
 

 

 

Effects of Tea on Peripheral and Cerebral  

Micro- and Macrovascular Function in Humans  

 

 

 

Kirsty Anne Roberts  

 

 

 

A thesis submitted in partial fulfilment of the requirements of  

Liverpool John Moores University for the Degree of Doctor of Philosophy  

 

 

 October 2017  

  



ii 
 

Abstract  

Cardiovascular disease (CVD) is the leading cause of global mortality, with the incidence of 

cardiovascular related pathologies remaining a public health burden. CVD encompasses pathologies 

of the vascular tree and heart, including, for example, peripheral artery disease, coronary heart 

disease and ischaemic stroke. Atherosclerosis is the primary pathological process leading to CVD and 

is characterised by a multifactorial pathophysiology that first manifests in the vascular endothelium. 

Termed endothelial dysfunction, this early marker of atherosclerosis has become a focus of interest 

for identifying individuals at risk of a profound cardiovascular insult, particularly arising from lifestyle 

choices such as physical inactivity and calorie-rich diets. Dietary interventions have received increasing 

attention in recent years as inexpensive strategies to potentially combat the ever-increasing global 

burden of CVD. A high dietary flavonoid intake is associated with a reduction in CVD risk and several 

studies have revealed a strong, inverse relation between the regular intake of tea, a major source of 

dietary flavonoids, and CVD risk. Tea has demonstrated improved conduit artery endothelial function 

and glucose handling in both healthy individuals and in those with overt CVD. However, the effects of 

tea on the microvasculature and cerebrovasculature are not yet understood, particularly in relation 

to lifestyle factors. The primary aim of this thesis was to explore the impact of tea ingestion on 

peripheral and cerebral micro- and macrovascular function in humans. 

 

In an initial methodological study, the day-to-day reproducibility of thermally stimulated cutaneous 

microvascular function was assessed. Fifteen, healthy males (28 ± 5 yrs, BMI 25 ± 2 kg/m2) attended 

two experimental trials 2-7 days apart. During each trial, baseline and maximal thermally stimulated 

forearm skin responses were examined simultaneously at four sites on the dominant forearm using 

laser Doppler flowmetry (LDF). The following heating protocols were adopted: 1. Rapid 39°C (0.5°C/5-

s), 2. Rapid 42°C (0.5°C/5-s) 3. Gradual 42°C (0.5°C/2-min 30-s) and 4. Slow 42°C (0.5°C/5-min). The 

coefficient of variation (CV) was calculated for absolute flux, cutaneous vascular conductance (CVC; 

flux/mean arterial pressure, MAP) and CVC expressed as a percentage of maximal CVC at 44°C 

(%CVCmax) at three different time points; baseline (33°C), plateau (39/42°C) and maximal (44°C). 

Reproducibility of baseline flux, CVC and %CVCmax was 17-29% across all protocols. During the plateau, 

Rapid, Gradual and Slow 42°C demonstrated a reproducibility of 13-18% for flux and CVC and 5-11% 

for %CVCmax. However, Rapid 39°C demonstrated a lower reproducibility for flux, CVC and %CVCmax 

(21%). Reproducibility at 44°C was 12-15% for flux and CVC across all protocols. The good-to-moderate 

reproducibility of the Rapid, Gradual and Slow 42°C protocols supported their (simultaneous) use to 

assess peripheral microvascular function.  

 

The aim of Chapter 5 was to examine the acute (2-hour) cutaneous vascular responses to local skin 

heating following ingestion of black tea in a healthy adult population. Twenty healthy participants (58 

± 5 yrs, BMI 26 ± 4 kg/m2, 9 men) attended two experimental trials (tea, placebo), 7-days apart in a 

randomised, controlled, double-blind, cross-over design. Participants ingested a single dose of 200 ml 

black tea or placebo, followed by assessment of forearm cutaneous microvascular function using LDF 

and three distinct local skin heating protocols to distinguish between axon- and endothelium-

dependent vasodilation: 1. Rapid 42°C, 2. Rapid 39°C and 3. Gradual 42°C. On the contralateral arm, 

full-field laser perfusion imaging (FLPI) was used to assess forearm cutaneous microvascular function 
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during Gradual 42°C. Data were analysed as CVC and %CVCmax. Rapid local heating to 39°C or 42°C 

demonstrated no effect of tea for flux, CVC or %CVCmax (all P>0.05). Gradual local heating to 42°C, 

however, produced a higher skin blood flow following black tea ingestion for absolute CVC (P=0.04) 

when measured by LDF, and higher absolute flux (P<0.001) and CVC (P<0.001) measured with FLPI. No 

effect of tea was found for %CVCmax when assessed by either LDF or FLPI.  

 

The aim of the study outlined in Chapter 6 was to examine the effect of daily green tea consumption 

(equivalent to 6 cups/day) on changes in peripheral vascular function and glucose handling after a 7-

day ‘unhealthy’ lifestyle in healthy males. Twelve healthy males (29 ± 6 yrs, BMI 25 ± 2 kg/m2) 

underwent two periods of 7-days ‘unhealthy’ lifestyle (UL) comprising of combined physical activity 

reduction (-50% steps per day) and high fat, high carbohydrate overfeeding (+50% kcal per day, 

comprising 65% fat) in a randomised, controlled, double-blind, cross-over design. Each intervention 

period was separated by a 2-week washout. During each 7-day UL-period, participants ingested three 

doses of an active green tea drink (UL-Tea) or a placebo drink (UL-Placebo) per day at regular intervals. 

Participants attended the laboratory before and after each 7-day intervention (a total of 4 visits). 

During each visit the following were examined: mean arterial blood pressure (MAP), dominant 

forearm cutaneous microvascular function using LDF and local heating protocols 1. Rapid 42°C, 2. 

Rapid 39°C and 3. Gradual 42°C, macrovascular function using brachial artery and femoral artery 

endothelium-dependent function via flow-mediated dilation (FMD), carotid artery vasoreactivity to 

the cold pressor test (CAR%), cerebrovascular function via CO2 reactivity and dynamic cerebral 

autoregulation, and insulin sensitivity and glucose handling through a mixed-meal (1200kcal, 

comprising 60% carbohydrates, 33% fat and 7% protein) tolerance test. Linear mixed models (main 

effects of intervention and time) were used to examine the impact of the lifestyle intervention (pre vs 

post) and green tea ingestion (UL-Tea vs UL-Placebo). Body mass demonstrated a slight increase 

following both UL-Tea and UL-Placebo (P>0.05). MAP was increased after UL-Placebo, whereas it was 

reduced after UL-Tea (P=0.06). LDF responses to rapid local heating demonstrated non-significant 

reductions in CVC following UL-Placebo but no difference following UL-Tea (P>0.05), with a significant 

interaction of time*condition*temperature observed following Gradual 42°C (P=0.02). Brachial artery 

FMD was not different pre vs post or between UL-Placebo and UL-Tea (P>0.05), whereas femoral 

artery FMD decreased after UL-Placebo, which was prevented during UL-Tea (P<0.001). CAR% 

decreased following UL-Placebo, which was prevented during UL-Tea (P=0.04). CO2 reactivity and 

dynamic cerebral autoregulation demonstrated no differences between UL-Placebo and UL-Tea or 

over time. Postprandial glucose was increased after UL-Placebo, whereas a reduction in postprandial 

glucose occurred after UL-Tea (P=0.03). Postprandial insulin levels were higher after UL-Placebo, 

consistent with insulin resistance, whereas following UL-Tea the insulin response was reduced and 

demonstrated an interaction of time*condition (P<0.001).  

 

The aim of Chapter 7 was to examine the effect of acute oral (-)-epicatechin ingestion on 

cerebrovascular function in healthy adults. Seven healthy males (32 ± 13 yrs, BMI 25 ± 1 kg/m2) 

attended two experimental trials ((-)-epicatechin and placebo) 7-days apart in a randomised, 

controlled, double-blind, cross-over design. Participants underwent baseline assessment of 

cerebrovascular function using transcranial Doppler ultrasound (TCD), comprising CO2 reactivity to 

hypercapnia and dynamic cerebral autoregulation via squat-stand manoeuvres at 0.10 Hz and 0.05 Hz. 
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Following completion of the baseline measures, participants immediately consumed an oral dose of 

the test product (2 x 50 mg capsules of (-)-epicatechin or 2 capsules of colour-matched placebo) 

together with a glass of water, following which participants relaxed in the laboratory. 2-hours post-

ingestion repeat measures of cerebrovascular function were performed. Linear mixed models (main 

effects of condition and time) examined the differences between (-)-epicatechin and placebo 

interventions (pre vs post) on cerebrovascular function. No differences were observed at pre vs post 

baseline for middle cerebral artery velocity (MCAv) or MAP (all P>0.05). There were no differences in 

the cerebrovascular responses to CO2 or dynamic autoregulation between (-)-epicatechin and 

placebo.  

 

The findings from this thesis suggest that, firstly, use of simultaneous skin local heating protocols 

provides a valuable means of interrogating the cutaneous microvessels for mechanistic insight in 

intervention studies. Secondly, current findings evidence improved cutaneous microvascular function 

following acute black tea consumption. Furthermore, the research work undertaken in this thesis 

provides important insight into the effects of tea consumption on peripheral (micro- and macro-) 

vascular function and insulin sensitivity, particularly its abrogative effects on lifestyle-induced vascular 

impairments. However, the effects of tea consumption on the cerebrovasculature remain uncertain. 

Overall, based on the current findings, tea consumption presents a simple, inexpensive, non-

pharmacological cardioprotective strategy to help combat the ever-increasing global burden of CVD.  
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Chapter 1. Introduction 

Cardiovascular disease (CVD) remains the leading cause of global mortality, representing ~30% of all 

deaths annually (WHO, 2016). Despite a decline in CVD mortality in the United Kingdom during the 

last 25 years, the incidence of cardiovascular related pathologies remains a public health burden, as 

CVD morbidity has shown little change (Bhatnagar et al., 2016). CVD encompasses pathologies of the 

vascular tree and heart, including, for example, peripheral artery disease, coronary heart disease 

(CHD) and ischaemic stroke. Atherosclerosis is the primary pathological process leading to CVD and is 

characterised by a multifactorial pathophysiology that first manifests in the vascular endothelium, 

prior to any detectable structural changes to the vessel wall being apparent on angiography or 

ultrasound imaging (Davignon & Ganz, 2004). Termed endothelial dysfunction, this early marker of 

atherosclerosis has become a focus of interest for identifying individuals at risk of a profound 

cardiovascular insult, as well as investigating therapeutic strategies targeting a reversal of this 

pathological process.  

 

Ongoing epidemiological evidence implicates lifestyle as being a key component in endothelial 

dysfunction and, therefore, CVD risk and progression. In contrast to the non-modifiable risk factors 

for CVD, which include genetics, gender, age and ethnicity, lifestyle modification through changes to 

behavioural patterns can reduce the risk of CVD and somewhat reverse the pathological processes 

associated with endothelial dysfunction. Physical inactivity, and obesity arising from poor dietary 

habits, are continuing to increase across the United Kingdom (Baker, 2017; BHF, 2017) and are 

considered two of the most important modifiable risk factors for the development of cardiometabolic 

disorders, in addition to smoking, hypertension and hypercholesterolaemia. Diets rich in sodium and 

saturated fat are associated with CVD, whereas other dietary components are suggested to be 

cardioprotective and exert a positive influence upon cardiovascular health, such as fruits and 

vegetables, spices, omega-3-fatty acids and low-fat dairy products (Feyh et al., 2016; Mangels & 

Mohler, 2017). As the deleterious effects of sedentary lifestyles have become more apparent and the 
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beneficial effects of certain dietary components receive wider scientific recognition, dietary 

interventions have received greater attention as inexpensive tools to combat the ever-increasing 

global burden of CVD.  

 

The Mediterranean diet is widely reputed to exert a protective effect upon cardiometabolic health, 

largely achieved via mechanisms related to its richness in plant-derived products, such as olive oil, 

fruits and vegetables, which contain bioactive compounds known as polyphenols (Ros et al., 2014). 

These naturally occurring compounds are the most abundant antioxidant in the human diet; to date, 

in excess of 8,000 polyphenolic compounds have been identified (Pandey & Rizvi, 2009). Polyphenols 

can be broadly categorised into four subclasses according to their phenolic ring structure and ring-

binding elements: flavonoids, phenolic acids, lignans and stilbenes (Pandey & Rizvi, 2009; Amiot et al., 

2016). Flavonoids account for the greatest proportion of polyphenols (60%) and were discovered in 

the 1930s by the Hungarian scientists Rusznyak and Szent-Györgyi, who observed that a substance 

derived from lemon peel reduced the permeability and fragility of the human capillary (Rusznyak & 

Szent-Györgyi, 1936; Geleijnse & Hollman, 2008). The substance was subsequently known as “vitamin 

P” and was later considered a mixture of flavonoids, rather than a pure substance (Bruckner & Szent-

Györgyi, 1936; Geleijnse & Hollman, 2008). Interest in flavonoids waned in the 1950s after they lost 

their vitamin status and were subsequently thought to be detrimental to health in the 1970s (Geleijnse 

& Hollman, 2008). Scientific focus towards flavonoids was renewed in the early 1990s when red wine 

was observed to inhibit the oxidation of low density lipoprotein (LDL) in vitro and was implicated in 

explaining why the French diet is high in saturated fat, yet epidemiological observations suggest that 

the population have a low incidence of coronary heart disease, known as the “French paradox” 

(Ferrières, 2004). A subsequent Dutch study reported a substantial protective effect of up to a 70% 

reduction in coronary artery disease-related mortality, following regular consumption of several 

flavonoids in elderly men (Hertog et al., 1993). The major source of flavonoids in the cohort was tea 

(61%), followed by onions (13%) and apples (10%).  
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Following the seminal studies in the early 1990s, a new era of polyphenol research began and the role 

of dietary factors on CVD risk has been explored in recent years. Epidemiological studies have reported 

conflicting results, but the consensus of scientific opinion is that a high dietary flavonoid intake is 

associated with a reduction in CVD risk (Arts et al., 2001; Geleijnse et al., 2002; Mink et al., 2007; 

McCullough et al., 2012; Cassidy et al., 2013; Ponzo et al., 2015; Kim et al., 2016). Such reductions 

have been reported in middle-aged (Cassidy et al., 2013; Ponzo et al., 2015) and elderly (Arts et al., 

2001; McCullough et al., 2012) populations, with reductions in ischaemic heart disease risk being 

observed related to flavonoids derived from both tea (Geleijnse et al., 2002) and berries (Cassidy et 

al., 2013) over 5- and 18-year follow-ups, respectively. Nevertheless, many mechanistic studies have 

been undertaken in vitro and in animal models, with observational human studies often lacking longer-

term interventions (Williamson & Manach, 2005) and reporting inconsistent findings due to 

heterogeneity in the study design, a lack of control group, background lifestyle and dietary factors, in 

addition to a lack of clarity regarding the polyphenol dosage (Chong et al., 2010). This is particularly 

true for studies investigating the chronic effects of tea (Deka & Vita, 2011), which is the major source 

of dietary flavonoids in many countries globally (Yahya et al., 2016).  

 

Several studies have revealed a strong, inverse relation between regular intake of tea and CVD risk 

(Grassi et al., 2009b; Greyling et al., 2014), with regular consumption of black tea suggested to dose-

dependently improve endothelial function in conduit vessels in healthy males (Duffy et al., 2001; 

Hodgson et al., 2002; Hodgson et al., 2005; Grassi et al., 2009b; Schreuder et al., 2014). Similar benefits 

of tea ingestion on endothelial function have also been observed in conduit vessels in both healthy 

individuals with mildly elevated serum cholesterol and triglycerides (Hodgson et al., 2002) and in those 

with CVD (Duffy et al., 2001). However, to date, no previous study has robustly explored whether 

beneficial effects of tea are also apparent in smaller vessels, e.g., the skin microcirculation.  
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The microcirculation represents an important vascular bed in the pathogenesis of many 

cardiometabolic diseases and acts as a surrogate for generalised vascular function (Holowatz et al., 

2008). Furthermore, valuable insight into the mechanisms associated with vascular function can be 

gained by assessment of microvascular function. The cutaneous microcirculation, therefore, presents 

an easily accessible site to detect changes in function following dietary interventions, e.g., tea 

ingestion, that may be representative of other vascular beds. Microvascular integrity can be assessed 

through non-invasive methods, with local skin heating increasingly used in conjunction with laser 

imaging techniques, such as laser Doppler flowmetry (LDF), to evaluate skin blood flow (SkBF) 

responses. Currently, several local heating protocols are used to assess cutaneous microvascular 

function (Minson et al., 2001; Black et al., 2008b; Choi et al., 2014), with variations in the rate of skin 

heating and plateau temperature presenting differences in the contribution of the vasodilator 

pathways in the local heating response. Such protocols are, therefore, useful in achieving an insight 

into the distinct dilator pathways involved in intervention studies, such as tea. However, the 

comparable reproducibility of the various local heating protocols is unknown. Therefore, aim 1 of this 

thesis was to simultaneously determine the inter-day reproducibility of four commonly used local 

heating protocols for assessing cutaneous microvascular function. Upon establishing the 

reproducibility of these protocols, appropriate protocols were selected to fulfil aim 2 of this thesis, 

which was to examine the acute (2-hour) cutaneous vascular responses to local skin heating following 

ingestion of black tea in a healthy adult population.  

 

The negative consequences of poor lifestyle behaviours are well documented, with modern lifestyles 

typically characterised by low levels of daily energy expenditure and high fat, high calorie diets that 

are strongly associated with long-term cardiometabolic disease risk (Hennig et al., 2001). In addition 

to the vascular effects of tea, regular intake of tea is also associated with a lower risk for developing 

diabetes (Iso et al., 2006; Stote & Baer, 2008; Jing et al., 2009; Park et al., 2014). The mechanisms for 

a potential positive relationship between tea ingestion and diabetes are unclear and have not been 
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thoroughly examined in humans. Acute studies have observed a reduction in postprandial insulin 

following a single dose of black tea in both insulin-resistant (Fuchs et al., 2016) and healthy individuals 

(Bryans et al., 2007). Findings from in vitro and animal models are suggestive of tea influencing glucose 

metabolism through mechanisms such as enhanced insulin sensitivity although, to date, limited 

human trials have been performed, particularly with green tea. Furthermore, no previous work has 

investigated the simultaneous effects of tea on glucose handling, insulin sensitivity and vascular 

function using a Western lifestyle model, characterised by inadequate physical activity and excessive 

caloric intake. Therefore, aim 3 of this thesis was to examine the effect of daily green tea consumption 

(equivalent to 6 cups/day) on changes in peripheral vascular function and glucose handling after a 7-

day ‘unhealthy’ lifestyle combining physical activity reduction and overfeeding in healthy males.  

 

Flavonoids are also suggested to help maintain and even improve cognitive function, possibly via 

improved vascular function and glucose metabolism (Mastroiacovo et al., 2015). To date, limited 

research has been undertaken exploring the acute and chronic effects of flavonoids on 

cerebrovascular function. Cocoa-derived flavanols have demonstrated increased cerebral blood flow 

(CBF) both acutely (Francis et al., 2006; Lamport et al., 2015) and following regular (1-12 weeks) 

ingestion (Fisher et al., 2006; Sorond et al., 2008a; Brickman et al., 2014). Despite tea being the major 

source of dietary flavonoids for much of the global population, only one study has examined the effect 

(acute) of tea on CBF which concluded that caffeine was responsible for tea-induced decreases in 

steady-state CBF and potentially masked any flavonoid related changes in CBF (Vidyasagar et al., 

2013). A study of the isolated flavonoid epigallocatechin gallate (EGCG) that is abundant in tea was 

equivocal (Wightman et al., 2012). Epicatechin is also a natural compound that is present in both tea 

and cocoa, and has exhibited improved peripheral vascular function (Dower et al., 2016b). 

Furthermore, (-)-epicatechin has also demonstrated a protective effect on transient ischaemia-

induced brain injury in mice (Shah et al., 2010), suggesting that it may have a beneficial impact on the 

cerebrovasculature. Given the encouraging findings of cocoa-derived flavanols on CBF and the role 
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that (-)-epicatechin is suspected to play in tea/flavanol-induced acute improvements in vascular 

function (Dower et al., 2016b), aim 4 of this thesis was, therefore, to examine the effect of acute oral 

(-)-epicatechin ingestion on cerebrovascular function in healthy adults.  

 

In summary, evidence suggests that acute and chronic tea ingestion may be beneficial for 

cardiovascular health in humans. However, the effects of tea on microvascular function and 

cerebrovascular function are not yet understood. Furthermore, given that the limited previous 

research suggests that tea has a positive influence on vascular function and glucose handling and that 

poor lifestyle behaviours are shown to have a detrimental impact upon cardiovascular health, further 

investigation is warranted to determine whether tea ingestion may contribute to the 

amelioration/prevention of vascular and metabolic impairments induced by an unhealthy lifestyle. 

Therefore, the overarching aim of this thesis was to explore the impact of tea ingestion on peripheral 

and cerebral micro- and macrovascular function in humans.  

Aims  

The aims of this thesis were to:  

1. Simultaneously determine the inter-day reproducibility of four commonly used local heating 

protocols for assessing cutaneous microvascular function.  

2. Examine the acute (2-hour) cutaneous vascular responses to local skin heating following 

ingestion of black tea in a healthy adult population.  

3. Explore the changes in peripheral (conduit artery and skin microvessels) and cerebrovascular 

function and insulin sensitivity after a 7-day metabolic challenge or ‘unhealthy’ lifestyle, 

combining physical activity reduction (-50% steps per day) and overfeeding (+50% kcal per 

day, comprising 65% fat) in healthy male participants.  
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4. Examine the effect of acute oral (-)-epicatechin ingestion on cerebrovascular function in 

healthy adults. 
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2.1 Microvascular Function  

The cardiovascular system is a complex, interrelated organ system that forms an efficient delivery 

network for cellular nutrition and removal of metabolic waste products, gaseous exchange and 

hormonal transport, in addition to being a key regulator of homeostasis for body temperature, pH 

balance, hydration and blood pressure (Smith & Fernhall, 2011). In order to achieve these vital 

functions, however, the cardiovascular system must closely interact with other major systems, 

particularly the respiratory, neural, endocrine, digestive, skeletal, urinary and integumentary systems. 

In this regard, the vascular tree, particularly the microvasculature, is integral in providing an extensive 

transport network of vessels to serve each of these systems as a site to facilitate exchange of 

macromolecules and fluids, in addition to responding to various mechanical forces and chemical 

signals concerned with homeostasis via thermoregulatory mechanisms (Johnson, 2011).  

 

The microvasculature encompasses the smallest resistance vessels (<15 µm in diameter) embedded 

within all human tissues and organs, consisting of terminal arterioles, capillaries and venules (Levy et 

al., 2001; Roustit & Cracowski, 2013). Given the large surface area of these vessels, the 

microcirculation, therefore, consists of a large proportion (>95%) of the body’s vascular endothelium, 

a squamous epithelial layer that lines the inner surface of all blood vessels and is critical in maintaining 

vascular homeostasis (Deanfield et al., 2007; Hewett, 2009). Optimal microvascular function is 

essential for organ systems to function effectively, from the brain, eyes, kidneys, heart, muscle and 

adipose tissue to the skin. The cerebral microcirculation, for example, serves a pivotal role in 

homeostatic control to enable adequate central nervous system function. Precise regulation is 

required due to the brain’s high metabolic rate and its limited capacity for energy storage, which is 

achieved through a combination of complex endothelial, myogenic, metabolic and neural regulatory 

mechanisms (Willie et al., 2014; Phillips et al., 2016).  
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The microcirculation continues to receive widespread attention for its contribution towards overt 

cardiovascular disease and type 2 diabetes (Jaap et al., 1994; Wiernsperger, 2000; Nguyen et al., 2007; 

Sprague & Ellsworth, 2010). Considered a transitional stage between diet-induced obesity and insulin 

resistance (de Boer et al., 2012; Houben et al., 2012), microvascular dysfunction is characterised by 

structural and functional changes to the microvasculature that largely arise from impaired endothelial 

function. A healthy endothelium is essential for maintaining overall vascular health and as a major 

regulator of vascular homeostasis, the endothelial monolayer is crucial in maintaining the balance 

between vasodilation and vasoconstriction (Sena et al., 2013). Endothelium-derived chemical 

mediators are central to this regulated equilibrium, with any disturbance leading to endothelial 

dysfunction and the associated pathological processes of cardiovascular and metabolic diseases 

(Bonetti et al., 2003; Avogaro et al., 2011; Sena et al., 2013). Microvascular dysfunction often precedes 

microvascular complications and (macro)vascular dysfunction in larger vessels that subsequently leads 

to pathological interactions and the development of both small and large vessel disease (Krentz et al., 

2007), such as atherosclerosis and other plaque-related problems including stenosis and ischaemic 

vascular disease. Furthermore, microvascular degeneration with advancing age is associated with 

cerebrovascular disease, such as stroke arising from microbleeds (Nishimura & Schaffer, 2013) and 

Alzheimer’s disease (Farkas & Luiten, 2001). Cerebral hypoperfusion leads to increased systemic blood 

pressure as a compensatory mechanism to ensure that the brain tissue receives enough oxygen and 

nutrients in order to function adequately (Qin et al., 2008). This compensation can lead to the 

development of systemic cardiovascular disease, such as essential hypertension, and demonstrates 

how local changes can impact systemic cardiovascular health.  

   

Microvascular beds are thought to exhibit detectable changes in endothelial (dys)function earlier than 

macrovessels (Levy et al., 2001; Bonetti et al., 2003; Minson, 2010; Sena et al., 2013) and can provide 

an insight into the mechanisms underlying these disease states. The cutaneous microcirculation is 
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primarily concerned with thermoregulation and to a lesser extent, fulfilling nutritive demands, and 

represents an easily accessible vascular bed that may be used as a surrogate for generalised vascular 

function (Holowatz et al., 2008).  

2.1.1 The Skin  

The skin represents a crucial component of human thermoregulation and is a highly specialised 

vascular network that is organised into two plexuses within the dermis, in the superficial and deep 

layers which run parallel to the surface of the skin (Johnson et al., 2014). The majority of vessels, 

consisting of papillary loops (true capillaries), high-resistance terminal arterioles and post-capillary 

venules, are located in the superficial papillary dermis, 1-2 mm beneath the epidermal surface (Figure 

2.1). The papillary loops are a major determinant for heat exchange, being located in close proximity 

to the dermal-epidermal junction where there is a high thermal gradient due to a large surface area 

and high blood flow from the vessels (Charkoudian & Stachenfeld, 2014; Johnson et al., 2014). Highly 

innervated arterioles control blood flow through the papillary loops, consisting of a lining of 

endothelial cells encircled by a dual layer of vascular smooth muscle cells. A second vascular plexus is 

located at the dermal-subdermal junction, where the vessels are typically greater in diameter than 

those of the upper plexus, with 4-5 layers of vascular smooth muscle (Johnson et al., 2014). At this 

lower plexus, ascending arterioles connect to the upper plexus, hair follicles and sweat glands.  
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Figure 2.1 Cross-section of the cutaneous membrane and subcutaneous components, comprising of a 
superficial layer, a relatively thin epidermis and a thicker, deeper dermis. The subcutaneous layer, 
deep to the skin, attaches the dermis to underlying tissues and organs. The dermis contains the nerves, 
smooth muscle and sweat glands.  

 

Despite the plexus and papillary loop arrangement being consistent, anatomical differences exist 

between regions. In the glabrous (non-hairy) skin of the palms, lips and plantar aspect of the feet, 

arteriovenous anastomoses (AVAs) bypass the resistance vessels, directly connecting the arterioles 

and venules (Johnson et al., 2014). The AVAs are richly innervated by sympathetic adrenergic fibres 

and possibly also by cholinergic fibres. As AVAs have a smaller surface area and lie deeper in the dermis 

than papillary loops, they are less efficient for thermoregulation (Johnson et al., 2014). Non-glabrous 

(hairy) skin of the limbs, head and trunk is largely governed by dual sympathetic neural control through 

noradrenergic vasoconstrictor and cholinergic or sympathetic vasodilator mechanisms (Charkoudian, 

2003; Cable, 2006; Kellogg, 2006; Johnson et al., 2014), in addition to local effectors, such as 

endothelial release of nitric oxide (NO). During normothermic conditions, sympathetic vasoconstrictor 

nerves are tonically active and emit little neural stimulation to the cutaneous arterioles (Kellogg, 

2006). Under cold stress or subtle changes in ambient temperature, however, increased noradrenergic 

vasoconstrictor tone mediates a thermoregulatory reflex to conserve body heat via arteriolar 

vasoconstriction and a subsequent reduction in skin blood flow (SkBF) (Kellogg, 2006; Johnson et al., 



14 
 

2014).  Conversely, during mild heat stress, small variations in both vasoconstrictor and vasodilator 

activity are responsible for controlling SkBF via a passive vasodilation that provides large changes in 

heat dissipation from relatively small changes in SkBF (Charkoudian & Stachenfeld, 2014). Any 

remaining sympathetic vasoconstrictor tone is released, following which the vasodilator system 

prevails, largely via cholinergic nerves and co-transmitters (Kellogg, 2006; Johnson et al., 2014). 

However, the vasodilatory pathways underpinning cutaneous hyperaemic responses to local skin 

heating differ and involve locally controlled mechanisms.  

2.1.2 Local Control of Skin Blood Flow – Neural Mechanisms  

The cutaneous response to local heating involves complex interactions involving neural and 

chemically-mediated mechanisms (Figure 2.2) that are dependent upon local skin temperature and 

are independent of one another (Minson et al., 2001). Vasoconstrictor responses are mediated by an 

axon reflex mechanism and feature prominent roles for noradrenaline and neuropeptide-Y, which 

have been extensively reviewed (Johnson et al., 2014). The hyperaemic vasodilatory response to non-

painful local heating of non-glabrous skin typically induces a biphasic response that is characterised 

by an early, transient peak predominantly mediated by neural factors (Minson et al., 2001; Johnson 

et al., 2014). The peak is succeeded by a brief nadir and a more prolonged secondary increase in SkBF 

to a plateau that is predominantly mediated by locally produced chemical factors (Minson et al., 2001; 

Johnson et al., 2014). Sustained heating at the plateau eventually returns SkBF towards baseline, 

resting levels, despite the continuation of local heating, thereby suggesting limited bioavailability of 

the local chemical messengers that are involved in cutaneous vasodilation. The rate of local skin 

heating influences the vascular mechanisms underlying the vasodilatory response, with more 

prolonged heating (e.g. 0.1°C per min) producing a plateau without the early, transient peak (Johnson 

et al., 2014). Locally heating the skin to 42-44°C is considered to achieve maximal cutaneous 

vasodilation and allow SkBF to be normalised for comparison between measurement sites or subject 

groups (Kellogg et al., 1999; McCord & Minson, 2005; Minson, 2010; Johnson et al., 2014).  
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The neurogenic changes in SkBF of non-glabrous skin are mediated by local activation of afferent 

sensory nerves and sympathetic adrenergic nerves, with a greater portion arising from sympathetic 

influences (Carter & Hodges, 2011). Minson and colleagues (2001)  observed a 50% reduction in the 

initial peak SkBF response to local heating following topical nerve blockade. However, no effect on 

SkBF was observed following a nerve block proximal to the local heating site that sufficiently blocked 

all sensory afferent and sympathetic efferent activity, suggesting that no perception of heat was 

required from the central nervous system, rather activation of local sensory nerves via an axon reflex 

was required for vasodilation. NO contributes towards the sensory nerve component of local skin 

heating and studies have demonstrated an absent (Hodges et al., 2008) or delayed (Houghton et al., 

2006) axon reflex following blockade of nitric oxide synthase (NOS) with NG-nitro-L-arginine methyl 

ester (L-NAME). Further studies suggest a role for transient receptor potential vanilloid type 1 (TRPV-

1) channels substantially contributing to the initial peak and nadir, and more modestly the plateau 

phase, of the hyperaemic response through activation of the NO component of the axon reflex (Wong 

& Fieger, 2010). Release of the neuropeptide substance P and calcitonin gene-related peptide, which 

are co-localised in the nerve terminals in the skin (Wallengren, 1997), are also considered to play a 

role in sensory nerve-mediated cutaneous vasodilation, with substance P believed to be partially 

dependent on NO (Wong et al., 2005; Wong & Minson, 2006). However, there remains limited 

research regarding these agents and current theories are reviewed elsewhere (Johnson et al., 2014) 

so will not be duplicated in this literature review.  

 

Sympathetic adrenergic nerves also play a role in the local control of SkBF in response to local skin 

heating. Antagonism of vasoconstrictor nerve function demonstrated that the axon reflex is abolished 

(Houghton et al., 2006; Hodges et al., 2008, 2009) or reduced (Carter & Hodges, 2011; Tew et al., 

2011b; Hodges & Sparks, 2014; Del Pozzi & Hodges, 2015), suggesting that cutaneous vasodilation is 

affected by vasoconstrictor nerve function. Furthermore, in addition to abolition of the axon reflex, 
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the overall hyperaemic response was attenuated following blockade with bretylium tosylate, an 

adrenergic neuronal blocking agent (Houghton et al., 2006). Further studies support the role of 

sympathetic nerves in the hyperaemic response (Carter & Hodges, 2011; Tew et al., 2011b), with the 

neurotransmitters noradrenaline and neuropeptide Y being implicated in the initiation of the axon 

reflex and overall hyperaemic response (Hodges et al., 2008). However, in a three-part study, Hodges 

and Sparks (2014) examined whether the sustained vasodilatation following local skin warming 

involved noradrenaline, neuropeptide Y and/or NOS, concluding that NOS contributes markedly to the 

sustained vasodilatation, but that noradrenaline and neuropeptide Y have little, or no, contribution. 

Nevertheless, the adrenergic system is required for increased SkBF following local thermal 

hyperaemia, in addition to the sensory nerves and chemically-mediated component.  



17 
 

 

Figure 2.2 Summary of the mechanisms that contribute to local thermal hyperaemia. The top figure 
represents a typical skin blood flow response to rapid local heating to 42°C, featuring the initial (axon) 
peak, nadir and sustained vasodilation (plateau). The middle figure depicts the current theory of local 
heating during the initial peak, with the bottom schematic outlining the theory of vasodilation during 
the plateau phase, both presenting the pathways in the endothelium and smooth muscle. Taken from 
(Johnson et al., 2014).  
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2.1.3 Local Control of Skin Blood Flow – Chemical Mediators  

The temperature-dependent sustained plateau phase of the hyperaemic response is largely mediated 

by NO and endothelial derived hyperpolarisation factors (EDHFs) via hyperpolarisation of the vascular 

smooth muscle (Johnson et al., 2014). Generated from the amino-acid L-arginine by endothelial nitric 

oxide synthase (eNOS), NO is the endothelium’s most potent vasodilator, and is essential for optimal 

endothelial function (Maiorana et al., 2001; Di Francescomarino et al., 2009). As an endocrine 

vasoregulator, NO modulates blood flow within the microcirculation (Datta et al., 2004; Sena et al., 

2013) and the role of NO as a major contributor to local thermal cutaneous vasodilation has been 

reviewed extensively (Johnson et al., 2014). Kellogg and colleagues (1999) observed a ~50% reduction 

in SkBF following infusion of locally heated skin with the eNOS inhibitor L-NAME, findings which were 

similarly replicated in later studies (Minson et al., 2001; Gooding et al., 2006). ~60% of the sustained 

SkBF plateau phase following local heating is thought to be attributable to NO, with the remaining 

~40% being linked to EDHFs, although the precise pathways involved remain inconclusive (Brunt & 

Minson, 2011). Calcium-activated potassium (KCa) channels are important in cutaneous vasodilation 

for NO and EDHFs such as cyclooxygenase (Garland & Dora, 2017), in addition to prostacyclin which 

has been shown to modulate SkBF in healthy males (Fujii et al., 2016) and females (Fujii et al., 2017). 

Scientific knowledge and understanding of the complex chemically-mediated pathways involved in 

local cutaneous vasodilation remains largely inconclusive, although it is widely accepted that NO is a 

key mediator of cutaneous vasodilation and in maintaining optimal endothelial function.  

 

2.2 Macrovascular (Conduit Artery) Function 

Conduit arteries, or macrovessels, are typically >200 µm in diameter and are characterised by a thick 

tunica media that contains a large number of collagen and elastin filaments, in addition to a greater 

number of smooth muscle cells compared to other branches of the arterial tree, such as resistance 

vessels/arterioles and the cutaneous vessels (Figure 2.3). The contractile structure of the vessel wall 
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allows active vasodilation via sympathetic neural control or vasoactive chemical mediators, such as 

NO, released from the endothelium. Once regarded as a passive interface, the vascular endothelium 

is an important endocrine organ and a healthy endothelium is essential for maintaining overall 

vascular health, via anti-atherogenic properties that protect against inflammatory responses, smooth 

muscle cell proliferation and vasoconstriction (Davignon & Ganz, 2004). Numerous paracrine 

substances are released from the endothelium including NO, which is a lipid soluble gas that is 

synthesised in the endothelial cells from the amino acid L-arginine through the action of eNOS (Palmer 

et al., 1988). NO rapidly diffuses into the vascular smooth muscle of the tunica media, binding to and 

activating the enzyme guanylate cyclase (Ignarro et al., 1986), the resultant increase in cyclic 

guanosine monophosphate induces smooth muscle relaxation and subsequent vasodilation 

(Furchgott & Jothianandan, 1991; Green et al., 2004).  

   

Figure 2.3 The arterial tree, depicting the conduit artery through to the capillaries.  

 

NO is tonically secreted by the endothelium, contributing ~50% to basal vascular tone (Vallance et al., 

1989). Upregulation of NO can be physiologically stimulated by increased laminar blood flow and the 
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resulting shear stress, termed flow-dependent NO formation, or alternatively, NO is produced in 

response to various endothelial stimulators, such as acetylcholine. Whilst the shear stress induced 

endothelial mechanotransduction and signalling cascade leading to the secretion of NO is not entirely 

understood, it is thought that several mechanisms are involved. Increased arterial blood flow and 

shear stress reportedly induce endothelial potassium channel activation (Oleson & Johnson, 1988), 

calcium influx in endothelial cells (Dull & Davies, 1991), the release of bradykinin and/or 

phosphorylation of serine residue (Groves et al., 1995; Kuga et al., 1997), all of which are believed to 

enhance NO bioavailability. Other vasoactive substances are released by the endothelium and 

contribute to vasodilation, such as prostacyclin and EDHFs (Grabowski et al., 1985; Spilk et al., 2013), 

although these are suggested to have a more important role in the smaller arteries (Shimokawa et al., 

1996). NO bioavailability is commonly considered the hallmark of endothelial (dys)function (Davignon 

& Ganz, 2004; Sena et al., 2013) that is regarded as the starting point of progression towards overt 

CVD and is characterised by a reduced vasodilatory capacity, a proinflammatory and prothrombic 

state, resulting in an altered endothelial cell phenotype and intracellular signalling pathways (Suganya 

et al., 2016). NO-mediated vasodilator function is commonly assessed in vivo through the non-invasive 

technique of flow-mediated dilation (FMD), whereby an artery’s dilator response is measured in 

response to a reactive hyperaemia following a brief (5-min) period of artificial limb ischaemia. 

Impaired FMD responses are associated with future cardiovascular events in healthy (asymptomatic) 

individuals (Shechter et al., 2009; Inaba et al., 2010; Shechter et al., 2014), and FMD is therefore 

regarded as a surrogate marker of cardiovascular disease (Vita & Keaney, 2002; Gokce et al., 2003; 

Green et al., 2011; Mutlu et al., 2011).  

 

2.3 Cerebrovascular Function 

The regulation of cerebral blood flow (CBF) is critical for maintaining an adequate supply of oxygen 

and nutrients to the brain, particularly given the high metabolic rate of brain tissue and its limited 

capacity for substrate storage (Brown & Ransom, 2007; Willie et al., 2014). The brain occupies only 2-
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3% of total human body mass, yet the metabolic demand of the cerebral tissue is ~20% of the body’s 

total oxygen consumption (Bain et al., 2014). Substantial reductions in CBF, therefore, rapidly lead to 

unconsciousness (van Lieshout et al., 2003) and, if sustained, brain damage and death ensues (Smith 

et al., 2011). Furthermore, decreases in steady-state CBF (Parkes et al., 2004; Bertsch et al., 2009), 

blunted task-specific CBF increases (Sorond et al., 2008b) and accentuated reductions in CBF 

contribute towards impaired cognitive function and cerebrovascular disease, such as in dementia and 

aging (Farkas & Luiten, 2001; Farkas et al., 2002; Ruitenberg et al., 2005a; Schuff et al., 2009; Spencer, 

2009). The control of CBF involves multiple integrated regulatory mechanisms, with the principle 

regulators involving arterial blood gases, such as the partial pressure of arterial carbon dioxide (PaCO2), 

mean arterial pressure (MAP), cerebral metabolism and the autonomic nervous system (Figure 2.4) 

(Willie et al., 2014).  

 

 

Figure 2.4 A schematic of the primary mechanisms responsible for control of cerebral blood flow (CBF). 
ABP, arterial blood pressure; CBV, cerebral blood volume; CPP, cerebral perfusion pressure; CSF, 
cerebrospinal fluid; ICP, intracranial pressure; PaCO2, partial pressure of arterial carbon dioxide. Taken 
from (Ainslie & Duffin, 2009).  
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2.3.1 Partial Pressure of Arterial Carbon Dioxide (PaCO2)  

Brain perfusion is highly sensitive to changes in PaCO2, with a ~3-6% increase and/or a ~1-3% decrease 

in flow per mmHg change in CO2 above and below eupnoeic PaCO2 (Willie et al., 2012; Skow et al., 

2013; Willie et al., 2014). The entire cerebrovasculature is sensitive to changes in blood gases, with 

the pial arterioles considered to modulate resistance. In response to increased PaCO2, CBF increases 

following smooth muscle relaxation and dilatation of the vessels, whereas a reduction in PaCO2, or 

hypocapnia, results in a decrease in CBF through increased cerebrovascular resistance (Kety & 

Schmidt, 1948; Wasserman & Patterson, 1961). The entire cerebrovascular arterial tree is vasoactive, 

with the arteries of the head and neck also being sensitive to changes in blood gases and perfusion 

pressure (Willie et al., 2012). The precise mechanism underlying CO2 regulation is uncertain, but 

appears to be independent of arterial pH as CBF was unchanged following metabolic acidosis and 

alkalosis (Lambertsen et al., 1961; Harper & Bell, 1963), whereas changes in arteriolar diameter were 

induced by manipulation of extracellular pH (Wahl et al., 1970; Kontos et al., 1977). The likely 

mechanism, therefore, relates to CBF regulation via a change in extracellular pH, such as the 

cerebrospinal fluid, induced by diffusion of CO2 molecules across the cerebrovascular blood-brain 

barrier. The subsequent lowering or elevation of extracellular pH thus alters the vascular smooth 

muscle tone to induce relaxation or contraction, respectively (Lambertsen et al., 1961; Harper & Bell, 

1963; Lassen, 1968). Metabolic regulation of CBF also involves local mechanisms, with local cerebral 

perfusion being tightly coupled to local neural metabolism due to the anatomical and metabolic 

relationship between elements of the neurovascular unit, such as the neurons, glial cells and 

microvasculature (Willie et al., 2014). The mechanisms related to neurovascular coupling and arterial 

blood gases have been thoroughly reviewed by Willie and colleagues (2014) .  

2.3.2 Cerebral Autoregulation  

Steady-state CBF reportedly remains relatively stable across a range of blood pressures, requiring 

reflex adjustments in cerebrovascular resistance concomitantly with fluctuations in blood pressure to 

maintain adequate blood flow (Lassen, 1959; Paulson et al., 1990). This physiological mechanism is 
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termed cerebral autoregulation (van Beek et al., 2008; Willie et al., 2014). Current within-subject in 

vivo data suggests that the CBF-MAP relationship is not stable through a broad range of pressures and, 

furthermore, is dependent upon the severity and direction of change in perfusion pressure (Willie et 

al., 2014). Experimentally, ‘static’, or steady-state, cerebral autoregulation has been examined to 

observe the relationship between CBF and MAP, with ‘dynamic’ cerebral autoregulation introduced 

to explore the pressure-flow relationship during transient changes in MAP, such as those induced by 

changes in posture or when coughing (Willie et al., 2014). Pial arterioles, larger intracranial arteries 

and the large conduit vessels in the neck are considered to contribute to cerebrovascular resistance 

and regulation of CBF, with studies demonstrating a change in carotid artery diameter in response to 

changes in PaCO2 and PaO2 (Wilson et al., 2011; Willie et al., 2012). Blood pressure is critical for cerebral 

autoregulation and CBF, with elevated PaCO2 and hypoxia impairing the capability of the brain, 

rendering it unable to defend against changes in blood pressure (Tzeng et al., 2012).  

2.3.3 Autonomic Control 

Although the precise mechanisms remain poorly understood, neurogenic control is important in 

autoregulation of the cerebrovasculature, which is richly innervated by adrenergic and cholinergic 

fibres. A higher proportion of longitudinal nerve bundles are found in the extracranial arteries, 

whereas the intracranial vessels possess a greater total density of perivascular nerve fibres and neuron 

terminals (Borodulya & Pletchkova, 1973, 1976; Bleys et al., 1996). In a series of studies, summarised 

by Willie and colleagues (2014), CBF was observed to increase following ganglionectomy in humans, 

suggesting sympathetic nerve involvement in CBF regulation, with animal models observing that this 

is most important in buffering changes in blood pressure and predominantly involves the larger 

arteries. Impaired cerebral autoregulation in healthy humans has been demonstrated following 

sympathetic nervous system blockade (Zhang et al., 2004), although the systemic effects of the 

blockade on the peripheral vasculature are difficult to dissociate from any direct effects on cerebral 

autoregulation (Willie et al., 2014). This is also true of the relationship between the sympathetic 

nervous system and the response of the cerebrovasculature to changes in arterial blood gases, with 
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human studies reporting inconsistent data. Unchanged CO2 reactivity was demonstrated following 

augmented sympathetic nerve activity to lower-body negative pressure (LeMarbre et al., 2003) and 

hand grip exercise (Ainslie et al., 2005), yet other studies have reported attenuation to lower-body 

negative pressure (Zhang et al., 2011) and ganglionic blockade (Jordan et al., 2000). The contribution 

of cholinergic nerves to CBF control also remains equivocal, with very few studies performed to date 

in humans or in animal models, as reviewed elsewhere (Willie et al., 2014).  

 

In summary, current literature supports integrated regulation of CBF control through multiple 

mechanisms that remain incompletely understood, as previously discussed. However, the lack of 

understanding of some of the mechanisms involved, such as autonomic control, is partly due to the 

assessment techniques used to quantify changes in CBF. Use of a vasoactive stimulus to challenge the 

cerebrovascular system is one such method. Termed cerebrovascular reactivity (CVR), this technique 

measures the change in CBF per change in vasoactive stimulus (Fierstra et al., 2013). CVR studies 

currently use various stimuli, such as CO2, and methods of measuring CBF, including transcranial 

Doppler ultrasound (TCD) and blood oxygen-dependent magnetic resonance imaging (BOLD-MRI). 

However, since the variety of stimuli and measurement techniques used do not allow accurate 

comparison of CVR between individuals, meaningful interpretation of data can be difficult. The 

cerebrovasculature is, therefore, critical for CBF regulation but provides many challenges with 

accurate assessment of its function.  

 

2.4 Metabolic Function: Insulin/Glucose 

Metabolic homeostasis is closely interrelated with cerebrovascular and peripheral vascular function, 

with disrupted signalling pathways leading to insulin resistance and endothelial dysfunction. Glucose 

homeostasis is mediated by several hormones including insulin, glucagon, cortisol, catecholamines, 

growth hormone and incretins (Xiang et al., 2011). Insulin is secreted from the pancreatic β cells and 
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regulates glucose homeostasis via disposal of glucose in skeletal muscle and adipose tissue 

(Muniyappa et al., 2008). Furthermore, insulin is also a key vasoactive hormone in the regulation of 

cerebral and peripheral blood flow (Hughes & Craft, 2016), and is pivotal in coordinating metabolic 

and vascular homeostasis (Muniyappa et al., 2007). Under normal conditions, insulin stimulates NO 

production from the vascular endothelium via activation of eNOS and the phosphatidylinositol-3-

kinase (PI-3K) pathway, which further facilitates glucose uptake via increased tissue perfusion 

(Muniyappa et al., 2008; Olver et al., 2013). However, impaired insulin sensitivity or insulin resistance, 

typically defined as reduced sensitivity or responsiveness to insulin and its metabolic actions, such as 

insulin-mediated glucose disposal, causes an accumulation of glucose in the bloodstream 

(hyperglycaemia) (Wheatcroft et al., 2003; Kim et al., 2006; Muniyappa et al., 2008; Sena et al., 2013). 

Consequently, a greater amount of insulin is required to allow glucose to enter the cells. However, the 

pancreatic β cells are unable to fulfil the increased demand for insulin indefinitely and cannot produce 

adequate quantities to overcome resistance, leading to diabetes. Whereas the etiopathogenesis of 

type I diabetes involves autoimmune destruction of the pancreatic β cells, resulting in inadequate 

insulin production and an accumulation of glucose in the bloodstream, type 2 diabetes is characterised 

by insulin resistance and endothelial dysfunction that is widely linked to environmental factors, such 

as physical inactivity and obesity (Kim et al., 2006).  

 

Increased CVD risk is associated with disrupted metabolic function, with hyperinsulinaemia, as seen 

when increased quantities of insulin are secreted in response to glucose accumulation, associated with 

down-regulation of eNOS and an imbalance in both the mitogen-activated protein kinase (MAPK) and 

PI-3K pathways (Muniyappa et al., 2008). Excessive levels of circulating insulin subsequently 

contribute towards morphological maladaptation of the vessel wall due to cellular hypertrophy and 

an altered extracellular matrix (Maria Assunta et al., 2009). Furthermore, hyperglycaemia-induced 

vascular damage exhibits reduced NO bioavailability, increased reactive oxygen species and harmful 
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metabolites, impaired endothelial-dependent vasodilation, increased proliferation and matrix 

degradation (Sena et al., 2013). Such damaging effects are largely caused by endothelial dysfunction 

arising as a consequence of an accumulation of glycolytic intermediates through inhibition of 

glyceraldehyde-3-phosphate dehydrogenase activity, a glycolytic enzyme (Sena et al., 2013; Suganya 

et al., 2016). Harmful mechanisms are subsequently activated, including protein kinase C (PKC) 

isoforms, advanced glycation end products (AGEs) and the sorbitol and hexosamine pathways (de 

Vriese et al., 2000; Sena et al., 2013). Given the reciprocal relationship between metabolic function 

and cardiovascular health, greater emphasis is increasingly being placed upon establishing corrective 

strategies for postprandial hyperglycaemia in the treatment and prevention of CVD, with use of 

overfeeding experiments, or metabolic challenges, providing an insightful tool in unravelling the 

physiological adaptations to caloric excess.  

 

2.5 Effects of a Metabolic Challenge/Overfeeding on CVD Risk  

Human studies are increasingly exploring the effects of Western sedentary lifestyles upon metabolic 

health, which are typically observed using overfeeding and/or inactivity models that mimic short- to 

medium-term periods of energy surplus, lasting from a single meal to several days or weeks. Such 

models are representative of holiday or celebratory periods, when otherwise healthy individuals 

adopt different dietary and activity patterns compared to their habitual lifestyle (Cornier et al., 2006). 

Previous models for inducing changes in insulin resistance level have involved complete bed rest and 

extreme step reduction (>10,000 to <1,500 steps/day), although such models are difficult to 

implement and are not representative of modern sedentary lifestyles that also typically involve high 

calorie dietary intake.  

 

Short-term (<7-days) overfeeding interventions have induced transient insulin resistance, without 

modifying activity levels. Whole-body insulin resistance was observed in lean ‘obese-resistant’ females 
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following 3-days of 50% overfeeding (50% carbohydrate, 30% fat, 20% protein), with no difference 

observed in lean males (Cornier et al., 2006). However, Adochio and colleagues (2009) observed no 

change in whole-body insulin sensitivity following 5-days of 40% caloric excess in healthy, lean adults. 

Nevertheless, this study observed distinct differences in insulin sensitivity according to the 

macronutrient composition of the overfeed. High carbohydrate (20% fat, 60% carbohydrate, 20% 

protein) overfeeding was associated with changes in ex-vivo skeletal muscle signalling compatible with 

increased insulin sensitivity, suggestive of enhanced glucose disposal that maintained whole-body 

insulin sensitivity. In contrast, the same study also found ex-vivo molecular changes in keeping with 

reduced insulin sensitivity following high fat (50% fat, 30% carbohydrate, 20% protein) overfeeding 

(Adochio et al., 2009). Further studies have also observed deleterious effects of high fat overfeeding. 

In a randomised, crossover trial in young, healthy males, 5-days of high fat (60% fat, 32.5% 

carbohydrate, 7.5% protein) overfeeding with 50% extra calories, a 26% increase in fasting hepatic 

glucose production was observed, with a borderline increase in fasting insulin (Brons et al., 2009). 

Following 7-days of high fat (65%) overfeeding (+50% calories), a significant increase in postprandial 

glucose and insulin was observed following a mixed meal tolerance test in healthy adults (Parry et al., 

2017). Increased fasting insulin and glucose was induced following 8-weeks of overfeeding (+40% 

calories) in young, healthy adults who followed either a low protein (59% fat, 36% carbohydrate, 5% 

protein), normal protein (49% fat, 36% carbohydrate, 15% protein) or high protein (39% fat, 36% 

carbohydrate, 25% protein) diet in a randomised, parallel-arm study (Bray et al., 2016). No significant 

between-group differences were observed, although the group who consumed the low protein diet, 

that comprised a greater proportion of fat (59%), exhibited a greater increase in body fat (%) at 8-

weeks. It is apparent from these findings that macronutrient composition in overfeeding studies may 

affect metabolic pathways and energy storage, with higher fat content in particular seeming to exhibit 

greater changes in insulin resistance.  
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Medium-term overfeeding has also demonstrated impaired metabolic function. Tam and colleagues 

(2010) observed an 11% reduction in insulin sensitivity in healthy adults following 28-days of 

overfeeding (+1250 kcal/day; 45% fat, 15% protein, 40% carbohydrate). Compared to baseline, 

peripheral insulin sensitivity decreased following 28-days of overfeeding in healthy, non-obese, 

sedentary adults, with a concomitant increase in oxidative stress that may have contributed towards 

the insulin resistance (Samocha-Bonet et al., 2012). A further 28-day overfeeding (+1250 kcal/day; 

45% fat, 15% protein, 40% carbohydrate) study in healthy adults demonstrated reduced insulin 

sensitivity, together with serum lipid changes and increased circulating ceramides that may promote 

systemic insulin resistance (Heilbronn et al., 2013).  

 

Diets high in fat and/or carbohydrate are strongly associated with long-term cardiometabolic risk 

(Hennig et al., 2001; Liu & Manson, 2001), although few studies have examined the effect of 

overfeeding on vascular function. Gupta and colleagues (2013) demonstrated a significant increase in 

CVD risk following 8-weeks of overfeeding (1.4 times habitual calorie consumption, comprising 44% 

fat, 41% carbohydrate, 15% protein) in healthy adults, that resulted in increased body fat, visceral 

adipose tissue mass, insulin resistance, systemic inflammation, BP disturbance and endothelial 

dysfunction (measured by EndoPAT). Consumption of a habitually high fat versus low fat (≥35% and 

<35% of total calories, respectively) diet was associated with impaired NO-mediated endothelium-

dependent vasodilation in sedentary adults (aged 43-67 years), assessed via 4-day dietary records and 

forearm blood flow responses to acetylcholine via strain-gauge venous occlusion plethysmography, 

respectively (Dow et al., 2015). Impairment in endothelial function has also been observed in healthy 

adults 2-4 hours following a single high fat meal (Vogel et al., 1997; Bae et al., 2001; Tsai et al., 2004). 

Such changes in endothelial function are largely attributed to reductions in NO bioavailability (Bae et 

al., 2001; Tsai et al., 2004).  

 



29 
 

Despite a lack of studies examining the effects of overfeeding on changes in vascular function per se, 

the effects of habitual overfeeding following long-term caloric excess and subsequent obesity have 

been established. Obesity represents a state of energy imbalance, whereby increased energy intake, 

or nutrient excess, is coupled with disproportionally low levels of physical activity (Cuthbertson et al., 

2017). Excess carbohydrate, above the 300-500g typically stored as glycogen, is oxidised or converted 

to triglyceride that is predominantly stored within adipose tissue, a largely infinite storage facility 

(Cuthbertson et al., 2017). Endothelial dysfunction arising from obesity is suggested to precede the 

development of insulin resistance (Suganya et al., 2016), with attenuated NO production and 

increased vasoconstrictor tone contributing towards blunted endothelium-dependent vasodilation 

(Okon et al., 2005). Human studies have observed impaired insulin action in dilating resistance vessels 

(Laakso et al., 1990) and in increasing the elasticity of conduit arteries (Westerbacka et al., 1999) in 

obese versus lean males. Furthermore, Clerk and colleagues (2006) demonstrated that forearm 

microvascular responses to insulin were severely blunted in otherwise healthy obese versus lean 

individuals, suggesting that obesity is associated with generalised endothelial dysfunction throughout 

the vascular tree. Such obesity-related impairments in endothelial function are likely caused by 

mechanisms related to inflammatory processes in combination with hyperglycaemia and insulin 

resistance, whereby NO bioavailability is reduced secondary to increased oxidative stress production 

(Lantorno et al., 2014; Virdis, 2016). Furthermore, obesity-induced impairments in microvascular 

function are linked to increased peripheral resistance and elevated BP (de Jongh et al., 2004; Jonk et 

al., 2007). Disrupted intracellular and endocrine signalling pathways are the likely cause of obesity-

related microvascular dysfunction, of which the renin-angiotensin system is thought to play a 

prominent role (Jonk et al., 2007). Several comprehensive reviews (Jonk et al., 2007; de Boer et al., 

2012; Houben et al., 2012) have been published focusing on microvascular dysfunction and its 

association with obesity, insulin resistance and the potential causal mechanisms.  
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2.6 Effects of Underactivity on CVD Risk  

Physical inactivity represents a major independent risk factor for CVD, with approximately one-third 

of the global population failing to meet the minimum physical activity required for the maintenance 

of health (Hallal et al.). Largely due to technological advances and a greater increase in more sedentary 

occupations, physical inactivity is an increasing characteristic of modern Western lifestyles that 

contributes towards a positive energy balance when combined with excess caloric intake. Methods 

used to examine the impact of inactivity on cardiovascular health include complete bed rest, space 

travel or simulated microgravity, lower limb immobilisation, assessment of individuals with spinal cord 

injury and step-reduction models. However, bed rest is an extreme model of physical inactivity that is 

limited in its approach as it causes a reduction in plasma volume (Gaffney et al., 1985; Convertino et 

al., 1986; Fortney et al., 1991), in addition to failing to restrict upper limb movement (Bleeker et al., 

2005c). Short-term physical inactivity models (4-8 weeks) demonstrate no differences in BP, BMI or 

cholesterol (Bleeker et al., 2005a; Bleeker et al., 2005b; Bleeker et al., 2005c; Demiot et al., 2007; 

Thijssen et al., 2007), with direct effects of inactivity on the vasculature likely having a greater 

contribution towards increased CVD risk, although the evidence remains mixed. The different models 

used to explore the effects of physical inactivity upon CVD risk factors may, however, explain some of 

the conflicting outcomes reported in studies exploring both the acute and chronic vascular 

adaptations of inactivity.  

 

Bed rest deconditioning demonstrated enhanced brachial artery FMD after 7-days (Bonnin et al., 

2001), yet no change was observed following 5-days of bed rest in a study that also found a significant 

impairment in microvascular function, measured via forearm and calf reactive hyperaemia, in addition 

to elevated systolic BP and increased cholesterol, triglycerides, fasting insulin and glucose, consistent 

with the development of insulin resistance (Hamburg et al., 2007). The differences in conduit artery 

responses may be explained by methodological variation and lack of adherence to consensus 
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guidelines (Thijssen et al., 2011), or alternatively, may be due to upper limb movement being 

unrestricted and, therefore, the vessel remaining under the influence of shear stress. In line with this, 

following 60-days of bed rest, van Duijnhoven and colleagues (2010) observed a 24% decrease in 

superficial femoral artery diameter and a significant increase in wall thickness and the wall-to-lumen 

ratio, which were also observed in the carotid artery. These findings suggest that complete physical 

inactivity induces changes in vessel wall diameter, with conduit artery wall thickening considered a 

vascular marker for atherosclerotic development (Bots et al., 1994; Lorenz et al., 2007). Exercise 

countermeasures performed thrice weekly completely abolished the increase in wall thickness in the 

carotid artery, with partial abolition in the femoral artery (van Duijnhoven et al., 2010), thus 

demonstrating the impact of physical inactivity versus activity. Further studies examining endothelial 

function of the femoral artery, however, reported improved endothelial function following 25- and 

52-days bed rest (Bleeker et al., 2005c), unilateral lower limb immobilisation (Bleeker et al., 2005a), 

and in individuals with acute (de Groot et al., 2006) and chronic (de Groot et al., 2004; de Groot et al., 

2005) spinal cord injury. However, normalising the femoral artery FMD response for prevailing shear 

preserves (de Groot et al., 2004) or only slightly increases (de Groot et al., 2005) function compared 

to able-bodied controls. Upregulation of smooth muscle cell sensitivity to NO may also be responsible 

for the preservation of endothelial function in deconditioned conduit arteries, possibly arising in 

response to the chronic reduction in endothelial shear stress and subsequent down-regulation of 

eNOS, a possible explanation that is discussed in greater detail elsewhere (Thijssen et al., 2010).  

 

Step counting, via pedometers or accelerometers, provides a useful tool for monitoring physical 

activity levels and habitual patterns amongst the general public. Schmidt and colleagues (2009) 

reported a substantially higher prevalence of cardiometabolic risk factors, including metabolic 

syndrome, systolic BP, fasting glucose and triglycerides, in individuals taking <5,000 steps per day. 

Further studies reported similar findings, with an increased risk of metabolic syndrome associated 
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with lower step counts (Sisson et al., 2010) and a higher BMI, waist circumference and arterial stiffness 

in individuals with type 2 diabetes (Jennersjo et al., 2012). Compared to extreme inactivity models 

such as bed rest, step-reduction models offer a more suitable approach to investigate the effect of 

inactivity and more accurately reflect Western lifestyles. Significant reductions in peripheral insulin 

sensitivity, cardiovascular fitness and lean leg mass were observed following a 2-week self-monitored 

reduction in ambulatory activity to 1,500 steps per day in healthy, non-exercising males (Krogh-

Madsen et al., 2010). Mikus and colleagues (2012) observed significant postprandial increases in 

glucose following reduced physical activity (<5,000 steps per day) for 3-days in habitually active 

individuals. 5-days of step reduction (<5,000 steps per day) also demonstrated impaired glycaemic 

control and insulin sensitivity in healthy, young males, although there were no changes in vascular 

function, assessed as peak blood flow (mL/min) and conductance (calculated as peak blood flow/MAP) 

of the brachial and femoral arteries, measured via ultrasound (Reynolds et al., 2015).  

 

Combined overfeeding and step-reduction models more closely mimic lifestyle behaviours than 

models focusing on one component contributing towards an energy surplus, such as physical inactivity 

models of complete bed rest failing to account for dietary factors. To date, only a handful of studies 

have explored the combined impact of overfeeding and inactivity, that more closely represents a 

Western lifestyle, on metabolic and/or vascular function. Insulin resistance was observed following 3-

days of overfeeding (+25% calories) combined with abstinence from structured exercise in healthy, 

habitually active adults (Hagobian & Braun, 2006). A subsequent single bout of exercise, combined 

with overfeeding, restored insulin sensitivity to baseline levels, demonstrating the deleterious impact 

of inactivity. Following 14-days of overfeeding (+50% calorie intake) combined with step-reduction 

(≤1,500 steps per day), Knudsen and colleagues (2012) demonstrated impaired insulin sensitivity after 

just 3-days in young, healthy males who habitually undertook ~10,000 steps per day and consumed 

~2,000 calories per day. A more pronounced reduction in insulin sensitivity was observed after 7- and 
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14-days of the intervention, with impairment in insulin sensitivity preceding changes in body 

composition. More recently, hyperinsulinaemia, reduced insulin sensitivity and altered adipose tissue 

gene expression were observed following 7-days overfeeding (+50% calories) combined with 

restricted physical activity (≤4,000 steps per day) in heathy, habitually active males, in a randomised 

parallel group design (Walhin et al., 2013). The addition of a daily exercise bout to a matched model 

of overfeeding and reduced physical activity largely prevented these changes, again demonstrating 

the profound effect of exercise compared to inactivity. To date, however, no studies have specifically 

examined the combined effects of overfeeding and physical activity reduction on both metabolic and 

vascular function, despite the close interrelationship between the two.   

 

Whilst combined overfeeding and inactivity models offer a more realistic approach to represent 

habitual lifestyle behaviour, step-reduction targets may not necessarily have been universal for all 

study participants, potentially influencing individual responses. For example, a targeted step-

reduction to ≤1,500 steps per day represents a 70% reduction for an individual who is habitually 

completing 5,000 steps per day, whereas the same target for an individual completing 10,000 steps 

per day is a reduction of 85%. Such targets represent dramatic reductions to an individual’s activity 

level and, therefore, their lifestyle. Nevertheless, the combined experimental model offers a more 

realistic approach to examine the impact of lifestyle behaviours and interventions on cardiometabolic 

health.   

 

2.7 Dietary Flavonoids    

Flavonoids are characterised by two or more aromatic rings bound together by a 3-carbon bridge 

forming an oxygenated heterocycle, with the degree of oxidation generating further subclasses, in 

ascending order of oxidation: flavanols (often called catechins), flavanones, flavones, isoflavones, 

flavonols and anthocyanins (Figure 2.5) (Bravo, 1998; Beecher, 2003). Hydroxylation and conjugation 
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patterns of the aromatic rings further characterise the individual flavonoids and isoflavones within 

these subclasses (Beecher, 2003). Phenolic acids are the second most abundant polyphenol subclass, 

accounting for 30% of dietary polyphenols (Bravo, 1998). These can be categorised as hydroxybenzoic 

acids, as found in tea, and hydroxycinnamic acids which are found in coffee, cinnamon and fruits such 

as blueberries, apples and plums (Manach et al., 2004; Pandey & Rizvi, 2009). Lignans are diphenolic 

compounds formed of 2 phenylpropane units and are found in fruits, legumes, cereals and grains 

(Manach et al., 2004). Several lignans are regarded as phytoestrogens, such as secoisolariciresinol 

(Pandey & Rizvi, 2009) which is found in linseed (flax), the richest sources of lignans. Stilbenes are the 

final of the four polyphenol subclasses and are characterised by two phenyl moieties connected by a 

two-carbon ethylene bridge. Low quantities of stilbenes occur in the human diet, with resveratrol and 

pterostilbene considered the main ones. Resveratrol is the most widely known of the two and is found 

in grapes and its derivative red wine, as well as blueberries, cranberries and peanuts. Pterostilbene is 

also found in grapes and blueberries, and is suggested to have superior bioavailability compared to 

resveratrol, in addition to neuroprotective properties in age-related diseases (Chang et al., 2012). 

Epidemiological research has explored the effects of a variety of polyphenol-rich foods upon 

cardiovascular health, with a negative correlation identified between the consumption of polyphenol-

rich dietary products and CVD incidence (Arts & Hollman, 2005; Vita, 2005; Habauzit & Morand, 2012). 

Flavonoids are increasingly of scientific interest as they are present in a vast array of dietary sources, 

such as fruits and vegetables, cocoa and tea, with several studies revealing a strong, inverse relation 

between regular intake of tea and cardiovascular risk (Grassi et al., 2009b; Greyling et al., 2014).  
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Figure 2.5 Dietary polyphenol subclasses, their basic chemical structure and typical dietary sources. 
Taken from (Woodward et al., 2017).  

 

2.7.1 Tea  

Tea, produced from the plant Camillia sinesis, is the major source of dietary flavonoids in many 

countries globally (Yahya et al., 2016) and has long been associated with medicinal benefits. Tea is 

classified according to the fermentation process (Figure 2.6), where flavonoids present in the tea leaf 

are oxidised following the release of intracellular polyphenol oxidase. The four major types of tea are 

white tea which is produced from very young leaves and buds (not oxidised), green tea (non-

fermented), oolong tea (semi-fermented) and black tea (fully fermented) (Cabrera et al., 2006; Dwyer 

& Peterson, 2013). The associated health benefits of tea are attributed to its richness in polyphenolic 

compounds called flavonoids, which are found as flavan-3-ols (catechins) in green tea and theaflavins, 

thearubigins and flavonols in black tea (Hodgson & Croft, 2010; Yarmolinsky et al., 2015). Both green 

and black teas contain similar quantities of flavonoids, but differ in their chemical structure. The main 
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catechins present in green tea are epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate 

(ECG) and epigallocatechin-3-gallate (EGCG), the most abundant of which is EGCG (~59%) followed by 

EGC (~19%), ECG (~14%) and EC (~6%) (Cabrera et al., 2006). During fermentation of green to black 

tea, these catechins form dimers known as theaflavins, proanthocyandins and large oligomers and 

polymers called thearubigins (Dwyer & Peterson, 2013). However, the exact constituents within tea 

that are responsible for the reported improvements in cardiovascular health, along with their 

mechanisms of action, are unclear. Several biological actions of foods rich in flavonoids support the 

idea of a cardioprotective effect (Grassi et al., 2008a; Grassi et al., 2009a), with a direct impact of tea 

on the vasculature suggested as a cardioprotective mechanism, particularly its effects on the vascular 

endothelium (Grassi et al., 2008a; Grassi et al., 2009a; Ras et al., 2011), such as potentially improving 

the bioactivity of NO (Grassi et al., 2013a).  

 

Figure 2.6 Overview of the major tea classifications and summary of the manufacturing processes.  

 

2.7.2 Tea and Microvascular Function 

Few studies have examined the impact of tea ingestion on the cutaneous vasculature. Fuchs and 

colleagues (2016)  recently observed the ability of tea to prevent the increase in postprandial vascular 

resistance of forearm microvessels, assessed using near infra-red spectroscopy (NIRS), within 3-hours 

following 100 ml black tea in a single-blind, randomised, cross-over study in obese, insulin-resistant 
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males. Heinrich and colleagues (2011) performed an acute, double blind trial in 15 healthy, overweight 

females who were randomised into 3 groups, each of whom received a single dose of capsular green 

tea extract (0.5, 1.0 or 2.0 g). Skin blood flow after all three doses increased at 15-30-min with no 

difference between doses. A further acute pilot study by Miller and colleagues (2011)  investigated 

the effect of capsular green tea extract (836mg green tea catechins) on laser Doppler responses to 

ACh and SNP iontophoresis in healthy, non-smoking, overweight individuals, but found no impact of 

tea. Overall, these studies on the acute effects of tea suggest that flavonoid-rich tea has the capacity 

to acutely increase microvascular function, although only one study used a tea drink per se and both 

the subject populations and study designs make it difficult to compare the overall findings.  

 

In line with the acute observations, a 12-week double-blind, placebo-controlled study in 60 middle-

aged, healthy females observed increased forearm cutaneous blood flow at both the midpoint and 

end of the 12-week intervention for green tea consumption (Heinrich et al., 2011). Oxygen saturation 

of haemoglobin was also increased at 6- and 12-weeks following daily consumption of the green tea 

beverage. However, regular consumption of capsular green tea for 3-weeks was not associated with 

any difference in endothelium-dependent or endothelium-independent microvascular reactivity in a 

double-blind, placebo-controlled parallel study in healthy males (Frank et al., 2009). Recently, 

Wasilewski and colleagues (2016) observed improved microvascular function to rapid local heating in 

both young (18-35 years) and older (55-75 years) individuals following 14-days consumption of a green 

tea beverage. However, no placebo control was used and there was poor adherence to fundamental 

guidelines for vascular assessment (Cracowski et al., 2006; Thijssen et al., 2011).  

 

The microvascular effects of green tea have also been examined in individuals with increased CVD risk. 

Smoking is associated with impaired endothelial function, even when individuals are otherwise 

healthy (Heitzer et al., 1996; Papamichael et al., 2004). With this in mind, Oyama and colleagues (2010) 
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investigated whether daily consumption of green tea catechins for 2-weeks demonstrated any effect 

on forearm blood flow (FBF) responses to ACh and SNP in healthy, male smokers. Individuals were 

divided into three groups receiving daily green tea catechins: control (0mg), medium-dose (80mg) or 

high-dose (580mg). FBF was assessed acutely (2-hours), at the mid-stage (day-7) and at the end of the 

trial period (day-14). The acute response to ACh was increased for the high-dose group, but no 

difference was observed for the medium-dose or control groups. No significant acute response to SNP 

was observed for any group.  Similar to the acute responses, chronic consumption of green tea 

catechins was associated with significantly increased FBF responses to ACh for the high-dose group, 

but not for the medium-dose or control groups and no difference was observed for any group in 

response to SNP. These findings suggest an endothelium-dependent vasodilatory response for high-

dose green tea catechins, both acutely and following regular consumption. This improvement in 

endothelial function in at-risk populations is encouraging, however, additional studies are required to 

explore these effects further.  

 

Despite encouraging data supporting a beneficial effect of tea ingestion on microvascular function, it 

is difficult to draw any meaningful conclusions from existing data owing to differences in test products, 

subject populations and a lack of methodological standardisation. The nature of the intervention 

product may be responsible for some of the observed differences in microvascular function. Studies 

that used a beverage seem to show improved microvascular function, whilst such effects were not 

found when using a capsular form of tea. This may be due to the capsular shell material hampering 

bioavailability, as cellulose based shells and fillers are known to have a negative interaction with 

polyphenols, and gelatin capsules without a cellulose filler demonstrate more positive outcomes 

(Draijer & Duchateau, 2015). However, precise details are scarce regarding the shell and filler 

materials of capsules used in the studies discussed, so it is difficult to establish whether this may be a 

causal factor for the apparent differences between studies and their intervention products. Studies 
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that have used a tea beverage are also unclear regarding the tea constituents and, therefore, the 

flavonoid content of the test product. For example, Wasilewski and colleagues (2016) asked 

participants to steep a tea bag for 3-4 minutes, which gives no precise indication of the strength or 

flavonoid content of the tea that has been tested. Furthermore, in the same study, participants were 

asked to continue with their habitual dietary habits and, therefore, no attempt was made to eliminate 

confounding influences from other flavonoid dietary sources, such as cocoa, fruits and vegetables.  

 

In summary, the current evidence concerning the effect of tea consumption on microvascular function 

is promising but remains deficient due to a lack of robust methodology and study design. Further study 

of tea and its effects on the cutaneous microcirculation are warranted and should account for dietary 

sources confounding data, ensuring there is an adequate placebo control and that the test product 

itself can be quantified in terms of its constituents. Furthermore, studies should be adequately blinded 

and randomised, with adequate washout periods between interventions. Current methodologies do 

not allow for any interpretation of the potential mechanisms responsible for any effects of tea on the 

microvasculature. Along with the points outlined above, this should be borne in mind when designing 

future studies, to provide a more rigorous approach for detecting potential changes in cutaneous 

blood flow following tea ingestion and how any such changes might have been induced.  

2.7.3 Tea and Macrovascular Function 

A suggested mechanism for the CVD risk reduction associated with tea consumption relates to a direct 

effect of tea on the vasculature, particularly the vascular endothelium (Vita, 2003). In healthy males, 

Grassi and colleagues (2009) observed a dose-dependent increase in endothelium-dependent FMD 

following twice daily consumption of black tea for 1-week compared to placebo control, in a 

randomised, double-blind, crossover study. Both systolic and diastolic blood pressure were also 

reduced with the consumption of tea versus control. Furthermore, endothelial-dependent dilation 

acutely (90-min) increased following 300 ml black tea in healthy males and females, although no effect 
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was observed following regular black tea consumption (3-cups daily) for 7-days, versus abstinence 

from tea (Schreuder et al., 2014). Black tea and green tea demonstrated comparable acute increases 

in FMD versus water 2-hours after ingestion in healthy females, although no significant difference was 

observed for endothelial-independent vasodilation (Jochmann et al., 2008).  

 

Tea has also demonstrated positive findings in individuals with increased CVD risk. Green tea was 

associated with a significant increase in FMD ~90-min following ingestion, compared to water placebo, 

in heathy males and females, 50% of whom were smokers (Alexopoulos et al., 2008). Similarly, 2-

weeks green tea consumption significantly improved FMD in young, otherwise healthy, chronic 

smokers (Kim et al., 2006). Duffy and colleagues (2001) observed increased endothelium-dependent 

vasodilation in individuals with coronary artery disease, following both acute (2-hours) and chronic (4-

weeks) black tea ingestion versus water, although no difference was detected for endothelium-

independent dilation following nitroglycerin. Similarly, a parallel, single-blind study in individuals with 

elevated cholesterol demonstrated endothelial-dependent dilation following 5-cups of black tea daily 

for 4-weeks compared to hot water control (Hodgson et al., 2002). However, in contrast to Duffy and 

colleagues (2001), endothelial-independent dilation was also improved in this cohort. Green tea 

consumption for 4-weeks was associated with a significant improvement in FMD in a cohort with 

chronic kidney disease, compared to water control (Park et al., 2010). Overall, these studies are 

suggestive of a beneficial impact of tea ingestion on macrovascular function in at-risk populations.  

 

Several studies have examined the effect of tea on endothelial-dependent vasodilation in response to 

an acute oral fat load. In a randomised, double blind, placebo-controlled crossover study of healthy 

males and females (20-55 years), Corretti and colleagues (2002)  examined the FMD response to black 

tea, green tea and placebo 3-hours following ingestion, together with a 900 kcal high fat meal. Both 

black tea and green tea blunted the decrease in FMD that was observed following the high fat meal 

with placebo tea. Further studies in pathological subject groups have demonstrated similar findings. 
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Hodgson and colleagues (2005) observed increased FMD 4-hours following consumption of 3-cups of 

black tea with a high fat meal in individuals with coronary artery disease, although no effect of tea 

was identified when taken without the meal challenge. Black tea has also counteracted fat load FMD 

impairments in a randomised, double-blind study in hypertensive individuals where tea was consumed 

regularly for 8-days (Grassi et al., 2012b). Compared to placebo, black tea increased FMD at day 8 

compared to baseline, and also demonstrated an acute-on-chronic improvement in FMD 2-hours after 

ingestion, indicating a vasoprotective effect of tea on macrovascular function.  

 

Current evidence suggests that macrovascular function is generally improved following the 

consumption of both black and green tea. Tea has induced increased brachial artery FMD in both 

healthy individuals and in at-risk populations. Furthermore, these encouraging findings have been 

observed following acute and chronic tea consumption. Two meta-analyses suggest a beneficial effect 

of tea on FMD (Hooper et al., 2008; Ras et al., 2011), although several studies have been performed 

since they were published. Despite the encouraging data supporting an endothelial-dependent effect 

of tea, it is difficult to quantify precise doses of tea, since many studies (Duffy et al., 2001; Hodgson et 

al., 2002; Hodgson et al., 2005; Jochmann et al., 2008; Schreuder et al., 2014) have used brewed tea 

leaves and others do not report the tea preparation, which does not allow an accurate indication of 

flavonoid/catechin content for between study comparisons. As fat rich meals have demonstrated 

negative effects on vascular function and a reduction in FMD (Rudolph et al., 2007; Gosmanov et al., 

2010), the studies observing a counteracting effect of tea to an acute oral fat load suggest that it may 

exert a vasoprotective effect that may have implications for generalised cardiovascular health. Further 

investigation is warranted, however, to determine whether tea demonstrates such an effect following 

a longer term metabolic challenge.   

2.7.4 Tea and Cerebrovascular Function  

Flavonoids are suggested to help maintain and even improve cognitive function, possibly via improved 

vascular function (Mastroiacovo et al., 2015). To date, limited research has been undertaken exploring 
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the acute and chronic effects of flavonoids on cerebrovascular function. Despite tea being a major 

source of dietary flavonoids for much of the global population, only one study has examined the effect 

(acute) of tea on CBF. In a randomised, double-blind, four arm crossover study, Vidyasagar and 

colleagues (2013) investigated the effect of caffeinated black tea (capsules equivalent to 6 cups), 

decaffeinated black tea, caffeine and placebo on cerebrovascular reactivity to hypercapnia in healthy 

male adults. Arterial spin labelling BOLD-MRI was used to quantify changes in CBF at baseline and 2-

hours after administration of the test product. A significant global reduction in steady-state CBF was 

observed for both caffeinated tea and caffeine alone, suggesting that caffeine was responsible for the 

decreased CBF, as no effect was demonstrated for decaffeinated tea. Cerebral CO2 reactivity was also 

unaffected by tea, caffeine and decaffeinated tea in the same study (Vidyasagar et al., 2013).  

 

Further human studies have been performed examining the CBF effects of isolated compounds found 

in polyphenol-rich foods, such as EGCG and EC that are abundant in tea (Dower et al., 2015; Murray 

et al., 2015). A single low dose (135 mg) of capsular EGCG decreased CBF (measured by NIRS) during 

computerised cognitive task performance in healthy young adults, whereas a higher dose (270 mg) 

did not change CBF relative to placebo (Wightman et al., 2012). Several studies investigating cocoa 

flavanols are potentially relevant to tea, due to EC being present in both cocoa and tea. An acute dose 

of cocoa flavanols (494 mg; containing 89 mg of EC), consumed as a beverage, increased regional CBF 

(arterial spin labelling MRI) 2-hours post-ingestion, with increases observed in the anterior cingulate 

cortex (left parietal lobe) in healthy adults aged 55-65 years (Lamport et al., 2015). Similarly, an acute 

dose (450 mg) of flavanols increased grey matter CBF (fMRI) 2-hours post-ingestion in a pilot study of 

healthy young females (n=4) (Francis et al., 2006). In contrast, an acute dose (450 mg) of cocoa 

flavanols actually decreased CBF (measured by TCD) 2-4 hours post-consumption, likely related to the 

cocoa’s caffeine content (Lunt et al., 2004), with a return to baseline within 4-6 hours (Sorond et al., 

2008a). Regular (1-2 weeks) ingestion of cocoa-derived flavonoids (900 mg flavanols per day) 
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increased CBF through the MCA (via TCD) in elderly (65+ years) individuals (Sorond et al., 2008a). 

Similarly, daily consumption of a high flavanol (172 mg flavanols/day) cocoa beverage versus a low 

flavanol (13 mg flavanols/day) beverage for 5-days improved regional CBF during cognitive tasks in 

healthy young females, when measured via fMRI (Francis et al., 2006). Furthermore, 12-weeks of daily 

cocoa flavanols (900 mg containing 138 mg (−)-EC) increased CBF (fMRI) in the dentate gyrus region in 

the healthy elderly, when compared to a low flavanol (45 mg per day) control (Brickman et al., 2014).  

 

Current research is limited regarding the effects of tea, and tea-derived compounds, on 

cerebrovascular function. The single study that investigated the effect of tea (Vidyasagar et al., 2013) 

used a capsular test product, so the effect of a tea beverage remains unknown. The few previous 

studies of cocoa flavanols and isolated compounds have largely investigated the acute effects and, 

furthermore, across all studies, it is difficult to determine what impact habitual dietary flavonoid 

consumption may have had on these data. Given the varying doses of flavanols, it is also difficult to 

make accurate comparisons of study findings to elicit meaningful conclusions. Furthermore, current 

studies have only assessed steady-state CBF, rather than assess the effect of flavonoids on dynamic 

changes in CBF (e.g., cerebral autoregulation; a critical modulator of cerebral perfusion), which 

continuously occur throughout a day, or the effect of flavonoids on cerebral CO2 reactivity. Therefore, 

further studies are required to determine the cerebrovascular effects of tea consumption.  

2.7.5 Tea and Metabolic Function   

Several in vitro and in vivo studies have observed a reduction in fasting glucose and insulin in diabetic 

rats following green tea catechins (Quine & Raghu, 2005; Yamabe et al., 2006; Roghani & 

Baluchnejadmojarad, 2010; Samarghandian et al., 2017), although human trials investigating the 

effects of green tea and isolated green tea catechins have been inconsistent. Fukino and colleagues 

(2005)  observed no clear effects of a daily green tea beverage on glucose handling or insulin resistance 

in individuals with borderline diabetes following 2-months consumption. Furthermore, blood glucose 
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and insulin levels were unchanged in type 2 diabetic adults in a 4-week crossover trial of a daily green 

tea beverage versus water control (Ryu et al., 2006). Conversely, studies have observed reductions in 

haemoglobin A1c (HbA1c) in individuals with borderline (Fukino et al., 2008) and type 2 (Nagao et al., 

2009) diabetes, following 2- and 3-months consumption of a green tea beverage, respectively. 

Furthermore, 1500 mg green tea extract daily for 16-weeks in a double-blind, randomised, placebo-

controlled trial in type 2 diabetic patients demonstrated a decrease in insulin resistance (Liu et al., 

2014) and reductions in HbA1c and insulin (Hsu et al., 2011) compared to placebo.  

 

Several studies have examined the effect of tea in overweight or obese individuals, which are 

important populations to study given that obesity is one of the most important environmental risk 

factors for cardiometabolic disease. Chan and colleagues (2006) observed no significant effect on 

glucose metabolism following 3-months of capsular green tea versus placebo in a randomised, parallel 

study in obese females (25-40 yrs) with polycystic ovary syndrome. Furthermore, an 800 mg daily dose 

of EGCG for 8-weeks had no effect on glucose tolerance or insulin sensitivity in middle-aged (40-65 

yrs) overweight/obese males (Brown et al., 2009) and no effect was observed in sedentary males 

following 6-weeks of 800mg green tea catechins in a randomised, crossover trial (Brown et al., 2011). 

However, 300 mg daily EGCG supplementation combined with regular aerobic exercise in middle-aged 

(45-70 yrs) overweight/obese post-menopausal women for 12-weeks significantly reduced plasma 

glucose concentrations compared to placebo (Hill et al., 2007). Additionally, in a 6-month randomised, 

double-blind, placebo-controlled pilot study, consumption of a decaffeinated green tea beverage (960 

ml daily) in overweight, female breast cancer (stages I-III) survivors demonstrated a decrease in insulin 

(Stendell-Hollis et al., 2010). Further parallel design studies observed a non-significant reduction in 

glucose levels following green tea extract (Suliburska et al., 2012) and significant reductions in fasting 

serum glucose and insulin resistance (Bogdanski et al., 2012) following 3-months of green tea extract 
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(208 mg EGCG) versus placebo in obese and hypertensive obese, heterogeneous middle-aged adults, 

respectively.  

 

Few studies have examined the metabolic effects of tea in healthy individuals. Sone and colleagues 

(2011) observed no significant difference in fasting plasma glucose in a 9-week randomised controlled 

trial following green tea consumption (400 mg catechins/day), compared to a low-catechin (100 

mg/day) control, in heathy males and females aged 20-70 years. However, in postmenopausal 

females, reductions in glucose and insulin were reported following ingestion of capsular green tea 

catechins for 2-months compared to placebo, with no difference reported between the 400 mg and 

800 mg catechin doses (Wu et al., 2012). Furthermore, black tea demonstrated a reduction in 

postprandial glucose 2-hours following both low- and high-dose black tea polyphenols in 

normoglyaemic and prediabetic individuals in a randomised, double-blind, placebo-controlled 

crossover study, although no significant differences were observed for insulin between both tea doses 

and placebo (Butacnum et al., 2017). An earlier acute study, however, observed no reduction in 

glucose or insulin following ingestion of 300 ml green tea compared to water, in a crossover trial of 

young (22-35 yrs), healthy adults (Josic et al., 2010). Furthermore, in a 5-day controlled diet study 

comparing the effects of oolong tea, catechin-enriched oolong tea, polyphenol-enriched oolong tea, 

caffeine-enriched water and unsupplemented water, no significant differences were observed for 

fasting glucose or insulin measures in healthy adult males (Baer et al., 2011).   

 

Overall, findings from studies investigating the effects of tea on glucose metabolism and insulin 

sensitivity are equivocal. Differences between trials make it difficult to determine any tea-derived 

effects, largely due to the study design, variations in both the type and dose of tea product used and 

confounding influences from habitual dietary intake. Current evidence suggests that green tea 

consumption is associated with a reduction in fasting glucose in individuals who are at a greater risk 
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of CVD and metabolic syndrome e.g. overweight/obese, and that such effects are largely observed in 

studies where there is a greater consumption of catechins. However, few studies have standardised 

habitual dietary intake and limited consumption of polyphenol-rich foods, making it difficult to 

determine whether these may have influenced study outcomes. There is a clear lack of data in healthy 

individuals and further studies are required to examine the effects of tea ingestion on glucose handling 

and insulin sensitivity, ensuring that habitual dietary intake is monitored to reduce confounding 

influences and ensure that it is the tea-derived effects that are being assessed.  

 

2.8 Summary 

In summary, the incidence of CVD continues to increase globally, largely due to the rise in habitual 

overfeeding and physical inactivity, and therapeutic strategies need to be identified to help combat 

the economic burden of CVD. Tea consumption demonstrates encouraging benefits for cardiovascular 

health, although there is insufficient evidence for its effects on microvascular function and little is 

known about its effects on the cerebrovasculature. Current research suggests that tea may exert a 

vasoprotective effect and has counteracted the negative macrovascular effects of an acute oral fat 

load, although the cardiometabolic effects of tea following a longer-term metabolic challenge are 

unknown. 
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CHAPTER 3: GENERAL METHODS 
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The majority of the measurements and protocols undertaken in this thesis were utilised throughout 

Chapters 4-6. Therefore, the general information for the techniques used for the physiological 

measurements are described in this methods chapter, including the reliability and limitations of these 

techniques. The specific protocols and participant cohort used for each study are detailed within the 

respective methods section for each chapter.  

 

3.1 Participants 

The population groups differed between the individual studies regarding gender and age (please refer 

to Chapters 4-6). However, across all studies, all participants were healthy and non-smokers. 

Participants were recruited through local advertisement. Individuals with a medical history of 

hypercholesterolaemia (total cholesterol >6.5 mmol/l) (Reiner et al., 2011), cardiovascular disease 

and/or hypertension (systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg) (NICE, 

2011; Yarmolinsky et al., 2015) were excluded. Individuals with food allergies, special dietary 

requirements, currently following a diet and/or those with dietary/vitamin supplements were 

excluded. Participants were not taking any vasoactive medications or supplements. All participants 

fasted for at least 6-hours and refrained from alcohol, food products high in polyphenols (dark 

chocolate, red wine), caffeine and exercise for 24-hours prior to testing (Thijssen et al., 2011). 

Participants were asked to refrain from drinking all types of tea for a period of one week prior to each 

laboratory visit, in addition to avoiding exceptional/irregular physical activity (e.g. marathon) in the 

preceding week. Sips of water (500 ml) were permitted prior to testing to ensure that participants 

were euhydrated. After being fully informed of the methods verbally and in writing, written informed 

consent was obtained from all participants. All studies conformed to the Declaration of Helsinki and 

were approved by the local research ethics committee.  
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3.2 Anthropometric Measurements 

Stature was measured in the freestanding position to the nearest 0.1 cm (seca stadiometer, model 

217, Birmingham, UK). Body mass was measured to the nearest 0.05 kg using calibrated electronic 

digital scales (seca, model 767, Germany). Using these variables, body mass index (BMI; mass (kg) / 

height (m)2) was calculated. Resting blood pressure (mmHg) and resting heart rate (beats/min) were 

determined from an average of three measures using an automated blood pressure monitor 

(Dinamap, G & E Medical, Tampa, Florida).  

 

3.3 Peripheral Vascular Function  

All vascular function assessments were conducted in a quiet, temperature-controlled laboratory (22-

24°C) (Cracowski et al., 2006; Thijssen et al., 2011) and at the same time of day to reduce any circadian 

influences on vascular function (Jones et al., 2010; Thijssen et al., 2011). Upon arrival in the laboratory, 

participants rested in a supine position for ~20-minutes to ensure accurate assessment of stable 

baseline mean arterial blood pressure (MAP) and heart rate (HR). MAP was subsequently determined 

(MAP = [ (2 x diastolic) + systolic ] / 3 ) from an average of three measures taken from the non-

dominant arm.  

3.3.1 Microvascular Function  

An index of forearm local cutaneous blood flow was obtained using the non-invasive techniques of 

laser Doppler flowmetry (LDF: Periflux System 5001, Perimed AB, Sweden) and full-field laser 

perfusion imaging (FLPI: Moor Instruments, UK). Participants assumed a comfortable, supine position 

on a bed throughout testing, with the head slightly elevated and the hand of each testing arm relaxed, 

supinated and supported by a vacuum cushion to minimise microcirculatory fluctuations resulting 

from motion artefact (Cracowski et al., 2006; Thijssen et al., 2011). If necessary, forearm measurement 

sites were shaved 24-hours prior to testing to avoid any inflammatory response that may affect 

cutaneous blood flow; the forearms were inspected prior to each trial to ensure that no skin damage 
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was present that may adversely influence cutaneous blood flow responses. Measurement sites were 

randomly chosen, avoiding visible veins, hair follicles and dermatological lesions (Cracowski et al., 

2006). Upon completion of the first experimental trial, the location of the LDF and FLPI assessment 

sites were marked on the skin, with digital photographs and measurements taken to the nearest 

millimetre using anatomical and skin-surface landmarks for reference, to ensure accurate re-selection 

of the probe placement site for the repeat trial(s). 

3.3.1.1 Laser Doppler Flowmetry (LDF)  

Laser Doppler flowmetry is a non-invasive technique that is routinely used to study microvascular 

function (Minson et al., 2001; Cracowski et al., 2006; Cracowski & Roustit, 2015), and is sensitive in 

detecting changes in skin perfusion over a period of time and in response to a physiological challenge 

or stimulus, such as local thermal hyperaemia (Cracowski et al., 2006). LDF is concerned with the 

reflection of a laser beam that undergoes a change in wavelength, or Doppler shift, when it detects 

moving red blood cells (Figure 3.1), the magnitude and frequency of which is related to the 

concentration and velocity of blood cells, respectively, and is recorded as a signal of red blood cell flux 

(RBCF) (Cracowski et al., 2006; Cracowski & Roustit, 2015). The measurement depth of LDF is 0.5-

1.0mm in individuals with normal skin morphology and measurements are continuous, providing high 

spatial and temporal resolution beyond that of venous occlusion plethysmography (Charkoudian & 

Stachenfeld, 2014).  

 

Figure 3.1 Laser Doppler assessment of skin blood flow (SkBF) where a beam of laser light is emitted 
and undergoes a change in wavelength when it detects moving red blood cells.  
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Following a 20-minute stabilisation period, the laser Doppler equipment was calibrated using two 

generic points, 0 and 250 PU with a zeroing disk and motility standard, respectively, according to 

manufacturer’s guidelines (Perimed AB, Järfälla, Stockholm, Sweden). Following sterilisation of the 

forearm, heating discs (Perimed 355, Perimed AB, Järfälla, Stockholm, Sweden) were placed ~5cm 

apart on the dominant forearm, into which 7-laser array probes (PF 413, Perimed AB, Järfälla, 

Stockholm, Sweden) were placed and firmly attached to the skin using adhesive stickers and medical 

tape. Following a 20-minute acclimation period, cutaneous blood flow was measured as RBCF at the 

chosen probe sites using a laser Doppler flowmeter (Periflux system 5000, Perimed AB, Järfälla, 

Stockholm, Sweden). The local heating discs were connected to a heating unit (Peritemp 4005 heater, 

Perimed AB, Järfälla, Stockholm, Sweden) which was manually controlled to perform the temperature 

stages of the local heating protocols. Laser Doppler flux was continuously recorded online at 250 Hz 

(LabChart 8.0, AD Instruments, Dunedin, New Zealand).  

 

 

 

Figure 3.2 Forearm of a subject with LDF probes in situ. 

 

 



52 
 

3.3.1.2 Local Heating Protocols  

Rather than assessing systemic microvascular function, using local thermal hyperaemia provides a 

more comprehensive assessment of microvascular reactivity and the complex neural and chemically-

mediated pathways underlying local microvascular function. There are a range of distinct rapid and 

gradual local heating protocols available for the assessment of cutaneous vascular function that all 

provide different patterns of vasodilation that likely relate to different vasodilator pathways. Baseline 

skin RBCF was recorded with the local heating disc temperature set at 33°C for 10-minutes for each 

measurement site. Subsequently, local skin temperature was increased according to four distinct 

heating protocols (Figure 3.3: please refer to Chapters 4 to 6 for the specific protocols used). 

Regardless of the protocol, local skin temperature is ultimately increased to 44°C; a temperature 

considered to elicit maximal cutaneous vasodilation (Kellogg et al., 1999; Charkoudian, 2003; McCord 

& Minson, 2005; Minson, 2010).  

Rapid 39°C (Choi et al., 2014). This recently introduced protocol (0.5°C per 5 s to 39°C, 30-min 

at 39°C, 20-min at 44°C) induces a rapid, transient axon-reflex followed by a gradual plateau. By 

holding the local temperature at 39°C, the plateau phase is largely NO-mediated and causes dilation 

that is equivalent to approximately 50% of the maximal response (Choi et al., 2014).  

Rapid 42°C (Minson et al., 2001). This classic local heating protocol (0.5°C per 5 s to 42°C, 30-

min at 42°C, 20-min at 44°C) induces a rapid, transient axon-reflex which is followed by a more gradual, 

sustained vasodilatory response. The plateau phase represents 80-90% of the maximal response, and 

is mostly (60-70%) NO-mediated (Kellogg et al., 1999; Minson et al., 2001).  

Gradual 42°C (Black et al., 2008b). This adapted, shortened version of the Slow 42°C local 

heating protocol increases local skin temperature to 42°C (0.5°C per 2-min 30 s to 42°C, 30-min at 

42°C, 20-min at 44°C) and induces a slow heating response without axon reflexes that is largely NO-

mediated (Black et al., 2008b).  
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Slow 42°C (Black et al., 2008b). This longer version of the former heating protocol induces a 

gradual, slow heating response without axon reflexes (0.5°C per 5-min to 42°C, 30-min at 42°C, 20-

min at 44°C) that is largely NO-mediated (Black et al., 2008b).  

 

 

Figure 3.3 Step-wise temperature increments with corresponding times for all four local heating 
protocols. Taken from (Roberts et al., 2017).  
 

3.3.1.3 Haemodynamics  

Heart rate and BP were recorded at the beginning and at the end of the 20-minute acclimation period 

using an automated sphygmomanometer (Dinamap V100, GE Healthcare, Buckinghamshire, UK; 

please refer to Chapters 4-6 for the position). Thereafter, mean arterial pressure (MAP, mmHg) and 

HR were recorded at 5-minute intervals throughout the local heating protocols. MAP was used to 

calculate cutaneous vascular conductance.  

3.3.1.4 Data Analysis  

Data analysis was performed blind. Artefact in the data, due to unwanted subject movement, was 

identified and removed prior to analysis. Baseline laser Doppler RBCF was averaged over a stable 10-

minute baseline period. For the Rapid 42°C and Rapid 39°C protocols, following initiation of heating, 

initial peak and nadir values were calculated over a stable 60-second period (Minson et al., 2001), with 
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the initial peak identified as the highest value and the nadir as the lowest value during the first 5-10 

minutes of local heating (van Duijnhoven et al., 2009). A clear nadir was not detected in all 

measurement traces, which is typical of this type of thermal provocation test. In those traces (~5%), 

data was included from a 60-second period, 1-minute after the initial peak. This value was always 

lower than the initial peak. RBCF was calculated over a stable 60-second period for the final minute of 

each temperature increment (34-41°C) of the Gradual 42°C and Slow 42°C local heating protocols. For 

each of the four protocols, Rapid 42°C, Rapid 39°C, Gradual 42°C and Slow 42°C, plateau phases during 

heating (42°C, 39°C and maximal 44°C) were averaged over the last 5-minutes of each phase (Figure 

3.4). Data at baseline, at the various temperature increments and at the plateau phases were also 

expressed as cutaneous vascular conductance (CVC) and also normalised to the maximal CVC achieved 

at 44°C.  

 

A.  

B.  

Figure 3.4 Exemplar skin blood flow traces for A. rapid and B. gradual local heating.  

 

3.3.1.4.1 Cutaneous Vascular Conductance  

Cutaneous vascular conductance (CVC) is important in studies of skin blood flow as it accounts for 

changes in skin blood flow resulting from variations in blood pressure (Minson et al., 2001; Cracowski 

et al., 2006; Dawson et al., 2015). Calculation of CVC enables comparison of values across 
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measurement sites for a given individual and/or between participants/trials (Kellogg et al., 1993). CVC 

was calculated as:  

CVC = RBCF (PU) / MAP (mmHg) 

where CVC (PU/mmHg) is cutaneous vascular conductance, RBCF (measured in perfusion units, PU) 

represents red blood cell flux and MAP is mean arterial pressure recorded in 5-minute intervals.  

3.3.1.4.2 Local Maximal Microvascular Function  

CVC values were also normalised to the maximal CVC (%CVCmax) achieved during heating of the skin to 

44°C which, in addition to CVC, is considered the preferred method of data expression in previous 

microvascular literature (Minson et al., 2002; Cracowski et al., 2006; Black et al., 2008b; Minson, 

2010). Normalised maximal cutaneous vascular conductance (%CVCmax) was calculated as:  

%CVCmax = (CVC / CVCmax) * 100  

where %CVCmax is cutaneous vascular conductance relative to maximal cutaneous vascular 

conductance, CVC is cutaneous vascular conductance and CVCmax is maximal cutaneous vascular 

conductance achieved during skin heating at 44°C.  

3.3.2 Macrovascular Function – Flow-Mediated Dilation  

Conduit artery endothelium-dependent function was measured using the FMD technique, which 

provides an assessment of peripheral conduit artery diameter following a brief period of distal limb 

ischaemia (Thijssen et al., 2011). Shear stress is the key physiological stimulus evoking endothelium-

mediated vasodilation during the FMD response (Melkumyants et al., 1989; Thijssen et al., 2011) and 

is associated with dose-dependent increases in artery diameter (Betik et al., 2004; Padilla et al., 2009). 

Increased shear stress is detected by cell membrane mechanoreceptors, following which a signalling 

cascade is activated and subsequently stimulates the production and release of vasoactive substances 

that diffuse across the endothelial cell membrane into the smooth muscle cell (Thijssen et al., 2011). 

Signal transduction in the smooth muscle cell causes a reduction in calcium concentration and 
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subsequently, vasorelaxation. Biological variability in between-subject FMD responses largely arises 

from differences in the transduction of the vasodilatory responses to the smooth muscle cells, in 

addition to the structural characteristics of the vessel wall, such as the wall-to-lumen ratio, potentially 

influencing the resultant diameter change (Thijssen et al., 2011). FMD assessment, therefore, provides 

a means assessing endothelial function via interrogation of such biological differences and allows the 

macrovascular impact of lifestyle factors, disease status, exercise training status and various 

interventions to be examined.  

 

Simultaneous assessment of the brachial artery, at the distal third of the non-dominant upper arm, 

and the femoral artery of the right leg was performed (Figure 3.5). The non-dominant arm was 

extended and positioned at an angle of ~80° from the torso, whilst the right leg was extended in a 

comfortable position. Rapid inflation and deflation pneumatic cuffs (D.E. Hokanson, Bellevue, WA, 

USA), connected to a rapid inflator (D.E. Hokanson, Bellevue, WA, USA), were positioned on the 

forearm, immediately distal to the olecranon process, and around the right thigh, proximal to the 

patella, to provide the stimulus for ischaemia (Thijssen et al., 2011). With a stable image obtained, the 

ultrasound parameters were set to optimise the longitudinal B-mode image of the lumen-arterial wall 

interface. Continuous Doppler velocity assessment was collected using the lowest insonation angle 

(<60°), which was standardised across all measures. Baseline images for the assessment of resting 

vessel diameter, shear rate and flow were recorded for 1-minute, following which the occlusion cuffs 

were inflated (>220 mmHg) for 5-minutes to completely block the arterial inflow. Diameter and 

velocity recordings resumed 30-seconds prior to cuff deflation and continued for 3-minutes 

thereafter, according to methodological guidelines (Woodman et al., 2001; Thijssen et al., 2011; 

Greyling et al., 2016). Peak brachial artery diameter, peak blood flow velocity and the time taken to 

reach these peaks post cuff release were recorded. Ultrasound images were recorded using 

specialised recording software (Camtasia Studio, Techsmith, USA). The reliability of FMD is largely 
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dependent upon the adherence to current methodological guidelines (Thijssen et al., 2011), which 

were followed closely for all assessments performed during the current research programme.  

 

 

Figure 3.5 Simultaneous assessment of brachial and femoral flow-mediated dilation (FMD).  

 

 

Figure 3.6 Schematic representation of diameter and shear-stress responses following cuff deflation, 
in response to a 5-minute ischaemic stimulus during FMD assessment. The grey area represents the 
shear rate area-under-the-curve (SRAUC), which is considered to be the main stimulus for peak 
diameter. Taken from (Thijssen et al., 2011).  
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3.3.2.1 Artery diameter and blood flow analysis  

Post-test analysis of brachial and femoral artery diameter and velocity was performed using custom-

designed edge-detection and wall-tracking software (Dicom Encoder, V.3.0.5 LabVIEW V.7.0, National 

Instruments Corporation), which is largely independent of investigator bias and provides continuous 

measurements of arterial diameter and blood flow velocity. The software is written in icon-based 

graphical programming language (LabVIEW V.7.0, National Instruments) and uses an IMAQ vision 

toolkit for image handling. Arterial diameter on the B-mode image and velocity on the Doppler strip 

were calibrated for each individual assessment. An optimal region of interest (ROI) was identified for 

analysis on the B-mode image, chosen according to the image quality depicting a clear distinction 

between the vessel walls and lumen (Figure 3.7). Within the selected ROI, a pixel-density algorithm 

measures the mean diameter changes according to changes in pixel density from the far- and near-

wall lumen-intima interface via a Rake routine, which measures 30 points per second throughout the 

analysis. The edge-detection algorithm assessed the peak velocity envelope from the Doppler gate 

which was placed in the centre of the artery. Mean diameter derived from the B-mode ROI was 

subsequently synchronised with the velocity derived from the Doppler ROI at 30 Hz.  

 

From the synchronised diameter and velocity data, blood flow (the product of cross-sectional area 

and Doppler velocity) and shear rate (four times the velocity divided by the diameter) were calculated 

at 30 Hz (Black et al., 2008a). Peak blood flow was taken over the initial 10-second post cuff deflation, 

with peak artery FMD defined as the percentage change of the post cuff deflation peak diameter from 

baseline diameter. Total shear rate (SRAUC) was calculated, which is considered to be the main 

stimulus of the FMD response, rather than peak shear rate. All data were written to file and retrieved 

for analysis in the custom-designed analysis software package. The edge-detection and wall-tracking 

software is semi-automated and provides significantly better reproducibility of diameter 
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measurements (coefficient of variation = 6.7%) compared to manual methods, whilst simultaneously 

reducing observer error (Woodman et al., 2001).  

 

A     B     

Figure 3.7 Ultrasound image of the brachial artery and blood flow velocity trace during A. baseline, 
and B. post cuff deflation during flow-mediated dilation (FMD).  

 

3.4 Haemodynamic Function 

3.4.1 Beat-to-Beat Arterial Blood Pressure  

Continuous beat-to-beat arterial BP was measured by finger photoplethysmography (Finometer Pro, 

Finapres Medical Systems, Biomedical Instruments, Amsterdam: The Netherlands). Developed by 

Wesseling and colleagues (1995), the Finometer uses the voltage-clamp method (Penaz, 1973) to track 

variations in intra-arterial pressure through clamping the diameter of the digital artery in a constant 

“unloaded” condition (Imholz et al., 1992; Imholz et al., 1998; Bogert & van Lieshout, 2005). The 

Finometer apparatus comprises of three main components; a main unit containing an air pump and 

electronics, a finger cuff with an in-built inflatable air bladder and infrared plethysmograph containing 

the light detector and light source, and a fronted unit with a fast-acting servo-controller system (Figure 

3.8A).    
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A  

B   

Figure 3.8 A. Finometer apparatus consisting of a finger cuff, fronted unit containing the servo-
controller and a main unit housing the air pump and electronics; and B. a cross-sectional view of the 
finger cuff and waveform.  

 

Finger photoplethysmography is based upon dynamic pulsatile unloading of the digital arterial walls, 

whereby an appropriately sized finger cuff ensures that the arterial diameter is kept constant/clamped 

at a specific diameter (set point), regardless of any changes to arterial pressure, during each heartbeat. 

An inbuilt infrared photo-plethysmograph detects changes in diameter and the servo-controller 

system detects the difference between the light detector signal and set point (Figure 3.8B), 

subsequently dispatching a signal to the unit microcontroller. Should arterial diameter increase during 

systole, the diameter change is prevented in the digital artery through immediate inflation of the 

finger cuff via increased air delivery to the inflatable bladder, thereby ensuring that the transmural 

pressure of the artery remains “unloaded” (maintained at zero), at which point the finger cuff pressure 

equates to the intra-arterial pressure (Bogert & van Lieshout, 2005). An in-built calibration system 
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(Physiocal, Finometer Medical Systems, Amsterdam: The Netherlands), consisting of a dynamic servo 

set point adjuster, ensures that the optimal unloaded diameter of the finger artery is defined and 

maintained, the optimal diameter being close to the average diameter at a pressure where the 

amplitude of pulsations in the plethysmogram is largest (Wesseling et al., 1995; Imholz et al., 1998; 

Bogert & van Lieshout, 2005).  

 

An appropriately sized finger cuff was placed around the mid-phalanx of the middle or index finger 

(according to closest fit) of the right hand, ensuring that the emission and detection light sensors were 

positioned symmetrically and that the cuff was securely fitted. A hydrostatic height correction unit 

(FMS Height Correction Unit), consisting of a liquid-filled tube attached at one end to a transducer and 

at the other end to an adjustable reference component, was used to correct hand height to heart 

level; the transducer and reference component were attached to the finger cuff and at heart level, 

respectively. Prior to commencement of data collection, a “zeroing” procedure was performed 

whereby the transducer and reference component were held together to ensure the height difference 

was 0 cm. The reference component was subsequently attached to the participant’s torso at heart 

level, thereby ensuring that any changes in vertical displacement of the finger cuff relative to heart 

level were corrected for. In participants experiencing cold hands and/or fingers, a warm compress was 

used to gently warm the hand and prevent peripheral vasoconstriction. During each experimental trial, 

the raw arterial pressure waveform was visualised and recorded online at 1 kHz (LabChart 8.0, AD 

Instruments, Dunedin, New Zealand), from which SBP, DBP and MAP (1/3 SBP + 2/3 DBP, mmHg) were 

calculated.  

 

Finger photoplethysmography is limited in that systolic blood pressure may be over-estimated, with 

both mean and diastolic pressure also being lower than intra-brachial pressure (Imholz et al., 1991; 

Imholz et al., 1998). These discrepancies in arterial pressure arise due to the variable arterial 
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waveforms throughout the arterial tree, causing augmentation between more proximal arteries, such 

as the brachial artery, and finger BP. The pressure gradient along the arterial tree and reflection as 

the pressure wave nears the periphery causes the shape of the pressure wave to change, thereby 

amplifying the wave and increasing systolic pressure (Imholz et al., 1998). Furthermore, mean and 

diastolic pressure tend to be lower in the hands than in the arm as a result of this pressure gradient. 

However, the photoplethysmographic technique is able to continuously track changes in the arterial 

waveform and several studies have investigated the differences in finger photoplethysmography 

versus invasive, intra-arterial measurements of blood pressure with little differences reported 

between the two methods during Valsalva (Imholz et al., 1988), head-up tilt (Jellema et al., 1996), 

pharmacological manipulation (Imholz et al., 1992), exercise (Silke et al., 1994) or during 

postoperative patient monitoring (Triedman & Saul, 1994). Finger photoplethysmography is also 

widely used in scientific research and is a useful tool in monitoring static and dynamic changes in blood 

pressure (Ainslie et al., 2008; Carter et al., 2014; Low et al., 2016). To verify and accurately calibrate 

the finger blood pressure (described previously), an automated blood pressure cuff (Dinamap, G & E 

Medical, Tampa, Florida) was worn on the contralateral upper arm to periodically monitor the finger 

photoplethysmography values.  

3.4.2 Electrocardiogram  

Heart rate was obtained from a 5-lead electrocardiogram (ECG; AD Instruments, Oxford, UK) which 

was recorded continuously (Francis, 2016). An antiseptic medical swab was used to clean each 

electrode site, prior to the application of the ECG electrodes (3M Red Dot Monitoring Electrode, St 

Paul, MN, USA; Figure 3.9). The ECG signal was continuously recorded online (LabChart 8.0, AD 

Instruments, Dunedin, New Zealand) and heart rate was calculated from the beat-to-beat R-R interval 

values using the formula: HR = 60 / R-R interval, where HR is in beats∙min-1 and R-R is in seconds.  
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Figure 3.9 5-lead electrode system.  

 

3.4.3 Cold Pressor Test 

Haemodynamic function can be evaluated using the cold pressor test (CPT), which measures blood 

pressure and HR in response to an external cold stimulus, typically a cold water ice slurry, and is a 

useful predictor of future hypertension (Godden et al., 1955; Victor et al., 1987; Kasagi et al., 1995; 

Zhao et al., 2012). In healthy individuals, the cold stress typically induces vascular sympathetic 

activation leading to vasoconstriction and a concomitant sustained increase in blood pressure, 

although the HR response demonstrates high inter-individual variability (Victor et al., 1987; Mourot et 

al., 2009). Blood pressure reactivity is calculated as the difference between the baseline and peak 

blood pressure during the cold stimulus, with greater or “hyper” reactivity corresponding with a 

greater risk of developing hypertension and CVD (Zhao et al., 2012). However, no best practice 

guidelines exist concerning what constitutes a “normal” or “hyper” response to the external cold 

stimulus and various thresholds are used by different research groups (Kasagi et al., 1995).  

 



64 
 

An index of coronary artery disease risk and cranial conduit artery endothelial function can be 

calculated through assessment of carotid artery reactivity (CAR%; carotid artery diameter), via an 

ultrasound scan of the carotid artery performed during the CPT (Rubenfire et al., 2000). During 

exposure to the cold stimulus, healthy individuals typically demonstrate vasodilation of the carotid 

artery, which is independent of carotid intima-media thickness (cIMT) (Rubenfire et al., 2000). Recent 

data demonstrates a good correlation between the response of the coronary arteries and CAR%, and 

that the presence of traditional cardiovascular risk factors, in addition to older age, is associated with 

lower CAR% (van Mil et al., 2017). Assessing CAR% via the CPT, therefore, represents a valuable 

method of assessing cardiovascular risk and the potential changes in CAR% following periods of altered 

lifestyle behaviours.  

 

Following a 20-minute supine rest, participants were comfortably positioned to enable them to easily 

move their left hand off the bed without excessive bodily movement. Participants were asked to 

slightly extend their neck to allow simultaneous ultrasound imaging of the left common carotid artery 

for the duration of the CPT. A 10 MHz multifrequency linear array probe, attached to a high-resolution 

2D duplex ultrasound machine (Terason u-Smart 3300, Teratech, Burlington, MA, USA) was used to 

assess the left common carotid artery reactivity (diameter and blood flow velocity). Following a 1-

minute baseline period, participants were instructed to immerse their left hand (up to the wrist) in 

iced slush (1-5°C) for 3-minutes. Participants were instructed to breathe normally throughout the CPT 

and to avoid breath holding/hyperventilation, whilst remaining as still as possible. The reproducibility 

of the CPT is generally considered to be stable following both short-term (Durel et al., 1993; Saab et 

al., 1993; Fasano et al., 1996) and long-term (Fahrenberg et al., 1987; Sherwood et al., 1997; 

Hassellund et al., 2010; Zhao et al., 2012) studies of <2-weeks and between 1 to 18-years, respectively.  
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Beat-to-beat arterial blood pressure and 5-lead ECG were recorded online throughout the CPT 

(LabChart 8.0, AD Instruments, Dunedin, New Zealand), from which SBP and DBP were exported in 10-

second intervals. BP reactivity was calculated as the difference between baseline BP and the peak BP 

recorded during the 3-minute hand immersion. Custom-designed edge detection software (described 

earlier in section 3.3.2.1) was used to analyse CAR%. Baseline diameter and blood flow were taken in 

10-second intervals for 1-minute prior to hand immersion. Post-immersion data was analysed in 10-

second intervals, from which peak diameter change (maximum dilation/constriction) and area-under-

the-curve (AUC) for the diameter change during the CPT (CARAUC) were calculated. Peak diameter 

change relates to the dilation or constriction of the carotid artery, with the directional change being 

determined by a positive or negative CARAUC, representing dilation or constriction, respectively. 

Typically, greater CAR% is observed in younger versus older individuals, and in healthy individuals 

compared to those exhibiting greater cardiovascular risk profiles (van Mil et al., 2017).  

 

3.5 Cerebrovascular Function  

Transcranial Doppler ultrasound (TCD) is a useful, non-invasive tool that provides high temporal 

resolution for measuring blood velocity in cerebral vessels, measured in centimetres per second (cm∙s-

1) (Willie et al., 2011). As vessel diameter is unknown, TCD is not a measure of blood flow per se, rather 

it measures blood velocity of an insonated vessel and gives a reliable index of blood flow, providing 

the angle of the Doppler probes remain constant (Giller et al., 1998; Schreiber et al., 2000; Ainslie & 

Duffin, 2009). Compared to other, often limited in availability and more expensive, methods of 

assessing cerebrovascular function, such as functional magnetic resonance imaging (fMRI), positron 

emission tomography (PET) and dynamic perfusion computer tomography (PCT), TCD is advantageous 

in being portable, allowing repeated measures and continuous monitoring of cerebral blood flow 

(CBF). Furthermore, having a temporal resolution (<0.1 s) enables rapid monitoring of changes in CBF, 



66 
 

particularly in assessing integrative cerebrovascular function through cerebral reactivity, 

autoregulation and neurovascular coupling (van Beek et al., 2008; Willie et al., 2011).  

 

A low-frequency (≤2 MHz) pulsed Doppler ultrasonic beam is emitted from the Doppler probe(s) and 

crosses the intact skull to insonate the basal cerebral arteries through relatively thin bone ‘windows’ 

(Moppett & Mahajan, 2004; D’Andrea et al., 2016). Reflection of the ultrasonic beam off moving red 

blood cells within the field of transmission is detected by the transducer within the Doppler probe(s) 

(Figure 3.9), with the resultant Doppler shift being proportional to red blood cell velocity (DeWitt & 

Wechsler, 1988; Willie et al., 2011). Assessment of cerebral perfusion is often difficult due to the 

natural skull barrier and transmission of the ultrasonic beam can be influenced by the structural 

characteristics of the cranial bones, with approximately 10-20% of individuals having inadequate 

transtemporal acoustic windows, often related to age, gender and other factors (Marinoni et al., 1997; 

D’Andrea et al., 2016).  

 

Figure 3.10 Schematic depicting the components of the Doppler ultrasound probe, consisting of two 
piezoelectric elements; an ultrasound transmitter and a receiver for the returning echoes of detected 
moving red blood cells.  
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The intracranial arteries of most notable clinical interest are the internal carotid artery (ICA), middle 

cerebral artery (MCA), anterior cerebral artery (ACA) and posterior cerebral artery (PCA) (Figures 3.11 

and 3.12). The MCA is the most frequently insonated artery due to the ease of access and signal quality 

obtained through the temporal window. The MCA originates from the ICA and supplies blood to many 

parts of the lateral cerebral cortex, carrying 50-60% of the ipsilateral ICA blood flow (Moppett & 

Mahajan, 2004). Furthermore, the MCA receives ~80% of the blood volume delivered to the Circle of 

Willis (Lindegaard et al., 1987) and is generally considered to represent blood flow to the brain 

(Moppett & Mahajan, 2004). MCA blood velocity is typically detected at a depth of 45-60 mm, with 

directional blood flow towards the Doppler probe(s) (Willie et al., 2011; Bouzat et al., 2014). Detailed 

descriptions of the techniques used for insonating the MCA have previously been documented 

elsewhere and are outlined in Table 3.1 (Moppett & Mahajan, 2004; Willie et al., 2011; D’Andrea et 

al., 2016). The angle of insonation is important in ensuring accurate measurement of MCAv and it 

should remain constant, as the observed velocity is inversely proportional to the cosine angle of 

incidence between the vessel and ultrasound beam (Moppett & Mahajan, 2004). The MCA provides 

relatively easy signal acquisition with a small insonation angle and an acceptable error of ~15% has 

been associated with insonation angles of up to 30° (Aaslid et al., 1982).  

 

Figure 3.11 Overview of the cerebral circulation.  
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Figure 3.12 Overview of the Circle of Willis that is responsible for delivering cerebral blood flow.   

Table 3.1 Typical patterns for identifying cerebral arteries with ‘normal’ Circle of Willis anatomy and 
without intracranial or vascular pathology. Adapted from Moppett and Mahajan (2004). 

Vessel Probe direction Depth (mm) Flow direction Ipsilateral carotid 
compression 

Contralateral 
carotid 

compression 

      
ACA 

 
Anterior 60-75 Away Flow reversal Increased 

velocity 
      

MCA 
 

Perpendicular  35-60 Toward Reduced velocity No change 

      
PCA Posterior 55-70 Toward No change or 

increased velocity 
No change 

      

Abbreviations; ACA, anterior cerebral artery; MCA, middle cerebral artery; PCA, posterior cerebral 
artery.  
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In this thesis, TCD ultrasonography was used to continuously measure changes in MCAv both at rest 

(steady-state) and in response to physical manoeuvres (repetitive sit-to-stand movements) that 

induce fluctuations in BP and alterations in arterial carbon dioxide tension (cerebrovascular reactivity). 

With the participant resting in a supine position, middle cerebral artery blood velocity (MCAv, 1 cm 

distal to the MCA-ACA bifurcation) was continuously measured through the temporal window 

bilaterally via TCD ultrasonography (Doppler-BoxX, DWL Compumedics, Germany). The temporal 

window was located in the region immediately superior to the zygomatic arch, anterior to the tragus, 

at which site acoustic gel was applied and a 2 MHz Doppler probe (DiaMon, DWL Compumedics, 

Germany) was positioned on each side and adjusted until optimal signals were identified and 

remained consistent, according to previous descriptions (Willie et al., 2011). An adjustable headband 

(DiaMon, DWL Compumedics, Germany) was used to securely position the Doppler probes to ensure 

that the same angle of insonation for continuous flow velocity measurement could be maintained and 

any subtle movements prevented for the duration of the assessment (Figure 3.13).   

 

Figure 3.13 Secure positioning of the Doppler probes using a headband.  

 



70 
 

Specific criteria were used to insonate the correct vessel (MCA), with an insonation depth initially 

being set at 50 mm and the Doppler probe being slowly manipulated perpendicular to the assumed 

vessel direction. Upon identifying a strong signal of blood flow towards the transducer, the signal was 

optimised through minimal corrective movements of the probe and adjustments to the signal gain. A 

Doppler spectral waveform demonstrated the blood flow velocity profile on the M-mode screen, 

which assisted in confirming identification of the MCA through mean and peak blood flow velocity 

values, reading >50 cm∙s-1 and ~80 cm∙s-1, respectively (Willie et al., 2011). However, the large 

variability in MCA peak blood velocity should be noted when identifying the MCA, as large variability 

is often inherent in specific patient groups and in ageing populations (Moppett & Mahajan, 2004). 

Standardisation of within-participant measures during repeated tests was achieved through recording 

the vessel depth, optimisation settings, mean and peak MCAv values, in addition to using the MCA-

ACA bifurcation as an anatomical landmark. The same researcher positioned the Doppler probes for 

repeat laboratory visits to ensure consistency of placement. Real-time MCAv was displayed and 

recorded online at 1 kHz (LabChart version 8.0, AD Instruments, Dunedin, New Zealand).  

3.5.1 Partial Pressure of End-Tidal Carbon Dioxide (PETCO2) 

Prior to each experimental session, an online gas analyser (ML206; AD Instruments, Dunedin, New 

Zealand) was calibrated with known oxygen and carbon dioxide (CO2) beta grade gas concentrations. 

End-tidal carbon dioxide (PETCO2) was collected via a sampling tube connected to a Hans Rudolph 

mouthpiece (Hans Rudolph 9060, Kansas, USA) at a flow rate of 200 mL∙min-1. Nasal airflow was 

occluded with a nose clip (Hans Rudolph 9015, Kansas, USA). PETCO2, mean CO2 and peak maximum 

cyclic CO2 responses for end tidal CO2 were recorded online (LabChart version 8.0, AD Instruments, 

Dunedin, New Zealand). 

3.5.2 Cerebrovascular Reactivity (CVR)  

The partial pressure of CO2 (PaCO2) is one of the principle regulators of CBF, with brain perfusion being 

highly sensitive to changes in CO2 (PaCO2) (Willie et al., 2014). Following a 1-minute baseline period 
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recording steady-state CBF, PETCO2, ECG and BP, cerebrovascular reactivity (CVR) was assessed in 

response to changes in PaCO2 via a hyperventilation exercise (approximately 30-breaths per minute 

for approximately 1-minute) to induce hypocapnia. This was followed by breathing 5% CO2 for 3-

minutes (Figure 3.14). The strength of the linear relationship between cerebrovascular conductance 

(CBVC) and PETCO2 was used as the index of CVR. Cerebrovascular CO2 reactivity was calculated both 

in absolute and relative (%) terms as the slopes of the linear regression between CBF (TCD) vs PETCO2 

and CBVC vs PETCO2.  

 

Throughout baseline and 5% CO2 breathing, common carotid artery (CCA) diameter and velocities 

were simultaneously recorded using a 10 MHz multi-frequency linear array probe attached to a high 

resolution 2D duplex ultrasound machine (Terason u-Smart 3300, Teratech, Burlington, MA, USA) to 

assess changes in carotid vasomotor activity. Prior to recording, the longitudinal B-mode image of the 

lumen-arterial walls was optimised and the lowest possible insonation angle (<60°) was used. 

Ultrasound images were recorded using specialised recording software (Camtasia Studio, Techsmith, 

USA), with analysis of CCA diameter and flow performed (BloodFlow Analysis, V.3.0.5 LabVIEW V.7.0, 

National Instruments Corporation; see General Methods, section 3.3.2.1). CCA blood flow (the product 

of lumen cross-sectional area and Doppler velocity) was analysed by averaging 1-minute of baseline 

data to that of the peak blood flow response and was calculated at 30 Hz. The relative increases (%) 

in carotid artery diameter, carotid blood flow and carotid vascular conductance (CarVC; ratio of carotid 

blood flow and mean arterial blood pressure) were calculated using baseline and peak data.  

 

LabChart version 8.0 (AD Instruments, Dunedin, New Zealand) was used to extract the raw MCAv, MAP 

and PETCO2 data in 10-second average bins into Microsoft Excel (Microsoft Office 2010, Microsoft 

Corporation). When bilateral MCAv was obtained, the values were averaged unless a significant 

difference was present between the two sites, in which case the strongest MCAv was used and 
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repeated in subsequent tests. To account for the relative time spent in each phase of the cardiac cycle, 

the weighted mean MCAv (cm/s) was calculated from the peak envelope of the velocity trace for each 

cardiac cycle using the following equation; Mean MCAv = 1/3 SMCAv + 2/3 DMCAv where SMCAv 

represents the systolic middle cerebral artery and DMCAv is the diastolic middle cerebral artery (Skow 

et al., 2013). Linear regression was performed to calculate reactivity slopes. The cerebrovascular 

conductance (CBVC) index allows for the contribution of arterial BP responsiveness towards changes 

in CBF (Willie et al., 2014). Therefore, flow conductance in the cerebral vasculature was calculated as: 

CBVC = mean MCAv / MAP, where CBVC is cerebrovascular conductance, mean MCAv is mean middle 

cerebral artery velocity and MAP represents mean arterial pressure.    

 

 

Figure 3.14 Exemplar waveforms for A. middle cerebral artery blood velocity (MCAv), B. mean arterial 
pressure (MAP) and C. end-tidal carbon dioxide (PETCO2) at baseline and during hypercapnia (5% CO2) 
to assess cerebrovascular reactivity, taken from a representative individual.  
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3.5.3 Cerebral Autoregulation  

Blood pressure is a critical component of cerebral blood flow regulation, with integrated changes in 

PaCO2 and BP occurring throughout the day, particularly during activities such as coughing, exercising 

and changing posture (Willie et al., 2014). Squat-stand manoeuvres were performed to elicit 

oscillations in BP and transfer function analysis was conducted on the beat-to-beat BP and MCAv mean 

signals to determine transfer function estimates of gain, phase and coherence. The transfer gain and 

phase reflect the relative amplitude and the time relationship between the changes in MAP and MCAv 

mean, respectively, over a specified frequency range. A high gain reflects reduced autoregulation. 

Transfer estimates of phase describe the temporal shift required to align the input signal (BP) with the 

output signal (MCAv mean). For a working autoregulation, output will lead input, whereas for less 

effective autoregulation, this phase difference will be reduced. The coherence function assesses the 

linear relationship between two variables; a coherence approaching 1 in a specific frequency range 

suggests a linear relationship between two signals within that frequency range, whereas a coherence 

approximating 0 may indicate a nonlinear relationship, severe extraneous noise in the signals, or 

simply no relationship between signals.  

 

The squat-stand manoeuvres were performed to elicit oscillations in BP within the high-pass filter 

frequency range (<0.20 Hz) of the cerebrovasculature. These large swings in BP increase the statistical 

reliability of the phase and gain metrics in a physiologically relevant manner; i.e., the amplitude of 

these swings represents challenges that the cerebrovasculature endures on a daily basis during 

coughing, postural changes, exercise, etc. The squat phase engages the muscles of the legs, thereby 

increasing the skeletal muscle pump resulting in a large transient increase in venous return and BP 

within 2-3 seconds. Upon standing, the muscles of the legs are relaxed, subsequently decreasing the 

pressure applied to the veins and enabling venous pooling to increase, resulting in a subsequent 

decrease in BP. These large swings in MAP are performed at frequencies within the high-pass filter 
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range (0.05 and 0.10 Hz) and are transmitted to the cerebrovasculature. The large oscillations result 

in greatly increased coherence values at the frequency of interest (e.g., >0.98). Squat-stand cycles 

were performed at 0.20 Hz (2.5-seconds squatting, followed by 2.5-seconds standing), 0.10 Hz (5-

seconds squatting, followed by 5-seconds standing; Figure 3.15) and/or 0.05 Hz (10-seconds squatting, 

followed by 10-seconds standing) for 5-minutes each, separated by a 5-minute rest to ensure that 

PETCO2 had returned to baseline values prior commencing the second set of squats. These frequencies 

were selected as they are within the range where cerebral autoregulation is thought to have its 

greatest influence on the cerebral pressure-flow dynamics. Please refer to Chapters 6 and 7 for the 

specific squat-stand manoeuvres and protocols used. 

 

 

Figure 3.15 Exemplar waveforms for A. middle cerebral artery blood velocity (MCAv), B. mean arterial 
pressure (MAP) and C. end-tidal carbon dioxide (PETCO2) during repeated squat-stand manoeuvres at 
0.10 Hz (5-s squat, 5-s stand), taken from a representative individual.  
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Data was extracted from LabChart (version 8.0, AD Instruments, Dunedin, New Zealand) every 0.1-

seconds and averaged across the 5-minute squat-stand period. Transfer function analysis was 

performed to assess the relationship between changes in MCAv and arterial BP using the variables 

MCAv, PETCO2 and MAP, according to methodological guidelines (Claassen et al., 2016). Transfer 

function estimates of gain, phase and coherence were calculated using MATLAB (MathWorks-Inc., 

Natick, MA) over three different frequencies; very low (0.02 – 0.07 Hz), low (0.07 – 0.20 Hz) and high 

(0.20 – 0.50 Hz) (Claassen et al., 2016).  

 

3.6 Statistical Analysis  

Data were stored and transformed within Microsoft Excel (Microsoft Office 2010, Microsoft 

Corporation), and statistical analyses were performed using the Statistical Package for Social Sciences 

Version 22.0 (SPSS, Chicago, IL, USA). Data were expressed as mean ± SD, unless otherwise stated. 

Statistical significance was delimited at P≤0.05 and exact P values are cited; P values of “0.000” 

provided by SPSS are reported as “<0.001”. Please refer to the methodology section in Chapters 4-7 

for the specific statistical analyses performed.  
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CHAPTER 4: REPRODUCIBILITY OF FOUR FREQUENTLY 
USED LOCAL HEATING PROTOCOLS TO ASSESS 

CUTANEOUS MICROVASCULAR FUNCTION 
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4.1 Introduction  

Microvascular dysfunction may predict the manifestation of future cardiovascular disease, preceding 

abnormalities in larger conduit arteries and arterioles (Levy et al., 2001; Bonetti et al., 2003; Ijzerman 

et al., 2003; Holowatz et al., 2007; Minson, 2010; Sena et al., 2013). The skin provides an easily 

accessible site to assess microvascular integrity through non-invasive methods, which can be used as 

an index of overall systemic vascular function. Control of the cutaneous microcirculation involves both 

neural and non-neural pathways (Johnson et al., 2014). Neurogenic reflexes and local chemical 

mediators, such as NO, contribute towards the vasodilatory effect mediated by the vascular 

endothelium during local skin heating (Houghton et al., 2006; Black et al., 2008b). Protocols that locally 

heat the skin are increasingly used in conjunction with laser Doppler flowmetry (LDF) to evaluate skin 

blood flow responses and microvascular function, particularly for comparing between healthy and 

diseased individuals and/or assessing responses to interventions. 

 

There are currently several local heating protocols that are widely used to assess cutaneous 

microvascular function (Minson et al., 2001; Black et al., 2008b; Choi et al., 2014). These protocols all 

aim to increase skin blood flow to maximal/near-maximal levels (39–42°C), but they vary in the rate 

at which the skin is heated (0.5°C per 5 s, 2-min 30 s or 5-min) and/or the plateau at which the 

temperature is set (39°C vs 42°C) (Minson et al., 2001; Black et al., 2008b; Pugh et al., 2013; Sprung et 

al., 2013; Choi et al., 2014; Dawson et al., 2015). Due to the differences in the plateau and the rate of 

skin heating, a different contribution of the vasodilator pathways to the local heating response is 

present. Rapid local heating (0.5°C per 5 s) induces a transient axon-reflex (~5–10 min), produced via 

activation of heat sensitive sensory nerves and adrenergic nerves, followed by a more gradual, 

sustained vasodilatory response (20–30 min) that is partly (60–70%) NO-mediated (Minson, 2010). A 

modification of this protocol, by maintaining the plateau phase at 39°C, is believed to lead to a larger 

contribution of NO to the plateau phase (Choi et al., 2014). Alternatively, gradually heating the skin 
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(0.5°C per 2-min 30 s or 5-min) evokes a largely NO-mediated vasodilatory response, without 

producing an axon-reflex (Black et al., 2008b; Dawson et al., 2015). Previous work found moderate to 

good inter-day reproducibility for all local heating protocols (Agarwal et al., 2010; Roustit et al., 2010; 

Tew et al., 2011a; Huang et al., 2013; Dawson et al., 2015), especially when data were expressed 

relative to maximal values (Roustit et al., 2010; Tew et al., 2011a; Dawson et al., 2015). However, no 

previous study examined the reproducibility of these local heating protocols within the same subjects 

and/or simultaneously. This latter aspect is of special importance, since simultaneous assessment of 

distinct heating protocols may achieve better insight due to the distinct dilator pathways involved. 

Therefore, the aim of this study was to simultaneously determine the inter-day reproducibility of four 

commonly used local heating protocols for assessing cutaneous microvascular function. Comparable 

reproducibility of all four protocols was expected, which would facilitate simultaneous use of multiple 

local heating protocols within the same study.  

 

4.2 Methods  

4.2.1 Participants  

Fifteen healthy, male participants were recruited through local advertisement. All participants were 

healthy and non-smokers (28 ± 5 yrs, height 1.79 ± 0.10 m, weight 78.3 ± 8.5 kg, BMI 25 ± 2 kg/m2, 

MAP 79 ± 5 mmHg). Individuals with a medical history of hypercholesterolaemia (total cholesterol >6.5 

mmol/l) (Reiner et al., 2011), cardiovascular disease and/or hypertension (systolic blood pressure 

≥140 mmHg, diastolic blood pressure ≥90 mmHg) (NICE, 2011; Yarmolinsky et al., 2015) were 

excluded. Participants were not taking any vasoactive medications or supplements. After being fully 

informed of the methods, written informed consent was obtained from all participants. The study 

conformed to the Declaration of Helsinki and was approved by the Research Ethics Committee of 

Liverpool John Moores University. 



79 
 

4.2.2 Experimental Design  

All participants attended two experimental trials which were 2–7 days apart. During each trial, 

baseline and maximal thermally stimulated forearm cutaneous blood flow was examined 

simultaneously at four different sites on the dominant forearm using LDF. At each site, separated by 

~5 cm, a different local heating protocol was adopted: 1. Rapid 39°C (Choi et al., 2014), 2. Rapid 42°C 

(Minson et al., 2001), 3. Gradual 42°C (Black et al., 2008b) and 4. Slow 42°C (Black et al., 2008b). The 

sites at the forearm were kept the same within subjects between the two testing days. 

Anthropometric measurements were recorded at visit 1. Heart rate and BP were recorded at the 

beginning and at the end of the 20-minute acclimation period, and thereafter at 5-minute intervals 

throughout the local heating protocols using an automated sphygmomanometer (Dinamap V100, GE 

Healthcare, UK) positioned on the contralateral arm. For details of the experimental procedures for 

these measurements, please refer to Chapter 3, General Methods. 

4.2.3 Statistical Analysis  

Data were expressed as mean ± SD and statistical significance was set at P≤0.05. Mixed model 

RMANOVA was used to compare local heating protocols and paired Student's t-tests were used to 

examine day-to-day systematic bias of each local heating protocol. Bland-Altman plots were 

constructed to demonstrate individual variability. The coefficient of variation (CV) was calculated to 

assess the inter-day reproducibility of CVC and %CVCmax at baseline, 39/42°C and 44°C. Prior to 

calculating the CV, a natural logarithmic transformation was applied to correct for heteroscedasticity 

of the data. For biological variables, a CV of <10% is considered good and <20% is acceptable (Scott et 

al., 1989). A two-way ANOVA was used to examine BP within each protocol and between test days 

(main effects of local temperature and visit). Data were stored and transformed within Microsoft Excel 

(Microsoft Office 2010, Microsoft Corporation), and statistical analyses were performed using SPSS 

22.0 (SPSS, Chicago, IL, USA).  
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4.3 Results  

Figure 4.1 shows representative skin blood flow traces for all local heating protocols, indicating the 

phases and associated local temperatures (33°C, 39/42°C and 44°C) that were used for analysis. There 

was a small but significant increase in MAP during the heating protocols (P=0.002), consistent with a 

circadian variation. This gradual increase in MAP was not different between trials (P=0.39) and no 

interaction effect was found between local temperature and trial (P=0.49). 

 

Figure 4.1 A. A representative forearm cutaneous arbitrary flux response for the four local heating 
protocols. Average flux was calculated over a stable 10-min period of baseline at 33°C (A) and the final 
5-min of the plateau phases during heating at 39/42°C (B and C, respectively) and 44°C (D). The spike 
(#) indicates artefact resulting from slight movement of the arm which was removed prior to analysis. 
B. Step-wise temperature increments with corresponding times for all four local heating protocols. 
Taken from (Roberts et al., 2017).  
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4.3.1 Baseline  

Baseline cutaneous blood flow was not different between days when expressed as arbitrary flux or 

CVC (all P>0.05, Table 4.1). Furthermore, when expressed as %CVCmax, cutaneous blood flow was not 

different between days for the heating sites for Rapid 39°C, Rapid 42°C, Gradual 42°C or Slow 42°C 

(Table 4.1). Inter-day variation of baseline cutaneous blood flow was 17.2–26.1% for flux, 17.4–24.8% 

for CVC and 18.6–29.2% for %CVCmax (Table 4.1), with no differences between local heating sites.  

 

Table 4.1 Baseline cutaneous blood flow results. Data is presented as mean ± SD. Inter-day 
reproducibility is presented as CV (± 95% CI): light grey shading indicates CV: >21%; mid grey shading 
indicates CV: 10-20%. 

 Trial 1  Trial 2  Between-day CV (%) Paired t-test 

Baseline (33°C)        

Rapid 39°C         
    Absolute flux (PU)  21 ± 10      20 ± 9  26.1 (19.1 - 41.3)  0.57 

    Absolute CVC (PU/mmHg)  0.26 ± 0.12 0.25 ± 0.11 24.8 (18.2 - 39.2) 0.66 

    Maximal CVC (%CVCmax)  9 ± 5 8 ± 4 29.2 (21.4 - 46.5) 0.51 

Rapid 42°C         
    Absolute flux (PU)        20 ± 9 19 ± 10 17.2 (12.6 - 26.8) 0.10 

    Absolute CVC (PU/mmHg)  0.26 ± 0.11 0.24 ± 0.13 17.4 (12.8 - 27.2) 0.26 

    Maximal CVC (%CVCmax)  8 ± 4 8 ± 5 19.3 (14.2 - 30.3) 0.66 

Gradual 42°C         
    Absolute flux (PU)        19 ± 8  20 ± 12 19.9 (14.6 - 31.2)  0.93 

    Absolute CVC (PU/mmHg)  0.24 ± 0.10 0.25 ± 0.15 20.8 (15.3 - 32.7) 0.79 

    Maximal CVC (%CVCmax)  7 ± 4 7 ± 4 18.6 (13.7 - 29.2) 0.89 

Slow 42°C         
    Absolute flux (PU)        25 ± 11  22 ± 10   21.1 (15.5 - 33.2)  0.30 

    Absolute CVC (PU/mmHg)  0.31 ± 0.14 0.28 ± 0.12 22.7 (16.7 - 35.7) 0.43 
    Maximal CVC (%CVCmax)        10 ± 4 9 ± 5 24.7 (18.2 - 39.1) 0.73 

 

4.3.2 Local Heating to Plateau (39°C/42°C)  

For all four protocols, inter-day cutaneous perfusion at the plateau phase was not different between 

days when expressed as arbitrary flux, CVC or %CVCmax (all P>0.05, Table 4.2). Lower inter-day 

reproducibility was found for the plateau phase of Rapid 39°C compared to Rapid 42°C, Gradual 42°C 

and Slow 42°C when data were expressed as flux, CVC or %CVCmax (Table 4.2). When data were 

presented as %CVCmax, CV was lower for Rapid 42°C, Gradual 42°C and Slow 42°C (Table 4.2). Bland-
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Altman plots demonstrated no obvious heteroscedasticity for the responses at the plateau phase 

(Figure 4.2).  

 

Table 4.2 Local heating cutaneous blood flow results. Data is presented as mean ± SD. Inter-day 

reproducibility is presented as CV (± 95% CI): light grey shading indicates CV: >21%; mid grey shading 

indicates CV: 10-20%; dark grey shading indicates CV<10%. 

 Trial 1  Trial 2  Between-day CV (%) Paired t-test 

Plateau Phase (39°C /42°C)        

Rapid 39°C         
    Absolute flux (PU) 138 ± 56 150 ± 57 20.6 (15.1 - 32.3) 0.20 

    Absolute CVC (PU/mmHg)   1.76 ± 0.67 1.93 ± 0.76 21.2 (15.6 - 33.4) 0.22 

    Maximal CVC (%CVCmax)   55 ± 16 57 ± 13 20.7 (15.2 - 32.6) 0.48 

Rapid 42°C         
    Absolute flux (PU) 233 ± 56 218 ± 45 13.1 (9.7 - 20.5)  0.15 

    Absolute CVC (PU/mmHg)   3.01 ± 0.73 2.80 ± 0.56 12.8 (9.5 - 20.0) 0.09 

    Maximal CVC (%CVCmax) 87 ± 8 86 ± 7 6.8 (5.0 - 10.5) 0.56 

Gradual 42°C         
    Absolute flux (PU) 240 ± 35 242 ± 54 15.2 (11.2 - 23.7)  0.87 

    Absolute CVC (PU/mmHg)   3.00 ± 0.51 3.07 ± 0.69 15.9 (11.7 - 24.9) 0.69 

    Maximal CVC (%CVCmax) 88 ± 4 90 ± 6 5.2 (3.9 - 8.1) 0.29 

Slow 42°C         
    Absolute flux (PU) 220 ± 47 231 ± 52 16.6 (12.3 - 26.0) 0.48 

    Absolute CVC (PU/mmHg)   2.61 ± 0.54 2.81 ± 0.63 18.2 (13.4 - 28.4) 0.26 
    Maximal CVC (%CVCmax)   81 ± 11 87 ± 11 10.6 (7.8 - 16.5) 0.09 

Maximal Plateau (44°C)        

Rapid 39°C         
    Absolute flux (PU) 255 ± 49    261 ± 61 12.9 (9.5 - 20.0)  0.66 

    Absolute CVC (PU/mmHg)   3.22 ± 0.60 3.37 ± 0.82 13.2 (9.8 - 20.6) 0.38 

Rapid 42°C         
    Absolute flux (PU) 274 ± 62    254 ± 42 13.7 (10.1 - 21.3)  0.11 

    Absolute CVC (PU/mmHg)   3.46 ± 0.75 3.26 ± 0.55 12.3 (9.1 - 19.2) 0.14 

Gradual 42°C         
    Absolute flux (PU) 274 ± 42    275 ± 60 14.6 (10.8 - 22.8)  0.96 

    Absolute CVC (PU/mmHg)   3.39 ± 0.50 3.41 ± 0.74 14.5 (10.7 - 22.6) 0.93 

Slow 42°C         
    Absolute flux (PU) 274 ± 47    268 ± 54 13.2 (9.8 - 20.6)  0.71 
    Absolute CVC (PU/mmHg)   3.21 ± 0.58 3.23 ± 0.61 15.0 (11.1 - 23.5) 0.89 
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Figure 4.2 Bland–Altman plots of the difference between days in %CVCmax against the mean of the 
measurements at the 39/42°C plateau for A. Rapid 39°C, B. Rapid 42°C, C. Gradual 42°C and D. Slow 
42°C. Middle horizontal line denotes mean value and upper and lower lines denote 95% limits of 
agreement. Linear regression demonstrated no evidence of proportional bias. Taken from (Roberts et 
al., 2017).  

 

4.3.3 Maximal Heating  

Perfusion, presented as flux of CVC, during maximal heating (44°C) was not different between days 

(Table 4.2). The maximum heating response resulted in a reproducibility of 12.3–15.0% when data 

were expressed as arbitrary flux and CVC (Table 4.2). This observation was valid across all four 

protocols. Bland-Altman plots demonstrated no obvious heteroscedasticity for the responses during 

maximal heating (Figure 4.3).  
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Figure 4.3 Bland–Altman plots of the difference between days in CVC against the mean of the 
measurements at 44°C for A. Rapid 39°C, B. Rapid 42°C, C. Gradual 42°C and D. Slow 42°C. Middle 
horizontal line denotes mean value and upper and lower lines denote 95% limits of agreement. Linear 
regression demonstrated no evidence of proportional bias. Taken from (Roberts et al., 2017). 
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4.4 Discussion  

The aim of this study was to explore the inter-day reproducibility of four commonly used (and 

simultaneously performed) local skin heating protocols for assessing cutaneous vascular function. 

Findings suggest that inter-day variation of baseline cutaneous blood flow demonstrated poor-to-

moderate reproducibility. Secondly, inter-day reproducibility of cutaneous blood flow responses to 

the plateau phase of the Rapid 42°C, Gradual 42°C and Slow 42°C protocols was moderate for flux and 

CVC, but good when data were presented after correcting for maximal perfusion (%CVCmax). In 

contrast, inter-day reproducibility of perfusion during the plateau phase of the Rapid 39°C protocol 

was moderate-to-poor. Finally, maximal inter-day cutaneous blood flow demonstrated moderate 

reproducibility for arbitrary flux and CVC across all protocols, which indicates that the maximum 

response was not affected by the preceding protocol of local heating. These observations have clinical 

impact for designing future studies, especially when multiple local heating protocols are being used 

simultaneously.  

 

Protocols that locally heat the skin in combination with LDF are frequently used to assess 

microvascular integrity and index overall systemic vascular function (Minson et al., 2001). Current 

protocols vary in methodology with fast (Minson et al., 2001; Choi et al., 2014) or gradual (Black et al., 

2008b; Dawson et al., 2015) rates of skin heating. Although studies have explored the reproducibility 

of individual heating protocols, the current study is the first to simultaneously assess reproducibility 

of multiple protocols. This is particularly important given that the simultaneous assessment of 

cutaneous vascular function using these distinct heating protocols may achieve better insight due to 

the distinct dilator pathways involved. Firstly, moderate to-poor reproducibility was identified for 

baseline perfusion, in agreement with previous research (Tew et al., 2011a; Dawson et al., 2015). It is 

important to acknowledge that the reproducibility of baseline perfusion was independent of the site 

of measurement (i.e. the four different sites that underwent the distinct heating protocols). Similarly, 
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maximal perfusion at 44°C also demonstrated good agreement between the four measurement sites. 

This demonstrates that the reproducibility of the LDF technique to assess baseline or maximal 

perfusion is not dependent on the site of measurement, but also was not affected by the local heating 

protocol (e.g. rapid or gradual). 

 

Although distinct heating protocols were used, a comparable reproducibility was expected for the 

plateau phase according to previous studies (Tew et al., 2011a; Dawson et al., 2015). In line with the 

hypothesis, but also in agreement with previous studies (Tew et al., 2011a; Dawson et al., 2015), 

moderate reproducibility was found for perfusion during the plateau phases of the Rapid 42°C, 

Gradual 42°C and Slow 42°C protocols. Again consistent with previous studies (Tew et al., 2011a; 

Dawson et al., 2015), expressing data as a percentage of maximal perfusion resulted in an 

improvement of reproducibility. As CVC data is typically normalised to maximum to account for the 

heterogeneity of cutaneous vessel density, this may explain the increased reproducibility when data 

were normalised to %CVCmax. The use of integrated probes in the current and aforementioned studies, 

which allow an examination of a greater surface area of skin, may have contributed to the good-to-

moderate reproducibility. Indeed, previous work on local heating using single point LDF probes report 

lower reproducibility (Agarwal et al., 2010; Roustit et al., 2010).  

 

Despite the good agreement between the rapid, gradual and slow heating protocols to 42°C, poorer 

reproducibility was reported for forearm cutaneous vascular responses to the rapid heating protocol 

to 39°C. The poorer reproducibility of the Rapid 39°C protocol cannot be simply explained by the speed 

of increasing local temperature, especially since reproducibility of the Rapid 42°C and Gradual 42°C 

protocols were similar. The Rapid 39°C protocol was developed in order to isolate NO-dependent 

dilation and/or allow a better assessment of perturbations that may improve microvascular function 

due to the levels of skin blood flow achieved at this local skin temperature (~50% maximum) compared 
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to those at 42°C (~90% maximum) (Choi et al., 2014). Differences in reproducibility between the Rapid 

39°C protocol and the other protocols may therefore relate to the differences in the level of skin blood 

flow achieved in the protocols. Skin blood flow was lower at the plateau phase of the Rapid 39°C 

protocol (i.e. ~50% of the maximum response) relative to the plateau phases of the Rapid 42°C, 

Gradual 42°C and Slow 42°C protocols (80–90% of the maximum response). Such levels may provide 

more space for variation in perfusion, despite correcting the level of perfusion for differences in the 

maximum perfusion at 44°C. One consequence of this observation is that a larger group size is required 

for the Rapid 39°C protocol compared to the other protocols to detect differences within subjects. 

 

Using data from the present study, the sample sizes required to show significant changes in CVC and 

%CVCmax at 39/42°C for within subject comparisons (e.g., pre and post interventions; Table 4.3) were 

calculated. Assuming a power of 80% (α=0.05), the Rapid 39°C protocol would require 54 subjects to 

detect a 5.0% change in %CVCmax at 39°C compared to 27 subjects at 42°C for the Rapid 42°C protocol. 

Again, assuming a power of 80% (α=0.05), the Gradual 42°C protocol would require 17 subjects to 

detect a 5.0% change in %CVCmax at 42°C and the Slow 42°C protocol would require 47 subjects. These 

sample size estimations demonstrate distinctly different requirements for studies that use both rapid 

and gradual local heating, possibly related to between protocol differences in underlying vasodilatory 

mechanisms. 
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Table 4.3. Estimated sample sizes required for a repeated measures study design using the Rapid 39°C, 
Rapid 42°C, Gradual 42°C and Slow 42°C local heating protocols to detect significant changes in skin 
blood flow assessed as CVC and %CVCmax at 39/42°C using the results from the reproducibility study.  

 

Power, % α-Error Change in CVC Sample size 

   Rapid 39°C Rapid 42°C Gradual 42°C Slow 42°C 

         
80 0.05 0.25 35 29 56 59 
80 0.05 0.50 11 9 16 17 
80 0.05 0.75 6 6 9 9 
80 0.05 1.00 5 4 6 6 
90 0.05 0.25 46 38 74 78 
90 0.05 0.50 13 11 20 21 
90 0.05 0.75 8 7 11 11 
90 0.05 1.00 5 5 7 7 

Power, % α-Error Change in %CVCmax Sample size 

   Rapid 39°C Rapid 42°C Gradual 42°C Slow 42°C 

       
80 0.05 2.5 208 99 58 180 
80 0.05 5.0 54 27 17 47 
80 0.05 7.5 25 13 9 22 
80 0.05 10.0 15 9 6 14 
90 0.05 2.5 278 132 77 240 
90 0.05 5.0 71 35 21 62 
90 0.05 7.5 33 17 11 29 
90 0.05 10.0 20 11 7 17 

 

The reproducibility of the Rapid 42°C, Gradual and Slow 42°C protocols were similar. Importantly, 

these local heating protocols induce skin vasodilation via different mechanisms. Whilst slowly heating 

the skin prevents significant axon reflexes and leads to a largely NO-mediated response, rapidly 

heating the skin activates the axon reflex and leads to a NO- and EDHF-mediated response (Johnson 

et al., 2014). The involvement of multiple vasoactive substances in the rapid heating response might 

have contributed to a larger variation in response to the Rapid 42°C local heating protocol. However, 

similar coefficients of variation were evident for the CVC and %CVCmax data in the Rapid 42°C and 

Gradual 42°C protocols. The specific underlying pathways leading to vasodilation in response to the 

distinct heating protocols may therefore provide useful synergistic insight into complementary 

vasodilatory mechanisms. Therefore, supported by the comparable reproducibility, it is suggested that 

measuring multiple local heating protocols is easy, applicable and feasible, but may also provide better 
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insight into the skin vasodilator mechanisms. An alternative approach would be to use the same 

heating protocol across multiple sites to minimise any between site differences. Averaging data across 

these sites would improve reliability and thereby reduce the sample size requirements. However, use 

of a single protocol is limited in only assessing one vasodilatory pathway, whereas a multi-protocol 

approach may elicit further mechanistic insight into vasodilatory responses observed.  

4.4.1 Limitations  

Inter-day reproducibility was assessed in a young, healthy population, thereby limiting extrapolation 

of our findings to individuals and patient groups with cardiovascular risk, such as older individuals, 

who commonly exhibit attenuated cutaneous blood flow responses to local heating (Minson et al., 

2002; Cracowski et al., 2006; Holowatz et al., 2007; Black et al., 2008b). However, young and older 

subjects demonstrated comparable reproducibility of local heating in a previous study (Tew et al., 

2011a). A further limitation is that females were excluded from this study to control for hormonal 

influences on vascular function (Charkoudian et al., 1999; Charkoudian & Johnson, 2000; Charkoudian, 

2001) and, therefore, the study findings are applicable to males only. 

 

In conclusion, this is the first study to simultaneously examine the inter-day reproducibility of four 

local heating protocols, which are currently frequently used to assess cutaneous blood flow in humans. 

The study findings suggest that the reproducibility of baseline forearm skin perfusion assessment is 

poor to moderate, and is independent of the site of measurement. The Rapid, Gradual and Slow 42°C 

protocols exhibited superior reproducibility, particularly when data is expressed as %CVCmax, 

compared to the Rapid 39°C protocol. The present study data supports the validity of repeated 

measures of cutaneous blood flow in response to local heating protocols, for use in epidemiological 

studies as an index of microvascular function. Furthermore, these data provide help in guiding future 

studies in calculating the sample sizes necessary to detect differences, especially since differences are 

present between the different protocols. The present data will, therefore, inform the assessment of 
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cutaneous microvascular function in subsequent chapters in using simultaneous local heating 

protocols to comprehensively interrogate the microvasculature, whilst also considering the sample 

size estimations as a guide to detect meaningful differences. 
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CHAPTER 5: ACUTE BLACK TEA CONSUMPTION 
IMPROVES CUTANEOUS VASCULAR FUNCTION IN 

HEALTHY MIDDLE-AGED HUMANS
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5.1 Introduction  

 

Cardiovascular disease (CVD) remains the leading cause of global mortality, representing ~30% of all 

deaths (WHO, 2016). The role of dietary factors on CVD risk has been frequently explored in recent 

years, with a high dietary flavonoid intake being associated with a reduction in CVD risk (Peterson et 

al., 2012). Tea, produced from the plant Camillia sinesis, is the major source of dietary flavonoids in 

many countries globally (Yahya et al., 2016) and can be found as catechins and flavanols in green tea 

and theaflavins, thearubigins and flavonols in black tea (Hodgson & Croft, 2010). Accordingly, several 

studies have revealed a strong, inverse relation between regular intake of tea and cardiovascular risk 

(Grassi et al., 2009b; Greyling et al., 2014).  

 

A frequently cited explanation for the cardioprotective effects of black and green tea ingestion relates 

to the reduction in blood pressure following chronic consumption (Grassi et al., 2009b; Greyling et al., 

2014; Grassi et al., 2015). Further research found that acute and regular tea ingestion improves NO-

mediated, endothelium-dependent dilation of conduit arteries (Duffy et al., 2001; Hodgson et al., 

2002; Hodgson et al., 2005; Grassi et al., 2009b; Schreuder et al., 2014). Both conduit and resistance 

vessels have demonstrated improved endothelial function following tea ingestion in both healthy 

individuals (Hodgson et al., 2002; Grassi et al., 2009b) and in those with CVD (Duffy et al., 2001). Thus, 

the general consensus is that regular tea ingestion improves blood pressure by virtue of a generalised 

improvement of endothelial function and lowering of peripheral vascular resistance (Duffy et al., 2001; 

Hodgson et al., 2002; Hodgson et al., 2005; Grassi et al., 2009b; Ras et al., 2011).  

 

Despite encouraging data supporting a beneficial effect of tea ingestion in larger (conduit) vessels, no 

previous study has robustly explored the effect of black tea on small vessels (skin microcirculation). 

Therefore, the aim of this study was to examine cutaneous vascular responses to local skin heating. 

Given the complexity of the cutaneous vascular system and contribution of distinct mechanisms for 
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skin dilation when gradually or rapidly heating the skin, a comprehensive approach was adopted using 

both rapid and gradual local skin heating protocols simultaneously. It was hypothesised that black tea 

ingestion would be associated with increased cutaneous microcirculation responses for both rapid 

and gradual heating protocols.  

 

5.2 Methods  

5.2.1 Participants  

Twenty middle-aged male (n=9) and post-menopausal female (n=11) participants were recruited 

through local advertisement. All participants were healthy and non-smokers (58 ± 5 yrs, height 1.70 ± 

0.1 m, weight 75.9 ± 16.1 kg, BMI 26 ± 4 kg/m2, baseline MAP 104 ± 8 mmHg). For details of the 

inclusion and exclusion criteria, please refer to Chapter 3, General Methods. After being fully informed 

of the methods verbally and in writing, written informed consent was obtained from all participants. 

The study conformed to the Declaration of Helsinki and was approved by the local research ethics 

committee.  

5.2.2 Experimental Design  

All participants performed two experimental trials (tea and control), 7-days apart in a randomised, 

controlled, double-blind, cross-over design (Figure 5.1). The crossover design was chosen to eliminate 

between-participant variability, taking into account a 6-day washout period between the two 

interventions to avoid any carry-over effects, which is in accordance with previous similar designed 

crossover tea vascular function studies (Grassi et al., 2009b; Grassi et al., 2015). Computer-generated 

randomisation was used to reduce potential selection bias. Participants were asked to adhere to all 

pre-test instructions regarding fasting, avoiding caffeine etc., as outlined in Chapter 3, General 

Methods (section 3.1). Anthropometric measurements were recorded at visit 1 (see Chapter 3, 

General Methods, section 3.2). Upon arrival to the laboratory, and 2-hours prior to microvascular 

assessment, participants ingested a tea drink (containing 300 mg flavonoids, 75 mg caffeine and 2.8 g 
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sucrose) or a taste and appearance matched placebo drink (0 mg flavonoids, 75 mg caffeine, 2.7 g 

sucrose, tea flavour and caramel colour), prepared by dissolving two sachets in 200 ml hot water. 

Participants subsequently rested for 2-hours prior to commencement of testing to match peak plasma 

concentrations of flavonoids and other metabolites such as phenolic acids, with testing of skin 

microcirculation.  

 

Figure 5.1. CONSORT diagram showing the flow of participants through each stage of the randomised 
trial. Taken from (Woodward et al., 2016).  
 

At each trial, baseline and thermally stimulated forearm cutaneous blood flow was examined 

simultaneously using rapid (to 39 and 42°C) and gradual (to 42°C) local heating protocols. Since these 

protocols reflect different dilator mechanisms and a distinct role of the NO-pathway, they provide 

complementary insight into the impact of black tea on the cutaneous microvasculature. Rapid local 

heating was performed at two different sites (i.e. two different local heating protocols) on the 
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dominant forearm and examined using LDF. Gradual local heating to 42°C was performed on the 

dominant forearm using LDF and on the contralateral (non-dominant) arm using laser speckle imaging 

via full-field laser perfusion imaging (FLPI) to provide whole forearm cutaneous microvascular function 

(Figure 5.2).  

 

The FLPI technique, also known as laser speckle contrast imaging, exploits the fact that the random 

speckle pattern that is generated when tissue is illuminated by laser light, changes when blood cells 

move within the region of interest (Briers et al., 2013). High levels of movement (fast flow) produce a 

more blurred pattern, associated with a reduction in contrast in that region. Low contrast therefore 

corresponds with high flow and high contrast corresponds with low flow. The strengths of this 

technique are that video frame rate blood flow images (up to 25 per second) enable the tracking of 

fast transient blood flow changes and provides high spatial and temporal resolution. This device works 

with a near infra-red laser diode (785 nm) and is able to scan skin surfaces from 5 mm x 7 mm to 15 

cm x 20 cm, to a depth of approximately 150-300 micron and is safe for human use.  

 

Following a 20-minute acclimation period, FLPI recordings were performed using a blood flow imaging 

system (moorFLPI-1, Moor Instruments, Axminster, UK) with a laser wavelength of 785 nm and 

sampling frequency of 25 Hz. A ~3 cm2 area of skin was measured, with the distance between the laser 

head and skin surface fixed at 15 cm (Mahé et al., 2011). A skin heater module (moorVMSHEAT, Moor 

Instruments, Axminster, UK) was used to manually set the incremental temperatures. Data were 

continuously recorded in moorFLPI V3.0 PC Software (Moor Instruments, Axminster, UK).  

 

Both LDF and FLPI provide non-invasive continuous measures of cutaneous blood flow (Roustit & 

Cracowski, 2012). By using a combination of these techniques, it is possible to simultaneously evaluate 
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superficial (<300 micron) and deeper (0.5-1.5 mm) skin blood flow via FLPI and LDF, respectively. 

Anthropometric measurements were recorded at visit 1. Heart rate and BP were recorded using an 

automated sphygmomanometer (Dinamap V100, GE Healthcare, UK) positioned on the ankle, 

corresponding to the same laterality as their dominant arm. For details of the experimental 

procedures for these measurements, please refer to Chapter 3, General Methods. 

 

 
 
Figure 5.2. Study overview and schematic depicting the stages of the local heating protocols. Light 
grey shading denotes local heating, mid grey shading represents the plateau and dark grey shading 
represents the maximal plateau. Taken from (Woodward et al., 2016).  
 

5.2.3 Statistical Analysis  

Data were expressed as mean ± SD and statistical significance was set at P≤0.05. For all protocols, 

linear mixed models (main effects of condition and time) were used to examine the impact of acute 

tea ingestion on blood pressure and forearm skin microcirculation. The repeated covariance type was 

Unstructured and Condition, Time and Condition*Time was specified as Fixed Effects (intercept was 

included) and as Estimated Marginal Means. Order was added as a covariate to control for the 

sequence of experimental trials (tea and placebo). The Test of Fixed Effects Condition*Time 
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interaction was interpreted. Significant main effects of Time or Condition or a Time*Condition 

interaction were followed up with a simple main effects analysis and the least significant difference 

(LSD) approach to multiple comparisons (Perneger, 1998). Data were stored and transformed within 

Microsoft Excel (Microsoft Office 2010, Microsoft Corporation), and statistical analyses were 

performed using SPSS 22.0 (SPSS, Chicago, IL, USA). 

 

5.3 Results  

One participant was removed from the Gradual 42°C LDF analysis for both experimental trials (due to 

probe failure) and five participants were removed from the Gradual 42°C FLPI analysis for both trials 

(linked to excessive movement artefacts), giving a population of n=19 and n=15, respectively. No 

participants were removed from the Rapid 39°C and Rapid 42°C analysis (both n=20). There was no 

order effect for any of the protocols (P-value range 0.20-0.87). Baseline MAP was not different 

between conditions (108 ± 11 mmHg vs 108 ± 11 mmHg, P=0.73) and showed no change across time 

(P=0.52). There were no differences in baseline cutaneous perfusion between trials for measurement 

sites that underwent Rapid 39°C or Rapid 42°C local heating for absolute flux, CVC or %CVCmax (Table 

5.1). Furthermore, the site that underwent Gradual 42°C local heating using LDF showed no difference 

in baseline cutaneous blood flow between trials for absolute flux, CVC or %CVCmax (Table 5.2). 

However, using FLPI, a significantly higher baseline perfusion was found after tea ingestion for 

cutaneous flux and CVC, but not for %CVCmax (Table 5.2).  

 

5.3.1 Rapid Local Heating: Impact of Tea  

5.3.1.1 Rapid 39°C  

Local heating induced a typical pattern of an initial peak, nadir and plateau in cutaneous blood flow. 

Therefore, a main effect of time was demonstrated for absolute flux, CVC and %CVCmax (Table 5.1). 

However, there was no effect of the intervention found or a time X intervention-interaction for 

absolute flux, CVC or %CVCmax (Table 5.1). 
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5.3.1.2 Rapid 42°C 

Local heating induced a typical pattern of an initial peak, nadir and plateau in cutaneous blood flow. 

Consequently, a main effect of time was demonstrated for absolute flux, CVC and %CVCmax (Table 5.1), 

whilst no main effect of intervention or time X intervention-interaction was found for absolute flux, 

CVC or %CVCmax (Table 5.1).  

5.3.2 Gradual Local Heating: Impact of Tea  

5.3.2.1 GradualLDF (42°C)  

Local heating induced a gradual, slow heating response with no detectable initial axon reflex-induced 

peak or nadir with a main effect of time (Table 5.2). A higher skin blood flow throughout the heating 

protocol was observed during the trial preceded by black tea for absolute CVC (P=0.04), with a trend 

towards significance when data were presented as absolute flux (P=0.06, Table 5.2). No effect of tea 

was found when CVC was normalised for maximum perfusion (%CVCmax, P=0.82, Table 5.2). No time X 

intervention interaction was found for absolute flux (P=0.93), CVC (P=0.95) or %CVCmax (P=0.98, Table 

5.2).  

5.3.2.2 GradualFLPI (42°C) 

Local heating induced a gradual, slow heating response with no detectable initial axon reflex-induced 

peak or nadir (Table 5.2). Tea ingestion was associated with a significantly higher absolute flux 

(P<0.001) and CVC (P<0.001), but not when CVC was normalised to maximum CVC (%CVCmax, P=0.35, 

Table 5.2). No time X intervention interaction was present for absolute flux (P=0.50), CVC (P=0.66) or 

%CVCmax (P=1.00, Table 5.2). 

Statistical analysis revealed no presence of a carry-over effect. 
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Figure 5.3 Cutaneous vascular conductance (CVC) responses across time points (baseline at 33°C, axon 
peak, axon nadir, plateau at 39/42°C and maximal plateau at 44°C) following rapid local heating for A. 
Rapid 39°C and B. Rapid 42°C in 20 healthy volunteers when heating was preceded by ingestion of 
placebo (open squares) or tea (solid triangles). Data are presented as means, with error bars 
representing SE. Taken from (Woodward et al., 2016). 
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Table 5.1 Laser Doppler flowmetry cutaneous blood flow responses to local heating for the Rapid 

39°C and Rapid 42°C protocols for placebo and tea interventions. 

  Intervention (mean ± SD) LMM 

Rapid 39°C Placebo Tea Time Tea Time*Tea 

Absolute flux(PU)      
    Baseline   22 ± 11   21 ± 8    
    Axon-reflex 108 ± 38   103 ± 50    
    Nadir   57 ± 25     52 ± 26 <0.001* 0.14 0.76 
    Plateau 39°C 136 ± 53   123 ± 70    
    Plateau 44°C 288 ± 61   263 ± 61    
      
Absolute CVC (PU/mmHg)      
    Baseline   0.21 ± 0.12     0.21 ± 0.10    
    Axon-reflex   1.03 ± 0.39     0.99 ± 0.47    
    Nadir   0.54 ± 0.25     0.50 ± 0.26 <0.001* 0.27 0.91 
    Plateau 39°C   1.29 ± 0.52     1.17 ± 0.65    
    Plateau 44°C   2.70 ± 0.67     2.52 ± 0.59    
      
Maximal CVC (%CVCmax)      
    Baseline   8 ± 4     8 ± 3    
    Axon-reflex   39 ± 15     39 ± 15    
    Nadir   20 ± 10     20 ± 10  <0.001* 0.76 0.99 
    Plateau 39°C   48 ± 15     46 ± 21    

Rapid 42°C      

Absolute flux(PU)      
    Baseline   22 ± 9    25 ± 16    
    Axon-reflex   199 ± 60  208 ± 60    
    Nadir   165 ± 64  177 ± 74 <0.001* 0.51 0.99 
    Plateau 42°C   252 ± 72  253 ± 67    
    Plateau 44°C   300 ± 79  302 ± 63    
      
Absolute CVC (PU/mmHg)      
    Baseline     0.21 ± 0.10    0.25 ± 0.16    
    Axon-reflex     1.90 ± 0.61    2.00 ± 0.61    
    Nadir     1.57 ± 0.64    1.71 ± 0.74 <0.001* 0.29 1.00 
    Plateau 42°C     2.39 ± 0.74    2.43 ± 0.66    
    Plateau 44°C     2.81 ± 0.81    2.91 ± 0.74    
      
Maximal CVC (%CVCmax)      
    Baseline     8 ± 3    8 ± 4    
    Axon-reflex     67 ± 11    68 ± 11    
    Nadir     55 ± 16    57 ± 19 <0.001* 0.65 0.95 
    Plateau 42°C   85 ± 8    83 ± 12    

Data are presented as mean ± SD. LMM, linear mixed model. *Main effect of time P<0.001 vs baseline.   
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Figure 5.4 Cutaneous vascular conductance (CVC) responses across time points (from baseline at 33°C 
to maximal plateau at 44°C) following gradual local heating using A. laser-Doppler flowmetry (LDF) 
and B. full-field laser perfusion imaging (FLPI) in 20 healthy volunteers when heating was preceded by 
ingestion of placebo (open squares) or tea (solid triangles). Data are presented as means, with error 
bars representing SE. *Main effect of condition P≤0.05 placebo vs tea, ^main effect of condition 
P<0.001 placebo vs tea. Taken from (Woodward et al., 2016).  
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Table 5.2 Cutaneous blood flow responses to local heating for the GradualLDF (42°C) and GradualFLPI 
(42°C) protocols for placebo and tea interventions. 

  Intervention (mean ± SD) LMM 

GradualLDF  (42°C) Placebo Tea Time Tea Time*Tea 

Absolute flux(PU)      
    Baseline   26 ± 11    24 ± 9    
    Plateau 42°C 268 ± 79    278 ± 61 <0.001* 0.06 0.93 
    Plateau 44°C 302 ± 84    319 ± 45    
      
Absolute CVC (PU/mmHg)      
    Baseline   0.25 ± 0.11      0.23 ± 0.09    
    Plateau 42°C   2.51 ± 0.76       2.61 ± 0.64 <0.001*   0.04^ 0.95 
    Plateau 44°C   2.80 ± 0.82       2.93 ± 0.51    
      
Maximal CVC (%CVCmax)      
    Baseline   9 ± 5       8 ± 3    
    Plateau 42°C 90 ± 7       89 ± 14 <0.001* 0.82 0.98 

GradualFLPI  (42°C)      

Absolute flux(PU)      
    Baseline 30 ± 9     36 ± 8    
    Plateau 42°C 197 ± 51     222 ± 50 <0.001* <0.001^ 0.50 
    Plateau 44°C 216 ± 65     253 ± 68    
      
Absolute CVC (PU/mmHg)      
    Baseline   0.29 ± 0.09       0.36 ± 0.07    
    Plateau 42°C   1.85 ± 0.55       2.10 ± 0.57 <0.001* <0.001^ 0.66 
    Plateau 44°C   2.01 ± 0.64       2.34 ± 0.72    
      
Maximal CVC (%CVCmax)      
    Baseline   17 ± 11     17 ± 8    
    Plateau 42°C   94 ± 10     91 ± 6 <0.001* 0.35 1.00 

Data are mean ± SD. LMM, linear mixed model. *Main effect of time P<0.001 vs baseline. ^Main effect of 
intervention; placebo vs tea P≤0.05.  
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5.4 Discussion  

The primary aim of this study was to test the hypothesis that a single dose of black tea ingestion 

improves cutaneous microcirculation following both rapid and gradual local skin heating. The study 

found that gradual local heating of the skin to 42°C induced a greater vasodilatory response following 

tea ingestion compared to placebo when expressed as absolute flux and CVC. The ability of tea to 

improve local gradual heating responses in the skin was reinforced by the observation that both LDF 

and FLPI, two distinct but accepted techniques to assess skin perfusion, detected this effect. 

Conversely, rapid local heating did not demonstrate a significant increase in cutaneous 

microcirculation with tea ingestion, either for the Rapid 39°C or Rapid 42°C protocols. Taken together, 

this study provides some further evidence that regular tea ingestion may mediate its potential 

cardiovascular benefits via improvements in (cutaneous) microvascular function.  

 

This study is the first to explore the acute effects of tea ingestion on the cutaneous microcirculation 

whilst adopting a rigorous protocol involving blind analysis of rapid and gradual heating protocols as 

well as two distinct, accepted techniques. This observation fits with the general observation of tea 

being able to enhance endothelial function in conduit vessels when assessed by FMD (Grassi et al., 

2009b; Schreuder et al., 2014). Taken together, these findings suggest that acute tea ingestion 

improves vascular function across the vascular tree, including skin microvessels, possibly via 

upregulation of vasodilator mechanisms. 

 

In contrast to gradual local heating, rapid heating of the skin did not alter cutaneous vascular function 

following tea ingestion when compared to placebo. Findings were similar for both rapid heating 

protocols (Rapid 39°C and Rapid 42°C). Interestingly, a recent observational study (Wasilewski et al., 

2016) found improved microvascular function following regular consumption of green tea (14-days) 

using rapid heating (whilst no measure of gradual heating was included). Important differences were 

present between studies, especially since this previous study did not include a placebo control, did 
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not fully adhere to guidelines for vascular assessment (e.g. control of menstrual cycle) (Thijssen et al., 

2011), and was limited by a lack of control of dietary habits (Grassi et al., 2009b). Furthermore, whilst 

our study investigated the acute (2-hour) effects of tea, they examined a protocol of 14-days of green 

tea. Despite the Rapid 39°C and Gradual 42°C protocols both being linked to the release of NO, 

distinctly different responses are clearly evident between the gradual and rapid heating protocols in 

the present study. Different vasodilator pathways directly influence the cutaneous microcirculation, 

including neurogenic reflexes and local chemical mediators (Minson et al., 2001; Black et al., 2008b; 

Dawson et al., 2015). The rate at which the skin is heated alters the contribution of these vasodilator 

pathways, with rapid (0.5°C per 5s) local heating inducing a transient axon-reflex mediated  

vasodilation that is produced via activation of heat sensitive sensory/nociceptive nerves releasing 

calcitonin gene-related peptide (CGRP) and substance P and adrenergic nerves releasing 

norepinephrine and neuropeptide Y (Minson et al., 2001; Johnson et al., 2014). This initial neurogenic 

response is followed by a more gradual, sustained vasodilation. In both phases, vasodilation occurs 

through complex pathways that lead to the production of NO and smooth muscle relaxation via 

hyperpolarization from endothelial derived hyperpolarisation factors (EDHFs) (Johnson et al., 2014), 

with a greater (but not exclusive) contribution of NO during the plateau phase (Minson et al., 2001; 

Choi et al., 2014). Furthermore, the relative contribution of NO to the vasodilation during the plateau 

phase of the rapid heating protocols depends upon the target heating temperature, as the heating 

response to 39°C seems to depend more on NO than the response to 42°C (Minson et al., 2001; Choi 

et al., 2014). These studies, therefore, demonstrate that the underlying mechanisms for cutaneous 

vasodilation differ based on the rate and maximum level of heating. The different vasodilator 

pathways for these heating protocols may contribute to the distinct findings in this study. From a 

methodological perspective, the differences between rapid and gradual local heating highlight the 

importance of using multiple heating protocols simultaneously when exploring the impact of an 

intervention on skin perfusion.  

 



105 
 

The higher vasodilatory responses that were observed following gradual heating of the skin were 

demonstrated for arbitrary flux and CVC values, for both LDF and FLPI techniques. However, the 

difference in responses between the tea and placebo trials was not significant when data were 

expressed as %CVCmax. The skin is commonly heated to 44°C to reach maximal vasodilation and 

expressing CVC as a percentage of maximal perfusion is often considered the preferred method of 

data expression (Cracowski et al., 2006), with improved reproducibility compared to flux or CVC 

(Dawson et al., 2015). Despite a main effect of tea on flux and CVC, post-hoc analyses revealed no 

differences between trials at 44°C (LDF: flux = 0.17 and CVC = 0.19; FLPI: flux = 0.09 and CVC = 0.08). 

However, the magnitude of differences in flux and CVC between tea and placebo are larger than one 

may expect based on day-to-day variation (Dawson et al., 2015). This provides some indication that 

the tea intervention may have altered cutaneous perfusion at 44°C local heating.  

5.4.1 Clinical Relevance  

Tea consumption is known to have cardiovascular benefits, including a reduction in blood pressure 

after short-to long-term intervention, possibly mediated (in part) by improved endothelial function of 

conduit vessels (Hodgson et al., 2002; Ras et al., 2011; Schreuder et al., 2014). In the present study, 

cutaneous microcirculation responses to gradual heating improved following tea ingestion. It may be 

speculated that these findings may have implications for individuals with microvascular complications 

and skin endothelial dysfunction, such as type 2 diabetes mellitus. Interestingly, consumption of tea 

has been associated with a reduced risk for type 2 diabetes mellitus (Yang et al., 2014). The study 

findings thus support the hypothesis that regular tea consumption may have potential benefit in such 

patient groups. Future studies are warranted to explore this hypothesis. 

5.4.2 Limitations 

Due to the modest sample size, the findings of the present study cannot be generalised towards the 

wider populace. Furthermore, although a middle-aged population was included, who are likely at an 

increased risk of CVD, the findings cannot be simply extrapolated to clinical groups. Moreover, the 

study population may have impaired endothelial function as blunted cutaneous NO-mediated 
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vasodilation has been demonstrated in older individuals (Black et al., 2008b), suggesting that young 

healthy volunteers may exhibit different results than the older population studied. Therefore, future 

work is required to explore the potential impact of acute as well as chronic tea ingestion on cutaneous 

vascular function in both individuals with compromised endothelial function and in young, healthy 

individuals. A further limitation is that plasma measures of flavonoids or NO compounds were not 

obtained and, therefore, the present study does not provide any biochemical or biomolecular insight 

into the mechanisms underlying the improvement in cutaneous microvascular function. However, it 

is important to emphasise that this was not the purpose of the study, particularly given that this is the 

first to explore the effects of acute tea ingestion on the cutaneous microcirculation. 

 

In conclusion, the study findings suggest that acute tea ingestion enhances cutaneous vascular 

function in a healthy, middle-aged population, when measured following gradual local heating to 42°C. 

Therefore, these data suggest that acute tea ingestion has a beneficial impact on vascular function at 

the microcirculatory level, which is likely achieved through a mechanism related to activation of 

endothelium-derived vasodilators. These improvements in cutaneous microvascular function may 

contribute to the potential cardiovascular health benefits of regular tea ingestion. Future studies are 

required to explore the acute and chronic effects of tea on individuals with increased CVD risk and in 

clinical populations with a priori endothelial dysfunction. Furthermore, given the detrimental impact 

of ‘unhealthy’ lifestyles on increasing CVD risk, further investigation is warranted to determine 

whether tea may exert a cardioprotective role on peripheral and cerebral vascular function in the 

context of an ‘unhealthy’ lifestyle.  
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CHAPTER 6: GREEN TEA ATTENUATES THE 
DELETERIOUS IMPACT ON PERIPHERAL VASCULAR 
FUNCTION AND INSULIN SENSITIVITY ASSOCIATED 

WITH AN UNHEALTHY LIFESTYLE  
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6.1 Introduction  

Cardiovascular related pathologies have emerged as a major public health burden over recent 

decades, with scientific evidence increasingly implicating modifiable lifestyle factors in the progression 

of cardiovascular risk towards overt CVD. Physical inactivity and poor dietary habits are major 

modifiable risk factors linked with detrimental changes to cardiometabolic health (Lavie et al., 2009; 

Booth et al., 2012). Physical inactivity has increased significantly in recent decades and is now one of 

the leading causes for global mortality (WHO, 2015). Low levels of leisure time physical activity are 

associated with increased risk for CVD (Hamburg et al., 2007; Thijssen et al., 2010; Boyle et al., 2013; 

Holwerda et al., 2015) and metabolic disease (Hamburg et al., 2007; Thyfault & Krogh-Madsen, 2011). 

In addition, food intake also impacts cardiovascular and metabolic health, with high fat (most likely 

trans) (Skeaff & Miller, 2009; Michas et al., 2014; de Souza et al., 2015), high calorie diets being 

strongly associated with long-term cardiovascular and metabolic disease risk (Hennig et al., 2001; Liu 

& Manson, 2001; Brons et al., 2009; Dow et al., 2015). Interestingly, even short-term (<7-days) high 

fat dietary interventions (e.g., >40% extra calories from fat) in healthy adults lead to increased baseline 

glucose levels (Brons et al., 2009), as well as postprandial increases in glucose and insulin (Parry et al., 

2017). Furthermore, habitual high fat dietary consumption is associated with impaired endothelial-

dependent vasodilation in sedentary adults (Dow et al., 2015) and a single high fat meal has 

demonstrated a postprandial decline in endothelial function in healthy adults (Vogel et al., 1997; Bae 

et al., 2001; Tsai et al., 2004). This work highlights the detrimental impact of both lowering physical 

activity levels and excessive food intake.  

 

Epidemiological research continues to link increased flavonoid ingestion with a reduction in 

cardiovascular events, including stroke and dementia (Commenges et al., 2000; Vita, 2005; Fisher et 

al., 2006; Malar & Devi, 2014). Furthermore, regular tea ingestion, a key source of flavonoids, has 

been shown to lower BP (Hodgson et al., 2012) and improve NO-mediated, endothelium-dependent 
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dilation of conduit arteries (Hodgson et al., 2002; Grassi et al., 2009b; Schreuder et al., 2014), 

particularly in the presence of cardiovascular pathology or following an  acute, single high fat meal 

(Corretti et al., 2002; Hodgson et al., 2005; Grassi et al., 2012b; Grassi et al., 2016). In addition, regular 

intake of tea is also associated with a lower risk for developing diabetes (Iso et al., 2006; Stote & Baer, 

2008; Jing et al., 2009; Park et al., 2014). For example, plasma glucose lowering effects have been 

observed in both type 2 diabetic individuals (Hosoda et al., 2003) and in healthy adults (Bryans et al., 

2007), suggesting that tea may improve metabolism, via changes in glucose handling and insulin 

resistance.  

 

In this study, it was speculated that tea may represent a potential approach in targeting the 

cardiovascular and metabolic impairments induced by a lifestyle characterised by too little physical 

activity and excessive calorie intake (e.g. the Western lifestyle, but also periods of forced unhealthy 

lifestyle (e.g., illness, injury)). The aim of this study was, therefore, to explore whether daily green tea 

consumption (equivalent to 6 cups/day) ameliorates the impairments in peripheral (conduit artery 

and skin microvessels) and cerebrovascular function and insulin sensitivity after a 7-day ‘unhealthy’ 

lifestyle, combining physical activity reduction (-50% steps per day) and overfeeding (+50% kcal per 

day, comprising 65% fat) in healthy male participants. It was hypothesised that daily consumption of 

green tea would abrogate changes in peripheral and cerebrovascular function following 7-days of 

reduced physical activity and increased calorie consumption.  

 

6.2 Methods  

6.2.1 Participants 

Twelve healthy male participants were recruited through local advertisement. All participants were 

healthy and non-smokers (29 ± 6 yrs, height 1.76 ± 0.1 m, weight 77.0 ± 10.0 kg, BMI 25 ± 2 kg/m2, 

baseline MAP 84 ± 8 mmHg). For details of the inclusion and exclusion criteria, please refer to Chapter 
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3, General Methods. Participants’ habitual activity levels were established through completion of an 

IPAQ questionnaire (Lee et al., 2011) and a 4-day self-reported diary. A hip-mounted pedometer (Digi-

walker SW-701, Yamax, Japan) and tri-axial accelerometer (GT3X BT+ model, Actigraphy, Pensacola, 

Florida, USA) were used to count the number of daily steps and to record all non-water based physical 

activity, respectively. The reliability of tri-axial accelerometry to estimate physical activity has been 

previously determined (Aadland & Ylvisåker, 2015). Subjects who recorded <8,000 steps per day were 

excluded from participation. During the 4-day physical activity assessment period, participants also 

recorded their daily dietary intake in a food diary to determine their habitual consumption. The 

activity and dietary data were subsequently used to calculate the physical activity reduction of -50% 

steps per day and overfeeding by +50% kcal per day. After being fully informed of the methods verbally 

and in writing, written informed consent was obtained from all participants. The study conformed to 

the Declaration of Helsinki and was approved by the local research ethics committee. The study was 

registered at clinicaltrials.gov (NCT02777853).  

6.2.2 Experimental Design  

All participants underwent two 7-day periods of lifestyle intervention, both consisting of physical 

activity reduction (-50% steps per day) and overfeeding (+50% kcal per day, comprising 65% fat), 

combined with either tea or placebo ingestion (Unhealthy Lifestyle + Placebo, UL-Placebo; or 

Unhealthy Lifestyle + Tea, UL-Tea), in a randomised, controlled, double-blind, crossover design (Figure 

6.1). Each period was separated by a 13-day washout to avoid any carry-over effects. In the week 

preceding each laboratory visit, participants were asked to refrain from drinking all types of tea (not 

including the test product) and to avoid all other food sources high in polyphenols, such as berries, 

dark chocolate, apples and red wine (Perez-Jimenez et al., 2010).  
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Figure 6.1. CONSORT diagram showing the flow of participants through each stage of the randomised 

trial (FMD, flow-mediated dilation; LDF, laser Doppler flowmetry).  

 

6.2.2.1 Lifestyle Intervention  

During each 7-day intervention period, participants were instructed to reduce their physical activity 

levels by 50%, comprising of a step reduction target and a reduction in the volume of other physical 

activities (i.e. gym, running, cycling) which were calculated from the 4-day habitual diary. The physical 

activity reduction was monitored via a hip-mounted accelerometer (GT3X BT+ model, Actigraphy, 

Pensacola, Florida, USA), in addition to self-reported step counts using a hip-mounted pedometer 

(Digi-walker SW-701, Yamax, Japan). Overfeeding was achieved through the provision of “snack 

boxes” with the equivalent of ~800-2000 kcal for participants to consume on a daily basis; kcal were 

calculated according to participants’ habitual dietary intake during the 4-day dietary diary. Participants 
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were instructed to maintain their normal diet during each 7-day intervention period, other than 

restricting foods and beverages high in polyphenols, such as berries, red wine, dark chocolate etc. 

Habitual dietary patterns were monitored through completion of self-reported food diaries (excluding 

the additional intake from the “snack boxes”).  

6.2.2.2 Tea Intervention  

During each 7-day intervention period, participants ingested three doses of an active green tea drink 

(UL-Tea) or a placebo tea drink (UL-Placebo) per day at regular intervals (morning, afternoon and 

evening), which participants were advised to take without, or at least 15-minutes before, a meal. 

Participants and researchers were blinded as to the test product. The crossover design was chosen to 

eliminate between-participant variability and computer-generated randomisation was used to reduce 

potential selection bias. The green tea was previously brewed with hot water in a large quantity, prior 

to being dried into a powder form. A product of similar colour and taste to the green tea, but not 

containing the presumed actives of tea (polyphenols) was used as the placebo tea drink (Table 6.1). 

Pre-weighted servings of the test products were supplied to the participants in laminated aluminium 

foil sachets (1 gram of tea powder per sachet) and participants were given instructions regarding the 

tea preparation; two sachets of tea powder to be completely dissolved in approximately 300 ml of 

boiling water, constituting a ‘dose’. It was stressed to the participants that no additives to the tea were 

permitted (milk, sugar, lemon etc.) and that the tea should be consumed whilst it was still hot. The 

difference in the maltodextrin content (19 kcal per day) between the active and placebo teas was 

adjusted for within the overfeeding provision. Participants were instructed to avoid all other types of 

tea, other than the test product that they were given.  
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Table 6.1 Composition of the active and placebo tea test products.  

 Placebo tea 

% on dry weight basis 

Active tea 

% on dry weight basis 

Gallocatechin (GC) 0.00 0.02 

Epicatechin gallate (ECG) 0.00 0.05 

Gallic Acid 0.00 0.16 

Catechin (C) 0.00 0.58 

Gallocatechin gallate (GCG)  0.00 0.92 

Epicatechin (EC) 0.00 1.53 

Catechin gallate (CG) 0.00 2.39 

Epigallocatechin (EGC) 0.00 4.07 

Epigallocatechin gallate (EGCG) 0.00 5.96 

Caffeine  0.00 3.90 

Maltodextrin             94.00                21.05 

Tea flavour  6.00 0.00 

 

6.2.2.3 Experimental Measures  

Participants attended the laboratory before and after each 7-day intervention (4 visits), after adhering 

to all pre-test instructions regarding fasting, avoiding caffeine etc., as outlined in Chapter 3, General 

Methods (section 3.1). Anthropometric measurements were recorded at visit 1, with body mass 

repeated at each subsequent visit (see Chapter 3, General Methods, section 3.2). During each visit, 

microvascular function, conduit artery endothelial function, haemodynamic function, cerebrovascular 

function, glucose handling and insulin sensitivity were examined. Baseline and thermally stimulated 

forearm cutaneous blood flow was examined simultaneously using rapid (to 39 and 42°C) and gradual 

(to 42°C) local heating protocols on the dominant forearm using LDF. Heart rate and BP were recorded 

using an automated sphygmomanometer (Dinamap V100, GE Healthcare, UK) positioned on the 

contralateral arm. Conduit artery endothelial function (FMD) was examined at the brachial (non-

dominant arm) and right femoral arteries. Cerebrovascular function was assessed via CO2 reactivity 

and dynamic cerebral autoregulation during squat-stand manoeuvres (SSM) at 0.10 Hz (5-second 

squat: 5-second stand) and 0.20 Hz (2.5-second squat: 2.5-second stand). For details of the full 

experimental procedures for all vascular measurements, please refer to Chapter 3, General Methods. 

Following completion of the vascular measures, participants underwent a mixed meal tolerance test 

(MTT).  
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Figure 6.2 Study overview depicting the various stages, restriction of dietary polyphenols and 

intervention periods, including the measures performed at each of the four laboratory visits.  

 

At the time of venous blood sampling, participants had fasted for ≥10-hours and refrained from 

vigorous exercise for the preceding 24-hours. Following sterilisation of the sampling site, a 20G 

cannula (Venflon Pro, BD, NJ, USA) was inserted into the antecubital vein of one arm. A three-way 

stopcock (BD Connecta, NJ, USA) was subsequently attached to enable multiple venous blood 

sampling and flushing of the cannula. Baseline samples were collected for glucose (5 ml) and insulin 

(6 ml), in silica and EDTA vacutainers, respectively, following which participants consumed a mixed 

meal (1200 kcal, comprising 60% carbohydrates, 33% fat and 7% protein; Table 3.2). Further 

postprandial blood samples were collected after 30, 60, 90, 120 and 180-min. Following each blood 

sample, isotonic saline (3 ml; B Braun, UK) was used to keep the cannula patent. All blood samples 

were centrifuged (1000 g for 10-min at 4°C) to obtain plasma samples, which were subsequently 

stored in aliquots at −80°C for later analysis.  
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Table 6.2 Macronutrient content of the mixed meal tolerance test (MTT).  

Food Item 
 

Quantity (g) kcal Carbohydrate (g) Fat (g) Protein (g) 

Chocolate spread sandwich       
    Thick white bread  150 g 357 66.9   3.3 12.9 
    Chocolate spread    90 g 513 51.8 32.4   2.7 
      
Medium banana  120 g 105 30.0   0.4   1.3 
      
White chocolate cereal bar    50 g 226  31.0   8.2    4.4 
      

Total  1201            179.7   44.3 21.3 
% of Total Calories                60%  33%   7% 

 

 

6.2.2.4 Data Analysis   

For details of the data analysis methods for all vascular measurements, please refer to Chapter 3, 

General Methods. Plasma glucose was determined using an ILab-600 semi-automatic 

spectrophotometric analyser and glucose hexokinase assay (Randox, London, UK). Plasma insulin 

concentrations were determined using a direct insulin ELISA kit (Invitrogen, UK) and insulin levels 

determined using a monochromator microplate reader (Clariostar, BMG LABTECH, Ortenberg, 

Germany).  

6.2.3 Statistical Analysis  

The effect size of the interventions could not be estimated or calculated due to the novelty of the 

study. Therefore the number of volunteers was based upon the sample size of earlier vascular studies 

(Hodgson et al., 2013; Grassi et al., 2015) and previous chapters contained within this thesis. Data 

were expressed as mean ± SD and statistical significance was set at P≤0.05. For all protocols, linear 

mixed models (main effects of condition and time) were used to examine the differences between 

Placebo and Tea interventions on vascular function and insulin sensitivity following 7-days of physical 

activity reduction and overfeeding. The repeated covariance type was Unstructured and Condition, 

Time and Condition*Time were specified as Fixed Effects (intercept was included) and as Estimated 

Marginal Means. The Test of Fixed Effects Condition*Time interaction was interpreted. Significant 
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main effects of Time or Condition or a Time*Condition interaction were followed up with a simple 

main effects analysis and the least significant difference (LSD) approach to multiple comparisons 

(Perneger, 1998). Data were stored and transformed within Microsoft Excel (Microsoft Office 2010, 

Microsoft Corporation), and statistical analyses were performed using SPSS 22.0 (SPSS, Chicago, IL, 

USA). 

 

6.3 Results 

Self-reported compliance to consuming the tea (3 cups per day for 7-days per intervention week) and 

additional food was 100%. Self-reported compliance to the physical activity reduction was 100%, and 

was subsequently verified via activity data downloaded from the hip-mounted accelerometer worn 

during each 7-day intervention period. Compared to baseline screening (11,103 ± 3385 steps), UL-

Placebo (5880 ± 1462 steps) and UL-Tea (5710 ± 1390 steps) demonstrated good compliance, with a 

47% and 49% step reduction, respectively. Habitual calorie consumption during the intervention 

weeks remained similar to baseline levels (2373 ± 864 kcal) for both UL-Placebo (2250 ± 771 kcal) and 

UL-Tea (2330 ± 779 kcal), indicating good compliance to the dietary intervention. Two participants 

withdrew from the study prior to completion. All remaining participants completed measures of BP, 

microvascular function and conduit artery endothelial function (both n=12). One participant was 

unable to complete the cold pressor test due to discomfort. Three participants were unable to 

complete tests of cerebrovascular function (hypercapnia and cerebral autoregulation) and a further 

three participants did not complete the cerebral autoregulation measures due to suboptimal TCD 

signals, leading to a population of n=9 and n=6, respectively. Due to problems associated with venous 

cannulation, one participant did not complete measures of glucose handling and insulin sensitivity 

(n=11).  
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Participants demonstrated a non-significant increase in total body mass following the UL-Placebo 

(77.4 ± 10.5 kg vs 78.1 ± 11.0 kg) and UL-Tea interventions (76.9 ± 9.0 kg vs 77.6 ± 10.6 kg, main effect 

of time; P=0.07). However, no significant difference was observed between UL-Placebo and UL-Tea 

conditions (P=0.31) and there was no interaction of condition and time (P=0.92).  

 

6.3.1 Metabolic Function  

In the basal state, prior to the mixed meal tolerance test, there were no significant differences in 

fasting glucose or insulin levels between pre-UL-Placebo and pre-UL-Tea conditions (Figure 6.3). 

Glucose displayed a typical initial increase and subsequent decrease during the 3-hour MTT (P<0.001). 

There was no main effect of time (pre vs post) (P=0.13) or condition (P=0.53) for glucose. There was a 

significant interaction of condition*time (P=0.03); following UL-Placebo, blood glucose was elevated 

at 60- and 90-minutes compared to pre-UL-Placebo, whereas a reduced blood glucose was 

demonstrated across all time points following UL-Tea (P=0.03, Figure 6.3).  

 

Insulin displayed a typical initial increase and subsequent decrease during the 3-hour MTT (P<0.001). 

There was no main effect of time (pre vs post) (P=0.41), but there was a main effect of condition 

(P=0.04) and a significant interaction of condition*time (P<0.001). Post-hoc analysis revealed that 

insulin levels were higher across all time points after 7-days of UL-Placebo, consistent with increased 

insulin resistance (Figure 6.3). Following UL-Tea, however, the insulin response was reduced and 

demonstrated an interaction of time*condition (P<0.001, Figure 6.3).  
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Figure 6.3 Mixed meal tolerance test (MTT) 180-minutes for postprandial glucose for A. Tea and B. 

Placebo, and insulin for C. Tea and D. Placebo interventions. Data are presented as means, with error 

bars representing SD. *Main effect of time (across 3-hour MTT) P<0.001; ^main effect of condition 

P≤0.05; #time*condition interaction P≤0.05; +time*condition interaction P<0.001.  

 

6.3.2 Microvascular Function  

Throughout the duration of the microvascular function assessment periods, MAP was lower post-UL-

Tea (84 ± 7 vs 82 ± 6) and was higher post-UL-Placebo (83 ± 5 vs 85 ± 5, time*condition interaction 

P=0.06). There was no main effect of condition (P=0.67). There were no differences in baseline 

cutaneous perfusion between pre-UL-Tea or pre-UL-Placebo trials for absolute flux, CVC or %CVCmax 

(Figures 6.4 to 6.6). Due to the impact of UL-tea on blood pressure, data below were only presented 

for CVC and %CVCmax. Furthermore, all local heating protocols induced the typical pattern of an initial 

peak, nadir and subsequent plateau during rapid heating, and absence of a peak and nadir with 

gradual heating.  
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6.3.2.1 Rapid Local Heating: Rapid 39°C   

When expressed as CVC, there was no main effect of time (P=0.84) or condition (P=0.24), but there 

was a close to significant interaction of condition*time (P=0.09), whereby a decrease in CVC responses 

to local heating was observed following UL-Placebo, whereas UL-Tea demonstrated a slight increase 

(Figure 6.4). When data were expressed relative to maximal data (%CVCmax), there was no main effect 

of time (P=0.36) or condition (P=0.93), nor were there any interactions of condition*time (P=0.86) and 

condition*time*temp (P=0.56).  

6.3.2.2 Rapid Local Heating: Rapid 42°C 

When expressed as CVC, there was no main effect of time (P=0.57) or condition (P=0.26) or an 

interaction of condition*time (P=0.18), but there was a close to significant interaction of 

condition*time*temp (P=0.09) whereby a decrease in CVC was observed following UL-Placebo, 

whereas UL-Tea demonstrated a slight increase (Figure 6.5). When data were expressed relative to 

maximal data (%CVCmax), there was no main effect of time (P=0.65) or condition (P=0.80), nor was 

there an interaction of condition*time*temp (P=0.22), but there was a significant interaction of 

condition*time (P=0.03) whereby %CVCmax was higher post-UL-Placebo but lower post-UL-Tea. 

6.3.2.3 Gradual Local Heating: Gradual 42°C  

When expressed as CVC, there was no main effect of time (P=0.75) or condition (P=0.78) or an 

interaction of condition*time (P=0.63), but there was a significant interaction of condition*time*temp 

(P=0.02) whereby no change in CVC was observed following UL-Placebo, whereas UL-Tea 

demonstrated a larger CVC to gradual local heating (Figure 6.6). When data were expressed relative 

to maximal data (%CVCmax), there was no main effect of time (P=0.18) or condition (P=0.21), nor were 

there any interactions of condition*time (P=0.20) or condition*time*temp (P=0.17).  
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Figure 6.4 Microvascular responses across time points (baseline at 33°C, axon peak, axon nadir, 

plateau at 39°C and maximal plateau at 44°C) following Rapid 39°C local heating for flux (A and B), CVC 

(C and D) and %CVCmax (E and F) for UL-Tea and UL-Placebo interventions, respectively, in 12 healthy 

male volunteers. Data are presented as means, with error bars representing SD. 
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Figure 6.5 Microvascular responses across time points (baseline at 33°C, axon peak, axon nadir, 

plateau at 42°C and maximal plateau at 44°C) following Rapid 42°C local heating for flux (A and B), CVC 

(C and D) and %CVCmax (E and F) for UL-Tea and UL-Placebo interventions, respectively, in 12 healthy 

male volunteers. Data are presented as means, with error bars representing SD. ^Condition*time 

interaction P≤0.05.  
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Figure 6.6 Microvascular responses across incremental temperature stages (baseline at 33°C, plateau 

at 42°C and maximal plateau at 44°C) following Gradual 42°C local heating for flux (A and B), CVC (C 

and D) and %CVCmax (E and F) for UL-Tea and UL-Placebo interventions, respectively, in 12 healthy 

male volunteers. Data are presented as means, with error bars representing SD. 

^Condition*time*temperature interaction P≤0.05.  
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6.3.3 Macrovascular Function  

6.3.3.1 Brachial Artery FMD  

Baseline brachial artery FMD was not different between pre-UL-Placebo and pre-UL-Tea (P=0.40). 

There was no main effect of time (P=0.20) or condition (P=0.97) and no interaction of time*condition 

(P=0.11, Figure 6.7). No main effect of time, condition or time*condition interaction was observed for 

time-to-peak, baseline diameter or SRAUC (Figure 6.7).  

6.3.3.2 Femoral Artery FMD  

Baseline femoral artery FMD was not different between pre-UL-Placebo and pre-UL-Tea (P=0.89). 

There was no main effect of time (P=0.10) or condition (P=0.21), but there was a significant interaction 

of time*condition (P<0.001). Post-hoc analysis found that femoral artery FMD decreased after UL-

Placebo (6.87 ± 3.41 % vs 4.96 ± 2.82 %), which was prevented during UL-Tea (6.72 ± 3.63 % vs 7.27 ± 

3.45 %, Figure 6.7). For time-to-peak, there was no main effect of time (P=0.77) but there was a main 

effect of condition (P=0.02), whereby time-to-peak was higher for pre- and post-UL-Placebo compared 

to UL-Tea (Figure 6.7). However, there was no interaction of time*condition (P=0.30). No main effects 

of time, condition, nor interactions of time*condition were observed for baseline diameter or SRAUC 

(all P>0.05, Figure 6.7).  
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Figure 6.7 Conduit artery endothelial function flow-mediated dilation (FMD%), time-to-peak, baseline 
diameter and shear rate area-under-the-curve (SRAUC) for the brachial artery (A, C, E and G, 
respectively) and femoral artery (B, D, F and H, respectively) for UL-Tea and UL-Placebo interventions. 
Data are presented as means, with error bars representing SD. ^Main interaction of time*condition 
P<0.001, *main effect of condition P≤0.05. 
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6.3.4 Cold Pressor Test/Haemodynamic Function  

Baseline carotid artery reactivity (CAR%) was not different between pre-UL-Placebo and pre-UL-Tea 

(P=0.78). There was no main effect of time (P=0.85), but there was a borderline main effect of 

condition (P=0.05) and a significant interaction of time*condition (P=0.04). Post-hoc analysis showed 

that CAR% decreased following UL-Placebo (5.08 ± 1.51 % vs 3.33 ± 4.25 %), which was prevented 

during UL-Tea (5.74 ± 5.31 % vs 7.52 ± 4.03 %, Figure 6.8). Similar findings were evident for AUC, which 

demonstrated no main effect of time (P=0.88), but there was a main effect of condition (P=0.04) and 

a close to significant interaction (P=0.09, Figure 6.8). Baseline SBP change was not different between 

pre-UL-Placebo and pre-UL-Tea (P=0.27). There was no main effect of time (P=0.27) or condition 

(P=0.10). The CPT-induced elevation in systolic and diastolic BP was not different across time, 

condition or time*condition between UL-Placebo and UL-Tea (all P>0.05, Figure 6.8).  

 

Figure 6.8 Cold pressor test derived carotid artery reactivity (CAR%, A), area-under-the-curve (AUC, 
B), systolic blood pressure (SBP, C) and diastolic blood pressure (DBP, D) changes for UL-Tea and UL-
Placebo interventions. Data are presented as means, with error bars representing SD. *Main effect of 
condition P≤0.05, ^time*condition interaction P≤0.05.  
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6.3.5 Cerebrovascular Function   

6.3.5.1 Hypercapnia  

MCAv increased during hypercapnia for all conditions, as evidenced by a main effect of time (P<0.001). 

Baseline to peak changes in MCAv demonstrated no main effect for time (P=0.67) or condition 

(P=0.95) and there was no time*condition interaction (P=0.91, Table 6.3). MCAv vs PETCO2 reactivity 

slopes were not different between UL-Placebo and UL-Tea, with no main effect of time (P=0.16), 

condition (P=0.63) or time*condition interaction (P=0.83). When expressed as relative changes, MCAv 

vs PETCO2 reactivity slopes demonstrated no main effect of time (P=0.30), condition (P=0.10) or a 

time*condition interaction (P=0.48, Table 6.5).  

 

No differences were observed in baseline MAP between UL-Placebo or UL-Tea and there was no main 

effect of time (P=0.22) or condition (P=0.74), nor any interaction of time*condition (P=0.36, Table 6.3). 

MAP increased during hypercapnia across all conditions (P=0.01), but no differences were observed 

between UL-Placebo or UL-Tea (P=0.10). MAP at peak MCAv demonstrated no main effect of time 

(P=0.27) or condition (P=0.80) and there was no time*condition interaction (P=0.30, Table 6.3). 

Absolute CBVC vs PETCO2 reactivity slopes demonstrated no main effect of time (P=0.38) or condition 

(P=0.91), nor any interaction of time*condition (P=0.37, Table 6.5). When expressed as relative 

changes, there were no differences observed between Placebo and Tea, with no main effect of time 

(P=0.38) or condition (P=0.77), and there was no time*condition interaction (P=0.84, Table 6.3).  

 

Baseline common carotid artery (CCA) diameter demonstrated no main effect of time (P=0.56), 

although there was a main effect of condition (P=0.01), but no time*condition interaction (P=0.76). 

CCA diameter increased during hypercapnia (P≤0.05). Peak CCA diameter during hypercapnia did not 

demonstrate a main effect of time (P=0.19), but a main effect of condition (P=0.02) was observed, 

however, there was no time*condition interaction (P=0.84). The change in CCA diameter 
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demonstrated no main effect of time (P=0.14), condition (P=0.12) and no time*condition interaction 

(P=0.99, Table 6.3). Furthermore, change in CCA diameter when controlling for baseline diameter did 

not demonstrate a main effect of time (P=0.46) or condition (P=0.90) and there was no time*condition 

interaction (P=0.46). There were no differences in the change in carotid blood flow during hypercapnia 

between UL-Placebo (23 ± 22 % vs 19 ± 17 %) and UL-Tea (20 ± 17 % vs 25 ± 24 %, P=0.98), with no 

main effect of time (P=0.80), and no time*condition interaction (P=0.60). The change in MAP during 

hypercapnia demonstrated no main effect of time (P=0.97); there was a borderline significant effect 

of condition (P=0.05), but there was no time*condition interaction (P=0.97, Table 6.5). No differences 

were evident for changes in CarVC between UL-Placebo (15 ± 17 % vs 11 ± 13 %) and UL-Tea (17 ± 15 

% vs 22 ± 24 %) with no main effect of time (P=0.94), condition (P=0.36) or time*condition interaction 

(P=0.50, Table 6.3). 
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Table 6.3 Cerebrovascular and common carotid artery (CCA) variables measured throughout 

hypercapnia for UL-Placebo and UL-Tea interventions.  

 Intervention (mean ± SD) Two-Way ANOVA P Values 

 

Pre-UL-

Placebo 

Post-UL-

Placebo 

Pre- 

UL-Tea 

Post- 

UL-Tea 

Time Condition T*C  

 

Cerebrovascular  Variables  
     

Baseline MCAv (cm·s-1)  70 ± 14  66 ± 12 68 ± 14 70 ± 8 0.91 0.57 0.14 
Change in MCAv (cm·s-1)  14 ± 11  14 ± 12 16 ± 16   14 ± 12 0.67 0.95 0.91 

Baseline PETCO2 (mmHg)        39 ± 4        40 ± 6        37 ± 5  38 ± 5 0.18  0.36   0.82 
Change in PETCO2 (mmHg)  4 ± 5  6 ± 3 8 ± 3   9 ± 2 0.60 0.86 0.73 

MCAv vs PETCO2 absolute 
(cm·s/mmHg-1) 

 3.30 ± 1.35  4.21 ± 1.87 3.81 ± 1.23   4.35 ± 1.15 0.16 0.63 0.83 

MCAv vs PETCO2 relative   
(% cm·s/% mmHg-1) 

 4.71 ± 2.51  5.71 ± 2.69 5.63 ± 1.68   6.23 ± 1.81 0.30 0.10 0.48 

Baseline MAP (mmHg)  85 ± 14  91 ± 16 90 ± 11   90 ± 19 0.22 0.74 0.36 
Change in MAP (mmHg)   2 ± 4  2 ± 3 6 ± 3   6 ± 3 0.98 0.06 0.90 

Baseline CBVC  
(cm·s/mmHg-1) 

 0.92 ± 0.33   0.84 ± 0.30 0.77 ± 0.19   0.83 ± 0.27 0.93 0.87 0.21 

CBVC: PETCO2 absolute 
(cm·s/mmHg-1/mmHg-1) 

 0.03 ± 0.04  0.02 ± 0.01 0.03 ± 0.01    0.03 ± 0.01 0.38 0.91 0.37 

CBVC: PETCO2 relative  
(% cm·s/mmHg-1/%mmHg-1) 

 1.37 ± 1.67  0.94 ± 0.75 1.29 ± 0.72   1.19 ± 0.42 0.38 0.77 0.84 

 

Common Carotid Artery Variables         

Baseline diameter (mm)  0.70 ± 0.06  0.72 ± 0.06  0.67 ± 0.06  0.68 ± 0.05 0.56   0.01* 0.76 
Change in diameter (%)   2 ± 2  3 ± 3 3 ± 3   4 ± 3s  0.14 0.12 0.99 

Baseline blood flow  
(mL/min-1) 

13.07 ± 3.96   16.04 ± 5.30   13.20 ± 3.76   13.28 ± 2.62  0.28 0.49 0.08 

Change in blood flow (%)   23 ± 22   19 ± 17 20 ± 17 25 ± 24 0.80 0.98 0.60 

Baseline CarVC  
(mL/min-1/mmHg-1) 

 0.15 ± 0.06   0.18 ± 0.06  0.15 ± 0.04  0.15 ± 0.05  0.42 0.33 0.28 

Change in CarVC  
(% mL.min/mmHg-1)  

 15 ± 17  11 ± 13  17 ± 15  22 ± 24  0.94 0.36 0.50 

Data are mean ± SD. T*C, time*condition interaction; MCAv, middle cerebral artery velocity; PETCO2, end-tidal carbon dioxide; 
MAP, mean arterial pressure; CBVC, cerebrovascular conductance; CarVC, carotid artery vascular conductance. *Main effect 
of condition P≤0.05. 

 

 

6.3.5.2 Cerebral Autoregulation: Squat-Stand Manoeuvres   

6.3.5.2.1 Squat-Stands at 0.10 Hz 

Gain: At the very low, low and high frequencies there were no main effects of time (all P>0.05), 

condition or interactions of time*condition (Table 6.4).  

Phase: At the very low, low and high frequencies there were no main effects of time (all P>0.05), 

condition or interactions of time*condition (Table 6.4). 
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Coherence: At the very low, low and high frequencies there were no main effects of time (all P>0.05), 

condition or interactions of time*condition (Table 6.4). 

6.3.5.2.2 Squat-Stands at 0.20 Hz 

Gain: At the very low, low and high frequencies there were no main effects of time (all P>0.05), 

condition or interactions of time*condition (Table 6.4).   

Phase: For the VLF, there was no main effect of time (P=0.33) and no main effect of condition (P=0.07), 

nor a time*condition interaction (P=0.34). At the LF, there was no main effect of time (P=0.94) or 

condition (P=0.94) and no interaction of time*condition was demonstrated (P=0.75). For the HF, no 

main effect of time was demonstrated (P=0.74), but there was a main effect of condition (P=0.01). 

However, there was no time*condition interaction (P=0.51, Table 6.4)  

Coherence: At the VLF, no main effect of time was observed (P=0.49) and there was no main effect of 

condition (P=0.74), nor a time*condition interaction (P=0.26). For the LF, there was no main effect of 

time (P=0.69) or condition (P=0.67). However, an interaction of time*condition was observed 

(P=0.04), whereby UL-Placebo was slightly increased (0.59 ± 0.25 vs 0.67 ± 0.17 cm·s-1·mmHg-1) and a 

slight reduction was demonstrated following UL-Tea (0.68 ± 0.14 vs 0.59 ± 0.14 cm·s-1·mmHg-1). At the 

HF, no main effect of time was demonstrated (P=0.94) and there was no main effect of condition 

(P=0.41), nor a time*condition interaction (P=0.62, Table 6.4). 
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Table 6.4 Gain, phase and coherence determined by transfer function at very low (VLF), low (LF) and 

high frequency (HF) during repeated squat-stand manoeuvres at 0.10Hz and 0.20 Hz whilst breathing 

normal ambient air for UL-Placebo and UL-Tea interventions.  

 Intervention (mean ± SD) Two-Way ANOVA P Values 

0.10 Hz Squat-stands  

Pre-UL-

Placebo 

Post-UL-

Placebo 

Pre- 

UL-Tea 

Post- 

UL-Tea 

Time Condition T*C  

Gain (cm·s-1·mmHg-1)        
    VLF  0.6 ± 0.2 0.4 ± 0.1 0.6 ± 0.1 0.7 ± 0.5 0.06 0.86 0.35 
    LF 0.8 ± 0.2  0.8 ± 0.1 0.9 ± 0.3 0.9 ± 0.2 0.70 0.20 0.23 
    HF 0.9 ± 0.4 0.8 ± 0.5 1.3 ± 0.7 1.1 ± 0.3 0.64 0.15 0.29 
Phase (radians)         
    VLF  41.9 ± 20.6  41.3 ± 14.3 29.9 ± 10.9 42.1 ± 25.6 0.50 0.37 0.24 
    LF    23.7 ± 9.9 21.9 ± 13.8 29.2 ± 20.5 23.0 ± 14.0 0.26 0.25 0.53 
    HF 34.1 ± 41.6 25.8 ± 43.8 39.7 ± 28.5 45.4 ± 44.3 0.78 0.61 0.89 
Coherence          
    VLF  0.5 ± 0.0 0.4 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.58 0.44 0.13 

    LF 0.6 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1  0.80 0.36 0.27 
    HF 0.3 ± 0.1 0.3 ± 0.1 0.2 ± 0.0 0.2 ± 0.1 0.62 0.43 0.25 

0.20 Hz Squat-stands         

Gain (cm·s-1·mmHg-1)        
    VLF  0.5 ± 0.1  0.5 ± 0.1  0.6 ± 0.1 0.6 ± 0.1 0.49 0.24 0.50 
    LF 0.6 ± 0.2  0.8 ± 0.2 0.9 ± 0.3 0.8 ± 0.2 0.74 0.39 0.08 
    HF 0.7 ± 0.2   0.9 ± 0.3 0.9 ± 0.4 0.8 ± 0.2 0.70 0.18 0.24 
Phase (radians)        
    VLF  65.6 ± 24.2 62.4 ± 39.0 45.7 ± 14.4 53.4 ± 15.5 0.33 0.07 0.34 
    LF    22.6 ± 9.6 22.6 ± 20.2 15.2 ± 16.9 15.9 ± 15.7 0.94 0.94 0.75 
    HF   8.0 ± 15.4 10.1 ± 12.2 10.4 ± 14.7 12.7 ± 11.0 0.74   0.01* 0.51 
Coherence          
    VLF  0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.1 0.4 ± 0.2 0.49 0.74 0.26 

    LF 0.6 ± 0.3 0.7 ± 0.2 0.7 ± 0.1 0.6 ± 0.1 0.69 0.67   0.04^ 
    HF 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.1 0.94 0.41 0.62 

Data are mean ± SD. T*C, time*condition interaction; VLF, very low frequency; LF, low frequency; HF, high frequency. *Main 
effect of condition P≤0.05, ^time*condition interaction P≤0.05. 
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6.4 Discussion  

The primary aim of the present study was to explore whether daily green tea consumption 

ameliorated changes in peripheral vascular function, cerebrovascular function and insulin sensitivity 

in healthy male adults, following a 7-day metabolic and physical inactivity challenge designed to 

represent a Western lifestyle. The novel findings of the study are that following 7-days of high fat 

overfeeding combined with physical activity reduction, a marked increase in the insulin and glucose 

responses to a mixed meal tolerance test were observed which are consistent with the development 

of insulin resistance, but also presence of impaired peripheral vascular function in peripheral and 

cranial arteries. Remarkably, daily consumption of green tea, equivalent to 6 cups per day, attenuated 

the observed impairments in insulin resistance and (peripheral and extracranial) vascular function. 

Following the lifestyle intervention, no effects were observed on cerebrovascular function. 

Collectively, findings from the present study support the hypothesis that 7-days of reduced physical 

activity and increased calorie consumption are associated with a decline in peripheral vascular 

function and reduced insulin sensitivity, and that these detrimental changes are partly mitigated 

through daily consumption of green tea.  

 

6.4.1 Metabolic Function  

The present study observed metabolic changes consistent with impaired glucose handling and a 

compensatory elevated postprandial insulin response following the unhealthy Western lifestyle 

intervention, with directionally opposite responses following daily consumption of green tea. Such 

findings are consistent with previous studies in demonstrating the deleterious impact of reduced 

physical activity and/or overfeeding on glycaemic control and insulin resistance, for example, bed rest 

interventions (Hamburg et al., 2007; Sonne et al., 2010) and bed rest interventions combined with a 

high saturated fat diet (Stettler et al., 2005), short-term (5-days) step-reduction models (Holwerda et 

al., 2015), and overfeeding (+50 kcal) studies (Brons et al., 2009). Consistent with current findings, a 
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model more closely mimicking a Western lifestyle that combines overfeeding with a reduction in 

physical activity induced impaired insulin sensitivity in young, healthy males after only 3-days, which 

was worse still after 7-days (Knudsen et al., 2012). Increased insulin secretion may precede the 

development of peripheral insulin resistance (Le Stunff & Bougneres, 1994) and, therefore, 

hyperinsulinaemia may be causally related to the development of insulin resistance following more 

prolonged periods of caloric excess, particularly with a high proportion of energy from fats (Adochio 

et al., 2009; Brons et al., 2009). The current findings demonstrate the development of an insulin 

resistant state in previously healthy humans after adoption of an unhealthy Western lifestyle for only 

7-days. Such profound findings reinforce previous observations that the initial stages of impaired 

insulin sensitivity are causally linked to the effects of high energy diets and physical inactivity.  

 

As impaired glycaemic control is an independent risk factor in the development of type 2 diabetes 

(Nathan et al., 2007), it is important to identify therapeutic strategies to improve glycaemic control 

and mitigate the negative impact of an unhealthy Western lifestyle. The present study suggests a 

protective role for green tea consumption, with daily ingestion not only attenuating elevated blood 

glucose levels, but even improving glucose handling and concomitantly enhancing insulin sensitivity. 

To date, limited intervention studies have been undertaken exploring the effect of tea ingestion on 

biomarkers of insulin sensitivity and risk factors for diabetes (Hosoda et al., 2003; Fukino et al., 2005; 

Ryu et al., 2006; Bryans et al., 2007), with inconsistent outcomes. Acute oolong tea consumption 

reduced plasma glucose in individuals with type 2 diabetes on oral antihyperglycaemic medication 

(Hosoda et al., 2003). Furthermore, in healthy individuals, Bryans and colleagues (2007) observed a 

reduction in postprandial plasma glucose, with a corresponding increase in insulin, following acute 

consumption of black tea, compared to water and water with caffeine. Conversely, a randomised 

controlled trial in individuals with borderline diabetes or overt diabetes who consumed green tea daily 

for 2-months demonstrated no difference in blood glucose, HbA1c, insulin resistance or inflammatory 
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markers, compared to a control group (Fukino et al., 2005). Similarly, daily green tea consumption for 

4-weeks was not associated with any change in insulin resistance or arterial stiffness in middle-aged 

individuals with type 2 diabetes (Ryu et al., 2006). Such observations suggest that green tea may exert 

a protective role in healthy individuals, but that the outcomes in diabetic populations may not be as 

encouraging. However, a lack of methodological rigor cannot be excluded, including lack of dietary 

restriction, self-selected tea strengths (Fukino et al., 2005), the type/dose of tea and unknown physical 

activity status. Further research is therefore warranted to determine whether tea may be an effective 

adjunct in the management of diabetes.  

 

6.4.2 Microvascular Function  

The present study is the first to examine microvascular function in relation to a Western lifestyle and 

observed impaired function after only 7-days. Previous studies have demonstrated the deleterious 

impact of physical inactivity on microvascular function (Shoemaker et al., 1998; Hesse et al., 2005), 

although studies have tended to involve prolonged periods of complete bed rest that are not wholly 

representative of a typical Western lifestyle. For example, impaired endothelium-dependent 

microvascular function and increased circulating endothelial cells, indicative of endothelial damage, 

were observed following prolonged 2-months bed rest (Demiot et al., 2007) and 5-days of bed rest in 

healthy adults demonstrated impaired forearm and calf reactive hyperaemia (Hamburg et al., 2007). 

Such inactivity models do not account for the dietary contributions towards an unhealthy lifestyle, 

which have seldom been investigated and, furthermore, no study has explored the combined effect 

of excess energy consumption and physical activity reduction as is typical of a Western lifestyle. In the 

present study, the lifestyle intervention (UL-Placebo) demonstrated a trend of decreased cutaneous 

blood flow, expressed as CVC, across all three local heating protocols, indicating impaired 

microvascular function. These findings suggest that adopting a Western lifestyle for even a short 

period has a deleterious impact upon microvascular function. Given that microvascular function is 

considered a surrogate for overall vascular health and that changes present in the microvasculature 
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typically precede and often predict the development of conduit artery atherosclerosis, current 

observations indicate that the impact of Western lifestyles manifest after only a few days. 

Furthermore, as forearm microvascular function was assessed rather than that of a lower limb, which 

may have been more applicable given the step-reduction, identifying microvascular impairments in 

the forearm is suggestive of lifestyle-induced systemic dysfunction that may have greater implications 

for cardiovascular health. 

 

Importantly, the present study also demonstrated a protective role for green tea on an unhealthy 

lifestyle, as evidenced by daily green tea consumption largely attenuating the impairment in 

microvascular function. Furthermore, in keeping with findings for acute black tea consumption in 

Chapter 5, green tea caused a greater effect following gradual local heating, with a significant increase 

in cutaneous blood flow following UL-Tea compared to UL-Placebo. As previously discussed (see 

Section 5.4, Chapter 5), the rate of local heating and maximum heating temperature produce different 

vasodilatory responses based upon neurogenic reflexes and local chemical mediators, such as NO. The 

observation that green tea attenuates, and even improves, cutaneous vascular function following 

gradual local heating, suggests that tea enhances endothelial function via upregulation of local 

chemical mediators, which is consistent with previous studies in conduit vessels (Grassi et al., 2009b; 

Schreuder et al., 2014). Given that the Rapid 39°C and Rapid 42°C protocols are also linked to the 

release of NO but to a lesser extent, the marginal improvements in cutaneous blood flow observed in 

the present study are consistent with green tea protecting microvascular function via a mechanism 

related to upregulation of NO. These observations support the suggestion highlighted in Chapter 5, in 

using multiple local heating protocols simultaneously to interrogate microvascular responses to 

interventions for mechanistic insight.  

 



135 
 

Despite a maintained/higher vasodilatory response for green tea in response to Gradual 42°C local 

heating for CVC in contrast to a reduction with UL-Placebo, no significant differences were observed 

when data were expressed as %CVCmax. These latter findings are likely explained by the changes in 

absolute CVC at maximal vasodilation (e.g., a maintenance/increase with UL-Tea and a reduction with 

UL-Placebo) that would result in similar %CVCmax responses.  As discussed in Chapter 5, %CVCmax is 

often the preferred method of data expression following local skin heating to 44°C to reach maximal 

vasodilation (Dawson et al., 2015) but consideration of absolute CVC is important and would indicate 

a higher absolute flow per se. Current findings are in keeping with the observations following acute 

black tea consumption in Chapter 5 and collectively, are suggestive of tea altering cutaneous perfusion 

at higher local skin temperatures e.g. at 39-44°C.  

 

6.4.3 Macrovascular Function  

Brachial artery FMD demonstrated little change following the lifestyle intervention, with no changes 

observed following UL-Placebo and a non-significant 1.45 % increase demonstrated following UL-Tea. 

In the femoral artery, however, a significant difference in FMD was observed between UL-Placebo and 

UL-Tea, with a ~2 % decline for UL-Placebo and UL-Tea both attenuating and slightly improving (+~0.5 

%) FMD. Given that a 1 % decline in FMD reportedly represents an 8 % risk of future cardiovascular 

events (Inaba et al., 2010), the current findings suggest that adoption of an unhealthy lifestyle for only 

seven days is associated with an elevated CVD risk, yet daily tea consumption mitigates the negative 

effects and is cardioprotective. As FMD is a reliable measure of NO-mediated endothelial function 

(Thijssen et al., 2011), current findings indicate that a direct effect of NO on the endothelium is likely 

responsible for both the lifestyle-induced impairment in vasoreactivity and for the mitigating effect of 

green tea, related to reduced shear-stress and NO upregulation, respectively. Reduced activity of the 

lower limbs is likely to result in a decrease in local shear stress which may subsequently reduce 

vasodilation through inhibition of eNOS (Hamburg et al., 2007). This mechanism explains the lifestyle-
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induced decline in femoral FMD, but not brachial FMD, in the present study, whereby the inactivity 

component targeted the lower limbs through step-reduction, with the upper limbs remaining largely 

active. Previous studies in lower limb inactivity models report similar findings, with no difference in 

brachial artery FMD (%) following 5-days of bed rest (Hamburg et al., 2007) or following 4-weeks of 

unilateral lower limb suspension (Bleeker et al., 2005a). Furthermore, Boyle and colleagues (2013) 

observed a ~3 % reduction in popliteal artery FMD following step-reduction in recreationally active 

men, although brachial artery FMD was unchanged. However, significant decreases in both brachial 

and femoral artery FMD were observed in a 5-day bed rest study of healthy adults, although the 

subject population was small (n=5) (Nosova et al., 2014).  

 

Few studies have examined the impact of overfeeding on macrovascular function, with the acute 

effects of a high fat load demonstrating impaired brachial FMD postprandially in adults (Plotnick et al., 

1997; Vogel et al., 1997; Bae et al., 2001; Plotnick et al., 2003). Diets high in fat (particularly trans) are 

associated with increased CVD risk (Skeaff & Miller, 2009; Michas et al., 2014; de Souza et al., 2015), 

largely attributed to endothelial dysfunction arising from increased oxidative stress and reduced NO 

bioavailability (Bae et al., 2001). Increasingly, tea consumption has demonstrated improved NO-

mediated endothelial function in both healthy and diseased humans (Ras et al., 2011), possibly arising 

from activation of eNOS (Loke et al., 2010), reduced oxidative stress (Łuczaj & Skrzydlewska, 2005) 

and/or an improved antioxidant and anti-inflammatory capacity (Neyestani et al., 2010). Several 

studies have observed attenuated/improved brachial artery FMD following acute tea ingestion 

compared to control, together with an oral fat load (Corretti et al., 2002; Hodgson et al., 2005; Grassi 

et al., 2012a), with the present study being the first to explore the effects of tea following a 7-day 

unhealthy lifestyle. Taken together, these findings are highly suggestive of a vasoprotective 

mechanism for tea consumption, although the precise pathways remain unclear.  



137 
 

6.4.4 Cold Pressor Test/Haemodynamic Function 

The CPT induces sympathetic activation that elevates HR, arterial BP and myocardial oxygen demand 

via the neurotransmitters epinephrine and norepinephrine (Victor et al., 1987). Assessment of carotid 

artery reactivity (CAR%) provides an index of coronary artery disease risk, with a vasodilatory response 

that counteracts the effects of the sympathetic activation considered to be a “normal” response in 

healthy individuals, and vasoconstriction indicating the presence of CVD risk (Rubenfire et al., 2000). 

However, the CPT can also be considered a test of cranial artery endothelial function, similar to FMD 

assessment of the peripheral arteries. Whilst the carotid artery vasodilatory mechanisms 

underpinning CAR% in response to the CPT are uncertain, they are suggested to involve endothelial-

dependent vasodilation via endothelium-derived relaxing factors, such as NO, whereas 

vasoconstriction arises from a direct effect of norepinephrine on smooth muscle cells (van Mil et al., 

2017). Findings from the present study demonstrated a decrease in CAR% associated with the 

unhealthy lifestyle, that was attenuated and improved by daily green tea consumption (P=0.04). 

Furthermore, the impairment in CAR% was accompanied by concomitant increases in basal BP, which 

were reversed following green tea, and, similarly, the magnitude of the elevation in BP during the CPT 

was greater after UL-Placebo compared with no change after UL-Tea, suggesting that BP reactivity was 

elevated after UL-Placebo. Such findings suggest that adoption of a Western lifestyle induces impaired 

vasodilation and elevated BP, even following a short period of 7-days. Furthermore, these observed 

changes on cranial artery function are consistent with those in the peripheral vasculature, in that UL-

Placebo demonstrated impaired peripheral vascular function which was partly prevented following 

UL-Tea. Collectively, these findings suggest that the Western lifestyle affects general vascular health 

and that these detrimental changes can be prevented by daily green tea consumption. However, 

whilst CAR% is a useful measure to establish CVD risk, it is seldom used and, therefore, limited 

comparisons of present findings can be made against previous research.  
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6.4.5 Cerebrovascular Function  

Excessive changes in CBF, e.g., hypoperfusion, have been linked to the development of 

cerebrovascular disease such as stroke and dementia (Roher et al., 2012), particularly a diminished 

vasodilatory response to CO2 (Gur et al., 1996; Claassen et al., 2009). Epidemiologic reports link a 

higher intake of dietary flavonoids with a reduction in the development of dementia (Commenges et 

al., 2000; Engelhart et al., 2002), likely related to direct effects of flavonoids on the vascular 

endothelium, given that endothelial dysfunction impairs cerebral vasodilatory capacity (Zimmermann 

& Haberl, 2003; Lavi et al., 2006). The present study, however, observed no significant changes in 

cerebrovascular function (CO2 reactivity and cerebral autoregulation) after the intervention per se, 

nor with any effect of green tea on the cerebrovasculature. Furthermore, no meaningful changes were 

observed in extracranial reactivity, assessed via CCA function, following the lifestyle intervention or 

daily tea consumption, thereby suggesting that the short-term inactivity/overfeeding intervention or 

green tea did not impair cerebrovascular function (CO2 reactivity and cerebral autoregulation). The 

lack of an effect may be due to several reasons. Firstly, the intervention was likely not severe enough 

or of sufficient duration to challenge the CCA or cerebrovasculature, particularly since the cerebral 

regulatory mechanisms differ from the peripheral vessels and the brain’s plasticity was likely adequate 

to cope with a short 7-day intervention. Previous bed rest studies have demonstrated significant 

reductions in transfer function gain after 18-days in young, healthy adults (Jeong et al., 2014) and 

altered autoregulation after 60-days (Greaves et al., 2007). It is also reasonable to assume that the 

small sample size influenced the cerebrovascular findings of the present study, as it is likely that any 

subtle changes in function were not detectable with such small numbers.  

 

Despite regular tea consumption being associated with a reduced risk of stroke (Arab et al., 2009), to 

date, only a single study has examined the effect of tea on CBF. In a randomised, double-blind, 

placebo-controlled study, Vidyasagar and colleagues (2013) assessed cerebrovascular reactivity to 
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hypercapnia in healthy males and observed reduced steady-state CBF following an acute dose of black 

tea equivalent to 6 cups. However, the authors suggest that caffeine was responsible for this change, 

rather than the tea per se, given that decaffeinated tea demonstrated no differences. Tea-derived 

flavonoids, such as EC and EGCG, have demonstrated variable outcomes, with a single low dose 

(135mg) of capsular EGCG reducing CBF (measured by NIRS) during computerised cognitive task 

performance in healthy humans, whereas a higher dose (270mg) did not change CBF relative to 

placebo (Wightman et al., 2012). As outlined above, the duration of the tea consumption and/or the 

dosage may not have been high enough to influence cerebrovascular function and the small sample 

sizes limit the interpretation of the findings.  Present findings are inconclusive regarding the effects of 

tea consumption, or lifestyle changes, on cerebrovascular function and further research is, therefore, 

required to determine whether the beneficial effects of tea seen in the peripheral vasculature are 

evident in cerebral vessels.  

6.4.6 Clinical Relevance and Perspectives  

The present study has produced several important observations. Principally, it is the first study to 

comprehensively explore the effects of regular tea consumption on vascular and metabolic function 

in the context of an unhealthy Western lifestyle. Importantly, current findings suggest that tea exerts 

a beneficial effect on function across the vascular tree that is protective against the deleterious impact 

of an unhealthy Western lifestyle. The present study has also demonstrated the adverse impact of an 

unhealthy lifestyle in inducing peripheral vascular dysfunction and insulin resistance in a cohort of 

previously healthy males after a period of only 7-days. As this lifestyle is increasingly adopted by 

portions of the general population on a daily basis, and many normally ‘healthy’ individuals often 

experience it during holidays and festivities, the current findings are widely applicable in establishing 

the detrimental impact of such a lifestyle upon cardiovascular health. Insulin resistance and vascular 

dysfunction share common underlying mechanisms, which are largely centred around endothelial 

dysfunction, in addition to contributions from oxidative stress, inflammatory factors and subcellular 

signalling pathways (Wheatcroft et al., 2003). The present study observed improved cutaneous 
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vascular function and conduit artery FMD following daily green tea consumption which suggest that 

tea exerts a protective effect on the vasculature at the level of the endothelium, and it may be 

speculated that this likely results from activation/upregulation of endothelium-derived vasodilators, 

such as NO. Tea, therefore, may represent an inexpensive therapeutic approach for improving 

cardiovascular health, particularly in relation to a Western lifestyle.  

6.4.7 Limitations  

There are several strengths of the current study that support its conclusions, such as the randomised, 

double-blind, within-subjects design and array of experimental measures that demonstrate a 

consistent trend. Furthermore, the lifestyle intervention represents a ‘real-life’ scenario and, 

therefore, the findings are applicable to Western populations. However, due to the explorative nature 

of the study, the sample size was modest, especially in the cerebrovascular function data set, so the 

present cerebral data may not be an accurate representation of the cerebrovascular response to tea. 

Participant compliance to the lifestyle intervention was assessed via self-reported food and activity 

diaries and, therefore, it is not possible to guarantee 100% compliance. However, physical activity was 

also monitored via accelerometers and the data downloaded supported full participant compliance 

for the inactivity element of the intervention. Furthermore, the dysfunction observed for the post-

intervention measures suggests that participants had adopted an altered lifestyle. Importantly, the 

translation of the present findings to longitudinal changes in vascular and metabolic function is 

unknown, given that the present lifestyle intervention was only for 7-days. A further limitation is that 

the present study does not provide any biochemical or biomolecular insight into the mechanisms 

underlying the observed improvements in peripheral vascular function and metabolic function 

following the tea intervention. However, plasma concentrations of flavonoids and NO compounds 

were not obtained as they were beyond the scope of the present study.  
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In conclusion, data from the present study suggests that adopting a Western lifestyle for 7-days is 

associated with a deleterious impact upon peripheral vascular function, with detrimental vascular 

changes observed in both microvascular and macrovascular beds, but also in peripheral and 

extracranial arteries. Furthermore, the Western lifestyle was associated with the promotion of insulin 

resistance in healthy, male adults. Importantly, the present study observed that daily consumption of 

green tea prevented the detrimental impact of a Western lifestyle on peripheral vascular function and 

insulin sensitivity. Such findings suggest that regular green tea consumption exerts a cardioprotective 

effect that may provide a simple, inexpensive, non-pharmacological therapeutic approach to help 

combat inactivity and dietary CVD risk factors associated with an unhealthy Western lifestyle.  
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CHAPTER 7: ACUTE EPICATECHIN INGESTION DOES 
NOT AFFECT CEREBROVASCULAR FUNCTION IN 

HEALTHY MEN
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7.1 Introduction  

Optimal cerebrovascular function requires maintenance of relatively constant perfusion, which is 

controlled via multiple integrated regulatory mechanisms, including perfusion pressure (BP; e.g., 

haemodynamics), the concentration of arterial blood gases (CO2 and O2), sympathetic nerve activity 

and cerebral metabolism (Willie et al., 2014). The cerebrovasculature also has an inherent ability to 

self-regulate (termed autoregulation); static regulation responds to gradual changes in perfusion 

pressure, whereas dynamic regulation occurs in response to an acute stimulus affecting perfusion 

lasting for a few seconds, such as coughing (Zhang et al., 1998). Subsequent reflex adjustments in 

cerebrovascular resistance ensure that adequate blood flow is maintained. Compromised steady-state 

CBF and blunted task-specific CBF increases, both indicative of impaired cerebrovascular health, are 

considered key causal factors in the development of cerebrovascular disease associated with ageing, 

such as stroke, impaired cognitive function and neurodegenerative diseases (Farkas et al., 2002; 

Parkes et al., 2004; Ruitenberg et al., 2005b; Sorond et al., 2008b; Bertsch et al., 2009; Schuff et al., 

2009). Unsurprisingly, CVD risk factors such as poor diet, physical inactivity and obesity that are 

present earlier in life are associated with an increased risk of stroke, cognitive decline and dementia 

in later life (Gorelick et al., 2011; Sharp et al., 2011) through endothelial dysfunction impairing 

cerebrovascular reactivity and overall CBF regulation (Lavi et al., 2006; Stephan et al., 2017).  

 

Dietary flavonoid intake is inversely correlated with CVD risk and incidence of stroke (Keli et al., 1996; 

Hollman et al., 2010), with a meta-analysis demonstrating a 21% reduction in stroke risk following 

consumption of ≥3 cups of black or green tea per day (Arab et al., 2009). Tea and its polyphenolic 

compounds have a potent impact on peripheral vascular function, such as observed in previous 

chapters (Chapters 5 and 6), which may contribute to the cardioprotective effects of regular dietary 

flavonoids. Possibly, in line with these observations on cardiovascular health, flavonoids may protect 

against cerebrovascular disease through a direct effect on cerebrovascular function. There is scant 
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research into the effects of flavonoids on cerebrovascular function however. Currently, only one study 

has examined the effect (acute) of tea on CBF, concluding that tea had no effect on cerebrovascular 

reactivity to hypercapnia (Vidyasagar et al., 2013). However, others found that cocoa flavanols, a 

product that also contains (-)-epicatechin such as that found in green tea, increased CBF 2-hours post-

ingestion in a pilot study of four young, healthy females (Francis et al., 2006) and in healthy older (55-

65-years) adults (Lamport et al., 2015). Furthermore, a 3-month high-flavanol dietary intervention 

containing (-)-epicatechin demonstrated enhanced dentate gyrus (hippocampus) function in healthy 

older adults compared to a low-flavanol diet (Brickman et al., 2014). Caffeine, another compound 

found in tea, has also demonstrated improved dynamic cerebral autoregulation 30-minutes after 

consumption (Sasaki et al., 2016), yet a further study observed a 20% global reduction in CBF post 

caffeine using positron emission tomography (Vidyasagar et al., 2013).  

 

Taken together, the conflicting limited results on the impact of tea on cerebrovascular health may 

relate to differences in intervention dosage, study population and/or experimental design, as well as 

the various compounds found in tea, for example, (-)-epigallocatechin-3-gallate (EGCG) and (-)-

epicatechin. More specifically, acute low-dose (135 mg) EGCG reduced CBF (measured by NIRS) but a 

higher dose (270 mg) demonstrated no effect relative to placebo (Wightman et al., 2012). (-)-

Epicatechin, present in both tea and cocoa, has exhibited improved peripheral vascular function 

(Dower et al., 2016b) and a protective effect on transient ischaemia-induced brain injury in mice (Shah 

et al., 2010). These findings, alongside the beneficial effects of flavanols that contain  (-)-epicatechin 

on cerebrovascular function outlined above (Francis et al., 2006; Brickman et al., 2014; Lamport et al., 

2015) suggest that (-)-epicatechin may represent a compound with potential beneficial effects on the 

cerebrovasculature. However, no study has directly examined the isolated impact of (-)-epicatechin 

on cerebrovascular function in humans. The aim of this study was, therefore, to examine the effect of 

acute oral (-)-epicatechin ingestion on cerebrovascular function in healthy adults. It was hypothesised 
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that acute (-)-epicatechin ingestion would be associated with increased cerebrovascular perfusion and 

function.  

 

7.2 Methods  

7.2.1 Participants 

Seven healthy male participants were recruited through local advertisement. All participants were 

healthy and non-smokers (32 ± 13 yrs, height 1.78 ± 0.04 m, weight 78 ± 7 kg, BMI 25 ± 1 kg/m2, 

baseline MAP 84 ± 7 mmHg). For details of the inclusion and exclusion criteria, please refer to Chapter 

3, General Methods. After being fully informed of the methods verbally and in writing, written 

informed consent was obtained from all participants. The study conformed to the Declaration of 

Helsinki and was approved by the local research ethics committee. 

7.2.2 Experimental Design  

Participants attended a familiarisation session <7-days prior to their first experimental trial, when they 

were fully briefed on the experimental protocols. Subsequently, all participants attended two 

experimental trials ((-)-epicatechin and placebo) in a randomised, controlled, double-blind, crossover 

design, each trial being separated by a 6-day washout period to avoid any carry-over effects. The 

crossover design was chosen to eliminate between-participant variability and computer-generated 

randomisation was used to reduce potential selection bias. In the week preceding each laboratory 

visit, participants were instructed to refrain from consuming dietary sources high in polyphenols, 

particularly tea, dark chocolate, apples, berries and red wine. Participants were asked to adhere to all 

pre-test instructions regarding fasting and avoiding caffeine, as outlined in Chapter 3, General 

Methods (section 3.1). Anthropometric measurements were recorded at visit 1 (see Chapter 3, 

General Methods, section 3.2). All assessments were conducted in a quiet, temperature-controlled 

laboratory (22-24°C) (Cracowski et al., 2006; Thijssen et al., 2011) and at the same time of day to 

reduce any circadian influences on vascular function (Jones et al., 2010; Thijssen et al., 2011).  
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During each trial, participants underwent assessment of baseline cerebrovascular function using TCD 

ultrasonography, comprising cerebrovascular CO2 reactivity and dynamic cerebral autoregulation via 

squat-stand manoeuvres, performed at 0.10 Hz (5-seconds squatting, followed by 5-seconds standing) 

and 0.05 Hz (10-seconds squatting, followed by 10-seconds standing) for 5-minutes each (see Chapter 

3, General Methods, section 3.5). Following completion of the baseline measures, participants 

immediately consumed an oral dose of the test product (2 x 50 mg capsules of (-)-epicatechin or 2 

capsules of colour-matched placebo) together with a glass of water, following which participants 

relaxed in the laboratory. 2-hours post-ingestion repeat measures of cerebrovascular function were 

performed (Figure 7.1).   

 

The 100 mg (-)-epicatechin dose was in line with previous intervention studies (46-150 mg) that 

observed the effects of pure (-)-epicatechin and cocoa flavanols (containing (-)-epicatechin) on the 

cerebral (Francis et al., 2006; Brickman et al., 2014; Lamport et al., 2015) and conduit (Engler et al., 

2004; Farouque et al., 2006; Faridi et al., 2008; Grassi et al., 2008b; Dower et al., 2015; Dower et al., 

2016b) vasculature. The (-)-epicatechin was isolated and purified according to procedures developed 

by ChromaDex (Irvine, CA, USA), whereby (-)-epicatechin was extracted from Acacia heart wood with 

aqueous alcohol and the crude extract was subsequently purified by preparative chromatography 

(Dower et al., 2015). This was followed by repeated fractional crystallisation from water. All solvents 

and equipment used were food grade. Identity was confirmed using nuclear magnetic resonance 

spectroscopy and mass spectrometry. High performance liquid chromatography was used to check 

purity and was 96.2% for (-)-epicatechin (water 0.3%). Non-transparent capsules were used to 

encapsulate the supplements, which were matched for size and colour, using microcrystalline 

cellulose as an excipient and 1% colloidal silicium dioxide. Variation in contents was within 3.7% 

(SD/mean*100%) for epicatechin. The placebo capsules contained microcrystalline cellulose (Dower 

et al., 2015).  
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Figure 7.1 Timeline of study. Participants received the treatments (pure epicatechin and placebo) in a 
randomised, crossover design, each treatment being separated by a 6-day washout period. The 
treatments were consumed immediately after the baseline measurements were completed and 
measurements were repeated 2-hours following ingestion.  

 

7.2.3 Statistical Analysis  

Data were expressed as mean ± SD and statistical significance was set at P≤0.05. Linear mixed models 

(main effects of condition and time) were used to examine the differences between (-)-epicatechin 

and placebo interventions on cerebrovascular function. The repeated covariance type was 

Unstructured and Condition (placebo vs (-)-epicatechin), Time (baseline vs +2-hours) and 

Condition*Time were specified as Fixed Effects (intercept was included) and as Estimated Marginal 

Means. Significant main effects of Time or Condition or a Time*Condition interaction were followed 

up with a simple main effects analysis and the least significant difference (LSD) approach to multiple 

comparisons (Perneger, 1998). Data were stored and transformed within Microsoft Excel (Microsoft 

Office 2010, Microsoft Corporation), and statistical analyses were performed using SPSS 22.0 (SPSS, 

Chicago, IL, USA). 
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7.3 Results  

7.3.1 Resting values 

No differences were observed in resting MAP between placebo or (-)-epicatechin and there was no 

main effect of time across the 2-hour intervention (P=0.06), condition (P=0.89) or interaction of 

time*condition (P=0.40, Table 7.1). Resting MCAv demonstrated no differences between placebo or 

(-)-epicatechin, and no main effects of time, condition or time*condition interactions for MCAv (all 

P>0.05, Table 7.1). Resting common carotid artery (CCA) diameter demonstrated no differences across 

time, condition or time*condition (all P>0.05, Table 7.1). 

7.3.2 Hypercapnia  

MCAv increased during hypercapnia for all conditions (placebo and (-)-epicatechin). The peak changes 

in MCAv demonstrated no main effect of time (P=0.56) or condition (P=0.87) and there was no 

time*condition interaction (P=0.77, Table 7.1). MCAv vs PETCO2 reactivity slopes were not different 

between placebo and (-)-epicatechin, with no main effect of time (P=0.10), condition (P=0.75) or 

time*condition interaction (P=0.75). When expressed as relative changes, MCAv vs PETCO2 reactivity 

slopes demonstrated no main effect of time (P=0.08), condition (P=0.92) or a time*condition 

interaction (P=0.80, Table 7.1).  

 

MAP increased during hypercapnia with no main effect of time (P=0.36) or between placebo and (-)-

epicatechin (P=0.34). The peak changes in MAP demonstrated no differences across time, condition 

or time*condition (all P>0.05, Table 7.1). No differences were observed for resting CBVC and the peak 

changes in CBVC demonstrated no differences across time, condition or time*condition (all P>0.05, 

Table 7.1). Absolute CBVC vs PETCO2 reactivity slopes demonstrated a main effect of time (P=0.01), 

with a subtle reduction after 2-hours (placebo; 0.02 ± 0.01 vs 0.02 ± 0.02 cm.s-1.mmHg:mmHg-1; (-)-

epicatechin; 0.03 ± 0.02 vs 0.02 ± 0.02 cm.s-1.mmHg:mmHg-1). However, there was no main effect of 

condition (P=0.46) nor a time*condition interaction (P=0.43, Table 7.1). When expressed as relative 



149 
 

changes, a main effect of time was confirmed (P=0.02), whereby 2-hours post ingestion, a reduction 

was demonstrated for both placebo and (-)-epicatechin (Figure 7.2). However, there was no main 

effect of condition (P=0.26) and no time*condition interaction (P=0.31, Table 7.1). 

 

The peak change in CCA diameter demonstrated no main effect of time (P=0.89), condition (P=0.10) 

and no time*condition interaction (P=0.79, Table 7.1). No significant differences were observed for 

the absolute change in carotid blood flow during hypercapnia between placebo (18 ± 20 % vs 35 ± 37 

%) and (-)-epicatechin (14 ± 22 % vs 10 ± 20 %, P=0.29), with no main effect of time (P=0.28), and no 

time*condition interaction (P=0.16). The change in MAP during hypercapnia demonstrated no main 

effect of time (P=0.50) or condition (P=0.57), nor a time*condition interaction (P=0.68). No differences 

were evident for carotid artery vascular conductance (CarVC) at baseline or during hypercapnia across 

time, between conditions or time*condition (all P>0.05, Figure 7.3).  

 

 

Figure 7.2 Cerebrovascular CO2 reactivity as the relative change (%) between CBVC:PETCO2  for A. (-)-

epicatechin and B. placebo interventions. Data are presented as means, with error bars representing 

SD, and individual responses. *Main effect of time P≤0.05.  
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Table 7.1 Cerebrovascular and common carotid artery (CCA) variables during hypercapnia for placebo 

and (-)-epicatechin interventions.  

 Intervention (mean ± SD) Linear Mixed Model P Values 

 

Pre- 

placebo 

2-h  

placebo 

Pre-  

epicatechin 

2-h  

epicatechin  

Time Condition T*C  

 

Cerebrovascular  Variables  
     

Baseline MCAv (cm·s-1)    68 ± 11 70 ± 6    66 ± 10  67 ± 12  0.29 0.39 0.73 
Change in MCAv (cm·s-1)  16 ± 8 14 ± 9 15 ± 7 14 ± 11 0.56 0.87 0.77 

Baseline PETCO2 (mmHg)   37 ± 5 38 ± 4 39 ± 6       37 ± 7 0.47  0.94  0.27 
Change in PETCO2 (mmHg)    7 ± 2   6 ± 2   6 ± 3 7 ± 5 0.85 0.94 0.24 

MCAv:PETCO2 absolute 
(cm·s/mmHg-1) 

   2.80 ± 1.21   2.32 ± 1.64   2.88 ± 1.62 2.03 ± 1.42 0.10 0.75 0.75 

MCAv:PETCO2 relative  
(% cm·s/% mmHg-1) 

   4.18 ± 1.84   3.31 ± 2.20   4.32 ± 2.18 3.24 ± 2.52 0.08 0.92 0.89 

Baseline MAP (mmHg)         77 ± 8  87 ± 11   79 ± 10       85 ± 7  0.06 0.89 0.40 
Change in MAP (mmHg)     1 ± 3  6 ± 6   3 ± 3  1 ± 4 0.36 0.34 0.14 

Baseline CBVC (cm·s/mmHg-1)    0.88 ± 0.14   0.82 ± 0.13   0.85 ± 0.14  0.80 ± 0.19 0.11 0.40 0.82 

Change in CBVC (%)          21 ± 7  16 ± 13   25 ± 11  22 ± 18 0.27 0.34 0.86 
CBVC:PETCO2 absolute (cm·s/ 
mmHg-1/mmHg-1) 

   0.02 ± 0.01  0.02 ± 0.02   0.03 ± 0.02   0.02 ± 0.02   0.01* 0.46 0.43 

CBVC:PETCO2 relative  
(% cm·s/mmHg-1/%mmHg-1) 

   1.01 ± 0.26  0.72 ± 0.83   1.57 ± 0.85  0.82 ± 0.70   0.02* 0.26 0.31 

 

Common Carotid Artery Variables         

Baseline diameter (mm)   0.68 ± 0.02  0.68 ± 0.03   0.67 ± 0.02   0.68 ± 0.02 0.13 0.65 0.71 
Change in diameter (%)    0 ± 2  1 ± 2         -1 ± 3       -1 ± 1  0.89 0.10 0.79 

Baseline blood flow  
(mL/min-1) 

  10.34 ± 2.15      8.84 ± 2.14   10.19 ± 2.76    9.66 ± 4.60  0.29 0.72 0.61 

Change in blood flow (%)    18 ± 20    35 ± 37 14 ± 22  10 ± 20 0.28 0.29 0.16 

Baseline CarVC  
(mL·min/mmHg-1) 

 0.14 ± 0.04    0.10 ± 0.03  0.13 ± 0.04   0.12 ± 0.07  0.12 0.62 0.55 

Change in CarVC  
(% mL·min/mmHg-1)  

 10 ± 20   27 ± 33    7 ± 24    6 ± 17  0.30 0.29 0.09 

Data are mean ± SD. T*C, time*condition interaction; MCAv, middle cerebral artery velocity; PETCO2, end-tidal carbon dioxide; 
MAP, mean arterial pressure; CBVC, cerebrovascular conductance; CarVC, carotid artery vascular conductance. *Main effect 
of time P≤0.05.
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Figure 7.3 Carotid artery vascular conductance (CarVC) reactivity to 5% CO2 expressed as the relative 

change (%) in CBVC for A. (-)-epicatechin and B. placebo interventions. Data are presented as means, 

with error bars representing SD, and individual responses.  

 

7.3.3 Cerebral Autoregulation: Squat-Stand Manoeuvres  

7.3.3.1 Squat-Stands at 0.05 Hz 

Gain: At the VLF, a main effect of time (P=0.04) was demonstrated with a subtle increase at 2-hours 

(placebo; 0.7 ± 0.2 vs 0.8 ± 0.2 cm·s-1·mmHg-1; (-)-epicatechin; 0.7 ± 0.1 vs 0.7 ± 0.1 cm·s-1·mmHg-1). 

However, no effect of condition (P=0.70) was observed and there was no time*condition interaction 

(P=0.33). At the low and high frequencies, there were no main effects of time, condition or interactions 

of time*condition (all P>0.05, Table 7.2).  

Phase: At the very low, low and high frequencies there were no main effects of time (all P>0.05), 

condition or interactions of time*condition (Table 7.2). 

Coherence: At the very low, low and high frequencies there were no main effects of time (all P>0.05), 

condition or interactions of time*condition (Table 7.2). 

7.3.3.2 Squat-Stands at 0.10 Hz 

Gain: At the VLF, no main effect of time (P=0.62) was demonstrated, but a main effect of condition 

(P=0.03) was observed, whereby Gain was slightly higher for placebo (baseline; 0.7 ± 0.2; 2 hr;  0.8 ± 

0.2 cm·s-1·mmHg-1) compared to (-)-epicatechin (baseline; 0.6 ± 0.2; 2 hr; 0.6 ± 0.2 cm·s-1·mmHg-1). 
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There was no time*condition interaction (P=0.20). At the low and high frequencies, there were no 

main effects of time, condition or interactions of time*condition (all P>0.05, Table 7.2).  

Phase: For the VLF, there was no main effect of time (P=0.65), but a main effect of condition (P=0.04) 

was demonstrated. However, there was no time*condition interaction (P=0.34, Table 7.2). At the low 

and high frequencies there were no main effects of time, condition or interactions of time*condition 

(all P>0.05, Table 7.2). 

Coherence: At the very low, low and high frequencies there were no main effects of time, condition or 

interactions of time*condition (all P>0.05, Table 7.2). 

 

Table 7.2 Gain, phase and coherence determined by transfer function analysis at very low (VLF), low 

(LF) and high frequency (HF) ranges during repeated squat-stand manoeuvres at 0.05Hz and 0.10 Hz 

for placebo and (-)-epicatechin interventions.  

 Intervention (mean ± SD) Linear Mixed Model P Values 

0.05 Hz Squat-stands  

Pre- 

placebo 

2-h  

placebo 

Pre-

epicatechin 

2-h 

epicatechin 

Time Condition T*C  

Gain (cm·s-1·mmHg-1)         
    VLF  0.7 ± 0.2 0.8 ± 0.2 0.7 ± 0.1 0.7 ± 0.1   0.04* 0.70 0.33 
    LF 0.8 ± 0.2  0.9 ± 0.3 0.9 ± 0.2 0.9 ± 0.1 0.54 0.82 0.36 
    HF 0.8 ± 0.2 0.9 ± 0.3 0.8 ± 0.1 0.9 ± 0.2 0.25 0.93 0.61 
Phase (radians)         
    VLF  55.7 ± 18.9  53.4 ± 23.7 52.9 ± 16.9 47.5 ± 13.7 0.52 0.33 0.59 
    LF    19.7 ± 12.1 24.6 ± 14.9 21.5 ± 13.5 12.9 ± 16.2 0.68 0.16 0.13 
    HF 16.8 ± 12.2 22.0 ± 24.2 13.9 ± 11.1 14.1 ± 18.0 0.65 0.47 0.74 
Coherence          
    VLF  0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.83 0.06 0.46 
    LF 0.6 ± 0.2 0.7 ± 0.2 0.6 ± 0.1 0.6 ± 0.1  0.61 0.65 0.39 
    HF 0.4 ± 0.2 0.4 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.67 0.42 0.20 

0.10 Hz Squat-stands         

Gain (cm·s-1·mmHg-1)        
    VLF  0.7 ± 0.2  0.8 ± 0.2  0.6 ± 0.2 0.6 ± 0.2 0.62   0.03^ 0.20 
    LF 1.0 ± 0.4  1.0 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 0.58 0.19 0.92 
    HF 0.9 ± 0.3   1.1 ± 0.3 1.1 ± 0.4 0.9 ± 0.2 0.98 0.72 0.29 
Phase (radians)        
    VLF  56.9 ± 20.1 47.7 ± 10.1 54.2 ± 13.9 62.4 ± 24.6 0.65   0.04^ 0.34 
    LF    31.2 ± 18.4 33.6 ± 17.5 31.9 ± 19.9 29.2 ± 16.9 0.98 0.69 0.43 
    HF   21.3 ± 19.2 20.1 ± 27.0 32.0 ± 52.0 11.3 ± 49.0 0.31 0.95 0.35 
Coherence          
    VLF  0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.2 0.40 0.60 0.77 

    LF 0.6 ± 0.1 0.5 ± 0.2 0.6 ± 0.1 0.6 ± 0.1 0.70 0.09 0.67 
    HF 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.40 0.37 0.77 

Data are mean ± SD. T*C, time*condition interaction. *Main effect of time P≤0.05; ^main effect of condition P≤0.05. 
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7.4 Discussion  

The primary aim of this exploratory study was to test the hypothesis that acute (-)-epicatechin 

ingestion improves cerebrovascular function in healthy adults. The study found no differences in 

cerebrovascular function 2-hours following ingestion of a single dose of (-)-epicatechin compared to 

placebo, with no effect of (-)-epicatechin on cerebrovascular responses to CO2 or dynamic 

autoregulation, assessed via squat-stand manoeuvres. This is the first study to examine the acute 

impact of (-)-epicatechin on cerebrovascular function in humans using a range of functional tests. 

Current findings suggest that acute ingestion of (-)-epicatechin does not induce any immediate 

functional changes in the cerebrovasculature in healthy male individuals.  

 

Despite previous studies observing encouraging effects of acute tea consumption on peripheral 

vascular function, there is a distinct lack of research examining the impact of tea and its isolated 

compounds on the cerebrovasculature that have used a variety of methods to interrogate 

cerebrovascular function. It is, therefore, difficult to compare current findings against the existing 

research base. This topic is of particular interest since cerebrovascular disease and stroke account for 

the greatest proportion of cardiovascular related deaths globally (Roger et al., 2012) and dietary 

behaviours present a relatively easy opportunity to modify cerebrovascular disease risk. Although 

examining cerebrovascular function is challenging, CO2 reactivity and cerebral autoregulation provide 

useful methods of assessment, given that the principle regulators of cerebral perfusion are arterial 

blood gases, such as CO2, and blood pressure (Willie et al., 2014). The present study found no effect 

of a single dose of (-)-epicatechin 2-hours after ingestion compared to placebo, either on 

cerebrovascular responses to CO2 or dynamic autoregulation. CO2 reactivity may act as a surrogate of 

cerebrovascular endothelial function (Lavi et al., 2006), similar to the role of FMD in assessing 

endothelial function in the peripheral vasculature. NO is suggested to contribute towards the 

regulation of the cerebral circulation (Iadecola et al., 1994; Lavi et al., 2003), although it is unclear 
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whether the NO is derived from the endothelium or neuronal pathways (Lavi et al., 2006). 

Nevertheless, impaired CO2 reactivity has been observed in individuals with peripheral endothelial 

dysfunction, with no apparent effect on pressure-dependent CBF autoregulation (mechanoregulation) 

(Lavi et al., 2006), thereby suggesting a role for the vascular endothelium in cerebrovascular function. 

Furthermore, adequate cerebral reactivity to hypercapnia appears to be dependent upon the integrity 

of the vascular endothelium (Silvestrini et al., 2000; Lavi et al., 2003). Given that (-)-epicatechin is the 

most abundant flavan-3-ol in cocoa (Dower et al., 2016a; Dower et al., 2016b), in addition to its 

presence in green tea, and is suggested to be (partly) responsible for mediating cocoa-induced 

improvements in peripheral vascular function (Schroeter et al., 2006), it was reasonable to surmise 

that (-)-epicatechin may induce similar changes in the cerebrovasculature. However, the present study 

observed no differences in cerebrovascular function in response to hypercapnia, with no changes 

evident for autoregulation, suggesting that (-)-epicatechin does not affect the cerebrovasculature 

presumably via a direct effect on the endothelium.  

 

In keeping with the concept that (-)-epicatechin does not influence cerebrovascular endothelial 

function, previous studies also demonstrated no significant improvements in peripheral vascular 

function (FMD) following acute (2-hours) (Dower et al., 2016b) or regular (4-weeks) (Dower et al., 

2015) ingestion of (100mg (-)-epicatechin) in healthy adult males. As an alternative explanation, the 

cardioprotective effects of (-)-epicatechin may relate to improved insulin resistance rather than a 

direct effect on the vasculature (Dower et al., 2015). (-)-Epicatechin and insulin are considered to exert 

similar protective effects on erythrocyte osmotic fragility and in increasing glucose uptake, but act by 

different mechanisms according to their different binding sites (Rizvi et al., 1995). NO appears to be 

the primary molecule responsible for the protective effects of (-)-epicatechin, with increased 

bioavailability suggested to modulate inflammation and reduce the formation of reactive oxygen 

species (Grassi et al., 2013b), although the precise mechanisms remain unclear. Insulin acts as a 
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neuroregulatory peptide and plays an important role in brain metabolism, memory and cognition, but 

is not considered a regulator of cerebrovascular function (Gray et al., 2014). Therefore, it is perhaps 

unsurprising that the present study observed no differences in cerebrovascular function, and that 

previous effects in the peripheral vasculature may relate to an insulin-like action, given that these 

vessels are more dependent upon the liberation of NO by insulin-activated eNOS.  

 

Regular tea consumption is associated with modest 1-2 mmHg reductions in BP (Greyling et al., 2014) 

that may have implied an effect of (-)-epicatechin on the cerebrovasculature through pressure-

dependent CBF regulation (mechanoregulation). However, the present study observed no significant 

differences in MAP over time or between conditions, and no changes in the findings when CBF was 

expressed relative to MAP (CBVC). It is likely that any potentially small changes in MAP induced by (-

)-epicatechin ingestion were unlikely to be apparent, particularly given the small sample size. Similarly, 

if the beneficial effects of tea are due to a direct effect on the vascular endothelium arising from NO-

mediated mechanisms, no changes in MAP may be observed (Lavi et al., 2006).  

 

Cerebral autoregulation assessed via squat-stand manoeuvres at 0.05 Hz and 0.10 Hz (i.e. 3- and 6-

squats per minute, respectively), did not demonstrate any changes in the oscillations between CBF 

and MAP (transfer function determined gain and phase) following acute (-)-epicatechin ingestion. The 

mechanisms of cerebral autoregulation include mechanoregulation (see above), NO pathways (see 

above), myogenic (vascular smooth muscle), neurogenic (α-adrenergic sympathetic nerves) and 

metabolic (local blood gases) regulation (see above).  The present chapter’s results suggest that acute 

(-)-epicatechin ingestion does not affect dynamic cerebral autoregulation. These, as well as the CO2 

reactivity, findings are consistent with findings of the previous chapter (Chapter 6) in that ingestion of 

a dietary flavonoid has demonstrated no direct impact on the cerebrovasculature. As the brain is a 

highly complex organ and is tightly regulated through multiple interrelated mechanisms, it is possible 
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that the brain’s plasticity or redundancy is able to cope with subtle changes and that a much greater 

stimulus is required to induce any functional variations. Furthermore, the regulatory mechanisms 

underpinning cerebrovascular function are incompletely understood so as our collective 

understanding continues to advance, future studies may be able to identify subtle differences that are 

possibly currently undetected.  

 

The present study findings are in keeping with the only study to date that has directly investigated the 

cerebrovascular effects of tea, whereby acute black tea consumption demonstrated no effect on 

cerebrovascular reactivity to hypercapnia (ASL-MRI) in healthy male adults (Vidyasagar et al., 2013). 

However, no previous study has specifically examined the effects of green tea or (-)-epicatechin on 

cerebrovascular function. EGCG, another catechin that is abundant in green tea (Murray et al., 2015), 

demonstrated decreased CBF (measured by near-infrared spectroscopy; NIRS) during computerised 

cognitive task performance in healthy humans following a single low dose (135 mg), whereas a higher 

dose (270 mg) did not change CBF relative to placebo (Wightman et al., 2012). Improved 

cerebrovascular function has been observed following the ingestion of cocoa flavanols (containing (-

)-epicatechin), whereby increased regional CBF (ASL) was demonstrated 2-hours post-ingestion (cocoa 

flavanols containing 89mg of (-)-epicatechin) in the healthy elderly (Lamport et al., 2015). Similarly, an 

acute dose (450mg) of flavanols ((-)-epicatechin content unknown) increased grey matter CBF (fMRI) 

2-hours post-ingestion in healthy young females (Francis et al., 2006) and increased CBF was observed 

following regular (1-12 weeks) ingestion in older individuals (Fisher et al., 2006; Sorond et al., 2008a; 

Brickman et al., 2014). It is possible that the differences in the test product (tea, (-)-epicatechin, EGCG, 

cocoa flavanols) may be responsible for the variable observations of the aforementioned studies. 

However, given the paucity of studies to date, it is difficult to establish whether there are distinct 

differences between the effects of tea and tea-derived flavonoids. Furthermore, it is unlikely that the 

timing of administration was a factor in the present study, as 2-hours was consistent with suggestions 
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regarding peak bioavailability (Clifford et al., 2013) and previous studies (Francis et al., 2006; Lamport 

et al., 2015; Dower et al., 2016b). 

 

It is possible that the acute dose of (-)-epicatechin in the present study was insufficient to affect the 

cerebrovasculature, particularly since it is difficult to ascertain the exact (-)-epicatechin content of 

some previous cocoa flavanol studies. In keeping with the present study, peripheral vascular function 

(FMD) demonstrated no significant effect of 100 mg (-)-epicatechin, yet dark chocolate containing 150 

mg (-)-epicatechin significantly improved FMD (Dower et al., 2016b), although a smaller 70 mg (-)-

epicatechin dose acutely increased FMD and NO in a pilot study in only three individuals (Schroeter et 

al., 2006). However, the lack of cerebrovascular (-)-epicatechin studies makes accurate comparison of 

dose administration difficult. Variations in the cerebrovascular assessment methods between the 

present and previous cerebral studies likely also contribute to differences in findings. Previously, 

differences in CBF were demonstrated using techniques such as ASL or fMRI, that are more sensitive 

in detecting changes in global and regional perfusion rather than using MCAv via TCD, as in the present 

study. It is, therefore, possible that subtle changes in cerebrovascular function were not detected in 

the present study, but may have been observed using alternative techniques that assess regional 

perfusion.    

 

Older individuals are likely to exhibit compromised cerebrovascular function associated with ageing 

(Parkes et al., 2004; Bertsch et al., 2009), which may partly explain the improved (-)-epicatechin-

induced cerebrovascular function found in previous studies (Fisher et al., 2006; Sorond et al., 2008a; 

Brickman et al., 2014; Lamport et al., 2015) and no differences observed in the healthy male adults 

examined in the present study. The present cohort likely had near-optimal cerebrovascular function 

and individuals with chronic cerebrovascular dysfunction a priori (such as the elderly or individuals 

with CVD risk factors) may be more likely to exhibit changes following ingestion of tea or tea-derived 
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flavonoids. Consistent with this, (-)-epicatechin intake was associated with a 46% lower risk of CVD 

related mortality in men with prevalent CVD, compared to no such risk reduction in healthy men in a 

prospective cohort study (Dower et al., 2016a). However, further studies in at-risk and elderly 

populations are required to corroborate this suggestion.  

 

7.4.1 Clinical Relevance and Perspectives  

Findings from the present study suggest that acute (-)-epicatechin ingestion is not associated with 

improved cerebral CO2 reactivity or dynamic autoregulation in healthy younger individuals. However, 

the long-term effects remain unclear and, furthermore, its effects in a population exhibiting impaired 

cerebrovascular function are unknown. This remains of special importance given previous 

observations in population studies that found that (-)-epicatechin intake is associated with lower risk 

for CVD-related mortality. Further studies are therefore warranted to explore the longitudinal effects 

of (-)-epicatechin and whether it has an impact upon individuals with existing (endothelial) 

dysfunction.  

 

7.4.2 Limitations  

Given that regulation of the cerebrovasculature is highly complex and involves multiple mechanisms, 

subtle changes in function following (-)-epicatechin ingestion may not have been detected in the 

current cohort given the small sample size. Inherent methodological considerations of TCD may have 

influenced the findings of the present study, as it is not possible to ensure complete accuracy in 

insonating the same part of the MCA for each set of measures. However, every effort was made to 

document Doppler probe positions and to record velocity and depth values for subsequent laboratory 

measures. It is assumed that during TCD the vessel diameter does not change which may have 

influenced the data obtained during hypercapnia. Nevertheless, the absolute CO2 reactivity data was 
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indicative of similar cerebrovascular responses, suggesting that the MCA likely dilated to a similar 

extent following both (-)-epicatechin and placebo.  

 

In conclusion, the present exploratory study suggests that acute ingestion of (-)-epicatechin does not 

affect cerebrovascular function, as assessed by CO2 reactivity and dynamic autoregulation. The 

present findings are consistent with those of Chapter 6, in that the cerebrovasculature does not exhibit 

any changes in function following the ingestion of either the isolated compound (-)-epicatechin or tea 

per se. However, further investigation is warranted to examine the longitudinal effects of (-)-

epicatechin on the cerebrovasculature, particularly in cohorts that may be more susceptible to 

changes in the cerebrovasculature.  
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CHAPTER 8: SYNTHESIS OF FINDINGS 
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8.1 Aims and Objectives  

The research described within the present thesis was designed to explore the impact of tea ingestion 

on peripheral, central and cerebral micro- and macrovascular function in humans. Furthermore, the 

studies specifically examined NO-mediated endothelial function in both the cutaneous microvessels 

and conduit arteries and, for the first time, explored the impact of an unhealthy lifestyle intervention 

on multiple measures of vascular health and insulin resistance, along with the impact of regular green 

tea consumption on these measures of vascular health and insulin resistance. Similarly, work 

contained within this thesis provides the first observations of regular green tea consumption on the 

cerebrovasculature and the acute effect of the tea-derived catechin (-)-epicatechin on cerebrovascular 

function.  

 

8.2 Major Findings  

8.2.1 Simultaneous use of Local Heating Protocols in Examining Cutaneous Microvascular Function 

The reproducibility study detailed in Chapter 4 found that the Rapid 42°C and Gradual 42°C local 

heating protocols provide superior reproducibility to other local heating protocols, such as Rapid 39°C, 

when assessing cutaneous microvascular function. Furthermore, the data of Chapter 4 provides useful 

sample size estimations to detect meaningful differences in future studies using local thermal 

hyperaemia. Combined with the observations of Chapters 5 and 6, whereby acute and regular 

consumption of black and green tea, respectively, demonstrated enhanced microvascular function, 

these findings collectively support the simultaneous use of multiple local heating protocols to 

interrogate the microvasculature and achieve better mechanistic insight for use in future 

epidemiological studies and clinical trials. In addition, current findings suggest that differences in 

cutaneous microvascular function are more likely to be detected with the local heating protocols that 

have the smallest variation (Rapid 42°C and Gradual 42°C).  
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8.2.2 Tea and Cutaneous Microvessel Endothelial Function  

Chapter 5 demonstrated that acute (2-hour) black tea consumption enhanced cutaneous vascular 

function in healthy, middle-aged individuals compared to placebo. Two distinctly different techniques 

(LDF and FLPI) detected these effects using gradual local heating, thereby reinforcing the observed 

microvascular effects of acute black tea consumption. However, no differences were detected 

following rapid local heating using LDF. Furthermore, in Chapter 6, green tea also demonstrated a 

cardioprotective role in that daily consumption for 7-days largely attenuated the reduction in 

cutaneous blood flow in response to gradual, but not rapid, heating following an unhealthy lifestyle. 

As gradual local heating is largely NO-mediated (Black et al., 2008b), current findings suggest that the 

microvascular benefits of tea consumption are likely achieved through a mechanism related to 

activation of endothelium-derived vasodilators, such as NO. Given that the rapid local heating 

protocols are predominantly NO-mediated, but to a lesser extent than gradual local heating, and that 

tea attenuated the unhealthy lifestyle-induced impairment in microvascular function in Chapter 6, 

reinforces the concept that NO plays an important protective role in the microvasculature.  

8.2.3 Short-term Lifestyle Intervention and its Effects on Vascular and Metabolic Function   

Chapter 6 demonstrated the deleterious impact of an unhealthy Western lifestyle, characterised by a 

high energy diet and physical inactivity, inducing peripheral vascular dysfunction and insulin resistance 

after a period of only 7-days. Importantly, as such sedentary lifestyles reflect the habitual behaviour 

of an ever-increasing number of individuals in developed countries, and others experience such a 

lifestyle during holidays and festivities, these observations are widely applicable. Furthermore, as the 

profound impact of excess calorie consumption and physical inactivity was observed after only a few 

days in a cohort of previously healthy male adults, current findings demonstrate the significant 

negative impact of this lifestyle on cardiovascular health. The ability of the lifestyle model adopted in 

Chapter 6 to induce immediate changes in peripheral vascular function and metabolic function 

highlights its value and relevance as a tool in evaluating lifestyle-induced changes and the impact of 

interventions to enable the development of strategies to combat such negative consequences.  
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8.2.4 Tea and Conduit Artery Endothelial Function  

Consistent with the findings in the microvasculature, Chapter 6 found that tea was also associated 

with a cardioprotective role in conduit vessels, as daily green tea consumption attenuated the decline 

in conduit artery endothelial-dependent function following a 7-day lifestyle intervention in healthy 

males. These changes were present in the femoral artery which was likely to have been impacted by 

the physical activity reduction to a greater extent than the brachial artery. However, the brachial 

artery did demonstrate a non-significant increase in FMD following daily green tea consumption, again 

suggesting a role for tea in improving conduit artery endothelial function. As direct measures of 

endothelial function in the micro- and macrovasculature provide independent prognostic value in 

evaluating overall cardiovascular health and CVD risk (Green et al., 2011), current findings support the 

role of tea as a cardioprotective strategy in reducing CVD risk amongst the general population.  

 

Chapter 6 also demonstrated that extra-cranial artery function, assessed by carotid artery reactivity 

to the CPT, was impaired following the unhealthy lifestyle, with a concomitant increase in both the 

basal and peak BP during the CPT. These findings suggest that the unhealthy lifestyle induces systemic 

maladaptation, as the deleterious impact is not confined to the peripheral vasculature. Importantly, 

daily green tea consumption attenuated the decline in carotid artery reactivity, thus supporting the 

cardioprotective role of tea throughout the vascular tree.  

8.2.5 Tea and Cerebrovascular Function  

Contrary to the beneficial effects of tea observed on peripheral vascular function, Chapter 6 observed 

no differences in cerebral reactivity or dynamic autoregulation in response to daily green tea 

consumption during a 7-day lifestyle intervention. Furthermore, acute (2-hour) ingestion of the tea-

derived catechin (-)-epicatechin demonstrated no impact upon the cerebrovasculature in response to 

similar measures in Chapter 7. The combined observations on cerebrovascular function suggest that 

tea may not impact the cerebral vessels in the same way as the micro- and macro-vessels, or that the 
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brain requires much greater stimuli (e.g., inactivity, diet and/or polyphenols) to induce functional 

changes.  

8.2.6 Tea and Insulin Resistance   

Chapter 6 demonstrated that green tea was associated with a protective role on metabolic function 

in healthy male adults. Following short-term (7-day) lifestyle-induced insulin resistance, daily green 

tea ingestion not only attenuated elevated blood glucose levels, but also improved glucose handling 

and concomitantly enhanced insulin sensitivity. This study, therefore, highlights the ability of green 

tea to mitigate impairments in metabolic function and its use as a potential adjunct in combating the 

deleterious impact of high energy, sedentary lifestyles.  

 

8.3 General Discussion  

The skin is the human body’s largest organ and represents an easily accessible vascular bed to assess 

peripheral microvascular reactivity, also providing a model to investigate underlying mechanisms in 

various diseased states (Levy et al., 2001; Sokolnicki et al., 2007; Levy et al., 2008). The findings from 

Chapters 4, 5 and 6 support this notion, but further demonstrate the value of using multiple local 

heating protocols simultaneously. Interrogating the microvessels using a combination of local heating 

protocols provides a means of discovering the underlying mechanisms that are responsible for 

changes in function following intervention studies. Specifically, use of rapid and gradual local heating 

protocols exhibited different cutaneous responses to local heating in Chapters 5 and 6 that 

investigated the effects of acute and regular tea consumption, respectively. The data presented in 

Chapter 5 revealed that middle-aged healthy individuals exhibited increased cutaneous microvascular 

function 2-hours following black tea ingestion compared to placebo, as demonstrated following 

gradual local heating that is largely NO-mediated. Given that rapid local heating did not exhibit any 

such differences between tea and placebo, these findings highlight the importance of interrogating 

the cutaneous microvessels via multiple protocols. Similarly, the data presented in Chapter 6 further 
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supports this approach, as gradual local heating again demonstrated tea-induced increases in 

cutaneous vasodilation, whereas rapid local heating observed no changes between pre- and post-tea, 

compared to a reduction in vasodilation following placebo. It is possible that the studies in Chapters 5 

and 6 were statistically underpowered to detect differences pre- vs post-tea with rapid local heating, 

according to the findings and sample size estimations contained within Chapter 4. However, the 

observed differences between rapid and gradual local heating protocols may also be due to essential 

differences in the underlying mechanisms. Despite rapid local heating protocols also being NO-

mediated, but to a lesser extent than gradual heating, they also activate axon-reflexes and are partly 

mediated by EDHFs (Johnson et al., 2014). Consequently, rapid local heating provides complementary 

mechanistic insight when used in conjunction with gradual heating.  

 

Assessing cutaneous microvascular function is logical when examining the cardiovascular impact of 

interventions, since the skin represents a valid model of generalised microvascular (dys)function 

(Holowatz et al., 2008) and is regarded as an earlier sentinel of CVD than the macrovasculature 

(Roustit & Cracowski, 2012). Chapter 5 demonstrated acute (2-hour) improvements in cutaneous 

microvascular function in response to black tea consumption that is encouraging, given that this 

vascular bed is associated with some of the earliest manifestations of CVD and diabetes in multiple 

organ systems (Cade, 2008). Similarly, the lifestyle intervention adopted in Chapter 6 demonstrated a 

deleterious impact in the microvasculature after only 7-days that was not present in all of the 

examined conduit arteries, again suggesting that detrimental changes first manifest in the cutaneous 

microvasculature which is, therefore, a crucial component of the vascular tree.  

 

Chapter 6 demonstrated that a short lifestyle intervention had a significant deleterious impact on 

several markers of cardiovascular health. Previously, no research has examined the impact of such a 

lifestyle intervention on vascular health in a range of vascular beds simultaneously. The 
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comprehensive vascular assessment and observations in Chapter 6 are indicative of lifestyle-induced 

systemic changes in vascular function. Many individuals adopt such a lifestyle for much more 

prolonged durations than in Chapter 6 and others who are generally active and consume eucaloric 

diets, adopt short-term unhealthy lifestyles during periods of celebration or festivities. It is, therefore, 

both surprising and concerning that such detrimental changes in vascular function and insulin 

sensitivity were observed in healthy adult males after only 7-days. The data presented in Chapter 6 

are, therefore, an important indication of the negative consequences such lifestyles have on 

cardiovascular health and furthermore, are suggestive of the early manifestation of changes 

throughout the vascular tree that may subsequently progress to overt CVD.  

 

Given that Chapter 6 observed impaired insulin signalling and altered glucose metabolism that are 

characteristic of insulin resistance, these findings demonstrate the development of insulin resistant 

mechanisms after only 7-days of an altered lifestyle. Under healthy conditions, NO production in the 

endothelial cells is stimulated by insulin activating NOS via the PI-3K pathway (Sena et al., 2013), but 

this process is impaired in an insulin resistant state, thereby diminishing NO production and 

subsequently impairing the ability of vessels to dilate (Kim et al., 2006). That changes in insulin 

sensitivity were detectable after only 7-days suggests that the inflammatory cascade leading to 

atherosclerosis manifests early following changes in lifestyle. However, it is unknown whether such 

rapid changes translate to long-term changes in the vasculature and metabolic pathways. 

Furthermore, the precise mechanisms responsible for tea-induced changes in glucose control and 

insulin sensitivity are uncertain. Animal models suggest several mechanisms, including a reduction in 

glucose production in the intestinal tract due to inhibition of carbohydrate digestive enzymes 

(Kobayashi et al., 2000; Oh et al., 2015). Enhanced insulin binding to adipocytes and improved glucose 

uptake by myocytes are also suggested to be responsible for improved insulin sensitivity following tea 

and catechin consumption (Wu et al., 2004a; Wu et al., 2004b; Ueda et al., 2010; Ueda-Wakagi et al., 
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2015). However, the metabolic pathways in humans have yet to be determined and Chapter 6 did not 

investigate the gut microbiota so the mechanisms underlying the improved glucose handling and 

enhanced insulin sensitivity remain uncertain. It is perhaps interesting to consider the possibility that 

improved vascular function (as outlined in Chapter 6) could have also contributed to the improved 

glucose control and insulin sensitivity through improved delivery/disposal for example (Wagenmakers 

et al., 2016).  

 

The observations of previous research suggesting a cardioprotective role of tea on the vasculature 

were both supported and further extended by the findings of Chapter 6, in that daily green tea 

consumption attenuated the negative consequences of the short-term lifestyle intervention in 

previously healthy male adults. Previous studies have generally assessed the acute impact of tea on 

conduit artery endothelium-dependent vasodilation (Hodgson et al., 2005; Schreuder et al., 2014), 

with no prior work examining the vascular effects of tea on lifestyle changes. The ability of green tea 

to not only attenuate, but improve vascular function throughout the vascular tree in the presence of 

an unhealthy lifestyle, suggests that tea exerts a potent effect at the level of the endothelium, likely 

related to activation/upregulation of endothelium-derived vasodilators, such as NO. The observed 

metabolic changes are also consistent with this theory, given that green tea enhanced insulin 

sensitivity which is partly responsible for stimulating NO production in endothelial cells via the 

catalytic conversion of L-arginine to L-citrulline. Whilst the precise mechanisms underlying the tea-

induced improvements in vascular and metabolic function remain unclear, the cumulative findings of 

Chapters 5 and 6 are consistent with a NO-mediated mechanism.  

 

Despite the beneficial effects of tea consumption observed in the peripheral vasculature in Chapters 

5 and 6, based on current work contained within this thesis, tea and the tea-derived catechin (-)-

epicatechin, do not appear to exert any effect upon cerebrovascular function in healthy adult males. 
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Such findings are largely consistent with the few studies previously undertaken concerning the 

cerebrovascular effects of tea consumption (Vidyasagar et al., 2013). Given that the brain is a large 

organ and requires a large stimulus to induce functional variations, it is feasible that the duration 

and/or dosage of tea/(-)-epicatechin were insufficient to influence the cerebrovasculature. Similarly, 

the lifestyle intervention may not have been severe enough to generate an impairment in 

cerebrovascular function, particularly since the control mechanisms of the cerebrovasculature are 

different to those in the peripheral vessels. Furthermore, it is acknowledged that the sample sizes for 

the cerebral data of Chapters 6 and 7 were small and unlikely to detect any subtle changes in function 

that may have been present. Likewise, current findings were observed in healthy adult males with 

optimal cerebral endothelial function. The impact in individuals with compromised endothelial 

function may exhibit different changes, particularly an ageing population. Further research is, 

therefore, required to determine the effects of tea in such populations who are at greater risk of 

cerebrovascular disease.  

 

The work contained within this thesis provides compelling evidence for a cardioprotective role of tea 

on peripheral vascular function. The experimental studies detailed herein have contributed to the 

collective understanding of the role of tea in mitigating CVD risk and being a useful therapeutic 

approach in improving overall cardiovascular health. Furthermore, the experimental work of this 

thesis has contributed to the understanding of underlying mechanisms likely responsible for the 

observed vascular improvements and this thesis highlights the value of performing simultaneous local 

thermal hyperaemic assessment to interrogate the microvasculature for mechanistic insight.  

 

8.4 Implications  

Cardiovascular disease remains the leading cause of global mortality (WHO, 2016) and an economic 

burden for public health. Management of modifiable CVD risk factors remains an important strategy 
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in combating the progression of CVD risk towards overt disease. The research work undertaken in this 

thesis provides important insight into the effects of tea consumption on peripheral vascular function 

and insulin sensitivity, particularly its beneficial effects on lifestyle-induced vascular impairments. 

Chapters 5 and 6 are the first studies to evidence improved cutaneous microvascular function 

following both black and green tea, respectively, suggesting that the benefits of tea may not be 

confined to one type and, therefore, its effects may be experienced by a greater percentage of the 

population. Moreover, the beneficial impact in the cutaneous microvasculature is encouraging given 

that it is an important vascular bed in the pathogenesis of diabetic microangiopathy (Jaap et al., 1994; 

Tooke, 1995). Together with the generalised improvements in peripheral vascular function and insulin 

sensitivity observed in response to a short-term lifestyle intervention in Chapter 6, regular tea 

consumption may present a viable means of mitigating the deleterious impact of an unhealthy 

lifestyle. However, importantly, regular tea consumption should not be seen as a “quick fix” to temper 

the detrimental effects of an unhealthy lifestyle, or reduce the importance of regular exercise and a 

balanced diet in maintaining a healthy lifestyle and overall cardiovascular health. Nevertheless, 

regular tea consumption may represent a suitable intervention during forced periods of inactivity 

and/or excess calorie intake, such as illness or holiday periods, respectively. Longitudinal randomised 

controlled trials are required to determine whether such tea-induced vasoprotective effects are 

apparent following more prolonged lifestyle behaviours/changes. As higher levels of NO provide anti-

atherogenic benefits and the data presented within this thesis support the role of tea in improving NO 

bioavailability, these findings provide potentially significant implications for the maintenance of 

cardiovascular health, in addition to the future prevention and management of CVD. Tea consumption 

presents a simple, inexpensive, non-pharmacological cardioprotective strategy to help combat the 

ever-increasing global burden of CVD.  
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8.5 Methodological Considerations and Limitations  

There are several strengths in the methodology of this thesis. Firstly, determining the reproducibility 

of local heating protocols used to assess microvascular function (Chapter 4) enabled appropriate 

protocols to be selected for use in intervention studies in subsequent chapters of this thesis (Chapters 

5 and 6). Furthermore, the simultaneous use of such local heating protocols within this thesis 

highlights that it is a simple, applicable and feasible approach to assess cutaneous microvascular 

function and may provide further insight into the skin vasodilatory mechanisms.  The studies 

contained within this thesis were some of the first to adopt use of multiple local heating protocols.  As 

the skin is a complicated organ, it is sensible to use a multiple protocol approach rather than focus on 

a single technique. It is, therefore, recommended that future microvascular studies should adopt a 

similar approach to the work contained within this thesis and simultaneously use multiple local 

heating protocols to interrogate the skin vasculature. As FMD assessment was undertaken according 

to the latest peer-reviewed consensus guidelines (Thijssen et al., 2011), together with the use of 

custom-designed edge-detection and wall-tracking analysis software (Chapter 6), the accuracy, 

validity and prognostic index of FMD measures was maximised. Further methodological rigor was 

adhered to throughout the experimental chapters, with strict inclusion and exclusion criteria, in 

addition to the control of dietary polyphenols prior to and during laboratory measures. Finally, 

compliance to the (in)activity levels and dietary intake was monitored during the lifestyle intervention 

(Chapter 6) .  

 

Despite the methodological strengths, there are apparent limitations within this thesis. The modest 

sample sizes of the intervention studies mean that the findings cannot be generalised towards the 

wider populace. Furthermore, the studies were undertaken in healthy individuals so the findings 

cannot simply be extrapolated to patient groups. The research contained within this thesis does not 

provide any biochemical or biomolecular insight into the mechanisms underlying the vascular and 
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metabolic improvements following tea consumption, although it is important to emphasise that this 

was beyond the aims of the thesis. A further limitation is the method used to assess insulin resistance 

in Chapter 6, whereby a mixed-meal tolerance test was used; a two-stage hyperinsulinaemic-

euglycaemic clamp with infusion of deuterated glucose (Shojaee-Moradie et al., 2007) would have 

provided a more comprehensive assessment of hepatic and peripheral insulin sensitivity. However, 

given that the participants arrived to the laboratory fasted and underwent a series of vascular 

assessments prior to the insulin and glucose measures, a mixed-meal was deemed more appropriate 

and ethical.  

 

8.6 Future Direction   

Several potential areas of future research have emerged following the studies detailed within this 

thesis. Firstly, whilst the effect of acute black tea consumption on microvascular function was 

established in Chapter 5, the long-term effects of tea on the microvasculature remain unknown which 

could potentially have wider implications for cardiovascular health in the general population. 

Furthermore, the tea-induced, likely NO-mediated, improvements in cutaneous vascular function 

were observed in healthy individuals and given that reduced NO bioavailability and endothelial 

dysfunction are early markers of atherosclerosis and type 2 diabetes (Sena et al., 2013), further 

research is warranted to determine whether such improvements are seen in a population with 

compromised endothelial function, or whether they are confined to healthy individuals. Likewise, the 

mitigating effect of tea on the peripheral vasculature and metabolic function demonstrated in 

combination with the lifestyle intervention in Chapter 6, requires longitudinal study to determine 

whether tea exhibits such a protective role following an unhealthy, or even a ‘normal’ or healthy, 

lifestyle of a much greater duration. Further longitudinal randomised controlled trials will provide 

greater insight into whether regular tea consumption may also benefit both healthy individuals and 

patient groups.  Given the increasing economic burden of CVD together with an ageing population, it 
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is important to establish whether the apparent cardioprotective properties of tea may be exploited 

for consideration as a potentially inexpensive, non-pharmacological alternative for improving 

cardiovascular health.  

 

An important area requiring further study relates to the sequence of physiological events by which 

tea improves both vascular and metabolic function, as observed in Chapters 5 and 6. Whilst it is likely 

that tea exerts its beneficial effects via a mechanism related to upregulation of chemical mediators 

such as NO, it is currently unclear whether the observed improvements occur firstly in the vasculature, 

or whether tea consumption exerts an insulin-sensitising effect and stimulation of the PI-3K pathway 

to enhance NO production from the vascular endothelium. Determining this sequence will further our 

collective understanding of the mechanistic processes underpinning the beneficial effects of tea and 

any additional signalling pathways that may be involved.  

 

It remains unclear whether tea and its isolated constituents such as (-)-epicatechin, influence 

cerebrovascular function based upon the work detailed within this thesis and the overall paucity of 

studies performed to date. Future research should, therefore, endeavour to further explore both the 

acute and chronic effects of tea and tea-derived catechins on the cerebrovasculature. The present 

findings were observed in healthy individuals whereby the brain may require a much greater stimulus 

than the studies herein to demonstrate any functional change. It would, therefore, be prudent to 

examine the effects of tea in a population at risk of cerebrovascular disease, particularly older 

individuals. Furthermore, it would be valuable to investigate the effects of tea and isolated tea-derived 

compounds on cognitive function, particularly since cerebral hypoperfusion is considered to be a 

potential trigger of cognitive decline and the development of neurodegenerative disorders, such as 

dementia (Farkas et al., 2002).  
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Given the tea-induced improvements on endothelial function, it would be worthwhile examining the 

impact of tea consumption upon athletic performance, particularly since blood flow and maximum 

cardiac output are critical determinants of overall cardiovascular performance (Somerville et al., 

2017). Polyphenols, such as quercetin, have demonstrated improved aerobic performance in double-

blind randomised controlled trials linked to mechanisms related to upregulation of mitochondrial 

biogenesis (MacRae & Mefferd, 2006; Nieman et al., 2010). However, tea and tea-derived catechins 

have demonstrated equivocal outcomes and warrant further investigation.  
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