across outer membrane M s-1  

JATPt  ATP transport across outer membrane  M s-1  

JADPt ADP transport across outer membrane  M s-1  

JAMPt  AMP transport across outer membrane  M s-1  

JPYRt Pyruvate transport across outer membrane  M s-1  

JCITt  Citrate  transport across outer membrane  M s-1  

JMALt Malate transport across outer membrane  M s-1  

JAKGt α-ketoglutarate transport across outer membrane  M s-1  

JSUCt Succinate transport across outer membrane  M s-1  

JGLUt Glutamate transport across outer membrane M s-1  

JASPt Aspartate transport across outer membrane M s-1  

   
Cytoplasm Reactions 

 
JATPase Cytoplasmic ATP consumption rate M s-1  

JAKc Cytoplasmic adenylate kinase M s-1  

JCK Creatine kinase M s-1  

  

Table 4-3: Mitochondrial respiration model reaction descriptions. Reaction flux 

abbreviations are accompanied by a description and units.  

4.2.2.1 Kinetic Parameters & Model Equations  

Descriptions of each of the reaction/flux terms will now be presented in detail: 

Binding Polynomials:  

Binding polynomials are represented using P, where the subscript indicates the 

reactant. This describes the binding between biochemical species and metal ions. For 

example, 

𝑃𝐴𝑇𝑃 = 1 +
[𝐻+]

𝐾𝐻−𝐴𝑇𝑃
+ 

[𝐾+]

𝐾𝐾−𝐴𝑇𝑃
+

[𝑀𝑔2+]

𝐾𝑀𝑔−𝐴𝑇𝑃
 . 
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Complex 1 flux:  

 

 

𝐽C1 = 𝑋C1(𝐾𝑒𝑞,C1[NADH]𝑥[COQ]𝑥 − [NAD]𝑥[QH2]𝑥), 

𝐾𝑒𝑞,C1 =
𝐾𝑒𝑞,𝐶1

0 [H+]𝑥
5

[H+]𝑖
4  , 

𝐾𝑒𝑞,C1
0 = 𝑒𝑥𝑝(−(∆𝑟𝐺𝐶1

0 + 4 𝐹∆𝜓)/𝑅𝑇) , 

∆𝑟𝐺C1
0 = ∆𝑓𝐺NAD

0 + ∆𝑓𝐺QH2

0 − ∆𝑟𝐺NADH
0 − ∆𝑟𝐺COQ

0 = −109. 

Parameter Value Units 

XC1 2.47×10 4 mol s-1 M-2 (1mito)-1 

ΔrG0
C1 -109.7 kJ mol-1 

F, RT Table 4-2  

   
 

 

 Complex 3 flux:  

 

 

 

 
𝐽C3 = 𝑋C3 ((

1+[PI]𝑥/𝑘𝑃𝐼,1

1+[PI]𝑥/𝑘𝑃𝐼,2
) (𝐾𝑒𝑞,𝐶3

1/2 [COX]𝑖[QH2]𝑥
1/2

−

[Cred]𝑖[COQ]𝑥
1/2

))               
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𝐾𝑒𝑞,C3 = 𝐾𝑒𝑞,C3
0 [H+]𝑥

2/[H+]𝑖
4 

𝐾𝑒𝑞,C3
0 = 𝑒𝑥𝑝(−(∆𝑟𝐺C3

0 + 2 𝐹∆𝜓)/𝑅𝑇) 

∆𝑟𝐺C3
0 = ∆𝑓𝐺Cred

0 + ∆𝑓𝐺COQ
0 − ∆𝑟𝐺QH2

0 − ∆𝑟𝐺COX
0 = 46.69 

 Parameter Value Units 

XC3 6.65×10-1 mol s-1 M-2 (1mito)-1 

ΔrG0
C3

 46.69 kJ mol-1 

kPI,1 2.81×10-5 M 

kPI,2 3.14×10-3 M 

F, RT & Ψ Table 4-2  
 

 

 

Complex 4 flux:  

 

𝐽C4 = 𝑋C4 ((
1

1+𝑘02  /[O2]
) exp (

𝐹 Δ𝜓

𝑅𝑇
) (

[Cred]𝑖

𝐶𝑦𝑡𝐶𝑡𝑜𝑡
) (𝐾𝑒𝑞,C4

1/2 [Cred]𝑖[O2]𝑥
1/4

− [COX]𝑖)),              

Where [O2]x  is assumed to be equal to CO2,cell 

𝐾𝑒𝑞,C4 =
𝐾𝑒𝑞,C4

0 [H+]𝑥
4

[H+]𝑖
2 , 

𝐾𝑒𝑞,C4
0 = 𝑒𝑥𝑝(−(∆𝑟𝐺C4

0 + 2 𝐹∆𝜓)/𝑅𝑇), 

∆𝑟𝐺C4
0 = ∆𝑓𝐺COX

0 + ∆𝑓𝐺H2O
0 − ∆𝑟𝐺Cred

0 − ∆𝑟𝐺O2

0 = −202.2. 

Parameter Value Units 

XC4 9.93×10-5 mol s-1 M-2 (1mito)-1 



Chapter 4: Modelling Cellular Bioenergetics:  Human Mitochondrial Respiration 

 

166 

ΔrG0
C4 -202.2 kJ mol-1 

ko2 1.20×10-4 M 

CytCtot 2.70 Mol (1 IM water)-1 

F, RT & Ψ Table 4-2  

   
 

 

FoF1-ATPase flux flux:  

(Complex V) 

 

𝐽F0−F1 = 𝑋F1(𝐾𝑒𝑞,F1[ADP]𝑥[PI]𝑥 − [ATP]𝑥) ,      

where 

𝐾𝑒𝑞,F1 = 𝐾𝑒𝑞,C1
0 (

[H+]𝑖
NA

[H+]𝑥
NA−1 

),  

𝐾𝑒𝑞,F1
0 = 𝑒𝑥𝑝(−(∆𝑟𝐺F1

0 + NA 𝐹∆𝜓)/𝑅𝑇), 

∆𝑟𝐺F1
0 = ∆𝑓𝐺ATP

0 + ∆𝑓𝐺H2O
0 − ∆𝑟𝐺ADP

0 − ∆𝑟𝐺PI
0 = −4.51. 

Parameter Value Units 

XF1 5.95×10 03 mol s-1 M-2 (1mito)-1 

ΔrG0
F1 -4.51 kJ mol-1 

NA 3 Unitless 

F, RT Table 4-2  
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Mitochondrial adenylate kinase flux: 

𝐽AKi = 𝑋AKi(𝐾𝑒𝑞,AK[ADP]𝑥[ADP]𝑖 − [AMP]𝑖[ATP]𝑖). 

Parameter Value Units 

XAKi 1.00×1010 mol s-1 M-2 (1mito)-1 

ΔrKeq,AK 3.97×10-1 Unitless 

F, RT  Table 4-2  

   
 

 

Adenine nucleotide translocase flux:  

 

𝐽ANT =
𝑘2

ANT𝑞
[ATP]𝑥[ADP]𝑖

𝐾𝑜
𝐷 −𝑘3

ANT𝑞
[ATP]𝑖[ADP]𝑥

𝐾𝑜
𝐷

(1+
[ATP]𝑖

𝐾𝑜
𝑇 +

[ADP]𝑖

𝐾𝑜
𝐷 )(1+

[ATP]𝑥

𝐾𝑜
𝑇 +

[ADP]𝑥

𝐾𝑜
𝐷 )

 ,       

where 

𝑘2
ANT = 𝑘2

ANT,0𝑒𝑥𝑝((−3𝑎1 − 4𝑎2 + 𝑎3)𝐹Δ𝜓/𝑅𝑇) , 

𝑘3
ANT = 𝑘3

ANT,0𝑒𝑥𝑝((−4𝑎1 − 3𝑎2 + 𝑎3)𝐹Δ𝜓/𝑅𝑇) , 

𝐾0
𝐷 = 𝑘0

𝐷,0𝑒𝑥𝑝(3𝛿𝐷𝑅𝑇/𝐹Δ𝜓) , 

𝐾0
𝑇 = 𝑘0

𝑇,0𝑒𝑥𝑝(4𝛿𝑇𝑅𝑇/𝐹Δ𝜓) , 

 

𝑞 =
𝑘3

ANT𝐾𝑜
𝐷

𝑘2
ANT𝐾𝑜

𝑇 𝑒𝑥𝑝(𝐹Δ𝜓/𝑅𝑇) . 
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Parameter Value Units 

K2
ANT,0 0.159 s-1 

K3
ANT,0 0.501 s-1 

K0
D 38.89 mM 

K0
T 56.05 mM 

a1 0.2829 Unitless 

a2 0.2086 Unitless 

a3 0.2372 Unitless 

δD 0.0699 Unitless 

δT 0.0167 Unitless 

ΔrKeq,AK 3.97×10-1 Unitless 

   
 

Hydrogen-Phosphate co-transporter flux:  

 

𝐽PIHt = 𝑋PIHt (
[H2PO4]𝑖[H

+]𝑖−[H2PO4]𝑥[H+]𝑥

𝑘PIHt((1+[H2PO4]𝑖/𝑘PIHt)(1+[H2PO4]𝑥/𝑘PIHt))
).  

Parameter Value Units 

XPIHt 3.01×10 6 mol s-1 M-2 (1mito)-1 

kPIHt 1.01×10-3 M 

   
 

Hydrogen-Potassium exchange flux:  

 

𝐽KHt = 𝑋KH([K+]𝑖[H
+]𝑥 − [K+]𝑥[H

+]𝑖) . 

Parameter Value Units 

XKH 5.65×10 6 mol s-1 M-2 (1mito)-1 
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Hydrogen-Pyruvate co-transporter flux:  

𝐽PYRt = 𝑋PYR([PYR]𝑖[H
+]𝑖 − [PYR]𝑥[H

+]𝑥) . 

Parameter Value Units 

XPYR 4.12×10 8 mol s-1 M-2 (1mito)-1 
 

 

Hydrogen-Glutamate co-transporter flux:  

𝐽GLUHt = 𝑋H([GLU]𝑖[H
+]𝑥 − [GLU]𝑥[H

+]𝑖) . 

Parameter Value Units 

XGLUHt 3.26×10 8 mol s-1 M-2 (1mito)-1 

   
 

Malate-Citrate exchange flux:  

𝐽CM = 𝑋CM([CIT]𝑖[MAL]𝑥 − [CIT]𝑥[MAL]𝑖) . 

Parameter Value Units 

XCM 7.31×10 1 mol s-1 M-2 (1mito)-1 

   
 

Malate-phosphate exchange flux:  

𝐽MALPI = 𝑋MALPI([MAL]𝑖[PI]𝑥 − [MAL]𝑥[PI]𝑖) . 

Parameter Value Units 

XMALPI 1.58×10 1 mol s-1 M-2 (1mito)-1 
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 Succinate-Fumarate exchange flux:   

𝐽SUCFUM = 𝑋SUCFUM([SUC]𝑖[FUM]𝑥 − [SUC]𝑥[FUM]𝑖) . 

Parameter Value Units 

XSUCFUM 9.54×10 1 mol s-1 M-2 (1mito)-1 

   
 

 

Aspartate-Glutamate exchange flux:  

𝐽ASPGLU = 𝑋ASPGLU([ASP]𝑖[GLU]𝑥 − [ASP]𝑥[GLU]𝑖) . 

Parameter Value Units 

XASPGLU 7.48×10-5 mol s-1 M-2 (1mito)-1 

   
 

Proton leak flux:  

𝐽PL = 𝑋PL Δ𝜓 (
[H+]𝑐

𝑒𝐹Δ𝜓

𝑅𝑇 𝑥
− [H+]𝑥[GLU]𝑖

𝑒𝐹Δ𝜓

𝑅𝑇 − 1

) . 

Parameter Value Units 

XPL 3.05×10 2 mol s-1 M-2 (1mito)-1 

F, RT  Table 4-2  
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Pyruvate dehydrogenase flux:  

𝐽pdh =

𝑉mf (1 −
1

𝐾𝑒𝑞,𝑝𝑑ℎ

[P][Q][R]
[A][B][C]

)

𝐾𝑚𝐶  [A][B] + 𝐾𝑚𝐵  [A][C] + 𝐾𝑚𝐴 [C][B] + [A][B][C]
 , 

where [A] = [PYR]x, [B] = [COASH]x, C = [NAD]x, [P] = [CO2]x, [Q] = [ACCOA]x, and 

[R] = [NADH]x 

and 

𝐾𝑒𝑞,𝑝𝑑ℎ = 𝐾𝑒𝑞
0

1

[H+]

𝑃𝐶𝑂2,𝑡𝑜𝑡𝑃𝐴𝐶𝐶𝑂𝐴𝑃𝑁𝐴𝐷𝐻

𝑃𝑃𝑌𝑅𝑃𝐶𝑂𝐴𝑆𝐻𝑃𝑁𝐴𝐷
 , 

𝐾𝑒𝑞,𝑝𝑑ℎ
0 = 5.02 × 10−4 . 

Parameter Value Units 

Vmf 0.205093  

KmA 38.30×10-6 M 

KmB 14.00×10-6 M 

KmC 3.33×10-6 M 

F, RT  Table 4-2  

   
 

 

Citrate Synthase flux:  

𝐽CS =

𝑉mf ([A][B] −
[P][Q]
𝐾𝑒𝑞,𝑐𝑖𝑡𝑠]

)

𝐾𝑖𝐴𝐾𝑚𝐵 + 𝐾𝑚𝐴[B] + 𝐾𝑚𝐵 [A] + [A][B]
 , 

where [A] = [OAA]x, [B] = [ACCOA]x, [P] = [COASH]x and [Q]= [CIT]x 
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and 

𝐾𝑒𝑞,𝑐𝑖𝑡𝑠 = 𝐾𝑒𝑞,𝑐𝑖𝑡𝑠
0 1

[𝐻+]𝑥

𝑃𝐶𝑂𝐴𝑃𝐶𝐼𝑇

𝑃𝑂𝐴𝐴𝑃𝐴𝐶𝐶𝑂𝐴
 , 

𝐾𝑒𝑞,𝑐𝑖𝑡𝑠
0 = 7.34 ×  10−8 

Parameter Value Units 

Vmf 9.8253  

KmA 4.00×10-6 M 

KmB 9.9×10-6 M 

KiA 60.7×10-6 M 

F, RT  Table 4-2  

   
 

 

Aconitase flux:  

𝐽AC =

𝑉mf𝑉m4 ([A] −
[P]

𝐾𝑒𝑞,𝑎𝑐𝑜𝑛
)

𝐾𝑚𝐴𝑉𝑚𝑟 + 𝑉𝑚𝑟[A] +
𝑉mf

𝐾𝑒𝑞,𝑎𝑐𝑜𝑛
[P]

 , 

where [A] = [CIT]x, and [P] = [ICIT]x, 

and 

𝐾𝑒𝑞,𝑎𝑐𝑜𝑛 = 𝐾𝑒𝑞,𝑎𝑐𝑜𝑛
0

𝑃𝐼𝐶𝐼𝑇

𝑃𝐶𝐼𝑇
 , 

𝐾𝑒𝑞,𝑎𝑐𝑜𝑛
0 = 7.59 × 10−2 . 

Parameter Value Units 

Vmf 0.02766  

Vmr 0.02766  
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F, RT  Table 4-2  

KmA 1.1 ×10-4 M 

   
 

 

Isocitrate dehydrogenase flux:  

 

𝐽isod =

𝑉mf (1 −
1

𝐾𝑒𝑞,𝑖𝑠𝑜𝑑

[P][Q][R]
[A][B]

)

1 +
𝐾𝑚𝐵

[B]
𝐾𝑚𝐴

[A]
((1 +

𝐾𝑖𝐵

[B]
)
𝑁𝐴 [Q]

𝐾𝑖𝑞
)

 , 

where [A] = [NAD]x, [B] = [ICIT]x,  [P] = [AKG]x, [Q] = [NADH]x, and [R] = [CO2]x, 

and 

𝐾𝑒𝑞,𝑖𝑠𝑜𝑑 = 𝐾𝑒𝑞,𝑖𝑠𝑜𝑑
0 1

[H+]𝑥

𝑃𝐴𝐾𝐺𝑃𝑁𝐴𝐷𝐻𝑃𝐶𝑂2

𝑃𝑁𝐴𝐷𝑃𝐶𝐼𝑇
 , 

𝐾𝑒𝑞,𝑖𝑠𝑜𝑑
0 = 3.50 × 10−16 . 

Parameter Value Units 

Vmf 0.49204  

KmA 7.40×10-7  

KmB 1.83×10-8  

Kiq 2.90×10-7  

F, RT & Ψ Table 4-2  

KiB 7.66×10-6 M 

NA 3.0  
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α-ketoglutarate dehydrogenase flux:  

 

𝐽akg =

𝑉mf (1 −
1

𝐾𝑒𝑞,𝑎𝑘𝑔

[P][Q][R]
[A][B][C]

)

1 +
𝐾𝑚𝐴

[A]
𝐾𝑚𝐵

[B]
(1 +

[Q]
𝐾𝑖𝑞

) +
𝐾𝑚𝑐

[C]
(1 +

[R]
𝐾𝑖𝑟

)
 , 

where [A] = [AKG], [B] = [COASH]x, [C] = [NAD]x,   [P] = [CO2]x, [Q] = [SCOA]x, and 

[R] = [NADH]x, 

and 

𝐾𝑒𝑞,𝐴𝐾𝐺 = 𝐾𝑒𝑞,𝐴𝐾𝐺
0

1

[H+]𝑥    

𝑃𝐶𝑂2
𝑃𝑆𝐶𝑂𝐴𝑃𝑁𝐴𝐷𝐻

𝑃𝐴𝐾𝐺𝑃𝐶𝑂𝐴𝑆𝐻𝑃𝑁𝐴𝐷
 , 

𝐾𝑒𝑞,𝐴𝐾𝐺
0 = 6.93 × 10−3. 

Parameter Value Units 

Vmf 0.0876  

KmA 8.00×10-7  

KmB 5.50×10-7  

Kmc 2.10×10-7  

Kir 4.50×10-6  

Kiq 6.90×10-6  

F, RT  Table 4-2  
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Succinyl-CoA synthase flux:  

𝐽SC

=
𝑉mf𝑉mr ([A][B][C] −

[P][Q][R]
[A][B][C]

)

𝑉mr𝐾ia𝐾ib𝐾mc + 𝑉mr𝐾ib𝐾mc[𝐴] + 𝑉mr𝐾ia𝐾mb[𝐶] + 𝑉mr𝐾mc[𝐴][𝐵] + 𝑉mr𝐾mB[𝐴][𝐶]

+𝑉mr[𝐴][𝐵][𝐶] +
𝑉mf𝐾𝑖𝑟𝐾mq[𝑃]

𝐾𝑒𝑞,𝑠𝑢
+

𝑉mf𝐾𝑖𝑞𝐾mP[𝑅]

𝐾𝑒𝑞,𝑠𝑢
+

𝑉mf𝐾𝑚𝑅[𝑃][𝑄]
𝐾𝑒𝑞,𝑠𝑢

+
𝑉mf𝐾mq[𝑃][𝑅]

𝐾𝑒𝑞,𝑠𝑢

𝑉mf𝐾𝑚𝑝[𝑃][𝑄]

𝐾𝑒𝑞,𝑠𝑢
+

𝑉mf[𝑃][𝑄][𝑅]
𝐾𝑒𝑞,𝑠𝑢

+
𝑉mf𝐾𝑚𝑞𝐾𝑖𝑟[𝑃][𝐴]

𝐾𝑒𝑞,𝑠𝑢
+

𝑉mf𝐾𝑖𝑎𝐾𝑚𝐵[𝐶][𝑅]
𝐾𝑒𝑞,𝑠𝑢

𝑉mf𝐾𝑚𝑄𝐾𝑖𝑟[𝐴][𝐵][𝑃]

𝐾𝑖𝑎𝐾𝑖𝑏𝐾𝑒𝑞,𝑠𝑢
+

𝑉mf𝐾𝑚𝐴[𝐵][𝐶][𝑅]
𝐾𝑖𝑟

+
𝑉mf𝐾𝑚𝑅[𝐴][𝑃][𝑄]

𝐾𝑖𝑎𝐾𝑒𝑞,𝑠𝑢

+
𝑉mr𝐾𝑚𝐵𝐾𝑖𝑎[𝐶][𝑄][𝑅]

𝐾𝑖𝑞𝐾𝑖𝑟
+

𝑉mf𝐾𝑚𝑄𝐾𝑖𝑟[𝐴][𝐵][𝐶][𝑃]
𝐾𝑖𝑎𝐾𝑖𝑏𝐾𝑖𝑐𝐾𝑒𝑞,𝑠𝑢

+
𝑉mf𝐾𝑖𝑝𝐾𝑚𝑅[𝐴][𝐵][𝐶][𝑄]

𝐾𝑖𝑎𝐾𝑖𝑏𝐾𝑖𝑐𝐾𝑒𝑞,𝑠𝑢

+
𝑉mf𝐾𝑚𝑅[𝐴][𝐵][𝑃][𝑄]

𝐾𝑖𝑎𝐾𝑖𝑏𝐾𝑒𝑞,𝑠𝑢
+

𝑉mr𝐾𝑚𝐴[𝐵][𝐶][𝑄][𝑅]
𝐾𝑖𝑞𝐾𝑖𝑟

+
𝑉mr𝐾𝑚𝐴𝐾𝑖𝑐[𝐵][𝑃][𝑄][𝑅]

𝐾𝑖𝑝𝐾𝑖𝑞𝐾𝑖𝑟

+
𝑉mr𝐾𝑚𝐵𝐾𝑖𝑎[𝐶][𝑃][𝑄][𝑅]

𝐾𝑖𝑝𝐾𝑖𝑞𝐾𝑖𝑟
+

𝑉mf𝐾𝑚𝑅[𝐴][𝐵][𝐶][𝑃][𝑄]
𝐾𝑖𝑎𝐾𝑖𝑏𝐾𝑖𝑐𝐾𝑒𝑞,𝑠𝑢

+
𝑉mf𝐾𝑚𝐴[𝐵][𝐶][𝑃][𝑄][𝑅]

𝐾𝑖𝑝𝐾𝑖𝑞𝐾𝑖𝑐

 , 

where [A] = [GDP]x, [B] = [SCOA]x, [C] = [PI]x,   [P] = [COASH]x, [Q] = [SUC]x, and [R] = 

[GTP]x, 

and 

𝐾𝑒𝑞,𝑆𝑈 = 𝐾𝑒𝑞,𝑖𝑠𝑜𝑑
0 1

H+

𝑃𝐶𝑂𝐴𝑆𝐻𝑃𝑆𝑈𝐶𝑃𝐺𝑇𝑃

𝑃𝐺𝐷𝑃𝑃𝑆𝐶𝑂𝐴𝑃𝑃𝐼
 , 

𝐾𝑒𝑞,𝑖𝑠𝑜𝑑
0 = 9.54 × 10−9 . 

Parameter Value Units 

Vmf 0.0876  

Kma 1.60×10-6 M 

Kmb 5.50×10-6 M 

Kmc 6.60×10-8 M 

Kmp 8.80×10-6 M 

Kmq 1.11×10-7 M 
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Kir 4.50×10-6 M 

Kia 5.50×10-6 M 

Kib 1.00×10-8 M 

Kic 2.000×10-9 M 

Kip 2.00×10-7 M 

Kiq 3.00×10-9 M 

F, RT  Table 4-2  

   
 

 

Succinate  dehydrogenase flux:  

 

𝐽SC =

𝑉mf𝑉mr ([A][B] −
[P][Q]
𝐾𝑒𝑞,𝑆𝐶

)

𝑉mr𝐾𝑖𝑎𝐾𝑖𝐵 + 𝑉mr𝐾𝑚𝐵[A] + 𝑉mr𝐾𝑚𝐴[B]
𝑉mf𝐾𝑚𝐵

𝐾𝑒𝑞,𝑆𝐶
[P]

𝑉mf𝐾𝑚𝑃

𝐾𝑒𝑞,𝑆𝐶

+𝑉mr[A][B] +
𝑉mf𝐾𝑚𝑄

𝐾𝑒𝑞,𝑆𝐶𝐾𝑖𝑎
[A][P] +

𝑉mf𝐾𝑚𝐴

𝐾𝑖𝑞
[B][Q] +

𝑉mf

𝐾𝑒𝑞,𝑆𝐶
[P][Q]

 

where [A] = [SUC]x, [B] = [COQ]x, [P] = [QH2]x,   and [Q] = [FUM]x 

and 

𝐾𝑒𝑞,𝑆𝐶 = 𝐾𝑒𝑞,𝑆𝐶
0

𝑃𝑄𝐻2
𝑃𝐹𝑈𝑀

𝑃𝐶𝑂𝑄𝑃𝑆𝑈𝐶
, 

𝐾𝑒𝑞,𝑆𝐶
0 = 1.69. 

Parameter Value Units 

Vmf 0.08578  

KmA 4.67×10-8 M 
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KmB 4.80×10-8 M 

KmP 2.45×10-6 M 

KmQ 1.20×10-9 M 

Kia 1.20×10-8 M 

Kiq 1.28×10-9 M 

   
 

Fumarase flux:  

𝐽FUM =

𝑉mf𝑉mr ([A] −
[P]

𝐾𝑒𝑞,𝐹𝑈𝑀
)

𝐾𝑚𝐴𝑉𝑚𝑟 + 𝑉mr[A] +
𝑉mf[P]
𝐾𝑒𝑞,𝐹𝑈𝑀

 , 

where [A] = [FUM]x, [and [P] = [MAL]x, 

and 

𝐾𝑒𝑞,𝐹𝑈𝑀 = 𝐾𝑒𝑞,𝑆𝐶
0 𝑃𝑀𝐴𝐿

𝑃𝐹𝑈𝑀
, 

𝐾𝑒𝑞,𝐹𝑈𝑀
0 = 4.04 . 

Parameter Value Units 

Vmf 0.00707  

KmA 4.47×10-7 M 

   
 

Malate  dehydrogenase flux:  
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𝐽MAL =
𝑉mf𝑉mr([A][B]−

[P][Q]

𝐾𝑒𝑞,𝑀𝐴𝐿
)

𝑉mr𝐾𝑖𝑎𝐾𝑖𝐵+𝑉mr𝐾𝑚𝐵[A]+𝑉mr𝐾𝑚𝐴[B]
𝑉mf𝐾𝑚𝐵
𝐾𝑒𝑞,𝑀𝐴𝐿

[P]
𝑉mf𝐾𝑚𝑃[Q]

𝐾𝑒𝑞,𝑀𝐴𝐿

+𝑉mr[A][B]+
𝑉mf𝐾𝑚𝑄

𝐾𝑒𝑞,𝑀𝐴𝐿𝐾𝑖𝑎
[A][P]+

𝑉mf𝐾𝑚𝐴
𝐾𝑖𝑞

[B][Q]+
𝑉mf𝐾𝑚𝐴

𝐾𝑖𝑝
[A][B][P]+

𝑉mf
𝐾𝑖𝑏𝐾𝑒𝑞,𝑀𝐴𝐿

[B][P][Q]

, 

where [A] = [NAD]x, [B] = [MAL]x, [P] = [OAA]x,   and [Q] = [NADH]x, 

𝐾𝑒𝑞,𝑀𝐴𝐿 = 𝐾𝑒𝑞,
0

𝑃𝑂𝐴𝐴𝑃𝑁𝐴𝐷𝐻

𝑃𝑁𝐴𝐷𝑃𝑀𝐴𝐿
, 

𝐾𝑒𝑞,𝑀𝐴𝐿
0 = 2.27 × 10−12.  

Parameter Value Units 

Vmf 0.07706  

KmA 9.06×10-8 M 

KmB 2.50×10-9 M 

KmP 6.13×10-8 M 

KmQ 2.58×10-6 M 

Kia 2.79×10-9 M 

Kib 3.60×10-9 M 

Kip 5.5×10-6 M 

Kiq 3.18×10-6 M 
 

  

Passive permeation fluxes: 
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 Adenine nucleoside permeation: 

𝐽ATPt = 𝛾𝑃𝐴([ATP]𝑐 − [ATP]𝑖) , 

𝐽ADPt = 𝛾𝑃𝐴([ADP]𝑐 − [ADP]𝑖) , 

𝐽AMPt = 𝛾𝑃𝐴([AMP]𝑐 − [AMP]𝑐) . 

Inorganic Phosphate permeation: 

𝐽PIt = 𝛾𝑃𝐴([PI]𝑐 − [𝑃𝐼]𝑖) . 

TCA cycle intermediate permeation:  

𝐽PYRt = 𝛾𝑃𝐴([PYR]𝑐 − [PYR]𝑖) ,    

𝐽CITt = 𝛾𝑃𝐴([CIT]𝑐 − [𝐶𝐼𝑇]𝑖) ,  

𝐽MALt = 𝛾𝑃𝐴([MAL]𝑐 − [MAL]𝑖) , 

𝐽AKGt = 𝛾𝑃𝐴([𝐴𝐾𝐺]𝑐 − [AKG]𝑖) , 

𝐽SUCt = 𝛾𝑃𝐴([SUC]𝑐 − [SUC]𝑖) , 

𝐽FUMt = 𝛾𝑃𝐴([FUM]𝑐 − [FUM]𝑖) , 

𝐽GLUt = 𝛾𝑃𝐴([GLU]𝑐 − [GLU]𝑖) ,  

𝐽ASPt = 𝛾𝑃𝐴([ASP]𝑐 − [ASP]𝑖) . 

 

 Parameter Value Units 

γ Table 4-2  

PA Table 4-2  
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The corresponding ODEs are described in Table 4-4: 

d[ATP]x /dt =  (JNU  + JF1  - JANT )/Wx 

d[ΔΨ] /dt  =  (1.48E+05)( + 4 JC1  + 2 JC3  + 4 JC4  - NA * JF1  - JANT  - J PL  + JAHG )/Cim 

d[ADP]x /dt  = (- JNU  JF1  + JANT )/Wx 

d[Pi]x /dt  =  (- JSU  -JF1  + JH2PI – JMALPI - JSUCPI )/Wx 

d[NADH]x /dt  =   (+ JPDH  + JIC  + JAK  + JMA   - JC1 )/Wx 

d[QH2]x /dt  = (+ JSC  + JC1  - JC3 )/Wx 

d[OAA]x /dt  =   (- JCS  + JMA  + JGO )/Wx 

d[ACCOA]x /dt  =   (- JCS  + J_PDH )/Wx 

d[CIT]x /dt  = (+ JCIT  - JAC  +  JCITMAL  )/Wx 

d[ICIT]x /dt  =  (+ JAC  - JIC )/Wx 

d[AKG]x /dt  =   (+ JIC  - JAK  - JGO )/Wx 

d[SCOA]x /dt  =  (+ JAK  - JSU )/Wx 

d[COASH]x /dt  = (- JPDH  - JAK  + JSU + JCS )/Wx 

d[SUC]x /dt  =   (+ JSU  - JSC  + JSUCMAL )/Wx 

d[FUM]x /dt  =   (+ JSC  - JFU )/Wx 

d[MAL]x /dt  =   (+ JFU  - JMA + JMALPI – JAKGMAL – JCITMAL - JSUCMAL )/Wx 

d[GLU]x /dt  =   (+ JGO  + JAHG )/Wx 

d[ASP]x /dt  =  (- JGO  + JAHG )/Wx 

d[Cred]i /dt  =  (- JGO + JAHG )/Wx 

d[ASP]x /dt  =  ( +2 JC3 - 2 JC4 )/Wi 

d[ATP]i /dt  =   (JATP +  JANT + JAKFi )/Wi 

d[ADP]i /dt  =   (JADP - JANT –J_ 2 JAKFi )/Wi 

d[AMP]i /dt  =   (JPERM  + JAKFi )/Wi 

d[Pi]i /dt  =  (- JH2PI + JPIH + JMALPI )/Wi 

d[ATP]c /dt  =   (-Rmcyto (JATPt  + JCK + JAK  - JPGK + JPK  - JAK  - J_PFK ))/Wc 

d[ADP]c /dt  =   (-JADPt - JANT  - 2 JAKFi )/Wi 

d[Pi] c/dt  =   (-Rm_cyto ( -JPIt  ))/Wc 

d[PYR]x /dt  =   (- JPDH )/Wx 

d[PYR]i /dt  =  (- JPDH )/Wx 

d[PYR]c /dt  =   (- Rmcyto  (JPYRt  ))/Wc 

d[CIT] i/dt  =   (- JCITt )/Wi 

d[CIT]c /dt  =   (- Rmcyto (JCITt )/Wc 

d[AKG]i /dt  =  (- JAKGMAL + JAKGt  )/Wi 

d[AKG]c /dt  =   (- Rmcyto (JAKGt ))/Wc 
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d[SUC]i /dt  =   (+ JSUCt  - JSUCMAL )/Wi 

d[SUC]c /dt  =   (- Rmcyto (JSUCt )/Wc 

d[MAL]i /dt  =   (- JMALPI  + JMALt   + JAKGMAL  + JCITMAL   + JSUCMAL  )/Wi 

d[MAL]i /dt  =   (- Rmcyto (JMALt ))/Wc 

d[ASP]i /dt  =  (- JASPGLU  + JASPt )/Wi 

d[ASP]c /dt  =   (- Rmcyto (JASPt ))/Wc 

d[GLU]i /dt  =   (- JGLUH  + JASPGLU  + JGLUt )/Wi 

d[GLU]c /dt  =   (- Rmcyto (JGLUt ))/Wc 

d[FUM]i /dt  =   ( JFUMt )/Wi 

d[FUM]c /dt  =   (- Rmcyto (JFUMt ))/Wc 

d[ICIT]i /dt  =   ( JICITMAL + JICTt )/Wi 

d[ICIT]c /dt  =   (- Rmcyto (JICTt ))/Wc 

d[PCr]c /dt  =   (- JCK )/Wc 

d[AMP]c /dt  =   (- Rmcyto (JAMPt   + JAK ))/Wc 

d[Cr]c /dt  =   (+ J_CK )/Wc 

  

Table 4-4: Mitochondrial respiration model ODEs.  

While the model is constructed using kinetic terms and parameters exclusively from 

Vinnakota et al. 96, this model differs from the original through the coupling with in 

vitro extracellular flux analysis, whereby oxygen consumption rate (OCR) outputs are 

a function of the transient microchamber volumes. This adaptation allows for 

simulation of EFA outputs relative to an extracellular environment, which is not 

achieved in the Wu et al. model 96. The simulation of OCR including the transient 

microchamber volume is described in 4.2.4. 

4.2.3 Preliminary Simulations  

Time-course simulations were generated variable-order stiff solver ode15s in Matlab, 

with initial conditions as denoted in Table 4-1. For time course simulations, steady 

state solutions are assumed to have been reached when changes in all variable 

concentrations do not exceed the size of the absolute integration tolerance (10-10) for 

a time interval of 2000 seconds. This definition of a steady state is used because of 

the intractability of an analytical solution for such a large-scale dynamic system. The 
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initial preliminary simulations were conducted over a 5000 second time period. The 

primary aim of the initial simulations was to establish whether or not the model could 

recapitulate the well-defined physiologically reported levels previously achieved in 

the literature. Figure 4-2, Figure 4-3 and Figure 4-4 show the time-course simulations 

for all model variables (matrix (_x), intermembrane space (_i) and cytoplasm (_c) 

respectively), with Figure 4-5 and Figure 4-6 illustrating model reaction and 

transporter flux terms varying over time.  
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4.2.3.1 Variable & Reaction Flux Steady States 

 

Figure 4-2: Mitochondrial respiration model matrix variable time course simulation. All concentrations are expressed in [M] and time [s]. 
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Figure 4-3: Mitochondrial respiration model intermembrane space variable time course simulation. 
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Figure 4-4: Mitochondrial respiration model cytoplasm and membrane potential (ΔΨm) time course profile.  
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Figure 4-5: Mitochondrial respiration model ETC TCA reaction flux time course profiles.   
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Figure 4-6: Mitochondrial respiration transporter and permeation reaction flux time course plots.  
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In order to establish how close to the literature values our simulated outputs are, our 

simulated steady state concentrations were subtracted from literature values and the 

differences are shown in Table 4-5. 

Variable Difference 
Relative % 

Difference 
Units 

IM Space Species (i)   

 

[Cred]i       4.20×10-6 1.2 M 

[ATP]i        1.65×10-10 0 M 

[ADP]i        -6.00×10-9 0.05 M 

[AMP]i        3.20×10-10 0.08 M 

[PI]i         -3.00×10-7 0.13 M 

[H+]i          0 0 M 

[Mg]i         -3.00×10-6 0.3 M 

[K]i          0 0 M 

[PYR]i        3.00×10-8 0.04 M 

[CIT]i        -2.00×10-7 0.12 M 

[AKG]i        7.00×10-11 0.07 M 

[SUC]i        1.90×10-7 0.53 M 

[MAL]i       1.44×10-5 11.34 M 

[ASP]i        -4.00×10-8 0.34 M 

[GLU]i        3.00×10-8 0.04 M 

[FUM]i        0 0 M 

[ICIT]i       0 0 M 

[PO2]          0 0 M 

[ΔΨm]         1.00×10-1 0.06 M 

  
 

 

 Matrix Variables (x) 

 
 

  

[H+]x        (pH)   -0.1781546 2.46 M 

[ATP]x       3.00×10-6 0.11 M 
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[ADP]x        -3.00×10-6  M 

[AMP]x        0 0.10 M 

[GTP]x        -4.00 ×10-6 0 M 

[GDP]x       4.00×10-6 400 M 

[PI]x         2.00×10-7 0.28 M 

[NADH]x       4.00×10-6 0.01 M 

[QH2]x        1.00×10-6 1.02 M 

[OAA]x        -1.00×10-14 0.19 M 

[ACCOA]x      2.00×10-6 0.02 M 

[CIT]x        -3.814×10-3 0.07 M 

[ICIT]x       -5.30×10-6 904.99 M 

[AKG]x        0 45.69 M 

[SCOA]x       8.00×10-8 0 M 

[COASH]x      -5.374×10-5 36.7 M 

[SUC]x        2.9×10-7 567.05 M 

[FUM]x        2.00×10-7 0.46 M 

[MAL]x        7.00×10-7 0.27 M 

[GLU]x        -2.00×10-7 0.30 M 

[ASP]x        0 0.01 M 

[K]x          -2.00×10-5 0.02 M 

[Mg]x         2.00×10-7 0.02 M 

[CO2tot]x     -0.1926 11.54 M 

[PYR]x        5.00×10-8 0.05 M 

 
 

  

 Cytoplasmic Species (c) 
 

 
 

  

[PYR]c        0 0 M 

[CIT]c       -2.00×10-7 0.12 M 

[AKG]c        7.00×10-11 0.07 M 

[SUC]c        1.90 ×10-7 0.74 M 
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[MAL]c        7.00×10-7 0.55 M 

[ASP]c        -4.00×10-7 3.36 M 

[GLU]c        3.00×10-8 0.04 M 

[FUM]c        0 0 M 

[ICIT]c       0 0 M 

[PCr]c        4.00×10-5 0.15 M 

[AMP]c        3.00×10-10 0.07 M 

[Cr]c         1.00×10-7 0 M 

[ATP]c        2.00×10-5 0.18 M 

[ADP]c       4.00×10-8 0.05 M 

[PI]c         2.00×10-7 0.09 M 

[H+]c          -3.00×10-11 0.04 M 

[Mg]c         -3.00×10-7 0.03 M 

[K]c          0 0 M 
 

Table 4-5: Molarity differences between simulated variable concentrations and literature 

values from 96. 

Table 4-5 shows that most of the model variables are within 10-5 of literature values. 

For variables such as ΔΨm, the difference is relative to the size of the variable, 10-1 

difference for a value around 177 mV is accurate. The most deviant variable is [CIT]x, 

which is 10-3 M different to the literature value. This may be to use of different 

parameter values for citrate synthase. 96 present multiple sources from which they 

obtain their parameter values. For citrate synthase, they use values from 99, however, 

the values used in this model are taken indirectly from 100. This may explain why we 

obtain a slightly different steady state value for [CIT]x. Recapitulating the basal model 

output is the first step in model validation. The next step is to be able to replicate 

situations presented in the literature of system perturbations.  

4.2.3.2 Model Validation  

The ability of the model to simulate experimental literature data, the model was used 

to recreate changes in membrane potential ΔΨm, matrix ATP, oxygen consumption 
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rate (OCR) and changes in pH as a function of cytoplasmic inorganic phosphate 

concentration whilst placing the model in “state 2”, where cytoplasm ADP 

concentration is set to zero. This provides a true test of the models ability to handle 

several perturbations while simulating bioenergetic relevant outputs. Experimental 

data was taken from 93, with the original experiments performed by 101.   For these 

simulations, OCR is modelled as a function of ETC complex 4 flux. Thus, the model 

was used to simulate experimental outputs from the literature, in particular, testing 

its ability to reproduce outputs under stress conditions relevant to mitochondrial 

specific bioenergetic outputs Figure 4-7.  

These comparisons between model simulations and experimental data demonstrate 

that the model is effective at replicating changes in in ΔΨm, pH and OCR. Deviations 

from the experimental data were observed when model simulations of matrix ATP 

concentration, expressed as a fraction of total ATP and ADP content, were 

performed. This is most likely a function of how we simulated “state 2” compared 

with the literature values. However, these deviations were deemed to fall within an 

acceptable range, displaying the key qualitative features of the literature data.   

Combining the validation steps in Table 4-5 and Figure 4-7 provides confidence of our 

model construction and bioenergetic output.
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Figure 4-7:  Model simulations of ΔΨm, matrix pH, oxygen consumption rate (OCR) and matrix ATP as a function of cytoplasmic inorganic phosphate concentrations 

during state 2 metabolism. Experimental data (triangles) was taken from 93.  
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4.2.4 Modelling EFA OCR 

In our framework, oxygen consumption rate is modelled as a function of cytoplasmic 

inorganic phosphate using the flux of ETC complex IV (JC4). The primary role of oxygen 

within the mitochondria is to accept two electrons from the transport chain per single 

oxygen atom in a net 4 electron reduction of molecular oxygen to form water at 

complex IV. This process is well studied; the x-ray structure of the oxygen reduction 

site on complex IV reveals covalent links between histidine residues and a tyrosine 

residue to ensure retention 102. Alongside this, there are other fates of oxygen in 

relation to the activity of the electron chain, including the formation of ROS, detailed 

later. In vitro, the measurement of OCR can be deemed a direct measurement of 

mitochondrial respiration when measured in in-tact or permeabilised cells or tissue, 

which can be achieved using an EFA with an XFe Seahorse analyser. In silico, 

simulating OCR is straight forward, as the exact reaction flux of OCR at only complex 

IV can be tracked quantitatively. One important thing to note is that with respect to 

EFA, our model does not consider non-mitochondrial respiration (NMr), which 

describes all other cellular consumptions of oxygen, usually in the form of oxidative 

enzymes. As such, when simulating OCR in our model, NMR may be addressed by 

simply adding a basal rate which can be derived experimentally. Furthermore, the 

experimental measurement of OCR cannot capture OCR due to complex IV flux 

directly. Instead, consumption of oxygen from the extracellular media environment 

is approximated from the 2 µL transient microchamber directly above the cells. This 

feature, particularly the microchamber volume, must be taken into account when 

attempting to replicate experimental EFA outputs in silico. Finally, our in silico model 

output is M s-1 and therefore must be converted into the EFA format of pmol min-1 

(or vice versa) for comparison. Figure 4-8 shows a representative model OCR output 

for a 10 minute simulation. As stated above, OCR was simulated using the complex 

IV flux (JC4), coupled with NMr (to implicitly account for non-mitochondrial 

respiration) with the transient microchamber volume (tmcV), to allow comparison 

with in vitro, as outlined in Equation (4-1). 
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 𝑂𝐶𝑅 = 𝐽𝐶4 + 𝑁𝑀𝑟 × 𝑡𝑚𝑐𝑉 , 

where 

NMr = 8.6 ×10-14 M s-1 , and tmcV = 2.0 ×10-6 L 

(4-1) 

 

Figure 4-8: Simulation of basal model OCR. OCR was simulated as the electron 

transport chain complex IV flux combined with a non-mitochondrial respiration. 

Note, while the model output is M s-1, the figure shows OCR converted in M min-1.  

 

NMr for the model simulation was taken from EFA data generated in chapter 2 (Page 

132) during glucose experiments, tmcV is taken from the Agilent EFA analyser website 

103.  

4.3 Simulating Mitochondrial Respiration Stress 

4.3.1 Primary Human Hepatocyte in vitro Mitochondrial Stress Test 

The final stage of validation is to test the models ability to recapitulate in vitro EFA 

OCR, we compare the model output to experimental data.  In order to test the utility 

of this model in the investigation and prediction of DILI the ideal experimental data 

would be taken from human liver. While there exits much data in the literature for 
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numerous different carcinoma cell types this lacks physiological relevance due to the 

tumourogenic origin and thus altered bioenergetic phenotype 67. Such a validation 

was possible using EFA data collected from freshly isolated primary hepatocytes (24 

donors), available by collaboration with the Chadwick group based MRC Centre for 

Drug Safety Science at the University of Liverpool (unpublished). These samples were 

prepared from healthy tissue during liver resection and represents a rare opportunity 

as this data is not available in the literature. The dataset contains the parameters of 

the response of each donor sample when subject to a mito-stress test using EFA 

(Figure 4-9). 

4.3.1.1 Mitochondrial Respiration Stress Test 

 

Figure 4-9: Schematic of mitochondrial respiration stress test. Sequential exposure to 

mitochondrial toxicants oligomycin, FCCP, Antimycin A & Rotenone yield a profile that 

allows basal respiration, ATP production, proton leak, maximal respiration, spare capacity 

and non-mitochondrial respiration to be discerned. Figure was taken from Agilent 

Technologies 104. 

Oligomycin is a potent H+-ATPsynthase (complex V) inhibitor and is amongst the top 

0.1% cancer cell selective cytotoxic agents against 60 human cancer cell lines. Its 

selectivity arises from its mode of action; binding to a 23kd polypeptide (OSCP) 

located in the F0 baseplate blocking ATP synthesis 105. Exposure of cells to oligomycin 

inhibits mitochondrial ATP synthesis, yielding the level of ATP produced in the 
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mitochondria. FCCP (carbonilcyanide p- triflouromethoxyphenylhydrazone) is a 

chemiosmotic uncoupler, which functions to separate ATP production from the 

thermodynamic driven membrane proton gradient, effectively depolarizing the 

mitochondrial membrane potential (ΔΨm) 106. FCCP in this instance is used to reveal 

the maximal respiration via the removal of the proton motive force 107. Antimycin A 

(AMA) is a complex III inhibitor produced by Streptomyces kitazawensis which blocks 

electron transport between cytochromes b and c 108, and inhibiting succinate and 

NADH oxidase 108. Finally, rotenone is a well-known mitochondrial complex I 

inhibitor, but its exact mechanism of action remains ambiguous 109. Rotenone has 

however been proven to induce apoptosis via elevated ROS levels 24. Combined 

exposure to AMA and rotenone inhibits the final two ETC complexes (I & III) complete 

ETC inhibition, allowing non-mitochondrial respiration levels to be determined. 

4.3.1.2 Primary Human Hepatocyte Mitochondrial Stress Test Data  

The raw experimental data for each donor is illustrated as OCR in M s-1 against time, 

devoid of protein content normalization (Figure 4-10).
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Figure 4-10: Human primary hepatocyte mitochondrial respiration stress test OCR data, provided by the Chadwick Lab University of Liverpool. The bold number 

titles for each plot is the patients ID’s in this study.  
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The parameters of interest from a mito-stress test arise from the changes in OCR after 

exposure to a mitochondrial toxicant, with each transition separated by 3 EFA 

measurements between injections of mitotoxicants. In addition, the unique basal 

OCR of each patient is an important parameter. Although, in order to compare 

between each patient, the basal OCR reading should be normalized to protein 

content in these calculations each transition was converted to a percentage change 

as a normalization method to be used for mathematical linkage. In order to achieve 

this, each of the three measurements for each stage can be converted into a single 

value by taking the mean, followed by calculating the percentage change between 

each compound injection. This yields a plot possessing three points: A, percentage 

decrease from basal OCR after exposure to oligomycin; B, percentage increase after 

exposure to FCCP and C, percentage decrease after exposure to AMA and rotenone 

(Figure 4-11). Visualization of the data in this way facilitates immediate comparison 

between each patient in the cohort without protein normalization, as well as 

reducing the number difficulty of model simulation of the data.  
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Figure 4-11: Three point reduced representation of in vitro mitochondrial stress test data. 

Relative percentage changes in OCR for each patient after exposure to oligomycin, FCCP, 

AMA and rotenone are shown in black dashes. Solid red line shows cohort average 

accompanied with the standard deviation.  

Figure 4-11 shows the percentage changes in OCR for the all patients as a function of 

mitochondrial respiration poisoning. Furthermore, this representation simplifies 

differences in basal OCR between patients, thereby, allowing a simple comparison 

between all patients in the cohort.  

4.3.2 In silico Mitochondrial Stress Test Simulations 

The simulation of the mito-stress test begins with accounting for the mechanisms of 

action and pharmacological changes of the mitotoxicants oligomycin, FCCP, AMA and 

rotenone. Simulating exposure to oligomycin, AMA and rotenone can be achieved by 

inhibiting fluxes through complex V (F0F1-ATPsynthase), III and I respectively, which 

may be accomplished by reducing the total flux through each enzyme pathway, 

namely, reducing parameters XF0-F1, XC3 and XC1 respectively to the JF0-F1, JC3 and JC1 
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flux terms. Simulating FCCP requires decoupling of the ETC from the proton motive 

force, thereby permeabilising the membrane. In our model, this can be achieved by 

reducing the pH gradient between the mitochondrial matrix and mitochondrial 

intermembrane space membranes and reducing the membrane potential itself 

(ΔΨm). Modelling mitochondrial respiration in the first instance with such 

mechanistic detail allows a better representation of the pharmacological modes of 

action of the compounds of interest.  

4.3.2.1 Preliminary Simulation of Mitochondrial Respiration Stress Test  

Figure 4-12 shows the effect of complete inhibition of mitochondrial complexes V, I 

and III as well as reduction of ΔΨm and decoupling OXPHOS from the proton gradient 

(achieved by setting XF0-F1 = XC3 = XC1 = 0, fixing term of each mitochondrial complex 

by 100%, setting the matrix pH equal to the IM pH and reducing the ΔΨm by 20%).  
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Figure 4-12: Preliminary simulation of mitochondrial respiration stress test. Figure is 

annotated to illustrate injections of compounds oligomycin, FCCP, AMA and Rotenone.   

Perturbing the model according to the pharmacological mechanisms of action of the 

stress compounds allows simulation of a basic OCR stress test profile. Inhibiting 

complex I produces a drop in simulated OCR comparable to EFA data. Uncoupling the 

ETC from the membrane potential allows the model to simulate maximal respiration, 

illustrated by the large increase in OCR after simulated FCCP “exposure”. Finally, 

complete inhibition of the ETC by inhibiting complex I and III, reduces respiration to 

the non-mitochondrial level. The extreme nature of the preliminary simulation can 

be compared to the average three-point representation of the percentage changes 

from the human test data (Figure 4-11). Figure 4-13 shows the comparison.  
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Figure 4-13: Three point reduced representation of simulated mitochondrial respiration 

stress test compared to average human primary hepatocyte data. Black line represents 

simulation and red line accompanied with standard deviation data represents in vitro data.  

Initial quantitative insights into in silico - in vitro comparisons can be made from 

Figure 4-13. With the flux terms and model perturbations used to generate the OCR 

output, the initial in silico percentage decrease in OCR is -82.24 % compared to the in 

vitro -44.74% [± 8.77 %] for exposure to oligomycin. The model simulated a 91.87% 

increase in OCR compared to the in vitro 62.17% [± 25.35 %] change for FCCP 

injection. Finally, the model yielded a -92.12% decrease in OCR compared to the -

73.63% [± 12.83 %] average decrease from the primary data. On all three points the 

model percentage change is outside of the error bounds of the in vitro data, although 

only moderately for the FCCP and AMA/Rotenone. This would suggest that inhibition 

of complex V by oligomycin in the in vitro experiments is less than a 100% inhibition, 
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with a similar assessment made for inhibition of complex I and III. Our estimated 

changes in ΔΨm is also too high according to Figure 4-13.  

4.3.2.2 Parameter Perturbation Sweep 

Observing the changes in OCR as a function of the degree of perturbations of complex 

V, ΔΨm and complexes I and III allows the sensitivity of the terms on OCR to be 

identified. These can then be used to simulate all patient data as well as the average 

data.  

Changes in mitochondrial complex V flux as a function of percentage reductions 

between 0 and 100% were investigated, with the percentage change in OCR 

illustrated in Figure 4-14.  Effects of changes in ΔΨm flux as a function of percentage 

reductions between 10 and 20% are illustrated in Figure 4-15. Simultaneous changes 

in complex I and III flux as a function of percentage reductions between 0 and 100% 

are illustrated in Figure 4-16.  

 

B 

A 
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Figure 4-14: Percentage changes in OCR as a function of Complex V activity. OCR 

output is particularly sensitive to complex V activity, with changes between 0 and 

1 ×10-7 % in transporter activity covering 0 to 100% activity change causing the 

majority of OCR variance. A shows the initial sweep from 0 to 100% activity, 

illustrating the need for a sweep at a much lower percentage activity, which is 

shown in B.  

 

Figure 4-15: Percentage changes in OCR as a function of % ΔΨm reduction. 80 to 90 % 

reduction is necessary to reduce OCR from 0 to 100% of its original value.  
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Figure 4-16: Percentage changes in OCR as a function of % complex I and III activity. 

Noticeable OCR effects can be observed when complex I and III are at 30% of original 

activity or less.  

Figure 4-14 suggests that ATPsynthase complex V activity must be inhibited almost 

completely in order to observe noticeable reductions in OCR. This also suggests that 

in the model OCR is extremely resilient to changes in complex V activity. This finding 

is supported qualitatively as OCR arises from complex IV output, whereas complex V 

activity occurs after this in the electron transfer chain. Using this knowledge, it can 

be postulated that in the in vitro experiments oligomycin must cause near total 

inhibition of ATPsynthase activity and thus interpatient variation observed must arise 

from inter-patient differences rather than differences in inhibition. The effects of 

changes in ΔΨm as a function of exposure to FCCP was simulated in Figure 4-15, 

highlighting the fact that most of the % changes in OCR occur when the membrane 

potential is reduced by at least 80%. Again, this suggests model OCR output is resilient 

to small changes in ΔΨm, with a 5% window where OCR is sensitive (80-85%).  

Finally, simultaneous inhibition of complex I and III activity as a function of exposure 

to rotenone and antimycin A illustrates that a minimum of 70% reduction in activity 

of both complexes is required to significantly perturb model OCR output (Figure 

4-16). Overall, such drastic inhibition of complex I, III, V and reduction of ΔΨm 

required to perturb model % OCR output highlights the efficacy of the mitochondrial 

poisons oligomycin, FCCP, rotenone and AMA in inhibiting ETC target. Credence can 

be lent to this by simulating each individual patient data, obtaining complex inhibition 

parameters from the sweeps described in these figures. The percentage changes for 

the three-point reduced representation for each patient accompanied by the 

necessary parameter changes in the model required to simulate their parameter 

changes is shown in Table 4-6. The three columns A, B and C represent A; the 

percentage decrease from basal average OCR to post oligomycin injection, B; 

percentage average increase in OCR as a function of FCCP exposure and C; percentage 

OCR decrease as a result of exposure to rotenone and AMA respectively. For the 
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model parameter changes, A2, B2 and C2 are the values that the original model 

parameters XF0-F1 (A2), XC3 (B2) and XC1 (C2), must be multiplied by in order to elicit 

these corresponding percentage OCR changes. 

A % A2  B % B2  C % C2 

-

38.5754 9.52×10-9 76.4952 0.8611 

-

78.9068 0.0433 

-

54.0695 3.66×10-9 68.6121 0.8700 

-

76.1102 0.0520 

-

44.6846 6.71×10-9 71.8525 0.8670 

-

78.0131 0.0400 

-

47.6643 5.62×10-9 71.1703 0.8675 

-

75.9336 0.0450 

-

52.6002 4.10×10-9 68.4237 0.8700 

-

76.7239 0.0450 

-

49.6912 4.94×10-9 64.2479 0.8770 

-

72.4202 0.0680 

-

49.8789 4.90×10-9 68.4757 0.8700 

-

76.5267 0.0500 

-

42.8916 7.47×10-9 60.2990 0.8860 

-

72.8928 0.0700 

-

39.6959 9.00×10-9 54.5831 0.8950 

-

69.9251 0.0800 

-

31.2806 1.40×10-8 53.7367 0.9030 

-

73.5635 0.0650 

-

47.9389 5.50×10-9 69.0614 0.8700 

-

76.6628 0.0490 

-

46.4383 6.02×10-9 69.4513 0.8710 

-

75.8642 0.0530 

-

44.6232 6.75×10-9 64.6309 0.8800 

-

74.0634 0.0630 

-

44.8862 6.63×10-9 81.0987 0.8450 

-

82.7137 0.0290 
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-

43.9016 7.03×10-9 62.6113 0.8820 

-

70.4895 0.0850 

-

37.2431 1.00×10-8 66.2827 0.8820 

-

77.0502 0.0550 

-

60.6792 2.25×10-9 73.6373 0.8580 

-

82.1688 0.0280 

-

47.4495 5.66×10-9 71.8039 0.8675 

-

82.9343 0.0270 

-

40.8283 8.39×10-9 61.7283 0.8864 

-

75.7229 0.0550 

-

46.0041 6.19×10-9 63.7740 0.8800 

-

73.1003 0.0700 

-

48.5816 5.30×10-9 65.9644 0.8750 

-

74.7130 0.0620 

-

41.5176 8.07×10-9 70.2570 0.8720 

-

79.3525 0.0430 

-

52.0076 4.26×10-9 70.4705 0.8660 

-

77.3149 0.0470 

-

51.0439 4.54×10-9 61.4945 0.8800 

-

73.4040 0.0620 
 

Table 4-6: Table of patient average percentage OCR changes accompanied by the 

corresponding model parameter changes required to simulate each patient.  Parameter 

changes are shown in grey columns while patient percentages are shown in white, each 

linked by letter.  
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Figure 4-17: Model simulations of individual human primary hepatocyte data using a three-point reduced representation and parameters from Table 4-6.  
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Figure 4-17 demonstrates that the model is able to simulate each of the 24 patient % 

OCR data using the parameter changes as indicated in Table 4-6. We can now 

investigate if we can use the model to investigate the clinical importance of specific 

variables or parameters. 

Mitochondrial bioenergetic functionality hinges on several important factors: 

integrity of the electron transport chain, integrity of proton motive force in the form 

of a membrane potential and bioenergetic metabolic precursors such as pyruvate and 

NADH.  

4.4 Statistical Analysis 

Accurately simulating the mitochondrial in vitro stress test data as a three-point 

reduced representation of percentage OCR changes, provides a platform from which 

statistical analysis may be performed. Such analysis allows investigation into the 

predictive power of the in vitro and in silico platforms, with regards to 

pharmacological outputs. The testable hypothesis is that patients with higher levels 

of reserve glycolytic capacity are better able to mitigate drug induced mitochondrial 

dysfunction. This is based fundamentally on the premise that glycolytic flux can 

compensate for a reduced mitochondrial ATP output to a certain extent. The 

following section describes the implementation of principal component analysis 

(PCA) and multinomial logistic regression as a statistical method of testing this 

hypothesis, with the aim of discerning whether the in silico model is better able to 

describe glycolytic reserve capacity values for each patient, compared to the raw 

experimental data.  

4.4.1 Patient Glycolytic Reserve Capacity  

The in vitro dataset obtained from the Chadwick group includes ECAR profiles for the 

mitochondrial stress test, as well as the ECAR glycolytic stress test. From this data, 

the reserve glycolytic capacity for each patient may be deduced. It is important to 

note that reserve capacity in this instance will be expressed as a proton production 

rate, rather than ECAR, by applying the same calculations with respect to extracellular 
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media buffering capacity, and accounting for respiratory contributions to 

extracellular acidification as described in section 3.3.3.  

Glycolytic reserve capacity is used to describe the maximal glycolytic capacity after 

mitochondrial ATP synthesis is inhibited using the drug oligomycin. The glycolytic 

reserve capacity for each patient after conversion into PPRgly, is presented in Table 

4-7. Given the small data set, we base our analysis on attempting to predict the 

glycolytic reserve capacity within ranges (0 →15000, 15000 →29000 and > 29000 

[pmol H+ min-1], which is low, moderate or high). The ranges were decided by plotting 

a histogram of the reserve capacities shown in Figure 4-18. Using a larger number of 

bins did not improve on representation of the patient reserve capacity data, nor the 

results of the statistical analysis. Our key aim is to determine whether the raw data 

or the in silico model is the better predictor of whether an individual’s glycolytic 

reserve capacity falls into one of these specified ranges.  

 

Figure 4-18: Reserve glycolytic capacity histogram for the 24 in vitro patients.   
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170 3616.8 1  214 17974 2 

165 6980.4 1  150 19010 2 

167 11602 1  139 19051 2 

81 13011 1  83 19404 2 

196 13493 1  193 20259 2 

160 14661 1  154 20458 2 

191 14827 1  112 21353 2 

84 15070 2  77 29421 3 

93 15757 2  91 34783 3 

95 16693 2  147 35778 3 

197 17449 2  142 36547 3 

195 17848 2  174 37507 3 
 

Table 4-7: Table of patient reserve glycolytic capacities, after deduction of respiratory 

contributions to extracellular acidification. Each patient is allocated a bin, according 

whether their glycolytic reserve capacity falls within the ranges 0 →15000, 15000 

→29000 and > 29000 [pmol H+ min-1], identified as bins 1,2,3 respectively.  

The data was used to see if reserve capacity could be separated (low, moderate, high) 

for each patient dependent on the experimental OCR changes.  Since there are three 

predictor variables (columns A, B and C in table 4-6), a principal component analysis 

(PCA) was constructed in an attempt to visualize relationships in the data in 2 

dimensions.  Principal components were calculated using the covariance matrix.   As 

a result, principal components 1 and 2 represents 96 – 98% of the total variance of 

the data, therefore we can have confidence that most of the information will be 

retained within the two dimensions. However, projecting the data onto these 

principal components (as seen in Figure 4-19), does not allow the (low, moderate, 

high) reserve capacity individuals to be clearly distinguished, nor does projecting the 

data on principal components calculated using the model parameter changes 

(columns A2, B2, C2 in table 4-6), instead of % OCR changes as predictor variables 

(wherein, 99.8% of total variance is represented in the first two principal 

components).
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Figure 4-19: 2 dimensional PCA visualization of glycolytic reserve capacity in low (green), medium (light blue) and high (dark blue) individuals, with 

respect to % OCR changes (A) and corresponding model parameter (B) changes as given in Table 4-6, columns A,B,C and A2,B2,C2 respectively.  

 

  

A B 
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Our aim here was to test if using the model parameter changes, which are based on 

the mechanistic features within the model rather than observed % experimental 

changes, would enhance visualization, in that low, medium and high reserve 

glycolytic capacities individuals could be separated more accurately. Unfortunately, 

as we can see, Figure 4-19, this is not the case.  

The principal component coefficients in the two cases (i.e. using % OCR or 

corresponding model parameter changes as predictors) are given in the Table 4-8. 

A   

Predictor 
Principal 

Component 1 Principal component 2 

% Change in A -0.5932 0.8028 

% Change in B 0.7297 0.5048 

% Change in C -0.34 -0.3172 

   

B   

Predictor 
Principal 

Component 1 Principal component 2 

Param change in A2 0.8648 -0.5019 

Param change in B2 0.0244 0.0215 

Param change in C2 0.5014 -0.8648 
 

Table 4-8: Principal component coefficients in the case where % OCR (A) and model 

parameters (B) changes are used as predictors.  

As separation could not be clearly observed, a multinomial logistic regression was 

used as a basis to get a quantitative understanding of the relationship between the 

OCR and model parameter predictors and glycolytic reserve capacity.  

4.4.2 Multinomial Logistic Regression 

Logistic regression measures the relationship between dependent variables and one 

or more independent variables. In this analysis it is assumed that the observed data 

(i.e. the patient glycolytic reserve capacity, Y) is a linear function of the 

explanatory/predictor variables (e.g. X1, X2 and X3 for % OCR changes in columns A, B 

and C, respectively, in table 4-6), e.g. using a generalised linear model: 
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𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3. 

The idea of logistic regression is to find the parameters 𝛽0 − 𝛽3 that best fit the 

observed (glycolytic reserve) data. Because it is assumed that the data can be 

expressed as a generalised linear model then ordinary least squares can suffice as a 

fitting method.  

To be able to use multinomial logistic regression a number of testing criteria need to 

be checked, as follows: 

1. The dependent variable is measured on nominal level – this assumption 

holds since we have binned the reserve capacities into groups ‘1,2,3’ for low, 

moderate and high.  

2. One or more of the independent variables are continuous, ordinal or 

nominal – we have 3 predictor variables (% OCR or parameter changes A or 

A2, B or B2, C or C2) all of which are continuous. 

3. We have independence of observations, and dependent variable should 

have mutually exclusive/exhaustive categories (i.e. each observation can 

only be in one group, and every observation must belong to a group) – in our 

data, each patient is independent of one another, and each patient must fall 

into category 1,2 or 3 for reserve capacity. 

4. There should be no multi-collinearity between predictor variables – we 

tested this using variance inflation factor methods as described below.  

5. There should be no outliers/highly influential points – no outliers were 

detected.  

6. Adequate sample size – a recommended sample size is 10 x the number of 

predictor variables. There are 3 predictor variables and 24 observations 

which means that we are 6 samples short. However, analysis with only 2 

predictor variables showed no improvement so we continued with 3 
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predictor variables to allow a more complete comparison between all the 

OCR (and parameter) changes.  

Again, whether patient glycolytic reserve can be better predicted using either the 

observed % OCR changes (columns A, B and C in table 4-6) or the corresponding 

model parameter changes (columns A2, B2 and C2 in table 4-6) was tested. Our first 

step is to test for multi-collinearity in both these cases. As highlight above, Variance 

Inflation Factor (VIF) test which quantifies the extent of multicollinearity in least 

squares regression analysis was used. It provides a measure of how much variance of 

an estimated regression coefficient is increased because of collinearity. The square 

root of the VIF value indicates how much larger the standard error is compared to 

what it would be if that variable was uncorrelated with the other predictor variables 

in the model. For example, a VIF value of a predictor variable of 4 means that the 

standard error for the coefficient of that predictor variable is √4 = 2 times larger 

than it would be if that predictor variable was uncorrelated with the other predictor 

variables. As a rule of thumb, if the VIF value is greater than 1 and less than 10 then 

multicollinearity is considered to be low. The VIF values for the two cases (% OCR 

changes and model parameter changes) are given in Table 4-9. Each of the VIF values 

are within the desired range and therefore no multi-collinearity exists in independent 

variables. 

  VIF   VIF 

% change A 1.208 Param change A 1.425 

% change B 3.646 Param change B 3.293 

% change C 3.301 Param change C 2.71 
 

Table 4-9: The VIF values for % OCR changes, and model parameter changes.  
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Consideration of whether predictor variables can predict the patient reserve capacity 

as univariate variables, i.e. considering if the glycolytic reserve data can be explained 

using the linear model 𝑌 = 𝛽0 + 𝛽1𝑋1, where 𝑋1 is given by either columns A, B or C 

alone (in the case of % OCR changes) or columns A2, B2 or C2 alone (in the case of 

model parameter changes). In each case, a Pearson Chi-square statistic to indicate 

goodness of fit of whether the model is a good fit to the data is used, as well as use 

of a Likelihood Ratio Chi-square test to examine if the fit is significantly improved by 

the full model (𝛽0 + 𝛽1𝑋1) compared to just the intercept (𝛽0) alone. The Likelihood 

Ratio Chi-square test is calculated by -2L (intercept alone model) +2L (full model), 

where L (intercept alone model) is the log likelihood with just the intercept only and 

L(full model) is the log likelihood when the predictor value is included. The results are 

given in Table 4-10 and Table 4-11 for the cases of % OCR and model parameter 

changes. 

 Goodness of fit Likelihood ratio tests 

  Chi-square Sig (p-value) Chi-square Sig (p-value) 

% change A 48.812 0.286 1.111 0.574 

% change B 48.224 0.306 1.718 0.424 

% change C 49.833 0.253 5.999 0.05 
 

Table 4-10: Degrees of freedom; 44 (goodness of fit); 2 (likelihood ratio tests) The p-values 

are calculated using the chi-square distribution defined by the given degrees of freedom.  

 

 Goodness of fit Likelihood ratio tests 

  Chi-square Sig (p-value) Chi-square Sig (p-value) 

Param change A 48.738 0.288 0.953 0.288 

Param change B 36.059 0.206 0.986 0.206 

Param change C 44.39 0.159 4.351 0.159 
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Table 4-11: Degrees of freedom; 44 (goodness of fit); 2 (likelihood ratio tests) The p-values 

are calculated using the chi-square distribution defined by the given degrees of freedom.  

For the goodness of fit results, a large Chi-square indicates a poor fit for the model 

and, correspondingly, a significance (p-value) of less than 0.05 indicates that the 

model does not fit the data well. With the Likelihood ratio tests, a p-value of greater 

or equal to 0.05 indicates that the addition of the predictor variable does not 

significantly improve the model fit to the data compared to the intercept model 

alone. As we can see, in both cases (% OCR and model parameter changes; Table 4-10 

and Table 4-11), each of the univariate models fit the data well (goodness of fit p-

values all larger than 0.05) but none of the fits are improved by the addition of the 

predictor variable vs the intercept model alone. Therefore, there appears to be no 

statistically significant benefit to including the predictors as univariate variables in 

predicting patient reserve glycolytic capacity. The closet predictor variable to being 

significant is the % change C (p-value=0.05) and this out performs the corresponding 

model parameter change as a predictor variable.  

When using all the % OCR changes in a multivariate model to predict reserve 

glycolytic capacity, the Pearson Chi-square value is 57.36 (p-value=0.037<0.05, df=40) 

which indicates that the model does not fit the data does not fit the data well. The 

likelihood ratio chi-square (of the full multivariate model vs intercept only) is 10.132 

(p-value=0.0119, df=6), confirming that all the % OCR changes as predictors provide 

no statistical to including none at all. The corresponding statistics for using all the 

model parameter changes as alternative predictors are: Pearson Chi-square value is 



Chapter 4: Modelling Cellular Bioenergetics:  Human Mitochondrial Respiration 

 

218 

47.932 (p-value=0.182, df=40) and the likelihood ratio chi-square is 8.913 (p-

value=0.179>0.05). Therefore, a similar pattern is seen to when using % OCR changes 

as predictors and, importantly, no improvement in significance is observed when 

using parameter rates in comparison to using the observed % OCR changes.  

4.5 Model Predictions  

The model has so far been validated against experimental data and used to simulate 

mitochondrial stress test profiles based on in vitro data from 24 individuals. The 

model can now be used to simulate perturbations in important physiological and 

pharmacological variables and processes and investigate the resulting effects on 

measurable experimental outputs.  

4.5.1 Bioenergetic Model Perturbations 

There are many important variables and reaction fluxes with respect to cellular 

bioenergetics within the mitochondria, and many ways in which bioenergetics status 

can be measured experimentally. For example, NADH in the mitochondrial matrix is 

responsible for providing reducing equivalents for OXPHOS, and can therefore be 

considered as vital for cellular energy production within the mitochondria. Similarly, 

cytoplasmic pyruvate (PYR) is the molecule that links glycolysis in the cytoplasm to 

oxidative phosphorylation in the mitochondria. While these two molecules are 

essential for cellular bioenergetics metabolism, they also have other important roles. 

For example, NADH makes one half of a redox couple that is used to maintain cellular 

ROS homeostasis, ultimately coined at the measure of cellular redox status. PYR, on 

the other hand, can be utilized during hypoglycaemia, by gluconeogenesis in order to 

buffer cytoplasmic glucose concentrations via the liver. As such, NADH and PYR 

homeostasis is vital for cellular homeostasis. The mitochondrial stress test inhibits all 

electron transport chain reactions, as well as dissipating ΔΨm. However, ETC 

complexes I and III are simultaneously inhibited by rotenone and AMA in the final 

step. While this occurs in order to completely shut down OXPHOS, it leaves little room 
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to discern single transporter (I or III) inhibition as a result of mitochondrial toxicity 

screening of new compounds.  

In order to relate perturbations of these variables and fluxes to experimentally 

quantifiable experimental outputs, the model outputs as a result of perturbations in 

these variables are represented by measurable in vitro experimental outputs. 

Namely, ΔΨm, pH and OCR. It is important to align model predictions with outputs 

that can be confirmed experimentally to allow an experimental – in silico iterative 

process, whereby in silico works is used to guide experimental design (and vice versa). 

Therefore, mitochondrial matrix concentrations of NADH, cytoplasm concentrations 

of PYR and electron transport chain transporter fluxes CI and CIII were perturbed in 

the model, with output being focused on experimentally measurable changes in 

ΔΨm, pH and OCR.  

4.5.1.1 pH Change Simulations 

Changes in mitochondrial pH were examined as a function of NADH (matrix), PYR 

(cytoplasm), complex I and complex III perturbations. This simulation output 

therefore allows determination of sensitivity of each perturbation on mitochondrial 

pH. Note, that variable NADH and PYR perturbations consist of reductions ranging 

from their basal concentrations (2.5 × 10-3 M and 8.0 × 10-5 M, respectively) to zero, 

and ETC complex I and III activity is represented as 0 to 100 % background activity. 

The results shown in Figure 4-20 show steady state mitochondrial pH after a 1000 

second simulation.  
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Figure 4-20: Resulting changes in mitochondrial pH as a function of perturbations in NADH, 

PYR, complex I and complex I. Variables denoted _x and _c represents matrix and 

cytoplasmic concentrations, respectively.  

For complex I and III, decreases in transporter activity only appears impact pH at 

activities below 10% of baseline, with pH more sensitive to changes in complex III 

than complex I. Decreases in cytoplasmic pyruvate concentration has no immediate 

effect on mitochondrial pH until concentrations drop to 5.18 × 10-6 M or less, 

rendering pH as relatively insensitive to decreases in PYR. Also, decreases in 

mitochondrial matrix NADH results in only minor increases in pH. This makes sense 

intuitively as less NADH available for oxidative phosphorylation means less protons 

being pumped across the membrane resulting in an increase in pH.  

4.5.1.2 ΔΨm Change Simulations  

Changes in mitochondrial ΔΨm were then captured as a function of these 

perturbations NADH (matrix), PYR (cytoplasm), complex I and complex III 

perturbations. 
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Figure 4-21: Changes in ΔΨm as a function of perturbations in NADH, PYR, complex I and 

complex III. Variables denoted _x and _c represent matrix and cytoplasmic concentrations. 

We see that ΔΨm is much more sensitive to changes in complex III activity than to 

complex I activity, with little change in ΔΨm until 6 % of complex I baseline activity. 

Similar to pH, ΔΨm is relatively insensitive to changes to changes in cytoplasmic 

pyruvate concentration, with no noticeable changes in membrane until PYR drops to 

5.3 × 10-6 M, at which point the decrease is rapid. Decrease in matrix NADH results in 

a small increase in membrane potential. This is most likely due to similar changes in 

pH, whereby the differences in protons across the membrane result in a different 

ΔΨm.  

4.5.1.3 OCR Change Simulations  

Finally, changes in model OCR were captured as a function of these perturbations 

Figure 4-22. 



Chapter 4: Modelling Cellular Bioenergetics:  Human Mitochondrial Respiration 

 

222 

 

Figure 4-22: Changes in OCR as a function of perturbations in NADH, PYR, complex I and 

complex III. Variables denoted _x and _c represent matrix and cytoplasmic concentrations. 

Perturbations of complex I and complex III result in little changes in OCR, with OCR 

being slightly more sensitive to complex III, most likely sue to OCR being generated 

via complex IV flux, which would be more influenced by the ETC complex that 

precedes it (namely complex III). Model OCR is relatively insensitive to changes in 

cytoplasmic pyruvate, with only a significant decrease in OCR occurring once PYR 

concentration falls below 5.2 × 10-6 M, at which point OCR decreases from basal 

(65.75 M min-1) to 7.5 M min-1. Decrease in concentrations of NADH result in a steady 

decrease in OCR, indicating that OCR is the most sensitive to NADH out of the four 

outputs considered.  

4.5.1.4 Simulation Discussion 

Model simulations were intended to investigate changes in measureable 

experimental outputs as a function of mitochondrial matrix concentrations of NADH, 

cytoplasmic PYR and activities of ETC complex I and complex III fluxes. One objective 

was to investigate whether changes in pH, ΔΨm and OCR were more sensitive to 

complex I or III, as the in vitro mitochondrial stress test inhibits both simultaneously. 

Out of our tests, complex I perturbations resulted in minimal changes in pH, ΔΨm 

and OCR until almost complete inhibition. However, complex III perturbations 

induced more change in pH, ΔΨm and OCR, especially ΔΨm. This suggests that it is 
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perhaps important to differentiate OCR measurements when investigating 

mitochondrial toxicity using extracellular flux analysis with respect to complex I and 

complex III activity, by not simultaneously inhibiting both.  

Mitochondrial pH, ΔΨm and OCR were found to be relatively insensitive to changes 

in cytoplasmic pyruvate perturbations, until PYR passed below a 5.2 × 10-6 M 

threshold. At this point, all three outputs decreased dramatically. This would suggest 

that pH, ΔΨm and OCR are relatively resilient to cytoplasm pyruvate fluctuations, 

which makes sense intuitively, as PYR serves as an important molecule for other 

biological functions 61. Finally, pH, ΔΨm and OCR were found to be most sensitive to 

changes in matrix NADH concentrations. This bolsters the importance of maintaining 

cellular NAD/NADH redox state homeostasis, and highlights the downstream 

sensitivity as a result of NADH perturbations, which could occur as a result of ROS 

detoxification or, more specifically, as a result of futile redox cycling as discussed in 

Chapter 2.  

4.6 Discussion 

4.6.1 Chapter Discussion 

In this chapter, a mitochondrial bioenergetics model that is thermodynamically 

driven using the BISEN toolset and literature-based kinetics was constructed. The 

model was validated against experimental data. The model is the first of its kind in 

simulating primary human hepatocyte in vitro oxygen consumption rate data from 

mitochondrial stress test assays. In vitro OCR data was expressed as a novel three-

point reduced representation in order to facilitate model simulations of the 

percentage OCR changes as a function of exposure to olligomycin, FCCP, rotenone 

and AMA. The model was able to simulate each of the 24 human patient in vitro data, 

by mimicking relevant mechanistic pharmacological perturbations. Oligomycin, 

rotenone and AMA exposure were simulated by inhibiting ETC complexes V, I and III, 

while FCCP exposure was modelled by uncoupling model OXPHOS from the proton 

motive force and by removing the proton gradient between mitochondrial 
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membranes. The resulting in silico parameter changes that capture the mitochondrial 

stress test of the in vitro data were compared to the in vitro patient % OCR changes 

via statistical analysis, to test the hypothesis that patients with a higher glycolytic 

reserve capacity are better able to mitigate mitochondrial compromise, principal 

component analysis and multinomial logistic regression was performed. Each 

patient’s reserve glycolytic capacity was converted to glycolytic only acidification by 

deducting respiratory contributions using the media buffering capacity method used 

in Chapter 2. Each patient was then assigned as having a low, moderate or high 

glycolytic reserve capacity. PCA showed no obvious visual correlation between the in 

vitro and in silico predictors, prompting the use of multinomial logistic regression to 

ascertain any quantitative relationships. Neither the in vitro % OCR changes nor the 

in silico model parameter changes yielded a significant result, suggesting that no link 

in this data, mitochondrial compromise and glycolytic reserve capacity.  

Finally, the model was used to explore how perturbations in essential mitochondrial 

bioenergetic variables and fluxes affect experimentally measurable outputs. These 

simulations included perturbing mitochondrial matrix concentrations of NADH, 

cytoplasmic concentrations of pyruvate and reduction in complex I and III transporter 

activity, and monitoring the resulting changes in mitochondrial pH, ΔΨm and OCR. Of 

all the perturbations, model simulations of pH, ΔΨm and OCR were most sensitive to 

changes in NADH, suggesting that futile depletion of cellular reducing power, NADH, 

as a function of pharmacological or toxicological action can have significant effects 

on cellular bioenergetics. The differences between complex I and III on pH, ΔΨm and 

OCR were investigated in order to discern if it is important during analysis of 

mitochondrial stress to separate inhibition of complex I and III. Our model shows that 

pH, ΔΨm and OCR are more sensitive to complex III perturbations, particularly ΔΨm, 

suggesting that, when comparing mitochondrial toxicity of new or existing 

compounds to the mitochondrial stress test, more mechanistic insight could be 

gained if complex I and III were inhibited sequentially, rather than simultaneously. 

Finally, we found that ΔΨm, pH and OCR are relatively insensitive to changes in 

cytoplasmic pyruvate concentrations, until PYR decreases below a 5.2 × 10-6 M 
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threshold, whereby all three experimental outputs decrease rapidly. This would 

suggest that cytoplasmic PYR, although a TCA precursor, is relatively free to be 

utilized in other biological situations, until an approximate ten-fold decrease in 

concentration. These findings could therefore impact the way extracellular flux 

analysis is used to investigate mitochondrial toxicity, by providing a mechanistically 

detailed in silico platform from which experimentation and mechanisms of action can 

be investigated. 
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It is widely accepted that pharmacological activity of certain classes of compounds 

(e.g. anticancer, antimalarial) is related to their ability to accept one or two electrons. 

However, pharmacological activity via redox cycling is an understated mechanism of 

toxicity associated with many classes of drugs. In particular, oxidative stress as a 

result of redox cycling plays a pivotal role in the cause of cardiac toxicity, specifically 

as a function of toxicity associated with the cellular bioenergetics. For example, 

doxorubicin is an anti-neoplastic used to treat cancer and has strong links to redox 

cycling induced cardiac toxicity, associated directly with promoting elevated levels of 

ROS and oxidative stress within the mitochondrial. Redox cycling, in general, 

uncouples oxidative phosphorylation resulting in mitochondrial dysfunction. The 

underlying pharmacology of redox cycling is very difficult to elucidate, owing to the 

fleeting existence of radical species, often being recycled rapidly back to their parent 

compound. As a result, redox cycling is difficult to identify during drug development. 

Insight into the coupling of the elusive redox cycling induced radical species 

formation, with biologically complex cellular bioenergetics can be aided by the 

utilization of quantitative systems pharmacology, a discipline that utilizes 

sophisticated in silico techniques combined with in vitro outputs. The inclusion of 

thermodynamics within the model allows consolidation of compound and generate 

kinetic rate constants and determination of energetically favourable and 

unfavourable processes. Furthermore, inclusion thermodynamic properties into 

large scale metabolic models of glycolysis and mitochondrial bioenergetics facilitates 

construction of pH-dependent mathematical models, capable of simulating dynamic 

pH time courses, as well as recapitulating changes in enzyme kinetics as a function of 

a thermodynamic based environment.  

Chapter 2 describes the development of a novel in silico model of quinone redox 

cycling, with example drug doxorubicin that is thermodynamically based. The 

physiochemical properties of a plethora of quinones were consolidated into a 

mathematical framework from which compound specific reduction potentials and 

the corresponding equilibrium rate constants were obtained. Unknown kinetic 

parameters for the doxorubicin redox cycling model were obtained using a novel 
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surrogate in vitro extracellular flux analysis assay, where the rates of proton 

consumption and production were measured in real time. The model required 

additional mechanistic information in order to recapitulate the EFA data, specifically, 

the addition of a comproportionation reaction. This addition allowed the model to 

reproduce a number of different drug concentrations of EFA data, using only one 

concentration as the training data for model parameterisation. The model was 

expanded to include mitochondrial specific ROS detoxification mechanisms, centred 

on glutathione metabolism and superoxide dismutase. The model was also 4able to 

predict in vitro doxorubicin-induced mitochondrial ROS formation. For this, in vitro 

levels of mitochondrial ROS were quantified using the MitoSOX assay on HepG2 cells 

after exposure to doxorubicin. 

This approach is the first of its kind. It proves that using thermodynamic and 

chemistry based methods, combined with experimental data, can facilitate in silico 

prediction of cellular organelle-specific doxorubicin induced ROS formation. This 

methodology opens the door for investigation of any compound that contains the 

quinone motif, with respect to redox cycling-induced mitochondrial ROS formation, 

given a single reduction potential or pKa value, coupled with the extracellular flux 

analysis. This is exciting, as the redox cycling of compounds old and new may now be 

investigated with this approach. Furthermore, thermodynamic and physicochemical 

properties of structurally similar motifs such as quinoneimines or 8-aminoquinolines, 

used predominantly to treat malaria, could be consolidated into a similar 

mathematical framework, allowing potential redox cycling-induced toxicity to be 

explored. This would have high clinical relevance, as redox cycling associated toxicity 

of these compound classes are known to prevent effective treatment of malaria in 

the third world.   

Chapter 3 investigated the role of a lactate/H+ efflux as the predominant driving force 

of extracellular acidification rate (ECAR) during in vitro extracellular flux analysis 

(EFA), using a novel mathematical model of hepatic bioenergetics, which is pH-

dependent with respect to reaction equilibria and enzyme kinetics. In silico ECAR was 
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modelled using the liver-specific monocarboxylate transporter 1 (MCT1) flux; 

recognising that lactic acid exists as its lactate anion and a proton at physiological pH. 

Glycolytic proton production rate (PPRgly) was separated from in vitro ECAR 

measurements by accounting for the EFA media buffering power, followed by 

deducting calculated respiratory contributions to acidification. The model was 

validated with in vitro HepG2 cell EFA data and used to analyse PPRgly as a function of 

MCT1 flux. Comprehensive computational models such as this require care when 

parametrizing and as such, sensitivity analysis revealed the most sensitive model 

parameters, with MCT1 transporter constants Keq and Vmax ranked as the two most 

sensitive parameters within the model. The validated model accurately simulated in 

vitro hepatic PPRgly, eliciting lactate/H+ efflux via the MCT1 as a suitable driver of 

glycolytic rate. Further model predictions were used to explore the effects of in vitro 

media changes on glycolytic rate, highlighting that changes in extracellular 

concentrations of lactate and differences between the transient EFA microchamber 

and cell volumes result in large perturbations of PPRgly and ECAR. The model 

emphasises the importance of separating PPRgly from ECAR when scrutinizing in vitro 

EFA data quantitatively, especially when used to explore potential drug induced 

bioenergetic toxicity, due to ECAR also being a function of respiratory acidification. 

This thermodynamically-driven pH-dependent model of hepatic glycolytic flux is the 

only model current that is coupled with EFA which can simulate glycolytic 

extracellular acidification. This is exciting because it offers a mathematical platform 

from which potential mechanistic insights can be obtained from often underutilized 

in vitro ECAR measurements. For example, the model could now be applied to 

investigate enzyme inhibition of glycolytic enzymes in anti-cancer therapy, since 

tumour cells are largely dependent on glycolysis for their energy requirements.  

Chapter 4 describes the construction of a thermodynamic-based mitochondrial 

respiration model, used to simulate the in vitro primary human hepatocyte oxygen 

consumption rate (OCR) from mitochondrial stress test data. The experimental data 

was converted to a novel three-point reduced representation of the percentage 
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changes of OCR as a function to exposure to oligomycin, FCCP, rotenone and 

antimycin A. The model was able to recapitulate the data by mimicking the relevant 

mechanistic pharmacological perturbations. Oligomycin, rotenone and antimycin A 

exposure was simulated by inhibiting electron transport chain complexes V, I and III, 

while FCCP exposure was modelled by uncoupling model oxidative phosphorylation 

from the proton motive force and removing the proton gradient between 

mitochondrial membranes. The in vitro experimental OCR data and the model 

parameter changes required to simulate each patient was compared using statistical 

analysis in order to determine if either were capable of predicting each individual’s 

glycolytic reserve capacity. This is founded by the hypothesis that patients with a 

higher glycolytic reserve capacity would be better able to mitigate mitochondrial 

compromise. Each patient was assigned a low, moderate or high reserve glycolytic 

capacity. Principal component analysis revealed no obvious visual correlations 

between the in vitro and in silico predictors. This was confirmed with the use of 

multinomial logistic regression, which showed no significant quantitative 

relationship. No significant result was yielded for the in vitro % OCR changes, nor the 

in silico parameter changes for predicting the glycolytic reserve capacity, suggesting 

no significant link between a patients glycolytic reserve capacity and their ability to 

mediate mitochondrial dysfunction. Finally, the model was used to investigate how 

perturbations in important bioenergetic variables and transporter fluxes effect 

experimentally measurable outputs. Namely, how changes in matrix NADH, 

cytoplasmic pyruvate and electron transport chain complexes I and III effect 

mitochondrial pH, ∆Ψm and OCR. Simulations show that pH, ∆Ψm and OCR are more 

sensitive to complex III than complex I, suggesting that, when investigating 

mitochondrial toxicity using the classic mitochondrial stress test, more mechanistic 

insight could be gained if complex I and III were sequentially inhibited, rather than 

simultaneously. It was also found that model pH, ∆Ψm and OCR are most sensitive to 

changes in matrix NADH concentration, suggesting that depletion of NADH during 

oxidative stress may have significant effects on cellular bioenergetics. Finally, pH, 

∆Ψm and OCR were found to be relatively insensitive to changes in cytoplasmic 



Chapter 5: Discussion & Future Work 

 

231 

pyruvate, until a concentration-drop below a 5.2 × 10-6 M threshold. Pyruvate is a 

tricarboxylic acid cycle precursor that effectively links glycolytic and respiratory 

energy production and such a lack of sensitivity could suggest that pyruvate is 

relatively free to be utilised in other biological situations.  

Now that the bioenergetic model has been validated, there is opportunity for it to be 

applied to mitochondrial toxicity testing, especially towards the reduction of the use 

of animal models. Integrated in vitro – in silico frameworks offer a unique approach 

for the investigation of bioenergetic toxicity mechanisms, especially through the use 

of thermodynamic-driven mechanistic models. Models such as these are able to 

easily investigate experimentally challenging concepts such as redox cycling toxicity, 

ROS formation and drug-induced perturbations in cellular bioenergetics, but only 

when combined with robust experimental data. As such, extracellular flux analysis 

provides a sturdy platform from which thermodynamic based changes in pH and 

oxygen concentration may be ascertained in vitro, and then coupled with in silico 

models for quantitative predictions. Therefore, taking a combined in vitro – in silico 

quantitative systems pharmacology approach augments and ameliorates both 

mathematical and experimental disciplines to be greater than what they would be 

alone.  



Chapter 6: Abbreviations 

 

232 

6 Chapter 6: Abbreviations 

Abbreviation Definition 

ROS Reactive oxygen species 

QSP Quantitative systems pharmacology 

[R]/[O] Reduced / oxidised 

EDG Electron donating group 

EWG Electron withdrawing group 

Q Quinone 

SQ.- Semi quinone radical 

H2Q Hydroquinone 

O2 Superoxide anion radical 

GSH Glutathione (reduced) 

RNS Reactive nitrogen species 

GSSG Glutathione disulfide (oxidised) 

NADH Nicotinamide adenine dinucleotide (reduced) 

NADPH Nicotinamide adenine dinucleotide phosphate (reduced) 

NAD Nicotinamide adenine dinucleotide (oxidised) 

NADP Nicotinamide adenine dinucleotide phosphate (oxidised) 

PN Pyridine nucleotide 
.OH Hydroxyl radical 

MtDNA Mitochondrial DNA 

ΔS Entropy 

ΔG Gibbs free energy 

ΔH Enthalpy 

ATP Adenosine triphosphate  

ADP Adenosine diphosphate  

Pi Inorganic phosphate 

OXPHOS Oxidative phosphorylation 

TCA Tricarboxylic acid cycle 

ETC Electron transport chain 

ΔΨm Mitochondrial membrane potential 

FADH2 Flavin adenine dinucleotide 

CYP Cytochrome 

BISEN Biochemical Simulation Environment 

EFA Extracellular flux analysis 

OCR Oxygen consumption rate 

ECAR Extracellular acidification rate 

PPR Proton production rate 

MitoSOX Mitochondrial superoxide 

UQ Uncertainty quantification 

SFEM Stochastic finite elements analysis 

RBO reliability-based optimisation  

LHS Latin hypercube sampling 
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Abbreviation Definition 

PCA Principal component analysis 

MLR Multinomial logistic regression 

MCT1 Monocarboxylate transporter 1 

SOD Superoxide dismutase 

PTQM Physicochemical thermodynamic quinone model 

GUI Graphical user interface 

Q-GSH Quinone-glutathione adduct 

BP Buffering Power 

HGP Hepatic glucose production 

HGU Hepatic glucose utilisation 

BC Buffering capacity 

glu/gal Glucose / galactose  

DILI Drug-induced liver injury 

DIMT Drug-induced mitochondrial toxicity 

NMr non-mitochondrial respiration 

tcmV transient microchamber volume 

AMA Antimycin-A 

FCCP carbonilcyanide p- triflouromethoxyphenylhydrazone 

Complex V F0F1-ATPsynthase 

IM Mitochondrial inter-membrane space 
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7 Chapter 7: Appendix 

7.1 Appendix A 

Appendix A has the statistical analysis results for the EFA in vitro data described in 

2.3.1.3. Significant changes between extracellular glucose concentrations were 

determined using Prism software as described in the methods section. One-way 

analysis of variance was determined using a one-way ANOVA with a Newman-Keuls 

Multiple comparison test to determine significance between all concentrations of 

glucose.  

ECAR analysis 

Table Analyzed 
ECAR 
Normalized     

       

One-way analysis of variance      

P value P<0.0001     

P value summary ***     
Are means signif. different? (P < 
0.05) Yes     

Number of groups 10     

F 384.2     

R squared 0.9665     

       

Bartlett's test for equal variances      

Bartlett's statistic (corrected) 5.51     

P value 0.7877     

P value summary ns     
Do the variances differ signif. (P < 
0.05) No     

       

ANOVA Table SS df MS   

Treatment (between columns) 2.287 9 0.2541   

Residual (within columns) 0.07937 120 0.000661   

Total 2.366 129    

       
Newman-Keuls Multiple 
Comparison Test Mean Diff. q 

Significant? P < 
0.001? 

Summar
y 
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0 vs 5.0 -0.5022 70.4 Yes *** 

0 vs 12.5 -0.3569 
50.0

4 Yes *** 

0 vs 15.0 -0.3478 
48.7

6 Yes *** 

0 vs 25.0 -0.3404 
47.7

2 Yes *** 

0 vs 10.0 -0.3137 
43.9

8 Yes *** 

0 vs 2.5 -0.2827 
39.6

3 Yes *** 

0 vs 7.5 -0.2442 
34.2

3 Yes *** 

0 vs 1 -0.2095 
29.3

8 Yes *** 

0 vs 0.1 -0.1145 
16.0

5 Yes *** 

0.1 vs 5.0 -0.3877 
54.3

5 Yes *** 

0.1 vs 12.5 -0.2425 
33.9

9 Yes *** 

0.1 vs 15.0 -0.2333 
32.7

1 Yes *** 

0.1 vs 25.0 -0.2259 
31.6

7 Yes *** 

0.1 vs 10.0 -0.1992 
27.9

3 Yes *** 

0.1 vs 2.5 -0.1682 
23.5

9 Yes *** 

0.1 vs 7.5 -0.1297 
18.1

8 Yes *** 

0.1 vs 1 -0.09508 
13.3

3 Yes *** 

1 vs 5.0 -0.2926 
41.0

2 Yes *** 

1 vs 12.5 -0.1474 
20.6

6 Yes *** 

1 vs 15.0 -0.1382 
19.3

8 Yes *** 

1 vs 25.0 -0.1308 
18.3

4 Yes *** 

1 vs 10.0 -0.1042 14.6 Yes *** 

1 vs 2.5 -0.07315 
10.2

6 Yes *** 

1 vs 7.5 -0.03462 
4.85

3 Yes *** 

7.5 vs 5.0 -0.258 
36.1

7 Yes *** 

7.5 vs 12.5 -0.1128 
15.8

1 Yes *** 

7.5 vs 15.0 -0.1036 
14.5

3 Yes *** 

7.5 vs 25.0 -0.09623 
13.4

9 Yes *** 

7.5 vs 10.0 -0.06954 
9.74

9 Yes *** 
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7.5 vs 2.5 -0.03854 
5.40

3 Yes *** 

2.5 vs 5.0 -0.2195 
30.7

7 Yes *** 

2.5 vs 12.5 -0.07423 
10.4

1 Yes *** 

2.5 vs 15.0 -0.06508 
9.12

4 Yes *** 

2.5 vs 25.0 -0.05769 
8.08

8 Yes *** 

2.5 vs 10.0 -0.031 
4.34

6 No ** 

10.0 vs 5.0 -0.1885 
26.4

2 Yes *** 

10.0 vs 12.5 -0.04323 
6.06

1 Yes *** 

10.0 vs 15.0 -0.03408 
4.77

7 No ** 

10.0 vs 25.0 -0.02669 
3.74

2 No ** 

25.0 vs 5.0 -0.1618 
22.6

8 Yes *** 

25.0 vs 12.5 -0.01654 
2.31

9 No ns 

25.0 vs 15.0 -0.00739 --- No ns 

15.0 vs 5.0 -0.1544 
21.6

4 Yes *** 

15.0 vs 12.5 -0.00915 --- No ns 

12.5 vs 5.0 -0.1452 
20.3

6 Yes *** 
 

 

Table A1: Statistical analysis of in vitro EFA using different concentrations of 

glucose. Significance between average ECAR normalised to basal ECAR and protein 

content are shown, with P-values < 0.05 = *, P-values < 0.01 = ** and P-values < 

0.001 = ***. 

All concentrations of extracellular glucose were significant when compared to the 

control where the extracellular concentration of glucose is equal to zero (Figure A1).  
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Figure A1: Statistical analysis of in vitro EFA ECAR using different concentrations of 

glucose showing all concentrations used above zero were significant.  P-values < 

0.001 = ***. 

OCR analysis 

 Table Analyzed OCR Normalized       

        

One-way analysis of variance       

P value 
P<0.000
1      

P value summary ***      
Are means signif. different? (P 
< 0.05) Yes      

Number of groups 10      

F 15.88      

R squared 0.5436      

        
Bartlett's test for equal 
variances       

Bartlett's statistic (corrected) 6.709      

P value 0.6674      

P value summary ns      
Do the variances differ signif. 
(P < 0.05) No      
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ANOVA Table SS df MS    

Treatment (between columns) 0.1026 9 0.0114    

Residual (within columns) 0.08615 120 0.000718    

Total 0.1887 129     

        
Newman-Keuls Multiple 
Comparison Test 

Mean 
Diff. q 

Significant? P < 
0.001? 

Summar
y   

25.0 vs 0 -0.08932 
12.0

2 Yes ***   

25.0 vs 0.1 -0.06621 
8.90

9 Yes ***   

25.0 vs 1 -0.06442 
8.66

9 Yes ***   

25.0 vs 2.5 -0.04373 
5.88

5 No **   

25.0 vs 5.0 -0.02905 
3.90

9 No ns   

25.0 vs 12.5 -0.02263 --- No ns   

25.0 vs 15.0 -0.01409 --- No ns   

25.0 vs 10.0 -0.01156 --- No ns   

25.0 vs 7.5 -0.01 --- No ns   

7.5 vs 0 -0.07932 
10.6

7 Yes ***   

7.5 vs 0.1 -0.05621 
7.56

3 Yes ***   

7.5 vs 1 -0.05442 
7.32

3 Yes ***   

7.5 vs 2.5 -0.03373 
4.53

9 No *   

7.5 vs 5.0 -0.01905 --- No ns   

7.5 vs 12.5 -0.01263 --- No ns   

7.5 vs 15.0 -0.00409 --- No ns   

7.5 vs 10.0 -0.00156 --- No ns   

10.0 vs 0 -0.07776 
10.4

6 Yes ***   

10.0 vs 0.1 -0.05464 
7.35

3 Yes ***   

10.0 vs 1 -0.05286 
7.11

3 Yes ***   

10.0 vs 2.5 -0.03217 
4.32

9 No *   

10.0 vs 5.0 -0.01749 --- No ns   

10.0 vs 12.5 -0.01106 --- No ns   

10.0 vs 15.0 -0.00253 --- No ns   

15.0 vs 0 -0.07523 
10.1

2 Yes ***   

15.0 vs 0.1 -0.05212 
7.01

4 Yes ***   

15.0 vs 1 -0.05033 
6.77

3 Yes ***   

15.0 vs 2.5 -0.02964 
3.98

9 No *   
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15.0 vs 5.0 -0.01496 --- No ns   

15.0 vs 12.5 -0.00854 --- No ns   

12.5 vs 0 -0.06669 
8.97

5 Yes ***   

12.5 vs 0.1 -0.04358 
5.86

4 Yes ***   

12.5 vs 1 -0.04179 
5.62

4 Yes ***   

12.5 vs 2.5 -0.0211 2.84 No ns   

12.5 vs 5.0 -0.00642 --- No ns   

5.0 vs 0 -0.06027 
8.11

1 Yes ***   

5.0 vs 0.1 -0.03716 5 No **   

5.0 vs 1 -0.03537 4.76 No **   

5.0 vs 2.5 -0.01468 --- No ns   

2.5 vs 0 -0.04559 
6.13

5 Yes ***   

2.5 vs 0.1 -0.02248 
3.02

5 No ns   

2.5 vs 1 -0.02069 --- No ns   

1 vs 0 -0.0249 
3.35

1 No ns   

1 vs 0.1 -0.00179 --- No ns   

0.1 vs 0 -0.02311 --- No ns   
 

Table A2: Statistical analysis of in vitro EFA using different concentrations of 

glucose. Significance between average OCR normalised to basal OCR and protein 

content are shown, with P-values < 0.05 = *, P-values < 0.01 = ** and P-values < 

0.001 = ***. 

 

Significance between 0 mM and all other concentrations of extracellular glucose is 

shown in Figure A2.  
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Figure A2 Statistical analysis of in vitro EFA OCR using different concentrations of 

glucose showing all concentrations used above zero were significant.  P-values < 

0.001 = ***. 
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